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Abstract

Speaker diarization aims to detect �who spoke and when" in a given audio stream.

Di�erent applications, such as document structuring or information retrieval have

driven the exploration in many diverse spheres, from broadcast news to lectures, phone

conversations and meetings.

Nowadays, almost all current diarization systems are o�-line and ill-suited to

the growing need for on-line or real-time diarization, stemming from the increasing

popularity of powerful, mobile smart devices, the increasing interest in the Internet of

Things (IoT), the di�usion of always listening sensors and the increasing demand of

speech-based context recognition applications. While a small number of such systems

have been reported, the majority has focused on less challenging domains, such as

broadcast news and plenary speeches characterised by long speaker turns and low

spontaneity.

The �rst part of this thesis entails the problem of on-line speaker diarization.

A completely unsupervised adaptive on-line diarization system for challenging and

highly spontaneous meeting data is proposed. While not dissimilar to those previously

reported for less di�cult domains, high diarization error rates illustrate the challenge

involved due to the initialisation of the speaker models with little amount of speech

data.

To overcome this problem, a semi-supervised approach to on-line diarization whereby

speaker models are seeded with a modest amount of manually labelled data is proposed.

In practical applications, such as meetings, such data can be obtained readily from

brief round-table introductions. On-line speaker modelling is also improved by applying

an e�cient incremental maximum a-posteriori adaptation (MAP) procedure. The

resulting system outperforms a baseline, o�-line system by a signi�cant margin and

when con�gured appropriately, error rates may be low enough to support practical

applications.
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The second part of this dissertation addresses instead the problem of phonetic

normalisation when dealing with short-duration speaker modelling. Similarly to many

automatic speech processing applications, for instance automatic speaker veri�cation

(ASV), on-line diarization requires the training and learning of speaker models with

scarce quantity of speech data. Performance can degrade signi�cantly in the face of

phonetic variation, which is not marginalised. In this regard, phone adaptive training

(PAT) is a recently proposed technique which aims to derive a new acoustic feature

space in which the in�uence of phone variation is minimised while that of speaker

variation is maximised.

First, PAT is assessed and optimised at the speaker modelling level and in the

context of automatic speaker veri�cation (ASV). Experiments, performed under strictly

controlled conditions and using manually derived phonetic transcriptions, show that

PAT improves the performance of a state-of-art iVector ASV system by 50% relative

to the baseline. Then, PAT is further developed towards a completely unsupervised

system using automatically generated acoustic class transcriptions whose number is

controlled by regression tree analysis. It is shown that PAT still delivers signi�cant

improvements in the performance of a state-of-the-art iVector ASV system even when

accurate phonetic transcriptions are not available. Finally, a �rst attempt at combining

PAT and semi-supervised on-line diarization using the TIMIT database con�rms the

potential of PAT in improving real-time speaker modelling and motivates further

research in this particular direction.
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Chapter 1

Introduction

In recent years there has been an increasing interest in the Internet of Things (IoT). IoT

represents a network of physical devices, vehicles, buildings and other items which are

embedded with electronics, software, sensors that enable these objects to communicate,

collect and exchange data among one another. �Things� in the IoT sense, can refer

to a wide variety of devices for all di�erent contexts: home automation and security,

workplace productivity, safe driving, home entertainment such as smart TVs, smart

fridges, hands free loud speakers, health and �tness.

Due to the ubiquity of connected smart devices equipped with multiple sensors,

applications that exploit all the collected information and data to provide personalised

services depending on the user context have always undergone evolutionary advances.

Context awareness refers to the process of automatically identifying the context around

a smart device. Devices equipped with di�erent sensors may have information about

the circumstances under which they are able to operate and based on rules provide

improved services to the user needs. Many sources of information for context sensing

are available, such as GPS, WiFi antennas, luminance, acceleration, or temperature.

Nevertheless, audio and speech provide a rich source of context-related information

and there already exists suitable sensors, i.e., microphones, in many portable devices.

Nowadays, multiple smart objects, for instance smart-phones and smart TVs, are

able to recognise the voice of a single person after giving a reasonable amount of

training data and provide personalised services according to di�erent commands and

user preferences. However, a group of people, such as a family in a private house or

workers in an o�ce environment, might have the need to interact with di�erent smart

objects. In this case, it becomes important to determine in real-time �who is speaking
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now?� in order to supply an interactive service that caters to the needs of the person

who is currently speaking.

The task of determining the speakers involved in a given audio stream and their

corresponding intervals of activity is known as the task ofspeaker diarization .

1.1 The speaker diarization task

The task of speaker diarization has been formally de�ned and described by the National

Institute of Standards and Technology (NIST) during the Rich Transcription (RT)

evaluation campaigns. It entails the segmentation and clustering of an audio stream

into homogeneous segments based on speaker identities in order to answer the question

� who spoke when? �. In particular, it detects speech changes, corresponding to speaker

turns, and using a common label identi�es the segments of speech which correspond to

the same speaker. Speaker diarization is usually unsupervised and it cannot exploit

any a-priori information regarding the involved speakers.

Originally, the main objective of the NIST RT campaign was to enrich the tran-

scriptions of automatic speech recognition (ASR) systems with metadata in order to

make them more readable. In addition, speaker diarization has been exploited as

an enabling technology relevant to a wide variety of tasks, such as audio indexation,

content structuring, navigation, information retrieval and copyright detection.

Speaker diarization has been studied in three di�erent application domains:

ˆ Phone conversations where the audio recordings correspond to the oral con-

versations of two or more speakers through a telephone,

ˆ broadcast news where the examined audio recordings correspond to news infor-

mation from television or radio transmissions. These transmissions are generally

characterized by the intervention of di�erent speakers and by an important

acoustic variability related to the conditions when the audio was recorded (studio,

telephone, noisy environment, music presence, commercial advertisements),

ˆ meeting recordings mainly characterised by the presence of more speakers

that can communicate from di�erent places, by means of di�erent microphones.

The high percentage of overlap, phonetic and channel variability, spontaneity

and fast speaker turns characterize this kind of audio recordings.
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Meeting recordings, in which multiple speakers are present and participate actively

with fast speaker change turns and high percentage of overlap, represent by far the

most challenging available data for the speaker diarization task.

Although, speaker diarization has undergone signi�cant advances, partly spear-

headed by the international NIST evaluations, the state-of-the-art in speaker diarization

has largely evolved around o�-line systems, i.e. where an audio stream is processed in

its entirety before any segments are assigned speaker labels. O�-line speaker diarization

processes the entire audio stream more times if needed in order to detect and describe

the involved speakers by means of mathematical models.

However, driven by the expansion of IoT, smart devices and the growing need of

speech-based context recognition applications, on-line speaker diarization has attracted

increasing interest.

1.2 On-line speaker diarization

Unlike o�-line speaker diarization, on-line speaker diarization aims to answer the

question �who is speaking now?" by determining which speaker is currently active

and its interval of activity.

Due to their high computational complexity and latency, the existing state-of-the-

art o�-line diarization techniques are not easily adapted to face the challenges required

by real-time processing. Moreover, even if in recent years, a small number of on-line

diarization systems have been reported, the majority focused on applications involving

plenary speeches and broadcast news, i.e. [1� 3], where the speaker turns are longer and

there is less chance of overlapping speech. Moreover, their performances are generally

still far from that of typical o�-line diarization systems. There is therefore the need

to develop on-line diarization systems suitable to support new emerging real- time

practical applications, driven by the spread of IoT and smart devices. Since there

are still no databases of recordings addressing these emerging applications, meeting

recordings are still the most suitable to develop an on-line diarization system due to

their spontaneity and variability.

On-line speaker diarization represents a much more challenging task than o�-line

speaker diarization. Decisions, initialisation and update of speaker models have to be

made in real-time and based on short-duration speech segments in order to support
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practical applications with an acceptable latency. Longer speech segment durations

would provide more robust speaker models at the cost of a higher system latency and

at the risk of including impurities, i.e. more speakers in the same speech segment.

1.3 Robust speaker modelling against phonetic vari-

ation

Many automatic speech processing applications are required to operate in the face of

varying data quantities. When data is plentiful, phonetic or nuisance variation can be

implicitly normalised and often has limited or no impact on performance. In contrast,

when training data is scarce, then performance can degrade drastically if the phonetic

variation is dissimilar to that encountered in testing; for example if during training

phase only a set of phones is encountered phonetic variation is no longer marginalised.

Speaker diarization and in particular on-line speaker diarization are two such

examples in which speaker models can be initialised and updated with steadily amassed

short speech segments or well-trained models can be compared to short test segments.

When speaker models are initialised using short-duration speech segments, the speaker

models are biased towards the limited phonetic information contained in the short

speech segment. Consequently, when speaker models are compared to following short-

duration speech segments, misclassi�cation errors are committed due to the di�ering

phonetic content.

This problem strongly requires the development of speaker discriminative modelling

techniques in order to isolate the relevant information related to the speakers while

marginalising the phonetic content in short-duration speech segments. Research in this

direction would allow the training and initialisation of more discriminative speaker

models with less amount of speech data and consequently would contribute to the

reduction in latency and improve the performance of a typical on-line diarization

system. Phone adaptive training (PAT), recently introduced by Bozonnet et al. [4], is

a technique meant to create a more discriminative acoustic space in which the phonetic

variation is marginalised while the speaker information is retained.
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1.4 Objectives and outline of this thesis

The �rst objective of this dissertation concerns the problem of on-line diarization

involving more than two speakers. The goal is to develop an on-line speaker diariza-

tion system suitable to support real-time practical applications required by the rapid

development of IoT applications and the higher request of speech-based context recog-

nition applications. An unsupervised and semi-supervised on-line diarization system is

presented in this thesis.

The second objective of this dissertation consists of the optimization and develop-

ment of PAT and its potential application to on-line speaker diarization.

An outline of this thesis along with a brief summary of the contributions of each

chapter is provided below.

Chapter 2 - State-of-the-art

In this chapter an overview of the most recent research in the topic of speaker diarization

is provided. The most spread o�-line diarization systems, categorised according to

di�erent speaker modelling techniques, are �rst presented. The last part of this chapter

covers few on-line diarization systems presented in literature.

Chapter 3 - Databases and metric

This chapter provides a description of the diarization error rate (DER) metric used

to measure the performance of on-line speaker diarization, a description of the main

NIST RT evaluation datasets used for on-line speaker diarization experiments and the

o�-line baseline diarization system used as reference. Finally, it describes the TIMIT

database, manually transcribed at the phonetic level used for the development and

optimisation of PAT.

Chapter 4 - Unsupervised on-line diarization

While a small number of on-line diarization systems have been previously reported in

the literature, truly on-line diarization systems for challenging and highly spontaneous

meeting data have not yet been presented. The main contribution of this chapter

consists of our �rst attempt to develop an adaptive, completely un-supervised on-line

speaker diarization system for meeting data. The developed system is based on the
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sequential introduction and adaptation of speaker models by means of a sequential

adaptation procedure. The performance of the system is assessed through experiments

in which di�erent segment durations and di�erent speaker model complexities are

used. Performance is also assessed in terms of dynamic convergence of the speaker

models during time. While the performance is not so dissimilar to that of other systems

presented in literature on less challenging domains, high diarization error rates illustrate

the challenge ahead.

Part of the work in this chapter has resulted in the following publication:

ˆ Soldi, G., Beaugeant, C., Evans, N. �Adaptive and online speaker diarization for

meeting data� in Proc. European Signal Processing Conf. (EUSIPCO), 2015,

Nice, France.

Chapter 5 - Semi-supervised on-line diarization

After identifying the main bottleneck of unsupervised on-line diarization in the unsu-

pervised initialisation and adaptation of speaker models with short-duration speech

segments, the �rst contribution of this thesis is to investigate a semi-supervised ap-

proach to on-line diarization whereby speaker models are seeded o�-line with a modest

amount of manually labelled data. In practical applications involving meetings or

when interacting with smart connected objects, such data can be readily obtained

from brief introductions. The question that this chapter tries to address is: what

amount of labelled training data is needed to match or overtake the performance of a

state-of-the-art o�- line baseline diarization system?

The second contribution of this chapter relates instead to an incremental approach

to on-line model adaptation which proves instrumental in delivering low diarization

error rates. It is shown that such a system can outperform an o�-line diarization

system with just 3 seconds of speaker seed data and 3 seconds of latency when using

an incremental MAP adaptation procedure. By using greater quantities of seed data

or by allowing greater latency, then a diarization error rate in the order of 10% can be

achieved.

Part of the work in this chapter has resulted in the following publication:

ˆ Soldi, G., Todisco, M., Delgado, H., Beaugeant, C., Evans, N. �Semi-supervised

on-line speaker diarization for meeting data with incremental maximum a-posteriori
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adaptation� in Odyssey - The Speaker and Language Recognition Workshop, June

2016, Bilbao, Spain.

Chapter 6 - Phone adaptive training

Based on constrained maximum likelihood linear regression (cMLLR), a model adapta-

tion technique, and previous work in speaker adaptive training (SAT) for automatic

speech recognition, PAT learns a set of transforms which project features into a new

phone normalised but speaker-discriminative space. Originally investigated in the

context of speaker diarization, in the �rst part of this chapter PAT is assessed and

optimised at the level of speaker modelling and in the context of automatic speaker

veri�cation (ASV) under strictly controlled conditions, including the use of manually

derived phone transcripts. PAT performance is analysed when applied to short-duration

text-independent ASV as a function of model complexity and for varying quantities of

training data, using the TIMIT dataset which is manually labelled at the phone level.

It is shown that PAT is successful in reducing phone bias and it improves signi�cantly

the performance of both traditional GMM-UBM and iVector-PLDA ASV systems in

the case of short-duration training. Moreover, PAT delivers better performance for

lower models complexities.

The second part of this chapter instead reports on our e�orts to develop PAT

into a fully unsupervised system. Contributions include an approach to automatic

acoustic class transcription using regression tree analysis. Similarly to the �rst work,

the performance of PAT is analysed in the context of ASV as a function of model

complexity and for varying quantities of training data. Experiments show that PAT

performs well even when the number of acoustic classes is reduced well below the number

of phones thus minimising the need of accurate ground-truth phonetic transcriptions.

Part of the work in this chapter has resulted in the following publications:

ˆ Soldi, G., Bozonnet, S., Alegre, F., Beaugeant, C., Evans, N. �Short-duration

speaker modelling with phone adaptive training�, in Odyssey - The Speaker and

Language Recognition Workshop, 2014, Joensuu, Finland.

ˆ Soldi, G., Bozonnet, S., Beaugeant, C., Evans, N. �Phone adaptive training for

short- duration speaker veri�cation� in Proc. European Signal Processing Conf.

(EUSIPCO), 2015, Nice, France.
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Chapter 7 - PAT for on-line diarization: a �rst attempt

This chapter presents a �rst attempt to use PAT with the aim of improving short-

duration speaker-modelling in on-line diarization. Due to the unavailability of datasets

transcribed at the phonetic level, multi-speaker audio conversations are simulated

by joining di�erent sentences from the TIMIT dataset. The semi-supervised on-line

diarization system presented in Chapter 6 is used to perform the diarization process.

During the o�-line phase phone-normalised speaker models are trained by transforming

the acoustic features with PAT transforms previously trained. Similarly, in the on-line

classi�cation phase, the acoustic features of the incoming speech segments are phone-

normalised and classi�ed against the phone-normalised speaker models. Although

experiments are performed on simulated data, obtained results con�rm the potential

of PAT for on-line diarization in providing better results with a lower speaker model

complexity and a lower amount of training data, therefore motivating future research

in this particular direction.

Chapter 8 - Conclusions and future work

Finally, this chapter concludes the dissertation and points out some possible future

research problems.



Chapter 2

State of the art

This chapter provides a brief overview of some aspects of speaker diarization techniques

that the thesis aims to cover. For detailed and deep reviews of the current state-of-

the-art speaker diarization techniques, we refer the reader to the works in [5] and

[6].

First, the task of speaker diarization is presented in detail and then followed by

a brief description of main blocks in a typical diarization system. Feature extraction

methods and mathematical techniques for speaker modelling are presented in sections

2.2 and 2.4, respectively. A classi�cation of di�erent diarization systems according to

the type of algorithm used for the segmentation and clustering stage is given from

section 2.5 to section 2.9; Finally, section 2.10 deals with on-line speaker diarization,

which constitutes the main topic of this thesis.

2.1 Speaker diarization

As illustrated in Figure 2.1, speaker diarization aims to answer the question�who

spoke when?" and involves the detection of speaker turns within an audio stream

of maximum duration T in order to determine an optimised segmentation~G and the

grouping together of all same-speaker segments (clustering) in order to obtain an

optimised speaker sequence~S.

Although, di�erent approaches have been presented in the literature to perform

speaker diarization, most of them follow the general structure presented in Figure 2.2.

All the blocks are described in the following:
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Fig. 2.1 An illustration of the speaker diarization task.

ˆ Feature extraction: the audio is parametrized through a set of acoustic features

O extracted from the audio signal. The extraction method should be chosen in

order to have features that are discriminant with respect to the speakers in the

audio.

ˆ Speech Activity Detection (SAD): during this step the audio parametrized

by the acoustic features is segmented in order to detect the boundaries of pure

speech and non-speech regions (music, noise, silence).

ˆ Segmentation: once the acoustic features and the speech segments are obtained

the signal is segmented into acoustically homogeneous regions. The segmentation

aims at �nding the boundaries between di�erent and unknown speakers. An

initial segmentation usually aims at creating initial speech segments where in

each segment is supposed to be present only one speaker.

ˆ Clustering: the clustering stage aims at grouping and merging together the

initial speech segments, obtained from the segmentation step, that are mostly

similar according to prede�ned metrics and are supposed to contain the same

speaker. The speech segments belonging to the same cluster are identi�ed with

a unique cluster identi�er referring to a unique speaker. The set of start and

end times obtained from the segmentation step together with the labels of the

clustering stage provide the �nal output of the diarization system.

Segmentation and clustering are inter-dependent stages and especially in o�-line

speaker diarization systems can be repeated iteratively one after each other in order to

re�ne the diarization output. The output of the clustering stage corresponding to the
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Fig. 2.2 General structure of a speaker diarization system.

speakers present in the audio could be given as an input to the segmentation stage to

re�ne the boundaries of the speaker segments and the re�ned segmentation stage could

be fed into the clustering stage until an optimal solution is obtained. The clustering

and segmentation steps could also be followed by a re-segmentation aiming at re�ning

the boundaries of the obtained speaker clusters.

Mathematically, the problem of speaker diarization can be formulated in the

following way:

�
~S; ~G; ~�

�
= arg max

S;G;�: S2 �(�)
P(S; GjO); (2.1)

� arg max
S;G;�: S2 �(�)

P(OjG; S); (2.2)

where ~� represents an optimised speaker inventory,~S and ~G represent an optimised

speaker sequence and segmentation respectively,�(�) is the set of possible speaker

sequences andO is the set of acoustic features.

The detection of silence, background noises, music, acoustic events or more generally

non-speech events are usually needed as a preliminary step to perform actual speaker

diarization, and it is usually included in most of speaker diarization systems. However,

the algorithms needed to detect these acoustic events usually di�er from the ones

needed to detect and cluster speakers speech segments. In this thesis, we thus focus on

techniques used to classify di�erent speakers in an audio signal rather than speech/non-

speech or other acoustic events.

2.2 Features

In order to segment and cluster the audio into portions corresponding to di�erent

speakers, the audio signal must be parametrised by acoustic features that are able to

separate and highlight speaker discriminative characteristics. The most popular and
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common features used for the task of speaker diarization are Linear Frequency Cepstral

Coe�cients (LFCC) and Mel Frequency Cepstral Coe�cients (MFCC). The main

objective of LFCC and MFCC features is to model the vocal tract of the speakers while

separating it from the pitch. Figure 2.3 illustrates the procedure for the extraction of

LFCC features given an audio stream. The audio is processed with moving overlapping

windows of a �xed maximum size. For each window, the log-magnitude of the Fourier

transform of the audio signal in the window is computed. Then, the inverse Fourier

transform is re-computed and only the �rst N coe�cients, which represent the vocal

tract, are retained.

Figure 2.4 illustrates instead the procedure to extract the MFCC features from

an audio signal. The main di�erence with the LFCC features is that the power

spectrum obtained after the Fourier transform is mapped above onto the mel-scale,

using triangular overlapping windows. The logs of the powers at each of the mel-

frequencies are then taken and the discrete cosine transform is applied to them rather

than the inverse Fourier transform.

Both MFCC and LFCC parametrisations are known to obtain state-of-the art

performance in speaker diarization. However, the fact that these features have been

employed successfully also in the speech recognition task, where the speaker information

is less relevant, has motivated researchers to explore more speaker discriminant features.

In [7] a set of features composed by energy, pitch frequency, peak-frequency centroid,

peak-frequency bandwidth, temporal feature stability of the power spectra, spectral

shape and white noise similarities is used for segmenting the audio into di�erent classes,

including speech, silence, noise and crosstalk. The same features are as well used to

identify speakers in the obtained speech segments.

MFCC and LFCC are short-term features, meaning that they are extracted from

short windows of time. Other prosodic and long-term features have been proposed in

literature with the aim of improving speaker characterization [8]. In [9] Friedland et al.

studied a total of seventy features including prosodic and long-term features. Although

it is shown that certain statistics extracted from the pitch and formant estimation could

be used together with MFCC features in order to slightly improve the performance

of speaker diarization, the gain was not signi�cant enough to take these features into

consideration.
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Fig. 2.3 An illustration of how Linear Frequency Cepstral Coe�cients (LFCC) are
computed.
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Feature normalisation techniques, such as feature warping [10] have been also

explored in order to reduce channel variability and background noise. Feature warping

was applied successfully in [11] and [12]. Despite this, Kenny et al. have shown in [13]

that the performance of a speaker diarization system for telephone conversations is

better when non-normalised features are used.

Other features not directly related to acoustic parameters of the speakers present in

a given audio signal have shown to help speaker diarization under certain conditions. In

environments where more than one microphone is available to capture the audio signal,

the time-delays between microphones, which are related to the position of the speakers,

have shown to improve speaker diarization performance, as far as the speakers remain

static [14].

2.3 Speech/non-speech detection

The main scope of speech activity detection (SAD) system is to identify speech and non-

speech regions in an audio stream. An e�cient SAD is critical for the performance of a

speaker diarization system as the errors performed during this process will contribute

in two di�erent ways to the output of a diarization system: missed-speech errors

and false-speech errors. The missed speech errors are caused by excluding speech

regions and by classifying them as non-speech, thus providing less speech data useful

to model the speaker clusters and thus resulting in poor speaker clustering. On the

contrary, false-speech errors are caused by mistakenly classifying non-speech regions as

speech regions, thus introducing impurities when modelling the speaker clusters. It is

thus evident, the need of an e�cient SAD system as a preprocessing step before the

segmentation and clustering stage.

The problem of SAD has been largely studied in various situations such as speech

enhancement, recognition and coding [15] . The main algorithms can be classi�ed into

three categories: energy-based, model-based and hybrid approaches which are listed in

the following.

2.3.1 Energy-based SAD algorithms

Energy-based SAD algorithms detect speech/non-speech regions according to thresholds

on the short-term spectral energy [16, 17]. These methods do not need any type of
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labelled data and are mostly employed in telephone speech conversations. However, in

scenarios with a variety of acoustic events such as noise, music, channel variation, e.g.

meeting conversations or broadcast news, characterized by high energy-levels, these

methods are not able to provide satisfying performance [18, 19].

2.3.2 Model-based SAD algorithms

Model-based SAD algorithms use pre-trained Gaussian Mixture models (GMM) on

previously labelled speech and non-speech data in order to identify classes within

non-labelled data [20]. The pre-trained GMM models can also be adapted iteratively to

the test data [21]. Usually, GMM models are trained for both speech and non-speech

classes and acoustic features in the test data are iteratively realigned to the models

through Viterbi decoding. A minimum speech segment duration can be applied in

order to avoid extremely short-duration speech segments. Transitions between speech

and non-speech models could also be modelled with the aid of a two-state HMM model.

In some cases, di�erent GMM models can be trained in order to model other acoustic

events such as music, noise, speech overlapped to music, speech overlapped to noise,

silence. Gender and channel dependent models have been proposed in other works in

order to improve the SAD output. The main drawback of using multiple classes is

the need of su�cient training data to train all the models and generalisability to new

environments. Other discriminant classi�ers based on Linear Discriminant Analysis

(LDA) [ 22], Support Vector Machines [23] and multi-layer perceptrons (MLPs) [24]

have also been proposed in literature. In the latter case, the output layer is used to

obtain class posterior estimates as scaled likelihoods in the Viterbi decoding process to

perform SAD.

2.3.3 Hybrid SAD algorithms

In order to avoid the issue of generalisability of previously trained models to new data

and alleviate the need of labelled training data, hybrid approaches to SAD have been

proposed [16, 25]. These methods combine both an energy-based SAD algorithm and

a model-based SAD algorithm to perform speech/non-speech detection. Initially, an

energy-based SAD is used to detect silence regions in an totally unlabelled audio. Then,

the labelled speech regions with highest con�dence are used to train new speech/non-
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speech models or adapt existing ones that will be later used with a speech/non-speech

model-based SAD system.

In the next section, we will present the main mathematical techniques that are

used to model the speaker clusters during the segmentation and clustering stage.

2.4 Speaker modelling techniques

Speaker diarization involves the mathematical modelling of speakers in the audio, in

particular during the segmentation and clustering stage. Gaussian Mixture Models

(GMM) have been largely explored in speaker diarization and are mostly used to

model the variability of speech and speakers. Hidden Markov Models (HMM) have

been used together with GMM models to model the transitions among speakers. In

recent years, more sophisticated techniques such as Joint Factor Analysis and Total

Variability methods, that have become the state-of-the-art in speaker veri�cation, have

been successfully applied to speaker diarization.

2.4.1 Gaussian Mixture Models

A Gaussian Mixture Model (GMM) is a generative model widely used in speaker

diarization as well as speaker veri�cation. It is a semi-parametric probabilistic method

that o�ers the advantage of adequately representing speech signal variability. The

distribution of a GMM model � modelling D-dimensional acoustic feature vectors is

given by a convex combination of a �xed numberK of Gaussian distributed components.

The likelihood of observing an acoustic feature vectoro given this model� is computed

according to the following equation:

P r (oj� ) =
KX

k=1

wkN (o; � k ; � k) (2.3)

wherewk are the components weights such that
P K

k=1 wk = 1, � k and � k are the

mean and the covariance matrix of thek-th Gaussian component.

Practical speaker diarization systems use diagonal covariance matrices instead of

full covariance matrices to de�ne GMM models. Provided a set of independent acoustic

feature vectorsO = o1; : : : ; oL , the log-likelihood of the sequenceO, given the GMM
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model � , is the sum of the log-likelihoods of each feature vectorol given that model.

The corresponding log-likelihood is thus:

logPr (Oj� ) =
LX

l=1

logP r (ol j� ) (2.4)

The Expectation Maximization (EM) algorithm [26] is used to learn the GMM

parameters based on maximization of the expected log-likelihood of the data. In

most speaker diarization systems, we do not have enough data to train a speaker-

dependent GMM model using the EM algorithm, especially when dealing with short

speech segments. To overcome these di�culties, a more general speaker-independent

GMM Universal Background Model (UBM) can be trained, under the assumption that

this model will adequately describe the underlying characteristics of a large speaker

population. Generally, the UBM is trained on a large speech dataset with di�erent

number of speakers. The speaker-dependent GMM model is then derived from the

UBM model by Maximum A Posteriori (MAP) adaptation, a technique introduced in

the next subsection.

2.4.2 MAP adaptation

In most cases data is typically too scarce to warrant reliable EM estimates of speaker-

dependent GMM models. In contrast, the generally large amounts of data used in

estimating the speaker-independent UBM allows this model parameters to serve as an

appropriate starting point to derive speaker-dependent models.

Accordingly, the parameters of a speaker-dependent models are determined via

Maximum A Posteriori (MAP) adaptation [ 27] of the initial parameters of the prior

model (UBM), using the available speaker-dependent acoustic features. By virtue

of the typically limited amount of corresponding data, the resulting MAP adapted

parameters will tend to be much more reliable than their maximum likelihood trained

counterparts (EM-algorithm).

Since typical on-line diarization has to deal with the on-line learning and adaptation

of speaker models with short-duration speech segments, MAP adaptation constitutes

a fundamental wheel of the unsupervised and semi-supervised systems proposed in

Chapter 4 and 5, respectively. Conventional o�-line MAP adaptation is described

in detail in Chapter 4, Section 4.1.1. Derived sequential and incremental versions,
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optimised for on-line diarization, are instead described in Chapter 4, Section 4.1.2 and

Chapter 5, Section 5.2.1 respectively.

2.4.3 Joint-Factor analysis

Joint-Factor analysis approaches are based on the idea that a speaker and channel

dependent GMM model obtained by MAP adaptation of a UBM model of a numberK

of Gaussian components and parametrized by a feature space of dimensionD, can also

be interpreted as a single super-vector of dimensionKD generated by concatenating

all the means of each Gaussian component and a diagonal super covariance matrix of

dimensionKD � KD generated by respectively concatenating (on its diagonal) all the

diagonal covariances of each Gaussian component.

The main assumption on which the theory of Joint-Factor Analysis lies is that a

high-dimensional speaker super-vector can live in a lower-dimensional subspace. In

particular, a speaker related super-vectorM dependent on a particular channel can

be broken into the sum of two components super-vectors as follows:

M = s + c (2.5)

where super-vectors depends on the speaker and super-vectorc depends on the

channel.

Moreover, one can write:

s = m + V � y + F � z (2.6)

c = U � x (2.7)

whereV and U are two-low rank matrices that represent the lower dimensional

subspaces in which respectively the speaker and channel variations lie. Lastly,m is

the channel and speaker independent super-vector that can also be interpreted as the

super-vector derived by the general speech UBM model when stacking the means of

all his Gaussian components, whileF is a diagonalKD � KD matrix that serves

a purpose similar to that of MAP adaptation. In particular, it models the residual

variabilities of a speaker that are not captured by the matrixV .

The exact details of this theory are beyond the scope of this thesis, but a thorough

explanation can be found in [28]. The terminology Joint Factor Analysis comes from
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the fact that there are three latent variables to be estimated (x ,y , and z) jointly.

Traditional Factor Analysis usually involves only one latent variable.

2.4.4 iVectors-based approaches

The Joint-Factor analysis speaker modelling approach provides powerful tools to model

both the speaker and channel variations. However, its intrinsic complexity both in the

theoretical and implementation sides motivates for a more simpli�ed solution. The

total variability approach suggests to jointly model both the channel and speaker

related variabilities by means of a unique lower dimensional subspace.

In particular a speaker and channel dependent super-vectorM can be decomposed

as:

M = m + T � w (2.8)

where T is a low-rank rectangular matrix, referred to as Total Variability Matrix,

that represents the new total variability space andw is a low-dimensional random

vector with a Gaussian normal distributed priorN (0; I ). The components ofw are

referred to as total factors. We refer to iVector as the posterior expectation ofw . For

some speech utterancesu, its associated i-vectorw u can be seen as a low-dimensional

summary of the distribution of the acoustic features in the utteranceu. iVectors have

been employed successfully in the �eld of speaker veri�cation reaching state-of-the-art

performance.

2.4.5 Binary keys approaches

Speaker modelling techniques based on binary keys have been proposed initially in the

context of speaker veri�cation, e.g. [29]. This speaker modelling technique is based

on the idea of representing a set of acoustic featuresO = [ o1; : : : ; oN ], with a unique

binary key vector b = [ b(1); : : : ; b(M )]; b(i ) = f 0; 1g. This representation facilitates

the comparison among speech utterances as the actual comparisons are reduced to

simple binary operations. In order to compute binary key vectors, a generalisation

model of a UBM speech model have been introduced: the binary-key background

model (KBM model). The KBM model is a derived GMM model that aims to represent

all the phonetic and speaker speci�cities and characteristics. The KBM model is a

set of M discriminative Gaussian models with the aim of covering and modelling the
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acoustic space of the speakers. Initially, the KBM model was obtained by concatenating

the Gaussian components of di�erent speaker models (Anchor Models) from a large

database and by choosing the most discriminative Gaussian model according to some

metrics. Setting an elementb(i ) = 1 indicates that the i -th Gaussian of the KBM

model coexists in the acoustic space of the data being modelled. In order to obtain a

binary key, for each acoustic feature vectoroi the Ng Gaussian models of the KBM

model with the highest likelihood are selected and stored. Then, the count of how

many times each Gaussian model has been selected across all the acoustic feature

vectors O is registered in a cumulative vectorCV = [ CV(1); : : : ; CV(M )]. Finally,

the binary key is obtained by setting to1 the positions with the highest value in the

cumulative vector CV . Intuitively, the binary key keeps the Gaussian components of

the KBM model that best model the acoustic space of data.

When, two speech utterances from two di�erent speakersu1 and u2 need to be

compared, binary keys are computed for both utterances and compared through simple

and computationally e�cient binary metrics. A simple similarity metric is de�ned for

instance as:

S(bu1 ; bu2 ) =
1

M

MX

i =1

(bu1 (i ) ^ bu2 (i )) (2.9)

where^ indicates the logic operatorAND between any two bits. If the utterancesu1

and u2 come from the same speakers, the respective binary vectors would share similar

Gaussian components, thus obtaining a high similarity score in equation(2.9). On the

contrary, when the utterances come from di�erent speakers, the binary vectors do not

share the same Gaussian components, thus obtaining a low similarity score in equation

(2.9).

This new speaker modelling technique presents several advantages:

ˆ it permits to represent a sample utterance and a reference utterance by compact

binary vectors,

ˆ it allows the comparison of a sample utterance and a reference utterance by

computational e�cient similarity operations, for instance (2.9),

ˆ the speaker modelling is shifted towards the extraction of binary keys provided

an utteranceu and the KBM model, rather than the training of GMM speaker

models.
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2.5 Segmentation and clustering

State-of-the-art o�-line diarization approaches can be mainly classi�ed according on

how the segmentation and clustering stages are performed in two groups: bottom-up

and approaches.

ˆ Bottom-Up: Bottom-Up hierarchical clustering or agglomerative hierarchical

clustering (AHC) methods starts with a large number of speaker clusters or

speech segments (the �nest partition), each supposed to contain a single speaker

and iteratively merge the most similar clusters until a stopping criterion is met.

This kind of a technique is the most popular in speaker diarization systems for

the fact that is really straight-forward to apply to a set of speech segments output

of a speaker segmentation system. Usually a distance matrix, containing the

distances within all the possible cluster pairs is computed and the pair of clusters

with the lowest distances are merged. The distance matrix is then updated

according to the new set of clusters. The whole scenario is repeated iteratively

until some stopping criterion is reached, upon which it should ideally remain one

cluster per speaker.

ˆ Top-Down: Top-down hierarchical clustering or divisive hierarchical clustering

(DHC) methods are much less common than the counterpart bottom-up systems

in literature. However, recent works have shown that these systems could reach

comparable performance and with a less computational e�ort. Top-Down systems

are initialized with a small number of clusters (usually a single one) containing

several speech segments from di�erent speakers. The initial clusters are then

iteratively split until a stopping criterion is met and the optimal number of

speakers is reached.

The main di�erence between Top-Down and Bottom-Up approaches is visualized in

Figure 2.5.

2.6 AHC approaches

AHC approaches (also referred to as bottom-up approaches) are the most common

approaches in literature for o�-line diarization. Generally they consists of dividing

the audio stream in a higher number of initial speech segments considered as pure as
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Fig. 2.5 Di�erences between top-down and bottom-up approaches. Bottom-up methods
start from a high number of speaker clusters and continue merging them till reaching
the optimal number of clusters. On the opposite, top-down methods start from one
speaker cluster modelling the entire audio and divide it iteratively till reaching the
optimal number of clusters.

possible and cluster iteratively the segments according to a similarity measure until a

stopping criterion is reached. Bottom-up methods can be further distinguished on the

speaker modelling technique used in order to model the speaker clusters.

2.6.1 HMM-GMM based approaches

Bottom-up approaches based on HMM-GMM modelling consists of modelling the

speakers by means of GMM models with di�erent number of Gaussian components.

Transitions between speakers are modelled by means of Hidden Markov Models (HMM).

Two systems that are well representative are the ICSI system proposed in [30] and the

system proposed by I2R as published in Nguyen et al. [31]. Main di�erence between

the two systems is the distance chosen to determine when two speaker clusters need to

be merged. In the ICSI system a Bayesian Information Criterion (BIC) based-metric

is used while in the I2R system a Generalized Likelihood Ratio (GLR) metric is used.

In the following, the two systems will be brie�y described and summarised.
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ICSI diarization system

The speech regions output of the SAD process are initially split into a high number of

clustersN which exceeds the number of speakers. A Hidden Markov Model is then

built with a number of states equal to the number of initial clusters. To each state is

then associated a simple Gaussian model trained by EM algorithm. Several iterations

of model training and Viterbi alignments are then performed in order to re�ne the

initial segment boundaries and speaker models.

The metric used to de�ne the similarity between speaker clusters is meant to

describe the inter-cluster distance and is the� BIC distance. Given two speaker

clustersC1 and C2, the BIC metric aims to compare two hypotheses:

ˆ H1 hypothesis under whichC1 and C2 corresponds to two di�erent speakers

ˆ H2 hypothesis under whichC1 and C2 corresponds to the same speaker

Mathematically, the � BIC distance can be expressed as in the following:

� BIC = BIC (H1) � BIC (H 2)

= N1;2log(j� 1;2j) � N1log(j� 1j) � N2log(j� 2j)

� �
1
2

(d +
1
2

d(d + 1)) log(N1;2) (2.10)

where� is a tunable parameter,N1 and N2 are respectively the number of acoustic

features for clusterC1 and C2, N1;2 corresponds simply to the sum ofN1 and N2, � 1; � 2

are respectively the covariances of clusterC1 and C2, � 1;2 is the joint covariance of the

joint clusters C1 and C2.

The ICSI system utilizes a slightly di�erent version of the BIC metric, as described

in [32], where there is no presence of the tunable parameter� . This is achieved by

ensuring that, for any given BIC comparison, the di�erence between the number of

free parameters in the two hypotheses is zero.

During the clustering stage of the diarization system, the� BIC distance is cal-

culated for each pair of clusters and the pairs with the highest similarity are merged.

After the merging of two clusters, the acoustic features are realigned through Viterbi

realignment. Cluster merging and Viterbi realignment are repeated until the similarity

between any pair of clusters is lower than a �xed threshold.
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I2R diarization system

In the I2R system the speech regions output of the SAD process are split into 30 initial

homogeneous clusters and on each of them a GMM model of 4 components is trained.

Each cluster is then split into small segments of 500 milliseconds and only the 25% of

segments that �ts best the corresponding GMM models are considered as classi�ed,

while the 75% of the worst-�tting segments are then gradually reassigned to each model

through Viterbi realignment and adaptation.

During the clustering phase, performed through agglomerative clustering, the

speaker GMM models are retrained for each cluster with 16 Gaussian components.

The similarity metric used to compare two speaker clusters is based on the BIC-like

Information Change Rate (ICR) distance, de�ned as a normalized version of the

Generalized Likelihood Ratio (GLR).

Given two speaker clustersC1 and C2, the metric is de�ned as:

ICR (C1; C2) ,
1

N1;2
log(GLR(C1; C2)) (2.11)

where

GLR(C1; C2) =
P r(O1jH1)P r(O2jH1)

P r(O1;2jH2)
(2.12)

with H1 and H2 corresponding to the same hypothesis described for the ICSI system,

O1 and O2 corresponding respectively to the acoustic features in clusterC1 and cluster

C2 and O1;2 to the union of the features of clusterC1 and C2. Mathematically, if

each clusterC1, C2 and the union of the latter two C1UC2 are modelled by Gaussian

Mixture Models with probability density functions f 1; f 2 and f 1;2, then equation(2.12)

can be reformulated as:

GLR(C1; C2) =
P r(O1jf 1)P r(O2jf 2)

P r(O1;2jf 1;2)
(2.13)

During the clustering process, speaker clusters with highestGLR score are merged,

features realigned through Viterbi decoding and GMM speaker models re-estimated,

until only one speaker cluster is left. All intermediate speaker segmentation and

clustering hypothesis are stored for further processing. The best clustering hypothesis

is then chosen according to a suitable quality metric.
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2.6.2 Information bottleneck approaches

Other AHC diarization systems are based on the information bottleneck (IB) principle

[33]. IB is a non-parametric framework that does not rely on any explicit modelling

of the speaker clusters. Thus, the algorithm does not need to estimate continuously

any GMM model for each of the speaker clusters resulting in lower computational

complexity and faster than real-time systems while still reaching state-of-the-art

diarization performance.

The IB principle is inspired by the Rate Distortion Theory in which a set of variables

X is organized in a set of clustersC by minimizing the distortion between X and

C. Given a set of variablesY relevant to the problem, for example in a document

clustering problem a dictionary of words or in a speech recognition problem a set of

relevant sounds, IB tries to �nd the right clustering C of the data X that conserve the

highest information with the relevant variablesY. The clustersC can be interpreted

as a compressed representation (bottleneck) of the entire dataX , thus the information

contained byX about Y is passed through the bottleneckC. The compressionC should

maintain as much as possible information with respect to the relevant variablesY, thus

maximizing the mutual information I (Y; C), and at the same time be the most compact

coding ofX , thus minimizing the mutual information I (C; X ). Mathematically, the

optimum clustering Ĉ of the input data X is obtained according to the following

maximization problem:

Ĉ = arg max
C

 

I (Y; C) �
1
�

I (C; X )

!

(2.14)

where� is the Lagrange multiplier representing the trade-o� between the amount

of information preservedI (Y; C) and the compression of the initial representation

I (C; X ).

In the context of speaker diarization, after feature extraction and SAD, the acoustic

features are then clustered to obtain a uniform linear segmentation of the audio with

each segment having an average segment lengthTS. The input variables X are then

de�ned as the initial speech segments output of the uniform segmentation. The

relevance variablesY are chosen as components of a GMM model trained initially

on the entire audio �le. The Gaussian components of the estimated GMM models

shares the same covariance matrix trained on the entire audio �le. Once obtained the
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initial segmentation of the audio and the relevance variablesY, the problem (2.14)

can be solved by an agglomerative hierarchical clustering approach. The algorithm is

initialized with an initial number of clusters corresponding to the initial segments. The

segments are then iteratively clustered so that the decrease in the objective function

is minimum. The operation stops when a unique cluster is reached. The optimal

number of clusters is then selected according to a model selection criteria. After, the

optimal number of clusters is selected, a Viterbi-based realignment is performed in

order to re�ne the boundaries of the clusters that were obtained by the initial rough

segmentation.

2.6.3 iVector based approaches

iVector based approaches are the most recent state-of-the-art methods for speaker

diarization. Di�erent o�-line diarization systems based on the iVector speaker modelling

approach reported in Section 2.14 have been proposed in recent years.

An initial work that explored the application of iVector modelling for two-speakers

speaker diarization task is the one by Shum et al. [34]. Provided an audio stream,

SAD is �rst applied to extract the relevant speech regions. Once the relevant regions of

speech are extracted, they are further divided in speech segments of maximum duration

TS. From each of the obtained speech segments an iVector is then extracted. In order to

retain only the most relevant speaker speci�c information Principal Component Analysis

(PCA) is applied to the obtained iVectors in order to reduce their dimensionality. The

reduced iVectors are then length-normalised and clustered through k-Means algorithm

with a cosine-based distance metric. A resegmentation step is further applied in order

to re�ne the initially rough segmentation boundaries using a Viterbi re-segmentation

and Baum-Welch soft speaker clustering algorithm as explained in [13].

This work was then extended in [35] in the case of multi-speakers conversations.

Spectral clustering algorithm [36] is applied in combination with k-Means clustering

algorithm as an heuristic approach in order to determine the number of speakers in the

conversation. Once the number of speakers is determined, PCA is applied to the speech

iVectors to reduce the dimensionality and the reduced iVectors are then clustered

always through k-Means clustering algorithm based on the cosine similarity distance.

A resegmentation step is then applied in the same way as described above.
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In [37] the authors present a complete o�-line diarization system in which the

clustering stage is based on a bayesian variational approach. The advantage of bayesian

modelling approaches is in their natural preference versus simpler models to describe

data and their resistance to over-�tting problems typical of maximum-likelihood

approaches. A variational EM algorithms for Gaussian Mixture Models (VBEM-GMM)

[38, 39] is used in order to cluster the initially extracted iVectors and to determine the

�nal number of clusters.

In another work [40], the authors utilize a bottom-up approach with a PLDA-based

similarity metric [ 41, 42]. The speech segments boundaries are determined through a

BIC metric in order to determine the speaker change points. From the obtained speech

segments, iVectors are then extracted. Speaker segments similarity is based on the

PLDA metric. The merging of speakers clusters stop as soon as the similarity of all

pairs of clusters is lower than a �xed threshold. The �nal number of clusters correspond

to the �nal number of speakers. In [43] the authors propose a denser sampling of the

audio in order to estimate the iVectors using longer speech segments. The audio is

divided into speech segments of duration 1-2 seconds with 500 milliseconds of overlap

with the preceding and following segments and iVectors are then extracted from each of

the speech segments. Analogous to Prazak et al. [40] diarization system, the clustering

is performed according to a PLDA-based similarity metric. The merging process is

terminated as soon as the similarity between any pair of clusters does not exceed a

threshold set analytically through a Bayesian decision process.

2.6.4 Binary feature vectors based approaches

Speaker modelling based on binary keys, described in subsection 2.4.5 represents

a computationally e�cient technique to model speaker clusters. By means of this

modelling technique, the comparison and merging of speaker segments and clusters

typical of bottom-up approaches reduces to the comparison of binary keys through

binary metrics in favour of much more computationally e�cient operations. The �rst

bottom-up agglomerative diarization system based on binary keys was presented by

Anguera et al. [44]. After a conventional initial segmentation of the speech regions,

the initial speaker clusters are modelled through binary keys. Speakers clusters are

iteratively merged by comparing the respective binary keys through simple similarity

metrics. The process is repeated until only one speaker cluster is obtained. The best
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clustering is thus chosen according to some information criteria. In following work in

order to improve the system performance, Delgado et al. [45] have applied techniques

such as Intra-Session and Intra-Speaker Variability (ISISV) compensation, explored

alternative clustering selection methods and a faster way to train the KBM model by

choosing the most discriminant Gaussian models. In another recent work, Delgado et

al. [46] have also proposed to employ cumulative vectors which are compared according

to a cosine distance rather than binary keys in order to preserve more information.

2.7 Divisive hierarchical clustering approaches

Although bottom-up approaches are the most common and di�used o�-line diarization

approaches, top-down or divisive hierarchical clustering approaches have revealed to

reach comparable state-of-the art performance. In contrast with bottom-up approaches,

top-down methods initially model all the speech segments of an audio stream with a

single speaker model and add iteratively new speaker models until the correct number

of speakers is reached and all speech segments are labelled. Only few top-down

systems have been presented in literature [47, 48, 21]. Top-down approaches are more

computationally e�cient than bottom-up approaches and their performance can be

improved through cluster puri�cation [49]. The top-down system developed by LIA-

EURECOM [21] together with the puri�cation stage is utilised as an o�-line baseline

system in this dissertation and its state-of-the-art performance is set as an objective

and goal for on-line diarization. The system is described thoroughly in Chapter 3,

Section 3.4.

2.8 Integer Linear Programming based approaches

In [50, 51] the authors propose a new approach to replace the iterative bottom-up

approach with a global process. The clustering process is formulated as a global Integer

Linear Programming (ILP) and based on the iVector speaker modelling paradigm. The

problem can be e�ciently solved with any desired ILP solver. Each speech segment

output of the SAD process is parametrized by an iVector for a total ofN speech

segments. The aim is to cluster theN iVectors into an optimal K number of clusters.

The main assumption is that an iVectorn can belong to clusterk if and only if the
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distance between the center of the cluster (itself de�ned as an iVector) and the iVector

is less than a set threshold. The goal consists of minimizing the number of clusters so

that all the iVectors belong to only one cluster. Under this assumption, the problem can

thus be formulated as a global ILP problem. The objective functionz is to minimize

the number of clustersK along with the dispersion of the iVectors within each cluster

and is expressed as:

z =
NX

k=1

yk +
1
F

NX

k=1

NX

n=1

d(w k ; w n )xk;n (2.15)

where:

ˆ yk is a binary variable indicating whether clusterk is selected,

ˆ xk;n indicates whether iVectorn belongs to clusterk,

ˆ d(w k ; w n ) is the distance between the center of clusterk and the iVector n,

ˆ
P N

k=1
P N

n=1 d(w k ; w n )xk;n calculates the sum of the distances between the center

of cluster k and the iVectors attached to that cluster,

ˆ
P N

k=1 yk calculates the number of clusters in the problem,

ˆ F is a normalization factor to weights the subparts of equation (2.15).

As in reality the center of a cluster is itself an iVector, the distance between the

center of a clusterk and the iVector n reduces itself to the computation of the a distance

between the two iVectors. The speaker clustering problem can be thus rewritten as:

minimize z

Subject to
NX

n=1

xk;n = 1; 8k; (2.16)

xk;n � yk � 0; 8k; 8n; (2.17)

d(w k ; w n )xk;n � �; 8k; 8n; (2.18)

xk;n 2 0; 1; 8k; 8n;

yk 2 0; 1; 8k

Equation (2.16) ensures that all iVectors have been assigned to one cluster while

equation (2.17) ensures that if iVector n is assigned to clusterk, then the cluster
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k is selected. Finally, equation(2.18) guarantees that an iVectorn can be selected

from a cluster k if the distance is lower or equal to a �xed distance� . This global

clustering formulation has been also employed by Delgado et al. [46] with binary

keys and cumulative vectors to improve the speed of a binary key cross-show speaker

diarization system.

2.9 Hierarchical Dirichlet process hidden Markov

model based approach

Non-parametric bayesian diarization solutions have been also proposed in literature

by combining Hierarchical Dirichlet process (HDP) with HMM models. In 2006 Teh

et al. [52] proposed initially the use of stochastic HDP to de�ne a prior distribution

on transition matrices over a countably in�nite number of states of an HMM model.

The resulting HDP-HMM based system is completely data-driven and the posterior

distributions over the di�erent states is inferred. Predictions of the number of states

can be performed by averaging over di�erent models of varying complexity. This work

was then extended in [53] in order to allow a more robust learning of the speaker

change dynamics and to provide an e�cient and elegant way to estimate the number

of participating speakers in a given audio stream.

2.10 On-line speaker diarization

All the speaker diarization systems presented in the previous sections are o�-line and

require the entire audio from the beginning till the end. However, with the increasing

popularity of powerful, mobile smart devices, there is now a growing interest to develop

on-line speaker diarization systems.

As illustrated in Figure 2.6, on-line speaker diarization analyses the audio available

only up to a certain time � to determine�who is speaking now?" . On-line diarization

system determines which speaker is currently active, either a new one or an already

encountered one, and its interval of activity. More formally, for each time� , the system

provides an optimised speaker segmentation~G� and an optimised speaker sequence~S�

up to time � .
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up t"  time !  < !
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sequence up t"  time !  < !

S3 NOW ?

Fig. 2.6 An illustration of the on-line speaker diarization task.

Due to their computational complexity and high latency, the existing state-of-art

diarization techniques described in previous sections are not easily adapted to on-line

processing. Hence, there is an interest to develop entirely new, on-line approaches.

On-line diarization still represents a challenging problem and its performance is pretty

far from state-of-the-art o�-line diarization systems.

The main reasons why on-line diarization represents such a challenging task might

be synthesized in the following points:

ˆ segmentation and clustering have to be performed in real-time,

ˆ segmentation and clustering have to be performed by processing sequentially

short speech segments in order to maintain a low latency with the risk of

misclassi�cation errors and bad updates of the speaker models,

ˆ re�ning iteratively the segmentation boundaries and clustering on the past speech

might be useful to estimate better models used to classify incoming speech

segments, but with the drawback of increasing the latency of the system,

ˆ on-line diarization is thus a trade-o� between accuracy and system latency.

In contrast to the vast amount of research e�ort put in developing o�-line diarization

systems, only few works in literature have addressed the problem of on-line speaker

diarization.

The problem of on-line diarization has been solved e�ciently with the aid of

multiple microphones and cameras. For example, in [54] the authors have developed

a system that continuously captures the utterances and face poses of each speaker

using a microphone array and an omni-directional camera positioned at the center

of the meeting table. Through a series of advanced audio processing operations, an
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overlapping speech signal is enhanced and the components are separated into individual

speakers channels. Then the utterances are sequentially transcribed with the aid of a

low-latency speech recognizer. In parallel with speech recognition, the activity of each

participant (e.g., speaking, laughing, watching someone) and the circumstances of the

meeting (e.g., topic, activeness, casualness) are detected and displayed on a browser

together with the transcripts.

The problem of on-line diarization involving only two speakers has also been

explored and even in this case e�cient solutions have been proposed. For example, in

[55] the authors present an on-line speaker diarization system for two-wire telephone

conversations, thus involving only two speakers. Overlapping speech segments are

parametrised by means of supervectors. A initial pre�x of the audio stream is diarized

o�-line in order to train the initial speaker models, that are iteratively updated during

the next on-line phase. The length of the pre�x depends on the quality of the initially

trained speaker models evaluated according to speci�c metrics. In a more recent

work [56] an on-line speaker diarization based on iVectors is proposed. Speech segments

are extracted according to the groundtruth and from each of them an iVector is

extracted. Since most of the speaker information resides in the �rst dimensions of

iVectors, the proposed system aims to estimate and update iteratively an on-line

PCA transformation for the iVectors following a MAP based adaptation scheme. The

transformed iVector at time n is then compared to all the previous iVectors up to time

n � 1 and classi�ed according to the cosine metric.

Scenarios in which multiple speakers are involved and only a single microphone

is available remain the most challenging ones. Moreover, the majority of on-line

diarization systems recently proposed have focused on applications involving plenary

speeches and broadcast news, where speaker turns are longer and there is less chance

of overlapping speech. The �rst work worth mentioning is the one from Markov et al.

[1]. In this work the authors describe a complete on-line speaker diarization system.

2.10.1 On-line segmentation and clustering

In Markov et al. [1], the authors present a complete on-line diarization system. The

authors use a standard model based approach for the SAD stage. Non-speech events

are represented by a single GMM model, while speech is modelled with two gender-

dependent GMM models (male and female). For each acoustic feature, non-speech
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and speech likelihoods are processed with two di�erent median �lters and according to

their output features are assigned to being speech or non-speech. Start and end of a

speech segment are then decided according to heuristic rules. Each speech segment is

then classi�ed according to the gender in a similar way as it is done for speech and

non-speech.

Speaker modelling is based on GMM models. In order to decide if a speech segment

i , parametrized by a set of acoustic featuresO i , is coming from a new speaker or one

of the speakers already in the database, a testing hypothesis problem that results in a

likelihood ratio is formulated as follows:

O i 2

8
><

>:

Sold; if LR (O i ) > �

Snew ; if LR (O i ) < �
(2.19)

where Sold is the class corresponding to the old speakers whileSnew to the new

speakers and� a �xed pre-de�ned threshold.

The likelihood ratio LR (O i ) is de�ned as follow:

LR (O i ) =
P r(O i jSold)
P r(O i jSnew )

(2.20)

wherePr(O i jSold) is the highest likelihood of the speech segment against the old

speaker models whileP r(O i jSnew ) is the highest likelihood of the speech segment

among the general male and female GMM models. In order to adapt and train the

new speaker models the authors utilize an incremental variant of the EM algorithm.

In their next work Markov et al. [2], the likelihood ratio used to detect new speakers

is re�ned in order to reduce the threshold variability due to the di�erent number of

speakers and to the gender by normalizing it in the following way:

LR norm (O i ) =
LR (O i ) � � L

� L
(2.21)

where � L and � L are the mean and standard deviation of the likelihood ratios

that can be initially estimated externally on a development dataset and later adapted

on-line on the current audio.

Another work which has presented an on-line diarization system similar to Markov's

one, above described, is the work Geiger et al. [3]. The main di�erences are the database
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used and the usage of the MAP adaptation technique, introduced in subsection 2.4.2

rather than the incremental EM algorithm to update or introduce new speaker models.

The authors develop an on-line diarization system for broadcast news databases.

Initially, general speaker-independent GMM models for male and female speakers,

music and non-speech related audio are trained on an external train dataset. Speech

segments obtained after performing SAD are split into shorter segment according to a

maximum duration TS and are classi�ed on-line.

For each segmenti , parametrized by a set of acoustic featuresO i , the likelihoods

against the GMM models in the repository are calculated. If the highest likelihood

is obtained against the female or male GMM models then a new speaker model is

obtained by MAP adaptation of the corresponding gender model with the acoustic

featuresO i . The obtained speaker model is added to the repository of the GMM

models and utilized to classify the next incoming speech segments, while the current

speech segmenti is labelled according to the new speaker model.

On the contrary, if the highest likelihood is obtained against one of the speaker

models previously introduced, the corresponding speaker model is updated by MAP

adaptation using the set of acoustic featuresO i in the speech segmenti . The segment is

then labelled according to the detected speaker model. Finally, if the highest likelihood

as been obtained against the music or non-speech models the segment is classi�ed

as music or non-speech and the corresponding model is always updated by MAP

adaptation as in the other cases. At the end of the process, the audio will be labelled

according to the number of speakers detected, music and non-speech.

Both, the previous systems are mainly based on a generic speech/non-speech

segmentation where speech segments are classi�ed according to generic male and female

GMM models and speaker decisions are made at the end of each speech segment, output

of the SAD process. In Oku et al. [57], the authors makes use of more sophisticated

GMM models that model phonetic content of the audio. A low-latency, on-line speaker

diarization system that exploits the phonetic information is developed in order to

estimate more discriminative speaker models. Phone boundaries detected using a

phone recognizer system are considered as potential speaker turns. Acoustic features

are initially clustered into prede�ned acoustic classes and GMM models are trained

with the same number of components as the number of acoustic classes. New speakers
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are detected and clustered by using a delta-BIC distance to detect the speaker changes

at each phonetic boundary.

The above described systems make use of the information only present in the

incoming speech segments in order to perform classi�cation and update the speaker

models. However, if the incoming speech segments are of short duration, the information

contained might not be enough to classify reliably the speech segments and to reliably

update the speaker models. Thus, other work presented by Vaquero et al. [58] sought

to utilize the state-of-the-art o�-line diarization system proposed by ICSI [59] in

order to continuosly re�ne the segmentation from the beginning of the audio up to a

certain point and to update reliably speaker models used by the on-line classi�cation

of incoming speech segments.

An initial o�ine diarization stage is used to learn initial speaker models. As soon

as initial speaker models are available, an on-line speaker identi�cation system starts

to classify the incoming speech segments of a certain �xed duration according to a

maximum likelihood principle. The o�-line diarization system runs always in parallel

and in the background to diarize the audio available from the beginning up to a

certain time Ti . The output labels are used to train new speaker models that will be

then available to the on-line speaker identi�cation system. The proposed system is

illustrated in Figure 2.7. As it is possible to observe, performance is strictly dependent

on the latency and accuracy of the o�-line process in providing the labels to train new

speaker models. Higher is the latency, higher will be the time needed by the on-line

identi�cation system to identify new speakers in the audio.

2.11 Summary

This chapter has presented an overview of the state-of-the-art in speaker diarization,

which is mainly represented by o�-line speaker diarization systems. These systems

are characterised by high computational complexities and latencies. However, driven

by the spread of smart objects, smart-phones and always listening sensors, on-line

speaker diarization systems have received a growing interest. Despite this, the amount

of proposed real-time diarization systems is minimal compared to o�-line diarization

systems. Moreover, the majority of on-line diarization systems has focused on the less

challenging broadcast news or plenary speeches scenarios. These reasons motivate the
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aim of this dissertation in developing an e�cient on-line speaker diarization system

to support practical applications. Next chapter 3 will describe the main metric and

datasets used for the development and evaluation of the proposed on-line speaker

diarization systems presented in this dissertation.



Chapter 3

Metric and databases

In this chapter, the diarization error rate (DER) metric, the databases and the

type of acoustic features used for the experimental work in this dissertation are

described. As already mentioned, the majority of work in on-line diarization has been

mainly addressing broadcast news scenarios and plenary speeches. These scenarios

are characterised by longer speaker turns and lower spontaneity. Even though the

development of an e�cient on-line diarization system is mainly motivated by the

increasing interest in the IoT and the spreading of speech-based context awareness

applications, there are still no databases of recordings suited for these kind of emerging

applications. At present, meeting recordings represent the most suitable data on which

to develop an e�cient on-line diarization system. The meeting recordings utilised for

on-line diarization in this dissertation are amassed from the set of NIST RT corpora

which were created for the NIST RT evaluations.

Finally, since this dissertation entails also the problem of phonetic variation, the

TIMIT database used for the development and optimisation of PAT is also described.

The remainder of this Chapter is organised as follows: section 3.1 describes the

diarization error rate metric used to measure the performance of on-line diarization.

Section 3.2 brie�y describes the NIST RT evaluations while section 3.3 provides an

overview of the NIST RT corpora and the compiled datasets used for on-line diarization

experiments. O�-line diarization baseline system is presented in section 3.4. Finally,

the TIMIT dataset is described in section 3.5.
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3.1 Diarization error rate (DER)

Diarization Error Rate (DER) is a metric to assess the performance of a speaker

diarization system introduced by NIST for the RT evaluations. It is measured as the

fraction of time that is not correctly attributed to a speaker or to non-speech. The

standard diarization output contains an hypothesized sequence of speakers including

the start and end time of each speech segment with a speaker label. The main purpose

of speaker labels is to identify multiple interventions of the same speaker but without

necessarily re�ecting the real speaker identities. The quality of the output hypothesis

is estimated by comparison to the ground-truth reference in order to obtain the overall

Diarization Error Rate (DER). The DER score error can be decomposed into errors

coming from three di�erent sources:

ˆ Speaker error (SpkErr): percentage of speech which has been assigned to the

wrong speaker;

ˆ False alarm speech (FA): percentage of speech present in the hypothesis but

not in the ground-truth;

ˆ Missed speech (MS): percentage of speech in the ground-truth which is not

present in the hypothesis;

The DER is the sum of the above mentioned errors:

DER = SpkErr + MS + FA (3.1)

More precisely and according to a standard dynamic programming algorithm de�ned

by NIST, the DER score can be computed formally as:

DER =

P
i

�
TR

i �
�
max

�
N R

i ; N S
i

�
� N C

i

��

P
i (TR

i � N R
i )

(3.2)

where TR
i is the duration of the i -th reference segment, and whereN R

i and N S
i

are respectively the number of speakers according to the reference and the number of

speakers contained in the diarization hypothesis.N C
i is the number of speakers that

are correctly matched by the diarization system. As it can be seen from Equation(3.2),

the DER is time-weighted meaning that it attributes less importance to speakers whose
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overall speaking time is small. When evaluating performance, a collar around every

reference speaker turn can be de�ned which accounts for inexactitudes in the labelling

of the data. All the on-line diarization experimental results in this dissertation are

computed by applying a collar of 25 milliseconds.

3.2 NIST RT evaluations

In the years 2004, 2005, 2006, 2007 and 2009, benchmark evaluations have been

organised by NIST in the context of the Rich Transcriptions (RT) campaigns. The

main aim of these evaluations was to facilitate the annotation and transcription of

speech data by means of speaker diarization. The RT evaluations have revealed to

be instrumental for the assessment of the state-of-the-art in speaker diarization by

providing standard evaluation protocols, performance metrics and common annotated

datasets. Although the initial RT evaluations addressed mainly broadcast news and

telephone conversations scenarios, the latest RT evaluations have been focusing on

meeting data characterised by a spontaneous speaking style. Each meeting was recorded

with multiple microphones of di�erent types and qualities usually positioned on the

participants or spread around the meeting room. Depending on the arrangement of

microphones into di�erent classes, several evaluation conditions have been proposed

by NIST. These include, the most common multiple distant microphones (MDM)

and single distant microphones (SDM), individual headphone microphones (ICD) and

all distant microphones (ADM). In the MDM condition, participants can utilise at

the same time di�erent recordings from di�erent table-top microphones. In this case,

beamforming could be applied in order to obtain a single pseudo channel or exploit inter-

channel delay features in combination with conventional acoustic features to improve

the diarization performance. Techniques for compensating the channel variation can

also be applied. On the contrary, the SDM condition involves the use of only a single

recording, usually from the central microphone. Therefore, beamforming, inter-channel

delay features or ICD cannot be exploited.

In this dissertation, all the on-line diarization experiments have been carried out

under the SDM condition since it is considered to be more challenging.



F
ig.

3.1
A

nalysis
of

the
p

ercentage
of

overlap
sp

eech
and

the
average

duration
of

the
turns

for
each

of
the

5
N

IS
T

R
T

evaluation
datasets.

P
ercentages

of
overlap

sp
eech

are
given

over
the

totalsp
eech

tim
e

(picture
published

w
ith

the
kind

p
erm

ission
of

S
im

on
B

ozonnet).



3.3 RT meeting corpus 43

3.3 RT meeting corpus

For each of the NIST RT evaluations, a new database of annotated audio meetings

has been collected for a total of �ve meeting evaluation datasets. Figure 3.1 (taken

from [60] and published in this dissertation with the author's permission) shows the

di�erence among RT evaluation datasets in terms of speaker turn duration and overlap

percentage. It is possible to observe that the last three evaluation datasets RT'06'RT'07

and RT'09 are characterised by shorter average turn durations, both when considering

overlap and when not. This fact might suggest that meetings from the last three

evaluations are more spontaneous and interactive and therefore more challenging for

the speaker diarization task. From the �gure it is also possible to observe that RT'04,

RT'05 and RT'09 datasets are characterised by an average 15% of overlap speech, while

RT'06 and RT'07 involve around 8% of overlap speech.

In order to carry out the experimental work on on-line diarization in this dissertation,

three independent datasets have been compiled from the above mentioned NIST RT

meeting corpus:

1. RTubm: a set of 16 meeting shows from the NIST RT'04 evaluations;

2. RTdev: a set of 15 meeting shows from the RT'05 and RT'06 evaluations, and

3. RTeval: a set of 15 meeting shows from the RT'07 and RT'09 evaluations.

The meeting IDs contained in the RTubm, RTdev and RTeval datasets are listed in

Table 3.1. Clearly, there is no overlap between development and evaluation datasets

even though they might contain recordings from the same place and possibly identical

speakers. The average show duration within the RTubm, RTdev and RTeval datasets

is 10, 15 and 24 minutes respectively while the average number of speakers within each

set is 5, 5 and 4 respectively.

All the audio �les from the RTubm, RTdev and RTeval datasets are pre-processed

with Wiener �lter moise reduction [61] in order to increase the signal-to-noise ratio.

The obtained cleaned speech signals are then parametrised by means of mel-frequency

cepstral features described in section 2.2 of Chapter 2. More precisely, for the un-

supervised on-line speaker diarization experiments in Chapter 4, all audio �les are

characterised by 12 mel-frequency cepstral coe�cients augmented by energy, delta and

acceleration coe�cients, thereby obtaining feature vectors with a total of 39 coe�cients.
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Instead, for the semi-supervised on-line speaker diarization experiments reported in

Chapter 5, all audio �les are characterised by 19 mel-frequency cepstral coe�cients

augmented by energy, thereby obtaining feature vectors for a total size of 20 coe�cients.

The RTubm dataset is mainly meant for the training of general speech UBM models.

The latter are generally trained by extracting the speech segments according to the

ground-truth transcriptions and by 10 iterations of the EM algorithm. The RTdev

and RTeval datasets are meant respectively for the development and evaluation of the

on-line diarization systems proposed in Chapter 4 and 5.

In view of a better comparison with the other work in literature, on-line speaker

diarization results are presented independently for the RT07 and the RT09 subsets both

in Chapter 4 and Chapter 5. Finally, all the experiments to assess the performance of

experimental on-line diarization systems are performed without considering speakers

overlap which is removed according to ground-truth transcriptions.

3.4 O�-line diarization baseline system

The baseline o�-line diarization system whose performance is set as reference for the

development of an on-line diarization system is based on the o�cial top-down system

used for LIA-EURECOM's joint submission to the NIST RT'09 evaluations [21] and

developed using the open source ALIZE toolkit. The puri�cation stage proposed by

Bozonnet in [49] has been introduced between the segmentation and re-segmentation

stage while the �nal normalisation stage has been removed.

The �nal system is characterised by the following stages:

1. Pre-processing : all audio �les are treated with Wiener-�lter noise reduction [61].

Since in this dissertation only the SDM condition and not the MDM condition is

addressed, neither beamforming techniques nor inter-delay channel features are

utilised.

2. Speech activity detection (SAD) : the aim of this step is to separate speech

segments from non-speech segments. This is performed using a two-states hidden

Markov model (HMM), where each state is represented by a GMM with 32

Gaussian components, trained on external speech and non-speech data from the

RT'04 and RT'05 evaluations. During this stage, the audio �les are parametrised

by 12 LFCC coe�cients augmented by energy, delta and acceleration coe�cients.
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RTubm

CMU_20020319-1400_d01_NONE LDC_20011116-1400_d06_NONE

CMU_20020320-1500_d01_NONE LDC_20011116-1500_d07_NONE

CMU_20030109-1530_d01_NONE LDC_20011121-1700_d02_NONE

CMU_20030109-1600_d01_NONE LDC_20011207-1800_d03_NONE

ICSI_20000807-1000_d05_NONE NIST_20020214-1148_d01_NONE

ICSI_20010208-1430_d05_NONE NIST_20020305-1007_d01_NONE

ICSI_20010322-1450_d05_NONE NIST_20030623-1409_d03_NONE

ICSI_20011030-1030_d02_NONE NIST_20030925-1517_d03_NONE

RTdev

AMI_20041210-1052_d01_NONE NIST_20050427-0939_d02_NONE

AMI_20050204-1206_d01_NONE NIST_20051024-0930_d03_NONE

CMU_20050228-1615_d02_NONE NIST_20051102-1323_d03_NONE

CMU_20050301-1415_d02_NONE VT_20050304-1300_d01_NONE

CMU_20050912-0900_d02_NONE VT_20050318-1430_d01_NONE

CMU_20050914-0900_d02_NONE VT_20050623-1400_d02_NONE

ICSI_20010531-1030_d05_NONE VT_20051027-1400_d02_NONE

ICSI_20011113-1100_d02_NONE

RTeval

RT07 RT09

CMU_20061115-1030_d01_NONE EDI_20071128-1000_d01_NONE

CMU_20061115-1530_d01_NONE EDI_20071128-1500_d01_NONE

EDI_20061113-1500_d01_NONE IDI_20090128-1600_d01_NONE

EDI_20061114-1500_d01_NONE IDI_20090129-1000_d01_NONE

NIST_20051104-1515_d03_NONE NIST_20080201-1405_d03_NONE

NIST_20060216-1347_d03_NONE NIST_20080307-0955_d03_NONE

VT_20050408-1500_d01_NONE NIST_20080227-1501_d03_NONE

VT_20050425-1000_d01_NONE

Table 3.1 Meeting IDs in the RTubm, RTdev and RTeval datasets.
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Initially, Viterbi alignment is performed by using equal transition probabilities.

Once the features are aligned, the speech and non-speech GMM models are MAP

adapted with the corresponding features. These two steps are repeated for a

maximum of 10 times until there are no more changes in the segmentation output.

Heuristic rules might be applied to remove eventual rapid state transitions.

3. Segmentation and clustering : the speaker segmentation and clustering stage

is based on an Evolutive Hidden Markov Model (E-HMM) where each state

represents a particular speaker while the transitions represent speaker turns. All

possible changes between speakers are authorized. The entire audio stream is

�rst modelled with a single GMM speaker model and new speaker models are

successively added to it until the full number of speakers are detected.All the

speech segments from the audio are used to initialize an initial speaker modelS0

through the EM algorithm, representing the only initial state of the HMM. An

iterative process is then started where a new speaker is added at each iteration.

At the nth iteration the longest speech segment is selected and used to train

the nth speaker model. A Viterbi realignment process is then started to �nd

all the speech segments that �ts to the new introduced speaker model. After

realignment, speaker models are estimated again. This realignment/learning loop

is repeated while a signi�cant number of changes are observed in the speaker

segmentation between two successive iterations. The current segmentation is

analysed in order to decide whether the newly added speaker modeln is relevant,

according to some heuristic rules on the total duration assigned to speakern. The

stop criterion is reached if there are no more segments greater than 6 seconds in

duration available with which to add a new speaker, otherwise the process starts

to introduce another speaker. During this stage, the audio �les are parametrised

by 20 LFCC coe�cients augmented by energy for a total of 21 coe�cients.

This segmentation and clustering stage is illustrated in Figure 3.2 for the case of

two speakers conversation.

4. Puri�cation : the puri�cation stage has �rst been introduced by Bozonnet et

al. [49]. It is performed after segmentation and clustering stage, in order to

remove potential impurities in the obtained clusters which are supposed to contain

a single speaker. First, a 16 component GMM is trained on the data of each
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speaker cluster by conventional EM algorithm. Each cluster is then split into

sub-segments of 500 milliseconds duration and the top 55% segments which

best �ts the corresponding GMM are considered as classi�ed. The remaining

segments are then re- assigned to the closest GMMs by iterative Viterbi decoding

and adaptation until all segments are classi�ed. The acoustic features used for

puri�cation are the same as the ones used for the segmentation and clustering

stage.

5. Re-segmentation : the re-segmentation stage aims to re�ne the speaker clusters

by removing irrelevant speakers. During this stage, all speaker boundaries and

segment labels are re-elaborated. An iterative training of a new HMM model

from the segmentation output together with a Viterbi decoding are performed

multiple times. Speaker models are adapted by MAP adaptation from a universal

background model (UBM) trained on a Speaker Recognition corpus containing

more than 400 speakers. Still, the acoustic features used for puri�cation are the

same as the ones used for the segmentation and clustering stage.

This o�-line diarization system has already been optimised to attain the state-of-the-

art performance. The type of acoustic features and complexity of the speaker models

in each stage of such o�-line systems di�er when compared to the on-line diarization

performance considered in this dissertation. The state-of-the-art performance of this

o�-line diarization system is regarded as the performance benchmark to which the

proposed on-line systems in Chapters 4 and 5 aim to attain. However, it must be noted

that the aforementioned benchmark is incomparable with respect to the developed on-

line system due to the di�erent segmentation and clustering techniques and especially

the computational complexity.

The performance of the Top-Down diarization system obtained on the RTubm,

RTdev and RTeval are reported in Table 3.2.

3.5 TIMIT dataset

The DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus [62] was developed

by a joint collaboration between Texas Instruments (TI) and Massachusetts Institute

of Technology (MIT) in 1990 to advance acoustic-phonetic knowledge and to support

research in automatic speech recognition (ASR).
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Dataset DER (%)

RTdev 17.02

RT07 18.24

RT09 19.20
Table 3.2 Performance of the baseline o�-line diarization system for the RTdev and
RTeval datasets.

Table 3.3 The setup of 38 phones used for PAT.

ENGLISH-LANGUAGE PHONES IN

TIMIT ANNOTATIONS

hh, ih, z, eh, f, l, aa, b, ae, k, dh, dx, er,

iy, m, n, g, r, ey, w, v, ah, y, uw, d, s, t, ng, p,

sh, uh, ch, ay, ow, aw, th, jh, oy

In contrast with the NIST Rich Transcription datasets, characterized by the lack

of accurate phonetic transcriptions, channel variation and di�erent types of noises

compromising the recordings, the TIMIT database is composed of high-quality, read

English speech recorded with a close-talking microphone at 16kHz rate with 16 bit

sample resolution. It was collected from a total of 630 speakers (192 female, 438 male)

from 8 major dialect regions of the United States. All sentences were manually labelled

and transcribed at the phonetic level.

TIMIT original phonetic transcriptions are based on 61 phones inspired by the

alphabet ARPABET. For experimental purposes, these phones are usually collapsed

into a set of 38 phones plus silence, as proposed by et al. in [63]. The set of �nal 38

phones are represented in Table 3.3.

Each speaker in the database contributes 10 short, phonetically-rich English lan-

guage sentences whose average duration is 3 seconds for a total of 6300 sentences (5.4

hours). The prompts for the 6300 utterances consist of 2 dialect sentences (SA), 450

phonetically compact sentences (SX) and 1890 phonetically-diverse sentences (SI).

TIMIT database has represented a standard database for the speech community for

many years and is still largely utilised nowadays, for both ASR and ASV experiments,

due to its accurate phonetic labelling, its compactness, reduced level of noise and
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channel variation, which permits benchmarking of systems' capabilities in a fast, reliable

and controlled manner.

In this dissertation TIMIT is mainly exploited for the optimisation and development

of PAT by means of ASV experiments described in Chapter 6. In this optic, the TIMIT

database is divided in the following way:

ˆ TIMITubm : 4620 speech recordings from a subset of 462 speakers of which 136

are female and 326 are male.

ˆ TIMITspk : 9 speech recordings for each of the remaining 168 speakers of which

56 are female and 112 are male and for a total of 1512 speech recordings.

ˆ TIMITtest : 1 speech recording for each of the remaining 168 speakers and for

a total of 168 speech recordings.

Audio �les are parametrised by 12 mel-scaled frequency cepstral coe�cients (MFCCs)

augmented by normalized energy, delta and acceleration coe�cients thereby obtaining

feature vectors with a total of 39 coe�cients. All non-speech intervals from all the

audio �les of the TIMIT database are removed according to the ground-truth TIMIT

transcriptions. The TIMITubm is used for the training of general speech UBM model

by 10 iterations of the EM algorithm, whereas the TIMITspk dataset is meant for

speaker models enrolment. The TIMITtest is instead utilised for ASV testing.

Due to the lack of proper datasets for diarization labelled at the phonetic level,

in this dissertation TIMIT database is also exploited for the creation of simulated

multi- speaker conversations. The obtained conversations are then used to analyse

the potential bene�ts of the combination of PAT in combination with on-line speaker

diarization in Chapter 7.
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Unsupervised on-line diarization

On-line diarization has attracted increasing interest in recent years due to the increasing

popularity of powerful, mobile smart devices, the need for real-time information

extraction in human interaction, growing interest in the Internet of Things (IoT) and

the proliferation of always listening sensors.

Due to their computational complexity and high latency, the existing state-of-the-

art o�-line diarization techniques are not easily adapted to support on-line processing.

Therefore, in recent years there has been an increasing interest to develop entirely new,

on-line approaches.

The main contribution of this chapter entails the development of an unsupervised on-

line diarization system for real-time applications. In contrast with the majority of works

in literature which has focused on broadcast news and plenary speech scenarios, the

proposed system is instead developed and optimised on meeting scenarios. Nowadays,

meetings recordings represent the most challenging available data to develop an on-line

diarization system for real-time applications.

The developed system is based on the sequential introduction and adaptation of

speaker models by means of a sequential MAP adaptation algorithm. The performance

of the system is assessed through experiments in which di�erent segment durationsTS

and di�erent model sizes are used. Performance is also assessed in terms of dynamic

convergence of the speaker models during time. Although in line with the performance

of other on-line diarization systems presented in the literature which addressed less

challenging datasets, the obtained error rates highlight the challenge involved in

the development of an e�cient on-line diarization system able to support practical

applications.
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The remainder of this Chapter is organized as follows. Section 1 outlines the

sequential MAP adaptation algorithm used to initialize and adapt the speaker models.

Section 2 describes the implemented unsupervised on-line diarization system. Section 3

describes the experimental setup and the obtained experimental results. Finally, a

brief summary is provided in Section 5.

4.1 MAP adaptation

In contrast with o�-line diarization, on-line speaker diarization necessarily requires the

learning of speaker models iteratively, as soon as relevant data appears in the audio

stream. Consequently, these are typically initialised using short speech segments. In

particular, on-line diarization involves the comparison of similarly short, subsequent

segments to the current inventory of speaker models and possibly their consequent

re-adaptation using steadily amassed data.

MAP adaptation, initially introduced in Chapter 2, Section 2.4.2 is a model

adaptation technique that allows the training of a GMM model when little amounts

of training data are available. MAP adaptation is the starting point to develop an

unsupervised on-line speaker diarization algorithm. Its main purpose is to introduce

new speaker models as well as to update already introduced speaker models as soon as

a speech segment is available. In this section, the conventional o�-line MAP adaptation

algorithm and the sequential MAP adaptation algorithm, both illustrated in Figure 4.1

and at the basis of the on-line diarization system, are explained.

4.1.1 Conventional maximum a-posteriori adaptation

The conventional MAP adaptation algorithm [27], the �rst algorithm illustrated in

Figure 4.1, is commonly used to adapt a UBM model, generally trained with an EM

algorithm, towards a speci�c speaker. The algorithm calculates the posterior probability

of each Gaussian component given a set of training observations, and can be applied to

update the mean, covariance and weight parameters of the Gaussian components which

have the highest posterior probabilities. In the case where speaker speci�c training

data is scarce, then the MAP adaptation of a well trained UBM generally gives better

results than speaker speci�c models learnt directly by EM.
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For a given speaker, let there be a sequence ofD speech segments (D=4 in Figure 4.1)

where each segmenti is parametrised by a set of acoustic featuresO (i ) = o1; : : : ; oM i .

As illustrated in Figure 4.1, conventional o�-line MAP adaptation is performed using

the UBM model � UBM and the pool of allD speaker segments. The su�cient statistics

for the k-th Gaussian component are obtained as follows:

Nk =
DX

i =1

M iX

m=1

Pr(kjom ; � UBM )

F k =
DX

i =1

M iX

m=1

Pr(kjom ; � UBM )om

Sk =
DX

i =1

M iX

m=1

Pr(kjom ; � UBM )o2
m (4.1)

wherePr(kjom ; � UBM ) represents the posterior probability of thek-th Gaussian com-

ponent given them-th observation om . The MAP-adapted mean�̂ k , covariance�̂ k

and weight ŵk for the k-th Gaussian component are then given by:

ŵk =

 

�
Nk

P K
j =1 N j

+ (1 � � )wk

!




�̂ k = �
F k

Nk
+ (1 � � )� k

�̂ k = �
Sk

Nk
+ (1 � � )( � k + � 2

k) � �̂ k (4.2)

where
 is a normalization parameter such that
P K

k=1 ŵk = 1 and where� is de�ned as:

� =
Nk

Nk + �
(4.3)

where� is the pre-�xed scalar which regulates the relevance of the training data with

respect to the UBM. The speaker model is then given by the tuples = ( ŵk ; �̂ k ; �̂ k).

4.1.2 Sequential MAP

Sequential MAP is the second algorithm illustrated in Figure 4.1 and it is employed in

order to introduce and update speaker models sequentially. Here, speaker models must
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be updated continuously as and when new speech segments are assigned to any one of

the speaker models in the current speaker inventory.

An initial speaker models(1) can be trained by calculating the su�cient statistics

of the �rst speaker segment using the same UBM model� UBM . The su�cient statistics

calculated for thek-th Gaussian components are obtained from the application of(4.1)

while setting D = 1. The mean, variance and weights of the updated models(1) are

similarly obtained from (4.2). As soon as a new speaker segment is available, then

speaker models(i ) can be updated using the su�cient statistics of the speaker segment

i + 1 and application of (4.1) with � UBM replaced bys(i ) :

N i +1 =
M i +1X

m=1

Pr
�
kjom ; s(i )

�

F i +1 =
M i +1X

m=1

Pr
�
kjom ; s(i )

�
om

S i +1 =
M i +1X

m=1

Pr
�
kjom ; s(i )

�
o2

m (4.4)

where subscriptsk have been omitted for simplicity. The mean, variance and weights

of the updated models(i +1) are then obtained in the usual way using (4.2).

The sequential MAP adaptation algorithm is at the basis of the new unsupervised

on-line diarization system reported in the current chapter and whose implementation

is described in the next section.

4.2 System implementation

The unsupervised on-line speaker diarization system developed for the diarization

of meetings is illustrated in Figure 4.2. It is based on the baseline Top-Down or

divisive hierarchical clustering approach to o�-line diarization described in Chapter 3,

Section 3.4 and the on-line diarization approach reported in [3]. Aside from background

modelling, there are three stages: (i) feature extraction; (ii) speech activity detection

and (iii) on-line classi�cation.
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4.2.1 Feature extraction and speech activity detection

The audio stream is �rst parametrised by a series of acoustic observationso1; : : : ; oT .

Critically, for any time � 2 1; : : : ; T only those observations fort < � are used for

diarization. Non-speech segments are removed according to the output of a conventional

model-based speech activity detector (SAD) derived from the baseline Top-Down

diarization system described in Chapter 3, Section 3.4. The remaining speech segments

are then divided into smaller sub-segments whose duration is no longer than an a-priori

�xed maximum duration TS. Higher values ofTS imply a higher latency system.

On-line classi�cation is then applied in sequence to each segment.

4.2.2 On-line classi�cation

Speech segments are either attributed to an existing speaker model, or a new speaker

model is created. This procedure is controlled with a universal background model

(UBM) denoted by s0 which is trained on external data. New speaker models are

introduced in the speaker inventory, if the current segmenti generates a higher log-

likelihood when compared to the UBM than to a set of speaker modelssj , where

j = 1; : : : ; N and whereN indicates the number of speakers in the current hypothesis.

Segments are attributed according to:

sj = arg max
l2 (0;:::;N )

KX

k=1

L (ok jsl ) (4.5)

whereok is the k-th acoustic feature in the segmenti , K represents the number of

acoustic features in thei -th segment and whereL (ok jsl ) denotes the log-likelihood of

the k-th feature in segmenti given the GMM modelsl . If the segment is attributed to

s0 then a new speaker modelsN +1 is learned by MAP adaptation of the UBM models0

using the features contained in segmenti . The segmenti is then labelled according to

the newly introduced speaker andN is increased by one. When a segment is attributed

to an existing speaker, then the corresponding model is adapted through sequential

MAP adaptation. The segment is then labelled according to the recognised speakerj

as per Eq. 4.5.
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4.3 Performance evaluation

The performance of the unsupervised on-line diarization system has been assessed by

analysing the global DER as a function of the maximum segment durationTS and the

size of the speaker models and reported in Section 4.3.1. In addition to the global DER,

dynamic convergence of the speakers models, represented by the evolving DER, is

assessed as a function of timeTi and reported in Section 4.3.2. Finally, in Section 4.3.3

dynamic speaker statistics represent the average evolution of the number of speakers

across di�erent meetings.

4.3.1 Global DER

Diarization performance is �rst assessed globally in terms of the global average di-

arization error rate (DER) as a function of the segment durationTS and for di�ering

model sizes. Experiments have been performed for maximum segment durations of

0:25; 0:5; 1; : : : ; 10 seconds and di�erent UBM model sizes: 8, 16, 32, 64 and 128 Gaus-

sian components. The UBM models0 is trained o�-line by 10 iterations of the EM

algorithm using the speech data from the RTubm dataset.

Left plots in Figures 4.3, 4.4 and 4.5 illustrate the on-line diarization performance

in terms of global DER as a function of the segment durationTS and model size for

the RTdev, RT07 and RT09 datasets respectively. The optimal model size is either

32 or 64 Gaussian components, with the larger model size being the most consistent

across the three datasets. In all cases, it is possible to observe that as the model size

increases performance deteriorates further and probably due to the lack of su�cient

data for reliable learning and adaptation of the speaker models. The optimal maximum

segment durationTS for all cases is around 3 or 4 seconds. Initially, the DER tends to

decrease as the segment duration increases. As the segment size increases beyond the

optimum, the global DER gets worse until it stabilizes. This is probably due to the

fact that most of the speech segments after the SAD process are already shorter than

the maximum segment durationTS. Across the three datasets, the minimum DER is

between 40% and 45%. This is a high error rate, but one not dissimilar to that reported

in previous work performed using broadcast news data, e.g. [3]. The high diarization

error rates might be caused by the initialisation of the speaker models through MAP

adaptation of the speech UBM model with relative short speech segments. The initial
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speaker models are not enough discriminative to reliably classify the incoming speech

segments. While the application of adaptation and re-segmentation would improve the

performance, they would also introduce further latency and computational complexity

not in keeping with on-line diarization.

In the next chapter in order to overcome the bottleneck of speaker models initialisa-

tion with short speech segments, a semi-supervised system in which speaker models are

seeded o�-line with an initial amount of labelled training data is presented. Moreover,

an incremental and more stable MAP adaptation technique to update the speaker

models is introduced.

4.3.2 Adaptive speaker modelling and dynamic convergence

The average global DER errors calculated on each dataset as a function the segment

duration TS and di�erent model sizes assess the overall performance of the system

over all the entire audio. However, this measure does not perfectly re�ect the way the

classi�cation accuracy evolves during the diarization process. In an on-line diarization

system, it is interesting to analyse how the introduced and updated speaker models

evolve in time in terms of classi�cation accuracy. In this regard, dynamic convergence

performance is assessed periodically at each minuteTi . Speaker models learned through

the on-line diarization process only up until minuteTi are used to reclassify the speech

segments of the entire audio according to the highest likelihood criteria, without

any model adaptation or re-segmentation. The DER is then calculated on the output

hypothesis at each minuteTi . The evolution of the DER as a function of time provides a

measure of the evolution of the speaker models accuracy. While diarization performance

should improve naturally as the full set of speakers is gradually introduced into the

on-line process, 90% of speakers appear in the �rst 2 to 3 minutes of each show,

as illustrated in Fig. 4.6 (red line). This approach to assessment is therefore still

representative of on-line performance.

Right plots in Figures 4.3, 4.4 and 4.5 illustrate the dynamic convergence of the

DER as a function of timeTi respectively for the RTdev, RT07 and RT09 datasets.

Plots are again illustrated for segment durationsTS of between 1 and 6 seconds. All

plots correspond to speaker models of 64 Gaussian components. In all cases the DER

decreases towards and beyond the global DER as the amount of data available for

model training increases. The plots also show that segment durations of less than 2
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Fig. 4.6 An illustration of the evolution in speaker numbers for the RTdev dataset.
Pro�les shown for the ground-truth reference (red pro�le) and diarization hypothesis
(blue pro�le).

seconds are largely insu�cient for reliable diarization, with optimal performance being

achieved with a segment durationTS of 3 or 4 seconds. As the segment durationTS

increases, then more and more mid-segment speaker turns are missed, thus leading to

higher DERs.

4.3.3 Dynamic speaker statistics

Figure 4.6 illustrates the evolution of the average speaker numbers for the RTdev set.

Pro�les are shown for the ground truth references (red line) and the corresponding

number appearing in the automatically generated diarization hypothesis (blue line).

The hypothesis corresponds to GMMs of 64 components and to a segment durationTS

of 2 seconds. For the �rst �ve to six minutes, the hypothesis contains fewer speakers

than the ground truth whereas, beyond, the hypothesis contains more speakers than

the ground truth. These observations suggest that an adaptive speaker penalty could

be applied to favour the introduction of fewer speakers while reducing the rate at which

new speakers are added later.
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4.4 Summary

The majority of work in speaker diarization has evolved around the development of

o�-line diarization systems. However, driven by the popularity of powerful, mobile

smart devices, the need for real-time information extraction in human interaction,

growing interest in the Internet of Things (IoT) and the proliferation of always listening

sensors, on-line diarization has attracted increasing interest in recent years. The work

addressing on-line diarization and presented so far in literature have been focusing

mainly on broadcast news plenary speech scenarios rather than the more challenging

meeting scenarios characterised by higher spontaneity and shorter speaker turns.

This chapter has presented our e�orts to develop a new adaptive, unsupervised

on-line approach to speaker diarization based on a sequential MAP adaptation approach

for the more challenging meeting data captured with a single distant microphone. The

performed experiments have shown that the best performance implies a latency in the

order of 3 or 4 seconds and the accuracy of the trained speaker models converges as

the amount of training data increases. While results are in line with those reported for

less challenging data, diarization error rates remain high, probably too high to support

any practical applications.

In the next chapter by means of small scale ASV experiments it is shown that the

main bottleneck of on-line diarization lies unsurprisingly in the amount of training data

used to initialise the speaker models. To overcome this bottleneck, a semi-supervised

on-line diarization solution in which speaker models are initially seeded with di�erent

amounts of training data and updated continuously by means of a newly introduced

incremental MAP adaptation technique, is presented.



Chapter 5

Semi-supervised on-line diarization

Chapter 4 entails our �rst attempt to develop an unsupervised on-line diarization

system. Unfortunately, the obtained diarization error rates on the most challenging

meeting datasets are high, probably too high to support any practical applications.

There is thus a strong need to investigate alternative strategies. In this chapter it

is initially shown unsurprisingly that the main bottleneck in the development of an

e�cient on-line diarization system lies in the quantity of data used for speaker model

initialisation. Two possible solutions to mitigate this bottleneck involve either the

relaxation of latency(on-line) or supervision constraints. Since the former is at odds

with the pursuit of an on-line diarization system, this chapter investigates various

semi-supervised approaches.

While semi-supervised approaches have been reported previously for o�-line di-

arization [64], the �rst contribution of this chapter is the development of a new,

semi-supervised on-line diarization system. Based upon the approach described in

Chapter 4 and with the number of speakers assumed to be known a-priori, the new sys-

tem exploits short amounts of labelled speech for supervised speaker model initialisation.

The remainder of the process remains entirely unsupervised.

While knowing the number of speakers and the use of labelled data is also at odds

with the traditional de�nition of diarization, many practical scenarios, for instance

family members interacting with di�erent smart objects which deliver personalised

services or workers in the same meeting room equipped with a system able to display

speci�c information in real-time depending on who is currently speaking, allow a

short-duration phase during which each speaker introduces themselves. This data may

be used readily for initialisation. Despite the manual labelling of such intervals being
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an inconvenience, it is perhaps a price worth paying for the signi�cant improvement in

diarization performance.

The main goal of the work presented in this chapter is thus to determine what

duration of manually labelled speech is required in order to deliver satisfactory per-

formance. This is de�ned as the achievable state-of-the-art o�-line diarization. The

second contribution of this chapter relates instead to an incremental approach to on-line

model adaptation, which proves instrumental in delivering low diarization error rates.

The remainder of this chapter is organized as follows. Section 2 demonstrates the

challenge faced in on-line diarization and justi�es the need for relaxed supervision

constraints. Section 3 describes the incremental model adaptation procedure and the

new semi-supervised, on-line diarization system. Section 4 describes experimental work

whereas a brief summary is provided in Section 5.

5.1 Speaker modelling

In an on-line diarization scenario, speaker models are typically initialised using short

speech segments. Diarization involves the comparison of similarly short, subsequent

segments to the current inventory of speaker models~� and possibly their consequent

re-adaptation using steadily amassed data. While necessary to meet the requirements

for on-line processing, the use of short segments for both operations also ensures

inter-segment speaker homogeneity.

These two operations form the essential elements ofspeaker veri�cation, namely

speaker enrolment and testing. It is well known that the reliability of both depends

fundamentally on data duration. The work presented in this section aims to examine

the dependence ofspeaker diarizationon segment duration and hence to illustrate the

potential to improve on-line diarization performance. This examination is performed

through strictly controlled automatic speaker veri�cation (ASV) experiments which

avoid complications associated with overlapping speakers and compounding diarization

nuances.
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Fig. 5.1 EER as a function ofTS, namely the quantity of data used to train the speaker
models .

5.1.1 ASV experiments

The system used for ASV experiments is a conventional GMM model with universal

background model (GMM-UBM) system. The UBM of 64 Gaussian components is

trained on the RTubm dataset with 10 iterations of expectation-maximisation (EM).

The speech data of all speakers in the RTdev and RTeval datasets with a �oor time

greater than 20 seconds are identi�ed using the ground-truth references. The data for

all other speakers are discarded. The �rst 10 seconds of speech of each speaker are set

apart for model training while the remaining speech segments are used for testing. All

speech segments are further divided into sub-segments of maximum durationTS where

TS = 0:25; 0:5; : : : ; 10 seconds.

Training data, of identical duration TS is randomly selected from the 10-second

training segment and speaker models are derived from the UBM using MAP adaptation

with a relevance factor set to 10, whereas testing is performed separately on every

single, same-length sub-segment in the test data. Exhaustive testing is performed for

all speakers; all test segments are compared to all speaker models. This equates to a

large number of short-duration target and impostor trials from which ASV performance

can be gauged in the usual way.
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Fig. 5.2 Speech segment duration distribution for the RTdev dataset.

Fig. 5.3 Average number of speakers as a function of the speech segment duration for
the RTdev dataset.

ASV results, combined for RTdev and RTeval, are illustrated in Figure 5.1 in terms

of the equal error rate (EER) as a function ofTS. Unsurprisingly, performance improves

as TS increases. Critically, with very low quantities of training and testing data less

than 1 second in duration, the EER is extremely high. Lower EERs are observed for

data quantities of 10 seconds. The elbow is around 5 seconds, where the EER is in the

order of 20%. Even with a value ofTS = 10 seconds, the EER is perhaps still high

for what is essentially same-session ASV. This is probably due to the fact that most

speech segments are considerably shorter than the value ofTS.
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Figure 5.2 illustrates the segment duration distribution for the RTdev dataset. The

vast majority of segments are seen to be less than 5 seconds in duration. The use of

longer segments in on-line speaker diarization applications also comes at the increased

risk of speaker model impurities.

Figure 5.3 illustrates the average number of speakers as a function of segment

length. The plot shows that, beyond segment lengths of 5 seconds, a segment is more

likely to contain 2 speakers than 1 speaker. Added to this, the use of longer segments

would entail greater latency, which is at odds with the need for on-line diarization.

While admittedly trivial, this analysis shows that, in independence from overlapping

speech and diarization nuances, the potential for successful on-line diarization is severely

limited by the potential to acquire su�cient, speaker-homogeneous training and testing

data. In summary, reliable decisions cannot be made when models are initialised on

such short segments of speech. These observations call for an alternative approach to

on-line diarization.

5.2 Semi-supervised on-line diarization

In previous section it has been shown by means of ASV experiments that the main

bottleneck in on-line speaker diarization relies in the use of short-duration speech

segments for speaker model initialisation. Although short-duration speech segments

provide a lower system latency, the derived speaker models are not su�ciently reliable

for proper classi�cation. On the contrary, the use of longer duration speech segments,

even though would provide a larger amount of training data, would increase the

system latency and the risk of including impurities, i.e. more speakers in the same

speech segment. An alternative solution to overcome this problem takes the form of

supervision constraints. Speaker models of the participants involved are seeded with an

initial amount of labelled training data. By following this direction, the open question

which needs to be answered is then:what quantity of seed data is required to

reach the same diarization performance obtained with an o�-line system?

Before describing the implemented semi-supervised on-line diarization system, the

new incremental MAP adaptation procedure for the updating of speaker models is

described.
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5.2.1 Incremental MAP

The initialisation and update of speaker models in the unsupervised on-line diarization

system described in Chapter 4 is guaranteed by a sequential MAP adaptation procedure,

in which the speaker models are sequentially MAP adapted as soon as a speech segment

is available. However, in a semi-supervised scenario the seeding of the speaker models

with labelled training data allows the update of the speaker models by means of a

more robust incremental MAP adaptation procedure.

For a given speaker, let there be a sequence ofD speech segments (D=4 in Figure 5.4)

where each segmenti is parametrised by a set of acoustic featuresO (i ) = o1; : : : ; oM i .

As explained in Chapter 4, Section 4.1.2 in the sequential MAP adaptation procedure,

the second algorithm illustrated in 5.4, the su�cient statistics N i +1 ; F i +1 and S i +1

for the speaker segmentsi + 1 are calculated against the previous models(i ) and

depend non-linearly onN i ; F i and Si in terms of Gaussian occupation probabilities.

Accordingly, even given the same observations in the same segments, the speaker models

obtained from the conventional, o�-line and sequential MAP adaptation procedures are

not the same. However, in the newly proposed incremental MAP adaptation approach,

the third algorithm illustrated in Figure 5.4 the su�cient statistics are calculated

always with respect to the general speech UBM model� UBM and accumulated during

time.

Here, the initial speaker models(1) is obtained in the same way as with sequential

MAP adaptation. In order to update the speaker models(i ) , su�cient statistics for

speaker segmenti + 1 are now always calculated with the original� UBM model and

accumulated with su�cient statistics N i , F i and S i :

N i +1 = N i +
M i +1X

m=1

Pr (kjom ; � UBM )

F i +1 = F i +
M i +1X

m=1

Pr (kjom ; � UBM ) om

S i +1 = S i +
M i +1X

m=1

Pr (kjom ; � UBM ) o2
m (5.1)

The mean, variance and weights of the updated models(i +1) are then obtained

according to Equation (4.2) in Chapter 4, Section 4.1.1. This procedure is linear and
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thus, given the same data, the incremental MAP procedure will produce the same

models as the o�-line procedure, while still being suited to on-line processing.

5.2.2 System implementation

The proposed semi-supervised on-line diarization system is illustrated in Fig. 5.5. It is

based on the baseline top-down or divisive hierarchical clustering approach to o�-line

diarization reported in Chapter 3, Section 3.4 and the unsupervised on-line diarization

approach described in Chapter 4.

The system is characterised by four stages: (i) feature extraction; (ii) o�-line speaker

models enrolment; (iii) speech activity detection and (iv) on-line classi�cation.

Feature extraction

Each audio stream is �rst parametrised by a series of acoustic observationso1; : : : ; oT .

Critically, for any time � 2 1; : : : ; T only those observations fort < � are used for

diarization.

O�-line speaker models enrolment

A brief round-table phase in which each speaker introduces himself is used to seed

speaker models. The �rstTSP K seconds of active speech for each speaker is set aside as

seed labelled training data. An inventory~� of speaker modelssj , wherej = 1; : : : ; M ,

with M indicating the number of speakers in any particular meeting, is then trained

using a certain duration of seed dataTSP K for each speaker. Speaker models are MAP

adapted from the UBM using the seed data. For each speaker modelsj , the su�cient

statistics N (j )
1 ; F (j )

1 and S (j )
1 obtained during the MAP adaptation are stored in order

to be used during the on-line classi�cation phase to update the speaker models. The

resulting set of seed speaker models are then used to diarize the remaining speech

segments in an unsupervised fashion.

Speech activity detection and on-line classication

Non-speech segments are removed according to the output of a conventional model-

based speech activity detector (SAD) derived from the baseline top-down diarization

system described in Chapter 3, Section 3.4.
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The remaining speech segments are then divided into smaller sub-segments whose

duration is no longer than an a-priori �xed maximum duration TS. Higher values ofTS

imply a higher latency system. On-line diarization is then applied in sequence to each

sub-segment. The optimised speaker sequence~S and segmentation~G are obtained by

assigning in sequence each segmenti to one of theM speaker models according to:

sj = arg max
l2 (1;:::;M )

KX

k=1

L (ok jsl ) (5.2)

whereok is the k-th acoustic feature in the segmenti , K represents the number of

acoustic features in thei -th segment and whereL (ok jsl ) denotes the log-likelihood of

the k-th feature in segmenti given the speaker modelsl . The segment is then labelled

according to the recognised speakerj as per(5.2). The updated speaker modelsj is

obtained by either sequential or incremental MAP adaptation as described above.

5.3 Performance evaluation

In order to evaluate the performance of the proposed on-line semi-supervised diarization

system, average global DERs are assessed as a function of di�erent amount of labelled

training data TSP K and for di�erent maximum segment durationTS. The evaluation

aims to determine what quantity of manually labelled seed data is needed to obtain

the performance of the state-of-the-art, entirely o�-line, baseline system reported in

Chapter 3, Section 3.4, the associated cost in terms of system latency and the bene�t

of incremental MAP adaptation.

5.3.1 Semi-supervised on-line diarization against o�-line di-

arization performance

First, during the o�-line and supervised phase, speaker modelssj are trained using

increasing quantities of labelled training dataTSP K of duration 1; : : : ; 39 seconds. The

general UBM model of 64 Gaussian components is the same as the one used for ASV

experiments.

Since there is no round-table phase in the RT data, this component is simulated.

Seed data is taken from wherever the �rstTSP K seconds of speaker data are found. This
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TSP K 3 sec. 5 sec. 7 sec.

Algo. MAP Seq Inc Seq Inc Seq Inc

RTdev 24.7 21.3 21 18.1 20.5 16.5

RT07 19.1 17.3 17.5 14.6 13.6 13.3

RT09 23.7 18.2 17.6 16.2 21.2 16.2

Average 22.4 18.9 18.7 16.3 18.5 15.3

Seq = Sequential MAP; Inc = Incremental MAP
Table 5.1 A comparison of DER using sequential and incremental MAP algorithms.
Results are reported for a segment duration / latencyTS of 3 seconds, three di�erent
datasets RTdev, RT07 and RT09 and for di�erent durationsTSP K of training data.

has only a negligible bearing on the subsequent assessment of diarization performance,

as the majority of speakers speak for more than2 minutes.

On-line diarization is performed using di�erent maximum segment durationTS

with TS = 0:25; 0:5; 1; 2; 3; 4. Greater values ofTS imply a higher latency of the

system. Performance of the system is evaluated both using the standard sequential

and incremental MAP adaptation procedure in order to prove the better e�ciency of

the latter in delivering lower diarization error rate.

Results in Figures 5.7, 5.8 and 5.9 illustrate the variation in DER against the amount

of speaker training dataTSP K for the RTdev, RT07 and RT09 datasets respectively.

Left plots illustrate performance for sequential MAP adaptation whereas right plots

correspond to incremental MAP adaptation. In each plot, di�erent pro�les illustrate

performance for a range of segment durations / latenciesTS.

The �rst observation from Figures 5.7, 5.8 and 5.9 indicates that the performance of

the semi-supervised, on-line diarization system can surpass that of the baseline, o�-line

diarization system (illustrated with horizontal, dashed lines). In the case of sequential

MAP adaptation this is achieved for the RTdev dataset, for instance, when speaker

models are seeded withTSP K = 9 seconds of training data when using a segment size /

latency of TS = 4 seconds. With the same segment size, the baseline performance for

the RT07 and RT09 datasets is surpassed using as little asTSP K = 5 and 3 seconds

respectively.

In general, lower DERs are achieved with greater quantities of seed data, for instance

a DER of 12.5% is achieved withTSP K = 9 seconds of training data for the RT07
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Fig. 5.6 Speaker training data durationTSP K against segment duration / latencyTS

for the RT07 evaluation dataset using sequential and incremental MAP algorithms.
All points correspond to a DER of 18 % (baseline, o�-line performance).

dataset and 15% with 17 seconds of training data for the RT09 dataset, both with

latencies ofTS = 3 seconds.

Turning next to results for incremental MAP illustrated in the right plots of

Figures 5.7, 5.8 and 5.9 it is immediately evident that performance is signi�cantly

better than for sequential MAP. Here, the baseline, o�-line diarization performance is

surpassed with as little asTSP K = 5 seconds of seed data for the RTdev dataset and

TSP K = 3 seconds in the case of both RT07 and RT09, all with a latency as low as

TS = 2 seconds. Once again, lower DERs are achieved with greater quantities of seed

data, as low as 10% for the RT07 dataset and 12.5% for the RT09 dataset.

Table 5.1 summaries results across the three di�erent datasets forTSP K =3, 5, and

7 seconds of speaker training data and a �xed latency ofTS = 3 seconds. Results

are illustrated for sequential and incremental MAP adaptation algorithms whereas

average performance is illustrated in the bottom row. In all cases, incremental MAP

adaptation delivers lower DERs.

Figure 5.6 plots the quantity of speaker training dataTSP K as a function of the

latency TS for the evaluation dataset RT07. All points correspond to a DER of 18% and

thus show di�erent con�gurations which achieve the same performance as the baseline,

o�-line diarization system. Plots are illustrated for both sequential and incremental
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MAP adaptation algorithms. In all cases, incremental MAP adaptation matches or

betters baseline, o�-line diarization performance with a lower amount of seed data or a

lower latency than sequential MAP adaptation.

Finally, results presented in Figures 5.7, 5.8 and 5.9 indicate that values ofTS > 1

seconds of latency are required for the best performance, no matter what is the value of

TSP K . Performance degrades universally for lower latencies. Crucially, for all datasets,

DERs are equivalent or better than that of the baseline, o�-line system whenTS > 0:5

seconds and when given su�cient training dataTSP K .

5.4 Summary

This chapter reports our e�orts to improve the unsupervised on-line diarization system

presented in Chapter 4 and presents a semi-supervised on-line diarization system able

to reach the performance of a state-of-the-art o�-line diarization system. The relaxation

of supervision constraints overcomes the di�culty in initialising speaker models in an

unsupervised fashion with small quantities of data; the use of longer segments would

come at the expense of increased system latency.

In the case of the RT07 evaluation dataset, it is shown that such a system can

outperform an o�-line diarization system with just 3 seconds of speaker seed data and

3 seconds of latency when using an incremental MAP adaptation procedure. By using

greater quantities of seed data or by allowing greater latency, then a diarization error

rate in the order of 10% can be achieved.

While these levels of performance may support practical applications, the need for

supervised training remains an inconvenience. If the inconvenience of a short, initial

training phase proves acceptable, then this opens the potential for the application

of either supervised or semi-supervised speaker discriminant feature transformations

which may o�er an opportunity for improved performance. This work could reduce the

need for seed data, latency, or both. One avenue through which this objective might

be pursued involves the application of phone adaptive training (PAT), a technique to

marginalise the phonetic variation in short duration sentences which is introduced and

described in the next Chapter 6.



Chapter 6

Phone adaptive training

Many automatic speech processing applications, such as the unsupervised and semi-

supervised on-line speaker diarization systems proposed in Chapter 4 and 5 and

short-duration text-independent automatic speaker veri�cation (ASV) systems [65�

67], are required to operate in the face of varying data quantities during the speaker

modelling phase. When data is plentiful, nuisance or phonetic variation can be implicitly

normalised or marginalised and often has limited or no impact on performance. For

example, the use of long-duration training and testing data in ASV systems e�ectively

compensates for the e�ect of di�ering phone content. In contrast, when training data

is scarce, then speaker models are biased towards the speci�c phonetic content and

performance can degrade drastically if the phonetic variation is dissimilar to that

encountered in testing; phonetic variation is no longer marginalised.

Phone adaptive training (PAT) is a recently introduced algorithm [4] whose aim is

to normalise phone variation in the scope of speaker diarization by projecting acoustic

features into a new space in which phone discrimination is minimised while speaker

discrimination is maximised. PAT is based on the original idea of speaker adaptive

training (SAT) [ 68], a technique commonly used in automatic speech recognition

(ASR) and language recognition [69, 70]. SAT projects speaker-dependent features

into a speaker-neutral space in order that recognition may be performed reliably using

speaker-independent models. By interchanging, the role of phones and speakers, PAT

suppresses phone variation while emphasising speaker variation. While PAT operates

at the feature level and targets improved speaker modelling, its use within a speaker

diarization framework makes for somewhat troublesome optimisation.
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The �rst contribution of this chapter is the assessment and optimisation of PAT in

isolation from the convolutive complexities of speaker diarization and under strictly

controlled conditions. By means of oracle ASV experiments, PAT performance is

analysed when applied to short-duration text-independent ASV as a function of model

complexity and for varying quantities of training data, using the TIMIT dataset,

described in Chapter 3, Section 3.5, which is manually labelled at the phone level.

The second contribution of this chapter consists of our e�orts to develop PAT

into a fully unsupervised system. Contributions include an approach to automatic

acoustic class transcription using regression tree analysis. Similarly to the �rst work,

the performance of PAT is analysed as a function of model complexity and for varying

quantities of training data. Experiments show that PAT performs well even when the

number of acoustic classes is reduced well below the number of phones thus reducing

the need of accurate ground-truth phonetic transcriptions.

This chapter is organised as follows. Section 6.1 outlines previous related work.

Section 6.2 describes the SAT technique and introduces PAT algorithm. Section 6.3

describes oracle ASV experiments performed to assess PAT performance in optimal

conditions. Section 6.4 describes the ASV experiments when using automatic acoustic

class transcriptions. A brief summary is provided in Section 6.5.

6.1 Prior work

The in�uence of phone variation in degrading the performance of short duration speaker

recognition and speaker diarization is well acknowledged [71, 67, 72, 73]. The work

in [73] illustrates that, as the quantity of data used for model training is reduced, then

the phone distribution tends to be more and more dissimilar. Fauve et al. [65] analysed

the impact of short-duration training utterances on two automatic speaker veri�cation

(ASV) systems: a Gaussian mixture model system with a universal background model

(GMM-UBM) and a GMM supervector system based on a support vector machine

(SVM) classi�er. They showed that conventional inter-session compensation techniques

and ASV attain sub-optimal performance when confronted with short-duration training

utterances. The same authors highlighted in [74] the sensitivity of speech activity

detection (SAD) and the limitations of maximum a posteriori (MAP) adaptation in the

case of short-duration training. Eigenvoice modelling was shown to improve robustness
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by removing model components which are insu�ciently adapted as a result of training

data scarcity.

Other authors have investigated the impact of duration mis-match, namely dif-

ferences in the data quantities used for modelling and testing. In the context of a

joint factor analysis (JFA) system, Vogt et al. [66] showed that ASV performance

degrades when speaker and channel sub-spaces are trained on full-length utterances, but

short utterances are used for testing. This behaviour is caused by the phone-variation

in short utterances which tends to dominate the e�ects of inter-session variability.

Improved ASV performance was obtained by training the channel subspace matrix

on utterances of duration similar to those encountered during testing. Other work

reported in [67, 72, 73, 75] showed similar e�ects on iVector [76] and probabilistic linear

discriminant analysis (PLDA) [41] system variants. Common to all this work is the

modelling and testing using similar quantities of data, thereby marginalising to some

extent the e�ects of phone-variation.

The work in [77� 79] all investigated approaches to compensate for phone variation

in the context of speaker identi�cation (SI). That in [77] investigated the projection

of features into a phone-independent subspace in order to improve text-independent

SI. Based on the assumption that phone variation dominates speaker variation, the

phone-independent subspace is learned using principal component analysis (PCA).

Features are then projected onto the eigenvectors which correspond to the lowest

eigenvalues. In [78] probabilistic principal component analysis (PPCA) is used instead

to learn the phoneme-independent subspace.

Other more generalised techniques such as maximum likelihood linear regression

(MLLR) and constrained maximum likelihood linear regression (cMLLR), have been

used extensively to improve speaker discriminability and thus to improve ASV perfor-

mance. Stolcke et al. [80] and Ferras et al. [81] both used speaker dependent MLLR and

cMLLR transforms in order to model the di�erence between speaker independent and

dependent models. The estimated transforms capture speaker dependent characteristics

and are used themselves as features in order to train SVM-based veri�cation systems.

With the aid of ASR transcripts, these approaches can exploit knowledge of the phone

content in order to estimate phone-neutral speaker models [80]. Stolcke's later work [82]

showed that the same phone content can be used to derive more speaker-discriminative
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cMLLR transforms using speech-constrained phonetic regions de�ned by prosodic and

phonetic criteria.

When training data is scarce, for instance in the case of short-duration ASV or

in the case of model initialization in some approaches to speaker diarization, the

learning of speaker and phone speci�c transforms can be impractical. Phone adaptive

training (PAT), introduced by Bozonnet et al. [4], di�ers from the previous work in

that phone-dependent cMLLR transforms are learned in a speaker-independent fashion.

PAT is used to project acoustic features into a new, phone-normalised space which is

more discriminative in terms of speakers. Of particular appeal, the projected features

can be used in the place of baseline features with any ASV or diarization system.

6.2 From SAT to PAT

This section provides a description of maximum likelihood linear regression (MLLR)

and constrained maximum likelihood linear regression (cMLLR), two model adaptation

techniques which form the basis of SAT and PAT. A thorough explanation of the SAT

technique for speech recognition from which is derived PAT is provided. Finally, the

PAT algorithm for phonetic normalisation is presented.

6.2.1 MLLR

Maximum likelihood linear regression (MLLR) is an a�ne transform approach to model

adaptation. The aim is to reduce the mismatch between a model and an adaptation

dataset. As detailed in [83, 84], when the model is a GMM with initial model mean�

and covariance� , then the adapted mean�̂ and covariance�̂ are estimated according

to:

�̂ = A� + b (6.1)

�̂ = BHB T (6.2)

where the transform is characterized by ann � n regression matrixA (n being the

dimension of the feature space), ann-dimensional bias vectorb and an n � n matrix
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H . B is the inverse of the Cholesky factorC of � � 1:

� � 1 = CC T (6.3)

B = C � 1 (6.4)

Both A and b are optimized according to a standard expectation maximisation

(EM) algorithm [ 26] to maximize the likelihood of the model with respect to the

adaptation data.

6.2.2 cMLLR

In contrast to standard MLLR, which requires two di�erent, independently optimised

transforms, (A ; b) and H , the constrained MLLR (cMLLR) algorithm requires a single

transform W = ( A ; b) to adapt both mean and variance parameters [85]. Equations 6.1

and 6.2 then become:

�̂ = A� + b (6.5)

�̂ = A � A T (6.6)

where the transformA and b are the constrainedn � n transform matrix and the

n-dimensional bias vector respectively, both still estimated in the maximum likelihood

sense from the training data. Since the mean and the variance transforms are tied, in

addition to model transformation, cMLLR can also be used to transform an acoustic

feature o according to:

ô = A � 1o � A � 1b (6.7)

The application of cMLLR at the feature level is the starting point for SAT and

PAT.

6.2.3 SAT

Speaker adaptive training (SAT) is a technique mainly used in automatic speech

recognition (ASR) applications in order to remove the speaker component while
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retaining the relevant phonetic information. As illustrated into Figure 6.1 the original

acoustic features coming from di�erent speakers are projected in a new acoustic space

where the phonetic discrimination is higher while speaker discrimination is minimised.

Mathematically, we suppose a speech dataset of utterances collected fromS di�erent

speakers(s = 1; 2; : : : ; S) parametrized by a set of acoustic featuresO represented by

Os = ( os;1; : : : ; os;N s ) whereNs is the number of acoustic features corresponding to

each speakers 2 S. Assuming that all features are characterised by the same speaker,

source, channel and noise level conditions, then an optimal acoustic model� opt can be

estimated according to the following equation:

� opt = arg max
�

L (Oj� ) = arg max
�

SY

s=1

L (Osj� ) (6.8)

with L (Osj� ) being the likelihood of the model� with respect to the acoustic

observations Os.

However speech recognition is usually negatively a�ected by the variation due to

di�erent speakers. For each speakers, SAT estimates iteratively a transformation
~W s = ( ~A s; ~bs) which captures the speaker variability. Simultaneously, SAT learns a

speaker-independent acoustic model� c which captures the phonetic information with

which ASR can be performed reliably.

The algorithm to calculate � c is thus de�ned by:

�
� c; ~W

�
= arg max

� ;W

SY

s=1

L (OsjW s; � ) (6.9)

where ~W = ( ~W 1; : : : ; ~W s) represents the set of speaker transforms. As in Equation 6.7,

speaker-normalized features~Os are then obtained according to:

~os;t = ~A
� 1
s os;t � ~A

� 1
s

~bs (6.10)

where t = 1; : : : ; Ns is the feature index. Since there is no closed-form solution,

Equation 6.9 is optimised iteratively.

We denote byO (0)
s the set of initial acoustic feature vectors for each speakers. The

initial step consists in training a speaker model� (0)
c using the initial acoustic feature

vectors. Then, for each iterationi , the algorithm, illustrated in Figure 6.2, proceeds as

follows:
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Fig. 6.2 An illustration of the SAT algorithm.
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1. Estimate a cMLLR transform W (i )
s = ( A (i )

s ; b(i )
s ) for each speakers such that:

W (i )
s = arg max

W
L

�
O (i � 1)

s

�
�
�W ; � (i � 1)

c

�
(6.11)

2. Apply the transform W (i )
s obtained in step 1 to the set of acoustic features

resulting from iteration i � 1 to obtain a new set of speaker-normalised acoustic

features for each speakers:

o(i )
s;t = A (i ) � 1

s o(i � 1)
s;t � A (i ) � 1

s b(i )
s (6.12)

3. Retrain the speaker-independent acoustic model� (i � 1) obtained at stepi � 1,

estimate a new set of normalised speaker models� (i )
c for each speakers, using

the speaker-normalised acoustic featuresO (i )
s obtained in step 2.

4. Increasei to i + 1 and iterate from step 1 until a maximum number of iterations

is reached.

For each speakers, the �nal iteration produces speaker-normalised acoustic fea-

tures ~Os, cMLLR speaker transforms ~W s and a speaker-independent acoustic model� c.

6.2.4 PAT

The motivation of PAT stems from the idea behind SAT. As illustrated in Figure 6.3,

PAT aims to project acoustic features into a space where phone variability is suppressed

in order to provide more speaker-discriminative features for speaker modelling.

We suppose a dataset of utterances collected fromS di�erent speakers. Each

utterance is composed ofP di�erent phones such that the global set of acoustic features

is represented byOs;p = ( os;p;1; : : : ; os;p;N s;p ) where Ns;p is the number of acoustic

features corresponding to each speakers 2 S and each phonep 2 P. For each phone

p, PAT estimates iteratively a transformation ~W p = ( ~A p; ~bp) which captures the

phone variation across speakers. Simultaneously, PAT learns a set of phone-normalised

speaker models~� = ( ~� 1; : : : ; ~� S). The algorithm is thus de�ned by:

�
~� ; ~W

�
= arg max

� ;W

SY

s=1

PY

p=1

L (Os;pjW p; � s) (6.13)
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where ~W = ( ~W 1; : : : ; ~W p) represents the set of phone transforms. As in Equation 6.7,

phone-normalized features~Os;p are then obtained according to:

~os;p;t = ~A
� 1
p os;p;t � ~A

� 1
p

~bp (6.14)

where t = 1; : : : ; Ns;p is the feature index. Since there is no closed-form solution,

Equation 6.13 is optimised iteratively.

We denote byO (0)
s;p the set of initial acoustic feature vectors for each speakers and

phonep. The initial step consists in training a set of speaker models� = ( � (0)
1 ; : : : ; � (0)

S )

using the initial acoustic features vectors. Then, for each iterationi , the algorithm,

illustrated in Figure 6.4, proceeds as follows:

1. Estimate a cMLLR transform W (i )
p = ( A (i )

p ; b(i )
p ) for each phonep such that:

W (i )
p = arg max

W

SY

s=1

L
�
O (i � 1)

s;p

�
�
�W ; � (i � 1)

s

�
(6.15)

2. Apply the transform W (i )
p obtained in step 1 to the set of acoustic features

resulting from iteration i � 1 to obtain a new set of phone-normalised acoustic

features for each speakers and phonep:

o(i )
s;p;t = A (i ) � 1

p o(i � 1)
s;p;t � A (i ) � 1

p b(i )
p (6.16)

3. Through MAP adaptation of speaker models� (i � 1) obtained at stepi � 1, estimate

a new set of normalised speaker models� (i ) = ( � (i )
1 ; : : : ; � (i )

S ) for each speakers,

using the phone-normalised acoustic featuresO (i )
s;p obtained in step 2.

4. Increasei to i + 1 and iterate from step 1 until a maximum number of iterations

is reached.

For each speakers and phonep, the �nal iteration produces phone-normalised

acoustic features~Os;p, cMLLR phone transforms ~W p and phone-normalised speaker

models ~� .
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Fig. 6.4 An illustration of the PAT algorithm.
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Fig. 6.5 An illustration of regression tree analysis which is used to identify suitable
acoustic classes or groups of phones for PAT.

Acoustic classes

In practice, due to data limitations, it can be preferable to learn transforms~W p for

groups of phones, often referred to as phone classes or acoustic classes, instead of

individual phones. Based on linguistic analysis, suitable classes can be learned with a

binary regression tree. As illustrated in Figure 6.5, the root node is initialized with a

single acoustic class containing the full set of phones illustrated in Table 3.3. Each node

is progressively split into smaller sub-classes for which separate transforms~W p are

determined. The split is made according to that which maximises the data likelihood

in Equation 6.13. The pooling of data according to acoustic classes, instead of phones,

allows a more reliable estimation of a smaller set of transforms with less data.

PAT thus results in phone-normalised acoustic features from which more discrimi-

nant speaker models can be learned. In the next section, PAT performance is assessed

through oracle ASV experiments performed on the TIMIT database [62] which is

manually labelled at the phone level.

6.3 Oracle ASV experiments

This section reports experimental setup and results which analyse the performance

of PAT under strictly controlled conditions by means of oracle ASV experiments. As

illustrated in Figure 6.6, PAT is applied to the original acoustic featuresOs;p according

to the available ground-truth phonetic transcriptions. The transformed features~Os;p
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are then used for ASV experiments while the original acoustic featuresOs;p for baseline

ASV experiments. The di�erence between the obtained equal error rates (EERs) from

the baseline ASV experiments and from the ASV experiments with PAT is considered

as a measure of the speaker discriminative power of PAT in the case when speaker

models are enrolled with short-duration utterances and in optimal conditions.

As already previously mentioned, in contrast to previous work [4] which was

performed on the NIST Rich Transcription datasets in the context of speaker diarization,

the work reported in this chapter has been performed on the TIMIT database (Chapter

3, Section 3.5) and in the context of ASV.

6.3.1 PAT performance

PAT performance is investigated using speaker models of between 4 and 1024 GMM

components. Models are derived from the UBM, trained on the TIMITubm dataset,

using conventional maximum a posteriori (MAP) adaptation. By means of the available

ground-truth transcriptions, PAT transforms ~W p for each phonep 2 P are then learned,

as explained in Section 6.2.4 from a set of acoustic classes from the initial set of 38

phones illustrated in Table 3.3. A number of acoustic classes is controlled in the

conventional manner with a regression tree and by �xing an initial desired likelihood.

Independent transforms are learned for male and female speakers and for the set of

utterances from the TIMITubm, TIMITspk and TIMITtest datasets.

The global PAT process (steps from 1 to 4) described in Section 6.2.4 was imple-

mented with the Hidden Markov Model Toolkit (HTK) [ 86], in particular for creating

the binary regression tree and for estimating the cMLLR transforms by solving Equation

6.15.

6.3.2 Speaker veri�cation systems

PAT performance is assessed on two di�erent ASV systems: a traditional GMM-

UBM system and a state-of the art iVector-PLDA system. Baseline experiments

were performed using the initial set of featuresOs;p (or derived iVectors) used in

PAT initialisation while ASV experiments with PAT are performed using the phone-

normalised speaker features~Os;p (or derived iVectors) previously de�ned in section

6.2.4. For the iVector-PLDA system, the total variability matrix was estimated using

the data from the TIMITubm dataset. Due to data limitations and since the aim is
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Fig. 6.7 Average phone and speaker discrimination for up to 10 iterations of PAT.
Results shown for the 112 male speakers in the test dataset.

not to optimise ASV, but to observe the di�erence in ASV performance with PAT, the

PLDA model is learned with the same development iVectors.

6.3.3 Experimental Results

PAT performance is analysed �rst, in terms of speaker and phone discrimination

statistics, and second, in terms of its impact on ASV performance.

Speaker and phone discrimination

As reported previously in [4, 60], speaker and phone discrimination can be assessed at

the feature level in terms of Fisher scores. They re�ect the ratio of inter and intra class

variance, where classes infer the subset of features corresponding to distinct speakers

or distinct phones.

Given Ci , i = 1; : : : ; S classes (phones or speakers) and a set ofN labelled features

ot , t = 1; : : : ; N with Ti = f tjot 2 Ci g, the Fisher score is de�ned as follows:

SF isher =

SP

i =1

SP

j =1
(� i � � j )

T (� i � � j )

SP

l=1

P

t2 Tl

(ot � � l )T (ot � � l )
(6.17)
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where� i is the mean for classCi and ot is the t-th feature in the subset corresponding

to classCl .

Figure 6.7 illustrates average phone and speaker discrimination for the 112 male

speakers in the test dataset. Discrimination is plotted as a function of PAT iterations.

As expected, PAT reduces the phone discrimination (dashed pro�le) signi�cantly. A

rapid drop in phone discrimination occurs after a single iteration, probably due to

the use of acoustic classes, tying together di�erent phonemes and estimating the same

cMLLR transform for the phones belonging to the same acoustic class. The algorithm

converges with 10 iterations, after which the phone discrimination is approximately 50%

lower than without PAT. Importantly, PAT also enhances speaker discrimination (solid

pro�le). Figure 6.7 shows that after 10 iterations, speaker discrimination increases

by approximately 43%. Features exhibiting lower phone discrimination but higher

speaker discrimination should result in more discriminative speaker models. While

improvements in ASV performance might be modest when training data is plentiful

(models will be inherently phone-normalised without PAT), performance should improve

in the case of limited training data. The ASV experiments presented in the next

subsection seek to verify this hypothesis.

Automatic Speaker veri�cation

Figures 6.8, 6.9, 6.10 and 6.11 illustrate the performance in terms of equal error rate

(EER) of GMM-UBM (left bar plots) and iVector-PLDA (right bar plots) systems,

with and without PAT, for model sizes between 4 and 1024 components and for models

trained with 1, 3, 5 or 7 TIMIT sentences respectively. In all cases, baseline performance

is illustrated with clear bars. In general, as the amount of training data increases,

then better performance is obtained with increasingly complex models. Noting the

di�erence in scale between plots for each system, we also see that the iVector-PLDA

system outperforms the GMM-UBM system when models are trained with relatively

little data, whereas similar levels of performance are achieved when larger quantities

are used.

We now turn to the assessment of PAT performance illustrated in Figures 6.8, 6.9, 6.10

and 6.11 by shaded bars. In general, for smaller model sizes and for both GMM-UBM

and iVector-PLDA systems, performance with PAT is better than without � shaded

bars are lower than clear bars. While improvements are mostly greater in the case
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(a) GMM-UBM

Number of sentences

for speaker model training

Baseline

(EER %)

Baseline + PAT

(EER %)

1 4.2 3.6

3 1.8 1.0

5 0.6 0.6

7 0.6 0.6

(b) iVector-PLDA

Number of sentences

for speaker model training

Baseline

(EER %)

Baseline + PAT

(EER %)

1 2.4 1.2

3 1.1 0.4

5 1.1 0.4

7 0.6 0.3

Table 6.1 An illustration of EERs for the GMM-UBM and the iVector-PLDA systems
with varying quantities of training data. Results shown for optimal model sizes in each
case.

of low quantities of training data, modest improvements are also observed for the

greatest quantities of training data. In some cases, for higher model sizes, PAT degrades

performance. While it is di�cult to explain these observations precisely, we expect this

behaviour to be the result of over-�tting; with PAT, features are phone-normalised and

accordingly require models of less complexity. Indeed optimal baseline performance

is generally obtained with models of greater complexity than obtained by the same

system with PAT.

Detection error trade-o� (DET) pro�les for both (a) GMM-UBM and (b) iVector-

PLDA systems are illustrated in Figure 6.12. The two plots illustrate performance

when speaker models of optimal size in each case are learned with only a single sentence

(and thus corresponds to Figure 6.8a), with or without PAT. Baseline EERs of 4.2%

and 2.4% are shown to fall to 3.6% and 1.2% with the application of PAT. PAT thus
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delivers signi�cant improvements in ASV performance in the case of short-duration

training.

Table 6.1 illustrates a summary of performance for both GMM-UBM and iVector-

PLDA systems for di�erent quantities of training data. Results correspond to optimal

model sizes in each case. When speaker models are trained on a single sentence, the

baseline iVector-PLDA system outperforms the baseline GMM-UBM system by 43%

relative (EERs of 4.2% c.f. 2.4%). When 7 sentences are used, both systems attain

the same baseline EER of 0.6%. PAT leads to better or equivalent performance in all

cases. When speaker models are learned with only a single sentence, baseline EERs

decrease to 3.6% and 1.2% for the GMM-UBM and iVector-PLDA systems respectively.

Of particular note, the greatest improvements in ASV performance are obtained for

the iVector-PLDA system where performance is improved by 50% relative, irrespective

of the quantity of training data.

6.4 Towards unsupervised PAT

The oracle experiments reported in Section 6.3 has sought to assess the performance

of PAT under strictly controlled conditions during which PAT transforms are esti-

mated according to the available ground-truth phonetic transcriptions in a completely

supervised manner. However, in real scenarios, reliable phonetic transcriptions are

rarely available and di�cult to obtain. In this section, we thus present our e�orts to

develop PAT into a fully unsupervised system. Automatic acoustic class transcription

is performed by means of an acoustic class recognizer whose output is used to estimate

PAT transforms.

As illustrated in Figure 6.13, the data aimed to the estimation of the UBM from the

TIMITubm dataset is used to determine from 5 to 38 acoustic classes by means of binary

regression tree analysis. For each of the acoustic classes an HMM model is trained.

These models are then fed into an automatic acoustic class recognizer in order to obtain

acoustic class transcriptions. PAT is then applied on the original acoustic features

Os;p of the speech data according to the obtained acoustic class transcriptions rather

than the original ground-truth phonetic transcriptions, as reported in Section 6.3. The

transformed features~Os;p are then used for ASV experiments while the original acoustic

featuresOs;p for baseline ASV experiments. The di�erence between the obtained equal
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error rates (EERs) of the baseline ASV experiments and of the ASV experiments with

PAT is then considered as a measure to quantify the speaker discriminative power of

PAT in the case when speaker models are enrolled with short-duration utterances and

when automatic generated phonetic transcriptions are used.

6.4.1 Acoustic class transcription

An acoustic class recognizer is trained using the pool of acoustic features extracted

from the TIMITubm dataset. By varying the likelihood threshold, the 38 phones in

Table 3.3 (without silence) are reduced to between5 and 38 acoustic classes through

automatic binary regression tree analysis. For each number of acoustic classes, the

phone labels in the phonetic transcriptions are replaced by their corresponding acoustic

class labels.

The acoustic class models are 3-state hidden Markov models (HMMs) where each

state is characterised by a Gaussian mixture model (GMM). Each acoustic class model

is �rst initialized with a single Gaussian component whose mean and variance are set

to that of the global class data. Subsequently, six iterations of embedded training are

performed. The number of Gaussian components is doubled and embedded training

is performed again on the new, larger model. This procedure is repeated until the

number of Gaussian components reaches 128.

Subsequently, TIMITspk and TIMITtest datasets used for ASV experiments are

transcribed automatically using the given set of acoustic classes and corresponding

models previously trained. Both training and decoding phases were implemented with

the Hidden Markov Model Toolkit (HTK) [86].

6.4.2 PAT and speaker veri�cation

Analogous to oracle ASV experiments, PAT performance was investigated with auto-

matically derived phone transcriptions using two di�erent ASV systems: a traditional

GMM-UBM system and a state-of the art iVector-PLDA system. Speaker models with

between 4 and 1024 Gaussian components are derived from the UBM using conventional

maximum a posteriori (MAP) adaptation. The features extracted from the TIMITubm

dataset are treated with PAT which is applied using the TIMIT ground-truth tran-

scriptions rather than the automatically derived transcriptions. All remaining data

from the TIMITspk and TIMITtest datasets used for ASV experiments (model training
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and testing) is instead treated with PAT applied using automatically derived acoustic

class transcriptions as explained above. In both cases Equation 6.13 is applied with5

iterations. As for acoustic class transcriptions, PAT was also implemented with the

Hidden Markov Model Toolkit (HTK) [ 86]. Analogously to the oracle experiments,

baseline ASV experiments were performed using the initial set of featuresOs;p (or

derived iVectors) while PAT performance was assessed using di�erent numbers of acous-

tic classes and corresponding normalised features~Os;p. As done for the oracle ASV

experiments, for the iVector-PLDA system the total variability matrix was estimated

on the TIMITubm dataset and the PLDA model is learned with the same development

iVectors.

6.4.3 Experimental Results

Figures 6.14, 6.15, 6.16 and 6.17 illustrate the performance in terms of EER of

GMM-UBM (left) and iVector-PLDA (right) systems, with and without PAT and

using respectively 1, 3, 5 and 7 TIMIT sentences to train speaker models. Results are

shown for model sizes between 4 and 1024 components and using 21 and 25 acoustic

classes respectively. In all cases, baseline performance is illustrated with clear bars

whereas that with 5 iterations of PAT is illustrated with shaded bars. In general,

as the amount of training data increases, then better performance is obtained with

increasingly complex models. The iVector-PLDA system outperforms the GMM-UBM

system when models are trained with relatively little data, whereas similar level of

performance are achieved when larger quantities are used.

In general, for smaller model sizes and for both GMM-UBM and iVector-PLDA

systems, performance with PAT is better than without � shaded bars are lower than

clear bars. While improvements are mostly greater in the case of low quantities of

training data, modest improvements are also observed for the greatest quantities of

training data. With PAT, features are phone-normalised and accordingly require

models of less complexity. Indeed, optimal baseline performance is generally obtained

with models of greater complexity than obtained by the same system with PAT.

In Figure 6.14, for speaker models trained with a single sentence, the performance

envelope for the GMM-UBM systems are convex with minima at 128 components for

the baseline and 64 components with PAT. The iVector-PLDA pro�les are somewhat
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Fig. 6.18 An illustration of ASV performance for GMM-UBM and iVector-PLDA
systems with 5 iterations of PAT for di�erent numbers of acoustic classes, all for
training data of 1 TIMIT sentence and for 64 UBM components. The baseline
performance for GMM-UBM and iVector-PLDA systems are represented respectively
by the solid and dashed horizontal lines.

noisy, mostly likely due to the lack of su�cient data to train the total variability matrix.

Optimal performance with PAT is achieved for a model with 64 components.

Figure 6.18 illustrates PAT performance for the GMM-UBM system (clear bars)

and the iVector-PLDA systems (shaded bars) with di�erent numbers of acoustic classes.

The complexity of both systems is �xed to 64 components. While the pro�le envelopes

are non-convex, most likely again due to lack of training data, the application of PAT

results in better performance than the respective baselines (solid and dashed horizontal

lines). These observations indicate that PAT is bene�cial even without reliable phone

transcriptions. With 15 and 25 acoustic classes respectively the relative improvement

in performance is 18% for the GMM-UBM system and 33% for the iVector-PLDA

system.

Detection error trade-o� (DET) pro�les for the GMM-UBM and the iVector-PLDA

systems using respectively 21 and 25 acoustic classes are illustrated in Figure 6.19.

The pro�les illustrate performance for optimal speaker model sizes trained using only

a single TIMIT sentence, with and without PAT. The baseline EER of 4.2% and 1.8%

are shown to fall respectively to 3.6% and 1.2% with the application of PAT. PAT thus

delivers improvements in the case of speaker modelling with short-duration training

utterances and even without accurate phonetic transcriptions.
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(a) GMM-UBM

Number of sentences

for speaker model training

Baseline

(EER %)

Baseline + PAT

(EER %)

1 4.2 3.6

3 1.2 0.9

5 0.7 0.6

7 0.3 0.4

(b) iVector-PLDA

Number of sentences

for speaker model training

Baseline

(EER %)

Baseline + PAT

(EER %)

1 1.8 1.2

3 1.2 0.7

5 0.6 0.5

7 0.7 0.5

Table 6.2 An illustration of EERs for the GMM-UBM and the iVector-PLDA systems
with varying quantities of training data. Results shown for optimal model sizes in each
case. PAT results are given for 21 acoustic classes in the case of GMM-UBM system
and for 25 acoustic classes in the case of iVector-PLDA system.

Table 6.2 illustrates a summary of performance for both the GMM-UBM and the

iVector-PLDA systems for optimal model sizes and for di�erent quantities of training

data, namely 1 to 7 TIMIT sentences. PAT results (second column) are given for 21

acoustic classes in the case of GMM-UBM system and for 25 acoustic classes in the

case of iVector-PLDA system. It is observed that, as the quantity of training data

increases, then the di�erence between baseline and PAT performance decreases. This

is to be expected since larger quantities of training data will inherently reduce the

phone bias and have the same normalising e�ect as PAT. PAT thus delivers the most

signi�cant improvements in ASV performance in the case of short-duration training

where the phone bias is otherwise the most pronounced.
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6.5 Summary

Many automatic speech processing applications involving speaker modelling, such as

text-independent automatic speaker veri�cation (ASV) and especially on-line speaker

diarization, are required to operate in the face of varying data quantities between

training and testing. When training data is scarce, results might be biased due to the

mismatching phonetic content encountered in the test data. Phone adaptive training

(PAT) is a recent phone normalisation technique �rst applied to the context of speaker

diarization. PAT is based on the application of constrained maximum likelihood linear

regression (cMLLR) which aims to reduce phone in�uence at the feature level, while

simultaneously emphasising speaker discrimination.

The �rst contribution presented in this chapter is the optimisation and evaluation of

PAT at the speaker modelling level, with small-scale ASV oracle experiments performed

on the TIMIT database, using the available ground-truth phonetic transcriptions and

under strictly controlled conditions. PAT is successful in reducing phone bias and it

improves signi�cantly the performance of both traditional GMM-UBM and iVector-

PLDA ASV systems in the case of short-duration training. Also of appeal, PAT can

typically achieve better performance with less complex models.

The second contribution of this chapter consists of our e�orts to develop PAT into

a completely unsupervised system by means of an automatic approach to acoustic

class transcription using binary regression tree analysis. PAT does not necessarily

require accurate phone-level transcriptions. Results using the same ASV systems,

show that PAT improves on baseline performance for all experiments with di�erent

numbers of acoustic classes and model complexities. Of particular note, the number

of acoustic classes can be reduced signi�cantly meaning that PAT is e�ective even

without reliable phone transcriptions. This may ease the application of PAT to more

realistic, noisy data where the estimation of phone transcription can be troublesome.

Finally, improvements in performance tend to reduce as the amount of training data

increases, meaning that PAT is most bene�cial when training data is scarce.

In Chapter 7, a �rst attempt of applying PAT to semi-supervised on-line diarization,

in order to improve speaker modelling and therefore reduce the system latency, is

described.





Chapter 7

PAT for on-line diarization: a �rst

attempt

Chapter 4 has reported our �rst attempt to develop a completely un-supervised on-line

diarization system aimed at supporting new emerging practical applications, due to

the spread of IoT, connected smart objects and always listening sensors. Although,

obtained results are in line with other work in literature, the obtained high diarization

error rates highlight even more the challenge involved.

After identifying the main bottleneck in the unsupervised initialisation of speaker

models with accumulated short-speech segments, a semi-supervised on-line speaker

diarization system, in which speaker models are initialised o�-line with short amounts of

manually labelled training data, has been proposed in Chapter 5. Although, the manual

initialisation of speaker models might represent an inconvenience, the huge improvement

in performance probably justi�es the additional e�ort and opens the potential for

the application of either supervised or semi-supervised speaker discriminant feature

transformations. Such transforms may o�er an opportunity for improved performance,

by reducing the need for seed data, latency, or both. One avenue through which this

objective might be pursued involves PAT introduced and described in Chapter 6.

In this chapter, a �rst attempt to apply PAT to semi-supervised on-line speaker

diarization and under strictly controlled conditions is presented. Due to the unavail-

ability of suitable datasets for speaker diarization transcribed at the phonetic level,

multi-speakers conversations are simulated by joining di�erent TIMIT audio �les.

Obtained audio �les are then processed with the semi-supervised on-line diarization
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system, described in Chapter 5. PAT transforms, trained on external data, are applied

to the original acoustic features in the speech segments in order to reduce the phonetic

variation. Despite the use of simulated data, experimental results presented in this

chapter highlight the potential of PAT to improve the performance of semi-supervised

on-line speaker diarization, in particular by reducing the quantity of initial seeding

data and the speaker model complexity.

The remainder of this Chapter is organised as follows. Section 7.1 describes how

the simulated conversations are obtained. Section 7.2 describes the experimental setup.

Section 7.3 reports experimental results. Finally, some conclusions are drawn in Section

7.4.

7.1 Simulated conversations using TIMIT dataset

Due to the lack of databases transcribed at the phonetic level suitable for the develop-

ment of on-line diarization together with PAT optimisation, the TIMIT database is

used to create simulated audio conversations by joining di�erent audio �les. For this

purpose, 5 recordings for each speaker from the TIMITspk and TIMITtest datasets are

set apart. Each simulated multi-speaker conversation involves from 4 to 9 speakers

whose related recordings are shu�ed, repeated and joined multiple times with no

overlap, in order to reach an average duration from 15 to 30 minutes. All the phonetic

ground-truth and speaker transcriptions are processed accordingly so that they are

aligned to the newly created audio conversations. A total of 15 simulated conversations

are obtained.

7.2 System setup

On-line diarization experiments are performed using the semi-supervised on-line di-

arization system with incremental MAP adaptation described in Chapter 5.

PAT transforms are estimated according to the ground-truth transcriptions using

all remaining sentences for each speaker which are not involved in the creation of audio

conversations. The normalised acoustic features are then used for the enrolment of

phone-normalised speaker models with di�erent amountTSP K of training data during

the initialisation phase of the semi-supervised diarization system. During the on-line
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classi�cation of speech segments of a maximum �xed durationTS, acoustic features

are phone-normalised by applying the estimated PAT transforms and classi�ed against

the corresponding phone-normalised speaker models. Incremental MAP adaptation is

used for the update of speaker models.

Baseline experiments are carried out in the same way as described in Chapter 5

with the original acoustic features and without the application of PAT. Figure 7.1

represents the semi-supervised on-line diarization combined with PAT transforms.

7.3 Experimental results

Semi-supervised on-line diarization performance, both with and without PAT are

reported in Figures 7.2, 7.3, 7.4, 7.5 and 7.6, for segment durations of 0.25, 0.5, 1, 2

and 3 seconds respectively. For the results shown in the left bar plots speaker models

are initialised with an amount of training data TSP K of 5 seconds while for the results

shown in the right bar plots a duration TSP K of 7 seconds is utilised. In all cases,

baseline performance is illustrated with clear bars. Diarization performance with PAT

is instead illustrated by shaded bars. In general, performance with PAT is better than

without � shaded bars are lower than clear bars.

Analogous to the results reported in Chapter 6 for ASV experiments, it is observable

that almost always the best baseline performance is surpassed with PAT when using

a lower model complexity. For instance, in Figure 7.2 for a segment durationTS of

0.25 seconds and a training durationTSP K of 5 seconds (left plot), a baseline DER

of 25% is obtained with a 64 Gaussian components model while by applying PAT a

DER of 22% is reached with a 32 Gaussian components model. Similarly, in Figure

7.4 for a segment durationTS of 1 second and a training durationTSP K of 7 seconds

(right plot), a baseline DER of 10.5% is reached with a 64 Gaussian components model

while with PAT application a DER of 9.5% is reached with a 32 Gaussian components

model.

Applying PAT with a lower amount of training data TSP K can result in the same

performance as the baseline. For instance in Figure 7.4, a DER of 10.5% is reached

by the baseline with a training duration TSP K of 7 seconds and with a 64 Gaussian

components model. The same performance is reached by applying PAT with a training

duration TSP K of 5 seconds and with a 32 Gaussian components model.
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Although, these experiments are based on simple, simulated conversation data,

results show the potential of PAT in improving semi-supervised on-line diarization, by

contributing to reduce the model complexity and in some cases the amount of required

labelled training data. Despite this, the advancing in this direction is clearly limited

by the lack of a phonetic labelled databases suitable for the development of on-line

diarization together with the optimisation of PAT.

7.4 Summary

Since on-line diarization involves the continuous training, update and comparison of

speaker models with short-duration speech segments, similarly to many other automatic

speech processing applications, its performance is strongly a�ected by the variation

due to the phonetic content. PAT is a technique to marginalise the phonetic variation

while increasing the speaker discrimination, by projecting the original acoustic features

into a more speaker discriminative space. In Chapter 6, it has been shown that PAT is

able to improve short-duration speaker modelling in ASV both with a GMM-UBM

system and a state-of-the-art iVector-PLDA system. The main scope of this Chapter is

to highlight how the application of PAT transforms could be potentially bene�cial for

on-line diarization both to reduce the system latency and in the case of semi-supervised

on-line diarization to reduce the amount of labelled training data required by the

initialisation of speaker models. Even though the audio data used for experiments

are simulated, experiments show that PAT could improve the performance of a semi-

supervised on-line diarization system. Similar performance to a baseline system could

be reached with lower complexity models and less amount of labelled training data.

Despite the potential of PAT in improving short-duration speaker modelling, one of the

main obstacle to further advance into this direction is the lack of manually phonetic

transcribed databases suitable for diarization purposes together with PAT optimisation,

therefore making the choice of TIMIT database mandatory.
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Chapter 8

Summary & conclusions

On-line diarization and its practical implementation has gained attention in recent years,

mainly due to an increase in interest for the need of speech-based context awareness

applications, based on the data collected from listening sensors in a multi-speaker

environment.

Although few works in the literature have addressed the problem of on-line diariza-

tion, a common trait among them is that the diarization techniques are developed

on less challenging broadcast news and plenary speeches recordings, characterized by

longer speaker turns and low spontaneity. Moreover, the proposed solutions are not

particularly suited to support emerging practical applications due to the high error

diarization rates.

Thus, the focus of this dissertation has been on the development of practical and

computationally e�cient on-line diarization systems for more challenging recordings,

for instance recordings from a meeting room. In addition, the problem of linguistic and

phonetic variation, a�ecting short-duration automatic speaker veri�cation (ASV) and

on-line diarization systems, is also addressed. In this regard, Phone Adaptive Training

(PAT), a recently proposed phone normalisation technique, is further optimised and

developed towards a complete unsupervised system.

A summary of the contributions in each chapter is given in Section 8.1, while future

works is introduced in Section 8.2.
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8.1 Contributions

A list of the main contributions and results for each chapter of this thesis is provided

below:

ˆ Chapter 4 deals with the problem of on-line speaker diarization and it proposes a

new adaptive, unsupervised on-line approach to speaker diarization for meeting

data captured with a single distant microphone. The performed experiments show

that the best performance implies a latency in the order of 3 or 4 seconds and the

accuracy of the trained speaker models converges as the amount of training data

increases. While results are in line with those reported for less challenging data,

diarization error rates remain high, probably too high to support any practical

applications. This is mainly due to the unsupervised on-line initialisation of

speaker models and their subsequent adaptation with short-duration speech

segments as shown in Chapter 5.

ˆ Chapter 5 reports a semi-supervised on-line diarization system in which speaker

models are seeded with an initial amount of labelled training data. Relaxing the

supervision constraints allows the initialisation of reliable speaker models ready for

on-line classi�cation. The use of longer segments might contain multiple speakers

and increase drastically the system latency. Such a system can outperform an

o�-line diarization system with just few seconds of speaker seed data and 3

seconds of latency when using an incremental MAP adaptation procedure in the

case of the RT07 meetings dataset. By using greater quantities of seed data or

by allowing greater latency a diarization error rate in the order of 10% can be

achieved.

ˆ Chapter 6 focuses on the development and optimisation of PAT, a phone nor-

malisation technique based on cMLLR transform developed to marginalise the

phonetic variation. The �rst contribution of this chapter is the evaluation and

optimisation of PAT at the speaker modelling level, by means of small-scale oracle

ASV oracle experiments on the TIMIT database, using the available ground-truth

phonetic transcriptions and under strictly controlled conditions. Results reported

in this chaptee show that PAT is successful in reducing phone bias and it improves

signi�cantly the performance of both traditional GMM-UBM and iVector-PLDA
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ASV systems in the case of training and testing with short-duration sentences.

The second contribution of this chapter is the development of PAT towards a

completely un-supervised system to support potential practical applications. An

automatic approach to acoustic class transcription using binary regression tree

analysis is proposed. Experimental results using the same ASV systems and with

di�erent number of acoustic classes show that PAT is still bene�cial even without

reliable phonetic transcriptions. In all cases, with less complex models PAT can

typically achieve better performance than the baseline.

ˆ Chapter 7 presents our �rst attempt to combine PAT with semi-supervised

on-line speaker diarization. As already mentioned, on-line speaker diarization

requires the iterative learning and update of speaker models with short-duration

speech segments. Due to the short amount of speech data, speaker models

might be biased towards the phonetic content. Due to the lack of phonetic

labelled databases suitable for the development of on-line diarization together

with PAT, simulated audio recordings are created by joining di�erent audio

recordings. Even though experiments are performed on simulated conversations,

experimental results show the potential of PAT in improving the performance

of a semi-supervised on-line diarization system by using less complex speaker

models and by requiring shorter amount of labelled training data for speaker

models initialisation.

8.2 Future works

This dissertation highlights the challenges involved in the development of a usable

on-line diarization system due to the initialisation of speaker models and their following

comparison with short-duration speech segments. It also highlights the potential of

PAT in marginalising the phonetic variation when speaker models are trained using

short-duration utterances in both ASV and on-line diarization scenarios.

Further work is required to address the following:

ˆ On-line speaker change detection: both the unsupervised and semi-supervised

on-line diarization systems, reported in this thesis, rely on the uniform splitting

of the speech segments according to a �xed maximum durationTS without taking

into consideration the actual speaker boundaries. Despite being computationally
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e�cient, this approach involves obviously the risk of including more than one

speaker in the same speech segment, ultimately leading to the initialisation or

adaptation of impure speaker models and accumulation of errors. Therefore, the

development and application of on-line speaker change detection would allow

to identify more precisely the speaker turns boundaries, thus providing purer

speech segments which potentially contains a single speaker and ultimately better

diarization results.

ˆ Hybrid diarization system: un-supervised on-line diarization has to produce

decisions on- the-�y that will inevitably degrade diarization performance below

that achievable with a strictly o�- line diarization system. Furthermore, a strictly

on-line diarization system has no capacity to correct for earlier mistakes (for

example re-segmentation or re-alignment) which implies the potential for their

accumulation and, ultimately, unreliable diarization. While, these problems could

be partially solved by relaxing the supervision constraint as shown in this thesis,

the advanced knowledge of the speaker numbers and the initial seeding of speaker

models might not be possible in all situations. A possible alternative could be the

application of a low-resource, secondary o�-line diarization process which runs

in parallel to the main on-line approach. Its main aim is to identify and correct

previous mistakes and therefore the accumulation of errors. Speaker models

can then be re-learned or re-adapted with the bene�t of more reliable decisions

taken o�-line. A suitable choice for the o�-line diarization system could be the

diarization system based on binary keys, described in Chapter 2, Section 2.6.4

thanks to its important computational e�ciency.

ˆ PAT transforms adaptation: even though PAT transforms could be estimated

for more general acoustic classes rather than for single phones as shown in Chapter

6, the estimation of PAT still requires a large amount of training data. Moreover,

the estimated PAT transforms are e�cient for the normalisation of data coming

from the same speakers for which the PAT transforms were trained and whose

discrimination has to be maximised. Since there is not always enough data for

each of the speakers to train reliable PAT transforms, it would be useful to

develop adaptation techniques for the PAT transforms. Such techniques would

allow the training of general PAT transforms on large databases with an elevated

number of general speakers and following the adaptation to the speci�c recording
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with a just a little amount of training data. Speci�cally, in the case of the

semi-supervised on-line diarization, PAT transforms optimised for the involved

speakers could be obtained in the o�-line phase with the same amount of data

meant for speaker models initialisation.





Appendix A

Diarisation du locuteur en temps

réel pour les objets intelligents

Introduction

La diarisation du locuteur en temps réel vise à détecter "qui parle maintenant" dans

un �ux audio donné. La majorité des systèmes de diarisation en ligne proposés a mis

l'accent sur des domaines moins di�ciles, tels que la émission des nouvelles et discours en

plénière, caractérisé par une faible spontanéité. La première contribution de cette thèse

est le développement d'un système de diarisation du locuteur complètement un-supervisé

et adaptatif en ligne pour les données de réunions qui sont plus di�ciles et spontanées.

En raison des hauts taux d'erreur de diarisation, une approche semi-supervisé pour

la diarisation en ligne, ou les modèles des interlocuteurs sont initialisés avec une

quantité modeste de données étiquetées manuellement et adaptées par une incrémentielle

maximum a-posteriori adaptation (MAP) procédure, est proposée. Les erreurs obtenues

peuvent être su�samment bas pour supporter des applications pratiques.

La deuxième partie de la thèse aborde le problème de la normalisation phonétique

pendant la modélisation des interlocuteurs avec petites quantités des données. Tout

d'abord, Phone Adaptive Training (PAT), une technique récemment proposé, est évalué

et optimisé au niveau de la modélisation des interlocuteurs et dans le cadre de la

véri�cation automatique du locuteur (ASV) et est ensuite développée vers un système

entièrement un-supervise en utilisant des transcriptions de classe acoustiques générées

automatiquement, dont le nombre est contrôlé par analyse de l'arbre de régression. PAT
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o�re des améliorations signi�catives dans la performance d'un système ASV iVector,

même lorsque des transcriptions phonétiques précises ne sont pas disponibles. En�n,

une première tentative de combinaison de PAT et diarisation semi-supervisé en ligne

con�rme le potentiel de PAT dans l'amélioration de la modélisation des interlocuteurs

en temps réel et motive plus de recherche dans cette direction.

A.1 Diarisation en-ligne un-supervisé

Cette section implique le développement d'un système de diarisation un-supervisé

et adaptatif en ligne pour les données de réunions. Contrairement à la plupart des

ouvrages de littérature qui se concentrent sur les nouvelles de radiodi�usion et les

scénarios de discours en plénière, le système proposé est plutôt développé et optimisé

pour les données de réunions. De nos jours, les enregistrements de réunions représentent

les données les plus di�ciles disponibles pour développer un système de diarisation en

ligne pour les applications en temps réel.

Le système développé est basé sur l'introduction séquentielle et l'adaptation des

modèles de locuteurs au moyen d'un algorithme d'adaptation MAP séquentiel. La

performance du système est évaluée par des expérimentes où di�érentes durées de

segment de paroleTS et di�érentes tailles de modèle sont utilisées.

Bien que les performances du système corresponde aux performances d'autres

systèmes de diarisation en ligne présentés dans la littérature qui traite des données

moins di�ciles, les taux d'erreur obtenus mettent en évidence le dé� que pose le

développement d'un système de diarisation en ligne e�cace et apte à supporter des

applications pratiques.

A.1.1 Implémentation du système

Le système de diarisation des interlocuteurs en ligne un-supervisé développé pour la

diarisation des réunions est illustré dans la Figure A.1. Il est basé sur l'approche

de base top-down de la diarisation hors ligne décrite au Chapitre 3, Section 3.4 et

l'approche de diarisation en ligne rapportée dans [3]. Mis à part la modélisation

d'arrière-plan, il existe trois étapes: (i) extraction d'observations acoustiques; (ii) la

détection de l'activité de la parole et (iii) la classi�cation en ligne.
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Détection de l'activité de la parole

Le �ux audio est d'abord paramétré par une série d'observations acoustiqueso1; : : : ; oT .

Critiquement, pour tous les instants� 2 1; : : : ; T seules les observations pourt < �

sont utilisées pour la diarisation. Les segments non vocaux sont supprimés en fonction

de la sortie d'un détecteur d'activité de parole conventionnel basé sur le modèle dérivé

du système de diarisation top-down de base décrit dans le Chapitre 3, Section 3.4. Les

segments de parole restants sont ensuite divisés en sous-segments plus petits dont la

durée ne dépasse pas une durée maximale �xée a prioriTS. Les valeurs plus élevées de

TS impliquent une latence plus élevé. La classi�cation en ligne est ensuite appliquée

en séquence à chaque segment.

Classi�cation en ligne

Les segments de parole sont attribués à un modèle de interlocuteur existant ou un

nouveau modèle de interlocuteur est créé. Cette procédure est contrôlée avec un univer-

sal background model (UBM) appelées0 qui est formé sur des données externes. Les

nouveaux modèles de interlocuteurs sont introduits dans l'inventaire des interlocuteurs,

si le segment actueli génère une vraisemblance logarithmique plus élevée par rapport à

l'UBM que par un ensemble de modèles de interlocuteursj , où j = 1; : : : ; N Et où N

indique le nombre de locuteurs dans l'hypothèse actuelle. Les segments sont attribués

selon:

sj = arg max
l2 (0;:::;N )

KX

k=1

L (ok jsl ) (A.1)

où ok est la k-th observation acoustique dans le segmenti , K représente le nombre de

observations acoustiques dans lei -th segment et oùL (ok jsl ) désigne la vraisemblance

logarithmique de lak-th observation acoustique dans le segmenti donné le modèle

GMM sl . Si le segment est attribué às0, un nouveau modèle de interlocuteursN +1

est obtenu par une adaptation MAP du modèle UBMs0 en utilisant les observations

acoustiques contenues dans le segmenti . Le segmenti est ensuite étiqueté selon le

nouvel interlocuteur introduit et N est augmenté de un. Lorsqu'un segment est attribué

à un interlocuteur existant, le modèle correspondant est adapté par une adaptation

MAP séquentielle, illustré en Figure A.2. Le segment est ensuite marqué selon l'orateur

reconnuj par Eq. A.1.
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A.1.2 Evaluation de la performance

La performance du système de diarisation en ligne un-supervisé a été évaluée en

analysant le DER global en fonction de la durée maximale du segmentTS et de la

taille des modèles de interlocuteurs.

Des expérimentes ont été réalisées pour des durées de segments maximales de

0; 25; 0; 5; 1; : : : ; 10 secondes et di�érentes tailles de modèles UBM:8, 16, 32, 64 et 128

composants gaussiens.

Les parcelles à gauche dans les �gures A.3, A.4 et A.5 illustrent les performances

de diarisation en ligne en termes de DER globale en fonction de la durée du segment

TS et la taille du modèle pour les ensembles de données RTdev, RT07 et RT09,

respectivement. La taille optimale du modèle est soit 32 ou 64 composants gaussiens,

la plus grande taille du modèle étant la plus uniforme dans les trois ensembles de

données. Dans tous les cas, il est possible de constater que, à mesure que la taille du

modèle augmente, les performances se détériorent davantage et probablement en raison

du manque de données su�santes pour un apprentissage et une adaptation �ables des

modèles de interlocuteurs. La durée maximale optimale du segmentTS pour tous les

cas est d'environ 3 ou 4 secondes. Initialement, le DER tend à diminuer à mesure

que la durée du segment augmente. À mesure que la taille du segment augmente

au-delà de l'optimum, le DER global empire jusqu'à ce qu'il se stabilise. Ceci est

probablement dû au fait que la plupart des segments de discours après le processus SAD

sont déjà plus courts que la durée maximale du segmentTS. Dans les trois ensembles

de données, le DER minimum est compris entre 40 % et 45 %. Il s'agit d'un taux

d'erreur élevé, mais pas di�érent de celui rapporté dans les travaux antérieurs e�ectués

sur de données de radiodi�usion, par exemple [3]. Les taux d'erreur de diarisation

élevés peuvent être causés par l'initialisation des modèles de interlocuteurs grâce à

l'adaptation MAP du modèle UBM avec des segments de parole trop courts. Les

modèles de interlocuteurs initiaux ne sont pas su�samment discriminants pour classer

de manière �able les segments de parole entrants. Bien que l'application de l'adaptation

et la re-segmentation améliorent la performance, elles introduiraient également une

latence et une complexité de calcul supplémentaires non conformes à la diarisation en

ligne.



G
lo

ba
l

D
E

R
D

yn
am

ic
co

nv
er

ge
nc

e

Se
gm

en
t d

ur
at

io
n 

T S (s
ec

)  

1
2

3
4

5
6

7
8

9
10

11
M

in
ut

es
 (m

in
)

30354045505560 DER (%)

1 
se

c
2 

se
c

3 
se

c
4 

se
c

5 
se

c
6 

se
c

F
ig

.
A

.3
Le

s
ré

su
lta

ts
so

nt
a�

ch
és

p
ou

r
l'e

ns
em

bl
e

de
do

nn
ée

s
R

Td
ev

.D
ia

gr
am

m
es

à
ga

uc
he

:
un

e
ill

us
tr

at
io

n
du

D
E

R
gl

ob
al

en
fo

nc
tio

n
de

la
du

ré
e

du
se

gm
en

tT S
(0

.2
5,

0.
5,

1-
10

se
c)

et
p

ou
r

di
�é

re
nt

es
ta

ill
es

de
m

o
dè

le
(8

-1
28

).
D

ia
gr

am
m

es
à

dr
oi

te
:

un
e

ill
us

tr
at

io
n

de
la

co
nv

er
ge

nc
e

dy
na

m
iq

ue
du

D
E

R
en

fo
nc

tio
n

du
te

m
psT

i.



G
lobal

D
E

R
D

ynam
ic

convergence

Segm
ent duration T

S  (sec) 

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

M
inutes (m

in)

30 35 40 45 50 55

DER (%)

1 sec
2 sec
3 sec
4 sec
5 sec
6 sec

F
ig.

A
.4

Les
résultats

sont
a�chés

p
our

l'ensem
ble

de
données

R
T

07.Diagram
m

es
à

gauche:
une

illustration
du

D
E

R
globalen

fonction
de

la
durée

du
segm

entTS
(0.25,0.5,1-10

sec)
et

p
our

di�érentes
tailles

de
m

o
dèle

(8-128).
D

iagram
m

es
à

droite:
une

illustration
de

la
convergence

dynam
ique

du
D

E
R

en
fonction

du
tem

psTi .



G
lo

ba
l

D
E

R
D

yn
am

ic
co

nv
er

ge
nc

e

Se
gm

en
t d

ur
at

io
n 

T S (s
ec

)  

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

M
in

ut
es

 (m
in

)

4045505560 DER (%)

1 
se

c
2 

se
c

3 
se

c
4 

se
c

5 
se

c
6 

se
c

F
ig

.
A

.5
Le

s
ré

su
lta

ts
so

nt
a�

ch
és

p
ou

r
l'e

ns
em

bl
e

de
do

nn
ée

s
R

T
09

.D
ia

gr
am

m
es

à
ga

uc
he

:
un

e
ill

us
tr

at
io

n
du

D
E

R
gl

ob
al

en
fo

nc
tio

n
de

la
du

ré
e

du
se

gm
en

tT S
(0

.2
5,

0.
5,

1-
10

se
c)

et
p

ou
r

di
�é

re
nt

es
ta

ill
es

de
m

o
dè

le
(8

-1
28

).
D

ia
gr

am
m

es
à

dr
oi

te
:

un
e

ill
us

tr
at

io
n

de
la

co
nv

er
ge

nc
e

dy
na

m
iq

ue
du

D
E

R
en

fo
nc

tio
n

du
te

m
psT

i.



142 Diarisation du locuteur en temps réel pour les objets intelligents

A.2 Semi-supervised on-line diarisation

Bien que des approches semi-supervisées aient été signalées précédemment pour la

diarisation hors ligne [64], cette section concerne le développement d'un nouveau

système de diarisation en ligne semi-supervisé. Le nouveau système exploite de

courtes quantités de parole libellées pour l'initialisation supervisés des modèles de

locuteurs. Le reste du processus reste entièrement un-supervisé. Le principal objectif

des travaux présentés dans cette section est de déterminer la quantité de la parole

libellées manuellement a�n de fournir des performances satisfaisantes. La deuxième

contribution de ce travail se rapporte plutôt à une maximum a-posteriori adaptation

(MAP) procédure incrémentielle pour l'adaptation des modelés en ligne, qui s'avère

déterminante dans la production de faibles taux d'erreur de diarisation. Cette procédure

est illustrée en Figure A.6.

A.2.1 Implémentation du système

Le système de diarisation en ligne semi-supervisé proposé est illustré dans la Figure A.7.

Il est basé sur l'approche top-down de la diarisation hors ligne reportée dans le Chapitre

3, Section 3.4 et l'approche de diarisation en ligne un-supervisée décrite en Chapitre 4.

Le système se caractérise par quatre étapes: (i) extraction des observations acous-

tiques; (ii) l'initialisation des modèles de interlocuteurs hors ligne; (iii) la détection de

l'activité de la parole et (iv) la classi�cation en ligne.

Extraction des observations acoustiques

Chaque �ux audio est paramétré pour la première fois par une série d'observations

acoustiqueso1; : : : ; oT . Critiquement, pour n'importe quel instant � 2 1; : : : ; T seules

les observations pourt < � sont utilisées pour la diarisation.

Initialisation des modèles de interlocuteurs hors ligne

Une brève phase de table ronde dans laquelle chaque orateur se présente est utilisée

pour initialiser des modèles de interlocuteurs. Le premierTSP K secondes de la parole

active pour chaque orateur est mis de côté pour l'initialisation des modèles. Un

inventaire ~� des modèles de interlocuteursj , où j = 1; : : : ; M , avec M indiquant

le nombre de interlocuteurs lors d'une réunion, est ensuite formé en utilisant un
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certain durée des donnéesTSP K pour chaque orateur. Les modèles de interlocuteurs

sont obtenues par MAP adaptation de l'UBM en utilisant les données. Pour chaque

modèle de interlocuteursj , les statistiques su�santesN (j )
1 ; F (j )

1 et S (j )
1 obtenu pendant

l'adaptation MAP sont stockés a�n d'être utilisés pendant la phase de classi�cation en

ligne pour mettre à jour les modèles de interlocuteur. L'ensemble résultant de modèles

de interlocuteurs est ensuite utilisé pour diariser les segments de parole restants d'une

manière un-supervisée.

Détection de l'activité de la parole et classi�cation en ligne

Les segments non vocaux sont supprimés en fonction de la sortie d'un détecteur

d'activité de la parole conventionnel (SAD) basé sur le modèle dérivé du système de

diarisation top-down décrit dans le Chapitre 3, Section 3.4.

Les segments de parole restants sont ensuite divisés en sous-segments plus petits

dont la durée ne dépasse pas une durée maximale �xée a prioriTS. Les valeurs plus

élevées deTS impliquent un système de latence plus élevé. La diarisation en ligne est

ensuite appliquée en séquence à chaque sous-segment. La séquence des interlocuteurs

optimisée ~S et la segmentation ~G sont obtenues en attribuant successivement chaque

segmenti à l'un des modèles de interlocuteurM selon:

sj = arg max
l2 (1;:::;M )

KX

k=1

L (ok jsl ) (A.2)

où ok est la k-th observation acoustique du segmenti , K représente le nombre des

observations acoustiques dans lei -th segment et oùL (ok jsl ) désigne la vraisemblance

logarithmique de lak-th observation du segmenti étant donné le modèle de interlocuteur

sl . Le segment est ensuite marqué d'après l'interlocuteur reconnuj par (A.2). Le

modèle de interlocuteur mis à joursj est obtenu par une adaptation MAP séquentielle

ou incrémentielle comme illustré dans la Figure A.6.

A.2.2 Evaluation de la performance

A�n d'évaluer la performance du système de diarisation semi-supervisé en ligne proposé,

les DER globaux moyens sont évalués en fonction de la quantité de données de formation

étiquetéesTSP K et de la durée maximale du segmentTS.
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Tout d'abord, pendant la phase hors ligne et supervisée, les modèles de interlocuteur

sj sont formés à l'aide de quantités croissantes de données étiquetéesTSP K de durée

1; : : : ; 39 secondes. Le modèle UBM général est composé par 64 composants gaussian.

La diarisation en ligne est e�ectuée en utilisant une durée de segment maximale

di�érente de TS avecTS = 0:25; 0:5; 1; 2; 3; 4. Les valeurs supérieures deTS impliquent

une latence plus élevée du système. La performance du système est évaluée en utilisant la

procédure d'adaptation MAP séquentielle et incrémentielle a�n de prouver la meilleure

e�cacité de ce dernier en fournissant un taux d'erreur de diarisation inférieur.

Résultats dans les �gures A.8, A.9 et A.10 illustrent la variation de DER par

rapport à la quantité de données de formation des modèles des interlocuteursTSP K

pour les ensembles de données, RTdev, RT07 et RT09, respectivement. Les parcelles à

gauche illustrent les performances pour l'adaptation MAP séquentielle alors que les

parcelles à droite correspondent à une adaptation MAP incrémentielle. Dans chaque

parcelle, di�érents pro�ls illustrent les performances pour une gamme de latencesTS.

La première observation des �gures A.8, A.9 et A.10 indique que la performance du

système semi-supervisé de diarisation en ligne peut dépasser celle de baseline système,

le système de diarisation hors ligne (illustré par des lignes horizontales et pointillées).

Dans le cas de l'adaptation MAP séquentielle, cela est réalisé pour l'ensemble de

données RTdev, par exemple, lorsque les modèles de interlocuteurs sont formées avec

TSP K = 9 de secondes de données de formation lors de l'utilisation d'une taille de

segment / latence deTS = 4 secondes. Avec la même taille de segment, les performances

de base pour les ensembles de données RT07 et RT09 sont dépassées en utilisant aussi

peu queTSP K = 5 et 3 secondes respectivement.

En général, des DER inférieurs sont obtenus avec une plus grande quantité de

données de formation, par exemple, un DER de 12,5 % est obtenu avecTSP K = 9 de

secondes de données de formation pour l'ensemble de données RT07 et 15 % avec 17

secondes de données de formation pour l'ensemble de données RT09, toutes deux avec

des latences deTS = 3 secondes.

En tournant à côté des résultats pour la MAP incrémentielle illustrée dans les traits

droites de Figures A.8, A.9 et A.10 il est immédiatement évident que les performances

sont signi�cativement meilleures que les performances avec la MAP séquentielle. Ici,

la performance de diarisation baseline, hors ligne est dépassée avec aussi peu que

TSP K = 5 de secondes de données de formation pour l'ensemble de données RTdev et
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TSP K = 3 secondes dans le cas de RT07 et RT09, tous avec une latence aussi faible

que TS = 2 secondes. Encore une fois, des DER inférieurs sont obtenus avec une plus

grande quantité de données de formation, aussi bas que 10% pour l'ensemble de données

RT07 et 12,5% pour l'ensemble de données RT09. En général, des DER inférieurs

sont obtenus avec une plus grande quantité de données de formation, par exemple, un

DER de 12,5% est obtenu avecTSP K = 9 de secondes de données de formation pour

l'ensemble de données RT07 et 15% avec 17 secondes de données de formation pour

l'ensemble de données RT09, toutes deux avec des latences deTS = 3 secondes.
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A.3 Phone adaptive training

Phone adaptive training (PAT) est un algorithme récemment introduit [4] dont le

but est de normaliser la variation du phonèmes dans la diarisation des interlocuteurs

en projetant les observations acoustiques dans un nouvel espace dans lequel la dis-

crimination de phonèmes est minimisée alors que la discrimination des interlocuteurs

est maximisée. Alors que PAT fonctionne au niveau des observations acoustiques et

cible la modélisation améliorée des interlocuteurs, son utilisation dans un cadre de

diarisation des interlocuteurs permet une optimisation quelque peu gênante.

La première contribution sur PAT est l'évaluation et l'optimisation de PAT in-

dépendamment des complexités convolutives de la diarisation des locuteurs et dans des

conditions strictement contrôlées. Au moyen des expérimentes oracle de véri�cation

automatique du locuteur (ASV), la performance de PAT est analysée lorsqu'elle est

appliquée à un système ASV texte indépendant de courte durée en fonction de la

complexité du modèle et pour des quantités variables de données de formation, en

utilisant l'ensemble de données TIMIT, qui est étiqueté manuellement au niveau du

téléphone.

La deuxième contribution consiste en nos e�orts pour développer PAT dans un

système totalement un-supervisé. Les contributions comprennent une approche de la

transcription automatique des classes acoustiques au moyen de l'analyse de l'arbre

de régression. Comme pour le premier travail, la performance de PAT est analysée

en fonction de la complexité du modèle et pour la variation des quantités de données

de formation. Les expérimentes montrent que PAT fonctionne bien, même lorsque le

nombre de classes acoustiques est réduit bien en dessous du nombre des phonèmes, ce

qui réduit le besoin de transcriptions phonétiques précises.

A.3.1 Oracle ASV expérimentes

Comme illustré dans la Figure A.11, PAT est appliqué aux observations acoustiques

originalesOs;p selon les transcriptions phonétiques originales. Les observations acous-

tiques transformées~Os;p sont ensuite utilisées pour les expérimentes ASV tandis que

les observations acoustiques originalesOs;p pour les expérimentes ASV de base. La

di�érence entre les taux d'erreur égaux obtenus (EER) à partir des expérimentes ASV

de base et des expérimentes ASV avec PAT est considérée comme une mesure de la
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(a) GMM-UBM

Number of sentences

for speaker model training

Baseline

(EER %)

Baseline + PAT

(EER %)

1 4.2 3.6

3 1.8 1.0

5 0.6 0.6

7 0.6 0.6

(b) iVector-PLDA

Number of sentences

for speaker model training

Baseline

(EER %)

Baseline + PAT

(EER %)

1 2.4 1.2

3 1.1 0.4

5 1.1 0.4

7 0.6 0.3

Table A.1 Une illustration des EER pour le GMM-UBM et les systèmes iVector-PLDA
avec des quantités variables de données de formation. Les résultats sont a�chés pour
des tailles de modèles optimales dans chaque cas.

puissance discriminatoire des interlocuteurs dans le cas où les modèles de interlocuteurs

sont formées avec des énoncés de courte durée et dans conditions optimales.

La table A.1 illustre un résumé des performances de PAT pour les systèmes ASV

GMM-UBM et iVector-PLDA pour di�érentes quantités de données de formation. Les

résultats correspondent à des tailles de modèles optimales dans chaque cas. Lorsque les

modèles des interlocuteurs sont formés sur une seule phrase, le système iVector-PLDA

de bas de base surpasse le système GMM-UBM de référence de 43 % relatif (EER de 4.2

% c.f. 2.4 %). Lorsque 7 phrases sont utilisées, les deux systèmes atteignent le même

EER de base de 0,6 %. PAT mène à des performances meilleures ou équivalentes dans

tous les cas. Lorsque les modèles des interlocuteurs sont appris avec une seule phrase,

les EER de base diminuent à 3,6% et 1,2 % pour les systèmes GMM-UBM et iVector-

PLDA respectivement. À noter, les plus grandes améliorations de la performance ASV
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sont obtenues pour le système iVector-PLDA où la performance est améliorée de 50%

par rapport à la quantité de données de formation.

A.3.2 Vers PAT un-supervisé

Dans des scénarios réels, des transcriptions phonétiques �ables sont rarement disponibles

et di�ciles à obtenir. Dans cette section, nous présentons nos e�orts pour développer

PAT dans un système totalement unsupervisé. La transcription automatique des classes

acoustiques s'e�ectue au moyen d'un système de reconnaissance des classes acoustiques

dont la sortie est utilisée pour estimer les transformées PAT. Comme illustré dans

la Figure A.12, les données destinées à l'estimation de l'UBM à partir de l'ensemble

de données TIMITubm sont utilisées pour déterminer de 5 à 38 classes acoustiques

au moyen d'une analyse d'arbre de régression binaire. Pour chacune des classes

acoustiques, un modèle HMM est formé. Ces modèles sont ensuite introduits dans un

reconnaissance automatique des classes acoustiques a�n d'obtenir des transcriptions

des classes acoustiques. PAT est ensuite appliqué sur les observations acoustiques

originales des données de parole en fonction des transcriptions des classes acoustiques

obtenues plutôt que des transcriptions phonétiques originales, comme indiqué dans

la Section 6.3. Les observations transformées~Os;p sont ensuite utilisées pour les

expérimentes ASV tandis que les observations acoustiques originalesOs;p pour les

expérimentes ASV de base. La di�érence entre les taux d'erreur égaux obtenus (EER)

des expérimentes ASV de base et des expérimentes ASV avec PAT est alors considérée

comme une mesure pour quanti�er la puissance discriminative de PAT dans le cas où

les modèles de interlocuteurs sont inscrits avec des énoncés de courte durée et lorsque

des transcriptions phonétiques générées automatiquement sont utilisées.

La �gure A.13 illustre les performances de PAT pour le système GMM-UBM (barres

claires) et les systèmes iVector-PLDA (barres ombrées) avec di�érents nombres de

classes acoustiques. La complexité des deux systèmes est �xée à 64 composants. Bien

que les enveloppes de pro�l ne soient pas convexes, probablement en raison du manque

de données de formation, l'application de PAT donne de meilleures performances que les

systèmes de base respectives (lignes horizontales solides et pointillées). Ces observations

indiquent que PAT est béné�que même sans transcriptions phonétiques �ables. Avec

15 et 25 classes acoustiques respectivement, l'amélioration relative des performances

est de 18 pour le système GMM-UBM et 33% pour le système iVector-PLDA.
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Fig. A.13 Une illustration de la performance ASV pour les systèmes GMM-UBM et
iVector-PLDA avec 5 itérations de PAT pour di�érents nombres de classes acoustiques.
Tous les modèles sont formés avec 1 phrase TIMIT et ils sont composés par 64
composants gaussian. Les performances de référence pour les systèmes GMM-UBM et
iVector-PLDA sont représentées respectivement par les lignes horizontales solides et
discontinues.
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