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INTRODUCTION

In this work, we are interested in several different fields related to applied mathematics
and the electrical grid. Attempts to build a bridge between parts of these two are fruitful
in terms of results and new discoveries; on the other hand, such a combination of two,
seemingly ever-expanding, research universes is a humbling exercise. We would like to
contribute to this bridging effort by exploring a peculiar, yet key to the electrical grid,
optimisation problem referred to as the Optimal Power Flow. The motivation stems from
the evolving nature of electrical distribution in France on one side, and the thriving
numerical methods for general optimisation problems on the other side.

The key ingredients to our work are the following three:

• the understanding and subsequent mathematical modelling of this Optimal Power
Flow from a distribution point of view;

• the study of uncertainties in an optimisation context, more particularly the “Chance-
constrained” one;

• the development and implementation of a tailored algorithm that is capable to
tackle general optimisation problems.

A part of this thesis is dedicated to each of these items. The fourth part concludes
our bridging attempt. As such, the first three parts can be taken independently from one
another, even though we maintain consistency in the notations.

In the first part, we are interested in the electrical system and the necessary elements
to grasp before moving to a mathematical model. For a reader coming from a more
mathematical background, this could be of use if insight is needed on the material side
and existing mathematical models. Without falling into endless turf wars, the electrical
network is among the largest human-made systems. It requires a stringent continuous
and endless management. It is both the output of tremendous historical investments
and, de facto, the source of a vast majority of our activities. It has become a tool for, and a
domain where, part of the necessary evolutions to reach the international environmental
agreements will be held. This unique position of the electrical system, a continuum
from the international interfaces as well as in virtually all remote villages, sheds light
on to why so many evolutions are on the way and more are foreseen. We are interested
in a particular element of this positioning that concentrates a significant amount of
these changes, which is the distribution system. After a brief historical overview of
its development in France, we discuss the actors in the deregulated electricity system
interacting with one another through the electrical distribution grid. With continuing
deregulation, the changes in the distribution grid are numerous, the number of actors
ever increasing, and the roles and challenges facing existing actors evolving significantly.
In such a context, we define the challenges from a Distributor’s point of view as well as
the criterion that discriminates what is a “good” solution to these challenges.

Even with only a glimpse into the first part, it rapidly becomes evident that we have
to face an optimisation problem with uncertainties. Adding a slight overview of optimi-
sation related to electrical grids leads us to a better characterization of the mathematical
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object we have to deal with: without approximations, we have a nonconvex nonsmooth
optimisation problem. Nonconvex because of the electrical grid model, nonsmooth be-
cause of the uncertainties. This guides us to the second part, which provides a look into
DoC (Difference-of-Convex) programming. The DoC framework is a wide and flexible
one, providing useful structural properties for functions that are DoC. It includes all
linear, convex and sufficiently (sub)smooth functions. According to some precursors
of DoC programming, virtually all engineering optimisation problems can be cast, or
approximated with a user-defined precision, as a DoC one (Indeed, every extended
real-valued lower-semicontinuous function can be approximated by not only DoC, but
actually piecewise affine DoC of the kind max-max [256]). This motivates the selection
of this framework to model our problem as defined in the first part. Observing the re-
cent progress in numerical methods for nonconvex nonsmooth optimisation (namely,
so-called bundle methods) we propose a new algorithm we refer to as PBMDC 2 for Prox-
imal Bundle Method for DoC-constrained DoC-problems. PBMDC 2 builds upon recent
literature on DoC programming, and enables one to solve very general problems with,
in particular, “difficult” constraints. Such problems would previously have been tackled
by penalization techniques that are deemed sensible to user parametrisation, the CCP
(Convex-Concave Procedure) (see [197]) or an extension of the DCA (Difference-of-
Convex Algorithm) (see [183]) which are supposedly less efficient numerically when
compared to bundle methods. Let us clarify that our DoC approach is not included in
the global optimisation scheme as defined in [285] 1. Although we indeed provide a nu-
merically sound nonconvex optimisation algorithm with an optimality certificate for the
achieved point, we do not investigate its possible global optimality property. This choice
is motivated by our operational objective, with a limited amount of time and resources,
and justifies that we leave out global optimisation algorithms, as branch-and-bound.
PBMDC 2 proves to be efficient in practise, and provides an alternative to penalization
techniques or approximations of DoC-constrained DoC problems.

Thanks to PBMDC 2, we are able to numerically solve a broad class of nonsmooth non-
convex optimisation problems. Now appears another necessary step, namely to cast
our model with uncertainty into a DoC-constrained DoC problem. Optimisation under
uncertainties also is a hot topic in applied mathematics. Several frameworks to model
these uncertainties co-exist, and after a brief overview we discuss one of them in detail:
chance-constrained programming. In this framework, uncertainties are modelled with
probabilistic functions which constitute a vast and quickly expanding mathematical sub-
field. Even if it is often applied to the Energy field, it cannot be reduced to it, which leads
us to a somewhat general study of chance-constraints. As a matter of fact, several inter-
esting questions appear at the crossroads of DoC and chance-constrained programming,
the former being a reasonable candidate framework in which to exploit the latter which
is in general nonconvex and nonsmooth. In the third part, we address some of these
questions. Some are more theoretical in a way, as the study of probabilistic functions’
continuity and variations under appropriate and relatively general assumptions, while
others are more practical, as how a chance-constraint can be approximated by a DoC
function. The take-away from this part is twofold: a variational approach of probabilistic
functions, and the missing link between uncertainty modelling and a DoC model for the
1 “Global optimization is concerned with finding global solutions to nonconvex optimization problems”,

Preface to the First Edition
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OPF (Optimal Power Flow).
Summing our developments from the first three parts, we present in the fourth one a

DoC form of an OPFwith uncertainties modelled as chance-constraints. Exhibiting a DoC
formulation for a function is not trivial in general, and we thus have to prove the validity
of the considered DoC decompositions. We also address the question of data: due to
privacy and intellectual property-related concerns, one cannot easily have access to real
data. Moreover, from an operational planning perspective, an interesting case would be
one with scenarios that forecast electrical constraints. How do we obtain realistic data
and forecasts, which realisation would lead to a constrained electrical setting? Enedis
OpenData initiative that started in 2015, answers part of this question: it is now possible
to retrieve real data, averaged and processed in order to comply to French and European
privacy-related laws. In particular, forecasts of production and consumption, as well as
repartitions of producers and loads on a given legal area are accessible. We then tackle
the second part of this question by proposing a heuristic whose input is the data sourced
from Enedis OpenData andwhose output is a readily usable for our operational planning
problem. This dataset is comprised of loads and producers, scenarios of forecasts, all
defined according to distributions extracted from the Enedis OpenData. We then present
results on these realistically set-up electrical grids of different DoC-tailored algorithms.

The main objective of this work is to provide a brief overview of an energy related
optimisation problem, from an industrial ambition then on to mathematical develop-
ments necessary to present a solution before its implementation. The variety of subjects
at hand in this process also implies that there is a similarly vast variety of open questions.
The final chapter is dedicated to a summary of the major questions that remain to be
addressed and future challenges.

Insert 1: Note on some concept-abuses.
Throughout this work, several words will be used interchangeably for simplicity
even though, depending on the chosen point of view, they are not strictly equiva-
lent. For instance consumer and load are used to the same end though the latter
emphasizes the “technical” side of the former. In fact a consumer is a load with a
consumption contract. Here a list of similar concept-abuses used that we believe
do not weaken the understanding:

• producer - generator

• grid - network

• nodes - buses

• arcs - lines

From now on, when unspecified, the “electrical grid”, “grid” or “network” refers
to the electrical distribution grid which is the central element of our study.
In Parts I and IVwe use the name of the class to refer to an instance of this class. For
example, the Optimal Power Flow is a class of problems but, when unambiguous,
we write “solving the OPF” in place of “solving an instance of the OPF”.
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Figure 1: Organisation of the thesis.

Remark 1. Difference-of-convex functions/programming are known in the literature
as DC functions/programming. However, in optimal power flow problems, DC has a
different meaning: Direct Current. For this reason, throughout this thesis, we abbreviate
"difference-of-convex" by DoC and reserve DC for Direct Current. ▷

contribution of the thesis
The contributions of this thesis can be classified into three distinct categories. Parts II to IV
are each dedicated to a type of contribution.

Difference-of-Convex programming - Part II
In the Optimisation field, we have explored the subfield of Difference-of-Convex (DoC)
programming which is a class of optimisation problems. This class combines generality
as a significant amount of real-life continuous problems belong to it, and strong structural



INTRODUCTION v

properties which can be leveraged to design efficient algorithms. This combination of
the two aspects of DoC programming is at the centre of recent works in this field. Our
contribution in this domain are the following:

1. We propose a novel algorithm named PBMDC 2 for a generalized-DoC programs,
whereas a majority of previous works considered special cases of DoC programs.
This has been published in [9], and is detailed in Part II.

2. We prove that PBMDC 2 is efficient on six different academic problems, two deter-
ministic and four stochastic.

Probabilistic functions - Part III
Uncertainties are an important subfield in Optimisation, as they naturally occur in every
physical model while usually significantly increasing the difficulty of these models. One
framework that addresses uncertainties is Stochastic programming. Within this framework,
a thrivingmethod tomodel constraints subject to uncertainties in calledChance-constraints.
In this setting, one wants to control the probability of violation of a constraint. Although
chance-constraints, which involve probabilistic functions, have attracted a lot of attention
in particular since the 2010, it still is a challenge to compute information on their variations,
or even functional values. Following the lead of [19], we have studied the variational
properties of some probabilistic functions. Our contributions in this domain, published
in [17], are the following:

1. We present a general approximation of the first order information of the probabilis-
tic functions we study.

2. We propose a computationally tractable formulation for this approximation.

3. Apart from some special pathological points (whose set is of zero measure), we
show that this approximation is indeed exact.

The Optimal Power Flow with uncertainties - Part IV
The Optimal Power Flow (OPF) is a mathematical optimisation problem based on an
electrical network. The objective of an OPF is to provide an optimal point while ensuring
that flows of power are within some specified bounds. Since the 1960’s, it has been at the
centre of a large field of Operational Research. Current challenges on the OPF include the
development of methods to take uncertainties into account. Building upon Parts II and III,
we study the chance-constrained OPF in Part IV. Our contributions in this domain are
the following:

1. We propose a novel two-step framework for the OPF under uncertainties jointly
considered, that relies on DoC programming.

2. We present four different models which are OPF taking uncertainties into account
one of which is a chance-constrained OPF.

3. We have conducted numerical experiments as a proof-of-concept to compare the four
models and several DoC algorithms.
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INTRODUCTION

This first part presents the industrial objective at eDF R&D, where study of the electrical
distribution networks is a significant activity. Several key concepts are defined or intro-
duced which will guide the set up of the mathematical model of part IV.
The first chapter is aimed at a general understanding of the historical part of the electrical
system and the new, fast-evolving current stakes and challenges. This non-technical
section is mainly intended to stress out the underlying reality of the particularly vast
and astonishingly expanding technical literature on electrical grid matters. An emphasis
is given to the definition of new actors and the nature of the bilateral relations. This
leads to an abstract and high level model of the electrical grid and its actors. This model
underlies the developments of Part IV.
The second chapter provides mathematical background on the technical side of the
electrical system, namely the OPF. As visible by the huge literature on this subject since
the formalisation of the OPF in the 1960s, this optimisation problem has stimulated a lot
of research teams and a large number of different models, solving methodologies have
been proposed to solve it. As we are interested in mathematical methods of the OPF,
we leave out of our discussion a vast facet of literature that mainly includes heuristics
methods. We stress out that this decision should not lead a reader to disregard heuristic
approaches to such numerically difficult optimisation problems as the OPF. As it turns
out, such methods can be useful in practice.
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RÉSUMÉ EN FRANÇAIS

Cette première partie présente l’objectif industriel de eDF R&D, où l’étude des réseaux de
distribution électrique est une activité importante. Plusieurs concepts clés sont définis
ou introduits, qui guideront la mise en place du modèle mathématique de la partie IV.
Le premier chapitre vise à une compréhension générale de la partie historique du système
électrique et des nouveaux enjeux et défis actuels en pleine évolution. Cette partie non
technique est principalement destinée à souligner la réalité sous-jacente de la littérature
technique sur les réseaux électriques, particulièrement vaste et en grande expansion.
L’accent estmis sur la définition des nouveaux acteurs et la nature des relations bilatérales.
Ceci conduit à un modèle abstrait et de haut niveau du réseau électrique et de ses acteurs.
Ce modèle est à la base des développements de Crefpart:4.
Le deuxième chapitre fournit un contexte mathématique sur l’aspect technique du sys-
tème électrique, à savoir l’OPF. Comme le montre l’énorme littérature consacrée à ce
sujet depuis la formalisation de l’OPF dans les années 1960, ce problème d’optimisation
a été au coeur des travaux de nombreuses équipes de recherche. Il en résulte qu’un
grand nombre de modèles et de méthodes de résolution a été proposé pour le résoudre.
Comme nous nous intéressons aux méthodes mathématiques de l’OPF, nous laissons
de côté une vaste facette de la littérature qui comprend principalement des méthodes
heuristiques. Nous soulignons que cette décision ne doit pas conduire le lecteur à nég-
liger les approches heuristiques de problèmes d’optimisation numériquement difficiles
comme l’OPF. Il s’avère que de telles méthodes peuvent être utiles en pratique.
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THE FRENCH ELECTRICAL
NETWORK AND MEANS OF
EXPLOITATION

1France’s electrical network is the result of over 150 years of development, whose full
study embraces a vast diversity of fields (including Economic / Organisational History,
Sociology, Architecture, Politics, Physics, Mathematics,. . . ). Its evolution is far from being
to sole output of series of electro-technical choices, that would have been guided by new
scientific breakthroughs. As a result, the management and development of the electrical
system requires a strong understanding of its technical limits, which bear a material side
(an electric line has an upper bound on intensity transit) and an immaterial one (actors
on the grid have boundaries on their responsibilities). Leading an optimisation study on
the electrical system is thus intrinsically linked to a grassroots knowledge of the material
characteristics, their physical models on one part, and the mix of actors at stake on the
other. The latter is a fast evolving field: often times the electric system is dated back to the
end of the 21st century, and though electrons remain the same, their management is not.
For instance, an ongoing change that began in the 1990s concerns the liberalisation of parts
of the electric system. This change stemmed fromChile before starting to be implemented
at the end of this decade in European countries. The system was separated into two
categories: "regulated" and "deregulated" as a consequence. Distribution remained a
regulated sector, whereas production and supply were deregulated. This separation
implies that new actorswere created for each of these responsibilities that previouslywere
uniquely integrated. This example alone is sufficient to characterise what “fast” actually
means: in a 20 year time period, paradigms of exploitation and future development of a
complex human-made system, comprising around 1.5 million of kilometres of lines that
transferred 548.6TWh of electrical energy in 2018 [257] in France alone, have changed.

This work is motivated by the new role of an actor in the electrical grid, namely
the Distribution System Operator (DSO). Since the beginning of the 21st century its
role has evolved with the electric network, pressed by three main forces: deregulation,
ecological transition inwhich falls the energy one, and the development of new or “smart”
technologies. Though the underlying motivations behind this evolution are numerous
(political, social...), they all impact the distribution sector. Liberalisation increases the
number of actors on the grid and modify the interactions between DSOs and other actors
in the system; the transition strongly influences decisions on acceptable actions, as the
choice of generation sources; new technologies bring more capabilities to the DSO, which
comes with more challenges on how to adequately use them.
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Insert 2: Remarks on other service networks in France.
The yearly investments in the electrical grid have to be compared to investments
in other French networks, for instance the water and the telecommunication ones.
The electrical grid cost is covered by revenue from a quadrennial national energy
price called TURPE. From the TURPE-5 [173], Enedis has a yearly operating cost
closing 15be with about 4.3be of grid investments. RTE, roughly in charge of
the remaining 5% of the electrical grid comprised of very high voltage lines and
international connections, plans to invest 20be over the period 2021− 2030. On the
other hand, it would be interesting to have a macroeconomic order of magnitude
of how much we benefit from the grid and these investments: closely related to
this question is the cost of outage, or “blackout”. As a matter of fact there exists
an online tool developed to the evaluation of a blackout cost [249] (counting only
the direct cost of energy not delivered). A 1 hour French metropolitan blackout in
February 2021 would be over 600me. In this perilous evaluation exercise, another
way of computing the cost of a national outage of one hour could lie in the report
from the European Commission [276]. This report defines the value of loss-load
(VoLL), and finds that the French VoLL is 12e per kWh for households, and 34e
per kWh for non-households. Now, broadly speaking, French non-households
clients have a 262TWh yearly consumption [225, Figure 1] leading to a national
hourly cost of 1.017.109e. As an attempt to put these numbers into perspective,
from [279] we note that the annual investments in France averaged between 2009-
2013 is shy of 2.3be (only including investments and developments of the water
network, excluding the sanitation processes for fair comparison with the electrical
grid for which we have not included the power generation costs). In [190], we
get that the amount of yearly investments in the telecommunication network
(comprised of all types of networks, including mobile) is about to reach 10bea.
a This amount includes the new developments of very high speed telecommunication, which in

fact is the operators’ largest expense.

This chapter aims at providing a general insight on the electrical grid, and on the
DSO. From an initial presentation of the grid, our objective is to make explicit the role
and objectives of the DSO, and describe the nature of its relations with other actors.
To this end, the chapter is divided into five different sections. The fist one recalls basic
considerations on the electrical grid. Main actors on the network are detailed in the
second section, where we briefly overview their main give objectives. The third section
presents some historical facts on the development of electricity in France. Most important
recent evolutions in this development are detailed in the fourth section, while the last
section presents Enedis’ role and its modes of action to meet its objectives.
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1.1 current material organisation of the french
electrical grid

The French electrical network is nearly exclusively exploited as a three-phase AC system.
Although recent advances in power electronics made DC lines a technico-economically
competitive options on some large transmission projects (see for instance the INELFE
project, a 65 kilometre High Voltage Direct Current line between Spain and France [158]),
the subject of interest here will be the MV grid.

Currently, the French electrical network is classified into different categories based
on the voltage level. Roughly speaking, from major production centres of electricity to
low-voltage end-users, the continuous grid is separated into the following classes:

• a substation interfacing large and centralized production units with the rest of the
grid;

• extra high voltage (EHV) lines: the transmission grid and European interconnec-
tions;

• EHV to high voltage (HV) substations;

• HV lines: the sub-transmission grid;

• HV to medium voltage (MV) substations;

• MV lines: the distribution grid;

• MV to low voltage (LV) substations;

• LV lines: the low-voltage distribution grid;

• LV clients;

Following this classification, two sets commonly arise in the French structure. The
first one consists of EHV/HV (Haute tension B); the second one consists of MV (Haute
Tension A and LV (Basse Tension).

Here are the English-French translations for voltage levels:

English French Voltages
Extra-high voltage (EHV) Haute-tension B3 (HTB3) 350kV ≤ U ≤ 500kV
High voltage (HV) Haute-tension B2/B1

(HTB2/HTB1)
50kV ≤ U ≤ 350kV

Medium voltage (MV) Haute-tension A (HTA) 1kV ≤ U ≤ 50kV
Low voltage (LV) Basse-tension (BT) U ≤ 50kV

Table 1.1: English to French nomenclature of voltage levels.

The rest of this section aims at pointing out key facts that differentiate HV from
MV and below. Differences have historically been huge on the material side, as well
as the selection of variables to monitor. For instance, actors on the HV grid usually
adopt a “system view”, while actors on the MV grid usually have a “network view”.
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This difference of views reflects the differences of objectives affected to each actors, and
is interesting if one wants to study the numerous recent works on better cooperation
and services exchanges between HV and MV grids/actors (see for instance [65, 129]
for academic work, or European projects TDX-Assist [286] as an example of European
funded initiative for better exchanges between both grids).

1.1.1 HTB grid
HTB is referred to as the transmission network: it is meshed grid, exploited as such on
the French metropolitan area. It comprises about 106 000 kilometres of mainly aerial (for
94% of them), and partly underground power lines (for the rest), which, “beyond the
«node to node» transmission, [. . . ] has to organize the large-scale pooling of different
sources of production” [261]. For this purpose, it is connected to the major centres
of production (Nuclear power stations, some hydroelectricity and thermal centres of
production), as well as interfaced with other European transmission networks and the
HTA/BT French grid through 2 200 sub-stations (Poste Source). Phase-to-phase voltage
levels are maintained quite high: 400kV, 225kV, and 90 or 63kV. A major evolution in
these grids concerns the increasing proportion of underground lines, with an upcoming
renovation cycle as the average age of its elements is 50 years. Digitization, emphasis on
connection to offshore wind-farms, and doubling the interconnection capacities with
neighbouring countries are also part of future steps.

From this material point of view, the role of the transmission network is three-fold:

• provide a connection service for centralised power plants and large renewable
energy generation systems;

• transport electricity with a low level losses to the consumption areas;

• supply large clients.

1.1.2 HTA/BT grid
On the lower end of voltages is the HTA/BT network, called the distribution grid: its
operating voltages range from 1kV to 50kV for the HTA (a majority of lines have a 20kV
set point, but some are exploited at 15 or 33kV), and below 1kV for BT (voltage set
points of 400V or 230V). With a total length of about 1 400 000 kilometres, it is interfaced
with the transmission network through substations, and with end users. These users
can directly be connected to the HTA grid if their installed or contracted power capacity
exceeds 250kVA, otherwise they will be connected at a BT level. The interface between
HTA and BT is a low-voltage substation, and around 800 000 of them are to be found in
France [96].

The distribution network follows the decrease of tension from production to con-
sumption already seen on the transmission network. The role of distribution network
is thus to deliver energy to the end consumer. A key element of recent evolutions on
the electrical grid is that end consumers can also produce electricity. Moreover, the
vast majority of upcoming wind and solar energy producers are to be connected to the
distribution network. As a consequence, on top of being the largest grid, the distribution
network also is the one likely to experience the most changes in the future.
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1.1.3 Some insights
The rationale behind the exploitation of the electrical system in a decreasing stair-valued
series of voltage set-points can be attributed to simple physical laws. Transporting elec-
tricity over long distances implies power losses, due to the Joule effect among others. This
corresponds to the loss of power due to natural conversion of electric current into heat
as it flows through a component with a resistance. This power loss value is commonly
modelled as being proportional to the square of the electrical current, the proportionality
factor traversed by the current: Ploss = RI2. On the other hand, the definition of trans-
mitted power from the entrance of the element to its output is the product of electrical
current by voltage. Consequently, in order to lower the Joule losses, one should seek to
lower the current flow through the element which, if a constant power delivery is desired,
amounts to increasing the voltage. Additionally, a higher voltage implies a lower voltage
drop along lines, and a higher value of transmitted power. All in all, from a minimisation
of power losses perspective, it is more interesting to transmit power using higher voltage.
The downsides include greater attention to networks’ configurations: lines have to be
higher if aerial or better insulated when underground, to prevent from the ionisation
risk; additionally, the inter-phase space also has to be increased. This leads to a higher
investment cost when setting up a high voltage network compared to a low voltage one.
Based on these facts, the technico-economic solution is a multi-layer voltage network: a
very high voltage to transport electricity on long distances, and sequentially lower the
voltage as the grid reaches the end user’s connection.

1.1.4 Network vs System view
Different visions of the electric power system coexist among actors. In anticipation of the
information presented further below, we briefly present an overview of the difference
between a “network” and a “system” point of view, being two dual visions. The TSO is
related to the former one, whereas the latter is linked to both the TSO and DSO.

The System view refers to the electrical grid as viewed from above, where the electrical
dispatch is closely monitored in order to continuously maintain a load and generation
match. This is solely the role of the TSO. On the dual side, the Network point of view
encompasses the physical and material dimensions of the electrical grid: in this context,
the objective is its safe and secure exploitation. It includes, for example, the knowledge
of bounds on state variables, or human management required to manoeuvre controllable
elements on the grid. This is incumbent to both the TSO and DSO, as they are responsible
of the maintenance in operating conditions on their respective networks.

1.2 description of current actors
An increasing number of actors are interfaced with the grid in France. At present time,
management and interaction with and through the electrical network is established for:

• the Transmission System Operator (TSO), which is in France Réseau de Transport
d’Electricité;

• Distributors
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• Regulator
• Aggregator
• Grid user
• Balance Responsible Parties

1.2.1 TSO
The entity in charge of the Transmission grid is the Transmission System Operator. In
France, there is one TSO (RTE), compared to Germany where four TSOs work on differ-
ent geographical areas. Its missions also specified in [109], and include: 1)maintaining
a quality of transmission of electricity to the distribution grid 2) leading studies for the
development of the electrical grid, that follows objectives of new renewable energy gener-
ators provided by the administration These missions emphasize the dual nature of RTE: it
has to have strong regional links to ensure the effective electrical connection, while being
responsible for the equilibrium of the electric system at the national and pan-European
levels. As described in 1.1.4, the TSO has an emphasis on the “system” point of view,
while also having a “network” approach. Challenges for the TSO include preservation of
the generation/consumption equilibrium, and the dynamic maintenance and continuous
monitoring of different types of reserve (namely the frequency containment, frequency
restoration and replacement reserves).

In Europe, a vast majority of TSOs is represented by the association European Network
of Transmission System Operators for Electricity (ENTSO-E) which brings together 42 TSOs
from 35 European countries.

1.2.2 DSO
Distribution refers to a set of legal and contractual responsibilities in the process of electri-
cal power delivery that is internationally encountered. A distributor is a role-concept in
charge of this set of responsibilities, either found as independent entities (as in European
countries) or integrated in entities having responsibilities over Transmission and/or
supply as well (as in North America). They can be public or private, but distribution is
generally a public service concession: the distributor therefore has a natural monopoly
over a designated area for a fixed renewable time period. In France, Enedis is the leading
distributor handling 95% of the distribution grid. The remaining 5% are concessions
held by 154 small electric distributors, which account for 3.5 million people living in
2 800 municipalities evenly spread over the national territory. Dual point of view to the
“system” one, the distributor traditionally has a “network” vision: the material aspects of
the grid are more visible than in a systemic setting.

Differently to the TSOs, European DSOs have several representing associations in-
cluding European Distribution System Operators (E.DSO) which brings together 41 DSOs
from 24 countries, GEODE or Eurelectric.

1.2.3 Regulator
The Regulator’s main mission is to participate in the good functioning of the electric
market, to the benefit of the end users. In particular, it ensures the access to the electric
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network is fair, and that the actors respect their contracts. It overlooks the coherence of
exchanges on the market, the good implementation of European directives, the settling
of transactions, and is responsible for the tariff method. For this latter responsibility, the
regulator receives necessary financial data from RTE as well as from the distributors, and
sets the calculation method that should reflect the national energy development policies.
The output is a cost called TURPE that should favour virtuous grid management for
the TSO and DSOs, be independent from the distance power plant to consuming point,
from the location and the distributor. This entity embodies the bilateral link between the
French State and the electrical grid.

1.2.4 Aggregator
The Aggregator is a new role in the electric system, whose creation is motivated by the
requirement of balancing generation and consumption in a liberalized setting. Such an
actor is the intermediary between grid users and the electricity market: it is in relation
with a set of grid users, remunerates them for providing some power modulations that
it can in turn sell on the market or over-the-counter to specific clients. Its main role relies
on teleinformation gathering and sharing (including forecasts of consumption and/or
production) in order to assess in real time the potential of power modulations. It has to
be interfaced with 1. the grid to have information on its state; 2. its clients; 3. the market.
It also has to have the capacity to send signals for power modulation, when committed
to through its activated offers.

1.2.5 Grid user
AGrid User (GU) is defined as an actor connected to the grid, that can inject or withdraw
energy. It is neither owned nor directly controlled by the DSO or the TSO. Connection to
the grid is ensured by the corresponding operator, being either the TSO or DSO. The
operator in turn, has to continuously maintain an optimised access to, and usage of,
the network and its services. On the transmission level, a grid-user concept has been
introduced through Significant Grid-users (SGU) established in the Grid Code. Such SGU
include power generation or demand facilities deemed significant because of their impact
on the transmission system in terms of the security of supply.

It is interesting to set such an abstract model of producers and consumers in the
current electric grid context. Indeed, with interactions DSO-grid users evolving towards
a contractualised model and the increased development of bi-directional information ex-
changes, an encompassing grid-user model where such actors can respond by increasing
or decreasing their current access to the grid is fruitful. In our model, grid users all have
contracts with the DSO, that uniquely define the possible interactions between the two
actors. In the case of renewable energy production for example, two types of connection
contracts exist in France. One is a contract that prevents any modulation of the injected
power modulation from the DSO (which corresponds to Enedis’ Offre de raccordement de
référence [99]). The other one where power modulation is allowed and bounded (which
models new contracts between deployed, Offres de Raccordement Intelligent). New grid
users requesting to be connected to the grid can negotiate with the DSO the connection
cost or time. Accepting an ORI can for instance lower the upfront cost, and provide power
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modulation capabilities for the DSO during the exploitation time, and allow a quicker
installation on the grid.

1.2.6 Market operator
Following the current European evolutions on the electrical system, the Market Operator
is a new and upcoming actor whose role has gained much importance in the electrical
balance. Electricity in Europe is now a commodity and the underlying of derivatives in
multiple markets. Whereas common articles refer to “the” electricity market, one could
distinguish different markets including a retail market (a consequence of the end of
monopoly on the supply sector), a wholesale market (an electric power exchange, similar
to a Spot commodities exchange, e.g. EPEX SPOT in France), and currently emerging
ancillary services market (a codified market where TSOs can contractualise services to
secure different types of reserves). Each market has a market operator, responsible for
the settlement and proper compliance of actors to market rules.

1.3 a brief historical account of electricity and
its development in france

In this section we take a slightly different point of view on electricity. Leaving Electricity
as a “mystical” concept, not yet theorised, to the impressive reference [298], we start
our account in the late 19th century, where electricity has already left laboratories. As
such, history of electricity can roughly be separated into the following time periods:
1881-1918 where experiments were conducted to make appear the capacities of electricity,
1918-1946 where electricity was indeed regionally deployed, 1946 till nowadays with a
nationalisation of the electric system, a massification of uses, and liberalisation.

Electricity and proofs of concept In 1881, it has its own International Exposition in
Paris, raising a lot of optimistic ideas: a new technology is maturing, and one should find
its applications. Being promoted by means of expositions straddling the two centuries,
it became characterised as a “fairy” (the painting «La Fée Electricité», currently in the
Musée d’Art Moderne de Paris, though unveiled much later in 1937, interestingly might
have contributed to this lasting qualifier and explicitly bears in itself the motivations
for the development of a national grid). Apart from lighting, the first major planned
application of electricity lies in agriculture with, for example, demonstrations of electrical
ploughing that inspired journalists, scientists, and farmers (see [49] for a comprehensive
set of examples, and references therein). This is not merely a remark of the lesser im-
portance, as alerted by Alain Beltran cited in [273]: “Étudier l’électricité en France sans
aborder la question des campagnes et l’attitude des ruraux, c’est se condamner à parler
d’une France hypothétique, future”. Though electrification will require a minimum of
density of population for industries to invest in the creation and management of grids, at
its roots it is deeply related to agriculture. Bringing electricity to rural areas has accom-
plished multiple objectives, including strengthening nationalist feelings. A legal step is
taken in 1906, when electricity distribution became a public service with law [103]; it also
established that municipalities were the owner of the infrastructures of the distribution
grid. Local (and rural) communitieds were encouraged to create larger associations,
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partnerships, or joint municipalities, that would finance and overview electrification of
their territories.

Regional developments of electrical grids From 1918, on the aftermath of WorldWar I,
and in particular until the breakout of World War II, electricity went from local tryouts to
a rapid extension in (nearly) any parts of metropolitan France. The years 1919, when the
French Parliament voted into law the legal basis for hydroelectricity [112], and 1923, when
financial modalities were established [113], also are landmarks in the steps taken towards
a rapid development. Led by entrepreneurs and private companies at the beginning of
the 21st century, financed for more than 40% by the national State, electrification cities
and villages grew from around 7 000 municipalities in 1918, to 31 000 in 1923 and 36 500
in 1937. The flexibility offered by the electric motor, the image of “modernity” borne
by electricity in a period marked by Scientism, were strong arguments in favor of this
source of power. Publicity had an important social role, as studied in [273]. From a
higher perspective, the uncovered possibility to transport this power unleashed new
groundbreaking works in urbanism: now, proximity to energy sources no longer was a
crucial criteria when establishing a city (see [80], and in particular the “Cité Industrielle”
by Tony Garnier described in it, an architect whose work has had a major influence of
forthcoming urbanism and architecture in France).

Creation of EDF Before the breakout of World War II, as a result of this «private
management of public services» that was dominant in France until the middle of the
XXth century [120, p.55], there were 200 companies of production, over 100 in charge of
transmission, and 1 150 for distribution. Efforts to interconnect these different meshes
were speeded up in 1946 with the creation of Electricité de France (EDF) as a national
company.Nowadays, 154 distributors (Entreprises Locales de Distribution - ELD) exist along
with Enedis, the major Distributor; they are the result of the French electric development,
have responsibilities over 5% of the national distribution grid and individually usually
have less than 10 000 clients.

Production, Transmission, Distribution, and Supply were managed by EDF: this
vertically integrated national company thus had the economic power to launch major
industrial projects, as nuclear power development (industrialisation from the 60’s to
the 80’s), large transmission network and extensive distribution grid, all while ensuring
three fundamental principles:

• tariff equalisation: every private consumer pays the same tariff as comparable
consumers i.e. clients that share similar consumption profiles and supply offer,
independently of the distributor;

• tariff is independent of the distance to the electricity production plant.

Let us point out the relative scarcity of literature on the French development of
electricity: as pointed out in [49], though it has been extensively covered from the
end of the XIXth till the middle of the XXth (see for example [71] and [193] which
provide a comprehensive work for this time period), an extensive survey study seems
to be missing from 1946. The complexity of the subject, mixing a lot of different fields,
has to be underlined. An interested reader could turn to EDF-related initiatives as Les
Annales Historiques de l’Electricité (now defunct), and more recently Journal of Energy
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History/Revue d’Histoire de l’Energie, two journals that provide solidworks on electricity
as a field of historical research largely (but not exclusively) related to the French case.

The European idea of the grid finds its roots in between the two world wars. Tech-
nological improvements made possible the exploitation of HV/EHV lines of 220, then
400kV, and significant ideas as maximalisation of the economic mix effectiveness (see
[155]) initiated several initiatives to further develop a, still vague, European grid [175].
On another level, major historical events, including WWII, the Cold-War, economical
growth of the 50’s and a series of economical crises, a continuous set of diplomatic and
inter-nations tractations well covered in [174] led to the interconnected European grid in
1995. The modification and impacts on distribution from this situation are the subject of
the following section.

To conclude, our perception and imagination on electricity have recently drastically
changed. As pointed out in [202], energy (and a fortiori electricity) cannot be looked at
as the “electrical fairy”.

1.4 recent evolutions of the electrical grid
We here discuss about the main landmarks of the past 30 years on the distribution system.
They can be classified into two categories: liberalisation and decarbonation. Both sets of
objectives are transcribed, in France, into compatible schemes, strategies and plans. In a
“top-down” vision, the leading national texts are the Strategie Nationale bas-carbone, an
environmental roadmap for France to meet its international commitments. The strategic
counterpart in the energy field is the Programmation Pluriannuelle de l’Energie, that is one
of the three mainstays for the Schéma décennal de développement du réseau, the other ones
being regional land use plans and the European network development ten-year plan.

The legal acting principles can roughly be summarised as the union of the following
texts:

• the law founding the principles of electricity as a concession of public service [103]

• the European directive [235] that set up the electricity market in every European
countries. It specified that actors on the electric network now had to be split into a
Transmission Network Operator, a Distribution Network Operator, imposed the
creation of a competent authority for setting litigation over contracts. It has been
transposed into French law [110], that specifies that the DNO is EDF (now Enedis)
and the “non nationalised distributors”, creates the Regulator (the Commission de
Régulation de l’Energie, CRE).

• Law [111] is currently fully in order, and can be seen as an entry point to the
French electrical system legal basis. It implements a set of ordinances relative to
the electrical grid, renewable energies.

A comprehensive summary of in action laws and decrees can be found in [97].
References for a thorough study of the legal requirements and objectives of Distri-

bution can be found in the Code de l’Énergie [109]. We here summarise the necessary
points for an understanding of the overview (see [109, Partie Législative, Livre III, Titre
II, Chapitre II]).

Among all the missions defined in the Code, a Distributor is responsible for:
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• defining and enforcing investments policies in order to allow new consumers and
producers to be connected to grid;

• designing, constructing necessary facilities, while being the project manager;

• maintaining in a transparent manner a non discriminatory access to the grid;

• conducting studies on the impact of projects that are submitted to it, that are related
to insertion of renewable energy, charging points for electric vehicles, urban or
energy planning;

• operating and maintaining these networks;

• conducting the activities of energy metering.

More precisely, the exploitation comes with the obligation of monitoring at all time
the flows of electric power, the efficiency, the security and safety of the distribution grid.
The regulatory part of the Code defines what quality of electricity means, and we here
expose the key elements for this definition. The Distributor is required to 1)maintain
tension on the distribution grid in a continuous way, and around values defined by the
Minister in charge of Energy and 2) ensure a minimum level of power failure.

The first item refers to the quality of power delivery, and upper as well as lower
bounds on tension are thus provided. The second item refers to the continuity of delivery.
Failure being an heterogeneous concept, without canonical measure, French distributors
use two different criteria:

1. Critère B: measures the average duration of power failure for a LV consumer, per
year (in minutes);

2. END, which stands for Energie Non Distribuée: measures the energy not supplied
to a consumer on a yearly basis (in MWh). Not supplied energy is the quantity of
electrical energy that would have been supplied, were there no failure.

For illustrative purposes, we consider a client on theHTA grid. Its contractual setpoint
has to be within 5% range from the Nominal Tension; Enedis has to maintain the tension
around this contractual tension with a 5% tolerance. Depending on the client zone (areas
are ranged according to the number of inhabitants in a 1 to 4 scale), the maximum
acceptable number of power failures is in-between 6 and 2 for major failures (more than
3 minutes, more acceptable failures in smaller municipalities), 30 to 2 for small failures
(1 second to 3 minutes). From Enedis data [98], the average time of power failure per
LV client is split into the planned shut-off (14.1 minutes) and unplanned failure (50.1
minutes).

For comparability purposes in Enedis’ efforts to improve the quality of electric deliv-
ery, a global cost for ENS is computed with components from:

• the volume of energy not supplied, to which a cost is associated depending on the
type of incident (€/kWh);

• the cost of power not delivered (€/kW);

• the number of clients not reconnected within a 5 day time-period after an excep-
tional weather event.



18 CHAPTER 1

Interestingly, the majors changes on this particular Chapter that defines the missions
of a DNO since 2011 are twofold. Firstly, its missions are enriched with an obligation to
promote the development of renewable energy, and electric vehicles charging points,
which are explicitly stated. Secondly, the CRE also sees its role grow: it is now more
explicitly and often referred to, having to be called upon for counsel that, in turn, will be
a prerequisite for issuing decrees.

One would easily expect regular changes in these texts, and this brief presentation
should be taken as a rough overview subject to numerous incremental modifications.
As seen with current European projects as TDX-ASSIST [286], an example of upcoming
change can be an enriched exchange between the TSO and DSO, in particular when it
comes to services that can be provided by the DSO. The following illustration highlights
the necessity of improved exchanges TSO-DSO: liberalization of the electric network
created markets of services like the Frequency Containment Reserve. As a consequence,
producers, including the ones connected to the MV grid, can voluntarily participate to
this market and make offers. In turn, the TSO can activate an offer on the market, made
by a producer connected to the Distribution grid. Impacts on the Distribution grid are at
the center of future studies (see [259, Section 4.10.4]).

On the liberalization
As well described in [126], liberalization of the electricity sector, previously considered
to be a “natural monopoly”, is unique on several levels. It has required more involve-
ment from a regulator when compared to more classic markets (as commodities futures
exchanges where oil is the underlying), which in turn had to deal with national break-
down of European rules. Regulatory changes are continuously made, having to adapt
to the market maturing (where imperfections can arise) as well as to the evolution of
actors on the market (new actors are introduced, and already active actors can have
behavioural modifications, e.g. upcoming “citizen energy communities” as defined in
the final 2019 European Clean Energy Package [83]). Difficulties of such an enterprise
are easy to explicit: a common European market has to relate different technologies (a
meaningful example from [126]: Norway main source of electricity is from hydro-power,
while neighbouring Danemark produced around half of its electricity using wind power
[86]), TSOs (currently 43 of them), physical interconnection points (420 at the European
level, 50 of them being at the French borders), national regulations. The European vision
is that of an economically optimal set point attainable once a complete market coupling
has been attained.

Due to the intrinsic characteristics of electricity, namely its storing sill being scarce,
the necessity of a continuous supply, and requirements of quality and balance, strict
rules have to be followed in order for the setpoint coming from market decisions to be
implementable on the grid. Nowadays, one could observe that market decisions do not
often lead to network blackouts, thanks to robust design and planning of the electrical
grid. This goes hand in hand with current regulations that do not require DSOs to
provide particular services to other actors, apart from respecting its commitments to
the TSO and possibly connected DSOs. In a forthcoming liberalized future, due to an
increasing installation of distributed electricity generators, among which a majority will
be connected to the MV grid, there is an emerging consensus that the probability of
market output setpoints overshooting the boundaries of electrical networks, dating from
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a fit-and-forget design period, is strictly positive.
A vertically integrated electrical company previously could conduct calculations on

its grid relying on internal information exchanges, as N-1 or short-circuit power calcula-
tions. In the unbundled setting, following on these two examples, external information
exchanges are required, leading to the definition of standards of communication based on
possible use-cases that can obviously evolve through time. Current Grid Codes, although
originally emerging from the Transmission side, now include DSOs and in particular
better define what the exchanges between the TSO and DSOs: for instance, a DSO has to
provide forecasts of production on its MV grid to its connecting TSO. With information,
exchanges of services could also be considered: this is the subject of on-going regulatory
and technical works (see for example [131]).

1.5 enedis’ methodology to meet its objectives
Maintaining and developing the distribution grid is multiple time-scale process, than can
be split into a strategic part and a tactical one. Mastering these contiguous time-scales is
necessary as the distributor also has the objective of minimizing its costs. New develop-
ments are based on blueprints that span for 30 years, have long-lasting impacts (total
cost of ownership of lines are computed on a 40 year exploitation time), and requires
significant investments. They also have to take into account the future demographic
dynamics, the evolving uses of electricity, the associated quantities of energy and power
consumed, and how the tactical management can evolve and adapt to these new chal-
lenges. Strategic and tactical management are therefore naturally nested problems, the
outputs of the former being the inputs of the latter.

1.5.1 Network Planning
Network planning refers to the set of means to anticipate future necessary network
evolutions in order to maintain the distribution of electricity, achieving the same quality
and maintaining the same level of security. It is a multiobjective problem: the output
should comply to foreseen evolutions, while at the same time lower the environmental
and monetary costs. Distribution networks have some specificities that emphasize the
sensibility and need for tailored approach [93]:

• construction and reinforcement of infrastructures require large investments;

• new infrastructures usually have planned life cycle of 40 years: construction decision
thus have long-lasting impacts, and there is little to no recourse;

• new developments can have long construction times to the hazardous nature of
the environment, requiring special skills.

Let us also mention the influence of political choices, the integration of renewable energy
being one example. This has been a fast-growing demand, that have had deep impacts
on the historical network planning. Adaptation to future decisions is thus key to keep a
continuously low cost of exploitation.

The challenges here are to provide robust decisions that will allow the continuous
exploitation of the grid, at the lowest cost, for more than the next 30 years. More detailed
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information on this subject can be found in [93], and technical information on Enedis’
reports [258].

1.5.2 Operational Planning
In a chronological order, operational planning (OP) comes after network planning:
although not explicitly defined, we consider it to span from a year till close to real
time. The infrastructure is now considered to be mainly stable, without major changes
allowed on the nature of network elements. What is variable within this scope is the state
of existing elements on the grid: activations and levels are activations are modifiable.
Operational planning is itself divided into long-term and short-term operations, each one
with its own means of action and stakes. It has been introduced and properly defined in
the Grid Code [215], which is a document that defines the operating rules and relations
between the TSO and any type of user of the Transmission Network. As a consequence,
it initially is a concept related to the TSO rather than the DSO. The Grid Code solely
defines operational planning for the TSO in a sense that resembles what we would define
as “long-term”. Indeed, the OP phase for the TSO is from 8 weeks to 5 years in advance
of real-time. We recall here its formal definition:
Definition 1 (Operational Planning from the Grid Code [215]). Planning through var-
ious timescales the matching of generation output with forecast National Electricity
Transmission System Demand together with a reserve of generation to provide a margin,
taking into account outages of certain Generating Units or Power Generating Modules,
of parts of the National Electricity Transmission System and of parts of User Systems
to which Power Stations and/or Customers are connected, carried out to achieve, so far
as possible, the standards of security set out in The Company’s Transmission Licence,
each Relevant Transmission Licensee’s Transmission Licence or Electricity Distribution
Licence, as the case may be. •

Within the scope of our work, we have to define an appropriate definition for OP,
from the DSO point of view.

Long-term Operational Planning
The objectives in this long-term process include negotiation and the set up of long-term
contracts with producers, in order to plan construction or maintenance works on the
networks. The time horizon still remains coarse, from a year or more, and the output
should be a yearly planning that will ease the necessary adjustments of short-term
planning. Decisions are based on climate variations and on a yearly basis, with visibility
on necessary works on a big time scale.

Short-term Operational Planning
This is the subject of interest in this present work: short-term operational planning in the
DSO’s decision process from 1 month up to 30 minutes before real time. In this particular
setting, the distributor has access to a specific set of information, and control variables.
The inputs to short-term OP are the outputs of long-term OP and network planning.
Only short-term construction and maintenance works are considered in the process. The
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objective on the other hand remains essentially identical: the DSO has to define a tactic of
minimal operational cost under operational constraints that allows users to safely access
the grid, while respecting legal, contractual and thermal constraints.

We derive a formal definition for the DSO short-term operational planning:
Definition 2. Short-term Operational Planning is the coordination of means and human
resources, respecting their activation limits, to ensure maximal network availability to
users and meet legal, contractual and technical limits (including commitments to the
TSO) at minimal cost. •

Whereas a traditional approach has been a temporal top-down vision, with unidi-
rectional information being processed from the long-term to short-term, the latter has
seen its importance grow with the evolution of electrical usages. The rationale lies in
the occurrence of electrical constraints on some MV networks even under conditions
deemed as “normal” i.e. without any infrastructure loss nor extreme weather event. As a
consequence, “normal” network operations need to be redefined: information from the
short-term should therefore be an input to longer-term decisions.

Equilibrium on the electrical grid
In France, the TSO is legally responsible for the electrical balance. In this equilibration
process, RTE relies on Balance Responsible Parties, BRP, or entities that assume responsi-
bility of local equilibria over a designated set of injection and consumption points. In case
imbalances are observed at the settlement, RTE can ask for compensated adjustments:
BRPs and the TSO operate financial exchanges. BRPs are market participants, and more
explicitly do not need to be producers or suppliers in order to qualify as such. Their
goal on the electrical market is to commercially balance the energy flows within their
perimeter.

Means at the DSO’s hand
Recent evolutions in the access to the grid and usages of electricity came with techno-
logical and regulatory changes concerning abilities and capabilities of the DSO. As a
consequence, the DSO has at hand a set of internal and external levers that we discuss in
this section.

Difference between flexibility and lever:

• internal levers: these are owned, activated and manoeuvred by the DSO. They do
not constitute offers on a market. Their activations are limited by technical bounds.

• external levers: opposite to the previous class of levers, these are not owned by
the DSO. Their activations are possible through a contract, either coming from a
selected and paid offer on a market, or a mutually set up agreement. This is still a
prospective field, as there is currently no market to which a DSO can participate in
France, apart from local experiments.

We will refer to flexibilities as defined by Enedis:
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Definition 3. A flexibility is a voluntary power modulation of one or more sites, either
an upwards or downwards, injection or withdrawal, at a given time step for a given
time period, as a reaction to an external signal requesting a service. Enedis refers to local
flexibility as the knowledge of the flexibility localisation is necessary to ensure that its
activation will ease an electrical constraint. •

Existing flexibilities Current flexibilities are numerous (see for instance [278])

1.6 conclusion
The objective of this chapter is to provide a better hindsight into the French electrical
grid and its evolutions. The DSO is bound to evolve on several aspects in order to fulfil
its missions.



A REVIEW OF EXISTING OPF
MODELS AND SOLVING
ALGORITHMS

2Short-term operational planning in a deregulated and liberalized environment, as well
as in one requiring operation to be conducted at an economically optimal cost, is a
competitive sector. Demand for an optimalmanagement of an ever-growing and evermore
complex electrical system has fostered a myriad of propositions since the difficult-to-find
yet renowned work of Jacques Carpentier from 1962 [72]1. In this chapter our ambition is
to provide a general overview the Optimal Power Flow. To this end, we start by discussing
the main existing modelling techniques used by researchers in the field of optimisation
of electrical distribution systems. While some physical laws seem to be used in close
to all of the existing models, some other modelling aspects (as variables choices) have
led to numerous differing experiments. Modelling choices are the subject of section 2.1
along with some basic yet necessary definitions of physical quantities in an electrical grid.
Building upon Section 2.1, we present in Sections 2.2 and 2.4 the OPF main structure and
look into how this has been transposed into specifically tailored optimisation problems.
The third section briefly presents the different objective functions that have been used
in literature. Sections 2.6 and 2.7 are more specific than the previous ones. In the fifth
section we look into the subset of literature that addresses the OPF from a DSO point
of view. The sixth section is then dedicated to the OPF with uncertainties: on top of the
multiple mathematical fields that are tailored to tackle such optimisation problems with
uncertainties, a huge number of heuristics have been developed for these programs.

1 We were not able to put our hands on this French article, although an overwhelming majority of
posterior articles recognize it as the founder of the Optimal Power Flow as a mathematical object.
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Notations in this Chapter

N , A Sets of nodes and lines
u Decision variables
x Dependent or state variables
a, a Lower and upper bounds of a given variable a
f (u, x) Objective function
g(u, x) Vector function of equality constraints
h(u, x) Vector function of inequality constraints
pl

i(u, x), ql
i(u, x) Vector function of load consumption of active and reactive power

in the network
pg

i (u, x), qg
i (u, x) Vector function of generator production of active and reactive

power in the network
pl

i(u, x), ql
i(u, x) Active and reactive power consumptions at bus i ∈ N

pg
i (u, x), qg

i (u, x) Active and reactive power injections at bus i ∈ N
δ Angle between bus voltages
θ Angle between current and voltage
|V| Voltage norm
δ Voltage phasor
j Complex number, j2 = −1

z∗ Complex conjugate of z: if z = zR + jzI , then z∗ = zR − jzI

Table 2.1: List of notations we use in this chapter.

2.1 basic models for the opf
In this first section, we start by presenting modelling aspects in the OPF. In order to
provide a comprehensive section, we include definitions of some physical quantities
related to the modelling of electrical distribution grids.

2.1.1 Preliminary elements for electrical grid mod-
elling

While electrical grids can be modelled differently depending on the type of problem
we are faced with, all models rely on graphs. An electrical grid is modelled by a set of
nodes N , connected by a set of lines A. With more assumptions on the electrical grid we
model, the graph can be further characterized:

• When dealing with transmission networks, the graph is connected and has cycles.
It is referred to as a meshed network.
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• When dealing with distribution networks, the graph is a tree (i.e. a connected graph
without cycles).

More specifically for distribution networks, the modelling tree usually has one entry
node called the slack bus. This latter node is the connection (the substation) between
the distribution network at hand and the transmission one it is connected to. From an
practical point of view, the slack bus of the model is placed either at the primary (the
MV side of the substation) or the secondary (the LV side of the substation) with an
observed preference for the secondary. Other nodes in the tree model either MV GUs, or
connection points between the MV network and the LV one.

Transmission network

Slack bus

MV/LV

MV client

MV/LV

MV/LV
MV client

Figure 2.1: Illustration of a tree modelling an electrical grid.

The next step is to characterize how the electrical power flows behave in the electrical
distribution network as the one of figure 2.1. These flows are necessary for the DSO to
safely manage the grid. Modelling the power flows requires additional parameters held
on lines and nodes of the tree depicted in figure 2.1, as well as the introduction of some
variables, which we refer to as state variables.

Characteristic parameters of an electrical distribution grid
Each electrical component has a specific reaction to electricity, i.e. the flow of electrons. In
order to model this reaction and how an electrical component affects the flow of electrons,
some specific parameters are necessary. Thanks to these parameters and to physical laws
that are presented in section 2.1.4, a user is able to study the evolution of state variables,
and thus appropriately monitor an electrical grid.

Within the scope of our work, electrical components (or Grid Elements (GEs)) are
comprised of electrical lines (arcs in the tree of figure 2.1) and buses (nodes in the tree
of figure 2.1). Most common models for electrical lines involve a complex parameter
called the electrical impedance and noted zij for a line from node i to node j. The real part
of the impedance is called the resistance noted rij, and the imaginary one is called the
reactance, noted xij. Parameters are also affected to nodes, called shunt impedances (they
are impedances from a node i to the ground), which are complex quantities too ad noted
zi = ri + jxi. We represent these parameters in an electrical diagram as follows:
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i zij j

zi zj

Figure 2.2: Illustration of electrical parameters.

The inverse of impedance is called the admittance, noted yij for a line connecting i

to j. The following is therefore always true: yij =
1
zij

. The real part of the admittance is
called the conductance, noted gij, while the imaginary part is the susceptance, noted bij:
yij = gij + jbij.

2.1.2 State variables
Modelling the electrical grid amounts to defining the relations between state and decision
variables. While the values given to the latter quantify the actions taken by the decision-
maker, the former describe the state of the grid. Once state values are set the state of
the grid is by definition unique and known. In this first subsection, we are interested
in the different choices of state variables which are always continuous variables (this
observation is backed in [117, Section 2.3] which provides an extensive overview of
electrical grid modelling).

The cornerstone of state variables is the voltage. This latter variable is a nodal quantity
that is closely related to the amount of electrical charges at a given point. In an Alternative
Current context, the voltage is a complex value that requires at least two real variables to
be described:

V = |V| ejδ, (2.1)
where |V| is the modulus and δ the phasor, or

V = VReal + jVImag. (2.2)

The first formulation equation (2.1) is called the “polar formulation”, while the
second is referred to as the “rectangular formulation”. It is clear that both formulations
have different advantages as they make explicit values that have different interpretations.
In equation (2.1), the phasor is explicitly available and bounding this variable can be
done linearly: δ ∈ [δ, δ] for instance. When using the rectangular form, the phasor

is the following quantity: arctan(
VImag
VReal

), which requires for instance an additional
proxy variable in order to include box constraints on this value. This is often found
in literature where phasors are upper and lower-bounded for stability/synchronicity
purposes. In more advanced modelling, phasor-shifters2 can be modelled in which case
using a polar form is evidently easier than using the rectangular one (see [227] for an
introductory reference into modelling techniques of such advanced materials). As a
2 Phasor-shifters are electrical components whose essential feature is to regulate the phasor of a given

voltage in an electrical grid.
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downside, the polar formulation also causes trigonometric functions to appear: the vast
majority of works in literature uses real-valued functions (this is discussed in [268]).
A reformulation with real variables while using the polar form immediately yields:
VReal = |V| cos(δ), |V| ejδ

Imag = |V| sin(δ), thusmaking trigonometric functions appear in
the optimisation problem. On the other hand, polynomials of VReal and VImag appear in
place of cosinus and sinus functions when the rectangular form is used. This formulation
makes it difficult to limit voltage magnitude as it leads to a non-linear constraint. This
becomes visible as, when using the rectangular form, |V| =

√
V2
Real + V2

Imag.
The use of rectangular coordinates is first discussed in solving the Power Flow (PF)

system of equations. As shown in [2, 156], where the authors solve a PF systemwith polar
and rectangular formulations, convergence of their algorithm is significantly modified
depending on the formulation choice. From a general point of view, it is unclear whether
one can argue in favour of using the polar or the rectangular formulation: it seems that
this choice is case-dependent.

A more recent work [268] advocates the use of complex variables. Complex Analysis,
which involves holomorphic functions, has been recently successfully applied to solving
OPFs ([177]) and PF systems ([284, 108]).

Apart from the voltage, other electrical quantities are of interest: first of all, the current
which measure the quantity of electrons per time-unit through an electrical component
(as a distribution line for instance). This quantity is noted Iij for the current in the line
that connects nodes i and j. The relation between the voltage and the current will be
discussed in section 2.1.4.
Remark 2 (From current variables indexed by lines to current variables indexed by
nodes). Note that in some models, the current is a nodal variable, and is thus not indexed
by a line but by a node. This merely is an equivalent reformulation, as described for
instance in [277, Lemma 1]. Let us denote by Ĩi for a node i the nodal current values, while
Iij is the current indexed by lines. Let the grid be a directed graph, with a randomnly
chosen orientation. Then, Ĩi = ∑

j : j→i
Iji − ∑

j : i→j
Iij: there is a linear transformation from

one set of variables to another. ▷

We then turn our attention to the electrical power. Similarly to the voltage, and the
current, the electrical power is a complex value with the real part being the active power
and the imaginary part being the reactive power.

Definition of the electrical power
The electrical power can seem ambiguous at first. On the one side, it designates a physical
quantity that can characterize a steady-state for an electrical grid. On the other side, in
the OPF context, it designates the level of power generation or consumption for a Grid
User (GU). These two definitions, even if they both are electrical power quantities, are
different: the former one is a state variable, while the latter is either data or a decision
variable. To differentiate the two types of power, we use capital letters for the electrical
power as a state variable, andminuscule letters for the electrical power as data or decision
variable.
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A first definition is as follows:

Si = |V|i ejδi I∗i , ∀i ∈ N . (2.3)

This is a nodal definition, and using equation (2.6) we can make the current variable
disappear:

Si = |V|i ejδi ∑
k∼i

y∗ik |V|k e−jδk , ∀i ∈ N , (2.4)

where k ∼ i := {k ∈ N | k and i are connected}3. This definition has been by far the
most used one in literature. Apart from this nodal definition, there exists another one
where the electrical power variables are held by lines. In this second version, the current
and electrical power variables are indexed by lines, and the definition becomes:

Sij = Vi I∗ij, ∀(ij) ∈ A. (2.5)

First introduced in [43, 44] where the authors develop a model called Distflow, it has
recently been successfully used for convex relaxations in amodel now called Branch-Flow.
For instance, see [277, 198, 199] which discuss the equivalence of models with nodal
versus line variables, [1, 53] present more advances on relaxations making use of line
variables, [90] which is a case that takes uncertainties into consideration and [278] where
the author adds integer variables.

Active and reactive power From a mathematical perspective, what is understood by
“electrical power” can in fact turn out to be more complex than previously anticipated,
and it is our belief that there are several significant operational aspects to understand
in this concept. The complex power S always verifies S = U I∗, where U is the voltage
and I the current (amount of electrical particles per time unit). Its magnitude, called the
apparent power |S|, is measured in volt-ampere VA. We are interested in the alternative-
current context, which is one operation mode for the electrical power, where electrical
particles are set into motion one way and then the other periodically. Vector I is thus
modelled by a complex time-dependent rotating vector, and according to Ohm’s Law
(which is linear) this also holds for U. As a consequence so is S, whose time-averaged
value is affected by the complex linear factor of Ohm’s Law (the impedance). More
precisely, the real and imaginary parts of S respectively called the active (P) and reactive
(Q) power, are impacted by the impedance: if it has a real value, then there is active
power, whereas a purely complex impedance leads to only reactive power.

Taking a little more perspective, real power is the only component of electrical power
to providework (an energy) which is necessary and required from electricity as an energy
vector. The reactive power on the other hand comes from the magnetic energy stored
by grid elements that are not purely resistive (i.e. their impedance have a non-zero
imaginary part). This type of power is thus inherent to each electrical grid, even if it does
not contribute to any work.
3 By convention, we here assume that i is connected to itself.
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Insert 3: Angles in power systems.
We have introduced δ as the phasor of the voltage, which is complex value. One

then has: tan(δ) =
VImag
VReal

. Another angle is often encountered in Power System
studies, which is the phasor difference between the current and the voltage which
we denote here as θ. Unfortunately these notations, although mostly encountered,
are not unique. Angle θ is used to compute the power factorwhich is the proportion
of real power out of apparent power: P = |S| cos(θ). Angle δ is used to compute the
amount of active power effectively transmitted from a sending end to a receiving
end of a line.

2.1.3 Decision variables
The second subset of variables is the decision variables. In the short-term operational
planning, decision variables model the potential actions, called ’levers’, available to
solve the problem. As a consequence, there are as many decision variables as levers
that are modelled in literature. Decision variables can be split between continuous
and integer variables. The former ones have initially been mostly used in optimisation,
due to the simpler resolution of a continuous program. Power modulations (i.e. the
decision to modify the levels of power generation or consumption), especially in case
of generation modulations, can be assumed to be continuous; this is the case in the
canonical OPF equation (2.7). This is also true from a TSO point of view, where levels of
production are modifiable. For load modulations, some models use continuous variables
(see [125]) while others use integers (see [125]).

Integer variables can naturally arise in models of the electrical system. For instance,
the following actions require integer variables to be modelled:

• Transformer taps: transformers are components used to modify the voltage be-
tween two electrical circuits (in alternative current). Some newer transformers can
receive orders to change their set points. This decision is naturally a discrete choice,
with typically around 20 possibilities. Depending on the number of transformers
on the grid, it can be necessary to develop a tailored solving method to tackle
these problems as in [278, 170]. We care to emphasize that other transformers, in
particular in France, have a different way of functioning (see [60] for a detailed
presentation of such transformers).

• Line switches: this models the state of lines in the network, and is a binary operation
since a line is either connected or disconnected. This leads to very interesting and
challenging OPF problems, as they are non-convex with integers programs that be
of have large sizes. A technical model is presented in [278].

• Activation of capacitor banks: as part of the Flexible AC Transmission System
(FACTS) framework, capacitor banks can be connected to, or disconnected from
the grid. Modelling FACTS is didactically presented in [307].
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• Start-up and standby of power plants. As extensively described in [10], some
problems can combine decisions on the binary status of power plants with network
state variables: this is called a Unit Commitment, and is a subproblem of the OPF as
it includes PF constraints.

The list is well described in [117] and in the more recent survey [50].

2.1.4 Physical laws for the OPF and approximations
The main set of constraints are related to the physical model of the electrical grid. Fol-
lowing the vast literature not only of the OPF but of basic electrical studies, three main
physical laws are necessary to describe the steady-state behaviour of an electrical circuit:

• The first one is Ohm’s Law, which draws a linear relation between the current and
a difference of voltage values. The linear coefficient characterizes a circuit element,
and more specifically its opposition to current when a difference of voltage is
applied across its ends.

• The second one is Kirchhoff’s Current law which translates the nodal equilibrium
between inputs, outputs, and internal production / demand.

• The last one is the definition of electrical power from voltage and current values.

Ohm’s Law
This law defines that the relation between the current I through an electrical conductor
(as a line) and the difference of voltage between the two extremities is linear.

Iij =
1
zij

(|V|j ejδj − |V|i ejδi) = yij(|V|j ejδj − |V|i ejδi). (2.6)

|V|i , δi zij

Iij

|V|j , δi

Figure 2.3: Illustration of Ohm’s law.

The linear coefficient yij is called the admittance of line ij, and is the inverse of zij
which is the impedance. The initial objective of most power systems analysis books is
to build the admittance matrix (see for instance the first chapter of [139, 214]). Within
the limits of validity of Ohm’s law (see Section 2.1.4), the admittance matrix provides a
complete description of the material characteristics of an electrical network.

Kirchhoff’s law
The full name of this second law is Kirchhoff’s circuit law, and is obtained as a flow
balance at each node. In other words, it is a translation of the conservation of electrical
charges: at each node of the electrical grid, the algebraic sum of intensities must be equal
to 0.

For instance, in figure 2.4 Kirchhoff’s law is written: I15 + I25 = I53 + I54. This law
also holds for current variables indexed by nodes, as already mentioned in remark 2.
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|V|1 , δ1

z 1

I15

|V|5 , δ5

|V|2 , δ2

z2I25

z3I53

|V|3 , δ3

z 4

I54

|V|4 , δ4

Figure 2.4: Illustration of Kirchhoff’s law.

Specif icit ies of the distribution grid
There are some particular rules that a distribution grid currently follows. These specifici-
ties are on the topology of the grid, its characteristic values and the level of production.

First of all, we recall that a distribution grid generally is exploited as a tree (i.e. a
connected graphwith no simple cycle). Lines can be oriented in literature for convenience
(see DistFlow [43] or Branch Flow [198] for instance), but disregarding this possibility it
is always assumed that there is a root node also referred to the slack node. The slack node
is by convention set with δ = 0, |V| = 1: this contributes to the definition of the per unit
system. In practice, this node can be connected to either the primary or the secondary of
the transformer HV/MV depending, for example, on whether the transformer is to be
modelled or not.

An electrical network is characterized by its admittance or impedance matrices.
Transmission networks have a reasonable approximation readily available: usually the
reactance is significantly greater than the resistance. As a consequence, it is possible
to neglect r in front of x in OPF approximations. Neglecting r is not possible for distri-
bution lines: the rationale is that materials, lengths and diameters of transmission and
distribution lines are different.

Finally, the last significant specificity of distribution gridswhen compared to transmis-
sion ones is that producers have lower levels of generation. As a consequence, distribution
grids have historically been more “consuming” than “producing”. This particular point
is central in the electrical transition: some distribution grids can now experience reverse
power flows for instance, due to the arrival of distributed renewable energy sources.

Some additional elements on the distinction between active and
reactive power
Interestingly, due to recent technological advances (for instance in Power Electronics,
which is “the study of electronic circuits intended to control the flow of electricity” as
described in [172]) there is more “freedom” between P and Q values. Whereas we know
that the proportion of real and reactive power is set by the impedance, new technologies
make it possible to enlarge the set of admissible Q for a given P which previously was,
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roughly speaking, a singleton. An interested reader can turn to [294], and in particular
to Section 32.4.1.3 of this latter reference for a specific example of what Power Electronics
can do.

This is significant as a first-order approximation leads to the following relations: P
has a higher impact on δ and Q has a higher impact on |V|. The cost of modifying Q is
also subject of debate as it is difficult to appropriately assess. In [47, 27], the authors
discuss the difficulty of defining this cost of service to the grid.
All in all, one can easily perceive the interest of having a full AC model:

1. Taking into account Q is more realistic for the electrical model. As a matter of fact,
in article [41] yet to be published, solutions to AC and DC OPF are compared.
Interestingly, and as expected, under mild assumptions it turns out there is an
empty intersection between the two solutions sets. This holds even after adding
some improvements to the DC OPF. Considering the advances in tractability of AC-
OPF, it leads the author to argue in favour of only considering DC approximation
for more complicated OPF-related problems, such as mixed-integers or stochastic
versions.

2. Reactive power, by its first order differentiated impact of |V| when compared to
its effect on δ, is a source of interesting local regulation. As a matter of fact, it is
currently used on an operational basis [246], which is another argument that a
mathematical model should indeed take Q into account.

Usual assumptions in models of electrical distribution systems,
in a short-term operational planning setting
We have presented thus far in this section the main physical laws that are used to model
PF in an OPF. These laws, as any physical model, are approximations. In this subsection,
we highlight some elements which make these latter approximations acceptable, and
thus allow the OPF to be a useful tool. The following assumptions can also be taken as
sources of data uncertainty, which we do not consider in this work:

• Short-term operational planning is temporally macroscopic. In other words, as
the time unit is about 30 minutes, physical events that might occur at a time scale
close to an electrical event’s typical time constant (roughly between 10−14 and 10−1

seconds) are discarded. The assumption that the distribution grid is a tree also
holds because transient behaviours are usually disregarded. Topology changes in
real life (usually) create temporary loops and cycles in the electrical grid, but we
disregard such events and their corresponding impacts as their time-lasting order
of magnitude is negligible with respect to our time scale.

• Similarly, this setting is spatially macroscopic. We are interested in a distribution
grid, which implies that our spatial scale is well above the meter level. As a con-
sequence we disregard any physical phenomena that can occur at smaller scales
(e.g., microscopic behaviours of electrons are not considered at all).

• We consider all the grid elements to have a linear behaviour (as in Ohm’s Law for
instance), and we neglect the impact of weather (as temperature) on the linear
coefficient.



2.1. BASIC MODELS FOR THE OPF 33

• Full knowledge of all parameters in the grid is usually assumed.

• Loads and generators are modelled as p, q sources or consumers. Literature on
PF offers more precise load and generator models. Usual improvements of load
modelling include a relation between active power consumption and voltage at the
connection point (see [157]). The impact of different load models on the OPF is
studied in [163]. The authors of this latterwork compare three different loadmodels:
it is shown in their test-cases that the p, q model provides almost always a different
OPF set point to the one obtained using the two other models. Differences between
the set points obtained from the p, q model and the ones obtained from a model
that accounts for voltage sensibility can exceed 10% in some specific cases. This is
a very significant value as usual MV grids should not exceed 5% increase/decrease
from a contractualised set point. Our model choice remains a strongly motivated
one as it is (1) widely used in literature, (2) a good trade-off between simplicity of
use and quality of model, especially in a difficult mathematical problem.

Some approximations, or sources of uncertainties, can be addressed in the OPF and
thus become a somewhat “generalized” OPF. For instance, using a better load model in
a convex reformulation of an OPF is proposed in [266]. Transient Stability Constrained
OPF is another example where identified limits are discussed and expanded, namely
the fact the standard OPF setting is a steady-state one, thus a priori discarding voltage
stability studies that can occur on a smaller time scale. In [304] the authors present an
OPF with additional embedded constraints that account for transient constraints.

2.1.5 The canonical OPF
Building upon the first three subsections, we now turn to the most encountered OPF
problem in literature. This formulation, which we refer to as the canonical OPF, is directly
related to the formulations found in [72, 92]. Its objective is to minimise generation costs,
constrained by Power Flows and bounding constraints. For any generator index k, let
Ck : R→ R+ be its associated cost function.

min
pg,pl ,qg,ql ,V,I

∑
k Generator

Ck(pg
k ) (2.7a)

s.t. pg
i − pl

i = Real(Vi I∗i ) ∀i ∈ N (2.7b)
qg

i − ql
i = Imag(Vi I∗i ) ∀i ∈ N (2.7c)

I = YV (2.7d)
pg

i ≤ pg
i ≤ pg

i ∀i ∈ N (2.7e)
qg

i ≤ qg
i ≤ qg

i ∀i ∈ N (2.7f)
|V|i ≤ |V|i ≤ |V|i ∀i ∈ N (2.7g)
δi ≤ δi ≤ δi ∀i ∈ N (2.7h)

Bounding constraints (2.7e), (2.7f) are lower and upper bounds on the allowed levels
of power generation and consumption. These bounds reflect the fact generators, for
instance, cannot produce more electrical power than a given level determined right at the
designing process of the power plants at hand. Conversely, some power plants (typically
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thermal ones) cannot lower their production levels to a given threshold without having
to shut-down. Bounding constraints (2.7g) and (2.7h) are related both to safety and
legal regulations: firstly, too low/high voltages can lead to deteriorations as all connected
equipments are designed to work at a specific voltage level. Secondly, these lower and
upper bounds on voltage values are explicitly given in the legal texts that regulate the
activities of the DSO. Respecting these boundaries is significant in the quality assessment
of electrical distribution (see [173, Section 3.2]).

2.2 constraints in the opf
In this section, we are interested in constraints always encountered in an OPF formulation
called the Power Flow (PF) constraints. Conceptually, solving an OPF amounts to finding
an optimal decision on power variables while ensuring the existence of state variables
that comply to selected bounds. The main difficulty of an instance of the OPF as an
optimisation problem lies in the constraints, referred to as the Power Flow constraints.
These constraints link the information related to GUs, decision variables and state vari-
ables. Without approximation, they always involve non-convex functions. Power flow
constraints can also be non-smooth, depending on which levers are modelled.

2.2.1 Power Flow constraints
The PF constraints model the equilibrium of power in a network. The most encountered
formulation, called bus injection, only involves nodal variables and is written as follows:

pg
i − pl

i = Real(Vi I∗i ) ∀i ∈ N ,

qg
i − ql

i = Imag(Vi I∗i ) ∀i ∈ N .

When using equation (2.6), we rewrite the PF as follows:

pg
i − pl

i = Real(Vi ∑
k∼i

V∗k y∗ik) ∀i ∈ N ,

qg
i − ql

i = Imag(Vi ∑
k∼i

V∗k y∗ik) ∀i ∈ N .
(2.8)

Following power definitions that use line variables as in equation (2.5), the PFs are
modified as follows:

sj = ∑
i : i→j

(Sij − zij|Iij|2)− ∑
k : j→k

Sjk, ∀j ∈ N . (2.9)

This formulation has been developed from the 1980s (see [45, 43]) and is now often
called the Branch-Flow model. Formulation (2.9) has in general been used in works that
study relaxations (see Section 2.5.1), although in [277] it is clear that both formulations
are equivalent and convex relaxations have been developed for both models.

2.2.2 Bounding constraints
Additional constraints are always considered in an OPF, which ensure safety in the elec-
trical grid management. These constraints monitor state variables (voltage magnitudes
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and phasors, current or power flows) as well as decision variables (box constraints on
power consumption and generation). They usually enjoy a stronger structure than the
PFs, as they are either linear or convex.

Starting with the linear constraints, voltage magnitudes and phasors, as well as
power variables |V| , δ, pg, pl , qg, ql are lower and upper bounded in the vast majority
of articles, independently of the levers considered. The only notable exceptions are for
some particular relaxations (see [122] for instance): for these relaxations to hold with a
zero-gap, some authors assume that there is no jointly binding box constraints at both
end of a line for active and reactive power. One way to ensure this assumption is to drop
some of the box constraints. As a consequence, the solution should be checked a posteriori
to verify its physical feasibility.

Apart from these box constraints, thermal constraints are also common. The objective
of these constraints is to limit the current or power flows in lines. From a physical point
of view, there are at least two reasons for not allowing unlimited flows:

• safety and security devices are scaled for a given range of values,

• aerial lines expand when overheating, which increases their deflection and lowers
their insulation.

Without relaxations, these constraints naturally result in line variables to model flows
from a node i to a neighbouring node j. Upper bounds for these flows are either on
apparent power magnitudes (usually the case for transmission networks) or current
magnitudes (usually for distribution networks).

On the distribution grid, thermal constraints can be written as:

|Iij| ≤ Iij, ∀(ij) ∈ A. (2.10)

However equation (2.10) is more often re-written as:

|Iij|2 ≤ I2
ij, ∀(ij) ∈ A, (2.11)

The equation (2.11) is now smooth. Without using the current variable, it is also possi-
ble to bound transit using apparent power flows. This new formulation is particularly
applicable for transmission networks as indicated before. The transit constraint thus
becomes:

|Sij|2 ≤ S2
ij, ∀(ij) ∈ A, (2.12)

where |Sij|2 = P2
ij + Q2

ij. This latter constraint is smooth and convex. Moreover, thermal
constraints usually are applied on power variables in models for transmission networks
as noted in [117], which explains why these constraints are often used in literature.
In [196], the authors discuss the relation between apparent power limits and current
limits. This discussion is valuable as both types of limits coexist. Power limits are usually
considered on HV networks, whereas current limits are considered on MV networks. As
a consequence, one cannot discard one type of constraints, as both are useful for OPF
studies, and the authors discuss the differences of one choice over the other. For instance,
the feasible sets differ when one chooses one type of transit constraints in place of the
other, which implies that for a given OPF one might get different results depending on
this choice of constraints.
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We care to point out another approach to thermal limits: in [133] no transit limit is
applied on a Transmission network, but both active and reactive powers are upper and
lower bounded. Onemay assume that these latter constraints, jointly with the assumption
of a appropriately designed “robust” network, will lead to safe power flows.

Taking all constraints into consideration (voltage magnitudes and phasors, current
or power flows, box constraints on power consumption and generation), the authors
of [206] propose a method to “learn” the active sets at the optimal point of an OPF.
This method has the interesting property of preserving the quality of the model, and
maintaining relevant safety constraints, and giving less importance to constraints that
are not likely to be binding at optimality.

A generic OPF does not take into account other constraints apart from the linear and
thermal ones. There are nonetheless other subsets of problems from the “OPF family” in
which additional constraints are considered. One example in the Security-constrained
OPF (SCOPF), where the additional constraints account for post-contingency cases. The
aim of a SCOPF is to provide a solution which remains feasible after a failure from a
set of predetermined failures (e.g., the loss of a generator or of a transmission line).
This particular subset of OPF problems has attracted a lot of researchers and has been
identified as a key problem from the OPF family: in [66] where the authors discuss the
recent advances in the OPF field, SCOPF is described as somewhat indistinguishable from
the OPF as a whole since “most real-world OPF problem consider security constraints4”.
This explains why SCOPF has been at the center of works from the 1970’s (see for
instance [31]) to modern days (see [251, 32, 40] where the post-contingency constraints
are usually treated in a robust way).

2.3 sources of uncertainties
The electrical system is one of the largest human-made systems comprised of complex
elements connected to one another, on top of being among the most in interaction
with humans. As a consequence, sources of uncertainties are astonishingly numerous.
Moreover, and somewhat unlike other large human-made systems, the subset of these
sources that are “significant-enough” to be considered still is consistent. For instance,
in the airline industry, generic crew pairing optimisation studies can (hopefully) safely
disregard the possibility of a plane not reaching its destination. The outputs of events that
are not expected usually include delays and loss of revenue for the company, possibly
amplified by a domino effect, one delay leading to another one. On the other hand, in
the electrical system, incidents resulting in the loss of some arcs in the network are more
frequent and optimisation models taking such losses into consideration are of significant
interest. The possible outputs of a material loss are also of greater concern due to the our
dependence on the grid.

Limiting ourselves to short term operational planning5, sources of uncertainty in-
clude:
4 Security constraints are to be understood as post-contingency constraints in this context.
5 Uncertainties evidently are hugely dependent on the time horizon. For instance, in the long term,

political, social, technical decisions impact the development of the electrical grid, these aspects are not
significant on a short term.
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• Errors on characteristic parameters of grid elements. For instance, R and X values
for a given line might be wrong or missing/unknown in an operational setting.

• Model errors: these errors are numerous, and encompass physical laws (e.g. Ohm’s
law as a linear function provides insight on the relation between values of voltage
and intensity up to a precision generally deemed sufficient, in a system which
conditions are appropriate6) as well as the mathematical model. Among model
errors, ENEDIS financed a study in 2018 in the PhD work of J. Buire [60] on the
uncertainty related to the On-Load Tap Changer. French networks often have On-
Load Tap Changers that are control loop processes, following a selected voltage
value for the secondary windings by automatically changing taps. The automatic
rule, shifting step-by-step the selected taps, introduces hysteresis in the behaviour
of the transformer, more importantly it is unknown which taps are currently being
selected. The PhD thesis proposes a model for this uncertainty and its spread
throughout the network. A key element from this work is that there are realistic
cases where the uncertainties due to the selected taps are not negligible when
related to forecasts uncertainties.

• Forecasts on production/consumption: it appears to be among the most studied
source of uncertainties, and the increasing deployment of distributed renewable
energy sources (DRES) as well as the growing current of electrical usages further
stress the importance of studies on these sources of uncertainties.

• Numerical and coding errors: these we only tackle by repetitive verifications.

In this work we are interested in the forecasts errors/uncertainties. Our model for
the loads and producers are fairly common on Medium voltage grids as they are treated
as p, q grid elements. This obviously comes with associated model errors that we argue
are beyond the scope of this work. A possible extension, where loads would be better
modelled, could probably rely on [57] where the authors describe the “ZIP” load model,
and useful data for the parametrization of this model. It is intended as a better voltage
dependent description of the steady state of loads.

2.4 the objective function of the opf
Compared to constraints, which in general are sources of non-convexity for the OPF, the
objective function is usually not a source of numerical difficulties. The canonical OPF
aims at minimising cost of power generation, and the vast majority of works studying
numerical optimisation methods share this objective function: this is easily observable
from, for instance, the extensive surveys [73, 117, 209].

Other classic objectives for the OPF include the minimisation of power losses ([263,
309, 167, 77]), improvement of voltage profiles ([78]), maximisation of profit when the
operator acts on a market ([10]), maximisation of renewable DG penetration ([226, 68,
207]), or materials sizing ([43, 166, 140]) / allocation ([45, 119, 166, 297, 140]).
6 There are many electrical devices than do not have a linear law between voltage and intensity, a “Tunnel

diode” being one of them.



38 CHAPTER 2

As described in [10], most of the encountered objective functions are linear, piecewise-
linear convex functions, or polynomials (mostly quadratic convex); nonconvex functions
are used in more specific cases which are discussed in this latter reference.

2.5 numerical methods to solve opfs
From the original OPF definition at the beginning of the 1960s, more than 8.000 research
publications have been proposed (see Figure 2.5 for the time distribution) specifically on
the OPF subject. Although our Figure 2.5 solely relies on the Scopus database and conse-
quently should not be regarded as an extensive analysis, well established operational
research and energy related journals are included as ones affiliated to IEEE or IET. The
trend is therefore significant: more than 2000 scientific documents have been published
on the OPF for the past 3 years, more than 5500 for the past 10 years.

In this section we are interested in the numerical methods that have been used to
solve OPFs. Although our interest lies mostly in mathematical methods, heuristics make
up a large part of literature. We start by recalling some basic properties of the OPF, based
on previously introduced material in this chapter. After a brief discussion on heuristics
applied to the OPF, we then present the historical approaches and current trends.

An abstract OPF presentation is as follows:

min
x,u

f (u, x)

s.t. g(u, x) = 0

h(u, x) ≤ 0

u ≤ u ≤ u

x ≤ x ≤ x

(2.13)

From Sections 2.2 and 2.4, it is known that g is a nonconvex function, and h is possibly
nonconvex.

Insert 4: Complexity of the AC-OPF.
In this formulation, u can be a mixed integer vector, x is a continuous variable, f
and g are in general non-convex non-smooth functions. The canonical AC-OPF
has been shown to be strongly NP-hard on general graphs, and weakly NP-hard on
trees [51]. More specifically, the latter article presents a formal proof of the strong
NP-hardness of AC-OPF by a reduction to an another NP-hard problem (the 3-SAT
problem).
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Figure 2.5: Number of publications with “Optimal Power Flow” in their titles, keywords
or abstracts when searching on Scopus. Document types include mostly articles (4330),
conference papers (3541), conference reviews (100), book chapters (83). Year 2021 is
truncated: publications are counted up to the first of July 2021.

2.5.1 Overview of the state of the art on the opf as
an optimisation problem

The original OPF formulations were non-convex and the first numerical methods did not
tackle the associated program without relaxations. In the impressive 1968 article [92] 7,
the authors propose a decomposition scheme to retrieve a “good” feasible point for
the original OPF. Using Newton’s method to solve the PF at a given iterate, they then
use the output of the first step to solve an unconstrained OPF with a penalisation of
inequality constraints. If the stopping condition is not met, they update the control
parameters estimate, and proceed to the next iterate. Interestingly, the latter article
already emphasizes the scaling difficulties in numerical experiments for the OPF.

From this initial heuristic, the authors of [31] build a security-constrained version of
the OPF. Their objective is to ensure the safe steady-state exploitation of the system after
a contingency and associated automatic control devices activations, but before slower
decisions (as decisions that require a human input). To that end, the authors rely on
the methodology from [92] to iteratively solve an OPF. At each iteration, they penalise
decisions that would lead to insecure grid state post-contingency. This can be related as
an iterative two-step optimisation: at each iteration the first step sets values for decision
variables, while the second step is on monitoring the grid state post-contingencies. If an
insecure grid state is observed, a penalisation of the associated set of decision variables
is applied.

J.L. Carpentier, who initiated the OPF also provides a still highly relevant review
in [73]: from the canonical (full) OPF, he presents several approximations that are in use
7 This article cites other works, claiming that they propose “numerical methods” to solve OPF related

problems, but these works are (1) not easily found, (2) mostly in German or Russian.
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30 years on. The challenges that are foreseen in this article are still faced by researchers
today: the author identifies the ability of an algorithm that can provide a “feasible close
to optimal” solution on a “minicomputer located at the energy control center” as a
dominant research objective.

To that end, the OPF has been at the crossroads of evolutions in optimisation algo-
rithms and modelling. Extensive and close to up-to-date surveys are available, and an
interested reader should turn to the following one for more references and details:

• The authors of [117, 118] produced twomilestones in 2012, that provide an extensive
overview of deterministic optimisation techniques and heuristics applied to the
OPF.

• In [10], a large and recent state-of-the-art of the Unit Commitment problem is
provided.

• A more recent and mathematical review of OPF formulation can be found in [50].

• References [64, 66] are practical, more operational critical points of view of the
OPF.

Optimisation algorithms for the continuous opf
In this subsection, we are interested in optimisation methods applied to the continuous
OPF. This excludes heuristics, even though it appears a significant amount of articles
in literature do not separate heuristics from optimisation methods. Global trends in
deterministic optimisation algorithms that have been applied to the OPF in its continuous
formulation can broadly be reduced to:

• Gradient methods, and related algorithms. They have been among the first ones to
be applied to the OPF in the 1960s, and still have been used recently (for instance
[92, 187, 195]). Newton’s methods, which use second order information, also have
been used for the OPF [281]. Taking a broader view on these methods, Newtonian
methods are extensively introduced in [159, 160].

• Sequential Quadratic Programming (SQP), and related algorithms. This class of
algorithm has been developed from the 1970s, and is among the most successful for
nonlinearly constrained optimisation problems (see [55], [186, Part III], and [56]
for a thorough description of SQP).

• Interior Point Methods (IPMs): this class of methods applies to convex problems.
A sequence of subproblems is iteratively solved, where each iterate is obtained
by incorporating inequality constraints in the objective function using a “barrier”
function. This latter function penalizes the violation of the inequalities, and usually
is chosen as the logarithmic function. IPMs have proven to be numerically efficient
for convex problems in terms of complexity and CPU times (see for instance [219],
and more particularly [219, Section 4.3.6]).

Of these methods, the gradient ones are the first optimisation techniques to have been
applied to an OPF problem. In [92, 274] for instance, the authors propose optimisation
techniques using first order information to solve an OPF where the constraints are
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penalised in the objective function. Numerous evolutions of gradient-based techniques
have since been applied to the OPF: a list of reduced gradient, conjugate gradient, and
generalized reduced gradientmethods is extensively in the 2012 reference [117]. Gradient
based methods are reliable, have been extensively studied since the 1960s, are easier
to implement than other algorithms, and only require first order information on the
functions. Convergence is also guaranteed, but is both slower and weaker (one cannot
prove local optimality with first order information) than higher order methods which
use more than first order information. Thanks to its robustness and reliability, this class
of method is still used in recent works: for instance, in [195], the authors propose a
Lagrange projected gradient for a generic (deterministic) OPF problem. This method
relies in part on projected gradient method, in which a gradient step is followed by a
projection onto the feasible set. The authors of [105] use a (sub-)gradient method to
solve an OPF with automatic local voltage control. In [121], the authors propose to apply
a gradient method to a logarithmically penalised OPF and are able to achieve significant
speedups in CPU times (from 5 to over 70 times faster) while reaching objective values
close to the ones obtained with other relaxation methods from the literature. Leaving
aside the validity of the state variables at the solution point as the authors only present
the objective values without discussing the exactness of their relaxed model, this work
highlights that gradient methods are still relevant for the OPF.

In a different approach, sequential quadratic programming methods solve a non-
convex problem by iteratively solving quadratic problems, called subproblems. Each
subproblem is a quadratic approximation of the original problem around an iterate point
xk. Since the 1980s, SQP has been applied to the OPF (see [117, Section 4.5] for a broad
overview of SQP applied to OPFs from the 1980s to early 2010), and is still developed
nowadays for commercial OPF solvers. Sequential quadratic programming has recently
been successfully applied to a Direct-Current OPF (DC-OPF) in [213]. In this latter
work, the authors show that this specific type of OPF is particularly well suited for SQP
methods as the DC-OPF, under “normal operative conditions”, allow very accurate
linearisations of the non-convex constraints; as a consequence, in their proposed model,
only the objective function is quadratic while the constraints are linear. In a similar setting,
the authors of [130] propose a tailored SQP approach while considering more precise
load models (namely voltage depend models). In both latter works, the SQP algorithm is
explicitly used for its numerical efficiency by the authors, in particular when applied to
quadratic convex approximations of the OPF. For another specialised OPF, where stability
of the solution to the OPF is controlled, the authors of [194] also rely on a SQP method.
In majority of SQP applications to the OPF, the key element is the linear approximation of
the non-convex constraints. It usually is done using Taylor approximation of the functions
at the current iterate. More recently, reference [192] presents a more complex procedure
to obtain local convex approximations of the non-convex constraints. It relies on the
main axis transformation, a method that enables one to distinguish non-convex parts of
a function from convex ones. The authors then linearise the non-convex parts, to obtain
a convex approximation of the non-convex constraints.

Lastly, IPM methods which were initially developed for linear programs, have since
been expanded to non-linear programs. They gainedmuch interest due to their numerical
efficiency when compared to the Simplex Method for linear programs, which at the time
was the mostly used algorithm. Moreover, there exists an upper pseudo-polynomial
bound on the worst-case running time (for this matter, see for instance [30]). In the
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OPF community, IPM has been applied since its early beginning (as a replacement of
the Simplex Method for linearised OPFs) and now is widely used in more advanced
versions. Several of these improved IPM algorithms are applied and compared in [70].
Reference [74] extends this previous work by proposing an IPM algorithm for a security-
constrained OPF. Both [117, Section 4.6] and [50] highlight that IPM algorithms for OPFs
are currently widely used and improved in literature: as an example, one of the most
renowned package for electrical network optimisation [310] relies on IPMs.

As already described, the difficulty of solving the OPF, combined with the high
stakes residing in the development of an efficient solving method, explains the large
number of works addressing this subject. The multiplicity of optimisation algorithms
from the operational research field is combined with the multiplicity of models for
the electrical network and its material side. In this overview of the main optimisation
algorithms, we have left aside two main possible aspects for the general OPF: the use of
integer variables, and optimisation algorithms that search for global optima (even though
the original OPF is non-convex). For the first part, mixed-integer OPFs are an active
and challenging optimisation problems. It has historically been tackled using heuristics
(solving the relaxed problem and rounding to the closest discrete value, which can lead
to infeasible solutions [67]). Optimisation techniques for the mixed-integer OPF rather
rely on linearisation of the OPF, which is in turn embedded in a branch-and-bound tree
(see for instance [67, 240], or [278] where a convexification in place of the linearisation
is proposed). Another successful and tractable method for the mixed-integer OPF is ot
be found in [271], where the authors iteratively solve continuous non-linear problems
with a penalisation of variables that should be discrete but take non-integer values. For
the second part, some authors indeed have worked on exact optimisation techniques,
which we discuss in section 2.5.2.

Optimisation techniques constitute one side of the OPF, the other being the model
itself. As the non-convexity is difficult to tackle, relaxations have an important role in
solving the OPF. The following subsection is therefore dedicated to a review of existing
relaxations.

Simplif ications for the OPF
Due to the non-convexity of OPF problems and the difficulty of numerically solve an
OPF, researchers have intensively worked on relaxations of these programs. The goal of
relaxing a mathematical problem should always be twofold:
(1) obtain a relaxed problem which is easier to solve than the original one,

(2) be able to derive an upper bound on the optimality gap between the original
problem and the relaxed one.

In other words, one should be able to control how “wrong” is the relaxed problem when
compared to the original one, the best situation being when the optimality gap is zero.

Among the first relaxations is the DC approximation8. Assuming that:
• Xij >> Rij for all lines (ij);

• sin(δi − δj) ≈ δi − δj and cos(δi − δj) ≈ 1 for all lines (ij);
8 We recall that DC stands for Direct Current.
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then one can observe that the obtained model is linear: a review, and improvements on
this relaxation can be found in [95]. This has shown success as this relaxation, although
without general zero-gap property, still enjoys good quality solutions (see [231], where
DC-OPF is applied in a market setting, where the objective is to localize congestion in
order to activate closest levers). A more recent article [41] (still unpublished) proves
that solutions to the DC-OPF cannot be feasible for the AC-OPF under (very) mild
assumptions, namely: positive resistances and reactances, symmetric admittance matrix
Y, strictly positive line losses and only p, q loads. One could argue in return that load
models also have significant impact on feasible solution to the AC-OPF (recall [163]).
Nevertheless, knowing that DC-OPF can be linear, can produce satisfactory results in
some cases and that fast iterative methods to improve solutions a posteriori exist (detailed
in [95]), it is still widely used today.

A Second-Order Cone Programming (SOCP) relaxation has been proposed in [162]
without providing a zero-gap proof: it is stated that convergence to the “true load flow
solution” is achieved in practice. But relaxations have gained significantly more attention
from early 2010 with [179, 180] where the authors prove that a Semi-Definite Programming
(SDP) relaxation of the OPF has a zero-duality gap. This immediately implies that,
on some cases, one could efficiently solve the AC-OPF to global optimality with usual
laptops. More generally, a set of conic relaxations have since been proposed. In [84] the
authors propose a Quadratic Convex (QC) relaxation, while more recently [53] presented
an improvement of both SDP and SOCP. Leveraging a recent reformulation of non-convex
quadratic constraints by its explicit convex hull proposed in the mathematical literature,
the authors prove their relaxation (nSDP) is a trade-off between SDP and SOCP. It has
since been applied to other OPF problems in [52]. Generally speaking, as detailed in the
latter reference, one has the following relations between the relaxations:

• SDP is numerically the slowest relaxation, while SOCP is the fastest. QC and nSDP
both are in-between SDP and SOCP on the time of computing scale.

• SDP is the tightest relaxation, while SOCP is not as tight. Regarding the model
strength, QC is not dominated nor dominates SDP, while nSDP is claimed to be
“equivalent” to SDP.

Related relaxations have been studied for some specific network configurations
(namely radial ones). For instance, in [208, 268] SDP relaxations are obtained thanks to
the sparsity of the network, when the OPF is formulated as a system of polynomials (thus
using rectangular coordinates, see section 2.1.2). An additional procedure applicable
on polynomial optimisation problems (called “Lasserre hierarchy”, see the references
in [268] for a better insight of this concept) enables the authors to strengthen their
relaxation. The relaxation that is obtained with a first-order relaxation in the Lasserre
hierarchy is equivalent to the SDP one. More discussion on the Lasserre hierarchy and
its relation with the OPF can be found in [203, Section V].

To conclude on the subject of relaxations, the goal of relaxations applied to the OPF
usually is to obtain a continuous problem from a mixed-integer one, or a linear/convex
problem from a non-convex one. Linear relaxations have long be used, as direct-current
formulations of the OPF can lead to a linear problem. Convex relaxations have gained
much interest when some authors proved there exists, in a particular setting, SOCP/SDP
relaxations with zero-duality gaps.
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Subclasses of the opf and other related problems
Wehave thus far explored themain optimisationmethods for the OPF, aswell as the usual
relaxations applied to this optimisation problem. We have thus distinguished the OPF
on the resolution process, which is one way of analysing this class of programs. Another
possibility is to study the different types of programs that belong to the OPF class while
having different motivations. In this subsection, we overview the main subclasses of OPF
which include the following ones:

• Security-constrained OPFs.

• Reactive-power OPFs.

• Unit commitment.

• Economic dispatch.

Security-constrainedOPF Broadly speaking, anOPF is said to be “security-constrained”
when it is designed to account for contingencies such as a power plant outage or the loss
of a power line. The objective of a security-constrained OPF is consequently to provide
an optimal solution that remains feasible after the occurrence of such a contingency. The
set of possible contingencies is known/defined a priori. As a general rule, the solution of
a security-constrained OPF will lead to a worse objective value when compared to that
of the equivalent standard OPF (because the former is more constrained than the latter).
Works in security-constrained models also enjoy a vast literature as they can be traced
back from at least 1974 ([31]) and is still active nowadays ([64, 66], and more recently
a “stochastic” version of the security constrained OPF [29]). Additional “security”-
constraints can be interpreted as a way of taking some uncertainties into account: solving
a security-constrained OPF is aiming at a decision of minimal cost, that is feasible for a
known-set of possible contingencies U. This latter interpretation highlights that these
models are related to “robust” optimisation.

Reactive-power OPF While reactive power has a “zero-cost”, a sub-set of literature is
dedicated to solving OPFs: the rationale is that in a first-order approximation, reactive
power has a greater impact on voltage magnitude than on voltage phasor. As a conse-
quence, grid levers that modify reactive power can be used as a means of mitigation of
voltage magnitude if and when needed. This is also known as the Volt/Var control, and
is of great importance due to its ability of providing efficient voltage control without
network reinforcement (see [308, 209, 236] and references therein, which highlight the
involvement of a IEEE taskforce on this subject). The Optimal Reactive Power Dispatch
is the OPF program that aims at finding the optimal activation of reactive power levers
on a grid. Mathematically speaking, this often amounts to solving non-convex mixed-
integer programs (MINLP). This is highlighted in [52] where the authors propose a
conic relaxation of the MINLP and a rounding procedure to obtain the integer variables.
Similarly, in [90] the authors study conic relaxations of the OPF for the Reactive Power
Optimisation with uncertainties. Reactive-power OPFs are also studied from a planning
([306]) and micro-grid ([134]) point of view. A key point of this subclass of problems
is that they capture some important material, operational and upcoming aspects of the
network.
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Unit Commitment Unit commitment (UC) and Economic dispatch (ED, see the next
paragraph) are two optimisation problems that are closely related. They are two sub-
classes of decision analysis for operational planning in the electrical (transmission)
network that naturally appear when one seeks to decompose this difficult problem into
smaller, easier ones at the expense of obtaining a sub-optimal solution to the original
problem. In the transmission network, one has to decide which plants to start-up, shut
down, keep idle/active: these are known as the commitment decisions, which cannot be
modified in a short-term horizon. This longer-term step has historically been the UC
goal. Once the solution to this problem is known, the ED provides the decision on levels
of production of active plants (the production decisions). This traditional distinction is
not as clear nowadays, as one can see in the extensive reviews [280, 10]. One can now
numerically tackle a UC with commitment and production decisions. Mathematically
speaking, UC problems are non-convex mixed-integer programs over multiple time steps
as there usually are some ramp constraints (see [114, 115]). It is not considered to be
a “well-solved” problem in the deterministic case, and uncertain cases are still scarce
(see [10, Section 4]).

EconomicDispatch The EconomicDispatch (ED) is intrinsically related to optimisation
problems of energy systems, it is not always a subclass of the OPF strictly speaking. First
of all, note that the ED is a term also encountered in other fields than optimisation related
to electricity networks. The ED conceptually is the economically optimal allocation of
levels of production tomeet levels of demand. Some authors include PFs into this problem
(see [10, Section 2.1] for a short discussion on the subject, [116, Section 3.1]which presents
the security-constrained ED as having PFs, or [76] where PFs are linearized) in which
case the obtained ED problems are indeed OPF problems. Other authors do not consider
PFs (see [114, 299, 224]). Note that not taking PFs into consideration amounts to ignoring
the electrical network. In that latter case, a simplified approach often encountered is the
Merit Order methodology which amounts to a production price ranking matched to a
consumption price ranking as shown in Figure 2.6.

In more complex cases, ED can lead to non-trivial optimisation problems even when
the network is still ignored: generators can have non-convex efficiency curves, as shown
in [24] for the hydro power plants case.

2.5.2 The opf as a global optimisation problem
Even though relaxations and studies to provide bounds on the distance from the solution
of a relaxation and the one of the associated non-relaxed problem appear to dominate
recent scientific developments for the OPF, several researchers were interested in finding
global optima of OPFs. Evidently, the authors in this field are interested in cases where
relaxations with zero-gap fail, which occur in realistic cases: in [191] provides an explicit
example over a 3-bus network where a recent semi-definite-programming relaxation
fail to have a zero optimality-gap when a thermal constraint is considered. This is a
drawback for this particular convex relaxation, as thermal constraints are important for
both TSOs and DSOs. The authors of [191] build their counter-example by considering a
large thermal constraint (where there is a zero optimality-gap), and a realistic but tighter
one (where the gap is not zero). This is further developed in [136] where the authors
directly work on open-source IEEE networks to set up cases with no zero-gap relaxation.
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Figure 2.6: Merit order example graph. Production costs of the available power units
(e.g. their marginal costs) are ranked, and the customer price as a function of power
supplied is plotted. This latter plot is to be related to an elasticity of demand. In this
simplified model, the intersection of the two plots provides the price of power in this
market.

Moreover, the authors of [62] explicitly provide material that highlight several cases
where semi-definite relaxations fail, along with their associated local minima. The last
three references work on the key element of recent relaxations where zero-gap is possible:
the ability of dropping a rank constraint, while still obtaining an exact solution to the
original problem.

As is usual when seeking for a global optimum in the absence of convexity, works ad-
dressing the global optimisation of the OPF mostly rely on a branch-and-bound algorithm.
This latter algorithm is time-consuming, but still provides “robust” results and has long
been addressed in literature. This application to the OPF is discussed in [132, 133]. In
these twoworks, the authors detail a branch-and-bound algorithm for three different OPF
problems with (1) linear objective function, (2) quadratic objective function, (3) binary
variables for on/off status of producers.

Using Complex Analysis tools has seen some success in energy related problems,
starting with finding PF solutions: the author of [284] proposes a novel deterministic
non-iterative holomorphic9 resolution with a “perfect” convergence. In other words,
except in pathological cases where the electrical system is beyond voltage collapse, it is
more likely to converge to the right solution. This is an improvement from traditional
iterative methods, where convergence problems can arise: it can either be very slow,
or converge to a physically non-realistic but mathematically feasible solution to the PF.
Building on this article, the PhD thesis [108] uses the same complex analysis to study
the number and interpretation of all feasible solutions to a given PF system. Following
the intuition of the author of [284], who predicted his novel methodology could be
applied to the OPF, the authors of [177] propose an interesting methodology that tackles
the (full) AC-OPF. Leveraging the strong convergence properties of the holomorphic
resolution, they are able to address a deterministic mixed-integer OPF.
9 Using complex-valued functions.
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2.6 the opf from a dso point of view
The OPF was traditionally formalised from a transmission system (and hence TSO in
current terms) point of view, as at the beginning of the second half of 20th century the
distribution actors obviously did not experience the same challenges as today. This might
explain why specific DSO-oriented OPFs have long been significantly less studied than
TSO-oriented ones. This section is dedicated to the specific challenges that a DSO faces,
and works in literature that address them.

We identify the following elements as both (1) possible to model in an OPF, (2) inter-
esting to model when taking a DSO point of view:

• Power injections are not directly controlled, but are levers that can be activated
following constraints defined in pre-existing contracts.

• The same holds for loads on the grid: modulation is assumed to be possible only
through contracts.

• Transit constraints should be on current flows (and not apparent power flows).

• Some of the characteristic parameters of the electrical grid, resistance R and reac-
tance X of the lines, do not usually verify the following property R

X
<< 1. As a

consequence, a DC-OPF is not well suited for the DSO, and the AC-OPF appears
as a better problem to tackle.

These four elements are necessary to appear in an OPF, and are taken into considera-
tion within our work, but one should note they are not sufficient for an ideal OPF for the
DSO. One additional consideration we have not investigated is to consider the possibil-
ity of having an unbalanced electrical grid, whereas in our case we make the implicit
assumption that the grid is balanced between the three electrical phases. Techniques
for OPFs considering unbalanced networks can be found in [247] or in [85] where a
low-voltage grid is considered (LV networks are natural use-cases for unbalanced OPF).
Another important consideration in an ideal OPF for the DSO should be the ability to take
integer variables into account, as several levers available to the DSO naturally require
discrete variables to be modelled (as line switches for instance). As the main goal of this
work lies in the uncertainties, we have chosen to discard this latter consideration.

Literature is not yet abundant on DSO oriented short-term operational planning. For
instance, reference [204] proposes a reformulation of the OPF based on the definition
of a Hosting Capacity. Starting from the ground rules of a DSO (broadly speaking, it
has to authorize a maximal activity from GU while ensuring exploitation constraints),
the authors present a model to maximize the level of power injection. Interestingly,
thermal constraints are on the current and not on power flows, which is closer to reality.
The constraints are the full compliance with network’s exploitation limits, the safety
DSOs’ interactions with local producers are regulated by contracts. Other works are
rather interested in DSO-TSO communication and exchanges, and used to be in another
community than the optimisation one (see for instance the European Project TDX-ASSIST,
and reference [129] which discusses a framework for an efficient coordination TSO-DSO).
Recent works on the other hand create links between these DSO-TSO exchanges and
optimisation techniques: [267] discusses the available quantity of flexibilities at the
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interface DSO-TSO, while [65], although adopting a TSO point of view, introduces the
interaction mode between the DSOs and the TSO in an AC-OPF.

These latter works highlight the growing importance of the DSO as an actor in the
optimisation community. We expect that future works will either include more and more
DSOs in AC-OPF with a TSO point of view, or propose solving methodologies well fitted
for the DSO particularities as taking into account uncertainties.

2.6.1 Comments on decis ion making in an uncertain
setting

As described in [278, Section 4.4], an ideal OPF formulation for the Operational Planning
should meet the following requirements:

• Computational tractability. This is in particular true for short-term operational
planning, where the user can be required to compute a solution up to a fewminutes
before real-time.

• Meet optimality requirements. As described in its roles, the DSO is required to
manage the grid at an optimal cost.

• Provide an accurate solution. Accuracy is the relation between the solution of a
mathematicalmodel and real-world values from themodelled system. It is evidently
necessary that this relation be “close enough” to ensure that the model is indeed a
tool for decision analysis. How “close enough” depends on the user.

These latter requirements are completed by additional considerations that appear
more particularly in an industrial context. Summarized in figure 2.7, they include the
analysis of the existing material a priori: for the identified problem, what is available to
the one in charge of the decision analysis? More detailed, follow-up questions, include:

• How much time is made available to design a solving methodology? How much
time can be allocated for one resolution? What solvers are available? This is the
“Ressources” box in figure 2.7.

• What information is made available a priori? Is there any expert knowledge that can
be useful? This is the “Information” box in figure 2.7.

• What is the objective of the end-user? This is the “User problem” box in figure 2.7.

Once these questions are answered, the resolution process is ready to be unfolded:
it includes a model set-up, and a solving strategy for this latter model. The model is
evidently dependent on all the previous questions of the Initial State; the solving strategy
is dependent on the allocated resources.
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Figure 2.7 : Main steps from the identification of a problem to solving it. Dependences
are depicted by orange connecting lines.

Aside from highlighting some of the most sensible points of developing a decision
analysis in an industrial context, figure 2.7 also enables us to point some elements
where literature and industrial requirements are not aligned. On the one side, the “User
problem” box is significantly developed in literature: solely looking at literature related
to optimisation, numerous operational problems are addressed by a wide variety of
methods. For instance, the authors of [117, 118, 116] provide an extensive review of
problems related to the OPF and associated solving methodologies. On the other side,
the “Information” box is more scarce: even if recent technological developments have
enabled better data collection on grid topologies, consumption and generation levels,
access to such information is limited due to proprietary rights. Some network topologies
are both realistic and available in literature, most of which can be found in the dataset
of MATPOWER [310] with mostly transmission networks. Two other openly available
databases have been very recently made available. Firstly the authors of [178] propose a
large collection of networks topologies and associated characteristic values. Interestingly,
these networks closely resemble that of distribution grids. The downside is that only load-
flow results are proposed, and not that of OPF; as a matter of fact, no lever is modelled
which implies that no generation / load modulation costs are presented. Secondly, the
work in [38] (yet to be published) is the result of a large collaboration of researchers
from IEEE PES PGLib-OPF Task Force where OPF are conducted on 35 test cases. Results
provided include the minimal costs, time of computation, and known optimality gaps.
On the downside for a DSO point of view, this survey only deals with transmission
networks: it should nevertheless be seriously considered for the assessment of OPF
solving methodologies.

2.7 tailored methodologies to deal with an opf
with uncertainties

Modelling uncertainties and solving associated mathematical programs have obviously
interested a large number of researchers: literature is vast on OPF with uncertainties.
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In this section we present works that specifically address OPF with uncertainties. As
described in part III, considering uncertainties in an optimisation problem is a holistic
process. From the available information and expected decision analysis we classify these
works into three different sets, depending on the type of methodology: 1. heuristic;
2. robust; 3. stochastic.

A major difficulty that arises from solving the OPF with uncertainties is ensuring
that an a priori decision leads to a viable grid state as the link between this latter decision
and the a posteriori grid state is a non-convex non-smooth one. This is discussed in the
review of solving methodologies for the OPF under uncertainties [248].

2.7.1 Meta-heuristics for the opf with uncertainties
We consider meta-heuristics to be methodologies that aim at finding a solution without
certificate for optimality for a given resolution10. Such a certificate is to be understood in
a generalized meaning, in particular in a non-convex setting: “global optimum”, “local
optimum” or “stationary point” are for example three different types of optimality
certificates. Unlike usual optimisation techniques in mathematical programming, meta-
heuristics are less concerned with associated a tailored optimality certificate to their end
points. In other words, one cannot theoretically ensure any optimality-derived property
of a point provided by a meta-heuristic. This obviously is a major concern: in complex
optimisation problems, it is often difficult to humanly assess the quality of a solution. As
a consequence, having a theoretical certificate that guarantees the quality of the obtained
point is close to necessary. Adding that among the DSO’s objectives is the pledge to
manage the electrical grid at an optimal cost, the case for optimality certificates becomes
even stronger. On the other side, meta-heuristics usually have the following advantages:

• It usually is more “intuitive” and easier to explain to non-specialists. As an il-
lustration, one can observe the vast literature of meta-heuristics applied to OPF
where techniques are often inspired by real-life phenomena: Genetic Algorithm
as in [234], Particle-Swarm as in [3], Ant colony in [269], Bee Colony in [255], or
Simulated Annealing in [272].

• As a consequence of the first point, it can relatively be easily modifiable and ad-
justable when applying the meta-heuristic to a new case.

• Meta-heuristics can be applied to a lot of mathematical problems, with a relative
independence on their mathematical structure.

• As shown by literature, one can obtain satisfactory results using meta-heuristics.

While our work is not related to meta-heuristics, as these latter techniques are still
very much used nowadays they should be mentioned. In [117] some meta-heuristics
are presented and applied to the OPF with uncertainties, and [220] provides a more
specific overview of meta-heuristics applied to this latter problem. Many of these meta-
heuristics are either based on the iteration of a solution update (a succession of points
10 Some methods we define as belonging to meta-heuristic ones can be proven to converge in probability

to some optimal point: see for instance [262] for the proof of convergence in probability of some
meta-heuristics to a global optimal, or [59] where the authors go further and study rates of convergence
of the same class of meta-heuristics.
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is calculated, and a point is updated only if an improvement criterion is met) or on a
population-based search (many parallel processes are run at each generation, keeping
only the best ones for the new generation). Drawbacks discussed in [220] include the
difficulty to set parameters values, and the high computation intensity, to which we add
the lack of theoretical certificate of quality of the solution. As further discussed in [79],
the number of meta-heuristics applied in power and energy systems has been growing
significantly within the last 10 years but gains are sometimes questionable. The authors
of the latter reference recognize that meta-heuristics are in general difficult to compare
and contrast in their current state, due to the “rush-to-heuristics” they highlight: a lot
of energy is spent on proving the superiority of one meta-heuristic over another, while
the concept of superiority requires a definition of “efficiency” which is yet to be clearly
adopted.

Other methodologies are deterministic optimisation methods, which are algorithms
with no random components that are applicable to programs with uncertainties.

2.7.2 Robust methodologies
A major subset of optimisation under uncertainties, Robust Optimisation (RO) has long
been a thriving field for multiple reasons that span on several facets of a mathematical
program. First of all, robust optimisation is a paradigm that provides a meaning to
(1) an optimisation problem with uncertain parameters, (2) the solution to such a
problem, which is not trivial. Secondly, on the numerical side, this paradigm can lead
to more tractable programs when compared to other stochastic problems. And finally,
robust models captures information on uncertainty as well as provides a solution than is
often qualified as “conservative” which can suit large systems with human interactions
and safety issues11. The core of RO is to provide a deterministic approximation of the
uncertainty set.

While not at the core of our work which is rather centred on stochastic studies, we
believe that RO and related framework will be thriving in the field of optimisation
under uncertainties, and in particular applied to the OPF. First tractable methods and
application of RO to OPF can be dated back to the early 2010s (see [69, 161, 217]). As
usual in OPF with uncertainties, in these initial works the sources of uncertainties are
mostly distributed renewable generators, followed by loads. In [69], the authors present
what can be interpreted as a RO approach by developing an algorithm that select “most
constrained scenarios” for the OPF where the levels of power injections are uncertain
and provide a solution for this finite set of scenarios. An iterative process then update the
solution in order to comply to all selected scenarios. The author of [161] then propose a
more formalized model, closer to a canonical ROmodel. In this work, uncertainties solely
are on the renewable energy sources, and it is assumed the operator has here-and-now
and wait-and-see variables (respectively non-adjustable and adjustable after observing
uncertainties). This is interesting, as adaptative automatic protocols can then bemodelled.
The model is based on a linearization of the physical laws in the wait-and-see step.
11 The preface [48] is a classic introduction to RO.
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2.7.3 Stochastic methodologies
Another main type of approach to optimisation under uncertainties is Stochastic Op-
timisation (SO). It has experienced a growing interest in the last decade due to new
numerical codes and algorithms to overcome the numerical tractability obstacles of prob-
abilistic models. A stochastic model intrinsically differ from a robust one because of the
guarantees obtained in a solution to these models. While a solution to the former model
enjoys a probabilistic guarantee (the constraints are verified with a user-given probability as
in a chance-constrained model), the a solution to the latter has a robust guarantee (the
constraints are enforced for all uncertainty realisations deductible from the model).

Stochastic models arise quite naturally when modelling uncertainties in an OPF,
through the use of chance-constraints. The “natural use” of chance-constraints is dis-
cussed for instance in [23]: such constraints guarantee feasibility “as much as possible”,
which can appropriately translate the wish of an operator. This is not only true from
the OPF, but also for other energy related problems (see [25, 22, 24, 280, 137, 135] for
applications to various energy-related problems, including hydro-reservoir management
and gas network problems).

First attempts at solving a stochastic OPF relied on linear or convex approximations.
The authors of [305] appear to be among the first to look into tractable numerical treat-
ment of a chance-constrained OPF. The chance-constraints are disjoint (see table 5.1 for
a definition of this concept), and the probabilistic constraints are the boundary ones
(upper and lower bounds on state variables). With these simplifications, the authors
proposes a “two-layer approach”: on the one side, an oracle that provides functional and
partial derivatives of the involved functions; on the other side, a non-linear solver (a SQP
algorithmwas used), which takes the previous information as input and outputs the next
iterate. The drawbacks of this initial approach include the fact the chance-constraints
are not jointly considered, only the boundary constraints hold the uncertainties, and the
sources of uncertainties are limited. In [290], the authors present a chance-constrained
OPF that accounts for some predetermined contingencies. Their methodology relies on a
convex approximation of the PFs equations, and a substitution of chance-constraints by a
finite number of “hard-constraints” (see references [20-22] within this latter work). This
numerical technique for chance-constraints is tractable, but has the disadvantage of not
being scalable (a large number of scenario is desirable for accurate results, which implies
that a large number of hard constraints have to be added). More recently, in [250] the
authors propose a chance-constrained AC-OPF with local and partial linearisations. It
is assumed that the forecast errors are small. This is again a tractable proposition, with
individual chance-constraints on every boundary constraints. Power flow constraints
are “locally” enforced: rather than having probabilistic power flow constraints, only
a set of deterministic equations for the forecasted operating point is included in the
model. On the one side, this model is fast to solve even on networks with over 100 nodes,
but on the other hand it is not yet a fully and jointly chance-constrained one and the
probabilistic constraints are not accurately computed. In [295], a work based on the PhD
of the first author, the authors propose a (tractable) polynomial approximation of the
chance-constrained OPF, relying on SDPs. Their model interestingly enforces (deter-
ministic) constraints on the mean value of the random vector, as well as probabilistic
constraints on every realisation of the uncertainty. Denoting the decision variables as x,
the state variables as yx, the random vector as ω with a zero mean value, the proposed
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chance-constrained OPF is written as:
min

x,yx ,y(ω)
c(x, yx)

s.t. f 0
i (x, yx) = 0, i = 1, · · · , m, (2.14)

g0
j (x, yx) ≥ 0, j = 1, · · · , k, (2.15)

P [ fi(x, yx, y(ω)) = 0, i = 1, · · · , m] ≥ 1− ϵ1, (2.16)
P
[
gj(x, yx, y(ω)) ≥ 0

]
≥ 1− ϵ2, j = 1, · · · , k, (2.17)

where f 0
i (x, yx) = fi(x, yx, 0), g0

j (x, yx) = gj(x, yx, 0). One can observe that this model
is mixed with deterministic constraints (equations (2.14) and (2.15)) and probabilistic
ones (equations (2.16) and (2.17)). Moreover probabilistic constraint (2.16) is a joint
one, while (2.17) is a disjoint probability constraint. The solving methodology relies on
inner and outer approximations of the feasible sets defined by the chance-constraints.

Building on this review of literature, and in particular referring to [270], to our
knowledge there is little work in the optimisation field on integrating uncertainties
in short operational planning from a active-DSO point of view. Though this still is a
prospective work, as a vast majority of DSOs cannot be yet considered as "active" (see for
a discussion on “active network management” reference [278]), the list of new levers
and of uncertainties due to an increased access to the grid is already vast.

2.8 conclusion
This Chapter aims at providing a broad overview of the OPF and its numerical process.
Literature is vast and an exhaustive description is a bottomless pit. We have highlighted
some key-elements of the setting up the OPF as an optimisation problem. On the mod-
elling side a large part of literature is dedicated to variables choices, and available
relaxations. Significant advances were made possible thanks to convex relaxations and
their associated optimality gap studies, which prove in some cases that this latter gap
is equal to zero. Recent works also highlight the interest of using rectangular variables,
due to new developments in polynomial optimisation. The OPF becomes significantly
harder when considering uncertainties. It rapidly becomes clear that the different sources
of uncertainties are numerous, and that an OPF that accounts for uncertainties will
always include a choice of which ones to include, and which ones to discard. Modelling
uncertainties is then about giving a meaning to an optimisation problem with uncertain
vectors. This process is somewhat a multi-objective one: one looks for a model with
an adequate level of uncertainty modelling according to needs of the user, while still
maintaining tractability at the solving step. This last remark can explain the reason why,
contrary to deterministic OPF where there is a widespread generic formulation, there
are many different formulations of OPFs with uncertainties. It is particularly acute in
stochastic programming applied to the OPF, and more specifically to OPFs with chance-
constraints: probabilistic constraints often differ from one reference to another, some
propose fully individual chance-constraints while other present a mix of individual and
joint chance-constraints. The following elements are key for the remaining parts of our
work: (1) there are not yet (fully) jointly chance-constrained OPFs, (2) this latter problem
is of interest for the DSO, (3) new tractable numerical methods can be necessary to solve
such a problem, that has yet to be proposed.
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INTRODUCTION

One of the take-away of Part I is that when facing an OPF with uncertainties, one faces
a nonsmooth nonconvex optimisation problem. Relaxations and approximations have
usually been used to obtain tractable numerical methods. A recent work on the OPF
with uncertainties without relaxations of the (difficult) PF constraints found in [295]
highlights the numerical difficulties of this type of approach. Recent progresses in the area
of nonconvex and nonsmooth optimization could provide better numerical tractability
for these problems: Difference-of-Convex (DoC)12 programming has proven to be an
efficient structure for nonconvex optimisation problems. This vast concept encompasses
basically every continuous optimisation studies that do not fold into convex (albeit linear)
nor smooth fields. We recall that in case an optimisation problem is indeed convex or
smooth, tailored approaches that take advantage from these properties will (in general)
always outperform one that does not use them, counter-examples having to be considered
as peculiar cases.

DoC programming has been active since at least the 1970’s, with initial works on
duality for nonconvex functions by John Francis Toland [282], and a pioneering in-
troduction specific to DoC programming, with initial properties and challenges13 by
Jean-Baptiste Hiriart-Urruty is found in [152]. A numerical breakthrough was provided
by an optimisation algorithm introduced in 1985 called DCA (Difference-of-Convex
Algorithm) (see [183] which provides an extensive review of works on this matter). It
still is a backbone for DoC programming, along with a somewhat similar DoC-tailored
algorithm called CCP (Convex-Concave Procedure) (see [303, 197]). Most of the algo-
rithms inDoCprogramswere initially developed for unconstrained/convexly constrained
DoC programs. Extensions using penalization techniques have been proposed, with
the difficulty of setting the penalization parameter to a “good” value. In order to tackle
DoC-constrained DoC programs, we decide to consider bundle methods, which are very
successful in nonsmooth optimisation, and more particularly to one bundle method
that is tailored for convexly-constrained DoC programs [228]. Following another inspir-
ing work on bundle methods [22], we propose an algorithm for DoC-constrained DoC
programs.

The first Chapter of this Part, Chapter 3, is dedicated to introductory elements of DoC
programming. Based on these preliminaries, we then propose our algorithm in Chapter
4. The DoC structure is interesting for its scope: every convex function is a trivial DoC
function, and every linear combination of convex functions is a DoC one. As such, the set
of DoC functions is the smallest vector space that includes the set of convex functions (see
for instance [152]). This first example highlights the generality of DoC functions, which
still maintains a strong structure: DoC programming is somewhat close to manipulations
of convex functions. The intrinsic link between DoC and convex functions is fruitful
as the latter setting is well understood, studied, and enjoys strong properties starting
12 DoC is often referred to as DC in the mathematical field. In order to avoid confusion with DC (Direct-

Current) from the electrical field, we use DoC in this work.
13 Interestingly, some of the listed challenges are still open and seemingly difficult questions to answer,

as on finding what could constitute a “good” (or the “best”) DoC decomposition of a function.
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with the regularity of functions at hand. The ingenious setting of a general structure
built using particular elements with strong properties is a thriving dive into non-convex
optimisation.



RÉSUMÉ EN FRANÇAIS

L’une des conclusions de la Partie I est que lorsqu’on fait face à un OPF avec des incerti-
tudes, on est confronté à un problème d’optimisation non-convexe non lisse. Des relax-
ations et des approximations ont généralement été utilisées pour obtenir des méthodes
numériques abordables. Un travail récent sur l’OPF avec incertitudes sans relaxations
des (difficiles) contraintes PF présenté dans [295] souligne les difficultés numériques de
ce type d’approche. Les progrès récents dans le domaine de l’optimisation non convexe
et non lisse pourraient fournir une meilleure tractabilité numérique pour ces problèmes.
L’optimisation de problèmes de différences de convexes (DoC)14 s’est avérée être une
structure efficace pour les problèmes d’optimisation non convexes. L’ensemble des prob-
lèmes DoC est réputé vaste, notamment car tout problème d’optimisation continue peut
être approximé aussi proche que souhaité par un problème DoC. Nous rappelons que si
un problème d’optimisation est effectivement convexe ou lisse, les approches adaptées
qui tirent parti de ces propriétés seront (en général) toujours plus performantes que
celles qui ne les utilisent pas, les contre-exemples devant être considérés comme des cas
particuliers.

La programmation DoC est apparue de façon pratique depuis au moins les an-
nées 1970, avec les premiers travaux sur la dualité pour les fonctions non convexes
de John Francis Toland [282], ainsi que [152] où l’auteur présente une introduction
à la programmation DoC, les propriétés initiales et les défis à relever15. Une première
avancée numérique a été réalisée grâce un algorithme d’optimisation introduit en 1985 ap-
pelé DCA (Difference-of-Convex Algorithm) (voir [183] qui fournit une revue extensive
des travaux sur ce sujet). Il constitue toujours une pièce maîtresse de la programmation
DoC. Un algorithme quelque peu similaire adapté au DoC appelé CCP (Convex-Concave
Procedure) (see [303, 197]) proposé plus tardivement est aussi important. La plupart des
algorithmes des programmes DoC ont été initialement développés pour des programmes
DoC non contraints/convexes. Des extensions utilisant des techniques de pénalisation ont
été proposées, avec la difficulté de fixer le paramètre de pénalisation à une “bonne” valeur.
Afin de s’attaquer aux programmes DoC contraints, nous décidons de considérer les
méthodes de faisceaux, qui ont sont réputées parmi les plus efficaces dans l’optimisation
non lisse. Plus particulièrement, nous nous inspirerons d’une méthode de faisceaux qui
est adaptée aux programmes DoC avec contraintes convexes [228]. En développant ce
dernier travail avec un autre travail inspirant sur les méthodes de faisceaux [22], nous
proposons un algorithme pour les programmes DoC avec contraintes DoC.

Le premier chapitre de cette partie, Chapter 3, est consacré aux éléments introductifs
de la programmation DoC. Sur la base de ces éléments préliminaires, nous proposons en-
suite notre algorithme dans le Chapter 4. La structure DoC est intéressante en particulier
pour sa versatilité : par exemple, toute fonction convexe est une fonction DoC triviale, et
14 DoC est souvent appelée DC dans le domaine mathématique. Afin d’éviter toute confusion avec le DC

(Direct-Current) du domaine électrique, nous utilisons DoC dans ce travail.
15 De façon intéressante, certains des défis énumérés sont encore ouverts et sont toujours considérés

difficiles, comme pour la recherche de ce qui pourrait constituer une "bonne" (ou la "meilleure")
décomposition DoC d’une fonction.
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toute combinaison linéaire de fonctions convexes est une fonction DoC. Ainsi, l’ensemble
des fonctions DoC est le plus petit espace vectoriel qui inclut l’ensemble des fonctions
convexes (voir par exemple [152]). Ce premier exemple met en évidence la généralité
des fonctions DoC, qui conservent néanmoins une structure forte : les méthodes de
la programmation DoC sont largement basées sur celles développées de longue date
dans l’optimisation convexe. Le lien intrinsèque entre les fonctions DoC et les fonctions
convexes est fructueux car ce dernier cadre est bien compris, étudié, et bénéficie de
propriétés fortes à commencer par la régularité des fonctions en question.



PRELIMINARIES AND CONCEPTS
ON THE DIFFERENCE-OF-CONVEX
STRUCTURE

3This Chapter is divided as follows: the first section provides a broad overview of applica-
tions of DoC programming. Secondly, we recall some properties and definitions that are
necessary to develop an optimisation algorithm for DoC functions. The main content of
this Chapter has appeared in [9].

3.1 initial definitions and considerations
In this section,we recall some necessary definitions from the field of optimisation. Starting
from an abstract presentation of an optimisation problem, we briefly provide an overview
of some of the strong properties that have been used in optimisation. This overview
highlights the existing continuity between the structure we study in our work (the
difference-of-convex one) with the already very well-studied ones in literature. We also
discuss the notion of stationarity, which is both central to the field of optimisation and not
trivial to define. This section is divided into two main parts: in the first one we present
necessary definitions on optimisation from a general point of view, some important
structures (convex and differentiable functions). Discussing the limits encountered in
the discussion this first part motivates our second part where we introduce our structure
of choice, and its main associated properties.

3.1.1 A general overview on an optimisation problem
and some associated concepts

We consider a function f that is defined on an open set Ω ⊆ Rn and is valued in R. In
the field of mathematical programming, one studies optimisation problems that can
generally be formulated as follows:

min
x∈X

f (x), (3.1)

where X is a given set which we suppose is included in Ω for simplicity. A feasible point x
is one that verifies x ∈ X. A solution to a problem is amore complex concept than a feasible
point, and requires additional precisions in order to be characterized in practice. First of
all, from a theoretical point of view, one can directly expose the following definitions:

• A global solution xg is a point that verifies: xg ∈ X and f (xg) ≤ f (y), ∀y ∈ X.

• A local solution is a point xl that verifies: xl ∈ X, ∃ϵ > 0 such that
∥∥x− xl

∥∥ ≤
ϵ and x ∈ X =⇒ f (xl) ≤ f (x).

We recall that global solutions, which are in optimisation the most interesting ones,
always are local solutions, but the reverse does not hold. From a practical point of view,
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one can easily observe a significant limit to these definitions: in a general setting, in order
to check if a given point verifies one of these definitions, one requires an infinite quantity
of information which is not acceptable for numerical applications. This limit is a strong
motivation for more characterization of optimality.

First of all, one way to “lower” this obstacle is to add assumptions and work in
a setting with a convex structure. Convexity has long been a significant property for
optimisation. We recall the following basic definitions:

• A function f : Ω 7→ R is said to be convex if for any x1, x2 ∈ Rn and t such that
0 ≤ t ≤ 1, f (tx1 + (1− t)x2) ≤ t f (x1) + (1− t) f (x2).

• A set X ∈ Rn is said to be convex if for any x1, x2 ∈ X and t such that 0 ≤ t ≤ 1,
tx1 + (1− t)x2 ∈ X. This mathematical property means that the segment from x1

to x2 entirely belongs to X.

• Amathematical program, as problem (3.1), is said to be convex if both f and X are
convex.

Assuming that f and X are both convex, the following implication is true:

x̄ is a local minimiser of f =⇒ x̄ is a global minimiser of f .

Thanks to convexity, the search for global optimum is reduced to a search for a local
optimum1. On the other hand, the search for local optimality still requires an infinite
amount of (local) information.

We now turn our attention more particularly to local optimality for continuous
functions in an unconstrained setting, i.e. X = Rn. Differentiability is significant for
checking local optimality and designing algorithms aimed at finding local optima thanks
to the following properties:
Theorem 1 (Theorem 1.1.3 [150]). Suppose f is a differentiable function.

• First-order necessary condition: if x̄ is a local minimum, then

∇ f (x̄) = 0.

Suppose now f is twice differentiable.

• Second-order necessary condition: if x̄ is a local minimum, then

⟨h,∇2 f (x̄)h⟩ ≥ 0 for all h ∈ Rn. (3.2)

• Second-order sufficient condition: if x̄ satisfies equation (3.2) together with

⟨h,∇2 f (x̄)h⟩ > 0 for all h ∈ Rn\{0}, (3.3)

then x̄ is a local minimum.

◀

1 In a general continuous setting, note that without convexity it is not possible to verify global optimality
within reasonable CPU time. In a general, discrete setting of low cardinality, one can hope to complete
an exhaustive evaluation of all possibilities for instance.
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In other words, equation (3.2) requires ∇2 f (x̄) to be positive semi-definite, while
equation (3.3) requires ∇2 f (x̄) to be positive definite. As discussed in [150, p. 49],
checking the second-order conditions can be difficult and a numerically expensive task
especiallywhen the dimension n becomes large. Points that verify the first-order condition
are thus of particular practical importance:
Definition 4 (Critical and stationary points in an differentiable and unconstrained set-
ting). For a differentiable f , a point x ∈ Rn that verifies ∇ f (x) = 0 is called critical or
stationary. •

Remark 3. Note that in Definition 4 both terms “critical” and “stationary” are synonyms,
but that is only true in the unconstrained differentiable setting. ▷

A general optimisation framework for an unconstrained differentiable problem can
thus be one that looks for points x̄ that verify ∥∇ f (x̄)∥ ≤ ϵ, where ϵ > 0 is a user-given
precision. More details, and numerous improvements on optimisation algorithms for
this type of problems are found in [150].

There are more interesting properties to convex functions, in particular on their
regularity and the existence of elements that reflect some of their variational information.

Regularity of convex functions
We start by recalling a well-known property on convex functions that is discussed in [82]:

Proposition 1 (Proposition 2.2.6 from [82]). Let f be a convex function, bounded above
on a neighbourhood of some point of Rn. Then, for any x ∈ Rn, f is Lipschitz near x. ◀

Local Lipschitz continuity of a convex function f provides another strong result on
the regularity of f :
Theorem 2 (Section 9.J [253], Rademacher’s Theorem). Let Ω ∈ Rn be open, and let
f : Ω → R be locally Lipschitz continuous. Let D be the subset of Ω consisting of the
points where f is differentiable. Then Ω\D is a set of Lebesgue measure zero. ◀

Rademacher’s theorem states that convex functions are differentiable almost ev-
erywhere in the interior of their domain. Both Proposition 1 and theorem 2 help to
understand that, at “most” points, convex functions are in-between continuous and
differentiable ones. As shown in Example 1, non-differentiability evidently occurs for
convex functions, sometimes at important points (as global optima). This is a reminder
that, despite the regularity properties of convex functions, variational studies of such
functions belong in general to that of non-differentiable functions.
Example 1. Let f : R → R, f (x) = |x|. Then f is convex and non-differentiable at 0
(which is the global minimum of f ). ▶

Directional derivatives and subdifferentials
Some additional material on the variational behaviour of convex functions can be de-
rived from their regularity properties. These variational information are evidently of
importance for the minimisation of convex functions. Let f : Ω→ R be a convex function.
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We call directional derivative of f at x ∈ Ω in the direction d ∈ Rn the following quantity:

f ′(x; d) = lim
t↓0

f (x + td)− f (x)
t

. (3.4)

Directional derivatives exist for convex functions thanks to their local Lipschitz property
(see [82, Proposition 2.2.7] on this matter). It coincides with the Gâteaux derivative and
can be represented by f ′(x; d) = maxg∈∂ f (x)⟨g, d⟩, where ∂ f (x) is the subdifferential of f
at point x:

∂ f (x) := {s ∈ Rn : f (y) ≥ f (x) + ⟨s, y− x⟩ ∀ y ∈ Rn} .

The approximate subdifferential is defined, for ϵ ≥ 0, by
∂ϵ f (x) := {s ∈ Rn : f (y) ≥ f (x) + ⟨s, y− x⟩ − ϵ ∀ y ∈ Rn} .

The following known results about subdifferentials will be of particular interest in
our analysis. First, the mapping ∂ f is locally bounded in the interior of Dom( f ) :=
{x ∈ Rn : f (x) < ∞} [150, Prop. VI.6.2.2]. Thus the image ∂ f (X) of the bounded set
X is bounded in Rn (because X ⊂ Ω ⊂ Dom( fi) by hypothesis). Second, let (gi)i∈I
be a family of convex functions indexed by a finite index set I. The subdifferential of
the pointwise maximum of finitely many convex functions g(x) := maxi=1,...,m gi(x)
at a point x ∈ ⋂m

i=1Dom(gi) is the convex hull of the subdifferentials at x of the active
functions [150, Corollary VI 4.3.2]:

∂g(x) = Conv

⋃
j

∂gj(x) | j ∈ {i ∈ I : gi(x) = g(x)}

 . (3.5)

Since convex functions are locally Lipschitz continuous, the directional derivatives of
f are well defined, as well as the Clarke’s directional derivatives and subdifferential at x:

f C(x; d) := max
s∈∂C f (x)

⟨s, d⟩ ,

with
∂C f (x) := Conv

{
lim
ℓ→∞
∇ f (xℓ), xℓ → x, f differentiable at xℓ

}
(3.6)

the Clarke subdifferential. Moreover, convex functions with non-empty domains are
Clarke regular, which means that the Clarke subdifferential coincides with the convex one:
∂ f (x) = ∂C f (x) for all x in Ω.

Now, as seen in part I, convexity and differentiability are not to be expected in an OPF
with uncertainties: what canwe say in amore general setting, onewhere neither convexity
nor differentiability holds? In order to tackle this question, we investigate s subsects
work a set of functions that is larger than convex one, which is set of difference-of-convex
functions.

3.1.2 The difference-of-convex structure
We turn to the set of difference-of-convex functions. Several ingredients are necessary
for our future developments: first, a formal definition is required. We then highlight the
core properties of DoC functions that can be used in optimisation algorithms. We also
further discuss how “optimality” is characterized for DoC functions.

First of all, we formally define DoC functions:
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Definition 5. Let Ω be a convex set on Rn. A function f is DoC on Ω if there exists
two functions g, h convex on Ω such that f = g− h. Functions g and h are called the
components of f . •

Far from a purelymathematical gimmick, this structure has now long been introduced
and studied, and in fact naturally arises as a generalisation of the set of convex functions.
A natural implication of this latter remark is that some optimality concepts should be
carefully redefined in a DoC setting. Fortunately, the DoC structure is inherently linked
to the well-studied convex one, as components of DoC functions are convex.

Regularity and variational properties of DoC functions
We start by presenting regularity and variational properties of DoC functions. Since
DoC functions are locally Lipschitz continuous (because their components are so), the
directional derivatives of f = g− h are well defined and:

f ′(x; d) = g′(x; d)− h′(x; d) ∀x ∈ Ω, d ∈ Rn

The Clarke’s directional derivatives and subdifferential at x of f are also well defined:

f C(x; d) := max
s∈∂C f (x)

⟨s, d⟩ ,

with ∂C f (x) as defined for convex functions in (3.6). DoC functions are in general non-
regular in the sense of Clarke, i.e., the inclusion ∂C f (x) ⊂ ∂g(x)− ∂h(x) always holds
for x ∈ Ω but the equality may not (see the basic calculus rules in [82, Section 2.3] for
instance).

Some characteristics of the set of DoC functions
As already mentioned, the set of DoC functions is the smallest vector space that includes
the set of convex ones (this is discussed in [152]). Evidently, every convex or concave
function is a DoC one. Being DoC is a global property: for a function f , being locally
DoC on an open or closed set D ⊂ Rn amounts to being DoC on D ([285, Proposition
4.3]). From [285, Proposition 4.2] it is known that every twice-differentiable function is
DoC on any compact convex set included within its definition domain. More generally
speaking, [253, Theorem 10.33] states that every functions that is lower-C2 on an open
set of its definition set is DoC. When considering a function q defined on Ω and valued
in R, q is lower-C2 if for all x ∈ Ω there is a local representation of q of the form q(x) =
max
t∈T

qt(x), where the index set T is a compact space with qt(x) and all their partial
derivatives through order 2 depend continuously not just on x but on (t, x). Recalling
that every continuous function can be approximated by twice-differentiable functions
(this is the Stone-Weierstrass theorem), we easily deduce that any continuous function
can be approximated as precisely as desired by a DoC function.

Whereas convex functions have to be carefully manipulated in order to maintain
the convexity property (e.g., recall that a multiplication by a negative scalar does not
preserve convexity, neither does taking the pointwise minimum), there are numerous
operations that maintain the DoC property. Being a vector space, the addition of two
DoC functions as well as the multiplication by any scalar still create a DoC function.
Moreover, the following operation also preserve the DoC property:
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Proposition 2 (Proposition 4.4 from [285]). Let Ω1 ⊂ Rn be convex, open or closed,
Ω2 ⊂ Rn be convex and open. If f1 : Ω1 → Ω2, f2 : Ω2 → R are DoC, then f1 ◦ f2 : Ω1 →
R is DoC. ◀

All in all, and as discussed in [229, Section 2.1], the set of DoC functions is closed
under all operations usually considered in the field of optimisation.

Optimality in a DoC setting
Important properties and optimality conditions of DoC optimization problems can be
found in [58] some of which we recall here:
Theorem 3 (Theorem for Global Optimality [58]). Suppose that x̄ satisfies g(x̄) < ∞.
Then x̄ is a global minimizer of f = g− h if and only if

∂ϵh(x̄) ⊆ ∂ϵg(x̄), for all ϵ ≥ 0.

◀

Theorem 4 (Theorem for Local Optimality [58]). Suppose that x̄ satisfies g(x̄) < ∞.
Then x̄ is a local minimizer of f = g− h if and only if for some δ > 0

∂ϵh(x̄) ⊆ ∂ϵg(x̄), for all 0 ≤ ϵ ≤ δ.

◀

Both Theorems 3 and 4 can be impossible to apply in practical situations as they
require the full knowledge of the approximate subdifferentials of g and h. As a matter
of fact, industrial applications can involve models where the operator does not have an
explicit knowledge of a function, but relies on an oracle: the operator can, for instance,
request a functional value and a subgradient at a given point x. On the other hand, in
case x is a point where g is non-differentiable, the characterisation of ∂g(x)would require
an infinite number of calls to the oracle with each call returning a different subgradient:
Theorems 3 and 4 are not applicable in such a situation. This example motivates the
definition of weaker optimality concepts for practical applications, which is the subject
of section 3.3.

Difficulties with DoC functions
The universality of DoC functions is desirable as it provides modelling tools to operators.
As expected, it comes with some difficulties which we here discuss. The first one is
somewhat of a drawback from the convex setting: as previously mentioned, one can
approximate any continuous function as precisely as desiredwithDoC functions. A direct
consequence, is that the uniform limit of a sequence of DoC functions is not guaranteed
to be a DoC function itself. Secondly, one should not forget that DoC functions are in
general nonsmooth nonconvex functions. As a consequence, there is little to no hope
to find global optima. Moreover, tailored algorithms that tackle optimisation problems
with DoC functions are likely to be numerically intensive. Finally, and most importantly,
there are several difficulties related to DoC formulations. On the one hand, one can
immediately see that there is an infinite number of acceptable DoC formulations. If
f = g− h is a DoC function, then for any convex function φ, (g + φ)− (h + φ) is also a
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valid DoC decomposition for f . Choosing which decomposition to choose is still an open
question. In [152] for instance, the author proposes to set a normalisation by choosing a
DoC decomposition where the second component h verifies min

x∈Ω
h(x) = 0. Apart from

this normalisation, there is no general rule for deciding whether a DoC formulation is
“good” or not. Before defining what is a good DoC decomposition, finding an explicit
decomposition already is a non-trivial task. One technique for Lipschitz continuous
functions is presented in [229, Proposition 1]; Let f be a Lipschitz continuous function,
with modulus L > 0: then f = ( f − L

2
∥x∥2)− L

2
∥x∥2 is a valid DoC decomposition2.

In another recent work [28] the authors propose a DoC decomposition framework
for polynomials. Apart from these works, it often is difficult to obtain explicit DoC
formulations which is a limit to practical DoC programming.

3.2 problem statement
We are concerned in this section with nonsmooth and nonconvex optimization problems
of the form

min
x∈Xc

f (x), with f (x) := f1(x)− f2(x) and Xc := {x ∈ X : c1(x)− c2(x) ≤ 0}
(3.7)

where X is a nonempty bounded polyhedron contained in an open set Ω ⊂ Rn, and
the functions f1, f2, c1, c2 : Ω → R are all convex but possibly nonsmooth. In this
setting, there is no loss of generality in considering the scalar constraint function c(x) :=
c1(x) − c2(x): if the problem possesses m DoC constraints c1,i(x) − c2,i(x) ≤ 0, i =

1, . . . , m, then we can represent these constraints as maxi=1,...,m{c1,i(x) − c2,i(x)} ≤ 0,
which is equivalent to the scalar function of (3.7) with DoC decomposition c1(x) :=
maxi=1,...,m[c1,i(x) + ∑m

j ̸=i c2,j(x)] and c2(x) := ∑m
i=1 c2,i(x); see for instance [285, Prop.

4.1(ii)]. Note that the latter is a smooth function provided that all c2,j, j = 1, . . . , m, are
smooth.

Industrial applications fitting (3.7) include bilevel optimization problems originating
from energy management [8], reformulation of mixed-binary problems [285], chance-
constrained energy management problems [228], gas network management under un-
certainty [135], and others [183, 285]. The motivation of this work is chance-constrained
optimization, that is, optimization problems having a probability constraint of the form

P [x ∈ M(ξ)] ≥ p . (3.8)

In this notation, M(ξ) ⊂ Rn is a random set depending on the random vector ξ (in a
given sample space Ξ) following a known probability distribution, and p ∈ (0, 1) is a
given confidence level. Constraints of this type are encountered in many engineering
problems involving uncertain data. Fields of application include water management,
telecommunications, electricity network expansion, hydro reservoir management, etc.
We refer the interested reader to [245] for classical references on optimization problems
with probability constraints and to [20, 14] for new developments and other applications.
It is well known that the probability functions may fail to be convex even in the simpler
setting where M(ξ) is convex for almost surely all ξ ∈ Ξ. Moreover, evaluating the
2 Note that one still has to know the Lipschitz modulus of the function.
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probability function for a given point involves in general computing a multidimensional
integral. This is a difficult task when the random vector has large dimension [20]. In this
work we investigate smooth and nonsmooth DoC approximations of a class of probability
functions. The goal is to construct a workable DoC function c1(x)− c2(x) such that, for
all x ∈ Ω,

c1(x)− c2(x) ≤ 0 ≈ P [x ∈ M(ξ)] ≥ p .

In doing that, the chance-constrainedproblem can be represented in the generic form (3.7).
We care to mention that the interest in investigating DoC problems as in (3.7) goes

far beyond chance-constrained programming. DoC optimization problems, that form a
relevant discipline of nonconvex programming, have been receiving significant attention
from researchers and practitioners. DoC programs are, in the general situation, NP-hard,
and therefore cannot be solved up to global optimality in reasonable CPU times.

We refer to [285, Part II] for a comprehensive presentation of several algorithms
for global optimization of DoC problems. Beyond their practical interest, local solution
methods play an important role in global optimization, since algorithms of the latter
class typically employ local methods to find stationary/critical points (see definition
(3.11) below) that in turn feed a certain search strategy for global solutions.

Among the local-solution methods, the most employed numerical technique for DoC
programming is the DoC Algorithm (DCA) and its variants reviewed in [184, 239, 182,
183]. This class of algorithms computes trial points by solving a sequence of convex
subproblems obtained by replacing the second-component functions f2 and c2 with
their first-order linearizations computed at the current point. Another closely related
algorithm is the proximal linearized method studied in [233]. Recent developments on
algorithms for DoC programming have been made by considering line-searches [35],
inertial-force [230], (approximate) DoC decompositions[8], and bundle methods [123,
164, 228].

Most of the DoC techniques found in the literature deal with the particular case of
convexly-constrained DoC programs. Having at least one DoC constraint increases the
problem’s complexity significantly, both theoretically and practically. For instance, lin-
earizing the second-component function c2 at an infeasible point can lead to an infeasible
convex subproblem (see [182]).

Another main obstacle consists in verifying whether or not a given point is station-
ary/critical when (3.7) is nonsmooth. The recent works [233, 8] have shed some light
on these issues. For instance, [8, 7] proposes a Slater-type constraint qualification (CQ)
weaker than the extended Mangasarian-Fromowitz CQ or the one found in [233]. If
problem (3.7) satisfies a CQ, then a workable verification of stationarity is possible (see
[8, § 2.3], [233], and the brief overview in Section 4.2.3 below). In a different approach,
[275] uses a penalty strategy to lever DoC constraints to the objective function. Exact
penalization in DoC programming can be found in [183] and references therein.

In this work, we deal with nonsmooth DoC-constrained DoC programs by resorting
to neither penalization techniques nor linearization of the constraints. Our algorithmic
development is built upon the so-called improvement functions (see definition (4.1) below)
and bundle methods [22]. Bundle methods are among the most efficient algorithms for
solving nonsmooth convex optimization problems. This class of methods constitutes a
very active area of research in the nonsmooth optimization community. Extensions of
proximal bundle algorithms to nonconvex programs have been investigated by different
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authors in [143, 222, 34]. Unconstrained DoC bundle methods are investigated in [123],
convexly-constrained ones in [228], and the DoC-constrained setting is considered in
[211, 8]. The paper [211] dealswith nonsmoothmultiobjective DoC optimizationwith the
help of an improvement function, and in [8] the DoC constraint is handled by linearizing
the second-component function c2 at every iteration of the method. For that strategy to
be well defined, it is necessary to start the algorithm with a feasible point so that the
sequence of points generated by the algorithm is feasible for (3.7). This is not required
in [211] nor in this work, whose sequence of trial points may be infeasible. Under the
assumptions that f2 and c2 are the pointwise maxima of finitely many differentiable
functions, we equip our approach with an escaping procedure capable of computing a
B(ouligand)-stationary point (see definition (3.9)) of problem (3.7).

This chapter is organized as follows: Section 3.3 recalls some important tools of convex
analysis and optimality conditions of (3.7). In Section 4.1 we present our proximal bundle
algorithm for computing critical points of (3.7). Convergence analysis of the algorithm
is given in Section 4.2 and the escaping procedure is described in Section 4.3. Section
5.3.1 presents a DoC model for a class of chance-constrained programs and Section
4.4 provides computational results on two deterministic and four chance-constrained
problems from the literature.

3.3 solutions of general doc programs
This section recalls what is expected from “solving” a general DoC program. We rely on
[233] and [8] and define B(ouligand)-stationarity and criticality for problem (3.7). We
extend the initial definitions presented in section 3.1.2.

Stationary and critical points. Local optimality can generally not be achieved in
nonconvex nonsmooth optimization, but weaker conditions can be expected, at dif-
ferent degrees, depending on the complexity of the problem. We define such condi-
tions for the DoC-constrained DoC problem (3.7) following [233]. A feasible point
x̄ ∈ Xc = {x ∈ X : c1(x) − c2(x) ≤ 0} is called a B-stationary point of (3.7) if the
directional derivative of f is nonnegative in all directions d in the Bouligand tangent cone
TXc(x̄) of Xc at x̄:

f ′1(x̄; d) ≥ f ′2(x̄; d) ∀ d ∈ TXc(x̄) . (3.9)
We recall that d ∈ TXc(x̄) if there exists a sequence of vectors {xk} ⊂ Xc converging
to x̄ and a sequence of positive scalars τk → 0 such that d = limk→∞(xk − x̄)/τk. B-
stationarity is a necessary condition for local optimality, but it is not sufficient [233]. The
following proposition provides a workable description of the tangent cone TXc(x̄) under
a constraint qualification.
Proposition 3. (Proposition 2.1 from [7]). Let x̄ ∈ Xc be such that c1(x̄) = c2(x̄). Suppose
that the following Slater constraint qualification (CQ) holds: there exists d̄ ∈ TX(x̄) such
that c′1(x̄; d̄) < c′2(x̄; d̄). Then

TXc(x̄) = {d ∈ TX(x̄) : c′1(x̄; d) ≤ c′2(x̄; d)}.

◀
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The CQ of Proposition 3 is weaker than both the extended Mangasarian-Fromowitz
constraint qualification (EMFCQ) and the one given in [233] (see [8, §2]). The CQ given in
[233] is tailored to a particular setting of (3.7) where the second-component functions f2

and c2 are the pointwise maximum of finitely many continuously differentiable functions.
The EMFCQ conditions holds at a point x ∈ X, such that c(x) = c1(x)− c2(x) = 0, if
there exists d̄ ∈ TX(x) such that the Clarke directional derivative of c at x in direction d̄
is negative, i.e., cC(x̄; d̄) < 0, with cC(x̄; d̄) := maxs∈∂Cc(x̄)⟨s, d⟩.

Under the assumptions of Proposition 3, the B-stationary condition (3.9) becomes

f ′1(x̄; d) ≥ f ′2(x̄; d) ∀ d ∈ TX(x̄) s.t. c′1(x̄; d) ≤ c′2(x̄; d) ,

which is, according to [8], equivalent to x̄ being a solution of min
x∈X

f1(x)− [ f2(x̄) + ⟨s f2
, x− x̄⟩] ∀ s f2

∈ ∂ f2(x̄)

s.t. c1(x)− [c2(x̄) + ⟨sc2
, x− x̄⟩] ≤ 0 ∀ sc2

∈ ∂c2(x̄).
(3.10)

This last definition unveils the difficulty of checking whether a point x̄ ∈ Xc is B-
stationary in the general nonsmooth context, as we may not know the whole subd-
ifferentials ∂ f2(x̄) and ∂c2(x̄). In practice, we compute a critical point, i.e., a vector x̄ ∈ Xc

satisfying the assumptions of Proposition 3 and the following weaker condition min
x∈X

f1(x)− [ f2(x̄) + ⟨s f2
, x− x̄⟩]

s.t. c1(x)− [c2(x̄) + ⟨sc2
, x− x̄⟩] ≤ 0

for some arbitrary s f2
∈ ∂ f2(x̄)

and sc2
∈ ∂c2(x̄).

(3.11)

Under additional assumptions. Note that the notions of criticality and B-stationarity
coincide under the assumption that both f2 and c2 are respectively continuously dif-
ferentiable at x̄ ∈ Xc, since ∂ f2(x̄) = {∇ f2(x̄)} and ∂c2(x̄) = {∇c2(x̄)} in this case.
Furthermore, we care to mention that B-stationarity becomes numerically verifiable
under the assumptions that the second-component functions f2 and c2 are the pointwise
maximum of finitely many differentiable functions [233]:

f2(x) := max
i=1,...,m f

ψi(x) and c2(x) := max
i=1,...,mc

φi(x) . (3.12)

It follows from (3.5) that the subdifferential of f2 (respectively c2) at any given point
x ∈ X is the convex hull of gradients of functions ψi (respectively φj) that are active:

∀ x ∈ X , ∂ f2(x) = Conv({∇ψi(x)}i∈A f (x)) , ∂c2(x) = Conv({∇φj(x)}j∈Ac(x)) , with
(3.13a)

A f (x) := {1 ≤ i ≤ m f : f2(x) = ψi(x)} and Ac(x) := {1 ≤ j ≤ mc : c2(x) = φj(x)} .
(3.13b)

Under assumption (3.12), verifying the B-stationarity condition (3.10) of a given point x̄
feasible for (3.7) amounts to checking whether x̄ solves min

x∈X
f1(x)− [ψi(x̄) + ⟨∇ψi(x̄), x− x̄⟩]

s.t. c1(x)− [ϕj(x̄) + ⟨∇ϕj(x̄), x− x̄⟩] ≤ 0,
(3.14)

for all i ∈ A f (x̄) and all j ∈ Ac(x̄) (see [233]). This is the key fact behind the escaping
procedure of Section 4.3.



3.4. CONCLUSION 71

Relation between critical and KKT points of DoC-constrained DoC programs, [8,
Remark 2.4]. Consider the convex subproblem (3.11). If x̄ satisfies the assumptions of
Proposition 3, then there exists a Lagrange multiplier λ̄ ≥ 0 such that (x̄, λ̄) satisfies the
KKT system of (3.11):{

0 ∈ ∂ f1(x̄)− s f2
+ λ̄(∂c1(x̄)− sc2

) + NX(x̄)

c1(x̄)− c2(x̄) ≤ 0, λ̄[c1(x̄)− c2(x̄)] = 0, λ̄ ≥ 0, x̄ ∈ X,

where NX(x̄) is the normal cone of the convex set X at x̄. Furthermore, suppose that
(i) either f1 or f2 is continuously differentiable, and (ii) either c1 or c2 is continuously
differentiable. These assumptions ensure that ∂C f = ∂ f1 − ∂ f2 and ∂Cc = ∂c1 − ∂c2

according to [82, Prop. 2.3.3 and Corol. 2]. As a result, the above system becomes the
KKT system of problem (3.7):{

0 ∈ ∂C[ f1(x̄)− f2(x̄)] + λ̄ ∂C[c1(x̄)− c2(x̄)] + NX(x̄)

c1(x̄)− c2(x̄) ≤ 0, λ̄[c1(x̄)− c2(x̄)] = 0, λ̄ ≥ 0, x̄ ∈ X.
(3.15)

This result shows that, under some constraint qualification and smoothness conditions,
a critical vector is a KKT point of (3.7).

In the absence of the DoC constraint. For convexly-constrained problems, the B-
stationarity and criticality conditions become simpler. When the DoC constraint c(x) =
c1(x)− c2(x) ≤ 0 in problem (3.7) is absent, it is immediately seen from the optimality
conditions of problems (3.10) and (3.11), that B-stationarity reduces to d(irectional)-
stationarity:

∂ f2(x̄) ⊂ ∂ f1(x̄) + NX(x̄) = ∂ f1(x̄) + ∂ 1X(x̄) , (3.16)
where 1X is the indicator function of the set X and the last equality holds for x̄ ∈ X,

and criticality is nothing else than:
∅ ̸= ∂ f2(x̄) ∩ [∂ f1(x̄) + NX(x̄)] . (3.17)

An intermediate condition between (3.16) and (3.17) is Clarke stationarity [233]:
0 ∈ ∂C f (x̄) + NX(x̄) .

3.4 conclusion
This chapter proposes an overview basic elements of the DoC structure. These elements
are necessary for the development of a tailored algorithm to solve problems similar
to equation (3.7). The DoC structure is an attractive extension to the convex one, that
comes with some additional costs. On the one hand the set of DoC functions appears
to be a large one: every continuous function is either DoC, or can be approximated as
closely as desired by DoC functions. Moreover, the set of DoC functions is closed under
all usual operations used in the optimisation field. On the other hand, for a given function
finding a DoC decomposition is a difficult task that its not always possible to overcome.
Discrimination between DoC decompositions should also be regarded as an important
field, as described in [28]: the behaviour of their DoC algorithm is significantly modified
when selecting another DoC decomposition for a single DoC function. The next chapter
is dedicated to the presentation of a novel bundle algorithm for DoC constrained DoC
functions.





A PROXIMAL BUNDLE METHOD FOR
DoC PROBLEMS

4Based on chapter 3, we are now in a position to present our algorithm for the optimization
of DoC-constrained DoC problems. The gist of this algorithm is the combination of the
proximal bundle method for convexly constrained DoC program (see [228]) with the
improvement function that is defined in equation (4.1). The convergence study is a
challenging step, and requires some involved and technical developments.

This chapter is organised as follows: we start in the first section by presenting our
algorithm, before developing a proper and tailored convergence analysis in the second
section.

4.1 nonlinearly constrained DoC bundle method
In this section, we present a proximal bundle method addressing the DoC-constrained
DoC programs such as (3.7). Instead of penalization techniques [183] or constraint
linearization [233, 8], our approach employs, for a suitable target τ = (τf , τc) ∈ R2, an
improvement function Hτ : Ω→ R defined by

Hτ (x) := max{ f (x)− τf , c(x)− τc}
= max{ f1(x)− f2(x)− τf , c1(x)− c2(x)− τc}
= max{ f1(x) + c2(x)− τf , f2(x) + c1(x)− τc}︸ ︷︷ ︸− [ f2(x) + c2(x)]︸ ︷︷ ︸
= Fτ (x) − G(x) , (4.1)

which is a DoC function itself. For a given parameter τ, we consider the convexly-
constrained DoC program

min
x∈X

Hτ (x). (4.2)

Note that if τ = ( f ∗, 0) with f ∗ the global (local) value of problem (3.7), then the global
(local) value of (4.2) is zero and its global (local) solutions globally (locally) solve
(3.7). We refer the interested reader to [34, Lemma 5.1] for the mathematical relations
between (3.7) and (4.2) in amore general context (without the DoC structure). Although
transforming the DoC-constrained DoC program (3.7) into the convexly-constrained
DoC program (4.2) is an appealing strategy, certain difficulties arise in this approach:

• The optimal value of the original problem (3.7) is usually unknown. Therefore, the
target parameter τ must be estimated iteratively. As a downside, the optimal value
of (4.2) for an arbitrary τ is unknown as well.

• When dealing with problem (4.2), DoC algorithms provide us with a critical point.
How do the critical points of (4.2) and (3.7) relate?

We partially anticipate the answer to the latter question by mentioning that a critical
point x̄ of (4.2) may not be critical, even not feasible, for (3.7) (see Theorem 6 below). We
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will come to this matter at the end of Section 4.2 and Section 4.3, where we will require
the second-component functions to satisfy additional assumptions. But first, we will
present our algorithm in the general setting where all functions in (3.7) are nonsmooth,
and prove that it yields a critical point x̄ of (4.2) for a certain parameter τ̄.

4.1.1 Proximal DoC bundle method with improvement
functions

We start by mentioning that bundle methods employing improvement functions have
been investigated in the convex setting in [22] for the proximal variant, and in [20] for
the level variant. In a more general nonconvex framework, the improvement function
is called progress function in [34], where a proximal bundle method is proposed for
a class of optimal control problems. The DoC setting has recently been investigated
in [211] with a focus on multi-objective optimization and the computation of Pareto
critical/stationary points. Our approach is similar to [211] but the algorithm described
below is simpler to present, analyze and implement. Furthermore, we employ the slightly
different improvement function (4.1) where the target value τc can be different from
zero. For these reasons, our approach requires a convergence analysis of its own. One
major difference lies in the procedure from [164] which is enforced in the algorithm of
[211] to escape critical points of poor quality and lead to KKT points of (3.7) under mild
assumptions. While this procedure can also be employed by our algorithm, we present
in Section 4.3 an alternative to provide better candidate solutions as B-stationary points.

We highlight that for a fixed τ, problem (4.2) could be solved by the algorithm
presented in [230]. Indeed, a natural idea is to generate a sequence of iterates {xk} ⊂ X
by successively setting targets τk and defining the trial point xk+1 as a critical point of
(4.2) with τ = τk. However, this strategy can be too time-consuming depending on the
nature of the four convex functions composing Hτ (x). Instead of computing a critical
point of (4.2) with τ fixed, an alternative is to address (4.2) iteratively by updating τk

and xk simultaneously, at each iteration k ∈N, as follows:

τk
f := f (xk) + ρ max{c(xk), 0} and τk

c := σ max{c(xk), 0} (4.3a)
sk

f2
∈ ∂ f2(xk) and sk

c2
∈ ∂c2(xk) (i.e., sk

f2
+ sk

c2
∈ ∂G(xk)) (4.3b)

xk+1 := arg min
x∈X

Fτk(x)− ⟨sk
f2
+ sk

c2
, x⟩+ µ

2

∥∥∥x− xk
∥∥∥2

, (4.3c)

with µ > 0, ρ ≥ 0, σ ∈ [0, 1) and x0 ∈ Ω given. This scheme follows the general lines of
proximal linearized algorithms for convexly-constrained DoC programming as proposed
e.g. in [233], or [42]. However, it differs from these methods in so much that here the
first component Fτk changes along the iterates every time τk is updated.

Again, solving the nonsmooth convex optimization problem (4.3c) at each iteration
might not be trivial depending on the functions of (3.7). To overcome this drawback, we
follow the lead of bundle methods and replace the convex function Fτ at iteration k ∈N

with a modelMk
τ approximating Fτ from below. Our approach requires four oracles

(black-boxes), one for each component function fi or ci, i = 1, 2, providing the function
value fi(xk) or ci(xk) and an arbitrary subgradient sk

fi
∈ ∂ fi(xk) or sk

ci
∈ ∂ci(xk) at the

given point xk ∈ X. At iteration k ∈N, let Bk ⊂ {0 . . . , k} be an index set defining the
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following individual cutting-plane models for the convex functions fi, ci, i = 1, 2:

f̌ k
i (x) := max

j∈Bk
{ fi(xj) + ⟨sj

fi
, x− xj⟩} ≤ fi(x) ∀ x ∈ Ω and i = 1, 2,

čk
i (x) := max

j∈Bk
{ci(xj) + ⟨sj

ci , x− xj⟩} ≤ ci(x) ∀ x ∈ Ω and i = 1, 2.

Our modelMk
τ for Fτ is defined as

Mk
τ (x) := max

{
f̌ k
1 (x) + čk

2(x)− τf , f̌ k
2 (x) + čk

1(x)− τc

}
≤ Fτ (x) ∀ x ∈ Ω.

(4.4)
Notice thatMk

τ (xj) = Fτ (xj) for all j ∈ Bk. When replacing Fτ withMk
τ in the subprob-

lem (4.3c), the solution of the resulting optimization problem does not necessarily imply
descent of the improvement function. For this reason, bundle algorithms yield descent
by keeping a stability center fixed and improving the modelMk

τ until a better trial point
is obtained. When this happens, we say that the algorithm performs a serious step. At a
given iteration k ∈N, we denote by ℓ ∈N the number of serious steps performed, and
by k(ℓ) ∈ {ℓ, . . . , k} the iteration of the last serious step: xk(ℓ) is thus the current stability
center. To simplify the notation and because τ is only updated at serious steps according
to (4.3a), we identify τk(ℓ) with τℓ:

τℓ
f := f (xk(ℓ)) + ρ max{c(xk(ℓ)), 0} and τℓ

c := σ max{c(xk(ℓ)), 0} . (4.5)

Hence, at iteration k ∈N, we compute the next trial point xk+1 by solving the following
subproblem instead of (4.3c):

xk+1 := arg min
x∈X
Mk

τℓ(x)− ⟨sk(ℓ)
f2

+ sk(ℓ)
c2 , x⟩+ µk

2

∥∥∥x− xk(ℓ)
∥∥∥2

. (4.6)

The optimality condition for the above problem yields (e.g., [230, Prop. 1])

xk+1 = xk(ℓ) − 1
µk [p

k+1 + sk+1
X − (sk(ℓ)

f2
+ sk(ℓ)

c2 )], with
{

pk+1 ∈ ∂Mk
τℓ(xk+1)

sk+1
X ∈ NX(xk+1),

(4.7)

which follows from the property that the vector of zeros in Rn must belong to the
subdifferential of the convex objective function of (4.6) at its solution xk+1. Notice that
(4.6) can be rewritten as a quadratic program (QP) by adding the extra vector r ∈ R5 of
variables: 

min
x,r

r5 − ⟨sk(ℓ)
f2

+ sk(ℓ)
c2 , x⟩+ µk

2

∥∥∥x− xk(ℓ)
∥∥∥2

s.t. f1(xj) + ⟨sj
f1

, x− xj⟩ ≤ r1 ∀j ∈ Bk

f2(xj) + ⟨sj
f2

, x− xj⟩ ≤ r2 ∀j ∈ Bk

c1(xj) + ⟨sj
c1 , x− xj⟩ ≤ r3 ∀j ∈ Bk

c2(xj) + ⟨sj
c2 , x− xj⟩ ≤ r4 ∀j ∈ Bk

r1 + r4 − τℓ
f ≤ r5, r2 + r3 − τℓ

c ≤ r5

x ∈ X, r ∈ R5.

(4.8)

As usual in bundle methods, after a serious step, we may keep only the last oracle
information in the bundle. Otherwise, we also keep all the linearizations Bk ⊂ Bk that
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are active in the QP subproblem (4.8), i.e.,

Bk
:=

{
j ∈ Bk :

4

∑
i=1

α
j
i > 0

}
, (4.9)

where αj ∈ R4, j ∈ Bk denote the Lagrange multipliers associated with the first four
constraints of (4.8). Note that this requires four times more storagethan standard convex
bundle methods.For simplicity, we assume synchronous bundle management in the
sense that the quartet of linearizations issued at any previous iteration j is either entirely
kept or removed from the bundle. However, except for the information related to the new
iterate xk+1 and the last stability center xk(ℓ), there is no theoretical reason for the other
quartets to be managed synchronously: asynchronous bundle management is possible.
We have opted for the less involved notation of the synchronous case.

Our algorithm employs the following descent test, where µmin > 0 is a lower bound
on the prox-parameters µk for all k ∈ N and κ ∈ (0, 1): we define a serious step if the
inequality

Hτℓ(xk+1) ≤ Hτℓ(xk(ℓ))− κ
µmin

2

∥∥∥xk+1 − xk(ℓ)
∥∥∥2

(4.10)

holds, and declare a null step otherwise. After a serious step, we increment the counter ℓ
and update k(ℓ) := k + 1 and τℓ according to (4.3a) with k = k(ℓ). The following lemma
shows that a serious step either improves the objective function or decreases infeasibility
in (3.7).
Lemma 1. Let xk(ℓ) ∈ X (⊂ Ω) be the current stability center and τℓ as in (4.5) with
ρ ≥ 0 and σ ∈ [0, 1) be given. Then Hτℓ(xk(ℓ)) ≥ 0 holds true. Furthermore, if inequality
(4.10) holds, then either

i) f (xk+1) ≤ f (xk(ℓ))− κ
µmin

2

∥∥∥xk+1 − xk(ℓ)
∥∥∥2

and c(xk+1) ≤ 0 when c(xk(ℓ)) ≤ 0; or

ii) c(xk+1) ≤ c(xk(ℓ))− κ
µmin

2

∥∥∥xk+1 − xk(ℓ)
∥∥∥2

when c(xk(ℓ)) > 0.

◀

Proof. In the first case, if c(xk(ℓ)) ≤ 0, then τℓ
f = f (xk(ℓ)) and τℓ

c = 0 according to (4.5).
Definition (4.1) of Hτℓ states that

Hτℓ(xk(ℓ)) = max{ f (xk(ℓ))− f (xk(ℓ)), c(xk(ℓ))} = 0 (4.11)
Hτℓ(xk+1) = max{ f (xk+1)− f (xk(ℓ)), c(xk+1)},

and (4.10) gives max{ f (xk+1) − f (xk(ℓ)), c(xk+1)} ≤ 0− κ
µmin

2

∥∥∥xk+1 − xk(ℓ)
∥∥∥2
, which

implies i).
Now suppose that c(xk(ℓ)) > 0, i.e., xk(ℓ) is an infeasible point for (3.7). In this case,

Hτℓ(xk+1) = max{ f (xk+1)− f (xk(ℓ))− ρc(xk(ℓ)), c(xk+1)− σc(xk(ℓ))} ,

Hτℓ(xk(ℓ)) = max{−ρ c(xk(ℓ)), (1− σ) c(xk(ℓ))} = (1− σ)c(xk(ℓ)) > 0 , (4.12)
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where the last equality is due to the assumptions ρ ≥ 0 and 1− σ > 0. Therefore, (4.10)
reads as

max{ f (xk+1)− f (xk(ℓ))− ρc(xk(ℓ)), c(xk+1)− σc(xk(ℓ))} ≤ (1− σ)c(xk(ℓ))−

κ
µmin

2

∥∥∥xk+1 − xk(ℓ)
∥∥∥2

,

which implies ii). Finally, equations (4.11) and (4.12) show that Hτℓ(xk(ℓ)) ≥ 0.

This result shows that the descent test can either be chosen as (4.10), which is used
in Section 4.4, or based on the inequalities of Lemma 1. The rationale of serious iterates
is to ensure sufficient decrease on one component function of Hτℓ while maintaining
feasibility for (3.7) once reached.

Algorithm 1 provides a pseudocode of our proximal bundle method algorithm for
the DoC-constrained DoC program (3.7). This algorithm solves the strongly convex QP
(4.8) at every iteration instead of (4.3c). We focus in the next section on the analysis of
Algorithm 1 and skip proving the convergence of (4.3) as this is is essentially a byproduct
of the analysis given below, where several results can be either simplified or eliminated.

Algorithm 1 Proximal Bundle Method for DoC-constrained DoC programs - PBMDC 2

Step 0: Initialization. Let x0 ∈ X, κ ∈ (0, 1), 0 < µmin ≤ µ0 ≤ µmax < ∞, ρ ≥ 0,
σ ∈ [0, 1) and δTol ≥ 0 be given. Compute ( fi(x0), s0

fi
∈ ∂ fi(x0)) and (ci(x0), s0

ci
∈ ∂ci(x0))

for i = 1, 2, and τ0 = (τ0
f , τ0

c ) as in (4.5). Define k := ℓ := k(ℓ) = 0 and B0 := {0}.

Step 1: Trial point. Compute xk+1 by solving the QP (4.8).

Step 2: Stopping test. If
∥∥∥xk+1 − xk(ℓ)

∥∥∥ ≤ δTol, then stop and return xk(ℓ).

Step 3: Oracles call. Compute ( fi(xk+1), sk+1
fi

∈ ∂ fi(xk+1)) and (ci(xk+1), sk+1
ci

∈
∂ci(xk+1)) for i = 1, 2.
Step 4: Descent test. If (4.10) holds, then declare a serious step:
define ℓ := ℓ+ 1, k(ℓ) := k + 1 and τℓ as in (4.5); choose Bk+1 ⊂ {0, . . . , k + 1} with
{k + 1} ∈ Bk+1 and µk+1 ∈ [µmin, µk].
Else, declare a null step: choose Bk+1 ⊂ {0, . . . , k + 1}with Bk ∪ {k + 1, k(ℓ)} ⊂ Bk+1 (Bk

as in (4.9)) and µk+1 ∈ [µk, µmax].
Step 5: Loop Set k := k + 1 and go back to Step 1.

4.2 convergence analysis
Before linking to the original problem (3.7), we show in this section that, with δTol = 0,
Algorithm 1 yields a sequence in which any cluster point x̄ is critical for

min
x∈X

Hτ̄(x), with


Hτ̄(x) = Fτ̄(x)− G(x)

τ̄f = f (x̄) + ρ max{c(x̄), 0}, ρ ≥ 0

τ̄c = σ max{c(x̄), 0}, σ ∈ [0, 1).

(4.13)
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Since {xk(ℓ)}ℓ is contained in the compact set X, the sequence of stability centers has
at least one cluster point in X.

As is standard in the study of convergence of proximal bundle methods, we will split
our analysis into two exclusive cases: the sequence {xk(ℓ)}ℓ is either finite or infinite. This
amounts to having a finite or infinite number of serious steps. In the former case, the
analysis follows from the standard theory of convex bundle methods: the function Fτℓ

becomes fixed after finitely many steps and the convex subproblem solved by the bundle
algorithm is (with ℓ fixed)

min
x∈X

Fτℓ(x)− ⟨sk(ℓ)
f2

+ sk(ℓ)
c2 , x⟩.

The case of infinitely many serious steps is more involved and requires elements of
“DoC analysis". The results of [228] (for the convexly-constrained case) do not apply
in our setting due to the fact that τ in (4.2) changes along the serious steps (c.f. (4.5)).
Throughout this section we assume that δTol = 0.

4.2.1 Finitely many serious steps
Assume that the algorithm performs a finite number of serious steps (and a finite or
infinite number of null steps), then the following result shows that our assertion holds
with x̄ being the last stability center, and (4.13) being the subproblem (4.2) corresponding
to the last serious iteration.
Proposition 4. Let δTol = 0, ℓ̄ ∈ N be the number of serious steps performed by Algo-
rithm 1, and x̄ := xk(ℓ̄) be the last generated stability center. Then x̄ is a critical point of
problem (4.13), and the sequence of iterates {xk}k generated by Algorithm 1 is either
finite (the algorithm stops), or it converges to x̄. ◀

Proof. At every iteration k ≥ k(ℓ̄), the target τ̄ := τℓ̄ is fixed as defined in (4.13) with
x̄ := xk(ℓ̄). Then Algorithm 1 behaves as a convex bundle algorithm applied to the convex
function x 7→ Fτ̄(x)− ⟨sk(ℓ̄)

f2
+ sk(ℓ̄)

c2 , x⟩, and the convergence analysis applies as well: if
the algorithm stops then
x̄ := xk(ℓ̄) is a critical point of (4.13) according to [228, Lemma 2]; otherwise, according to
[228, Proposition 3], the sequence of iterates generated after the last serious step converges
to the last stability center x̄ which is a critical point of (4.13). Notice that Algorithm 1
ensures that the active linearizations are kept in the bundle and that {µk}k≥k(ℓ̄) is a
nondecreasing sequence contained in [µmin, µmax], two important assumptions in [228].

4.2.2 Infinitely many serious steps
Throughout this section, we will use the notation i(ℓ) = k(ℓ+ 1)− 1 for ℓ ∈N to refer
to the iteration of Algorithm 1 yielding the (ℓ+ 1)th serious step. At such an iteration
i(ℓ), the quadratic subproblem (4.6) reads as

xk(ℓ+1) = arg min
x∈X

Mi(ℓ)
τℓ (x)− ⟨sk(ℓ)

f2
+ sk(ℓ)

c2 , x⟩+ µi(ℓ)

2

∥∥∥x− xk(ℓ)
∥∥∥2

.

The following result, which mirrors [228, Lemma 3], shows that pk(ℓ+1) given in (4.7)
is an approximate subgradient of the function Fτℓ at the point xk(ℓ+1).
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Lemma 2. Let pk(ℓ+1) ∈ Mi(ℓ)
τℓ (xk(ℓ+1)). There exists a constant L > 0 such that

pk(ℓ+1) ∈ ∂ei(ℓ) Fτℓ(xk(ℓ)), with ei(ℓ) = L
∥∥∥xk(ℓ) − xk(ℓ+1)

∥∥∥ .

◀

Proof. Definition (4.4) of the model and the fact that k(ℓ) is in the bundle Bk(ℓ) give the
following chain of inequalities:

Mi(ℓ)
τℓ (xk(ℓ+1)) ≥max

{
f1(xk(ℓ)) + c2(xk(ℓ)) + ⟨sk(ℓ)

f1
+ sk(ℓ)

c2 , xk(ℓ+1) − xk(ℓ)⟩ − τℓ
f ,

f2(xk(ℓ)) + c1(xk(ℓ)) + ⟨sk(ℓ)
f2

+ sk(ℓ)
c1 , xk(ℓ+1) − xk(ℓ)⟩ − τℓ

c

}
≥max

{
f1(xk(ℓ)) + c2(xk(ℓ))− τℓ

f , f2(xk(ℓ)) + c1(xk(ℓ))− τℓ
c

}
+

min
{
⟨sk(ℓ)

f1
+ sk(ℓ)

c2 , xk(ℓ+1) − xk(ℓ)⟩, ⟨sk(ℓ)
f2

+ sk(ℓ)
c1 , xk(ℓ+1) − xk(ℓ)⟩

}
.

(4.14)

Once again, using the Cauchy-Schwarz inequality and the boundedness of ∂ fi(X)

and ∂ci(X), i = 1, 2, there exist L1, L2 > 0 such that, for any ℓ ∈N:

⟨sk(ℓ)
f1

+ sk(ℓ)
c2 , xk(ℓ+1) − xk(ℓ)⟩ ≥ −∥sk(ℓ)

f1
+ sk(ℓ)

c2 ∥∥xk(ℓ) − xk(ℓ+1)∥ ≥ −L1∥xk(ℓ) − xk(ℓ+1)∥

⟨sk(ℓ)
f2

+ sk(ℓ)
c1 , xk(ℓ+1) − xk(ℓ)⟩ ≥ −∥sk(ℓ)

f2
+ sk(ℓ)

c1 ∥∥x
k(ℓ) − xk(ℓ+1)∥ ≥ −L2∥xk(ℓ) − xk(ℓ+1)∥,

By taking L := max{L1, L2} and combining the two previous inequalities with (4.14)
and the definition (4.1) of Fτℓ(xk(ℓ)), we get

Mi(ℓ)
τℓ (xk(ℓ+1)) ≥ Fτℓ(xk(ℓ))− L

∥∥∥xk(ℓ) − xk(ℓ+1)
∥∥∥ .

Since the model approximates Fτℓ from below, the above inequality yields, for any x ∈ Ω,
ℓ ∈N,

Fτℓ(x) ≥Mi(ℓ)
τℓ (x)

≥Mi(ℓ)
τℓ (xk(ℓ+1)) + ⟨pk(ℓ+1), x− xk(ℓ)⟩

≥ Fτℓ(xk(ℓ)) + ⟨pk(ℓ+1), x− xk(ℓ)⟩ − L
∥∥∥xk(ℓ) − xk(ℓ+1)

∥∥∥ ,

i.e. pk(ℓ+1) ∈ ∂ei(ℓ) Fτℓ(xk(ℓ)), with ei(ℓ) = L
∥∥∥xk(ℓ) − xk(ℓ+1)

∥∥∥.
Remark 4. In the proof of Lemma 2 we do not use the fact that xk(ℓ+1) satisfies the descent
test (4.10). Hence, the stated results also hold for any arbitrary iteration k(ℓ) ≤ k <

k(ℓ+ 1):

pk+1 ∈ ∂L∥xk+1−xk(ℓ)∥Fτℓ(xk(ℓ)).

▷

Furthermore, taking sk+1
X ∈ NX(xk(ℓ)), one can derive from Lemma 2 the following

relation:
pk+1 + sk+1

X ∈ ∂L∥xk+1−xk(ℓ)∥Fτℓ(xk(ℓ)) + NX(xk(ℓ)) .
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Proposition 5. Assume that X ̸= ∅ is a bounded polyhedron, and that Algorithm 1
performs infinitely many serious steps, then any cluster point x̄ ∈ X of the sequence
{xk(ℓ)}ℓ is a critical point of problem (4.13). ◀

Proof. We first prove that
lim
ℓ→∞

∥∥∥xk(ℓ+1) − xk(ℓ)
∥∥∥ = 0 . (4.15)

To this end, we need to analyze the two cases of Lemma 1. In case i), Algorithm 1 produces
a feasible point for (3.7) after finitely many serious steps and all the subsequent points
are feasible. Let xk(ℓ1) be the first feasible serious iterate. Then, Lemma 1 i) at iteration
k = i(ℓ) yields

f (xk(ℓ+1)) ≤ f (xk(ℓ))− κ
µmin

2

∥∥∥xk(ℓ+1) − xk(ℓ)
∥∥∥2

and c(xk(ℓ+1)) ≤ 0 for all ℓ ≥ ℓ1.

The telescopic sum of the first inequality above yields
∞

∑
ℓ=ℓ1

∥xk(ℓ+1) − xk(ℓ)∥2 ≤ 2
κµmin

∞

∑
ℓ=ℓ1

(
f
(
xk(ℓ))− f

(
xk(ℓ+1)))

≤ 2
κµmin

(
f
(
xk(ℓ1)

)
− lim

ℓ→∞
f
(
xk(ℓ+1))) .

Since f is finite-valued and continuous over the bounded set X, the right-hand side of the
above inequality is finite. Hence, (4.15) holds. Assume now that the sequence {xk(ℓ)}ℓ is
infeasible for (3.7). Lemma 1 ii) at iteration k = i(ℓ) yields

0 < c(xk(ℓ+1)) ≤ c(xk(ℓ))− κ
µmin

2

∥∥∥xk(ℓ+1) − xk(ℓ)
∥∥∥2

for all ℓ.

Once again, by using the telescopic sum we get (4.15). In order to show that x̄ is a
critical point of problem (4.13), following definition (3.17) we need to prove: [∂Fτ̄(x̄) +
NX(x̄)] ∩ ∂G(x̄) ̸= {∅}. To this end, we study the asymptotic behavior of the three
sequences {xk(ℓ)}ℓ∈N, {pk(ℓ+1)}ℓ∈N, and {sk(ℓ+1)

X }ℓ∈N that verifies by definition sk(ℓ+1)
X ∈

NX(xk(ℓ+1)) for any ℓ. Firstly, as {xk(ℓ)}ℓ∈N ⊂ X, this sequence is bounded. Secondly,
{pk(ℓ+1)}ℓ∈N is also bounded as Lemma 2 ensures that pk(ℓ+1) ∈ ∂ei(ℓ) Fτℓ(xk(ℓ)) with
ei(ℓ) = L

∥∥∥xk(ℓ+1) − xk(ℓ)
∥∥∥ for a constant L > 0 and for any ℓ ∈ N. Lastly, rewriting

equality (4.7) provides

sk+1
X = µk(xk(ℓ) − xk+1)− pk+1 + (sk(ℓ)

f2
+ sk(ℓ)

c2 ),

which proves that {sk(ℓ+1)
X }ℓ∈N also is a bounded sequence as {sk(ℓ)

f2
+ sk(ℓ)

c2 }ℓ∈N ⊂
∂G(xk(ℓ)), {xk(ℓ)}ℓ∈N ⊂ X ⊂ Ω, and {µk}k∈N is bounded by definition. Note also
that limℓ→∞ ei(ℓ) = 0 because limℓ→∞

∥∥∥xk(ℓ+1) − xk(ℓ)
∥∥∥ = 0. Thus, there exist subsets

L′′ ⊂ L′ ⊂ L ⊂ {0, 1, . . .} such that:

• {xk(ℓ)}ℓ∈L converges to a vector x̄ ∈ X, and

• {pk(ℓ+1)}ℓ∈L′ converges to a point p̄ ∈ ∂Fτ̄(x̄) as a result of the outer semi-continuity
of the subdifferential of convex functions (see [151, Prop. 4.1.1] for more details,
and note that τ̄ = limℓ∈L′ τ

ℓ by definition (4.5)), and
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• {sk(ℓ+1)
X }ℓ∈L′′ converges to a point s̄ ∈ NX(x̄) (using the definition of normal cone

and taking the limit in the underlying inequality).

All in all, p̄ + s̄ ∈ ∂Fτ̄(x̄) + NX(x̄). We then show that

p̄ + s̄ = lim
ℓ∈L′′

(sk(ℓ)
f2

+ sk(ℓ)
c2 ) ( i.e., p̄ + s̄ ∈ ∂G(x̄) ),

which concludes the proof because (sk(ℓ)
f2

+ sk(ℓ)
c2 ) ∈ ∂G(xk(ℓ)) for all ℓ. This latter result

follows directly from equation (4.7) and condition µk ≤ µmax < ∞:

p̄ + s̄ = lim
ℓ∈L′′

[pk(ℓ+1) + sk(ℓ+1)
X ] = lim

ℓ∈L′′

[
(sk(ℓ)

f2
+ sk(ℓ)

c2 ) + µi(ℓ)
(

xk(ℓ) − xk(ℓ+1)
)]

= lim
ℓ∈L′′

(sk(ℓ)
f2

+ sk(ℓ)
c2 ) + lim

ℓ∈L′′
µi(ℓ)

(
xk(ℓ) − xk(ℓ+1)

)
= lim

ℓ∈L′′
(sk(ℓ)

f2
+ sk(ℓ)

c2 ) ( ∈ ∂G(x̄) ) ,

where the third equality holds because {sk(ℓ)
f2

+ sk(ℓ)
c2 }ℓ∈N is a bounded sequence, and the

last equality is due to (4.15) and boundedness of {µk}.

4.2.3 Convergence analysis : main results
Convergence analysis of Algorithm 1 is summarized in the following two theorems. The
first one ensures that a critical point of the reformulated problem with improvement
function is (asymptotically) computed by our algorithm. The second theorem establishes
the link with the computed point and criticality for the original problem (3.7).
Theorem 5. Consider Algorithm 1 and suppose that X ̸= ∅ is a bounded polyhedron. If
the stopping-test tolerance satisfies δTol = 0, then any cluster point x̄ of the sequence of
stability centers {xk(ℓ)}ℓ generated by the algorithm is critical for the problem (4.13). (If
{xk(ℓ)}ℓ is finite, x̄ = xk(ℓ) is the last stability center.)

Moreover, if the stopping-test tolerance δTol > 0, then the algorithm stops after finitely
many steps with an approximate critical point x̄ = xk(ℓ), namely

[∂LδTol Fτ̄(x̄) + NX(x̄)] ∩ [∂G(x̄) + B(0; µmax δTol)] ̸= {∅},

where L > 0 is the constant in Lemma 2 and B(0; µmax δTol) is the closed ball in Rn with
center at zero and with radius µmax δTol. ◀

Proof. The analysis of the case with δTol = 0 results from Proposition 5 if infinitely many
serious steps are generated, and from Proposition 4 otherwise.

Proposition 4 ensures that limk→∞

∥∥∥xk+1 − xk(ℓ)
∥∥∥ = 0 if xk(ℓ) is the last stability center,

and Proposition 5 yields limℓ→∞

∥∥∥xk(ℓ+1) − xk(ℓ)
∥∥∥ = 0 otherwise (see (4.15)). In both

cases, Algorithm 1 stops after a finite number of steps provided that δTol > 0. Suppose
δTol > 0, let xk(ℓ) be the last stability center computed by the algorithm, and k its last
iteration. Then

∥∥∥xk+1 − xk(ℓ)
∥∥∥ ≤ δTol. Lemma 2 and Remark 4 assert that pk+1 + sk+1

X ∈
∂LδTol Fτℓ(xk(ℓ)) + NX(xk(ℓ)). Furthermore, Eq. (4.7) yield∥∥∥pk+1 + sk+1

X − (sk(ℓ)
f2

+ sk(ℓ)
c2 )

∥∥∥ = µk
∥∥∥xk+1 − xk(ℓ)

∥∥∥ ≤ µmax δTol,
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with sk(ℓ)
f2

+ sk(ℓ)
c2 ∈ ∂G(xk(ℓ)). These properties show that x̄ = xk(ℓ) is, as stated, an

approximate critical point of problem (4.13).

Remark 5. From Theorem 5, one could derive another formulation to characterize the
approximate criticality of xk(ℓ) = x̄ ∈ X that resembles formulation (3.17). Under the
assumptions of Theorem 5, assume that G : Rn 7→ R∪ {∞} is lower-semicontinuous and
that Dom(G) is bounded: there exists Λ > 0 such that ∥x− x̄∥ ≤ Λ for all x ∈ Dom(G).
Let sk(ℓ)

f2
+ sk(ℓ)

c2 ∈ ∂G(x̄), and x ∈ Dom(G) arbitrarily chosen; invoking the convexity of
G and equality (4.7) yields:

G(x) ≥ G(x̄) + ⟨sk(ℓ)
f2

+ sk(ℓ)
c2 , x− x̄⟩

= G(x̄) + ⟨µk(xk+1 − x̄) + pk+1 + sk+1
X , x− x̄⟩

= G(x̄) + ⟨pk+1 + sk+1
X , x− x̄⟩ − ⟨µk(x̄− xk+1), x− x̄⟩

≥ G(x̄) + ⟨pk+1 + sk+1
X , x− x̄⟩ − µmaxδTolΛ .

As this last inequality trivially holds for x /∈ Dom(G), we conclude that pk+1 + sk+1
X ∈

∂µmaxδTolΛG(x̄). Since pk+1 + sk+1
X ∈ ∂LδTol Fτ̄(x̄) + NX(x̄) (see the proof of Theorem 5), this

shows that the approximate critical point x̄ of problem (4.13) verifies

[∂LδTol Fτ̄(x̄) + NX(x̄)] ∩ ∂µmaxδTolΛG(x̄) ̸= {∅}.

▷

Theorem 5 provides the convergence analysis of Algorithm 1. The next theorem
establishes the link between (4.13) and (3.7). The stated results are closely related to
the optimality conditions discussed in [34, Lemma 5.1], where a different setting is
considered: no DoC structure is assumed (but f is twice continuously differentiable). For
the sake of completeness, we include the mathematical proof tailored to our DoC setting.
We start by presenting a simple lemma that will be useful for the next Theorem: it helps
compute the subdifferential of Fτ (x) = max{ f1(x) + c2(x)− τf , f2(x) + c1(x)− τc}.
Lemma 3. Let x̄ ∈ X and τ̄ = (τ̄f , τ̄c) as in (4.13) be given.

i) If c(x̄) > 0, then f1(x̄) + c2(x̄)− τ̄f < f2(x̄) + c1(x̄)− τ̄c.

ii) If c(x̄) < 0, then f1(x̄) + c2(x̄)− τ̄f > f2(x̄) + c1(x̄)− τ̄c.

iii) If c(x̄) = 0, then f1(x̄) + c2(x̄)− τ̄f = f2(x̄) + c1(x̄)− τ̄c.

◀

Proof. The definition of τ̄ =
(

f (x̄) + ρ max{c(x̄), 0}, σ max{c(x̄), 0}
) with ρ ≥ 0 and

σ ∈ [0, 1) gives:

f1(x̄) + c2(x̄)− τ̄f − ( f2(x̄) + c1(x̄)− τ̄c) =(σ− ρ)max{c(x̄), 0} − c(x̄)

=

(σ− 1− ρ)c(x̄) < 0 if c(x̄) > 0

−c(x̄) ≥ 0 if c(x̄) ≤ 0.
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We now present the main convergence Theorem.
Theorem 6. Under the assumptions of Theorem 5 and δTol = 0, let x̄ ∈ X be the point
(asymptotically) computed by Algorithm 1. Furthermore, assume that f2 and c2 are
continuously differentiable at x̄. Then x̄ is a d-stationary point for (4.13) and the following
statements hold:

i) If c(x̄) > 0, then x̄ is a d-stationary point of the DoC problem minx∈X c1(x)− c2(x).

ii) If c(x̄) < 0, the pair (x̄, 0) satisfies the KKT system (3.15) of the DoC-constrained
DoC program (3.7). Furthermore, x̄ is a d-stationary point of the DoC problem
minx∈X f1(x)− f2(x).

iii) If c(x̄) = 0 and problem (3.7) satisfies the extended Mangasarian-Fromowitz
constraint qualification (EMFCQ), then there exists a scalar λ̄ > 0 such that the
pair (x̄, λ̄) satisfies the KKT system (3.15) of the DoC-constrained DoC program
(3.7). Furthermore, x̄ is a B-stationary point of (3.7).

◀

Proof. According to Theorem 5, x̄ is critical for (4.13). By definition, x̄ solves the convex
subproblem minx∈X Fτ̄(x)− ⟨s̄ f2 + s̄c2 , x⟩ for the pair of vectors s̄ f2 = ∇ f2(x̄) and s̄c2 =

∇c2(x̄), then x̄ is indeed a d-stationary point of (4.13) and, according to (3.16),

∇G(x̄) = ∇ f2(x̄) +∇c2(x̄) ∈ ∂Fτ̄(x̄) + NX(x̄).

If c(x̄) > 0, Lemma 3(i) (in the Appendix A), implies that Fτ̄(x̄) = f2(x̄) + c1(x̄)− τ̄c

(> f1(x̄) + c2(x̄) − τ̄f ) and, therefore, ∂Fτ̄(x̄) = ∇ f2(x̄) + ∂c1(x̄). By replacing this
identity in the equality above we get ∇c2(x̄) ∈ ∂c1(x̄) + NX(x̄). This proves item i).

If c(x̄) ≤ 0, the subdifferential of Fτ̄(x) satisfies (thanks to (3.5))

∂Fτ̄(x) ⊂
⋃

λ∈[0,1]

λ[∂ f1(x) + ∂c2(x)] + (1− λ)[∂ f2(x) + ∂c1(x)].

As a consequence of ∇G(x̄) ∈ ∂Fτ̄(x) + NX(x̄), there exists λ̃ ∈ [0, 1] such that:

∇ f2(x̄) +∇c2(x̄) ∈ λ̃[∂ f1(x̄) +∇c2(x̄)] + (1− λ̃)[∇ f2(x̄) + ∂c1(x̄)] + NX(x̄) ,

or equivalently,

0 ∈ λ̃[∂ f1(x̄)−∇ f2(x̄)] + (1− λ̃)[∂c1(x̄)−∇c2(x̄)] + NX(x̄) . (4.16)

By using the Clarke’s sum rule, note that (4.16) is equivalent to

0 ∈ λ̃∂C[ f1(x̄)− f2(x̄)] + (1− λ̃)∂C[c1(x̄)− c2(x̄)] + NX(x̄) .

If c(x̄) < 0, Lemma 3(ii) implies that Fτ̄(x̄) = f1(x̄) + c2(x̄)− τ̄f and, therefore, λ̃ = 1
above. This shows that ∇ f2(x̄) ∈ ∂ f1(x̄) + NX(x̄), proving thus item ii) (take λ̄ = 0 in
(3.15) to conclude that (x̄, λ̄) satisfies the KKT system of problem (3.7)).

We now show that if c(x̄) = 0 and the EMFCQ holds, then λ̃ > 0. If c(x̄) = 0
and should λ̃ = 0 be possible, then there would exist an element s ∈ NX(x̄) such that
0 ∈ ∂c1(x̄)−∇c2(x̄) + s (c.f. (4.16)). However, since EMFCQ holds for problem (3.7) at
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x̄, there exists d ∈ TX(x̄), such that ⟨s1−∇c2(x̄), d⟩ < 0 for all s1 ∈ ∂c1(x̄). Consequently:
0 = ⟨0, d⟩ = ⟨s1 −∇c2(x̄) + s, d⟩ = ⟨s1 −∇c2(x̄), d⟩+ ⟨s, d⟩ ≤ ⟨s1 −∇c2(x̄), d⟩ < 0, a
contradiction. Hence, λ̃ > 0. By setting λ̄ := (1−λ̃)

λ̃
> 0 we conclude that the pair (x̄, λ̄)

satisfies the KKT system (3.15). As the EMFCQ implies the CQ of Proposition 3, then
(3.9) holds (see [8, § 2.4]).

In Theorem 6, the smoothness assumption on f2 and c2 at x̄ is crucial to obtain the
inclusion (4.16) and, therefore, ensure that the computed vector is a KKT point of (3.7)
under a constraint qualification (CQ). In other words, this inclusion makes possible the
characterization of d-stationarity at x̄ in (4.13). In the next section we discuss how to
equip Algorithm 1 with escaping procedures to provide a point satisfying KKT or, even
stronger, B-stationarity without the smoothness assumption. To that end, we rely on
[164] and [233].

Before finalizing this section, we put the convergence results of Theorems 5 and 6 in
perspective with what is known in the literature.

4.2.4 Different assumptions and results: a few com-
ments on the related literature

The work [211] deals with multiobjective DoC optimization problems, and similarly uses
a bundle algorithmwith an improvement function.When tailored to the setting of a single
objective and using an additional escaping procedure, the algorithm proposed in [211]
is shown to compute a point x̄ that, if feasible, satisfies the KKT system (3.15) provided
that the following assumptions are met: a CQ holds at this point, and the subdifferentials
of ∂Fτ(x) and ∂G(x) are polytopes for all x ∈ Rn. Differently, the analysis of Theorem 6
also covers infeasibility as well as establishes a direct link between the KKT system of the
original problem (3.15) and the obtained criticality for the reformulated DoC problem
using the improvement function (4.2). Necessary assumptions include that a CQ holds
and continuous differentiability of f2 and c2 at x̄, but exclude the assumption on ∂Fτ

used in [211].
As in [8, 211], our analysis concerns any arbitrary cluster point of the sequence

of stability centers {xk(ℓ)}ℓ. However, we have not established that such a sequence is
indeed convergent. Two natural questions arise: (i) Is the sequence of stability centers
convergent? (ii) If yes, what is its rate of convergence? These are non-trivial questions
that deserve consideration. Unfortunately, this work answers neither (i) nor (ii). The
reason is that additional and non-trivial assumptions are required not only about the
involved functions f and c but also about the structure of the model approximating
the improvement function. Nevertheless, we care to mention that (i) and (ii) have
already been addressed in other publications in different contexts [222, 296]. A common
assumption in these references is the requirement that the functions at hand satisfy the
Kurdyka-Łojasiewicz (KŁ) property/inequality. Roughly speaking, the KŁ property says
that one can bound the subgradients of a function from below by a reparametrization of
its function values; see [222, § 2.1] for the mathematical definition.

The reference [222] deals with nonsmooth, nonconvex unconstrained optimization
problems under the assumption that the objective function satisfies the KŁ property. The
work does not assume any DoC structure and presents convergence results of a bun-
dle method employing more sophisticated models requiring, among other hypotheses,



4.3. KKT AND B-STATIONARY POINTS UNDER MILDER ASSUMPTIONS: ESCAPING
PROCEDURES 85
Clarke subgradients of the objective function. The latter assumption is not required by
our method, which works with subgradients of the DoC component functions. If the
so-called first-order standard model verifies the (strong) KŁ property [222, Theorem
3.2], then the sequence of stability centers converges to a (Clarke) stationary point. The
rate of convergence is not assessed.

An analysis on the rate of convergence of proximal-like methods for nonsmooth,
nonconvex unconstrained optimization under the KŁ property can be found in [37].
Concerning the unconstrained DoC setting, the work [296] studies a DCA-like algorithm
and proves convergence of the generated sequence to a critical point under KŁ and the
additional assumption that the underlying functions are good-DC (roughly speaking,
the functions are Clarke regular). Furthermore, rates of convergence are established.
Likewise, but with a double proximal algorithm for unconstrained DoC programs, the
paper [42] establishes convergence of the generated sequence and assesses its rate of
convergence under the KŁ property. Reference [33] also establishes similar results for a
Generalized Proximal Point Algorithm, applied to a somewhat larger nonconvex nons-
mooth setting that encompasses the structure of unconstrained DoC problems (namely
only the second component is assumed to be convex).

Rates of convergence in the DoC-constrained setting are investigated in the recent
technical report [301], where another DCA-like method is proposed. To the best of our
knowledge, this is the first attempt to analyze rate of convergence of an algorithm for
DoC-constrained DoC problems satisfying the KŁ property. In contrast to our work
that employs a model approximating the improvement function, the DoC component
functions f1 and c1 are handled by the method of [301]. This is an issue when dealing
with general problems fitting the structure of (3.7).

The study of the KŁ property in a bundle algorithm applied to DoC problems is left
for future research. We point out a main difficulty in this endeavor: when considering the
DoC-constrained setting, the resulting convexly-constrained DoC problem (4.2) changes
at every serious step. This fact precludes the application of the analysis developed in the
references [33, 222, 37, 296, 42, 301] discussed above.

4.3 kkt and b-stationary points under milder as-
sumptions: escaping procedures

The smoothness assumption in Theorem 6 essentially ensures that the vector x̄ delivered
by Algorithm 1 is a d-stationary point and, therefore, a Clarke-stationary point of (4.13).
A result similar to Theorem 6 (iii) (but with no details on cases (i) or (ii)) is given
in [211], pointing out that any Clarke-stationary point of (4.13) (if feasible and if a CQ
holds) is a KKT point of (3.7). To compute a Clarke-stationary point of (4.13) without
assuming smoothness on f2 and c2 at x̄, the authors of [211] equip their algorithm with
the escaping procedure proposed in [164]. Such a procedure requires the assumption that
the subdifferentials ∂Fτ(x) and ∂G(x) are polytopes to either prove that the given vector
x̄ is an approximate Clarke-stationary point of (4.13) (and therefore an approximated
KKT point of (3.7)) or provide a better candidate to solve (3.7). The same escaping
procedure of [164] and [211] can be employed by our algorithm in a straightforward
manner:
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• let x̄ = xk be the point delivered by Algorithm 1. Assume that x̄ is feasible to the
original problem (3.7);

• perform the escaping procedure of [164, 211] on x̄; see [211, Algorithm 1] for
details;

• if x̄ is a proven approximate Clarke-stationary point of (4.13), then stop and return
x̄;

• if x̄ is not approximately Clarke-stationary, then the escaping procedure delivers
a better point, say xk+1, that should be used to continue the iterative process of
Algorithm 1.

Under the assumptions that ∂Fτ(x) and ∂G(x) are polytopes for all x ∈ Rn, Algo-
rithm 1 implementing the above steps terminates after finitely many steps provided
δTol > 0: to see that, just combine Lemma 3 in [211] with Theorem 5 above. If a CQ holds,
then the delivered vector is a KKT point of the original problem (3.7). A stronger result
(B-stationarity) is possible under the assumption that both f2 and c2 are the pointwise
maximum of finitely many differentiable convex functions. This is the subject of the next
subsection, where we rely on the ideas investigated in [233].

4.3.1 Ensuring B-stationarity
Suppose that functions f2 and c2 have the structure given in (3.12). For any given point
x ∈ X, their subdiffentials are defined in (3.13). As discussed in Section 3.3, verifying the
B-stationarity condition (3.10) of a given point x̄ feasible for (3.7) amounts to checking
whether x̄ solves (3.14) for all i ∈ A f (x̄) and all j ∈ Ac(x̄). Since x̄ is by assumption feasi-
ble for the original problem (3.7), then x̄ is also feasible for the convex problem (3.14). To
ensure that (3.14) has a unique solution,we canw.l.o.g. add the quadratic term 1

2 ∥x− x̄∥2

to its objective function. The escaping procedure for Algorithm 1we propose is as follows.

Algorithm 2 Escaping procedure
Hypothesis: f2 and c2 satisfying (3.12) and xk a feasible point of (3.7) satisfying the stopping test of
Algorithm 1.
1: Let δTol > 0, µ > 0 be given, set x̄ := xk, A f (x̄) and Ac(x̄) as in (3.13)
2: for j ∈ Ac(x̄) do
3: for i ∈ A f (x̄) do
4: Let zi,j be the solution of the strongly convex subproblem min

x∈X
f1(x)− [ψi(x̄) + ⟨∇ψi(x̄), x− x̄⟩] + µ

2 ∥x− x̄∥2

s.t. c1(x)− [ϕj(x̄) + ⟨∇ϕj(x̄), x− x̄⟩] ≤ 0

5: if
∥∥∥zi,j − x̄

∥∥∥ > δTol then

6: Set xk(ℓ+1) := zi,j, ℓ := ℓ+ 1 and continue Algorithm 1 from Step 1
7: Stop both this pseudo-algorithm and Algorithm 1: x̄ is an approximate B-stationary point of prob-

lem (3.7)

Proposition 6. Let zi,j be as in Pseudo-algorithm 2 for any i ∈ A f (x̄) and j ∈ Ac(x̄).
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i) zi,j is feasible for (3.7) and it satisfies f (zi,j) ≤ f (x̄)− µ
2

∥∥zi,j − x̄
∥∥2.

ii) If
∥∥zi,j − x̄

∥∥ ≤ δTol for all i ∈ A f (x̄) and j ∈ Ac(x̄), then x̄ satisfies (3.10) within
the tolerance δTol > 0. If, in addition, problem (3.7) satisfies EMFCQ, then x̄ is an
approximate B-stationary point of the original problem (3.7).

◀

Proof. i) By definition, zi,j satisfies the constraint in subproblem (3.14). Then, the defini-
tion of c2 in (3.12) and the convexity of ϕj yield

c1(zi,j)− c2(zi,j) ≤ c1(zi,j)− ϕj(zi,j) ≤ c1(zi,j)− [ϕj(x̄) + ⟨∇ϕj, zi,j − x̄⟩] ≤ 0 ,

showing that zi,j is feasible to problem (3.7). We show in the same way, by definition of
f2 in (3.12), by convexity of ψi and by definition of zi,j, that zi,j is a better candidate than
x̄:

f (zi,j) +
µ

2

∥∥∥zi,j − x̄
∥∥∥2

= f1(zi,j)− ψi(zi,j) +
µ

2

∥∥∥zi,j − x̄
∥∥∥2

≤ f1(zi,j)− [ψi(x̄) + ⟨∇ψi(x̄), zi,j − x̄⟩] + µ

2

∥∥∥zi,j − x̄
∥∥∥2

≤ f1(x̄)− ψi(x̄) = f1(x̄)− f2(x̄) = f (x̄) .

ii) If
∥∥zi,j − x̄

∥∥ ≤ δTol for all i ∈ A f (x̄) and j ∈ Ac(x̄), then the point x̄ delivered by
Algorithm 1 approximately solves (3.14) for every i ∈ A f (x̄) and j ∈ Ac(x̄). Thanks
to (3.13), we then conclude that x̄ approximately solves (3.10); thus it is a B-stationary
point of (3.7) under the CQ [8, subsection 2.2].

We care to mention that the subproblem of Pseudo-algorithm 2 does not need to
be solved up to optimality when x̄ is not among its solutions: it suffices to compute a
feasible point zi,j providing a better functional value than f (x̄). To that end, we can for
example employ the convex bundle algorithm of [22]: by starting its iterative process
with the feasible point x̄ then all the generated iterates will remain feasible. Therefore, as
soon as an iterate of better quality than x̄ is found we can terminate the convex algorithm,
the escape procedure, and continue with Algorithm 1 to obtain a new and necessarily
better critical point of (4.13).
Theorem 7. Suppose, in addition to the assumptions of Theorem 5, that (3.12) holds. If
δTol > 0, then Algorithm 1 with Pseudo-algorithm 2 stops after finitely many steps with
an approximate B-stationary point of (3.7) provided a CQ holds. ◀

Proof. Since δTol > 0, every run of Algorithm 1 terminates after finitely many steps. This
is also the case for Pseudo-algorithm 2 that requires solving at most m f · mc convex
subproblems (c.f. (3.12)). Let {x̄ι} be the subsequence of points at which Algorithm 1
calls the escape procedure of Pseudo-algorithm 2. For a fixed x̄ι, if

∥∥zi,j − x̄ι
∥∥ > δTol in

the escaping procedure then Proposition 6 ensures that

f (zi,j) ≤ f (x̄ι)− µ

2

∥∥∥zi,j − x̄ι
∥∥∥2

< f (x̄ι)− µ

2
δ2

Tol. (4.17)
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Algorithm 1 receives xk(ℓ+1) := zi,j and continues its iterative process until stopping with
another (approximated) critical point x̄ι+1 ̸= x̄ι (note, however, that x̄ι+1 can be equal to
zi,j). Since xk(ℓ+1) is feasible for problem (3.7), Lemma 1(i) ensures that x̄ι+1 is feasible
as well and, moreover, f (x̄ι+1) ≤ f (zi,j). By combining this inequality with (4.17) we get

f (x̄ι+1) < f (x̄ι)− µ

2
δ2

Tol, for all ι = 1, 2, . . . .

Since f is bounded from below, because f is continuous on compact X, then the above
inequality ensures that the loop between Algorithm 1 and Pseudo-Algorithm 2 is finite.
Proposition 6 (ii) then concludes the proof.

With a proper management, in Algorithm 1, of the tolerance δTol > 0 such that
δTol → 0, the escaping procedure could be able to asymptotically compute an exact
B-stationary point of (3.7). To that end, we could rely on Theorem 7 with δTol → 0 by
following the general idea of [233, § 5.1] as in [8, Corollary 3.4] with γ therein replaced
by δTol. But we shall not go into theoretical analysis of such modifications, as they will
cause some technical complications, while the conceptual ideas are clear from our simpler
presentation of the escaping algorithm.

4.4 numerical experiments
Before dealing with chance-constrained problems, we illustrate the numerical perfor-
mance of Algorithm 1 on a bi-dimensional example and the challenging circle packing
problem, which have simple geometric interpretations. The goal is to show that although
we start the optimization process with a infeasible point, the algorithm quickly com-
putes a feasible point and the subsequent iterates remain feasible (c.f. Lemma 1). All the
experiments in this section have been carried out using Matlab R2017a in a computer
with Intel(R) Core(TM), i3-3110M CPU 2.40, 4G (RAM), under Windows 10, 64Bits. The
choice of the parameters in Algorithm 1 (named PBMDC 2 for short) is as follows:

PBMDC 2- Algorithm 1 with µmin = 10−6, µmax = 105, µ0 = 1, ρ = σ = 0.5 and
δTol = 10−6. Whenever the size of the bundle is greater or equal to 100 we keep in
the bundle only the active constraints according to (4.9).

4.4.1 An illustrative example
In order to plot the objective function and feasible set, let us consider the following
bi-dimensional problem

min
x∈R2

∥x∥2 + ∑2
i=1 xi − ∥x∥1

s.t. min
j=1,2,3

{∥∥∥x− pj
∥∥∥2
− r2

j

}
≤ 0

−2 ≤ xi ≤ 2, i = 1, 2,

(4.18)

with p1 = (−1; 0)⊤, p2 = (0; 0)⊤, p3 = (0.5;−1)⊤, and r = (0.5, 0.3, 0.5)⊤. Prob-
lem (4.18) fits the general formulation (3.7) with

f1(x) = ∥x∥2 +
2

∑
i=1

xi, f2(x) = ∥x∥1 ,



4.4. NUMERICAL EXPERIMENTS 89

c1(x) =
3

∑
j=1

[∥∥∥x− pj
∥∥∥2
− r2

j

]
, and c2(x) = max

j=1,2,3
∑
l ̸=j

{∥∥∥x− pl
∥∥∥2
− r2

l

}
.

The objective function f = f1 − f2 is plotted in Figure 4.1(a), and its level curves are
visible in Figures 4.1(b)-(f). Observe that the constraint c1(x) − c2(x) ≤ 0 defines a
disconnected feasible set, which is the union of three blue circles in Figures 4.1(b)-
(f). The global solution of the problem is x̄1 = (−1,−0.5)⊤ (with f (x̄1) = −1.75),
and the local solutions are x̄2 = (−0.2121,−0.2121)⊤ (with f (x̄2) = −0.7585) and
x̄3 = (0,−1)⊤ (with f (x̄3) = −1). As functions f2 and c2 are nonsmooth, the problem
has critical points that fail to be d-stationary. This is the case, for instance, of points
x̄4 = (−0.3, 0), x̄5 = (0, 0)⊤ and x̄6 = (0,−0.3). However, since both f2 and c2 are
the pointwise maximum of finitely many smooth functions, we can apply the escaping
procedure of Pseudo-Algorithm 2 to ensure that Algorithm 1 always computes a d-
stationary point.

We first run Algorithm 1 without the escaping procedure on problem (4.18). Fig-
ure 4.1(b) (respectively 4.1(c)) presents one hundred sequences of points {xk} generated
by Algorithm 1 with µ0 = 10 (respectively µ0 = 1) starting from one hundred initial
points uniformly generated in the square −2 ≤ xi ≤ 2, i = 1, 2. In this example, when
the initial prox-parameter µ0 is large, all the (one hundred) sequences converge to a local
solution (and therefore d-stationary point): as we can see from Figure 4.1(b), all the
sequences are well stabilized, converging to three limit points, and do not get trapped
by critical points of poor quality. However, with µ = 1 the sequences oscillate (see Fig-
ure 4.1(c)) and six of the hundred sequences terminate at either (0,−0.3)⊤ or (−0.3, 0)⊤,
which are critical but not d-stationary for problem (4.18).

To facilitate visualization, we consider in Figures 4.1(e) and (f) a single initialization
that leads to x̄ = (0,−0.3)⊤. Let us focus on this sequence. We can see that once the
algorithm computes the first feasible point, the remainder of the sequence follows a
direction of descent until it stops at x̄. The reason why the algorithm terminates at x̄
is the subgradient s f2 = (0,−1)⊤ of f2(x̄) provided by the oracle (note that ∂ f2(x̄) =

{(0, α) : α ∈ [−1, 1]} but c2 is smooth at x̄). With this subgradient, the objective function
f1(x)− [ f2(x̄) + ⟨s f2 , x− x̄⟩] in (3.11) is simply ∥x∥2 + x1 + 2x2. After some calculations,
we can see that x̄ solves (3.11) (confirming thus that x̄ is critical). However, if we pick
s f2 = (0, 1)⊤ ∈ ∂ f2(x̄), the function f1(x)− [ f2(x̄) + ⟨s f2 , x− x̄⟩] becomes ∥x∥2 + x1− 0.6
and x̄ does not minimize it over the feasible set of (3.11). This shows that x̄ does not
solve (3.10) (i.e., x̄ is not d-stationary).

When we equip our method with the Pseudo-Algorithm 2, the algorithm is able to
escape from these critical points in all the cases; see Figures 4.1(d) and 4.1(f), compared
respectively to Figures 4.1(c) and 4.1(e) which have the same setting but no escaping
procedure. The reason is that Pseudo-Algorithm 2 checks all the generators of ∂ f2(x̄); c.f.
Theorem 7.

4.4.2 The circle packing problem
The circle packing problem is to find the largest percentage of a polygon that can be
covered by a given number of equal circles. Mathematically, it consists of positioning the
circles and maximizing their radius while keeping the intersection of all circles empty.
We consider m circles and take the polygon to be the unit square in R2. Let pi ∈ R2 be
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(a) Graph of f . (b) 100 trajectories generated byAlgorithm 1with µ0 =
10 and without escaping procedure.

(c) 100 trajectories generated by Algorithm 1with µ0 =
1 and without escaping procedure.

(d) 100 trajectories generated byAlgorithm 1with µ0 =
1 and with escaping procedure.

(e) Without escaping procedure. (f) With escaping procedure.

Figure 4.1: Illustration of the DoC problem (4.18). The initial points, randomly gener-
ated, are marked by the white little squares, xk by blue dots, and the computed critical
points are represented by the green stars. With µ0 = 10, all the 100 sequences converge
to one of the local (or global) solutions without the need of applying the escaping proce-
dure. However, for µ0 = 1, some of these sequences terminate at critical points that are
not d-stationary (subfigures (c) and (e)). When the escaping procedure is applied, then
all the sequences converge to one of the local (or global) solutions (Subfigures (d) and
(f)).



4.4. NUMERICAL EXPERIMENTS 91

the position of the ith center and r be the radius of the circles. The problem reads as
min

p∈R2m,r∈R
−r

s.t.
∥∥pi − pj

∥∥ ≥ 2r i = 1, . . . , m− 1, j = i + 1, . . . , m

1r ≤ pi ≤ 1(1− r) i = 1, . . . , m,

(4.19)

where 1 is the vector of ones in R2. This problem fits (3.7) with x = (p, r),

f1(x) = −r, f2(x) ≡ 0, c1(x) = 2r + max
i,j

 ∑
(k,s) ̸=(i,j)

∥pk − ps∥

 ,

and
c2(x) = ∑

(i,j)

∥∥pi − pj
∥∥ .

Although c2 is a nonsmooth function, it is differentiable at any feasible point whenever
the radius is strictly positive. Figure 4.2 presents the results obtained fromAlgorithm 1 for
the configuration of m = 20 circles starting from a random initialization. The figure shows

(a) Random initialization (b) Iteration k = 7

(c) Iteration k = 60 (d) Iteration k = 617

Figure 4.2: Packing 20 circles. PBMDC 2 computed a global solution yielding r = 0.11138
in 47 seconds.

that PBMDC 2 finds a feasible point for the circle packing problem in few iterations. From
that iteration on, all the iterates produced by the method remain feasible which illustrates
Lemma 1 (ii). For this instance, our solver PBMDC 2 was successful in computing a global
solution from a random initialization in 47 seconds (and in 13 seconds for m = 10). The
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global solution for several number of circles can be found on the specialized web page
www.packomania.com.

Figure 4.3: Packing 40 circles. PBMDC 2 computed a solution with an optimality gap of
2.8% in 160 seconds.

Figure 4.3 presents a feasible packing of m = 40 circles computed by PBMDC 2. In this
setting, PBMDC 2 failed in computing a global solution, however the obtained radius is
within an error of 2.8% of the (global) optimal value.

4.4.3 Chance-constrained problems
We now assess the numerical performance of solver PBMDC 2 on 4 sets of optimization
problems with probability constraints: PlanToy, Pnorm, Probust, and Gas. As
proposed in Section 5.3, we approximated the probability constraint P [lb ≤ c(x, ξ) ≤ ub]
in these problemswith the DoC constraint c1(x)− c2(x) ≤ 0 and c1 and c2 given in (5.14).
For these experiments, we estimated the expectation in (5.14) with a sample of N = 104

randomly generated scenarios and set t = 0.0025. The “moniker" PBMDC2S refers to the
application of our solver to the smooth variant of the chance-constrained problem: the
max-operations were replaced by their smooth versions. Because of the extra step to
smooth the “max", the variant PBMDC2S requires more time than PBMDC 2 to evaluate the
constraint function.

We compared our approach with two solvers exploiting the DoC structure of the
problems:

SCA is our implementation in Matlab of the approach given in [153], denoted by Sequen-
tial Convex Approximations. The iterate xk+1 of this method is obtained by solving
the convex subproblem

min
x∈Rn

f1(x)− [ f2(xk) + ⟨sk
f2

, x− xk⟩]

s.t. c1(x)− [c2(xk) + ⟨sk
c2

, x− xk⟩] ≤ 0

x ∈ X .

To this end, we apply the convex bundlemethod of [22] (with exact oracles instead).
We care to mention that the original SCA of [153] deals with convex objectives
only. Its extension to DoC objectives boils down to the classic DCA algorithm for
DoC-constrained DoC problems [183].

www.packomania.com
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PCCP is our implementation in Matlab of Algorithm 3.1 in [197], called Penalty Convex-
Concave Procedure. The iterate xk+1 of PCCP is given by solving the penalized convex
subproblem 

min
(x,r)∈Rn+1

f1(x)− [ f2(xk) + ⟨sk
f2

, x− xk⟩] + τk r

s.t. c1(x)− [c2(xk) + ⟨sk
c2

, x− xk⟩] ≤ r

x ∈ X, r ≥ 0 ,

using the same convex bundle method employed by SCA. Here, τk > 0 is a pe-
nalization parameter initialized as τ0 = 1 and updated by the rule τk+1 ←
min{1.5τk, 104} whenever the slack variable rk+1 in the solution of the above prob-
lem satisfies rk+1 > δTol := 10−6. If rk+1 ≤ δTol then τk+1 ← τk.

BD is a specialized approach for chance-constrained programs proposed in [26]. Binary
variables are introduced for each scenario ξ j. The resulting integer nonlinear pro-
gram is then successively relaxed as continuous, regularized, then solved iteratively
for each regularization parameter value, by Benders decomposition, as a two-stage
problem after deporting the scenario variables into a slave linear program. Differ-
ently from the previous solvers, this approach does not exploit the DoC structure of
the problem. In our tests, we used the Matlab code made available by the authors
at staff.utia.cas.cz/adam/research.htmlwith the default parameters.

We employed the same stopping test
∥∥xk+1 − xk

∥∥ ≤ √n 10−6 for the bundle method in
all 4 solvers PBMDC 2, PBMDC2S, SCA, and PCCP.

The numeric results on the 4 benchmark sets are provided in Table 4.1. Each problem
is defined by the dimension n, the confidence level p and a set-specific parameter Π
described hereafter. Column f ∗ reports the optimal value of the problem, when known,
and columns f (x̄) the function value found by each solver within a CPU time limit
of 900s (8h for Gas). The column “Probability" represent the actual probability value
P [lb ≤ c(x, ξ) ≤ ub] at x̄, as computed by the Matlab statistical function mvncdf.

For the largest benchmark sets, we also depict the performance profiles of the solvers
as defined in [91] for two metrics: objective values and runtimes. Given a metric g (the
smaller, the better), scores g(s, i) ≥ 0 for each solver s ∈ S on each instance i ∈ I, and
g∗(i) the best known score on instance i ∈ I (which is set to mins∈S g(s, i) by default),
then the performance profile of solver s ∈ S is defined as the distribution curve Cs(τ) =

card({i ∈ I : g(s, i) ≤ τg∗(i)}), for ratio τ ≥ 1. For a quick comparison, the higher is the
curve, the better is the solver. Note that in the case of the minimization of a negative
function f < 0, we consider the objective value metric defined by g(s, i) = −1/ f (x̄)
where x̄ is the point computed by solver s on instance i, instead of g(s, i) = f (x̄) when
f ≥ 0.

PlanToy: an academic chance-constrained planning problem
We first consider an example from [228] of a small management problem consisting of
planing two fictitious refineries for producing two types of fuel to meet a demand that is
deterministic in the first month of planning, but uncertain in the second one. The goal
is to decide, at the minimal cost, the amount of processed oil by the two refineries (x1

staff.utia.cas.cz/adam/research.html
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and x2 for the first month, and x5 and x6 for the second one), storing oil (x3 and x7), and
importation (x4 and x8). The storage and importation decisions must ensure that the
second-month demand is satisfied with probability of at least p. The fictitious planning
problem PlanToy reads as

min
x≥0

2x1 + 3x2 + 0.5x3 + 12x4 + 2x5 + 3x6 + 0.5x7 + 12.5x8

s.t. 2x1 + 6x2 = 190

3x1 + 2.8x2 = 168

x1 + x2 + x3 − x4 = 60

−x3 + x5 + x6 + x7 − x8 = 47.16

P[c(x, ξ) ≤ 0] ≥ p

x3 ≤ 10 , x7 ≤ 10 ,

(4.20)

where c(x, ξ) = max{ξ1 − 2x5 − 6x6, ξ2 − 3x5 − 2.8x6}, and ξ = (ξ1, ξ2) is a random
vector (of fuel demand) following a normal distribution with mean E[ξ] = (193, 178)
and covariance matrix

C =

(
9 Cov(ξ1, ξ2)

Cov(ξ2, ξ1) 10.24

)
.

We created 12 instances of PlanToy by varying the confidence level:

p ∈ {0.8, 0.85, 0.9, 0.95},

and the covariance coefficient Π = Cov(ξ1, ξ2) ∈ {−4.8, 0, 4.8}. The optimal value of
each instance is known (see [228] for details). As starting points for the solvers, we
have considered the solution of the simpler individual chance-constrained program, as
described in [228].

(a) objective f (x̄) vs. optimum f ∗, mean opt =
428

(b) CPU times, mean best = 31s

Figure 4.4: Performance profiles of 4 solvers on 12 PlanToy instances. For example,
(a) reads: PBMDC 2 solves 9 instances out 12 within an error inferior to 0.2%; (b) reads: PCCP
was more than 4 times slower than the quickest solver (here PBMDC 2) on every instances but 3.

Since the function c(x, ξ) is nonsmooth, our solver PBMDC 2 is not ensured to compute a
KKT point of the problem. However, as one can see in Figure 4.4a, PBMDC 2 was successful
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in computing approximated global solutions for all these instances within errors less than
0.6% (0.2% in average). The smoothed variant PBMDC2S has a maximum error inferior
to 0.4% (0.2% in average), and the SCA and PCPP also provided good results with errors
inferior to 0.8% (0.6% in average) but with higher CPU times (see Figure 4.4b): they
were respectively 3x, 5x and 5x slower than PBMDC 2 in average. See Table 4.1 below for
more details.

Norm optimization problem with chance-constraint
We now consider the chance-constrained problem from [153, § 5.1]: max

x∈Rn
+

∥x∥1

s.t P[∥ξ x∥2 ≤ 10] ≥ p .
(4.21)

which, using the non-negativity constraints, can be written as a minimization problem
of function x 7→ −∑n

j=1 xj. This problem fits (5.11) with:

c2(x, ξ) = max
i=1,...,10

{
n

∑
j=1

ξ2
ijx

2
j − 100},

and
c1(x, ξ) ≡ 0,

where ξij (i = 1, . . . , 10 and j = 1, . . . , n) are the random variables. As discussed in [153],
when ξij are independent and identically distributed standard normal random variables
the global solution and optimal value of (4.21) are, respectively,

x∗i =
10√

F−1
χ2

n
(p1/10)

, i = 1, . . . , n, and f ∗ =
10 n√

F−1
χ2

n
(p1/10)

,

where F−1
χ2

n
denotes the inverse distribution function of a Chi-square distribution with n

degrees of freedom. When the scenarios are correlated the optimal value is unknown.
We tested a set of 8 instances, that we denote Pnorm, with dimension n = 30, by

considering 4 confidence levels p ∈ {0.8, 0.85, 0.9, 0.95} and either independent Π = I
or correlated Π = C scenarios. Results are reported in Table 4.1 and depicted in Figure 4.5.

The solvers PBMDC 2 and PBMDC2S succeeded in computing approximately global solu-
tions for the 4 independent cases within errors of 2.5%. They also obtained the best results
on the 4 correlated cases. The solver PCCP performed well too, but reached the maximum
CPU time of 900 seconds in 7 instances out of 8. In comparison, the average CPU times
of PBMDC 2 and PBMDC2S on the 8 instances were respectively 17 and 109 seconds.

Probust: A hybrid chance-constrained/robust model
Consider the problem of minimizing a linear function subject to linear constraints

Ax ≤ ξ , (4.22)

where both ξ and A are subject to uncertainty. As pointed out in [5], this setting is of
interest for instance in energy management, where x represents an energy production
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(a) objective −1/ f (x̄), mean best = 0.08 (b) CPU times, mean best = 17s
Figure 4.5: Performance profiles of 4 solvers on the 8 Pnorm instances.

schedule, and (4.22) means that one wishes to produce sufficient energy in all but the
most extreme and implausible scenarios. Knowledge of the distribution of ξ (energy
demand) is available, since its characterization has received considerable attention, while
A is related to the underlying physics of generation plants and/or to the behavior of
other generation companies, and much less information is available.

Let A = [ai]i∈I ; following [5] we will assume that the uncertainty about the coeffi-
cients matrix can be expressed in the form ai(u) = āi + Piu, where āi ∈ Rn, Pi is an n× ni
matrix, and the uncertainty set u ∈ Ui = {u ∈ Rni : ∥u∥ ≤ κi} is the ball of radius κi in
the ℓ2 norm. For the sake of notation we define U = [Ui]i∈I , and we write A(u) for u ∈ U
to mean [ai(ui)]i∈I , where ui ∈ Ui. On the other hand, ξ ∈ Rm is a random variable with
known distribution, in our setting represented by N = 104 scenarios equally probable.
We can then express our requirement under the form of the probabilistic-robust (probust)
constraint:

P [ A(u)x ≤ ξ ∀u ∈ U ] ≥ p . (4.23)
These are joint-probust constraints, which in general represents an additional source of
difficulty due to its robust structure, as they have to hold jointly for all u ∈ U . For this
particular structure, it was shown in [5] that (4.23) reduces to:

P
[

āTi x + κi

∥∥∥PT
i x
∥∥∥ ≤ ξi i ∈ I

]
≥ p,

which readily falls in the setting (5.11) with c2(x, ξ) = maxi∈I{āTi x + κi
∥∥PT

i x
∥∥− ξi}

and c1(x, ξ) ≡ 0. The problem we are willing to solve is thus

min
x∈Rn

⟨c, x⟩ s.t. P [c2(x, ξ) ≤ 0] ≥ p .

We generated 16 instances of Probust as described in [5], with n = 30, Π = |I| ∈
{10, 15, 20, 30} and p ∈ {0.8, 0.85, 0.9, 0.95}.

Once again, PBMDC 2 was systematically the best and the quickest of the 4 solvers on
these instances with an average CPU time of 164 seconds. PBMDC2S gave similar results
but it was always more than 4 times slower and reached the maximum CPU time of 900
seconds on 10 of the 16 instances.
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(a) objective −1/ f (x̄), mean best = 0.086 (b) CPU times, mean best = 164s
Figure 4.6: Performance profiles of 4 solvers on the 16 Probust instances.

Chance-constrained gas network problem
In this subsection we deal with a gas network problem from [137], whose instances are
the ones considered in [26]. In the network there are n exit nodes V = {1, . . . , n} with
random exit loads ξ = (ξ1, . . . , ξn); one injection point corresponding to the root node
(node 0); a set of pipes (directed edges) E and coefficient of the pressure drop in Φe, for
e ∈ E with e = (i, j) ⊂ V ×V. In a general setting, there are lower and upper pressure
bounds pmin

i and pmax
i to be decided. If the minimal capacities pmin

i are considered fixed,
then the problem reads as

min
pmax≥pmin

⟨c, pmax⟩ s.t. P
[
(pmax

0 )2 ≥ v0(ξ), . . . , (pmax
n )2 ≥ vn(ξ)

]
≥ p ,

where pmax is the vector of decision variables; v0(ξ) = maxi=0,...,n{(pmin
i )2 + hi(ξ)},

vi(ξ) = v0(ξ) − hi(ξ) for i = 1, . . . , n; and hi(ξ) is a function of the random vector,
pressure drop Φe, nodes and edges of the network [26, Eq. (21)]. Note that

P
[
(pmax

0 )2 ≥ v0(ξ), . . . , (pmax
n )2 ≥ vn(ξ)

]
= P

[
max

i=0,...,n
{vi(ξ)− (pmax

i )2} ≤ 0
]

,

and thus:
P
[
(pmax

0 )2 ≥ v0(ξ), . . . , (pmax
n )2 ≥ vn(ξ)

]
=

P

[
max

i=0,...,n
{(pmax

i )2 − vi(ξ)} −
n

∑
i=0

[(pmax
i )2 − vi(ξ)]

]
,

i.e., the function under the probability has an explicit DoCdecomposition. Inwhat follows
we consider the two networks of [26]: the smaller network has |V| = 4 nodes, while the
larger has |V| = 12. As in [26], we set p = 0.85 and employed N = 104 scenarios of v(ξ)
available at staff.utia.cas.cz/adam/research.html to approximate the probability
function by (5.13). The Gas entries of Table 4.1 reports the results obtained with our
two solvers PBMDC 2 and PBMDC2S based on the DoC approximations of the probability
constraints, and the results obtained when running the Matlab code of BD on the same
machine.

Solver BD did not solve the larger instance in 8 hours of processing. The function value
reported in [26, Table 3] is 3145.47. The solvers PBMDC 2 and PBMDC2Swere significantly

staff.utia.cas.cz/adam/research.html


98 CHAPTER 4

faster than BD for these instances of the chance-constrained gas network problem, and
yet the estimated optimal values are very close to the ones computed by BD; see Table 4.1.
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Table 4.1: Numerical results. The probability function (5.13) was estimated with N = 104 scenarios. CPU time limit is set to 900s for PlanToy,
Norm and Probust problems, and 8 hours for Gas problem.

Problem data f (x̄) Probability CPU (s) Iterations
Π n p f ∗ PBMDC 2 PBMDC2S SCA PCCP PBMDC 2 PBMDC2S SCA PCCP PBMDC 2 PBMDC2S SCA PCCP PBMDC 2 PBMDC2S SCA PCCP

Pl
an

To
y

-4.8 8 0.95 434.81 435.67 435.91 437.33 437.28 0.948 0.949 0.948 0.947 22 84 87 106 165 92 32 32
-4.8 8 0.90 429.30 430.09 430.88 432.24 432.22 0.899 0.900 0.900 0.900 33 90 119 138 236 99 42 43
-4.8 8 0.85 425.61 426.21 426.50 428.70 428.68 0.850 0.850 0.852 0.851 39 50 134 141 279 55 48 48
-4.8 8 0.80 422.69 422.99 422.87 425.85 425.83 0.801 0.800 0.803 0.803 55 57 143 151 403 62 50 51
0 8 0.95 434.79 436.44 436.15 437.48 437.46 0.949 0.950 0.949 0.949 21 81 94 104 158 83 31 32
0 8 0.90 429.25 431.50 429.51 432.23 432.23 0.903 0.903 0.902 0.901 23 50 130 130 176 49 43 42
0 8 0.85 425.53 425.81 425.97 428.65 428.64 0.854 0.852 0.853 0.853 40 57 136 135 301 59 46 46
0 8 0.80 422.58 422.72 423.12 425.75 425.79 0.802 0.805 0.804 0.804 35 85 156 159 258 92 55 52
4.8 8 0.95 434.57 434.85 434.87 436.82 436.83 0.950 0.951 0.948 0.948 11 116 120 133 86 124 41 39
4.8 8 0.90 428.94 429.98 430.18 431.81 431.81 0.903 0.903 0.904 0.904 22 155 128 118 164 168 45 41
4.8 8 0.85 425.14 425.97 426.57 427.94 427.94 0.854 0.854 0.854 0.854 36 44 140 148 273 47 49 50
4.8 8 0.80 422.13 422.58 422.53 424.75 424.75 0.806 0.805 0.801 0.801 37 72 147 171 258 75 53 56

No
rm

I 30 0.95 -40.984 -40.869 -40.871 -3.719 -40.286 0.950 0.950 1.000 0.966 21 153 900 862 110 122 16 137
I 30 0.90 -42.133 -41.835 -42.009 -4.100 -41.625 0.900 0.900 1.000 0.920 17 191 900 900 90 142 16 147
I 30 0.85 -42.904 -42.834 -42.834 -4.412 -42.138 0.850 0.850 1.000 0.894 16 121 900 900 86 91 16 112
I 30 0.80 -43.514 -43.423 -43.423 -4.672 -40.658 0.800 0.800 1.000 0.955 17 96 900 900 88 91 16 46
C 30 0.95 - -6.568 -6.567 -3.392 -5.355 0.950 0.950 1.000 0.993 16 75 900 900 82 75 17 146
C 30 0.90 - -6.844 -6.843 -3.509 -5.633 0.900 0.900 1.000 0.987 19 80 900 900 98 81 20 102
C 30 0.85 - -7.247 -7.248 -3.628 -5.812 0.850 0.850 1.000 0.982 16 75 900 900 82 73 23 91
C 30 0.80 - -7.773 -7.780 -3.752 -5.966 0.800 0.800 1.000 0.977 14 83 900 900 72 81 26 87

Pr
ob

us
t

10 30 0.95 - -11.470 -11.508 -7.197 -8.429 0.950 0.950 0.992 0.947 103 648 900 417 686 674 20 24
10 30 0.90 - -11.902 -11.882 -7.527 -9.857 0.900 0.900 0.979 0.923 127 726 900 890 822 758 20 145
10 30 0.85 - -12.282 -12.324 -7.779 -9.757 0.850 0.850 0.975 0.890 113 799 900 900 741 828 20 66
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10 30 0.80 - -12.635 -12.680 -7.971 -9.201 0.800 0.800 0.967 0.912 122 817 900 900 805 828 20 28
15 30 0.95 - -13.075 -13.005 -8.723 -9.669 0.950 0.950 0.988 0.941 184 900 900 351 1179 693 19 25
15 30 0.90 - -13.236 -13.085 -8.978 -11.345 0.900 0.907 0.971 0.918 210 900 900 799 1313 690 19 145
15 30 0.85 - -13.438 -13.220 -9.160 -11.426 0.850 0.861 0.962 0.875 212 900 900 842 1351 689 19 98
15 30 0.80 - -13.614 -13.322 -9.325 -10.710 0.800 0.803 0.955 0.892 216 900 900 900 1399 687 19 36
20 30 0.95 - -10.362 -10.300 -6.894 -7.510 0.950 0.950 0.987 0.953 122 900 900 281 762 690 19 16
20 30 0.90 - -10.552 -10.484 -7.114 -9.288 0.900 0.905 0.975 0.922 176 900 900 895 1102 694 19 144
20 30 0.85 - -10.691 -10.628 -7.264 -9.260 0.850 0.853 0.967 0.878 187 900 900 888 1179 701 19 90
20 30 0.80 - -10.849 -10.770 -7.402 -8.608 0.800 0.808 0.963 0.896 218 900 900 900 1369 699 19 39
30 30 0.95 - -10.737 -10.733 -7.820 -8.001 0.950 0.950 0.979 0.952 161 753 900 176 980 732 18 18
30 30 0.90 - -10.898 -10.877 -7.940 -8.306 0.900 0.901 0.962 0.931 156 900 900 338 946 886 18 39
30 30 0.85 - -11.076 -11.091 -8.035 -8.667 0.850 0.850 0.951 0.877 155 777 900 664 943 762 18 58
30 30 0.80 - -11.244 -11.215 -8.116 -9.115 0.800 0.803 0.940 0.840 161 900 900 900 976 901 18 67

Ga
s Π n p f ∗ PBMDC 2 PBMDC2S BD PBMDC 2 PBMDC2S BD PBMDC 2 PBMDC2S BD PBMDC 2 PBMDC2S BD

4 0.85 - 739.12 738.60 738.05 0.850 0.850 0.850 299 351 2422 369 220 646
12 0.85 - 3144.81 3142.42 3132.27 0.850 0.850 0.847 1066 1492 8h 720 637 -
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4.5 conclusion
We have presented in this chapter a novel convergent algorithm for DoC constrained
DoC problems (also called generalized DoC problems in some woks). Our algorithm, based
on the improvement function and existing algorithms, has the property of converging to
d-stationay or B-stationary points, which are the sharpest optimality concepts in DoC
programming. Numerical experiments show that they indeed are efficient for academic
problems. This is a first necessary step in order to tackle the OPF under uncertainties.

The next chapter will develop a missing part for our attempt to tackle an OPF under
uncertainties, namely the modelling of uncertainties. Based on our introductory elements
on DoC programming, where the universality of DoC functions is presented, there are
hopes that probabilistic functions can be DoC/be approximated by DoC functions.





Part III

Chance-constraints
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INTRODUCTION

Before proceeding to the application of PBMDC 2 to an electricity distribution problem,
some exertion is still needed on the uncertainties aspect of our work which has not yet
been rigorously addressed. Broadly speaking, uncertainties have to be understood as a
cause of breach between decisions now and determined consequences later. “Taking into
account uncertainties” in a decision-making process has become a somewhat ubiquitous
concept: thousands of research articles (literally) have both words “optimisation” and
“uncertainty” in their titles. This ubiquity comes from two concurring observations:

1. real-life problems are invariably subject to uncertain data (independently of the
application domain, this is inherent to implementation being prone to errors, or
measurement tools and techniques),

2. it is possible that a “small” change in the uncertain data leads to significant sub-
optimality/non applicability of a previously taken decision.

As a consequence, a decision-maker is naturally dragged into the subject of uncertain-
ties. Actual implementations can be on the simpler side (e.g. computing a sequence of
deterministic problems to determine a notion of sensitivity of the solution depending on
input data) or on a more detailed one in particular when uncertainties follow a known
probability distribution (e.g. stochastic programming applied to energy or natural re-
sources management are good examples of applied domains where one can encounter
more refined approaches of uncertainties). This already vast variety of techniques that
fold under “optimisation that account for uncertainties” can grow even bigger depend-
ing on what qualifies as an “optimisation technique”. To clarify on such techniques, we
emphasize we are interested in optimisation methodologies that, for a given optimization
problem, provide a point and an associated certificate of quality. Such a certificate stems
from convergence analyses, and takes the form of global/local optimality, or weaker defi-
nitions of criticality/stationarity as detailed in Part II. Following this definition, heuristic
methods (such as simulated annealing, genetic algorithms, tabu searches) are out of the
scope of this work.

Now from this optimisation standpoint, we are faced with the following type of
problem for which we ought to give a meaning:

min
x∈X

f (x, ξ)

c(x, ξ) ≤ 0
(4.24)

with X an abstract appropriate set, functions f , c respectively are real-valued and valued
in a real vector space, and ξ is a parameter. Assuming that ξ is deterministic, (4.24) is a
deterministic problem and the subsequent steps are to classify it along the usual criteria
linear/non-linear, convex/nonconvex, continuous/integers, smooth/nonsmooth. Now, assuming
that ξ is a random vector, (4.24) is meaningless as it is, and frameworks for optimisation
under uncertainties are precisely aimed at providing a meaning. As pointed out, a first
technique could be to approximate the random variable by a single deterministic value,
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say by E [ξ]. The initial problem (4.24) thus becomes:

min
x∈X

f (x, E [ξ])

c(x, E [ξ]) ≤ 0
(4.25)

This model (sometimes referred to as the “deterministic counterpart”) is not satisfactory
in general, mainly due to the fact it does not account for the variance/extremal values of
the random variables which makes its solutions not robust, i.e., prone to sub-optimality
gaps in case the uncertainty realisation is not equal to its mean - see for instance the
example in [289, Section 1.1.3].

One can broadly divide optimisation problems with uncertainties according to which
step, of the decision or the observation of uncertainty, comes first. In case the latter comes
first, i.e. the decision can be postponed to after the observation of uncertainty, solving
such a problem amounts to solving a set of deterministic optimisation. The question at
hand is to find:

f̂ (ξ) =min
x∈X

f (x, ξ)

c(x, ξ) ≤ 0.
(4.26)

The forthcoming challenges lie in the study of the optimal value f̂ as a function of
the uncertainty parameter ξ. This setting is referred to sensitivity analysis, and is one way
of taking uncertainties into account as described in [48].

When the decision, or at least one of the decisions, has to be taken prior to observing
uncertainty, there are two usual methodologies, each of them with different assumptions
and complementary objectives. We here provide broad descriptions of them, and refer
to [48, 252] for more details. The shared key elements between these methodologies is
that they provide a setting where we have tools to properly define feasibility and optimality
properties for given decision vectors.

• The first methodology is Robust Optimisation: here knowledge of the uncertainty
set Ξ ∋ ξ is assumed, but more precise information on the “randomness” of ξ is not
necessary. As described in the thorough and didactic reference [48], in its simplest
form this paradigm associates an uncertain optimisation problem with a robust
counterpart. This association is usually done using min−max operations over the
set of uncertainties Ξ aiming at obtaining a computationally tractable, and this
time meaningful, problem. From a modelling/interpretation standpoint, the core
principle of this paradigm is safety: this decision criteria then makes it possible to
give a meaning to the uncertainties and how to deal with them. Often viewed as
“the worst-case scenario approach”, this optimisation framework provides com-
plementary modelling and solving methods to the stochastic paradigm. A very
general mathematical formulation of a robust counterpart in this framework could
be the following:

min
x,t∈X×R

{t : f (x, ξ) ≤ t, c(x, ξ) ≤ 0 ∀ξ ∈ Ξ} (4.27)

Solving an optimisation problem within the Robust Optimisation framework can
be broadly summarized, at a “first order approximation”, as providing to the user
a solution to (4.27).
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• The second one is Stochastic Optimisation: here the main assumption (which is
not necessary for the other approaches) is the a priori knowledge of the “type
of randomness”. This amounts to know/define probability laws for the random
variables, which then makes it possible to develop mathematical programming
models. Chance-constraints constitute as subfield of stochastic optimisation, just as
the expectation violation penalty approach where the expected value of violation
is minimized. Recent works are looking into “bridging” the gap between a robust
and a stochastic approach: a first example is the hybrid robust/chance-constrained
approach of [5]. A second example can be found in [101, 100] where the authors
propose a framework allowing only partial knowledge of the class of probability
distribution. This second example, which is often referred to as ambiguous extension
to a stochastic setting wherein the probabilistic model is itself unknown, is further
developed in the didactic book [238].

Generally speaking, Stochastic optimisation can be qualified as “less-conservative”
than the Robust framework; one should keep an acute mind and critical opinion on
framework comparisons. The paradigm selection is a multi-dimensional decision: it is
dependent on the available data, prior knowledge of the problem, available solvers /
solving techniques, question to answer, own position on uncertainties, type of constraints
and type of guarantee expected (is the guarantee expected to be robust or probabilistic?).

We have chosen to look into the stochastic setting, and started more particularly
to study CC (Chance-Constraint). We will discuss the rationale and interest of such a
modelling tool, before moving on technicalities. In this second phase, we will discuss the
eventual DoC structure of chance-constraints, and provide DoC approximations. We will
conclude with a more in-depth analysis of these constraints to derive a characterization
of their subdifferentials in a more general case than what is encountered in literature.





RÉSUMÉ EN FRANÇAIS

Avant de passer à l’application de PBMDC 2 à un problème de distribution d’électricité, il
est nécessaire de travailler sur l’aspect incertain de notre travail, lequel n’a pas encore
été abordé de manière rigoureuse. De manière générale, les incertitudes doivent être
comprises comme une rupture entre les décisions maintenant (now) et les conséquences
déterminées plus tard (then). La “prise en compte des incertitudes” dans un processus dé-
cisionnel est devenue un concept quasi-omniprésent : il existe (littéralement) des milliers
d’articles de recherche dont le titre comprend les mots “optimisation” et “incertitude”
dans leur titre. Cette quasi-omniprésence provient notamment des deux observations
suivantes :

1. les problèmes de la vie réelle sont invariablement soumis à des données incertaines
(indépendamment du domaine d’application, ceci est inhérent à la mise en œuvre
sujette à des erreurs, ou aux outils et techniques de mesure),

2. il est possible qu’un “petit” changement dans les données incertaines conduise à une
sous-optimalité significative/non applicabilité d’une décision prise précédemment.

En conséquence, le sujet des incertitudes s’impose naturellement à un décideur ou
une décideuse. Les implémentations réelles peuvent être plus simples (par exemple, le
traitement des incertitudes peut se résumer au calcul d’une séquence de problèmes déter-
ministes pour déterminer une notion de sensibilité de la solution en fonction des données
d’entrée) ou plus détaillées, en particulier lorsque les incertitudes suivent une distri-
bution de probabilité connue (par exemple, la programmation stochastique appliquée
à la gestion de l’énergie ou des ressources naturelles est un bon exemple de domaines
appliqués où l’on peut rencontrer des approches plus raffinées des incertitudes). Ce vaste
ensemble d’optimisation “prenant en compte les incertitudes” s’accroît encore dépen-
demment de ce que l’on qualifie de “technique d’optimisation”. Pour clarifier ce dernier
point, nous soulignons que nous nous intéressons aux méthodologies d’optimisation qui,
pour un problème d’optimisation donné, fournissent un point et un certificat d’optimalité
associé. Un tel certificat provient d’analyses de convergence, et prend la forme de optimal-
ité globale/optimalité locale, ou des définitions plus faibles de criticalité/stationnarité comme
détaillé dans la partie II. Suivant cette définition, les méthodes heuristiques (telles que le
recuit simulé, les algorithmes génétiques, la recherche tabou) ne sont pas considérées
dans ce travail.

D’un point de vue générique, nous sommes confrontés au type de problème suivant
pour lequel nous devrions donner un sens :

min
x∈X

f (x, ξ)

c(x, ξ) ≤ 0
(4.28)

avec X un ensemble approprié, les fonctions f , c sont à valeur réelle et évaluées dans un
espace vectoriel réel, et ξ est un paramètre. En supposant que ξ est déterministe, (4.28) est
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un problème déterministe. Pour le résoudre, il s’agit premièrement de classifier le prob-
lème selon les critères habituels suivants : linéaire/non-linéaire, convexe/non-convexe, con-
tinu/intégral, lissé/non-lissé. A présent, en supposant que ξ est un vecteur aléatoire, (4.28)
n’a pas de sens en l’état : il n’est pas possible d’interpréter ce problème tel quel. Les cadres
d’optimisation sous incertitudes visent précisément à fournir un sens à (4.28). Comme
souligné, une première technique pourrait consister à approximer la variable aléatoire
par une seule valeur déterministe, disons par exemple E [ξ]. Le problème initial (4.28)
devient alors :

min
x∈X

f (x, E [ξ])

c(x, E [ξ]) ≤ 0
(4.29)

Ce modèle (parfois appelé “contrepartie déterministe” ou deterministic counterpart) n’est
pas satisfaisant en générale, principalement parce qu’il ne tient pas compte de la variance
ni des valeurs extrêmes des variables aléatoires. Ceci rend ses solutions non robustes, c’est-
à-dire sujettes à des écarts de sous-optimalité dans le cas où la réalisation de l’incertitude
n’est pas égale à sa moyenne - voir par exemple l’exemple dans [289, Section 1.1.3].

On peut globalement diviser les problèmes d’optimisation avec incertitudes selon
quelle étape vient en premier, à savoir la décision ou l’observation de l’incertitude. Dans le
cas où cette dernière vient en premier, i.e. la décision peut être reportée après l’observation
de l’incertitude, la résolution d’un tel problème revient à résoudre un ensemble de
problèmes d’optimisations déterministes. Il s’agit alors de trouver :

f̂ (ξ) =min
x∈X

f (x, ξ)

c(x, ξ) ≤ 0,
(4.30)

où ξ prend la valeur de l’observation. Les défis dans ce cas sont dans l’étude de la
valeur optimale f̂ en fonction du paramètre d’incertitude ξ. Ce paramètre est appelé
analyse de sensibilité, et constitue une façon de prendre en compte les incertitudes comme
décrit dans [48].

Lorsque la décision, ou aumoins l’une des décisions, doit être prise avant l’observation
de l’incertitude, il existe deux méthodologies principales, chacune d’entre elles compor-
tant des hypothèses différentes et des objectifs complémentaires. Nous en donnons ici
une description générale, et nous renvoyons à [48, 252] pour plus de détails. L’élément
clé de ces méthodologies est qu’elles fournissent un cadre dans lequel nous disposons
d’outils pour définir correctement les propriétés de faisabilité et d’optimalité pour des
décisions données.

• La premièreméthodologie est l’optimisation robuste : ici, nous supposons connaître
l’ensemble Ξ ∋ ξ, sans avoir besoin d’informations plus précises sur le caractère
“aléatoire” de ξ. Comme décrit de façon approfondie dans la référence [48], dans
sa forme la plus simple ce paradigme associe un problème d’optimisation incer-
tain à un problème robuste. Cette association est généralement réalisée à l’aide
d’opérations min−max sur l’ensemble des incertitudes Ξ dans le but d’obtenir un
problème résolvable en temps acceptable. Souvent considéré comme “l’approche
par le pire des scénarios”, ce cadre d’optimisation fournit desméthodes demodélisa-
tion et de résolution complémentaires au paradigme stochastique. Une formulation
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mathématique très générale d’une contrepartie robuste dans ce cadre pourrait être
la suivante :

min
x,t∈X×R

{t : f (x, ξ) ≤ t, (̧x, ξ) ≤ 0 ∀ξ ∈ Ξ} (4.31)

La résolution d’un problème d’optimisation dans le cadre de l’optimisation robuste
peut être résumée de manière générale, à une “approximation de premier ordre”,
comme fournissant à l’utilisateur une solution à (4.31).

• La seconde est l’optimisation stochastique : ici, la principale hypothèse (qui n’est
pas nécessaire pour les autres approches) est la connaissance a priori du ”type
d’aléa”. Cela revient à connaître/définir des lois de probabilité pour les variables
aléatoires, ce qui permet ensuite de développer des méthodes de programmation
mathématique. L’optimisation avec contraintes probabilité (chance-constraint pro-
gramming) constitue un sous-domaine de l’optimisation stochastique. Des travaux
récents cherchent à “combler” le fossé entre une approche robuste et une approche
stochastique : un premier exemple est l’approche hybride robust/chance constraint
de [5]. Un deuxième exemple peut être trouvé dans [101, 100] où les auteurs pro-
posent un cadre d’optimisation où seule une connaissance partielle de la classe
de distribution de probabilité est nécessaire. Ce deuxième exemple est développé
dans le livre didactique [238].

D’une manière générale, l’optimisation stochastique peut être qualifiée de “moins
conservatrice” que le cadre robuste ; il convient de maintenir une opinion critique sur
les comparaisons de ces deux paradigmes. Le choix du paradigme est une décision
multidimensionnelle : il dépend des données disponibles, de la connaissance préalable
duproblème, des solveurs / techniques de résolution disponibles, de la question à laquelle
il faut répondre, de sa connaissance des incertitudes à traiter, du type de contraintes et
du type de garantie attendue (la garantie doit-elle être robuste ou probabiliste ?).

Nous avons choisi de nous intéresser au cadre stochastique, et plus particulièrement
aux CC (Chance-Constraint). Nous discuterons de l’intérêt d’un tel outil de modélisation,
avant de passer aux aspects techniques. Dans cette deuxième phase, nous discuterons de
l’éventuelle structure DoC des contraintes de chance, et fournirons des approximations
DoC. Nous conclurons par une analyse variationnelle de ces contraintes en étudiant leurs
sous-différentiels dans un cas plus général que celui rencontré dans la littérature. Cette
dernière partie est d’une portée dépassant l’application visée par ce travail.





A CONVENIENT BUT CHALLENGING
MODELLING TOOL

55.1 notations, assumptions and terminology
We start by recalling some basic terminology as an attempt to maintain clarity in techni-
calities. We are interested in functions of the form P [c(x, ξ) ≤ 0] which are to be defined
in the following sections. Studying continuous probabilities unveiled several concepts
shared but not similarly defined between some authors, or others referred to by different
names.

Preliminary tools and recalls on probability-related
material
In order to formally define random variables, we appropriately equip ourselves with a
probability space (Ξ,A, P). Ξ is the sample space, A a σ-algebra defined on Ξ and P a
probability measure. The combination of a sample space and a σ-algebra of subsets of
the sample space canonically defines a measurable space.

We recall that measures, here denoted µ, are maps defined on (Ξ,A) with values
in R+ ∪ {∞}. They are σ-additive1 (for any disjoint sets (Ai)i∈[1,n] ∈ An, µ(

⋃n
k=1 Ak) =

∑n
k=1 µ(Ak)) and indeed positive (i.e. µ(A) ≥ 0, ∀A ∈ A). A measure is said to be a

probability measure if moreover it verifies a norming assumption, namely µ(Ξ) = 1.
A function α between two measurable spaces (Ξ,A) and (Ξ2,A2) is measurable (with
respect to A,A2) if: A ∈ A2 =⇒ α−1(A) ∈ A.

A random vector2 ξ is any measurable mapping defined from (Ξ,A, P) to a measur-
able space Ξ2,A2. The function F defined by F(x) = P [ξ ≤ x] is called the (cumulative)
probability distribution function of ξ3. F can be “abusively” overloaded as Fξ to empha-
size to which random variable is related the distribution function. As a matter of fact F, as
every probability distribution function by definition, is non-decreasing, right-continuous,
defined on the real line and verifies F(−∞) = 0, as well as the norming condition F(∞) =

1. If A ∈ A2, then {ξ ∈ A} = ξ−1A ∈ A, and the following chain of equalities helps us
define the law µξ of the random variable ξ: P [ξ ∈ A] = P

[
ξ−1A

]
= (P ◦ ξ−1)A = µξ(A),

for all A ∈ A2. One can verify that µξ is a probability measure on (Ξ2,A2). For clarity
within this terminology, in the unidimensional case the law and the distribution function
of a random variable ξ are related to each other as follows: Fξ(x) = µξ{(−∞, x]}. From
now on, for simplicity reasons, we drop the formal use of curly brackets and leave the dis-
tinction between law and distribution function to the context. A thorough and complete
introduction to this formalism is to be found in [107]. Moving on other notions related
to a random vector of size m, the mean of ξ is denoted m = E[ξ] = (E[ξi])i∈[1,m] with
1 σ-additivity is also called “complete additivity” in literature, which is synonymous.
2 ξ is usually referred to as “random variable” when Ξ2 = R, the term “vector” being used if Ξ2 = Rm

and m > 1.
3 The adjective cumulative is sometimes omitted by some authors.
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by definition E[ξi] =
∫

Ξ ξi(ω)dP(ω), ∀i ∈ [1, m] while its covariance matrix is denoted
Σ = (E[(ξi −mi)(ξ j −mj)])(i,j)∈[1,m]2 .

In an attempt to keep our arguments crisp, we here leave aside a special case that
could be deemed “pathological” in our context: we assume our random variables have
their expectations properly defined (i.e. the defining integrals do exist). We recall that
when Fξ is absolutely continuous with respect to a chosen measure µ (e.g. the Lebesgue
measure) if there exists a density function f such that F(A) = P [X ∈ A] =

∫
A f (x)µ{dx}

for all set A. On top of this definition, we recall the Radon-Nikodym theorem [107, p.
140] that is concerned with the existence of this density function:
Theorem 8 (Radon-Nikodym theorem). The probability distribution Fξ is absolutely
continuous with respect to µ if, and only if, Fξ(A) = 0 whenever µ(A) = 0, ∀A ∈ A. ◀

Additional elements on terminology
We now recall two different types of structural properties of random variables, that often
constitute salient points of works in literature.

• Firstly, studies in the stochastic field can evidently be categorized according towhich
class is assumed for the random variables. A class defines additional properties
verified by its elements, which in general give access to reformulation, or more
assumptions on the probability distribution function. For instance, in our work we
are interested in the class of elliptical symmetric random variables which appears
to be promising (see definition 10). It provides us with a useful reformulation of
this random vector into an expression of elements with stronger properties (namely
a radial unidimensional probability distribution and a uniform distribution on
a sphere). Other subclasses include notably the multivariate Gaussian random
variable, already well studied and widespread. An influential and general class of
probability distribution functions is the quasi-concave one: a complete introduction
to this class can be found in [245] by the author who first introduced it.

• Secondly, another significant structural attribute in literature is on the non-degenerate
and singular properties of distributions. Formally speaking, we recall the definition
of degeneracy:
Definition 6 (Degeneracy, see Chapter III Sections 5-6 of [107]). The probability
distribution F is degenerate if it is concentrated on a manifold of lower dimension
than the dimension of the manifold in which it is considered. •

At the end of Chapter III, Section 5 of this reference it is proved that if the covariance
matrix is positive definite, then the probability distribution function F is non-
degenerate.
Among practical consequences of non-degeneracy is (i) the random variable does
not reduce to a constant (i.e. no singleton is assigned probability 1, which notably
excludes the Dirac distribution), (ii) associated to these distribution functions, are
density functions which explicit form can be found for instance in [245, Section
4.4] for the Gaussian distribution. This last consequence is to be related with the
introduction to this chapter, and namely the Radon-Nikodym theorem. We also
provide a formal definition for singular probability distributions:
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Definition 7 (Singularity, see Definition V.3.3a of [107]). The probability distribu-
tion F is singular with respect to a measure (e.g. the Lebesgue measure) µ if it is
concentrated on a set R such that µ(R) = 0. •

It appears in literature that the different concepts (i) singular covariance matrix,
(ii) singular probability distribution, (iii) degenerate probability distribution are
interchangeable (while not explicitly defined, this is implicitly understood for
instance in [146, Section 2]). To clarify these notions, we settle on an unifying
proper definition from [107, Chapter III Sections 6], [147, 146]:
Definition 8. Let η be a m2-dimensional random vector, A ∈ Mm1,m2(R), and
b ∈ Rm1 such that ξ = Aη + b. The element ξ is consequently a m1-dimensional
vector, which distribution is said to be degenerate in m1 dimension if m1 > m2. If
m1 ≤ m2, it is non-degenerate provided that rank(A) = m1. •

Again, singularity has to be understood as a special case that contradicts Theorem 8.

Remark 6. Some articles in literature interestingly discuss why singular random
variables actually stand out, especially those dealing with networks where stochas-
tic demands at some nodes are observed, as gas networks. In such problems, one
“small” random non-degenerate vector ξ of size m can model uncertainties (typi-
cally m can be the number of nodes), while the constraint set can make appear the
value η = Aξ + b with a given matrix A ∈ Mw,m(R) and vector b ∈ Rw. The new
element η is a random variable of its own, and if A is of rank strictly lower than
m (which happens de facto if k < m) then it is a singular random variable (see the
introductory parts of [147, 6] for instance). It is thus clear that singularity naturally
arises in stochastic problems. ▷

Notations used throughout this part
Here are some additional notation:

• In our case, the sample space Ξ2 (in which our random variables denoted ξ are
valued) is assumed to be Rm and the σ-algebra A2 is the one of Borel sets in Rm.

• The decision variable, usually denoted x, is in Rn.

• We will refer to c : Rn ×Rm 7→ Rd as the operand (the function on which the
probabilistic operation is applied).

• The safety parameter is a user-given parameter pwhich defines a level of acceptable
risk and verifies p ∈ [0, 1].

• Throughout the chapter, i is an index and I is a given finite index set.
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5.2 preliminary elements on probabilistic func-
tions

The first chapter outlines the interest of CC from a modelling point of view. Let φ be
defined as follows:

φ : Rn → [0, 1]

x 7→ P [c(x, ξ) ≤ 0] ,
(5.1)

where c is continuous map from Rn ×Rm to Rd, and ξ is a multivariate random vector
in Rm. The function φ is qualified as probabilistic. An optimisation problem is chance-
constrained when it involves this function φ and takes as an input a user-given safety
parameter denoted p. Such a constraint can consequently be written as:

φ(x) ≥ p. (5.2)

The interpretation of a decision vector x ∈ Rn verifying (5.2) is as follows: the
probability of observing c(x, ξ) ≤ 0 is greater that p ∈ [0, 1]. In practise, p is often
chosen close to one of its boundaries: in an electrical distribution context, one can for
instance request that power transit on lines be lower that a given upper-bound with a
probability set to 0.95 or 0.99. Let us briefly discuss of the special cases where p = 1 or
p = 0: in the latter, constraint (5.2) has no impact on the feasible set of the optimisation
problem at hand, and should be excluded from the optimisation model. In the former
case, φ(x) ≥ 1 becomes φ(x) = 1 by definition and in fact states that the user requests
that a constraint be verified independently of the realisation of the random variable.
It becomes visible that only the support of the random variable is significant, and the
probability distribution function of ξ is irrelevant: this matches the robust framework
rather than the chance-constrained one. As a consequence, we can assume p ∈ (0, 1)
without loss of generality.

We also introduce the feasible set as follows:

M f := {x ∈ Rn | φ(x) ≥ p}. (5.3)

Note that, following some authors as R. Henrion, this set M f is parametrized by p; one
could therefore rather use the notation M f (p) which we omit for simplicity.
Interestingly, another set worth studying (which sometimes shares the same notation in
literature) is the following:

M(x) := {z ∈ Rm | c(x, z) ≤ 0}. (5.4)

This set then allows us to write the chance-constraint (5.2) as P [ξ ∈ M(x)] ≥ p. This
reformulation, taking a “set-theoretic” point of view, will turn out to be particularly
fruitful for the variational studies of the upcoming developments (see in particular
Chapter 6).

Following the definition of the mapping c, we introduce the set of functions (ci)i∈I
as c’s coordinate-functions. A chance-constraint can be qualified as individual or joint
depending on the localisation of the quantifier ∀:



5.2. PRELIMINARY ELEMENTS ON PROBABILISTIC FUNCTIONS 117

Joint chance constraint P [ci(x, ξ) ≤ 0, ∀i ∈ I ] ≥ p.
Individual chance constraint P [ci(x, ξ) ≤ 0] ≥ p, ∀i ∈ I .

Table 5.1: Different types of chance-constraints.

5.2.1 Brief historical overview
As briefly discussed in the Introduction to this Part, uncertainties are among the most
trending topics in optimisation, but a clear description on how we consider them is yet
to be given. Recalling that our upcoming interest lies in a priori decision analysis for
the electrical distribution domain, we look for decisions to be made prior to observing
uncertainty while the output (i.e. the combination of our decision and the uncertainty)
becomes known only a posteriori.

To that end, CC is a popular modelling tool albeit a challenging mathematical ob-
ject to study. This is easily seen in the wide variety of active research domains, energy
being among the most intensive one (see [25, 291, 22]). Usual energy subfields involve
unit-commitments or economic dispatch problems references [241], electrical network
planning [300, 171], wind energy management [36], water dam management [23], gas
networks [137, 135, 144], while [94] studies the application of CC to energy-related
markets. More generally, studies on chance-constrained network design find numer-
ous applications as in telecommunication or power transmission [264]. Mathematical
finance also is a very active application to chance-constraints, as these class of constraints
relate well to the concept of Value-at-Risk (VaR). A brief standard search of applica-
tions of chance-constraints immediately yields numerous other fields 4 and we suggest
that the interested reader turn to [127] for a recent monograph on chance-constrained
programming.

Taking a step back, CC are usually dated back to a 1958 article [75], which is a work
on individual chance-constraints for an oil management/scheduling problem where
the inputs and sales of oil at each time step are assumed to be random with a know
distribution function. The main contribution was the introduction of chance-constraints,
while the resolution method was a tailored sequence of approximations. Propositions of
chance-constrained models grew more numerous with, for example, [165] where the
authors present an interesting alternative objective function to the expected value of
random variables, or [205] which introduces joint chance constraints (though random
variables are assumed to be independent). Key elements in these pioneering works
included the reformulation (possibly with approximations, as first order Taylor’s ex-
pansions of involved functions) of chance-constrained programs into non-linear but
convex problems. Major contributions are then credited to Andras Prékopa, which are
mostly included in the large reference [245]. Among groundbreaking works compiled in
that book, let us point out some advances pushed by its author as (i) the study of joint
chance-constraints with dependency (see [243]), (ii) development of efficient points and
associated resolutionmethods (see [88, 188, 12]), (iii) convexity and duality properties of
chance-constrained problems (see [89, 87]). A brief notwithstanding thorough overview
4 As an illustration of the variety of domain, here is a list of applications easily encountered in literature:

water quality management, air traffic flowmanagement, blood supply chain optimisation, optimisation
of chemicals processes, job scheduling, autonomous vehicle control, irrigation planning
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of the subject including a discussion of critics, difficulties, theoretical cornerstones and
algorithmic key-points can be found in the recent article [13].

We will briefly describe the usual structures of chance-constraints that are found
in literature and leave the interested reader to [237, Chapters I-II] and the classic refer-
ence [244].

Insert 5: A debate on chance-constrained programming framework as a
mean to provide decision analysis under uncertainty.
On a historical side, chance-constrained programming interestingly led to clashes,
even extending on somewhat more philosophical grounds. R. Blau presented what
appeared to a “dilemma” using the chance-constraint framework in [54]: in his
example it appeared that the expected value of perfect information was lower
than the expected value of sample information, and moreover both are negative.
This counter-intuitive result led to arguments during the following decades on the
usefulness of chance-constraints as a framework that could make efficient use of
available information to the decision maker: numerous suggestions were made to
change the chance-constrained setting to “stochastic programming with recourse”,
“Linear Programming under uncertainty” or others. Central to this issue was a
modelling question: is chance-constrained programming adequate to provide
decision analysis in an uncertain environment? As a consequence, arguments are
focussed on “expected value of information”, and confront chance-constrained
programming to another decision theory, namely the Bayesian Decision Theory.
Following works, notably led by A. Charnes, R. Jagannathan on the one hand, A.
Hogan, I. LaValle on the other hand, argued on this expected value of information,
how chance-constraint programming behaves when information quality improves,
and how solving a chance-constrained program could yield equivalent solution
sets when compared to solving a well-chosen “bayesian fashion” problem (cited
from [181]). Reference [216] provides a rather broad overview of this long debate.
Nowadays there still are debates on decision theories, for instance between the
stochastic and robust ones, but their relevance is not questioned and complemen-
tarity is well recognized. It is clear that these theories are tools that provide limited
results, which will turn out to be wrong with probability one, and selecting one
rather than the other is mostly motivated by (i) the a priori available informa-
tion, (ii) the available resources to solve a problem, (iii) the rules expected to be
followed by the output.

5.2.2 Some theoretical properties of probabilistic
functions

The popularity of probabilistic constraints brought some flourishing studies on their
variational and structural properties. We will summarize in this subsection the elements
related to these two subjects. Far from being exhaustive, we will refer to some works that
detail the technicalities while remaining on the superficial aspects. Let us stress out that
without any additional assumptions, the probabilistic function φ as defined in (5.1) and
its associated feasible set M f defined in (5.3) enjoy no particular properties. We here
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introduce the definition of separable probabilistic functions which has a significant impact
of the derived properties of these functions.
Definition 9 (Separable function). A function c : Rn ×Rm 7→ Rd is separable if there
exists functions c̃ and ĉ such that

c(x, ξ) = c̃(x)− ĉ(ξ), ∀x ∈ Rn, ξ ∈ Rm. (5.5)

Usual definition also implicitly define ĉ as a “nice” function, namely the identity or a
linear function. •

Remark 7. Definition 9 merely states that we can separate the decision variable from the
random one. It is to be related to the structural aspects of chance-constrained program-
ming studied in the introductory work by R. Henrion [145]. This separation property
is interesting: let us consider φ as defined in (5.1), and c(x, ξ) = ξ − c̃(x) for some ap-
propriate function c̃. Using the distribution function Fξ(a) := P [ξ ≤ a] for our random
variable ξ, we may write (modulo a sign function) φ(x) = Fξ(c̃(x)). We thus have more
tools at hand to derive some properties of the probabilistic function. ▷

Remark 8. Individual chance-constraints with usual random distributions can actually
be written as deterministic problems:

P [ci(x)− ξi ≤ 0] ≥ p ⇐⇒ ci(x) ≥ p-quantile of ξi. (5.6)

One might wonder what is lost when considering individual chance-constraints opposed
to joint ones: this is answered in [288] where the authors compare the solutions to
a water management problem with uncertainties modelled by two-sided separable
chance-constraints. It turns out treating the probabilistic individually allows for simpler
numerical methods but the solution is deemed less “robust”. In other words, over their
set of 100 generated scenarios, they looked at how many of them are actually violated
at (at least) one time step: as expected, the individual chance-constraints proposed a
solution that violates 68 scenarios, compared to 10 scenarios in the joint case. ▷

These properties are particularly dependent on the separability assumption. The
rationale lies in the reformulation allowed when separability is verified presented in
remark 7. Properties of the operand function c as well as the class of the random variable
ξ are significant when studying the properties of φ.

General properties
Under the (reasonable) assumption that the family (ci)i∈I only contains upper-semi-
continuous functions and that I is finite, φ is upper-semicontinuous and M f as defined
in (5.3) is closed. Continuity of the probabilistic function is not evident, and only ensured
with additional assumptions. In the particular case where:

• every functions ci is continuous,

• and P [ci(x, ξ) = 0] = 0, ∀x ∈ Rn, ∀i ∈ I ,

then φ is continuous. Continuity of φ, and another somewhat related result that also
ensures continuity of φ are to be found in [13, Section 2].
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Example 2 (Pathological examples where continuity fails). To make continuity fail in the
separable case, one should produce a function where there exist a i ∈ I that does not
verify P [ci(x, ξ) = 0] = 0, ∀x ∈ Rn. A “classic” way to set up such a pathological case
(see [13, Example 2.1]) is to include a deterministic coordinate-function in the operand.
Let, for instance, ξ be an elliptical symmetric random variable, c be defined on R×R

with c(x, ξ) = x. As such, we obtain:

φ(x) = P [c(x, ξ) ≤ 0] =

0 if x > 0

1 if x ≤ 0.
(5.7)

Observe that we have a trivial function c, linear in both arguments and separable.
Discontinuity in the nonseparable case seems to be found in more diverse cases

when compared to the separable case, for which we do not know any other “simple” wit
to produce the desired result. Let us define c as c(x, ξ) = max(ξ, x), and set ξ to be a
Gaussian random variable, say ξ ∼ N (0, 1). We then obtain:

φ(x) =

0.5 if x ≤ 0,

0 if x > 0.
(5.8)

φ, again, clearly is discontinuous. ▶

A take-away on continuity of probabilistic functions should be that this property can
be expected in practise.

Variational properties
As expected, more assumptions are needed to study variational properties of probabilistic
functions. “First-order” information is important for probabilistic functions when one
wants to rely on the vast and efficient literature of non-linear programming when solving
a chance-constrained optimisation problem.

Broadly speaking, one could classify the historical studies on differentiability into
two somewhat different approaches. The first one makes little to no use of specific prop-
erties of ξ (as its class), and rather proposes results on differentiation that consequently
are more general in terms of random variables. These methods are generally based on
multiple integral of density functions, one example of which can be found [201]. Within
this framework, which main results are summarized in [13, Section 2.2], it appears that
the numerical implementation necessary to obtain partial derivatives of the probabilistic
function, let alone verify that all required assumptions are met, is not generally acces-
sible (see [245, Section 6.6.4], and more recent works [14, 13]). Moreover it appears
that compactness of the set M(x) (see (5.4)) is often assumed, which turns out to be
rather restrictive for random variables without compact support (see [15, p. 4] where
the author provide a broad list of references relying on this assumption). A trivial ex-
ample of non-differentiability even in a favourable case (the operand is continuously
differentiable) is provided in [15, Proposition 2.2]: the authors there prove that from
continuity property (which is obtained in relatively general cases) to differentiability
of probabilistic functions, simply adding the differentiability of the operand function
is not sufficient and compactness of M(x) turns out to be a key assumption. They also
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paved the way for a set of special conditions (namely growth conditions imposed on
either partial derivatives of the operand as in [25, 15, 14, 19, 142], or on some density
function appearing in the decomposition of the random variable as will be discussed
in Chapter 6, that is a summary of [17]) on probabilistic functions that can provide
(general) differentiability information, while not requiring compactness of M(x). Within
our artificial distinction, this falls into the second type of approach, which investigates
a another side of the trade-off between few assumptions on the random variables, and
implementation practicality.

Variational studies of probabilistic functions now consequently become a “case-by-
case” process, with significant impact factors being the class of random variable, the
properties verified by the operand function and its structure (separable or not, generally).
The objective here is to leverage properties verified by more specific operands or random
variables. In order to derive some (sub-)differential properties, in particular in the sense
of Clarke, one has to verify some stronger regularity properties than mere continuity.
Local Lipschitz continuity is one of these stronger regularity proprieties. We recall that
the famed Theorem of Rademacher states that Lipschitzian continuity of a function f
implies differentiability almost everywhere on an open subset of the space where f is
defined (see [82, Theorem 2.5.1]).

A. Prékopa proved smoothness of the non-degenerate probability distribution func-
tion of multivariate Gaussian random vectors in [245, Section 6.6.4]. As a consequence,
when c is separable (see Definition 9), this property holds for equation (5.1) and the
same reference provides a practical formulation of partial derivatives of the probability
distribution function. It turns out these partial derivatives are dependent on functional
evaluation of other Gaussian distribution functions in lower dimensions, which is compu-
tationally interesting - this is described as a “reduction”. In [147], for random variables
with quasi-concave probability distribution function5, two major results are proposed.
Firstly, the distribution function of quasi-concave random vectors is proved to be locally
Lipschitzian if and only if none of the component ξi, i ∈ [1, m] has zero variance (see [147,
Theorem 2.2]). When applied to the following form:

φ(x) = P [Aξ − c̃(x) ≤ 0] , with c̃ locally Lipschitzian, (5.9)

this implies that φ is itself locally Lipschitzian provided that none of the rows of A
is in Ker Σ (see [147, Corollary 2.2]). The second important result builds upon this
Lipschitz continuity, and proves smoothness of the probability distribution function even
in the singular case, except on a set of zero-measure. When in (5.9), A turns out to be a
function of x and ξ is multivariate Gaussian, differentiability results are proved in [11]
which also includes a detailed numerical scheme to follow for computational results.
Interestingly, the computation of functional values of φ and of its gradient ∇φ is boiled
down to evaluation of Gaussian distribution functions, thus paving the way for efficient
implementation using existing code. In [146], the authors study a case similar to (5.9)
where c̃ = Id, for a (possibly singular, this time) multivariate Gaussian random vector ξ.
Provided that the rows of A are linearly independent, φ is continuously differentiable:
the main take-away of [146] is the (now proved) ability to have a generalized-linear
5 This set of random vectors is relatively wide and includes the multivariate Gaussian singular or

nondegenerate, uniform distributions over compact, convex subsets of Rm,. . . a more comprehensive
list is found in this article.
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ĉ functions in a separable operant, which was only allowed for non-degenerate linear
transformation in [245]. Again, the authors propose a gradient formulation that solely
relies on functional values of the original probabilistic function and density values of
one-dimensional Gaussian distributions. This is often referred to as a “reduction”, and
this particular one is valid everywhere except on a set of zero measure. An extension that
accounts for these sets is proposed in [6]: for a multivariate (possibly singular) Gaussian
vector, assuming c̃ is differentiable, the probabilistic function (5.9) is locally Lipschitzian
(which was already known) and an explicit formula for Clarke subdifferentials is readily
available everywhere. Although Gaussian and Gaussian-like distributions receives most
of the attention, it is worth noting that in a separable setting, [138] provides an efficient
numerical methods for the computation of functional values and partial derivatives for
Dirichlet distributions.

In the more general setting:

φ(x) = P [c(x, ξ) ≤ 0] , (5.10)

the authors of [15] are able to prove strong local properties. At a given decision point
x̄, assuming that c : Rn ×Rm → R is continuously differentiable, convex relatively to
its second argument and verifies a growth condition at x̄, and taking ξ as a standard
multivariate Gaussian vector, φ is proved to be continuously differentiable on a neigh-
bourhood of x̄. An explicit formulation of its gradient is provided, as well as easy to
verify conditions that ensure that c(x̄, 0) < 0 (see Proposition 3.11 of this reference).
Finally, these results are expanded to “Gaussian like” distributions (that include χ2 and
log-normal distributions) multivariate Student’s distributions in [15, Section 4]. A direct
extension of this latter work, in [19] is studied second-order differentiability in the same
setting, with an involved but explicit formula for the Hessian of φ. Building upon this
chain of works, in reference [14] the authors characterize the Clarke subdifferential of a
probabilistic function by explicitly defining an including set. Aside from assumptions
now becoming classic in literature (continuous differentiability of c, convexity relatively
to the second argument, a certain growth condition for each coordinate function of c,
and a “Slater” constraint qualification that imposes strict validity of c(x̄,m) < 0 at the
point of interest x̄), [14, Theorem 3.6] provides this characterization as well as an explicit
gradient formula. The assumption of continuous differentiability of the operand c is
later weakened to Lipschitzian continuity of c in [142], where the authors investigate
a setting similar to [14]. Still assuming continuous differentiability of c, in [4] the au-
thors weaken the Gaussian assumption to extend the results of [14] to a broader class of
random variables, namely the elliptical symmetric ones (the other assumptions being
identical). Leaving aside the “finite” setting, it is worth noting that recent works are
interested in probabilistic functions of the form P [ct(ξ, x) ≤ 0, ∀t ∈ T] with T being a
given index set, possibly arbitrary as [21]. This latter work embraces a wide setting,
wherein ξ belongs the class of elliptically symmetrically distributed random variables
and c is again continuously differentiable, convex relatively to its second argument. Char-
acterizations of several subdifferentials (Clarke, and more general ones) which provides
a strong theoretical framework for (relatively to literature) nonrestrictive assumptions.
On a theoretical basis, it can be seen as an natural extension of several pioneering works,
as [14, 4, 142].
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Cases where convexity is proved
When studying convexity, the separability assumption (see definition 9) also plays a key
role: one could divide convexity-related studies between results on the separable case,
and the (yet more scarce) results on nonseparable one.

Similarly to continuity and differentiability properties, convexity has long been stud-
ied. In fact, in [243] studied convexity/concavity of probability distribution functions
for multivariate non-degenerate Gaussian variables. In particular, for the bivariate case,
quasi-concavity of the joint probability distribution function with correlation coefficient
r, i.e. Fξ1,ξ2(x1, x2, r), is proved for r ≥ 0, x1 ≥ 0, x2 ≥ 0 and concavity of Fξ1,ξ2(x1, x2, r)
as a function of either x1 or x2 is proved if −1 < r ≤ 0. As a consequence, convexity
results for the set {(x1, x2), | Fξ1,ξ2(x1, x2, r) ≥ p} follow, with lower bounds provided
on p for this to hold.

In a more general setting, as convexity turns out to be verified only in (very) specific
settings, some “neighbouring” properties were introduced which are equally desirable.
First of all, log-concavity has been proposed byA. Prékopa [242]. In this article, the author
investigates the logarithmically concave probability distribution function, which turns
out to be verified for several classic random variables. Taking an opposite point of view,
the rationale of log-concavity, when in a separable setting, is as follows: knowing that
P [c̃(x) ≥ ξ] ≥ p ⇐⇒ Fξ(c̃(x)) ≥ p, is there a function α that could yield Fξ(c̃(x)) ≥
p ⇐⇒ −α ◦ Fξ(c̃(x)) ≤ −α(p) such that −α ◦ Fξ is convex ? Benefits from the existence
of such an α for a given random variable ξ would be significant: one could use elements
of convex optimisation, and have stronger optimality guarantees on the solution point of
an appropriately designed algorithm. One can immediately see that α should either be
increasing and lead to α ◦ Fξ concave, or decreasing and lead to α ◦ Fξ convex. Setting
α = log is interesting, as it is relatively easy to verify most of classic distributions happen
to have a concave composition α ◦ Fξ : in [242, Section 5], the multivariate Gaussian,
Wishart, Beta, Dirichlet are proved to be log-concave (more log-concave distributions
are to be found in [39]).

As a result from the pioneering work of A. Prékopa, it is now well-known that the
feasible set M f (recall (5.3)) is convex for any p ∈ [0, 1], provided that ξ is such that:

• it has a density fξ , which is log-concave,

• the operand is separable, of the form c(x, ξ) = Aξ − c̃(x), and c̃ is concave.

Convexity of the feasible set in a nonseparable setting can be found in [148], where it is
dependent on the value of p; moreover, compacity of M f is also proved, evidently with a
condition on p.

Convexity-related property of the probabilistic function itself is studied in the de-
tailed reference [245]. In Theorem 10.2.1 of this reference, provided that all coordinate
functions of the operand are quasi-concave as functions of both variables, that ξ has a log-
concave density, then φ is proved to be logconcave in Rn. Other closely related results are
presented in Chapter 10 of this reference. A brief historical account on convexity is found
in the first Chapter of [237]. while [18] proposes a thorough literature review on convex-
ity studies of probabilistic functions and/or feasible sets. For an elliptical symmetrical
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random vector6, reasonable assumptions on the operand (namely lower-semicontinuity
and convexity with respect to its first variable), the feasible set M f is convex for p “large
enough”. As previously discussed, the results presented in [18] on convexity is obtained
by assuming specific, not particularly restrictive, properties hold for both the class of
random variable and the operand.

Moreover, the recent work [18] provides an overview of cases where convexity of
the feasible set holds. It can be seen as an extension of works on quasi-concavity and
log-concavity, as the authors propose a concept of α-concavity which is a generalized
concavity concept that includes the two previously stated generalized concavity prop-
erties. This new concept interestingly defines tight assumptions on the properties of
the random variable that ensure convexity of the feasible set of the chance-constraint.
Remaining and future challenges are then discussed. For instance, current results prove
convexity of M f provided that p is above an explicit threshold: is there “some convexity”
to obtain even if p is lower than the threshold?

5.2.3 Numerical methods to deal with probabilistic
constraints

The development of complex models using chance-constraints has motivated thrilling
works, and paved the way for exciting research both on the algorithmic/numeric side
and the theoretical one. Although we will taking a nonlinear programming point of view,
i.e. studying the variational properties of probabilistic functions, we briefly point out the
existing numerical methods. First of all, let us stress that even computing a functional
value can be difficult: computing a value φ(x) (with φ as in (5.1)) often requires a
multidimensional integration. In general, no analytical formulation of φ is available, so
this task is a case-by-case matter. A brief overview of numerical method to compute the
value of probabilistic functions can be found in [124, Section 1.2].

Here is a subset of existing numerical methods in literature: a detailed presentation
of these is beyond the scope of this work, and we refer to a handful of selected references
for more details on each of them.

Sample-average approximation
The rationale in such an approach is to approximate the expectation of a random variable
by the mean of a user-generated independent samples. A classic reference to Sample-
average approximation is [232]: in this work the authors replace the distribution at hand
in the probabilistic function by a user-generated distribution comprised of a random
sample. Proposition 2.2 of this article proves that as the random sample size increases,
the sets of optimal solutions and the optimal values of the SAA-problem converge to
the sets of optimal solutions and the optimal values of the original chance-constrained
problem. The necessary assumptions seem to be reasonable, namely that the objective
and function under the probability measure sign have some continuity properties, and a
type of constraint qualification holds (see Assumption (A) therein).
6 More precisely, results are proven when ξ belongs to a subset of this class of random vector. Efficient

numerical methods to very the belonging to this subset are provided, so that the results are readily
implementable.
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Scenario approximation
This approach is also sample based, as is the sample-average one, but differs in that the
ambition is not to approximate the expected value of random variables. As described
in the didactic and classic article [63], after having generated N independent samples,
the scenario-approximated chance-constrained problem is set up by replacing the proba-
bilistic constraints by a set of N constraints, where each one is obtained by setting the
random variables to the associated scenario values. This approach is more general than
the probabilistic setting and was, in fact, initially applied to semi-infinite convex program-
ming (i.e. one has finite number of variables, but an infinite number of constraints). Note
that a lower-bound on the number of scenarios N is provided in [63], depending on the
safety parameter p.

Boolean approaches
This class of methodologies is relatively recent, first introduced in 2012 and extended by
the same author and his co-authors in [189]. In this work, a reformulation framework
is provided: a chance-constrained problem is casted as MINLP. Two reformulations are
presented, and a key element is that the number of binary variables introduced is not
increasing in the number of scenarios considered. The reformulated problem at hand
is still a difficult one to solve as it is non-convex quadratic with integer variables. The
authors nevertheless are able to provide numerical results on real-life network-related
problems with up to 10.000 scenarios (and interestingly only a 25% increase of CPU time
between 5.000 and 10.000 scenarios). It appears that this approach is successful when the
size of the random vector, m, is “relatively” small (in practise: less than a few dozens).
When m increases, the number of integer variables increases and this approach becomes
numerically ineffective.

Mixing with robust optimisation
Seeking to combine the computational tractability of robust optimisation while main-
taining a less conservative standpoint, the authors of [302] provide a list of robust
approximations of a chance-constrained problem where the uncertainty sets include
only a subset of all possible outcomes. In other words, some extreme scenarios are left
out, which number is determined by the safety parameter p of the original probabilistic
constraint.

Convex approximation
Convexity in chance-constrained programming is a large subdomain: in [245] is recalled
a result on log-concave distribution. Aside from the detailed reference [245], a summary
on convexity properties of probabilistic constraints is to be found in [237, Section 1.1].

Convex property is not sufficient to ensure an efficient solving technique, one also
requires a capable computational tool for the probability at hand: convex approximations
are thus useful in this matter. In [218] the authors derive a class of convex, explicit,
and tractable approximations of the probabilistic constraint, deemed as “conservative”.
They provide an approximation of P [c(x, ξ) ≤ 0] ≥ p, with possibly non-separability
of c but still some structural assumptions, by a constraint of the form d(x, t) ≤ 0 with
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t a parameter and d a convex function defined on an appropriate set. In this class of
approximations, a duple x, u verifying the latter implies that x verifies the former (this
implication is the reason why the convex approximations are qualified as conservative).
Their method is interesting in that it is analytical (i.e. not scenario based) and expands the
allowed structural assumptions on functions and distributions at hand, which previously
were more on restrictive.

5.3 difference-of-convex approximations of chance-
constraints

In this section, we are concerned with chance-constrained optimization problems of the
form  min

x∈X
f1(x)− f2(x)

s.t. P [lb ≤ c2(x, ξ)− c1(x, ξ) ≤ ub] ≥ p ,
(5.11)

where c2, c1 : Rn × Ξ → R are convex functions w.r.t argument x. The bounds lb ∈
R∪ {−∞} and ub ∈ R are given parameters, and ξ ∈ Ξ is a random vector following a
known probability distribution. Parameter p ∈ (0, 1) is a confidence level: the constraint
lb ≤ c2(x, ξ)− c1(x, ξ) ≤ ubmust be satisfied with probability at least p. Note that the
constraint of (5.11) fits (3.8) with M(ξ) := {x ∈ Rn : lb ≤ c2(x, ξ)− c1(x, ξ) ≤ ub}.

5.3.1 DoC formulation via approximation of the char-
acteristic function

In this section, we consider a DoC approximation of the probability function. We follow
the lead of [153] and extend the approach therein to handle intervals [lb, ub] under the
probability function. Different from [153], one of our DoC approximations is smooth
provided that c2 and c1 are smooth functions with respect to x. Suppose the random
vector ξ follows a continuous probability distribution, and assume that a model/soft-
ware is available for generating independent and identically distributed scenarios of ξ.
Let c(x, ξ) := c2(x, ξ)− c1(x, ξ). The probability function P [lb ≤ c(x, ξ) ≤ ub] can be
alternatively written as

E[1[lb, ub](c(x, ξ))], with 1[lb, ub](z) =

{
1 if z ∈ [lb, ub]

0 otherwise,

where E[·] is the expected value operator of the random vector ξ w.r.t. the probability
measure P. The discontinuous characteristic function 1[lb, ub](·) can be approximated by
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the following continuous one, with t > 0 a given small parameter:

ζt(z) :=



0 if z ≤ lb− t

z+t−lb
t if lb− t ≤ z ≤ lb

1 if lb < z ≤ ub

−z+t+ub
t if ub < z ≤ ub+ t

0 if ub+ t < z.

(5.12)

The above is nothing other than a DoC function: for z = c(x, ξ) we get

ζt(c(x, ξ)) =
max{c(x, ξ) + t, lb}

t
+

max{c(x, ξ)− t, ub}
t

−
[

max{c(x, ξ), lb}
t

+
max{c(x, ξ), ub}

t

]
.

Note that the four terms above are themselves DoC functions:

max{c(x, ξ) + t, lb} = max{c2(x, ξ) + t, c1(x, ξ) + lb} − c1(x, ξ)

−max{c(x, ξ), lb} = −max{c2(x, ξ), c1(x, ξ) + lb}+ c1(x, ξ)

max{c(x, ξ)− t, ub} = max{c2(x, ξ)− t, c1(x, ξ) + ub} − c1(x, ξ)

−max{c(x, ξ), ub} = −max{c2(x, ξ), c1(x, ξ) + ub}+ c1(x, ξ) .

By summing these four equalities and dividing by t we get

ζt(c(x, ξ)) =
max{c2(x, ξ) + t, c1(x, ξ) + lb}

t
+

max{c2(x, ξ)− t, c1(x, ξ) + ub}
t

−
[

max{c2(x, ξ), c1(x, ξ) + lb}
t

+
max{c2(x, ξ), c1(x, ξ) + ub}

t

]
.

The above is a nonsmooth DoC approximation of the function 1[lb, ub](c(x, ξ)). A smooth
one ζt

s is readily available by replacing max{a, b} with a smooth and convex function,
e.g.,

st(a, b) := max{a u1 + b u2 −
t
2

d(u) | u ∈ R2
+, u1 + u2 = 1},

with d : R2 → R+ a differentiable function. Classical choices for d are d(u) = ∑i ui ln(ui)

and d(u) = ∥u∥2. In this first alternative, the smooth function st(a, b) has a closed form
(but may suffer from numerical issues due to scaling). In the second, efficient algorithms
for projecting a vector onto a simplex are available in the literature. Given st, provided
c2 and c1 are smooth functions, we can approximate ζt(c(x, ξ)) with the smooth DoC
function ζt

s(c(x, ξ)) = 1
t (ψ

t
1(x, ξ)− ψt

2(x, ξ)) of components:

ψt
1(x, ξ) := st(c2(x, ξ) + t, c1(x, ξ) + lb) + st(c2(x, ξ)− t, c1(x, ξ) + ub),

ψt
2(x, ξ) := st(c2(x, ξ), c1(x, ξ) + lb) + st(c2(x, ξ), c1(x, ξ) + ub).

Note that assessing the gradient of ζt
s(c(x, ξ)) amounts to computing the gradient of

st(a, b). We present the gradient expression for the case a = c2(x, ξ) + t and b = c1(x, ξ) +
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lb (the gradients for the other cases follow analogously). Under the assumption that
c2 and c1 are smooth as functions of x, d(·) = ∥·∥2, and letting u⋆ be the projection of
1
t [c2(x, ξ) + t, c1(x, ξ) + lb] onto the simplex {u ∈ R2

+, u1 + u2 = 1}, the gradient gt of st

at (c2(x, ξ), c1(x, ξ)) is gt := [∇xc2(x, ξ),∇xc1(x, ξ)]⊤u⋆. This is the formula considered
in our numerical experiments.

Figure 5.1 illustrates the smooth DoC function ζt
s for two different values of t. Note

that the smaller is t, the better is the approximation of 1[lb, ub](·).

Figure 5.1: Illustration of the smooth DoC function approximating 1[−2, 3](z).

Given thisDoCdecomposition, the probability function in (5.11) can be approximated
by

P [lb ≤ c(x, ξ) ≤ ub] = E[1[lb, ub](c(x, ξ))]

≈ E[ζt
s(c(x, ξ))]

= E[ψt
1(x, ξ)]/t−E[ψt

2(x, ξ)]/t.

(5.13)

The expectation E[·] can be efficiently approximated via Monte-Carlo simulation by con-
sidering a fixed sample of scenarios randomly generated according to the distribution of ξ.
In our numerical experimentswe randomly generate a sample of N scenarios {ξ1, . . . , ξN}
and estimate the convex functions E[ψt

1(x, ξ)] and E[ψt
2(x, ξ)] by their sample average

approximations (SAA). Once the sample of scenarios is available, the estimations are
easily computed. This allows us to employ large samples (N ≥ 10 000) and, due to the
Law of Large Numbers, to get reliable estimators for the expected values. Accordingly,
problem (5.11) fits formulation (3.7) with

c1(x) :=
1
N

N

∑
i=1

[ψt
2(x, ξ j)] + t p and c2(x) :=

1
N

N

∑
i=1

[ψt
1(x, ξ j)] . (5.14)

We point out that if c(x, ξ) is smooth w.r.t x, then c1 and c2 are smooth convex functions.
If in addition f2 is smooth, then Algorithm 1 applied to our reformulation of the chance-
constrained problem (5.11) computes a B-stationary point (because (5.11) easily satisfies
a CQ if p < 1).
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5.4 difference-of-convex property of a subclass

of probabilistic functions
For this section, we assume that φ(x) = P [c1(x, ξ)− c2(x, ξ) ≤ 0] with ξ a random
variable, c1, c2 are convex functions of there first component defined on Rn ×Rm with
values in Rd.

Proving the DoC property of φ is not trivial, and indeed this is not true in general:
in Example 2 we clearly have DoC operands for which the associated φ is discontinuous,
and consequently not DoC. We present here the original result showing that φ is in fact
DoC provided that a list of assumptions is verified. Before presenting this result, some
preliminary tools are necessary.

5.4.1 Preliminary elements for the DoC property of
CCs

We start by recalling that φ is properly defined because c = c1 − c2 is a DoC function, it
is thus locally-Lipschitz and consequently a Baire function7. Then by [107, Theorem IV.4
p.117], for a given x ∈ Rn c(x, ξ) is a random vector thus measurable in our probability
space, which implies the correct definition of P [c(x, ξ) ≤ 0] for all x.

We then define a structure for the random variable ξ, and follow the lead of recent
literature by assuming that it is elliptically symmetrically distributed. This class of random
variables is an extension of the multivariate Gaussian distributions. For an extensive
study on spherical and elliptical symmetric random variables, we refer to [104].
Definition 10 (Spherical and Elliptical symmetric distributions). We say that a random
vector ξ ∈ Rm has a spherically symmetric distribution if for every orthogonal matrix
Γ ∈ Om(R):

Γξ = ξ.

We say that the random vector ξ ∈ Rm is elliptically symmetrically distributed with
mean m, covariance-like matrix Σ if:

ξ = m+ A′y, y is spherically distributed. (5.15)
•

Remark 9. In definition 10, the sign “=” is to be understood as equality in terms of
distributions: let x, y be two random vectors, then “x = y” exactly means both vectors
have the same distribution. ▷

Remark 10. In Definition 10, Σ is not the exact covariance matrix of ξ. As detailed in [104,
Theorem 2.17], there is a scalar factor between Σ and Cov(ξ). ▷

An immediate and precious property that will be useful is the following:
Lemma 4 (see page 32 of [104] or, for example, p.6 of [18]). Let ξ ∈ Rm be elliptically
symmetrically distributed, and rank(Σ) = d. Then ξ has the following representation:

ξ = m+RLζ, (5.16)
7 Basically speaking, it belongs to the smallest class of functions that contains all continuous functions:

see [107, p.106].
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with:

• L ∈ Md,m(R) such that Σ = LLT.

• R a univariate random variable with support in R+ (which density, when it exists,
is explicitly known and to be found in [104, Theorem 2.9]).

• ζ is a random vector with a uniform distribution over the Euclidean d-dimensional
unit sphere Sd−1 := {z ∈ Rd : ∑d

i=1 z2
i = 1}.

• ζ andR are independent random variables.

This representation is called the radial-spherical representation. ◀

Note that this representation enables us to “decompose” a relatively general type of
random variable into elements with stronger properties. This leads to a key argument
for future developments which is the new formulation of the probabilistic function
P [ξ ∈ M] (see Insert 6 for an associated geometric interpretation).

Reformulation of a chance-constraint in the elliptical case
Going back to φ(x) and using the set M(x) previously introduced, we obtain: φ(x) =
P [ξ ∈ M(x)], with M(x) = {z ∈ Rm | c1(x, z)− c2(x, z) ≤ 0}. It is a Lebesgue measur-
able set in Rm. From Lemma 4, we can rewrite φ at a given x ∈ Rn as:

φ(x) =
∫

v∈Sk−1
µR ({r ≥ 0 : m+ rLv ∩M(x) ̸= 0}) dµζ .

This is obtained directly from definitions. Under some additional assumptions on
x 7→ M(x), an enriched formulation is available in literature, which we recall here for
clarity:
Theorem 9 ([18, Theorem 2.1]). Let ξ ∈ Rm be an elliptical random vector with mean m.
Let x ∈ Rn be such that c1(x,m)− c2(x,m) ≤ 0. Assume furthermore that:

c1(x,m+ λ(z−m))− c2(x,m+ λ(z−m)) ≤ 0, ∀λ ∈ [0, 1] (5.17)

holds for all z such that c1(x, z)− c2(x, z) ≤ 0. Then the probability function φ satisfies

φ(x) =
∫

v∈Sm−1
FR(ρ(x, v))dµζ(v) (5.18)

where the mapping ρ : Rn × Sm−1 → [−∞, ∞], called ray function, is defined by:

ρ(x, v) :=

supt≥0 t

s.t. c1(x,m+ tLv)− c2(x,m+ tLv) ≤ 0.
(5.19)

◀

Condition (5.17) is referred to a “star-shaped” set: it states that fromm ∈ Rm, for every
z ∈ Rm every segment [m, z] should be feasible for the constraint c1(x, ·)− c2(x, ·) ≤ 0.
One can immediately observe that every convex set is star-shaped, and the reverse does
not hold (see Example).
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Example 3. We here provide a graphical example, for a “star-shaped-nonconvex” valued
mapping x 7→ M(x). We consider x̄ ∈ Rn to be such that: c1(x̄,m)− c2(x̄,m) < 0. By
continuity, we can find a neighbourhood of x̄ on which this strict inequality is verified,
and we select two points in it denoted x1, x2.

M(x1)
M(x2)

m

Figure 5.2: Example of star shaped non convex mapping, in the neighbourhood of a
point where c(x, ξ) < 0.

▶
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Insert 6: Geometric interpretation of the radial-spherical representation.
From Lemma 4, we can derive the following somewhat enlightening geometric
interpretation. Let us consider the following function:

P [ξ ∈ M] =
∫

v∈Sm−1
µR ({r ≥ 0 : m+ rLv ∩M ̸= 0}) dµζ

with M a polyhedron in Rm. Now, broadly speaking, the computation of this
probability value amounts to summing every intersections between the set M and
a segment fromm, in direction v and of length r > 0 a. In a two dimensional space,
here is a visualisation with an arbitrary set M which is here presented as bounded
for convenience:

m

S

v1

v2

M

Figure 5.3: Geometric visualisation of the spherical-radial decomposition.

In this figure, the circle S is the sphere of unit radius, v1 and v2 are two “aim-
ing directions” belonging to S, and the dark line in M is the set which measure
contributes to the computation of the aforementioned probability value. In this
example M is depicted as bounded, which is not required.
a This is a superficial and inexact description as, for instance, it does not account for matrix L.

Nevertheless we still believe that this leap proposes an easy to understand geometric interpre-
tation that can help to grasp more intuitive feeling on the importance and significance of the
radial-spherical representation

Remark 11. This class of distribution is not in fact of any particular limitations: as de-
scribed in [176, Section 2], the multivariate-Gaussian, -Student-t, -logistic, -exponential
power families are all included in the symmetric elliptic one. ▷
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5.4.2 Chance-constraints with DoC functions
With this preliminary elements in hand, we now turn our attention to the CC of interest
(see equation (5.2)). The following theorem is a direct combination of theorem 9 and
DoC preserving operations.
Theorem 10 (DoC property of CC functions). Let ξ be an elliptically symmetrically
distributed random variable which mean is denoted m and φ be defined as follows:

φ(x) = P [c1(x, ξ)− c2(x, ξ) ≤ 0] . (5.20)

Let us moreover assume:

1. c1 is convex and c2 concave in their respective second argument;

2. FR is in C2(R+);

3. x → ρ(x, v) is DoC for all v ∈ Sm−1;

4. x is such that c1(x,m)− c2(x,m) ≤ 0.

Then x → φ(x) is a DoC function. ◀

Proof. The proof is largely based on the formulation obtained in Theorem 9 and DoC
preserving operations that are described in [285, Corollary 4.2] and [229]. Note that
the star-shape requirement of 5.17 is directly obtained from item 1. With all of our
assumptions, we have on the one hand:

φ(x) =
∫

v∈Sm−1
FR (ρ(x, v)) dµζ(v).

And on the other hand we know that x → FR(ρ(x, v)) is DoC for all v ∈ Sm−1 by [285,
Corollary 4.2]. As a consequence, φ being the integral over a bounded set of a DoC
function, it is DoC.

Comments on the assumptions of Theorem 10
We start by stressing that assumption 4 from theorem 10 should not be considered as a
limitation: it merely states that our decisions x should be feasible for the mean vector m.
This is the case when considering a CC as in (5.2) with a safety parameter p that verifies
p > 1

2 .
Assumption 1 on the respective convexity and concavity of c1, c2 as functions of their

second arguments ensures that reformulation (5.18), which is true as soon as M(x) is
star-shaped, is verified. Evidently, this assumption is sufficient: one could replace it by
assuming M(x) is start-shaped for every x of a selected set.

Assumptions 2 and 3 of Theorem 10 can appear to be particularly restrictive: in
particular, asking for FR to be C2 is not trivial. A slightly less restrictive alternative is to
replace the assumption of FR being C2 by the following one: FR is DoC. This is merely
thanks to [285, Proposition 4.4] which, similarly to the Corollary used in the proof, states
that every composition of DoC function also is DoC provided that some easily verified
assumptions are met (for instance, the domains and image sets of the functions have to
be convex).
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Finally, we care to emphasize that Theorem 10 has indirectly proven that φ is contin-
uous (which is to be expected, as it has been proven it is a DoC function). To verify this
claim, we need to invoke [13, Theorem 2.2]:
Theorem 11 (Thm 2.2 from [13]). Let c : Rn ×Rm → Rk be a continuous mapping and
assume that the following regularity condition holds for all x ∈ Rn, j = 1, . . . , k:

P
[
cj(x, ξ) = 0

]
= 0, (5.21)

then the probability function φ(x) = P [c(x, ξ) ≤ 0] is continuous at any x ∈ Rn. ◀

As discussed in in [13, p. 590], for the regularity condition (5.21) to hold, one way is
to ensure the following two conditions:

• ξ has a density with respect to the Lebesgue measure;

• {z ∈ Rm : c(x, z) = 0} is a Lebesgue null set. This last condition holds whenever c
is convex in its second argument, and admits a Slater point.

One can observe that the firs item is verified in our case. For the second item, as we
assume that m ∈ int (M(x)), we have: c1(x,m)− c2(x,m) < 0. In other words, m is a
Slater point. From the assumptions of Theorem 10, it is clear that function c1− c2 is convex
in its second argument: we conclude that the regularity (5.21) condition is verified. As a
consequence, we have verified that φ is continuous, as expected.

5.5 conclusion
We have recalled in this Chapter some elements of probability theory in order to prop-
erly introduce chance-constraints. Interestingly, chance-constraints are DoC functions
although we do not have an explicit formulation; there exist a DoC approximation of
chance-constraints, which we use in Part IV where we introduce our jointly chance-
constrained OPF. We care to emphasize that this methodology is only one possibility:
the following Chapter is yet another proof that other methodologies are possible.



MORE IN-DEPTH ANALYSIS OF
VARIATIONAL PROPERTIES OF CC

6This chapter is based on the work [17] that has been accepted for publication. We here
provide an overview of this work, while leaving large parts of the technicalities to the
original work: our motivation is to show that they are other works to deal with jointly-
chance-constrained OPF and we leave numerical results for future works.

Until now, we have presented two practical implementable approximations DoC
approximations of CC, and provided a more theoretical result on the (exact) DoC prop-
erty of these functions. Based on a dense and remarkably continuous corpus, we move
on to present some variational properties on the a particular case of the probability
function φ. This work has been started by Wim van Ackooij and Pedro Pérez-Aros, and
builds on some of their previous works as well as others by András Prékopa [241, 245],
René Henrion [146], Jérôme Malick [106] and their co-authors. Following this stream of
works, the probabilistic function φ is studied from a variational point of view. Among the
practical interests of these theoretical work is to apply these in an approximate projected
subgradient method, an example of which is provided in Appendix C.

Assumption 1. In this section,wewill work on the following special case of the probability
function φ:

φ : Rn → [0, 1]

x 7→ P

ξ ∈
ℓ⋃

j=1

Mj(x)

 .
(6.1)

where Mj(x) = {z ∈ Rm : Aj(x)z ≤ bj(x)}, Aj, bj respectively being a continuous matrix-
and vector-valued maps. ξ is still assumed to be an elliptical symmetric random variable,
and ℓ < ∞.

We will investigate the (sub)differential/generalized differential properties of (6.1).
As a matter of fact, this assumption is relatively nonrestricting. Observe that in Assump-
tion 1 we impose some simplifications for this difficult problem. First of all, we are in
a separable case: we believe this assumption to be reasonable as it is commonly made
in literature. Secondly, we impose the including set to be defined by a finite-union of
polyhedra. The interest of this particular case can be found in examples example 4.
Example 4. Let us consider the following situation g : Rn ×Rm → R where g admits the
following representation

g(x, z) = g1(x, z)− g2(x, z), (6.2)
where g1 and g2 verify:

g1(x, z) = max
i=1,...,ℓ1

{
ai

1(x) +
〈

si
1(x), z

〉}
, (6.3)

135
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and
g2(x, z) = max

j=1,...,ℓ2

{
aj

2(x) +
〈

sj
2(x), z

〉}
, (6.4)

for appropriate scalar and vector valued functions x 7→ ai
k(x), x 7→ si

k(x), i = 1, . . . , ℓk,
k = 1, 2. Note that these functions clearly are DoC as function of their second arguments.

Now the original constraint g(x, z) ≤ 0 can be re-written as:

min
j=1,...,ℓ2

max
i=1,...,ℓ1

ai
1(x) +

〈
si

1(x), z
〉
− aj

2(x)−
〈

sj
2(x), z

〉
≤ 0, (6.5)

or when introducing, for j = 1, . . . , ℓ2, the set-valued maps Mj : Rn ⇒ Rm defined as:

Mj(x) :=
{

z ∈ Rm : (si
1(x)− sj

2(x))Tz ≤ aj
2(x)− ai

1(x), i = 1, . . . , ℓ1

}
(6.6)

it becomes clear that {z ∈ Rm : g(x, z) ≤ 0} =
⋃ℓ2

j=1 Mj(x): a finite union of polyhedra.
It thus holds that

P [g(x, ξ) ≤ 0] := P

ξ ∈
ℓ2⋃

j=1

Mj(x)

 ,

which is exactly the structure we will investigate in this work. ▶

We also require the following definition for this chapter.
Definition 11 (First-order polynomial growth condition). Let ξ ∈ Rm be elliptically
symmetrically distributed with associated radial density function fR : R+ → R+. Then
we say that ξ or fR is compatible with the first order polynomial growth condition if and
only if:

lim
r→∞

fR(r)r2 = 0. (6.7)
•

Remark 12. The table 1 in [4] provides a large family of radial distributions compatible
with this first order polynomial growth condition. When ξ is multivariate Gaussian
random, the condition is satisfied. It also holds for multi-variate Student random vectors
ξ, whenever the related degrees of freedom ν is larger than 1. ▷

Definition 11 turns out to be an additional assumption for our results in this Chapter. It
can be related to another assumption that is found in literature,where someworks assume
their random variables have compact (thus bounded) support (see [15, p. 4]). This last
assumption is rather restrictive: the case where the set M(x) = {z ∈ Rm : g(x, z) ≤ 0} is
unbounded is discarded under this assumption. Using Definition 11, it is possible to drop
the boundedness assumption on M(x) at a given x ∈ Rn. For an elliptically symmetrically
distributed random variable ξ, compatibility with the first order polynomial growth
condition makes it possible to control the growth of the first partial derivative of g
with respect to x: this latter control is found under the name polynomial growth condition
(note that compatibility is dropped) in [4] for instance. The key elements to relate both
definitions lie in the polynomial structure in x of the operand of equation (6.1) and [4,
Lemma 6].

The importance of the first-order growth condition is highlighted in [15, Definition
3.6], and discussed in [4, Section 3]. An example that highlights the necessity of the
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first order polynomial growth condition is provided in [15, Proposition 2.2]. First-order
growth condition turns out to be a necessary assumption throughout this Chapter.

The main question to investigate is “how does φ behave locally?”, and to characterize
these variations we will look at its Clarke subdifferential ∂Cφ(x). We recall that in a
general setting, φ is not DoC let alone convex, nor is it yet locally Lipschitz. Our approach
is based on space partition, and rigorous analysis of the behaviour of the function at
hand on each partition. From these analyses we are able to:

• prove that φ is locally-Lipschitz, and consequently define its Clarke subdifferential
∂Cφ;

• propose an inclusion of its subdifferential in an explicitly defined set;

• present practical results for computational-friendly implementation.

6.1 representation of the probability function
with the spherical-radial decomposition

We recall that by Lemma 4, for any Lebesgue measurable set M ⊆ Rm the following
identity holds:

P [ξ ∈ M] =
∫

v∈Sm−1

µR ({r ≥ 0 : m+ rLv ∩M ̸= ∅}) dµζ(v), (6.8)

with µR and µζ are the laws of R and ζ, respectively. Therefore, in particular for any
j = 1, . . . , ℓ, it follows that

P
[
ξ ∈ Mj(x)

]
=

∫
v∈Sm−1

µR
(
{r ≥ 0 : r(Aj(x)Lv) ≤ (bj(x)− Aj(x)m)}

)
dµζ(v), (6.9)

and consequently (6.1) can be written in the following form:

φ(x) =
∫

v∈Sm−1

µR
(
{r ≥ 0 : ∃j = 1, . . . , ℓ : r(Aj(x)Lv) ≤ (bj(x)− Aj(x)m)}

)
dµζ(v).

(6.10)
There is an immediate keen advantage to representation (6.10) when it comes to nu-
merical evaluation. As observed (e.g., [15, eq. (1.5)]), representation (6.10) allows for a
reduction in sample variance when compared directly with sampling from the “native"
representation (6.1).

6.2 the single polyhedron case
In this submitted work, we first look into the case where ℓ = 1, i.e. a single polyhedron is
at hand, before moving onmultiple polyhedra. Recall that a polyhedron is an intersection
of half spaces, and having ℓ > 0 amounts to studying unions of intersections.
The probabilistic function equation (6.1) becomes in this case:

g(x, z) = A(x)z− b(x),
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and ξ elliptical symmetric. From preliminary elements of Chapter chapter 5, we know
the following subcases are already treated in literature:

• the study of φ’ subdifferential around a point x̄ that verifies g(x̄,m) < 0.

• The subcase with constant A and b.

• The subcase with A(x̄) of full-rank

As a consequence, our interest lies in the subcase where g(x,m) < 0 does not hold,
which means that the mean point m is outside of the feasible set.

6.2.1 Set partitioning and intuition on irregulari-
ties

Let us consider the following setting, with a single polyhedron M(x) at hand:

M(x)

m

S

v1

v2

v3

Figure 6.1: Geometric example of the computation of φ as an integral.

When looking at a single row ai(x̄) of A(x̄) that defines polyhedron M(x̄), several
different cases arise:

• the mean vector m can be on one side or the other of the half space defined by
ai(x). It cannot, following our assumption that g(x̄,m) < 0 does not hold, be in the
polyhedron defined by the intersection of all half-space ai(x̄).

• a half-ray v of S can either aim to “exit” the half-space, or oppositely, to “enter” the
half space
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By continuity, we can define a neighbourhood U of x̄ on which ai(x)Tm > bi(x)
holds true. Following reformulation (6.9) and the geometric interpretation, we study
the intersections of m+ rLv and M(x) on U:

{r ≥ 0 : gi(x,m+ rLv) ≤ 0} =
[

bi(x)− ai(x)Tm
ai(x)TLv

, ∞
)

, (6.11)

for all v ∈ S for which ai(x)TLv < 0. For all v ∈ S, with ai(x)TLv ≥ 0, it holds that
{r ≥ 0 : gi(x,m+ rLv) ≤ 0} = ∅. Now should we be given a neighbourhood U of x̄ on
which, for x ∈ U, ai(x)Tm < bi(x) holds true, then

{r ≥ 0 : gi(x,m+ rLv) ≤ 0} =
[

0,
bi(x)− ai(x)Tm

ai(x)TLv

]
, (6.12)

for all v ∈ S for which ai(x)TLv > 0. Finally, for all v ∈ S, with ai(x)TLv ≤ 0, it holds
that {r ≥ 0 : gi(x,m+ rLv) ≤ 0} = [0, ∞).

All those facts are immediately checked through standard inequality simplifications.
Let us lay down formally our trial point of interest:

Assumption 2. Let x̄ ∈ Rn be given such that ai(x̄)Tm ̸= bi(x̄) for all i = 1, . . . , p.

Let us thus distinguish and separate the index set {1, . . . , p} = I+ ∪ I− as well as fix the
neighbourhood U of x̄ with ai(x)Tm < bi(x) for all i ∈ I+ and x ∈ U; ai(x)Tm > bi(x)
for all i ∈ I− and x ∈ U. As already argued, we will assume the existence of i = 1, . . . , p
such that ai(x)Tm > bi(x) holds on an appropriate neighbourhood U of the point of
interest x̄. This condition translates as I− being not empty. It is still however possible
for I+ to be empty. Observe that we rule out that x̄ is such that ai(x̄)Tm = bi(x̄) for
some i = 1, . . . , p. This condition, combined with definition of U, that requires the whole
neighbourhood to verify strict inequalities, ensures the local stability with respect to x of
our index sets I− and I+.

Following the geometric interpretation, one could notice that I− corresponds to
the set of hyperplane indices that (strictly) do not include mean vector m for x ∈ U;
symmetrically, I+ corresponds to hyperplane indices that strictly includem. Additionally,
one could see that the intersection of the closed half-line emanating from m and of
direction v and the hyperplane defined by row i of A and b is intrinsically related to the
sign of ai(x)TLv.

These observations will allow us to partition the set U × S usefully, with the help of
the following sets:
Definition 12. Let x̄ ∈ Rn be given as by Assumption 2 and let U be the neighbourhood
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of x̄ on which the index sets I−, I+ are stable. Define the following subsets of U × S:

B− =
{
(x, v) ∈ U × S : ai(x)TLv < 0, ∀i ∈ I−

}
, (6.13a)

O− =
{
(x, v) ∈ U × S : ai(x)TLv ≤ 0, ∀i ∈ I− ∧ ∃i ∈ I− | ai(x)TLv = 0

}
(6.13b)

A− =
{
(x, v) ∈ U × S : ∃i ∈ I− | ai(x)TLv > 0

}
, (6.13c)

B+ =
{
(x, v) ∈ B− : ai(x)TLv < 0, ∀i ∈ I+

}
(6.13d)

O+ =
{
(x, v) ∈ B− : ai(x)TLv ≤ 0, ∀i ∈ I+ ∧ ∃i ∈ I+ | ai(x)TLv = 0

}
(6.13e)

A+ =
{
(x, v) ∈ B− : ∃i ∈ I+ | ai(x)TLv > 0

}
(6.13f)

•

The intuition behind these set definitions is partly inspired by previous works in
literature (see for instance [4]). The rationale is to be able to distinguish sets where the
candidate mapping for behind an estimation of φ’s subdifferential changes behaviour.

One can immediately derive the following observations:
• A+, B−, B+ are open sets;
• O−, O+ are closed sets;
The following lemma shows the structure of Definition 12 and backs up Figure 6.2.

Lemma 5.With notation as in Definition 12, it holds that the sets B+,O+, A+ form a
partition of B− (i.e., are mutually disjoint and their union makes up the whole set).
Furthermore the sets B+,O+, A+,O−, A− form a partition of U × S. ◀

For any i = 1, . . . , p, we can now define ri : B− → R∪ {−∞, ∞} as

ri(x, v) =
bi(x)− ai(x)Tm

ai(x)TLv
, (6.14)

where division “by zero" is interpreted as leading to ±∞. Our first observation is that
for i ∈ I−, and (x, v) ∈ B−, ri(x, v) ∈ (0, ∞) always. Furthermore, since B− is open, ri is
evidently continuously differentiable on this set. For any i ∈ I+ and any (x, v) ∈ A+ ∪ B+,
we observe that ri(x, v) is finite valued. Moreover ri is continuously differentiable on
A+ ∪ B+, the latter being an open set.

With the help of these mappings, we now define r1 : B− → R+ as

r1(x, v) = max
i∈I−

ri(x, v) = max
i∈I−

bi(x)− ai(x)Tm
ai(x)TLv

> 0. (6.15)

Since r1 is the maximum of continuously differentiable maps on the open set B−, it
is locally Lipschitz there. Figure 6.1 shows how at a specific point (x, v1), r1(x, v1) =

r2(x, v1), r1(x, v1) being strictly smaller at this (x, v1).
We can also define r2 : B− → R+ ∪ {∞} as follows1:

r2(x, v) =

{
supt t

s.t. tai(x)TLv ≤ bi(x)− ai(x)Tm, i ∈ I+

1 One could observe the ressemblance with the ray-function as defined in (5.19)
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It now follows that Dom(r2) = A+ and with I(x, v) =
{

i ∈ I+ : ai(x)TLv > 0
} (being

locally stable), it follows that r2(x, v) = mini∈I(x,v) ri(x, v) = mini∈I(x,v)
bi(x)−ai(x)Tm

ai(x)TLv > 0
and this mapping is once more locally Lipschitzian on its domain (being open). This
follows from [14, Lemma 3.1], when considering a reduced inequality system to the
index set I+.

From a practical point of view, one could have the following interpretations:

• at a given (x, v) ∈ B−, r1(x, v) is the largest distance r ≥ 0 on the half-line from m

in direction v before reaching the intersection of all hyperplanes defined by rows
of I−.

• At a given (x, v) ∈ A+, r2(x, v) is the smallest distance r ≥ 0 on the half-line from
m in direction v before leaving any hyperplane defined by rows of I+.

Now it is readily visible in (6.10) that the value of the integrand depends on the
order between r1(x, v) and r2(x, v). Depicted in figure 6.1 is the particular case where
r1(x, v) < r2(x, v) but obviously this does not hold in general. Wemay therefore partition
further the set A+ as follows:

A+− =
{
(x, v) ∈ A+ : r1(x, v) > r2(x, v)

} (6.16a)
A+0 =

{
(x, v) ∈ A+ : r1(x, v) = r2(x, v)

} (6.16b)
A++ =

{
(x, v) ∈ A+ : r1(x, v) < r2(x, v)

} (6.16c)
(6.16d)

and it follows, from the previous observations, that A+−, A++ are both open (since r1, r2

are continuous), and A+0 is closed. Based on this partition, we will now provide an ex-
plicit representation of the integrand occurring in the spherical radial representation (6.9)
that will be called e.

Figure 6.2 provides a visualization of these index sets.

O− A−

A+ O+ B+
A+− A++

A+0

B−
Figure 6.2: Illustration of the partition of U × S. The dotted set is B−, while A+ is the
darker set. Sets with dashed inner linings are closed, the other ones being open.
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6.2.2 Studying and representing the inner radial prob-
ability function e

We now define the mapping e : U × S→ [0, 1] as

e(x, v) = µR ({r ≥ 0 : r(A(x)Lv) ≤ (b(x)− A(x)m)}) , (6.17)

and recall that ϕ(x) =
∫

v∈S
e(x, v)dµζ(v) as a result of (6.9).

Due to the preparatory material above, we can now provide a full partition-wise
description of e:
Lemma 6. The mapping e : U × S→ [0, 1] specified in (6.17) is also given by:

e(x, v) =


0 if (x, v) ∈ A− ∪O− ∪ A+− ∪ A+0

1− FR(r1(x, v)) if (x, v) ∈ B+ ∪O+

FR(r2(x, v))− FR(r1(x, v)) if (x, v) ∈ A++

. (6.18)

◀

This is where the set partition is necessary: one could have the naïve interpretation
that it would be desirable to discard the cases where r1(x, v) ≥ r2(x, v). In fact, when
this holds, there is no contribution of half-ray v to the integral.

Now we have to properly define e on the entire set U × S and prove its regularity.
We will need to study limits at the boundaries of every subset, and use a gluing Lemma
in the following section that enables us to unify every local behaviour into a correctly
defined mapping.

6.2.3 Useful partition-wise limits
Themain focus of the lemmas in this section is to characterize the asymptotic behaviour of
the sub-differential of e over certain subsets of our partition. These lemmas will be useful
to go from an initial subset-wise study to the unified result over U × S. In particular,
asymptotic studies are necessary along sequences from within an open subset of our
partition to a neighbouring closed subset. Difficulties arise from the fact mapping r1

and r2 can, in principle, reach arbitrarily large values: we will need to carefully study
the behaviour of “their" sub-differentials under such limits. This will be the topic of the
current section. First, we will concentrate on r2, for which the result follows relatively
analogously to earlier established results.
Lemma 7. Let fR be compatible with a 1st order polynomial growth condition (see
Definition 11).

• Let (xk, vk) ∈ A+ be a sequence such that (xk, vk)→ (x̄, v̄) ∈ O+, then it holds that

i) r2(xk, vk)→ ∞

ii)
lim
k→∞

fR(r2(xk, vk))∂
C
xr2(xk, vk) = {0} ,

where the last limit is to be understood in the Painlevé-Kuratowski sense.
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• Now let (xk, vk) ∈ B− be a sequence such that (xk, vk)→ (x̄, v̄) ∈ O−, then it holds
that

– r1(xk, vk)→ ∞

–
lim
k→∞

fR(r1(xk, vk))∂
C
xr1(xk, vk) = {0} ,

where the last limit is to be understood in the Painlevé-Kuratowski sense.

• Finally There can not exist any sequence (xk, vk) ∈ A+0 ∪ A+− with limit (x̄, v̄) ∈
O+ (likewise with B+).

◀

This lemma is useful to define the behaviour of e, andmore precisely its subdifferential,
at the boundaries of some defined subsets. As such, we can slightly update our Figure 6.2.

O− A−

A+ O+ B+
A+− A++

A+0

B−
Figure 6.3: Illustration of the partition of U × S. Orange borders are those for which
we have asymptotic information on r1 and r2. Observe that the sets are properly placed,
in the sense that no sequence can originate from A+− ∪ A+0 and reachO+ nor B+. From
the set definition we also already know that there cannot exist sequence originating from
A− converging to A+.

6.2.4 On the partial subgradients of e
Now that some of the preparatory material has been laid out, we turn our attention to
the identification of the sub-differential of e. First, on part of the set U × S, the partial
sub-differential of e with respect to x is easily identified. Let us recall that local Lips-
chitz property ensures the existence and non-emptyness of Clarks’s subdifferentials. For
brevity, we omit the proofs that in general are made of extensive use of Clarke’s rules on
differentiation in [82], as the chain rule of Theorem 2.3.9(ii). This is the cornerstone of
the following Lemmas.
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Lemma 8. The mapping e, given in (6.17), is locally Lipschitzian on the open set A− ∪
B+ ∪ A++ ∪ A+− and has partial Clarke derivative, w.r.t. x satisfying:

∂Cxe(x, v) ⊆


{0} if (x, v) ∈ A+− ∪ A−

− fR(r1(x, v))∂Cxr1(x, v) if (x, v) ∈ B+

fR(r2(x, v))∂Cxr2(x, v)− fR(r1(x, v))∂Cxr1(x, v) if (x, v) ∈ A++

(6.19)
◀

As a final observation, we note that the generalized derivatives of r1 and r2, as finite
extrema are also immediately identified, and we will not make them fully explicit.

Our next idea is to identify a set-valued mapping which is a good candidate for
“being" ∂Cxe. Observe however that for the time being we have not yet established that e is
locally Lipschitz on the whole U × S. We therefore define the map ex : U × S ⇒ Rn as
follows

ex(x, v) =



{0} if (x, v) ∈ A+− ∪O− ∪ A−

− fR(r1(x, v))∂Cxr1(x, v) if (x, v) ∈ O+ ∪ B+

Co({0} ∪ fR(r2(x, v))∂Cxr2(x, v)−
fR(r1(x, v))∂Cxr1(x, v)) if (x, v) ∈ A+0

fR(r2(x, v))∂Cxr2(x, v)−
fR(r1(x, v))∂Cxr1(x, v) if (x, v) ∈ A++

(6.20)

and observe that this map coincides with the upper-estimation found in (8) over the
open sets on which e was shown to be locally Lipschitz (recall Lemma 8). Our first
endeavour will be to establish that ex is outer semi-continuous (o.s.c.). To this end, we
require the following result:
Lemma 9. Let fR be compatible with a 1st order polynomial growth condition. Along
any sequence (xk, vk) ∈ A++ ∪ O+ ∪ B+ converging to (x̄, v̄) ∈ O− it holds that
limk→∞ ex(xk, vk) = {0}, where the last limit is to be understood in the Painlevé-Kuratowski
sense. ◀

Lemma 10. Let fR be compatible with a 1st order polynomial growth condition. Along
any sequence (xk, vk) ∈ A++ ∪ A+− converging to (x̄, v̄) ∈ A+0 it holds that

lim sup
k→∞

ex(xk, vk) ⊆ ex(x̄, v̄)

. ◀

We can now gather all are findings into the following proposition:
Proposition 7. Let fR be compatible with a 1st order polynomial growth condition. Then
the mapping ex defined in (6.20) is outer semi-continuous on U× S and locally bounded.

◀

6.2.5 Gluing pieces together: the main result
In order to show that e is locally Lipschitzian on U × S, we require a technical result that
allows us to bridge, the closed sets that interspace A−, B−, A++ and A+−. We thus need
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to glue together in a way, the various open sets.
Lemma 11 (Gluing lemma). Let U ⊆ Rn be an open set, U be partitioned into U′ open
and O (closed). Assume given the following objects:

i) f : U → [0, 1] a continuous mapping that is locally Lipschitzian on U′, constant on
O;

ii) ∂ f : U → Rn a set-valued mapping such that ∂ f = ∂C f on U′ that is moreover
outer semi-continuous (o.s.c.) and locally bounded.

Then f is locally Lipschitzian on U and ∂C f ⊆ Co∂ f if ∂ f contains 0 on O and f is
extremal on O (i.e., takes the values 0 or 1). ◀

We can now put to use all these results to establish that the mapping e itself, is locally
Lipschitz, on the whole set U × S.
Proposition 8. Let fR be compatible with a 1st order polynomial growth condition. The
mapping e : U × S → [0, 1] defined in (6.18) is locally Lipschitzian. Moreover, for any
(x, v) ∈ U× S, the following inclusion holds ∂Cxe(x, v) ⊆ ex(x, v), where ex is as in (6.20).

◀

We can now gather all previously established material and show that the probability
function ϕ itself is locally Lipschitzian. We can also obtain an outer estimate of its Clarke
sub-differential:
Theorem 12. Let A : Rn → Rp×m be a continuously differentiable matrix valued map,
and let b : Rn → Rp be continuously differentiable. Let the random vector ξ ∈ Rm be
elliptically symmetric with mean m, covariance-like matrix Σ and generator θ. Let ξ be
compatible with the 1st order polynomial growth condition.

Let g : Rn ×Rm → Rp be defined as g(x, z) = A(x)z− b(x). Let x̄ and the neigh-
bourhood U of x̄ be such that gi(x,m) ̸= 0 for all i = 1, . . . , p and all x ∈ U. Then, the
probability function ϕ : Rn → [0, 1] defined as

ϕ(x) = P [A(x)ξ ≤ b(x)] , (6.21)

is locally Lipschitz on U and has Clarke sub-differential satisfying:

∂Cϕ(x) ⊆
∫

v∈S
ex(x, v)dµζ(v), (6.22)

where µζ is the uniform measure over the sphere S =
{

z ∈ Rm : ∥z∥2 = 1
}
, and ex is as

in (6.20). ◀

6.3 the general case: union of polyhedra
We can now turn our attention to the case of probability functions given in the form of
(6.1), and drop the assumption ℓ = 1 we had in section section 6.2. Let us first justify
the interchange of sub-differentiation and integration, prior to giving formulæ for the
sub-differential of the probability function.
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Theorem 13. Consider the probability function (6.1), wherein the random vector ξ ∈ Rm

is elliptically symmetric with mean m, covariance-like matrix Σ and generator θ. For
each j = 1, . . . , ℓ, let Aj : Rn → Rpj×m be a continuously differentiable matrix valued
map, and let bj : Rn → Rpj be continuously differentiable. Assume moreover that ξ is
compatible with the first order polynomial growth condition (see Definition 11). Let
x̄ ∈ Rn be given along with a neighbourhood of x̄ such that aij(x)Tm− bij(x) ̸= 0 for all
i = 1, . . . , pj, j = 1, . . . , ℓ and all x ∈ U holds true. Here aij denotes the ith row of matrix
Aj. Then φ is (locally) Lipschitz on U and

∂Cϕ(x) ⊆
∫

v∈S
∂Cxe(x, v)dµζ(v), (6.23)

where µζ is the uniform measure over the sphere S =
{

z ∈ Rm : ∥z∥2 = 1
}
, and e : U ×

S→ [0, 1] is also locally Lipschitz and given by:

e(x, v) = µR(

r ≥ 0 : m+ rLv ∈
ℓ⋃

j=1

Mj(x)

). (6.24)

◀

Remark 13 (On subdifferential inclusion). If we make the additional assumption that
the mapping e is regular at x (see [82, Definition 2.4.10]), then the inclusion (6.23) is in
fact an equality at x (see [82, Theorem 2.7.2]). ▷

The issue with the expanded form of e, through the inclusion-exclusion formula, is
that it does not help produce an efficient estimate of ∂Cxe(x, v). We will illustrate this in
Example 5 below. First however we will introduce notation that will help us provide a
more elegant representation of e and ∂Cxe(x, v). To this end, let us introduce the set

Oij =
{
(x, v) ∈ U × S : aij(x)TLv = 0

}
, (6.25)

for i = 1, . . . , pj and j = 1, . . . , ℓ and O =
⋃ℓ

j=1 ∪
pj
i=1Oij as well as Z = U × S \ O. Then

we can observe that the sets Oij are all of zero measure (the latter fact follows from [18,
Lemma 2.2]. Consequently O is also of zero measure (in λ⊗ µζ).

Next for each j = 1, . . . , ℓ we define the following sets:

I−j =
{

i = 1, . . . , pj : aij(x)Tm > bij(x), ∀x ∈ U
}

I+j =
{

i = 1, . . . , pj : aij(x)Tm < bij(x), ∀x ∈ U
}

B−j =
{
(x, v) ∈ Z : aij(x)TLv < 0, ∀i ∈ I−j

}
A−j =

{
(x, v) ∈ Z : ∃i ∈ I−j : aij(x)TLv > 0

}
,

where implicitly it is assumed that U is sufficiently small, for the index sets I−j and I+j to
form a partition of {1, . . . , pj

}. Observe that this can be achieved as a result of continuity
and the standing assumption at x̄.

Next we may observe that B−j ∪ A−j = Z , and that both B−j and A−j are open sets.
Moreover, should I−j = ∅, then simply B−j = Z . Moreover define for all i = 1, . . . , pj,
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j = 1, . . . , ℓ, the map rij : Z → R as

rij(x, v) =
bij(x)− aij(x)Tm

aij(x)TLv
(6.26)

and observe that this map is well defined and continuously differentiable on Z . Now for
each j = 1, . . . , ℓ, we define rj

1 : B−j → R+ as

rj
1(x, v) =

 0 if I−j = ∅.

maxi∈I−j
rij(x, v) otherwise

and we define rj
2 : B−j → R+ ∪ {∞} as

rj
2(x, v) =

{
supt t

s.t. taij(x)TLv ≤ bij(x)− aij(x)Tm, i ∈ I+j
.

Now at any (x, v) ∈ Z , let us define the index set F(x, v) =
{

j = 1, . . . , ℓ : (x, v) ∈ B−j
}
.

Then, we can observe that F is locally stable since B−j is open and that

e(x, v) = µR

 ⋃
j∈F(x,v)

[rj
1(x, v), max

{
rj

2(x, v), rj
1(x, v)

}
]

 , (6.27)

since {r ≥ 0 : m+ rLv ∈ Mj(x)
}
= ∅ if (x, v) ∈ A−j . In order to further simplify the

formula, let us introduce for any (x, v) ∈ Z , the index set F′(x, v), defined as follows:

F′(x, v) =
{

j ∈ F(x, v) : rj
2(x, v) ≥ rj

1(x, v)
}

.

Hence, formula (6.27) becomes:

e(x, v) = µR

 ⋃
j∈F′(x,v)

[rj
1(x, v), rj

2(x, v)]

 . (6.28)

We have already hinted on the potential issue, in representing economically ∂Cxe(x, v)
when employing the inclusion-exclusion formula. The problem is fully illustrated in the
next example:
Example 5.We consider a trial point x ∈ Rn and two polyhedra M1(x) and M2(x),
as well as a direction v at which we have r1

1(x, v) < r2
1(x, v), r1

2(x, v) < r2
2(x, v) and

r2
1(x, v) < r1

2(x, v).
The inclusion-exclusion based formula fromTheorem13 yields e(x, v) = FR(r2

2(x, v))−
FR(r2

1(x, v)) + FR(r1
2(x, v))− FR(r1

1(x, v))− (FR(r1
2(x, v))− FR(r2

1(x, v))), which in turn
provides a non-economic representation of its sub-differential:

∂Cxe(x, v) ⊆ [ fR(r2
2(x, v))∂Cxr2

2(x, v)− fR(r2
1(x, v))∂Cxr2

1(x, v) + fR(r1
2(x, v))∂Cxr1

2(x, v)−
fR(r1

1(x, v))∂Cxr1
1(x, v)− ( fR(r1

2(x, v))∂Cxr1
2(x, v)− fR(r2

1(x, v))∂Cxr2
1(x, v))].

▶
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b
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r11
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v

M1(x)

M2(x)

Figure 6.4: Example where formula from Theorem 13 fails to provide an economic
representation of its sub-differential.

One can of course observe that in most cases, (6.28), through potentially tedious
computations, will allow us to identify swiftly the most economic representation of e.
One would simply have to work out, what the union of intervals amounts to and, unless
some local degeneracy occurs, this will immediately provide the appropriate estimate of
∂Cxe(x, v). Degeneracy will occur as soon as any two interval bounds match and locally
“cross". The subsequent result provides a unified formula, rendering this interval calculus
unnecessary in the above situation. We will also illustrate, that typically, an efficient
estimate of the sub-differential is obtained. Let us just briefly mention, prior to stating the
result, that FR is increasing in increasing arguments. Therefore, minimum/maximum
operations may be pulled through FR at will.
Proposition 9. At any (x, v) ∈ Z , the following identity holds true:

e(x, v) = max
{

FR( max
j∈F′(x,v)

rj
2(x, v))− FR( min

j∈F′(x,v)
rj

1(x, v)), 0
}

− ∑
S,S′⊆F′(x,v),S∩S′=∅,S∪S′=F′(x,v),S,S′ ̸=∅

max
{

FR(min
i∈S′

ri
1(x, v))− FR(max

i∈S
ri

2(x, v)), 0
}

,

(6.29)
where FR(∞) = 1 is to be understood. ◀

Proof. The proof will be performed by induction. To this end, let us fix an arbitrary
(x̄, v̄) ∈ Z , and first of all observe that on an appropriate neighbourhood of (x̄, v̄), F(x̄, v̄)
remains unchanged. We may thus, without loss of generality assume that F(x̄, v̄) =

{1, . . . , ℓ}.
When ℓ = 1, the stipulated formula is immediately seen to be identical to the formula

of (6.18).
Let us thus assume that the formula is valid for a given ℓ′ ≥ 1, we will then show that

the formula is valid for ℓ′ + 1. First of all, we may assume that for all j = 1, . . . , ℓ′ + 1, it
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holds that rj
2(x̄, v̄) ≥ rj

1(x̄, v̄). Indeed, should this not be the case, i.e., should there exist
j = 1, . . . , ℓ′ + 1 for which rj

2(x̄, v̄) < rj
1(x̄, v̄) holds true, then as a result of continuity,

this continues to hold true on an appropriate neighbourhood of (x̄, v̄), therefore, for
(x, v), near (x̄, v̄), j /∈ F′(x, v). Re-arranging indices if needed, we may assume j = ℓ′ + 1
and hence locally,

e(x, v) = µR(

r ≥ 0 : m+ rLv ∈
ℓ′⋃

j=1

Mj(x)

).

We may thus use the induction assumption to obtain the formula for the case ℓ′. Since
ℓ′ + 1 /∈ F(x, v) for (x, v) near (x̄, v̄), the formulae (6.29) with ℓ′ and ℓ′ + 1 do indeed
coincide.

From now on we will thus assume that F′(x, v) = {1, . . . , ℓ′}.
Next, let us assume the existence of k = 1, . . . , ℓ′ such that rk

1(x̄, v̄) ≤ rℓ
′+1

1 (x̄, v̄) ≤
rℓ
′+1

2 (x̄, v̄) ≤ rk
2(x̄, v̄). We may employ the induction assumption to derive the formula

(6.29), since indeed (6.28) holds true also when eliminating the ℓ′ + 1th term. It is
moreover clear that:

max
j∈F′(x,v)

FR(r
j
2(x, v)) = max

j∈F′(x,v)∪{ℓ′+1}
FR(r

j
2(x, v))

min
j∈F′(x,v)

FR(r
j
1(x, v)) = min

j∈F′(x,v)∪{ℓ′+1}
FR(r

j
1(x, v)).

Let us now pick an arbitrary but fixed partition S′, S of F′(x, v) ∪ {ℓ′ + 1}, then, an
exhaustive case distinction yields the identity:

max
[

FR

(
min
i∈S′

ri
1(x̄, v̄)

)
− FR

(
max

i∈S
ri

2(x̄, v̄)
)

, 0
]
=

=



max
[

FR

(
min

i∈S′\{ℓ′+1}
ri

1(x̄, v̄)
)
− FR

(
max

i∈S
ri

2(x̄, v̄)
)

, 0
]

if k, ℓ′ + 1 ∈ S′

max
[

FR

(
min
i∈S′

ri
1(x̄, v̄)

)
− FR

(
max

i∈S\{ℓ′+1}
ri

2(x̄, v̄)
)

, 0
]

if k, ℓ′ + 1 ∈ S

0 if k ∈ S and ℓ′ + 1 ∈ S′

0 if ℓ′ + 1 ∈ S and k ∈ S′

and thus consequently, the sum over all partitions in (6.29) is unaltered when moving
from partitions of F′(x̄, v̄) to all partitions of F′(x̄, v̄) ∪ {ℓ′ + 1}. We have thus shown the
formula to extend to ℓ′ + 1 in this particular situation.

For the remainder we may, upon reordering the indices if needed, assume that
rℓ
′+1

1 (x̄, v̄) ≤ ri
1(x̄, v̄) for all i ∈ F′(x̄, v̄). Now two further cases appear

• The situation wherein rℓ
′+1

2 (x̄, v̄) < ri
1(x̄, v̄) for all i ∈ F′(x̄, v̄)

• Or the existence of i ∈ F′(x̄, v̄) such that ri
1(x̄, v̄) ≤ rℓ

′+1
2 (x̄, v̄).
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The first case corresponds to adding a disjoint interval to the union of intervals. It
thus immediately follows that:

e(x̄, v̄) = FR(rℓ
′+1

2 (x̄, v̄))− FR(rℓ
′+1

1 (x̄, v̄))+

max
{

max
j∈F′(x,v)

FR(r
j
2(x, v))− min

j∈F′(x,v)
FR(r

j
1(x, v)), 0

}
− ∑

S,S′⊆F′(x,v),S∩S′=∅,S∪S′=F′(x,v),S,S′ ̸=∅
max

{
FR(min

i∈S′
ri

1(x, v))− FR(max
i∈S

ri
2(x, v)), 0

}
,

upon employing the indication hypothesis for the ℓ′ remaining intervals. Observe now
that on F′(x̄, v̄), maxj∈F′(x,v) FR(r

j
2(x, v))−minj∈F′(x,v) FR(r

j
1(x, v)) ≥ 0, so that the first

max operation can be removed. We can now identify:

max
j∈F′(x̄,v̄)∪{ℓ′+1}

FR(r
j
2(x̄, v̄)) = max

j∈F′(x̄,v̄)
FR(r

j
2(x̄, v̄))

FR(rℓ
′+1

1 (x̄, v̄)) = min
j∈F′(x̄,v̄)∪{ℓ′+1}

FR(r
j
1(x̄, v̄))

FR(rℓ
′+1

2 (x̄, v̄))− min
j∈F′(x̄,v̄)

FR(r
j
1(x̄, v̄)) = −max

{
FR(min

j∈S′
rj

1(x̄, v̄))− FR(max
j∈S

rj
2(x̄, v̄)), 0

}
,

with S′ = F′(x̄, v̄), S = {ℓ′ + 1}. Now let S, S′ be an arbitrary partition of F′(x̄, v̄) ∪
{ℓ′ + 1}. Then as soon as ℓ′ + 1 ∈ S′, it follows that:
max

{
FR(minj∈S′ r

j
1(x̄, v̄))− FR(maxj∈S rj

2(x̄, v̄)), 0
}
= 0. If |S| ≥ 2 and ℓ′ + 1 ∈ S, then,

clearly:

max
{

FR(min
j∈S′

rj
1(x̄, v̄))− FR(max

j∈S
rj

2(x̄, v̄)), 0
}

=

max
{

FR(min
j∈S′

rj
1(x̄, v̄))− FR( max

j∈S\{ℓ′+1}
rj

2(x̄, v̄)), 0
}

Combining these derivations with the already derived formula for e(x̄, v̄), we thus
establish the validity of (6.29) for ℓ′ + 1.

In the last situation, we may thus assume the existence of some i for which ri
1(x̄, v̄) ≤

rℓ
′+1

2 (x̄, v̄).Wemay assumew.l.o.g. that i = ℓ′. Then setting r̄ℓ
′

2 = max
{

rℓ
′

2 (x̄, v̄), rℓ
′+1

2 (x̄, v̄)
}

and r̄ℓ
′

1 = min
{

rℓ
′

1 (x̄, v̄), rℓ
′+1

1 (x̄, v̄)
}
, and r̄i

1,2(x̄, v̄) = ri
1,2(x̄, v̄) for i < ℓ′, we may employ

the induction assumption to derive (6.29) holds for e(x̄, v̄) but involving r̄i
1,2. It is however

clear that:

max
j∈F′(x̄,v̄)∪{ℓ′+1}

FR(r
j
2(x̄, v̄)) = max

j∈F′(x̄,v̄)
FR(r̄

j
2(x̄, v̄))

min
j∈F′(x̄,v̄)∪{ℓ′+1}

FR(r
j
1(x̄, v̄)) = min

j∈F′(x̄,v̄)
FR(r̄

j
1(x̄, v̄)).

Once again, let S, S′ be an arbitrary partition of F′(x̄, v̄) ∪ {ℓ′ + 1}. Now should ℓ′ ∈ S′,
ℓ′ + 1 ∈ S or vice-versa, then it follows that:
max

{
FR(minj∈S′(r

j
1(x̄, v̄)))− FR(maxj∈S(r

j
2(x̄, v̄))), 0

}
= 0. For the latter term to con-
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tribute it must thus hold that ℓ′, ℓ′ + 1 ∈ S′ or ℓ′, ℓ′ + 1 ∈ S′, and thus by construction:

FR(min
j∈S′

(rj
1(x̄, v̄))) = FR( min

j∈S′\{ℓ′+1})
(r̄j

1(x̄, v̄)))

FR(max
j∈S

(rj
2(x̄, v̄))) = FR( max

j∈S\{ℓ′+1}
(r̄j

2(x̄, v̄))),

so that upon combining these derivations, the formula (6.29) is shown for ℓ′ + 1.
The proof is thus completed, by induction over ℓ′.

6.4 conclusion
This Chapter provides a better theoretical insight into local behaviours of probabilistic
functions in a less restrictive setting relatively to what is usually encountered in literature.
Although Theorem (6.23) provides “only” an inclusion, this still is valuable “first-order”
information on φ. A practical method to verify whether the inclusion turns out to be
an equality is readily available. Numerical experiments using for instance algorithm C
is to be found in the original article [17]. This work has to be understood in the line of
previous works we have detailed in Chapter 6: building upon the fruitful spherical-radial
representation of elliptical random variables, we are able to work out a reformulation of
probabilistic functions with interesting geometric interpretation. This, in turn, enables
us to expose more information on such function, that can then be used for numerical
algorithms. As one can observe, it requires quite a technical background in order to
achieve incremental improvements, but the perspectives are still vast. As a matter of fact,
modelling tools with enriched probabilistic functions (such as probust constraints for
instance, see [16]) are fast, on-going developments made possible thanks to elliptical
distributions. First-order information for these “new” functions is thus a promising field.





Part IV

Applications to the Optimal Power
Flow
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INTRODUCTION

We recall that before this last Part, we have set up the following elements:

1. the OPF is a tool available to the DSO to provide optimised decisions in the short-
term operational planning process. Part I detailed the objective of this optimisation
tool for the short-term operational planning from a DSO point of view.

2. From the abundant literature on the generic OPF, it is clear an instance of this class
of problems with uncertainties is, without relaxation, a non-convex nonsmooth
optimisation problem. Part II provides an optimisation algorithm tailored to solve
a large class of nonsmooth nonconvex problems, namely Difference-of-Convex
(DoC) problems.

3. The uncertainties are at the core of many engineering problems but still are signifi-
cant features of complexification in a model. In Part III we present a short study
into chance-constraints, which constitute one possibility to model uncertainties
which involves probabilistic functions. Apart from a variational study of these
functions, which we believe is interesting as it provides a bridge between chance-
constrained problems and (sub-)gradient algorithms, we present the DoC property
of chance-constraints and a DoC approximation.

In the light of these elements, we are now ready to turn to the OPF. The first chapter
of this part presents our model of an instance of the OPF with uncertainties, using a
DoC formulation. To the best of our knowledge, DoC programming has not yet been
applied to the OPF class of problems. This is to be expected for the deterministic case, as
casting a smooth OPF problem (for instance, without integer variables) as a DoC problem
is in general not a “good” idea. Using an “off-the-shelf” solver for smooth programs
will ultimately be a (significantly) better option, especially in terms of computational
effort. Our DoC method does not leverage the smoothness assumption, and a Sequential
Quadratic Programming method will probably be more efficient numerically. We cannot
yet infer on the efficiency of our DoC method in the integer case (see the Discussion for
some insights on this subject). It nevertheless appears to be promisingly applicable to a
Chance-Constrained OPF, as defined in the following pages. From a broader perspective,
we will propose two different models that account for uncertainties. In order to test these
models we also present a realistic data creation process based on Enedis Open Data.
This fourth part is structured as follows: we first present preliminary elements for theDoC
formulation of functions that appear in an OPF. This enables us to propose our DoCOPF,
building upon the model initiated in Part I. In Appendix D, we briefly describe our data
creation scheme. This plodding work, crucial to optimisation albeit sometimes somewhat
slightly overlooked, aimed at providing a tool based on Enedis Open Data that is able
to produce exhaustive open-source test data for our algorithms. Moreover, heuristics to
automatically define forecasts of production and consumption on the grid that would
lead to electrical constraints have been implemented and tested. Lastly, in Chapter 8 we
present our results obtained from different DoC algorithms.
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RÉSUMÉ EN FRANÇAIS

Nous rappelons qu’avant cette dernière partie, nous avons présenté les éléments suivants :
1. l’OPF est un outil à la disposition du DSO pour fournir des décisions optimisées

dans le processus de planification opérationnelle à court terme. La partie I a détaillé
l’objectif de cet outil d’optimisation de la planification opérationnelle à court terme
du point de vue du DSO.

2. D’après l’abondante littérature sur l’OPF, il est clair qu’une instance de cette classe
de problèmes avec incertitudes est, sans relaxation, un problème d’optimisation
non convexe et non lisse. La partie II fournit un algorithme d’optimisation adapté
à la résolution d’une grande classe de problèmes non convexes non lisses, à savoir
les problèmes de différence de convexes (DoC).

3. Les incertitudes sont au cœur de nombreux problèmes d’ingénierie mais restent
des sources importantes de complexification d’un modèle. Dans la partie III est
présentée une brève étude des contraintes de probabilité, qui constituent une
possibilité de modélisation des incertitudes impliquant des fonctions probabilistes.
Outre une étude variationnelle de ces fonctions, qui nous semble intéressante car
elle permet de relier les problèmes de contraintes de probabilité et les algorithmes
de (sous-)gradient, nous présentons la propriété DoC des contraintes aléatoires et
une approximation DoC.

A l’aide de ces éléments, nous sommes maintenant prêts à aborder l’OPF. Le premier
chapitre de cette partie présente notre modèle d’une instance d’OPF avec incertitudes,
en utilisant une formulation DoC. À notre connaissance, la programmation DoC n’a
pas encore été appliquée à la classe de problèmes OPF. Ceci paraît attendu pour le
cas déterministe, car transformer un problème OPF lisse (par exemple, sans variables
entières) en un problème DoC n’est en général pas une “bonne” idée. L’utilisation d’un
solveur “standard” pour les programmes lisses sera très probablement une meilleure
option, notamment en termes de temps de calcul. Notre méthode DoC n’exploite pas
l’hypothèse lisse, et une méthode de programmation quadratique séquentielle sera
probablement plus efficace numériquement. Nous ne pouvons pas encore inférer sur
l’efficacité de notre méthode DoC dans le cas des nombres entiers (voir le chapitre
de Discussion pour quelques idées à ce sujet). Elle semble néanmoins s’appliquer de
manière prometteuse à un OPF avec contrainte de probabilité, tel que nous allons le
définir. Dans une perspective plus large, nous proposerons deux modèles différents qui
tiennent compte des incertitudes. Afin de tester ces modèles, nous présentons également
un processus réaliste de création de données basé sur Enedis Open Data, bien qu’il
n’ait pas pu être totalement utilisé. Cette quatrième partie est structurée comme suit :
nous présentons d’abord des éléments préliminaires pour la formulation de la DoC des
fonctions qui apparaissent dans un OPF. Cela nous permet de proposer notre DoCOPF,
en nous appuyant sur le modèle initié dans la partie I. Dans la partie D, nous décrivons
brièvement notre schéma de création de données. Ce travail laborieux, crucial pour
l’optimisation bien que parfois un peu négligé, a pour but de fournir un outil basé sur
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Enedis Open Data qui est capable de produire des données de test réalistes ne nécessitant
que des données libres pour nos algorithmes. De plus, des heuristiques permettant de
définir automatiquement les prévisions de production et de consommation sur le réseau
qui conduiraient à des contraintes électriques ont été implémentées et testées. Enfin,
dans le chapitre 8 les résultats obtenus par différents algorithmes de DoC sur un cas test
produit.



PRELIMINARY ELEMENTS FOR THE
OPF AND DOC-OPF

77.1 introduction
From part I, we know that the OPF is a non-convex, possibly non-smooth optimisation
problem, for which a wide variety of (re)formulations and approximations are proposed
in literature. A generic OPF is, broadly speaking, an optimisation problem that takes
into account physical laws of electricity, namely the definition of electrical power, Ohm’s
and Kirchhoff’s laws. Usual variables include power generation/consumption (we use
the word interaction as an abstract word that can either be generation or consumption,
depending on the actor), voltage norm, voltage phasor, and current. In literature, each
proposition of an OPF formulation consists of a subset of these variables, the associated
physical laws of electricity, and case-dependent constraints (e.g. specific constraints on
GUs’ interactions) as well as an objective function.

A generic deterministic OPF formulation that relies on a bus-injection formulation1

is as follows:

min
δ,p,q,|V|

f (δ, p, q, |V|)

s.t. I = Y V Ohm’s Law (7.1a)
pg

i − pl
i = Re(Vi I⋆i ) ∀i ∈ N Real power eq. (7.1b)

qg
i − ql

i = Img(Vi I⋆i ) ∀i ∈ N Reactive power eq. (7.1c)
ℓ(|Vi|, |Vj|, δi, δj) ≤ (Imax

i,j )2 ∀(i, j) ∈ A Transit limit (7.1d)
A ([δ, p, q, |V|) ≤ b Linear constraints,

where f is a given objective function, ℓ is an appropriate quadratic function, A and b
respectively an adequate matrix and vector.

One can immediately observe that formulation (7.1) is not well suited for our case.
First of all, it is set up under the assumptions that the operator has full control over the
power interactions. This obviously is not the case from a DSO point of view, as discussed
in chapter 1. Secondly, we need to properly define and include uncertainties in it. Making
DoC decompositions explicit is not a trivial step either.

While working towards a model for the OPF with uncertainties, the importance of
the distinction between control and state variables becomes more significant than in
the deterministic setting. As it turns out, in a deterministic setting the aim is to find a
single set of control variables for which the associated set of state variables2 respects the
constraints defined by the user. In a stochastic setting, the objective is to provide a single
set of control variables for which, broadly speaking in “as many scenarios as desired”,
1 This formulation is, at the time of writing, the most widely found in literature.
2 By “associated set of state variables” we designate the state variables that have a real-life meaning. We

assume that this set of variables, if it exists, is unique (see [295, Assumption 1]). It is possible that it
does not exist when the electrical grid is managed outside of its “usual bounds”.
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there exists a set of admissible state variables. Although this explanation is not exact
as we are dealing with continuous random variables and not a finite set of scenarios, it
advantageously provides an hindsight into the necessary distinction of control variables
from state ones in a stochastic setting: it is clear that having a single set of state variables
in such a setting is meaningless. One solution, that has been studied in literature (see for
instance [295]), is to have one set of state variables per generated scenario. Without any
additional technique, this can rapidly lead to large, untractable optimisation problems.
Available techniques to cope with this scalability problem is to use admissible envelopes
of the feasible sets defined by the probabilistic constraints. This approximation leads to
tractable, but intense computation. Our approach is different, as we do not introduce
one set of state variables per scenario. We introduce a two-step approach, where the first
step is an optimisation on control variables and the second step is an oracle that involves
state variables and provides information on the uncertain operators of our model.

This Chapter is organized as follows: we start by detailing how our DSO point of
view changes model (7.1), as well as the model of contracts that DSO has with GUs. We
then provide insights on the DoC formulation of the functions at hand in our problem.
We finally conclude by presenting the our formulations of the OPF with uncertainties,
and discuss the differences between these proposed formulations.
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7.1.1 Notations and preliminary remarks

Table 7.1: Relevant notations for this chapter

f , f1, f2 Objective function, in a DoC context f =
f1 − f2 is to be understood

functions

c, c1, c2 Constraint function, in a DoC context c =
c1 − c2 is to be understood

functions

N ,A List of grid’ nodes and lines parameters
|N |, |A|, |GU| Cardinalities ofN ,A, and number of GU

connected to the grid
parameters

pϕ
u , qϕ

u Active and reactive power injection or
consumption of GU u

parameters

ξ Random vector in R|GU| parameter
Overlined variable Upper bound of the variable parameter

Underlined variable Lower bound of the variable parameter
cν

u, cγ
u Marginal cost on variable pν

u and pγ
u re-

spectively
parameter

N Number of generated outcomes of a ran-
dom vector ξ

parameter

n, m, k Number of variables, size of the random
vector ξ and size of the constraint vector

parameters

pν
u, qν

u DSO decision of SNS on active/reactive
power for GU u

variables (control)

pγ
i , qγ

j DSO decision on power modulation
within contractualized rules for GU u

variables (control)

|V| , δ voltage norm and phasor variables (state)
I current, either indexed by a node or a line variable (state)

Sij Apparent power on line (i, j) ∈ A variable (state)

Remark 14. Cost parameters can have more indices when the cost function is polynomial,
in which case cν

u,k is the coefficient of monomial (pν
u)

k. The same holds for cγ
u . ▷

We add for clarity the following immediate properties:

• n is the sum of the number of all variables i.e. pγ
u , qγ

u , pν
u, qν

u, δ and |V|.

• Function c is valued in Rk.

When necessary, we introduce scalar parameters or matrices which, unless specified
otherwise, are respectively denoted by a and A. These two notations can also have
indices. For clarity, we will mostly present our models for a single time step, which
allows us to drop a t index in our notations. This should not be regarded as a limitation,
as inter-temporal constraints could be included at the (only) cost of implementation
work.
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7.2 the opf from a dso point of view
We here recall our high-level model of the grid and how the DSO interacts with other
actors in the following Entity-Relationship model, which is detailed in part I:

DSO Contract k

Contract 1

Contract C

DCC TSO-DSO interface node

GU

GEs models GE

Model side Material side
Figure 7.1: Abstract overview of the OPF model from a DSO point of view. For illustra-
tive purposes, we consider a set of C different contracts, k being a given index within
this set. We recall that GU stands for Grid User (an actor connected to the grid), while
GE stands for Grid Element (a technical element connected to the grid, as a power line).

In Figure 7.1, DCC stands for Demand Connection Code which is a set of regulations
on the flows of power at the interface between the DSO and TSO.

A decision for the DSO is a set of recommendations of actions that follows all the rules
defined by the interactions elements of Figure 7.1. As the output of the ST-OP process, a
decision is reached after the following generic steps:

1. Retrieving of information on the operational status of GEs. After this step, we
expect the DSO to have a full knowledge of the input topology consisting of all
active GEs in the grid. The DSO also has full knowledge of the allowed flexibilities
on GUs.

2. Obtain forecasts of GUs interactions with the grid, which amounts for GUs to
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communicate to the DSO their expected levels of consumption and production for
a given set of time steps.

3. With this information, evaluate the forecasted operational state of the grid.

4. If electrical constraints are foreseen, then derive a decision on which flexibilities
to activate motivated by the (inherently opposed) objectives of minimisation of
potential failures of GEs and maximisation of the access to the grid for GUs.

Using the last point of this enumeration, it is evident that a DSO decision translates into a
modulation of some forecasted levels of GUs interactions with the grid. Further detailing
DSO’ decisions, from a modelling point of view we distinguish two different types:

• either a decision that falls within the setting of a service from the GU for the benefit
of the DSO;

• or a decision that falls outside from this service: we refer to this decision as “service
not supplied” (SNS).

Decision of the first type Decisions of the first type follow constraints individually
decided and negotiated upon beforehand between a GU and DSO. For instance in our
case, these negotiated constraints are defined in “contracts” or offres within Enedis’
nomenclature. Within the framework of traditional electrical connections, the DSO does
not negotiate flexibility in the access of GUs to the grid: broadly speaking, when in a
usual operational setting, the DSO cannot modulate the interaction between the grid
and the GUs. The DSO can propose an electrical connection at a lower cost for a GU in
exchange of some flexibility in the service provided by DSO. From a DSO perspective,
this lowers the risk of faults, material failure or life endangering situations. From a GU
perspective, this lowers the financial costs which can be significant when creating a new
connection, and lowers the investment risks.

Decision of the second type The second type of decision is in our case an approximation
of real-life decisions: when in hazardous situations (following significant meteorological
events for example), the DSO may be compelled to temporally limit its service for some
GUs. Un-contractualised load shedding is an example of such degradation of electrical
quality, and can be included in an OPF as control variables. One could be tempted to
model this latter type of load shedding variables with binary/integer variables, as in
real life they are closer to an on/off decision than a continuous one. From our previous
choices of not considering integer variables, we relax the integrality constraint on this
second type of decision and thus have continuous variables. Evidently, considering
integer variables would bring in some challenging mathematical considerations within
this DoC optimisation problem requiring significantly more studies that are beyond the
scope of this first DoC approach of an uncertain OPF. Moreover having continuous SNS
variables has an interesting interpretation. Bearing in mind that SNS variables are the
ones of last resort, we expect that their values should hold the information of “missing”
flexibility in a given situation. An implication of this design is that the marginal cost of
SNS should always be higher than maximal unitary cost of decisions of the the first type.
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As a consequence, to further explicit the DSO decision on a GU’s forecast, the left
hand-sides of equations (7.1b) and (7.1c) are reformulated as follows:

pg
u = pϕ,g

u + pγ,g
u − pν,g

u

pl
u = pϕ,l

u + pγ,l
u − pν,l

u

qg
u = qϕ,g

u + qγ,g
u − qν,g

u

ql
u = qϕ,l

u + qγ,l
u − qν,l

u ,

(7.2)

where the exponents ϕ, γ, ν respectively designate the forecast parameter, the first-type
decision variable and the second-type decision variable.

We can rewrite equations equations (7.1b) and (7.1c) as:

∑
j GU∼i

pϕ,g
j − pϕ,l

j + (pγ,g
j − pγ,l

j )− (pν,g
j − pν,l

j ) = Re(Vi I⋆i ) ∀i ∈ V (7.3)

∑
j GU∼i

qϕ,g
j − qϕ,l

j + (qγ,g
j − qγ,l

j )− (qν,g
j − qν,l

j ) = Img(Vi I⋆i ) ∀i ∈ V , (7.4)

7.3 flexibilities in operational planning within
our framework

In this section we provide an overview of the interactions described in figure 7.1. After
some general comments on the GU model, we describe the different contracts at hand.
For these contracts, we follow Enedis’ white paper on flexibilities [99]. We focus on
three different types of contracts between the DSO and GUs, that are referred to by their
numbers: contract 1, 2 and 3.

7.3.1 GU model
All GUs, either loads or DRES, share the same model framework that includes:

• The type of relation with the DSO, which in turn will define its contract,

• Its technical bounds: the lower bounds pu, qu and upper ones pu, qu,

• Its forecasts of injection/consumption of real power and, when applicable, reactive
power.

For clarity, when necessary we include for our presentation superscripts g and l
to explicitly specify the role (power producer or consumer respectively) of the given
GU. Since we do not consider batteries as a potential source of flexibility, the following
relations:

pϕ,g ≥ 0, pϕ,l ≥ 0

qϕ,g ≥ 0, qϕ,l ≥ 0,

hold true.
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We also consider the following to always hold within the scope of our application:
pν

u ≥ 0, pu = pϕ
u + pγ

u − pν
u ≥ 0,

for all GU except at the slack node which is modelled as node with a single GU that can
be a consumer or a producer. These latter equations imply that the SNS variables are
always positive (one cannot shed a negative amount of load for instance), and specify
the decomposition of power variables: real power is the sum of forecasted power and of
the contractualised modulation of power, minus the SNS value.

7.3.2 Contract type 1
This is the Offre de raccordement de référence which used to be the only one available for
new producers. A GU connected to the grid through this contract, provided that the
grid is in its usual exploitation scheme, can inject/consume its desired level of power. In
other words, the DSO has no contractualized lever with this GU, and we will consider
that the only possible mitigation of injection or consumption is denial of service.

The injection/consumption of power for a GU u verifies the following relations:
pu = pϕ

u − pν
u (7.5)

0 ≤ pν
u ≤ pϕ

u (7.6)
The cost of the SNS variable pν

j is 10.000 e.MWh−1.

7.3.3 Contract type 2
The first Offre de Raccordement Intelligent (ORI, see [99] for a public description of this
contract) that has been experimented by Enedis ensures to a GU a guaranteed level
of power injection to the grid, whose production/consumption is greater than this
guaranteed power can be modulated by the DSO if necessary. We let this lower bound
verify:

pγ,g
u = a1 pinstalledu , ∀u GU generator,

pγ,l
u = a2 psubscribedu , ∀u GU consumer,

with a1, a2 ∈ R+.
From a practical point of view, due to our data and case creation that is described

in appendix D, we have implemented a slightly different rule:
pγ,g

u = a1 pϕ,g
u , ∀u GU generator, (7.7)

pγ,l
u = a2 pϕ,l

u , ∀u GU consumer, (7.8)
still with a1, a2 ∈ R+. What this new rule implements amounts to have “lower” lower
bounds, and thusmore flexibility in our optimisation problem. It is possible that at a given
time step for a given generator i, pϕ

u < a1 pinstalledu . Consequently, this generator would
behave as a contract of type 1 from the DSO point of view, and provide no flexibility.
As part of this work aims at exploring flexibilities, this modification appears to be a
reasonable workaround to make sure flexibilities are implemented, while maintaining
the structure of this contract’s rules.

In the objective function, it is assumed that pγ is of zero cost (and implemented as a
close-to-zero cost, i.e. cγ = 0.001).
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7.3.4 Contract type 3
The second ORI3 does not implement a minimal injection threshold, but rather provides
to the DSO a given, contractualized yearly level of energy curtailment. One could see con-
tract 2 as a contract on power as opposed to contract 3 which is one on energy. Conceptually,
from an optimisation point of view the cost of lever activation within this contract could
be modelled as having a marginal cost dependent on the level of energy curtailed up to
the current time of activation. This implies that for GU under this contract, no constraints
are added to the optimisation problem: the associated pγ

u variable is solely constrained
by the usual box-constraints pγ

u and pγ
u (with in our case pγ

u = 0 and pγ
u = pϕ

u):

pγ
u ≤ pγ

u ≤ pγ
u , ∀u GU (7.9)

On the other hand, the objective function is not linear any more as it is the case for
contract 2. In a multitemporal setting, this is modelled as:

cγ
u,t = cost({pγ

u,τ, qγ
u,τ}τ∈[u,t−1]). (7.10)

Within our work’ scope, for a single time step we decide to take another stance and
consider that the cost for pγ within this contract is a quadratic function:

cost(x) = cγ
i,2x2 + cγ

i,1x + cγ
i,0, (7.11)

with (cγ
i,2, cγ

i,1, cγ
i,0) ∈ R+ ×R2.

Remark 15 (Acceptable class of objective function). Thanks to DoC programming and
PBMDC 2, any DoC is in fact eligible as our objective function. Turning to literature on the
OPF, most used objective functions are polynomials of degree 2 which obviously are DoC
(and possibly non-convex). The rationale behind this class of functions is simply that cost
of plant production is satisfyingly modelled by the square of the energy produced. ▷

7.3.5 Slack bus contract
At the slack bus level, which is the interface between HV andMV grids, a special contract
is needed. As is usual, this node is treated as a GU which is at the same time a load and
a generator while having no forecasts. Constraints at this interface are legally set by two
official codes (see [60] for more detailed information): the Demand Connection Code
(DCC) and System Operations. DCC sets a feasible region in a P, Q space, while SO
defines the temporality and contents the DSO has to share with its associated TSO.

It is clearly seen in figure 7.2 that the feasible set is not convex.
3 Again, see [99] for more information on this contract.
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Figure 7.2: Feasible P-Q diagram following DCC rules.

Insert 7: A DoC approximation of the DCC constraint.
We care to mention that the non-convex set of figure 7.2 can be approximated as
closely as desired using DoC functions. This approximation is therefore a DoC set
as defined in [285, Section 4.6], and is depicted in the following figure:

Figure 7.3: A DoC approximation for the non-convex set of figure 7.2 with
a = 0.25Pmax and t > 0.

Setting the feasible set of figure 7.3 as S , a DoC description of S amounts to finding
the equation of the orange line. Therefore one has:

S = {(P, Q) ∈ R2 | Pmin ≤ P ≤ Pmax, Qmin ≤ Q ≤ Qmax,

Q ≥ min(0,
−0.24Pmax

t
P +

0.24(a− t)Pmax

t
)}. (7.12)

In our setting, as (i) a DoC version of the DCC constraint adds a computational
burden and (ii) such a constraint is not our prime interest, we have decided to stick to a
simpler convex relaxation, consisting of the convex-hull of the original DCC set. Its P-Q
diagram is as follows:
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Figure 7.4: A “lazy” convex approximation of the P-Q diagram following DCC rules,
consisting of the union of the blue and orange shapes.

As such, the feasible set at the slack bus is:

Fslack := {(P, Q) ∈ R2, Pmin ≤ P ≤ Pmax, Qmin ≤ Q ≤ Qmax,
−0.48Pmax

−Pmin + 0.25Pmax
P +

0.48Pmin Pmax

−Pmin + 0.25Pmax
≤ Q}. (7.13)

7.4 a first doc formulation for the opf
In this section, we present a first deterministic DoC reformulation of our model, before
discussing a natural stochastic extension of this first model. We will see that the result
of this work turns out to be difficult to interpret for the original short-term operational
planning objective. An analysis of these difficulties provides enlightening motivation for
a second DoC model, presented in section 7.5.

7.4.1 The deterministic DoCOPF
First of all, as is visible in the problem (7.1), in order to derive a DoC formulation for the
OPF, one has to make explicit the DoC form of constraints equations (7.1b) and (7.1c).
This turns out to be the most challenging part of the DoC formulation in a deterministic
setting, as constraint equation (7.1d) often turns out to be convex, and the boundary
constraints are linear.

An evident obstacle is the necessity to transform an equality into two inequalities.
Constraints equations (7.1b) and (7.1c) are thus rewritten as:

|pg
i − pl

i − Real(Vi I⋆i )| ≤ ϵ, (7.14)
|qg

i − ql
i − Img(Vi I⋆i )| ≤ ϵ, (7.15)

where ϵ ≥ 0 is a fixed user-selected parameter. In our case, we used values between 10−3

and 10−5, with a clear trade-off between numerical efficiency and interpretability/useful-
ness of the solution point when varying ϵ.

Changing these equality constraints that translate a power equilibrium can rightfully
appear to be problematic. In the deterministic setting, we explore if this approximation
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dependent on ϵ can appropriately hold. “Holding” in this case obviously is dependent
on the user’s definition of what is a “good” approximation. In any optimisation pro-
cess, different types of numerical approximations/roundings that sequentially impact
one another imply that one should humbly study the outputs of optimisation. As our
computations are done within a selected unit parameters setting, quality of a numerical
solutions has to account for it. In our case, the potential base parameter is approximately
Vbase = 20.103V: when one have two different values for a voltage, say |V|1 , |V|2, with
| |V|1 − |V|2 | ≤ a with a ∈ R+, then the absolute spread between these two values
is a × 20.103. We assume that two different absolute norms of voltage values with a
difference of order of magnitude 10 Volts can reasonably be accepted as similar enough in
order to consider them numerically equal. Back in the per-unit system, 10 Volts are equal
to 5.10−4 per unit, which justifies our selection for values of ϵ. Now, as in our model we
impose loose constraints on voltage phasors, this discussion is not relevant for these
latter variables.

Let us start by defining the following functions, in order to ease the coming model
presentations:

cRi (δ, p, q, |V|) =
(

pϕ,l
i + pγ,l

i − pν,l
i −

(
pϕ,g

i + pγ,g
i − pν,g

i

))
+ (7.16a)

∑
k∼i

YR
i,k |V|i |V|k cos(δi − δk) + Y I

i,k |V|i |V|k sin(δi − δk)

= cRi,1(δ, p, q, |V|)− cRi,2(δ, p, q, |V|),

cIi (δ, p, q, |V|) =
(

qϕ,l
i + qγ,l

i − qν,l
i −

(
qϕ,g

i + qγ,g
i − qν,g

i

))
+ (7.16b)

∑
k∼i

YR
i,k |V|i |V|k sin(δi − δk)−Y I

i,k |V|i |V|k cos(δi − δk)

= cIi,1(δ, p, q, |V|)− cIi,2(δ, p, q, |V|),

where functions cRi,1, cRi,2, cIi,1, cIi,2 are convex functions in all their components. We expose
the technical description of our methodology to obtain these functions in appendix A.

A direct DoC reformulation of our OPF is then:

min
δ,p,q,|V|

f (δ, p, q, |V|)

s.t. cRi,1(δ, p, q, |V|)− cRi,2(δ, p, q, |V|)− ϵ ≤ 0 (7.17a)
cRi,2(δ, p, q, |V|)− cRi,1(δ, p, q, |V|)− ϵ ≤ 0 (7.17b)
cIi,1(δ, p, q, |V|)− cIi,2(δ, p, q, |V|)− ϵ ≤ 0 (7.17c)
cIi,2(δ, p, q, |V|)− cIi,1(δ, p, q, |V|)− ϵ ≤ 0 (7.17d)
ℓ(|Vi|, |Vj|, δi, δj) ≤ (Imax

i,j )2 ∀(i, j) ∈ A (7.17e)
A ([δ, p, q, |V|) ≤ b,

where we recall ϵ ∈ R+ is a user-given approximation parameter.

7.4.2 An associated stochastic extension
We now invoke (i) the previous discussion on the uncertainties section 2.3, (ii) and the
deterministic model of section 7.4.1. From the former, we recall that we consider the
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power forecasts values to be uncertain, and to be associated to probability distribution
functions of the elliptical class. To explicit this dependency, we now write the following:

Deterministic Uncertain
pϕ

u −→ pϕ
u(ξ)

qϕ
u −→ qϕ

u(ξ).

From the latter, a “canonical” jointly chance-constrained extension of the deterministic
model would lead us to:

min
δ,p,q,|V|

f (δ, p, q, |V|)

s.t. P



cRi,1(δ, p, q, |V| , ξ)− cRi,2(δ, p, q, |V| , ξ)− ϵ ≤ 0

cRi,2(δ, p, q, |V| , ξ)− cRi,1(δ, p, q, |V| , ξ)− ϵ ≤ 0

cIi,1(δ, p, q, |V| , ξ)− cIi,2(δ, p, q, |V| , ξ)− ϵ ≤ 0

cIi,2(δ, p, q, |V| , ξ)− cIi,1(δ, p, q, |V| , ξ)− ϵ ≤ 0

−pϕ,l
i (ξ)− pγ,l

i + pν,l
i ≤ 0

−pϕ,g
i (ξ)− pγ,g

i + pν,g
i ≤ 0

−qϕ,l
i (ξ)− pγ,l

i + qν,l
i ≤ 0

−qϕ,g
i (ξ)− pγ,g

i + qν,g
i ≤ 0


≥ p (7.18a)

ℓ(|Vi|, |Vj|, δi, δj) ≤ (Imax
i,j )2 ∀(i, j) ∈ A

(7.18b)
A ([δ, p, q, |V|) ≤ b.

Remark 16. For an easier presentation, we have overloaded the notations cRi and cIi
initially defined for the deterministic case (7.16), now also defined for the stochastic
case (7.19). The definition of these functions is then context-dependent, the latter being
easily identifiable with the presence of ξ parameter. We then explicitly have:

cRi (δ, p, q, |V| , ξ) =
(

pϕ,l
i (ξ) + pγ,l

i − pν,l
i −

(
pϕ,g

i (ξ) + pγ,g
i − pν,g

i

))
+ (7.19a)

∑
k∼i

YR
i,k |V|i |V|k cos(δi − δk) + Y I

i,k |V|i |V|k sin(δi − δk)

= cRi,1(δ, p, q, |V| , ξ)− cRi,2(δ, p, q, |V| , ξ),

cIi (δ, p, q, |V| , ξ) =
(

qϕ,l
i (ξ) + qγ,l

i − qν,l
i −

(
qϕ,g

i (ξ) + qγ,g
i − qν,g

i

))
+ (7.19b)

∑
k∼i

YR
i,k |V|i |V|k sin(δi − δk)−Y I

i,k |V|i |V|k cos(δi − δk)

= cIi,1(δ, p, q, |V| , ξ)− cIi,2(δ, p, q, |V| , ξ).

▷

One can observe that uncertain forecasts parameters naturally introduce uncertainty
in our non-convex, DoC equations (7.14) and (7.15). Problem (7.18) obviously is chance-
constrained, with DoC functions under the probability operator, as well as a possibly
DoC objective function. Other constraints are convex, and possibly linear. Further study-
ing equations (7.18) and (7.19), it is immediately apparent that we have separable



7.4. A FIRST DOC FORMULATION FOR THE OPF 171

functions at hand (see Definition 9). Thanks to the separability and the continuously
differentiability of the functions under the probabilistic operator, we know from chapter
5 that constraint (7.18a) is (locally) continuously differentiable, the neighbourhoods
where this differentiability result holds being those where a Slater condition is verified.

Now that we have discussed the expected regularity conditions of this problem, let
us move on two follow-up questions:

1. How can we solve such a problem?

2. How can we interpret a solution of this problem?

The solving methodology
The first question is rapidly answered when one recalls PBMDC 2 algorithm and section 5.3.
From the latter section, we obtain a DoC approximation of constraint equation (7.18a)
thus leading us with problem equation (7.20) at hand. Then, as PBMDC 2 is an algorithm
that can tackle DoC constrained DoC problems.

Let us define cP
1,τ,ϵ, cP

2,τ,ϵ as the two DoC components of the DoC approximation
of equation (7.18a). As detailed in section 5.3, this approximation is parametrized and
we denote this parameter by τ. Moreover, these approximation are dependent on ϵ

(recall (7.18a) for instance). Formally speaking, cP
1,τ,ϵ, cP

2,τ,ϵ are functions defined from
Rn ×Rm to R, convex in all their arguments.

We can explicit the DoC constrained DoC optimisation problem:

min
δ,p,q,|V|

f (δ, p, q, |V|)

s.t. cP
1,τ,ϵ(δ, p, q, |V| , ξ)− cP

2,τ,ϵ(δ, p, q, |V| , ξ)≥ p (7.20a)
ℓ(|Vi|, |Vj|, δi, δj) ≤ (Imax

i,j )2 ∀(i, j) ∈ A (7.20b)
A ([δ, p, q, |V|) ≤ b.

Proposition for the interpretation of a solution to equation
(7.20)
Let us denote by x⋆ = (δ⋆, p⋆, q⋆, |V|⋆) a solution to the optimisation problem equation
(7.20). Froman operational point of view, the interpretation is not trivial and this difficulty
exposes the significant limit of this first model.

Strictly speaking, when our problem equation (7.20) has a non-empty feasible set to
which belong x⋆, then x⋆ is a point that minimizes our cost function while being feasible
with a probability greater or equal to p. An immediate question is what are δ⋆ and |V|⋆?

To answer this question, we first rewrite equation (7.18a) as follows:

P [ξ ∈ Mϵ(x⋆)] ≥ p,

for an appropriately defined set Mϵ(x⋆) (whose explicit definition is easily retrieved
from equation (7.18a)). The random vector ξ holds the information on possible future
outcomes, while Mϵ(x⋆) is the set of outcomes that, combined with decisions x⋆, lead to
an “approximately” feasible electrical state. The approximation here has to be understood
as “up to a translation of ϵ”.
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The main difficulty in this model, that possibly was already visible, now becomes
clear: it assumes that a single grid electrical state, defined by |V|⋆ , δ⋆, can be ϵ-feasible
with a probability greater than p. This assumption in turn requires that:

(i) the variances of all coordinates of the random vector ξ are “small enough”, or

(ii) the behaviour of the equilibrium constraint vector equation (7.16) around some of
its zeros is calm “enough”4.

The first point is problematic as it limits the operational usefulness; the second point
is numerically not verified. This latter point is related to interesting questions on the
localisation of solutions to OPF or PF, which is the subject of future sections. Significant
associated questions include: (i) how many solutions does a PF system have? (ii) what
is the sensibility of PF solutions relatively to data values?

Conclusion on this first model
The first model is a chance-constrained problem that we can cast as a DoC-constrained
DoC problem, and consequently solve. It appears as a naïve stochastic extension to the
OPF, well fitted to our previously developed material. Nevertheless, a solution to this
DoC problem should not be considered as a decision-making tool to the ST-OP process as
described in part I. A mathematical model aiming at being a consistent decision-making
tool should clearly include the two-step property of the underlying problem. As a matter
of fact, one looks for values for control variables such that there exists feasible associated
state variables with probability greater or equal to p.

The next section is dedicated to our second DoC model which is a two-step program.
It is built on the limits made explicit in our first attempt.

7.5 a second doc formulation for the stochastic
opf

We now move on our second proposition for a satisfactory DoCOPF. The main draw-
back of the naïve approach is not tackling the two inherently different roles of involved
variables. On a more operational point of view, we will distinguish state variables from
control ones. The former ones are variables a DSO does not explicitly have control over
but requires their values to be in given sets - one could also refer to them as the controlled
variables. The latter ones are the levers the DSO has control over. Constraints in our
model will therefore enforce the relation between controllable variables and controlled
ones.

Based on this variable separation, we propose a two-step approach which is an
iterative/looping process. The first step is about control values selection, thus decision
over the control variables. The second step is about the impact on state variables, given
the values selected for the control variables. The loop closes as information from the
second step is passed to the first step.
4 Calmness, as described in [253, Chapter 8 Section F], is an intuitive concept that applies at a given point

x. A function f is said to be calm if the differences between f (x) and f (x′) are bounded for every x′ in
a neighbourhood of x. In that matter, it differs from Lipschitz continuity that is a uniform property.
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In our case, state variables are comprised of the voltage norm |V| and the phasor δ,
whereas control variables are DSO decisions on active power p. Reactive power q will be
considered as a state variable or as a control one, depending on the model.

We first of all define:

R(p, q, ξ) =min
δ,|V|

|N |

∑
i=1

(cRi,1(δ, p, q, |V| , ξ)− cRi,2(δ, p, q, |V| , ξ))2+

(cIi,1(δ, p, q, |V| , ξ)− cIi,2(δ, p, q, |V| , ξ))2 (7.21a)

s.t. δi ≤ δi ≤ δi ∀i ∈ N (7.21b)
|V|

i
≤ |V|i ≤ |V|i ∀i ∈ N . (7.21c)

as well as:

Rδ,|V|(p, q, ξ) =
|N |

∑
i=1

(cRi,1(δ, p, q, |V| , ξ)− cRi,2(δ, p, q, |V| , ξ))2+

(cIi,1(δ, p, q, |V| , ξ)− cIi,2(δ, p, q, |V| , ξ))2.

(7.22)

Note thatRδ,|V| is the objective function in problem (7.21). We have thus defined an
infinite family of functions (Rδ,|V|)δ,|V|. Each element of this family is a function defined
on Rn ×Rm with values in R+. From equation (7.16) it is clear that by virtue of being
a sum of compositions of C2 functions cRi,1, cRi,2, cIi,1, cIi,2 with the square function, each
elementRδ,|V| is a C2 function as well.
Remark 17. Problem (7.21) is a redefinition of a classical Power-Flow, this time cast as an
optimisation problem with additional constraints. When the constraints are neglected,
this method has already been investigated in the past, as in [292, 274] and more recently
discussed in [108, 61] (although neither implementation is discussed nor numerical
experiments are reported in the latter two works). The existence of very efficient load-
flow solvers as, for instance, those based on Newton-Raphson technique might limit
the interest of writing the load-flow as an optimisation problem. In fact, it is unsure
whether there is any computational gain by doing so: [292] reports improvements in
computation time, while [274, 108] rather discard this method. Numerical instabilities
were also reported in the early works of the 60’s-70’s, although no evidence was given.
The idea of casting the PF as an optimisation problem stemmed from the apparition of
efficient gradient-based algorithms. It can be found in these works referred to as the
“minimisation of the squared power mismatches”. ▷
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Insert 8: Interpretation of functionR.
The values of function R can be interpreted as follows: for a given (first-step)
decision, it provides the minimal violation of PFs (if any). In case this value is
not equal to zero, there is little hope one can find a physical interpretation to the
optimal point obtained in the computation of the functional value ofR. The only
conclusion in this particular case is that no point respecting PFs equations as well
as constraints on voltage and current transit was found.
In case the functional value ofR is zero, then there exists a point satisfying the PF
equations and respecting the constraints on voltage and current transits.

Lemma 12 (Regularity and structure ofR).R is a DoC function. ◀

Proof. For clarity purposes, and in order to match some definitions and theorems from
our reference [253], we introduce the following functions:

Sδ,|V|(p, q, ξ) =−
|N |

∑
i=1

(cRi,1(δ, p, q, |V| , ξ)− cRi,2(δ, p, q, |V| , ξ))2+

(cIi,1(δ, p, q, |V| , ξ)− cIi,2(δ, p, q, |V| , ξ))2

= − Rδ,|V|(p, q, ξ),

and:

S(p, q, ξ) = max
δ,|V|

Sδ,|V|(p, q, ξ) (7.24a)

s.t. δi ≤ δi ≤ δi ∀i ∈ N (7.24b)
|V|

i
≤ |V|i ≤ |V|i ∀i ∈ N . (7.24c)

As a consequence, the following inequality holds everywhere: S(p, q, ξ) = −R(p, q, ξ).
We are now in position to properly invoke results from [253].

A direct application of [253, Definition 10.29], and observing that every function of
the family (Sδ,|V|)δ,|V| is a C2 function on Rn ×Rm, proves that S belongs to the set of
Lower-C2 functions on Rn ×Rm. As a consequence of well-known DoC properties (see
for instance the discussion on the universality of DoC functions in [229, Section 2.1]), S
is a DoC function. It follows thatR is DoC.

Here is a list of immediate considerations from the definition of problem (7.21):

• If R(p, q, ξ) = 0, then there exists some values for δ, |V| that describes a feasible
electrical state of a network studied with the problem.

• IfR(p, q, ξ) > 0, then some further considerations are necessary and section 7.5.5
is dedicated to this matter.

• Problem (7.21) is non-convex, smooth, deterministic for a fixed outcome of ξ,
and can consequently be efficiently solved by numerous existing solvers (namely
Sequential Quadratic Programming ones).
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Before presenting different models, we need to make sure that an explicit DoC form
for the non-convex and non-smooth functionR is available. First of all, as S is lower-C2,
we know that there exists a fixed parameter a ∈ R+ such that S = S + a∥ · ∥2 − a∥ · ∥2 is
a valid DoC formulation. Then, as S = −R, we haveR = a∥ · ∥2 − (−S + a∥ · ∥2). We
also claim that another one is close-to-readily available, thanks to the work conducted in
the first model section 7.4. This latter DoC formulation ofR is obtained from the generic
DoC decomposition of x 7→ h2(x) where h is a DoC function for which a decomposition
is explicitly available. We recall that this decomposition can be found in [285, Proposition
4.12], and holds provided that the components functions of h are positive-valued (this is
always true modulo a translation of the component functions).

7.5.1 First-order information on R
We here recall some well-known results in variational analysis:
Theorem 14 (Theorem 10.31 in [253]). Let us consider a lower-C1 function f , that is,
f (x) = maxt∈T ft(x) with T a compact set and ( ft)t∈T a family of C1 functions. Let
T(x) = arg maxt∈T ft(x).
Then, one has:

∂ f (x̄) = Co{∇ ft(x̄) | t ∈ T(x̄)}. (7.25)
◀

As a consequence of Theorem 14, when considering an outcome ξl of random vector
ξ we can exhibit an element of S(p, q, ξl):

∇Sδ⋆,|V|⋆(p, q, ξl) ∈ ∂S(p, q, ξl), (7.26)

where δ⋆, |V|⋆ are solutions to Problem (7.24). With the Lipschitz property ofR and S ,
and recalling [82, Proposition 2.3.1] we can conclude on the first-order information on
R with:

∇Sδ⋆,|V|⋆(p, q, ξl) ∈ ∂S(p, q, ξl) = −∂R(p, q, ξl) =⇒ ∇Rδ⋆,|V|⋆(p, q, ξl) ∈ ∂R(p, q, ξl).

Remark 18. In order to have a correct oracle for PBMDC 2 and ensure a convergence, “first-
order information” is necessary. For this information, it is sufficient to provide an element
from the subdifferentials of each DoC function at hand, which is reasonable to expect.
This is due to the relatively mild assumptions on the oracle used in this algorithm. There
exists other bundle methods that make use of oracles with stronger assumptions (see for
instance [223]), and their convergence results are evidently at least as good as those of
PBMDC 2.

A correct oracle also means that it requires exact values of δ⋆, |V|⋆: the importance of
having a good solving methodology for the second-step is again explicited. ▷

7.5.2 Presentation of different types of models within
the second approach

The following models make use of the load-flow cast as an optimisation problem. Within
our two-step framework, all models can basically be classified as a risk minimisation
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under a cost constraint, or a cost minimisation under a risk constraint. In each of these two
types, one can evidently use either the expected value operator E[·] or the probabilistic
one P[·]. The justifications for this affirmation is that
(i) by virtue of the linearity of E, the composition of this operator with a DoC function

is a DoC function5;
(ii) we know from Chapter 5 that the composition by P[·] can be approximated by a

DoC function, and the first item concludes our justification.
Following Part III, we constrain the random vector ξ ∈ R|GU| to have an elliptic symmetric
distribution.

The first variant model is a joint-chance constrained optimisation problem (JCCP).
For this model, the user defines a parameter p > 0 which defines the minimal satisfaction
parameter to enforce.

min
p,q

f (p, q)

s.t. Pξ [R(p, q, ξ) ≤ 0] ≥ p

Constraints (7.5) to (7.9) and (7.13),

(Const-P)

The second variant is closely related to (Const-P), and is the maximization of the
probabilistic constraint of problem (Const-P) under a cost constraint. In that setting, the
user provides a parameter f > 0 that models the maximal allowed cost for the operation.
Such a problem is referred to as “Max-P” (see [25, Section 5.1.2.3]):

max
p,q

Pξ [R(p, q, ξ) ≤ 0]

s.t. f (p, q) ≤ f

Constraints (7.5) to (7.9) and (7.13),

(Max-P)

Remark 19. “Max-P” also is of interest for solving the JCCP problem (Const-P): it can
be used to compute an initial point. ▷

Similarly to Problems Const-P and Max-P, we derive the following two models:

• An expected-value minimisation problem:
min

p,q
Eξ [R(p, q, ξ)]

s.t. f (p, q) ≤ f

Constraints (7.5) to (7.9) and (7.13),

(Min-E)

with f > 0 the maximum acceptable cost.
• A cost minimisation under uncertain operational constraints:

min
p,q

f (p, q)

s.t. Eξ [R(p, q, ξ)] ≤ ϵ

Constraints (7.5) to (7.9) and (7.13),

(Const-E)

with ϵ ≥ 0 being an abstract parameter defining the maximum acceptable risk.
5 A proper proof is to be found in [285, Proposition 4.4]
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The two parameters f > 0 and ϵ > 0 are user-given, with simple interpretations: the first
one is a max-cost allowance, while the second one is a mask-risk allowance.
Remark 20. As opposed to the first two models, Problems Min-E and Const-E are not
joint chance-constrained problems. They are DoC optimisation models that account for
uncertainty in a stochastic setting. They also have a particular interest of their own from a
modelisation point of view, as their description and the interpretation of their respective
solutions’ are simple. As a matter of fact, from the implementation and numerical point
of view the expected value operator amounts to a count of scenarios that either show no
electrical constraints, or on the opposite forecast some. ▷

Insert 9: Distinction between a two-step and a bilevel/two-stage program.
Let us emphasize that a two-step algorithm is different from a two-stage or bilevel
one, the former being a special case of the latter. Following [46] which provides
a thorough introduction to bilevel programming, we define a general bilevel
program as:

min
x∈X

Fb(x, y)

s.t. Gb(x, y) ≤ 0

min
y∈Y

fb(x, y)

s.t. gb(x, y) ≤ 0

where Fb, fb : Rn ×Rm → R, Gb : Rn ×Rm → Rp and gb : Rn ×Rm → Rq are
assumed to be continuous and twice differentiable for simplicity. It is essential
to notice the constraint is itself a minimisation problem over set of variables that
is not independent from the one of the master problem. In our case these two
sets are disjoint, and this turns out to be a simpler model. Abstractly our model is
rather of the following form:

min
x∈X

F(x)

s.t. Pξ

[
G(x, ξ) := min

y∈Y
g(x, y, ξ) ≤ 0

]
≥ p,

or

min
x∈X

F(x)

s.t. Eξ

[
G(x, ξ) := min

y∈Y
g(x, y, ξ)

]
≤ E.

where F : Rn → R, G : Rn ×Rm → Rp, g : Rn ×Rq ×Rm → Rp, and E is
a maximal acceptable risk parameter. It becomes clear that, contrary to bilevel
programming which essence is having an optimisation problem as a constraint, in
our case the optimisation solely is in the evaluation of the constraint.
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7.5.3 General structure of the two-step approach
With more insight, we here propose a modular overview of the two-step approach. This
modularity is interesting as several of these blocks are indeed challenging problems of
their own. A more efficient block can evidently improve the global performance of the
algorithm.

The First-step problem
The Master Problem, which we can also refer to as the first step, is a DoC constrained DoC
optimisation problem. This is the case for Problems Const-E and Const-P, whereas Prob-
lems Min-E and Max-P can be DoC optimisation problem with “simpler” constraints
(linear or convex).

This first step problem is on control variables: state variables are relegated to the
second step. This is an optimisation problem with only power variables and constraints
at hand. Observe that first-step variables are the only ones with a contribution to the
objective function. A consequence of this observation is that when this function is a cost
function, all variables which activations imply a cost contribution should appear in the
first-step.

The Second-step problems
Once a decision pk, qk is reached in the Master, the second step uses this decision to
compute the valuesR(pk, qk, ξ). As it turns out, the evaluation of this value amounts to
a scenarii decomposition which bears the nice property of being embarrassingly parallel.
For each and every scenario, there is a load-flow cast as an optimisation problem to solve.
The set of outputs are gathered and processed differently depending on which operator
is selected (either E [·] or P [·]).

This second step only deals with state variables, and integrates the associated con-
straints. The objective is to have the “simplest” second step possible, as per iteration
of PBMDC 2 it is required to solve this step as many times as there are outcomes of ξ

considered by the user.
Remark 21. We care to emphasize the distinctions between these second-step problems
and the sequence of subproblems in PBMDC 2. The former problems are smooth optimisa-
tion problems to solve at each oracle call, whereas the latter are the linearly constrained
quadratic optimisation problems solved at each iteration of PBMDC 2 to compute the next
iterate. ▷
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Insert 10: Taking a step back on the two steps.
From classic load-flow/power-flow models and methods, usual elements/actors
of an electrical grid are modelled as one of the three following node:

• p, |V| node: such a voltage controlled node is typical of a large producer;

• p, q node: this is the most common node on a distribution grid. It is well
suited for loads or small generators;

• |V| , δ node: the slack node, it is the interface between the distribution and
transport grids.

Apart from the slack bus, we only consider in our case p, q nodes. It is therefore no
coincidence our variables are separated in such a way, i.e. power variables in the
first-step and voltage-related ones in the second step. As amatter of fact, within the
scope of our framework, our objective is to find modifications of elements/users’
fixed values, constrained by contracts’ bounds while ensuring the variable val-
ues (to be understood as the “non-fixed” ones) do not violate any constraints.
Having p, q nodes, our first step variables are indeed p, q and the other variables
(|V| , δ) are effectively in the second step. If we were to consider p, |V| nodes, we
would (probably) include these variables into the first step, while considering the
associated variables q, δ into the second step.

Broad overview
We here provide an overview of the solving methodology within the framework of our
second type of models using PBMDC 2. It abstractly presents all the required steps, each
one having to be implemented in a tailored fashion depending on the model that is at
hand.
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Figure 7.5: A broad overview of the Two-step approach within PBMDC 2.

In figure 7.5, step “Process solutions” is the most differing one between probabilistic
models and expectation models. In the former case, we use the previously presented
elements of section 5.3. With these elements, we are able to process the outputs of all
resolutions for each generated outcome of ξ and provide the functional value and a
subgradient of the DoC approximation ofR. In the latter case, the “Process solutions”
amounts to computing the average value of all the outputs from each generated outcome
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of ξ, weighted by the associated probabilities of these outcomes.

7.5.4 Possible extensions to these models
We here discuss three different aspects related to a better modelling of the ST-OP. The
first one is related to the consideration of constraints on current transit also called thermal
constraints. The second aspect is related to local voltage regulation, while the third is on
the OLTC (On Load Tap Changer) at the slack node.

Thermal constraints
An interesting extension to these models is to add operational constraints on current
transit, as previously considered in the first model equation (7.20b). This in an important
gain on the operational side of the model, and a significant numerical challenge as it
complexifies the second step. Let us point out that this constraint does not change the
regularity properties of R (see Lemma 12). As a consequence, we can rewrite R as
follows:

R(p, q, ξ) =min
δ,|V|

Equation(7.21a) (7.27a)

s.t. Constraints (7.21b) and (7.21c) (7.27b)
ℓ(|Vi|, |Vj|, δi, δj) ≤ (Imax

i,j )2 ∀(i, j) ∈ A, (7.27c)

Now, as discussed on the second step, when aiming to have the fastest problems to
solve per each scenario, a possibility is to move some constraints from the second step
to the first one. As such, transit limits on current could be modelled as constraints on
power variables in the first step.

Local voltage regulation
Local voltage regulation belongs to the thriving studies of distributed control mech-
anisms, leveraging new technologies of power electronics. This methodology has the
advantage of not relying on a large centralized system, and some special cases do not
even require communications. We are interested here in a voltage-based reactive power
control, which is a local voltage control. As found in [105, Definition 1], a local voltage
control is the assignment of reactive power interaction of a selected GU connected to
the grid computed according to the measured voltage value at its connection point.
In other words, when a GU has the required technological elements to provides this
local regulation, it can modify its reactive injection q, which in turn has an influence
on |V| at its connection point. This is an already operational technology, and has been
implemented as it is often assumed that, on a “first order approximation”, the reactive
power has more impact on |V| than on δ, the converse being true for the active power p.

When a GU u has the technological elements to provide this service, the associated
first-step variables qγ

u become null within our model: the DSO cannot control them any
more. The reactive variables of this GU become a second-step variable. The associated
constraints on these variables can take several forms:
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• Auser can for instance consider the local regulation law from [246]. It is a parametrized,
piecewise linear local regulation function of type Q as a function of V. This has
not been implemented in our models, but should be seen as a direct and valuable
extension.

• We have opted for an easier implementation, which is to consider a continuous
variable q ≤ q ≤ q. This model amounts to considering that power electronics are
capable of delivering any kind of service at no cost (recall that for now reactive
power is not monetized).

Slack node voltage set point
Yet another possible enrichment of our models is the modification of the voltage set point
at the slack node’s transformer. With the modernisation of these transformers, it becomes
possible to modify the set point in a closed interval. In this case, |V|slack becomes a
variable where it is a parameter set to the fixed set point value in Problems (Const-P
- Min-E).

Two possibilities to consider this variable are available:
• Either consider it to be a control variable, thus leading to a modification of the

first step. In this step, |V|slack becomes a continuous, lower and upper bounded
variable.

• Another interesting possibility is somewhat similar to our proposition for the Local
voltage regulation. In this second model, we let |V|slack be a continuous, lower
and upper bounded variable in the second step problem without modifying the
first step. This models the ability to modify, close to real time, the voltage set-point
at the slack node at no cost. There are several drawbacks to this model:

– As described in [278], the “no-cost” assumption is not realistic at the moment.
It turns out that the activation of modifying the set point at the slack node
deteriorates the transformer, and this should be accounted for.

– By passing the variable |V|slack to the second step, there is no possibility to
control the number of its activations within a given set of time periods. On an
operational setting, the operator cannot activate this lever as many times as
desired: if more than 2 activations are required over a 24hours period, this is
considered to be above usual bounds.

We believe nevertheless this slight modification to be interesting from a possibly
“prospective” point of view. Modifying the set point value at the entry node is an
important lever for the future of electrical grids that is still to be fully deployed
and is a still improving technology: for instance, newer OLTCs can be expected to
operate 600.000 times before requiring maintenance6.

7.5.5 Analysis of the second step problem (7.21)
The aim of this section is to provide insights on the solving a of PF, cast as an optimisation
problem. As first described in Remark 17, several works have studied this method.
6 This converts to over 34 years, considering one operation every 30 minutes.
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Historically the ambition was to benefit from rapidly developing numerical methods for
smooth optimisation problems. In our case, the ambition is to be able to provide valid
cuts for the DoC functionR. The main obstacle is to ensure that our solution to problem
(7.21) is a global optimum. This is an open and difficult question, to which some insights
suggest that we indeed can expect global optimality. If we fail to reach global optimality
when computing the value ofR are a given iteration, then we do not have an exact oracle,
which is a necessary condition for our algorithm PBMDC 2.

In order to reduce numerical difficulties, we start by proposing the following scheme
when entering the second step:

Outcome k of ξ

Compute a Power-Flow using ξl

Retrieve state variables δ, |V|

Operational
constraints

End Solve the second step optimisa-
tion problem

End with δ⋆, |V|⋆,R(p, q, ξl)

All are verified
Some are violated

Figure 7.6: The second-step overview.

The rationale is that when no lever activation is required, we already know the
functional value and a subgradient of R. For a given outcome ξl of random vector ξ,
when all operational constraints are verified by the state variables computed in the PF,
thenR(p, q, ξl) = 0. Moreover, a subgradient ofR at (p, q) is a zero vector of appropriate
size.

A smooth optimisation problem needs to be solved only for outcomes where oper-
ational constraints are violated. We thus lower the numerical burden, as solving a PF
system is less demanding: we rely for this matter on existing efficient code, namely the
one initially proposed by Joe H. Chow and improved by Graham Rogers, that is included
within their MATLAB toolbox [81].

Several obstacles to an exact oracle for PBMDC 2 can arise in the second-step problem
(7.21) and equation (7.27), or other second-step described in Section 7.5.4.

1. The Power-flow computation can provide an undesirable solution point.
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2. The optimisation problem (7.21) being non-convex, the solution can be a local
minimum and not a global one.

For the first point, we look into a slightly related question, which is the number of
solutions that a PF system admits: as expected, there are several mathematical solutions
to such a system. As proved in works [156, 169] and more recently [203, 210], it is clear
that the solution set to a PF system is not a singleton. The latter work even explicitly
provides solutions to a PF system (in a lossless network, thus not realistic but simpler
for computations). Another very interesting work on this matter is [108]: in a |N |-bus
network, there are at most 2|N |−1 solutions to the associated PF system. One of these
solutions is called the high-voltage, while the others are the low-voltage ones. The former
is “the” operational solution which is the one that should be observed in real-life (leaving
aside modelling errors), and the latter ones are non-desirable because they only have
a mathematical meaning and no physical one. The distance of low-voltage points from
the high-voltage points is an indicator of the electrical stability of the electrical grid.
As described in the works cited in this section (see for instance [108, p.9]), when the
system is not ill-conditioned, it is usually observed that numerical methods to solve a PF
system converge to the desired high-voltage point. A similar assumption is made in [295],
namely that in the usual operational conditions (i.e. with usual operational constraints
on δ, |V|), the PF system has a unique solution when it exists. This assumption could
enable us to discard the first possible source of error: assuming our Power-flow code is
able to find a solution that verifies the operational constraints, it is unique. If it cannot
find this solution, we assume there is no Power-flow solution within the operational
constraints, and move on to the second-step optimisation problem.

For the second point, by definition and assumptions, there is no Power-flow solution
that respects the operational constraints. As a consequence, the objective at hand is not
about finding a feasible PF solution anymore. The second-step optimisation problems
we have described thus far belong to a class of constrained Power-flow problem, which is
a hybrid PF-OPF problem as it is a true PF problem written as an optimisation problem7.
The immediate properties of these problems include smoothness and a non-convex but
DoC structure. One could then eventually derive an algorithm capable of computing a
global optimum. But the gain on optimality would be at the expense of computational
time. Still aiming to have a fast solving second step, we rely on the practical efficiency of
the SQP solver that we assume is able to provide a global optimum to our second-step
optimisation problems.

We conclude with the following two assumptions:

Assumption 3. Our PF code is capable of finding the high-voltage solution point to a PF
system. If it verifies every operational constraints, it is unique.

Assumption 4. When solving the optimisation problem of the second-step is necessary,
our SQP solver is able to provide a global solution.
7 It is not an OPF problem as generic OPFs have power variables whereas our second-step is an optimi-

sation where power values are parameters.



7.6. A DISCUSSION ON OUR TWO-STEPS MODELS 185

7.5.6 General characterization of our approach
When analysing our two step approach, one might wonder how our methodology relates
to a “scenario decomposition” method. Although we do compute values per scenarios,
this should not be considered as a classic scenario decomposition method. In our case, we
do require scenarios solely to compute values of the probabilistic functions. To clarify, by
setting η = R(p, q, ξ) which is a random vector itself, each scenario is a realisation of η.
We immediately see that more scenarios we use, the better are these values. The physical
interpretation, or trying to associate to these scenarios a real-life interpretation, should be
regarded as secondary. They indeed are generated for the probabilistic approximations
and not their physical meaning. As such, observing the number of scenarios that have
electrical constraints along the iterates of PBMDC 2 is not a good criteria a priori.

The only chance-constrained problem among our four propositions is problem (Const-
P). Problem (Max-P) is often referred as a “max-P” problem: it also is a probabilistic
problem. On the other hand, problem (Min-E) is closer to a canonical two-stage stochastic
program, as described in [265]. The only difference lies in that the constraints in the
canonical two-stage stochastic program from [265] are linear, whereas there are convex
polynomial in problem (Min-E). Out last model, problem (Const-E), is a stochastic
problem which is simply known as an expected value constrained problem in [293].

7.5.7 Conclusion on the second DoC formulation for
the stochastic OPF

This new class of models seems more promising than the first one: the distinction be-
tween control and state variables is explicit. A solution to a problem of this class should
consequently be considered as a better assistance to the DSO decision making in the
ST-OP process. Two different types of models are presented: probabilistic ones (with
the P[·] operator), and expectations ones (with the E[·] operator). The solving method-
ologies are similar for both, the difference only residing in the step “Process solutions”
of figure 7.5.

In this section, some numerical burdens have been withheld: the explicit DoC for-
mulations of the involved functions is not immediately obtained. Some obstacles are
discussed in Section 7.5.5 among which Assumption (4) can appear to be restrictive. This
restriction is discussed in chapter 8, and promising research is likely to lift this particular
obstacle.

7.6 a discussion on our two-steps models
Comparing mathematical models is a sensible subject as the underlying question often
is “which model is best to use?”, which answers should always be taken with care. In
a decision making context, a mathematical model and its resolution aim at providing
useful information to a question asked by a decision-maker. Just as a mathematical
model in mathematical programming has an optimality and a feasibility criteria that
can characterize what the “best” point is, the “best” model can only be determined if an
optimality and a feasibility criteria are readily available. As a consequence, a fair and
honest answer to which model to use is possible if this latter question comes with:



186 CHAPTER 7

1. The question the decision-maker is facing. An example can be: what decision
should the DSO take on a given electrical grid in order to have a 0.95 probability of
experiencing no electrical constraints according to our current knowledge of the
uncertainties?

2. The constraints related to the decision-maker and his/her environment. For exam-
ple, the DSO has a time/material constraint: no more than a given amount of time
is allowed.

From this observation, it is evident that all our four models do not provide answers to a
single question, and as such they should not be frontally compared. More precisely:

• Problems Const-P and Const-E aim at minimizing a cost function while having a
low measure of risk;

• Problems Max-P and Min-E aim at minimizing a measure of risk of failure at a
maximal known and given cost.

The objective of the decision-maker and the a priori available information (do we
have an information on the maximal acceptable cost or on the maximal acceptable risk?)
are key to decide which model should be used.

Comparisons can be conducted on the use of the operator E or P which differently
measure the risk of exploiting the grid outside of its usual operating bounds. This
amounts to basic probabilistic considerations: we here only provide some key points of
this comparison. The expected value operator applied to a multivariate random vector
does not include any covariance information. Recalling that the expected value of a
multivariate random vector is by definition the vector of the expected values of each
coordinate, it is clear that no information on a possible “joint” effect cannot be included in
our models using the operator E[·]. As a consequence, a probabilistic model is arguably
more conservative than one with the expected value operator, as in the former case more
information on the distribution is taken into consideration.
Remark 22. We care to add that if cost and risk were to be minimized in a single model,
this falls into a multi-objective context. Interestingly, the recent and major work [212]
from the DoC literature proposes a “double bundle” method in a multi-objective context
with DoC functions. For a DoC-constrained DoC problem, reformulated thanks to an im-
provement function, this work proposes a bundle-based solving methodology to achieve
a Clarke stationary solution point8. The authors discuss the link between this achievable
Clarke stationarity and notions of Pareto optimality which are key in multi-objective
optimisation. The bridge between DoC programming and multi-objective optimisation
is thus complete. ▷

Finally, we care to emphasize two key “ingredients” that enable us to set up these
models and have reasonable expectations on the numerical efficiency of PBMDC 2 when it
is applied on them:

• The availability of a procedure to compute functional values and subgradients of
Pξ [R(p, q, ξ) ≤ 0] and Eξ [R(p, q, ξ) ≤ 0], which is found in section 5.3.

8 This is similar to an unconstrained problem solved by PBMDC 2
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• The DoC framework which is the cornerstone of the communication between the
two steps. Thanks to the DoC structure of the functionR, and of the composition
of operator P or E withR, information of the second step can be used as input for
the first step. Other known cases where information of the second step could be
brought back to the first usually require convexity, which is significantly stronger
than DoC property required in our case.

7.7 convergence of the sample average approxi-
mation applied to our problem

While previous sections develop and discuss our two-step approach which 1) is inter-
esting from a physical point of view and 2) can fit in a DoC setting, little has yet been
studied on the numerical treatment of the evaluation of uncertainties. We will rely on a
Sample Average Approximation (SAA), an extensively used numerical method to obtain
tractable approximation of chance-constraints. The motivation for this choice rather than,
say, Genz’ code [128], is the relative simplicity of this method.

Let us define:
φub
lb : Rn → [0, 1]

x 7→ P [lb ≤ c1(x, ξ)− c2(x, ξ) ≤ ub] ,
(7.28)

as well as:
1[lb, ub](z) =

{
1 if z ∈ [lb, ub]

0 otherwise.
(7.29)

We also recall that:

φub
lb(x) = E[1[lb, ub](c1(x, ξ)− c2(x, ξ))]. (7.30)

The SAA method requires a set of independent Monte Carlo sample of vector ξ, that
we denote {ξ j}j∈[1,N], N being the sample size. The main idea of this method is to replace
the integral computation of equation (7.30), which is necessary to compute φub

lb(x), by
the following finite sum:

φ̂ub
lb(x) :=

1
N

N

∑
j=1

1[lb, ub](x).

Now, recalling that our initial problem is:

min
x∈X

f1(x)− f2(x)

s.t. φub
lb(x) ≥ p ,

(Pp)

the SAA problem is defined as follows:

min
x∈X

f1(x)− f2(x)

s.t. φ̂ub
lb(x) ≥ p .

(PN
p )

SAA ensures in some particular cases that this is indeed an approximation as the approx-
imation error goes to zero when the sample size grows. Our objective here is to verify
that this property holds in our case where we have DoC functions.
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Let z∗ and zN be the optimal solutions of problems Pp and PN
p respectively. The

authors of [200] study the relations between z∗ and zN , as well as possible inclusion of
the feasible set of problem (PN

p ) into the one of problem (Pp).
In this section, we start by presenting results on the probability of obtaining a lower

bound to the optimal value from solving the SAA approximation, as well as cases where
the set of feasible points to the SAA problem is included in the set of feasible points to
the original problem.

7.7.1 Initial properties of the SAA problem and its
optimal value

Using [200, Theorem 3] and provided that problem (Pp) has an optimal solution, the
optimal solution to PN

p−γ will be a lower bound to the optimal solution of problem (Pp)
for all γ ∈ (0, 1), with a probability converging to one exponentially fast with the sample
size N.

An additional relation between z∗ and zN is readily available in literature. Let us
define δ ∈ (0, 1) as the desired confidence level for zN

p−γ to be a lower bound to z∗p. If the
sample size N verifies:

N ≥ 1
2γ2 log

(
1

1− δ

)
,

then by [200, Theorem 3], we obtain zN
p−γ ≤ z∗p with a probability of at least δ.

In other words, the authors of [200] are thus able to derive a relation between the
sample size and the probability that zN

p−γ is a lower estimate of z∗p, for all γ ∈ (0, 1). They
have also studied the conditions under which a feasible solution to PN

p−γ turns out to be
feasible for problem (Pp). For clarity, let us define the following notations:

• Xp := {x ∈ X : P [lb ≤ c1(x, ξ)− c2(x, ξ) ≤ ub] ≥ p};

• XN
p := {x ∈ X :

1
N

N
∑

i=1
1[lb, ub](c2(x, ξ i)− c1(x, ξ i)) ≥ p}.

Within the scope of our work, where our application (the Optimal Power Flow) has
a random right-hand side, we will apply the results presented in [200, Section 2.2.2].
In more details, our interest lies in a case where the following three assumptions are
verified:
Assumption 5. There exist functions c̃1, c̃2, g such that c1(x, ξ) − c2(x, ξ) = c̃1(x) −
c̃2(x)− g(ξ).

Assumption (5) states we assume our model has a random right-hand side.

Assumption 6. The feasible set Xp verifies

Xp ⊆ {x ∈ X : l ≤ c̃1(x)− c̃2(x) ≤ u} =: X(l, u),

for some u and l in Rm.

Assumption 7. The cumulative distribution function F of the random vector ξ is Lipschitz
continuous with constant L.
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Theorem 15 (Theorem 9 in [200]). Assume that Assumptions (5 - 7) are verified. Let
γ ∈ [0, 1− p), β ∈ (0, 1− p− γ) and D = max{uj − lj, j ∈ [1, m]}. Let us also define:

XN
p (l, u) =

{
x ∈ X(l, u) :

1
N

N

∑
i=1

1[lb, ub](c2(x, ξ i)− c1(x, ξ i)) ≥ p

}
.

Then:
P
[

XN
p (l, u) ⊆ Xp

]
≥ 1−

⌈
DL
β

⌉m

exp{−2N(1− p− γ− β)2}.

◀

In other words, one can now have an estimation of the sample size necessary to reach
a confidence level on the inclusion of the feasible set XN

p (l, u) into the feasible set Xp of
our original problem: let δ ∈ (0, 1) be this desired confidence level. Then, if N verifies:

N ≥ 1
2(1− p− γ− β)2 log

(
1

1− δ

)
+

m
2(1− p− γ− β)2 log

(⌈
DL
β

⌉)
,

the probability of having XN
p (l, u) ⊆ Xp wille reach at least the desired confidence level

δ.
Assumption (7) shall not be seen as too restrictive, as for instance all random vector

ξ with quasi-concave distributions have Lipschitz-continuous cumulative distribution
functions if and only if none of the components ξi has zero variance (see [147, Theorem
2.2]). The latter reference also highlights that the class of quasi-concave multivariate
distributions is very large, and provides some examples of such distributions.

7.7.2 Convergence of the SAA solution to the origi-
nal value

Thanks to [232], results from the last section can be improved. In this latter work, the
authors also study a joint chance constrained problem:

min
x∈X

f (x)

s.t. P [G(x, ξ) ≤ 0] ≥ p ,
(7.31)

where f is a continuous real-valued function and G is a given constraint function from
Rn × Ξ to Rm without any other assumption. It is clear that our problem Pp fits into this
setting.

Let us add some introductory material presented in [232]:

• For two sets A, B ⊂ Rn, the deviation of set A from set B is defined as D(A, B) :=
∑

x∈A
dist(x, B). One can immediately observe that if D(A, B) = 0, then A ⊆ B.

• SN and S are defined as the set of optimal points for problems PN
p and Pp respec-

tively.

We here recall an important assumption used in [232]:
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Assumption 8 (Assumption (A) in [232]). There is an optimal solution x̄ of the
true problem Pp such that for any ϵ > 0 there is x ∈ X with ∥x− x̄∥ ≤ ϵ and
P [lb ≤ c1(x, ξ)− c2(x, ξ) ≤ ub] ≥ p.

With this assumption, the following theorem is proposed in [232]:
Theorem 16 (Proposition 2 in [232]). Assume that X is compact, f is continuous, G(·, ξ)

is continuous for almost every ξ ∈ Ξ, G(x, ·) is measurable for every x ∈ Rn, and As-
sumption 8 holds.

Then zN → z∗ and D(SN , S)→ 0 with probability 1 as N goes to infinity. ◀

Theorem 16 merely states that as the sample size goes to infinity, provided that there
exists an optimal point x̄ for the true problem Pp that is an accumulation point, then the
optimal value and the set of optimal solutions for the SAA problem converge to their
true counterparts.
Remark 23. Wehave directly applied results to our DoC settingwith a random right-hand
side. These direct applications prove that the SAA method is theoretically useful as the
approximated solutions that it provides converge to solutions of the true problem. ▷

Note that we will be using SAA on the following problem:

min
x∈X

f1(x)− f2(x)

s.t. 1
N

N
∑

j=1
ζt(c1(x, ξ j)− c2(x, ξ j)) ≥ p

(7.32)

where ζt is as defined in equation (5.12). Due to this additional approximation, another
step is needed in order to ensure the proper convergence of the SAAmethod. To complete
this step, one can turn to [153, Theorem 1] where the authors prove that the approxima-
tion ζt of the indicator function is asymptotically exact as t positively goes to zero. This
proves the equivalence of Problems 7.32 and PN

p (as defined by the authors of [153]).

7.8 conclusion
In this chapter we have presented and discussed two classes of models for a DSO oriented
OPF problem. Although the first model is not satisfactory, it has led to the second type
of models that shows promise. This second type of model is a two-step approach: the
first step is an optimisation over control variables, while the second one is solely on
state variables. This decomposition into two steps is made available thanks to the DoC
structure of our problem. Once this framework is set-up, our four models naturally arise
through the use of different operators (P and E). After part II where we have developed
an algorithm for DoC constrained DoC programs, and part III where we have presented
a DoC formulation of chance-constraints (see section 5.3), building these models is the
last step before our first numerical experiments on the OPF.
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8This chapter concludes our efforts to provide a numerical tool for decision making for
the DSO in a ST-OP context. It assembles two main facets of our work:

• a model proposition, that is built on our initial understanding of the operational
ambitions (see Part I), explicitly presented in Chapter 7.

• a solving methodology that relies on several mathematical elements: DoC program-
ming and a new generic algorithm for a large class of problems (see Chapter 4), as
well as a better understanding on chance-constraints in Chapter 5.

The main objective of this Chapter is to provide a “proof-of-concept” of our methodology
to tackle an OPF under uncertainties. This (first) attempt should evidently be improved,
and several possible extensions.

Our ambition is to test and compare different existing DoC algorithms for our mod-
els. For these mixed comparisons of models and algorithms, it is necessary to define
discriminating criteria; this is addressed in the first section of this present Chapter.

As is common in non-convex, nonsmooth optimisation, results are significantly in-
fluenced by parametrisations and initialisations. We are interested in these parameters
and their possible combinations. Due to the number of parameters (there are at least
10 different parameters in PBMDC 2 for instance), expecting an omniscient and extensive
overview of their combinations is unrealistic. In the second section of this chapter we
discuss which parameters we have selected. The third section is dedicated to the numeri-
cal strictly speaking. All numerical results are produced using MATLAB2019b, Gurobi
9.1.1, Windows 10 Professional, 16Go and an Intel i7-6820 processor (4 cores).

8.1 definition of our criteria
We here present our criteria that we then use to determine the quality of the resolutions of
a model by an algorithm with a selected combination of parameters. Time of computing
(CPU time), and number of iterations of the DoC algorithms are reported. We also
include the objective and constraints values at the initial point (x0) as well as at the last
serious step (x̄). These values respectively denote f (x0), c(x0), f (x̄) and c(x̄). We also
have included the number of scenarios for which decisions x0 and x̄ lead to no electrical
constraints. These number of “covered” scenarios are denoted N0

SC and NSC respectively.
The notion of “covered” scenarios can be misleading in our context, as our objective is

not strictly speaking to increase NSC to a level deemed sufficient by the operator. We recall
that we use scenarios for the numerical evaluations of probabilistic functions, which
in turn appear in our optimisation models. Algorithms then optimise values of these
latter functions, which can in some cases happen to be related to a number of covered
scenarios and not in others. We care to emphasize that the analogy between the number
covered scenarios and values of our probabilistic functions is false in general, and should
be studied with attention.

191
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Moving slightly into more details, the reasons why there are differences between
the number of covered scenarios and the values of probabilistic functions are distinct
depending on the probabilistic operator at hand: E or P.

In the former case, one can easily conceive the existence of these differences: see Exam-
ple 6 for a simple explanation. In the latter case, as we do make use of an approximation
of the probabilistic operator P (with a user given precision parameter) the number of
covered scenarios can evidently be different from the computed value of the approxi-
mation of the probability. Even when a significant number of scenarios is used for the
numerical computation, a loosely chosen precision parameter for our approximation
will undoubtedly lead to poor analogy between the number of covered scenarios and
the probability values.
Example 6 (Highlights on the misleading aspect of the relation between the number
of covered scenarios and the expected value of power imbalances.). Let us consider a
set of 7 scenarios, two decisions x1, x2 and their associated imbalance values (sum of
squared distances to 0 in the power equilibrium constraints equations (7.1b) and (7.1c)
for instance) reported in Table 8.1.

Scenario 1 2 3 4 5 6 7 Expected Value
x1 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4

x2 0 0 0 4.10−4 0 0 0 3e-4
Table 8.1: Example of power imbalances for 7 scenarios for two decisions x1 and x2.

One can immediately observe that decision x1 has a lower expected value although no
scenario is covered, while decision x2 covers 6 scenarios out of the 7 but has an expected
value three times greater than the one related to x1. ▶

8.2 choice of significant parameters
In Table 8.2we recall the list of parameters that can bemodified. From a priori experiments,
and in order to limit the combinatorial possibilities we want to investigate, we claim that
our algorithms are significantly less sensible to some parameters than others.

We start by the parameters which values seem to have a low impact in our numerical
experiments. Different values of κ, µ0 and the maximal bundle size, once this value is
above a threshold, seem to have little impact on the resolution of our problems. As a
consequence, we set κ = 0.5, µ0 = 1 and the maximal bundle size to 500.
Remark 24 (About the maximal bundle size parameter). As a reminder, the maximal
bundle size parameter retains the amount of information we allow to gather along PBMDC
and PBMDC 2. While the number of linearisations in the bundle is less than this value, we
allow for the addition of new linearisations at each iteration. Once (i) the bundle size is
above its maximal value and (ii) a serious step is made we can in fact solely keep the
information of the last iteration. Another possibility, which we use in our numerical
experiments, is to keep all active linearisations and discard the other ones. Note that
this rule implies the first one: the linearisation from the last iteration obviously is active
(provided that the sub-problem is exactly solved).
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Parameter Constraint Comment
ρ ρ ≥ 0 PBMDC 2

σ σ ∈ [0, 1) PBMDC 2

κ κ ∈ (0, 1) PBMDC 2

δTol δTol ≥ 0 PBMDC 2 and PBMDC

µmax, µmax µmax, µmin ≥ 0, µmin ≤ µmax PBMDC 2 and PBMDC

µ0 µ0 ∈ [µmin, µmax] PBMDC 2 and PBMDC

µ update rule Defined in PBMDC 2 PBMDC 2 and PBMDC

Maximal bundle size Strictly positive value PBMDC 2 and PBMDC

p p ∈ (0, 1) For models with operator P

rhs rhs ≥ 0 For models with operator E

Initialisation Initial point must verify linear bounds For all models
λc λc > 0 Scaling factor for the constraints

DoC decompositions For all models
Table 8.2: List of parameters to set.

Once this parameter value is greater, in order of magnitude, than 100, then we have
experienced that it has few impacts on the resolutions. Let us also add that as a general
rule, the largest the bundle the longer is the computation time: each subproblem has
a higher cost to solve. Nevertheless, in our case, at each iteration the step with the
highest computation cost is by far the oracle evaluation. Solving the subproblem has a
comparatively very low computation time, which implies that we can allow large bundles:
we do not gain any significant computing time by reducing the maximal bundle size. ▷

The remaining parameters have more significant impact on the outcomes. On the
algorithmic side:

• δTol impacts the solution for obvious reasons, and has been set to 10−7 for all our
experiments.

• ρ is critical for the rate of reaching a feasible point: in general, the larger it is, the
faster PBMDC 2 reaches feasibility. This is easily understandable as, by design of
the improvement function we use, ρ provides weight to infeasibility. With a large
weight, the optimality criterion is lessened relatively to the feasibility criterion until
feasibility is reached. Once reached at a step k, ρ has no impact from k + 1 until the
end of PBMDC 2.

• µmax, µmin are upper and lower bounds on the weight given to the proximal term
in the subproblems of PBMDC 2. With a large weight, computing the next iterate
will more likely provide a solution close to the last serious iterate (also called
“stability center” in literature). Conversely, a small weight reduces this attraction
to the last serious iterate. In order to reach the stopping condition rapidly, and
avoid long computation tails, one should aim at large µmax. We set µmax = 105, and
µmin =

1
µmax

= 10−5, keeping in mind Gurobi’s advice on admissible numerical
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scales (i.e. avoid large differences in order of magnitudes, and for right hand sides
of the linear constraints avoid orders of magnitude greater than 104).

• Our update rule on µ is based on the behaviour the observed of PBMDC 2: in general,
more null steps are achieved than serious ones. As a rule defined for PBMDC 2,
when a null step is performed µ can be updated to an greater value, while it can
decrease solely after a serious one. In other words, we observe more opportunities
to increase µ than decrease its value. As a consequence, we implemented a rule
that increases µ after every 5 consecutive null steps, and decreases this parameter
after 3 consecutive serious steps. Requiring several consecutive steps of the same
type is an attempt to prevent µ from converging to its bounds “too quickly”, which
can be observed in practise, and let the algorithm gather more information in the
bundle.

• The right hand side parameters p and rhs are part of the user-provided information,
and reflect the user’s requirements: they naturally have a huge impact on the
solution.

• As is usual in nonsmooth nonconvex optimisation, initialisation of a problem
impacts its solution. An initialisation in the neighbourhood of a critical point can
lead the algorithm to stop at this point, which can be unobserved when initialising
at another point. This expectation holds in our case.

• Finally, we recall that in general DoC decompositions have an impact on the solu-
tions reached. As we do not know how to discriminate a priori a DoC decomposition
from another, this also appeared to be a significant parameter to control.

8.3 observations on the initialisation
Aside from the particular structure that our problem possesses, our setting introduces
a singular property: by design, there always exists a non-empty feasible set and we
can easily conceive a heuristic to reach feasibility. This claim is easily ascertainable:
thanks to our variables of service not delivered pν, qν, it is theoretically possible to set
all interactions with the grid to zero which is a trivial feasible point. Building upon this
observation, we can derive a heuristic to find a feasible point. To this end, we define the
sign matrix Aσ as the diagonal matrix which diagonal elements have values in {−1, 1}:

Aσ
i,i =

1 if xi is a decision on service not delivered
−1 otherwise.

(8.1)

This matrix Aσ is such that for a given decision x1, setting x2 = x1 + αAσ, α > 0 leads to
a decision x2 with lower interactions of the GUs with the electrical grid and consequently
less forecasted electrical constraints, if any. Algorithm 3 is a simple heuristic to find a
feasible point for instance.

Finding a feasible point is obviously theoretically interesting: as usually noted in
works on nonconvex optimisation, finding a “good” initial point can have a significant
advantage over a “bad” one (see for instance the short discussion in the general intro-
duction of [283], which is focussed on generalized version of DCA). In our case, we could



8.4. NUMERICAL RESULTS FOR OUR MODELS OF PROBABILISTIC OPF 195

Algorithm 3 A simple heuristic to find a point within the feasible set

Step 0: Initialization. Define a step length τ > 0, set k = 0 and Aσ the sign matrix as
defined in equation (8.1). Let x0 be a zero vector of the appropriate size.
Step 1: Stopping test. Compute a load-flow accounting for decision xk. If no electrical
constraint is observed, then stop and return xk.
Step 2: Incrementation. Set xk+1 = xk + τAσ.
Step 3: Loop Set k := k + 1 and go back to Step 1.

leverage PBMDC 2 ’s property of maintaining feasibility while decreasing the value of
the objective function: nevertheless, this has not been useful in our case, and leave this
interesting property for future developments.

8.4 numerical results for our models of proba-
bilistic opf

We looked into different randomly generated cases on a 33 nodes topology. The GUs
selection and the scenario generation used to approximate either the expected value
function or the probabilistic one are all initialized to a single fixed seed, arbitrarily fixed
to 101. The following tables report results for our four different models, and present
combinations of different parametrisations/choices.

First of all, we compare the following DoC algorithms:

• our PBMDC 2;

• algorithm PBMDC from [228], where the DoC constraints are penalized.

Remark 25. We have decided to discard both DCA and the convex-concave procedure (CCP,
from [197]) algorithms, as it turned out to be inefficient: at each iteration, it is required
to solve a DoC problem which is too time-consuming. Trying to develop a tailored
approach using relying on either DCA or the convex-concave procedure is probably still
possible, but requires some more involved work and possibly smooth reformulations in
the subproblems: we believe that it falls beyond the scope of our work. ▷

We have considered the following input parameters:

• Initialisation: as is usual in nonconvex optimisation, using different initial points
can lead to different outputs. As a consequence, we consider 3 types of initialisation,
referred to as “Zero”, “Rand” and “Mean”. The first two types are direct affectations:
“Zero” is the zero vector of appropriate size (i.e. theDSOdoes not take anydecision),
while “Rand” is a random vector taken in-between the upper-bound and the lower-
bound. Lastly, “Mean” is the point obtained from solving a deterministic OPF
where the vector ξ is replaced by its mean value. Note that the initial point, in this
case, can be unfeasible which is visible from the numerical results.

1 As such, we claim that our cases cannot be deemed a priori “favourable” for our algorithm.
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• Right-hand-side rhs: this parameter is a user-given one, and has different interpre-
tations depending on the model in use. For problems Min-E and Max-P, rhs is the
allocated maximal cost. For problem (Const-E), rhs is the maximal expected value
of the recourse functionR. For problem (Const-P), rhs is the minimal probability
of observing no electrical constraints.

In order to study the behaviour of our algorithms, we consider the following criteria:

• the initial values of the objective function and the DoC constraint function;

• the final values of the objective function and the DoC constraint function;

• the number of “covered” scenarios at the solution point;

• the number of steps in PBMDC and PBMDC 2;

• the time of computing for PBMDC and PBMDC 2;

8.4.1 Numerical results for problem (Min-E)
Recall that problem (Min-E) aims at minimising the expected value of the recourse
functionR, whose interpretation is found in Insert 8.
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In this model, it is interesting to see that feasible points are nearly always reached,
with PBMDC and PBMDC 2 providing different solution points. When studying the impact
of parametrization, we obtain the following graphs:

• figure 8.1 is a plot of the final objective values against the maximal allowed cost;
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• figure 8.2 is a plot of the number of scenarios covered at the solution point against
the maximal allowed cost.
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Figure 8.1: Final values of E[R(x̄, ξ)] as a function of f̄ . Some values for PBMDC 2 are
not visible on the graph due to the very small relative differences between the values.

It is visible that the expected value of function R increases as the allowed cost is
lowered. Moreover, it appears that PBMDC is able to find better objective values when
compared to PBMDC 2, while not ensuring feasibility. This should be interpreted as a be-
havioural difference between an algorithm using the improvement function (as PBMDC 2),
and a penalization algorithm (as PBMDC). The improvement function has the interesting
property of iteratively selecting points that lower the constraint violation, until the DoC
constraints are verified. Once verified, future iterates remain feasible. This is not the case
of a penalization algorithm, which appears to look for “slightly” infeasible points. It does
not enjoy the property of maintaining feasibility once reached.

Among our four models, and although parametrization has remained a difficult task
for all of them, we believe this model to be the most robust from a numerical point
of view. Another advantage of this model is that, in case the cost function is a convex
function, problem (Min-E) is a convexly-constrained DoC program. In other words,
there would be no difference in applying PBMDC 2 or PBMDC as they are equivalent on DoC
problems without DoC constraints.

On the downside, it is difficult to a priori interpret the expected values we minimize.
Truly, it is clear that minimizing this expected value minimizes the expected of value
of the risk of observing the grid out of its bounds for a given decision. Nevertheless,
analysing a numerical value of this expected value seems impractical for the operator:
for instance, its magnitude can be dependent on the size of the problem for instance. As
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Figure 8.2: Number of scenario covered at the end point (NSC) as a function of f̄ .

a result, we believe that this model is interesting for preliminary studies on a grid, its
behaviour and sensibility to input data, and didactic purposes rather than for industrial
decisions for the DSO.

All in all, this first model should be regarded as an interesting, didactic study of an
OPF with uncertainties. It highlights the differences in behaviours of PBMDC and PBMDC 2

regarding the feasibility of the obtained solutions. While the former provides solutions
that are close to be feasible, the latter manages to reach feasibility and improve the
objective function while maintaining feasibility.

8.4.2 Numerical results for problem (Const-E)
In this second model there are DoC functions in the objective and the constraints. It
aims at minimizing the cost function, with an upper-bound on the expected value of the
second-step functionR. In other words, the goal is to reach a minimal cost with a bound
on a measure of risk.
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Similarly to the previous subsection, we plot the following graphs:

• figure 8.3 is a plot of the final objective values against the maximal allowed risk;

• figure 8.4 is a plot of the number of scenarios covered at the solution point against
the maximal allowed risk.
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Figure 8.3: Values of E[R(x̄, ξ)] as a function of ϵ.
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Figure 8.4: Number of scenario covered at the end point (NSC) as a function of ϵ.

Again, as visible in figure 8.3, when the allowed risk is increased, the cost is lowered
which is expected. In figure 8.4, we present the plot that relates our “measure of risk”
(the upper-bound on the expected value of the second-step functionR) to the number



202 CHAPTER 8

of scenarios where no electrical constraints are observed. First of all, we recall that this
notion of “covered scenarios” should be taken with care: this concept should only be
regarded as an inexact proxy to measure the quality of a solution. Having noted this
remark, figure 8.4 emphasizes the difficulty of analysing a risk using the expected value
operator, in particular in this model. In fact, problem (Const-E) requires that the operator
provides an upper-bound on the expected value of the second-step function. This value is
an absolute one, which implies that the operator is required to know if the acceptable risk
is to be set at 10−2 or 10−4. In general, it is not possible to a priori discriminate between
these different choices without an extensive experience. We are only a posteriori able to
say that setting the upper-bound to 10−4 can provide solution where close to all the
scenarios are covered, while setting the upper-bound to 10−2 can provide solution where
between 700 and 800 of the 1000 scenarios are covered.

In this model, it is visible that PBMDC 2 has a more interesting behaviour than PBMDC:
the end points are nearly all feasible, while PBMDC stops mainly at non-feasible points (al-
though close to being feasible). One explanation is that problem (Const-E) is somewhat
better matched with PBMDC 2 than with PBMDC. Differently to problem (Min-E) which
could be in a special case written as a convexly-constrained DoC program, problem
(Const-E) inherently is a DoC constrained DoC program.
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8.4.3 Numerical results for problem (Max-P)
This subsection and the next one are dedicated tomodelswith the probabilistic operatorP.
We recall that problem (Max-P) is a maximisation problem: the objective is to maximise
the probability of observing the grid within its bounds, while ensuring that the cost is
upper bounded.

Ta
bl
e8

.5:
Nu

m
er
ica

lr
es
ul
ts

fo
rp

ro
bl
em

(M
ax

-P
).
Th

en
um

be
ro

fs
ce
na

rio
sg

en
er
ate

d
is

N
=

10
3 .
CP

U
tim

el
im

it
is
se
tt
o7

20
0s
.N

0 SC
is
th
en

um
be

ro
fc

ov
er
ed

sc
en

ar
io
sw

ith
th
e

in
iti
al

po
in
t,

N
SC

be
in
gt

he
nu

m
be

ro
fc

ov
er
ed

sc
en

ar
io
sw

ith
th
es

ol
ut
io
n
po

in
t.
Re

ca
ll

he
re

th
at

th
is
is
am

ax
im

isa
tio

n
pr
ob

lem
.

f(
x0 )

c(
x0 )
−
rh

s
f(

x)
c(

x)
−
rh

s
N

SC
CP

U
(s
)

Ite
ra
tio

ns
In
it

rh
s

PB
MD

C2
PB

MD
C

PB
MD

C2
PB

MD
C

PB
MD

C2
PB

MD
C

PB
MD

C2
PB

MD
C

PB
MD

C2
PB

MD
C

Ze
ro
s

10
−

3
0.

44
5

−
10
−

3
0.

99
0

0.
99

3
−

3.
14

21
.1

0−
6

1.
41

14
.1

0−
4

99
0

99
2

14
22

13
41

16
7

22
2

10
−

4
0.

44
5

−
10
−

4
0.

84
5

0.
85

5
−

6.
18

95
.1

0−
6

1.
59

17
.1

0−
4

84
5

85
5

18
94

14
45

26
8

55
1

10
−

5
0.

44
5

−
10
−

5
0.

64
0

0.
68

9
−

1.
01

14
.1

0−
8

3.
75

41
.1

0−
6

64
0

74
2

29
41

19
25

14
46

25
93

Ra
nd

10
−

3
0.

91
0

1.
92

15
.1

01
0.

74
5

0.
80

2
4.

66
52

.1
0−

4
6.

47
21

.1
0−

4
74

5
80

2
19

45
15

54
13

42
10

24
10
−

4
0.

91
0

1.
92

24
.1

01
0.

70
1

0.
71

0
3.

10
14

.1
0−

6
6.

47
21

.1
0−

4
70

1
71

0
18

44
17

19
98

5
71

4
10
−

5
0.

91
0

1.
92

25
.1

01
0.

56
0

0.
56

0
7.

91
78

.1
0−

8
6.

98
24

.1
0−

8
56

0
56

0
11

23
14

63
10

56
56

4

M
ea
n

10
−

3
0.

85
1

0
0.

99
0

0.
99

0
−

3.
14

20
.1

0−
6
−

3.
12

00
.1

0−
6

99
0

99
0

85
6

84
1

18
9

14
4

10
−

4
0.

76
0

0
0.

84
5

0.
85

0
2.

54
78

.1
0−

4
9.

12
47

.1
0−

5
84

5
99

0
14

22
10

14
71

4
21

3
10
−

5
0.

46
4

0
0.

65
1

0.
68

4
3.

41
00

.1
0−

5
7.

66
00

.1
0−

6
65

1
68

4
25

21
14

98
69

8
53

2

We plot in figure 8.5 the objective value as a function of upper-bound on the allowed
cost. As a general trend, it is visible as expected that the greater is the allowed cost, the
higher is the probability of observing the grid within its bounds. In more details, this
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model highlights the importance of initialisation: the random initialisation provides
significantly better end points (∼ 20% improvement). Interestingly, this model is the
only one to have this particularity: in other models, initialising with the “mean value”, or
even with the “zero vector”, provides end points that are at least as good as end points
obtained from the random initialisation.

Further studying the impact of the random initialisation, one can observe that this
initial vector more often than not verifies the two following items:

• It leads to a probability of the second-step function being lower or equal than 0
close to 1. The rationale lies in the two following remarks: (1) non-zero decision in
our model often leads to better electrical states, (2) as zero is a bound on close to
all the decisions the DSO can take, when generating the random initial vector we
often end up with a non-zero decision.

• It leads to a decision with a high cost, and this is explained similarly to the previous
point.

These two remarks are visible in table 8.5 (see columns f (x0) and c(x0)−rhs). They
imply that with the random initialisation, the algorithms start at a “highly” infeasible
point with an objective function close to 1 (which is the upper bound on its value).
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Figure 8.5: Objective values at the end point as a function of f̄ .
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8.4.4 Numerical results for problem (Const-P)
This last model is a chance-constrained OPF. The aim is to minimise a cost function, with
a constraint on a probabilistic function. In other words, the goal is to provide the decision
with the lowest cost that ensure the grid state is respected in probability.
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In figs. 8.6 and 8.7 we plot the final costs and final probability against the upper-bound
on the chance-constraint (denoted p).

Figure 8.7 highlights that PBMDC is not able to provide a feasible end point: the chance-
constraint is always violated. On the other hand, PBMDC 2 provides end points that respect
the probabilistic constraints, even providing over-conservative solutions (when the
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Figure 8.6: Final costs as a function of p.
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Figure 8.7: Final probability values as a function of p.

constraint is strictly verified). Similarly to problem (Const-E), problem (Const-P) is
better matched with PBMDC 2 than with PBMDC probably because it inherently is a DoC
constrained DoC program.
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8.5 discussion on our results
Immediate observations from our first numerical results can readily be made, and are
often alignedwith possibly a priori analysis.Wediscuss in this section our fourmodels and
compare the two algorithms we used for this test. We start by commenting the differences
between the models. We then discuss general and important aspects of the resolutions we
present. Finally, although the two algorithms PBMDC and PBMDC 2 share similarities in that
they both make use of bundles, rely on similar oracles and have somewhat resembling
convergence properties, we found out some significant distinctions that further justify
the advantage of PBMDC 2.

8.5.1 Comparisons of our models based on the numer-
ical results

We start by recalling that comparisons betweenmodels should primarily be conducted by
observing their capacity of providing a useful answer to a given question. The objective of
our work is to provide to the DSO a decision analysis tool for the short-term operational
planning. The decision is required to be:

• cost-optimal, due to the status of the DSO;

• explicitly control a risk measure.

Following this observation and reminders, we here gather our comments on our models.
First of all, it is clear that not all of our models match these two requirements. More

precisely, problems Min-E and Max-P do not look for cost optimal solutions. On the
other hand, problems Const-E and Const-P do look for cost-optimal solutions. Secondly,
the measurement of risk is different between problems Min-E and Const-E and prob-
lems Max-P and Const-P: while the former models use the operator E, the latter ones
use the operator P. The operator P enables us to have a better understanding of the
risk. A first, immediate justification for this fact is simply because it is humanly easier to
manipulate probabilities than abstract values whose order of magnitudes are modified
from one grid to another.

As a consequence, we claim that problem (Const-P) is the best model with respect
to our two main requirements discussed at the beginning of this section. Now we care to
highlight the main positive aspects of the other models:

• ProblemsMin-E andConst-E are easier to implement than problemsMax-P andConst-
P.

• If a priori to the optimisation step the operator only has a cost information (for
instance the operator only knows the maximum allowed cost), then problems Min-
E and Max-P are well suited.

• Problems Const-E and Const-P are better suited when the operator has knowledge
on the maximal allowed risk.
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8.5.2 Analysis of the time spent in PBMDC 2

The computing time in a DSO context is important: a proper answer should provide a
solution point well under thirty minutes and ideally under ten minutes. The rationale is
that this solution has to be studied by an operator, and other optimisation can possibly
be relaunched before real-time. A first observation is that in general, our current version
of the algorithm cannot meet this requirement as a run time can be greater than two
hours when parameters are not properly set. We believe that the choice of parameters for
PBMDC and PBMDC 2 have a significant impact on its efficiency when different input data
sets (i.e. grid parameters and forecasts) are provided. This postulate is expected from
non-convex optimisation insights, and verified in our case. We highlight that we have
little knowledge on a priori definition of a “good” choice of parameters.

Taking a step back, the time of computing can be split into:
1. the time spent in the oracle;
2. the time spent in the subproblem of PBMDC 2.

We would like to highlight that the time required for steps with lower complexity (such
as for bundle management or descent test) are not considered here. These steps have
linear complexity, and the time spent in them is significantly lower than the time spent
in the two previously identified steps.

Solving the second-step (see section 7.5.5 for a description of the second step) turns
out to be very efficient using readily available solver. We recall that the second step is
comprised of a number of small subproblems (one per generated scenario). We also
recall that these subproblems are (linearly constrained) quadric programs whose size is
bounded thanks to the bundle management step of PBMDC 2. On the other hand, calls to
the oracle are more costly. To highlight this last result, we consider our 33 nodes case
and use 1000 scenarios; we then call the oracle on 100 randomly selected points. In order
to observe decision points with low as well as high probabilities of leading to electrical
constraints, the random selection is as follows:

xrand = lb+ (ub− lb)ζ, (8.2)
with ζ a Gaussian random variable of mean value 0 and variance 0.1.
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Figure 8.8: Computing time for 100 calls to the oracle on random points.
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To create section 8.5.2, we have computed 100 points using a combination of random
generation and the same incrementation idea found in algorithm 3. Our goal is to obtain
points with different probabilities of leading to an unconstrained electrical grid. For
these 100 points, the time spent in the second step2 is reported as a function of their
respective probability of leading to an unconstrained state. Section 8.5.2 clearly shows
that the more a point can lead to an unconstrained state in our setting, the less computing
time is required in the oracle. This is evident when looking on section 8.5.2: if, for a given
decision and a given generated scenario, no electrical constraint is encountered by the
PF solver, then for this scenario no optimisation is necessary and the algorithm moves
on to the next scenario. On the other hand, when a combination of decision and scenario
leads to a constrained state, an optimisation is required and the solving process requires
more time.

From this observation, one could therefore hope that with a “good” initialisation, the
overall solving time could be improved. This hope, although reasonable at first sight,
has to be mitigated: if xk has low computation time because a small number of scenarios
require an additional optimisation step, we cannot expect this property to hold for xk+1

in general (in particular if xk+1 is a null step).

8.5.3 Comparisons of the different algorithms
We already know that (generalized) DCA and CCP are easier to implement when compared
to PBMDC and PBMDC 2, but prove to be inefficient in our context. The main advantage of
CCP over DCA is that it does not require a feasible point for the DoC constraints for the
initialisation.Neither algorithmuses amodel for the first component of theDoC functions,
nor do they rely on bundle methods. A direct conclusion on these algorithms is that they
are easier to implement, but can possibly have longer steps (as they do not make use of
approximations) or even be practically unusable (due to too long steps).

At first sight, one might wonder if PBMDC 2 is worth its development and convergence
studies, as PBMDC applied to a simple penalised version of our program provides interest-
ing results. There are two answers to this question. First of all, thanks to properties of the
improvement function we recall that PBMDC 2 has the property of maintaining feasibility
once it is reached, which is not the case when applying PBMDC to the penalised version.
This property is interesting in a context with a computing time constraint for instance.
It is possible to parametrise our algorithm to emphasize the importance of reaching
feasibility (this is done by applying a large value for ρ) so that the feasible set is reached
within a short time period, and the operator can decide to stop the algorithm after a
given additional time while being certain that the last point found by the algorithm is
feasible.

Secondly, the penalisation parameter of the PBMDC algorithm is not trivial to set. On
this latter observation, we recall that [185] explores exact penalty for DoC programming
but in the particular case where the constraints are defined by concave functions (thus a
sub-case of DoC programming). In our case, with an OPF at hands, our DoC functions
have both convex and concave components.

Looking more closely, one can observe that PBMDC usually has a relatively lower CPU
time when compared to PBMDC 2. We recall that these differences in the computing time
2 Recall that the time spent in the second step is the time spent in the oracle.
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are to be considered taking into consideration the end points are different from one
algorithm to the other: we thus compare times to obtain a numerical solutions and not
times to converge to a single point. Time of computing can be lower in PBMDC due to the
more easily satisfied descent test in the algorithm in particular when a feasible point has
been reached. To highlight this fact, let us consider the following problem:

min
x∈X

f (x)

c(x) ≤ 0,
(8.3)

where f and c are given functions. When using PBMDCwe reformulate problem (8.3) into
the parametrized problem (8.4):

min
x∈X

f (x) + γ max(c(x), 0)2, (8.4)

with γ > 0. We consider a fixed penalization, with a large γ. When using PBMDC 2, we
introduce the improvement function Hτ(x) = max{ f (x)− τf , c(x)− τc} with τf , τc as
defined in Chapter 4, to reformulate problem (8.3) into the parametrized problem (8.5):

min
x∈X

Hτ (x). (8.5)

Let us consider a setting where the last serious point is denoted xk(ℓ), the current iterate
is k and verifies c(xk(ℓ)) ≤ 0, i.e., the last serious point is feasible.

Now let us consider the set of points that are admissible to become the next serious
iterate xk(ℓ+1). When optimising problem (8.4) with PBMDC, this set denoted S1 is equal
to:

{x ∈ X | f (x) + γ max(c(x), 0)2 ≤ f (xk(ℓ))− κ
µmin

2

∥∥∥x− xk(ℓ)
∥∥∥2
} =: S1. (8.6)

When optimising problem (8.5) with PBMDC 2, this set is denoted S2 is equal to:

{x ∈ X | Hτℓ(x) ≤ Hτℓ(xk(ℓ))− κ
µmin

2

∥∥∥x− xk(ℓ)
∥∥∥2
} =: S2. (8.7)

One can then invoke Lemma 1 to conclude that S2 ⊆ S1. In other words, the set of points
that can be selected as the next serious step for PBMDC includes the one for PBMDC 2.

8.5.4 Impact of some parameter values
The choice for numerical values for parameters at hand turn out to be crucial for conver-
gence and the solution’s quality. Several factors contribute to this importance:

(i) this is a nonsmooth nonconvex optimisation, and this class of problem is known
for this significant reliance on parameter tuning.

(ii) Although the proof of convergence in bundle-like methods do no rely on the
existence of parameter values that are difficult to obtain a priori as in penalisation
methods, in practise one has to set “appropriately-chosen” parameters. This choice
is based on experience.
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(iii) The OPF problem requires a high level of precision: this is also true in our modeli-
sation.

A parametrisation difficulty appears when the objective and constraint functions
have values of different order of magnitude. In this case, we applied some fixed scale
parameters α f , αc ∈ R2

+ for objective and constraint functions as follows:

f (x)← α f f (x),

f (x)← αc f (x).
(8.8)

Parameter ρ as defined in chapter 4 for PBMDC 2 also has a significant impact. In our
case, DoC constraints are in practise close to zeros (positive values that are lower than
1), whereas the objective function has values which order of magnitude is greater than
103. Setting ρ proportionally to the value order of magnitude f

order of magnitude c
turns out to be efficient

in practise.





CONCLUSION

9Newchallenges have appeared from the long-termandprofound transformations implied
by the energy transition and the evolving role of the DSO. Among them is the increasing
impact of uncertainties on the operational planning, which proves to be a significant
obstacle both from a mathematical point of view, as new optimisation tools are required
for this challenge, and from the operational field, as new levers and a good understanding
of the uncertainties are necessary. For a better integration of the uncertainties in the
mathematical tools the OPF is often identified as a major mathematical tool to address
the operational planning step. Literature on the OPF is thus large, as numerous works
address the necessary improvement of this tool. For the last 60 years, more efficient
modelling choices have led to relaxations with interesting properties in some cases; more
electrical elements can now be included in an electrical grid model; new models, as
security-constrained OPFs, have been proposed which are well suited for optimisation
of energy systems. New algorithms from the optimisation field have been applied to
the OPF, with significant numerical improvements: from gradient methods applied to a
linear OPF, there are now solvers for the full AC-OPF. With the increasing development
of chance-constraints since the early 2010, probabilistic OPFs have gained more and more
attention. In parallel, bundle methods have been proposed for non-convex problems,
and a DoC formulation for chance-constraints has been presented. The combination
of these last three recent developments motivated us to look into particular subset of
these challenges: the OPF problem from the DSO, taking uncertainties into account and
modelling them using chance-constraints.

As described before, several obstacles had to be overcome in this work:
• The program at hand was a nonsmooth nonconvex one.
• Usual network and PF approximations available to a TSO do not hold in the case

of the Medium Voltage (MV) perimeter considered in the work.
• Taking a DSO point of view implies that we do not possess the means of produc-

tion/consumption, but can interact with them with a priori set contracts.
• Forecasts data, as well as amean ofmodelling uncertainties linked to these forecasts,

are necessary.
• Joint chance-constraint was an initial goal of our work, which usually leads to

untractable problems.
In this small subset of the OPF studies, even leaving aside integer numbers, we still

immediately obtain a difficult mathematical program and a list of obstacles.

9.1 achievements
In a setting that is as much time constrained as it is replete of possibilities, our cho-
sen course of action has placed an emphasis on the mathematical side of the chance-
constrained OPF. As a consequence, while the initial motivation and future developments

213
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are focused on the OPF, the technical core of this thesis is DoC programming. This choice
is backed by the following facts:
(1) DoC programming is a suitable structure for nonconvex nonsmooth programs,

which is the case of the OPF,

(2) Chance-constraints can be approximated by DoC functions.
The first group of achievements of this thesis is thus on DoC programming. We

propose a new bundle method for DoC constrained DoC programs, which is a large
set of optimisation problems. Convex problems are in this set, and every continuous
optimisation problem can be approximated by a DoC one up to a user-given precision.
This bundle method extends the current state-of-the-art in nonsmooth nonconvex optimi-
sation. In other words, we only require functional values and subgradients at given points
of our functions’ domains, which is a fair requirement, and prove that the convergence
point is either a critical or a stationary point depending on the initial assumptions. Note
that stationarity is, in DoC programming, the strongest optimality certificate one can
hope for in general (see [233]). This algorithm is assessed on usual problems from the
literature, where numerical results prove its efficiency.

We then propose a DoC formulation of the Chance-constrained OPF. The latter
problem is re-written as a two-step problem, which emphasizes the inherent differences
of state and decision variables.

9.2 following steps
Numerous questions and new possibilities arise from this work, the answers to which
will require additional research. These questions / possibilities are classified into “Math-
ematical methods”, “OPF models” and “data”.

9.2.1 Mathematical methods
We discuss in this subsection possible future developments from our work, from a
mathematical point of view. The possibilities we present do not all require the same
amount of work: some appear to us as direct interesting extensions, while others have
been open questions for decades now.

Our solution methodology relies on our proposed bundle algorithm for DoC pro-
grams. This algorithm relies on an exact, deterministic oracle, which can be a strong
hypothesis (see assumptions 3 and 4). It turns out, in our case, that this hypothesis
amounts to assume we always are in a position to find the global optimum of a non-
convex, smooth program. Although this assumption has been encountered in literature,
we believe it to be too strong and possibly unnecessary. Following [22] where the authors
propose a bundle method with inexact oracles for convex programs, developing a new
bundlemethod for DoC constrainedDoC programs seems achievable. Themain difficulty
seems to be the fact in our case the model function for the original DoC function is not
convex, yet convexity of the model is a key assumption in the developments of [22]. Note
that inexactitudes of the oracle in our case always follow the following rule: in case the
oracle provides an inexact value, this latter value will always be greater than the optimal
value.
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Another major question, which is still open (see the theoretical considerations of [152,
149]), is the impact of the DoC decomposition on the results. For a deterministic OPF,
we have performed trials with different DoC decompositions of the functions at hand.
Thanks to [221], and adaptations presented in [285, Chapter 4], we have two different
DoC decompositions. The models built during the iterations of PBMDC 2 differ from one
decomposition to another, and it is unclear if there exists criteria to discriminate one
decomposition from the other. For the stochastic OPF, we only use one decomposition as
it is not yet clear if the second one built similarly to the second one of the deterministic
OPF is valid.

Thirdly, a difficulty, more or less shared between all nonconvex algorithms, is finding
an appropriate parametrization. There usually are no fixed and a priori rules for this
parametrization, and it requires experience and numerous trials to encounter a set of
parameters that suits our current program. Developing rules of parametrization (or
lowering the importance of parameters’ values in the behaviour of the algorithm) should
be considered as an important future work. It should also be clear that without fine
parametrization rules, no industrial code tackling nonconvex programs is and will be
independent of a designated experienced operator capable of conducting try-outs of
parameters.

On our numerical treatment of chance-constraints, it appears that there exists numer-
ous relaxations of this type of constraints. We believe there are multiple, yet laborious,
work leads on leveraging these relaxations. For example, one could use Bonferroni ap-
proximations of the chance-constraints, as proposed in [76, Section 2.2]: these types of
inequalities would enable us to leverage the particular structure of our uncertainties
which are in fact separable. We used separability to speed up computation time, while
Bonferroni inequalities are an interesting way to approximate joint chance-constraint
by individual ones, and thus lower the computational burden. Moreover, considering
chance-constrained programs from a variational analysis point of view, a direct future
work could be to use PBMDC 2 and apply the subgradient formula of Chapter 6 to our
chance-constrained OPF. More precisely, it would be interesting to implement an algo-
rithm as algorithm 3, where the functional and subgradients values of our probabilistic
functions are computed as described in Part III. This approach does not fall under DoC
programming methods, but rather is “purely” variational approach which could be
directly compared to our DoC one.

Finally, we have omitted integer numbers from our models as we are unsure on how
our solving methodology could cope with integrality constraints. As a general rule, when
adding integer numbers one could either solve a branching tree where each node would
be a continuous DoC constrained DoC program or include integer numbers in the DoC
constrained DoC program. The latter choice can rapidly appear unfit to one accustomed
to DoC programming when studying the usual condition of criticality or stationarity (see
for instance [228]).The former choice on the other hand appears too time-consuming to
be useful in real-life, letting aside the possible necessity of fine-tuning the parameters at
each node of the branching tree.

9.2.2 OPF models and possible improvements
As discussed in the previous subsection, a major limitation to our developments on
the OPF is the lack of integrality constraints. Considering such constraints should be
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at the core of the future work on optimization for the OPF under uncertainties. As a
matter of fact, integer variables naturally arise in already operational levers (choice of
flexibility offers for instance). Although deterministic OPF with integer variables are still
significant challenges in large scale networks, in smaller networks (∼100 nodes) OPF
with uncertainties and integer variables seem to be the current “go-to”.

Nonetheless, letting aside integer variables, we believe our model is of interest for
uncertain continuous OPF. Due to the DoC structure, we are able to decompose the
problem in a two-step program. The first step relates to the DSO decisions, while the
second step computes the probability of observing a network whose state variables are
in-between their bounds. As such, this should be interpreted as a framework, where
every user can modify or improve a part. In particular, following the successful works on
relaxations for the OPF in literature, we believe that the second step could be improved.
For instance, we are inspired by the convex relaxations of the OPF, which are exact under
some hypothesis: proposing an exact, convex relaxation for our second step optimisation
problems would be a significant improvement for our framework.

In a different approach, recent optimisation works could bring a significant improve-
ment to our developments. First of all, from the point of view of methodologies, machine
learning techniques appear to provide fast and robust methods for the OPF. For instance,
in [177] the authors report a 12x increase in speed on medium sized networks (200
nodes) while the number of cases where their algorithm fails in converging to a solution
with an interesting physical meaning is 40% lower than when using a basic mixed-integer
solver for an OPF (the one used in MATPOWER [310]). This is interesting as our second
step problems are somewhat related to the OPF, and we do require high quality solutions
(for our exact oracle hypothesis) and low computing time (for practical usefulness).
Secondly, from a material point of view, we care to point out to [168, 254] which describe
GPU-accelerated LF and OPF. The benefit of this material incremental improvement
within our framework would be a faster function values and subgradients evaluations. It
would therefore improve the second-step from a computing time point of view, which is
the most challenging step of our proposed algorithms.

9.2.3 Data considerations
While Enedis proposes good quality data including consumption and production profiles
for different types of GUs, in stochastic programming it is assumed one has a good
knowledge of the variables with uncertainties. The variance of different profiles are
absent in Enedis Open Data, which are necessary for our OPF. Moreover, covariances
also are missing, which also are necessary when considering joint chance-constraints.
Without these two moments, we cannot quantify the importance of uncertainties in
our problem, let alone the impact of these uncertainties in a real-world problem. A
better assessment and quantification of the different sources of uncertainties should be
necessary for real-world applications.

For instance, the author of [60] studies a case where the most significant source of
uncertainties is not on the forecasts of GUs, but on the taps of the HV/MV transformer.
Other sources of uncertainties include the possible unforecasted loss of infrastructure or
means of production (this particular case is studied in the Security constrained OPF), or
the unknown characteristic values of electrical elements (resistance and reactance values
could be modelled as uncertain parameters).



DETAILS ON THE DOC
DECOMPOSITIONS OF THE
DETERMINISTIC OPF

AIn this Appendix, we are interested in the DoC decomposition of the deterministic OPF.
The interest of this development is twofold:

(1) It is a good introduction into practical DoC decompositions of functions;

(2) We consequently prove that the deterministic continuous OPF is a DoC problem
by explicitly showing this peculiar structure.

We are able to propose two different DoC decompositions which is also interesting as
there is no general knowledge of which DoC decomposition is better: this is still an open
question in the optimisation field. As a consequence, having two different decompositions
readily available could contribute to research on discrimination of DoC decompositions.

This Appendix is organised as follows: we start with necessary elements for both
DoC decompositions, before presenting the first decomposition and the second.

a.1 first necessary doc decompositions for the
docopf

First of all, it is clear the a continuous deterministic OPF as equation (7.1) is a DoC
problem: the theoretical justification is that all involved functions are C2 everywhere. The
objective of this section is to provide an explicit DoC formulation.

We immediately tackle the linear components of nonconvex functions as in the
following example:
Example 7. Let c1, c2 : Rn → R be two convex functions, and f : Rn → R be a linear
function. For any λ ∈ R, we define cλ

1 = c1 + λ f and cλ
2 = c2 + (λ− 1) f which are both

convex functions. Then cλ
1 − cλ

2 is a valid DoC decomposition of x 7→ c1(x)− c2(x). ▶

Having dealt with the linear parts of functions, we now turn to the more interesting
nonconvex parts of the functions at hands. Developing equations (7.3) and (7.4) yields:

pg
i − pl

i = ∑
N∋k∼i

yR
i,k |V|i |V|k cos(δi − δk) + yI

i,k |V|i |V|k sin(δi − δk) (A.1)

qg
i − ql

i = ∑
N∋k∼i

yR
i,k |V|i |V|k sin(δi − δk)− yI

i,k |V|i |V|k cos(δi − δk). (A.2)

It becomes clear that the two key elements to decompose into a DoC formulation are
the following:

Ψ : R4 → R

(x, y, z, h) 7→ xy cos(z− h),
(A.3)
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Φ : R4 → R

(x, y, z, h) 7→ xy sin(z− h),
(A.4)

the last step to find the full DoC decomposition being a linear combination of the compo-
nents. As a consequence, the following sections will aim at providing DoC formulations
for these two functions, as functions of four variables. We emphasize that the clear link
between formulations equations (A.3) and (A.4) and our OPF problem is:

x ↔ |V|i , y↔ |V|k , z↔ δi, h↔ δk.

Again, Ψ and Φ are immediately seen to be DoC functions as they are lower-C2. We
recall that there are an infinite number of valid DoC decompositions for a given DoC
function: we here propose two of these. Moreover, even though the DoC property is a
global one, the validity of a DoC decomposition can be local as we can see in example 8.
Example 8. Let us consider f : R ∋ x 7→ x3; f is a nonconvex DoC function, and a possible
decomposition over R is

f =
13 x4

16
+

x3

2
+

5 x2

8︸ ︷︷ ︸
convex

−(13 x4

16
− x3

2
+

5 x2

8︸ ︷︷ ︸
convex

).

Interestingly, another DoC decomposition this time over R+ is f itself as it is convex
on this set, or yet again f =

1
2
(
(x2 + x)2 − (x4 + x2)

) is a valid DoC decomposition for

x >
−3 +

√
3

6
. This simple example outlines that the decomposition is a local concept,

as opposed to the global property of being DoC. ▶

We now present two DoC decompositions, both of them using different techniques.
The motivation lies in the fact there no clear way to discriminate a DoC decomposition
from another a priori. In accordance with Example 8, we will present DoC formulations
that are valid on a set that includes all values that are possible to obtain in an OPF
problem. To that matter, we define S := [−π, π]2 × [0, 2]2 which includes all attainable
values of the variable vector [δ1, δ2, |V|1 , |V|2].

A.1.1 DoC decomposition A
Let f be a lower-C2 function. Among its properties is the existence of a parameter ρ > 0
such that:

f (x) = f (x) +
ρ

2
∥x∥2︸ ︷︷ ︸

convex

− ρ

2
∥x∥2︸ ︷︷ ︸

convex

. (A.5)

We will refer to ρ as the convexification parameter. In the particular case where f is
a C2 function, a rule to select this parameter ρ is readily available: it is sufficient to set
ρ = max(0,−λmin), where λmin is a uniform lower bound on the minimal eigen values
of the hessian matrix of f . Similarly, in case f has a Lipschitz continuous gradient with
modulus L > 0 then setting ρ = L in equation (A.5) provides a valid DoC decomposition
([229, Proposition 1]).

Recalling that in our case we are interested in a DoC decomposition within a set
that verifies x, y ∈ [0; 2] and z, h ∈ [−π; π], the following decomposition is valid (see
Appendix A for more details):
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Ψ =

convex︷ ︸︸ ︷
xy cos(z− h) + 4(|x|2 + |y|2 + |z|2 + |h|2)−

convex︷ ︸︸ ︷
4(|x|2 + |y|2 + |z|2 + |h|2),

Φ =

convex︷ ︸︸ ︷
xy sin(z− h) + 4(|x|2 + |y|2 + |z|2 + |h|2)−

convex︷ ︸︸ ︷
4(|x|2 + |y|2 + |z|2 + |h|2) .

A.1.2 DoC decomposition B
Leveraging the proposed algorithm of [221] and using DoC calculus rules one can
encounter in the introduction of [229], we propose another DoC decomposition. The
explicit formulation is can be found in Appendix A.

The advantage of this decomposition is that it does not rely on any parameter that
is difficult to validate: an operator solely has to compute the Lipschitz modulus of the
gradient of (z, h) 7→ cos(z− h), which is easier done than for a function of four variables.
Moreover, as depicted in Appendix B, the two different DoC decompositions are of
different numerical interests.

A.1.3 DoC decomposition of the OPF
From subsections appendices A.1.1 and A.1.2 we have obtained decompositions Ψ =

Ψ1−Ψ2 and Φ = Φ1−Φ2. As visible in equations equations (A.1) and (A.2), the last step
to obtain a DoC formulation for these two constraints is to compute a linear combinations
of Ψ1, Ψ2, Φ1, Φ2.
Remark 26. Evidently for y < 0, one has: y(Ψ1−Ψ2) = Ψ′1−Ψ′2 with Ψ′1 = |y|Ψ2, Ψ′2 =

|y|Ψ1. ▷

Once this step is completed, we are now in possession of the following formulation:

cRi (δ, p, q, |V|) = pl
i − pg

i + ∑
N∋k∼i

yR
i,k |V|i |V|k cos(δi − δk) + yI

i,k |V|i |V|k sin(δi − δk)

= cRi,1(δ, p, q, |V|)− cRi,2(δ, p, q, |V|),

cIi (δ, p, q, |V|) = ql
i − qg

i + ∑
N∋k∼i

yR
i,k |V|i |V|k sin(δi − δk)− yI

i,k |V|i |V|k cos(δi − δk)

= cIi,1(δ, p, q, |V|)− cIi,2(δ, p, q, |V|),

where, by construction, functions cRi,1, cRi,2, cIi,1, cIi,2 are convex. Equations equations (A.1) and (A.2)
now become:

cRi,1(δ, p, q, |V|)− cRi,2(δ, p, q, |V|) = 0, ∀i ∈ N
cIi,1(δ, p, q, |V|)− cIi,2(δ, p, q, |V|) = 0, ∀i ∈ N

which we modify into inequalities equations (A.6) and (A.7) for a specified ϵ > 0 to fit
our DoC programming setting:∣∣cRi,1(δ, p, q, |V|)− cRi,2(δ, p, q, |V|)

∣∣ ≤ ϵ, ∀i ∈ N (A.6)∣∣cIi,2(δ, p, q, |V|)− cIi,2(δ, p, q, |V|)
∣∣ ≤ ϵ, ∀i ∈ N (A.7)
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Insert 11: Note on inequalities equations (A.6) and (A.7) and ϵ.
The aforementioned inequalities are, strictly speaking, relaxations of equa-
tions (A.1) and (A.2) with a user-given parameter ϵ > 0. In practice, we set
ϵ = 10−5

For clarity, before proposing our first DoC formulation of the deterministic OPF, we
recall a classic DoC programming identity:
Lemma 13. [285, Proposition 4.1] Let I be a finite index set, and let (a1,i − a2,i)i∈I be a
finite set of DoC functions defined on an abstract set A of Rn. Then maxi∈I [a1,i − a2,i] is
DoC, with a readily available DoC formulation as follows:

max
i∈I

[a1,i(x)− a2,i(x)] = max
i∈I

[
a1,i(x) + ∑

I∋j ̸=i
a2,j(x)

]
−∑

i∈I
a2,i(x) (A.8)

◀

As a consequence of Lemma 13, we can re-write constraints equations (A.6) and (A.7)
that are enforced for every node as:

cR1(δ,p,q,|V|)︷ ︸︸ ︷
max
i∈I

[
cRi,1(δ, p, q, |V|) + ∑

I∋j ̸=i
cRj,2(δ, p, q, |V|)

]
−

cR2(δ,p,q,|V|)︷ ︸︸ ︷
∑
i∈I

cRi,2(δ, p, q, |V|)−ϵ ≤ 0

max
i∈I

[
cIi,1(δ, p, q, |V|) + ∑

I∋j ̸=i
cIj,2(δ, p, q, |V|)

]
︸ ︷︷ ︸

cI1(δ,p,q,|V|)

−∑
i∈I

cIi,2(δ, p, q, |V|)︸ ︷︷ ︸
cI2(δ,p,q,|V|)

−ϵ ≤ 0

We can finally explicitly propose the DoC formulation of our deterministic OPF:

min
δ,p,q,|V|

f (δ, p, q, |V|)

s.t. A (δ, p, q, |V|) ≤ b Linear constraints,
Aeq (δ, p, q, |V|) = 0 Linear equality constraints
cR1(δ, p, q, |V|)− cR2(δ, p, q, |V|) ≤ ϵ Real power (A.9a)
cI1(δ, p, q, |V|)− cI2(δ, p, q, |V|) ≤ ϵ. Reactive power (A.9b)

We here provide more details to rigorously prove we indeed have two correct DoC
decompositions. As a reminder, we are interested in DoC decompositions of the following
functions:

Ψ(x, y, z, h) = xy cos(z− h), Φ(x, y, z, h) = xy sin(z− h).

In our OPF context, it is sufficient to look into DoC decompositions that are valid on
[0, 2]2 × [−π, π]2.
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a.2 on decomposition a
Our first proposition relies on finding an upper-bound on the Lipschitz moduli of ∇Ψ
and∇Φ. When the functions at hand are twice continuously differentiable, these moduli
are in fact uniform upper-bounds on the largest eigenvalue of the respective hessian
matrices:

∇2Ψ(x, y, z, h) ⪯ LΨid, ∇2Φ(x, y, z, h) ⪯ LΦid.

From this point on, we computed eigenvalues of the 4× 4 hessian matrices, and
found an upper bound to the largest of these. This process has been conducted using
MATLAB Symbolic Toolbox for verification. In this context, an eigenvalue is a function
from [0, 2]2× [−π, π]2 to R. The largest value attained by one of the eigenvalue functions
is 8, for both Ψ and Φ. We also have a very easy routine to numerically search for errors
in a DoC decomposition, which can be found in Annex B.

a.3 on decomposition b
The drawback of the first decomposition is that it relies on a chosen parameter, which is
difficult to verify either “by hand” or by using a CAS system. To overcome this drawback,
one can observe that Ψ and Φ are two product functions, which elements we can modify
to ensure they are non-negative.

An interested reader can find in [221] DoC decomposition methods for the particular
case of polynomials. We adapted the proposed procedures to our case where we have
cos and sin functions. The key elements can in fact be found in [285, Chapter 4]:
Proposition 10. [285, Proposition 4.12] For any two convex functions f1, f2 : Rn

+ 7→ R+ a
DoC representation of their product is the following:

f1(x) f2(x) =
1
2
[ f1(x) + f2(x)]2 − 1

2
[

f 2
1 (x) + f 2

2 (x)
]

◀

Similar formulations are presented in [221], which also rely on the hypothesis of
non-negativity:
Lemma 14. [221, Section 4] For g1, g2, h1, h2 convex polynomials that are sum-of-squares
(i.e. a sum of monomials that have even exponents), the following formulation is a
difference of sum-of-squares polynomials:

(g1 − h1)(g2 − h2) =
1
2
(
(g1 + g2)

2 + (h1 + h2)
2 − (g1 + h2)

2 − (g2 + h1)
2)

◀

We can observe that a cornerstone element of Lemma 14 is the non-negativity property
of sums-of-squares. Let us recall two well-known convexity preserving operations: for
convex functions f and g, f + g is convex, and if f also is non-negative then f k is convex,
for k ≥ 1. As a consequence, we can observe that Lemma 14 also holds for non-negative
convex functions which are not necessarily polynomials.

Turning our attention back to Ψ and Φ, we start by making explicit a structure that
will allow the application of Proposition 10 and Lemma 14:



222 CHAPTER A

Ψ(x, y, z, h) = xy(cos(z− h)+ |z|2 + |h|2−
|z|2 − |h|2),

Φ(x, y, z, h) = xy(sin(z− h)+ |z|2 + |h|2 + 1−
|z|2 − |h|2 − 1).

Now, applying twice the property of Proposition 10:

Ψ(x, y, z, h) =
1
2

[
(x + y)2 −

(
x2 + y2)] [cos(z− h) + z2 + h2 − z2 − h2]

=
1
4

[(
(x + y)2 + cos(z− h) + z2 + h2)2

+
(
x2 + y2 + z2 + h2)2−(

x2 + y2 + cos(z− h) + z2 + h2)2 −
(
(x + y)2 + z2 + h2)2

]
=Ψ1(x, y, z, h)−Ψ2(x, y, z, h),

with:

Ψ1(x, y, z, h) =

(
cos (h− z) + (x + y)2 + h2 + z2

)2

4
+
(
h2 + x2 + y2 + z2)2

,

Ψ2(x, y, z, h) =
(
cos (h− z) + h2 + x2 + y2 + z2)2

4
+
(
(x + y)2 + h2 + z2

)2
.

Similarly for Φ:

Φ(x, y, z, h) =
1
2

[
(x + y)2 −

(
x2 + y2)] [sin(z− h) + z2 + h2 + 1− z2 − h2 − 1

]
=

1
4

[(
(x + y)2 + sin(z− h) + z2 + h2 + 1

)2
+
(
x2 + y2 + z2 + h2 + 1

)2−(
x2 + y2 + sin(z− h) + z2 + h2 + 1

)2 −
(
(x + y)2 + z2 + h2 + 1

)2
]

=Φ1(x, y, z, h)−Φ2(x, y, z, h),

with:

Φ1(x, y, z, h) =
(
x2 + y2 + h2 + z2 + 1

)2

4
+

(
(x + y)2 + sin (z− h) + h2 + z2 + 1

)2

4

Φ2(x, y, z, h) =

(
(x + y)2 + h2 + z2 + 1

)2

4
+

(
x2 + y2 + sin (z− h) + h2 + z2 + 1

)2

4

It is readily seen that the functions Ψ1, Ψ2, Φ1, Φ2 are sums and squares of convex
non-negative functions, which ensures that this is a valid DoC decomposition on a set
that includes [0, 2]2 × [−π, π]2.



A SIMPLE ROUTINE FOR
NUMERICAL VERIFICATION OF A
DoC DECOMPOSITION

BLet f be aDoC function, and let us consider its associatedDoC decomposition f = f1− f2,
with f1, f2 convex. Let us also assume all functions are defined on a set S ∈ Rn, have real
values, and the DoC decomposition is valid on S . There are two immediate properties
one can check:

• functional values validity. This is a direct verification that for a given x ∈ S ,
f (x) = f1(x)− f2(x).

• Convexity verification of f1 and f2.
It turns out that convexity verification is not an easy taskwhen the explicit formulation

is a difficult one, making a direct convexity check using usual convexity-preserving rules
inapplicable. The following numerical method is inspired by bundle methods: one can
build a cutting-plane model for both DoC components, and check that this model is
indeed below the function. In a convex setting, provided that the oracles are correct, if a
functional value of a DoC component is above the model then there is the function at
hand is not convex.
Algorithm 4 A cutting-plane procedure for numerical verification of convexity
1: Let f = f1 − f2 be a DoC decomposition to test with their associated oracles x 7→

( fi(x), gi(x)), gi(x) ∈ ∂ fi(x), i = 1, 2. Select two sets S1, S2 of randomly generated
points in S . LetM1 andM2 be two empty cutting plane models.

2: procedure Cutting-plane model generation
3: Set upM1 andM2 using points of S1.
4: procedure Numerical convexity verif ication
5: for sk ∈ S2 do
6: Call oracles at sk.
7: ifMi(sk) > fi(sk), i = 1, 2 then
8: STOP with error.
9: else
10: listi(k) = fi(sk)−Mi(sk), i = 1, 2.

Using this algorithm, and aiming at providing more insight into the DoC decom-
positions of functions at hands in our application (see equations (A.3) and (A.4)), we
provide plots of distances between functions’ and their associated models’ at each point
of S2. For these plots, the convexification parameter in decomposition A is set to 8, the
models are set up on 105 randomly generated points of S , and distances are computed
on 105 randomly generated points of S .
Remark 27. One should bear in mind that in this experiment, points are randomly
generated: in a bundle methods, points at which the oracles are called to enrich the
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Figure B.1: Model distances for Ψ1,
DoC decomposition A
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Figure B.2: Model distances for Ψ1,
DoC decomposition B
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Figure B.3: Model distances for Ψ2,
DoC decomposition A
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Figure B.4: Model distances for Ψ2,
DoC decomposition B
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Figure B.5: Model distances for Φ1,
DoC decomposition A
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Figure B.6: Model distances for Φ1,
DoC decomposition B

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

1.2

Figure B.7 : Model distances for Φ2,
DoC decomposition A
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Figure B.8: Model distances for Φ2,
DoC decomposition B
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cutting plane model are not randomly generated. The rationale is that these computed
distances only matter at “interesting” points, namely critical/stationary points in our
case. ▷

It is readily visible that decomposition A seems to be, within the scope of this experi-
ment, a better approximation of the original function. As can be expected, it is visible in
figure B.9 that different values of the convexification parameter in this decomposition
have significant impacts on the output of this experiment. Another drawback, this time
from a numerical precision point of view, is that a higher convexification parameter
implies greater magnitudes of the DoC components and their associated (sub-)gradients’
norms. Although no rigorous study has been conducted in this work, we experienced
cases where components’ values were of magnitude 109 while their difference (i.e. the
original functional value) was of magnitude 10−5: having two drastically different order
of magnitude in the same optimisation program can lead to numerical difficulties. We
care to emphasize this is entirely due to our methods of finding the DoC decompositions,
which were the only ones at our disposal at the time of this work.

Figure B.9: Cumulative distances for Ψ1 for 4 different convexification parameters ρ in
decomposition A. Blue bars are obtained with ρ = 8, orange with ρ = 50, yellow with
ρ = 100 and purple with ρ = 103. All four experiments share the same S2, comprised of
104 randomly chosen points.





AN APPROXIMATE PROJECTED
GRADIENT ALGORITHM

CWepresent in this Appendix a generic algorithm, similar to the one used in [144, Section
6] for solving the following problem:

min
x∈X

f (x)

s.t. φ(x) ≥ p,

where f is assumed to be affine, and φ is as defined in (3.8). We also assume that a point
x0 ∈ X′ := {x ∈ X : P [g(x, ξ) ≤ 0] ≥ p} is known (and therefore this set is not empty).
Let us define τx0

X′ : X 7→ [0, 1] as follows:

τx0
X′ (x) =

{
mint∈[0,1] t

s.t. P [g((1− t)x + tx0, ξ) ≤ 0] ≥ p

and let us define Px0
X′ : X → X′ as Px0

X′ (x) = (1− τx0
X′ (x))x + τx0

X′ (x)x0. Since X′ is a closed
set, τx0

X′ and thus Px0
X′ are well defined. Since, it is not a proper projection, this algorithm

is sometimes referred to as an approximate projected gradient algorithm. Convergence
of such an algorithm is studied for example in [141]. Obtaining a numerical value
for τx0

X′ can be done using a bisection method, having at each iteration k to compute
P [g((1− tk)x + tkx0, ξ) ≤ 0] and stopping when it reaches p up to a given tolerance.

The formulæ (6.23) can be exploited to compute ∇φ(xk) at a given trial point (upon
verifying the condition of [17, Theorem 4.2]).

Algorithm 5 An approximate projected gradient algorithm

Step 0: Initialization. Let k = 0, x0 ∈ X′, and Tol > 0 a given tolerance.

Step 1: Oracle call. Compute f (xk), s f
k = ∇ f (xk), and sg

k = ∇φ(xk).
If f (xk) ≤ fbest, then xbest ← xk and fbest ← f (xk).

Step 2: Descent step. If
∥∥sg

k

∥∥ = 0 then define dk = −s f
k , else define dk = −s f

k +

〈
s f

k , sg
k

〉
∥∥sg

k

∥∥2 sg
k .

Step 3: Line Search. Perform a line search to find θ such that x′k+1 := xk + θdk ∈ X and
achieves descent.
Step 4: Projection step. xk+1 ← Px0

X′ (x′k+1).

Step 5: Stopping test. If ∥xk+1 − xk∥ ≤ Tol return xbest and fbest and terminate the
algorithm. Else proceed to step 6.
Step 6: Loop. Set k := k + 1 and go back to Step 1.

227





NUMERICAL INPUTS FROM ENEDIS
OPEN DATA

DIn this appendix, we summarize the processed data we used for all our test-cases. As
discussed in Chapter 7, data is both (i) necessary at each stage (parametrisation and
resolution) of the optimisation, (ii) difficult to obtain due to either technical considera-
tions (on the material side, an electrical grid is expensive to exploit and maintain, let
alone install sensors so there is no such operational omniscience) or privacy/intellectual
property limitations.

As part of a larger initiative to develop a full multi-temporal approach for a DoC for-
mulation of the OPF, we propose a data structure that is in part inspired by MATPOWER
work [310]. Our motivation to develop a model of our own stems from the following
ambitions:

• have a clear data separation between the ones relevant to the grid, the GU and the
DSO;

• be able to generate copyright-free forecasts from open source data (specifically
from [98]);

• make available an easier stream of process from data creation to the optimisation
problem and vice-versa.

Insert 12: Note on MATPOWER format.
On the one hand, MATPOWER format has an integrated load/generator model in
its data structure and makes easily available grid parameters (topology, resistance
and reactance values). This data structure is perfectly suited and efficient for PF
and OPF, with the drawback of being “closer” to the mathematical model and
“further” from GUs’ models. On the other hand, Enedis develops since 2015 an
open dataset that provides data detailed up to a legally privacy-preserving level.
In order to benefit from this (huge) dataset, we aimed at creating a bridge between
the detailed GUs models and a mathematical model. Keeping in mind that grid
parameters as its topology, resistance and reactance values are easier to obtain
when compared to injection/consumption forecasts, thismotivates the definition of
a new global model, while keeping it relatively close toMATPOWER’s. On another
matter, non-decomposable multi-temporal OPF is not a native functionality of
MATPOWER’s, which we have implemented in the spirit of our ST-OP definition
from the DSO point of view.

We propose a data format for optimisation on electrical networks which is broadly
described in figure D.1.
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Grid model
Grid elements
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Lines

Grid users
Generators and DRES
Loads

Base parameters

Figure D.1: High level description of our grid model.

We highlight and briefly discuss some key elements of data from a DSO point of
view, which is comprised of:

• a network topology;
• a list of GUs;
• an affectation of GUs to nodes;
• a generation or consumption forecast for each GU.

Network topologies and Grid Elements Network topologies can be easily encoun-
tered in literature: see for instance [310, 178, 287, 38] which present electrical networks.
Although a majority of them are transmission networks, some are distribution grids.
In [60] a real and large distribution network is used.

Grid Users Differently to network topologies, grid users are more protected and as a
consequence less encountered in literature. Thanks to Enedis Open Data (see [98]), we
nowhave access to aggregated grid user data at different levels in France (mainly national,
regional or by departments). Due to the long and unified history of the French electrical
grid, data is somewhat robustly classified: each geographical scopes share the same
classes for instance. One can find two technical documents [102, 260], which complement
each other to describe Enedis’ data collection. The first one provides an overview of the
Open Data datasets, while the second one gives details on the classification of profiles.
The key elements are the following:

• GUs are broadly categorized according to three of their characteristics: electric
energy metering, power subscription/installation size and activity.

• Each category is given an aggregate profile. The aggregation is done following
privacy-preserving rules, which can lead to inconsistent data. This is especially the
case when a category has a time-dependent cardinality that is relatively close to
thresholds defined in these privacy-preserving rules.

• For a given geographical area, one has access to the total number of producer-
s/consumers, as well as number of actors in each category defined in the first
point.
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Taking these inputs into consideration, one can derive probabilities for random draws of
grid users.

Affectation of GUs to nodes We randomly classify nodes into three categories:

1. a “load-only” node;

2. a constrained mixed node: loads and producers can be connected to this node,
provided that the sum of subscribed powers (loads) is lower than the sum of
installed powers (producers);

3. a fully mixed node: loads and producers can be connected to this node, without
any limits on their proportions.

Note that the affectation is an iterative process. For each GU, we randomly select a
node to which it will be affected, provided that the following rules are met:

• the node category allows the connection of the GU to the selected node;

• the power of this GU, added to the possibly already installed power, does not
exceed the nominal power of the MV/LV transformer.

Forecast generation From Enedis Open Data one has access to aggregated consumption
and production levels every 30 minutes of a given time horizon. We add marginal
modifications to make appear electrical constraints in the forecasts. These modifications
make sure that a given GU never has a production/consumption forecast that exceeds its
installation/subscription level.
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Insert 13: Note on existing open data for electrical networks.
Since 2015, Enedis publishes and maintains datasets relative to energy (mainly
electricity) matters. Now is included a vast number of data types, that ranges
from electricity balance within different geographical areas, to electricity quality
and various grid development indices. Although some data types are not detailed
at a lower scale than the national/regional one (e.g. due to the limited number
of electrical vehicles charging points, data on this matter are available only at
a regional level, which lessens the interest of their use), as the grid and its use
expand it is reasonable to expect a continuous improvement of data availability.
Having access to data without infringing any intellectual property law still is
challenge, for the academia as well as for some industrial projects: for instance,
data on consumption are technically retrieved by the DSO but are the property
of the consumer. The consumer can then authorize their transfer to the supplier,
who can operate on them. Aggregate data are made openly available by the DSO
as a mean to further encourage the expansion of the energy transition.
The open-data initiative is an on-going process, and we care to point out existing
research on this matter. Differently from our assumptions and approach, it appears
that active open-source research is aimed at the creation of GEs: this is to be related
to research on electrical planning. As a matter of fact, broadly speaking both these
fields are aimed at developing tools to have access to plausible electrical topology
andGEs’ characteristics, either at present time for the former, or in the future for the
latter. One example is [287] where research group provides transmission networks
and recently added a combined transmission/distribution network. The main idea
of this research group is to derive network topologies andGEs’ characteristics from
existing open-source datasets (which include for instance: density of population,
geographical data, highly aggregated energy consumptions).
While this first reference does not yet provide useful data for the distribution level,
two newly added references share a similar goal to ours. The first one is [178]
(yet to be published) is an interesting gathering of topologies, R, X values for
realistic radial distribution networks. A second dataset is [38] is a presentation of
an update to PGLib-OPF, a dataset with “reasonable” values although it is not as
explicitly aimed at the distribution level when compared to the latter reference.
The objective of our data generation module is to leverage this real data, process
them in order to fill in the missing values in our OPF.

A “fully-implemented” electrical grid is a data set comprised of all necessary data in
order to compute solutions to our models from Chapter 7. In this section we briefly detail
the main steps for our generic data creation, and the rules that are enforced throughout
this process.
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Processes Step outputs
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Position each GU
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Affect default
forecasts to GUs
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Grid with all GUs installed
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Fully implemented grid
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casted electrical constraints
Fully implemented grid GUs
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to user-given selectionEnd

Figure D.2: Broad overview of the different steps in our data creation process.

As depicted in Figure D.2, we rely on pre-processed data from Enedis Open Data
and user-given parameters. The latter are the dimensions of transformers on the grid,
and a rule to compute the desired amount of installed and subscribed power connected
to this network. The selection of GUs that will meet this aggregate goal of installed and
subscribed power is computed according to random draws from statistical occurrences
observed in Enedis Open Data.

User given parameters
• matrix Y: grid topology and line characteristics;

• an installed consumption power target on the grid (MVA);
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MOTS CLÉS

Différence-de-convexes, Contraintes de probabilité, Optimisation de flux de puissance électrique

RÉSUMÉ

L’arrivée massive de systèmes de production d’électricité renouvelable et la libéralisation du secteur de l’énergie ont un
impact durable sur la gestion des réseaux électriques. En particulier, le réseau de distribution électrique est devenu un lieu
d’interactions entre acteurs de marchés et son gestionnaire unique: l’opérateur du système de distribution (DSO). Parmi
les enjeux majeurs du DSO il y a la gestion prévisionnelle court-terme: actionner une série de leviers pour permettre
l’exploitation sûre du réseau suivant les prévisions d’activité à l’horizon de quelques heures; sa décision reposant sur le
modèle mathématique d’Optimal Power Flow (OPF). Les sources d’incertitudes sur les prévisions se multiplient avec le
nombre d’acteurs du réseau, et les outils de gestion doivent évoluer en conséquence.
Cette thèse porte sur l’intégration des incertitudes liées à la production et la consommation électrique par des contraintes
de probabilités dans l’OPF. Le problème d’optimisation ainsi étendu est non-convexe et non-lisse, mais présente une
structure Différence-de-Convexes (DoC). La classe des fonctions DoC généralise les classes de fonctions convexes et
concaves, et inclut en particulier des approximations de précision arbitraire de toute fonction continue, tout en conservant
des propriétés de régularité fortes qu’il s’agit d’exploiter dans une solution générique de programmation mathématique.
Une première contribution porte sur le développement et l’étude de convergence d’un algorithme de faisceaux pour
les programmes mathématiques avec objectif et contraintes DoC. Une formulation DoC de contraintes de probabilités est
ensuite présentée puis appliquée à l’OPF probabiliste. Une caractérisation de l’information du premier ordre des fonctions
probabilistes est réalisée, basée sur une analyse des variations locales. Cette dernière étude des fonctions probabilistes
rappelle que résoudre un OPF probabiliste en exploitant la structure DoC n’est pas l’unique choix de résolution. Quatre
formulations explicites d’OPFs probabilistes, dont la structure DoC est démontrée, sont ainsi présentées. La performance
de l’algorithme, l’impact de la paramétrisation et l’intérêt respectif des différents modèles sont validés numériquement sur
un réseau électrique réaliste de 33 nœuds. Outre des temps de résolution raisonnables, cette méthodologie originale se
distingue par sa capacité à rendre immédiatement accessible et contrôlable la viabilité électrique des décisions du DSO.

ABSTRACT

The increasing integration of renewable energy sources has a long-lasting impact on the electrical grid, and the liberal-
isation of the energy sector has significantly changed its regulatory environment. In particular, the distribution network
has become an area of interactions of competitive actors, while being managed by a single actor: the distribution system
operator (DSO). Among the DSO’ challenges is the short-term operational planning: the selection and activation of levers
to ensure the safe exploitation of the grid, taking into account the forecasts of grid users’ activities. Decisions in this
context are based on the mathematical model of the Optimal Power Flow (OPF). Sources of uncertainties on these latter
forecasts are growing due to the increasing number of actors on the grid.
The focus of this thesis is on the integration of uncertainties on power production and consumption in the OPF, us-
ing chance-constraints. The resulting probabilistic OPF model is a non-convex non-smooth optimization problem with a
Difference-of-Convex (DoC) structure. The class of DoC functions is large enough to include convex, concave, and ap-
proximations of arbitrarily precision of every continuous function, while offering strong regularity properties that one can
leverage to derive a generic optimisation algorithm.
A first contribution of this work is the development of an original bundle algorithm for the class of DoC constrained DoC
problems. Chance-constraints are proved to be DoC, and a DoC approximation of chance-constraints is proposed before
being applied to the probabilist OPF. A characterization of the first-order information of probabilist functions is presented,
based on a variational study of these latter functions. This characterization highlights the variety of choices when it comes
to solving chance-constrained programs. Four explicit formulations of probabilist OPFs are then proposed, and their DoC
structure is proved. The algorithm’s performance, the impact of parametrisation on its behaviour and the interest of each
model are numerically validated on a 33 nodes network. Besides the reasonable computing times, this methodology is
particularly relevant as, differently to other works in literature, the electrical viability and validity of a solution are directly
accessible.
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