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Abstract

This thesis focuses on the development of a suitable global-local modelling approach,
based on higher-order theories, which is integrated into the multi-scale two-level optimisa-
tion strategy (MS2LOS) for the optimal design of composite structures developed by M.
Montemurro and co-workers at the I2M laboratory in Bordeaux.
The development of an appropriate global-local modelling approach is a fundamental brick
to be integrated into the MS2LOS in order to correctly capture (at each relevant scale) the
effective mechanical response of the structure with a considerable reduction in computa-
tional time and cost. The global-local modelling approach aims to replace the equivalent
single-layer approach with a layered approach based on higher-order theories within the
framework of the Carrera Unified Formulation (CUF) for local optimisation of the com-
posite. The extension of the MS2LOS in designing CSC stiffened panels is also addressed
in this work. The MS2LOS, in fact, is applied to solve the least-weight design problem
of a stiffened composite panel. At the macroscopic level, the structure is modelled as an
equivalent single-layer plate and the goal is to find the optimum value of the design vari-
ables (geometrical and mechanical) to minimise the mass of the panel meeting the set of
imposed design requirements (feasibility, manufacturing, stiffness, buckling, etc.) without
introducing simplified hypothesis on the mechanical behaviour. At the mesoscopic scale,
the aim is to find at least one stacking sequence that meets the optimum design variables
resulting from the structural optimisation carried out at the macroscopic scale. Then, the
MS2LOS is applied to the optimisation of VSCs. In particular, the first-level problem of
the MS2LOS is solved to maximise the first buckling load of the VSC structure determin-
ing the optimal distribution of the VSC stiffness properties at the macroscopic scale and
satisfying the requirements of the problem. In this optimisation, a deterministic algorithm
is used to find the optimum using the gradient analytically determined by exploiting the
properties of the polar formalism and of the B-spline surfaces which are used in the frame-
work of the MS2LOS.
Lastly, the integration of the global-local modelling approach based on layer-wise higher-
order theories in the MS2LOS is provided. The objective is to identify and isolate the
regions of the model which require more precise investigations during the first optimisa-
tion step of the MS2LOS and to analyse these regions of interest using the global-local
approach developed in the CUF framework. To this end, two FE models are developed
and interfaced. The first one is a low-fidelity FE (LF-FE) model generated by means of
commercial software. In the context of the LF-FE model, each laminate constituting the
structure is modelled as an equivalent single-layer plate, whose macroscopic behaviour is
described in the PPs space. The most critical regions of the LF-FE model, i.e. the so-
called zones of interest (ZOIs), are identified by means of a suitable criterion formulated
in the PPs space. Then, a high-fidelity FE (HF-FE) model based on layer-wise theories is
generated for the critical ZOI to assess the local structural responses which are integrated
into the problem formulation.
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Résumé

La thèse porte sur le développement d’une approche de modélisation globale-locale ap-
propriée, basée sur des théories d’ordre supérieur, qui est intégrée dans la stratégie
d’optimisation multi-échelle à deux niveaux (MS2LOS) pour la conception optimale des
structures composites, développée par M. Montemurro et ses collaborateurs au labora-
toire I2M de Bordeaux. Le développement d’une approche de modélisation globale-locale
appropriée est une brique fondamentale à intégrer dans la MS2LOS afin de capturer cor-
rectement (à chaque échelle du problème) la réponse mécanique effective de la structure
avec une réduction considérable du temps et du coût de calcul. L’approche de modélisation
globale-locale vise à remplacer l’approche monocouche équivalente par une approche en
couches basée sur des théories d’ordre supérieur dans le cadre de la Formulation Unifiée
de Carrera (CUF) pour l’optimisation locale du composite. L’application de la MS2LOS à
la conception multi-échelle de panneaux renforcés CSC est également abordée dans ce tra-
vail. En fait, le MS2LOS est appliquée pour résoudre le problème de conception optimale
d’un panneau raidi soumis à divers contraintes de conception. Au niveau macroscopique,
la structure est modélisée comme une plaque monocouche équivalente et le but est de
trouver la valeur optimale des variables de conception (géométriques et mécaniques) pour
minimiser la masse du panneau répondant à l’ensemble des exigences de conception im-
posées (faisabilité, fabrication, rigidité, flambement, etc.) sans introduire d’hypothèse
simplificatrice sur le comportement mécanique. À l’échelle mésoscopique, l’objectif est de
trouver au moins une séquence d’empilement qui satisfait aux variables de conception opti-
males résultant de l’optimisation structurelle effectuée à l’échelle macroscopique. Ensuite,
la MS2LOS est appliquée à l’optimisation des VSCs. En particulier, le problème de pre-
mier niveau est résolu pour maximiser la première charge de flambage de la structure du
VSC en déterminant la distribution optimale des propriétés de rigidité du VSC à l’échelle
macroscopique et en satisfaisant les contraintes du problème. Dans cette méthode, un
algorithme déterministe est utilisé pour trouver l’optimum en utilisant le gradient analy-
tique de la charge critique de flambage en exploitant les propriétés du formalisme polaire
et des surfaces B-splines qui sont utilisées dans le cadre de la MS2LOS. Enfin, l’intégration
de l’approche de modélisation globale-locale basée sur des théories d’ordre supérieur en
couches dans la méthode MS2LOS est présentée. L’objectif est d’identifier et d’isoler
les régions du modèle qui nécessitent des investigations plus précises lors de la première
étape d’optimisation de MS2LOS et d’analyser ces régions d’intérêt en utilisant l’approche
globale-locale développée dans le cadre de la CUF. À cette fin, deux modèles FE sont
développés et interfacés. Le premier est un modèle EF de basse fidélité (LF-FE) généré
au moyen d’un logiciel commercial. Dans le contexte du modèle LF-FE, chaque stratifié
constituant la structure est modélisé comme une plaque monocouche équivalente, dont le
comportement macroscopique est décrit dans l’espace des paramètres polaires. Les régions
les plus critiques du modèle LF-FE, c’est-à-dire les zones d’intérêt (ZOI), sont identifiées
au moyen d’un critère approprié formulé dans l’espace des PPs. Ensuite, un modèle FE
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haute-fidélité (HF-FE) basé sur des théories d’ordre supérieur est généré pour la ZOI cri-
tique afin d’évaluer les réponses structurelles locales qui sont intégrées dans la formulation
du problème.
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Chapter 1

Introduction

1.1 The Thesis Context and the SMART-COMPOSITE
Project

The design and production of lightweight structures that are less expensive and more
efficient are essential for advanced industrial sectors. In the last 30 years, composite
materials have been widely used, and their potential is far from being exhausted in today
industry because new challenges are emerging year by year. The aeronautics and space
sectors remain the main domains in the composite materials market, among the advanced
industrial fields. The program of the Boeing 787 Dreamliner is one of the most striking
examples in this sense. The Boeing 787 has been the first commercial aircraft with a
percentage of structural parts in composite material higher than the aluminium alloys
counterpart. Fig. 1.1 shows the different materials used in the Boeing 787 structure.

Figure 1.1: Materials used in the Boeing 787 Dreamliner body from [1]

Other areas of interest in the use of composite materials, whose demand is constantly
growing, are the automotive sector and, in the renewable energy sector, wind turbines.
The success of this class of materials is related to the outstanding properties in terms
of lightness, stiffness, static and fatigue resistance that are appealing when compared
to their self-constituent materials. They can also be moulded into complex shapes in a
easier way than other materials. They are excellent insulators and can resist the corrosion
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2 Chapter 1. Introduction

caused by the weather. All these excellent properties explain the aerospace sector is
among the pioneeristic sectors using these materials. Taking the example of the Boeing
787 Dreamliner again, the use of more than 50% carbon fibre results in a 20% reduction
in weight, as shown in [1], leading to a decrease of the fuel consumption and consequently
to an increase the aircraft operating distance.

For the sake of clarity, the composite structures discussed so far are in the form of mul-
tilayer plates or shells consisting of an assembly (or stacking sequence) of bonded layers.
The typical individual layer of the laminate composite for aerospace purposes consist
of high-strength and high-stiffness fibres reinforcing a polymeric matrix material. The
most common types of fibres are glass fibres, carbon fibres, and kevlar. In general, the
single-layer has orthotropic or transversely isotropic behaviour. Depending on the stack-
ing sequence, the laminate may have anisotropic, orthotropic or quasi-isotropic properties
behaviour at the macroscopic scale regarding membrane, bending and membrane/bending
coupling responses.
The mechanical behaviour of the constant stiffness composites (CSCs) reinforced through
long fibres, i.e. those composites showing a strong anisotropic behaviour at the macro-
scopic scale, which can be described using a given set of suitable mechanical variables, is
studied in this work. These ”suitable” mechanical variables are chosen is such a way to
represent a sort of mathematical descriptor of the laminate anisotropic behaviour at the
macroscopic scale.
The problem of the multi-scale optimisation of structures made of CSC is usually formu-
lated using numerous simplifying hypotheses that often have no physical and/or techno-
logical justification. In fact, designers often use such hypotheses to guarantee a priori the
achievement of certain elastic properties that are difficult to obtain (membrane/bending
uncoupling, membrane orthotropy, etc.) and particularly difficult to be mathematically
formalised in the context of an optimal design problem of composite structures. These
simplifying hypotheses are often translated in the introduction of design rules on the lami-
nate stacking sequence, whose main consequence is an unnecessary limitation of the design
space extent. A further limitation is about the choice of the set of possible orientations,
often limited to the values of 0◦,±45◦, 90◦: this is a choice of a technological nature which,
with modern manufacturing processes, is no longer necessarily justified and which is ex-
tremely restrictive in the context of the design process.

In addition, the development of new composite manufacturing technologies makes it
possible to go beyond the traditional rules used in the design of composites and thus
to design new, high-performance original solutions. One of these innovative solutions,
which belongs to the class of variable stiffness composites (VSC), is the variable angle
tow (VAT) composite, wherein the tow is steered along pertinent (possibly optimised)
trajectories to enhance the macroscopic physical properties of the composite structure.
VSC solutions have gained an increasing attention thanks to the development of new
manufacturing process, e.g. automated fibre placement (AFP) machines or recent additive
manufacturing (AM) technologies, like Fused Filament Fabrication (FFF) and Continuous
Filament Fabrication (CFF) processes.
The major advantages of VSCs are superior performances with respect to CSC with
a significant weight saving. On the other hand, they present some critical issues, like
a complex design/optimisation process at each pertinent problem scale, the damage
mechanisms of VSCs are unknown, no damage tolerance criteria exist for this class of
composite materials. Indeed, regardless of the application or the typology of composite
material (CSC or VSC) considered, the use of composite materials considerably com-



1.1. The Thesis Context and the SMART-COMPOSITE Project 3

plicates the process of designing a product. This is essentially due to the nature of
composites, i.e. on the one hand, the heterogeneity that occurs at the microscopic scale
(that of the constituents, in particular fibre and matrix) and, on the other hand, the
anisotropy occurring at the mesoscopic (ply-level) and macroscopic (laminate-level) scales.
Both heterogeneity and anisotropy introduce specific challenges that must be correctly
addressed in order to formulate and solve the multi-scale design/optimisation problem of
composite structures in the most general sense. Accordingly, the problem of the optimum
design of a composite structure is essentially a multi-scale design problem requiring a
correct and complete formalisation since the preliminary design stage. In addition, given
the complexity of the mechanical responses of the material and given the large number
of design variables involved at each scale (fibre volume fraction, fibre material properties
and matrix, number, orientation, thickness and position of plies, geometric parameters of
the structure, etc.), an optimisation of the system is mandatory. The multi-scale design
of both CSC and VSC structures is faced in this work.

It is in this scenario, and to expand the current state of knowledge on VSC, that the
SMARTCOMPOSITE project was born. This project is funded by the Nouvelle-Aquitaine
region. The first goal of this project is to increase the impact of the scientific and indus-
trial sectors of the Nouvelle-Aquitaine region within the community of composite materials
and structures at both national and european levels. The second goal is to prove that,
with current technological and computer capabilities, it is possible to develop an original
and effective methodology for the study, design and multi-scale optimisation of complex-
shaped VSC structures by integrating, from the early phases of the design process, the
technological constraints linked to the manufacturing process to guarantee that the opti-
mised configurations are also manufacturable. To this end, the project is articulated in
two complementary research activities:

• The first one focuses on the study of the mechanical response of VSCs at different
scales, with an emphasis on the development of laws and analytical/numerical models
to describe the failure mechanisms in VSCs;

• The second one focuses on the development of a multi-scale design and optimisation
strategy for VSC structures integrating a global-local modelling strategy based on
higher-order theories to correctly describe the physical responses involved at each
problem scale.

To achieve this ambitious objective, it is essential to:

1. Understand the potential and the limitations characterising the manufacturing pro-
cess as well as its influence on the mechanical properties of the resulting structure;

2. Develop multi-scale models (micro, meso and macro) of the material to understand
the damage phenomena occurring at different scales;

3. Validate the analytical/numerical models via a dedicated experimental campaign;

4. Formulate the design problem in a very general way and develop a strategy for multi-
scale optimisation able of taking into account the manufacturing constraints linked
to the process;

5. Validating the design process by creating a physical demonstrator to show the rele-
vance of the models and the manufacturability of this type of solutions.
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The partners of the project are: I2M Laboratory (Coordinator), Politecnico di Torino, Uni-
versitá di Pisa and ESTIA/Compositadour. Two theses are funded within the SMART-
COMPOSITE project and this Thesis is one of them. The other one is the Ph.D. of T.
Garulli [2].

1.2 Thesis objectives

This thesis gives an original contribution to the second part of the research activity of
the SMARTCOMPOSITE project. It focuses on the development of a suitable global-
local modelling approach, based on higher-order theories, which is integrated into the
multi-scale two-level optimisation strategy (MS2LOS) for the optimal design of composite
structures developed by M. Montemurro and co-workers at the I2M laboratory in Bor-
deaux.
The first goal of the work is to correctly catch (at each relevant scale) the mechanical
responses of the composite structure with a considerable reduction in terms of computa-
tional costs while keeping a good level of accuracy. To do so, an appropriate global-local
modelling approach based on higher-order layer-wise theories developed in the framework
of the Carrera Unified Formulation (CUF) is proposed. This modelling strategy allows to
correctly describe the stress state in the most critical regions of the composite structure
and, consequently, allows correctly capturing the failure phenomena that cannot be de-
tected through standard finite element (FE) formulation approaches, i.e. the equivalent
single-layer approaches.
The second goal is to extend the MS2LOS in designing CSC stiffened panels. The effective-
ness of the MS2LOS is firstly tested on a meaningful problem representative of thin-walled
structures of the aerospace sector: the least-weight design problem of a stiffened compos-
ite panel (typical of aircraft structures), without introducing simplified hypothesis on the
mechanical behaviour and considering the whole set of geometrical and mechanical design
variables which are defined at both macroscopic and mesoscopic scales of the laminate.
On the one hand, at the macroscopic scale where each laminate composing the structure
is modelled as an equivalent single-layer plate, the goal is to find the optimum value of
the design variables (geometrical and mechanical) to minimise the mass of the panel meet-
ing the set of imposed design requirements (feasibility, manufacturing, stiffness, buckling,
etc.). On the other hand, at the mesoscopic scale, the aim is to find at least one stacking
sequence that meets the optimum design variables resulting from the structural optimisa-
tion carried out at the macroscopic scale.
The multi-scale optimisation of VSCs is also addressed in this work. In particular, the
first-level problem of the MS2LOS is solved to determine the optimal distribution of the
VSC stiffness properties at the macroscopic scale satisfying the requirements of the prob-
lem formulated as optimisation constraints. In this phase, the VSC laminate is modelled
as an equivalent homogeneous anisotropic plate whose behaviour is described in terms of
polar parameters (PP), which vary locally on the structure. FSDT (First-order Shear De-
formation Theory) is used to take into account the influence of transverse shear stiffness
on the mechanical response of the VSC and B-spline surfaces are used to represent the PPs
fields over the structure. In this context, the expression of the gradient of the buckling
factor is determined analytically by exploiting the properties of the polar formalism and
of the B-spline surfaces in order to speed up the optimisation process.
The integration of the global-local modeling approach based on layer-wise higher-order
theories in the MS2LOS is the final goal of this Thesis. The objective is to identify and
isolate the regions of the model which require more precise investigations during the first
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optimisation step of the MS2LOS and to analyse these regions of interest using the global
- local approach developed in the CUF framework. To this end, two FE models are devel-
oped and interfaced. The first one is a low-fidelity FE (LF-FE) model generated by means
of a commercial software. In the context of the LF-FE model, each laminate constituting
the structure is modelled as an equivalent single-layer plate, whose macroscopic behaviour
is described in the PPs space. The most critical regions of the LF-FE model, i.e. the so-
called zones of interest (ZOIs), are identified by means of a suitable criterion formulated
in the PPs space. Then, a high-fidelity FE (HF-FE) model based on layer-wise theories is
generated for the critical ZOI to assess the local structural responses which are integrated
in the problem formulation.

1.3 Thesis structure

The Thesis outline is provided here below.
Chapter 2 presents the state of the art on the main topics of the manuscript: the design
methods for CSC and VSC structures and global-local modelling approaches for compos-
ites. In Chapter 3, the global-local modelling approach in the CUF framework is presented.
The Chapter is devoted to the fundamentals of the 1D higher-order models based on CUF
and to the description of the global-local methodology developed in this work.
Chapter 4 deals with the fundamentals of the polar method and composite laminate me-
chanics. These aspects are preparatory for better understand the MS2LOS used in this
work for the design of CSC and VSC structures. The first part of the chapter shows the
fundamentals of the polar method for plane elasticity and the application to the framework
of the FSDT, respectively. The second part of the chapter presents the polar descriptions
of the laminate strength tensors and the class of the quasi-trivial stacking sequences.
In Chapter 5, the least-weight design problem of a stiffened composite panel is presented.
The chapter is characterised by the mathematical formulation of the first-level problem
which provides the optimum set of design variables at the macroscopic scale, which satis-
fies the constraints of the problem, and of the second-level problem, which aims at finding
the stacking sequence of the composite material that fulfil the optimal value of the design
variables resulting from the first-level problem.
Chapter 6 presents the general iso-geometric polar approach for the optimisation of VSC
structures applied to the eigenvalue buckling problem. Firstly, the mathematical formula-
tion of the first-level problem is discussed with a preliminary introduction of the B-spline
surface framework that is used to describe the point-wise variation of the mechanical
properties of the VSC plate. The problem of the maximisation of the first buckling load
is presented with particular emphasis on the derivation of the analytical expression of the
gradient of each physical response in terms of design variables involved in the definitions
of B-spline surfaces.
The integration of the global-local modelling approach based on CUF into the MS2LOS
for the design of CSC structures is the object of Chapter 7. In particular, the description
of the algorithm to deal with the least-weight design problem of a simplified wing-box is
presented. The crucial aspects of interfacing the CUF-based global-local modelling ap-
proach with the MS2LOS are highlighted.
Finally, Chapter 8 concludes the Thesis with some meaningful comments and prospects.
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Chapter 2

State of the art

2.1 Design methods for constant stiffness composite struc-
tures

CSCs, like fibre-reinforced composite materials, are widely used in different industrial fields
thanks to their outstanding performances, e.g. high stiffness-to-weight and strength-to-
weight ratios, which lead to a substantial weight saving when compared to metallic alloys.
Nevertheless, the design of CSCs requires the formulation of a complex multi-scale problem
involving a huge amount of design variables and a variety of phenomena intervening at
the different scales (see [3–10]). In the case of multilayer plates, the problem scales are,
at least, three, as shown in Fig. 2.1: (1) the microscopic scale (that of the constitutive
phases), (2) the mesoscopic scale (that of the constitutive lamina) and (3) the macroscopic
scale (that of the laminate).

Figure 2.1: The different scales involved in the design problem of multilayer structures [5].

Furthermore, the designer has to deal with design variables of different nature depend-
ing on the considered scale. At the microscopic scale, for instance, the design variable
set includes the material properties of constitutive phases (fibres, matrix, additives, etc.),
their volume fraction and the spatial distribution of each phase, i.e. the topology of the
representative volume element (RVE). At the mesoscopic scale, the design variables are
the material properties, the thickness and the orientation angle of the single lamina. At
the macroscopic scale, the composite is often modelled as an equivalent homogeneous
anisotropic medium whose mechanical behaviour is described in terms of a set of constitu-
tive matrices, which depend on the choice of the kinematic model. The design variables at

7
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different scales are related, and the relationship among the problem scales is not bijective,
see [11]. For instance, consider the mesoscopic-macroscopic scale transition: for a given
stacking sequence one can determine a unique set of constitutive matrices describing the
behaviour of the composite at the macroscopic scale; conversely, a given set of laminate
constitutive matrices can be related to different SSs. Furthermore, the heterogeneity and
the anisotropy, which are characteristic properties of composite materials, intervene at
different scales of the material, thus further complicating the design of the CSCs [5].
Many researchers have faced the challenge of developing suitable strategies and algorithms
for the design of CSCs. Nevertheless, the research is still ongoing.
The optimisation strategies of CSCs can be classified according to the criteria proposed
in [5], which are:

1. Optimisation algorithm used to perform the solution search

2. Problem formulation

The most commonly used optimisation algorithms for the optimisation of CSCs can, in
turn, be divided into the following groups:

• Deterministic algorithms. The gradient of the physical responses can be provided
either in closed form or calculated numerically (through finite differences). The
advantage of these algorithms lies in the speed of convergence of the optimisation
problem, while the disadvantages are mainly related to the calculation of the gradient
itself (when the analytical form is not available the computational cost to calculate
it can be prohibitive) and to the possibility of determining only a local optimum.

• Meta-heuristic algorithms: unlike deterministic algorithms, they do not require the
explicit calculation of the derivatives of the objective function and the constraints on
the design variables. They have a weaker convergence than deterministic algorithms
and the computational cost required for large-size problem is prohibitive, but, by
exploiting the values of the objective function calculated in the previous steps, they
can easily find a pseudo-optimal solution located near the global optimum. Moreover,
at the end of the optimisation process, many solutions are available, which can be
conveniently exploited for design purposes.

In the literature, it is possible to find several works on deterministic [12–17] and meta-
heuristic [18–26] algorithms in the optimisation of CSCs. In this work, the meta-heuristic
algorithm implemented in ERASMUS [5] will be used for the optimisation of CSCs at
the macro-scale and meso-scale. For more details on the various differences between these
algorithms, the reader is addressed to [5].
On the other hand, the formulation of the problem for searching the optimal stack in
CSCs can also be decisive. The work of Ghiasi [27] exhaustively summarises the possible
optimisation strategies by dividing them into two categories: single-level optimisation
strategies (SLOS) and multi-level optimisation strategies (MLOS).

2.1.1 Single-Level Optimisation Strategies for CSCs

The single-level optimisation approaches are usually formulated by involving design vari-
ables at the laminate mesoscopic scale (ply-level). In fact, the main design variables are the
number of layers, thickness, orientation angles and sometimes material properties. In this
context, the objective function and the optimisation constraints are strongly non-convex
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functions, thus a particular attention must be paid in the resolution of the related con-
strained non-linear programming problem (NLPP). To deal with such NLPPs, engineers
make use of simplifying hypothesis and design guidelines to search for a feasible optimised
solution. In the literature the most frequently used design assumptions are the following:

• Symmetric stack: a sufficient condition to ensure membrane/bending uncoupling.

• Balanced stack: a sufficient condition to ensure a membrane orthotropic behaviour.

• Orientation angles: the value of the generic ply orientation angle is genearlly limited
to the following canonical set: 0◦,±45◦, 90◦.

Together with the above simplifying hypotheses a set of design rules is often introduced
when searching for an optimum SS: percentage rule, contiguity rule, disorientation rule,
grouping rule, etc. [28]. These rules represent a sort of best practice in designing con-
ventional stacks, which are the result of the experience collected in the last 50 years in
the aerospace sector. If such rules make it possible to simplify the design problem of a
composite structure, their systematic use has an important consequence: the extent of the
design space is extremely reduced and the number of potential optimal solutions is, thus,
decreased. In the literature, it is possible to find a huge amount of works dealing with the
optimisation of CSCs through the SLOS. Without any ambition of exhaustiveness, only
some works focusing on the buckling and post-buckling strength/stiffness optimisation will
be quoted in the following. A rather exhaustive literature survey on the application of
SLOS for the optimal design of CSCs is available in [27]. The SLOS is usually employed
to solve the pre-buckling strength/stiffness and the post-buckling stiffness maximisation
problem of simply supported biaxially loaded laminated plates using pre-set symmetrical
angle-ply stacking sequences, as reported in [27, 29].
The maximisation of the first buckling load of a bi-material multilayer plate is faced in [30].
A genetic algorithm (GA) is used to solve the problem of maximising the first buckling
load of a multilayer plate with a given number of plies in [31], whilst the Ant Colony Op-
timisation method is used in [32] showing better performances, in terms of computational
cost, than the GA. Two examples of multi-objective optimisation (least-weight design and
first buckling load maximisation) problem are proposed in [33, 34]. The US Department
of Defense has also provided guidelines for optimizing CSCs [35].
As mentioned beforehand, all the works cited above share the use of simplifying assump-
tions to find a feasible optimal solution to the design problem of a CSC structure. In
particular, the use of a pre-defined set of orientation angles is a major limitation be-
cause modern technologies (e.g. AFP) are able to orient the fibres with an accuracy of
at least 1◦. The same remark holds for the use of symmetrical stacks to guarantee the
membrane/bending decoupling of the laminate. This is only a sufficient condition that
undoubtedly shrinks the design domain and reduce the number of design variables to be
optimised (only half of the layers orientations are optimised). As discussed in [36–38]
, symmetric stacks constitute only a small sub-set of a larger class of sequences called
quasi-trivial stacking sequences. Finally, the balanced stack hypothesis represents only a
sufficient condition to ensure an orthotropic membrane behaviour of the laminate when
a balanced stack is used the bending stiffness tensor is completely anisotropic, except for
cross-ply laminates. The anisotropy of the bending stiffness tensor, unfortunately, has
harmful effects, especially when symmetrical and balanced stacks are used for thin-walled
structures, because they induce buckling and flexural vibration phenomena, and for this
reason, such laminates are not the best choice [6, 39]. In this scenario, MLOS represent a
suitable alternative to SLOS.
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2.1.2 Multi-Level Optimisation Strategies for CSCs

Generally, the design problem of a composite structure is subdivided into two or more
sub-problems in the framework of MLOS. However, such sub-division of the problem is
possible if and only if the characteristic scales of the problem can be separated and if
particular conditions are satisfied. The first step (or level) of a multi-scale optimisation
strategy is formulated using macroscopic geometric and mechanical design variables. At
this level, the laminate is modelled as a homogeneous and anisotropic continuum, and
the mechanical and geometrical properties of the composite structure are optimised. The
objective of the second step is, instead, to find at least one optimal stack matching the
optimised mechanical properties found during the first optimisation step.
Such MLOS have the advantage of greatly reducing the number of design variables to
be optimised in the first optimisation step. Moreover, the non-convexity characterising
the constrained non-linear programming problem (CNLPP) is strongly relaxed during the
first step. As far as the disadvantages are concerned, one of the main problems is to
correctly formulate design requirements that actually intervene at lower scales, such as
manufacturability constraints and constraints related to the failure of the material, in
terms of equivalent constraint to be imposed on the macroscopic design variables involved
at the first step. In the literature, the main difference that can be observed between the
works focusing on the use of MLOS concerns the mathematical representation used to
describe the macroscopic behaviour of the laminate. In this regard, the main multi-scale
optimisation approaches can be divided into two categories: approaches based on the use
of lamination parameters (LPs) and those based on the use of polar parameters (PPs).

Lamination parameters

The most common MLOS make use of the LPs combined with Tsao-Pagano parame-
ters [11] to describe the laminate constitutive tensors at the macroscopic scale. Diaconu
et al. presented two works [40, 41] on the LPs. In the first one, a method to determine the
feasible region in the LPs space is presented. The second work shows the maximisation of
the first natural frequency of a thick laminate through a MLOS. The optimisation of the
flexural LPs is the goal of the work by Liu et al [42] to maximise the first buckling load
of a multi-layered plate. In this case, only the optimal value of the flexural LPs is deter-
mined at the macroscopic scale, while there is no information on the second step of the
procedure, i.e. the determination of an optimal lay-up corresponding to the values of the
flexural LPs resulting from the first step of the procedure. A very interesting multiscale
optimisation approach is presented in [43], where they solved the problem of the mass
minimisation of a simply supported laminated plate by means of a two-step optimisation
strategy taking into account failure and buckling constraints. This work also extended
to the canonical set of orientation angles by adding the values: ±30◦ and ±60◦. The
weight minimisation of composite panels with T-shaped stiffeners is the goal of the work
of Herencia et al. [44]. Using a MLOS, in the first step the optimal value of the LPs
satisfying strength, buckling and technological design requirements is determined. In the
second step, the authors searched for stacks meeting the optimum LPs found at the first
step. Another important work is the one presented by IJsselmuiden et al. [45]. Using
the phenomenological failure criterion by Tsai and Wu [46], they created a conservative
failure envelope to ensure a failure-free region in the LPs space. Recently, Bramsiepe et
al. [47] presented an LPs-based approach for the least-weight design problem of a lifting
system structure. This structure consists of symmetric laminates and the authors took
into account blending, buckling and failure constraints in their multi-scale approach. The
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reader is addressed to the review article [48] to find further interesting works on the topic
of the optimisation of CSCs using LPs.
In conclusion, the mathematical representation based on LPs has the advantage of reduc-
ing the design variables of the problem during the first step of the MLOS. In fact, there are
at most 12 design variables to be optimised to characterise the anisotropic behaviour of the
CSC structure at the macroscopic scale using the classical lamination theory (CLT). Nev-
ertheless, LPs are not tensor-invariant quantities. In fact, although some of Tsai-Pagano
parameters are invariants, the remaining LPs are integrals of trigonometric functions that
depend on the lamina angle and thickness.

Polar Parameters

A sound alternative to represent the macroscopic behaviour of a CSC structure is rep-
resented by the polar method. The polar method was introduced by Verchery [49], and
allows representing a generic n-order plane tensor by means of tensor invariants, i.e. PPs.
This method has been subsequently refined by Vannucci [50–52]. In particular, in [52], the
analytical expression of the bounds of the feasible domain of the PPs space is provided.
It is noteworthy that, recently, Picchi Scardaoni and Montemurro [53] rigorously proved
that the feasible domain of a laminate made of identical plies (i.e. same thickness and
material) is non-convex either in the LPs space or in the PPs space.
The possibility of describing the mechanical behaviour through tensor invariants and the
fact that these parameters have a physical meaning related to the tensor symmetries ex-
plains why the polar method is particularly attractive in the study and optimisation of
composite materials. In the work by Catapano et al. [54] the polar method is used for
the formulation of common failure criteria for orthotropic laminates while in the work of
Montemurro et al. [55] the mathematical representation through PPs is investigated for
the design of the elastic properties of a generic laminate with the least number of plies.
In the beginning, the polar method studied by Vannucci in [50] was developed in the CLT
framework. Subsequently, in [56–58] Montemurro extended the polar method to Higher-
order Equivalent Single Layer Theories (HESLTs), thus making it possible to study and
optimise the mechanical behaviour of thick laminates. Catapano et al. in [59] proposed
a unified formulation of the most common failure criteria of laminates using the polar
method in the framework of the CLT. This work has been later extended by Catapano
and Montemurro in [60] to the FSDT framework by proving that stiffness and strength
tensors of the laminate are strictly related. Moreover, in this work, closed-form expressions
of the stiffness and strength tensors of the laminate as a function of PPs are derived.
The MS2LOS presented by Montemurro et al. in [61] is devoted to the design and opti-
misation of composite structures. The basis of the MS2LOS is the polar method, which
allows the description of the behaviour of the laminate at the macroscopic scale, during
the first level of the optimisation process, without introducing simplifying hypotheses on
the SS nature and by including in the problem formulation technological requirements at
the lower scale by means of pertinent constraints on the laminate PPs. The effectiveness of
the MS2LOS has been shown on several applications dealing with the optimum design of
lightweight composite structures, like the least-weight design of a simplified wing box sub-
ject to requirements on the laminate feasibility and on the first buckling load in [61, 62], or
the multi-scale optimisation of sandwich panels with honeycomb core [63, 64]. In [39], the
strategy was further generalised by using Non-Uniform Rational B-Spline (NURBS) curves
to describe the shape of the RVE constituting the honeycomb core of the sandwich panel.
Further successful applications of the MS2LOS related to the design of CSC structures
include: optimal design of the damping capability of hybrid laminates [65] and of compos-
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ite structures equipped by viscoelastic patches [66], optimal design of composite stiffened
panels [6] and of simplified wing-box architectures including blending constraints [67–69],
multi-scale optimal design of real-world complex engineering structures like fuselage bar-
rels [7]. In all of the aforementioned works the MS2LOS makes use of either standard
deterministic algorithms or a special genetic algorithm, called ERASMUS (EvolutionaRy
Algorithm for optimiSation of ModUlar Systems) [5], which is capable of solving CNLPPs
defined over a space of changing dimension (i.e. CNLPPs characterised by a variable
number of design variables). The MS2LOS, initially introduced by Montemurro et al.
in [61, 62], has been extended in this Thesis, on the one hand, by generalising the use of
quasi-trivial solutions during the second-level problem (Chapter 7) and, on the other hand,
by integrating the global-local modelling strategy based on Carrera’s Unified formulation
to precisely describe the characteristic phenomena involved at the lower scale (ply-level)
of the composite (Chapter 7).

2.2 Design methods for variable stiffness composite struc-
tures

The permanent need for more efficient structures and the constant technological progress
in manufacturing processes led researchers to focus on new technological solutions for
composite structures, as discussed in [70]. These innovative solutions, known as Variable
Stiffness Composites (VSC), are characterised by properties (mechanical, thermal, etc.)
that vary point-wise over the structure. The point-wise variation of properties confers, on
the one hand, better performance compared to the CSCs counterpart but, on the other
hand, significantly complicates the design/optimisation process, as discussed in the review
work by Ghiasi et al. [71].
VSCs can be manufactured in a variety of ways: among the different classes of VSCs,
only one particular family of solutions is investigated in this Thesis, i.e. the so-called
variable angle tow (VAT) composites. This solution is characterised by fibres assembled
into tows that are placed along a curvilinear path within the generic lamina in such a
way to get a point-wise variation of physical properties (e.g. stiffness, strength, conduc-
tivity, etc.). VAT composites can be manufactured by means of two technologies: the
automated fibre placement (AFP) or the additive manufacturing technology obtained by
combining the Fused Filament Fabrication (FFF) process with the Continuous Filament
Fabrication (CFF) one [72]. On the one hand, the AFP technology is, undoubtedly, the
most widespread process to produce VAT composites because it provides great flexibility
in making structures of large size. However, through the AFP technology, it is not possible
to fabricate structural parts of complex geometry (only plate-like or shell-like structures
can be tailored) and the manufactured parts are highly sensitive to manufacturing defects
as discussed [73, 74]. In particular, the influence of the most common defects related
to the AFP process, i.e. gaps and overlaps, are investigated by Nik et al. [75] on the
buckling load and in-plane stiffness of VAT laminates. In Fig. 2.2 an example of AFP
machine with its main components is shown. On the other hand, the FFF + CFF process
allows manufacturing VAT composites of intricate shapes, however the quality of the em-
ployed materials is poor and the manufacturing process is characterized by different kinds
of imperfections (porosities, geometric limitations on tow curvature, tow width, rich resin
regions, etc.) which are strongly related to the set of multiple parameters tuning the pro-
cess behaviour. The process features and the correlation between process parameters and
material properties is currently under investigation in the framework of several research
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projects [5].

(a) A typical AFP machine (taken from [76]). (b) Main elements constituting an AFP machine
(taken from [77]).

Figure 2.2: The AFP manufacturing process.

The design/optimisation process of VAT composites is much more complicated than the
one of CSCs and a huge number of design variables is necessary to properly describe the
characteristic fields and to describe the mechanical behaviour at each relevant scale, as
explained by Setoodeh et al. in [9, 10]. In addition, the lack of knowledge about damage
mechanisms and the lack of dedicated failure criteria to be integrated in the design process
of these materials represent open problems not yet fully resolved by the scientific literature.
As discussed in [78], these issues are always related to two intrinsic properties of composite
materials, i.e heterogeneity and anisotropy, that occur at different scales of the structure
and vary point-wise in the case of VAT composites.
Up to now, no general rules are available in the literature for the multi-scale design of VAT
composites. As in the case of CSC structures, two approaches are used in the literature
to design/optimise VAT composites [71]: the SLOS and the MLOS.

2.2.1 Single-Level Optimisation Strategies for VSCs

In the context of the SLOS, the parameters tuning the shape of the fibres-path are
considered as design variables: a large number of works carried out in the last thirty years
can be found in literature on this topic. One of the first examples in this sense is the work
by Hyer and Lee [79], wherein the authors underline the advantages of VAT composites
over conventional CSCs by maximising the first buckling load of a plate with a hole in
the centre. Hyer and Charette [80] understood that locally aligning the main orthotropy
axis of the material to the principal stress and/or strain direction can lead to an increase
of the failure load of open hole plates under tension. In particular, they made use of an
iterative procedure to align the fibres-path with the principal stress direction. Another
interesting work on VSCs is the one by Gürdal and Olmedo [81], wherein a closed-form
solution of the plane elasticity problem of a symmetric laminated composite panel is
presented. In this work, the local orientation angle of the fibres is described by means of
a linear function.
A first attempt dealing with a general formulation of the fibres-path was proposed by
Nagendra et al. [82]. In this work, the authors implemented a shape optimisation
approach to determine an optimised fibres-path taking into account manufacturing
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requirements. Jegley et al. [83] highlighted the effectiveness of stiffness tailoring using
curvilinear fibres-paths. The authors succeed in demonstrating the efficiency of VAT
composites in decreasing the stress concentration near geometric discontinuities (like
holes) and in improving the load capacity of the plate. A SLOS was applied by Gürdal et
al. [84] who dealt with the effects of the stiffness variation on the in-plane and buckling
response in flat rectangular VAT laminates employing simplified fibres-path definitions
based on 1-D functions [84]. Wu et al. in [85] dealt with the buckling load maximi-
sation of a VAT composite plate under uni-axial load with mixed boundary conditions
(mechanical and geometric) proposing a non-linear variation of the fibre-path. The
buckling problem is solved by a modified version of the Rayleight Ritz method while
a GA is used to find the optimal fibre-path by maximising the first buckling load. A
differential quadrature methodology based on the Airy’s stress function was developed
to study the pre-buckling and post-buckling behaviours of VAT laminates subject to
axial compression and mixed boundary conditions (BCs) in [86, 87]. Coburn et al. [88]
proposed an analytical model for the buckling analysis of stiffened VAT panels. The re-
sults provided by this model are in good agreement with those resulting from a FE analysis.

2.2.2 Multi-Level Optimisation Strategies for VSCs

In the framework of the MLOS, the optimum design of a VSC structure is split in two
sub-problems. In analogy with the case of CSCs, at the macroscopic scale the VSC is
represented as an equivalent single layer plate and its mechanical response is described
by a set of parameters, related to the VSC stiffness matrices, which constitute the design
variables. At the mesoscopic scale (i.e. the lamina level) the goal is to determine the opti-
mum fibres-path, in each lamina, satisfying the optimum distribution of the macroscopic
mechanical variables.
As in the case of CSCs, the MLOS available in the literature can be divided in two
groups, depending on the mathematical representation used to describe the VSC struc-
ture anisotropy at the macroscopic scale, i.e. LPs and PPs.

Lamination parameters

A review article on the MLOS for VSCs making use of lamination parameters (LPs) has
recently been presented in [89].
Setoodeh et al. [10] presented a generalised reciprocal approximation for the design of VSC
panels for maximum buckling load. In this formulation, the buckling load is approximated
using a first-order Taylor series expansion in terms of the point-wise compliance tensors.
The related maximisation problem is reduced to a simple local optimisation at any
discretisation point. An approximation scheme for the evaluation of the buckling load
is presented by IJsselmuiden et al. [90] in the LPs space. In this work, the LPs are the
design variables of the problem, which are defined for each element constituting the mesh
of the VSC structure FE model. The formulation based on the LPs proposed in this work
approximates the buckling load as a convex function of the LPs and the adjoint method
is used to compute its gradient. However, as discussed in [53] and as shown in Chapter
6, the buckling function is not convex neither in the LPs space nor in the PPs space. On
the other hand, the need of refined FE models to better describe the distribution of the
LPs field lead to a significant computational cost.
Khani et al. [91] showed quite interesting improvements on the failure load of a VSC
plate with a central hole under tensile load. In their analysis, the authors employed the
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laminate-level failure criterion introduced in [45] and a deterministic algorithm (DA) to
maximise the failure load.
A two-level optimisation procedure is proposed by Wu et al. [92] in the LPs space. The
design problem was formulated as the maximisation of the first buckling factor subject to
feasibility constraints on LPs and the B-Spline surfaces are used to represent the LPs fields
over the VAT laminate. A multilevel approach to optimise the fibres-path at each node of
a FE model is presented in [93]. In the first level optimisation, the LPs are used to describe
the mechanical response of the VAT laminate, while in the second step the Gauss-Newton
quadratic approximation is used to retrieve the optimised fibres-path corresponding to
the optimum LPs found during the first step. In this case, the manufacturing requirement
is imposed through a constraint on the gradient of the fibre angle between nodes, even
if in this way there is no warranty to find optimum fibres-paths satisfying both the
manufacturing constraints and the optimised LPs distribution resulting from the first
step.
As for the CSCs, the use of LPs in the VSCs is systematically associated to the use of
simplifying hypotheses, like the use of symmetric stacks to obtain membrane-bending
uncoupling or the use of balanced sequences to get membrane orthotropy, to solve the
design optimisation problem. As discussed in [3, 4, 78, 94, 95], the use of these hypothesis
systematically leads to a misleading solution (e.g. a symmetric balanced stack is totally
anisotropic in bending) and extremely shrinks the design space.

Polar parameters

The work by Jibawy et al. [96] represents the first application of the MLOS based on
the polar method to the optimal design of VSCs. The optimisation problem dealt with
the minimisation of the compliance. In the first-level problem an iterative procedure is
used to compute optimal value of the anisotropic polar moduli, while the main orthotropy
axis is aligned to the direction of the principal stress after carrying out a FE analysis. In
the second step, the fibres-path in each lamina is determined, althouhg continuity of the
fibres-path and other manufacturing constraints are not ensured.
Catapano et al. [59] dealt with the problem of optimising the anisotropy distribution of a
laminated structure maximising simultaneously its stiffness and strength. Polar formalism
has been used to represent both the stiffness and strength tensors and a two-step hierar-
chical strategy is used to solve the optimisation problem. The first step aims to find the
best distribution of the stiffness and strength anisotropic tensors while in the second one
the lay-up satisfying the optimal properties obtained as a result of the first step is deter-
mined by a GA for each element of the FE model. No continuity constraints are applied in
this work and many infeasible solutions were detected consequently. Moreover, the study
was conducted under the hypothesis of mutual independence of the elastic and strength
properties of the laminate. This hypothesis was proven wrong in a later work by Catapano
and Montemurro [60]. An enhanced version of the MS2LOS was presented by Montemurro
and Catapano in [94]. The use of the B-spline surfaces to describe the distribution of the
PPs over the structure ensures the continuity and smoothness of the PPs fields describing
the anisotropy of the VAT laminate at the macroscopic scale. Furthermore, the definition
of the design variables is unrelated to the FE model of the structure. The latter is an im-
portant milestone because it significantly reduces the number of design variables and the
computational cost without degrading the accuracy of the structural responses evaluation.
In a subsequent work [4], the approach was enhanced by integrating, into the first-level
problem formulation, an equivalent constraint in the PPs space (imposed on the gradient
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of the main orthotropy axis) to ensure the fulfillment of the manufacturability requirement
on the maximum admissible curvature of the tow at the ply-level.
In a recent work, Catapano and Montemurro [95] dealt with the problem of designing
VSCs against failure. They used the MS2LOS to minimise, at the first level, the Laminate
Failure Index (LFI), introduced by the same authors in [60], and to search the optimal
fibre-path in the second-level problem. In the first-level problem, the GA ERASMUS is
used to perform the solution search and the feasibility and the maximum tow curvature
constraints are formulated in the PPs space. In the second level optimisation, the ana-
lytical method proposed by Miki and Sugiyamat [97] coupled with the use of quasi-trivial
stacking sequences [36, 37] are applied to find the optimal fibres-path (within each ply)
meeting the optimum set of PPs resulting from the first-level problem. A further check is
done a posteriori to assess the local failure index for each ply.
The problem of the compliance minimisation was presented by Montemurro and Catapano
in [78]. In this work, the analytical expressions of the gradient of the strain energy of the
VAT laminate and the feasibility constraints were derived by exploiting the properties of
the B-spline entities. The closed-form expressions allow speeding up the solution search
for the first-level problem by using a suitable DA. Finally, in a recent work by Izzi et al.
[98], the MLOS based on the polar method, on the B-spline surfaces and on the use of DA
to solve the optimisation problem has been enhanced by integrating the laminate failure
index, a new narrower (and more conservative) formulation of the maximum tow curvature
requirement in the PPs space and by introducing an efficient variable transformation to
automatically satisfy the feasibility constraint on the PPs. Of course, the gradient of each
function was analytically derived by exploiting the properties of the B-spline surfaces.
As it can be inferred from the above works, the MS2LOS reveals to be an effective method-
ology to optimise VSC structures. Nevertheless, this approach needs to be improved to
deal with design problems of increased complexity.
Chapter 6 is devoted to the application of the MS2LOS to maximise the first buckling
load of a VAT laminate subject to feasibility constraint. The main contribution of this
work is about the derivation of the analytical expression of the buckling factor gradient
in the most general case (in-plane and out-of-plane loads) in the PPs space by exploiting
the properties of the B-spline surfaces.

2.3 Global-local modelling strategies for composite struc-
tures

The design and analysis of aerospace structures require a detailed evaluation of stresses.
Nevertheless, the complexity of large structures and the use of composite materials can
significantly increase the computational costs of the numerical models. Typical FE models
of aircraft structures in the preliminary design phase are characterised by the combination
of 1D and 2D elements, which are appropriately selected to simulate stringers, panels,
ribs and other components. This discretisation is, obviously, a simplification of reality
but it is necessary because it allows the designer to have an idea of the distribution
of stresses on the structure, even if affected by the simplifying assumptions due to the
application of classical theories associated with the 1D/2D elements used by commercial
software, and of the general mechanical response of the structure. However, 3D stress
fields should be taken into account when geometric discontinuities of the structure are
present, e.g. holes, joints and free edges and above all if composite materials are used. To
accurately capture these localised 3D stress fields, the classical theories (CLT and FSDT
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in the case of composites) cannot be used for this task and solid models or high-order
theories are often necessary. However, using a full 3D FE model or a FE model composed
of elements based on high-order kinematic models for a large-size structure is prohibitive
from a computational perspective. To make the model more efficient, i.e. to find a good
balance between computational cost and results accuracy, global-local approaches are often
employed. Three main approaches are available in the literature to deal with a global-local
analysis:

1. refining the mesh or the shape functions wherein critical regions [99–103];

2. formulating multi-model methods, in which different subregions of the structure are
analysed with different mathematical models [104–111];

3. using models based on the Static Condensation also known as “Super-elements Meth-
ods” [112, 113].

The first class of methodologies listed above mainly address convergence problems in those
regions where singularities occur. Adaptive techniques are often used to couple coarse and
fine sub-regions of a structure. Among these techniques it is possible to make a further
differentiation: h, p and hp-adaptation methods. The h-adaption method [99] is used when
the structure subregions differ in mesh size, whereas the p-adaption method [100] can be
applied when the subregions differ in the polynomial order of the shape functions. More-
over, the hp-adaption [101] can allow the implementation of subregions differing in both
mesh size and shape functions. Other techniques allowing for the coupling of different
meshes are, for instance, the multi-grid method [102], and the extended finite element
method (XFEM) [103]. All these methodologies are considered here as single-model meth-
ods. Conversely, when it is necessary to verify the compatibility of displacements and the
balance of stresses at the interface between kinematically incompatible elements, multi-
models methodologies can be conveniently employed. These are characterised by the use
of different mathematical models to describe the mechanical response within ZOI of the
structure. The s-version of the FE method [104, 105] increases the resolution by superim-
posing additional mesh(es) of higher-order hierarchical elements in the ZOIs. This method
is a valid alternative to the previous stated h, p and hp-adaptation single-model methods.
The continuity of the displacement field is ensured by imposing homogeneous BCs at the
ZOI boundary. The superimposed additional meshes can be of arbitrary shape, unlimited
by the problem geometry, boundary conditions and the underlying mesh topography. A
very interesting strategy is the one used by Shim et al. [106], wherein multipoint con-
straint equations are used to couple 1D and 2D elements with 3D solid by equating the
work done on both sides of the dimensional interface. Blanco et al. [107] proposed an
extended variational framework aiming at properly coupling structural models with differ-
ent dimensionalities. The coupling conditions are obtained from the governing variational
principle formulated at the continuous level. Ben Dhia [109] made use of the Arlequin
method, which allows the superimposition of various mechanical models for structural
analysis and computation. In particular, the author highlighted the potentialities of its
method in the modelling of multi-scale mechanical problems showing the effectiveness of
this new approach through a numerical test for the multi-scale problem of the cantilever
beam. The Arlequin method was employed by Hu et al. [110] for the linear analysis of
sandwich beams modelled via 1D and 2D finite elements.
Among the multiple-model methods, there are the so-called “Multi-steps methods” wherein
the analysis of the ZOI is conducted in a second time. In other words, a preliminary global
analysis is done on the whole structure, and once the critical region is identified, a local
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analysis is set just on the ZOI. The BCs at the interface level are extracted from the
analysis on the global structure and are imposed on the local model (provided a suitable
transition region is preliminary defined).
One of the most representative multi-step methods is the one proposed by Mao and Sun
[108]. The authors presented a global-local approach where, in the first step, a coarse mesh
was used to analyse the entire structure to obtain the nodal displacements, which were
subsequently used as BCs for the refined local analysis in the subsequent second step. A
very interesting point related to the BCs of the ZOI was highlighted in that work. The BCs
application always introduces some detrimental effects in the local analysis of the ZOI. To
minimise the effects of such errors, the local analysis generally requires a region larger than
the critical region where accurate stress fields are to be evaluated. Another interesting
work on the global-local method sense is the one presented by Ransom and Knight [114].
They performed a global-local stress analysis making use of spline interpolation functions
which satisfy the linear plate bending equation to determine displacements and rotations
for the global-local coupling. The local analysis of the ZOI is totally independent of the
global one. This methodology allows the use of refined local models to determine detailed
stress states for specific structural regions reducing the computational cost.
The Ritz method for the computations of the kinematic BCs of the ZOI and the stan-
dard finite element method for the local analysis of the ZOI is employed in the two-step
global-local methodology proposed by Haryadi et al. works [115, 116]. In this article, the
global-local approach is used to compute the static response of a simply supported compos-
ite plate with cutouts [115] and small cracks [116]. The effectiveness of the methodology
in the accurate prediction of stresses is numerically proven by showing a great reduction
of computational costs.
The work of Thompson and Griffin [117] is one of the first examples of a multi-step global-
local analysis for laminate composites coupling a 2D global model to the 3D local one.
In the first step, a 2D global model of the laminate composite plate is realised and a
zooming technique to refine the mesh in the proximity of the hole. The effect of the
hole size is studied considering three different hole diameters and three different types of
stacks: [0◦n, 90◦2]s, [90◦n, 0

◦
n]s and [0◦n/2, 90◦n/2, 0

◦
n/2, 90◦n/2]s. The global-local methodology

has been successfully used in the interlaminar stress detection with reasonably compu-
tational cost compared to a fully 3D finite element analysis. Other interesting works on
the multi-steps global-local methodologies are developed for ad-hoc applications, usually
for the assessment of complex non-linear phenomena (e.g. crack propagation [118], pro-
gressive delamination [119] deep post-buckling [120]). Recently, the global-local modelling
approach based on the sub-modelling technique has been integrated in the MS2LOS for
the optimisation of large-size composite structures (fuselage barrel and wing-box struc-
tures) resulting in unconventional and very efficient structural solutions as discussed in
[7, 8, 68, 121, 122]
The CUF, in the recent past, has been generalised by including global-local modelling
strategies. The first example is the work by Biscani et al. [111], where the formulation
of the Arlequin method in the context of the CUF and its application to the 1D finite
element analysis using a different approximation order of the displacement field for the
local ZOIs are shown. The Arlequin method was used for merging the global and local sub-
domains in order to solve the mechanical problem. Subsequently, further investigations
were performed by coupling models with different kinematics by using point-wise Lagrange
multipliers by Carrera et al. [123]. The main difference between the Arlequin-based and
the Lagrange multipliers-based variable kinematic models is that the former includes an
overlapping region, in which two solutions coexist which is a non-physical condition. Nev-
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ertheless, both methods are suitable for building variable kinematic models. Recently,
CUF has been extended by Zappino et al. [124] to deal with the global-local analysis of
laminates by employing a node-dependent kinematics with high numerical efficiency.
A different approach is the one based on the super-element method. This methodology
consists of dividing a large structure into many small ones (super-elements) which are then
processed individually. The handling of each super-element results in a reduced set of ma-
trices that represent the properties of the super-element accounting for the connections to
adjacent structures. These matrices are computed by the Guyan’s method [112, 113]. The
super-element methodology is implemented in commercial FE software due to its robust-
ness.
In Chapter 3 of this Thesis, a multi-step global-local modelling approach is presented.
The proposed approach consists of a two-step procedure where the first step is devoted
to the static analysis of a global model of the structure. It could be done by commercial
software using 1D/2D elements. A criterion is established to identify the most critical
region, which is subsequently analysed in the second step by using high-order models in
the framework of CUF to obtain accurate stress fields. The framework of the high-order
1D models is the CUF, which has been demonstrated to be very efficient and effective for
evaluating complex strain/stress fields of composite structures [125, 126] and also success-
ful in the elastoplastic and progressive failure analyses [127, 128] over the last few years.
The proposed methodology has the advantage of obtaining a detailed description of the
stress field using high-order beam theories in the CUF framework in the critical region
of the structure at reduced computational costs. Recently, the global-local methodology
has been extended to the elastoplastic analysis of compact and thin-walled structures via
refined models [129]. Finally, in Chapter 7, the global-local modelling approach base on
CUF has been integrated in the MS2LOS to solve a meaninguful design problem: the
least-weight design of a simplified wing-box structures subject to requirements of different
nature assessed either on the global FE model or on the local one.

2.4 Conclusions

This literature survey has allowed to picture the state of the art of design procedures
for CSC and VSC structures. In the case of CSC, the definition of the problem design
variables is usually characterised by the use of rules and design guidelines that nowadays
can be considered outdated. On the one hand, the use of these simplification rules allow
simplifying the optimisation problem but, on the other hand, the design space is extremely
shrunk and, consequently, the solution search cannot converge toward true global optima.
To overcome this limitation, MLOS are adopted to find more general optimal solutions.
Through the MLOS the optimisation of the macroscopic mechanical and geometrical char-
acteristics of the CSC structures is carried out during the first-level problem, whilst the
optimal lay-up is determined in the second step of the strategy. This formulation allows
a relaxation of the non-convexity and brings a strong reduction of the number of design
variables, without introducing simplifying hypotheses on the nature of the stacking se-
quences. In the literature, the main difference that can be observed between the various
MLOS is about the mathematical representation of the laminate anisotropy at the macro-
scopic scale. Two representations are available: the one based on LPs and the one based
on PPs. Nevertheless, MLOS based on LPs make a systematic use of the aforementioned
simplifying rules with a detrimental effect on the design space. Furthermore, even if the
optimisation problem of the first step is reduced in optimising only 12 LPs, these last are
not invariant and do not have a physical meaning. Conversely, the representation PPs are
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tensor invariants, which have a physical meaning directly related to the elastic symmetries.
Through the polar method, not only simplifying hypotheses on the stacking sequence na-
ture can be avoided, but it is also possible to optimise the laminate elastic symmetries at
the macroscopic scale.
The permanent need for more efficient structures and the constant technological progress
in manufacturing processes has led researchers to focus on new solutions which are char-
acterised by the point-wise variation of their mechanical and thermal properties. These
solutions, known as VCSs, presents better performance compared to the CSC counter-
parts. The same considerations of CSCs can be done for VCSs in the case of the de-
sign/optimisation problem, keeping in mind that the point-wise variation of the properties
significantly complicates the resolution of the problem.
Lastly, a state of the art on the global-local modelling approaches has been carried out.
Global-local modelling approaches are used to make models more efficient when detailed
analysis is needed in a reduced time. The use of such methodologies increases the ability of
models to determine much more accurate results while reducing computational costs and
their application is particularly relevant in the design and certification process of aerospace
structures. In these processes, detailed stress characterisation is often mandatory and the
FE models used in the preliminary design phases are not always able to provide these
results efficiently. FE models of structures such as wing and fuselage are essentially con-
structed by combining 1D and 2D elements that discretise the mathematical domains of
reinforcements, panels, ribs, and other components. Such discretisation is obviously a
simplification of reality and does not allow obtaining an accurate description of the 3D
stress field that is of capital importance in some ZOIs of the models, e.g. the wing-fuselage
intersection, engine-pylons, etc.
Detailed stress characterisation becomes even more important when composite materials
are used for such structures due to the peculiar failure mechanisms related to composite
materials. The failure mechanisms of composite materials are still being studied by the
scientific community. Certainly, the use of 1D/2D FE models are unable to detect such
failure mechanisms and, hence, in the preliminary design phase, it is usual to use high
safety margins and consequently reducing all the advantages related to composite mate-
rials (high strength to weight ratio and high stiffness to weight ratio). To obtain a 3D
description of the stress field, solid elements or element based on high-order theories are
usually employed. Nevertheless, the generation of FE models of complex structures, like
a wing or a fuselage, composed exclusively such elements, is unfeasible, from a computa-
tional perspective. In fact, in these cases, global-local modelling approaches reveals to be
of paramount importance in the analysis of the structural responses. To conclude, this
literature survey allows to identify the main advantages and disadvantages in the design
and optimisation of CSC and VSC structures. The work that will be presented in the
following chapters aims at giving a contribution to the multi-scale design and optimisation
of composite structuresby integrating a multi-step global-local modelling strategy based
on high-order kinematic models.



Chapter 3

Global-local approach in the
framework of CUF

3.1 Introduction

Global-local finite element approaches are used to make models more efficient when de-
tailed analysis is needed. The use of such methodologies increases the ability of models
to determine much more accurate results while reducing computational costs. The appli-
cation of global-local approaches is of particular relevance for example in the design and
certification process of aerospace structure and system. In these processes, detailed stress
characterisation is required and the FE models used in these phases are not always able
to deliver these results efficiently. FE models of structures such as wing and fuselage are
essentially constructed by combining 1D and 2D elements that discretise the mathemat-
ical domains of reinforcements, panels, ribs, and other components. Such discretisation
is obviously a simplification of reality and does not allow a 3D description of the stress
that is of capital importance in some ZOIs of the models, for example the wing-fuselage
intersection, engine-pylons, etc.
Detailed stress characterization becomes even more important when composite materials
are used for such structures. The failure mechanisms of composite materials are still being
studied by the scientific community. Certainly, the use of 1D/2D FE models are unable to
detect such failure mechanisms and, therefore, in the preliminary design phase, it is usual
to use high safety margins by adding weight and consequently reducing all the advantages
of using composite materials (high strength to weight ratio and high stiffness to weight
ratio). To obtain a 3D description of the stress field, solid elements or element models
based on high order theories are usually employed. Nevertheless, the generation of FE
models of complex structures, like a wing or a fuselage, composed of such elements, is
not a strategy feasible, from a computational perspective. In fact, in these cases, global-
local modelling approaches reveals to be of paramount importance in the analysis of the
structural responses.

In this Chapter, a global-local methodology based on a two-step procedure is developed
to accurately assess the stress field in the ZOI of the structures. In this methodology, the
first step is dedicated to the static analysis of the global FE model (GFEM). The GFEM
is made of classical 1D/2D elements and is generated by means of a commercial software.
In this phase a criterion is established to isolate the most critical ZOIs of the GFEM that
will be analysed in the second step using high order 1D theories to describe in detail the
stress field. The refined local FE model (LFEM) used in the second step is implemented
in the CUF framework. In particular, CUF has proven to be very effective and efficient in

21



22 Chapter 3. Global-local approach in the framework of CUF

evaluating complex stress and deformation states in composite structures [125, 126] and
also successful in elastoplastic and progressive failure analysis [127, 128]. CUF provides
1D and 2D theories that overcome the classical theories (Euler, Timoshenko, Kirchoff,
Reissner-Midlin, Love) by expressing the displacement field on cross-section (1D case) and
along the thickness (2D case) in terms of basic functions whose shapes and order are chosen
by the user. The capability, in terms of accuracy and description of stress and deformation
states, of such 1D/2D models based on CUF is comparable with those obtained from 3D
FE models but with a lower computational cost.

The novelty of the global-local methodology described here is to exploit the potential
of CUF to study the stress/strain fields within the ZOI of the GFEM. The objective is
to have a tool able to correctly describe these fields within the LFEM in the preliminary
design phase of the structure paying attention to the free-edge effects, failure modes,
delamination, etc.

This Chapter is organized as follows: Section 3.2 shows the main features of the 1D
higher-order models based on CUF, while the global-local methodology is described in
Section 3.3. Section 3.4 is devoted to numerical results. In particular, the first part of
the section is dedicated to benchmarks of metal and composite structures to validate the
methodology. The second part shows typical benchmarks for the study of the free-edge
phenomenon in composite structures. Finally, Section 3.5 is devoted to the concluding
remarks.

Publication related to this chapter: The methodology and the results presented in
this Chapter have been published in [130].

3.2 1D higher-order models based on CUF

Consider a generic beam-like structure whose longitudinal axis, with respect to a Cartesian
coordinate system, is oriented along y axis and its cross-section is defined on the xz-plane,
as shown in Fig. 3.1. The cross-section of the structure is denoted by Ω, and the beam
boundaries along y are 0 ≤ y ≤ L. The transposed displacement vector is reported as

z
y

xO

Figure 3.1: Coordinate frame of the beam model.

follows:
uT (x, y, z) = {ux(x, y, z), uy(x, y, z), uz(x, y, z)}, (3.1)

while the strain ε and stress σ components, arranged according to the Voigt’s notation
reads as:

εT =
{
εxx εyy εzz εyz εxz εxy

}
,

σT =
{
σxx σyy σzz σyz σxz σxy

}
.

(3.2)

In the case of small displacements, the strain - displacement relation is

ε = Du, (3.3)
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where D is the linear differential operator expressed as:

D =


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
. (3.4)

The stress components can be attained by means of the Hooke’s law

σ = Cε, (3.5)

where C is the stiffness matrix of the material. For the sake of brevity, the expression of
matrix C is not reported here, but it can be easily found in [131].
In the framework of CUF, the displacement field over the cross-section can be expressed
as:

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, 2, ....,M , (3.6)

where Fτ are functions which vary over the cross-section. In Eq. (3.6), uτ is the general-
ized displacement vector and M stands for the number of terms of the expansion where
the repeated subscript, τ , indicates summation.
The choice of the expansion class Fτ determines the 1D CUF model that has to be adopted.
Taylor-Expansion (TE) and Lagrange-Expansion (LE) classes are described in the follow-
ing.

Taylor-Expansion class

TE 1D models make use of 2D classical polynomials in the form xizj (i, j = 0, . . . , N
where N is the order of the expansion) as Fτ (x, z). For example, the second-order model,
N = 2, leads to the following displacement field:

ux = ux1 + x ux2 + z ux3 + x2 ux4 + xz ux5 + z2 ux6 ,
uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6 ,
uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6 .

(3.7)

The kinematic model described in Eq.(3.7) is characterised by three constants, six linear
and nine quadratic terms, which are the unknowns of the problem at hand.
The possibility of easily enriching the displacement field of the 1D model allows dealing
with a wide variety of problems without using ad-hoc formulations. Non-classical effects
(e.g., shear effects, warping, in-plane deformations, bending-torsion couplings) can be stud-
ied by opportunely varying the order of the adopted model. Furthermore, the kinematic
fields of the classical beam theories (Euler and Timoshenko) can be defined as particular
cases of the first order TE model (N=1), which includes just the constant and the linear
terms of Eq. (3.7). A more detailed description of TE models can be found in [126].

Lagrange-Expansion class

The LE 1D models are based on the use of Lagrange polynomials as generic functions
above the cross-section. The cross-section of the beam is divided into a number of local
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expansion sub-domains, whose polynomial degree depends on the type of Lagrange Ex-
pansion employed. Three-node linear L3, four-node bilinear L4, nine-node cubic L9, and
sixteen-node quartic L16 polynomials can be used to formulate refined beam theories. LE
allows for taking into account arbitrary section geometries.

Point ατ βτ

1 −1 −1
2 0 −1
3 +1 −1
4 +1 0
5 +1 +1
6 0 +1
7 −1 +1
8 −1 0
9 0 0

Table 3.1: L9 cross-section element point natural coordinates

Fig. 3.2 shows the node locations of one L9 sub-domain and Table 3.1 reports the node
natural coordinates. In the case of a L9 element the interpolation functions are given by:

Fτ = 1
4(α2 + αατ )(β2 + ββτ ), τ = 1, 3, 5, 7 ,

Fτ = 1
2β

2
τ (β2 + ββτ )(1− α2) + 1

2α
2
τ (α2 + αατ )(1− β2), τ = 2, 4, 6, 8 ,

Fτ = (1− α2)(1− β2), τ = 9 ,
(3.8)

where α and β vary between −1 and +1. In the case of L9 polynomials, the displacement
field reads:

ux = F1ux1 + F2ux2 + . . .+ F9ux9,
uy = F1uy1 + F2uy2 + . . .+ F9uy9,
uz = F1uz1 + F2uz2 + . . .+ F9uz9.

(3.9)

Refined beam models can be obtained by adopting higher-order Lagrange polynomials

1 2

7 6

8 9 x

z

3

5

4

Figure 3.2: L9 expansion on the beam cross-section.

or by using a combination of Lagrange polynomials on multi-domain cross-sections, e.g.
in Fig. 3.3 three assembled L9 polynomial expansion sub-domains are represented. More
details about Lagrange-class models can be found in [126, 131]

3.2.1 Implementation by using the finite element method

The FE method is used to discretise the structure along the y-axis. The discretisation
process is conducted via a classical 1D FE model, where the generalized displacement
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x

z

Figure 3.3: Three assembled L9 expansions.

vector uτ (y) can be approximated by the nodal shape functions Ni(y).

u(x, y, z) = Ni(y)Fτ (x, z)uiτ , τ = 1, ...,M, i = 1, ..., nn, (3.10)

where Ni(y) stands for the i− th shape function, nn is the number of nodes in one element
and uiτ is the vector of nodal unknowns. For the sake of brevity, the shape functions are
not reported here. They can be found in classical books like [101]. 1D elements with four
nodes (B4) are considered here: in this way a cubic approximation of the displacement
fields along the y-axis is assumed. The correspondent virtual variation of the displacement
reads:

δu(x, y, z) = Nj(y)Fs(x, z)δujs, s = 1, ...,M, j = 1, ..., nn. (3.11)

The governing equations are derived by applying the Principle of Virtual Displacements
(PVD). For a static problem:

δLint = δLext, (3.12)

where δLint stands for the virtual variation internal work, δLext is the virtual variation
of work done by the external loads. The virtual variation of the internal work can be
expressed as:

δLint =

∫

V
δεTσdV. (3.13)

By using Eqs. (3.3), (3.5) and (3.10) the previous expression simplifies to:

δLint = δuTjsK
ijτsuiτ , (3.14)

where V = Ω · L is the volume of the beam and Kijτs is the stiffness matrix in the form
of a 3 × 3 fundamental nucleus (FN). The derivation FN is not reported here, but the
interested reader can find more details in [126]. However, the terms Kijτs

xx and Kijτs
xy are

given for clarity purpose.

Kijτs
xx = (λ+ 2G)

∫
LNiNj dy

∫
Ω Fτ,xFs,x dΩ +G

∫
LNiNj dy

∫
Ω Fτ,zFs,z dΩ +

+G
∫
LNi,yNj,y dy

∫
Ω FτFs dΩ,

Kijτs
xy = λ

∫
LNi,yNj,y dy

∫
Ω FτFs,x dΩ +G

∫
LNiNj dy

∫
Ω Fτ,xFs dΩ,

(3.15)

where G and λ are the Lamé’s parameters and comma denotes partial derivatives. It can be
proven that all the components of Kijτs can be derived from Eq.(3.15) by permutations.
Furthermore, it should be noted that the formal expressions of the components of the
fundamental nucleus Kijτs of the stiffness matrix do not depend on the choice of the cross-
sectional functions Fτ , which determine the theory of structure, and shape functions Ni,
which determine the numerical accuracy of the FE model approximation. This means that
any classical or higher-order beam element can be automatically formulated by opportunely
expanding the fundamental nuclei according to the indices τ , s, i, and j.
The formal expression of the load vector coherent to the considered model and theory can
be found in [131].
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Application of 1D CUF elements to multi-layer structures

In the case of composite laminated structures, the CUF provides a method to model
laminates, matrices, and fibers using 1D elements on the longitudinal direction and its
expansion classes on the cross-section of the beam. This concept is clearly depicted in
Fig. 3.4, where a three-layer laminated beam is modelled in the framework of CUF.

TE

LE

Layers

FE Cross-section domain

= +

Figure 3.4: Differences between TE and LE classes in 1D CUF finite elements.

The Equivalent Single-Layer (ESL) approach and the Layer-Wise (LW) approach can
be easily used to study 1D multi-layer structures in the framework of CUF.

• In the ESL approach, the multi-layer configuration is modelled as a single-layer
having a set of variables assumed for the entire cross-section. This is obtained by
homogenising the properties of the different layers composing the laminate into a
single layer. In this way, during the assembly phase of the stiffness matrix, the con-
tributions of the individual layers are added together. This homogenisation process
of the layers however, causes an incorrect evaluation of some intrinsic quantities of
each layer and their interfaces. The ESL can be formulated through the use of any
1D model (e.g TE and LE) in the CUF framework.

• In the LW approach, all layers are individually modelled and the continuity of the
displacement solutions on the interfaces between layers is ensured by the correspon-
dence of the shared sides of the cross-section expansion domains. In this regard,
Fig. 3.5 shows the assembly procedure of the stiffness matrix in both approaches.
For this approach, the LE class is more suitable than the TE because of its multi-
domain nature. In the LE class, in fact, each layer can be modelled considering
one or more local expansions. The addition of multiple local expansions per layer
improves model accuracy and may be necessary for the study of higher-order effects.
LW can be also obtained by means of TE, but special attention must be given to the
interface conditions in this case, see [123, 132].

Both the approaches are widely discussed in [133] and their applications in the framework
of CUF are given in [126, 134]. In this thesis, the LE class is used for higher-order local
1D models. The possibility to implement LW theories, which are fundamental for the
description of 3D stress in laminate structures and the possibility to easily transfer the
geometrical BCs from the GFEM to the LFEM were crucial in the choice of this class.
This last aspect is described in the following section.

3.3 Global-local modelling in the CUF framework

Global-local modelling strategy can be really determinant in the preliminary design phase
of a structure, as it allows to properly assess complex and localized 3D stress field. This
evaluation, carried out with limited computational costs, allows the designer to intervene
by making the necessary modifications to the structural model.
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Figure 3.5: Assembly procedure of the stiffness matrix through ESL and LW approaches,
[134]

(a) Stiffened plate with an highlighted ZOI.

(b) Global 2D/1D FE model of the stiffened plate with the high-
lighted ZOI elements.
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(c) Local refined 1D CUF model of the ZOI

Figure 3.6: Stiffened plate with highlighted ZOI and global and local FE models.

In this study, the GFEM is always made of classical 1D and 2D elements (or a com-
bination of them) available in with commercial software. In general, such models are
low-fidelity models, because they required a low computational cost but are not able to
describe complex stress states (for example out-plane stresses). This is due to the basic
assumptions related to the kinematic field of the element. The global-local approach pre-
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sented in this Chapter is based on the idea of identifying critical regions of the GFEM, i.e.
the ZOIs, isolating them and build a high-fidelity LFEM made of higher-order CUF 1D
elements capable of describing complex stress states within the ZOI with great accuracy
and low computational cost.
The proposed global-local modelling strategy is essentially based on two steps. The first
step is devoted to the analysis of the GFEM to identify the critical ZOIs. The identifi-
cation of such ZOIs is carried out by means of a criterion established by the user and is
crucial for the appropriate extraction of BCs that will then be applied to the local CUF
model. At this stage, two important issues arise:

1. What kind of BCs should be transferred from the GFEM to the LFEM? Two types
of BCs will be discussed in the following sections: Mechanical-BCs and Geometrical-
BCs.

2. How to couple the GFEM realized with commercial software with the LFEM realized
in the CUF framework? This issue is related to the kinematics of higher-order 1D
elements, which is different and not compatible with the low-fidelity elements of
GFEM.

The above points will be discussed with in the following sections.
The second step of the global-local modelling strategy is dedicated to the setting of the
LFEM in CUF framework and the corresponding static analysis for the evaluation of the
3D stress field in the ZOI.

For instance, Fig. 3.6 shows a stiffened plate with the highlighted ZOI, the GFEM of
the structure and the LFEM of the ZOI.

3.3.1 Application of the BCs - Mechanical vs Geometrical BCs

The coupling between GFEM and LFEM can be made by applying two types of BCs, i.e.
Mechanical BCs and Geometrical BCs.

• Mechanical BCs
The application of forces and moments at the interface makes the FE static problem
indeterminate. The structure is unconstrained, and consequently, its stiffness matrix
is singular. These kinds of problems are frequent in the aerospace field and they
are solved by making use of a procedure known in the literature as Inertia relief,
[135–138]. This procedure, implemented by commercial software as MSc-Nastran
and Abaqus CAE, allows to simulate unconstrained structures in static and dynamic
analysis. In fact, taking into account the rigid-body motions of the structure, it
removes the singularity of the stiffness matrix so the final algebraic system could be
solved. For a deeper insight into the matter, the interested reader is addressed to
[136, 137].
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• Geometrical BCs
The application of displacements and rotations at interface does not require further
procedures because the system is constrained, resulting in a determinate problem
that can be solved. This is the reason for the prevalence of Geometrical BCs in the
majority of global-local approaches found in the literature, see [108, 114, 117].

There are no particular differences between the BC types from the point of view of the
accuracy of the results, but from a purely numerical perspective, it is much easier to auto-
mate the application of Geometrical - BCs on the LFEM boundary than the mechanical
ones. In fact, the application of the Inertia relief requires a further mathematical model
that is not necessary for applying geometrical BCs. For the aforementioned reasons, Geo-
metrical - BCs are used as BCs for the LFEM implemented within the CUF framework.
Figure 3.7 shows a 2D model of a hat-stringer to be analysed with the global-local modelling
approach. The static analysis of the entire structure is done by a commercial software,
and the displacements and rotations at the interface nodes are known. For the sake of
simplicity, consider two structural nodes A and B, located at the interface between the
GFEM and the critical region, as shown in Fig. 3.7(a). Exploiting the displacements and
rotations of nodes A and B and using linear shape functions, it is possible to determine,
for all the middle plane nodes of the CUF LFEM located between nodes A and B, the
value of both displacements and rotations, as illustrated in Fig. 3.7(b). A linear interpola-
tion function is used to keep conformity with the kinematics of the GFEM. Furthermore,
such interpolation procedures allow the use of the GFEM and LFEM meshes, which are
incompatible at the interface.
Once the displacements and rotations are computed at the interface nodes located on the
middle plane of the LFEM, a strategy is needed to compute the BCs in all the nodes at
the interface level. As known, the commercial software gives translational displacements
(ux, uy, uz) and rotations (θx, θy, θz) at the interface nodes in the case of beam and plate
models. On the other hand, the use of Lagrange polynomials in CUF results solely in
pure displacement degrees of freedom (DOFs) at each node. Therefore, a strategy must
be provided to transform rotational DOFs of the GFEM in pure displacements for CUF
LFEM.
This issue can be resolved via two approaches based on the type of elements of the GFEM.
Reissner - Mindlin displacement field is used when the GFEM is made of 2D shell elements,
in order to compute the translational displacements for each node at the interface of the
LFEM. The Reissner - Mindlin displacement field reads:

u(x, y, z) = u0(x, y) + zθy(x, y),
v(x, y, z) = v0(x, y)− zθx(x, y),

w(x, y, z) = w0(x, y).
(3.16)

When the GFEM is made of 1D beam elements, Timoshenko displacement field is used,
i.e.

u(x, y, z) = u0(y),
v(x, y, z) = v0(y) + xθz(y)− zθx(y),

w(x, y, z) = w0(y).
(3.17)

Where u0, v0, w0 are the displacements and θx, θy, θz are the rotations of the nodes of the
GFEM located at the interface. In both cases, the rotations are used to compute displace-
ments in all the cross-section nodes at the interface level and the resulting displacements
constitute the BCs for the LFEM.
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Figure 3.7: Application of geometrical BCs.

For instance, in Fig. 3.7(c), the displacements and rotations computed at the node ’i’ give
the translational displacement at the nodes ’t’ and ’b’ through the use of the Reissner -
Midlin displacement field. In this way, it is possible to obtain from the displacements and
rotations in the middle plane the translational displacements in all the nodes belonging to
the interface.

It should be noted that the application of displacements as BCs only concerns the
nodes at the interface between the GFEM and the ZOI. All other mechanical (nodal forces,
distributed BCs imposed in the GFEM within the zone of interest must be transferred to
the LFEM to obtain a correct evaluation of the stress state.
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3.3.2 Coupling effects

As shown in the work of Mao et al. [108], the application of the BCs in terms of imposed
displacements and rotations on the boundary of the LFEM introduces detrimental effects
in the accuracy of the solution of the local static problem.
There are several strategies available to reduce these effects. In this work the following
techniques are used:

• Once the critical local region is identified, a transition zone surrounding the actual
ZOI is considered, as shown in Fig. 3.8. The displacements and rotations are applied
on the nodes located at the edge of this zone following the strategy described in the
previous section.

Figure 3.8: ZOI with the transition zone.

• A local refinement of the mesh is adopted to confine the detrimental effects of the
BCs application into the interface zone. This strategy consists of a non-uniform
mesh in which the structural nodes and the sub-domain expansion points along x-
axis are distributed with the square root of the well-know Chebyshev node formula.
For instance, the sub-domain expansion points along x-axis are computed as:

xk =

√
cos(

2k − 1

2n
π), k = 1, ..., nx. (3.18)

Where nx is a positive integer computed from the number of sub-domains Nxexp

used for the cross-section of the LFEM along the x-axis, nx = 2 ·Nxexp − (Nxexp −1).
Using the above formula, the mesh of the LFEM is refined in the proximity of the
BCs. In this way, it is possible to limit the detrimental effects of the BCs only in
this refined zone. Instead, the sub-domain expansion points along z-axis are equally
spaced. Figure 3.9(a) shows an example of the cross-section for a LFEM wherein
the nodes distribution is done according to the Eq. (3.18), while in Fig. 3.9(b) the
corresponding LFEM in the CUF framework is presented. In both images, it is
possible to remark the refinement in the proximity of the boundaries of the model
to confine the detrimental effects of the BCs application.

3.4 Numerical Examples

This section consists of two parts. The first part is dedicated to the validation of the
global-local modelling strategy in the CUF framework. Several examples of metal and
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Figure 3.9: Mesh refinements to decrease the detrimental effect of application of BCs

composite structures have been analysed to show the effectiveness of the proposed method.
Instead, the second part is dedicated to the study of the complex phenomenon of free-
edge in composite structures. The global-local modelling approach is initially tested on
benchmarks taken from the literature and then used in the study of two special cases.

3.4.1 Preliminary numerical examples

Cantilever beam with a point load at the free edge

The first test case deals with a very simple model of a cantilever beam subjected to
a concentrated force applied at y = L. The goal is to show the effectiveness of the
proposed global-local modelling strategy in describing the 3D stress field with a reduced
computational cost compared to FE models made of solid elements available in commercial
codes. The structure is made of isotropic material with Young’s modulus E = 75 GPa,
Poisson ratio, ν = 0.33 and density, ρ = 2700 kg/m3, has a length L equal to 90.0 mm and
has a rectangular cross-section with the following characteristic dimensions: b = 1.0 mm
and h = 10.0 mm. The geometrical features of the structure is illustrated in Fig. 3.10.
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z

x

z

b

h

P

Figure 3.10: Geometrical features of the cantilever beam

A point load P along z-axis is applied at [0, L, 0] and its magnitude is equal to −1 N .

The ZOI is located between points A = [0, 30, 0] mm and B = [0, 60, 0] mm in the
GFEM reference system and a finite element analysis is carried out for the calculation of
displacements and rotations at such points on the borders of the local region. The static
analysis is performed on a GFEM realized with the commercial software MSc Nastran and
is constituted of 30 beam elements.

Fig. 3.11 shows GFEM, the ZOI where displacements (uA, uB) and rotations (θA, θB)
resulting from the static analysis conducted on the GFEM are applied on its bound-
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Figure 3.11: GFEM and LFEM for the cantilever beam

ary. Conversely the displacements uAi and uBi are the generic translational cross-section
displacements at node ‘i’ of the LFEM in the CUF framework. These latter ones are cal-
culated using Timoshenko’s displacement field exploiting the vertical displacements (uA,
uB) and rotations (θA, θB) resulting from the static analysis on the GFEM.

(a) 3 x 3 L9

x

z

(b) 1 x 5 L16

Figure 3.12: Sub-domain distributions over the cross-section of the local CUF beam model

Two different CUF LFEMs have been used: 3x3 L9 and 1x5 L16, where 3x3 L9 means that
three sub-domains L9 are used along the x-axis and three along the z-axis, whilst in the
second LFEM one L16 sub-domain along x and five sub-domains L16 along z. For both
LFEMs, 10 B4 elements are used for the structural mesh along y-axis. The distribution
of sub-domains in the cross-section of the two models is illustrated in Fig. 3.12.
Fig. 3.13 shows the distribution of the shear σyz along the y-axis at x = 0, z = h/2
comparing: a Timoshenko beam model, a 3D MSc-Nastran model and the two LFEMs
described above.

Table 3.2 and Fig. 3.14 show the comparison between the 3D model and the proposed

σyy [MPa] σyz [MPa] DOFs

ABAQUS 3D 2.571 −0.148 14209
NASTRAN 1D / CUF - 3x3 L9 2.721 −0.149 546 / 4557
NASTRAN 1D / CUF - 1x5 L16 2.717 −0.153 546 / 5952

Table 3.2: σyy and σyz for the cantilever beam with a point load

modelling strategy in terms of axial stress σyy and shear stress σyz.
The distributions of Fig. 3.14 are computed at x = 0, yglobal = 45.0 [mm] and the stress
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Figure 3.13: Shear σyz distribution along the y axis at the top of cross-section.

values, which are reported in Table 3.2, are at the z coordinate that gives the maximum
value of these stress.
The analysis of these preliminary results allows inferring the following remarks:

• The global-local modelling strategy allows correctly describing 3D stress field with
low computational effort. In fact, it is known from theory of elasticity that the
shear stress σyz has to be null at the top and the bottom of the cross-section for
the equilibrium but this result cannot be obtained with a 1D model and not even
with a full 3D model in which the σyz is computed but it is not zero. With CUF
higher-order beam model, it is possible to obtain nearest null shear σyz stress at the
top and the bottom of the cross-section.

• The global-local modelling approach, after an initial oscillation that is due to the BCs
application, can detect a nearest null shear stress σyz. It is important to isolate a
suitable region for local analysis, since the application of BCs can affect the accuracy
of results. It is recommended to consider a larger area for the local analysis by
including a transition zone around the ZOI in order to avoid the detrimental effects
of BCs application.

• Table 3.2 compares the axial and shear stresses obtained via the 3D FE model
composed of solid elements and global-local analyses based on CUF beam elements.
All the results provided by the global-local analysis are in very good agreement with
those resulting from the Abaqus 3D model, which constitutes a numerical reference
solution. The significant achievement is the reduction of the computational cost and
the possibility to detect the shear stress correctly with a higher-order beam model.

• Figure 3.14 shows the stress distribution through the thickness at yglobal = 45.0 mm
. There are no remarkable differences for the axial stress σyy, however in the case of
shear stress σyz, it can be noticed that only the LFEM with 1x5 L16 subdomains can
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Figure 3.14: Axial σyy and shear σyz distribution along the z axis at xglobal = 0 [mm],
yglobal = 45.0 [mm] for the cantilever beam.
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Figure 3.15: Global and local regions of the isotropic plate under bending.

detect a close to zero stress at the top and bottom of the cross-section, as predicted
by the theory.

Isotropic plate under bending

An isotropic square plate is considered in this example. The plate is characterised by a
width b = 1.0 [m] and a thickness t = 0.01 [m]. An isotropic material is used for the
structure with E = 75 GPa, Poisson’s ratio, ν = 0.33 and density, ρ = 2700 kg/m3. The
plate is clamped on each side and a pressure P = 1 Pa is applied at the top surface of the
plate.

Fig. 3.15 shows the GFEM and the LFEM of the plate and highlights points A and B
wherein the in-plane and out-plane stresses are evaluated, respectively. The global analysis
is performed in MSC-Nastran and consists of 60 x 60 plate elements (DOFs = 22326). The
boundaries of the ZOI are: −0.167 ≤ x ≤ 0.167 m and 0.300 ≤ y ≤ 0.700 m; point A is
located in the middle of the plate (xA = 0.00 m and yA = 0.500 m) and point B is located
at xB = 0.050 m and yB = 0.550 m.
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A C3D8 ABAQUS solid model is build as a reference solution for the in-plane and out-plane
stresses and it consists of 100 x 100 in-plane divisions and 10 out-of-plane divisions (DOFs
= 855393). The LFEM consists of 20 B4 structural elements and 10 x 9 L9 sub-domains
across the cross-section of the beam model (DOFs = 107787). In Fig. 3.16 the structural
mesh of the beam axis and the distribution of the L9 over the cross-section are presented.
It is noteworthy that the distributions of the structural nodes of the beam axis and the
points of the L9 sub-domains of the cross-section follow the square root of Chebyshev node
formula, see Eq.(3.18). In Fig. 3.16(b) the grey rectangles represent the L9 sub-domains
but the points of each sub-domain are not reported. Similarly, in Fig. 3.16(a), the 20
B4 structural elements are shown but only the shared nodes between the elements are
represented.

z

y

x

(a) Structural mesh along the beam axis -
20 B4

x

z

(b) Sub-domain distribution over the cross-section

Figure 3.16: Structural mesh along the beam axis and sub-domain distribution over the
cross-section of the local 1D CUF model.

This benchmark is used to show that the global-local analysis in the CUF framework can
detect the in-plane stresses in accordance with the global 2D model in MSC-Nastran and
it can also describe of the out-plane stress that cannot be obtained from the GFEM.

Fig. 3.17 shows the displacement field magnitude in the GFEM and in the CUF LFEM,
while the axial stress σyy distribution through the thickness at the point A of the plate is
presented in Fig. 3.18.
The shear stresses σxy and σyz are computed at the point B and they are shown in Fig. 3.19.
From the obtained results, the following considerations arise:

• The benchmark represents a typical plate problem, where the characteristic length
of the plate b is much larger than the thickness t. This structure can be easily
studied with the FE method using plate elements and, in the case of stress analysis,
the in-plane stresses can be detected with a reasonable level of accuracy. Due to
underlying kinematic assumptions, plate elements based on the classical theories
such as Kirchoff or Reissner-Mindlin are unable to detect out-of-plane stresses. A
3D GFEM is set but, for this particular case, the computational cost can be very
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Figure 3.17: Comparison between the GFEM and the CUF LFEM in terms of displacement
magnitude in mm.
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Figure 3.19: Shear stresses σxy and σyz along the z-axis for the local region of the isotropic
plate. The stresses are computed at point B.

high so for this problem, a global-local approach can be useful to detect the 3D stress
field in the most critical subregions of the structure.

• The global-local analysis detects correctly the results given by the global static anal-
ysis of the 2D model with the commercial software and provides the distribution of
the out-plane stresses too. Figure 3.19(b) shows that the accuracy level of the CUF
LFEM is higher than the solid GFEM in the detection of the shear stress σyz; in fact,
it correctly predicts the null value of σyz at the top and bottom of the cross-section.

• The computational costs required by the proposed global-local modelling approach
are strongly reduced when compared to the FE model made of solid elements: the
overall number of DOFs required by the global-local analysis is one seventh of those
required by the 3D FE model built in the Abaqus environment.

Notched plate under uni-axial tension

This example is an application of the current global-local modelling approach in the refined
analysis of specific regions within a structure, where stress concentration is expected to
occur. The structure is a plate of length L = 150 mm and width W = 36 mm with a
central through hole of radius R = 3 mm, clamped at one end and subjected to a uniform
displacement of ux = 0.025 mm at the other end. A schematic representation of the
structure, along with the applied BCs is given in Fig. 3.20.
In this example, a 3D ABAQUS coarse model is used as GFEM, whose displacements are
then used to drive the CUF LFEM. The region around the hole, where the maximum
stresses are expected to occur, is considered as a ZOI and is shown in Fig. 3.21.
A refined 3D analysis of the entire global structure has also been performed in ABAQUS,
which constitutes the numerical reference solution. The mesh details of the various nu-
merical models are listed in Table 3.3. The results of the various analyses are presented
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Figure 3.20: Schematic representation of the notched specimen along with the applied
boundary conditions.

Line A

al

d

Figure 3.21: The ZOI considered for a refined analysis in CUF.

hereinafter. The axial stress σxx along the line joining the points [x = 0.0, y = 1.25, z
= 3.0] and [x = 0.0, y = 1.25, z = 10.0], i.e. the line A as shown in Fig. 3.21, has been
plotted in Fig. 3.22.

Models Mesh Type DOFs

GLB: ABAQUS 3D (Ref.) 42120 C3D8 155898
LCL:ABQ3D/CUF 510 C3D8/1 B4 - 112 L9 2709/5760

Table 3.3: Mesh data for the numerical models used in the analysis of the notched specimen

The following observations can be made:

1. A refined solution of the ZOI can be found via the global-local analysis, which
requires about 18 times fewer DOFs with respect to a full 3D finite element analysis.

2. From Fig. 3.22, it can be seen that accurate stresses can be obtained from the local
CUF analysis without the need for extensive mesh refinement. This is due to the
use of advanced structural theories within the CUF model.

3. Fig. 3.23 shows the axial stress σxx in the plane x-z comparing the results from the
global ABAQUS 3D models and those from the global-local analysis and confirms
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Figure 3.22: Axial stress σxx along the z axis.

that this last can detect complex stress fields with a comparable accuracy to the re-
fined 3D models. The plot of Fig. 3.23(b) is realised through an interface ABAQUS
- CUF that permits to show the results of CUF local analysis using ABAQUS visu-
alization tools.

Cantilever composite beam under bending

In this example, a composite beam with 3 plies is considered. The considered beam is
clamped at one end and free at the other end, as described in [139].
The cross-section of the structure is presented in Fig. 3.24 and the structure is loaded
by a point load along the z-direction at the centre of the free end and its magnitude is
−1 · 10−3 N .

The geometrical parameters of the structure are the length L = 2.0 m and the cross-section
width b = 0.1 m. The total thickness of the cross-section is t = 0.003 m, the ply thickness
is tply = 0.001 m and stacking sequence of the laminate is [0◦/90◦/0◦]. An orthotropic
material is considered with the following material properties: E11 = 40 GPa, E22 = E33 =
4.0 GPa, ν12 = ν13 = ν23 = 0.25, G12 = G13 = G23 = 1.0 GPa. The GFEM is built in
MSC-Nastran with a mesh of 10 x 200 plate elements.
The ZOI is a square region and constitutes a very small region within the global structure.
It is located at the centre of the model and its geometrical parameters are Llocal = 10.0
mm, blocal = 10.0 mm hlocal = t = 3.0 mm. The GFEM with the highlighted ZOI is
illustrated in Fig. 3.25.

In the CUF LFEM 20 B4 structural beam elements are used along the y-axis direction
and two different types of LE sub-domain distributions are adopted. The first one consists
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Figure 3.23: Axial stress σxx [MPa] in the plane x-z of the notched plate.
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Figure 3.24: Beam model and the geometrical parameters of its cross section.
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Figure 3.25: GFEM and the ZOI for the cantilever composite beam.

of 5x9 L9 sub-domains (5 along x and 9 along z) while the second one consists of 5x9 L16
sub-domains (5 along x and 9 along z) with 3 sub-domains for each layer of the structure.
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The results of the static analysis are evaluated at the centre of the local region that is
coincident with the global one.
In Fig. 3.26, the axial stress σyy and shear stress σyz distribution through the thickness
are presented. The plot compares the results of the global analysis in MSC-Nastran with
those of the global-local analysis.
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Figure 3.26: Axial stress σyy and Shear stress σyz along the z-axis for the cantilever
composite beam.

The following considerations can be inferred from the graphs reported in Fig. 3.26:

• For this benchmark, the commercial code always gives constant values of in-plane
and out-plane stresses in each layer of the laminate. With the global-local modelling
approach, it is possible to detect the real trend of all the stresses.

• In Fig. 3.26(a), it can be noticed that both the CUF LFEMs catch the linear be-
haviour of the axial stress through the thickness of each layer and the results of the
LFEMs coincide with those of the global one only in the middle of each layer. As
known, the commercial code gives just the average stress value of each layer.

• In Fig. 3.26(b), it can be noticed that both LFEMs capture the quadratic behaviour
of the shear stress. In particular, the LFEM with 5x9 L16 sub-domains is able to
predict the null value of the σyz at the top and bottom of the cross-section

3.4.2 Free edge benchmarks

The numerical results presented here below are focused on the study of the free-edge
phenomenon in composite structures. This phenomenon is characterised by extremely
high peaks of interlaminar stress and occurs in laminates at the interface between different
layers in the proximity of discontinuities of the structure. e.g. free edges, holes, etc. It
has been proven that this phenomenon can be a crucial factor in the damage onset in
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composite materials, see [140]. The usual methods based on FEs involve the use of ad-hoc
refinements in the vicinity of the free-edge for an accurate determination of interlaminar
stresses, see [141–143] for further details. The use of refined 3D FE models can provide
accurate solutions but the computational cost of these models is huge due to the necessity
to keep a satisfactory FE aspect-ratio along the three directions. The effectiveness of CUF
higher-order beam models in the study of free-edge stress fields in multilayer composites
has already been demonstrated by de Miguel et al. [144].
The global-local approach developed in this thesis succeeds in studying the stress field in
the proximity of the free-edge with a CUF LFEM using the information of GFEM made
of 1D or 2D classical elements.

Four-ply composite plate under tensile stress

The first benchmark on the study of free-edge is taken from [145], where several specimens
in G947/M18 carbon-epoxy were tested in delamination tensile and compressive tests. In
this study, the four-ply composite specimen [10◦/− 10◦]s is selected and the purpose is to
correctly describe the interlaminar shear stress σyz in the proximity of the free edge. The
mechanical properties of the considered material are listen in Table 3.4.

E11 [GPa] E22 [GPa] E33 [GPa] G12 [GPa] G13 [GPa] G23 [GPa] ν12 ν13 ν23
97.6 8.0 8.0 3.1 3.1 2.7 0.37 0.37 0.50

Table 3.4: Mechanical properties of the G947/M18 material, [145].

The global structure has a length L equal to 200.0 mm and has a width b equal to
20.0 mm. The thickness of the plate is h = 0.76 mm.
The structure is fixed on one side and subjected to a displacement δy along y axis on the
opposite side, in such a way that the resulting longitudinal strain is εyy = 0.001. The
geometrical features and the BCs of the structure are illustrated in Fig. 3.27.

L

b

δy

h

Figure 3.27: Four-ply composite plate subject to uni-axial longitudinal strain εyy = 0.001.

The GFEM is built in MSc-Nastran with a mesh of 10 x 200 plate elements.
The ZOI is a rectangular region located at the centre of the model and its geometrical
parameters are Llocal = 10.0 mm, blocal = 10.0 mm, see Fig. 3.28.

The shear stress distribution σyz is presented in Fig. 3.29. The figure compares the
distribution of the σyz along the x-coordinate at the interface between dissimilar layers
(Fig. 3.29(a)) and z-coordinate (Fig. 3.29(b)) obtained through the proposed global-local
modelling approach with those given by Lagunegrand et al. [145] and Martin et al. [142]
whenever possible. In this case, the LFEM consists on 15 L9 sub-domains along the x-axis,
9 L9 sub-domains for each layer, and 6 B4 elements. The cross-section mesh is refined
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Figure 3.28: The ZOI where the shear stress σyz is evaluated.

along x using the square root of the Chebyshev node distribution (which is also used to
distribute the nodes along the beam axis).
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Figure 3.29: Interlaminar shear stress σyz distributions.

Fig. 3.30 shows the cross section mesh influence in the detection of the σyz in the free
edge vicinity. In this case the LFEM consists of 15 L9 sub-domains along the x-axis and
six B4 elements along the beam axis. Moreover, but a sub-domains convergence study
along the z-axis is done in order to find the best compromise between accuracy of results
and reduced computational effort.

The global-local analysis of structure has highlighted several important aspects:

• The proposed approach allows for correctly describing the shear stress σyz in the
free edge vicinity. In Fig. 3.28 the distribution of σyz is in good agreement with the
results available in the literature but with the advantage of not requiring any ad-hoc
formulation for the model.
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Figure 3.30: Sub-domain convergence study along the z-axis at the free-edge.

• The sensitivity of the results to the number of sub-domains along z-axis is illustrated
in Fig. 3.30. As expected, a model with more sub-domains per layer is closer to the
experimental results given by Lagunegrand et al. [145]. Of course, the greater the
number of sub-domains the higher the computational costs.

Ten-ply composite plate under tensile stress

For this benchmark, the specimen taken from the work by Lorriot et al. [146] is considered.
The specimen geometry is reported in Fig.3.31. The material used for the structure is a
carbon/epoxy T800/914 ply and its mechanical properties are reported in Table 3.5. The
multilayer plate is characterised by the following stack: [15◦2/90◦/− 15◦2]s.

E11 [GPa] E22 [GPa] E33 [GPa] G12 [GPa] G13 [GPa] G23 [GPa] ν12 ν13 ν23
159.0 8.4 8.4 4.1 4.1 4.1 0.33 0.33 0.50

Table 3.5: Elastic properties of the carbon/epoxy T800/914 ply, [146].

The geometrical parameters of the plate are: L = 300.0 mm (length), b = 200.0 mm
(width) and h = 1.25 mm (thickness).
The structure is fixed on one face and subjected to a traction load P = 1.0 MPa on
the opposite face. The ZOI is a square region located in the middle of the structure and
whose side length is alocal = 10.0 mm. The geometrical features, the BCs of the GFEM
and the LFEM are shown in Fig. 3.31.

The GFEM is made of of 40 x 60 linear plate elements and it is built within
MSC-Nastran. Instead, the LFEM is composed of 15 L9 sub-domains along the x-axis, 6
L9 sub-domains for each layer, and 6 B4 elements.

Fig. 3.32 shows the shear stress distribution σyz resulted from the global-local analysis.
Fig. 3.32(a) depicts the shear stress σyz at −15◦/90◦ interface versus x in the proximity
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Figure 3.31: Ten-ply composite plate with uni-axial pressure traction P = 1.0 MPa.

of the free-edge, while Fig. 3.32(b) gives the shear stress pattern along z-axis. These
distributions are compared with those given by Lorriot et al. [146].
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Figure 3.32: Shear stress σyz in the free edge for the T800/914 - [15◦2/90◦/− 15◦2]s plate.

Fig. 3.32(a) reports the shear stress field in the CUF LFEM. In this figure, it is par-
ticularly important to observe the shear stress peaks occurring at the interface between
different layers. Fig. 3.33 plots the σyz at the free-edge of the ZOI.

The results presented in Fig. 3.32 show that the global-local approach is able to cor-
rectly identify the stress field in the proximity of the free edge. Also in this case, results
are in agreement with the experimental ones provided in [146]. It is noteworthy that the
global-local analysis allows obtaining a correct description of the 3D stress field by starting
from the BCs extracted from a low-fidelity GFEM and applied on the boundary of the
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Figure 3.33: Shear stress σyz at the free-edge of the ZOI.

CUF LFEM.

Peaks of interlaminar stresses at the interface of different layers are responsible for the
damage onset. These areas are of particular interest to prevent delamination of the layers
and must be studied with special attention. Particularly, these peaks may have different
intensity depending on the difference between the orientation angles of two consecutive
plies. To this end, it is reasonable to create a model identical to the one previously
analyzed but considering a different stack sequence, i.e. [0◦/45◦/0◦2/90◦]s. By keeping the
same geometry, material, and BCs, the shear σyz and peel σzz inter-laminar stresses of the
two models are compared in Fig. 3.34. From this figure, it can be observed that although
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Figure 3.34: Inter-laminar stresses in the free edge for the [15◦2/90◦/ − 15◦2]s and
[0◦/45◦/0◦2/90◦]s plates.

the structures have the same BCs, in one prevails the shear stress (Fig. 3.34(a)) and in
the other the peal stress (Fig. 3.34(b)). The trend of inter-laminar stress is completely
different in the two cases and the same is true for the presence of peaks.
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C-shape stringer and failure index analysis

The aim of this last benchmark is to show that the proposed global-local modelling strategy
based on CUF can be easily extended to general structures overcoming the limitations that
can be found in the solutions available in the literature. Here, a composite stringer with
a C-shape cross-section is considered as a benchmark problem. The geometry is shown in
Fig. 3.35: the length of the stringer is L = 2.0 m, the width is b = 0.05 m and the height
is h = 0.1 m. The thickness of the stringer walls is t = 2.54 mm. The stringer is made
of IM7/8552 ply, whose elastic constants are reported in Tab 3.6. The considered stack
sequence is [0◦/90◦/45◦/− 45◦].

E11 [GPa] E22 [GPa] E33 [GPa] G12 [GPa] G13 [GPa] G23 [GPa] ν12 ν13 ν23
165.0 9.0 9.0 5.6 5.6 2.8 0.34 0.34 0.50

Table 3.6: Elastic properties of the IM7/8552 ply.
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Figure 3.35: C-shape stringer geometry

The stringer is clamped at one end and loaded by three different load sets: tensile load
T = 1000 [N], bending moment Mx = 100 [Nm] and a torsion moment M = 100 [Nm].
Each load is applied at the section centre of gravity (CG) of the free end cross-section
making the use of a Multi Point Constraint (MPC) element, as illustrated in Fig. 3.36.
Different critical ZOIs can be selected in the C-shape stringer, as shown in Fig. 3.37. Each

My
T

x

y

z
Mx

Figure 3.36: Applied loads and MPC elements at the free end of the stringer.

ZOI has the same length Ll = 0.04 [m] and width bl = 0.04 [m] and the stresses σzz and
σyz are evaluated at point P , that is always positioned on the free edge at Ll/2.

The GFEM is built in MSc-Nastran and consist of 7800 linear plate elements.
Figs. 3.38, 3.39, 3.40 show the transverse σzz stress and shear σyz stress distributions
through the thickness of the structure. These distributions are calculated in the local
regions of the GFEM in Fig. 3.37 and are calculated for each load condition of the structure.
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Figure 3.37: ZOIs for the C-shape stringer.
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Figure 3.38: Transversal stress σzz and shear stress σyz distributions of the ZOIs in tensile
load case.

From these results, one can infer that the global-local modelling strategy based on
CUF is able to catch the free-edge effects in the three different load conditions. This
assessment also confirms that the approach is completely general and it is applicable to
complex geometries.
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Figure 3.39: Transversal stress σzz and shear stress σyz distributions of the ZOIs in bending
load case.

3.5 Conclusions

Global-local approaches are needed when a complex structure requires a detailed stress
analysis in critical regions. In this Chapter, a two-step methodology has been developed
for global-local stress analysis in the CUF framework which has proven to be very efficient
in evaluating complex stress and stain states in composite structures. In the first step,
a preliminary static analysis on the classical FE models made of 1D/2D elements by
using commercial software is done for identifying the ZOIs and obtaining all the necessary
information (geometrical parameters, material, stack sequence, and BCs) for the pre-
processing phase of the LFEMs. The second step is dedicated to the static analysis of
the LFEM formulated in the CUF framework by using geometrical BCs resulting from
the GFEM and applied to the boundary of the transition zone surrounding the ZOI. Two
classes of numerical meaningful benchmarks have been proposed to assess the validity of
the methodology. The first family of benchmarks has shown that the proposed global-
local modelling approach is able to compute accurate 3D stress fields within the ZOIs by
significantly reducing the computational burden with respect to detailed LFEMs made of
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Figure 3.40: Transversal stress σzz and shear stress σyz distributions of the ZOIs in torsion
load case.

3D solid elements. The second class of benchmarks was devoted to the study of the free-
edge phenomenon in composite structures. In this case, as well, the global-local approach
has proven to be effective in the description of the inter-laminar stresses, which are often
the cause of the failure onset in composites.
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Chapter 4

Polar Method and Composite
Laminate Mechanics

4.1 Introduction

This Chapter is devoted to the presentation of the polar method introduced by Verchery
in 1979 [147], which is used in this thesis to describe the stiffness and the strength tensors
of uncoupled, homogeneous and orthotropic laminates in the framework of the multi-scale
optimisation strategy presented in Chapters 5, 6 and 7.
The Chapter is organised as follows: Section 4.2 and 4.3 show the fundamentals of the polar
method for plane elasticity and the application to the framework of the FSDT, respectively.
The polar description of laminate strength tensors are described in Section 4.4, while the
elastic and geometrical bounds for the PPs are discussed in Section 4.5. Finally, a general
class of solutions, which will be used in the following chapters of this work for the optimal
design of the laminate lay-up, i.e. the quasi-trivial (QT) stacking sequences (SSs), is
presented in Section 4.6. The concluding remarks of Section 4.7 end the chapter.

4.2 Fundamentals of the polar method

The polar method is a powerful mathematical technique that allows expressing any n-order
plane tensor through a set of tensor invariants [50].
Consider a local frame Γ = {O, x1, x2, x3}: the polar representations of symmetric
second-order tensors and elasticity-like fourth-order tensors (i.e. tensors having both minor
and major symmetries) are provided here below.

• Second-order symmetric tensor
The components of a second-order symmetric tensor Zij , (i, j = 1, 2) in the local
reference frame are expressed as follows:

Z11 = T +R cos 2Φ, Z12 = R sin 2Φ, Z22 = T −R cos 2Φ, (4.1)

where T is the isotropic modulus, R the deviatoric one and Φ the polar angle.
In Eq. (4.1), the three independent Cartesian components of a second-order plane
symmetric tensor are expressed in terms of three PPs: among them, only two are
tensor invariants, i.e. T and R, while the last one, namely the polar angle, is needed
to set the reference frame. The converse relations are:

T =
Z11 + Z22

2
, Rei2Φ =

Z11 − Z22

2
+ iZ12, (4.2)

53
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where i =
√
−1 is the imaginary unit.

As reported in [50], the only possible symmetry is the isotropy for a second-order
plane tensor. This condition can be obtained when the deviatoric modulus of the
tensor is null, i.e. R = 0. Moreover, using the polar formalism, it is possible to
easily express the components of the second-order tensor in a very straightforward
manner in the frame ΓI (turned counter-clock wise by an angle θ around the x3 axis)
as follows:

Zxx = T +R cos 2(Φ− θ), Zxy = R sin 2(Φ− θ), Z22 = T −R cos 2(Φ− θ). (4.3)

Eq. (4.3) shows that, within the polar formalism, the change of frame can be easily
obtained by subtracting the angle θ from the polar angle Φ.

• Fourth-order symmetric tensor Consider a fourth-order elasticity-like plane ten-
sor Lijkl, (i, j, k, l = 1, 2) (expressed within the local frame). Its polar representation
reads:

L1111 = T0 + 2T1 + R0 cos 4Φ0 + 4R1 cos 2Φ1 ,
L1122 = − T0 + 2T1 − R0 cos 4Φ0 ,
L1112 = R0 sin 4Φ0 + 2R1 sin 2Φ1 ,
L2222 = T0 + 2T1 + R0 cos 4Φ0 − 4R1 cos 2Φ1 ,
L2212 = − R0 sin 4Φ0 + 2R1 sin 2Φ1 ,
L1212 = T0 − R0 cos 4Φ0 .

(4.4)

As it clearly appears from Eq. (4.4), the six independent Cartesian components of
Lijkl are expressed in terms of six PPs: T0 and T1 are the isotropic moduli, R0

and R1 are the anisotropic ones, while Φ0 and Φ1 are the polar angles. Only five
quantities are tensor invariants, namely the polar moduli T0, T1, R0, R1 together
with the angular difference Φ0 − Φ1. One of the two polar angles, Φ0 or Φ1, can be
arbitrarily chosen to set the reference frame. The converse relations are:

8T0 = L1111 − 2L1122 + 4L1212 + L2222 ,
8T1 = L1111 + 2L1122 + L2222 ,

8R0ei4Φ0 = L1111 − 2L1122 − 4L1212 + L2222 + 4i(L1112 − L2212) ,
8R1e

i2Φ1 = L1111 − L2222 + 2i(L1112 − L2212) .

(4.5)

Thanks to the polar formalism it is very easy to express the Cartesian components
of the fourth-order tensor in the frame ΓI , in fact it suffices to subtract the angle θ
from the polar angles Φ0 and Φ1 as follows:

Lxxxx = T0 + 2T1 + R0 cos 4(Φ0 − θ) + 4R1 cos 2(Φ1 − θ) ,
Lxxyy = − T0 + 2T1 − R0 cos 4(Φ0 − θ) ,
Lxxxy = R0 sin 4(Φ0 − θ) + 2R1 sin 2(Φ1 − θ) ,
Lyyyy = T0 + 2T1 + R0 cos 4(Φ0 − θ) − 4R1 cos 2(Φ1 − θ) ,
Lyyxy = − R0 sin 4(Φ0 − θ) + 2R1 sin 2(Φ1 − θ) ,
Lxyxy = T0 − R0 cos 4(Φ0 − θ) .

(4.6)

In the case of a fourth-order elasticity-like tensor, the real plus-value of the polar
method is really significant: the polar invariants are directly linked to the (elastic)
symmetries of the tensor, thus having an immediate physical meaning. Indeed, the
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polar formalism offers an algebraic characterisation of the elastic symmetries, which
can be seen as an alternative to the classical geometrical approach to the problem of
finding the elastic symmetries of a material. In particular, it can be proved that, for
a fourth-order elasticity-like plane tensor, four different types of elastic symmetries
exist [51]. They are briefly recalled in the following.

– Ordinary orthotropy : this symmetry corresponds to the algebraic condition

Φ0 − Φ1 = K
π

4
, K = 0, 1 . (4.7)

Indeed, for the same set of tensor invariants, i.e. T0, T1, R0, R1, two different
shapes of orthotropy exist, depending on the value of K. Vannucci [51] proved
that they correspond to the so-called low (K = 0) and high (K = 1) shear
modulus orthotropic materials. However, this classification is rather limiting
since the difference between these two classes of orhtotropy concerns, more
generally, the global mechanical response of the material, see [51, 54].

– R0 - Orthotropy : the algebraic condition to attain this “special” orthotropy is

R0 = 0. (4.8)

In this case, the Cartesian components of the fourth-order tensor Lijkl change
(as a result of a frame rotation) as those of a second-order tensor, see Eqs. (4.1),
4.4).

– Square symmetry : it can be obtained by imposing the following condition

R1 = 0. (4.9)

This symmetry represents the 2D case of the well-known 3D cubic syngony.

– Isotropy : the fourth-order elasticity-like tensor is isotropic when its anisotropic
moduli are null, i.e. when the following condition is satisfied

R0 = R1 = 0. (4.10)

4.2.1 Thermodynamic existence conditions

Let W be the stored-energy density function for an anisotropic linear hyperelastic material.
This energy density, under the hypothesis of plane elasticity is written as:

W :=
1

2
σε = Tt+Rr cos 2(Φ− φ), (4.11)

where T , R, Φ are the PPs of the Cauchy’s stress tensor σ and t, r, φ the counterparts
for the linearised strain vector ε. Using the constitutive equation for the material σ = Cε
and considering that C is a fourth-order elasticity-like plane tensor of PPs T0, T1, R0, R1,
Φ0, Φ1, Eq. (4.11) reads:

W = 4T1t
2 + 8R1rt cos 2(Φ11− φ) + 2r2[T0 +R0 cos 4(Φ0 − φ)], (4.12)

which can be arranged in a quadratic form of r and t as follows:

W =
{
r t

}[2[T0 +R0 cos 4(Φ0 − φ)] 4R1 cos 2(Φ1 − φ)
4R1 cos 2(Φ1 − φ) 4T1

]{
r
t

}
. (4.13)
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Inasmuch as W has to be positive-definite, the following conditions hold:

{
T0 +R0 cos 4(Φ0 − φ) > 0,

T1[T0 +R0 cos 4(Φ0 − φ)] > 2R2
1 cos2 2(Φ1 − φ).

(4.14)

Since all of the leading principal minors of the matrix appearing in Eq. (4.13) must
have positive determinant, the study of Eq. ( 4.14) provides the following elastic bounds:





T0, T1, R0, R1 > 0,

T0 > R0,

T1(T 2
0 −R2

0) > 2R2
1[T0 −R0 cos 4(Φ0 − Φ1)].

(4.15)

4.3 The polar analysis of the first-order shear deformation
theory

The FSDT framework [133] is used to describe the mechanical behaviour of the laminate in
this Thesis. For the sake of simplicity, all the equations governing the laminate mechanical
response are formulated in the context of the Voigt’s (or matrix) notation. The passage
from tensor notation to Voigt’s notation can be easily expressed by the following two-way
relationships among indexes (for both local and global frames):

{11, 22, 33, 44, 55, 66} ⇔ {1, 2, 3, 4, 5, 6} ,
{xx, yy, zz, zy, zx, yx} ⇔ {x, y, z, q, r, s} ,

(4.16)

Consider a multilayer plate composed of n identical layers (i.e. layers having same material
properties and thickness), φk the orientation angle of the k − th ply (k = 1 . . . n): tply is
the thickness of the elementary lamina and h = n tply the overall thickness of the plate,
as illustrated in Fig. 4.1.

Figure 4.1: Definition of the geometrical parameters of the laminate.

In the framework of the FSDT [133] the constitutive law of the laminate (expressed
within its global frame Γ = {O;x, y, z}) can be stated as:

r = Klamε, (4.17)

where r and ε are the vectors of the generalised forces per unit length and strains of the
laminate middle plane, respectively, whilst Klam is the laminate stiffness matrix (Voigt’s



4.3. The polar analysis of the first-order shear deformation theory 57

notation). In this framework, the analytical form of these arrays is:

r =





n

m

q





, Klam =




A B 0

D 0

sym H


 , ε =





ε0

χ0

γ0





. (4.18)

In Eq. (4.18), A, B and D are the membrane, membrane/bending coupling and bending
stiffness matrices of the laminate, while H is the out-of-plane shear stiffness matrix. n,
m and q are the vectors of membrane forces, bending moments and shear forces per unit
length, respectively, whilst ε0, χ0 and γ0 are the vectors of in-plane strains, curvatures and
out-of-plane shear strains of the laminate middle plane, respectively, [133]. The expressions
of matrices A, B and D are:

A = h
n

∑n
k=1 Q(δk),

B = 1
2

(
h
n

)2∑n
k=1 bkQ(δk)

D = 1
12

(
h
n

)3∑n
k=1 dkQ(δk),

(4.19)

with
bk = 2k − n− 1,

∑n
k=1 bk = 0,

dk = 12k(k − n− 1) + 4 + 3n(n+ 2),
∑n

k=1 dk = n3.
(4.20)

It can be noticed that, in Eq. (4.19), Q(δk) is the in-plane reduced stiffness matrix of the
k-th ply. Moreover, in the literature one can find different expressions for the out-of-plane
shear stiffness matrix of the laminate H. In the following only two representations are
considered, namely:

{
h
n

∑n
k=1 Q̃(δk), (basic),

5h
12n3

∑n
k=1

(
3n2 − dk

)
Q̃(δk), (modified).

(4.21)

In Eq. (4.21) Q̃(δk) is the out-of-plane shear stiffness matrix of the elementary ply. The
first form of the matrix H is the basic one, wherein the shear stresses are constant through
the thickness of each lamina. However, as widely discussed in [133], this approximation
is not accurate at least for three reasons: a) a constant out-of-plane shear stress field
does not satisfy the local equilibrium equations of each lamina, b) the shear stresses are
discontinuous at the layers interfaces and c) the out-of-plane shear stresses must be null
on both top and bottom surfaces of the plate if no tangential forces are applied. To
these purposes several modifications of the expression of H have been proposed by many
researchers in order to take into account for the previous aspects, see [133]. In particular,
the second form of matrix H shown in Eq. (4.21) takes into account for the parabolic
variation of the shear stresses through the thickness of each lamina (which satisfies the
local equilibrium). Moreover, when using such a formulation, shear stresses vanish on
both top and bottom faces of the plate. However, this modified form of H does not take
into account for the continuity of the shear stresses at the interfaces of the plies. For a
deeper insight on such aspects the reader is addressed to [133]. It is noteworthy that, when
passing from the lamina material frame Γ to the laminate global frame ΓI , the terms of
the matrix Q(δk) behave like those of a fourth-rank elasticity-like tensor, see [5, 51]. On
the other hand, the components of Q̃(δk) behave like those of a second-rank symmetric
tensor with the local frame turned clockwise by an angle δk around the x3 axis. Therefore
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Q(δk) and Q̃(δk) can be expressed (within the laminate global frame) by means of the
polar formalism as follows:

Qxx (δk) = T0 + 2T1 + R0 cos 4(Φ0 − δk) + 4R1 cos 2(Φ1 − δk) ,
Qxy (δk) = − T0 + 2T1 − R0 cos 4(Φ0 − δk) ,
Qxs (δk) = R0 sin 4(Φ0 − δk) + 2R1 sin 2(Φ1 − δk) ,
Qyy (δk) = T0 + 2T1 + R0 cos 4(Φ0 − δk) − 4R1 cos 2(Φ1 − δk) ,
Qys (δk) = − R0 sin 4(Φ0 − δk) + 2R1 sin 2(Φ1 − δk) ,
Qss (δk) = T0 − R0 cos 4(Φ0 − δk) .

(4.22)
and

Qqq (δk) = T+R cos 2(Φ−δk); Qqr (δk) = R sin 2(Φ−δk); Qrr (δk) = T−R cos 2(Φ−δk)
(4.23)

In the above equations the material frame of the k-th lamina (and not the global one) is
turned counter-clock wise by an angle δk around the x3 axis. In Eqs. (4.22, 4.23) T0, T1,
R0, R1, Φ0 and Φ1 are the PPs of the in-plane reduced stiffness matrix of the lamina, while
T , R, and Φ are those of the reduced out-of-plane stiffness matrix: all of these parameters
solely depend upon the ply material properties (e.g. if the ply is orthotropic the polar
parameters of Q(δk) depend upon E1, E2, G12 and ν12, while those of Q̃(δk) depend upon
G23 and G13). In order to better analyse and understand the mechanical response of the
laminate, it is useful to homogenise the units of the matrices A, B, D and H to those of
the ply reduced stiffness matrices as follows:

A∗ =
1

h
A, B∗ =

2

h2
B, D∗ =

12

h3
D, H∗ =

{
1
hH (basic),
12
5hH (modified).

(4.24)

In the framework of the polar formalism it is possible to express also matrices A∗,
B∗, D∗ and H∗ in terms of their PPs. In particular, the homogenised membrane,
membrane/bending coupling and bending stiffness matrices behave like a fourth-order
elasticity-like tensor while the homogenised shear matrix behaves like a second-order sym-
metric tensor. Moreover, the PPs of these matrices can be expressed as functions of the
PPs of the lamina reduced stiffness matrices and of the geometrical properties of the stack
(i.e. layer orientation and position). The polar representation of A∗, B∗, D∗ and H∗ is:

TA
∗

0 = T0, TA
∗

1 = T1,

RA
∗

0 ei4ΦA
∗

0 = 1
nR0ei4Φ0

∑n
k=1 ei4δk , RA

∗
1 ei2ΦA

∗
1 = 1

nR0ei2Φ1
∑n

k=1 ei2δk ,
(4.25)

TB
∗

0 = 0, TB
∗

1 = 0,

RB
∗

0 ei4ΦB
∗

0 = 1
nR0ei4Φ0

∑n
k=1 ei4δk , RB

∗
1 ei2ΦB

∗
1 = 1

nR0ei2Φ1
∑n

k=1 ei2δk ,
(4.26)

TD
∗

0 = T0, TD
∗

1 = T1,

RD
∗

0 ei4ΦD
∗

0 = 1
nR0ei4Φ0

∑n
k=1 ei4δk , RD

∗
1 ei2ΦD

∗
1 = 1

nR0ei2Φ1
∑n

k=1 ei2δk ,
(4.27)

while that of matrix [H∗] (see [5]) can be stated as:

TH
∗

=

{
T (basic),

2T (modified),
RH

∗
ei2ΦH

∗
=

{
1
nRii2Φ

∑n
k=1 e−i2δk (basic),

1
n3Rei2Φ

∑n
k=1(3n2 − dk)e−i2δk (modified).

(4.28)
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From Eqs. (4.25-4.28) it seems that, at the macro-scale, the laminate behaviour is governed
by a set of 21 PPs: six for each one of the matrices A∗, B∗ and D∗ and three for the
shear stiffness matrix. In this set, the isotropic moduli of B∗ are null, whilst those of A∗,
D∗ and H∗ are identical (or proportional) to the isotropic moduli of the layer reduced
stiffness matrices. The only PPs which depend upon the geometrical properties of the
stack (i.e. orientation angles and positions of the plies) are the anisotropic moduli and
polar angles of A∗, B∗ and D∗ together with the deviatoric modulus and polar angle of H∗

for an overall number of 14 PPs to be designed in order to achieve the desired mechanical
response for the laminate at the macroscopic-scale. However, as detailed in [5, 57], the
deviatoric modulus and the polar angle of matrix H∗ can be expressed (depending on the
considered formulation for H∗) as a linear combination of the anisotropic polar modulus
R1 and the related polar angle Φ1 of matrices A∗ and D∗ as follows:

RH
∗
ei2ΦH

∗
=




RA

∗
1 e

i2
(

Φ+Φ1−ΦA
∗

1

)
(basic),

R

R1
ei2(Φ+Φ1)

(
3RA

∗
1 e−i2ΦA

∗
1 −RD∗

1 e−i2ΦD
∗

1

)
(modified).

(4.29)

Eq. (4.29) means that (when the material of the elementary ply is set a priori) the overall
mechanical response of the laminate depends only on the anisotropic polar moduli and
the related polar angles of matrices A∗ and D∗, even in the framework of the FSDT. In
particular the number of PPs to be designed remains unchanged when passing from the
CLT to the FSDT: the designer can act (through a variation of the geometric parameters
such as layers orientations and positions) only on the anisotropic polar moduli and the
polar angles of the membrane, membrane/bending coupling and bending stiffness matrices,
the deviatoric modulus and the polar angle of the shear stiffness matrix being directly
related to them. Moreover, as it clearly appears from the first expression of Eq. (4.29),
when using the basic definition of the laminate shear stiffness matrix, the ratio between

the deviatoric part of the matrix H∗, i.e. RH
∗
ei2ΦH

∗
, and the anisotropic term RA

∗
1 e−i2ΦA

∗
1

of matrix A∗ is constant once the material of the constitutive layer is chosen: such a ratio
does not depend upon the layers orientations and positions, rather it depends only on the
material properties of the constitutive layer (i.e. the polar parameters R1, Φ1, R, Φ).
As a conclusive remark of this section, it is noteworthy that since in almost all of the
real-life engineering applications the designers look for an uncoupled laminate (i.e. B∗=
0), the total number of laminate parameters reduces from 12 to eight. Mechanically, when
B∗= 0 the in-plane forces do not produce curvatures and, equivalently, bending moments
do not deform the laminate middle plane. In addition, by means of the polar formalism it
is possible to further reduce the total number of PPs to be conceived. In fact, considering
quasi-homogeneous laminates [5, 50], i.e. laminates which satisfy the following conditions:

B∗ = 0, C∗ = A∗ −D∗ = 0, (4.30)

The total number of laminate PPs reduces from eight to four. The only quantities to be
conceived are the anisotropic polar moduli and the related polar angles of the laminate
membrane stiffness matrix (or the bending one since they are identical), namely RA

∗
0 ,

RA
∗

1 , ΦA∗
0 , ΦA∗

1 and this result holds even when stating the laminate design problem in
the framework of the FSDT.
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4.4 Polar description of the laminate strength

The laminate strength properties can be described through the polar method. As reported
in [60], the laminate stress-based failure criteria can be expressed in a compact matrix
notation as:

FIτ = σTFτσ + σT fτ 6 1, (4.31)

where τ is an index denoting the failure criterion (i.e. Tsai-Hill, Hofmann, Tsai-Wu).
The failure index averaged over the thickness of the laminate FIlam can be derived as

reported in [54, 60]. This one can be written as follow under the hypotheses of multilayer
plates made of identical plies in the FSDT framework:

FIlam =
1

h


εT




GA GB 0
GD 0

sym GH


 ε+ εT





gA

gD

0






 6 1. (4.32)

In Eq. (4.32), GA is the laminate membrane strength tensor, GB the membrane/bending
coupling strength tensor, GD the bending strength tensor, GH the shear strength tensor,
whilst gA and gD are the membrane and bending strength vectors related to the linear part
of the failure criterion. Eq. (4.32) represents the failure criterion for a multilayer plate
modelled as equivalent single layer. The reader is addressed to [60] for further details
about this topic.

The GA, GB, GD behave like fourth-order elasticity-like tensors, GH behaves like a
second-order symmetric tensor turned clockwise (although the true rotation of the lamina
reference system is counter-clockwise) and vectors gA and gD behave like a second-order
symmetric tensors.
As for the laminate stiffness tensors, it is useful to introduce the dimensionless strength
matrices:

G∗A := 1
h GA, G∗B := 2

h2 GB, G∗D := 12
h3 GD, G∗H := 1

h GH ,
g∗A := 1

h GA, g∗D := 2
h2 gA.

(4.33)

Consider a single lamina: let {Γ0,Γ1,Λ0,Λ1,Ω0,Ω1} be the PPs of the in-plane reduced
strength matrix, {Γ,Λ,Ω} be the PPs of the out-of-plane strength tensor, {γ, λ, θ} be the
PPs of the in-plane strength vector. As done for the expressions of the stiffness matrices
introduced in Section 4.3, the following expressions hold:

• tensor G∗A

Γ
G∗
A

0 = Γ0, Γ
G∗
A

1 = Γ1,

Λ
G∗
A

0 ei4Ω
G∗
A

0 = Λ0ei4Ω0

N

∑N
k=1 ei4θk , Λ

G∗
A

1 ei2Ω
G∗
A

1 = Λ1ei2Ω1

N

∑N
k=1 ei2θk ;

(4.34)

• tensor G∗B

Γ
G∗
B

0 = 0, Γ
G∗
B

1 = 0,

Λ
G∗
B

0 ei4Ω
G∗
B

0 = Λ0ei4Ω0

N2

∑N
k=1 bke

i4θk , Λ
G∗
B

1 ei2Ω
G∗
B

1 = Λ1ei2Ω1

N2

∑N
k=1 bke

i2θk ;
(4.35)

• tensor G∗D

Γ
G∗
D

0 = Γ0, Γ
G∗
D

1 = Γ1,

Λ
G∗
D

0 ei4Ω
G∗
D

0 = Λ0ei4Ω0

N3

∑N
k=1 dke

i4θk , Λ
G∗
D

1 ei2Ω
G∗
D

1 = Λ1ei2Ω1

N3

∑N
k=1 dke

i2θk ;
(4.36)
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• tensor G∗H
Γ
G∗
H

1 = Γ,

ΛG
∗
Hei2ΩG

∗
H = Λei2Ω

N

∑N
k=1 e−i2θk ;

(4.37)

• tensor g∗A
γ
g∗A
1 = γ,

λg
∗
Aei2ωg

∗
A = λei2ω

N

∑N
k=1 ei2θk ;

(4.38)

• tensor g∗D
γ
g∗D
1 = 0,

λg
∗
Dei2ωg

∗
D = λei2ω

N2

∑N
k=1 bke

i2θk .
(4.39)

As discussed in [95], the equations related to arrays G∗H , g∗A and g∗D can be simplified.
In fact their deviatoric part can be expressed in terms of the in-plane strength PPs as
follows:

ΛG
∗
Hei2ΩG

∗
H = Λ

G∗
A

1
Λ
Λ1

ei2(Ω−Ω1−ΩG
∗
A ),

λg
∗
Aei2ωg

∗
A = Λ

G∗
A

1
λ

Λ1
ei2(ΩG

∗
A+ω−Ω1),

λg
∗
Dei2ωg

∗
D = Λ

G∗
B

1
λ

Λ1
ei2(ΩG

∗
B+ω−Ω1).

(4.40)

Moreover, the relation between stiffness and strength PPs is expressed by the following
equations (see [60]):

Ω
G∗
A

0 ei4Ω
G∗
A

0 = RA
∗

0
Λ0
R0

ei4(ΦA
∗

0 +Ω0−Φ0),

Ω
G∗
A

1 ei2Ω
G∗
A

1 = RA
∗

1
Λ1
R1

ei2(ΦA
∗

1 +Ω1−Φ1),

Ω
G∗
B

0 ei4Ω
G∗
B

0 = RB
∗

0
Λ0
R0

ei4(ΦB
∗

0 +Ω0−Φ0),

Ω
G∗
B

1 ei2Ω
G∗
B

0 = RB
∗

1
Λ1
R1

ei2(ΦB
∗

1 +Ω1−Φ1),

Ω
G∗
D

0 ei4Ω
G∗
D

0 = RD
∗

0
Λ0
R0

ei4(ΦD
∗

0 +Ω0−Φ0),

Ω
G∗
D

1 ei2Ω
G∗
D

0 = RD
∗

1
Λ1
R1

ei2(ΦD
∗

1 +Ω1−Φ1).

(4.41)

This result implies that (when the material of the elementary ply is chosen a priori)
the overall mechanical response of the laminate, in terms of both stiffness and strength,
depends only on the anisotropic polar moduli and the polar angles of the matrices A∗, B∗,
D∗, or equivalently to those of matrices G∗A, G∗B G∗D. This important result highlights
that, at the macroscopic level, the stiffness and the strength of the laminate are strictly
linked.

4.5 Geometrical bounds

The set of inequalities reported in Eq. (4.15) can be applied to each one of the matrices
A∗ and D∗ because they are positive-definite. Such conditions define an elastic domain
containing all the admissible values of the PPs for the membrane and bending stiffness
matrices. These cannot be applied to tensor B∗ because it is non positive-definite. As
shown in [52], more restrictive conditions than the elastic ones exist when a laminate
with identical layers and with different orientation angles is considered. These conditions
are named ‘geometrical bounds’, and they depend on the geometry of the stack, i.e. the
combination of the orientation angles and positions within the stack. The geometrical
bounds for a generic uncoupled and anisotropic laminate are:
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



0 6 RT0
R0
6 1,

0 6 RT1
R1
6 1,

2
(
RT1
R1

)2
6

(
RT0
R0

)2

1−(−1)K
RT0
R0

cos 4(ΦT0 −ΦT1 )
,

T = A∗, D∗.

(4.42)

The domain defined by the geometrical bounds is always smaller than the elastic one as
demonstrated in [52]. This result means that this domain can never cover the whole range
covered by a single elementary layer. Finally, the complete set of constraints for the case
of uncoupled, fully-orthotropic laminates is reported below:





1 6 RT0
R0
6 1,

0 6 RT1
R1
6 1,

2
(
RT1
R1

)2
− 1− (−1)KT−K RT0

R0
6 0,

T = A∗, D∗.

(4.43)

4.6 Quasi-trivial Stacking Sequences

QT SSs play an important role in the multi-scale optimisation strategy presented in Chap-
ters 5 - 7 and they are briefly introduced here. Mathematically speaking, a SS made of n
layers can be defined as the ordered set:

SS := {θk : 1 6 k 6 n} (4.44)

where θk is the orientation angle of the k − th ply (plies are ordered from the bottom
surface to the top one of the laminate).
Consider the properties of homogeneity, (i.e. C∗ = 0), and uncoupling, (i.e. B∗ = 0),
introduced in Sec 4.3. The homogeneity property allows integrating in a straightforward
way the design of the bending matrix D∗, which is quite difficult because its behaviour
depends not only on the plies orientation angles, but also on their position within the SS.
Conversely, since coefficients {bk} have an antisymmetric distribution with respect to the
laminate middle plane, a simple way to obtain B∗ = 0 consists of using a symmetric SSs,
as commonly done in several works [148–150]. The existence of uncoupled anti-symmetric
stacks was shown in [151], while in [49], the existence of asymmetric uncoupled SSs was
shown. In [152], a special class of uncoupled and possibly homogeneous laminates was
found; the solutions belonging to this class are called QT and represent a class of arith-
metically exact solutions. Furthermore, authors showed that the number of independent
QT solutions is much larger than the number of symmetric SSs. QT stacks are charac-
terised by an interesting and very useful property: membrane/bending uncoupling and/or
homogeneity requirements can be exactly met regardless of the value of the orientation
angles, see [37]. In particular, these requirements can be fulfilled by acting only on the
position of the layers into the stack, see [37, 152]. QT SSs have been efficiently used in
many practical problems [4, 6, 38, 95, 153]. In particular, QT sequences represent an
equivalence class for all possible orientations that each group of plies can assume. As an
example, {90◦, −16◦, 90◦, 90◦, −16◦, 90◦} and {1◦, 46◦, 1◦, 1◦, 46◦, 1◦} are elements
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of the same equivalence class [{1, 2, 1, 1, 2, 1}], where 1 and 2 are just labels identifying
two possibly distinct orientations. Of course, the choice of the orientations depends upon
the desired elastic behaviour of the laminate. To explain clearly the concept of QT SSs,
consider a laminate with n plies and m 6 n different orientations and define

Gj := {k : θk = θj} , (4.45)

the set of indices within the SS sharing the same orientation θj . Conditions for uncoupling
and homogeneity can be than split as multiple sums over the different sets Gj , j = 1, ...,m
[37]. Therefore, the uncoupling condition reads:

n∑

k=1

bke
iβθk =

m∑

j=1

eiβθj
∑

k∈Gj
bk = 0, β = 2, 4, (4.46)

while the homogeneity requirement can be expressed as:

n∑

k=1

cke
iβθk =

m∑

j=1

eiβθj
∑

k∈Gj
ck = 0, β = 2, 4. (4.47)

This result leads to the definition of saturated group which is a group of plies oriented at
θj (for some j) satisfying the following conditions:

∑

k∈Gj
bk = 0,

∑

k∈Gj
ck = 0. (4.48)

Consequently, a SS is said QT if it is entirely composed of saturated groups. If not
specified, the quasi-triviality has to be intended with respect to coefficients {bk} and {ck}.
In this case, the SS is said QT quasi-homogeneous (QH).

4.7 Conclusions

In this Chapter, the fundamentals of the Polar Method have been introduced. The Polar
method is an elegant representation and a powerful tool that can be used both to describe
the anisotropic behaviour of multilayer plates and for design purposes. In this thesis, the
Polar method is used to describe both the stiffness and the strength matrices and vectors
of QH orthotropic laminates in the FSDT framework.
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Chapter 5

Multi-scale design of constant
stiffness composites

5.1 Introduction

This Chapter focuses on the design/optimisation problem of CSCs. The discussion is here
limited to CSCs reinforced through unidirectional fibres, i.e. those composites showing a
strong anisotropic behaviour at the macroscopic scale, which can be described through a
given set of pertinent mechanical properties. To illustrate the difficulty of properly de-
sign/optimise at each relevant scale a composite structure, a simplified benchmark problem
(representative of a real-world engineering application) is considered in this Chapter: the
least-weight design of a composite stiffened panel subject to requirements of different na-
ture (geometrical, mechanical, technological, etc.). To face this problem, the MS2LOS
developed by Montemurro and his co-workers, see [3–8] is used. This approach aims at
optimising simultaneously both geometrical and mechanical parameters for skin and stiff-
eners at each characteristic scale. The MS2LOS relies, on the one hand, on the utilisation
of the PPs, already introduced in Chapter. 4, in the framework of equivalent single layer
theories for describing the macroscopic behaviour of each laminate composing the panel
and, on the other hand, on a special genetic algorithm in order to perform the solution
search for the considered problem. In this background, at the first level of the MS2LOS
the goal is to find the optimum value of geometric and mechanical design variables of the
panel minimising its mass and meeting the set of imposed constraints. The second-level
problem focuses on the laminate mesoscopic scale (i.e. the ply-level) and aims at finding at
least one optimum stack (for each laminate composing the panel) meeting the geometrical
and material parameters provided by the first-level problem. The quality of the optimum
configurations is investigated, a posteriori, through a refined finite element model of the
stiffened panel making use of elements with different kinematics and accuracy in the CUF
framework presented in Chapter 3. This Chapter is organised as follows: the MS2LOS
is described in Section 5.2, whilst the design problem is presented in Section 5.3. The
mathematical formulation of the first-level problem is detailed in Section 5.4, while the
problem of determining suitable laminates is formulated in Section 5.5. The description
of the FE models are given in Section 5.6, while the numerical results of the optimisa-
tion procedure are shown in Section 5.7. Finally, Section 5.8 ends the chapter with some
concluding remarks.

Publication related to this chapter: The methodology and the results presented in
this Chapter have been published in [6].

65
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5.2 The multi-scale two level optimisation strategy

The MS2LOS is briefly recalled here. This approach is based on the utilisation of the polar
formalism and on the use of the ERASMUS code [5] coupled with ANSYS R© software.
The aim is to propose a general formulation of the design problem without introducing
simplifying hypotheses and by considering, as design variables, the full set of geometric
and mechanical parameters defining the behaviour of the composite at each characteristic
scale.
In the framework of the MS2LOS, the optimisation problem of a composite structure can
be split in two distinct (but related) optimisation problems.

• First-level problem - FLP. This phase consists of the optimisation of the stiff-
ness/strength properties of the laminates constituting the structure and their ge-
ometrical parameters, as well. At this level (macroscopic scale), each laminate is
modelled as an equivalent homogeneous anisotropic plate whose behaviour is de-
scribed in terms of the laminate characteristic stiffness matrices expressed through
the polar formalism in the framework of the FSDT, as discussed in Section 4.3. Dur-
ing this phase, requirements of different nature can be considered: mass, buckling
load, stiffness, laminate strength, technological and manufacturing constraints, etc.
These requirements are opportunely formulated as optimisation constraints of the
problem.

• Second-level problem - SLP. SLP is formulated at the laminate mesoscopic scale (ply-
level). The goal is the determination of a suitable lay-up for each laminate composing
the structure meeting the optimum combination of geometrical parameters and PPs
provided by the FLP. The design variables of this level are the layers orientation
angles. The SLP is formulated always in the most general case and no restrictions
are imposed on the laminate SS to achieve the optimum value of the design variables
resulting from the FLP.

5.3 Problem description

The MS2LOS is applied to the repetitive unit (RU) of a composite stiffened panel used in
aerospace structures. The RU is composed by the union of a skin and a “omega” shaped
stringer (or stiffener) as illustrated in Fig. 5.1.

The overall sizes of the RU are set a priori : a = 150 mm is the width of the RU, while
b = 600 mm is its length, which also represents the distance between two consecutive ribs.
The stiffeners are equispaced over the panel with a step length equal to a. Both skin and
stiffener are made of carbon-epoxy unidirectional orthotropic laminate, whose properties
are listed in Table 5.1 (taken from [56–58]).

The main hypotheses about the macroscopic mechanical response of the RU focus on
the laminates behaviour and geometry (for both skin and stringer).

• Each laminate is made of identical plies (i.e. same thickness tply and material).

• The material of the constitutive layer has a linear elastic behaviour.

• Each laminate is quasi-homogeneous and fully orthotropic [4, 58, 94].

• At the macroscopic scale the elastic response of each laminate is described in the the-
oretical framework of the FSDT and the stiffness matrices of the plate are expressed
in terms of the laminate PPs [56–58].
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Figure 5.1: (a) Geometry and overall size of the stiffened panel (only two repetitive units
for sake of simplicity) and (b) geometric parameters of the repetitive unit.

Technical constants Polar parameters of Q a Polar parameters of Q̃ b

E1 [MPa] 161000.0 T0 [MPa] 23793.3868 T [MPa] 5095.4545
E2 [MPa] 9000.0 T1 [MPa] 21917.8249 R [MPa] 1004.5454
G12 [MPa] 6100.0 R0 [MPa] 17693.3868 Φ [deg] 90.0
ν12 0.26 R1 [MPa] 19072.0711
ν23 0.10 Φ0 [deg] 0.0

Φ1 [deg] 0.0
Density and thickness
ρ [Kg/mm3] 1.58× 10−6

tply [mm] 0.125
a In-plane reduced stiffness matrix of the ply.
b Out-of-plane shear stiffness matrix of the ply.

Table 5.1: Material properties of the carbon-epoxy ply taken from [56–58].

• No delamination occurs at the interface of the plies (perfect bonding condition).

• No delamination occurs at the interface between stringer bottom flange and skin.

No simplifying hypotheses are made on the geometric and mechanical parameters of the
RU (e.g. on the nature of the laminates SSs). The key-point of the MS2LOS is to avoid the
use of a priori assumptions that extremely shrink the solution space (e.g. the utilisation



68 Chapter 5. Multi-scale design of constant stiffness composites

of symmetric, balanced stacks to attain membrane/bending uncoupling and membrane
orthotropy, respectively) to search the real global optimum for a given problem.

5.4 First-level problem formulation

In this phase, the overall features of the structure at the macroscopic scale have to be
optimised. The mass minimisation of the stiffened panel RU will be performed by satisfying
the set of optimisation constraints listed below:

1. A constraint on the first buckling load of the RU;

2. Geometric and technological constraints related to the geometrical parameters of the
RU;

3. Feasibility constraints on the laminate PPs of both skin and stringer.

These aspects are detailed in the following subsections.

5.4.1 Geometrical design variables

The design variables for the problem at hand are of two types: geometrical and mechanical.
Not all the geometrical parameters are included among the design variables. The overall
sizes a and b of the RU are fixed, whilst other geometric parameters can be expressed in
terms of the geometric design variables. These last are:

• The laminate thickness for both skin and stringer, i.e. tS and tB, respectively;

• The width a2 of the stringer bottom flange;

• The stringer height h;

• The size a3.

The size a1 is computed as:

a1 =
a

2
− a2 − a3 , (5.1)

while the angle of the inclined wall of the stiffener is

θ = atan

(
h

a3 − a2
2

)
. (5.2)

The previous design variables must satisfy a set of technological and geometrical require-
ments. Firstly, the overall thickness of the laminates composing the RU is a discrete
variable, the discretisation step being equal to the thickness of the elementary layer, i.e.
tply (see Table 5.1):

tα = nαtply , α = S,B , (5.3)

where nS and nB are the number of layers for skin and stiffener, respectively. According
to the hypotheses on the macroscopic behaviour of the laminate made in Section 5.3, it
should be noticed that the thickness of the constitutive lamina of both of skin/stringer
laminates is constant. Consequently, by optimising the total thickness of the skin and the
stringer during the FLP, one can immediately infer the optimised number of layers for the
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skin and stringer to be used during the SLP. Secondly, parameters ai, (i = 1, 2, 3) have to
meet the following conditions:

a1 > 0 , a3 ≥
a2

2
. (5.4)

The first inequality is used to avoid contact between two consecutive stringers, while the
second one is imposed to keep θ non-negative. In the framework of the FLP, it is useful
to introduce dimensionless geometric design variables, as follows:

c1 := 2
a2

a
, c2 := 2

a3

a2
, c3 :=

h

a2
. (5.5)

The vector of geometrical design variables is defined as:

ξT
g = {nS , nB, c1, c2, c3} . (5.6)

Therefore, inequalities of Eq. (5.4) can be reformulated in terms of dimensionless geometric
design variables as:

g1 (ξg) = 2c1 + c1c2 − 2 < 0,

g2 (ξg) = 1− c2 ≤ 0.
(5.7)

5.4.2 Mechanical design variables

Consider the laminate normalised stiffness matrices of Eq. (4.24). As discussed in Sections
4.2 and 4.3, in the framework of the polar formalism it is possible to express the Cartesian
components of these matrices in terms of their elastic invariants. As shown in Section 4.3,
in the FSDT framework [56, 57], for a fully orthotropic, quasi-homogeneous laminate (i.e.
a laminate having the same orthotropic behaviour in terms of normalised membrane and
bending stiffness matrices and whose membrane/bending coupling stiffness matrix is null)
the overall number of independent PPs describing its mechanical response reduces to only

three, i.e. the anisotropic moduli RA
∗

0K := (−1)K
A∗
RA

∗
0 and RA

∗
1 and the polar angle

ΦA∗
1 (this last representing the orientation of the main orthotropy axis) of matrix A∗. In

addition, in the formulation of the FLP, the conditions of Eq. (4.43) must be respected.
These constraints ensure that the optimum values of the polar parameters resulting from
the first step correspond to a feasible laminate that will be designed during the second step
of the MS2LOS. Since the laminate is quasi-homogeneous, the constraints of Eq. (4.43)
can be written only for matrix A∗ and they are rearranged as following:





−R0 ≤ RA∗
0K ≤ R0 ,

0 ≤ RA∗
1 ≤ R1 ,

2

(
RA

∗
1

R1

)2

− 1− RA
∗

0K

R0
≤ 0 .

(5.8)

In Eq. (5.8), R0 and R1 are the anisotropic moduli of the ply reduced stiffness matrix [56].
As in the case of geometric design variables, it is very useful to introduce the following
dimensionless PPs:

ρ0 =
RA

∗
0K

R0
, ρ1 =

RA
∗

1

R1
. (5.9)
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Therefore, Eq. (5.8) reads: 



−1 ≤ ρ0 ≤ 1 ,

0 ≤ ρ1 ≤ 1 ,

2 (ρ1)2 − 1− ρ0 ≤ 0 .

(5.10)

The mechanical design variables must be considered for each laminate constituting
the panel RU, i.e. for both skin and stiffener laminates (ρ0α and ρ1α with α = S,B).
Moreover, the main orthotropy direction of the generic laminate can be set equal to zero,
i.e. ΦA∗

1 = 0 for skin and stringer, which means that the main orthotropy axis is aligned
with the direction of the applied load. Therefore, the dimensionless mechanical parameters
defined above can be grouped into the vector of mechanical design variables:

ξT
m = {ρ0S , ρ1S , ρ0B, ρ1B} . (5.11)

First and second constraints of Eq. (5.10) can be taken into account as admissible intervals
for the relevant optimisation variables, i.e. on ρ0 and ρ1. Hence, the resulting feasibility
constraints on the skin and stringer dimensionless PPs become:

g3(ξm) = 2 (ρ1S)2 − 1− ρ0S ≤ 0 ,

g4(ξm) = 2 (ρ1B)2 − 1− ρ0B ≤ 0 .
(5.12)

For a wide discussion upon the laminate feasibility and geometrical bounds as well as on
the importance of the quasi-homogeneity assumption the reader is addressed to [52].

5.4.3 Mathematical statement of the problem

The aim of the FLP is the minimisation of the mass of the RU of the stiffened panel by
satisfying, simultaneously, constraints of different nature. Geometrical and mechanical
design variables can be collected into the following vector:

ξT =
{
ξTg , ξ

T
m

}
. (5.13)

In this context, the FLP can be formulated as a classical CNLPP:

min
ξ

M (ξ)

Mref
,

subject to:




1.05− λ (ξ)

λref
≤ 0 ,

gi(ξ) ≤ 0 , with i = 1, · · · , 4 .

(5.14)

The design space of the FLP, together with the type of each design variable, is detailed in
Table 5.2. In Eq. (5.14), M is the overall mass of the RU, λ is the first buckling load of the
stiffened panel, while Mref and λref are the counterparts for a reference solution, which is
subject to the same BCs as those applied on the RU of the panel that will be optimised.
The properties of the reference configuration of the RU are reported in Table 5.3.
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5.4.4 Numerical strategy

Problem (5.14) is a non-convex CNLPP. This is due to the nature of the buckling function,
which is non-convex, and to the non-linear feasibility constraints on the laminate PPs. The
total number of design variables is nine while that of optimisation constraints is five (see
Eq. (5.14)). Furthermore, the nature of design variables is different (see Table 5.2): integer
(nS and nB), discrete (c1, c2, c3) and continuous (ρ0S , ρ1S , ρ0B, ρ1B) variables are involved
in the definition of this CNLPP.

Design variable Type Lower bound Upper bound Discretisation step

ρ0S continuous −1.0 1.0 -
ρ1S continuous 0 1.0 -
ρ0B continuous −1.0 1.0 -
ρ1B continuous 0 1.0 -
c1 discrete 0.01 0.45 0.001
c2 discrete 1.00 3.00 0.01
c3 discrete 1.00 3.00 0.01
nS integer 20 32 1
nB integer 20 32 1

Table 5.2: Design space of the first-level problem.

For the resolution of problem (5.14) the GA ERASMUS [5, 154, 155] coupled with the
FE model of the panel RU (for assessing the first buckling load of the structure) has
been utilised as optimisation tool to carry out the solution search, see Fig. 5.2. The GA
ERASMUS has been already successfully applied to solve different kinds of real-world
engineering problems, see for example [7, 8, 39, 55, 63–67, 121, 122, 156, 156–164]. As
shown in Fig. 5.2, for each individual at each generation, the numerical tool performs a FE
analysis for calculating the first buckling load (eigenvalue problem) of the stiffened panel as
well as its weight. The inputs of the FE model of the RU (implemented in ANSYSr APDL
environment) are both geometrical and mechanical parameters (generated by ERASMUS).
The GA elaborates the results provided by the FE model in order to execute the genetic
operations. These operations are repeated until the GA meets the user-defined convergence
criterion.

The generic individual of the GA ERASMUS represents a potential solution for the
problem at hand. The genotype of the individual for problem (5.14) is characterised by
only one chromosome composed of nine genes, each one coding a component of the vector
of design variables, see Eq. (5.13).

5.5 Second-level problem formulation

The second-level problem is devoted to the lay-up design of the both skin and stringer
laminates. The goal is to determine at least one SS satisfying the optimum values of
both geometric and PPs resulting from the first level of the strategy and having the
elastic symmetries imposed to the laminate within the formulation of the FLP, i.e. quasi-
homogeneity and orthotropy. In the framework of the FSDT, this problem can be stated
in the form of an unconstrained minimisation problem [56, 57]:

min
δ

I (fi (δ)) , (5.15)

with

I (fi (δ)) =

6∑

i=1

fi (δ) . (5.16)
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Figure 5.2: Logical flow of the numerical procedure for the solution search of the first-level
problem.

where δ ∈ Rn is the vector of the layer orientations, i.e. the design variables of this
phase, while fi (δ) are quadratic functions in the space of PPs, each one representing a
requirement to be satisfied, such as orthotropy, uncoupling, etc. For the problem at hand
the partial objective functions read:

f1(δ) =

( |ΦA∗
0 (δ)− ΦA∗

1 (δ)|
π/4

−KA∗(opt)

)2

, f2(δ) =

(
RA∗

0 (δ)−RA∗(opt)
0

R0

)2

,

f3(δ) =

(
RA∗

1 (δ)−RA∗(opt)
1

R1

)2

, f4(δ) =

(
|ΦA∗

1 (δ)− Φ
A∗(opt)
1 |

π/4

)2

, f5(δ) =

( ||C(δ)||
||Q||

)2

,

f6(δ) =

( ||B∗(δ)||
||Q||

)2

,

(5.17)

where f1 (δ) represents the elastic requirement on the orthotropy of the laminate having
the prescribed shape (imposed by the value of KA∗

provided by the FLP), f2 (δ), f3 (δ) and
f4 (δ) are the requirements related to the prescribed values of the optimal PPs resulting
from the FLP, while f5 (δ) and f6 (δ) are linked to the quasi-homogeneity condition.

I (fi (δ)) is a positive semi-definite convex function in the space of the laminate PPs,
since it is defined as a sum of convex functions, see Eqs. (5.16)-(5.17). Nevertheless, such
a function is highly non-convex in the space of plies orientations because the laminate PPs
depend upon circular functions of the layers orientation angles. Moreover, the absolute
minima of I (fi (δ)) are known a priori since they are the zeroes of this function. For more
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details about the nature of the SLP see [56, 57]. It is noteworthy that problem (5.15) must
be solved two times, i.e. for each laminate composing the skin and the stiffener. In order
to simplify the problem of retrieving an optimum stack, the search space for problem
(5.15) has been restricted to the class of QT SSs, already discussed in Chapter 4. In
this background, the functions f5 (δ) and f6 (δ) in Eq. (5.17) are identically null for QT
stacks. Suppose now to fix both the number of plies and that saturated groups, namely
n and ng. As discussed in [36], the problem of determining QT stacks for a given couple
of n and ng can give rise to a huge number of solutions: the number of QT stacks rapidly
increases along with n. To this purpose a database of QT stacks has been built for different
combinations of n and ng [37].

For the problem at hand, and for each considered case (i.e. skin and stringer laminates),
the optimum number of plies nα, (α = S,B) constitutes a result of the FLP, while the
number of saturated groups ng has been fixed a priori. Let be nsol the number of QT
stacks for a particular combination of nα and ng. Each solution collected within the
database is uniquely defined by means of an identifier IDsol (i.e. an integer) that varies
in the range [1, nsol]. Therefore, IDsol represents a further design variable along with the
ng orientation angles of the different saturated groups, i.e. θ ∈ Rng . The design variables
can be thus collected into the following vector,

ηT =
{

IDsol, θ1, ..., θng
}
, (5.18)

and problem (5.15) can be reformulated as

min
η

4∑

i=1

fi (η) , (5.19)

f5 (η) and f6 (η) being identically null. In this background, the solution search for problem
(5.19) is performed by means of the GA ERASMUS. In the case of QT stacks the structure
of the individual genotype is simple because it is composed of a single chromosome with
ng + 1 genes: the first one codes the variable IDsol whilst the remaining genes code the
orientation angles of every saturated group which are discrete variables in the range [-89◦,
90◦] with a step length equal to 1◦.

5.6 Finite element models of the stiffened panel

In this section two FE models of the stiffened panel RU are presented: the first one is used
in the framework of the FLP of the MS2LOS approach while the second one is only for
verification purposes and is realised in the framework of CUF .

5.6.1 The finite element model for the optimisation procedure

The FE model of the panel RU used at the first-level of the MS2L strategy is built using the
FE commercial code ANSYSr APDL. This model has the purpose to compute the first-
buckling factor constraint by solving an eigenvalue buckling analysis for each individual,
i.e. for each point in the design space, at the current generation. In so doing, the FE model
is properly parametrised; in fact, it takes into account a variable geometry, material and
mesh. An ad-hoc input file for the FE code is created for each individual that is interfaced
with the GA-ERASMUS.

The FE model of the RU is illustrated in Fig. 5.3. The model has been built by using
a combination of eight-nodes shell elements (ANSYS SHELL281 elements) and non-linear
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multi-point constraints elements (ANSYS MPC184 elements) both with six Degrees Of
Freedom (DOFs) per node.

As far as concerns SHELL281 elements, their mechanical behaviour is described by
defining directly the homogenised stiffness matrices A∗, B∗, D∗ and H∗ (in this example
the basic form of Eq. (4.21) has been used for matrix H∗).

Figure 5.3: (a) FE model of the repetitive unit and related reference frame, (b) details of
CEs for PBCs along y-axis and (c) details of MPC184 elements.

The compatibility of the displacement field between skin and stringer is achieved
through ANSYS MPC184 elements whose formulation is based upon a classical multi-
point constraint element scheme [165]. MPC184 elements are defined between each couple
of nodes belonging to contiguous shell elements as depicted in Fig. 5.3. In particular,
MPC184 elements are defined between nodes of the middle plane of the skin (master
nodes) and those of the middle plane of the bottom flanges of the stringer (slave nodes).

Furthermore, MPC184 elements have been used to rigidify the end transverse sections
of the RU, in order to simulate the presence of ribs (these last having an in-plane stiffness
one/two order of magnitude higher than the flexural stiffness of the RU). In particular,
two pilot nodes A= {0, 0, ẑ} and B= {b, 0, ẑ} have been defined according to the RU global
frame depicted in Fig. (5.3 (ẑ is the z component of the barycentre of lines belonging to a
given transverse section). Then, nodes A and B have been connected (through MPC184
elements) to those located on lines of the corresponding transverse section, i.e., lines be-
longing to the planes x = 0 and x = b, respectively (see Fig. (5.3). The BCS for nodes A
and B are
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node A: ui = 0, βi = 0;

node B: Fx = 1N, uy = uz = 0, βi = 0,

(i = x, y, z).

(5.20)

In Eq. (5.20) ui and βi are nodal displacements and rotations, respectively, whilst Fx is
the x component of the nodal force.

It is noteworthy that in problem (5.14) the first-buckling load of the stiffened panel is
assessed by considering pertinent BCs on its RU. This fact implicitly implies the hypothesis
of a panel having an “infinite” length along y-axis, according to the frame depicted in
Fig. (5.3. To take into account for this aspect, periodic boundary conditions (PBCs) must
be considered:

ui

(
x,−a

2
, 0
)
− ui

(
x,
a

2
, 0
)

= 0, ∀x ∈ ]0, b[ ,

βi

(
x,−a

2
, 0
)
− βi

(
x,
a

2
, 0
)

= 0, ∀x ∈ ]0, b[ ,

(i = x, y, z).

(5.21)

PBCs of Eq. (5.21) must be defined for each couple of nodes belonging to the skin lateral
edges (i.e. lines located at y = ±a/2) except those placed on the lines at x = 0 and x = b,
these last being already connected to the pilot nodes A and B, respectively. PBCs are
defined through ANSYS constraint equations (CEs) [165] between homologous nodes of
the skin lateral edges

Finally, before starting the optimisation process, a sensitivity study (not reported here
for the sake of brevity) on the proposed FE model with respect to the mesh size has
been conducted: it was observed that a mesh having 56959 DOFs is sufficient to properly
evaluate the first buckling load of the stiffened panel.

5.6.2 The enhanced finite element model for the verification phase

A higher-order model is realised for the verification of the results given by ERASMUS /
ANSYS. This model makes use of refined beam elements in the CUF framework, as already
discussed in Section 3.2. The primary purpose of the higher-order beam model is to verify
the effectiveness of the optimised solutions in terms of buckling loads with respect to the
reference solution. In this phase, the CUF model is not interfaced with the MS2LOS, and
it does not influence the optimisation of the panel RU. CUF analyses are done a posteriori
when the stacks of the tested skin/stiffener configurations are available. The integration
of the CUF framework within the MS2LOS is the object of Chapter 7 where the CUF will
play an essential role in the optimisation of a simplified wing-box structure. The linearised
buckling formulation in terms of CUF is based on the computation of the tangent stiffness
matrix KT.
The FN of matrix KT

ijτs is derived from the linearisation of the equilibrium equations
that are obtained with the Newton-Raphson method, also known as Tangent Method,
see [166]. Assuming a conservative load case, the linearisation of the tangent stiffness
matrix is obtained from the linearisation of the virtual variation of the non-linear internal
energy δ(δLint). Consider the stress stress vector σ and the strain vector ε, the δ(δLint)
reads:

δ(δLint) =< δ(δεTσ) >≈< δεTσ > + < δ(δεT)σ >, (5.22)
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where < (·) >=
∫
V (·) dV . Under the hypothesis of small deformations, V = Ω× L is the

initial volume of the beam structure. In Eq. (5.22), ε contains the Green-Lagrange non
linear strains which are characterised by the quadratic derivatives of displacements. This
strain vector can be written highlighting the linear and non linear contributions as follow:

ε = εl + εnl =⇒ ε = (bl + bnl)u, (5.23)

with ε = {εx, εy, εz, εr, εq, εs}T and u = {ux, uy, uz}T. The terms bl and bnl are linear
and non linear differential matrix operators respectively which stand as:

bl =





∂(·)
∂x 0 0

0 ∂(·)
∂y 0

0 0 ∂(·)
∂z

∂(·)
∂z 0 ∂(·)

∂x

0 ∂(·)
∂z

∂(·)
∂y

∂(·)
∂y

∂(·)
∂x 0





,

bnl =





1
2

(
∂(·)
∂x

)2
1
2

(
∂(·)
∂x

)2
1
2

(
∂(·)
∂x

)2

1
2

(
∂(·)
∂y

)2
1
2

(
∂(·)
∂y

)2
1
2

(
∂(·)
∂y

)2

1
2

(
∂(·)
∂z

)2
1
2

(
∂(·)
∂z

)2
1
2

(
∂(·)
∂z

)2

∂(·)
∂x

∂(·)
∂z

∂(·)
∂x

∂(·)
∂z

∂(·)
∂x

∂(·)
∂z

∂(·)
∂y

∂(·)
∂z

∂(·)
∂y

∂(·)
∂z

∂(·)
∂y

∂(·)
∂z

∂(·)
∂x

∂(·)
∂y

∂(·)
∂x

∂(·)
∂y

∂(·)
∂x

∂(·)
∂y





.

The approximation in the Eq. (5.22) comes from the consideration that the stress field is
linear. The first term of the Eq. (5.22) can be written as:

< δεTσ >= δuTτiK
ijτsusj (5.24)

where the Kijτs is the FN of the stiffness matrix already discussed in the Section 3.2.1.
The second term of the Eq. (5.22) < δ(δεT )σ > needs the linearisation of the non-linear
geometrical relations. According to Crisfield [167] and using Eq. (5.23) the term δ(δε)
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reads:

δ(δε) =


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,

where the subscript ‘v’ denotes the variations.
Using CUF and the FE approximation, the linearised variable δu and the variations (δu)v
can be written as:

δu = FsNjδusj ,
(δu)v = FτNiδuτi,

(5.25)

and, in this way, it is easy to verify that δ(δε) reads:

δ(δε) = B∗nl




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
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or
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where:
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Therefore, the term < δ(δεT )σ > can be written as:

< δ(δεT )σ > =<




δuxτiδuxsj
δuyτiδuysj
δuzτiδuzsj



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T

> (B∗nl)
Tσ = δuTτi < diag((B∗nl)

Tσ) > δusj =

= δuTτi(K
ijτs
σl

+ Kijτs
σnl

)δusj = δuTτiK
ijτs
σ δusj

(5.28)

where the matrix Kijτs
σ is the FN of the often called “Geometric Stiffness Matrix”.

Eq. (5.22) is now written to highlight the contributions of the Kijτs and Kijτs
σ . The

tangent stiffness FN is the summation of the previous FN contributions, i.e.

δ(δLint) =< δ(δεTσ) >= δuTτi(K
ijτs
0 + Kijτs

σ )δusj = δuTτiK
ijτs
T δusj . (5.29)
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To solve the linear buckling problem, the linear part of the FN of the geometrical stiffness
matrix is considered. In other words, the non linear strains are not taken into account in
the calculation of Kijτs

σ

Kijτs
σ ≈ Kijτs

σl
(5.30)

Kijτs
σ is a diagonal matrix and its expression is given in the following for the sake of

completeness:

Kijτs
σ =

(
< σ0

xxFτ,xFs,xNiNj > + < σ0
zzFτ,zFs,zNiNj > + < σ0

xyFτ,xFsNiNj,y > +

+ < σ0
xyFτFs,xNi,yNj > + < σ0

xzFτ,xFs,zNiNj > + < σ0
xzFτ,zFs,xNiNj > +

+ < σ0
yzFτ,zFsNiNj,y > + < σ0

yzFτFs,zNi,yNj >
)
I,

(5.31)

where I is the 3× 3 identity matrix and σ0 is the initial stress state.
As for the elemental linear stiffness matrix and given the cross-sectional functions Fτ and
the 1D shape functions Ni, the FN of the geometric stiffness matrix can be expanded in
an automatic way by employing CUF to give the elemental matrix for any desired beam
theory. Finally, once the global matrices are assembled in the classical way of FEM, the
buckling problem can be solved.
The buckling problem is an eigenvalue problem and the resolution of this problem consists
in finding the eigenvalues of the following equation:

|K + λkKσ| = 0. (5.32)

The k − th critical load vector Fcrk is obtained as the product of λk and the initial load
vector F:

Fcrk = λkF. (5.33)

The most important advantage of using higher-order beam models in the framework of
CUF is that the computation of Kσ is made by using the whole initial stress field of the
structure without simplified hypothesis. Consequently, the estimation of the critical loads
is more accurate then that obtained by commercial FE codes wherein standard laminate
theories, like CLT, FSDT, etc., are used.

5.7 Numerical results

Before starting the multi-scale optimisation process a reference structure must be defined
in order to establish reference values for the RU mass and for the first buckling load of
the stiffened panel: both material and geometrical properties of the reference solution are
reported in Tables 5.1 and 5.3, respectively.

The reference solution is subject to the same set of BCs, i.e. Eqs. (5.20) and (5.21),
as those applied on the RU of the panel that will be optimised. One can notice that the
reference structure has a laminated skin composed of a symmetric, balanced SS made of
28 layers (therefore the resulting laminate is uncoupled and orthotropic in membrane, but
not in bending), whilst the stringer laminate is made of 32 plies with a symmetric quasi-
isotropic stack (the laminate is uncoupled and the membrane stiffness matrix is isotropic,
but the bending one is totally anisotropic). This reference solution corresponds to a
classical configuration used in the aeronautical field: its mass and its stiffness properties (in
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a [mm] 150.00
b [mm] 600.00
a2 [mm] 15.00
a3 [mm] 21.50
h [mm] 30.00
Mref [Kg] 0.92
λref [N] 451107.00

Stacking sequence Part N. of plies

[(45/− 45/902)2/(45/− 45)3]s skin (S) 28
[452/02/− 452/904/− 452/02/452]s stringer (B) 32

Table 5.3: Reference solution for the stiffened panel design problem.

terms of buckling load) still represent a “good” compromise between weight and stiffness
requirements.

Regarding the setting of the genetic parameters for the GA ERASMUS utilised to
perform the solution search for both first and second-level problems they are listed in
Table 5.4. Moreover, concerning the constraint-handling technique for the FLP the Au-

Genetic parameters

1st level problem 2nd level problem

N. of populations 1 1
N. of individuals 200 500
N. of generations 150 500
Crossover probability 0.85 0.85
Mutation probability 0.005 0.002
Selection operator roulette-wheel roulette-wheel
Elitism operator active active

Table 5.4: Genetic parameters of the GA ERASMUS for first and second-level problems.

tomatic Dynamic Penalisation (ADP) method has been considered, see [154]. For more
details on the numerical techniques developed within the new version of ERASMUS and
the meaning of the values of the different parameters tuning the algorithm the reader is
addressed to [5].

5.7.1 Optimum configurations of the panel

The optimum values of both geometric and mechanical design variables (dimensionless
variables) resulting from the FLP are listed in Table 5.5.

When comparing the optimum solution of the FLP with the reference configuration,
one can notice the number of plies reduces from 28 to 20 for the skin laminate and from
32 to 28 for the stringer one. Moreover, both laminates are quasi-homogeneous and fully
orthotropic (both membrane and bending stiffness matrices) with an ordinary orthotropy
shape (parameter KA∗

= 0 because the anisotropic polar modulus RA∗0K is positive for both
cases, see [58]). However, the skin laminate gets a lower value of the modulus RA∗1 (an
order of magnitude lower than the corresponding value of RA∗0K) which means that this
solutions tends to exhibit a square symmetric behaviour (for both membrane and bending
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Geometric parameters

a2 [mm] a3 [mm] h [mm] nS nB

21.300 29.607 31.950 20 28

Polar parameters

RA∗0K [MPa] RA∗1 [MPa]

Skin (S) 3511.00 242.36
Stringer (B) 9391.51 12080.84

Table 5.5: Numerical results of the first-level problem.

stiffness matrices), as illustrated in the polar diagrams of Fig. (5.4). For a deeper insight
on these aspects the interested reader is addressed to [56, 58].

Figure 5.4: Numerical properties of the optimum panel S1-B1. (a) Deformed shape of the
first buckling mode (normalized displacement) and polar diagram of the first component
of the homogenized laminate in-plane stiffness matrices [MPa] for (b) skin and (c) stringer.

Table 5.6 reports the first two best stacking sequences, for both skin and stringer,
which represents just as many solutions for problem (5.19).

As stated in Subsection 5.5 the SLP is solved in the space of QT stacks. In this
background, after fixing the number of plies n and the number of saturated groups ng the
design variables are the identifier of the QT solution (to be searched within a database)
as well as the orientation angle of each saturated group, see Eq. (5.18). Because problem
(5.19) is highly non-convex in the space of the orientation angles of saturated groups, it is
possible to find several solutions (theoretically an infinite number) meeting the optimum
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ID Best stacking sequence N. of plies

Skin (S)

S1 [−63/0/63/0/63/− 63/0/0/63/− 63/63/− 63/0/0/63/− 63/0/− 63/0/63] 20
S2 [43/90/0/0/− 43/90/− 43/90/0/− 43/43/90/0/43/0/43/90/90/0/− 43] 20

Stringer (B)

B1 [1/61/1/1/1/− 51/1/1/− 51/1/1/1/61/1/1/− 51/1/1/1/61/1/1/61/1/1/1/− 51/1] 28
B2 [0/59/− 1/− 54/2/0/2/2/2/0/− 54/− 1/59/2/0/0/− 54/− 1/0/59/0/2/59/2/− 1/− 54/2/0] 28

Table 5.6: Numerical results of the second-level problem (first two optimum stacks for
both skin and stringer).

value of the laminate PPs provided by the FLP.

For the problem at hand, the number of plies for both skin and stringer laminates, (nS
and nB, respectively) is a direct result of the FLP, while the number of saturated groups
has been set equal to

• three for stacks S1 and B1,

• four for stack S2,

• five for stack B2.

As it can be easily inferred from the results listed in Table 5.7, by combining the
previous stacks it is possible to get four different optimum configurations of the stiffened
panel.

Panel configurations

S1-B1 S1-B2 S2-B1 S2-B2

M [Kg] 0.814 (−11.5%)

λ [N] 495503.23 (10%) 495386.87 (10%) 499138.30 (11%) 499027.68 (11%)

Table 5.7: Properties of the optimum solution (in terms of mass and buckling load) for
different skin-stringer configurations; for each property the percentage difference between
the optimum configuration and the reference one is indicated in parentheses.

Indeed, these optimum panels really represent equivalent solutions. Since they share
the same macroscopic geometrical parameters they have the same mass, i.e. M = 0.814
Kg which represents a significant reduction (−11.5%) when compared to the reference con-
figuration. Furthermore, these optimal configurations differ only in terms of the optimum
stack composing skin and stiffener laminates but they show almost the same buckling re-
sponse: the percentage increment of the first buckling load (with respect to the reference
value λref) ranges from 10% to 11%, see Table 5.7.

Therefore, each optimum configuration is simultaneously lighter and stiffer than the
reference one and this result has been achieved only by abandoning the usual engineering
rules and hypotheses related to the nature of the SS of the laminates composing the panel.

Fig. 5.4 shows the deformed shape related to the first buckling mode as well as the first
component of the normalised stiffness matrices of the laminate, i.e. A∗, B∗ and D∗ for
both skin and stringer for the configuration S1-B1: the solid line refers to the membrane
stiffness matrix, the dashed one to the bending stiffness matrix, while the dash-dotted
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one is linked to the membrane/bending coupling stiffness matrix. It can be noticed that
the laminate is uncoupled as the dash-dotted curve disappears, homogeneous as the solid
and dashed curves are coincident and orthotropic because there are two orthogonal axes
of symmetry in the plane. In addition, for both laminates the main orthotropy axis is
oriented at ΦA∗

1 = 0◦ according to the hypothesis of the FLP. The same considerations
can be repeated also for the rest of the optimum solutions.

5.7.2 Verification of the optimum configurations

A one-dimensional, high-order model based on CUF is used for validating the reference
and optimised RU analyses. The present CUF model employs a LW refined kinematics for
the accurate description of the pre-stress state of the RU subjected to compression and,
thus, for enhanced evaluation of buckling loads. The CUF-LW models of the reference
and optimised RU panels have 372588 and 333792 DOFs, respectively. As in the case of
the ANSYS model, PBCs are imposed by using the direct penalty approach. However,
it is important to underline that, because the employed LW CUF models have only pure
translational displacements as unknowns, only the first line of Eq. (5.21) is enforced.

The Table 5.8 shows the first critical buckling load for the optimised configurations
given by CUF high order beam models and the comparison with those resulting from
ANSYS model.

Panel configurations

λ REF S1-B1 S1-B2 S2-B1 S2-B2

CUF [N] 390870 450323 450430 451843 452615

ANSYS [N] 445074 (14%) 483951 (7.5%) 483838 (7.4%) 487493 (7.9%) 487386 (7.7%)

Table 5.8: Comparison of the first buckling load between ANSYS FE model and high-order
beam CUF model for both reference and optimum solutions; the percentage difference
between ANSYS and CUF models is indicated in parentheses.

Fig. 5.5 shows the deformed shape for the first buckling mode related to the optimised
configuration S1-B1, whereas Fig. 5.7 and Fig. 5.8 present the distributions of axial σxx,
shear σxz and the transversal σzz stresses for skin and stringer, respectively. These stresses
are computed in the zones A-A’ and B-B’ of Fig. 5.6 at the critical buckling load.
It should be underlined that the adopted ANSYS model provides a good distribution of
axial stresses. In contrast, and according to CUF reference solutions, the ANSYS FE
model is not able to properly describe shear and transverse normal stresses and this would
directly affect the accuracy of the first buckling load assessment. The differences between
the results of the ANSYS FE model and the refined CUF solution for the optimum panels
range from 7.4% to 7.9%, while for the reference configuration the percentage difference
is significant (up to 14%). This higher discrepancy is probably related to the anisotropic
bending behaviour of the reference solution. These differences are reasonable and are
related to the 3D stress distributions within each constitutive layer and the different order
of accuracy characterising the CUF LW beam model. Of course, this stress field strongly
affects the geometrical stiffness matrix and cannot be acquired by ANSYS shell elements
which are based on the FSDT hypotheses. It is noteworthy that, according to CUF
numerical results, the gain in terms of stiffness is even higher than that foreseen by ANSYS,
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Figure 5.5: Deformed shape of the first buckling mode (normalized displacement) of the
optimum panel S1-B1 for the higher order CUF model.

A'

A
B'

B

Figure 5.6: Beam cross-section.

ranging from 15.2% for solution B1-S1 to 15.8% for solution B2-S2, as can be deduced from
Table 5.8.

5.8 Conclusions

The design strategy presented in this Chapter is a numerical optimisation procedure char-
acterised by several features that make it an innovative, effective and general method
for the multi-scale design of composite structures. In the present work this strategy has
been applied to the multi-scale optimisation of the repetitive unit of a composite stiff-
ened panel. On the one hand, the design process is not submitted to restrictions: any
parameter characterising the structure (at each relevant scale) is an optimisation variable.
This allows searching for a true global minimum without making simplifying hypotheses
on the nature of the laminate SS. On the other hand, the multi-scale design problem has
been split into two optimisation sub-problems which are solved subsequently within the
same numerical procedure. The FLP focuses on the macroscopic scale of the panel: each
laminate composing the structure is considered as an equivalent homogeneous anisotropic
plate (for both skin and stringer) and its macroscopic mechanical response is described
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Figure 5.7: Stress distributions through the skin thickness. A-A’
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in terms of PPs. Furthermore, also geometric design variables describing the topology of
both skin and stiffener are involved at this level. At this stage, the mechanical properties
of the multilayer plates are represented by means of the polar formalism. The SLP of
the procedure is devoted to the laminate mesoscopic scale: the goal is to find at least
one optimum stack (for both stringer and skin) meeting, on the one hand, the elastic re-
quirements imposed to the laminate (quasi-homogeneity and orthotropy) during the FLP
and, on the other hand, the optimum value of the laminate PPs resulting from the first
step. The utilisation of an evolutionary strategy, together with the fact that the problem
is stated in the most general sense, allows finding some non-conventional configurations
more efficient than the standard ones. In fact, the considered numerical example proves
that, when standard rules for tailoring laminate stacks are abandoned and all the pa-
rameters characterising the structure are included within the design process, a significant
weight saving can be obtained: up to 11.5% with respect to the reference structure with
enhanced mechanical properties in terms of first buckling load (the percentage increment
ranges from 9% to 9.5% depending on the considered optimum solution). In a second time,
both reference and optimum configurations of the stiffened panel have been analysed by
means of a high-order layer-wise FE model developed in the framework of CUF. This anal-
ysis reveals that the buckling load provided by the ANSYS FE model (which is built by
using shell elements based on FSDT) is overestimated and that the percentage difference
ranges from 7.4÷7.9% for optimum solutions to 14% for the reference configuration. This
discrepancy is related to the calculation of the 3D stress field in each layer, which strongly
affects the geometric stiffness matrix used to evaluate the first buckling load of the panel.
Nevertheless, despite these discrepancies, classical shell elements based on FSDT can be
reliably employed in the framework of the MS2LOS because they allow finding true op-
timum solutions without using expensive models, in terms of both number of DOFs and
computational cost. Moreover, according to CUF results, the optimum configurations are
really efficient when compared to the reference one: the weight saving is always the same,
but the gain in terms of stiffness is even higher than that foreseen by ANSYS, ranging
from 15.2% to 15.8% depending on the optimum solution. These results unquestionably
prove the effectiveness and the robustness of the optimisation approach proposed in this
Chapter and provide confidence for further research in this direction. In Chapter 7 the
integration of high-order models based on CUF within the MS2LOS will be presented to
increase the accuracy of the methodology when an accurate assessment of the complex 3D
stress field is of paramount importance for the problem at hand.



Chapter 6

Multi-scale design of variable
stiffness composites

6.1 Introduction

The main purpose of this Chapter is to apply the MS2LOS to the maximisation of the
first buckling load of a VAT composite subject to feasibility constraints. The MS2LOS
has been already extended to the VAT composite, and its effectiveness was proved in
[78, 94, 95, 98, 168].
This Chapter focuses on the FLP of the MS2LOS, that aims at determining, at the
macroscopic scale, the optimum distribution of the VAT laminate PPs to satisfy the
requirements of the problem at hand. At the macroscopic scale, the VAT laminate is
modelled as an equivalent homogeneous anisotropic plate whose mechanical behaviour is
described in terms of PPs (which vary locally over the structure). The FSDT is always
used to take into account for the influence of the transverse shear stiffness on the overall
mechanical response of the VAT composite in the FE model, and B-spline surfaces are
employed to represent the point-wise variation of the PPs fields.
The main contribution of the Chapter consists in the derivation of the expression of
the gradient of each physical response in terms of the design variables involved in the
definition of the B-spline surfaces representing the PPs distributions over the structure.
In particular, the derivation of the analytical form of the gradient of the first buckling
factor is anything but trivial and exploits two main properties of B-spline blending
functions: the strong convex-hull property and the local support property. Thanks to the
B-spline surfaces formalism, the optimised solutions are no longer related to the mesh of
the FE model. Rather they are fully CAD-compatible and can be directly passed to the
G-Code behind AFP and additive manufacturing processes for manufacturing purposes.
The effectiveness of the developed approach is proven on two meaningful benchmarks
taken from the literature.
The Chapter is organised as follows: the overview of the design problem and a brief
reminder on the MS2LOS in the case of VAT composites are reported in Section 6.2.
The fundamentals of the B-spline framework are reported in Section 6.3, while the
mathematical formulation of the first-level problem is presented in Section 6.5. The FE
model of the VAT laminate plate, for both benchmarks, is described in Section 6.6, while
the numerical results are presented and discussed in Section 6.7. Finally, Section 6.8 is
devoted to concluding remarks and prospects.

87
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Publication related to this chapter: The methodology and the results presented in
this Chapter have been published in [169].

6.2 The multi-scale two level optimisation strategy for vari-
able angle tow laminates

In the context of the MS2LOS [78, 94], extended to VAT composites, the optimum design
of the VAT laminate is always articulated in two sub-problems stated at different scales,
as for the CSC.
The FLP aims at determining the optimum distribution of the VAT laminate mechanical
design variables satisfying the requirements of the design problem. At this level, the
optimisation is performed at the macroscopic scale of the VAT plate, which is modelled
as an equivalent homogeneous anisotropic continuum. The laminate PPs [56–58] are the
design variables of the optimisation problem, which describe the mechanical behaviour
of the VAT plate and, in this case, vary point-wise over the structure. The point-wise
variation is got by means of the B-spline surfaces framework.
The SLP is devoted to the determination of a suitable lay-up which satisfies the optimum
distribution of PPs resulting from the FLP.
In the Chapter, only the FLP of the MS2LOS is faced and the related mathematical
framework, presented in [78], is extended to eigenvalue buckling problems. Inasmuch as
the SLP formulation is not affected by the modifications introduced in the FLP (and the
main steps of the related resolution strategy remain unchanged), this part will not be
detailed in the following Sections. For more details on the SLP formulation and on the
related mathematical background, the reader is addressed to [4, 170].

6.3 Fundamentals of B-spline surfaces

The fundamentals of B-spline surfaces, widely discussed in [171], are here briefly recalled
for the sake of clarity.
The parametric equation of a B-spline surface reads:

S(u1, u2) :=

n1∑

i1=0

n2∑

i2=0

Ni1,p1(u1)Ni2,p2(u2)Pi1,i2 , (6.1)

where S(u1, u2) ∈ R3 is a bivariate vector-valued piecewise rational function, (u1, u2) are
scalar dimensionless parameters, both defined in the interval [0, 1], while p1 and p2 are
the degrees of the B-spline blending functions along u1 and u2 directions, respectively;

Pi1,i2 = {X(1)
i1,i2

, X
(2)
i1,i2

, X
(3)
i1,i2
} are the Cartesian coordinates of the generic control point

(CP), with i1 = 0, ..., n1, i2 = 0, ..., n2 and X(j) ∈ R(n1+1)×(n2+1), j = 1, 2, 3. The set of
(n1 + 1) × (n2 + 1) CPs constitutes the so-called control net. Ni1,p1(u1) and Ni2,p2(u2)
are the B-spline blending functions defined by means of the Bernstein’s polynomials. The
generic blending function Nij ,pj (uj), with j = 1, 2, can be obtained in a recursive way as
follows:

Nij ,0(uj) :=

{
1 if v

(j)
ij
≤ uj < v

(j)
ij+1,

0 otherwise,
(6.2)

Nij ,q(uj) =
uj−v(j)

ij

v
(j)
ij+q−v

(j)
ij

Nij ,q−1(uj) +
v

(j)
ij+q+1−uj

v
(j)
ij+q+1−v

(j)
ij+1

Nij+1,q−1(uj),

q = 1, ..., pj ,
(6.3)
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where v
(j)
ij

is the ij-th component of the generic non-periodic non-uniform knot vector :

v(j) = {0, . . . , 0︸ ︷︷ ︸
pj+1

, v
(j)
pj+1, . . . , v

(j)
mj−pj−1, 1, . . . , 1︸ ︷︷ ︸

pj+1

}, j = 1, 2. (6.4)

It is noteworthy that the size of the j-th knot vector is mj + 1, with

mj = nj + pj + 1. (6.5)

Knot vectors v(1) and v(2) are two non-decreasing sequences of real numbers that can be
interpreted as discrete collections of values of the dimensionless parameters u1 and u2,
respectively. As the CPs, also the knot vectors components form a net. In the following
sections, two main properties of B-spline basis functions will be exploited: the local support
property and the strong convex hull property.

• Local support property. One basic property of the blending functions is the local

support property : Nij ,pj (uj) = 0 if uj is outside the interval
[
v

(j)
ij
, v

(j)
ij+pj+1

[
. There-

fore, it is evident that the product Ni1,p1(u1)Ni2,p2(u2) = 0 if (u1, u2) is outside the

open rectangle
[
v

(1)
i1
, v

(1)
i1+p1+1

[
×
[
v

(2)
i2
, v

(2)
i2+p2+1

[
, which represents the local support

associated to the CP Pi1,i2 . Formally, the local support of the CP Pi1,i2 can be
defined as:

Si1,i2 :=
{

(u1, u2) : (u1, u2) ∈
[
v

(1)
i1
, v

(1)
i1+p1+1

[
×
[
v

(2)
i2
, v

(2)
i2+p2+1

[}
. (6.6)

• Strong convex hull property. If (u1, u2) ∈
[
v

(1)
i , v

(1)
i+1

[
×
[
v

(2)
j , v

(2)
j+1

[
then S(u1, u2)

is in the convex hull of CPs Pi1,i2 , with i− p1 ≤ i1 ≤ i and j − p2 ≤ i2 ≤ j.
A deeper insight into the B-spline blending functions properties can be found in [171].

6.4 Problem Description

The goal of the design strategy is the maximisation of the first buckling load of multilayer
VAT plates. The effectiveness of the MS2LOS is tested on two benchmarks: a square
plate (benchmark 1, taken from [92]) and a quarter of square plate with a circular hole
(benchmark 2). Both structures are subjected to in-plane compressive loads and their
geometric parameters are illustrated in Fig. 6.1.

The main hypotheses [78] governing the behaviour of the VAT laminate at the macro-
scopic scale are listed here below.

• Each ply of the VAT laminate is made of the same material and the same thickness.

• The number of plies is kept unchanged during the optimisation process.

• The material behaviour is linear elastic.

• The VAT laminate is quasi-homogeneous (i.e. uncoupled and with the same be-
haviour in terms of normalised membrane and bending stiffness matrices) and fully
orthotropic (both in membrane and bending) point-wise, i.e. these properties apply
locally at each point of the structure;

The properties of the T300/5208 carbon-epoxy pre-preg strip, which constitute the tow
of lamina, are reported in Table 6.1 for the sake of completeness. Of course, the technical
constants of the lamina are taken from [92], while the PPs are calculated accordingly.
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Figure 6.1: Geometric parameters of (a) the square plate and (b) the square plate with a
circular hole.

Technical constants Polar parameters of Q a Polar parameters of Q̃ b

E1 [MPa] 181000.0 T0 [MPa] 26878.6659 T [MPa] 5393.6268
E2 [MPa] 10273.0 T1 [MPa] 24738.3141 R [MPa] 1776.3732
G12 [MPa] 7170.5 R0 [MPa] 19708.6659 Φ [deg] 90.0
ν12 0.28 R1 [MPa] 21436.2608
ν23 0.42 Φ0 [deg] 0.0

Φ1 [deg] 0.0
Thickness
hply [mm] 0.127
a In-plane reduced stiffness matrix of the pre-preg strip.
b Out-of-plane shear stiffness matrix of the pre-preg strip.

Table 6.1: Material properties of the T300/5208 carbon-epoxy pre-preg strip.

6.5 First-level problem formulation

The FLP mathematical background essentially relies on the FSDT, as in the case of CSC,
and on the use of B-spline surfaces theory. On the one hand, the FSDT allows for inte-
grating the influence of the transverse shear stiffness on the physical responses of the VAT
laminate. On the other hand, B-spline surfaces are used to describe the PPs distribution
over the structure.
The use of B-spline surfaces to describe the PPs fields has a fundamental consequence: the
anisotropy field description is completely unrelated from the mesh of the FE model. In
fact, the design variables are not calculated at the centroid of the mesh elements as in the
classical FE-based approaches [9, 10] but they are computed only at the B-spline surfaces
CPs. This aspect leads to a strong reduction of the number of design variables. Moreover,
as detailed in the following of this section, the use of B-spline entities also allows to reduce
the number of optimisation constraints to be checked during the optimisation process.
Therefore, the reduction of design variables and of the optimisation constraints allow to
carry out the optimisation process with a reduced computational cost. In particular, the
advantages related to the use of B-spline surfaces come from two fundamental properties:
the local support property and the strong convex-hull property, see [171]. The way these
properties are exploited is clarified in the following.

Without loss of generality, the following subsections focus on a meaningful design
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problem: the maximisation of the first buckling factor of the VAT laminate subject to
feasibility constraints on the PPs and to a requirement on the total thickness.

6.5.1 Mechanical design variables

Consider the constitutive law of the multilayer plate reported in Eq. (4.17). Under the hy-
potheses of quasi-homogeneous, fully orthotropic laminate (i.e. a laminate with B∗ = O,
C∗ = O and characterised by the same orthotropy type and direction for membrane and
bending stiffness matrices): it can be proved that the overall number of independent me-
chanical design variables describing its mechanical response reduces to only three, i.e. the
anisotropic moduli RA

∗
0K and RA

∗
1 and the polar angle ΦA∗

1 (which represents the orientation
of the main orthotropy axis) of the homogenised membrane stiffness matrix A∗ [56, 57].
The description of the polar framework and its application in the context of the FSDT is
reported in Sections 4.2, 4.3 respectively. For a deeper insight into these topics, the reader
is addressed to [56, 57, 78].
For optimisation purposes, it is useful to introduce the dimensionless PPs:

ρ0 :=
RA

∗
0K

R0
, ρ1 :=

RA
∗

1

R1
, φ1 :=

ΦA∗
1

π/2
, (6.7)

where R0, R1 and Φ1 are taken from Table 6.1. The expression of the laminate stiffness
matrices (together with their gradient) in terms of the dimensionless PPs is given in
Appendix A. In the most general case, for a VAT composite, the three independent PPs
vary point-wise over the structure. As stated beforehand, the variation of the generic PP
ζ is expressed by means of a B-spline scalar function:

ζ (u1, u2) =

n1∑

i1=0

n2∑

i2=0

Ni1,p1(u1)Ni2,p2(u2)ζ(i1,i2), ζ = ρ0, ρ1, φ1. (6.8)

The dimensionless coordinates u1 and u2 can be arbitrarily defined: a natural choice is to
relate them to the Cartesian coordinates of the laminate global frame:

u1 =
x

ax
, u2 =

y

ay
, (6.9)

where aj (j = x, y) is the problem characteristic length along the j axis. In Eq. (6.8),
ζ(i1,i2) is the value of the dimensionless PP at the generic CP, whereas Ni1,p1(u1) and
Ni2,p2(u2) are the B-spline blending functions computed at the dimensionless coordinates
u1 and u2 respectively. An example of B-spline surfaces in the space of laminate PPs is
shown in Fig. 6.2.

The integer parameters of the B-spline scalar function of Eq. (6.8) are set a priori
and do not take part in the optimisation process. As done in [78], also the non-trivial
knot-vector components appearing in Eq. (6.4) are set as evenly distributed in the interval
]0, 1[ and are kept unchanged during the optimisation analysis. Therefore, the only design
variables are the PPs defined at the CPs which can be grouped into the following vector:

xT =
{
ρ

(0,0)
0 , · · · , ρ(n1,n2)

0 , ρ
(0,0)
1 , · · · , ρ(n1,n2)

1 , φ
(0,0)
1 , · · · , φ(n1,n2)

1

}
. (6.10)

In the most general case, the total number of design variables is equal to 3 × (n1 +
1) × (n2 + 1). Furthermore, the feasibility constraints, which arise from the combination
of the layer orientations and positions within the stack [52], must be integrated into the
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Figure 6.2: Example of B-spline surfaces in the space of laminate PPs taken from [5].

FLP formulation. Inasmuch as the laminate is quasi-homogeneous [52], it is sufficient to
impose these constraints only for the PPs of matrix A∗, i.e.





−1 ≤ ρ0 ≤ 1 ,

0 ≤ ρ1 ≤ 1 ,

2ρ2
1 − 1− ρ0 ≤ 0 .

(6.11)

It is noteworthy that first and second inequalities of Eq. (6.11) can be taken into account as
lower and upper bounds for the dimensionless anisotropic moduli, i.e. ρ0 and ρ1. Therefore,
the expression of the resulting feasibility constraint on the laminate PPs, which must be
considered for the generic CP, is:

gij(x) = 2
(
ρ

(i,j)
1

)2
− 1− ρ(i,j)

0 ≤ 0 , i = 0, · · · , n1, j = 0, · · · , n2. (6.12)

The strong convex-hull property of the B-spline blending functions ensures that, if the
feasibility constraint of Eq. (6.12) is met on the CPs, it is satisfied for each point belonging
to the B-spline surface (see [78] for more details). The feasibility constraint of Eq. (6.12)
must be imposed in order to ensure that a feasible stack, satisfying the optimal PPs fields
resulting from the FLP, could be found as a result of the SLP. The reader is addressed
to [52] for a wide discussion on feasibility constraints in the PPs space.
From Eq. (6.12), it is evident that, in the most general case, the total number of feasibility
constraints is equal to (n1 + 1)× (n2 + 1).

6.5.2 Mathematical statement of the problem

The FLP aims at determining the optimum distribution of the laminate PPs maximising
the first buckling factor of the structure and satisfying, simultaneously, the feasibility
constraints on the laminate PPs at each point of the plate. Consider the eigenvalue
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buckling problem:
(K + λkKσ)ψk = 0, ∀ ψk 6= 0, (6.13)

where K is the stiffness matrix of the FE model, Kσ is the geometric stiffness matrix, λk
is the k-th buckling factor and ψk is the k-th eigenvector associated to λk. Here, only the
first buckling factor is computed, thus k = 1. In the following, the first buckling factor λ1

is denoted as λ to simplify the nomenclature. Formally, the design problem can be stated
as a CNLPP as:

min
x
− λ(x),

subject to:




(K + λkKσ)ψk = 0,

h =const. ,

gij(x) ≤ 0, i = 0, · · · , n1, j = 0, · · · , n2.

(6.14)

The design space of the FLP, together with the type of each design variable, is detailed in
Table 6.2. In Eq. (6.14) the overall thickness of the laminate h is kept constant.

Design variable Type Lower bound Upper bound

ρ0 continuous −1.0 1.0
ρ1 continuous 0.0 1.0
φ1 continuous −1.0 1.0

Table 6.2: Design space of the first-level problem.

In order to solve problem (6.14) by means of a suitable deterministic algorithm, the
gradient of both the objective function and the constraints functions with respect to the
design variables, i.e. the laminate dimensionless PPs at each CP, must be computed. The
derivation of the gradient of the feasibility constraints of Eq. (6.12) is straightforward:

∂gst

∂ρ
(i,j)
0

=

{
−1 if s = i, t = j,

0 otherwise,

∂gst

∂ρ
(i,j)
1

=

{
4ρ

(i,j)
1 if s = i, t = j,

0 otherwise,

∂gst

∂φ
(i,j)
1

= 0.

(6.15)

Conversely, the gradient of the k-th buckling factor requires a special attention. In order
to derive its analytical expression, the local support property of the B-spline blending
functions [171] as well as the adjoint method [172] are exploited. To this end, consider the
following proposition.

Proposition 6.5.1. Consider a deformable anisotropic plate subject to given external
loads. Under the hypotheses of small generalised displacements and strains, the gradient
of the k-th buckling factor λk reads:




∂λk
∂ζ(i,j)

=
λk
wk


∑

e∈Sij

∂ζe

∂ζ(i,j)

(
w∗ek + λks

T
ek

∂Klame

∂ζe
ε0e

)
+ µT ∂K

∂ζ(i,j)
d0


 , ζ = ρ0, ρ1, φ1,

Kµ = −λkηk.
(6.16)
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where µ is the solution of the adjoint system.

The proof of proposition 6.5.1, the meaning of the quantities appearing in Eq. (6.16)
and the pseudo-code of the algorithm used to compute the gradient of λk are provided in
Appendix B.

Remark 6.5.1. In Eq. (6.16), ζe represents the generic dimensionless PP of Eq. (6.8)
evaluated at the element centroid, i.e. ζe = ζ (u1e, u2e), whilst, according to Eq. (6.8), its
derivative reads:

∂ζe

∂ζ(i,j)
= Ni,p1(u1e)Nj,p2(u2e). (6.17)

Remark 6.5.2. In Eq. (6.16), Sij is the discretised version of the generic CP local support
defined as:

Sij :=
{
e : (u1e, u2e) ∈

[
U

(1)
i , U

(1)
i+p1+1

[
×
[
U

(2)
j , U

(2)
j+p2+1

[}
. (6.18)

The local support property of B-spline blending functions relates the control net, which af-
fects the shape of the B-spline surface, to the mesh of the FE model through the definition
of an influence zone for each CP, i.e. the so-called local support. Therefore the variation
of the generic dimensionless PP assigned to a given CP influences only the elements be-
longing to the local support of such a CP. As discussed in [78], the size of the local support
zone depends on the B-spline surface discrete parameters, i.e. the degrees of the blending
functions and the number of CPs.

Remark 6.5.3. In Eq. (6.16), d0 is the vector of the nodal generalised displacements,
solution of the preliminary linear static analysis:

Kd0 = f0, (6.19)

where f0 is the vector of external nodal forces (of arbitrary value, generally a unit value is
used). ε0e, (e = 1, · · · , Ne) is the vector of generalised strains of Eq. (4.18) evaluated for
each element composing the FE model (the number of elements is Ne). The solution of
Eq. (6.19) is used to compute the pre-stress state involved in the definition of the geometric
stiffness matrix Kσ. All details are provided in Appendix B.

6.5.3 Numerical strategy

Problem (6.14) is a non-convex CNLPP in the space of the laminate PPs. Its non-linearity
is due, on the one hand, to the nature of the objective function, the buckling factor, which
is a non-convex function with respect to the orthotropy orientation field. On the other
hand, the complexity of such a problem is also due to the non-linear feasibility constraints
imposed on the PPs of the plate, see Eq. (6.12).

For the resolution of problem (6.14) a hybrid optimisation tool called VISION (VarIable
Stiffness composItes Optimisation based on NURBS ), developed by Montemurro [5] and
made by the union of the ERASMUS algorithm [5] and a general deterministic algorithm,
is employed. VISION is available in both MATLAB and Python versions. The Python
version has been further developed through the implementation of the objective function
gradient in order to deal with problem (6.14) and is employed here. The Sequential Least
Square Quadratic Programming (SLSQP) algorithm available in Numpy package, from
the Python-based environment Scipy, has been used as a deterministic algorithm [173].
VISION is interfaced with the FE model of the VAT plate (used essentially to compute
the physical/geometrical responses involved into the definition of objective function and
constraint functions), see Fig. 6.3.
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Figure 6.3: VISION flowchart[5].

The VISION tool is composed of three main phases: pre-processing phase (steps 1-5),
optimisation solvers (steps 6-8) and post-processing phase (step 9). A synthetic description
of each step is given here below.

1. B-spline surfaces parametrisation. During this phase the user must set the discrete
parameters (number of CPs, degrees of the blending functions) tuning the shape of
the B-spline surfaces representing the laminate PPs fields as well as the values of the
non-trivial components of each knot-vector. The above quantities are just geometric
parameters of the B-spline blending functions which are not included in the vector
of design variables. If the user does not provide the knot-vector components, they
are uniformly distributed in the interval [0, 1].

2. FE model information. The FE model of the problem at hand must be properly pre-
pared in the external FE code, in terms of both geometry and mesh of design regions
(DRs) and non-design regions (NDRs). Once the mesh is generated, the elements
belonging to DRs are selected and their data are passed to the MATLAB/PYTHON
environment. For each element, the relevant information are: its identifier, the
Cartesian coordinates of its centroid as well as its area (shell element) and volume
(solid element).

3. Identification of DRs and NDRs. Not all the zones of the structure have to be
optimised and this requirement can be fulfilled by forecasting proper NDRs within
the FE model at specific locations. Therefore, including the PPs defined at all CPs
(even those CPs whose local support falls within NDRs) among the design variables
is useless. To this purpose, before launching the optimisation, a dedicated function
checks all CPs local supports. Consider the local support of the generic CP Sij : if
the dimensionless coordinates (u1e, u2e) of at least one element centroid belonging to
the DR are in Sij , then the corresponding PPs defined at that CP are inserted in the
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design variables array; otherwise, they are deleted from this array. The discarded
PPs are set equal to their lamina counterparts for those CPs whose local support is
the empty set.

4. Symmetries Application. Symmetries can be interpreted as variables saving from
a computational viewpoint. Only independent CPs are effectively collected in the
design variables array.

5. Reference Quantities. Geometrical, physical and manufacturing responses used to
obtain dimensionless objective and constraint functions are set here. Their definition
is not unique and the algorithm allows the external user to define the reference
quantities. However, pre-set strategies can be selected for the most common problems
(compliance minimisation, first buckling load maximisation, etc.).

6. Responses evaluation. The system responses involved into the definition of both
objective function and constraint functions can be of different nature: geometri-
cal, physical and technological. The user can implement some of them directly into
the MATLAB/PYTHON environment (e.g. geometrical and technological require-
ments). For those responses requiring a FE analysis to be computed (e.g. buckling
load, compliance, natural frequencies, etc.) an automatic interface between the op-
timisation algorithms (both meta-heuristics and deterministic) and the FE codes
(both commercial and in-house codes) has been implemented into the VISION tool.

7. Genetic optimisation. During the first phase, solely the ERASMUS GA is inter-
faced with the FE model of the VAT composite: for each individual at each gen-
eration, a FE analysis is invoked for the evaluation of the physical responses. The
FE model makes use of the design variables, given by the GA and elaborated by the
MATLAB/PYTHON code, which generates the B-spline surfaces representing the
dimensionless PPs fields. These fields are then projected over the FE model of the
VAT plate in order to calculate the desired physical response as well as the feasi-
bility constraint at each CP. At the end of the FE analysis, the GA elaborates the
results provided by the FE model in order to execute the genetic operations. These
operations are repeated until the GA meets the user-defined convergence criterion.

8. Deterministic optimisation. Due to the strong non-convex nature of the VAT design
problem, the aim of the genetic calculation is to provide a potential sub-optimal point
in the design space, which constitutes the initial guess for the subsequent phase, i.e.
the local optimisation, where a suitable deterministic algorithm is interfaced with
the same FE model of the VAT composite. In this case, the optimisation calculation
is speed-up by giving explicitly the expression of the gradient of both constraint
functions and objective function. The convergence of the optimiser is achieved when
constraints are met (or barely met, i.e. the optimum solution is on the boundary
of the search domain) and one of the following conditions occurs: (a) the predicted
change of the objective function is lower than a prescribed tolerance (10−6); (b) the
norm of the gradient of the Lagrangian functional related to the problem at hand is
very close to zero (10−6); (c) the predicted change of design variables is lower than
a prescribed threshold value (10−6); (d) a maximum value of iterations (set by the
user) has been attained. The upper bound on the iterations number is 250 for the
benchmarks presented in this study.

9. Results visualisation. The optimised distribution of the laminate PPs can be con-
verted in two different standard formats: IGS file (which can be easily imported in a
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CAD environment) and VTK format. The latter can be exploited and manipulated
into the ParaView R© environment. In the benchmarks considered here, the VTK
format has been chosen to visualise the PPs fields.

For each benchmark, two cases have been considered.

• Case 1. Only φ1 varies over the structure, whilst ρ0 and ρ1 are considered uniformly
distributed. In this case, the overall number of design variables for problem (6.14)
is 2 + (n1 + 1)× (n2 + 1). In this case, there is only one feasibility constraint on the
laminate PPs to be checked.

• Case 2. This represents the most general case wherein ρ0, ρ1 and φ1 vary over the
structure. The overall number of design variables is 3 × (n1 + 1) × (n2 + 1), while
the number of optimisation constraints is (n1 + 1)× (n2 + 1)

Inasmuch as problem (6.14) is highly non-convex, the optimised solution strongly de-
pends upon the choice of the initial guess x0. Here, the initial guess x0 is generated in
three different ways. In the first case, x0 is null, which means that an isotropic initial
guess is selected. In the the second case, x0 is the best individual resulting from the
genetic optimisation performed by means of the ERASMUS algorithm [5]. In particular,
the generic individual of the GA represents a potential solution for the problem at hand.
In the most general case, the genotype of the individual for problem (6.14) is composed of
(n1 + 1) × (n2 + 1) chromosomes with three genes coding the dimensionless PPs at each
CP of the B-spline surface. In the third case, the initial guess is randomly generated.

It is noteworthy that, since problem (6.14) involves a requirement on the first buckling
factor, the well-known mode switching phenomenon [174], typical of eigenvalue problems,
can occur during the iterations of the optimisation process. For example, the mode switch-
ing phenomenon (together with the spurious mode phenomenon) affects topology optimi-
sation [174] when considering eigenvalue problems (i.e. buckling or modal analyses). As
far as topology optimisation problems involving requirements on critical buckling loads
(or natural frequencies) are concerned, the most common numerical strategies available
in the literature to deal with the mode switching issue have been integrated in a new
topology optimisation method coupling NURBS hyper-surfaces with the classical Solid
Isotropic Material with Penalisation (SIMP) method developed by Montemurro and co-
workers [174–176]. In particular, in [174], dedicated numerical artefacts and guidelines to
avoid the mode switching during the topology optimisation for problems involving modal
analysis are provided.

Fortunately, in the case of VSCs the situation is not as complicated as in topology
optimisation problems. In particular, only the buckling mode (eigenvector) associated to
the lowest buckling factor (eigenvalue) is considered at each iteration during the optimi-
sation. Therefore, if a mode switch occurs in between two iterations, in the next one, the
correct buckling mode (i.e. that associated to the lowest eigenvalue) is considered (for
the expression of the objective function and the related gradient). Moreover, a further
check is introduced within the SLSQP algorithm to ensure that the lowest buckling factor
of the structure continuously increases (and, thus, the merit function of problem (6.14)
monotonically decreases) during iterations. Particularly, if the mode switching occurs and
the value of the merit function of problem (6.14) at the current iteration is greater than
that of the previous iteration, a new descendent direction is calculated in order to get a
non-increasing value of the merit function along iterations.

Of course, a sound alternative could be to consider a different objective function in-
volving a linear combination (i.e. a weighted sum) of the first N buckling factors, or
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to introduce a suitable constraint on the imposed gap between two consecutive eigenval-
ues. Both strategies reveal effective for topology optimisation problems as discussed in
[174]. However, for the test cases presented here, the simplified strategy discussed above
is sufficient to correctly take into account for the mode switching phenomenon.

6.6 The finite element model for the optimisation

In order to assess the buckling factor and its gradient, an eigenvalue buckling analysis has
to be carried out for the FE model of the VAT composite. The FE model is generated in
ANSYS R© environment by using SHELL181 elements, which have four nodes and six DOFs
per node. The FE model is capable of updating the mechanical properties of each element
of the mesh through the use of the PPs distributions at each iteration of the optimisation
problem. The FE models of the benchmarks analysed here are shown in Fig. 6.4.
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Figure 6.4: FE model and related BCs for (a) the square plate and (b) the square plate
with a hole subject to bi-axial compression loads.

For each benchmark, the BCs are set as follows.

• Benchmark 1 is a VAT composite square plate taken from the literature [92]. In
this case, the plate is subjected to an uni-axial external compressive load Fx applied
on nodes located at: x = 0, y = a/2 and x = a, y = a/2; see Fig. 6.4. In order
to get a uniform displacement ux for sides AD and BC as done in [92], constraint
equations are imposed on nodes located at x = 0, a. The mesh size is chosen after a
preliminary mesh sensitivity analysis on the convergence of the first buckling load,
for the set of BCs reported in Table 6.3. It has been observed that a mesh having
12005 DOFs is sufficient to properly evaluate the first buckling load of the structure.

• Benchmark 2 represents a quarter of a square plate with a hole subject to bi-axial
compressive loads; The BCs on the generalised displacements are given in Table 6.3,
while the uniform compressive forces per unit length, i.e. fx and fy, are applied on
nodes located on sides BC and CD, respectively. Also in this case the mesh size is
the result of a sensitivity analysis: an overall number of 2480 DOFs is sufficient to
correctly assess the first buckling factor.
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Benchmark 1 Benchmark 2

Sides geometric BCs Sides geometric BCs

AB, CD Uy = Uz = θy = θz = 0 AB Uy = θx = θz = 0
CD Ux = Uz = 0

BC, DA Uy = Uz = θx = θz = 0 BC Uy = Uz = 0
Ux(0, y) = Ux(0, a/2), Ux(a, y) = Ux(a, a/2) ∀y ∈ [0, a

2
[∪]a

2
, a] DE Ux = θy = θz = 0

Table 6.3: BCs on generalised displacements for benchmarks 1 and 2.

It is noteworthy that a module composed of appropriate routines defining a general B-
spline surface has been coded in Python (within the VISION tool) and interfaced with the
FE model of the VAT plate. The following algorithm has been implemented to compute
the local stiffness properties of each element of the FE model and to determine the buckling
factor and its gradient.

Algorithm 1 Buckling analysis of VAT laminates through B-spline surfaces and polar
parameters.

1: For a given set of dimensionless PPs defined at each CP, build the corresponding
B-spline surfaces.

2: Discretise the plate into Ne elements.
3: Retrieve the Cartesian coordinates of the e-th element centroid, i.e. (xe, ye) and cal-

culate the corresponding dimensionless coordinates (u1e, u2e) according to Eq. (6.9).
4: Determine the dimensionless PPs (and hence the Cartesian components of the laminate

stiffness matrices) according to Eq. (6.8) and assign material properties to element e;
5: If e < Ne set e = e+ 1 and go to step 3, otherwise stop.
6: Execute Algorithm 2 (see B) for assessing the buckling factor and its gradient.

6.7 Numerical results

6.7.1 Benchmark 1: square plate subject to bi-axial compressive loads

The first benchmark refers to the geometry illustrated in Fig. 6.1(a) and it is used to assess
the effectiveness of the MS2LOS by comparing the optimised solutions with those available
in [92]. It is noteworthy that, since a quasi-homogeneous fully orthotropic laminate is
considered, the feasible region, described by the inequality of Eq. (6.12), is smaller than
that considered in [92]
The plate edge length is a = 254 mm, while its overall thickness is h = 1.524 mm. The
BCs on the generalised displacements are given in Table 6.3. The value of the axial
compressive loads applied to the VAT laminate nodes is equal to the first buckling load
evaluated for a quasi-homogeneous isotropic laminate subject to the same BCs, which is
equal to Fx = F cr

x−ISO = 2700.81 N. As done in [92], results are reported in terms of the
buckling load of the VAT plate normalised with respect to this value:

Kcr = F crx−VAT/F
cr
x−ISO (6.20)

Firstly, the results concerning Case 1 of Section 6.5.3 are presented (φ1 variable over
the structure and ρ0 and ρ1 uniformly distributed). The sensitivity of the optimised
normalised buckling load Kcr to the size of the control net together with the number of
iterations to get convergence are reported in Table 6.4, where a comparison with those
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available in the literature [92] is also provided. The starting point (for each number of CPs)
is the isotropic solution (i.e. ρ0 = ρ1 = 0.0), referred as ISO in the following. For each

Kcr Iterations

ISO 1.00 −
VAT 5× 5, [92] 1.88 −
VAT 7× 7, [92] 1.96 −
VAT 9× 9, [92] 2.02 −
VAT 5× 5 - Case 1 2.12 (+12.8%) 158
VAT 7× 7 - Case 1 2.22 (+13.3%) 144
VAT 9× 9 - Case 1 2.35 (+16.3%) 118

Table 6.4: Benchmark 1 - Case 1 : sensitivity of the optimum normalised buckling load
to the number of CPs (the percentages in parentheses indicate the improvements with
respect to corresponding the literature solutions).

number of CPs, the optimal value of the dimensionless anisotropic moduli are reported in
Table 6.5, while the optimal distribution of the polar angle ΦA∗

1 is illustrated in Fig. 6.5.

ρ0 ρ1

VAT 5× 5 - Case 1 0.73 0.93
VAT 7× 7 - Case 1 0.81 0.95
VAT 9× 9 - Case 1 0.80 0.95

Table 6.5: Benchmark 1 - Case 1 : dimensionless anisotropic moduli for the optimised
solutions.

The following considerations can be inferred from the analysis of these results.

• From Table 6.4, one can infer that the results obtained by means of the MS2LOS
based on the polar formalism outperform those reported in the literature. When
comparing results with the same CPs number, the increase of the normalised buckling
factor varies between 12.8% (in the case of 25 CPs) and 16.3% (in the case of 81
CPs) with respect to the literature solution [92].

• Table 6.5 and Fig. 6.5 show that, even if the solutions with 49 CPs and 81 CPs are
very close in terms of dimensionless anisotropic moduli values, the refined optimal
distribution of the polar angle ΦA∗

1 for the case with a higher number of CPs brings
to an increment of 5.86% of the normalised buckling load with respect to the case of
a lower number of CPs.

As a consequence, a 7 × 7 control net has been chosed for the following optimisation
analyses concerning benchmark 1. This choice represents the best compromise between
computational costs and performances.

Two analyses are performed in the most general case (Case 2 reported in Section 6.5.3)
wherein ρ0, ρ1, and φ1 vary over the structure, by considering two different starting points.
In this case, the CNLPP is characterised by 147 design variables and 49 optimisation
constraints. In particular, Case 2a makes use of a quasi-homogeneous isotropic solution
as initial guess, while Case 2b considers, as starting point, a random-generated feasible set
of PPs. It must be noticed that, for Case 2b, the random starting point has been selected
as the best solution (in terms of initial value of the buckling load) among twenty different
(feasible) PPs distributions generated randomly.

The normalised buckling load Kcr of the optimised solutions and the number of itera-
tions to achieve convergence are reported in Table 6.6, where it is compared to that of the
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Figure 6.5: Benchmark 1 - Case 1 : optimal distribution of the polar angle ΦA∗
1 .

quasi-homogeneous isotropic solution and to that of the corresponding Case 1 solution of
Table 6.4. The optimal PPs fields related to the optimised solutions Case 2a and Case 2b
are illustrated in Figs. 6.6 and 6.7, respectively.

Kcr Iterations

ISO 1.00 −
VAT 7× 7 - Case 1 2.22 144
VAT 7× 7 - Case 2a 2.22 192
VAT 7× 7 - Case 2b 2.30 166

Table 6.6: Benchmark 1 - Case 2 : optimised solutions.

By looking at the distributions of Figs. 6.6 and 6.7 and by considering the results listed
in Table 6.6, the following remarks can be done.

• As expected, the solutions obtained in Case 2a and Case 2b are different. Indeed,
the buckling factor is a non-convex function in the PPs space, thus the optimised
solution depends upon the choice of the initial guess.

• Table 6.6 shows that both optimised solutions are better than the reference one. The
solution obtained in Case 2a (when the ISO solution is used as initial guess) has a
normalised buckling load 2.22 times higher than that of the ISO solution. In this
case, the optimised value of Kcr is identical to the one obtained in case Case 1, as
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Figure 6.6: Benchmark 1 - Case 2a: optimal distribution of the PPs over the structure.

well as the distributions of RA
∗

0K , RA
∗

1 and ΦA∗
1 (compare results reported in Fig. 6.6

to those in Table 6.5 and Fig. 6.5).

• When the initial guess is randomly generated, the algorithm converges towards a
different solution characterised by a normalised buckling load 2.30 times higher than
the reference value. As it can been inferred from Fig. 6.7, the orthotropy type
continuously changes over the structure because of the variation of the dimensionless
polar moduli ρ0 and ρ1.

As a final remark, it must be highlighted that, although problem (6.14) is formulated
in a smaller design space (when compared to that used in [92]), more efficient results (in
terms of the first buckling factor) have been found in this Chapter. How is it possible?
The reason is twofold.
Firstly, LPs are not as effective as PPs, which are tensor invariants, in describing the elastic
symmetries of a tensor [4, 56–58, 78, 170]. Therefore, when PPs are used as design variables
of the FLP, the optimisation algorithm has a direct control on the elastic symmetries of
tensors and it is able to search for the optimum distribution of orthotropy type (by means
of the polar moduli ρ0 and ρ1) and orientation (by means of the polar angle φ1) maximising
the first buckling factor of the VSC. Conversely, the optimisation algorithm has no control
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Figure 6.7: Benchmark 1 - Case 2b: optimal distribution of the PPs over the structure.

on the orthotropy type and orientation when LPs are used as design variables of the FLP
as done in [92]. Accordingly, in this case the optimisation algorithm is, probably, trapped
in a feasible local minimum characterised by a value of the first buckling factor lower than
that characterising the local minimiser in the PPs space.
Secondly, as discussed in [4, 56–58, 78, 170], a thin (or moderately thick) VSC (but also a
standard composite reinforced with straight fibres) show an “optimal” response (in terms
of strain energy, buckling factor, strength, etc.) when the membrane and bending tensors
tend to exhibit the same elastic behaviour. Therefore, using a quasi-homogeneous laminate
with the same orthotropic behaviour in membrane and bending (i.e. A∗ = D∗) helps in
speeding up the convergence of the algorithm towards an efficient feasible local minimiser,
i.e. a VSC configuration characterised by a very good value of the first buckling factor
corresponding to an optimised membrane/bending behaviour.

6.7.2 Benchmark 2: square plate with a hole subject to bi-axial com-
pressive loads

This second benchmark, taken from [4], refers to the geometry illustrated in Fig. 6.1(b).
The values of the characteristic problem sizes are: a = 90 mm, r = 30 mm and the
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plate thickness is h = 3 mm. The applied BCs are those listed in Table 6.3. The value
of the bi-axial compressive loads applied to the VAT laminate middle plane corresponds
to the buckling load of a quasi-homogeneous isotropic laminate (indicated as ISO in the
following), which is equal to fx = fy = f cr

ISO = 118.78 Nmm-1.
For benchmark 2, a preliminary study on the convergence of the normalised buckling load
Kcr to the control net size is done in order to determine the number of CPs to be used
during optimisation. This sensitivity analysis has been conducted by considering that only
φ1 varies over the structure, whilst ρ0 and ρ1 are uniformly distributed. The starting point
(for each number of CPs) is the ISO solution.

Kcr Iterations

ISO 1.00 −
VAT 4× 4 1.66 28
VAT 5× 5 1.67 46
VAT 6× 6 1.79 37
VAT 7× 7 1.79 83
VAT 8× 8 1.80 90

Table 6.7: Benchmark 2 - Sensitivity of the normalised buckling load to the number of
CPs.

The results of this sensitivity analysis are given in Table 6.7. It has been observed that the
model with 6×6 CPs represents the best compromise between accuracy and computational
costs. Therefore, this choice results in 38 design variables and one feasibility constraint
for Case 1 and 108 design variables and 36 feasibility constraints for Case 2.

• Case 1 - Two analyses are performed in this case, by considering two different start-
ing points. In particular, Case 1a makes use of the ISO solution as a starting point,
whilst for Case 1b the initial guess is the best solution provided by the ERASMUS
algorithm at the end of the genetic search. Table 6.8 lists the normalised buck-
ling load of the ISO solution and of the ERASMUS initial guess in the optimised
configurations together with the number of iterations to achieve convergence.

Kcr Iterations

ISO 1.00 −
ERASMUS - GA 2.29 −

Case 1a 1.79 37
Case 1b 3.23 57

Table 6.8: Benchmark 2 - Case 1 : optimised solutions.

The values of the optimised dimensionless anisotropic moduli are reported in Ta-
ble 6.9, whereas the optimal distributions of the polar angle ΦA∗

1 over the structure
for Case 1a and Case 1b are illustrated in Fig. 6.8.

ρ0 ρ1

Case 1a −0.70 0.39
Case 1b 1.00 1.00

Table 6.9: Benchmark 2 - Case 1: dimensionless anisotropic moduli for the optimised
solution.

From an analysis of the results reported in Tables 6.8 and 6.9 and by looking at the
polar angle fields of Fig. 6.8, the following remarks can be inferred.
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Figure 6.8: Benchmark 2: optimal distribution of the polar angle ΦA∗
1 over the structure

for Case 1a (a) and Case 1b (b).

– The two optimisation calculations converge towards different local minima,
showing, again, the non-convex nature of the problem at hand.

– Both the optimised solutions are better than the reference one. In particular,
when the solution provided by the GA is used as initial guess, the normalised
buckling load of the optimised solution is 3.23 times greater than the ISO solu-
tion and almost two times greater than that obtained by using the ISO solution
as initial guess. Moreover, the optimised solution of Case 1b has a normalised
buckling load which is about 41% greater than that of the initial guess resulting
from the GA calculation.

– The solution of Case 1a is characterised by a special orthotropic behaviour with
KA∗

= 1 because the optimised value of ρ0 is negative. The main orthotropy
axis direction is aligned with the direction of the x axis of the plate almost
everywhere over the VAT laminate. Conversely, the solution of Case 1b shows
a standard orthotropic behaviour characterised by a unit value of the dimen-
sionless anisotropic moduli and by an angular field which follows the boundary
of the hole.

• Case 2 - This is the most general case where all the three dimensionless PPs vary
over the structure. As in the first case, three different starting points have been
considered corresponding to: (a) the ISO solution (Case 2a); (b) the best solution
provided by the ERASMUS algorithm (Case 2b); (c) a feasible initial guess randomly
generated (Case 2c). The normalised buckling load relative to all initial guess and
the optimised solutions are reported in Table 6.10.

Kcr Iterations

ISO 1.00 −
RANDOM 1.02 −

ERASMUS- GA 2.44 −
Case 2a 3.29 232
Case 2b 3.29 99
Case 2c 3.29 86

Table 6.10: Benchmark 2 - Case 2: optimised solutions.
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Figure 6.9: Benchmark 2 - Case 2: optimal distribution of the PPs over the structure.

As it can be immediately inferred from the analysis of these results, regardless of the
initial guess, the optimiser converges towards the same local minimum. Accordingly,
the optimal PPs fields are identical for each considered case and are illustrated in
Fig. 6.9. In this case, the normalised buckling load of the optimised solution is
increased of about 25.8% with respect to the solution found by the GA. Of course,
the number of iterations to achieve convergence depends on the distance between the
initial guess and the local minimum. It can be remarked that, also for benchmark 2,
the point-wise variation of the anisotropic polar moduli over the structure does not
necessarily imply a significant increase in the Kcr factor (the percentage difference
between the two best solutions provided in Tables 6.8 and 6.10 is about 1.6%). This
means that the influence of the point-wise variation of the main orthotropy axis
orientation (related to the polar angle ΦA∗

1 ) on Kcr is predominant over that of the
anisotropic moduli. In fact, when looking at the optimal PPs distributions shown in
Fig. 6.9, one can notice that the anisotropic moduli are almost uniformly distributed
over the plate (apart for a variation of the RA

∗
1 field near the upper right vertex of

the plate). The optimised VAT laminate shows a standard orthotropic behaviour in
each point.
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Benchmark 2: effect of the loading condition on the optimised solution

The influence of the loading conditions on the optimised solutions is evaluated here. For
the sake of brevity, the optimisation analyses have been performed only for the case of
uniform dimensionless anisotropic moduli and point-wise variable normalised polar angle.
Three values of the load ratio (LR := fy/fx) have been considered: 0 (i.e. only fx is
applied), 0.5 and 1. For each case, the isotropic solution has been considered as a starting
guess.

The normalised buckling load of the optimised solutions, the optimised anisotropic
moduli and the number of iterations are listed in Table 6.11, for each value of LR. The
effect of LR on the optimal distribution of the polar angle ΦA∗

1 and on the first buckling
mode shape are reported in Figs. 6.10 and 6.11, respectively.

LR Kcr ρ0 ρ1 Iterations

0 3.93 −1.0 0.0 64
0.5 2.08 −1.0 0.0 43
1.0 1.79 −0.70 0.39 37

Table 6.11: Effect of the loading conditions on the optimised solutions.

By looking at Figs. 6.10 and 6.11 and by considering the results listed in Table 6.11,
the following remarks can be done.

• Each optimised solution is better than the ISO solution (for a given value of LR). The
solution with LR = 0 presents the biggest improvement in the normalised buckling
load.

• The optimised solutions with LR = 0 and LR = 0.5 have the same optimised
anisotropic moduli and a quite similar distribution of the polar angle ΦA∗

1 . These
solutions represent a VAT laminate characterised by a square symmetry with the
main orthotropy axes oriented at ±45 deg with respect to the local value of ΦA∗

1 , see
[56, 57].

• The LR = 1 case corresponds to the Case 1a reported in Table 6.9. As discussed
beforehand, the optimisation algorithm stops into a local minima when the ISO
solution is used as a starting guess. In this case a better result can be obtained by
using the best individual provided by the ERASMUS code as a starting point.

6.8 Conclusions

In this Chapter the FLP formulation of the MS2LOS for VAT composites has been ex-
tended to deal with eigenvalue buckling problems. In particular, the main contribution
consists of the derivation of the analytical form of the gradient of the buckling factor
by taking advantage of the B-spline surface properties, which are used to represent the
laminate PPs fields of the VAT composite. The considered design problem focuses on the
maximisation of the first buckling load of a VAT laminate subject to feasibility constraints
and geometrical requirements. The closed-form expression of the buckling factor gradi-
ent with respect to the design variables has been analytically derived by exploiting the
properties of the B-spline blending functions. The algorithms required for the buckling
factor gradient assessment have also been presented in this study: they ensure the mini-
mum number of operations for the computation of the gradient in order to speed-up the
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Figure 6.10: Optimal distribution of the polar angle ΦA∗
1 over the structure for the opti-

mised solution listed in Table 6.11.

optimisation process while guaranteeing a high accuracy.
Two test cases have been analysed to prove the effectiveness of the MS2LOS based on
the polar formalism. The first benchmark problem, taken from the literature, has been
considered to validate the performances of the optimised solutions resulting from the FLP
of the MS2LOS through a comparison with those resulting from multi-level approaches
based on LPs. The numerical results found here show that the optimised solutions pro-
vided by the MS2LOS based on the polar formalism outperform those presented in the
literature: the improvement in the normalised buckling factor varies from 12.8% (when
using a B-spline surface with 25 CPs to describe the polar angle distribution) to 16.3% (in
the case of 81 CPs). In particular, the results presented in this study are very encouraging
and show that a significant increase in the buckling strength of VAT composites can be
obtained with respect to a reference quasi-homogeneous isotropic solution: up to 130%
for benchmark 1 and up to 229% for benchmark 2. The advantages related to the use
of B-spline surfaces and to the polar formalism in the context of the MS2LOS, presented
in previous publications on the topic (i.e. a strong reduction of the computational costs
when compared to FE-based approaches and the continuity of the PPs fields) are once
again confirmed here. In addition, two important aspects of the MS2LOS based on the
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(a) LR = 0 (b) LR = 0.5

(c) LR = 1

Figure 6.11: Mode shape related to the first buckling load for the optimised solutions
listed in Table 6.11.

polar formalism should be pointed out: (a) the effectiveness of the representation of the
anisotropy based on PPs which allows determining locally the optimal symmetry group;
(b) the absence of simplifying hypotheses either on the nature of the stack or on the kind of
orthotropy of the laminate stiffness tensors during the FLP (unlike the approaches based
on the use of LPs).

Regarding the prospects, some aspects of theoretical, numerical and technological na-
ture deserve a particular attention. The optimisation strategy needs to be tested on more
complex benchmarks, e.g. a representative stiffened panel extracted either from the wing
or from the fuselage of an aircraft made of VAT composites. In addition, the design prob-
lem requires the formalisation of further technological constraints (e.g. gap and overlap
between adjacent tows, tow width, the variation of the fibre volume fraction due to im-
perfections, etc.), related either to the AFP process or to the FFF+CFF technologies, in
the FLP theoretical framework in order to get not only an optimised solution but also a
manufacturable one. Research is ongoing on these aspects.
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Chapter 7

Integration of the global-local
modelling approach based on CUF
within the MS2LOS

7.1 Introduction

In this Chapter, a modified version of the FLP of the MS2LOS is applied to a simplified
wing-box model made of CSC. The aim is to integrate the global-local approach based
on CUF discussed in Chapter 3 into the MS2LOS discussed in Chapters 5 and 6. The
problem is formulated in terms of the least-weight design of the composite wing-box
structure subject to design requirements related to buckling and first-ply failure. This
last requirement is verified by using the global-local modelling approach involving a local
layer-wise model based on CUF higher-order beam theories. The critical ZOI of the
wing-box is identified by means of the tensorial laminate-level failure criterion presented
in [60, 95]. In this Chapter, the work-flow of the MS2LOS has been modified in order to
integrate the global-local modelling approach based on CUF and to determine feasible
SSs satisfying the requirements of the problem at hand. In particular, there is no longer
a clear distinction between FLP and SLP, but the two phases of the MS2LOS strongly
interact during the optimisation process. More precisely, at the macroscopic scale the
laminate behaviour is still described through the use of PPs, which constitute (together
with the geometrical parameters) the design variables of the FLP. The solution search of
the FLP is carried out through the GA ERASMUS. However, since a requirement on the
first-ply failure index has been introduced in the problem formulation and since the most
critical ZOI is modelled through a layer-wise FE model, for each individual representing
the potential solution of the FLP, a nested genetic optimisation is carried out to find
the optimal SS matching the values of the PPs corresponding to this individual and
satisfying the requirement on the first-ply failure. The optimal stacking sequence, for
each individual of the FLP, is searched in the domain of QT solutions [36, 37].
The Chapter is organised as follows: the problem description and the general work-flow
of the design procedure are presented in Section 7.2. In Section 7.3, the mathematical
formulation of the optimisation problem and the numerical strategy are detailed. The
global FE model of the wing-box and the local 1D CUF model of the ZOI are described
in Section 7.4, while the numerical results are discussed in Section 7.5. Finally, Section
7.6 is devoted to concluding remarks and prospects.

111
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7.2 Problem Description

7.2.1 The benchmark structure

The benchmark considered here is a simplified wing-box model made of composite lami-
nates.
The geometry of the structure, taken from [67], the boundary conditions (BCs) and the
applied loads are illustrated in Fig. 7.1. The wing-box has a length L = 3543 mm, a
width W = 2240 mm and a height H = 381 mm. The wing-box is clamped at x = 0
and four concentrated forces are applied at nodes located at (x, y, z) =

(
L, iW3 ,

H
2

)
,

i = 0, 3. The magnitudes of the forces are F1 = 360.04 N, F2 = 751.55 N, F3 = 751.55 N
and F4 = 1520.70 N.

F1 F2 F3 F4

x

y

z

ux = uy = uz = 0

x = y = z = 0

W

L

H

Figure 7.1: Geometry and BCs of the simplified wing-box taken from [67].

In the simplified wing-box, ribs, spars and stringers are replaced by continuous equally
spaced composite plates with a pre-defined SS, i.e. [45◦11]S . All laminates are made of
T300/N5208 graphite-epoxy pre-preg laminæ whose mechanical properties are reported in
Table 7.1.

In this study, only dorsal and ventral panels are optimised. Conversely, the laminates
constituting ribs, spars and stringers are kept unchanged during the optimisation process.
For the sake of clarity, Fig. 7.2 shows the design and non-design regions of the wing box.
The design region consists of six panels: three belonging to the dorsal region and three
belonging to the ventral one.

As illustrated in Fig. 7.3, each panel of the design region is split into three sub-panels
to check the design requirements related to the high-fidelity FE model generated for the
most critical ZOI. As stated above, the high-fidelity FE model of the most critical ZOI
relies on high-order 1D beam theories (layer-wise kinematics) within the CUF framework
[130].

All the results presented in this study are compared to ones obtained for a reference
configuration of the wing-box. In particular, the design region of the reference solution is
composed of quasi-homogeneous isotropic laminates with a number of plies equal to 20:
the total mass of the reference solutions is 261 kg.
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Technical constants PPs of Qa PPs of Q̃b

E1 [MPa] 142000.0 T0 [MPa] 22040.0 T [MPa] 5272.0
E2 [MPa] 10300.0 T1 [MPa] 19838.0 R [MPa] 1928.0
G12 [MPa] 7200.0 R0 [MPa] 14840.0 Φ [deg] 90.0
ν12 0.27 R1 [MPa] 16550.0
ν23 0.42 Φ0 [deg] 0.0

Φ1 [deg] 0.0

Engineering strengths PPs of Gin
c PPs of Gout

d and gin
e

Xt [MPa] 2280.0 Γ0 [MPa] 7077.0 Γ [MPa] 8637
Xc [MPa] 1440.0 Γ1 [MPa] 1312.0 Λ [MPa] 1647.0
Yt [MPa] 57.0 Λ0 [MPa] 3206.0 Ω [deg] 90.0
Yc [MPa] 228.0 Λ1 [MPa] 405.0
Zc [MPa] 57.0 Ω0 [deg] 45.0 γ [MPa] 68.0
S23 [MPa] 40.0 Ω1 [deg] 90.0 λ [MPa] 68.0
S12 = S13 [MPa] 71.0 θ [MPa] 90.0
Thickness: hply = 0.127 [mm]
Density: ρ = 1.578× 10−6 [Kg/mm3]
a In-plane reduced stiffness matrix.
b Out-of-plane shear stiffness matrix.
c In-plane reduced strength matrix.
d Out-of-plane strength matrix.
e In-plane strength vector.

Table 7.1: Mechanical properties of the T300/5208 carbon-epoxy pre-preg.

Figure 7.2: Design and non-design regions of the wing-box structure.

7.2.2 The modified MS2LOS

As stated above, the aim of this Chapter is to interface the MS2LOS with the global-local
modelling approach based, on the one hand, on a standard FE code to generate the GFEM
(to assess the global structural responses) and, on the other hand, on higher-order layer-
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Figure 7.3: Sub-panels composing the design region of the wing-box

wise beam theories in the framework of CUF (to assess local design requirements).
The reason is to accurately assess the local structural responses through the use of higher-
order formulation to better characterise the mechanical behaviour of the most critical ZOI
of the FE model overcoming, thus, the limitations of the FSDT on which the GFEM relies.
The work-flow of the modified MS2LOS is illustrated in Fig. 7.4.

As stated above, the goal is to minimise the mass of the structure subject to the follow-
ing design requirements: buckling factor, feasibility constraints on PPs of the laminates
composing the wing-box, first-ply failure on the most critical regions. As illustrated in Fig.
7.4, the modified architecture of the MS2LOS is composed of two interdependent optimi-
sation loops. The solution search for both loops is performed through the GA ERASMUS
[5]. The outer loop represents the structural optimisation where both GFEM (built within
ANSYS R©) and LFEM (generated within CUF framework) are interfaced with ERASMUS.
The inner loop represents the lay-up design of the SLP (this step is fully analytical, see
Section 5.5), which is performed only for the most critical ZOI of the design region of the
wing-box. In particular, during the outer loop, for each individual of each population,
ERASMUS passes the vector of design variables xout (see Section 7.3 for more details)
to the GFEM, which is invoked to assess the mass of the wing-box, the first buckling
factor and the LFI according to the formulation proposed by Catapano and Montemurro
in [60, 95]. The LFI is then used to identify the most critical ZOI among the sub-panels
constituting the design region of the wing-box, as shown in Fig. 7.3. It is noteworthy
that the GFEM is generated by considering the definition of the laminates (constituting
the wing-box) based on the PPs in the FSDT framework. Once the most critical panel
of the wing-box is identified, the SLP is resolved on-the-fly to find, at least, one optimal
SS meeting the current value of PPs and thickness (included in the vector of design vari-
ables xout, see Section 7.3) for the selected ZOI. It is noteworthy that the SS solutions
of the SLP are searched in the space of QT solutions, as discussed in Sections 4.6 and
5.5. Once the optimal SS is found, it is passed to the LFEM based on layer-wise high-
order beam theories to assess the ply failure index (the CUF environment is invoked to
achieve this task). Finally, all requirements (from both GFEM and LFEM) are passed to
ERASMUS (outer loop) to perform the genetic operations (selection, crossover, mutation,
penalisation, elitism, etc.) until the convergence criterion is met.
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Figure 7.4: Work-flow of the modified MS2LOS.

7.3 Problem formulation

This Section is devoted to the problem formulation description by highlighting the main
features (design variables, objective function, optimisation constraints) of both outer and
inner loop of the process illustrated in Fig. 7.4.

7.3.1 Design variables of the outer optimisation loop

The outer optimisation loop focuses on the structural optimisation by considering the
structural responses assessed through both GFEM and LFEM. Inasmuch as the local
response of the structure, assessed by means of the LFEM, depends upon the macroscopic
behaviour of the most critical ZOI extracted from the GFEM (this task is done via the
evaluation of the LFI, as discussed in the following), and since the elastic and strength
behaviours of the laminates composing the GFEM are described in the PPs space, the
design variables of the outer loop are the laminate PPs and some geometric parameters
(i.e. overall thickness and number of saturated groups of the QT solutions, as discussed
in the following).
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In particular, the laminates composing the design region of the wing-box are quasi-
homogeneous and fully-orthotropic (both membrane and bending stiffness tensors). There-
fore, the macroscopic behaviour of each laminate, in the FSDT framework, is uniquely
described by three dimensionless PPs: ρ0, ρ1, φ1, see Eq. (6.7). Moreover, the main direc-
tion of the orthotropy axis is assumed aligned with the x-axis of the wing-bow structure
(see Fig. 7.1): accordingly, φ1 = 0 for each panel.
The variable change proposed by Izzi et al. [98] is used here to avoid the introduction of the
feasibility constraint on the PPs within the problem formulation, unlike the strategy pre-
sented in Chapter 5. This approach consists of remapping over a unit square [0, 1] × [0, 1]
the feasible domain of PPs identified by Eq. (5.10) through the following variables change:

(α0, α1) :=

(
ρ0 − 1

2
(
ρ2

1 − 1
) , ρ1

)
, (7.1)

whose converse relation is

(ρ0, ρ1) =
(
1 + 2α0 (α2

1 − 1), α1

)
(7.2)

In this way, all the combinations of α0 and α1 automatically satisfy the feasibility condi-
tions of Eq. (5.10), without the need of introducing explicit constraints into the problem
formulation.
Two further geometric variables complete the set of design variables of the outer optimi-
sation loop: the number of layers nl and the number of saturated groups ng for all the
panels of the design regions. The number of layers nl is needed to calculate the overall
thickness of the laminate h = nlhply, whilst the number of saturated group ng is used
within the inner optimisation loop (i.e. the on-the-fly resolution of the SLP for the most
critical ZOI) to correctly select the family of QT solutions within the database generated
via the algorithm described in [37]. Indeed, as explained in [37], the number of QT staks
depends upon the combination of nl and ng.
The design variables of the outer optimisation loop are, thus, collected in the following
vector:

xT
out := (ρ0i, ρ1i, nli, ngi) , i = 1, . . . , np, (7.3)

where np = 6 represents the number of panels composing the design region of Fig. 7.2.

7.3.2 Design variables of the inner optimisation loop

As discussed above, the inner optimisation loop, shown in Fig. 7.4, consists in solving on-
the-fly the SLP by searching the solution in the database of QT stacks [37]. As discussed
in Sections 4.6 and 5.5, QT SSs are closed form solutions that satisfy the requirements
of membrane/bending uncoupling and homogeneity (membrane and bending normalised
stiffness tensors are equal) regardless of the values of the orientation angles of the layers.
Therefore, by means of a dedicated algorithm [37], it is possible to generate the database
of QT solutions for a given pair of number of layers nl and number of saturated groups
ng. This database was already available at the I2M laboratory as a result of the work by
Garulli et al. [37].

Inasmuch as the number of QT solutions nsol depends on the couple nl, ng, i.e. nsol =
nsol (nl, ng) it is useful to introduce a design variable related to the identifier IDsol (i.e.
an integer) that varies in the range [1, nsol (nl, ng)], which uniquely identifies the solution
within the database for a given pair of number of layers and number of saturated groups.
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Moreover, the orientation angle associated to each saturated group, i.e. θk, k = 1, . . . , ng
is also included within the design variables vector of the inner loop that reads:

xT
inn :=

(
IDsol, θ1, . . . , θng

)
. (7.4)

7.3.3 Objective function of the inner optimisation loop

Since the goal of the inner optimisation loop is to find, at least, one SS meeting the value
of the PPs related to the current individual (of the generic population) of the outer loop,
the objective function to be minimised is the function I (fi (xout, xinn)) of Eq. (5.16). The
expression of functions fi, (i = 1, . . . , 6) is provided in Eq. (5.17). The SLP to be solved
on-the-fly, for each individual of each population of the outer loop, can be formulated as
an unconstrained non-linear programming problem (UNLPP) as:

min
xout

I (fi (xout, xinn)) . (7.5)

The properties of the SLP of Eq. (7.5) have been already discussed in Section 5.5. As
discussed in Section 5.5, the GA ERASMUS is used to perform the solution search of
problem (7.5). The genotype of the individual of the inner loop depends upon the value
of the number of saturated groups ng related to the current individual of the outer loop.
In particular, the genotype of the generic individual of the inner optimisation loop is
characterised by ng + 1 genes: the first one codes the solution identifier IDsol, whilst the
remaining ones code the orientation angles of the ng saturated groups. Each angle can
take values in the interval [−89, 90] deg with a step of 1 deg.

7.3.4 Objective function and optimisation constraints of the outer opti-
misation loop

The goal of the optimisation process illustrated in Fig. 7.4 is to minimise the mass of the
wing-box that constitutes, thus, the merit function of the problem at hand. The mass of
the wing-box reads:

M(xout) := ρplyV (xout), (7.6)

where V (xout) is the overall volume of the GFEM of the wing-box.
The first design requirement, to be included in the problem formulation, consists of a

constraint on the first buckling factor λ of the structure. The constraint function reads:

g1(xout) := 1− λ, (7.7)

where the first buckling factor λ is the result of an eigenvalue buckling analysis conducted
on the GFEM of the structure, i.e.

(KG + λKσG)ψG = 0, (7.8)

where KG is the stiffness matrix of the GFEM, KσG is the geometric stiffness matrix of
the GFEM, while ψG is the eigenvector related to the first buckling factor λ.
The second and third design requirements deal with the first-ply failure and delamination,
respectively, which are assessed by checking a set of inequalities after carrying out a static
analysis on the LFEM of the most critical ZOI. As discussed in Section 7.4, the most critical
ZOI is identified and isolated by checking the local laminate failure index calculated from
the laminate-level failure criterion presented in Section 4.4. Once the most critical ZOI
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is identified, the LFEM is generated by using a high-order beam theory with a layer-wise
kinematics in the CUF framework.

In particular, as discussed in Section 7.4, the LFEM is subjected to geometrical BCs,
which are calculated from the results of a static analysis conducted on the GFEM (and
opportunely transferred to the LFEM) as follows:

KGuG = fG, (7.9)

KLuL + K̃LũL = 0, (7.10)

with

ũL := PuG. (7.11)

In Eq. (7.9), uG and fG are the vectors of generalised displacements and external forces
applied to the GFEM, respectively. In Eq. (7.10), uL and ũL are the unknown and
imposed generalised displacements of the LFEM, whilst matrices KL and K̃L are the
stiffness matrices of the LFEM after the application of the BCs of the Dirichlet type.
As stated above, the BCs applied to the LFEM in terms of generalised displacements ũL

on the LFEM boundary depend upon the results of a static analysis conducted on the
GFEM uG. The matrix P of Eq. (7.11) represents such transformation.

Once the results of the static analysis carried out on the LFEM are available, the
first-ply failure is evaluated by using the Hashin’s failure criteria for the prediction of ply
failure [177] together with the mixed mode quadratic criteria to determine the onset of
delamination [178]. All failure criteria considered in this study are assessed at the ply-level

X1

X2

X3

Figure 7.5: Local frame orientation for the assessment of first-ply failure and delamination
related design requirements.

by considering the material coordinate system shown in Fig. 7.5. For the sake of clarity,
the Hashin’s failure criteria and the delamination criterion used in the formulation of the
optimisation problem are briefly described here below.

• Hashin’s failure criteria. This set of criteria is used to determine the first-ply failure
based on the stress state and to determine the dominating failure mode at the ply-
level. The inequalities to be checked (and corresponding to different failure modes
for both fibre and matrix) are:

1. Fibre Tension:

g2(xinn) :=

(
σ2

11

XT

)2

+
σ2

12 + σ2
13

S2
13

− 1, (7.12)
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2. Fibre Compression:

g3(xinn) :=

(
σ2

11

XC

)2

− 1, (7.13)

3. Matrix Tension:

g4(xinn) :=
(σ22 + σ33)2

Y 2
T

+
σ23 − σ22σ33

S2
23

+
σ2

12 + σ2
13

S2
12

− 1, (7.14)

4. Matrix Compression:

g5(xinn) :=

[(
YC

2S23

)2

− 1

](
σ22 + σ33

YC

)
+

(σ22 + σ33)2

4S2
23

+ (7.15)

+
σ2

23 − σ22σ33

S2
23

+
σ2

12 + σ2
13

S2
12

− 1. (7.16)

In the previous formulæ, σij represents the generic component of the stress
tensor in the material coordinate system. X and Y represent the material
strength along x1 and x2 axes, respectively; the subscript T stands for tensile
loading and C for compressive one. Sij denotes the material shear strength in
the plane xi−xj . Of course, if all the above expressions are lower than or equal
to zero no failure occurs.

• Delamination onset criterion. The delamination onset is determined by means of the
mixed mode quadratic criterion as:

g6(xinn) :=

(
< σ33 >

ZT

)2

+

(
σ23

S23

)2

+

(
σ13

S13

)2

− 1, (7.17)

where < σ33 >:= max (0, σ33) is the transverse normal stress in the material coor-
dinate system (which must be considered if and only if σ33 is positive, i.e. when
it tends to separate adjacent plies). σ13 and σ23 are the transverse shear stresses,
ZT is the interlaminar normal strength while S13 and S23 are the transverse shear
strengths. If the above expression is lower than or equal to zero no delamination
occurs.

It is noteworthy that the above failure criteria require the assessment of the 3D stress field
within each lamina. This task is achieved through local analysis of the ZOI by means of
a layer-wise 1D CUF model, which accurately describe the stress field. The least-weight
design of the wing-box structure can, now, be formulated as a CNLPP as follows:

min
xout

M(xout),

subject to:




Eq. (7.8)

Eq. (7.9)

Eq. (7.10)

Eq. (7.5)

g1(xout) ≤ 0,

gj(xinn) ≤ 0, j = 2, . . . , 6.

(7.18)
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It is noteworthy that problem (7.18) is a non-standard non-convex CNLPP. The non-
convexity is due, on the one hand, to the nature of the constraint functions involved in
the problem formulation, and, on the other hand, on the strong coupling between global
and local FE models (and, consequently, between the two loops constituting the whole
optimisation process). In particular, according to the flow-chart illustrated in Fig. 7.4,
the solution of the outer optimisation loop, i.e. xout depends upon the solution of the SLP
(inner optimisation loop), i.e. xinn, which is solved on-the-fly for each individual of the
outer optimisation loop.

This dependency among the two set of variables is governed by a sort of strong
coupling. One the one hand, the solution of the UNLPP of Eq. (7.5), i.e. the SLP of
the inner loop, depends upon the current value of the design variable of the outer loop
(related to the generic individual). On the other hand, the optimal solution of the outer
loop must satisfy the optimization constraints gj (j = 2, . . . , 6), which are evaluated on
the LFEM, whose value depends upon the optimal solution of the inner loop.

Design variable Type Lower bound Upper bound Discretisation step

α0 continuous 0.0 1.0 -
α1 continuous 0.0 1.0 -
nl integer 13 30 1
ng integer 1 5 1

Table 7.2: Bounds on the design variables of the outer optimisation loop.

As stated in Section 7.2, the ERASMUS code [5] is used to carry out the solution search
for both outer and inner optimisation loops. The bounds and the nature of the design
variables involved in the outer loop are reported in Table 7.2, while the design variables of
the inner loop have already been discussed in Section 7.3.3. The genotype of the generic
individual of the outer optimisation loop is characterised by six chromosomes (one for
each panel), each one composed of four genes, where each gene is related to a component
of the design variables vector of the outer loop.

As shown in Fig. 7.4, the GA ERASMUS is coupled with the ANSYS FE commercial
software to calculate the mass, the LFI distribution within the design region and the first
buckling factor of the wing-box and with MUL2@GL code for check the ply-level failure
modes of the most critical ZOI. Therefore, for each individual generated by the GA
ERASMUS, at each iteration of the outer optimisation loop, three FE analyses are carried
out: a static analysis (to assess the LFI distribution) and an eigenvalue buckling analysis
on the GFEM of the wing-box structure and a static analysis on the LFEM of the ZOI
to check the first-ply failure and delamination onset. The LFEM requires as input the
SS of the sub-panel, which is not provided by the outer optimisation loop optimisation.
Accordingly, a further local optimisation (inner loop) is necessary to determine the SS
of the ZOI. To this purpose, the SLP of the MS2LOS is solved on-the-fly (for each
individual of the outer loop) by means of the ERASMUS algorithm providing, in this
way, the optimal SS in the space of QT solutions. Once the QT SS is obtained, the
MUL2@GL code computes the design requirements related to the first-ply failure and to
the delamination onset. These software are interfaced by means of a routine programmed
in Python language.
At each iteration of the outer optimisation loop, the outputs are the value of the objective
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function and of the constraints functions. ERASMUS elaborates the results provided by
the FE analyses to perform the genetic operations. The outer loop is repeated until the
user-defined convergence criterion is satisfied.

7.4 The finite element models

7.4.1 The global finite element model of the wing-box

As discussed above, two FE models of the wing-box structure are interfaced with the outer
optimisation loop shown in Fig. 7.4: the GFEM of the whole wing-box and the LFEM of
the most critical sub-panel belonging to the design region.
The FE model of the wing-box is automatically generated by means of an ad-hoc APDL
script. The geometry and the mesh of the GFEM are opportunely parameterized and
depend upon the input variables passed from ERASMUS to the APDL script. The mesh
and the BCs of the GFEM are illustrated in Fig. 7.6. As far as BCs are concerned, uj = 0,
θj = 0 (j = x, y, z) is set on nodes located at x = 0, while four point loads are applied on
the nodes located at x = L as discussed in Section 7.2.
Two analyses are then executed on the GFEM: a static analysis to assess the LFI dis-
tribution and an eigenvalue buckling analysis to compute the first buckling factor of the
structure.

Clamped section

Point loads

Figure 7.6: Mesh and BCs of the GFEM of the wing-box structure.

The mesh of the GFEM is composed of four-node ANSYS SHELL181 elements with six
DOFs per node (FSDT framework using the implicit definition of the laminate constitutive
matrices). A mesh convergence analysis, not reported here for the sake of synthesis, has
been carried out to calibrate the mesh size in order to find a compromise between accuracy
and computational costs. As a result of this sensitivity analysis, the element size has been
set equal to 80 mm for an overall number of elements NeG = 4500.

7.4.2 ZOI identification: the laminate-level failure criterion

The identification (and isolation) of the ZOI, which corresponds to one of the sub-panels
constituting the design region of the wing-box, as shown in Fig. 7.3, is done by evaluating
the local LFI according to the laminate-level failure criterion proposed by Catapano and
Montemurro in [60, 95] and briefly discussed in Section 4.4. In particular, let ΩDR be the
set of elements constituting the design region. It is possible to define the maximum LFI
as follows:
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FIlam,max := max
e∈ΩDR

FIlam,e, (7.19)

where FIlam,e is the LFI of Eq. (4.32) evaluated at the centroid of each element belonging
to ΩDR.
Let emax be the ID of the element having the maximum LFI. Let ΩSP,j , (j = 1, . . . , 18)
be the set of elements constituting the j-th sub-panel of the design region. Of course,
ΩDR dj=1,...,18 ΩSP,j . Finally, the most critical ZOI corresponds to the j-th sub-panel to
which emax belongs. Subsequently, this panel is extracted from the GFEM and meshed by
using high-order 1D layer-wise elements as discussed in the following.

7.4.3 The local finite element model

The LFEM of the most critical ZOI is automatically generated by the Python interface
after a post-processing phase of the results of the static analysis conducted on the GFEM.
As discussed above, the LFI distribution is used to identify, isolate and extract the
most-critical sub-panel of the design region of the wing-box, which constitutes the ZOI to
be modelled via high-order theories. In particular, as illustrated in Fig. 7.7, the LFEM of
the ZOI is composed of three high-order four-node beam elements (B4) belonging to the
LE class. The beam cross-section is made of eight L9 sub-domains along the y-axis and
one L9 sub-domain per ply along the z axis. BCs of the Dirichlet type are imposed on
the LFEM boundary. In particular, the DOFs of the nodes located on the boundary of
the most-critical sub-panel are recovered from the results of the static analysis performed
on the GFEM and transferred to the LFEM. To correctly ensure the transfer of the BCs
from the GFEM to the LFEM (which are characterised by different meshes and different
element types) the DOFs evaluated at the nodes belonging to the skin of the sub-panel of
the GFEM are interpolated and transferred to the nodes located on the boundary of the
sub-domains of the cross-section of each beam element composing the LFEM (as shown in
Fig. 7.7) according to Eq. (7.11). Finally, a static analysis is conducted on the LFEM to
have an accurate assessment of the local stress field, which is of paramount importance to
correctly predict the first-ply failure and the delamination onset according to the criteria
of Eqs. (7.12) - (7.17). This is the main goal of the LFEM based on high-order beam
elements developed in the CUF framework.

7.5 Numerical results

As stated in the introduction of this Chapter, the least-weight design problem of a com-
posite wing-box structure is faced in this study. A modified version of the MS2LOS is
employed to solve the problem and the global-local modelling approach based on higher-
order layer-wise beam theories in the framework of CUF is used to locally verify the FI
constraint of the critical ZOI of the wing-box during its optimisation. The aim is to op-
timise the stiffness/strength properties of the laminates constituting the wing-box while
minimising its mass. The genetic parameters tuning the behaviour of the GA ERASMUS
utilised to perform the solution search for both outer and inner loops of the optimisation
strategy discussed in Section 7.2.2 are listed in Table 7.3.

Moreover, regarding the constraint-handling technique used in the outer loop, the ADP
method has been considered [154]. For more details on the numerical techniques devel-
oped within the new version of ERASMUS and the meaning of the values of the different
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Figure 7.7: Layer-wise high-order LFEM.

Genetic parameters

Outer loop Inner loop

N. of populations 1 1
N. of individuals 480 70
N. of generations 100 100
Crossover probability 0.85 0.85
Mutation probability 0.01 0.02
Selection operator roulette-wheel tournament selection
Elitism operator active active

Table 7.3: Genetic parameters of the GA ERASMUS for the outer and inner loops.

parameters tuning the algorithm the reader is addressed to [5].
Table 7.4 lists the mass of the optimised configuration with respect to the reference one,
instead Table 7.5 reports the optimised set of the outer loop design variables for each panel
of the wing-box design region.

Mass [kg] Mass reduction %

Reference solution 261 −
Optimised solution 234.05 10.33

Table 7.4: Mass of the reference and the optimised configurations of the wing-box.

Fig. 7.8 illustrates the value of the objective function for the best individual (within the
population) vs. the number of generations: one can notice that the convergence towards
the optimised configuration of the wing-box is achieved after 25 iterations of the outer
loop.
The mode shape related to the first buckling load for both reference and optimised solutions
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ρ0 ρ1 nl ng

Panel 1 0.77 0.91 16 3
Panel 2 0.85 0.58 13 3
Panel 3 0.46 0.08 14 3
Panel 4 0.43 0.14 21 2
Panel 5 0.21 0.32 23 3
Panel 6 −0.67 0.14 16 3

Table 7.5: Optimal value of the design variables of the outer optimisation loop (the di-
mensionless polar parameters are reported instead of the values of α0 and α1).

Outer loop Inner loop

ρ0 = 0.77
ρ1 = 0.91 [2◦/− 16◦/12◦/2◦/12◦/2◦/2◦/− 16◦/
nl = 16 −16◦/2◦/2◦/12◦/2◦/12◦/− 16◦/2◦]
ng = 3

Table 7.6: Optimal value of the design variables of both outer and inner loops of the ZOI
(sub-panel 1 in Fig. 7.3).
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Figure 7.8: Mass vs. number of generations for the best individual during the optimisation
process.

is shown in Fig. 7.9, whilst the distribution of the LFI over the elements constituting the
design region of the wing-box structure is illustrated in Fig. 7.10 for both solutions. From
the analysis of these results, it can be immediately inferred that the most critical zone
of the design region is the sub-panel 1 belonging to panel 1, which is selected as a ZOI
(the LFI gets the highest values for some elements belonging to this sub-panel). The
optimal value of the design variables of the outer loop together with the optimal stacking
sequence found at the end of the inner loop for the ZOI are reported in Table 7.6 and
the polar diagrams of the homogenised stiffness matrices are depicted in Fig. 7.11 for
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(a) λref = 1.029

(b) λopt = 1.034

Figure 7.9: Mode shape related to the first buckling load for (a) reference solution and (b)
optimised solution.

the best individual reported the in Table 7.6. The through-the-thickness variation of the
in-plane stress field (σij , i, j = x, y) evaluated at the centre of the ZOI for the optimal
stack provided in Table 7.6 is illustrated in Fig. 7.12. No out-plane stresses are represented
here because they are negligible whit respect to the in-plane ones
The following remarks can be drawn from the analysis of these results. In terms of the

first buckling load, the optimised solution is very close to the reference one and the local
buckling occurs in sub-panel 10 of panel 4, whilst in the reference solution the local buckling
occurs, essentially, in sub-panels 15 and 16, as illustrated in Fig. 7.9. As reported in Table
7.4, the optimised solution is 10.33% lighter than the reference one, which is a quite good
achievement and demonstrates the effectiveness of this proposed approach in solving the
least-weight design problem for the simplified composite wing-box considered in this study.
As summarised in Table 7.5, each panel composing the design region is characterised by
a standard orthotropic behaviour (with KA∗

= 0 because ρ0 is positive), except panel
6, which shows the so-called “dog bone” orthotropy (i.e., with KA∗

= 1 because ρ0 is
negative). Figure 7.11 highlights two important aspects of the optimal stacking sequence
characterising the ZOI: the solution is perfectly decoupled and homogeneous (thanks to
the use of QT solutions), and it is totally orthotropic in membrane and bending (the
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(a) Up view

(b) Bottom view

Figure 7.10: Distribution of the LFI in the design region of the wing-box structure.

polar diagram is characterised by two axes of symmetry) with the main axis of orthotropy
oriented at 0◦. It is noteworthy that these properties have been obtained with a general
QT stack which is neither symmetric nor balanced: this is due to the great potential
behind the polar formalism in describing the elastic behaviour of laminates without using
symplifying hypotheses on the nature of the stacks.
Finally, although the local analysis of the ZOI through the global-local modelling approach
based on higher-order layer-wise beam theories allows describing the through-the-thickness
variation of the stress field in a way more accurate than commercial FE codes, in the case
study considered here, the optimal stack is not characterised by particular issues in term
of neither first-ply failure nor delamination.

7.6 Conclusions

A modified version of the MS2LOS has been proposed in this chapter and has been applied
to the least-weight design problem of a simplified composite wing-box structure subject to
design requirements related to first buckling load, delamination and first-ply failure. The
contribution of this work is to integrate the global-local approach based on CUF discussed
in Chapter 3 into the MS2LOS discussed in Chapters 5 and 6 with major modifications



7.6. Conclusions 127

(a) First component of homogenised stiffness matrices A∗, B∗ and D∗

(b) Homogenised shear stiffness matrix H∗

Figure 7.11: Homogenised stiffness matrices of the best individual reported in Tab.7.6.

on the overall architecture of the MS2LOS. In particular, the first-ply failure and the
delamination requirements are verified by using the global-local modelling approach, based
on the CUF framework, through a local layer-wise model whose kinematics relies on higher-
order beam theories. In this work, the work-flow of the MS2LOS has been modified
to integrate the global-local modelling approach; there is no longer a clear distinction
between FLP and SLP because the two phases of the MS2LOS strongly interact during the
optimisation process. At the macroscopic scale, the laminate behaviour is still described
through the use of PPs, which constitute (together with the geometrical parameters) the
design variables of the FLP. The solution search of the FLP is carried out through the GA
ERASMUS. Instead, at the mesoscopic scale, since requirements on the first-ply failure
index and on the delamination have been introduced in the problem formulation, and
since the most critical ZOI is modelled through a layer-wise FE model, for each individual
representing the potential solution of the FLP, a genetic optimisation is carried out to find,
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Figure 7.12: Stress field through the thickness at the centre of the ZOI: (a) σxx, (b) σyy,
(c) σxy.
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by means of an on-the-fly resolution of the SLP, the optimal stack matching the values of
the PPs corresponding to this individual and satisfying the requirements on the first-ply
failure and on the delamination. In this case, the optimal stacking sequence is searched in
the domain of QT solutions.
The optimised solution is 10.33% lighter than the reference one with an enhanced buckling
strength, proving, thus, the effectiveness of the proposed approach. Further tests need to
be set up to assess the effectiveness of the proposed methodology when dealing with design
problems involving complex geometries and different load conditions, by integrating into
the problem formulation more complex phenomena like post-buckling behaviour, damage
mechanics, etc. The results obtained in this work represent just a first (encouraging)
step to develop a general multi-scale optimisation approach to design complex composite
structures: research is ongoing in this direction.
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Chapter 8

Conclusions and prospects

The work carried out in this Thesis focuses on the development of a suitable global-local
modelling approach, based on higher-order theories, which is integrated into the multi-scale
two-level optimisation strategy (MS2LOS) for the optimal design of composite structures.
This thesis is a Joint PhD Thesis and the work has been carried out at ENSAM in
Bordeaux-Talence, under the supervision of Prof. M. Montemurro and Prof. J. Pailhès
and at the Politecnico di Torino under the supervision of Prof. E. Carrera.
This work has been carried out in the context of the SMARTCOMPOSITE project, co-
funded by the Nouvelle-Aquitaine region and by Politecnico di Torino, and it gives an
original contribution in the development of a multi-scale design and optimisation strategy
for composite structures integrating a global-local modelling strategy based on higher-order
theories to correctly describe the physical responses involved at each problem scale.

8.1 General conclusions

Detailed conclusions and perspectives inherent to the topic of this Thesis are already dis-
cussed at the end of each Chapter. It would be redundant to give here all the details, thus,
only the most relevant conclusions and perspectives will be briefly recalled. The literature
survey of Chapter 2 has allowed picturing the state of the art on the main topics of the
manuscript: the design methods for CSC and VSC structures and global-local modelling
approaches for composites.
Bibliographic research on CSCs has shown that, despite the outstanding mechanical prop-
erties of this class of composite materials, the design problem requires a complex multi-
scale formulation which leads to a huge amount of design variables. In the literature, this
problem is faced making use of simplifying hypotheses and design guidelines to search for
a feasible optimised solution. These simplification rules allow simplifying the optimisation
problem but, on the other hand, the design space becomes extremely shrunk and, conse-
quently, the solution search cannot converge toward true global optima. The same con-
siderations of CSCs can be done for VCSs in the case of the design/optimisation problem,
keeping in mind that the point-wise variation of the properties significantly complicates
the resolution of the problem introducing more complex manufacturing constraints.
The difficulties of properly design/optimise at each relevant scale the properties of a CSC
structure are faced in Chapter 5 by using MS2LOS to solve the least-weight design of
a composite stiffened panel subject to requirements of different nature (geometrical, me-
chanical, technological, etc.). As discussed in the Chapter, the MS2LOS relies, on the
one hand, on the utilisation of the PPs and on the framework of FSDT for describing
the macroscopic behaviour of each laminate composing the panel and, on the other hand,
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on a special genetic algorithm in order to perform the solution search for the considered
problem. In addition, the design process is not submitted to restrictions: any parameter
characterising the structure (at each relevant scale) is an optimisation variable; in fact,
this allows searching for a true global minimum without making simplifying hypotheses.
The optimum configurations found are non-conventional, and this is due to the use of the
polar formalism to represent the macroscopic behaviour of the CSC structure, to the use
of an evolutionary strategy together with the formulation of the problem, which is stated
in the most general sense. The results obtained show that a significant weight saving can
be obtained using the MS2LOS, which is up to 11.5% with respect to the reference struc-
ture with enhanced mechanical properties in terms of first buckling load (the percentage
increment ranges from 9% to 9.5% depending on the considered optimum solution).
The end of the Chapter is devoted to a posteriori investigation of the quality of the opti-
mum configurations by means of a high-order layer-wise FE model of the stiffened panel
making use of elements with different kinematics and accuracy in the CUF framework.
These theories are introduced in Chapter 3 and are employed in the global-local approach
developed in this work. The quality investigation on the buckling loads of the reference
and optimum configurations is done to figure out if is convenient or not a substitution of
the FSDT with a high-order layer-wise FE model in the framework of MS2LOS. The idea is
in fact to enhance the capabilities of the MS2LOS in the detection of complex phenomena
that affect the composite materials (e.g. free edge stresses, delamination, etc.).
The results of this analysis show that the buckling load provided by the ANSYS FE model
(which is built by using shell elements based on FSDT) is overestimated. The range of
percentage differences is from 7.4% − 7.9% for optimum solutions to 14% for the refer-
ence configuration. The discrepancy is related to the calculation of the 3D stress field
in each layer, which strongly affects the geometric stiffness matrix used to evaluate the
first buckling load of the panel. In the case of CUF model, the more accurate description
of the stress field allows a better evaluation of the geometric stiffness matrix and of the
first buckling load of the panel consequently. Despite these discrepancies, classical shell
elements based on FSDT can be reliably employed in the framework of the MS2LOS be-
cause they allow finding true optimum solutions, and they represent the best compromise
in terms of both the number of DOFs and computational cost.
This last statement is confirmed by the bibliographic research on the multi-scale optimi-
sation strategies for CSCs and VSCs where the response of the structures is evaluated
through the classical theories (CLT and FSDT in the case of composites) due to their
versatility and moderate computational cost. The use of CLT and FSDT brings trouble
because composite material requires a detailed evaluation of stresses to detect complex
failure mechanisms which can be only studied by means of solid FE models or high-order
theories. On the other hand, from a computational perspective, a full 3D FE model or
a FE model composed of elements based on high-order kinematic models for a large-size
structure is prohibitive and above all for optimisation algorithms. In the literature, this
problem is faced with the use of global-local approaches. The idea behind these strategies
is to use 3D FE or elements based on high-order kinematic models only in the ZOIs of
the model. In this way, it is possible to achieve the best compromise between accuracy
and computational costs, especially when such models must be included in an intricate
optimisation framework.
The need to have an optimisation strategy efficient and able to detect phenomena that can-
not be studied by standard classical theories motivates the work done in this manuscript.
In Chapter 3, the original global-local approach realised in this thesis is presented. This
approach consists of a two-step procedure that is developed to accurately assess the stress
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field in the ZOI of the structures. The first step of this methodology is dedicated to the
static analysis of the GFEM, which is made of classical 1D/2D elements and is generated
by means of commercial software (MSc-Nastran and Abaqus CAE in this case). After the
identification of the ZOI, in the second step, the ZOI is analysed by using high order 1D
theories to describe in detail the stress field. In the LFEM analysis, the geometrical BCs
resulting from the GFEM are applied to the boundary of the transition zone surrounding
the ZOI. Furthermore, the LFEM of this global-local approach is characterised by the use
of higher-order layer-wise beam theories in the framework of CUF, which has proven to
be very effective and efficient in evaluating complex stress and deformation states in com-
posite structures which are already used in Chapter 5 for the investigation of the quality
of the optimum configurations of the CSC stiffened panel. Two classes of assessments
are proposed to evaluate the performances of the global-local approach developed in this
work. The first-class shows that the proposed global-local modelling approach can com-
pute accurate 3D stress fields within the ZOIs by significantly reducing the computational
costs with respect to detailed LFEMs made of 3D solid elements. The second class of
benchmarks is dedicated to the free-edge phenomenon in the composite structure. In par-
ticular, this phenomenon is characterised by extremely high peaks of interlaminar stress
and cannot be detected by standard 1D/2D FE. The global-local approach has proven
to be effective in the description of the inter-laminar stresses, which are often the cause
of the failure onset in composites and motivates its integration in the MS2LOS. Before
moving to the conclusions related to Chapter 7, where the integration of the global-local
modelling approach based on layer-wise higher-order theories developed in Chapter 3 with
the MS2LOS for CSC structures is presented, the optimisation of a particular class of
VSC is faced in Chapter 6. The aim of the Chapter is to determine, at the macroscopic
scale, the optimum distribution of the VAT laminate PPs to satisfy the requirements and
to maximise the first buckling load of a VAT composite plate. The optimisation of VAT
composite is much more complicated than the CSC and this Chapter looks for a possible
integration of the global-local approach into the MS2LOS also for this class of materials.
The main contribution consists of the derivation of the analytical form of the gradient of
the buckling factor by taking advantage of the B-spline surface properties, which are used
to represent the laminate PPs fields of the VAT composite. The closed-form expression
of the buckling factor gradient with respect to the PPs has been analytically derived by
exploiting the properties of the B-spline blending functions. The need for the search for
the analytical expressions of the buckling factor derivatives is due to the necessity to speed
up the optimisation process. Numerical derivatives could easily be calculated but they re-
quire multiple runs of the FE model, which cause an increase in the computational costs.
Two meaningful benchmarks taken from the literature prove the effectiveness of the ap-
proach presented in this Chapter. In particular, the numerical results found here show that
the optimised solutions provided by the MS2LOS based on the polar formalism outperform
those presented in the literature showing a significant increase in the buckling strength of
VAT composites. Furthermore two important aspects of the MS2LOS are highlighted in
this Chapter: on the one hand, the effectiveness of the representation of the anisotropy
based on PPs which allows determining locally the optimal symmetry group, and on the
other hand, the absence of simplifying hypotheses either on the nature of the stack or on
the kind of orthotropy of the laminate stiffness tensors during the FLP, unlike the other
approaches based on the use of LPs in the literature.
Lastly, Chapter 7 represents a fundamental brick of the work carried out in this manuscript.
In this Chapter, the integration of the global-local modelling approach based on layer-wise
higher-order theories developed in Chapter 3 within the MS2LOS for CSC structures is
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presented. A modified version of the MS2LOS has been proposed and has been applied
to the least-weight design problem of a simplified composite wing-box structure subject to
design requirements related to first buckling load, delamination and first-ply failure. The
architecture of the MS2LOS has been modified to integrate the global-local approach, in
fact, there is no longer a clear distinction between FLP and SLP because the two phases
of the MS2LOS strongly interact during the optimisation process. As well explained in
the Chapter, the global-local approach is used to verify the requirements on the first-ply
failure index and on the delamination of the most critical ZOI. In fact, for each individual
representing the potential solution, a genetic optimisation is carried out to find the opti-
mal stack matching the values of the PPs corresponding to this individual. The solution is
searched in the space of QT solutions without introducing simplifying hypotheses on the
nature of the stacking sequence. The obtained optimised solution is 10.33% lighter than
the reference one with an enhanced buckling strength, proving, thus, the effectiveness of
the proposed approach. Even if the difficulties at the programming level increased, the
proposed modified version of the MS2LOS integrating the global-local modelling approach
represents a first step in the development of a general multi-scale optimisation approach.

8.2 Prospects

The topics covered in this thesis give many insights for future developments.
The global-local modelling approach developed in this work is a powerful tool to detect
complex stress states in composite structures efficiently. This approach can be improved
by searching for better integration with the commercial software minimising user inter-
ventions. It is also necessary to investigate the effectiveness of the approach using other
criteria to isolate ZOIs (i.e. local buckling). This approach needs to be also extended for
the VSCs in order to allow their optimisation with respect to local design requirements.
The results provided by the MS2LOS in the optimisation of the CSC stiffened panel and
VAT composite plates prove the effectiveness and the robustness of the optimisation ap-
proach and provide confidence for further researches. Regarding these prospects, some
aspects of theoretical, numerical and technological nature deserve particular attention.
The optimisation strategy needs to be tested on more complex benchmarks, e.g. a repre-
sentative stiffened panel extracted either from the wing or from the fuselage of an aircraft
made of VAT composites. In particular, the design problem requires the formalisation of
further technological constraints (e.g. gap and overlap between adjacent tows, tow width,
the variation of the fibre volume fraction due to imperfections, etc.), related either to the
AFP process or to the FFF+CFF technologies, in the FLP theoretical framework in order
to get not only an optimised solution but also a manufacturable one.
The modified version of the MS2LOS with the integration of the global-local approach
shows very great potential in the optimisation of the simplified composite wing-box struc-
ture. For this case, it needs to introduce new or multiple ZOI isolation criteria in order to
increase the number of requirements which can be verified at the same time. Therefore, it is
fundamental to employ this approach in to complex test cases representative of real-world
engineering problems to assess the effectiveness of the proposed methodology with com-
plex geometries and different load conditions, by integrating into the problem formulation
more complex phenomena, like post-buckling behaviour and damage mechanics.
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Appendix A

Analytical expression of the
laminate stiffness matrices and of
their gradient

Under the hypothesis of quasi-homogeneous laminate, i.e. B∗ = 0 and A∗ = D∗, the
expression of the homogenised membrane stiffness matrix in terms of the dimensionless
PPs reads:

A∗ := A∗0 +R0ρ0A
∗
1 +R1ρ1A

∗
2, (A.1)

where matrices A∗0, A∗1, A∗2 are defined as

A∗0 :=



T0 + 2T1 −T0 + 2T1 0

T0 + 2T1 0
sym T0


 , A∗1 :=




c4 −c4 s4

c4 −s4

sym −c4


 ,

A∗2 :=




4c2 0 2s2

−4c2 2s2

sym 0


 ,

(A.2)

with

c2 = cos (πφ1) , s2 = sin (πφ1) , c4 = cos (2πφ1) , s4 = sin (2πφ1) . (A.3)

Similarly, matrix H∗ can be decomposed as:

H∗ := H∗0 +Rρ1H
∗
1, (A.4)

where matrices H∗0 and H∗1 are defined as:

H∗0 :=

[
T 0

sym T

]
, H∗1 :=

[
cH∗

2 sH∗
2

sym −cH∗
2

]
, (A.5)

with

cH∗
2 = cos

(
2ΦH∗

)
, sH∗

2 = sin
(

2ΦH∗
)
, ΦH∗

= Φ + Φ1 −
π

2
φ1. (A.6)

It is noteworthy that the quantities T0, T1, T , R, Φ1 and Φ, appearing in Eqs. (A.1)-(A.6),
are the PPs of the pre-preg tow listed in Table 6.1.
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their gradient

Taking into account for the above expressions, the derivatives of matrices A∗ and H∗

read:

∂A∗

∂ρ0
= R0A

∗
1,

∂A∗

∂ρ1
= R1A

∗
2,

∂A∗

∂φ1
= 2πR0ρ0



−s4 s4 c4

−s4 −c4

sym s4


+ πR1ρ1



−4s2 0 2c2

4s2 2c2

sym 0


 ,

(A.7)

∂H∗

∂ρ0
= 0,

∂H∗

∂ρ1
= RH∗1,

∂H∗

∂φ1
= −πRρ1

[
−sH∗

2 cH∗
2

sym sH∗
2

]
.

(A.8)

Moreover, inasmuch as the quasi-homogeneity hypothesis holds, the derivatives of matrix
B∗ are null, while those of matrix D∗ are equal to those of matrix A∗. Finally, the gradient
of the laminate stiffness matrix Klam of Eq. (4.17) with respect to the generic PP ζ reads:

∂Klam

∂ζ
= diag

(
∂A∗

∂ζ
,
∂D∗

∂ζ
,
∂H∗

∂ζ

)
, ζ = ρ0, ρ1, φ1. (A.9)



Appendix B

Buckling factor gradient

The details of the proof of Proposition 6.5.1 are given here below.

Proof. Inasmuch as external forces do not depend upon the laminate dimensionless PPs,
the derivative of the right-hand side of Eq. (6.19) is

∂f0

∂ζ(i,j)
= 0. (B.1)

Consider, now, the following functional:

z := ψT
k (K + λkKσ)ψk + µT (Kd0 − f0) = 0, with : µ 6= 0. (B.2)

In the above equation, z is identically null because Eqs. (6.13) and (6.19) holds. Moreover,
µ is the arbitrarily defined adjoint vector. The derivative of Eq. (B.2) reads:

∂ψT
k

∂ζ(i,j)
(K + λkKσ)ψk +ψT

k (K + λkKσ)
∂ψk
∂ζ(i,j)

+

+ψT
k

∂ (K + λkKσ)

∂ζ(i,j)
ψk + µT

(
∂K

∂ζ(i,j)
d0 + K

∂d0

∂ζ(i,j)

)
= 0.

(B.3)

The first two terms of Eq. (B.3) are identically null due to Eq. (6.13); thus Eq. (B.3)
simplifies to:

ψT
k

∂K

∂ζ(i,j)
ψk+λkψ

T
k

∂Kσ

∂ζ(i,j)
ψk+

∂λk
∂ζ(i,j)

ψT
kKσψk+µT

(
∂K

∂ζ(i,j)
d0 + K

∂d0

∂ζ(i,j)

)
= 0. (B.4)

By multiplying both sides of Eq. (6.13) to ψT
k one obtains:

ψT
kKσψk = −ψ

T
kKψk
λk

:= −wk
λk
. (B.5)

Therefore, by injecting the above formula in Eq. (B.4), the derivative of the k-th buckling
factor reads:

∂λk
∂ζ(i,j)

=
λk
wk

(
ψT
k

∂K

∂ζ(i,j)
ψk + λkψ

T
k

∂Kσ

∂ζ(i,j)
ψk + µT ∂K

∂ζ(i,j)
d0 + µTK

∂d0

∂ζ(i,j)

)
. (B.6)

As discussed in [10], the geometric stiffness matrix of the generic element can be expressed
as:

Kσe =
8∑

i=1

r0eiKi, (B.7)
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where r0ei is the i-th component of the vector of generalised forces per unit length of
Eq. (4.18), for the generic element e, whilst Ki are matrices that depend only of the
geometry of the element. The expression of each Ki is given in Appendix C. The vector
of generalised forces per unit length r0e is obtained as solution of the system (6.19), i.e.

r0e = Klameε0e = KlameBeLed0. (B.8)

In Eq. (B.8), Klame is the laminate stiffness matrix of Eq. (4.18), computed for the generic
element, while ε0e is the vector of the generalised strains of the laminate middle plane. Be

is the product of the linear differential operator and the shape function matrix (see [133])
for element e, whilst Le is the connectivity matrix of element e. Therefore, the geometric
stiffness matrix of the structure Kσ can be expressed as:

Kσ =

Ne∑

e=1

LT
e KσeLe =

Ne∑

e=1

LT
e

8∑

i=1

r0eiKiLe. (B.9)

Consider, now, the term ψT
k

∂Kσ

∂ζ(i,j)
ψk in Eq. (B.6). By taking into account for Eq. (B.9),

it reads:

ψT
k

∂Kσ

∂ζ(i,j)
ψk =

Ne∑

e=1

ψT
kLT

e

8∑

i=1

∂r0ei

∂ζ(i,j)
KiLeψk. (B.10)

By introducing the following definition

sT
ek := {ψT

ekK1ψek, · · · ,ψT
ekK8ψek}, with : ψek = Leψk, (B.11)

Eq. (B.10) simplifies to:

ψT
k

∂Kσ

∂ζ(i,j)
ψk =

Ne∑

e=1

sT
ek

∂r0e

∂ζ(i,j)
. (B.12)

By injecting Eq. (B.8) into the above formula and by taking into account for the local
support property of Eq. (6.18), one obtains:

ψT
k

∂Kσ

∂ζ(i,j)
ψk =

∑

e∈Sij

∂ζe

∂ζ(i,j)
sT
ek

∂Klame

∂ζe
ε0e + ηT

k

∂d0

∂ζ(i,j)
, (B.13)

where
∂ζe

∂ζ(i,j)
represents the partial derivative of the generic dimensionless PP expressed

through a B-spline scalar function, given in Eq. (6.17), whilst
∂Klame

∂ζe
is the partial deriva-

tive of the laminate stiffness matrix with respect to the dimensionless PPs evaluated at the
element centroid, whose expression is reported in Appendix A. In Eq. (B.13), the vector
ηk is defined as:

ηT
k :=

Ne∑

e=1

sT
ekKlameBeLe. (B.14)

Consider, now, the term ψT
k

∂K

∂ζ(i,j)
ψk in Eq. (B.6). As discussed in [78], the partial

derivative of the structure stiffness matrix reads:
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∂K

∂ζ(i,j)
=
∑

e∈Sij

∂ζe

∂ζ(i,j)
LT
e

∫

Ae

BT
e

∂Klame

∂ζe
BedS Le, (B.15)

where Ae represents the area of the generic shell element. By injecting the above formula

into the product ψT
k

∂K

∂ζ(i,j)
ψk, one obtains:

ψT
k

∂K

∂ζ(i,j)
ψk =

∑

e∈Sij

∂ζe

∂ζ(i,j)
w∗ek, (B.16)

where w∗ek is defined as

w∗ek := ψT
kLT

e

∫

Ae

BT
e

∂Klame

∂ζe
BedS Leψk =

∫

Ae

εT
ek

∂Klame

∂ζe
εekdS. (B.17)

In the above expression, εek represents the vector of the generalised strains of element e
for the k-th mode shape. By injecting Eqs. (B.13) and (B.16) in Eq. (B.6), one obtains

∂λk
∂ζ(i,j)

=
λk
wk


∑

e∈Sij

∂ζe

∂ζ(i,j)

(
w∗ek + λks

T
ek

∂Klame

∂ζe
ε0e

)
+ µT ∂K

∂ζ(i,j)
d0 +

(
µTK + λkη

T
k

) ∂d0

∂ζ(i,j)


 .

(B.18)

The adjoint vector µ can be chosen in such a way that the term multiplying
∂d0

∂ζ(i,j)

vanishes, i.e.

Kµ = −λkηk. (B.19)

Finally, Eq. (6.16) can be easily got by injecting Eq. (B.19) into Eq. (B.18). This last
passage concludes the proof. �

It is noteworthy that the assessment of the k-th buckling factor gradient requires the
resolution of three systems, i.e. Eq. (6.13), Eq. (6.19) and the adjoint system of Eq. (B.19).
Therefore, for each iteration of the optimisation process, the following algorithm is invoked
to carry out all the necessary steps for computing the gradient of λk.

Algorithm 2 Computation of the gradient of the k-th buckling factor.

1: Solve Eq. (6.19) and get d0, ε0e and r0e, ∀e.
2: Build Kσ according to Eq. (B.9).
3: Solve Eq. (6.13) and get λk, ψk, εek, ∀e and ∀k.
4: Calculate wk and w∗ek, ∀e and ∀k, according to Eqs. (B.5) and (B.17), respectively.
5: Calculate sek and ηk, ∀e and ∀k, from Eqs. (B.11) and (B.14), respectively.
6: Solve the adjoint system of Eq. (B.19); get µ.

7: Calculate
∂K

∂ζ(i,j)
from Eq. (B.15).

8: Calculate
∂λk
∂ζ(i,j)

from the first of Eq. (6.16).
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Appendix C

Expression of the element
geometric stiffness matrix

The analytical expression of matrices Ki, (i = 1, · · · , 8), appearing in Eq. (B.7), is reported
here below. In particular, the definition of the element geometric stiffness matrix, given
in Eq. (B.7), is not the classical one used in commercial FE software, like ANSYS R© [165].
However, unlike the classical definition of the element geometric stiffness matrix, Eq. (B.7)
is really useful for determining a straightforward expression of the buckling factor deriva-
tive.
In the following, the algorithm for retrieving the expression of each matrix Ki ∈ R24×24

for a shell element with four nodes and six DOFs per node (like the SHELL181 ANSYS R©

shell element), whose kinematics is described in the framework of the FSDT, is presented.
Of course, this algorithm must be executed off-line, i.e. before the optimisation process,
once the element type has been selected.

Algorithm 3 Derivation of matrices Ki.

1: Build a FE model made of a single element.
2: Set arbitrary material properties for the element. The material properties should be

conveniently set in order to obtain a diagonal laminate stiffness matrix Klam (in order
to avoid coupling effects).

3: Impose an elementary strain field (ε0ei 6= 0, ε0ej = 0, j = 1, · · · , 8 and j 6= i) by using
suitable BCs at the four nodes.

4: Solve Eq. (6.19) and activate the pre-stress option (in this way the commercial FE
code builds Kσe according to the usual definition [165]).

5: Get r0ei and Kσe from the FE software.

6: Calculate Ki =
Kσe

r0ei
7: If i < 8 set i = i+ 1 and go to step 3, otherwise stop.

The expressions of Ki for a square SHELL181 element of side L are provided here
below. Each matrix Ki is a symmetric partitioned matrix, composed of symmetric blocks,
containing several null components. Therefore, only non-null terms are provided in the
following:
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K1 =
1

8




[
Â1 B̂1

B̂T
1 Ĉ1

] [
−Â1 −B̂1

−B̂T
1 −Ĉ1

]

[
−Â1 −B̂1

−B̂T
1 −Ĉ1

] [
Â1 B̂1

B̂T
1 Ĉ1

]



,

with, Â1 = ÂT
1 , Ĉ1 = ĈT

1 , and

Â
(1,1)
1 = −3, Â

(1,2)
1 = −1, Â

(2,2)
1 = 1, Â

(3,3)
1 = 2,

B̂
(1,1)
1 = 1, B̂

(1,2)
1 = 1, B̂

(2,1)
1 = −1, B̂

(2,2)
1 = −1, B̂

(3,3)
1 = −2,

Ĉ
(1,1)
1 = −3, Ĉ

(1,2)
1 = 1, Ĉ

(2,2)
1 = 1, Ĉ

(3,3)
1 = 2,

(C.1)

K2 =
1

8




[
Â2 B̂2

B̂T
2 Ĉ2

] [
−Â2 −B̂2

−B̂T
2 −Ĉ2

]

[
−Â2 −B̂2

−B̂T
2 −Ĉ2

] [
Â2 B̂2

B̂T
2 Ĉ2

]



,

with, Â2 = ÂT
2 , Ĉ2 = ĈT

2 , and

Â
(1,1)
2 = 1, Â

(1,2)
2 = −1, Â

(2,2)
2 = −3, Â

(3,3)
2 = 2,

B̂
(1,1)
2 = 1, B̂

(1,2)
2 = 1, B̂

(2,1)
2 = −1, B̂

(2,2)
2 = −1, B̂

(3,3)
2 = 2,

Ĉ
(1,1)
2 = 1, Ĉ

(1,2)
2 = 1, Ĉ

(2,2)
2 = −3, Ĉ

(3,3)
2 = 2,

(C.2)

K3 =
1

2




[
Â3 O

sym Ĉ3

] [
−Â3 O

sym −Ĉ3

]

[
−Â3 O

sym −Ĉ3

] [
Â3 O

sym Ĉ3

]



,

with, Â3 = ÂT
3 , Ĉ3 = ĈT

3 , and

Â
(1,2)
3 = −1, Â

(3,3)
3 = 1,

Ĉ
(1,2)
3 = −1, Ĉ

(3,3)
3 = −1,

(C.3)

K4 = K5 = K6 = O, (C.4)

K7 =
1

72






−24K̂7 − 12Â7 + 4Ĉ7 24K̂7 + 12B̂7 + 2Ĉ7

24K̂7 − 12B̂7 + 2Ĉ7 −24K̂7 + 12Â7 + 4Ĉ7







12K̂7 + 6B̂7 + Ĉ7 −12K̂7 − 6Â7 + 2Ĉ7

−12K̂7 + 6Â7 + 2Ĉ7 12K̂7 − 6B̂7 + Ĉ7







12K̂7 − 6B̂7 + Ĉ7 −12K̂7 + 6Â7 + 2Ĉ7

−12K̂7 − 6Â7 + 2Ĉ7 12K̂7 + 6B̂7 + Ĉ7






−24K̂7 + 12Â7 + 4Ĉ7 24K̂7 − 12B̂7 + 2Ĉ7

24K̂7 + 12B̂7 + 2Ĉ7 −24K̂7 − 12Â7 + 4Ĉ7






,

with, K̂7 = K̂T
7 , Â7 = ÂT

7 , B̂7 = −B̂T
7 , Ĉ7 = ĈT

7 , and

K̂
(1,3)
7 = 1, Â

(1,5)
7 = L, B̂

(1,5)
7 = −B̂

(5,1)
7 = −L, Ĉ

(4,6)
7 = L2,

(C.5)
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K8 =
1

72
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−12K̂8 + 6Â8 + 2Ĉ8

[
2I I

I 2I

]
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[
I 2I

2I I

]
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[
I 2I

2I I

]
−12K̂8 − 6Â8 + 2Ĉ8

[
2I I

I 2I

]



,

with, K̂8 = K̂T
8 , Â8 = ÂT

8 , B̂8 = −B̂T
8 , Ĉ8 = ĈT

8 , and

K̂
(2,3)
8 = 1, Â

(2,4)
8 = L, B̂

(2,4)
8 = −B̂

(4,2)
8 = L, Ĉ

(5,6)
8 = L2,

(C.6)
Of course, the analytical form of matrices Ki can be determined in the most general

case of rectangular (or pseudo-rectangular) elements. These expressions are not reported
here for the sake of brevity.
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