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Mathématiques Appliquées
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Andy PHILPOTT Examinateur
Pr, University of Auckland



PhD THESIS
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Abstract

The procurement of crude oil for refineries consists in purchasing crude oil and
having it delivered on time, to ensure the operation of the refineries. This part of
the oil supply chain is essential as the characteristics of the crude oil purchased
greatly influences the type of products a refinery will yield. One key particularity of
the crude oil procurement is the delay that exists between the moment a crude oil
shipment is purchased and the moment it is delivered to a refinery. Each refinery
works at a monthly scale. We consider that crude oil arrives at the beginning
of each month and then a crude consumption is set for the month. The task
of the decision maker is to decide these shipments by making purchase decisions
every week of the two preceding months. Up till now, the decision-making of
crude procurement relied on a tool simulating the operations of a refinery and the
resolution of a static deterministic optimization problem. In this thesis, our main
contribution is to take into account financial uncertainty in the decision process.

We start by considering the purchase of crude oil for a single month of operation
of a refinery. To that end, we propose a model for the crude oil procurement
that takes into account delivery delays. Then, we formulate multistage stochastic
optimization problems as well as six purchase policies. The assessment of policies
is carried out using a Monte-Carlo simulation as well using historical scenarios.
The conclusion is as much about the performances of the policies as it is about
possible improvement paths to push the incorporation of uncertainties in purchase
policies.

Finally, we propose a procurement problem to manage a refinery during any
number of months. We show that this problem can be expressed as a stochastic
optimal control problem. Then, we develop a time block decomposition for mul-
tistage stochastic optimization problems that enables us to formulate a dynamic
programming equation at the scale of the month instead of the week.
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Résumé

L’approvisionnement en pétrole brut des raffineries consiste à commander du pétrole
afin d’assurer le bon fonctionnement des raffineries. Cette étape est particulièrement
importante pour un raffineur, car le type de pétrole acheté conditionne grandement
les types de produits que les raffineries pourront produire. La particularité ma-
jeure de ce problème vient du délai qui existe entre le moment où un chargement
de brut est acheté et le moment où celui-ci arrive à une raffinerie. Chaque raffinerie
a un fonctionnement mensuel ; au début de chaque mois, des cargaisons de pétrole
brut arrivent au port et sont consommées dans le mois. Ce sont ces cargaisons que
l’acheteur doit sélectionner avec une fréquence hebdomadaire, au cours des deux
mois précédant la livraison. Jusqu’à présent, la prise de décision d’achat reposait
sur un outil modélisant le fonctionnement de la raffinerie et sur la résolution d’un
problème statique déterministe. La contribution majeure de cette thèse est la prise
en compte d’aléas financiers dans la prise de décision.

Nous étudions d’abord l’approvisionnement d’une raffinerie pour un unique
mois de fonctionnement. Pour cela, nous proposons un modèle de l’approvionnement
de pétrole brut qui prend en compte les délais de livraison. Ensuite, nous formu-
lons un problème d’optimisation stochastique multi étapes et nous proposons six
politiques d’achat permettant de résoudre ce problème. L’évaluation des politiques
est faite à la fois par le biais d’une simulation de Monte-Carlo et sur des scénarios
historiques. Les conclusions que nous en tirons portent aussi bien sur les per-
formances des politiques que sur des axes de travail pour poursuivre la prise en
compte des incertitudes dans l’achat de brut.

Enfin, nous proposons un modèle général d’approvisionnement qui reste au
stade théorique. Il s’agit alors de gérer l’approvisionnement en brut d’une raffinerie
pour que celle-ci fonctionne durant un nombre quelconque de mois. Nous mettons
ce problème sous la forme d’un problème de contrôle optimal stochastique. Ensuite,
nous développons une approche par décomposition par blocs temporels qui nous
permet d’écrire une équation de programmation dynamique non pas à la semaine,
mais au mois.
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2.3 Apreçu du contenu de la thèse . . . . . . . . . . . . . . . . . . . . . 25

I Monthly procurement problem 27

3 Modeling elements for the procurement problem 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Monthly procurement description . . . . . . . . . . . . . . . . . . . 31

3.3 Procurement mathematical modeling . . . . . . . . . . . . . . . . . 37

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Monthly procurement optimization problem formulation 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Deterministic optimization problem formulation . . . . . . . . . . . 47

4.3 Stochastic optimization problem formulation . . . . . . . . . . . . . 49

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Stochastic optimal control formulation 53

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Optimal control formulation . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Definition of a policy . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9



6 Policy design 57
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Design of an approximate production function . . . . . . . . . . . . 57
6.3 Single scenario based policies . . . . . . . . . . . . . . . . . . . . . 60
6.4 Dynamic programming based policies . . . . . . . . . . . . . . . . . 64
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 Numerical results 73
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2 Assessment set construction . . . . . . . . . . . . . . . . . . . . . . 75
7.3 Monte-Carlo simulation of policies . . . . . . . . . . . . . . . . . . . 82
7.4 Historical scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

II General procurement problem 95

8 General procurement optimization problem formulation 99
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.2 General monthly deliveries model . . . . . . . . . . . . . . . . . . . 99
8.3 Stochastic optimal control reformulation . . . . . . . . . . . . . . . 112
8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

9 Time blocks decomposition of multistage stochastic optimization
problems 119
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
9.2 Stochastic dynamic programming with histories . . . . . . . . . . . 120
9.3 State reduction by time blocks and dynamic programming . . . . . 129
9.4 Two time scale optimization problems . . . . . . . . . . . . . . . . 134
9.5 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . 145

10 Conclusion 147

List of Figures 149

List of Tables 153

Bibliography 155

A Technical details and proofs 159

10



Chapter 1

Introduction

1.1 Context of the thesis

This thesis started on 2018, November 1 and ended on 2021, December 31. It
was the first thesis conducted as part of a partnership between TotalEnergies
and the École Nationale des Ponts et Chaussées (ENPC). This partnership was
signed in 2018, at the initiative of Philippe Ricoux, and contains two PhD subjects:
stochastic optimization for the procurement of crude oil in refineries, and stochastic
optimization for petroleum production systems.

The subject of this thesis is the procurement of crude oil, that is, the purchase
of oil to ensure the proper operation of a refinery. Consequently, we worked jointly
with the “RC” (Refining and Chemistry) department at TotalEnergies. This de-
partment, represented by Alireza Tehrani and Alain Kleinmann, is in charge of
running the refineries of the group. This broad description encompasses the daily
management of the refineries, but also the procurement of resources for the re-
fineries. Other interlocutors included Pierre Lutran and Anna Robert, both part
of TotalEnergies’s R&D branch.

The thesis took place at the CERMICS laboratory at ENPC, but with frequent
meetings between academics and industrials. Initially monthly, these meetings
turned weekly when the Covid-19 pandemic broke out. Their object focused on
discussions about modeling and numerical results analysis. In parallel to frequent
group meetings, I had the occasion to spend time at TotalEnergies’s headquarters
in order to discuss the more numerical aspects of my work. In particular, I was
formed to use some of TotalEnergies’s tools.
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1.2 Subject of the thesis

In 1850, the global crude oil production amounted to 14.000 barrels. The first oil
tanker, the “Zoroaster”, was constructed several years later, in 1878, by Ludvig
Nobel, older brother of Alfred Nobel. This boat navigated the Caspian sea and
was able to deliver 240 tons of crude oil in Baku, the world’s most important oil
trade hub at the time.

Figure 1.1: Photograph of the Zoroaster [25], first tanker.
length: 54 m, capacity: 240 tons

Fast forward 140 years and the annual global crude oil production is estimated
to 35 billion (35.000.000.000) barrels every year. Nearly half of that amount is
transported around the globe in tankers such as in Figure 1.2

Figure 1.2: Photograph of the AbQaiq, a modern-age tanker.
length: 333 m, capacity: ∼ 250.000 tons

Oil has been the cornerstone of the 20th century economic development, and
has become central in our society. Yet, it is not an easy-to-work-with natural
resource. As shown in Figure 1.3 crude oil is a resource that is difficult to access.
Additionally, as exemplified in Figure 1.4, production and consumption happen in
different parts of the world as Europe, United-States and China are the largest
consumers, with very little production. In parallel, obtaining usable products from
crude oil requires a lengthy and complex processing.

The oil supply chain is generally split into the upstream and the downstream
supply chains. The upstream supply chain encompasses everything from the ex-
traction of crude oil to the output of finished products by the refineries. Then, the

12



Figure 1.3: Repartition of oil wells in the world

Figure 1.4: Crude oil flows according to OPEC 2016 Annual Statistical Bulletin
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Figure 1.5: Schematic representation of the processing steps inside a refinery

downstream supply chain focuses on distributing products to professional and in-
dividual customers. Given the economic importance of crude oil, elements of these
supply chains, illustrated in Figure 1.5, have been the subject of optimization
works for several decades [6].

First, the oil is extracted from the ground. Investments in oil fields and in-
frastructures are made over years, and considering multiple future scenarios leads
to better, safer decisions [23, 31, 35, 30]. Then, crude oil is shipped to a refinery,
either through boats or pipelines. Once it arrives, the oil mixes in tanks. This
phase is called the blending, or pooling, and is the first part in the scheduling of
refinery operations [1, 24]. The mix is then processed through a number of units
in refineries that separate the components of the crude oil and eventually yield fin-
ished products [22, 2, 20, 7, 26]. Most works focus on decisions inside the refinery
while taking into account financial variables in the prices of products and of crude
oil.

In addition to research work on optimizing the supply chain, crude oil is now
treated as a commodity on financial markets. The oil price is closely followed and
is the most traded commodity in the world. Because the price of oil is very volatile,
oil companies have sought to protect their activity from great price variations and
to understand the sources of uncertainty behind these variations [14]. In that
regard, some works [43, 9, 19] have been looking for hedging strategies to alleviate
the risks posed by the high volatility of crude oil prices. Additional work has been
made with the intent to predict, as accurately as possible, the evolution of oil price
in the short and long run, either using Markovian models [16, 13], neural networks

14
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Figure 1.6: Illustration of elements to take into account when purchasing crude oil

[18, 37] or Brownian models [29].

As illustrated in Figure 1.6, procurement sits at the frontier of three domains:
crude oil production, refinery operations and finance. It consists in providing re-
fineries the crude oil needed for their operation. Better crude oil purchases mean
greater operational margin, either through lowering the purchase costs, or improv-
ing the earnings of the refinery. Crude oils have varying physical and chemical
properties. These properties impact how one crude mixes with other crudes inside
tanks. This also has consequences on the way the oil mix is then refined. Process-
ing the wrong mix can lead to products with the wrong specifications, or can even
break the refinery.

While there has been ample academic work on crude oil extraction and refinery
operation, procurement of crude oil has remained mostly overlooked. Most articles
deal with procurement as the first decision of a two-stage problem [10]: first the
decision maker decides what crude oil shipments to buy, then products prices are
revealed and the decision maker sets production levels accordingly. In that regard,
the model for the refinery is fairly detailed, with controls on production levels as
well as settings of some units [21]. Carrying oil across the globe takes time. In
most cases, shipping times are considered in the design of logistics network [11]
but do not appear in questions asked when buying oil for a refinery.
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This thesis started from an industrial problem; the TotalEnergies company
must take decisions to buy crude oil for refineries. Today, decisions are based on
the results of a tool, Grtmps, that models the inner-working of the refinery and
on the knowledge of the decision maker. Due to delays that exist between the
moment a crude oil shipment is purchased and the moment it is delivered, decision
makers have very little hard intel when they make a purchase. This uncertainty
applies to financial variables such as the price of crude oil or of the products
that are sold by the refinery. Moreover, the decision-maker does not always know
what crudes will be in the refinery with the shipment he is considering, and often
relies on habits and a “hunch” to predict those elements. Contrary to most work
on procurement, our work does not focus on the operations of the refinery, and
prefers a “black box” representation with few controls. In return, we focus on the
impact shipping delays have on purchasing crude oil. More precisely, we develop
multistage stochastic optimization problems in which the decision maker must
regularly decide whether he makes purchases ahead of delivery or not.

1.3 Thesis overview

The motivation for this thesis was therefore to explore the possibilities opened by
incorporating stochastic optimization in the decision process. The manuscript is
divided into two parts, arranged in a progression.

Part I Part I deals with the problem closest to the industrial setting initially
laid out by TotalEnergies. In this part, we seek to purchase crude oil shipment so
as to run the refinery for a single month, hence the name of monthly procurement
problem.

Chapter 3 lays the modeling groundwork for the rest of the document. We
translate elements from an industrial problem into mathematical notations. In
Chapter 3, we identify what are the controls and the sources of uncertainty that
we will consider in the rest of Part I.

In Chapter 4, we formulate a first deterministic optimization problem. Then,
we provide a stochastic model for uncertainties and formulate a multistage stochas-
tic optimization problem.

In Chapter 5, the stochastic optimization problem is reformulated as a stochas-
tic optimal control problem. As part of the reformulation, we introduce the notion
of buffer, a temporary stock in which purchases accumulate until the moment of
delivery. Additionally, we present what a policy is in the context of this new
problem formulation.

In Chapter 6, we present six policies to tackle the monthly procurement prob-
lem. The first one, Expert, puts into equations the method currently used by
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TotalEnergies. Alongside Expert, two policies — Triplet and MPC— only use a
single scenario while the other three — SDPesp, SDPCVaR and Suc-SDP— are based
on multiple scenarios. While both SDPesp and SDPCVaR are the standard policies
resulting from stochastic dynamic programming, Suc-SDP recomputes new value
functions every week.

In Chapter 7, we test and compare the policies presented in Chapter 6. More
precisely, policies are tested in two different ways. First, they are (except for Suc-
SDP) put through a Monte-Carlo simulation and compared on the basis of their
resulting histograms. In parallel, each policy is tested on a selection of historical
scenarios and the behavior of each policy is more closely scrutinized.

Part II Part II is devoted to theoretical extensions. While Part I focused on
building stochastic optimization problems, bound by technical limitations from
TotalEnergies, the problem developed in Part II is a very general procurement
problem.

In Chapter 8, we propose a more general model of the procurement of crude
oil than that of Chapter 3. We then build a corresponding multistage stochastic
procurement problem. That problem has the particularity to feature two concur-
rent time scales. On the one hand, the decision maker must manage a refinery at
the frequency of the month for a long period of time. On the other hand, he must
make the decision to purchase, or not, crude oil shipments every week.

In Chapter 9, we first introduce the notion of time blocks and time block state
reduction, that is, the ability to express a state variable in only a subset of stages
in the problem. We then apply this notion to problems featuring a slow and a fast
timescale to write a dynamic programming equation at the slow timescale, that
does not require independence assumption on the fast scale noises. The content of
this chapter has been submitted as a paper.
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Chapter 2

Introduction

2.1 Contexte de la thèse

Cette thèse a débuté le 1er novembre 2018 et a pris fin le 31 décembre 2021.
Celle-ci s’inscrit dans un partenariat entre TotalEnergies et l’école des Ponts et
Chaussées (ENPC), qui a débuté en 2018 à l’initiative de Philippe Ricoux, et inclue
plusieurs sujets de thèse dont : optimisation stochastique pour l’approvisionnement
en pétrole brut des raffineries, et optimisation stochastique appliquée aux systèmes
de production de pétrole brut.

Cette thèse porte sur l’approvisionnement en pétrole brut, c’est-à-dire l’achat
de cargaison de brut de manière à assurer un fonctionnement optimal des raffiner-
ies. En conséquence, nous avons grandement collaboré avec la branche ”RC” (raffi-
nage et chimie) de TotalEnergies afin de comprendre et de modéliser l’utilisation de
brut au sein d’une raffinerie. Cette branche a été représentée par Alireza Tehrani
responsable des modèles des raffineries du groupe, et Alain Kleinmann, respons-
able des opérations d’une raffinerie. En outre, nous avons aussi travaillé en étroite
collaboration avec Anna Robert et Pierre Lutran, tous deux pars de la R&D To-
talEnergies.

La thèse a pris place au sein du laboratoire CERMICS à l’École des Ponts
Paristech, conjointement avec de fréquentes réunions entre académiques et indus-
triels. Initialement mensuelles, ces réunions sont devenues hebdomadaires du-
rant la pandémie de Covis-19. Celles-ci se sont concentrées sur les questions de
modélisation et sur les aspects numériques de mon travail. En parallèle de ces ren-
contres régulières, j’ai aussi pu passer du temps dans les locaux de TotalEnergies
pour interagir avec les équipes en charge de l’achat de brut et du maintien des
outils utilises. Ces instants m’ont permis de discuter de certains points précis et
techniques comme la sélection de données pour les applications numériques.
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2.2 Sujet de la thèse

En 1850, la production mondiale annuelle de pétrole s’élève à 14.000 barils. Quelques
années plus tard, en 1878, le premier pétrolier est bâti. Baptisé “Zoroaster” et
construit par Ludvig Nobel, grand frère d’Alfred nobel, il décharge régulièrement
jusqu’à 240 tonnes de pétrole brut à Bakou, alors plaque tournante du commerce
de pétrole.

Figure 2.1: Photograhie du Zoroaster [25], premier pétrolier.
longueur: 54 m, capacité: 240 tonnes

140 ans plus tard, la production mondiale annuelle de brut atteint les 35 mil-
liards (35.000.000.000) de barils et près de la moitie de cette quantité traverse la
planète en bateau Figure 2.2.

Figure 2.2: Photographie du AbQaiq, un petrolier moderne.
longueur: 333 m, capacité: ∼ 250.000 tonnes

Le pétrole, à fortiori brut, a été au centre du développement économique du
XXe siècle et est progressivement devenu omniprésent dans notre société. Toute-
fois, ce n’est pas une ressource naturelle qui est facile à exploiter. Comme l’illustre
Figure 2.3, c’est une ressource à laquelle il est difficile d’accéder. En outre, comme
présentée dans Figure 2.4, c’est aussi une ressource dont les lieux de production et
consommation sont relativement éloignés. En effet, les plus grands consommateurs
sont l’Union européenne, les États-Unis et la Chine, mais ceux-ci n’en produisent
que très peu. Enfin, c’est une ressource qui est aussi difficile à utiliser, obtenir des
produits utilisables requiert un complexe et coûteux traitement.

La châıne d’approvisionnement du pétrole brut est généralement subdivisée
entre châınes amont et avale. La châıne en amont comprend tout ce qui se passe
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Figure 2.3: Répartition des puits de pétrole dans le monde.

Figure 2.4: Flux de pétrole brut dans le monde selon OPEC 2016 Annual Statistical
Bulletin
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Figure 2.5: Représentation schématique des différentes étapes de raffinage

de l’extraction du pétrole brut, jusqu’à la production de produits finis dans la
raffinerie. Ensuite, la châıne avale porte sur la distribution de ces produits aux
différents clients du groupe. Étant donné l’enjeu économique derrière le raffinage
de pétrole brut, les éléments de la châıne de production du pétrole, illustrés en
Figure 2.5, ont déjà fait l’objet de nombreux travaux d’optimisation au cours des
dernières décennies [6].

Avant toute chose, le pétrole doit être extrait des poches en sous-sol où il
se trouve. Les investissements dans des puits de pétrole se font sur de nom-
breuses années ; prendre en compte plusieurs scénarios aboutit à des décisions
moins risquées [23, 31, 35, 30]. Une fois sorti de terre, le pétrole est ensuite
expédié vers une raffinerie quand il est acheté, cela se fait soit par bateau, soit par
pipeline. Une fois arrive à destination, le brut est mélangé dans les cuves de la
raffinerie avec les stocks déjà existants. Cette phase de la châıne de production
est la première partie sujette à optimisation dans la planification des opérations
d’une raffinerie [1, 24]. Le mélange de bruts passe ensuite dans une série d’unités
de raffinage qui vont séparer les molécules et les recombiner jusqu’à obtenir divers
produits finaux [22, 2, 20, 7, 26]. La plupart des travaux en optimisation portent
sur ces deux étapes, qui ont toutes deux lieu à l’intérieur de la raffinerie, en con-
sidérant des sources d’incertitude financières comme le prix des produits ainsi que
les prix des pétroles bruts.

Parallèlement à des travaux de recherche visant à optimiser le fonctionnement
interne de raffineries, l’achat de pétrole brut peut être géré comme l’achat d’un
simple actif financier. Étant donné les sommes en jeu, le prix du baril de brut
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est étroitement surveillé par les équipes financières de groupes pétroliers qui ont
cherché à protéger leurs activités des potentielles variations de prix. Le cours
du Brent est particulièrement volatile et certains ont tâché de comprendre et de
modéliser les sources d’incertitude qui se cachent derrière [14]. Dans cette optique,
certains travaux [43, 9, 19] proposent des stratégies de couverture afin de limiter le
risque inhérent à un actif hautement volatil. D’autres travaux ont été menés avec
l’espoir de prédire, aussi précisément que possible, les futures variations du prix
du pétrole a court et long terme, soit en utilisant des modèles Markoviens [16, 13],
soit en utilisant des réseaux neuronaux [18, 37], soit des modèles Browniens [29].

Comme l’illustre Figure 2.6, l’approvisionnement en pétrole brut est à la croisée
de trois domaines : la production de brut, le pilotage d’une raffinerie, et la finance.
En effet, il s’agit d’assurer l’approvisionnement en pétrole brut d’une raffinerie
de manière à ce que celle-ci puisse fonctionner dans les meilleures conditions.
Améliorer le processus d’achat de brut signifie améliorer la marge dégagée par
la raffinerie, que ce soit en diminuant les coûts d’achats ou en augmentant les
recettes de la raffinerie. En fonction de leur provenance, les différents pétroles
bruts disponibles sur le marché possèdent différentes propriétés physiques et chim-
iques. Ces caractéristiques impactent non seulement comment différents bruts se
mélangent, mais aussi la manière dont le pétrole peut être raffiné. En fonction
du mix du mélange de brut qui est traite, le cocktail de produits finis qui sera
obtenu pourra varier. En outre, traiter un mauvais mélange peut générer des pro-
duits aux mauvaises spécifications, ou bien même endommager les composants de
la raffinerie.

Alors que la littérature portant sur l’extraction de pétrole brut ainsi que sur le
pilotage d’une raffinerie est relativement développée, le sujet de l’approvisionnement
reste largement ignore. La majorité des articles traitent l’achat de brut comme
la première décision d’un problème d’optimisation stochastique à deux étapes ;
tout d’abord, un ensemble de bruts est choisi puis mélange, ensuite, les prix des
produits finis sont révélés et le pilotage de la raffinerie est décidé. Dans la plupart
des cas, les délais de livraison sont pris en compte dans l’élaboration d’un réseau
logistique.

Cette thèse a débuté avec un problème industriel ; celui qu’un raffineur, To-
talEnergies, rencontre lorsqu’il doit se fournir en pétrole brut. Aujourd’hui, les
décisions d’achats sont basées sur un outil, Grtmps, qui modélise le fonction-
nement interne d’une raffinerie, ainsi que le savoir accumulé par la personne re-
sponsable pour chaque raffinerie. En raison des délais de plusieurs semaines qui
existent entre le moment où la commande d’un chargement de brut est passée,
et le moment où cette commande est livrée, le décideur ne possède que peu
d’information au moment d’effectuer un achat. Cette incertitude concerne aussi
bien des variables financières comme les prix des produits et des bruts, que des
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Figure 2.6: Illustration des elements a prendre en compte lors de l’achat de petrole
brut.
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aléas physiques, comme un retard de livraison. En outre, l’acheteur ne connâıt
pas non plus exactement à l’avance quel sera l’état des stocks de la raffinerie à la
livraison ; bien souvent, il se base sur son expérience et son intuition pour envis-
ager quelques possibilités. Contrairement à la majorité des travaux s’intéressant
à l’approvisionnement, notre contribution ne se focalise pas sur le pilotage de la
raffinerie et préfère considérer celle-ci comme une boite-noire sur laquelle nous
n’avons que peu d’influence, seulement la consommation. En revanche, nous nous
concentrons sur l’impacte qu’on les délais de livraison dans le processus d’achat de
brut au cours des semaines précédant une date de livraison. Plus spécifiquement,
nous produisons des problèmes d’optimisation stochastique multiétapes dans lequel
l’acheteur doit, à intervalles réguliers, sélectionner les bruts qu’il juge intéressants
pour une livraison future.

2.3 Apreçu du contenu de la thèse

La raison d’être de cette thèse est l’exploration des possibilités offertes par la prise
en compte de sources d’incertitude dans le processus d’achat de pétrole brut pour
une raffinerie. Le manuscrit de la thèse est subdivisé en deux parties selon la
difficulté du problème abordé.

Part I La Part I traite du problème le plus proche du problème industriel ini-
tial présenté par TotalEnergies. Dans cette partie, nous cherchons à acheter des
cargaisons de pétrole brut de manière à faire fonctionner la raffinerie pendant un
mois, d’où le nom de problème d’approvisionnement mensuel.

Chapter 3 propose les bases de modélisation pour la suite du document. Nous
traduisons les éléments du problème industriel en des notations mathématiques.
Dans Chapter 3, nous identifions quels sont les contrôles ainsi que les sources d’aléa
avec lesquelles nous travaillerons dans le reste de la Part I.

Dans Chapter 4, nous formulons un premier problème d’optimisation déterministe
. Ensuite, nous proposons un modèle pour les aléas identifies précédemment, et
formulons ensuite un problème d’optimisation stochastique.

Dans Chapter 5, le problème d’optimisation stochastique multiétapes est re-
formule en un problème de contrôle optimal. Cela passe par l’introduction de
la notion de stock temporaire (buffer) dans lequel s’accumulent tous les achats
en attente de leur livraison. Enfin, nous présentons ce à quoi ressemblerait une
politique d’achat dans ce contexte.

Dans Chapter 6, nous présentons six politiques d’achat de pétrole brut. La
première, Expert, retranscrit aussi fidèlement que possible le processus d’achat
tel qu’implémenté par TotalEnergies. En plus d’Expert, deux autre politiques —
Triplet et MPC— ne basent leurs décisions que sur une unique vision du futur.

25



Les trois politiques restantes — SDPesp, SDPCVaR et Suc-SDP— se basent sur de
multiples scénarios. SDPesp et SDPCVaR sont les implémentations des politiques
résultantes d’une utilisation standard de la programmation dynamique stochas-
tique. En revanche, Suc-SDP met à profit le temps disponible entre aléa et décision
pour générer de nouvelles projection du futur et recalculer les fonctions valeurs a
chaque pas de temps.

Enfin, dans Chapter 7, nous testons chacune des six politiques élaborées dans
Chapter 6 et les comparons. PLus précisément, les politiques sont évaluées de
deux manières l la première est une simulation de Monte-Carlo qui nous permet
de comparer les politiques au travers d’histogrammes ; la seconde est la simulation
de chaque politique d’achat sur une poignée de scénarios historiques. Nous pouvons
alors étudier plus en détail le comportement de chaque politique.

Part II Part II doit être vu comme une extension théorique. Alors que Part I
s’est focalise sur la construction d’un problème d’optimisation stochastique re-
spectant certaines contraintes industrielles posées par TotalEnergies, le problème
développe dans Part II est un problème d’approvisionnement générique.

Dans Chapter 8, nous proposons un modèle d’approvisionnement en pétrole
brut plus général que celui construit dans Chapter 3. Nous formulons ensuite un
nouveau problème d’optimisation stochastique correspondant, qui a la particularité
de posséder deux échelles de temps imbriquées. D’une part, la raffinerie est pilotée
à l’échelle du mois et à long terme ; d’autre part, les achats de pétrole sont faits
chaque semaine avec un horizon d’au plus deux mois.

Dans Chapter 9, nous introduisons tout d’abord la notion de bloc temporel
(time block) et de réduction de l’état par bloc, c’est-à-dire la possibilité de n’exprimer
une variable d’état qu’en certains instants. Cette notion est alors appliquée à
une catégorie de problèmes d’optimisation exhibant deux échelles de temps, une
rapide et une lente. Nous arrivons alors à écrire un état et des équations de pro-
grammation dynamique a l’échelle lente sans pour autant nécessiter d’hypothèse
d’indépendance des bruits à l’échelle rapide au sein de chaque pas de temps lent.
Le contenu de ce chapitre fait l’objet d’un papier.
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Part I

Monthly procurement problem
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In this Part I, we explore the monthly crude oil procurement of a refinery. The
term monthly, here, refers to the duration of the production in the refinery. We
seek to purchase oil so as to run the refinery for the duration of a month.

In the monthly crude oil procurement, the decision maker seeks to buy crude oil
to run the refinery for a duration of a single month. For this, he needs to purchase
crude oil up to two months ahead of time. As a result, counting the purchases and
the consumption, the monthly crude oil procurement spans three months.

Chapter 3 lays the modeling groundwork for the rest of the thesis. We trans-
late elements of a purely industrial problem into mathematical notations. Conse-
quently, we identify what are the controls and the sources of uncertainty we will
consider in the rest of Part I. Then, in Chapter 4, we formulate a first determinis-
tic optimization problem and we put into equations the method currently used by
TotalEnergies. Then, we provide a stochastic model and formulate a multistage
stochastic optimization problem. That problem is then reformulated as a stochas-
tic optimal control problem in Chapter 5 where we introduce the notion of buffer,
a temporary stock in which purchases accumulate until the moment of delivery. In
Chapter 6, we present five additional policies to tackle the monthly procurement
problem. These policies are then compared in Chapter 7 through a Monte-Carlo
simulation and historical scenarios.
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Chapter 3

Modeling elements for the
procurement problem

3.1 Introduction

This Chapter 3 provides the basic modelling tools for the monthly procurement
problem.

In §3.2 we describe what the procurement of crude oil consists in from the
point of view of the decision maker and develop several of its specificities. Then,
in §3.3, we introduce mathematical notations to formalize the elements presented
in §3.2. We also go into more details to identify what are the decisions and sources
of uncertainty in the industrial problem.

3.2 Monthly procurement description

We provide an overview of what the monthly crude oil procurement consists in,
from the point of view of the decision maker. With that intent, we present, in
Figure 3.1, an example of monthly procurement problem. Monthly refers here to
M3, the month we intend to run the refinery for. The role of the decision maker
is therefore to purchase crude oil ahead of the month M3, that is, during the
months M1 and M2 (8 purchase weeks), so as to have it delivered at the beginning
of the consumption monthM3. In doing so, the decision maker is faced with several
difficulties: different crude oil characteristics, delivery delays, and uncertainties.
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M1 M2 M3 M4

crude oils on the market
H1 H2

H3
B1

B2
B3 B4

B5

L1

L2
L3

8 purchase weeks

95/98

finished products

stock inside
the refinery

Figure 3.1: General representation of the procurement for a single month.

3.2.1 Crude oil characteristics

As crude oil is traded on a global market, many crudes with different names exist.
Total regularly considers over 180 different crudes for the refineries it operates. All
these crudes have different chemical and physical properties, so that processing
them will yield different results in terms of products. In fact, some crudes may
even be impossible to process together as they would over/under load certain parts
of the refinery. In Figure 3.2, we give an example of varying physical and chemical
properties for different crudes.

Figure 3.2: Example of repartition of crude oils given their density and sulfur
content

Crude oil is not made of a single component, but is a mixture of different
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Figure 3.3: Crude oil general composition

chemical components as illustrated in Figure 3.3. Crude oils are usually categorized
according to the majority component as well as their density. Two examples of
such categories are: heavy with sulfur aromatic, and light with low sulfur naphten
crude.

The Figure 3.4 highlights how the refinery splits components depending on the
length of their carbonated chains. As a consequence, two crudes with different
concentrations of long chains (for instance with a heavy crude and a light one),
will yield different quantities of products.

3.2.2 Delivery delays

The supply chain to deliver crude oil to a refinery is lengthy. Crude oil first needs
to be extracted and loaded onto a tanker to then be shipped to the target refinery,
for example Donges as represented in Figure 3.5.

Another consequence of having a global crude oil market is that the shipping
times vary considerably. For the Donges refinery, the delay between an order and
its delivery is around 3 weeks for the crudes from the North Sea, such as Ekofisk. It
is around 9 weeks for West African crudes like Cabinda, and 6-7 weeks for Eastern
crudes like Azeri. In Figure 3.6, we display the location of those three oil fields.

From the point of view of the decision maker, who has a precise arrival date in
mind, not all crudes are available for purchase at the same time.

3.2.3 Uncertainties

The role of the decision maker is to purchase crude oil. As explained in §3.2.1,
the purchase of different crudes will lead to different quantities of products at the
output of the refinery. Additionally, due to the varying shipping delays, purchase
decisions are taken successively in time. As exemplified in Figure 3.7, the price of
crude oil is ever-changing. Put simply, the decision maker, that we will refer to
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Figure 3.4: Simplified view of a distillation column

Figure 3.5: Geographical position of the Donges refinery

34



Figure 3.6: The oil fields appear in red, compared to the refinery in blue
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Figure 3.7: Example of price variations over 3 months of the reference crude, the
Brent

as “he”, knows the prices of crudes at the moment of purchase, but not the prices
tomorrow. The uncertainty he is faced with is a financial uncertainty, both in the
prices of the crude oils, and in the product prices. As mentioned in §3.2.2, crudes
are purchased multiple weeks in advance, the decision maker has no way to know,
in advance, the prices of the products during the production.

3.2.4 Monthly crude oil procurement example

In light of the elements introduced in §3.2.1, §3.2.2 and §3.2.3, we present in
Figure 3.8 an example of monthly procurement problem.

1

M1

2 3 4 1

M2

2 3 4 1

M3

B1 B2

B3

B4

B5

H1

H2

H3

H4

H5

H6

L1

L2

L3

L4

L5

L6 L7

L8

Figure 3.8: Example of monthly crude oil procurement. The decision taker must
purchase crude oil during the months M1 and M2 to feed the refinery in the
month M3

In Figure 3.8, the decision maker is faced, each week of M1 and M2, with
a handful of crudes that are available to purchase. Each week, he must decide
whether to buy oil available on the moment, or wait for the next week, without
knowing exactly how the prices will evolve as illustrated in Figure 3.9.
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Azeri crude
2.5$/bbl

Ekofisk crude
???$/bbl

Cabinda crude
1.2$/bbl

Too late

Available now
(Price known)

Not yet available
(Price unknown)

Figure 3.9: Example of decision making in the week 5: Cabinda is no longer
available, Azeri is available, and Ekofisk is not yet available (its price is not yet
known)

In the following section, we come back on every element introduced in the
subsections §3.2.1 to §3.2.4 and we introduce mathematical notations and modeling
element to precise this broad description of the problem.

3.3 Procurement mathematical modeling

In this section §3.3, we take the general elements presented in §3.2 and add mathe-
matical notation. These notations are the building blocks of the crude oil procure-
ment model that we use in Part I. First, in §3.3.1, we go into details explaining the
events, the decisions and the sources of uncertainty that affect the procurement of
crude oil up to the delivery of crude oil in a refinery. Then, in §3.3.2, we identify
the controls and the sources of uncertainty that affect crude oil processing and
product sales.

3.3.1 Upstream procurement

This subsection §3.3.1 strictly concerns the procurement of crude oil. First, in
S3.3.1.1 we justify the discretization of time at the scale of the week. Then, in
§3.3.1.2, we present the model used for crude cargos. In §3.3.1.3, we present the
sources of uncertainty affecting the upstream procurement and precise those that
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are in the scope of this work.

3.3.1.1 Timeline representation

In Table 3.1, we summarize the elements that we are going to introduce in relation
to time.

M = {M1,M2,M3} set of months constituting the timespan of the problem
m ∈ M index for a month in M
W = {1, 2, 3, 4} set of weeks inside a month
w ∈ W index of a week inside a month
T ⊂ M×W unified timeline of weeks in months
t ∈ T index for a specific week in a specific month

Table 3.1: Time notations for months and weeks

We denote by M the finite chain of months for which we need to manage the
procurement, fitted with the following total order:

m = M1 ≺M2 ≺M3 = m . (3.1)

We call chain, a totally ordered finite set and we denote m+ (resp. m−) the
successor (resp. predecessor) of m ∈ M.

Similarly to months, weeks have the structure of a finite chain:

w = 1 ≺ 2 ≺ 3 ≺ 4 = w . (3.2)

Additionally, we denote by the couple (m,w) ∈ M ×W a specific week w of a
month m. We create a lexicographic order on M×W by defining the successor of
(m,w) by

(m,w)+ =

{
(m,w+) if w ≺ w ,

(m+,w) if w = w .
(3.3)

We then build the set

T = {(m,w) | m ∈ {M1,M2},w ∈ W} , (3.4)

of weeks during which purchases can be made with the order induced by (3.3), T
is a chain.

For instance, the two months M1 and M2 will have the chronology presented
in Figure 3.10.
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(M1, 1)

week1

(M1, 2)

week2

(M1, 3)

week3

(M1, 4)

week4
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(M2, 1)

week5

(M2, 2)

week6

(M2, 3)

week7

(M2, 4)

week8

M3

(M3, 1)

Figure 3.10: Time discretization scheme; everything that happens during week w
is summed up in the point w which starts the week

The reason behind such a discretization of time is the way Total operates.
While refineries run 24/7 and the crude oil market fluctuates continuously, the
purchase decisions and the oil deliveries are periodic. Once every week, the decision
maker is provided with a projection of the market, and he must take a decision
within 72 hours, hence the weekly discretization of the problem.

By adopting this weekly discretization, we summarize all the actions during a
week in one point at the start of it, as illustrated in Figure 3.10. This contraction
is also valid for months; if a decision (or uncertainty) affects the whole month m,
it will be considered to have been taken at the beginning of m.

At the weekly scale, all the refinery does is purchase crude oil. The refining of
crude oil, although it is a continuous operation, is decided once a month.

3.3.1.2 Crude oil logistics

In Table 3.2, we summarize the elements that we are going to introduce regarding
crude oil logistics.

C set of crudes on the market
c ∈ C index for a crude in C
∆c ∈ N delay from order to delivery for crude c
∆, ∆ max/min order delay (number of weeks)
G ⊂ R+ set of existing cargo sizes, in barrels (bbl)
Bc

(m,w) ⊂ G set of available cargos for crude c in (m,w)

bc(m,w) ∈ R+ volume of crude c purchased in week (m,w)

B(m,w) =
∏

C∈C

Bc
(m,w) set of available cargos in week (m,w)

b(m,w) ∈ B(m,w) crude oil volumes purchased in week (m,w)

Table 3.2: Notations for order/shipping chronology

TotalEnergies’s historical expertise as an oil company is to buy crude oil and
process it. The company does not own tankers to transport crude oil; instead,
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this task is left to third party actors. This configuration plus physical limitations
considerably constrain the decisions TotalEnergies can make. We denote by

c ∈ C , (3.5a)

a crude c among the set C of crudes on the market. We usually refer to crudes
using a three letters code, for instance: WTI (Western Texas Intermediate), EKO
(Ekofisk), NVY (Novigrad). Additionally, depending on their characteristics,
crudes can be divided into families. We will denote

C =
⋃

l∈L

Cl (3.5b)

the partitioning of crudes in families, where L is the set of existing families. In the
example presented in Figure 3.12, we have

C1 = {B1, B2, B3, B4, B5} , (3.5c)

C2 = {H1, H2, H3, H4, H5, H6} , (3.5d)

C3 = {L1, L2, L3, L4, L5, L6, L7, L8} , (3.5e)

C = C1 ∪ C2 ∪ C3 . (3.5f)

In this example, 1 is the family of balanced crudes, while 2 is the family of heavy
crudes and 3 is the family of light crudes.

Shipping chronology. As presented in §3.2.2, delivery delays vary for each
crude. We denote by

∆c ∈ J1, 8K = {1, 2, 3, 4, 5, 6, 7, 8} , (3.6)

the shipping delay, in weeks, for the crude c. This delay corresponds to the number
of weeks between the purchase week and the beginning of the month M3.

Order week
(m, 1)−∆c

Order delay

Delivery month
(m, 1)

Figure 3.11: Timeline of purchase and delivery of crude c targeting the month m

When we write (m, 1)−∆c, the couple (m,w) is identified with its order in the
chain M×W fitted with the total order defined in (3.3).
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Looking back at the example in Figure 3.8, we have ∆H1 = 8 and ∆B4 = 4.
With a delivery set for the month M3, Cabinda (H1) is available for purchase in
week (M3, 1)− 8→ (M1, 1) while Oseberg (B4) is available in week (M3, 1)− 4→
(M2, 1).

Looking back at the example in Figure 3.8, we have ∆H1 = 8 and ∆B4 = 4.
With a delivery set for the month M3, (H1) is available for purchase in week
(M3, 1)− 8→ (M1, 1) while (B4) is available in week (M3, 1)− 4→ (M2, 1).

Tankers reduce flexibility. Shipping crude oil across the globe is almost exclu-
sively done using tankers. Although oil is contained in several tanks inside a ship,
in practice, a boat only transports one type of oil. Those boats have somewhat
standard sizes, split into classes. Tanker categories are summarized in Table 3.3.

Size categories tons deadweight (DWT) volume capacity (bbl)
Handysize 10,000 – 60,000 75.103 − 450.103

Panamax 60,000 – 80,00 450.103 − 600.103

Aframax 80,000 – 120,000 600.103 − 800.103

Suezmax 120,000 – 200,000 800.103 − 1.5.106

Very Large Crude Carrier 200,000 – 320,000 1.5.106 − 2.4.106

Ultra Large Crude Carrier 320,000 – 550,000 2.4.106 − 4.106

Table 3.3: Existing oil tankers categories and corresponding loads

As a consequence, we consider that the volumes of crude that can be purchased
belong to a finite set

G = {7.5.103, 4.5.105, 6.105, 8.105, 1.5.106, 2.4.106} , (3.7)

and most often, a crude is only available in a single cargo size.

Sizes vary dramatically and only the largest tankers, Very Large Crude Carriers
and Ultra Large Carriers, are big enough to deliver crude oil to multiple refineries
but are too large to go through the Suez canal. This situation constitutes one
of the reasons why we only consider a single refinery in this Part I. In practice,
refineries are almost independent from one another and, here, we consider that
they are entirely independent.

Upstream procurement decisions. In the procurement of crude oil, the main
decision is to buy oil. We denote by

bc(m,w) ∈ Uc
(m,w) ⊆ G ⊆ R+ , (3.8a)
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the quantity that is effectively purchased. Due to the modeling choice presented
in §3.3.1.2, G is a finite set that represents the existing cargo volumes. For ease
of use, we introduce the notation

b(m,w) = (bc(m,w))c∈C ∈ Usf
(m,w) ⊆ G|C| , (3.8b)

Usf
(m,w) =

∏

c∈C

Uc
(m,w) ⊂ G|C| , (3.8c)

where b(m,w) in (3.8b) is the vector of all crudes purchased in week (m,w) for the
month M3.

We now represent in Figure 3.12 how the decisions appear on the timeline of
the monthly procurement problem.

1

M1

2 3 4 1

M2

2 3 4 1

M3

B1 B2

B3

B4

B5

H1

H2

H3

H4

H5

H6

L1

L2

L3

L4

L5

L6 L7

L8

b1 b2 b3 b4 b5 b6 b7 b8

Figure 3.12: Example of crude oil availability over months M1 and M2

3.3.1.3 Crude oil trade characteristics

In Table 3.4, we summarize the elements that we are going to introduce in relation
to crude oil trading

wc
(m,w) ∈ R value of the premium of the crude c (in $/bbl)

at the beginning of the week (m,w)
rf (m,w) ∈ R reference quotation (in $/bbl) in week (m,w)
Ω(m,w) sum paid to purchase crude oil in (m,w) with the premium wt

Table 3.4: Price notations related to oil trading

Crude oil is a primary resource and is traded globally in Future Exchanges
(NYMEX, ICE, NADEX). Future contracts are buy/sell promises of a certain
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amount of goods at a determined date and price. The full cost of a crude oil is not
yet known at the moment it is purchased. In the case of oil, the general structure
of cost encompasses:

premium The premium is negotiated between the producer and the buyer at the mo-
ment of purchase. It corresponds to the relative value of a crude compared
to the Brent, the reference crude commonly used.

reference The reference quotation is the mean value of the reference crude Brent over
5 work days around the date the crude oil is loaded into the tanker (-2, -1,
0, +1, +2).

freight The freight is the cost, per barrel to ship the crude oil from the producer to
the refinery.

insurance As with any cargo, the insurance cost is fixed at the moment the oil is loaded
onto the tanker.

This price structure is displayed in Figure 3.13. In this thesis, we focus on the
uncertainty in the premium of crude oil. We denote by

wc
(m,w) ∈ R , (3.9)

the premium of the crude c at the beginning of the week (m,w) and by

w(m,w) = (wc
(m,w))c∈|C| ∈ R|C| , (3.10)

the vector of all premiums at the beginning of week (m,w) where C is the set of
crudes introduced in §3.3.1.2.

According to Total, variations of the reference crude price, of the shipping, and
of the insurance tend to affect all crudes equally. Therefore, the financial depart-
ment of the company is able to edge the risk regarding these three components. In
the rest of the thesis, we therefore treat the reference, the shipping cost and the
insurance as deterministic and parameters of the problem. We therefore denote
by

Ωc
(m,w) : R+ × R −→ R

(bc, wc) 7−→ Ωc
(m,w)(b

c, wc) , (3.11a)

the cost to buy the volume bc of crude c at the beginning of week (m,w), with the
premium wc. Being modeled as deterministic, the reference, the shipping and the
insurance are hidden inside Ωc

(m,w),

Ωc
(m,w)(b

c, wc) =bc ×
(
wc + average reference quotation (3.11b)

+ insurance + shipping
)
.
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Order week
(M3, 1)−∆c

Shipping
Delivery month

(M3, 1)

premium
w(M3,1)−∆c shipping cost

& insurance

reference quotation

Figure 3.13: Schematic timeline of the different elements constituting the real cost
of a crude oil c. The premium, in red, is the only source of uncertainty considered.

Additionally, we denote by

Ω(m,w) : R
|C|
+ × R|C| −→ R ,

(b, w) 7−→ Ω(m,w)(b, w) =
∑

C∈C

Ωc
(m,w)(b

c, wc) , (3.11c)

with

b = (bc)c∈C , as in (3.8b) , (3.11d)

w = (wc)c∈C , as in (3.10) , (3.11e)

the total cost of the purchase decision bt in week t.

3.3.2 Refinery processing

In this §3.3.2, we describe and introduce notations for what happens once crude
oil reaches the refinery. While the procurement of crude oil per se is finished the
moment crude oil is delivered, the operations of the refinery require to be modeled
to some extent in order to make the right purchase decisions.

3.3.2.1 Receiving oil in the refinery

In Table 3.5 we summarize the elements that we are going to introduce that are
relative to the reception of crude oil inside the refinery.
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S ⊂ R|C|
+ acceptable stock levels inside the refinery

sm ∈ R|C|
+ crude oil stocks volumes inside the refinery (in bbl)

at the beginning of month m
Dm ⊂ G|C| set of possible deliveries at month m

Table 3.5: Notations for the stocks and available resources

We denote by
sM3
∈ S ⊂ R|C|

+ , (3.12a)

the vector of volumes of each crude in stock inside the refinery at the beginning
of the month M3. The stock, as modeled in (3.12a), is a vector of the volumes of
each crude inside the refinery at the beginning of the month M3. This model is
simplistic as each crude is stored individually. In reality, a refinery only possesses
a handful of tanks and, therefore, crudes are sometimes mixed based on their
characteristics. Additionally, S represents the set of admissible stocks levels in the
refinery at any time. Following the representation of stocks, one possible definition
of S could be

S = {(sc)c∈C | 0 ≤ sc ≤ volcmax , ∀c ∈ C} , (3.12b)

where volcmax simply denotes the maximum of crude c the refinery can hold in
stock.

The delivery of crude oil must also respect certain constraints that we denote
by

Dm ⊂ G|C| . (3.12c)

This constraint represent limits of the refinery to receive crude oil from tankers.

3.3.2.2 Refining and production

P set of products sold by the refinery
p ∈ P index for a product sold by the refinery
ppm ∈ R+ price of product p during month m

pm ∈ R|P|
+ price vector of all products during month m

ΨM3 algebraic costs (operation costs - earnings)
resulting from running the refinery during the month M3

Table 3.6: Notations for selling products

Once crude oil as been delivered to the refinery at the beginning of the month M3,
the refinery processes it to yield products. We denote by

p ∈ P , (3.13)
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a finished product among the set P of products that can be sold by the refinery
every month. Each product p is subsequently sold at a certain price we denote by

ppm ∈ R+ . (3.14)

We denote by
pm = (ppm)p∈P ∈ R|P|

+ , (3.15)

the vector of product prices for the month m.
In this Part I, the refinery runs during a single month. In an attempt to

simplify the notations, we ignore any control on crude consumption and represent
the economic function of the refinery for the month M3 by the function

ΨM3 : R
|C|
+ × R|C|

+ × R|P|
+ −→ R (3.16)

(
sM3

,

(M2,4)∑

(m,w)=(M1,1)

b(m,w), pM3

)
7−→ ΨM3

(
sM3

,

(M2,4)∑

(m,w)=(M1,1)

b(m,w), pM3

)
.

3.4 Conclusion

In Chapter 3, we broadly presented the monthly crude oil procurement problem
in §3.2 and then introduced modeling elements in §3.3. We split the procurement
problem in two phases: the first one, presented in §3.3.1, covered the journey
of crude oil from the producer to the refinery; the second, in §3.3.2, focused on
the processing of the crude oil inside the refinery. In either case, the first step
towards modeling was to describe each process and identify the relevant elements
to represent. Once this achieved, we were able to identify decision variables as well
as to pinpoint sources of uncertainty.

In the next Chapter 4, we will write optimization problems using the elements
presented in this Chapter 3.
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Chapter 4

Monthly procurement
optimization problem formulation

4.1 Introduction

In this Chapter 4, we formulate a series of stochastic optimization problems to
represent the decision problem outlined in Chapter 3.

First, in §4.2, we start by expressing an economic function and then formulate
a first deterministic optimization problem. Then, in §4.3, we introduce a stochas-
tic model for the sources of uncertainty presented in Chapter 3. This allows us to
transform the deterministic problem from §4.2 into a multistage stochastic opti-
mization problem.

4.2 Deterministic optimization problem formu-

lation

In this section, we start by building an objective function from the elements in-
troduced in §3.3.1.3 and §3.3.2.2. We then use this function to write a first deter-
ministic optimization problem.

4.2.1 Economic function

We recall the setting of the monthly procurement problem in Figure 4.1.
As presented in §3.3.1, we only represent the crudes premiums w(m,w) as well as

the product prices pM3
. These are the two sources of financial uncertainty we have

retained. Since other financial parameters are deterministic, they are hidden in
the cost functions introduced in (3.11c) and (3.16). Therefore, the decision maker:
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b(M1,1) b(M1,2) b(M1,3) b(M1,4) b(M2,1) b(M2,2) b(M2,3) b(M2,4)

M1 1 2 3 4 M2 1 2 3 4 M3 1 2 3 4 M4 1

c

stock de
la raffinerie

Figure 4.1: Scheme of the monthly procurement problem. Purchases are made
each week through M1 and M2 and are delivered at the beginning of M3 for a
consumption during the month

� pays Ωt(bt, wt) every week from (M1, 1) to (M2, 4),

� pays ΨM3

(
sM3

,

(M2,4)∑

t=(M1,1)

bt, pM3

)
during the month M3 (productions costs -

earnings)

From these two functions, we create a third one

ΞM3

(
sM3

, (bt)t∈T, (wt)t∈T, pM3

)
=

(M2,4)∑

t=(M1,1)

Ωt(bt, wt) + ΨM3

(
sM3

,

(M2,4)∑

t=(M1,1)

bt, pM3

)
,

(4.1)
that represents the overall cost of handling the procurement of oil for one month,
with consumption. We use ΞM3 as the economic function for the monthly procure-
ment problem.

4.2.2 Deterministic optimization problem formulation

Using (4.1) as the objective function, we formulate a first deterministic optimiza-
tion problem

min
{bt}t∈T

ΞM3

(
sM3

, (bt)t∈T, (wt)t∈T, pM3

)
(4.2a)

s.t bt ∈ Bt ∀t ∈ T , (4.2b)
∑

t∈T

bt ∈ DM3 , (4.2c)

48



where (4.2c) represents that only certain cargos combinations can be purchased
for the target month M3 as introduced with (3.12c). For instance, this constraint
might put a cap on the total volume of oil that can be delivered to the refinery at
the beginning of M3. In the case of this problem, the constraint (4.2c) represents
three things:

� exactly three (3) shipment must be delivered for M3,

� no more than one shipment must contain heavy crude,

� no more than one shipment must contain light crude.

In Problem (4.2), we seek the succession of purchases (b∗t )t∈T that maximizes
the margin of the refinery for the month M3, in an anticipative setting.

4.3 Stochastic optimization problem formulation

In Problem (4.2), the variables {wt}t∈T, p and s that were identified in Chapter 3 as
sources of uncertainty, are parameters of the problem. Therefore, the optimization
in problem (4.2) takes place as if the future was known in advance. In §4.3.1, we
propose a stochastic model for these sources of uncertainty. Then, in §4.3.2, we
use that model to build a multistage stochastic version of the Problem (4.2).

4.3.1 Stochastic models

In this section we will build a stochastic model for the sources of uncertainty
identified in Chapter 3. There are three sources: the premiums of crudes, the
stock at the beginning of the monthM3, and the product prices during that month.
After discussion with engineers from TotalEnergies, we convened to model these
uncertaunties as follow:

� crude premiums (w) are modeled by a number of hidden Markov chains, one
for each category of crude l ∈ L,

� the stock sM3
is modeled as a discrete, independent, random variable that

can only take a finite number of vales,

� the product prices vector pM3 is also modeled as a discrete, independent,
random variable.

We now build the probability space (Ω,F,P) that corresponds to this model
for uncertainties.
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Hidden state : n(M1,1) n(M1,2) n(M1,3) · · · n(M2,4)

Observations (premiums) : w(M1,1) w(M1,2) w(M1,3) · · · w(M2,4)

M

F

M

F

M

F

M

F

Figure 4.2: Illustration of the hidden markov chain modeling the crude oil premi-
ums

We decided to model premiums as a hidden Markov chain. Therefore, there
exists an underlying state nt that behaves like a Markov chain of transition matrix
M , and whose premiums pt is an observation of, as illustrated in Figure 4.2.

As explained in Chapter 3, crudes are divided into families, with L the set
families. We consider that the evolution of prices are independent family by family.
Therefore, we split the hidden state nt according to the families

nt = (nl
t)l∈L , (4.3a)

and the crude premiums depend only on the state of their corresponding family

F (wt | nt) =
∏

l∈L

F
(
(wc

t )c∈Cl | nl
t

)
. (4.3b)

Subsequently, we denote by (Ωcd,Fcd,Pcd) the canonical probability space for
a hidden Markov chain of transition matrix M and observation law F with

Ωcd = R|C|×8 , (4.4a)

ω = (w(M1,1)
, w(M1,2)

, w(M1,3)
, w(M1,4)

, w(M2,1)
, w(M2,2)

, w(M2,3)
, w(M2,4)

) ∈ Ωcd ,

(4.4b)

and

Pcd(ω) =
∑

(nt)t∈T

(
P (n(M1,1)

)F (p(M1,1) | n(M1,1)
)×

∏

t∈T\(M2,4)

P (nt+ | nt)F (pt+ | nt+)
)
.

(4.4c)

Additionally, we have already defined in Chapter 3, the finite set S ⊂ R|C|
+ of

acceptable stock levels in the refinery. Therefore, we can affect an arbitrary proba-
bility to each element of S and build the underlying probability space (S,Fst,Pst).
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Finally, we denote by PM3 ⊂ R|P| the finite set of values for products prices,
where P is the set of existing products as presented in Chapter 3. We then affect a
probabilty to each value to obtain the corresponding probability space (P,Fpr,Ppr).

Subsequently, we set

Ω = Ωcd × S × P , (4.5a)

F = Fcd ⊗ Fst ⊗ Fpr , (4.5b)

the set of parts of Ω. We define the probability distribution

P(ω) = Pcd(ωcd)× Pst(s)× Pp(p) , ∀ω = (ωcd, s, p) ∈ Ω , (4.5c)

and obtain a probability space (Ω,F,P) that reflect the modeling of the sources of
uncertainty we decided, jointly with TotalEnergies.

4.3.2 Multistage stochastic optimization problem

Now, we formulate a stochastic optimization problem. To that end, we consider
the probability space (Ω,F,P) built in §4.3.1 that encompasses the sources of
uncertainty {wt}t∈T, s and p. The anticipative criterion expressed in (4.2a) now
becomes

E{wt}t∈T,sM3
,pM3

[
ΞM3(s, {bt}t∈T, {wt}t∈T,p)

]
. (4.6)

We then formulate the following stochastic optimization problem where random
variables are identified in bold:

min
{bt}t∈T

E{wt}t∈T,s,p

[
ΞM3

(
s, {bt}t∈T,v, r, {wt}t∈T,p

)]
(4.7a)

s.t
∑

t∈T

bt ∈ DM3 , (4.7b)

bt ∈ Bt , ∀t ∈ T , (4.7c)

σ(bt) ⊂ σ(w(M1,1)
, · · · ,wt) , ∀t ∈ T , (4.7d)

where we minimize the expected value of the economic function Ξ over pur-
chases, consumption and settings controls.

� The constraint (4.7b) forces the crude orders to respect certain requirements
such as crude incompatibilities or categories.

� The constraint (4.7d) is a nonanticipativity constraint. The σ−algebra gen-
erated by bt being included in the σ−algebra generated by (w(M1,0)

, · · · ,wt)
expresses that the decision bt is made in reaction to wt, with full knowledge
of the past, but not of the future.
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We then develop ΞM3 to get a more convenient formulation of the Problem (4.7),
namely

min
{bt}t∈T

E {wt}t∈T
sM3

,pM3

[∑

t∈T

Ωt(bt,wt) + ΨM3

(
sM3

,
∑

t∈T

bt,pM3

)]
(4.8a)

s.t
∑

t∈T

bt ∈ DM3 , (4.8b)

bt ∈ Bt , ∀t ∈ T , (4.8c)

σ(bt) ⊂ σ(w(M1,1)
, · · · ,wt) , ∀t ∈ T . (4.8d)

4.4 Conclusion

In this Chapter 4, we used the variables introduced in Chapter 3 to build multistage
stochastic optimization problems. Finally, in §4.3, we developed a stochastic model
for the sources of uncertainty identified in Chapter 3 and ended up formulating a
multistage stochastic optimization problem.

In Chapter 5, we will reformulate the Problem (4.8) into a stochastic optimal
control problem after having introduced a state variable.
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Chapter 5

Stochastic optimal control
formulation

5.1 Introduction

In this Chapter 5, we reformulate the multistage stochastic optimization problem
from Chapter 4, Problem (4.8), as a stochastic optimal control (SOC) problem.

First, in §5.2, we introduce a state variable, that we refer to as buffer, and
obtain a first SOC problem. This problem is then refined when we introduce the
notion of target constraint and viability set. Then, in §5.3, we define what we call
a policy in the context of the SOC problem formulated in §5.2.

5.2 Optimal control formulation

The problem expressed in (4.8) is a multistage stochastic optimization problem.
In §5.2.1, we introduce a family of state variables that we use to propose a stochas-
tic optimal control formulation in §5.2.2. Then, in §5.2.3, we reformulate the cou-
pling constraint on purchases as a constraint on the final state that we call a target
constraint. We use the notion of viability sets to reformulate the target constraint
as a series of constraint on the controls every week. Doing so enables us to reduce
the size of both control sets and state sets.

5.2.1 Introduction of buffers

In Figure 4.1, and as detailed throughout §3.3.1.2 and §3.3.2.1, crude shipments are
purchased every week but the delivery occurs only once, leading to an accumulation
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of pending orders until delivery. We introduce a new variable

dt =
∑

t′<t

bt′ ∈ R|C| , ∀t ∈ T ∪ {(M3, 1)} . (5.1a)

This new variable dt represents a buffer made of the accumulation of all past
purchases. Additionally, d(M3,1)

represents the variable after all purchases in T
have been performed. While dt represents the sum of all shipments purchased
before week t, d(M3,1)

also represents the agreagation of all shipments that are

delivered to the refinery at the beginning of the month M3. Equivalently, (5.1a)
can be written as a dynamic equation

dt+ = dt + usf
t , ∀t ∈ T , (5.1b)

d(M1,1)
= 0 . (5.1c)

5.2.2 Stochastic optimal control formulation

For the sake of clarity we proceed to the following identification

t = minT = (M1, 1) , (5.2a)

t = maxT = (M2, 4) , (5.2b)

t
+
= (M2, 4)

+ = (M3, 1) . (5.2c)

With the buffer as defined in (5.1a), we have

d(M3,1)
=

∑

t∈T

bt , (5.2d)

and we can reformulate (4.8) using the state candidate d introduced in §5.2.1

min
{bt}t∈T

{dt}t∈T∪{t+}

E{wt}t∈T,wM3

[∑

t∈T

Ωt(bt,wt) + ΨM3(sM3
,d

t+
,pM3

)

]
(5.3a)

s.t d
t+
∈ DM3 , (5.3b)

dt ∈ R|C|
+ , ∀t ∈ T , (5.3c)

dt = 0 , (5.3d)

dt+ = dt + bt , ∀t ∈ T , (5.3e)

bt ∈ Bt , ∀t ∈ T , (5.3f)

σ(bt) ⊂ σ(wt, · · · ,wt) , ∀t ∈ T , (5.3g)

σ(dt) ⊂ σ(wt, · · · ,wt) , ∀t ∈ T . (5.3h)
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The constraint (5.3b) is a state constraint at the end of the finite timespan T,
that is, a target constraint. The initialization of the state is ensured by (5.3d) and
its evolution is handled by (5.3e).

5.2.3 Rewriting of the target constraint as state and con-
trol constraints

We presented the constraint (5.3b) as a target constraint on the final state dM3
.

In this §5.2.3, we reformulate this constraint as a series of state constraints.
We now recursively build a family {Dt}t∈T of sets defined by

Dt+ = DM3 , (5.4a)

Dt = {dt ∈ D , ∃bt ∈ Bt | dt + bt ∈ Dt+} , ∀t ∈ T . (5.4b)

The setDt is built as the set of buffers from which it is possible, by an admissible
control, to get to another element of Dt+ at the next stage. Following [12], we call
those sets, viability sets.

Additionally, we define a family {B̃t}t∈T set-valued mappings by

B̃t : Dt −→ 2Bt (5.4c)

d 7−→ {b ∈ Bt | d + b ∈ Dt+} .

The set B̃t(d) is built as the set of controls, at t, that ensure that the buffer

dt+ is viable too. The computation of both {Dt}t∈T and {B̃t}t∈T can be performed
offline. The motivating factor for performing this precomputation is that, by
design, we reduce the number of possible controls with

|B̃t(d)| ≤ |Bt| , (5.5)

thus resulting in a problem (5.6) of smaller size and without state constraints
(except for the initialization in t = (M1, 1)).

min
{bt}t∈T

{dt}t∈T∪{t+}

E{wt}t∈T,wM3

[∑

t∈T

Ωt(bt,wt) + ΨM3(sM3
,d

t+
,pM3

)

]
(5.6a)

s.t dt = 0C , (5.6b)

dt+ = dt + bt , ∀t ∈ T , (5.6c)

bt ∈ B̃t(dt) , ∀t ∈ T , (5.6d)

σ(bt) ⊂ σ(wt, · · · ,wt) , ∀t ∈ T , (5.6e)

σ(dt) ⊂ σ(wt, · · · ,wt) , ∀t ∈ T . (5.6f)
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5.3 Definition of a policy

The nonanticipativity constraint (5.6e) in Problem 5.6 indicates that the decision
bt is taken in reaction to the revelation of the past (w(M1,1)

, . . . , wt). Additionally,
we were able to introduce a state dt in §5.2.1 accumulates all the crude oil pur-
chased for M3 up to the week t. Under the hypothesis of independent sources of
uncertainty, this state condenses, at the beginning of week t, all the useful infor-
mation to make a purchase decision in week t. dt and wt are the two inputs upon
which the purchase depends on in the formula,

bt = ϕt(dt, wt) . (5.7)

We denote by Φ = {ϕt}t∈T a family of functions

ϕt : R|C| × R|P| −→ R|C| (5.8)

(d, w) 7−→ ϕt(d, w) ,

that forms a policy.
To assess the performance of a policy, we simulate it on a set of test scenarios,

Wtest.

5.4 Conclusion

In this Chapter 5, we reformulated the multistage stochastic optimization problem
from Chapter 4 as a stochastic optimal control problem. To that end, in §5.2, we
have proposed a state, the buffer, that accumulates all the purchases yet to be
delivered for the month M3, which evolution is guided by a dynamic equation.
Additionally, by computing viability sets and control sets, we reduced the com-
plexity of the problem resolution. Then, in §5.3, we briefly detailed what a policy
is in the context of the SOC problem formulated beforehand.

The next Chapter 6 is devoted to the design of policies to tackle this SOC
problem.
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Chapter 6

Policy design

6.1 Introduction

In this Chapter 6, we present different methods to design policies dealing with the
optimization problems formulated in Chapter 4 and Chapter 5.

First, in §6.2, we detail the construction of Ψ̃M3 , an approximate production
function of the refinery that we use in the policies instead of ΨM3 . Then, in §6.3,
we focus on the design methods using a single scenario. This encompasses Expert,
the method currently used by TotalEnergies as well as two other policies, Triplet
and Model Predictive Control (MPC). In §6.4, we design methods using dynamic
programming. We first detail the propagation of the target constraint introduced
in §5.2. We then outline the standard application of Stochastic Dynamic Pro-
gramming (SDPesp) to produce a policy, using value functions computed offline.
Then, we introduce a risk measure, the conditional value at risk, in the stochastic
dynamic programming (SDPCVaR). Finally, we propose a last policy that takes
advantage of the time available before making each decision to recompute value
functions. We call it successive-SDP (Suc-SDP).

6.2 Design of an approximate production func-

tion

The production function ΨM3 of the refinery for the month M3 was introduced
in §3.3.2, through Equation (3.16). Given stocks levels s, shipment deliveries d
and, product prices p, ΨM3 returns the operational “cost” of the refinery during
the month M3. This encompasses product sales as well as the charges incurred by
running a refinery.

In practice, there is no analytical expression for ΨM3 and its value is obtained
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numerically through the use of a software, that simulates the inner-working of the
refinery. Unfortunately, such software is too costly, time-wise, to assess policies in
a Monte-Carlo simulation.

We therefore open up the function ΨM3 in order to build a new production

function Ψ̃M3 that we will be able to use in the policies that we will detail in §6.3
and §6.4. We recall from §3.3.1.2, the set C of crudes on the market is split in
diverse families

C =
⋃

l∈L

Cl , (6.1)

witch L the set of families we consider. After discussion with TotalEnergies, the
refinery processes crudes in a certain order, depending on the category they belong
to.

As an example, we consider three families and C = C1∪C2∪C3. TheM3−buffer
as introduced in §5.2.1 now splits into

dt = (d1t , d
2
t , d

3
t ) ∈ R|C|

+ , (6.2a)

with

d1t ∈ R|C1|
+ , (6.2b)

d2t ∈ R|C2|
+ , (6.2c)

d3t ∈ R|C3|
+ , (6.2d)

Now, let us assume that crudes must be processed in a specific order

C1 −→ C2 −→ C3 . (6.3)

After discussion with TotalEnergies’s engineers, in this situation, crudes are con-
sumed sequentially, by couple. Opening the blackbox, ΨM3 can be expressed as
the sum of three functions

ΨM3(sM3
, d(M3,1)

, pM3) = gM3

(
sM3

,
1

2
d1(M3,1)

, pM3

)
(6.4)

+ gM3

(1
2
d1(M3,1)

,
1

2
d2(M3,1)

, pM3

)

+ gM3

(1
2
d2(M3,1)

,
1

2
d3(M3,1)

, pM3

)
.

The function gM3 is called the single period production function. Unlike ΨM3 ,
it takes as arguments crude oils that are processed at the same time. In TotalEn-
ergies’s setting, the value of gM3 is numerically obtained using a software called
Grtmps. In (6.4), we consider that the consumption of each buffer is evenly split
between two sequences.
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Further, the value of gM3(d
1, d2, p) is the result of an optimization problem.

The software Grtmps not only simulates the inner-working of a refinery in a “single
period”, it also optimizes the settings of the refinery so as to minimize the costs.
We represent this optimization problem as

gM3(d
1, d2, p) =min

rM3

ĝM3(d
1, d2, rM3

, p) , (6.5a)

s.t rM3
∈ RM3

,

where rM3
are the settings of the refinery, and RM3

, the set of possible settings.
g̃M3 is the cost function the Grtmps software minimizes.

As a by-product of this optimization, the Grtmps software yields a mass balance
λM3

(d1, d2, p) ∈ R|P| of products, with P the set of products as introduced in
§3.3.2.2. In this approximation we ignore all cost except product sales so that

gM3(d
1, d2, p) ≃ λM3

(d1, d2, p)× p . (6.6)

Although we have approximated gM3 , computing λM3
is just as costly. After

discussion with TotalEnergies, we obtained a reference product prices vector prefM3

and used it to compute a reference mass balance function

λref
M3

(d1, d2) = λM3
(d1, d2, prefM3

) . (6.7a)

We denote

g̃M3(d
1, d2, p) = λref

M3
(d1, d2)× p , (6.7b)

the resulting approximate version of gM3 . We now buid the approximate produc-

tion function Ψ̃M3 as

Ψ̃M3(sM3
, (d1(M3,1)

, d2(M3,1)
, d3(M3,1)

), pM3) =
(
λref
M3

(sM3
, d1(M3,1)

) (6.7c)

+ λref
M3

(d1(M3,1)
, d2(M3,1)

)

+ λref
M3

(d2(M3,1)
, d3(M3,1)

)
)
× pM3 .

The approximate production function Ψ̃M3 acts as if the refinery always runs in
the same way, independently of the products prices. Therefore, while precomputing
all the values of λref

M3
still requires calls to the Grtmps software, using Ψ̃M3 does

not involve such costly computations.
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6.3 Single scenario based policies

In this section, we present three methods that rely on a single scenario to build a
purchase policy. In §6.3.1, we detail the Expert method, the method currently used
by TotalEnergies to purchase crude oil. In §6.3.2,we present the Triplet method,
a policy that builds on Expert but proceeds to a single optimization rather than
multiple successive optimizations. The, in §6.3.3, we develop the usual MPC policy,
in which a future scenario is envisioned and the decision taken optimizes along that
path.

At the beginning of each week t = (m,w), not only is the prime vector wt

revealed, but a projection

p̃M3
∈ R|P| (6.8)

is given by the trading department to the decision maker. For the sake of clarity
in algorithms, p̃M3

is not indexed by the time t even though it is updated every
week. The vector p̃M3

is a vision, at the beginning of week t, of what the prices of
products might be during the month M3. We do not discuss how p̃M3

is obtained,
but we explain how it is used to design a policy. Similarly, a projection of the
stock s̃M3

∈ R|C| is provided to the decision maker at the beginning of each week
t.

6.3.1 Current expert practice of optimization

To determine what crude oil to purchase each week, the method currently used by
TotalEnergies relies on successive optimizations.

As introduced in (3.5b), crudes are broken down into categories. Here there
are three categories: balanced, heavy and light and the exact crudes can be found
in (3.5). We recall that each crude is only available for purchase at single week,
and in given volumes, as described in §3.3.1.2. In the case of three categories
L = {1, 2, 3}, and a subdivision C = C1 ∪ C2 ∪ C3 the crude purchases in week t
are yielded by the Algorithm 1, that we describe now.

The policy described in Algorithm 1 consists in performing a series of static,
deterministic, sequential optimizations every week.

At the beginning of week t, once the vector wt of premiums has been revealed,
a projection p̃M3

of product prices, as well as a stocks projection s̃M3
, are commu-

nicated to the decision maker.
Then, the decision maker ranks every crude based on those two pieces of in-

formation using TotalEnergies’s tool Grtmps represented by the function gM3 in-
troduced in §6.2, which optimizes the inner working of the refinery. In this policy,
we use its approximation g̃M3 instead. Then, the decision maker obtains, for each
crude c a value corresponding to an operational margin if he were to buy crude c
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Algorithm 1 Expert purchase policy

procedure ϕconv
t (dt, wt)

A projection p̃M3
of pM3 is given

A projection s̃M3
of sM3

is given
if no crude belonging to the family 1 is in dt then

(c1∗∗, g1∗∗) = argmin
c∈C1

gc∈Gc
t

Ωt(g
c, wt) + g̃M3(s̃M3

,
1

2
gc, p̃M3

)

if c1∗∗ is available in t then purchase it in quantity g1∗∗

end if
end if
if no crude belonging to the family 2 is in d then

(c2∗∗, g2∗∗) = argmin
c∈C2

gc∈Gc
t

Ωt(g
c, wt) + g̃M3(g

1∗∗, gc, p̃M3
)

▷ where gc
1∗∗

is either the crude purchased just before, the crude of
family 1 in dt, or s̃M3

if no such crude has been purchased yet
if c2∗∗ is available in t then purchase it in quantity g2∗∗

end if
end if
if no crude belonging to the family 3 is in d then

(c3∗∗, g3∗∗) = argmin
c∈C3

gc∈Gc
t

Ωt(g
c, wt) + g̃M3(g

2∗∗, gc, p̃M3
)

▷ where gc
2∗∗

is either the crude purchased just before, the crude of
family 2 in dt, or s̃M3

if no such crude has been purchased yet
if c3∗∗ is available in t then purchase it in quantity g3∗∗

end if
end if

end procedure
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at price wt and sell the resulting products at price p̃M3
. The crude selection is

then performed sequentially for each crude family, the order in which categories
are treated being set by the order in which crudes must be processed according
to (6.3). For each crude family, as long as the total purchases do not infringe

on the total purchase constraint

(M2,4)∑

t=(M1,1)

bt ∈ DM3 expressed in §4.3, if the best

ranking crude (or one of the two best ranking as a variation) is available, then it is
purchased; else, nothing happens and the decision maker waits for the next week.
For the sake of clarity, in Algorithm 1, when writing gM3(g

c1∗∗ , gc, w, p̃M3
), gc is

identified to (0, . . . , 0, gc, 0, . . . , 0) ∈ R|C|
+ , the vector of volumes with only its c-th

component filled.

6.3.2 Triplets method

The Triplet policy is a variation of the Expert policy presented in §6.3.1. In week t,
given a premium vector wt and a projection f products prices p̃M3

, the decision-
maker now values crude combinations instead of individual crudes. Then, any of
the crudes present in the best combination that is available in week t is purchased.

Algorithm 2 Triplet purchase policy

procedure ϕtri
t (dt, wt)

A projection p̃M3
of pM3 is given

A projection s̃M3
of sM3

is given

Compute D̂M3(dt), the crude combinations that can still be reached from dt

(
c1∗∗,g1∗∗

c2∗∗,g2∗∗

c3∗∗,g3∗∗

)
= argmin

(c1,c2,c3)∈D̂M3
(dt)

gc
1∈Gc1

t ,gc
2∈Gc2

t ,gc
3∈Gc3

t

Ωt((g
c1

t , gc
2

t , gc
3

t ), wt)+Ψ̃M3(s̃M3
, (gc

1

t , gc
2

t , gc
3

t ), p̃M3
)

Purchase any of the crudes c1∗∗, c2∗∗, c3∗∗ that is available for purchase in
week t
end procedure

In Algorithm 2, every week, the decision maker computes the set D̂M3(dt) ⊂
DM3 that corresponds to all the crude combinations (triplets) that can still be
reached given the state of the buffer dM3

. Those combinations are then ranked
based on their projected valuation, using wt and the projections p̃M3

and s̃M3
.
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Any crude, from the best combination, that happens to be available for purchase
in week t is purchased (the resulting command can correspond to not buying crude
at t). In Algorithm 2 as well as in Algorithm 1, the only future scenario that is
considered is the couple (s̃M3

, p̃M3
) of projections that is given to the decision

maker at the beginning of each week.

6.3.3 Model predictive control policy (MPC)

Model Predictive Control (MPC) is a policy frequently used in the control of
dynamic systems. In Algorithm 4, instead of performing a static optimization like
in §6.3.1 and §6.3.2, we solve a deterministic dynamic optimization problem based
on a projected scenario

(wt, w̃t+ , . . . , w̃t, s̃M3
, p̃M3

) (6.9)

where (w̃t′)t′∈Jt+,tK is built in accordance with the stochastic model detailed in §4.3.1.

Algorithm 4 MPC purchase policy

procedure ϕmpc
t (dt, wt)

A projection p̃M3
of pM3 is given

A projection s̃M3
of sM3

is given
for i ∈ J1, 100K do

Use Algorithm 12 to generate (wi
t, w̃

i
t+ , . . . , w̃

i
t)

end for
Compute a mean projected scenario (wt, w̃t+ , . . . , w̃t)
Solve the deterministic problem

{b∗t′}t′⪰t = argmin
{b

t′}t′⪰t

t∑

t′=t

Ωt′(bt′ , w̃t′) + Ψ̃M3(s̃M3
, d

t+
, p̃M3

) ,

s.t d
t+
∈ Dt+ ,

dt′+ = dt′ + bt′ , ∀t′ ∈ Jt, tK ,

bt′ ∈ B̃t′(dt′) , ∀t′ ∈ Jt, tK .

Return b∗t
end procedure

In Algorithm 4, the decision-maker uses a single scenario to make the purchase
decision bt. Unlike in §6.3.2, the scenario includes crude premiums in addition to
the stock and product prices predictions. While the values used for the stock s̃M3
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and the product prices p̃M3
are the predictions given to the decision maker, the

crude premiums are the mean scenario of multiple projected scenarios that fit the
stochastic model presented in §4.3.1. The method used to build such scenarios is
similar to the algorithm that will be presented in §7.2.

(wt, w̃t+ , . . . , w̃(M2,4)
, s̃M3

, p̃M3
) ∈ R(t−t+1)×|C| × R|C|

+ × R|P| . (6.11)

Whereas the products prices and stocks projections are given respectively by
the trading department and the production department, the decision-maker needs
to buid the premiums projection himself using Algorithm 12. Once the projected
scenario complete, the decision-maker solves a deterministic optimization problem
that spans the remaining duration [t, t] and is parametrized by the buffer dt

{b∗t′}t′⪰t = argmin
{b

t′}t′⪰t

t∑

t′=t

Ωt′(bt′ , w̃t′) + Ψ̃M3(s̃M3
, d

t+
, p̃M3

) , (6.12a)

s.t d
t+
∈ Dt+ , (6.12b)

dt′+ = dt′ + bt′ , ∀t′ ∈ Jt, tK , (6.12c)

bt′ ∈ B̃t′(dt′) , ∀t′ ∈ Jt, tK . (6.12d)

The problem (6.12) is based on (5.3) formulated in §5.2.2. Solving it equates
to planning all future purchases {b∗t}t′∈Jt,tK under the assumption that the scenario
(wt, w̃t+ , . . . , w̃t, s̃M3

, p̃M3
) will happen. Once the solution obtained, the decision

maker takes the decision b∗t that concerns the week t.

6.4 Dynamic programming based policies

In §6.4, we detail three methods based on Stochastic Dynamic Programming
(SDP). While the resolution methods from §6.3 only used a single projection,
these methods use multiple projections to build policies. First, in §6.4.1, we detail
the procedure followed to compute the viable decision sets introduced in §5.2.3.
Then, in §6.4.2, we detail the computation of value functions using stochastic dy-
namic programming and their incorporation into policies (SDPesp and SDPCVaR).
Finally, in §6.4.3 we present a policy called “successive SDP” (Suc-SDP) in which
the value functions are recomputed at every stage.

Designing each of these policies requires a great number of scenarios that fit
the stochastic model detailed in §4.3.1. Such a set of scenarios is called design
set. For now, we do not detail the method used to create such a set, this will be
done in §7.2 were we detail the algorithms used.
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6.4.1 Target constraint propagation algorithm

We detail the algorithms allowing us to obtain both the family {Dt}t∈T∪{t+} of

viability state sets and the family {B̃t}t∈T of viable control mappings, respectively
introduced in (5.4b) and (5.5). We propose the Algorithm 5 to recursively com-
pute the family {Dt}t∈T, of viable state sets given by the induction (5.4b). The
execution of Algorithm 5 is only possible because the decision sets Bt are finite,
thus making the enumeration of the decisions and states possible.

Algorithm 5 Backward computation of the viability state set Dt

procedure Dt−(Dt,Bt−)
Dt− = {∅} ▷ start with an empty set
for d ∈ Dt do

for b ∈ Bt− do
d′ = (d − b)+

Dt− ← Dt− ∪ {d′} ▷ progressively add the right elements
end for

end for
end procedure

The algorithm is initialized with the set Dt+ = DM3 , introduced in §3.3.2.1,
that describes all the crude oil combinations that can be received. Then, each set
Dt− ∈ R|C|

+ is recursively deduced from Dt and Bt− , respectively the next viable
state set and the set of possible purchases in week t−.

Once the sequence of admissible state sets {Dt}t∈T∪{t+} has been recursively

computed, we propose a second Algorithm 6 to compute B̃t(d), the set of admis-
sible controls generated by the mappings introduced in §5.2.3.
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Algorithm 6 Computation of the viable control set

procedure B̃t(d)

B̃t = {∅}
for b ∈ Bt do

for d
′ ∈ Dt+ do

if d + b = d
′
then ▷ verify if d + b ∈ Dt+

B̃t ← B̃t ∪ {b} ▷ add b to the set of viable controls
break;

end if
end for

end for
Return B̃

end procedure

In Algorithm 6, the viable control set B̃t(d) is built by checking every possible
control b ∈ Bt. For each b, if the dynamic sends d on an element of the next viable
set Dt+ , then b is added to the viable control set.

6.4.2 Stochastic dynamic programming (SDP)

As seen in §5.2, the buffer variable dt serves as a state variable. We adapt the
multistage stochastic optimization problem (5.6) to the approximate production

function Ψ̃M3 built in §6.2.

min
{bt}t∈T

{dt}t∈T∪{t+}

E{wt}t∈T,wM3

[∑

t∈T

Ωt(bt,wt) + Ψ̃M3(sM3
,d

t+
,pM3

)

]
(6.13a)

s.t dt = 0C (6.13b)

dt+ = dt + bt , ∀t ∈ T (6.13c)

bt ∈ B̃t(dt) , ∀t ∈ T (6.13d)

σ(bt) ⊂ σ(wt, · · · ,wt) , ∀t ∈ T (6.13e)

σ(dt) ⊂ σ(wt, · · · ,wt) , ∀t ∈ T . (6.13f)

Since (6.13) is formulated as an optimal control problem, we can build a policy
using Stochastic Dynamic Programming.
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6.4.2.1 Dynamic programming equation

We write the dynamic programming equations associated with (6.13) as

V
t+
(d) = EsM3

,pM3

[
Ψ̃M3(sM3

, d,pM3
)
]
, ∀d ∈ Dt+ , (6.14a)

Vt(d) = Ewt

[
min

b∈B̃t(d)

(
Ωt(b,wt) + Vt+(d + b)

)]
, ∀d ∈ Dt , ∀t ∈ T . (6.14b)

The value functions {Vt}t∈T∪{t+} are computed recursively in Algorithm 7.

Algorithm 7 Recursive computation of the value functions

procedure Computation of {Vt}t∈T∪{t+}
for d ∈ D do

for pM3 ∈
{
p̃iM3

}
i∈J0,9K do

for sM3
∈ {s1M3

, s2M3
, s3M3

, s4M3
} do

Compute Ψ̃M3(sM3
, d, pM3)

end for
end for
V
t+
(d) = EsM3

,pM3

[
Ψ̃M3(sM3

, d,pM3
)
]

end for
t = t
while t ⪰ t do

for d ∈ Dt do
for w ∈Wt do

for b ∈ B̃t(d) do
Compute Ωt(b, w) + Vt+(d + b)

end for
Retain the minimum value across |B̃t(d)| values

end for
Compute the mean value across |Wt| values

end for
Store the |Dt| values computed for Vt

t← t−

end while
Return {Vt}t∈T

end procedure

The value function V
t+

defined in (6.14b) serves as a final cost. V
t+
(d) is the

average value of the production function for the buffer d. The decision maker runs
Algorithm 7 before the start of the month M1 as all the value functions {Vt}t∈T
must have been computed before taking any decision.
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6.4.2.2 Dynamic programming with a risk measure

In §6.4.2, we computed value functions using an expectation. Here, we compute
value functions using a different risk measure. The expected value E is risk neutral,
as it gives equal importance to good results (e.g small loss / high gains) and poor
ones (e.g important loss/ negative gains). In practice, the decision maker is rarely
risk-neutral and will give more importance to avoiding bad outcomes rather than
improving solely the average result. One risk measure used to that end is the
Conditional Value at Risk (CVaR).

We recall the definition of the CVaR for a discrete loss variable X and a risk
level β ∈ [0, 1]

CVaRβ(X) = E[X | X ≥ V aRβ(X)] , (6.15a)

where V aR(X) is the value at risk, defined as

V aRβ(X) = min{z|P (X ≤ z) ≥ β} . (6.15b)

Letting λ ∈ [0, 1], we combine the CV aR with the expected value in the risk
measure

ρβλ(X) = (1− λ)E(X) + λ CVaRβ(X) , (6.16)

taht is, the risk measure giving the weight λ to the CVaR conditioned to β percents.
This is the risk measure we use to write new dynamic programming equations:

V λ,β

t+
(d) = ρβλ

[
Ψ̃M3(sM3

, d,pM3
)
]
, ∀d ∈ Dt+ , (6.17a)

V λ,β
t (d) = ρβλ

[
min

b∈B̃t(d)

(
Ωt(b,wt) + V λ,β

t+ (d + b)
)]

, ∀d ∈ Dt , ∀t ∈ T . (6.17b)

The Algorithm 8 details the computation of the value functions {V λ,β
t }t∈T and

follows Algorithm 7 in its structure. The complexity of Algorithm 8 is the same
as Algorithm 7, with the exception of the computation of the CVaR.

6.4.2.3 Step forward optimization

Once value functions {Vt}t∈T have been computed, either using the expected value
or a risk measure, we can express the policy as Algorithm 9:

While the computation of value functions {Vt}t∈T is expensive, as detailed in
§6.4.2.1, the execution of the policy through Algorithm 9 is light as the decision
maker only needs to enumerate a finite number (|B̃t(d)|) of viable decisions in
week t and chose the one yielding the best result. In the application presented
in Chapter 7, an average of 8 viable decisions are tested each week, compared to
an average of 40 possible decisions, that is a 5× gain. The computation gains
provided by the propagation of the target constraint detailed in §6.4.1 are also
visible in the online phase of the SDP-based policy.
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Algorithm 8 Recursive computation of the value functions with a CVaR

procedure Computation of {V λ,β
t }t∈T∪{t+}

for d ∈ D do
for pM3 ∈

{
p̃iM3

}
i∈J0,9K do

for sM3
∈ {s1M3

, s2M3
, s3M3

, s4M3
} do

Compute Ψ̃M3(sM3
, d, pM3)

end for
end for
V
t+
(d) = ρβλ

[
Ψ̃M3(sM3

, d,pM3
)
]

end for
t = t
while t ⪰ t do

for d ∈ Dt do
for w ∈Wt do

for b ∈ B̃t(d) do
Compute Ωt(b, w) + V λ,β

t+ (d + b)
end for
Retain the minimum value across |B̃t(d)| values

end for
Compute the mean value across |Wt| values
Compute the CVaR

end for
Store the |Dt| values computed for V λ,β

t

t← t−

end while
Return {V λ,β

t }t∈T
end procedure

Algorithm 9 Step forward optimization

procedure ϕt(dt, wt)
Solve

b∗t ∈ argmin
b∈B̃t(dt)

(
Ωt(b, wt) + Vt+(dt + b)

)
, (6.18)

Return b∗t
end procedure
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6.4.3 Successive SDP

One particular aspect of the crude oil procurement is the time available between
the revelation of premium prices wt at the beginning of a week and the moment
the order bt must be placed. The typical time available to make a decision is 48
hours, up to 72 hours.

The implementation of SDP as presented in §6.4.2 requires a lot of offline
computation but leads to a light policy; once value functions have been computed
offline, taking a decision is rather simple as shown in §6.4.2.3. We now present,
in Algorithm 10, a method where we use the time available (48-72h) to compute
another set of value functions each week.

Algorithm 10

procedure ϕ̃t(dt, wt)
A projection p̃M3

of pM3 is given
A projection s̃M3

of sM3
is given

Build a new design set of scenarios for the remaining weeks [t, t] that uses
wt, p̃M3

and s̃M3

Recompute V
t+
(d) = EsM3

,pM3

[
Ψ̃M3(sM3

, d,pM3
)

]
, ∀d ∈ DM3

t′ = t
while t′ ≻ t do

for d ∈ Dt′ do

Recompute Vt′(d) = Ew
t′

[
minb

t′∈B̃t′ (d)

(
Ωt′(bt′ ,wt′)+V

t′+
(d+bt′)

)]
,

end for
t = t−

end while
Return b∗t = argminb∈B̃t(dt)

(
Ωt(b, wt) + Vt+(dt + b)

)

end procedure

Here, the projections given to the decision maker every week serve as a basis for
the creation of many scenarios. Those scenarios are then used to recompute new
value functions {Vt′}t′≻t by stochastic dynamic programming. The decision-maker
then takes the decision b minimizing Ωt(b, wt)+Vt+(dt+ b). The next week, a new
price projection p̃ and a new stock projection s̃ are communicated, new scenarios
are generated and new value functions are computed.
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6.5 Conclusion

In Chapter 6, we have presented six purchase policies to solve the problem for-
mulated in Chapter 4 and Chapter 5. The designed policies are divided into two
categories. On the one hand, the methods detailed in §6.3.1, §6.3.2 and §6.3.3 only
use a single scenario that is a projection, to make a decision. On the other hand,
the methods introduced in §6.4.2.1, §6.4.2.2 and §6.4.3 use multiple scenarios to
build value functions that are then used in their respective policies to make a de-
cision. Stochastic Dynamic Programming can be used either with the expected
value, or with another risk measure. In §6.4.3, we leverage the time available every
week to make a purchase decision, and we use the price projections communicated
every week to generate new scenarios and recompute value functions.

Next, in Chapter 7, we will detail a numerical application on which we test
each policy designed in Chapter 6 and discuss the results.
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Chapter 7

Numerical results

7.1 Introduction

In this Chapter 7, we present numerical assessments of the policies presented in
Chapter 6.

First, in §7.2, we detail the algorithms used to build an assessment set of
scenarios. In §7.3, we use the set built in §7.2 to assess six policies and compare
them on the basis of their payoff distribution. Last, in §7.4, we assess the same
policies on six historical scenarios that play back past months of 2020 and 2021.

Before all, we present the structure of the procurement problem we deal with
in this Chapter 7. We recall that, during two months M1 and M2, there are eight
weeks during which three crudes have to be bought. In Figure 7.1, we display the
availability timeline of the crudes throughout the months of years M1 and M2.

We recall that crudes are categorized according to their characteristics. We
consider 3 families: balanced, heavy, light. No more than one shipment of heavy
and one shipment of light crude oil can be purchased.

After discussion with TotalEnergies’s engineers, it was deemed necessary to
distinguish the order in which the combination of crudes arriving at the beginning
of the month M3 would be processed. As an example, processing (B5→ H6→ L3)
would not yield the same result as processing (L3→ H6→ B5). As a consequence,
we must distinguish, for each crude, whether it is purchased to be consumed in
first, second, or third position. The number of crudes considered is tripled: instead
of having just B5, we denote B51 (resp B52 and B53) the crude B5 that is available
for a consumption in the first position (resp. second, third). This modeling trick
makes it possible to retain the problem used in Chapter 4 while respecting the
additional order constraint imposed by TotalEnergies. While we consider only 19
crudes, the formal number of crude we deal with is triple. Using the notations
from Chapter 3, this implies that |C| = 3 × 19 = 57. We now formally have 9
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Figure 7.1: Crudes availability timing for the problem treated in Chapter 7
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families:

� balanced1, heavy1, light1,

� balanced2, heavy2, light2,

� balanced3, heavy3, ligh3.

Consequently, the purchase decisions bt ∈ R57
+ every week t, introduced in §3.3.1,

have 57 components, and the buffer dt ∈ R57
+ , introduced in §5.2, as well.

7.2 Assessment set construction

In §7.2, we detail the procedures used to generate the assessment set of scenarios
that will be used in §7.3 to perform the Monte-Carlo simulation. As introduced
in §5.3, we recall that a scenario is a sequence

(
w(M1,1)

, w(M1,2)
, w(M1,3)

, w(M1,4)
, w(M2,1)

, w(M2,2)
, w(M2,3)

, w(M2,4)
, sM3

, pM3

)
,

(7.1)
where

� w(M1,1)
, w(M1,2)

, w(M1,3)
, w(M1,4)

, w(M2,1)
, w(M2,2)

, w(M2,3)
, w(M2,4)

is the series of
crude premiums over the two months M1 and M2,

� sM3
is the stock inside the refinery at the beginning of the month M3,

� pM3 is the price of the finished products for the month M3.

For each scenario, the three parts will be built independently of each other,
according to the stochastic model built in §4.3.1. In §7.2.1 we present the Marko-
vian model used to draw series of crude premiums. Then, in §7.2.2 and §7.2.3 we
present the data used as possible stock and product price values.

7.2.1 Crudes premiums

In §4.3.1 we presented the stochastic model for crude premiums. Using a hidden
Markov chain model, we consider that crude premiums are not independant from
one week to the other. In §7.2.1.1, we present the data available to us for the
numerical application and its pre-processing. Then, in §7.2.1.2, we present the
algorithms used to build the hidden Markov chain model and draw premiums
scenarios.

As presented in the introduction, there are 3 physical crude families:
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Figure 7.2: Extract of the history of crudes prices, ranging from 01/01/2010 to
01/01/2021

� Cbalanced = {B1, B2, B3, B4, B5}, |Cbalanced| = 5,

� Cheavy = {H1, H2, H3, H4, H5, H6}, |Cheavy| = 6,

� Clight = {L1, L2, L3, L4, L5, L6, L7, L8}, |Clight| = 8.

7.2.1.1 Premiums data pre-processing

In practice, the history of weekly crude premiums is not readily available. We
are now going to detail, how we used the raw data provided by TotalEnergies to
produce an history of weekly premiums as well as an estimate of the distribution
of crude oil premiums for each crude.

Figure 7.2 illustrates the raw data available where each crude is represented
by a 4 letters code. BBFO marks the reference crude quotation. For every
other crude, the column “Fob” corresponds to the premium of the crude plus the
reference quotation discussed in §3.2.1. Using the historical data available (which
Figure 7.2 is an extract of), we build an history of the premiums for each crude in
C, over the last 10 years. For instance, on the date 05/03/2020, the premium of
the crude coded BBGA is 111, 215−110, 495 = 0, 712$/bbl. In doing so, we obtain,
for each crude, the daily history of the premiums over the last 10 years. These
daily values are then converted into weekly values by averaging the premiums over
each week. As an example, to obtain a premium value for crude c in the week 18
of 2013, we do

premiumc
18 =

1

5

05/03/2013∑

day=04/29/2013

(
FobBBGA

day − FobBBFO
day

)
(7.2)

In Figure 7.3, we display the histogram of reference quotations over the last
10 years. In this numerical application, motivated by the hedging performed by
TotalEnergies, we made the choice to dismiss the reference quotation as a source of
uncertainty. In the assessment scenario, the reference has a fixed value. However,
we observe that the distribution resembles a mixture of Gaussian-like distributions.

Now, in Figure 7.4, we display the histogram of daily premiums for the crude
B5 over the last 10 years. We note that this distribution resembles a Gamma
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Figure 7.3: Histogram of the daily reference quotations over a 10-years period
(n=2778)

distribution. So as to estimate the parameters, we obtain the shape and scale of
each distribution using a maximum-likelihood method. We thus associate to each
crude c a Gamma density with parameters (κc, θc) given by (7.3)

f(w, κc, θc) =
wκc−1e−

w

θc

Γ(κc)θcκ
c . (7.3)

In particular, we estimated the parameters κB5 = 3.19, θB5 = 0.48 (shape, scale)
for the crude B5. This distribution is displayed in Figure 7.4.

Figure 7.4: Histogram of daily premiums for the crude B5 over a 10-years period
(n=2778). In black, we draw the histogram of a Gamma distribution with param-
eters κB5 = 3.19, θB5 = 0.48

We have an history of weekly averaged crude premiums and estimation of the
premium distribution for each crude. We now use both of these elements to build
transition matrices for the hidden Markov chain model of premiums.
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7.2.1.2 Hidden Markov chain construction

As detailed in §4.3.1, the hidden state of the Markov chain that we model can be
divided in three parts, one for each category. We denote by

nt = (nb
t , n

h
t , n

l
t) , (7.4a)

nl
t ∈ {1, 2, 3, 4} , ∀l ∈ {b, h, l} , (7.4b)

the hidden state for week t. The term nl
t codes the state of the market for the

family l: 1 corresponds to the lowest price trend, and 4 to the highest price trend.
For a family l ∈ L in week t, nl

t moves to the value nl
t+ in the next week t+

(where t+ is the successor to t as defined in §3.3.1.1) according to a transition
matrix M l denoted

M l =




M l
1,1 M l

1,3 M l
1,2 M l

1,4

M l
2,1 M l

2,3 M l
2,2 M l

2,4

M l
3,1 M l

3,3 M l
3,2 M l

3,4

M l
4,1 M l

4,3 M l
4,2 M l

4,4


 . (7.5)

As an example, let l be a crude oil category, and let t be a week. Let nl
t = 2.

Then, the random variable nl
t+ follows distribution defined by the second line of

M l. More precisely, we have P (nl
t+ = i|nl

t = 2) = M l
2,i.

We now present the method used to compute each transition matrix M b, Mh

and M l Once the parameters for the Gamma distribution of each crude have been
estimated in §7.2.1.1, we build the four following intervals for each crude c. Each
interval is associated to a value of the corresponding hidden state nl

t:

1 : [c, q15%c [, (7.6a)

2 : [q15%c , (κc − 1)θc[, (7.6b)

3 : [(κc − 1)θc, q75%c [, (7.6c)

4 : [q75%c , c] , (7.6d)

where c and c are the historic minimum and maximum of the premium for the
crude c over the history. The quantities q15%c and q75%c are the quantiles at levels
15% and 75% for the estimated Gamma distribution . The term (κc − 1)θc is the
mode of the Gamma distribution with shape κc and scale θc.

We use Algorithm 11 to compute each of the 3 transition matrices used in the
Markovian model: the 3 transition matrices correspond to heavy, balanced and
light crudes. Given a crude family l, for each crude c ∈ Cl, the algorithm scans the
history of weekly-averaged crude premiums built in §7.2.1.1. Then, each weekly
price is translated into an integer depending on its value relative to the intervals
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Algorithm 11 Construction of a transition matrix associated with the crude
family l.

procedure Building M l ( (premiumc
w)c∈C,w∈history)

Initialize M l as a 4× 4 null matrix
for c ∈ Cl do

Create 4 intervals 1 : [c, q15%c [, 2 : [q15%c , (κc − 1)θc[,
3 : [(κc − 1)θc, q75%c [, 4 : [q75%c , c]

presented in (7.6)
for each couple (w,w + 1) of weeks in history do

compute i, the interval in which premiumc
w is

compute j, the interval in which premiumc
w+1 is

M l
i,j ←M l

i,j + 1
end for

end for
for i ∈ {1, 2, 3, 4} do

for j ∈ {1, 2, 3, 4} do

M l
i,j ←M l

i,j/
4∑

j′=1

M l
i,j′

end for
end for
Return M l

end procedure
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in (7.6). Week to week variations are then reported into the same matrix for each
category. After renormalization, we obtain a transition matrix M l for each l ∈ L.

Once the transition matrices are computed for each family of crude l ∈ L, we
use Algorithm 12 to draw scenarios of crude premiums trajectories (wt)t∈T.

In Algorithm 12, we compute an initial state nt = (nl
t)l∈L from an initial vector

wt of premiums. Then, we draw a tuple of states (nt′)t′≻t =
(
(nl

t′)l∈L
)
t′≻t

using the

transition matrices {M l}l∈L computed using Algorithm 11.
Every week t′ ≻ t, for every crude c, an exact prime value wc

t is observed
according to the estimated Gamma distribution from §7.2.1, restricted to the in-
terval of (7.6) that corresponds to the hidden state. Looking back at §4.3.1, the
observation law FC for crude c writes

Fc(n) =





F ′(κc, θc, c, q
15%
c ) if n = 1,

F ′(κc, θc, q
15%
c , (κc − 1)θc) if n = 2,

F ′(κc, θc, (κ
c − 1)θc, q75%c ) if n = 3,

F ′(κc, θc, q
75%
c , c) if n = 4 .

(7.7)

In (7.7), F ′ is a truncated Gamma distribution which expression is

F ′(κ, θ, a, b) : [a, b] −→ [0, 1] (7.8)

w 7−→ f(w, κ, θ)

φ(b, κ, θ)− φ(a, κ, θ)

where f is the Gamma distribution whose expression is in (7.3) and φ is the associ-
ated cumulative distribution function. Although f was built with daily premiums,
it is still compatible with weekly values as these are averaged weekly values.

7.2.2 Stocks

In the monthly procurement problem, we are interested in buying oil during the
first two months M1 and M2 for the refinery to run during the last month M3.
The stocks vector sM3

at the beginning of M3 is the result of a dynamic relation
using the deliveries and consumption over M1 and M2. Instead, we treat it as a
source of uncertainty. The reason for that decision is that, taking into account this
dynamic requires to manage the production for several months, which is outside
the scope of this problem.

As presented §4.3.1, this uncertainty is considered as independent of both the
crude premiums and the product prices. We consider that sM3

can take 4 different
values. Each stock value corresponds to a popular crude in stock inside the refinery:
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Algorithm 12 Generation of a scenario of premiums vectors each week t′ ≻ t

procedure Draw primes scenario(wt)
for l ∈ L do

for c ∈ Cl do
nl,c
t ←− the interval number in which wc

t is

1 : [αc, µc − σc[, 2 : [µc − σc, µc[,

3 : [µc, µc + σc[, 4 : [µc + σc, ωc]

end for

nl
t ←− int

(
1
|Cl|

∑

c∈Cl

nl,c
t

)
▷ mean value rounded to the nearest integer

end for
t′ = t
while t+ ⪯ t′ ⪯ (M2, 4) do

for each l ∈ L do
nl
t′ ∼M l(nl

t′−
) ▷ nl

t′ follows a distribution parameterized by nl
t′−

for c ∈ Cl do
wc

t′ ∼ Fc(n
l
t′) ▷ wc

t′ follows a distribution parameterized by nl
t′

end for
wl

t′ = {wc
t′}c∈Cl

end for
wt′ = {wl

t′}l∈L
t′ → t′+

end while
Return scenario = (wt, wt+ , . . . , w(M2,3)

)
end procedure
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Figure 7.5: Extract from the list of products prices vectors

� B1, 120.000 m3,

� B2, 120.000 m3,

� B4, 120.000 m3,

� B5, 120.000 m3.

7.2.3 Products prices

While the series of crude premiums are drawn using a hidden Markov chain model,
the product prices vectors are randomly selected from a pool of historical values.
In Figure 7.5, we give an example of the data available for the product prices. Each
column corresponds to a week and each line to a product. Each cell represents a
price per quantity unit (either m3 or tons). Here, the column corresponds to the
prices during the week 31 of 2020 (07/27/2020−−08/02/2020) while the column
17 corresponds to the week 17 of 2021 (04/26/2021− 05/02/2021).

In the construction of the assessment scenarios, we randomly draw a number
that corresponds to the week between the week 31 of 2020 and week 17 of 2021.
The corresponding vector of product prices is then associated with the scenario
being built. As a result, the product prices are drawn completely independently
of both crude premiums and stocks.

7.3 Monte-Carlo simulation of policies

In this section we test each policy from Chapter 6 on the set of assessment scenarios
built in §7.2. We present and analyze the results in the form of histograms. We
first display the results of the Monte-Carlo assessment for each policy in §7.3.1.
Although each histogram gives a sense of the general behavior of each policy,
comparing two policies along the same scenario is difficult. For that reason, in
§7.3.2, we present histograms of the algebraic difference between two policies.
Finally, in §7.3.3, we nuance the numerical results presented above.
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We recall the six policies presented in Chapter 6, the first three policies only use
a single scenario to make a decision while the other three use multiple scenarios:

� Expert’s opinion: In this policy, detailed in §6.3.1, the decision maker tests
and ranks all crudes individually, family by family. If the best crude is avail-
able, it is purchased. The process is akin to static deterministic sequential
optimization

� Triplet method: In this policy, detailed in §6.3.2, the decision maker tests
and ranks all crude combinations that are still possible. Then, he purchases
any crude from the best combination, that is available this week. This policy
is also static deterministic optimization.

� MPC method: In this policy, detailed in §6.3.3, the decision maker uses the
prices of week t to build a projection of the future prices. He then proceeds to
solving a dynamic deterministic problem over the remaining timespan Jt, tK
and takes the first optimal decision.

� SDPesp policy: In this policy, detailed in §6.4.2 we use the value functions
computed in Equation (6.14) to solve a deterministic optimization problem
in §6.4.2.3 which solution is the purchase decision.

� SDPCVaR policy: In this policy, we solve the same problem in §6.4.2.3 but
using different value functions. These are computed using a risk measure as
detailed in §6.4.2.2.

� Suc-SDP : In this policy, detailed in §6.4.3, new value functions are recom-
puted every week using the current products price projection and the cur-
rents crudes premiums. The decision maker then solves a static optimization
problem to get the purchase decision.

The policies SDPesp, SDPCVaR and Suc-SDP are said to utilize multiple scenario
because the value functions that are used make a decision have been computed
using multiple scenarios.

7.3.1 Comparing policies by means of their respective his-
tograms

Figure 7.6 represents the histograms of operating margins over the set W 1000 of
1000 assessment scenarios built using the tools from §7.2. The first observation is
that both SDP -based policies seem to behave significantly better than the single-
scenario based policies. As summed up in Table 7.1, on average SDPesp performs
70% better than the Expert policy, and 52% better than MPC.
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Figure 7.6: Histogram of operating margins over Monte-Carlo
for five policies: Expert, Triplet, MPC, SDPesp and SDPCVaR.
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Expert Triplet MPC SDPesp SDPCVaR

average ( .107$) 4.00 4.96 4.46 6.79 6.71
gap (vs Expert) 0% 24% 12% 70% 68%

Table 7.1: Average score of each policy computed with the Monte-Carlo simulation

Another observation is that Expert is the worst performing policy among all
policies. Looking at the corresponding histogram, the difference does not seem to
come from good scenarios, but rather from bad ones. As highlighted in Table 7.2,
Expert leads to disastrous results in numerous scenarios while this happens less
often for other policies. The four other policies also appear to somewhat mitigate
their losses when compared to Expert.

interval Expert Triplet MPC SDPesp SDPCVaR

−5.107 ≤ · · · ≤ 0 138 111 121 61 60
−1.108 ≤ · · · ≤ −5.107 93 54 88 0 0
−1, 5.108 ≤ · · · ≤ −1.108 36 0 0 0 0

Table 7.2: Distribution of scenarios incurring loses for each policy. Each interval
corresponds to a x-axis grade in table 7.1.

7.3.2 Comparing policies scenario by scenario

The histograms presented in §7.3.1 give a good sense of how each policy performs
individually. But comparing two policies can be tricky since we have no infor-
mation whether or not the same scenarios give comparable results. To provide
further information, we decided to compare policies, scenario by scenario. In Fig-
ure 7.7, we display the algebraic difference between SDPesp and Expert for the
1000 scenarios of the assessment set, and we plot the corresponding histogram.

It appears clearly that, for many scenarios, the difference between the results
of each policy is slim. In fact, the highest spike covers the interval [0, 1.106[ and
contains 461 scenarios while the second highest, corresponding to the interval
[−1.106, 0[ contains 150 scenarios. Additionally, as summed up in Table 7.3, there
is a noticeable number of scenarios between the 5.107 and 1.5.108 marks that cor-
respond to scenarios for which Expert leads to poor results, while SDPesp produces
an acceptable solution.

It appears in Figure 7.8 that the distribution of differences is skewed in favor of
SDPesp (towards the right, SDPesp > Expert). Expert and SDPesp produced the
same margin in only 3 scenarios out of 1000. In those 3 scenarios, the decisions
taken were the same.
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Figure 7.7: Histogram of the difference between SDPesp and Expert across 1000
assessment scenarios.

[−2.1.107, 0[ [0, 5.107[ [5.107, 2.35.108[
18% 53% 29%

Table 7.3: Repartition of the the algebraic difference between Expert policy and
SDPesp policy

Figure 7.8: Zoom of Figure 7.7 on the interval [−1.107, 1.107]
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Figure 7.9: Histogram of the score difference between SDPesp and SDPCVaR over
the assessment set

In Figure 7.9 we compare SDPesp and SDPCVaR and we observe that, in nearly
70% of scenarios the difference is less than 5.105$. Upon closer inspection, in 635
scenarios out of the 1000 in the assessment set, SDPesp and SDPCVaR produce the
same decisions.

Finally, we compare SDPesp to MPC in Figure 7.10. Although Table 7.1 indi-
cates a smaller performance gap between SDPesp and MPC than between SDPesp

and Expert, we notice than the histogram looks like that in Figure 7.7. MPC
fared better than SDPCVaR in 352/1000 scenarios and both policies lead to the
same purchases in a single case.

7.3.3 Shortcomings of Monte-Carlo assessment

In this section, we nuance the results presented in in§7.3.1 and §7.3.2.
First, the approximation Ψ̃M3 of the production function ΨM3 made in §6.2

is of poor quality. This approximation was born out of necessity to overcome a
computational hurdle but is not a faithful representation of how a refinery works.
As explained in §6.2, Ψ̃M3 was obtained using a reference vector preference of product
prices. As soon as product prices pM3 differ “too much” from the reference, the
approximation is no longer valid since TotalEnergies’s tool, Grtmps, would operate
of the refinery differently, yielding a different mass balance.

Second, the results from Expert need to be put back into context. TotalEn-
ergies’s actual method to purchase crude oil heavily relies on human knowledge,
something that is difficult to translate into code. Therefore, Expert is a very dry
version of TotalEnergies’s actual process. According to Table 7.2, the decisions
taken by Expert yield losses in more than 25% of the scenarios. This result does
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Figure 7.10: Left: Histogram of the score difference between SDPesp and Expert
over the assessment set. Right: Difference between SDPesp and MPC, for the 1000
assessment scenarios, sorted

not reflect the reality.
Third, even if they are treated as helping tools for the decision maker, the

policies SDPesp and SDPCVaR show promising results. In the same test environment
as the three other policies, they displayed a reduction of the bad cases (left tail of
the histograms in Figure 7.6), leading to significant average gains. Additionally, we
did not observe any significant behavior difference when changing the average in
SDPesp for a risk measure in SDPCVaR, even with multiple different risk sensibilities.

7.4 Historical scenarios

In this section §7.4, we test each policy on a limited number of historical scenarios.
We then discuss the sequences of decisions taken by each policy. Contrary to §7.3,
the scenarios in §7.4 replay certain past months instead of inventing realistic values
using the stochastic model developed in §4.3.1.

7.4.1 Historical scenarios construction

The numerical application in this Chapter 7 is centered around the month of De-
cember (M3 = December) and it is the first month that we replay. Consequently,

the approximation Ψ̃M3 introduced in (6.7c), was obtained using a reference prod-
uct prices vector preference typical of the month December, given by TotalEnergies.
For the refinery to operate in December we need to purchase oil in the months of
October (M1 = Ocotber) and November (M2 = November) 2020. For ease of use,
we denote the scenario of December 2020 by:

w(O,1), w(O,2), w(O,3), w(O,4), w(N,1), w(N,2), w(N,3), w(N,4), sD, pD .
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Figure 7.11: Extract of the data used to compute wEKO
(O,1)

This scenario, although labeled as historic, does not exist as is inside the data of
TotalEnergies. Here, we detail what data is used, and how, to obtain the historical
scenario from TotalEnergies’s data:

� Each crude premium vector wt is obtained by averaging the daily historical
premiums of the crudes during the corresponding week, similarly to (7.2).
The first week, (O, 1), spans 10/05− 10/09 and, the last week (N, 4) spans
11/23 − 11/27. In Figure 7.11, we show an extract of the source data used
to build wB5

(O,1) by averaging the difference between BEKO and BBFO,

wB5
(O,1) =

1

5

09/10/2020∑

j=05/10/2020

FobBEKO
j − FobBBFO

j . (7.9)

� The stock sD represents the crude oil in stock inside the refinery at the
beginning of December. We consider this stock to be ≃ 120, 000 m3 of
B5 crude, that is,

sD = (0, · · · , 0, 120.000︸ ︷︷ ︸
position
of B5

, 0, · · · , 0) . (7.10)

� The vector of product prices pD is computed as the average of the product
prices over the last four weeks of 2020 (49, 50, 51, 52). As an example on a
product in Figure 7.12

pSi8D =
1

4

(
Si849 + Si850 + Si851 + Si852

)
. (7.11)
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Figure 7.12: Extract from the product prices of the last four weeks of 2020, with
the resulting prices for December on the right

7.4.2 Results for the month of December 2020

In this section, we replay the month of December 2020 through the scenario built
in §7.4.1 with each of the six policies from Chapter 6: Expert, Triplet, MPC,
SDPesp, SDPCVaR and Suc-SDP.

In Table 7.4, we display both the operational margin generated by each policy
and the list of crudes purchased over the 8 weeks of October and November.

policy Expert Triplet MPC SDPesp SDPCVaR Suc-SDP optimum
1st crude H2 B3 H4 L2 L2 H5 H5
2nd crude L2 H4 L2 H1 H1 L2 L2
3rd crude B5 L4 B1 B1 B1 B1 B1

margin (.107$) 5.13 5.58 7.490 6.39 6.39 7.491 7.491
gap (to Expert) 0 8.9% 46.0% 24.6% 24.6% 46.0% 46.0%

Table 7.4: Operational margin and combination of crude oils generated by each
policy for the historical scenario of December 2020

Unsurprisingly in light of the Monte-Carlo results, Expert is the worst perform-
ing policy of the batch over the month of December. While SDPesp and SDPCVaR

outperform both Expert and Triplet, they are bested by MPC. This result sug-
gests that the product prices prediction p̃t provided by the trading each week is
a valuable piece of information. By design, neither SDPesp nor SDPCVaR use this
prediction, as incorporating it inside the state would make the size of the state
explode. Accordingly, we observe that Suc-SDP manages to edge out MPC and
actually achieves the optimum on the month of December. While significantly
heavier than other policies as it requires recomputation of the value functions ev-
ery week, this policy seems to marry the dynamic advantage of SDPesp with the
prediction advantage of MPC.
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7.4.3 Results for the months from November 2020 to March
2021

Having replayed the month of December 2021, which is the month around which
the numerical application, and around which the approximation Ψ̃M3 of the pro-
duction function ΨM3 was tailored, we now test other historical scenarios. We
test the historical scenarios of October and November 2020 as well as January,
February and March 2021.

policy Expert Triplet MPC SDPesp SDPCVaR Suc-SDP optimum
1st crude H2 B3 H4 L2 L2 H5 H5
2nd crude H1 H4 L2 H1 H1 L2 L2
3rd crude B5 L4 B1 B1 B1 B1 B1

margin (.107$) 4.45 5.35 6.33 5.23 5.23 6.33 6.33
gap (to Expert) 0 20.2% 42.2% 17.5% 17.5% 42.2% 42.2%

Table 7.5: Operational margin and combination of crudes generated by each policy
for the historical scenario of October 2020

policy Expert Triplet MPC SDPesp SDPCVaR Suc-SDP optimum
1st crude H1 H1 H6 H1 H1 H1 H1
2nd crude L1 L1 L4 L5 L5 L1 L1
3rd crude B4 B5 B5 B5 B5 B5 B5

margin (.107$) 2.72 2.75 2.47 2.69 2.69 2.75 2.75
gap (to Expert) 0 1.1% −9.2% −1.1% −1.1% 1.1% 1.1%

Table 7.6: Operational margin and combination of crudes generated by each policy
for the historical scenario of November 2020

policy Expert Triplet MPC SDPesp SDPCVaR Suc-SDP optimum
1st crude L5 H2 L1 B5 B5 L1 L1
2nd crude H5 B2 H1 B5 B5 H1 H1
3rd crude B3 L4 B5 B5 B5 B5 B5

margin (.107$) −5.15 −2.84 4.07 −2.39 −2.39 4.07 4.07
gap (to Expert) 0 44.8% 179% 53.6% 53.6% 179% 179%

Table 7.7: Operational margin and combination of crudes generated by each policy
for the historical scenario of January 2021

For the most part, the analysis formulated in §7.4.2 for the month of December
2020 remains true for the other months from October 2020 to March 2021. In fact,
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policy Expert Triplet MPC SDPesp SDPCVaR Suc-SDP optimum
1st crude H5 H5 H6 B5 B5 H6 H6
2nd crude L1 L5 L4 B5 B5 L5 L5
3rd crude B4 B5 B5 B5 B5 B5 B5

margin (.107$) −1.78 2.56 6.34 −1.84 −1.84 6.52 6.52
gap (to Expert) 0 244.4% 456.2% −2, 8% −2.8% 466.2% 466.2%

Table 7.8: Operational margin and combination of crudes generated by each policy
for the historical scenario of February 2021

policy Expert Triplet MPC SDPesp SDPCVaR Suc-SDP optimum
1st crude L5 B3 B5 B5 B5 B5 B5
2nd crude H5 H4 B3 B5 B5 B5 L3
3rd crude B3 L5 H6 B5 B5 B5 H6

margin (.107$) 1.63 2.49 4.83 3.58 3.58 3.58 5.13
gap (to Expert) 0 52.8% 196.3% 119.6% 119.6% 119.6% 215.7%

Table 7.9: Operational margin and combination of crudes generated by each policy
for the historical scenario of March 2021

Expert clearly appears as the worst performing policy overall. On the opposite,
Suc-SDP is the best performing policy in 5 out of 6 scenarios, just in front of
MPC. Most surprisingly, both SDPesp and SDPCVaR policies seem to struggle. Far
behind MPC, they fail to produce a positive result for the months of January and
February 2021.

We note that for every month, except March 2021, Suc-SDP achieves the op-
timum. For March, the order is reversed and MPC is the best policy, even though
it does not reach the optimum for that month. Looking back at Figure 7.1, both
MPC and Suc-SDP take the same decisions up until week (M2, 2). At this point,
Suc-SDP only purchases B5 while MPC purchases B5, B3 and H6.

7.5 Conclusion

In this chapter, we compared the policies presented in Chapter 6 in two compli-
mentary ways. After detailing the construction of an assessment set of scenarios
in §7.2, we tested, and compared, five policies in §7.3. While the scenarios from
the assessment set are fictitious, the policies are tested on historical scenarios in
§7.4 that replay each month from November 2020 to March 2021. The findings
differed a lot from one type of assessment to the other.

While Suc-SDP could not be tested on a Monte-Carlo simulation due to com-
putation limitations, SDPesp and SDPCVaR were clearly the best performing poli-
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cies, beating MPC by over 50% and Expert by over 70% on average. The results
obtained on the historical scenarios come in stark contrast as both SDPesp and
SDPCVaR performed below MPC and even Triplet, a policy close to Expert. While
SDPesp and SDPCVaR performed better than Expert, the biggest surprise came
from how close to the optimal MPC gets, and how it consistently beats SDPesp.
On the historical scenarios, the only policy that fared better than MPC was Suc-
SDP, which is much more demanding.

While these results highlight the potential of developing policies that take into
account uncertainties into the procurement of crude oil, they also beg several
questions. One key takeaway is that there is currently no good production function,
or tool, to use in a multistage stochastic optimization setting. It also appears from
the result discrepancies between the Monte-Carlo simulation and the historical
scenarios that a better assessment set could, and should, be used. In particular,
we should work on linking products prices to the crude oil premiums and change
the way uncertainties are modeled in §4.3.1 and §7.2.

In the coming Part II, we will procure crude oil, not for one month like in
Part I, but for any number of consecutive months. In that regard, we will expand
upon the modeling and the formulation of Part I and add month-to-month stock
dynamics.
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Part II

General procurement problem
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In Part I, we studied a monthly procurement problem, both theoretically and
numerically. Part II is theoretical and more general.

In Chapter 8, we propose a more general model for the crude oil procurement
than that developed in Part I, that spans an arbitrary number of months. We then
build a corresponding multistage stochastic optimization problem. That problem
has the particularity to feature two concurrent time scales; crude oil purchases
are made every week while crude oil consumption is set once a month. We then
build a unified timeline, propose a state variable, and reformulate the optimization
problem as a stochastic optimal control problem.

In Chapter 9, we first introduce the notion of time block and time block state
reduction, that is, the ability to express a state variable in only a subset of stages
in the problem. We then apply this notion to problems featuring a slow and a
fast time scale to write a dynamic programming equation at the slow time scale,
namely, the crude oil procurement as formalized in Chapter 8. One key point of
this time decomposition is that it does not require any assumption on the fast
scale noises, only independence from one slow scale to the other. The content of
this chapter has been submitted as a paper.

97



98



Chapter 8

General procurement
optimization problem formulation

8.1 Introduction

In this Chapter 8, we tackle any number of months for the refinery operation and
we handle crude quality issues.

In §8.2, we present modeling elements that make it possible to write multistage
stochastic optimization problems. Then, in §8.3, we provide an optimal control
reformulation.

8.2 General monthly deliveries model

In this section, we provide all the elements needed to write a multistage stochastic
optimization problem. More precisely, §8.2.1.1, §8.2.1.2 and §8.2.1.3 are stepping-
stones in which we describe the representations of oil and time. Then, in §8.2.1.4
we introduce the control variables. In §8.2.2, we introduce the various expressions
that will constitute the optimization problem such as the dynamics and the cost
functions. Nonanticipativity constraints are detailed in §8.2.2.5 as they constitute
one of the particularities of the studied problem. All the elements introduced before
are combined in §8.2.3 to produce a multistage stochastic optimization problem.

8.2.1 Procurement model characteristics

In this section, we introduce the modeling elements for the general procurement
of crude oil. Precisely, in §8.2.1.1 we introduce the notations used for the new
description of crude oil shipments. In §8.2.1.2, we introduce notations for time
and in §8.2.1.3, relations to link purchase weeks and delivery months. Finally,
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in §8.2.1.4, we present the decisions variables we consider in this procurement
problem.

8.2.1.1 Oil characteristics

We summarize in Table 8.1 the notations used for oil characteristics.

notation set meaning

C finite set of crudes on the market
Vc ⊂ R+ volume of crude c
α ∈ N∗ number of characteristics of a crude
Qc ⊂ Rα quality vector of crude c

πc
V :

∏

c′∈C

(Vc′ ×Qc′)→ Vc projector to volume of crude c

πc
Q :

∏

c′∈C

(Vc′ ×Qc)→ Qc projector to quality of crude c

πV :
∏

c′∈C

(Vc ×Qc)→
∏

c∈C

Vc projector to volumes

πQ :
∏

c∈C

(Vc ×Qc)→
∏

c∈C

Qc projector to qualities

πc :
∏

c′∈C

(Vc′ ×Qc′)→ (Vc ×Qc) projector to a single crude

Table 8.1: Oil characteristics notations

Crude oil is the main resource TotalEnergies uses and purchases. Many crudes
exist and are available on the market as we introduced in Chapter 3. In Part I,
crudes were only described by a volume according to the modeling elements from
Chapter 3. In this Chapter 8 however, we explicit the characteristics of each crude
oil.

We usually refer to the characteristics of a crude oil as its quality. This qual-
ity differs from crude to crude but also from cargo to cargo. For instance, the
quality of the crude oil coming from the Ekofisk field, and labeled as B5, varies
in time. The causes for such variations are multiple. The composition of an hy-
drocarbon reservoir is not homogeneous and therefore, the composition of the oil
that is extracted changes, as the oil well is drained. Additionally, certain chemi-
cal components like iron and sulfur can mix with oil during the extraction or the
shipping process and taint the oil. We denote by

Qc ∈ Qc ⊂ Rα , (8.1a)

the quality of the crude c being considered. More precisely, the quality Qc is given
by a vector of reals of size α. The components of the vector can be:
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� the various concentration in certain foreign chemical elements (e.g sulfur,
iron),

� the chemical composition of the oil (e.g saturated/ aromatic hydrocarbon
weight%),

� the physical properties of the crude oil (e.g density, ebullition temperature),

� TotalEnergies custom indicators giving the average yields for a specific re-
finery.

Additionally, we denote by

V c ∈ Vc ⊂ G (8.1b)

the volume in barrels (bbl) of crude c in a cargo where G is the set of existing
tankers capacities introduced in §3.3.1.2. Given that tankers only come in few
sizes, the volume V c of crude oil has to comply with the limitations imposed by
the standardized tanker sizes. Finally, for a given crude c, not all cargo sizes will
be possible. As an example, the biggest tankers are too large to cross the Suez
canal. As a result, no crude from Somalia will be available in volumes larger than
200.000 bbl, hence Vc ⊂ G.

A cargo of crude oil c is therefore described by a couple in the product space
Vc ×Qc.

8.2.1.2 Time discretization

We summarize in Table 8.2 the notations used for time description.

notation set meaning

M set of months
m ∈ M index for a month
W set of weeks in a month
w ∈ W index for a week in a month
M×W product set of all weeks in months M
(m,w) ∈ M×W couple designating a week w in month M

Table 8.2: Indexing of stages types

As introduced in §3.3.1.1, we denote by M the set of consecutive months we
want to run the refinery for. We also denote by W the set of weeks in a month.
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Similarly to what is done with (3.2) in §3.3.1.1, M and W are fitted with a total
order:

minM = m ⪯ · · · ⪯ m−− ⪯ m− ⪯ m ⪯ m+ ⪯ m++ ⪯ · · · ⪯ m = maxM , (8.2a)

minW = w ⪯ · · · ⪯ w−− ⪯ w− ⪯ w ⪯ w+ ⪯ w++ ⪯ · · · ⪯ w = maxW . (8.2b)

We denote by m+ the successor of m and m++ its double successor (i.e the successor
of m+). Then we build the same product space M ×W as in §3.3.1.1, fitted with
the same lexicographical order introduced in (3.3):

(m,w)⇝ · · ·⇝ (m,w)⇝ (m,w+)⇝ · · ·⇝ (m,w)⇝ (m+,w)⇝ · · ·⇝ (m,w) .

In the chain M×W, a successor is defined by

(m,w)+ =

{
(m,w+) if w ≺ w ,

(m+,w) if w = w ,
∀(m,w) ∈ M×W . (8.2c)

8.2.1.3 Purchase/delivery relations

We summarize in Table 8.3 the notations used to link weeks of purchase to months
of delivery.

notation set meaning

P ⊂ (M×W)×M relation between order weeks and months

P ⊂ (M×W)×M relation for buffer existence

Pm ⊂ M×W set of purchase weeks for a delivery in month m
(m,w)P ⊂ M set of months with a purchase opportunity

in the week (m,w)

Table 8.3: Week/month relations for orders and buffer existence

In Part I, crudes are only available to purchase up to 2 months / 8 weeks in
advance of their delivery month. This means orders for a delivery in December
will run in October and November. In this model, we relax this specification and
introduce the relation P ⊂ (M×W)×M which defines a correspondence P by

∀(m,w) ∈ M×W, ∀m′ ∈ M, (m,w)Pm′ ⇐⇒ ((m,w),m′) ∈ P . (8.3a)

When (m,w)Pm′, we say that (m,w) is a purchase week for the months m′;
it is possible to purchase crude oil in week (m,w). This crude will arrive at the
beginning of month m′.
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For each month m′ ∈ M, we write the set of corresponding purchase stages

Pm′ = {(m,w) ∈ M×W | (m,w)Pm′} , ∀m′ ∈ M . (8.3b)

Similarly,

(m,w)P = {m′ ∈ M | (m,w)Pm′} (8.3c)

is the set of months related to the purchase stage (m, w).
Then, we introduce the relation P ⊂ (M×W)×M defined by

(m,w)Pm′ ⇐⇒ (m,w) ∈ [inf Pm′, (m′,w)[ . (8.3d)

The week (m,w) is in relation with m′ through P if it sits between the first week
of purchase for the month m′ and the beginning of that month m′.

The relation P can be seen as an extension of P; (m,w)Pm′ if the week (m,
w) is positioned after the first purchase opportunity for the month m′ and before
the beginning of the month m′. Therefore, Pm′ represents all the weeks during
which a crude has potentially already been ordered for the month m′ but is yet to
be delivered.

8.2.1.4 Decisions

In this problem we consider only two kinds of decisions (controls): the purchase
of crude oil and the consumption of crude oil.

Crude oil purchase. We summarize in Table 8.4 the notations used for oil
purchase.

We denote by

bm
′,c

(m,w) ∈ Bm′,c
(m,w) ⊂ Vc ×Qc , (8.4a)

the cargo purchased at week (m,w) that will be delivered at the beginning of
month m′. Contrarily to Part I, the quality of the crude is included in the control.
This reflects the notion that the decision maker chooses a specific cargo, charac-
terized by both its volume and quality. Additionally, it is impossible to choose
quantity independently of quality and the set Bm′,c

(m,w) of available cargo is a finite
subset of Vc ×Qc. By extension, we denote by

bm
′

(m,w) ∈ Bm′

(m,w) =
∏

c∈C

Bm′,c
(m,w) ⊂

∏

c∈C

(Vc ×Qc) , (8.4b)

the list of cargos purchased in week (m,w) for a delivery at the beginning of month
m.
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notation space meaning

Bm′,c
(m,w) ⊂ Vc ×Qc set of shipment (volume, quality) of crude c

available in week (m,w)
for a delivery at the beginning of month m′

bm
′,c

(m,w) ∈ Bm′,c
(m,w) cargo of crude c purchased at week (m,w)

for a delivery at the beginning of month m′

Bm′

(m,w) ⊂
∏

c∈C

(Vc ×Qc) set of cargo combinations available in week (m,w)

for a delivery at the beginning of month m′

bm
′

(m,w) ∈ Bm′

(m,w) cargos purchased in week (m,w)

for a delivery at the beginning of month m′

B(m,w) =
∏

m′∈(m,w)P

Bm′

(m,w) set of cargo combinations available in week (m,w)

regardless of the delivery month
b(m,w) ∈ B(m,w) cargos purchased in week (m,w)

regardless of the delivery month

Table 8.4: Purchase notation

Finally, we denote by

b(m,w) = (bm
′

(m,w))m′∈(m,w)P ∈ B(m,w) =
∏

m′∈(m,w)P

Bm′

(m,w) , (8.4c)

the vector of purchase vectors in week (m,w) for all delivery months m′ ∈ (m,w)P.

Crude oil consumption. We summarize in Table 8.5 the notation used for oil
consumption inside the refinery.

notation space meaning

us
m ∈ R|C|

+ volumes of crude consumed during the month m

Table 8.5: Oil consumption notations

We denote by
us
m ∈ R|C|

+ (8.5)

the crude oil consumption in the refinery we set for the month m. It is a vector of
quantities. Although crude oil is not the only resource that is being consumed by
a refinery during production, it is the resource we focus on and the only one we
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chose to display. During production, a refinery can choose to import (or export)
intermediate products. We make the choice to count these importations as part
of the production costs.

Refinery settings. We summarize in Table 8.6 the notations used for the set-
tings of the refinery.

notation space meaning

Ru
m set of settings for unit u for the month m

Rm =
∏

u∈U

Ru
m set of settings for the whole refinery for the month m

rm ∈ Rm settings applied to the refinery for the month m

Table 8.6: Settings notations

We denote by rm the settings used to run the refinery during stage m. These
settings correspond to the settings briefly presented in §6.2, and are the collection
of all the settings for all the units inside the refinery. We will denote by

Rm =
∏

u∈U

Ru
m , (8.6)

the space of the settings for the month m. The nature of each Ru
m depends on the

unit u it is referring to. These settings can be the various temperatures set for
distillation inside the refinery or mixing rates for CO2 or H2 in the hydrodesulfu-
rization unit. Optimization of a refinery’s configuration is a complex topic in its
own right.

8.2.2 Building blocks of an optimization problem

In §8.2.1, we introduced the modeling elements of the general procurement problem
that differ from the models built in Chapter 3. Now, we introduce the remaining
elements that will make it possible to write an optimization problem.

8.2.2.1 Dynamics of delivery buffers and oil stock

We model the accumulation of orders, deliveries and consumptions with stocks.
There are two kind of stocks in the problem:

� Buffers are virtual stocks that model the accumulation of orders for a single
delivery stage. We call m-buffer the buffer that will empty (be delivered)
at the beginning of month m. By construction, the m-buffer has a limited
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lifespan: it appears at the first purchase week related to m, that is, in week
infPm, and disappears at the beginning of month m.

� The main stock is the physical stock of all the crudes stored in the refinery.
The main stock is impacted by the monthly consumption of crude oil and the
crude deliveries. The buffers are added to the main stock at their respective
delivery stages.

We summarize in Table 8.7 the notations used for the buffers and the main
stock.

variable set meaning

sm
∏

c∈C

(R+ ×Qc) main stock at the begining of the month m

dm
′

(m,w)

∏

c∈C

(Vc ×Qc) stock in the m′-buffer at the beginning of the week (m,w)

Table 8.7: Stocks variables

Buffers. The lifespan of the m′-buffer is limited. That is precisely the function
of the relation P, introduced in 8.3d

(m,w)Pm′ ⇐⇒ the m′-buffer is active in week (m, w) . (8.7a)

Thus we have that:

� Pm′ is the lifespan of the m′-buffer,

� (m,w)P is the set of months for which (m,w) is in the lifespan of the asso-
ciated buffer.

The time evolution of the stock in the m′−buffer follows the following dynamic
equation

dm
′

(m,w)+
= Fm′

(m,w)(d
m′

(m,w), b
m′

(m,w)) , ∀((m,w),m′) ∈ P , (8.7b)

with the initialization

dm
′

minPm′ = 0 . (8.7c)

Although Fm′

(m,w) is defined for every week them′−buffer exists (i.e for (m, week) ∈
Pm′), the buffer is only modified when oil can be purchased (i.e for (m,w) ∈ Pm′).
If not cargo can be purchased, then the m′-buffer stays the same and we have:

Fm′

(m,w)(d
m′

(m,w), b
m′

(m,w)) = dm
′

(m,w) , ∀(m,w) ∈ Pm′ \Pm′ . (8.7d)
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As a result, dm
′

(m,w) can also be expressed as a function of past purchases,

dm
′

(m,w) = Fm′

(m,w)

(
{bm′

(m′′,w′′)} (m′′,w′′)∈Pm′

(m′′,w′′)≺(m,w)

)
, ∀((m,w),m′) ∈ P . (8.7e)

The functions Fm′

(m,w) and Fm′

(m,w) model the mixing of qualities for crudes with
different qualities and thus do not have reasonable extensive expression. How-
ever, the volumes of crudes remain additive and, using the volume projector πV
introduced in Table 8.1, we can write:

πV(d
m′

(m,w)+
) = πV(d

m′

(m,w)) + 1(m,w)∈Pm′πV(b
m′

(m,w)) , ∀(m,w) ∈ Pm′ . (8.7f)

Main stock. We denote by sm the crude oil stocks in the refinery at the begin-
ning of the month m. The time evolution of the refinery is given by the dynamic
equation

sm+ = Fm(sm, d
m
(m,w), u

s
m) , ∀m ∈ M , (8.8a)

with the initial step

sm+ = Fm(sm, d
m
(m,w), u

s
m) , ∀m ∈ M , (8.8b)

with:

� sm, the initial stock, being part of the data of the problem,

� us
m is the part of the stocks consumed throughout the month m,

� dm(m,w) is the m-buffer that is added to the stock at the start of the month m.

As a result, sm can also be expressed as a function of past buffers and con-
sumptions

sm = Fm

(
{dm(m′,w)}m′≺m, {us

m′}m′≺m

)
, ∀m ∈ M . (8.8c)

As for the buffers, we will not seek an extensive formula for Fm, as the function
models the blending of crude oil qualities, which is too complex. However, we can
express the dynamics of the volumes for one month m to the next using the volume
projectors πV introduced in Table 8.1

πV(sm+) = πV(sm) + πV(d
m
(m,w))− us

m , ∀m ∈ M . (8.8d)

8.2.2.2 Economic uncertainties

At this point in the study, we consider that the only source of uncertainty in the
procurement process lies in the prices. These fall into two categories, the primes
of the crudes that can be purchased and the prices of the products that are sold
on the market.
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Crude oil premiums. We summarize in Table 8.8 the notations relative the
cost of crude oil

notation set meaning

Wc
(m,w) R set of premiums for the crude c in week (m,w)

W(m,w) R|C| price set for all crudes available in week (m,w)

w(m,w) W(m,w) effective prices of the crudes purchasable in week (m,w)

Table 8.8: Crude oil buying prices

We denote by

wc
(m,w) ∈Wc

(m,w) ⊂ R , (8.9a)

the market prime per volume unit of the crude c in week (m,w) and by

w(m,w) = (wc
(m,w))c∈C ∈W(m,w) =

∏

c∈C

Wc
(m,w) , (8.9b)

the corresponding vector for all crudes. This uncertainty is revealed to the decision
maker just before he decides of the crudes to buy (bm

′

(m,w))m′∈(m,w)P.

Products prices. We summarize in Table 8.9 the notations relative to the sales
of finished products.

notation space meaning

Pp
m R selling price space of the product p during the month m

Pm R|P|
+ selling price space of all products during the month m

pm Pm selling prices of all products during the month m

Table 8.9: Selling prices

The refinery turns crude oil into products that are subsequently sold on the
market. We denote by

ppm ∈ Pp
m ⊂ R+ , (8.10a)

the market prime per volume unit of the product p in month m and by

pm = (ppm)p∈P ∈ Pm =
∏

p∈P

Pp
m , (8.10b)

the corresponding vector for all products.
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From an industrial perspective, the products that are sold by the refinery are
not necessarily finished products. Some exportation streams can be intermediate
products that are only partially consumed by the refinery. In the future, the
quality of the products sold will depend on their quality. At this moment, ppm will
be regarded as the reference price for product p on which the actual selling price
will be indexed. ppm is discovered just before deciding the control us

m.

8.2.2.3 Cost functions

We summarize in Table 8.10 the economic functions relative to the purchase of
crude oil and the exploitation of the refinery.

notation meaning

Ωm′

(m,w)(d, b, w) purchase cost concerning the m′-buffer in week (m,w)

Ψm(s, d, u
s, r, p) production costs for the refinery during the month m

Table 8.10: Cost functions notations

The total cost for operating the refinery over the whole time span T = M×W
is

∑

(m,w)∈M×W

( ∑

m′∈(m,w)P

Ωm′

(m,w)(d
m′

(m,w), b
m′

(m,w), w(m,w))

)
+
∑

m∈M

Ψm(sm, d
m
(m,w), u

s
m, rm, pm) .

(8.11)

Purchase costs. The quantity
∑

(m,w)∈M×W

( ∑

m′∈(m,w)P

Ωm′

(m,w)(d
m′

(m,w), b
m′

(m,w), w(m,w))

)

is the total amount spent on purchases. Here, Ωm′

(m,w) is a generalization of the func-

tion introduced in the monthly procurement problem in (3.11c).

Production costs and earnings. The quantity
∑

m∈M

Ψm(sm, d
m
(m,w), u

s
m, rm, pm)

is the total operation costs (i.e cost to run the refinery - earnings from sales) over
the months M. The function Ψm is the production function of the refinery for the
interval [m,m+]. This function Ψm is a generalization of the production function
used for the monthly procurement problem and introduced in (3.16). Here, we
assume direct control over the consumption and the settings of the refinery. The
variable dm(m,w) represents the state of the m−buffer at the beginning of the month
m, that is, the crude delivered to the refinery at the beginning of the month m′.
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8.2.2.4 Bound constraints

We divide constraints into two categories: those that only concern a single variable
and those that concern several variables.

notation space meaning

Us
m ⊂

∏

c∈C

Vc set of possible consumptions during the month m

Sm ⊂
∏

c∈C

(Vc ×Qc) set of acceptable stocks levels in the refinery

Dm ⊂
∏

c∈C

(Vc ×Qc) set of acceptable crude oil deliveries for the month m

Table 8.11: Oil consumption notations

Availability of shipments. The limited availability of shipments was intro-
duced in §8.2.1.4 and is the first constraint the decision maker is faced with. Given
there are few different tanker sizes, the decision maker are limited to selecting one
of the few cargos that are presented to him, hence leading to the constraint (8.4c).

Processing limitations inside the refinery. We denote by Us
m the set of

crudes quantities that can be consumed in the refinery during the month m. The
set Us

m is finite. An admissible consumption therefore satisfies the constraint

us
m ∈ Us

m ⊂
∏

c∈C

Vc . (8.12)

The set Us
m takes into account the physical limitations of the refinery such as

minimum and maximum processing capacities of the units inside the refinery. Ad-
ditionally, the set of admissible consumptions is designed so that products output
constraints are respected.

Crudes inside the refinery. The refinery has a limited crude storage capacity,
which cannot be exceeded. Similarly, there are minimum stock levels the refinery
cannot afford to go below. Therefore, there are constraints on the stock inside the
refinery of the form

sm ∈ Sm ⊂
∏

c∈C

(Vc ×Qc) , ∀m ∈ M . (8.13)
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Delivery constraints. Docking constraints put limitations on the amounts of
crude that can be delivered each month. We formulate this constraint as a con-
straint on each buffer by means of a subset Dm as follows:

dm(m,w) ∈ Dm ⊂
∏

c∈C

(Vc ×Qc) , ∀m ∈ M . (8.14)

8.2.2.5 Nonanticipativity constraints

We write down the information structure of the uncertainties and the controls as
follows

· · ·⇝ pm ⇝ (us
m, rm)⇝ w(m,w) ⇝

assuming(m,w)P̸=∅,
else, no such decision exists︷ ︸︸ ︷
{bm′

(m,w)}m′∈(m,w)P ⇝

⇝ w
(m,w)+

⇝ {bm′

(m,w)+
}m′∈(m,w)+P

⇝ · · ·⇝ w(m,w) ⇝ {bm
′

(m,w)}m′∈(m,w)P

⇝ pm+ ⇝ · · ·

This leads to expressing the nonanticipativity constraint of both types of con-
trols, the purchase decisions first and then the consumption/settings decisions as
follows

σ()bm
′

(m,w)] ⊂ σ({pm′′}m′′⪯m, {w(m′′,w′′)}(m′′,w′′)⪯(m,w)) , (8.16)

σ(us
m, rm) ⊂ σ({pm′′}m′′⪯m, {w(m′′,w′′)}(m′′,w′′)≺(m,w)) . (8.17)

We already stated that bm
′

(m,w) is taken in reaction to the past crude oil premiums
w(m,w). The decisions us

m and rm is taken in reaction to the past of the product
prices pm, but without the knowledge of the next crude premiums w(m,w) yet.

8.2.3 Optimization problem

With all the modeling elements introduced previously, we write a first optimization
problem as follows:

min
{bm′

(m,w)
}((m,w),m′)∈P

{us
m,rm}m∈M

E

[ ∑

(m,w)∈M×W

( ∑

m′∈(m,w)P

Ωm′

(m,w)(d
m′

(m,w), b
m′

(m,w),w(m,w))

)
(8.18a)

+
∑

m∈M

Ψm(sm,d
m
(m,w),u

s
m, rm,pm)

]
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constraints on decisions

bm
′

(m,w) ∈ Bm′

(m,w) , ∀m′ ∈ M , ∀(m,w) ∈ Pm′ (8.18b)

us
m ∈ Us

m , ∀m ∈ M (8.18c)

rm ∈ Rm , ∀m ∈ M (8.18d)

constraints on stocks

dm
(m,w) ∈ Dm , ∀m ∈ M (8.18e)

sm ∈ Sm , ∀m ∈ M (8.18f)

dynamics on the stocks

dm
minPm = 0 , ∀m ∈ M (8.18g)

dm′

(m,w)+
= Fm′

(m,w)(d
m′

(m,w), b
m′

(m,w)) , ∀((m,w),m′) ∈ P , (8.18h)

sm+ = Fm(sm,d
m
(m,w),u

s
m) , ∀m ∈ M , (8.18i)

nonanticipativity constraints

σ(bm
′

(m,w)) ⊂ σ({pm′′}m′′⪯m, {w(m′′,w′′)}(m′′,w′′)⪯(m,w)) , (8.18j)

σ(us
m, rm) ⊂ σ({pm′′}m′′⪯m, {w(m′′,w′′)}(m′′,w′′)≺(m,w)) . (8.18k)

In Problem (8.18), bold variables represent random variables. w(m,w) and pm

naturally are random variables as they are the sources of uncertainty in the prob-
lem. The decision variables b(m,w), u

s
m and rm also are random variables since,

according to nonanticipativity constraints (8.18j) and (8.18k), they are functions
of the past uncertainties. Right now, Problem (8.18) is not in the usual form of
multistage stochastic optimization problems as all variables do not belong to the
same time scale. Additionally, there is no clear state nor dynamic in this prob-
lem. In the following section §8.3, we reformulate the problem (8.18) as a proper
stochastic optimal control problem.

8.3 Stochastic optimal control reformulation

In this section we present a reformulation of the Problem 8.18 presented above
into a stochastic optimal control problem. More precisely, in §8.3.1, we adopt a
unified timeline for all controls and uncertainties in , propose a state variable in
§8.3.2.
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8.3.1 Mathematical reformulation of the optimization prob-
lem

The purpose behind reformulating Problem (8.18) is to be able to write a dynamic
programming equation. To that end, we first need to have a unified timeline for
controls and uncertainties. We add a fictitious week index w̃ preceding any week
w ∈ W and we denote this new extended set by

W̃ = {w̃} ∪W . (8.19a)

Since W, as defined in §8.2.1.2, is a chain, W̃ is one too with the total order

w̃ ≺ minW = w ⪯ · · · ⪯ w−− ⪯ w− ⪯ w ⪯ w+ ⪯ w++ ⪯ · · · ⪯ w = maxW .
(8.19b)

We now introduce the extended time span T̃ defined by

T̃ = M× W̃ . (8.19c)

Similarly to what was done in §8.2.1.2, we also define a lexicographical order on T̃
by

(m, w̃) ≺ (m,w) ≺ · · · ≺ (m,w) ≺ (m,w+) ≺ · · · (8.19d)

· · · ≺ (m,w) ≺ (m+, w̃) ≺ (m+,w) ≺ · · · (8.19e)

· · · ≺ (m,w−) ≺ (m,w) , (8.19f)

with a successor written as

(m,w)+ =

{
(m+, w̃) if w = w

(m,w+) if w ≺ w
. (8.19g)

The chronology of controls and uncertainties now writes

· · ·⇝ p(m,w̃) ⇝ (us
(m,w̃), r(m,w̃))⇝ w(m,w) ⇝ {bm

′

(m,w)}m′∈(m,w)P ⇝

⇝ w
(m,w)+

⇝ {bm′

(m,w)+
}m′∈(m,w)+P

⇝ · · ·⇝ w(m,w) ⇝ {bm
′

(m,w)}m′∈(m,w)P

⇝ p(m+,w̃) ⇝ · · · ,

where the monthly decisions and uncertainties for the month m are slotted in the
fictitious step (m, w̃), at the very beginning of the month and, we have

p(m,w̃) = pm , ∀m ∈ M , (8.20a)

(us
(m,w̃), r(m,w̃)) = (us

m, rm) , ∀m ∈ M . (8.20b)
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At this point, we now have a unified timeline where have slotted the monthly
decisions and uncertainties at the beginning of each month, in a fictitious step. In
doing so, we also clarify the interdependency between controls and uncertainties.
It now clearly appears that the consumption decision us

(m,w̃) and the settings of the
refinery r(m,w̃) are taken in reaction to the revelation of product prices p(m,w̃) but
without the yet knowing of premiums w(m,w) for the first week of the month m.

8.3.1.1 Controls and uncertainties

Controls. In the Table 8.12, we present the notations used for controls and
uncertainties in a SOC reformulation.

notation space meaning

O ⊂ T̃× T̃ binary relation between order indexes and deliveries

O ⊂ T̃× T̃ binary relation for buffer existence in T̃
ut ∈ see (8.22a) control variable applied at the beginning of step [t, t+[
wt ∈ see (8.23) uncertainty revealed at the beginning of step [t, t+[

Table 8.12: SOC notations for controls and uncertainties

As a consequence of introducing the fictitious step w̃ at the beginning of each
month m, we need to review the relations P and P introduced in §8.2.1.3.

The relation P ⊂ (M ×W) × M, defined in (8.3a), induces a binary relation

O ⊂ T̃× T̃ defined by

tOt′ ⇐⇒ ∃m ∈ M, t′ = (m, w̃) , t ∈ T and tPm . (8.21a)

Additionally, we define a new binary relation O ⊂ T̃ × T̃, that mirrors P,
defined in (8.3d), by

tOt′ ⇐⇒ ∃m ∈ M, t′ = (m, w̃) and ∃t′′ ≺ t| t′′Ot′ . (8.21b)

As a result, the stages (m, w̃) only appear in the relation O as targets stages for
which it is possible to order, but during which no purchase can be made. Yet, the
relation P ensures that buffers continue to exist during the fictitious stage (m, w̃).

In Problem (8.18), controls are twofold:

� the purchase decision bm
′

(m,w) has a delayed effect, targets a future month m’

and does not exist for all ((m,w),m′), only the couples in correspondance
through P,
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� the operation decisions us
m (crude consumption) and rm (refinery settings)

are instantaneous.

We adopt a single notation for the controls

ut =

{
us
(m,w̃), r(m,w̃) ∈ R|C|

+ × R if t = (m, w̃)

{um′

(m,w)}m′∈(m,w)P ∈ R|C|×|tP| if t = (m,w) ∈ M×W
, ∀t ∈ T .

(8.22a)
The variables us

m, rm and um′

(m,w) are the decision variables identified in §8.2.1.4.
They respectively correspond to the crude oil consumption in monthm, the settings
of the refinery for the the month m, and the crude oil purchases in week (m,w)
that will be delivered at the beginning of the month m′.

What makes this problem singular is that, as a result of aligning all the decisions
variables on the same timeline in (8.22a), the dimension of the control u varies

every step. If t corresponds to a stage (m, w̃), then ut ∈ R|C|
+ ×R. If t corresponds

to a week, that is, t = (m,w) with w ≻ w̃, then ut ∈ R|C|×|tO| . For ease of use, we
adopt the notation

ut = {um′

t }m′∈tP = {um′

t }m′∈tP if t ∈ M×W . (8.22b)

Uncertainties. The remarks on controls also apply to uncertainties. Due to the
unified timeline, the dimension of the uncertainties varies from step to step. On
the one hand, if t = (m, w̃), then the uncertainty is the vector of product prices
p(m,w̃) ∈ R|P|; its dimension is the number of products sold by the refinery. On the

other hand, if t = (m,w) ∈ M×W and thus corresponds to an actual week, then
the uncertainty w(m,w) ∈ R|C| is the vector of crude premiums; its dimension is |C|,
the number of crudes on the market. Similarly to controls, we adopt the notation

wt =

{
pm ∈ R|P| if t = (m, w̃)

w(m,w) ∈ R|C| if t ∈ M×W
, ∀t ∈ T . (8.23)

Nonanticipativity constraints. Along with a reformulation of the controls
and the uncertainties in (8.22a) and (8.23), comes the reformulation of the nonan-
ticipativity constraints (8.18j) and (8.18k) into the single constraint

σ(ut) ⊂ σ({wt′}t′≺t) . (8.24)

8.3.1.2 Stocks and dynamics

In this section, we come back to the stocks and buffers introduced in §8.2.2.1 and
adapt them to the single timeline T̃ introduced in (8.19c).
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Buffers We now extend the definition (8.7e) of buffers as well as their dynamic
(8.7b). Using the relations O and O in §8.21, we introduce the t′-buffer defined
by its dynamic equation

dt
′

t+ = F̃t′

t (d
t′

t , u
t′

t ) , ∀t′ ∈ M , ∀t ∈ Ot′ , (8.25a)

with

F̃t
t(d

t′

t , u
t′

t ) =

{
Fm′

(m,w)(d
t′
t , u

t′
t ) , if t′ = (m′, w̃) , t = (m,w) , tOt′ ,

dt
′
t , if t ̸∈ Ot′

. (8.25b)

Where Fm′

(m,w) is the buffer dynamic equation introduced in (8.7b). The t′−buffer
dt

′
t is the virtual stock at the beginning of stage t that will be delivered and added

to the stock of the refinery at the beginning of the stage t′ ∈ M× {w̃}. Since t′ is
a fictitious stage added in (8.19a), we identify this buffer to the m′−buffer defined
in (8.7e) for t′ = (m′, w̃) by

dt
′

t = dm
′

(m,w) , ∀t = (m,w) ∈ M×W , t′ = (m′, w̃) ∈ M× {w̃} . (8.26a)

Refinery stocks We now extend the definition of the stock s to all t ∈ T̃ with
the dynamic equation

st+ = F̃t(st, d
t
t, ut)∀t ∈ T . (8.27a)

with

F̃t(st, d
t
t, ut) =

{
Fm(st, d

t
t, ut) , if t ∈ M× {w̃}

st , if t ∈ M×W
. (8.27b)

Where Fm is the refinery stocks dynamic equation introduced in (8.8a). As a
result, the stock st is updated once a month, during the step w̃, and stays constant
otherwise

st = sm , ∀t ∈ {m} ×W , (8.27c)

The stock s inside the refinery is now defined for every step t ∈ T̃. The dynamic of
the stock that was previously at the scale of the month in §8.2.2.1 is now defined
at the scale of the scale W̃. To fit the monthly model, the stock st only varies
when stage t corresponds to a fictitious stage (m, w̃).
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function meaning

Λt(st, {dt
′
t }t′∈tO, ut, wt) instantaneous cost associated with the stage t

Table 8.13: Notation for the instantaneous cost function

8.3.1.3 Cost functions

In §8.2.2.3, we made the distinction between the cost of purchasing oil each week
(m,w) through the functions Ωm′

(m,w), and the production costs of the refinery for

each month m, the function Ψm. Now, with the unified timeline T̃, all costs appear
as instantaneous cost functions {Λt}t∈T̃, defined as:

Λt(st, {dt
′

t }t′∈tO, ut, wt) =





∑

t′∈tO
t′=(m′,w̃)

Ωm′

(m,w)(d
t′

t , b
t′

t , wt) if t = (m,w) ∈ M×W ,

Ψm(st, d
t
t, u

s
t, pt) if t = (m, w̃) ∈ M× {w̃} ,

∀t ∈ T̃ .

(8.28)

8.3.2 Proposing a state

We now propose a family {xt}t∈T̃ of state variables given by

xt =
(

xs
t︸︷︷︸

main stocks
at stage t

, {xt′

t }t′∈tO︸ ︷︷ ︸
current stock
of each buffer

active at stage t

)
∈ Xt , (8.29a)

with the identification

xs
t = st ∈ R|C|

+ , (8.29b)

xt′

t = dt
′

t ∈ R|C|
+ , ∀t′ ∈ tO , (8.29c)

with the dynamic

xt+ = F̂t(xt, ut) , ∀t ∈ T̃ . (8.29d)

where

F̂t(xt, ut) =

(
F̃t(x

s
t , x

t
t, ut), {F̃t′

t (x
t′

t , u
t′

t )}t′∈tO
)

(8.29e)

Intuitively, the state at stage t contains the main stock st as well as relevant
buffers. The buffers dt

′
t contained in the state are those active at stage t, that is,

elements of tO. The dynamic of the state variable xt written in (8.29d) is a com-
pound function of both the main stock dynamics and buffers dynamics presented
respectively in (8.27a) and (8.25a).
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8.3.3 Stochastic optimal control problem

With all the elements introduced from §8.3.1 to §8.3.2, we now reformulate the
problem (8.18) as a stochastic optimal control problem

min
{ut}t∈T̃

{xt}t∈T̃

E{wt}t∈T̃

[∑

t∈T̃

Λt

(
xt,ut,wt

)
]

(8.30a)

ut ∈ Ut , ∀t ∈ T̃ , (8.30b)

xt ∈ Xt , ∀t ∈ T̃ , (8.30c)

xt+ = F̂t(xt, ut) , ∀t ∈ T̃ (8.30d)

σ(ut) ⊂ σ({wt′}t′≺t) , ∀t ∈ T̃ . (8.30e)

8.4 Conclusion

In this Chapter 8, we have extended the modeling elements used in Part I to for-
mulate a crude oil procurement problem over an arbitrary number of months. The
two main features of this new model are the following: crude oil is now described
by its quality as well as quantity; the model works for any number of operating
months for the refinery. Specifically, in §8.2 we presented a model for the general
procurement problem and then formulated a multistage stochastic optimization
problem that we write as Problem (8.18). Then, in §8.3, we reformulated the Prob-
lem (8.18) to express it as a stochastic optimal control problem in Problem (8.30).
This reformulation implies that, under an assumption of independence of noises,
the problem can be solved using stochastic dynamic programming. While theo-
retically feasible, such a direct approach would likely not be numerically tractable
given the size of the problem.

In the next Chapter 9, we present a framework that directly leverages the
month/week structure of the Problem (8.18) to write more effective dynamic pro-
gramming equations.
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Chapter 9

Time blocks decomposition of
multistage stochastic optimization
problems

9.1 Introduction

Multistage stochastic optimization problems are, by essence, complex because their
solutions are indexed both by stages (time) and by uncertainties. Their large
scale nature makes decomposition methods appealing. The most common ap-
proaches are time decomposition (state-based resolution methods), like stochastic
dynamic programming, in stochastic optimal control, and scenario decomposition,
like progressive hedging, in stochastic programming. On the one hand, stochastic
programming deals with an underlying random process taking a finite number of
values, called scenarios [36]. Solutions are indexed by a scenario tree, the size of
which increases exponentially with the number of stages (hence generally a few
stages in practice). However, to overcome this obstacle, stochastic programming
takes advantage of scenario decomposition methods (progressive hedging [34]). On
the other hand, stochastic control deals with a state model driven by a white noise,
that is, the noise is made of a sequence of independent random variables. Under
such assumptions, stochastic dynamic programming is able to handle many stages,
as it offers reduction of the search for a solution among state feedbacks (instead
of functions of the past noise) [4, 32].

In a word, dynamic programming is good at handling multiple stages — but at
the price of assuming that noises are stagewise independent — whereas stochastic
programming does not require such assumption, but can only handle a few stages.
Could we take advantage of both methods? Is there a way to apply stochastic
dynamic programming at a slow time scale — a scale at which noise would be
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statistically independent — crossing over fast time scale optimization problems
where independence would not hold? This question is one of the motivations of
this paper, and we indeed provide a method to decompose multistage stochastic
optimization problems by time blocks. This decomposition method and the main
result are, mathematically speaking, quite natural, but the main difficulty is no-
tational. Indeed, the rigorous formulation of multistage stochastic optimization
problems on so-called history spaces requires heavy notation.

The methodology developed in this paper has been successfully applied to
a multistage stochastic optimization problem involving several hundred thousand
time steps, namely a battery management problem over 20 years involving both the
battery operating (with a fast time step of 30 minutes) and the battery replacement
(with a slow time step of one day) [33]. It is assumed that the vectors of noises
(energy demand minus renewable energy production) are independent day by day,
so that we are able to write the Dynamic Programming equations at the slow time
scale for this two time scales optimization problem. Then we use decomposition
techniques to obtain lower and upper bounds for the Bellman value functions:
the corresponding approximated value functions are also computed by backward
recursion, involving intraday costs (fast time scale) which are computable offline.
Finally, taking into account some periodicity properties in the computation of
intraday costs allows to solve the problem using a reasonable CPU time.

The paper is organized as follows. In Sect. 9.2, we present the standard ap-
proaches to solve, by dynamic programming, a stochastic optimal control problem
formulated in discrete time. In Sect. 9.3, we revisit the notion of “state” by defining
state reduction by time blocks — that is, at stages that are not necessarily all the
original stages — and then we prove a reduced dynamic programming equation.
In Sect. 9.4, we illustrate our contribution by showing its potential for applied
problems with two time scales, as the crude oil procurement problem. We relegate
technical results in Appendix A.

9.2 Stochastic dynamic programming with his-

tories

In §9.2.1, we recall standard approaches to solve, by dynamic programming, a
stochastic optimal control problem formulated in discrete time. We emphasize
that, in all of these approaches, either a state is given for all times or no state
is given. We highlight that our approach is intermediate, in that a state will
possibly be obtained, but only at certain times. In §9.2.2, we formulate multistage
stochastic optimization problems over the so-called history space, with history
feedbacks, and we obtain a general dynamic programming equation.
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9.2.1 Background on stochastic dynamic programming

We first recall the notion of stochastic kernel, used in the modeling of stochastic
control problems. Let (X,X) and (Y,Y) be two measurable spaces. A stochastic
kernel from (X,X) to (Y,Y) is a function ρ : X×Y→ [0, 1] such that, for any Y ∈ Y,
the function ρ(·, Y ) : X→ [0, 1] is X-measurable and, for any x ∈ X, the function
ρ(x, ·) : Y → [0, 1] is a probability measure. By a slight abuse of notation, a
stochastic kernel is also denoted as a mapping ρ : X→ ∆(Y) from the measurable
space (X,X) towards the space ∆(Y) of probability measures over (Y,Y), with the
property that the function x ∈ X 7→

∫
Y
ρ( dy |x) is measurable for any Y ∈ Y.

We now sketch the most classical frameworks for stochastic dynamic program-
ming in discrete time. We use the notation Jr, sK = {r, r + 1, . . . , s− 1, s} for any
two integers r, s such that r ≤ s. We will also use the shorter notation r:s = Jr, sK,
for example in subscripts as in hr:s. In what follows, t0 ∈ N and T ∈ N∗ are two
integers such that t0 < T .

Witsenhausen approach The most general stochastic dynamic programming
principle is sketched by Witsenhausen at the end of [40]. However, we do not
detail it as its formalism is too far from the following ones, though we will touch
the subject when we discuss Yüksel’s approach below. We present here what Wit-
senhausen calls an optimal stochastic control problem in standard form (see [38]).
The ingredients are the following:

1. time t ∈ Jt0, T K is discrete and runs among a finite set of consecutive integers;

2. (Xt0 ,Xt0) (Nature), (Xt0+1,Xt0+1), . . . , (XT ,XT ) (state spaces) are measur-
able spaces;

3. (Ut0 ,Ut0),. . . , (UT−1,UT−1) are measurable spaces (control spaces);

4. It is a subfield of Xt, for t ∈ Jt0, T − 1K (information);

5. ft : (Xt × Ut,Xt ⊗ Ut) → (Xt+1,Xt+1) is measurable, for t ∈ Jt0, T − 1K
(dynamics);

6. πt0 is a probability on (Xt0 ,Xt0);

7. j : (XT ,XT )→ R is a measurable function (criterion).

With these ingredients, Witsenhausen formulates a stochastic optimization prob-
lem, whose solutions are to be searched among adapted feedbacks, namely λt :
(Xt,Xt) → (Ut,Ut) with the property that λ−1

t (Ut) ⊂ It for all t ∈ Jt0, T − 1K.
Then, he establishes a dynamic programming equation, where the Bellman func-
tions are function of the (unconditional) distribution of the original state xt ∈ Xt,
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and where the minimization is done over adapted feedbacks. The main objective
of Witsenhausen is to establish a dynamic programming equation for nonclassical
information patterns.

Evstigneev approach The ingredients of the approach developed in [15] are
the following:

1. time t ∈ Jt0, T K is discrete and runs among a finite set of consecutive integers;

2. (Ut0 ,Ut0),. . . , (UT−1,UT−1) are measurable spaces (control spaces);

3. (Ω,F) is a measurable space (Nature);

4. {Ft}t∈Jt0,T−1K is a filtration of F (information);

5. P is a probability on (Ω,F);

6. j : (Ω×∏
t∈Jt0,T−1K Ut,F ⊗

⊗
t∈Jt0,T−1K Ut) → R is a measurable function

(criterion).

With these ingredients, Evstigneev formulates a stochastic optimization problem,
whose solutions are to be searched among adapted processes, namely random pro-
cesses with values in

∏
t∈Jt0,T−1K Ut and adapted to the filtration {Ft}t∈Jt0,T−1K.

Then, he establishes a dynamic programming equation, where the Bellman func-
tion at time t is an Ft-integrand depending on controls up to time t (random
variables) and where the minimization is done over Ft-measurable random vari-
ables at time t. The main objective of Evstigneev is to establish an existence
theorem for an optimal adapted process (under proper technical assumptions, es-
pecially on the objective function j, that we do not detail here). Notice that there
is no notion of state variable.

Puterman approach The ingredients of the approach developed in [32, Sect. 2.1]
are the following:

1. time t ∈ Jt0, T K is discrete and runs among a finite set of consecutive integers;

2. (Xt0 ,Xt0), . . . , (XT ,XT ) are measurable spaces (state spaces);

3. (Ut0 ,Ut0),. . . , (UT−1,UT−1) are measurable spaces (control spaces);

4. νt:t+1 : Xt × Ut → ∆(Xt+1) is a stochastic kernel, for t ∈ Jt0, T − 1K (transi-
tions);

5. Lt : Xt × Ut → R, for t ∈ Jt0, T − 1K, and K : XT → R, are measurable
functions (instantaneous and final costs).
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With these ingredients, Puterman formulates a stochastic optimization problem
with a time additive cost function over given state and control spaces, whose
solutions are to be searched among history feedbacks, namely sequences of map-
pings Xt0 ×

∏t−1
s=t0

(Us × Xs+1) → Ut. Then, he establishes a dynamic program-
ming equation, where the Bellman functions are function of the history ht ∈
Xt0 ×

∏t−1
s=t0

(Us × Xs+1). He identifies cases where no loss of optimality results
from reducing the search to Markovian feedbacks Xt → Ut. In such cases, the
Bellman functions are function of the state xt ∈ Xt, and the minimization in the
dynamic programming equation is done over controls ut ∈ Ut. The main objective
of Puterman is to explore infinite horizon criteria, average reward criteria, the
continuous time case, and to present many examples.

Hernández-Lerma and Lasserre approach The ingredients of the approach
developed in [17, §2.2, §3.2, §3.3] are the following:

1. time t ∈ Jt0, T K is discrete and runs among a finite set of consecutive integers;

2. (Xt0 ,Xt0), . . . , (XT ,XT ) are Borel spaces (state spaces);

3. (Ut0 ,Ut0),. . . , (UT−1,UT−1) are Borel spaces (control spaces); there are also
feasible state-dependent control constraints that we do not present here;

4. νt:t+1 : Xt×Ut → ∆(Xt+1), for t ∈ Jt0, T−1K, are Borel-measurable stochastic
kernels (transitions);

5. Lt : Xt ×Ut → R, for t ∈ Jt0, T − 1K, and K : XT → R are Borel-measurable
functions (instantaneous and final costs).

With these ingredients, Hernández-Lerma and Lasserre formulate a stochastic
optimization problem with a time additive cost function over given state and
control spaces. They introduce the “canonical construction” where the history
at time t consists in the states and the controls prior to t. Then, they study
optimization problems whose solutions (policies) are to be searched among his-
tory feedbacks (or randomized history feedbacks), namely sequences of mappings
Xt0 ×

∏t−1
s=t0

(Us × Xs+1)→ Ut. They identify cases where no loss of optimality re-
sults from reducing the search to (relaxed) Markovian feedbacks Xt → Ut. Then,
they establish a dynamic programming equation, where the Bellman functions are
function of the state xt ∈ Xt, and where the minimization is done over controls
ut ∈ Ut. For finite horizon problems, the mathematical challenge is to set up a
mathematical framework — the Borel assumptions plus additional topological ones
presented in [17, §3.3] — for which optimal policies exists. The main objective
of [17] is to offer a unified and comprehensive treatment of discrete-time Markov
control processes, with emphasis on the case of Borel state and control spaces, and
possibly unbounded costs and noncompact control constraint sets.
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Bertsekas and Shreve approach The ingredients of the approach developed
in [5] (more precisely in [5, Definition 10.1]) are the following:

1. time t ∈ Jt0, T K is discrete and runs among a finite set of consecutive integers;

2. (Xt0 ,Xt0), . . . , (XT ,XT ) are Borel spaces (state spaces);

3. (Ut0 ,Ut0),. . . , (UT−1,UT−1) are Borel spaces (control spaces); there are also
feasible state-dependent control constraints that we do not present here;

4. (Wt0 ,Wt0),. . . , (WT ,WT ) are Borel spaces (noise);

5. ft : (Xt × Ut ×Wt,Xt ⊗ Ut ⊗Wt) → (Xt+1,Xt+1), for t ∈ Jt0, T − 1K, are
Borel-measurable mappings (dynamics);

6. ρt:t+1 : Xt×Ut → ∆(Wt+1), for t ∈ Jt0, T −1K, are Borel-measurable stochas-
tic kernels (noise distributions);

7. Lt : Xt×Ut → R, for t ∈ Jt0, T −1K, and K : XT → R are lower semianalytic
functions (instantaneous and final costs).

With these ingredients, Bertsekas and Shreve formulate a stochastic optimization
problem with a time additive cost function over given state spaces, control spaces
and uncertainty spaces. They introduce the notion of history at time t which
consists in the states and the controls prior to t and study optimization problems
whose solutions (policies) are to be searched among history feedbacks (or relaxed
history feedbacks), namely sequences of mappings Xt0 ×

∏t−1
s=t0

(Us × Xs+1) → Ut.
They identify cases where no loss of optimality results from reducing the search
to (relaxed) Markovian feedbacks Xt → Ut. Then, they establish a dynamic pro-
gramming equation, where the Bellman functions are function of the state xt ∈ Xt,
and where the minimization is done over controls ut ∈ Ut. For finite horizon prob-
lems, the mathematical challenge is to set up a mathematical framework (the Borel
assumptions) for which optimal policies exists. The main objective of Bertsekas
and Shreve is to state conditions under which the dynamic programming equation
is mathematically sound, namely with universally measurable Bellman functions
and with universally measurable relaxed control strategies in the context of Borel
spaces. The interested reader will find all the subtleties about Borel spaces and
universally measurable concepts in [5, Chapter 7].

Yüksel approach As said at the beginning, the most general stochastic dy-
namic programming principle is sketched by Witsenhausen at the end of [40].
This approach builds upon the so-called Witsenhausen intrinsic model [39] which
does not consider state, but information under the form of σ-fields (see [41] for the
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functional form). In [38], Witsenhausen provides conditions to express stochas-
tic control optimization problems — with information constraints, but without
state — in standard form with a state (the first approach that we have considered
above).

Although Witsenhausen established a dynamic programming equation in [38],
Yüksel notes in [42] that “Witsenhausen’s construction [. . . ] does not address the
well-posedness of such a dynamic program” and that “the existence problem was
not considered”. In the spirit of [38], Yüksel entails in [42] “a general approach
establishing that any sequential team optimization may admit a formulation ap-
propriate for a dynamic programming analysis”. One of the contributions of [42]
is to propose a construction of standard Borel controlled state and action spaces
and to establish a universal dynamic program for stochastic control optimization
problems — with information constraints, but without state — thus addressing
some of the issues raised and left open by Witsenhausen. The ingredients are the
following:

1. time t ∈ Jt0, T K is discrete and runs among a finite set of consecutive integers;

2. (Ω,F) is a measurable space (Nature);

3. (Ut0 ,Ut0),. . . , (UT−1,UT−1) are measurable spaces (control spaces);

4. (Yt0 ,Yt0), . . . , (YT−1,YT−1) are measurable spaces (“observation” spaces);

5.
{
ηt : (Ω×

∏
s∈Jt0,tK Us,F ⊗

⊗
s∈Jt0,tK Us)→ (Ut,Ut)

}
t∈Jt0,T−1K

are measurable

mappings (“measurement constraints”);

6. P is a probability on (Ω,F);

7. j : (Ω×∏
t∈Jt0,T−1K Ut,F ⊗

⊗
t∈Jt0,T−1K Ut) → R+ is a measurable function

(criterion).

With these ingredients, Yüksel formulates a stochastic team optimization problem
whose solutions (policies) are to be searched among sequences of measurable map-
pings (“design constraints”) Yt−1 → Ut, and their “randomized” versions (so-called
strategic measures). He establishes a dynamic programming equation, where the
Bellman functions are function of probability distributions and where the mini-
mization is done over proper design mappings. One objective of Yüksel is to set
up a mathematical framework under which the dynamic programming equation is
mathematically sound [42, Theorem 3.6].
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Our approach The ingredients that we use are the following:

1. time t ∈ Jt0, T K is discrete and runs among a finite set of consecutive integers;

2. (Ut0 ,Ut0),. . . , (UT−1,UT−1) are measurable spaces (control spaces);

3. (Wt0 ,Wt0),. . . , (WT ,WT ) are measurable spaces (noise);

4. ρt:t+1 : Wt0×
∏t−1

s=t0
(Us ×Ws+1)→ ∆(Wt+1), for t ∈ Jt0, T−1K, are stochastic

kernels (noise distributions);

5. j : (Wt0 ×
∏T−1

s=t0
(Us ×Ws+1),Wt0 ⊗

⊗T−1
s=t0

(Us ⊗Ws+1)) → R is a measur-
able function (criterion);

6. t0 < · · · < tN = T are the indices of multiple consecutive time blocks Jt0, t1K,
. . . , JtN−1, tNK, with N ≥ 1 an integer;

7.
{
(Xtj ,Xtj)

}
j∈J0,NK are measurable spaces (time block state spaces);

8. θt0 : Wt0 → Xt0 and
{
θtj : Wt0 ×

tj−1∏
s=t0

(Us ×Ws+1)→ Xtj

}

j∈J1,NK

are measur-

able mappings (time block reduction of history towards state);

9.
{
ftj :tj+1

: Xtj ×
tj+1−1∏
s=tj

(Us ×Ws+1)→ Xtj+1

}

j∈J0,N−1K

are measurable mappings

(time block dynamics).

The framework developed in this paper is intermediate between the ones of Evstigneev
in [15] and of Yüksel in [42] — notable by the absence of a state space — and
the ones of Witsenhausen [38], Hernández-Lerma and Lasserre [17], Bertsekas and
Shreve [5] and Puterman [32] — where the state spaces are given for all times.

This said, our preoccupation could be adapted to any of the above frameworks.
Indeed, our objective is to establish a dynamic programming equation with a state,
not at any time t ∈ Jt0, T K, but at some specified instants t0 < t1 < · · · < tN =
T . The state spaces are introduced as image sets (codomains) of what we call
(time block) history reduction mappings (where history at time t consists of all
uncertainties and controls prior to time t).

9.2.2 Stochastic dynamic programming with history feed-
backs

To prepare the main result in Sect. 9.3, we establish a dynamic programming
equation when the state is the history, that is, the uncertainties and the controls
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prior to the current stage (see the “canonical construction” in [17, p. 15]). Al-
though quite natural, this equation is generally not written in the literature, as
most frameworks in dynamic programming assume the a priori existence of a state
(see §9.2.1).

From now on, time is discrete and runs among the integers t ∈ J0, T K, where
T ∈ N∗ is a positive integer (and where, for the sake of simplicity, we have taken
t0 = 0 regarding the notation in §9.2.1). We first define the basic and the composite
spaces that we need to formulate multistage stochastic optimization problems.
Then, we introduce a class of solutions called history feedbacks.

Histories and history spaces For each time t ∈ J0, T − 1K, the control ut

takes its values in a measurable set Ut equipped with a σ-field Ut. For each
time t ∈ J0, T K, the uncertainty wt takes its values in a measurable setWt equipped
with a σ-field Wt. For t ∈ J0, T K, we define the history space Ht equipped with
the history field Ht

Ht = W0 ×
t∏

s=1

(Us−1 ×Ws) , Ht = W0 ⊗
t⊗

s=1

(Us−1 ⊗Ws) , ∀t ∈ J0, T K ,

with the particular caseH0 = W0,H0 = W0. A generic element ht = (w0, (us−1, ws)s=1,...,t) =
(w0, u0, w1, u1, w2, . . . , ut−2, wt−1, ut−1, wt) ∈ Ht is called a history at time t. For
1 ≤ r ≤ s ≤ t, we introduce the (r :s)-history subpart hr:s = (ur−1, wr, . . . , us−1, ws) ∈
Hr:s =

∏s
τ=r(Uτ−1 ×Wτ ), so that we have ht = (hr−1, hr:t).

History feedbacks For 0 ≤ r ≤ t ≤ T−1, we define a (r : t)-history feedback as a
sequence {γs}s=r,...,t of measurable mappings γs : (Hs,Hs)→ (Us,Us). We call Γr:t

the set of (r : t)-history feedbacks. The history feedbacks reflect the following
information structure. At the end of the time interval [t − 1, t[, an uncertainty
variable wt is produced. Then, at the beginning of the time interval [t, t + 1[, a
decision-maker chooses a control ut contingent on no more than the past, giving
the chronology w0 ⇝ u0 ⇝ w1 ⇝ u1 ⇝ · · · ⇝ wT−1 ⇝ uT−1 ⇝ wT .

Family of optimization problems with stochastic kernels We introduce a
family of optimization problems with stochastic kernels. Then, we show how such
problems can be solved by stochastic dynamic programming. In what follows,
we say that a function is numerical if it takes its values in R = [−∞,+∞] (also
called extended or extended real-valued function). To build a family of optimization
problems over the time span J0, T−1K, we require two ingredients:

� a family {ρs−1:s}s∈J1,T K of stochastic kernels

ρs−1:s : (Hs−1,Hs−1)→ ∆(Ws) , ∀s ∈ J1, T K , (9.1)
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that represents the distribution of the next uncertainty ws parameterized by
past history hs−1,

� a numerical function, playing the role of a cost to be minimized,

j : (HT ,HT )→ [0,+∞] , (9.2)

assumed to be nonnegative1 and measurable with respect to the field HT .

We define, for any feedback {γs}s=t,...,T−1 ∈ Γt:T−1, a new family of stochastic
kernels ργt:T : (Ht,Ht) → ∆(HT ), that capture the transitions between histories
when the dynamics hs+1 =

(
hs, us, ws+1

)
is driven by us = γs(hs) for all s in

Jt, T − 1K (see Definition 10 in Appendix A for the detailed construction of ργr:t;
note that ργt:T generates a probability distribution on the space HT of histories
over the whole timespan J0, T K). We consider the following family of optimization
problems, indexed by t in J0, T − 1K and parameterized by the history ht ∈ Ht: for
all t in J0, T − 1K, we define the minimum value

Vt(ht) = inf
γt:T−1∈Γt:T−1

∫

HT

j(h′
T )ρ

γ
t:T ( dh

′
T |ht) , ∀ht ∈ Ht ,

(9.3a)

and we also define VT (hT ) = j(hT ) , ∀hT ∈ HT . (9.3b)

The numerical function Vt : Ht → [0,+∞] is called the value function at time t.

In the next paragraph, we show how the family {Vt}t∈J0,T K of value functions can
be used to solve, via dynamic programming, the optimization problem of interest
whose value is

V0(w0) = inf
γ0:T−1∈Γ0:T−1

∫

HT

j(h′
T )ρ

γ
0:T ( dh

′
T |w0)

= inf
γ0:T−1∈Γ0:T−1

∫

W1:T

j
(
Φγ

0:T (w0:T )
) T∏

s=1

ρs−1:s

(
dws

∣∣Φγ
0:s−1(w0:s−1)

)
, (9.4)

by (A.5), where the flows Φγ
0:s for s ∈ J0, T−1K are defined by Equation (A.3b) in

Appendix A.

1We could also consider any j : Ht → R, measurable bounded function, or measurable and
uniformly bounded below function. However, for the sake of simplicity, we will deal in the sequel
with measurable nonnegative numerical functions. When j(hT ) = +∞, this materializes joint
constraints between uncertainties and controls.
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Bellman operators and dynamic programming We show that the value
functions in (9.3) are Bellman functions, in that they are solution of a Bellman
or dynamic programming equation. For t in J0, T K, let L0

+(Ht,Ht) be the space of
universally measurable nonnegative numerical functions over Ht (see [5, § 7.7] for
further details). For t in J0, T−1K, we define the Bellman operator Bt+1:t by, for
all φ ∈ L0

+(Ht+1,Ht+1),

(
Bt+1:tφ

)
(ht) = inf

ut∈Ut

∫

Wt+1

φ(ht, ut, wt+1)ρt:t+1(dwt+1 |ht) , ∀ht ∈ Ht . (9.5)

Since φ ∈ L0
+(Ht+1,Ht+1), we have that Bt+1:tφ is a well defined nonnegative

numerical function. The proof of the following theorem is given in Appendix A.

Theorem 1. Assume that all the spaces introduced in §9.2.2 are Borel spaces, the
stochastic kernels in (9.1) are Borel-measurable, and that the criterion j in (9.2)
is a nonnegative lower semianalytic numerical function. Then, the Bellman oper-
ators in (9.5) are such that Bt+1:t : L0

+(Ht+1,Ht+1) → L0
+(Ht,Ht), and the value

functions Vt defined in (9.3) are universally measurable and satisfy the Bellman
equation, or (stochastic) dynamic programming equation,

VT = j , Vt = Bt+1:tVt+1 , for t = T−1, . . . , 1, 0 . (9.6)

This theorem is mainly inspired by [5, Chap. 8], with the feature that the
state xt is, in our case, the canonical history ht, with the canonical dynamics
ht+1 =

(
ht, ut, wt+1

)
. This very general dynamic programming result will be the

basis of all future developments in this paper. In the sequel, we assume that all
the assumptions of Theorem 1 are fulfilled; all the spaces (like the ones introduced
in §9.2.2) are Borel spaces; all the stochastic kernels (like the ones introduced
in (9.1)) are Borel-measurable; all the criteria (like the one introduced in (9.2))
are nonnegative lower semianalytic functions.

This Sect. 9.2 is mostly made of recalls and of statements that are straightfor-
ward consequences of results already established in the literature. However, the
developements in §9.2.2 are indispensable to tackle time blocks decomposition in
the coming Sect. 9.3.

9.3 State reduction by time blocks and dynamic

programming

In this section, we consider the question of reducing the history using a compressed
“state” variable. Differing with traditional practice, such a variable may not be
available at any time t ∈ J0, T K, but at some specified stages 0 = t0 < · · · < tN = T .
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We have seen in §9.2.2 that the history ht is itself a state variable with associated
canonical dynamics ht+1 =

(
ht, ut, wt+1

)
. However the size of this canonical state

increases with t, which is an unpleasant feature for dynamic programming, hence
the practical need to introduce a (ideally low dimensional) state space, at least at
some specified stages, as done in this paper. As said in the introduction, the main
difficulty is notational.

9.3.1 State reduction on a single time block

We first present the case where the reduction only occurs at two instants denoted
by r and t, and such that 0 ≤ r < t ≤ T .

Definition 2. Let (Xr,Xr) and (Xt,Xt) be two measurable state spaces, θr and θt
be two measurable reduction mappings

θr : Hr → Xr , θt : Ht → Xt , (9.7a)

and fr:t be a measurable dynamics

fr:t : Xr ×Hr+1:t → Xt . (9.7b)

The triplet (θr, θt, fr:t) is called a state reduction across (r : t) if we have2

θt
(
(hr, hr+1:t)

)
= fr:t

(
θr(hr), hr+1:t

)
, ∀ht ∈ Ht . (9.7c)

The state reduction (θr, θt, fr:t) is said to be compatible with the family {ρs−1:s}r+1≤s≤t

of stochastic kernels (9.1) if

� there exists a reduced stochastic kernel ρ̃r:r+1 : Xr → ∆(Wr+1), such that
the stochastic kernel ρr:r+1 in (9.1) can be factored as ρr:r+1( dwr+1 |hr) =
ρ̃r:r+1

(
dwr+1

∣∣ θr(hr)
)
, for all hr ∈ Hr,

� for all s in Jr + 2, tK, there exists a reduced stochastic kernel ρ̃s−1:s : Xr ×
Hr+1:s−1 → ∆(Ws), such that the stochastic kernel ρs−1:s can be factored as

ρs−1:s( dws | (hr, hr+1:s−1)) = ρ̃s−1:s

(
dws

∣∣∣
(
θr(hr), hr+1:s−1

))
, ∀hs−1 ∈ Hs−1.

According to this definition, the triplet (θr, θt, fr:t) is a state reduction across (r : t)
if and only if the diagram in the left part of Figure 9.1 is commutative; it is com-
patible if and only if the diagram in the center of Figure 9.1 is commutative.

2Notice that, if only the couple (θr, fr:t) is given, we can define θt by (9.7c), and thus obtain
a triplet (θr, θt, fr:t) which is a state reduction across (r : t).
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Hr ×Hr+1:t Ht

Xr ×Hr+1:t Xt

θr Id

Id

θt

fr:t

Hr ×Hr+1:s−1 ∆(Ws)

Xr ×Hr+1:s−1

θr Id

ρs−1:s

ρ̃s−1:s

L0
+(Ht,Ht) L0

+(Hr,Hr)

L0
+(Xt,Xt) L0

+(Xr,Xr)

Bt:r

θ?t

B̃t:r

θ?r

1

Figure 9.1: Commutative diagrams in case of state reduction

To prepare a dynamic programming equation, we define the Bellman operator
across (t :r) Bt:r : L0

+(Ht,Ht)→ L0
+(Hr,Hr) by

Bt:r = Br+1:r ◦ · · · ◦Bt:t−1 , (9.9)

where the one time step operators Bs:s−1, for s in Jr + 1, tK are defined in (9.5).
The following proposition is the key ingredient to formulate dynamic programming
equations with a reduced state.

Proposition 3. Suppose that all the assumptions of Theorem 1 are satisfied. Sup-
pose that there exists a state reduction (θr, θt, fr:t) that is compatible with the family
{ρs−1:s}r+1≤s≤t of stochastic kernels (9.1) (see Definition 2). Then, there exists a

reduced Bellman operator across (t :r) B̃t:r : L0
+(Xt,Xt)→ L0

+(Xr,Xr), such that

(
B̃t:rφ̃t

)
◦ θr = Bt:r(φ̃t ◦ θt) , ∀φ̃t ∈ L0

+(Xt,Xt) . (9.10)

For any φ̃t ∈ L0
+(Xt,Xt) and for any xr ∈ Xr, we have that

(
B̃t:rφ̃t

)
(xr) = inf

ur∈Ur

∫

Wr+1

ρ̃r:r+1( dwr+1 |xr)

inf
ur+1∈Ur+1

∫

Wr+2

ρ̃r+1:r+2( dwr+2 |xr, ur, wr+1) · · ·

inf
ut−1∈Ut−1

∫

Wt

ρ̃t−1:t( dwt |xr, ur, wr+1, . . . , ut−2, wt−1)

φ̃t

(
fr:t(xr, ur, wr+1, . . . , ut−1, wt)

)
. (9.11)

The proof of Proposition 3 is given in Appendix A. Proposition 3 can be in-
terpreted as follows. Denoting by θ⋆t : L0

+(Xt,Xt) → L0
+(Ht,Ht) the operator

defined by θ⋆t (φ̃t) = φ̃t ◦ θt for any φ̃t ∈ L0
+(Xt,Xt), the relation (9.10) rewrites as

θ⋆r ◦ B̃t:r = Bt:r ◦ θ⋆t , that is, Proposition 3 states that the diagram in the right part
of Figure 9.1 is commutative.
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9.3.2 State reduction on multiple consecutive time blocks
and dynamic programming equations

Proposition 3 can easily be extended to the case of multiple consecutive time blocks
Jti, ti+1K, with N ∈ N∗, i ∈ J0, N − 1K and 0 = t0 < · · · < tN = T .

Definition 4. Let {(Xti ,Xti)}i∈J0,NK be a family of measurable state spaces, {θti}i∈J0,NK

be a family of measurable reduction mappings θti : Hti → Xti, and
{
fti:ti+1

}
i∈J0,N−1K

be a family of measurable dynamics fti:ti+1
: Xti × Hti+1:ti+1

→ Xti+1
. The triplet

({Xti}i∈J0,NK, {θti}i∈J0,NK, {fti:ti+1
}
i∈J0,N−1K) is called a state reduction across the

consecutive time blocks Jti, ti+1K, i ∈ J0, N−1K if every triplet (θti , θti+1
, fti:ti+1

) is a
state reduction, for i in J0, N−1K. The state reduction across the consecutive time
blocks Jti, ti+1K is said to be compatible with the family {ρs−1:s}s∈J1,T K of stochas-
tic kernels given in (9.1) if every triplet (θti , θti+1

, fti:ti+1
) is compatible with the

family {ρs−1:s}s∈Jti+1,ti+1K, for i in J0, N−1K.

There is a practical case where state reductions can readily be obtained.

Remark 5 (Composed state dynamics as a straightforward reduction mapping).
We consider here the special case were the model is given by controlled state dy-
namics driven by noises. That is, we are given a family of measurable state spaces
{(Xs,Xs)}s∈J0,T K and a family {fs:s+1}s∈J0,T−1K of measurable dynamics

fs:s+1 : Xs × Us ×Ws+1 → Xs+1 . (9.12)

For any time s ∈ J0, T−1K, we define the composition f0:s+1 = fs:s+1◦fs−1:s◦. . .◦f0:1
with the abuse of notation that the composition is performed on the state argument.
Setting W0 = X0, we obtain that f0:s+1 : Hs+1 → Xs+1 is a mapping from the history
space Hs+1 taking values in the state space Xs+1.

Now, given an integer N > 0 and an increasing sequence 0 = t0 < · · · < tN = T
of times, we define the family {θti}i∈J0,NK of measurable reduction mappings by

θti = f0:ti : Hti → Xti for i > 0, and by θ0 = Id (the identity mapping on W0) for
i = 0. Moreover, given i and j ∈ J0, NK, with i < j we obtain that

θtj(htj) = θtj
(
(hti , hti+1:tj)

)
= fti:tj

(
θti(hti), hti+1:tj

)
, ∀htj ∈ Htj , (9.13)

with fti:tj = ftj−1:tj ◦ ftj−2:tj−1 ◦ . . . ◦ fti:ti+1 which gives the state reduction Equa-
tion (9.7c).

There is a practical case where compatible state reductions can readily be ob-
tained.
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Remark 6 (Block independent exogenous noises and stochastic kernels). Assume
that the family {ρs−1:s}s∈J1,T K of stochastic kernels in §9.2.2 are mappings whose
arguments do not include the control part (that is, depend at most on the history
uncertainty part (see (A.2a)). If we interpret stochastic kernels as (conditional)
distributions of noises (random process), this means that the system dynamics are
driven by an exogenous noise process, say (Wt)t∈J1,T K. Moreover, assume that the
stochastic kernels give rise to noises that are independent block by block, in the

sense that the family
{
(Wt)t∈Jti+1,ti+1K

}
i∈J0,N−1K

is made of independent random

vectors, i by i . Then, from Definitions 2 and 4, we deduce that any state reduction
across the same time blocks is compatible with the stochastic kernels.

Assuming the existence of a state reduction across the consecutive time blocks Jti, ti+1K
compatible with the family of stochastic kernels (9.1), we obtain the existence of
a family of reduced Bellman operators across the consecutive Jti, ti+1K as an im-

mediate consequence of multiple applications of Proposition 3, that is, B̃ti+1:ti :
L0

+(Xti+1
,Xti+1

)→ L0
+(Xti ,Xti), i ∈ J0, N − 1K, such that, for any function φ̃ti+1

∈
L0

+(Xti+1
,Xti+1

), we have that
(
B̃ti+1:tiφ̃ti+1

)
◦ θti = Bti+1:ti(φ̃ti+1

◦ θti+1
). We now

consider the family of optimization problems defined by the associated value func-
tions (9.3). Thanks to the state reductions, we can enounce the following theorem
which establishes dynamic programming equations across consecutive time blocks.

Theorem 7 (Time block decomposition). Suppose that all the assumptions of
Theorem 1 are satisfied and that a state reduction ({Xti}i∈J0,NK , {θti}i∈J0,NK ,

{
fti:ti+1

}
i∈J0,N−1K)

exists across the consecutive time blocks Jti, ti+1K, i ∈ J0, N−1K, satisfying 0 =
t0 < · · · < tN = T , and which is compatible with the family {ρs−1:s}s∈J1,T K of
stochastic kernels given in (9.1). Assume that there exists a reduced criterion
ȷ̃ : XT → [0,+∞] such that the cost function j in (9.2) can be factored as j = ȷ̃◦θT .
We define the family of reduced value functions {Ṽti}i∈J0,NK by

ṼtN = ȷ̃ and Ṽti = B̃ti+1:tiṼti+1
, ∀i ∈ J0, N − 1K . (9.15)

Then, the family {Vti}i∈J0,NK in (9.3) satisfies Vti = Ṽti ◦ θti , i ∈ J0, NK.

The proof is an immediate consequence of multiple applications of Theorem 1
and Proposition 3. Then, it is easy, and left to the reader, to prove that the
following Corollary holds true.

Corollary 8 (Taking care of instantaneous costs in addition to final cost). Assume
that a state reduction on multiple consecutive time blocks compatible with the family
of stochastic kernels (as in Definition 4) exists, and that the criterion j : HT → R
can be factored as

j(hT ) =
N−1∑

i=0

ℓti
(
θti(hti), hti+1:ti+1

)
+ ℓtN

(
θtN (htN )

)
. (9.16)
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Theorem 7 remains valid with the reduced Bellman value functions given by

ṼtN = ℓtN and Ṽti = Bti+1:tiṼti+1
, ∀i ∈ J0, N − 1K ,

and the reduced Bellman operator across (ti : ti+1) given, for any i ∈ J0, N − 1K,
for any φ̃ti+1

∈ L0
+(Xti+1

,Xti+1
) and for any xti ∈ Xti, by

(
Bti+1:tiφ̃ti+1

)
(xti) = inf

uti∈Uti

∫

Wti+1

ρ̃ti:ti+1( dwti+1 |xti)

inf
uti+1∈Uti+1

∫

Wti+2

ρ̃ti+1:ti+2( dwti+2 |xti , uti , wti+1) · · ·

inf
uti+1−1∈Uti+1−1

∫

Wti+1

ρ̃ti+1−1:ti+1
( dwti+1

|xti , uti , wti+1, . . . , uti+1−2, wti+1−1)

(
ℓti(xti , uti , wti+1, . . . , uti+1−1, wti+1

)

+ φ̃ti+1

(
fti:ti+1

(xti , uti , wti+1, . . . , uti+1−1, wti+1
)
))

.(9.17)

Of course, solving Equation (9.15) or Equation (9.17) can be as difficult as
solving the original Bellman equation. However, the interest of such time block
decomposition will be illustrated on the two time scale optimization problems,
object of the next Sect. 9.4, as detailed at the end of §9.4.3.

9.4 Two time scale optimization problems

Some decisions problems naturally involve two different time scales, because of the
timing of decisions — as for example long term investment decision and short term
monitoring of physical devices. In this section, we introduce abstract mathematical
notations to describe multistage decision problems with two time scales. Then,
we show how they can be reformulated on a unique product timeline in order to
obtain a block decomposition by Theorem 7.

In §9.4.1 and §9.4.2 we detail the structure and we formulate the two time scale
optimization problems that we consider. In §9.4.3, we show how to decompose
such problems by time blocks. In §9.4.4, we make the link with the classical
framework of stochastic optimal control, and we illustrate the approach on a crude
oil procurement problem in §9.4.5.

9.4.1 Structure of a two time scale optimization problem

We provide the data for a two time scale optimization problem.

Two time scales. We consider a multistage decision problem, with two time
scales. The slow time scale is represented by a finite totally ordered set (S,⪯)
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as follows — where s+ denotes the successor of s ∈ S and s− its predecessor, and
where we use the notation t ≺ t′ for t ⪯ t′ and t ̸= t′ —

min S = s ≺ · · · ≺ s− ≺ s ≺ s+ ≺ · · · ≺ s = max S , (9.18a)

and the fast time scale by a finite totally ordered set (F,⪯):

minF = f ≺ · · · ≺ f− ≺ f ≺ f+ ≺ · · · ≺ f = maxF . (9.18b)

In a sense to be made more rigorous later (once a unified timeline will have
been defined), each slow time interval [s, s+[ is made up of |F| (cardinality of F)
fast time steps, hence the denomination “two time scale”. For instance, S =
{Mo, Tu,We, Th, Fr, Sa, Su} may represent days, whereas F = J1, 24K may rep-
resent hours within a day. In some problems, we might even take F = J0, 24K to
handle the fact that two decisions (one slow and one fast) are taken at midnight,
hence an additional fast time step 0.

Unified timeline. We define the unified timeline of the decision problem in two
steps. First, we equip the product set S×F with the following lexicographic order:

(s, f) ≺ · · · ≺ (s−, f) ≺ (s, f) ≺ (s, f+) ≺ · · · (9.19)

· · · ≺ (s, f
−
) ≺ (s, f) ≺ (s+, f) ≺ · · · ≺ (s, f) .

More formally, we denote by (s, f)+ the successor of (s, f) in S× F \ {(s, f)}, with

(s, f)+ =

{
(s, f+) if f ̸= f ,

(s+, f) if f = f .
(9.20a)

Similarly, we denote by (s, f)− the predecessor of (s, f) in S× F \ {(s, f)}, with

(s, f)− =

{
(s, f−) if f ̸= f ,

(s−, f) if f = f .
(9.20b)

As the slow time scale and the product time scale both represent physical times,
we adopt the convention that the slow time s ∈ S is identified with the two scale
time (s, f), as illustrated in Figure 9.2. For instance Monday is identified with
(Mo, 24).

In the product space S×F, the first time (s, f) does not coincide with a slow
time ((Mo, 0) does not correspond to Monday in our running example). Thus, we
add to the product S×F an extra time denoted by (s−, f), corresponding to the
extra slow time s−, which is such that (s, f)− = (s−, f). We denote by S the set
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{s−}∪S and by S×F the set (s−, f)∪(S×F), also called the extended timeline when
equipped with an order ⪯ as follows

(s−, f) ≺ (s, f) ≺ · · · ≺ (s−, f) ≺ (s, f) ≺ (s, f+) ≺ · · ·
· · · ≺ (s, f

−
) ≺ (s, f) ≺ (s+, f) ≺ · · · ≺ (s, f) . (9.21)

The two time scale optimization problem will be formulated on the extended time-
line S×F, which we trivially identify with the time set J0, T K, where T = |S| × |F|.

s− s s+ s̄− s̄

(s−, f̄) (s, f) (s, f̄) (s+, f) (s+, f̄) (s̄−, f̄) (s̄, f) (s̄, f̄)

S

· · ·

· · ·
{s}×F

S×F

· · ·

{s+}×F

· · · · · ·
{s̄}×F

1

Figure 9.2: The product timeline with an extra starting point (s−, f)

Decisions. We suppose given

� a family {Us
s}s∈S\{s} of slow time scale decision measurable sets, and a family

{Ws
s}s∈S of slow time scale uncertainty measurable sets,

� a family {Usf
(s,f)}(s,f)∈S×(F\{f})

of fast time scale decision measurable sets, and

a family {Wsf
(s,f)}(s,f)∈S×(F\{f})

of fast time scale uncertainty measurable sets.

Dynamics. We suppose given a family {Xs
s}s∈S and a family {Xsf

(s,f)}(s,f)∈S×(F\{f})
of slow time scale and fast time scale state measurable sets. We also suppose
given a family {Fs

s}s∈S\{s} of slow time scale dynamics measurable mappings, that
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represent the evolution “driven at the slow time scale” given, for s ∈ S \ {s}, by3

Fs
s : Xs

s×Us
s×Ws

s+ → Xsf
(s+,f) ,(

xs
s, u

s
s, w

s
s+

)
7→ xsf

(s+,f) = Fs
s

(
xs
s, u

s
s, w

s
s+

)
. (9.22a)

We suppose given a family {Fsf
(s,f)}(s,f)∈S×(F\{f})

of fast time scale dynamics measur-

able mappings, that represent the evolution “driven at the fast time scale” given,
for all s ∈ S and f ∈ F \ {f}, by

Fsf
(s,f) : Xsf

(s,f)×Usf
(s,f)×Wsf

(s,f)+
→ Xsf

(s,f)+
,

(
xsf
(s,f), u

sf
(s,f), w

sf
(s,f)+

)
7→ xsf

(s,f)+
= Fsf

(s,f)

(
xsf
(s,f), u

sf
(s,f), w

sf
(s,f)+

)
, (9.22b)

where, for the sake of simplicity, we use the notation Xsf
(s,f)

= Xs
s for all s ∈ S.

Criterion. We suppose given a family {Λs}s∈S\{s} of slow time scale dynamics
measurable instantaneous cost functions, with

Λs− : Xs
s− × Us

s− ×Ws
s ×

∏

f∈F\{f}

(
Xsf

(s,f) × Usf
(s,f) ×Wsf

(s,f)+

)

︸ ︷︷ ︸
interval [s−,s[

→ R , (9.23a)

for s ∈ S, and we suppose given a function Λs representing a final cost, with

Λs : Xs
s → R , (9.23b)

that make up, by summation, an intertemporal criterion

∑

s∈S

Λs−

(
xs
s− , u

s
s− , w

s
s, {xsf

(s,f), u
sf
(s,f), w

sf
(s,f)+
}
f∈F\{f}

)
+ Λs

(
xs
s

)
. (9.24)

Stochastic kernels. Finally, we suppose given a family {ρss:s+}s∈S\{s} of constant
slow time scale stochastic kernels

ρss:s+ ∈ ∆(Ws
s+) , ∀s ∈ S \ {s} , (9.25a)

and, for each s ∈ S, a family {ρsf
(s,f):(s,f)+

}
f∈F\{f}

of fast time scale stochastic kernels

ρsf
(s,f):(s,f)+

: Ws
s ×

f∏

f′=f+

Wsf
(s,f′)

︸ ︷︷ ︸
interval [s−,s[

−→ ∆(Wsf
(s,f)+

) , ∀s ∈ S , ∀f ∈ F\{f} , (9.25b)

3We stress that the slow time scale dynamics (9.22a) yields as output the first fast state of
the slow period (and not the next slow state). Thus, the slow time scale dynamics (9.22a) is not
a dynamics from one slow state to the next slow state.
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with the convention that the Cartesian products of spaces in Equations (9.25a)
and (9.25b) reduce to the empty set when the upper index of the Cartesian product
is strictly lower that the corresponding lower index.

9.4.2 Formulation of a two time scale optimization prob-
lem on the product timeline

To apply Theorem 7, we introduce sets associated with the extended timeline (9.21)
by

X(s,f) =

{
Xs

s if f = f

Xsf
(s,f) if f ̸= f

, ∀(s, f) ∈ S×F , (9.26a)

U(s,f) =

{
Us

s if f = f

Usf
(s,f) if f ̸= f

, ∀(s, f) ∈ S×F \ {(s, f)} , (9.26b)

W(s,f) =

{
Ws

s if f = f

Wsf
(s,f) if f ̸= f

, ∀(s, f) ∈ S×F , (9.26c)

W
(s−,f)

= X(s−,f) (9.26d)

and a family of state dynamics F(s,f) : X(s,f)×U(s,f)×W(s,f)+ → X(s,f)+ defined by

F(s,f) =

{
Fs
s if f = f

Fsf
(s,f) if f ̸= f

, ∀(s, f) ∈ S×F \ {(s, f)} . (9.27)

s s+

(s, f̄) (s+, f) (s+, f+) (s+, f̄−) (s+, f̄)




Xs
s(= Xsf

(s,f̄)
)

×Us
s

×Ws
s+







Xsf
(s+,f)

×Usf
(s+,f)

×Wsf
(s+,f)+







Xsf
(s+,f+)

×Usf
(s,f+)

×Wsf
(s+,f+)+







Xsf
(s+,f̄−)

×Usf
(s+,f̄−)

×Wsf
(s+,f̄)







Xsf
(s+,f̄)

(= Xs
s+)

×Us
s+

×Ws
(s+)+







X(s,f̄)

×U(s,f̄)

×W
(s,f̄)+







X(s+,f)

×U(s+,f)

×W
(s+,f)+







X(s+,f+)

×U(s,f+)

×W
(s+,f+)+







X(s+, f̄−)
×U(s+,f̄−)

×W
(s+,f̄)







X(s+,f̄)

×U(s+,f̄)

×W
(s+,f̄)+




· · ·

F s
s

F sf
(s+,f) · · ·

F sf
(s+,f̄−)

F(s,f̄) F(s+,f) · · ·
F(s+,f̄−)

1

Figure 9.3: Original dynamics and their reformulation on the product timeline on
the slow time interval [s, s+[
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From these sets, we deduce the history sets and the histories

H(s,f) = W(s−,f) ×
∏

(s,f)≺(s′,f′)≺(s,f)

(
U(s′,f′)− ×W(s′,f′)

)
, ∀(s, f) ∈ S×F , (9.28a)

h(s,f) =
(
w

(s−,f)
,
(
u(s′,f′)− , w(s′,f′)

)
(s,f)≺(s′,f′)≺(s,f)

)
, ∀(s, f) ∈ S×F , (9.28b)

and, for suitable indices, the partial history sets and the partial histories

H(s,f):(s′,f′) =
∏

(s,f)≺(s′′,f′′)≺(s′,f′)

(U(s′′,f′′)− ×W(s′′,f′′)) , (9.29a)

h(s,f):(s′,f′) =
(
(u(s′′,f′′)− , w(s′′,f′′))(s,f)≺(s′′,f′′)≺(s′,f′)

)
. (9.29b)

The criterion formulated in Equation (9.24) combined with state dynamics
leads to a criterion j : H

(s,f)
→ R.

Based on the stochastic kernels (9.25b) and (9.25a), we introduce stochastic
kernels ρ(s,f):(s,f)+ associated with the extended timeline (9.21), for each (s, f) ∈
S×F \ {s, f}, by

ρ(s,f):(s,f)+ : H(s,f) −→ ∆(W
(s,f)+

)

h(s,f) 7−→
{
ρss:s+

(
dwsf

(s+,f)

∣∣ {ws
s′}s≺s′≺s

)
if f = f ,

ρsf
(s,f):(s,f)+

(
dwsf

(s,f)+

∣∣ {wsf
(s,f′)}f≺f′≺f

)
if f ̸= f .

(9.30)

Note that, for f ̸= f, the kernels ρ(s,f):(s,f)+ : H(s,f):(s,f) → ∆(W
(s,f)+

), only depend

on the partial history uncertainty part from (s, f) to (s, f).
The components of the problem are now formulated on the extended timeline

S×F, already identified with the time set J0, T K. Thus, we are in the framework
of §9.2.2 and we aim at solving an optimization problem as formulated in Equa-
tion (9.4).

9.4.3 Two time scale decomposition

The existence of Bellman equations for a two time scale optimization problem is
given by the following proposition.

Proposition 9. Consider a two time scale optimization problem as formulated
in §9.4.1 and §9.4.2. The optimization problem (9.4) has a solution given by a
dynamic programming equation at the slow scale. More precisely, let (Vs)s∈S be
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given by Vs = Λs and, for s ∈ S \ {s}, by the backward induction

Vs(x
s
s) = inf

us
s∈Us

s

∫

Ws
s+

ρss:s+( dw
s
s+)

inf
usf
(s+,f)

∈Usf
(s+,f)

∫

Wsf
(s+,f+)

ρsf(s+,f):(s+,f+)( dw
sf
(s+,f+) |ws

s+) · · ·

inf
usf

(s+,f
−

)
∈Usf

(s+,f
−

)

∫

Wsf
(s+,f)

ρsf
(s+,f

−
):(s+,f)

( dwsf
(s+,f)

|ws
s+ , w

sf
(s+,f+), · · · , wsf

(s+,f
−
)
)

(
Λs(x

s
s, u

s
s, w

s
s+ , . . . , u

sf

(s+,f
−
)
, wsf

(s+,f)
)

+ Vs+

(
Fs:s+(x

s
s, u

s
s, w

s
s+ , . . . , u

sf

(s+,f
−
)
, wsf

(s+,f)
)
))

,

(9.31)

where Fs:s+ is the composition Fs:s+ = Fsf

(s+,f
−
)
◦ · · · ◦Fsf

(s+,f) ◦Fs
s associated with the

state dynamics defined in Equations (9.22). Then, the value of the optimization
problem (9.4) is given by Vs−(x

s
s−).

Proof. The proof is an application of Theorem 7 with the help of Remarks 5
and 6. First, we have re-framed in §9.4.2 the two time scale optimization prob-
lems described in §9.4.1 in the formalism of §9.2.2 with the help of the extended
timeline (9.21). Second, as we are given state dynamics (9.27) on the extended
timeline and thanks to Remark 5, we obtain a state reduction at times {(s, f)}s∈S
by composition of the state dynamics. Moreover, as the slow time scale kernels
given by Equation (9.25a) are constant, the state reduction across the slow time
scale is compatible with the stochastic kernels (see Remark 6). Third, the case
of a time additive criterion has been considered in Corollary 8. We are thus able
to apply Theorem 7 and obtain the slow time scale Bellman recursion (9.31) as a
special case of Equation (9.17).

The slow time scale Bellman equation (9.31) is as difficult to solve as the
Bellman equation on the extended timeline. However, the interest of (9.31) lies
elsewhere. Imagine that one is able to obtain, in a relatively easy way, lower Vs

and upper Vs approximations of Vs in (9.31). Then, by replacing the last term Vs+

of (9.31) by either Vs+ or Vs+ , one can now solve a (lower or upper) surrogate of

Equation (9.31) by any suitable method. For instance, one could use scenario de-
composition methods, like progressive hedging [34], that do not require statistical
independence of noises within the slow time interval [s, s+[. Thus, the two time
scale optimization problem as formulated in §9.4.1 and §9.4.2 can be approxima-
tively solved, from below and from above, by a mix of slow time scale dynamic
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programming and of (for example) progressive hedging (or any other method, in-
cluding dynamic programming).

This approach was followed in the initial implementation of the time blocks
decomposition [33]. There, time blocks decomposition was used to produce algo-
rithms tackling a two time scales battery management problem over 20 years. This
problem involved both the battery operation (with a fast time step of 30 minutes)
and the battery replacement (with a slow time step of one day). Despite involving
several hundred thousand time steps, the problem was solved using a reasonable
CPU time. Our contribution is a clarification of the time blocks framework ini-
tially introduced in [33]. Additionally, we put a greater emphasis on developing
the time blocks decomposition for the two time scales problems.

9.4.4 Link with the classical framework of stochastic opti-
mal control

The property that the stochastic kernels (9.25) do not depend on any decision
variable makes it possible to build a probability ρ(s,f):(s,f) on the product space
W(s,f):(s,f) by

ρ(s,f):(s,f) =
⊗

s∈S

(
ρss:s+( dw

s
s+)⊗ ρsf(s+,f):(s+,f+)( dw

sf
(s+,f+) |ws

s+)⊗ · · ·

⊗ ρsf
(s+,f

−
):(s+,f)

( dwsf
(s+,f)

|ws
s+ , w

sf
(s+,f+), · · · , wsf

(s+,f
−
)
)
)
. (9.32)

Then Problem 9.4 may be rewritten using this probability as

Vs−(x
s
s−) = inf

γ

∫

W(s,f):(s,f)

(∑

s∈S

Λs

(
xs
s− , u

s
s− , w

s
s, {xsf

(s,f), u
sf
(s,f), w

sf
(s,f)+
}
f∈F\{f}

)
+ Λs

(
xs
s

))

ρ(s,f):(s,f)
(
dws

s, dw
sf
(s,f+) · · · dwsf

(s,f
−
)
, dwsf

(s,f)

)

(9.33a)

s.t. xsf
(s,f)+

= Fsf
(s,f)(x

sf
(s,f),u

sf
(s,f),w

sf
(s,f)+

) , ∀s ∈ S , ∀f ∈ F \ {f} , (9.33b)

xsf
(s+,f) = Fs

s(x
s
s,u

s
s,w

s
s+) , ∀s ∈ S \ {s} , (9.33c)

us
s = γs

(
{u(s′,f′), w(s′,f′)+}(s′,f′)≺(s,f)

)
, ∀s ∈ S \ {s} , (9.33d)

usf
(s,f) = γ(s,f)

(
{u(s′,f′), w(s′,f′)+}(s′,f′)≺(s,f)

)
, ∀s ∈ S , ∀f ∈ F \ {f} . (9.33e)

The integral cost given in the right hand side of Equation (9.33a) can be refor-
mulated as an expectation, denoted by E, with respect to the probability ρ(s,f):(s,f)
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by introducing random variables for the exogeneous noises as projection mappings
from W(s,f):(s,f) to W(s,f) for all (s, f) ∈ S×F

W(s,f) : W(s,f):(s,f) →W(s,f) , ∀(s, f) ∈ S×F , (9.34)

and obtaining random variables for the states and the control through the dynamics
equations (9.33b)–(9.33c) and the feedback equations (9.33d)–(9.33e).

This leads to a reformulation of Problem 9.33 as a classical stochastic optimal
control problem

inf E
[∑

s∈S

Λs

(
Xs

s− ,U
s
s− ,Ws, {Xsf

(s,f),U
sf
(s,f),W

f
(s,f)+
}
f∈F\{f}

)
+ Λs

(
Xs

s

)]

(9.35a)

s.t. Xsf
(s,f)+

= Fsf
(s,f)(X

sf
(s,f),U

sf
(s,f),W

sf
(s,f)+

) , ∀s ∈ S , ∀f ∈ F \ {f} , (9.35b)

Xsf
(s+,f) = Fs

s

(
Xs

s,U
s
s,W

s
s+

)
, ∀s ∈ S\{s} , (9.35c)

Us
s ∈ Us

s , ∀s ∈ S , (9.35d)

σ(Us
s) ⊂ σ({Ws

s}s′≺s, {Wsf
(s′,f′)}(s′,f′)≺(s,f)

) , ∀s ∈ S , (9.35e)

Usf
(s,f) ∈ Usf

(s,f) , ∀s ∈ S , ∀f ∈ F \ {f} , (9.35f)

σ
(
Usf

(s,f)

)
⊂ σ

(
{Ws

s′}s′≺s, {Wsf
(s′,f′)}(s′,f′)≺(s,f)

)
, ∀s ∈ S , ∀f ∈ F \ {f} ,

(9.35g)

where the two feedback constraints in Equations (9.33d) and (9.33e) are reformu-
lated as measurability constraints (9.35e) and (9.35g) (of course, a formal equiv-
alence would require to be more specific about spaces to use Doob functional
Lemma).

9.4.5 Illustration with the crude oil procurement problem

Crude oil procurement is the part of the oil supply chain that sits between the
production of crude oil and its processing in a refinery. The goal of procurement
is to purchase crude oil from various suppliers around the world and having it
delivered in time to the refinery to be processed. As illustrated in Figure 9.4,
every month (on the bottom line) a refinery receives crudes that have been bought
during the 8 previous weeks (on the upper line).

The problem naturally displays two time scales. On the one hand, deliveries
to the refinery are made at the beginning of each month, and crude consumption
is set once a month. On the other hand, crude oil shipments can be purchased
at the frequency of the week; every week, a selection of shipments is presented to
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Figure 9.4: Procurement of crude oil over 3 months M1, M2 and M3, where ◦
denotes purchase decisions and □ denotes consumption decisions

the decision-maker who must decide which shipments to purchase. Following the
construction of the extended timeline in (9.21), we represent by the sequence

(M0, 5) ≺ (M1, 1) ≺ (M1, 2) ≺ (M1, 3) ≺ (M1, 4) ≺ (M1, 5) (9.36)

≺ (M2, 1) ≺ (M2, 2) ≺ (M2, 3) ≺ (M2, 4) ≺ (M2, 5)

≺ (M3, 1) ≺ (M3, 2) ≺ (M3, 3) ≺ (M3, 4) ≺ (M3, 5)

the timeline associated with Figure 9.4 (notice that we consider that a month
is made of 4 weeks). The initial stage (M0, 5) corresponds to the additional
stage (s−, f) in (9.21). The stages (M1, 5) and (M2, 5) both represent the “end
of the month” when a consumption decision (slow scale decision us

s on the bottom
line of Figure 9.4) is taken.

We now illustrate how the crude oil procurement problem can be put in the
form of a two time scale optimization problem such as presented in §9.4.1. For
this purpose, we proceed to the identifications in Table 9.1.

We call s−buffer (resp. s−−buffer), the temporary stock that is created at
the beginning of the month s (resp. s−) and that will be delivered two months
after. For instance, in Figure 9.4, the yellow disks represent the M1−buffer
and the red disks represent the M2−buffer. We introduce the state variable

xsf
(s,f) =

(
s−−buffer, s−buffer, refinery stocks

)
, together with the accumulation dy-

namics Fsf
(s,f) for the buffers, and the accumulation dynamics Fs

s for the stocks.
Supposing that the products prices are independent month by month, we repre-
sent this assumption by a family of constant kernels {ρss:s+}s∈S\{s}. By contrast,
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Notations Crude oil procurement
from §9.4.1

S set of months during which we manage the refinery;
in Figure 9.4, S = {M1,M2,M3}

F set of weeks in each month;
in Figure 9.4, F = {1, 2, 3, 4, 5}

Us
s set of crude oil consumptions during the month s+

Ws
s+ set of product prices for the month s+

Usf
(s,f) set of crude shipments purchased in week (s, f)

Wsf
(s,f)+

set of crude oil prices in week (s, f)

Fsf
(s,f) accumulation of shipments purchased in (s, f)

Fs
s delivery of orders and consumption of crude oil for the month s+

Λs operational costs during the month s
(crude oil purchases during s - earnings from production)

ΛM4
end cost associated with the state xs

M3
= xsf

(M3,5)

valuation of the buffers and stocks in the refinery
before the beginning of the month M4

Table 9.1: Identification of the elements introduced in §9.4.1 with elements of the
crude oil procurement problem
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we do not assume that the crude prices are independent week by week, and the
possible dependency is modeled by stochastic kernels {ρsf

(s,f):(s,f)+
}
f∈F\{f}

.

Now that all the elements from §9.4.1 have been identified, Proposition 9 en-
ables us to write a dynamic programming equation such as (9.31) at the scale of the
month, without losing the time-dependency of crude prices inside the month. This
illustration stems from a research work done in partnership with TotalEnergies, in
the context of a PhD thesis [28].

9.5 Conclusion and perspectives

As said in the introduction, decomposition methods are appealing to tackle multi-
stage stochastic optimization problems, as they are naturally large scale. The most
common approaches are time decomposition (and state-based resolution methods,
like stochastic dynamic programming, in stochastic optimal control), and scenario
decomposition (like progressive hedging in stochastic programming).

This paper is part of a general research program that consists inmixing different
decomposition bricks. Space decomposition methods have been investigated in
[3] and [8]. Here, we have tackled the issue of using time blocks decomposition
in such a way that stochastic dynamic programming is used at the slow time
scale with an appropriate white noise assumption, whereas stochastic programming
methods such as progressive hedging can be used at the fast time scale where
such an independence assumption does not hold. This approach paves the way
of mixing time decomposition with scenario decomposition. For this purpose,
we have revisited the notion of state, and have provided a way to perform time
decomposition but only accross specified time blocks.

Acknowledgements. We thank Roger Wets for fruitful discussions about the
possibility of mixing stochastic dynamic programming with progressive hedging.
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Chapter 10

Conclusion

The procurement of crude oil is the part of the oil supply chain that sits between
the production of crude oil and the operation of refineries. The goal of procure-
ment is to supply a refinery with crude oil in order to ensure its operation. On the
one hand, refineries work at a monthly scale; crude oil shipments are delivered to
the refinery at the beginning of every month; then, the decision maker sets a con-
sumption for the upcoming month. On the other hand, purchases are made at the
weekly scale; different shipments are presented during the eight weeks preceding
each focus month; then, the decision maker sets orders. Therefore, as illustrated
in Figure 10.1, there is a delay between the moment an order is passed and the
moment the corresponding shipment is delivered to the refinery. This creates an
intricate decision process and, on top of that, there are uncertainties regarding
economic variables. The goal of this thesis was to formalize multistage stochastic
optimization problems and to propose resolution methods.

Part II is the most abstract part of the thesis as we provided a mathemat-
ical representation of procurement problems with any number of months. We
developed a framework that takes advantage of the month/week structure of the
problem to write a dynamic programming equation at the scale of the month,
without requiring independence of uncertainties between weeks inside a month.

Part I tackles the case of crude oil procurement in which the refinery operates
for one month. We introduced a model for procurement that we used to formulate
optimization problems and, ultimately, to build policies. The five resulting policies
were compared to the method currently used by TotalEnergies in two tests, a
Monte-Carlo simulation and replays of historical scenarios.

While SDP-based policies dominated the Monte-Carlo simulation, the results
were not as clear-cut on replays of historical scenarios. We now discuss this dis-
crepancy. Each week, predictions are given to the decision maker by a trading team
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Figure 10.1: Example of crude oil procurement over 3 months.
◦ denotes purchase controls and □ denotes consumption decisions

in TotalEnergies. For computational reasons, traditional SDP policies did not ac-
count for these predictions and ended up being out-performed by single-scenario
based policies. Subsequently, the policy mixing stochastic dynamic programming
and the predictions was the best performing one.

Ultimately, the numerical results that we have obtained highlight the potential
gains that stochastic optimization methods could bring to the procurement of
crude oil. They also point at two directions where improvements could be made
and at one intrinsic limitation. First, the discrepancy between the results on the
Monte-Carlo simulation and the results on the historical scenarios suggests that
one should pay attention to dispose of more representative scenarios, particularly
concerning time dependency of economic variables. Second, given the results on the
historical scenarios, incorporating the price predictions in a policy seems necessary.
Third, TotalEnergies’s tool to optimize and simulate the operations of a refinery
had to be foregone in favor of a gross approximation, due to computational load.
Indeed, it is too complex, and too slow, to be used in the context of multistage
stochastic optimization.
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ming approach for the optimal tactical planning of the downstream oil supply
chain. Computers & Chemical Engineering, 108:314–336, January 2018.
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Appendix A

Technical details and proofs

We introduce the notations

Wr:t =
t∏

s=r

Ws , 0 ≤ r ≤ t ≤ T , Ur:t =
t∏

s=r

Us , 0 ≤ r ≤ t ≤ T − 1 (A.1)

Let 0 ≤ r ≤ s ≤ t ≤ T . From a history ht ∈ Ht, we can extract the (r :s)-history
uncertainty part

[ht]
W
r:s = (wr, . . . , ws) = wr:s ∈Wr:s , 0 ≤ r ≤ s ≤ t , (A.2a)

the (r :s)-history control part (notice that the indices are special)

[ht]
U
r:s = (ur−1, . . . , us−1) = ur−1:s−1 ∈ Ur−1:s−1 , 1 ≤ r ≤ s ≤ t . (A.2b)

Flows Let r and t be given such that 0 ≤ r < t ≤ T . For a (r : t− 1)-history
feedback γ = {γs}s=r,...,t−1 ∈ Γr:t−1, we define the flow Φγ

r:t by

Φγ
r:t : Hr ×Wr+1:t → Ht (A.3a)

(hr, wr+1:t) 7→ (hr, γr(hr), wr+1, γr+1(hr, γr(hr), wr+1), wr+2, · · · , γt−1(ht−1), wt) .
(A.3b)

Otherwise stated, the flow is given by

Φγ
r:t(hr, wr+1:t) = (hr, ur, wr+1, ur+1, wr+2, . . . , ut−1, wt) , (A.3c)

with hs = (hr, ur, wr+1, . . . , us−1, ws) , r < s ≤ t , (A.3d)

and us = γs(hs) , r ≤ s ≤ t− 1 . (A.3e)

When 0 ≤ r = t ≤ T , we put Φγ
r:r : Hr → Hr, hr 7→ hr. With this convention,

the expression Φγ
r:t makes sense when 0 ≤ r ≤ t ≤ T . The mapping Φγ

r:t gives the
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history at time t as a function of the initial history hr at time r and of the history
feedbacks {γs}s=r,...,t−1 ∈ Γr:t−1.

An immediate consequence of this definition are the flow properties :

Φγ
r:t+1(hr, wr+1:t+1) =

(
Φγ

r:t(hr, wr+1:t), γt
(
Φγ

r:t(hr, wr+1:t)
)
, wt+1

)
, 0 ≤ r ≤ t ≤ T − 1 , (A.4a)

Φγ
r:t(hr, wr+1:t) = Φγ

r+1:t

(
(hr, γr(hr), wr+1), wr+2:t

)
, 0 ≤ r < t ≤ T . (A.4b)

Definition 10. Let r and t be given such that 0 ≤ r ≤ t ≤ T .

� When 0 ≤ r < t ≤ T , for a (r : t− 1)-history feedback γ = {γs}s∈Jr,t−1K ∈
Γr:t−1, and for a family {ρs−1:s}r+1≤s≤t of stochastic kernels ρs−1:s : Hs−1 →
∆(Ws) , s ∈ Jr+ 1, tK, we define a stochastic kernel ργr:t : Hr → ∆(Ht) such
that, for any numerical function φ ∈ L0

+(Ht,Ht)
1, we have that

∫

Ht

φ(h′
r, h

′
r+1:t)ρ

γ
r:t( dh

′
t |hr) =

∫

Wr+1:t

φ
(
Φγ

r:t(hr, wr+1:t)
)

t∏

s=r+1

ρs−1:s

(
dws

∣∣Φγ
r:s−1(hr, wr+1:s−1)

)
. (A.5)

� When 0 ≤ r = t ≤ T , we define ργr:r : Hr → ∆(Hr) by
ργr:r( dh

′
r |hr) = δhr( dh

′
r).

The stochastic kernels ργr:t on Ht, given by (A.5), are of the form ργr:t( dh
′
t |hr) =

ργr:t( dh
′
r dh

′
r+1:t |hr) = δhr( dh

′
r) ⊗ ϱγr:t( dh

′
r+1:t |hr), where, for each hr ∈ Hr, the

probability distribution ϱγr:t( dh
′
r+1:t |hr) only charges the histories visited by the

flow from r + 1 to t. The construction of the stochastic kernels ργr:t is developed
in [5, p. 190] for relaxed history feedbacks and obtained by using [5, Proposition
7.45].

Proposition 11. The family {ργs:t}s=r,...,t of stochastic kernels of Definition 10 has
the flow property:

ργs:t( dh
′
t |hs) =

∫

Ws+1

ρs:s+1( dws+1 |hs)ρ
γ
s+1:t

(
dh′

t

∣∣∣
(
hs, γs(hs), ws+1

))
, ∀s < t .

(A.6)

1space of universally measurable nonnegative numerical functions over Ht: see Footnote 1
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Proof. Let s < t. For any φ ∈ L0
+(Ht,Ht), we have that

∫

Ht

φ(h′
s, h

′
s+1:t)ρ

γ
s:t( dh

′
t |hs) (A.7a)

=

∫

Ws+1:t

φ
(
Φγ

s:t(hs, ws+1:t)
) t∏

s′=s+1

ρs′−1:s′
(
dws′

∣∣Φγ
s:s′−1(hs, ws+1:s′−1)

)

(by Definition (A.5))

=

∫

Ws+1:t

φ
(
Φγ

s:t(hs, ws+1:t)
)
ρs:s+1

(
dws+1

∣∣hs

) t∏

s′=s+2

ρs′−1:s′
(
dws′

∣∣Φγ
s:s′−1(hs, ws+1:s′−1)

)

=

∫

Ws+1:t

φ
(
Φγ

s+1:t

(
(hs, γs(hs), ws+1), ws+2:t

))
(by the flow property (A.4b))

ρs:s+1

(
dws+1

∣∣hs

) t∏

s′=s+2

ρs′−1:s′
(
dws′

∣∣Φγ
s+1:s′−1

(
(hs, γs(hs), ws+1), ws+2:s′−1

))

=

∫

Ws+1

ρs:s+1

(
dws+1

∣∣hs

) ∫

Ws+2:t

φ
(
Φγ

s+1:t

(
(hs, γs(hs), ws+1), ws+2:t

))

t∏

s′=s+2

ρs′−1:s′
(
dws′

∣∣Φγ
s+1:s′−1

(
(hs, γs(hs), ws+1), ws+2:s′−1

))

(by Fubini Theorem [27, p.137])

=

∫

Ws+1

ρs:s+1

(
dws+1

∣∣hs

) ∫

Ht

φ
(
(h′

s, γs(h
′
s), w

′
s+1), h

′
s+2:t

)
ργs+1:t

(
dh′

t

∣∣ (hs, γs(hs), ws+1)
)

(by Definition (A.5))

=

∫

Ht

φ
(
(h′

s, γs(h
′
s), w

′
s+1), h

′
s+2:t

) ∫

Ws+1

ρs:s+1

(
dws+1

∣∣hs

)
ργs+1:t

(
dh′

t

∣∣ (hs, γs(hs), ws+1)
)

(A.7b)

by Fubini Theorem. As the two expressions (A.7a) and (A.7b) are equal for
any φ ∈ L0

+(Ht,Ht), we deduce the flow property (A.6).

Proof of Theorem 1 We only give a sketch of the proof, as it is a variation on
different results of [5], the framework of which we follow.

Proof. We take the history space Ht for state space, and the state dynamics

f
(
ht, ut, wt+1

)
=

(
ht, ut, wt+1

)
= ht+1 ∈ Ht+1 = Ht × Ut ×Wt+1 . (A.8)

Then, the family {ρs−1:s}s∈J1,T K of stochastic kernels (9.1) gives a family of dis-
turbance kernels that do not depend on the current control. The criterion to be
minimized (9.2) is a function of the history at time T , thus of the state at time T .
The optimization problem defined by the associated value function (9.3) is thus
a finite horizon model with a final cost and we are minimizing over the so-called
state-feedbacks. Then, the proof of Theorem 1 follows from the results developed
in Chap. 7, 8 and 10 of [5] in a Borel setting. Since we are considering a finite
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horizon model with a final cost, we detail the steps needed to use the results of [5,
Chap. 8].

The final cost at time T can be turned into an instantaneous cost at time
T − 1 by inserting the state dynamics (A.8) in the final cost. Getting rid of
the disturbance in the expected cost by using the disturbance kernel is standard
practice. Then, we can turn this non-homogeneous finite horizon model into a finite
horizon model with homogeneous dynamics and costs by following the steps of [5,
Chap. 10]. Using [5, Proposition 8.2], we obtain that the family of optimization
problems defined by the associated value functions (9.3), when minimizing over the
relaxed state feedbacks, satisfies the Bellman equation (9.6); we conclude with [5,
Proposition 8.4] which covers the minimization over state feedbacks.

To summarize, Theorem 1 is valid under the general Borel assumptions of [5,
Chap. 8] and with the specific (F−) assumption needed for [5, Proposition 8.4];
this last assumption is fulfilled here since we have assumed that the criterion (9.2)
is nonnegative.

Proof of Proposition 3

Proof. Let φ̃t : Xt → [0,+∞] be a given measurable nonnegative numerical func-
tion, and let φt : Ht → [0,+∞] be

φt = φ̃t ◦ θt . (A.9)

Let φr : Hr → [0,+∞] be the measurable nonnegative numerical function obtained
by applying the Bellman operator Bt:r across (t :r) (see (9.9)) to the measurable
nonnegative numerical function φt:

φr = Bt:rφt = Br+1:r ◦ · · · ◦Bt:t−1φt . (A.10)

We show that there exists a measurable nonnegative numerical function φ̃r : Xr →
[0,+∞] such that

φr = φ̃r ◦ θr . (A.11)

First, we show by backward induction that, for all s ∈ {r, . . . , t}, there exists a
measurable nonnegative numerical function φs such that φs(hs) = φs(θr(hr), hr+1:s).
Second, we prove that the function φ̃r = φr satisfies (A.11).

� For s = t, we have, by (A.9) and by (9.7c), that φt(ht) = φ̃t

(
θt(ht)

)
=

φ̃t

(
fr:t(θr(hr), hr+1:t)

)
, so that the measurable nonnegative numerical func-

tion φt is given by φ̃t ◦ fr:t.
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� Assume that, at s+1, the result holds true, that is, φs+1(hs+1) = φs+1(θr(hr), hr+1:s+1).
Then, by (A.10),

φs(hs) =
(
Bs+1:sφs+1

)
(hs)

= inf
us∈Us

∫

Ws+1

φs+1

(
(hs, us, ws+1)

)
ρs:s+1( dws+1 |hs)

(by definition (9.5) of the Bellman operator)

= inf
us∈Us

∫

Ws+1

φs+1

(
(θr(hr), (hr+1:s, us, ws+1))

)
ρs:s+1( dws+1 |hs)

(by the induction assumption)

= inf
us∈Us

∫

Ws+1

φs+1

(
(θr(hr), (hr+1:s, us, ws+1))

)
ρ̃s:s+1

(
dws+1

∣∣ (θr(hr), hr+1:s)
)

(by compatibility (9.8) of the stochastic kernel)

= φs

(
θr(hr), hr+1:s

)
,

where φs

(
xr, hr+1:s

)
= inf

us∈Us

∫

Ws+1

φs+1

(
(xr, (hr+1:s, us, ws+1))

)

ρ̃s:s+1

(
dws+1

∣∣ (xr, hr+1:s)
)

Thus, we have shown that the result holds true at time s.

The induction implies that, at time r, the expression of φr(hr) is φr(hr) = φr

(
θr(hr)

)
,

since the term hr+1:r vanishes. Choosing φ̃r = φr gives the expected result.
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