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Introduction

Since the decades of the 50s automotive parts has been created using fiber reinforced com-
posites, bringing a whole novel technology for the industry. Aluminum semi-structural
parts presented in cars have been replaced by their counterpart made of composites.
While replacing for reinforced composites those parts made of aluminum, a reduction in
the production cost and the weight of the final part is granted. Such market has gained
ground along the years and we find nowadays many producers of automotive components
with those reinforced composites. The main challenge of this technique yields on guaran-
teeing good mechanical behavior while respecting the quality in the design of complexes
geometries. The amount of fiber within the composite is proportional to the mechani-
cal exigence that the part undergoes. However, fibers induces complex mechanical flows
complicating the process to obtain a suitable part.

Another fact that motivates the use of fiber-reinforced composites parts is the en-
vironmental regulations restricting automotive pollution. European laws demand the
decreasing of CO2 emissions emitted by cars for the year of 2020. By looking at the
emissions emitted by car in 2012 (Figure 1) the CO2 level permitted per weight is going
to be reduced by a fix amount of 15g/km. For an average car weight of 1400Kg the
emissions records in the range of 135g/km. Thus, the reduction of 15g/km implies a
reduction of 11% in emissions forcing the producers to improve their fabrication process
and provide better solutions.

There are different strategies to reduce CO2 emissions in a car (Fig. 2). From the
mechanical efficiency of the car, one gets the improvement on the motor efficiency, driven
chain or the reduction of tire resistance against the road. Any of these solutions are
directly translated to a reduction of power to complete 100 km. Specifically for the pur-
poses of this work, another straightforward manner of decreasing emissions consists in
lightening the car. Producers of automotive parts are needed to provide with an equiva-
lent automotive component with a remarkably cut down of the weight. For that, specific
steel parts will be replaced for its counterparts made of fiber reinforced composites.

So far semi-structural automotive parts made of composites are presented in the mar-
ket. Nevertheless, in order to fulfill the European regulations the producers must extend
their approaches to structural parts. Sheet Molding Compounds materials (SMC) rein-
forced with glass fiber arises as one possible composite used for this purpose.

As pictured in Figure 3 engineers has already study the feasibility of modifying the
fabrication process of structural and semi-structural auto parts gaining up to 110Kg
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Figure 1: Possible ways to reduce CO2 emission.

in weight. This implies a decreasing of 10gr of CO2 per 100km. Nevertheless, fiber
reinforced composites parts call for challenging mechanics and behavior since fibers rein-
forcements come together with non homogeneous properties.

The main goal of this work is to model the industrial process when creating a car part
of any kind shown in the previous figure. Assisting the engineering task of predicting
the mechanical response of the molding process to ensure the quality of the part. The
pieces in which we can save the most of weight are submitted to structural loading and
engineers need to guarantee the good mechanical resistance of the reinforced part. The
fabrication of the automotive parts are done by compression molding process explained
in the next section.

Compression molding cycle

Compression molding is a well known manufacturing technique for composites parts. This
process has undergone a remarkable growth since the 1950s during the development of
Sheet Molding Compounds (SMC) for the automotive industry.

In compression molding process, the amount of material required is placed between
the upper and lower molds. During compression, the mold cavity at approximately 150oC
is filled by the flowing of the SMC plies until a chemical reaction occurs. After forming,
the final shape is released from the press and the thermal equilibrium is obtained by the

8



Figure 2: View of potential parts to be replaced by fiber reinforced composites in order
to gain up to 110 Kg of weight saving. (Image courtesy of Plastic Omnium)

natural convection of the piece with the air as depicted in Figure 4.

As presented by [1] the compression process is composed of four basic phases.

1. Precharge, preparation and placement: A stack composed between three to six layers
of molding material (about 7 mm of thickness) is placed in a mold at temperature
of 150oC. This amount of material is weighted before placed in the mold. The
position, geometry and composition influence the part quality, affecting the fiber
orientation evolution and the appearances of defects during molding. Normally,
this precharge has a specific geometry, covers a specific volume of the mold and is
denoted as preform, designed to minimize the lost of quality during the process.

2. Mold closure: After the preform is being placed inside the mold, the upper mold
part moves down to touch the surface of the preformed piece, this step from the
deposition to the contact of the punch against the preform last about 10 s. From
this point, the compression begins with a speed in the range of 5-10 mm/s. The
preform fills and releases the air entrapped through the shear edges of the mold.
The force required to move the punch during deformation reached a machine limit,
decreasing the velocity of the punch and making the compression slower and slower.
Finally the mold cavity if filled and the materials is retain between the punch and
the mold.

3. Curing: While keeping the mold closed, the molding pressure is maintained for
a determinate period of time. This step is performed while the inhibitors of the
chemical paste are consumed and the chemical reaction consolidates the piece. The
compressed material is then considered as rigid. Curing time depends on the resin
mixture formulation, sheet thickness and mold temperature.

9



Figure 3: View of potential parts to be replaced by fiber reinforced composites in order to
gain up to 110Kg of weight saving. In white the parts conceding the exterior bodywork,
the gray stands for structural parts and the black for semi-structural parts. (Image
courtesy of Plastic Omnium)

4. Part release: After consolidation, the part is removed from the mold walls by means
of air ejectors pins to ensure the best quality after molding. The part cools down
outside the mold by natural convection and the geometry variations of the part due
to thermal contraction reaches its equilibrium. The mold cavity is prepared and
sets for the next molding cycle.

The process cycle lasts from one to three minutes depending on the part thickness.
For the automotive industry the challenge is to produce one part in one minute. The
relative residence time of each stage can be visualized in Fig.6. As observed, the curing
time is the longest stage of the process. For the material, the temperature ranges from
130oC to 160oC under a molding pressure of the order of 10 MPa as depicted in Figure 5.

Some of the compression molding advantages can be addressed [1]: High reproducibil-
ity of the molded part, wide variety of mechanical properties by controlling the fiber
content on the part, interior and exterior surface already finished, it allows as well the
fabrication of complex geometries having ribs, curvatures, holes, inserts, etc. Moreover,
many components can be consolidated in a single part without secondary assembly steps.
SMC parts (thermosets) exhibit better dimensional stability than thermoplastic compos-
ites. Thermal expansion coefficient of the SMC can be set to be compatibles to steel or
aluminum ones.

10



Figure 4: The compression Molding Process [1]

Figure 5: Temperature and pression during a complete cycle [1]

Compression molding pressure and temperature

For the automotive industry, the first application of glass fiber reinforced polymer is
found in the front panel of the GM Corvette developed in 1953 [2]. Nowadays, the most
used form for compression molding is found in SMC materials. Their first applications
are found in electrical and industrial products such as electrical fixtures, control boxes,
light fittings tool boxes and machine guards [1]. But it was until the early 1970s that
the production of exterior body parts leans towards SMCs as molding component. At
that time starting by producing grille opening panels and hoods. It was also in the mid-
1970s that high strength SMCs were then introduced. Applied to produce semi-structural
automotive components, SMCs are found in bumper beams, road wheels, cross-members,
tailgates and exterior body panels, namely, More than 1 million tailgates produced only
in 2013, 5 million until end of 2014 produced by the enterprise Plastic Omnium for the
Range Rover Evoque.

11



Figure 6: Relative time for each stage of molding compression process [1]

 25 mm 

1 mm 

or 

(a) (b) (c) 

Composite 

Figure 7: Representation of (a) vehicles parts to be built by high performance SMC
composites, (b) zoom of the composite material at a scale of 25mm and (c) at scale a
scale of 1 mm.

This tailgate (See Figure 8 ) incorporates a composite design seen first on the Peugeot
508 SW. The innovative technology on this vehicle features an inner panel made of SMC
with a polypropylene thermoplastic outer panel.

SMC as molding material
Sheet molding compound material used for compression molding represents the optimal
ratio due to their low cost (cheapest composite per unit mass, about two times more
expensive than steel per unit mass) and mold efficiency [1]. SMC is a composite material
(in a sheet form) made of basically two components: resin and fiber (See Figure 9).
The thermoset resin is mixed with reinforcing fibers adopting a single form denoted as
compound. The manufacturing of SMC is illustrated in Figure 11.

Chopping fibers falls on the prepared resin within a thin layer covered by a plastic
film made of polyethylene. Such resin contains initiators and fillers during the adopted
mixture and entraps the fiber embedding the mixture. A second film, containing the
prepared resin is placed on top, thus covering the fibers content. During the process

12



Figure 8: Examples products made of composites

Figure 9: Made components of SMC materials: Resin + Fiber bundles

air is entrapped between the fibers and the resin. This sandwich passes by compaction
rolls wetting the fibers with the constituents. In Figure 12 is seen the reinforcements
(fibers) to the paste resin mixture. The width of the SMC sheet is limited to the SMC
manufacturing machine ranging from 0.61 to 1.52 m, whereas the thickness is commonly
3 mm. The resin is slightly cured to an intermediate stage guaranteeing the handling of
the SMC plies for rool-up and shipment.

Due to the volatile nature of styrene, SMC is refrigerated since its shelf-life depends
on the storage temperature. Extra additives such as Fillers (calcium carbonate (CaCO3))
are added in SMCs to reduce the materials cost and minimize the volumetric shrinkage
of the resin.

A standard SMC weight content ranges from 30 to 50% of fiber (25 to 75 mm long,
frequently E-glass fiber 25.4 mm). Approximately 25% of resin and 25∼45% filler (cal-
cium carbonate, alumina or clay). For structural applications the fiber content ascend
from 50 to 70% in weight corresponding to 40 to 55% in volume. In the latter, SMC
materials behaves as compressible materials for the first stages of the compression due to
the entrapped air between fiber bundles.

Materials: Two industrial formulations of SMC with two fiber contents prepared by
MCR -Plastic Omnium (Tournon-sur-Rhône, France) are subject of study in this work. A
tomography is pictured in Figure 10. The first SMC formulation, which was denoted by
the indicator (UL), is typically used to produce lightweight automotive semi-structural
parts. Its behavior is mainly incompressible and corresponds to usual models found in the
literature. It consists of a polyester-based paste reinforced with 29 wt% of flat glass fiber
bundles with a 25-mm length, approximately 0.05 mm in height and 0.5 mm in width.
The second SMC formulation is used to produce structural parts. It is denoted by the

13



Figure 10: Tomography of SMC studied in this work. Left SMC UL - Right SMC HP
(High profile). In white the fiber bundles, in black the air entrapped in gray the paste.

indicator (HP) and is made of a vinylester-based paste reinforced with 50 wt% of glass
fiber bundles having similar dimensions than those of the (UL) formulation. Its behavior
is compressible since the porosity content of the preform ranges between 20∼25%. This
behavior has not been yet described and it represents a whole section of modeling of this
work.

Compressibility in concentrated SMC

Modeling SMC materials implies dealing with a multiphase problem mainly governed
by fiber and paste interaction. The fiber concentration plays a role in the resistance of
the final part as well as on the complexity of its modeling. Typically, depending on the
mechanical loading of the fabricated part, higher fiber concentration are needed. How-
ever, as pictured in Figure 3.2 for Ultra Light (UL) parts the mixture can be considered
incompressible, whereas for high performance (HP) application, the entrapped air in the
composite is translated into a 25% of porosity, triggering the need of compressible models.

An unified model

The compression molding of fiber reinforced composites undergoing a chemical reaction
represents an example of an unsteady, non-isothermal three dimensional flow of com-
pressible, viscoplastic fluids. One of the characteristics of the process is the coupling
of the heating and the flow into the mold cavity. Whereas the mechanics gradients are
mainly in the plane of the structure the thermal variation are more important within the
thickness of the sample. In order to get a full understanding of the process a 3D modeling
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Figure 11: SMC manufacturing process [1]

is required.
During the filling, when the stack of SMC flow into the cavity, we can consider the

flow to be incompressible, however, the fiber network might contain entrapped air in-
ducing a compressible stage during the compression. While the air is expelled from the
composite, the thickness of the material is reduced without flowing. When the porosity
are lower then 3% the material start to flow. The contact between the mold and sample
creates a mechanical condition defining the nature of the compression. If slip condition
is presented, the flow is purely extensional whereas at the presence of any friction the
shearing becomes predominant. The process induces both normal and shear stresses. The
fiber network induces an orthotropic behavior in the planar coordinates. As well the flow
shearing attempts to re-orient the fiber towards the flow direction increasing the local
viscosity of the material. During this stage, the thermal effects are only presented in the
surface of the sample, since the diffusion in the thickness is slow comparing to the filling
stage. At the end of the filling, there is an increase of the pressure and the thermal cycle
finishes the process.

During the holding stage the thermal effect induces dilatation of the SMC contained
by the mold and punch cavity. Such dilation is normally controlled from the conception
process, however it induces thermal stresses. Whereas the temperature increasing reduces
the composite viscosity the pressure reduces. However, once the ignition time for the ki-
netics triggers the reaction, there is an increment of the pressure since polymerization
(solidification) of the part begins. Polymerization contracts the material and a strong
shrinkage is presented reducing the dimensional geometry of the final part.

When the pressure of the piece seems to be stable, the molding part is considered
and assumed to be fully solidified. The rigid part is ejected from the mold. The process
simulation and objective of this thesis can be spitted into two main task:

15



Figure 12: Photography showing chopped glass fiber bundles falling onto the plastic film
covered by paste resin

- A mechanical model of the material describing its anisotropy due to the fiber network
in a general constitutive law, taking into account both viscous and compressible behavior.

- A thermal model of the material includes the kinetics representative of SMC mate-
rials, its coupling with thermal properties and chemical reaction and its implication on
the mechanical behavior.

Previous works
The main aim of numerical simulation for compression molding process goes further than
analyzing the processing stage, but predicting the end-use condition of the molded part.
In the work of [3], a simulation of a flatten sample assuming an isotropic mechanical model
was used to estimate the filling process. Complemented by the thermal simulation, such
approach has presented the first advantages of the simulation of the compression molding
of SMC materials. Even-though such example remain a 2D approach it fitted experimen-
tal data collected by the authors. Other authors has mainly focused on only one stage of
the process. Either the filling or the curing. The mechanical modeling has been studied
with the work of Barone et al [4] and later improved with the study of Kotsikos et al
[5]. The work of Le Corre [6] concluding that SMC materials behaves anisotropically,
gave rise to an orthotropic model developed by Dumont et al in [7]. Regarding thermal
approaches, first studies were accomplished by Lee in [8] and by Maazouza [9] using a
model based on the radical polymerization mechanisms. The fully 3D modeling of SMC
materials however has not been yet tackle because of numerical limitations. Being able
to have reasonable computational time remains an open challenged. Techniques of mesh
adaptation to reduce computational cost is trending nowadays being that the main ad-
vantages on which our work is based with respect to other studies of SMC.

So far, to our knowledge, a fully 3D thermo-mechanical model for dealing with SMC
materials in compression molding are not yet proposed. Mostly they take into account
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Figure 13: Evolution of the porosity as function of the equivalent deformation. High
Performance SMC are compressible whereas Ultra Light one can be consider as incom-
pressible

independently the compression stages decoupling totally mechanics with thermics.

Context, objectives and outline
Plastic Omnium Auto exterior has interest in having a numerical tool to assist the large
engineering campaigns, when deciding the designing of an auto part. On that purpose,
this general project has been created.

This project belongs to an assembly of three projects to study the thermo-chemo-
mechanical behavior exhibited by Sheet molding Compounds (SMC). One of the project
is in charge of the characterization of the specified SMC materials provided by Plastic
Omnium. This project will formulate the rheology equations and formulation of the
material. Here denoted as the 3SR laboratory. The second project is in charge of the
thermo-chemical characterization of the SMC as well as the coupling with the mechanical
part. They are in charge of the changes exhibited by the material when the reaction takes
place. We denoted this team as LTN laboratory. Last but not least, the third project
is in charge of all the numerical developments required to perform numerical simulations
using the software Rem3D.

Before this work, REM3D was not counting with a Compression module to per-
form compression molding simulations. Additionally the tools available to perform such
simulations where mainly:

• a mechanical solver, determining the velocity and the pressure for isotropic mate-
rials;
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Figure 14: Project launched by Plastic Omnium Auto exterior

• a transport solver, determining the flow front position;

• a temperature solver to determine the temperature in the composite.

In general, the material could only be considered as incompressible, thermically
and mechanically isotropic as well as no-coupling of the fiber orientation into
the mechanical solver. Thermo-kinetical coupling to the mechanical solver due to
dilatation or contraction was approximated. Validation of the models were not performed
to fiber reinforced composites for molding compression. For that reason, knowing the
geometry and the compression parameters, the purpose of our work focuses on:

General objectives
To enrich the software Rem3D to study molding compression processes, dedicated to
Sheet Molding Compounds (SMC) for ultralight and high performance SMC:

• position of the flow front at each instant of the compression stage.

• thermodynamical characterization of the materials at each instant of the mold-
ing process determining its pressure, velocity, stress tensor, density, temperature,
conversion degree.

• prediction of the mechanical force need to deform the piece.
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• detection of starting time of the reaction under industrial parts.

• shrinkage and expansion during heating/cooling inside the mold.

Specific objectives
In order to achieve and fulfill the general objective, the scope of the work has been divided
into specific tasks:

Firstly, material compressibility must be taken into account when dealing with high
fiber concentration composites. This represents a more realistic study of the geometry
variation of the final form. For this geometrical variations, a corresponding computation
of the density needs to be performed. A suitable compressible mechanical solver should
be provided in order to describe such evolution of the porosity inside the composite mate-
rial. This solver has to deal with both compressible and incompressible behavior of SMC.
At the same time, a smooth transition between a compressible to an incompressible me-
chanical solver. Thus, enabling the continuous computation of the molding process. At
this point, an important results is the pressure trace on the molding part, a detailed
information of what happens inside the mold.

Secondly, because of the reactive nature of the reinforced composite a proper com-
putation of the temperature profile along the process is needed. Even more during the
reaction that solidifies the part. Predicting precisely when it starts and how long it last
provides an important information of the molding process.

Thirdly, the compression molding itself is characterized for having particular macro
calculation such as the compression force. Then, by using this forces most of the producers
of auto parts tun the compression speed in order to not exceed an upper bound. Inside
our numerical framework this represents as well a non-trivial task. Imposition of the
boundary condition to immersed bodies also needs to be studied to avoid numerically
perturbations of the velocity profile during the simulation. Another highlighted point is
the conservative properties of level set approaches. For geometries of high aspect ratio
the choice of mesh size also represents a challenge since the computational cost should
be kept bounded. A strategy dealing with all theses aspects is also oriented along this
work. Recalling the specific objectives we get:

• Implement a monophase rheology model for SMC behaviors.

• Enrich the monophase model to take into account the porosity exhibited in fiber
reinforced composites with high fiber content.

• Implement the kinetics formulation for the case of SMC.

• Propose and implement a fully thermo-chemo-mechanical model for SMC .

• set a strategy to compute the compression force within the immersion approach

• Implement the piloting of the compression process imposing the force .

• Propose a methodology to take into account the friction against the mold walls.
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• Determine the fiber orientation for compression molding processes.

• automotic selection of time step and numerical parameters to ensure numerical
convergence.

We attempt to deal with all these issues in a single formulation enabling the contin-
uous computation of the molding part.

This work is divided into 4 Chapters. After this introduction, we will described the
governing equations of the anisotropic compressible reactive flows given by the continuum
mechanics for viscous fluids. Then, we introduce our numerical framework introducing
the conservative problems encountered during this work and describing the techniques
used for the solution. There, a solution is provided for the problem of the mass lost due
to the inherent non-conservative properties of level set methods.

Later, the mechanical and themo-kinetical model used for both SMC studied in this
work is given. There, the implementation of an anisotropic unified solver is provided.
A solver enabling the continuous computation during porosity closure. Additionally a
solver that by acting on a structural tensor is able to take into account the fiber network
orientation. The solver is also enriched with the thermal coupling adding the thermal
dilatation and kinetical shrinkage. The thermal solver is presented and the coupling with
the kinetics model is provided.
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Chapter 1

Anisotropic compressible
thermo-mechanical model for SMC
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Summary
Fiber reinforced composites materials as SMC (Sheet Molding Compounds) are used for
manufacturing automotive parts. These materials are made of two main components:
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a mixture of viscous paste denoted as matrix, reinforced by fiber bundles widely-spread
covered by a second layer forming a sandwich. Its numerical modeling implies a multi-
phase material, exhibiting a strong anisotropy since the fiber network is presented in a
plane. In Addition, the reinforced materials in raw state is considered viscous and once
squeezed in a hot mold undergoes a chemical reaction transforming its viscous phases
into a rigid body. Thus, the modeling of SMC materials implies a thermo-mechanical
problem coupling thermal effects to the mechanical response and phase transformation.

A fully thermo-mechanical model is proposed taking into considerations all the observe
mechanism related in the literature of SMC materials. We use the governing equations to
elaborate a model considering the anisotropy of the material, its viscous dependency on
the strain rate, its thermal behavior and the description of the chemical reaction trans-
forming the viscous raw state into a consolidated part. This model coordinates the physics
and is intended to be used to predict stress evolution along the compression process, tem-
perature evolution during the heating of the part and finally the prediction/description
of the chemical reaction.

We proceed to coupled all those mechanism of interaction using continuum mechan-
ics. We supposed a homogeneous compressible anisotropic material and we describe its
motion with the velocity and pressure profile. We make used of the heat equation coupled
to the kinetical model to describe the thermo-kinetical behavior of SMC.

Normally fully three dimensional simulations (3D) required a high computational cost
respect to planar assumptions (2D) or well decoupled systems. However, those approx-
imations are not able to predict the thermo-mechanical response of this materials. The
model here presented is used on a numerical platform able to discretize the computational
domain smartly by using mesh adaptations techniques. The model is implemented in a
Finite Element Library and is based on a Eulerian approach using level set methods.

Résumé en Français

Matériaux composites renforcés de fibres comme SMC (Sheet Moulding Compounds)
sont utilisés pour la fabrication de pièces automobiles. Ces matériaux sont constitués de
deux composants principaux: un mélange de pâte visqueuse dénommée matrice, renforcée
par des faisceaux de fibres largement répandus recouverts d’une seconde couche formant
un sandwich. Sa modélisation numérique implique un matériau multi-phase, présentant
une forte anisotropie puisque le réseau de fibres est présenté dans un plan. En outre,
les matériaux renforcés á l’état brut sont considérés visqueux et une fois pressés dans
un moule chaud subit une réaction chimique transformant ses phases visqueuses en un
corps rigide. Ainsi, la modélisation des matériaux SMC implique un problème thermo-
mécanique de couplage des effets thermiques á la réponse mécanique et á la transformation
de phase.

Un modèle entièrement thermo-mécanique est proposé en prenant en considération
tout le mécanisme d’observation lié dans la littérature de matériaux SMC. Nous utilisons
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les équations gouvernantes pour élaborer un modèle en tenant compte de l’anisotropie du
matériau, de sa dépendance visqueuse á la vitesse de déformation, de son comportement
thermique et de la description de la réaction chimique transformant l’état brut visqueux
en une partie consolidée. Ce modèle coordonne la physique et est destiné á être utilisé
pour prédire l’évolution des contraintes le long du processus de compression, l’évolution
de la température pendant le chauffage de la pièce et enfin la prédiction / description de
la réaction chimique.

Nous procédons á coupler tous ces mécanismes d’interaction en utilisant la mécanique
du milieux continu. Nous supposons un matériau homogène compressible anisotrope
et nous décrivons son mouvement avec le profil de vitesse et de pression. Nous util-
isons l’équation de la chaleur couplée au modèle cinétique pour décrire le comportement
thermo-cinétique de SMC.

Normalement, les simulations à trois dimensions (3D) nécessitaient un coût de calcul
élevé en fonction des hypothèses planaires (2D) ou des systèmes bien découplés. Cepen-
dant, ces approximations ne sont pas capables de prédire la réponse thermo-mécanique de
ces matériaux. Le modèle présenté ici est utilisé sur une plate-forme numérique capable
de discrétiser le domaine de calcul intelligemment en utilisant des techniques d’adaptation
de maillage. Le modèle est implémenté dans une bibliothèque d’éléments finis et est basé
sur une approche eulérienne utilisant des méthodes level-set.

1.1 Introduction

Modeling SMC materials during compression molding implies the study of non-isothermal
unsteady compressible flows. From one side, the fiber network induces an anisotropic
mechanism, more specifically, an orthotropic behavior normal to the fiber plane. From
the other side, thermal evolution modifies the mechanical response and triggers a chem-
ical reaction until the part is consolidated. After filling the cavity, the coupled thermo-
mechanical mechanisms enable the thermal expansion and chemical shrinkage, potential
candidates of the geometry differences between the mold cavity and the final part.

In this chapter, we establish the thermo-mechanical model solved within SMC com-
pression molding simulations and describe the numerical methods employed. The stack
of SMC plies is considered as a compressible fluid. Firstly, the hot temperature induces a
fluidification (a softening), the material fills the mold cavity and then (or simultaneously)
the hot temperature triggers a chemical reaction consolidating the part.

We consider that the anisotropy of the SMC is due to the fiber network and we present
hereafter the governing equations describing all the observed behavior of SMC materials
during processing. In the first part of this chapter, the equations issued from continuum
mechanics on compressible materials are introduced, considering temperature and chem-
ical evolution and its coupling with the mechanical response. The mass and momentum
conservation lead to a system having as variables the velocity and the pressure. Neglect-
ing inertial effects, as usual in polymer flows, we get a compressible version of the Stokes
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problem. The Mixed Finite Element framework is applied to solve such equations. We
integrate in the formulation the thermal effect by means of a general definition of strain
rate contributions leading to the thermo-mechanical coupling system.

We notice that the density variations within the material are related to porosity clo-
sure in the early compression stage. Those density variations of the material are also
related to its dilatation and shrinkage coefficients. We present a splitting technique to
compute the density evolution. For that, it seems natural to assign the evolution of the
porosity volume fraction to a relative density and the thermal expansion and chemical
shrinkage to the evolution of a dense state density. In order to couple the resolution
of the density equation to the resolution of the mechanical problem, we relate a partial
pressure to the trace of the visco-plastic strain rate. This variable change enables the
coupling of the two equations, in which a compressible factor evolves during the porosity
closure. We present then the mechanical formulation taking into account the porosity
dynamics and thermo-kinetic evolution.

The energy equation is introduced supposing also a compressible behavior of the ma-
terial and the kinetics of the chemical reaction. We generalized the heat equation by
considering an anisotropic behavior of the thermal conductivity, the thermal dilatation,
the pressure-volume work and the reaction enthalpy.

After defining the whole set of equations of our thermo-mechanical model, the numer-
ical framework is introduced. There, we recall the governing equations by detailing its
discrete resolution in our numerical software using the Finite Element Method. The sta-
bilization of the mechanical problem by introducing a bubble space and the stabilization
of the thermo-kinetical problem with the Streamline Upwind Petrov-Galerkin (SUPG)
strategy are briefly explained. The mesh algorithm to adapt the discrete space is ex-
plained and is coupled to a time-adaptation strategy. This adaptive time-step bounds
the temporal evolution in order to control the non-linearity of the thermo-kinetical resolu-
tion. Finally, at the end of the chapter, the full thermo-mechanical algorithm is presented.
The chronological resolution order is provided while picturing the non-linear behavior of
the full system.

1.1.1 Momentum Equation
In a general form, the mechanical equilibrium of any material is given by the resolution
of the conservative equation. We can then write the equilibrium of the momentum [1] in
the form:

∇ · σ = ρ

(
dv

dt
− f

)
(1.1)

In eq. (1.1), σ is the Cauchy stress tensor, ρ the density of the material, v the velocity
and f the volumetric forces. For the case of viscous materials, we neglect the inertia
effects by ignoring the term dv

dt
.
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1.1.2 Mass conservation
Additionally, the mass conservation states that any variation on the density is subject to
the total variation of the fluxes in the neighboring, here described as the divergence of
the flux as:

∇ · v = −1
ρ

dρ

dt
. (1.2)

In eq. (1.2) the density variation can be expressed by thermodynamics state functions.
One can describe it by a function ρ = f(p, e) where p is the pressure and e the internal
energy. Then,

∇ · v + χp
dp

dt
= χe

de

dt
. (1.3)

The expression given by eq. (1.3) has been used in other works [2] dealing with com-
pressible flows. Mainly with gases, where the variation of the density can be directly
related to energy changes. Furthermore, the energy variation for SMC materials depends
on the temperature and on the degree of conversion of the chemical reaction e = f(T, α).
The density is then written as ρ = f(p, T, α), where T is the temperature of the compos-
ites, α the conversion degree of the polymerization reaction and p the pressure. We can
then relate the density variation with respect to other thermo-mechanical properties to
obtain:

−1
ρ

dρ

dt
= −1

ρ

∂ρ

∂T︸ ︷︷ ︸
χt

dT

dt
+ −1

ρ

∂ρ

∂α︸ ︷︷ ︸
χα

dα

dt
+ −1

ρ

∂ρ

∂p︸ ︷︷ ︸
−χp

dp

dt
(1.4)

−1
ρ

dρ

dt
= χt

dT

dt
+ χα

dα

dt
− χp

dp

dt
(1.5)

Then, replacing the expressions provided by eq. (1.4) and eq. (1.5) into the mass
conservation, we get:

∇ · v + χp
dp

dt
= χt

dT

dt
+ χα

dα

dt
(1.6)

For high concentration SMC a volume variation is observed, where the sample thick-
ness is reduced while the projected surface is unchanged. In this stage, the SMC UL
voids are dynamically expelled from the core towards the exterior, whereas for the SMC
HP the pores are closed without translation. This porosity closure, called densification,
reduces the volume of the SMC up to 25% (HP) and 3% (UL). The densification step
increases the pressure of the material since it becomes more and more incompressible.
Once the porosity concentration is low enough, a squeeze flow motion is observed. In the
studied materials, only high concentrated SMCs evidence a compressible step.

The expression given by eq. (1.6) is a general definition of the mass conservation.
However, from the characterization perspective, it results more appropriate to couple
directly in the stress tensor the compressible behavior by using a term proportional
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to the volume variation. Then, an equivalent formulation for the mass conservation is
retrieved when connecting the porosity closure to the density. Indeed, the SMC materials
or well the densification for porosity closure is a not reversible process. The dependence
of compressible behavior proportional to dp/dt implies that the decrease in pressure
translates a recovery of the porosity level. For instance, by increasing the pressure, the
volume of the material decreases, whereas by decreasing the pressure the negative sign of
the factor dp/dt will induce an increment of volume. However, for densification problems,
when the material is released and the non-longer forces acts on it, the volume remains
unchangeable. This, motivates the reasoning on a compressible factor proportional to
the pressure instead of its temporal derivative. As discussed later on this chapter, the
proposed model for compressibility of SMC due to porosity evolution is more suitable to
be written in the form:

∇ · v + βp = χt
dT

dt
+ χα

dα

dt
, (1.7)

the β factor takes into account the amount of porosity remaining in the material and
is associated to the volumetric deformation εv as explained later. During this compaction
the density of the material is modified. By recalling the physical aspects of our thermo-
mechanical model, we remark that the density is modified during the porosity closure and
by the thermal evolution. At last, the curing of the part also implies volume variations.
The compression step lasts between 3 to 5 seconds while the thermo-kinetical cycle around
1 to 2 minutes. Mostly, the variation of the density corresponding to pore closure acts
at the beginning of the process. Such phenomena may be somehow decoupled from the
other sources of compressibility such as thermal and kinetical evolution. For that reason,
the density is expressed as the multiplication of two contributions. The relative density,
ρr, associated to the viscoplastic strain rate and the dense state density, ρd, associated
to the volume variations in the dense material due to thermal expansion and chemical
shrinkage. The density is then written as:

ρ = ρr ρdense(T, α) (1.8)

The use of the velocity field obtained from the resolution fo the mechanical problem
to obtain the evolution of the relative density has been used in [3]. A similar approach
is found in the definition of the Green equivalent strain rate studied as well by Abouaf
[4], [5]. Since the nature of our SMC densification problem relies on a mechanism similar
to powder compaction, we prefer to use this approach. According to M. Bellet (private
communication, July 2016) such approach can be extended to take into account the
volume evolution from thermal variations. As in his case, for the study of thermo-
mechanical modeling of spark-plasma sintering of metal powder and using the definition
in eq. (1.8), the evolution of the density is given by:

1
ρ

dρ

dt
= 1
ρr

dρr
dt

+ 1
ρd

dρd
dt

(1.9)

For the numerical viewpoint, both contributions of eq. (1.9) need to be computed. In
the following, we show how to calculate the evolution of both relative and dense state
densities.
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Strain rate tensor for thermo-mechanical modeling

Firstly, let us address the strain rate deformation tensor ε̇ as the summation of the
viscoplastic strain rate tensor D, the thermal strain rate tensor ε̇th and the chemical
strain rate tensor ε̇ch:

ε̇ = D + ε̇th + ε̇ch = 1
2
(
∇v +∇Tv

)
(1.10)

The expression given in eq. (1.10) defines the total strain rate, which is the one
provided by the symmetric part of the velocity gradient. The thermal strain rate tensor
ε̇th depends on the expansion tensor χt and on the temperature evolution. Similarly,
the chemical strain rate tensor ε̇ch depends on the chemical shrinkage tensor χα and
on the reticulation process evolution. Tensors are used in order to take into account
the anisotropic behavior of the thermal dilatation and chemical shrinkage on SMC. As
detailed later on this work (??), the thermal and kinetical anisotrope strain rates read:

ε̇th = χt
dT

dt
, (1.11)

ε̇ch = χα
dα

dt
, (1.12)

where χt and χα are the tensorial representations of such anisotropic behaviors.

Describing the total contribution in the motion of the SMC as the contribution of
the viscoplastic, thermal and chemical strain rates is inspired from principles of thermo-
mechanical modeling as presented in [6] for solid deformation. Here, we extend the ap-
proach to highly viscous fluid materials. Without thermo-chemical effects, the mechanical
response of viscous materials is related directly to the velocity symmetric gradient (nor-
mally, D = ε̇). Nevertheless, when accounting for other sources of deformation in our
material, namely due to thermal and chemical evolution, the viscous strain rate tensor
takes the form of eq. (1.13):

D = ε̇− ε̇th − ε̇ch. (1.13)

Similarly, we can associate the trace of this tensor to the velocity divergence through
eq. (1.14):

tr(D) = ∇ · v − tr(ε̇th)− tr(ε̇ch). (1.14)

One remarks that the viscoplastic strain rate tensor D becomes ε̇ for the cases where
thermal or kinetical deformations are neglected. Its trace is thus directly related to the
divergence of the velocity (tr(D) = ∇ · v).

When dealing with thermo-mechanical problems, only the viscoplastic strain rate ten-
sorD generates viscoplastic stresses. That is the reason why the dilatation or contraction
changes must be suppressed as suggested by eq. (1.13).
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Evolution of the relative and dense state density

By integrating the expression of the divergence of the velocity given in eq. (1.14) and the
expression of the density evolution given by eq. (1.9) in the mass conservation equation
of eq. (1.2), the equation ruling the density evolution is:

tr(D) + tr(ε̇th) + tr(ε̇ch) = − 1
ρr

dρr
dt
− 1
ρd

dρd
dt

(1.15)

Furthermore, we considered that the thermal dilatation and chemical shrinkage of the
paste simply result on the variation of the dense density ρd and do not affect the relative
density ρr. Allowing us to split the relation of eq. (1.15) into the relative and dense state
densities, produces two separated governing equations. The relative density is ruled by
the trace of the viscoplastic strain rate, eq. (1.16):

tr(D) = − 1
ρr

dρr
dt

(1.16)

and the dense state density is driven by the trace of the thermal and chemical evolution
eq. (1.17):

tr(ε̇th) + tr(ε̇ch) = − 1
ρd

dρd
dt

(1.17)

The relative density can then be rewritten by using eq. (1.14), obtaining:

1
ρr

dρr
dt

+
(
∇ · v − tr(ε̇th)− tr(ε̇ch)

)
= 0 (1.18)

The expression given by eq. (1.18) is used then to compute the evolution of the rela-
tive density during the thermo-mechanical process.

From the mechanical point of view, the evolution of the relative density can be also
related to the variation of the porosity fraction φp inside the material. Another way to
express the relative density is by providing it as function of φp:

ρr = 1− φp (1.19)

This approach is preferred since all other mechanical properties will be then related
to the porosity evolution. A phenomenological expression to update the porosity fraction
φp during the compression is provided in Chapter 3. Finally, the evolution of the density
in this work is computed by:

ρ = ρr ρd (1.20)
ρr = 1− φp(εv) (1.21)

1
ρd

dρd
dt

= tr(ε̇th) + tr(ε̇ch) (1.22)
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and the evolution of the porosity φp is given by a phenomenological relation of the
viscoplastic volumetric deformation εv computed using the expression:

dεv
dt

= tr(D) = ∇ · v − tr(ε̇th)− tr(ε̇ch) (1.23)

One remarks that either solving the relative density equation in eq. (1.18) or solving
the relative density by a function of the porosity fraction eq. 1.21 (depending as well as
the volumetric deformation governed by eq. (1.23) ), implies the resolution of a differential
equation taking as entry the term ∇· v− tr(ε̇th)− tr(ε̇ch). However, solving the porosity
fraction connects the updating of the fiber fraction φf evolution during the densification
step.

1.1.3 Mass conservation and mechanical problem
In mechanical modeling, the Cauchy stress tensor can be always described by its deviatoric
s and volumetric p parts. In order to present the equation governing the mixed problem
in terms of the velocity-pressure variables, as usual for a viscoplastic material, a particular
splitting is proposed. For SMC compressible materials, we can write its stress tensor as
follows:

σ = s− pI with s = dev(σ) and p = −tr(σ)
3 (1.24)

However, in order to describe the porosity evolution inside the SMC by the term
tr(D) and to have a clear transition between the compressible behavior of SMC towards
its dense state, we prefer to use the following splitting:

σ = ŝ− p̂I, (1.25)

where ŝ stands for the anisotropic behavior law doctored in [7]:

ŝ = α0ηeq

(
D + α1(M : D)M + 1

2α2(D ·M + M ·D)
)

(1.26)

There, coefficient αi are determined by experimental test and the structural tensor
M stands for the construction of the orthotropic model knowing the normal to the
fiber plane in the SMC. Then, p̂ is related to the trace of the viscoplastic strain rate
and to a non-dimensional parameter α3 representing the evolution of the porosity inside
the material. The parameter α3 increases to infinity and tr(D) tends to zero during
the porosity closure. The choose of the construction of the term α3 tr(D) responds to
characterization demands since the rheology for compressible SMC are directly related
to this term. A more detailed construction is given in Chapter 3. In here, we define the
partial pressure to be equal to the multiplication of this terms since it would imply a
more stable numerical resolution. This partial pressure is then of the form:

p̂ = −α3 η tr(D), (1.27)

This splitting implies a system (D, p̂) of the following form:
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σ(D, p̂) = ŝ(D)− p̂I, (1.28)

tr(D) = −1
ηα3

p̂. (1.29)

We replace the definition of the viscoplastic strain rate given by eq. (1.14) and we
introduce the compressibility factor β.

∇ · v − tr(ε̇th)− tr(ε̇th)︸ ︷︷ ︸
tr(D)

= − β︸︷︷︸
1
ηα3

p̂ (1.30)

The final set of equations is obtained by replacing the viscoplatic strain rate given by
eq. (1.13)

∇ · ŝ(ε̇− ˙εth − ˙εch)−∇p̂ = 0 (1.31)

and introducing a compressibility factor β within the mass equation, eq. (1.30), written
in its (v, p̂) formulation:

∇ · v + βp̂− tr(ε̇th)− tr(ε̇ch) = 0 (1.32)

The system given by eqs. (1.31-1.32) represents the coupled resolution of the mechan-
ical problem for SMC materials taking into account porosity closure, thermal expansion
and kinetical shrinkage. Please notice, that by ignoring all volumetric variations eq.
(1.32) corresponds to the incompressible (divergence free ) case solving the Stokes prob-
lem. There, if isotropic behavior (α1 = α2 = 0), and incompressibility tr(D) = 0, p̂
equals the pressure p. For the general case, a relation between the apparent pressure p̂
and the pressure p is given by:

p = p̂− tr(ŝ)
3 = p̂− α0 ηeq

3 (tr(D) + (α1 + α2)M : D) (1.33)

The advantages of this formulation is the straightforward relation with compressible
and incompressible cases. Enabling us to write an unified numerical procedure to fully
describe the compressible-incompressible transition. Typically, β decreases in the formu-
lation while porosity gets closed. The formulation then becomes as the incompressible
one according to eq. (1.30) .

1.1.4 Energy equation
The last conservative equation is the energy transfer, given by the first thermodynamic
law:

dE = δQ− δW, (1.34)
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which represents the state variation of the system due to the interactions with the
neighboring. In eq. (1.34) E, Q and W are the extensive properties (mass dependent)
and account for the internal energy U , the heat entering the system Q and the work
delivered by the material W [8]. Those properties depend on intensive properties such as
the temperature T , the entropy s , the internal energy e, the pressure p, the velocity v.
By replacing the extensive properties to their corresponding intensive one and by taking
their differential, we can write the most general energy equation also known as the heat
equation for any generic material:

E =
∫

Ω
ρ e dΩ, (1.35)

The energy E represents the energy associated to the control volume. We can show
[9] that the energy variation (without assuming constant density) is ruled by eq. (1.36):

dE

dt
=
∫

Ω
ρ
de

dt
dΩ, (1.36)

using the definition in eq. (1.34) and the expression of the internal energy eq. (1.36)
enables to write the energy equation [1]:∫

Ω
ρ
de

dt
dΩ = −

∫
Γ
q · ndΓ +

∫
Ω
ω̇dΩ (1.37)

After using the Green-Ostrogradski theorem, or the divergence theorem, and using
the local form of the energy equation, we obtain:

ρ
de

dt
= −∇ · q + ω̇ (1.38)

In eq. (1.38), q denotes the heat flux inside the material and ω̇ the internal work acting
as the dissipation term, since it represents the irreversible work done by the viscous forces.
In order to express the energy equation in state variables, we generally need to deploy
the definitions of all these terms in variables recognized by our model. Those variables
are the temperature, the pressure and the velocity [1] (a full development is given in
Chapter A ), the left term can be then written:

ρ
de

dt
= ρ

dh

dt
− χvt T

dp

dt
− p∇ · v, (1.39)

where we kept the enthalpy definition to be general. Here h = hT + hα, containing the
energy subject to thermal variations and the energy subject to chemical reactions. The
term χvt yields for the volumetric dilatation factor (scalar) of our material. Now, the
right term of eq. (1.38) is divided in two contributions. First, the internal work, which is
defined as:

ω̇ = σ : ε̇ = −p∇ · v + s : ε̇ (1.40)

Then, by using Fourier’s law, the heat flux is given by the diffusion of heat along the
material (it is expressed here for anisotropic materials), using the tensor of conductivity
k that accounts for the anisotropic thermal behavior exhibited by the fiber network.
Applying Fourier’s law, we relate the heat flux to the thermal gradient through:
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q̇ = k∇T (1.41)

In brief, the general expression of the energy equation for compressible reactive
anisotropic materials may be written in two different forms. Using the Cauchy stress
tensor as:

ρ
dh

dt
− χvt T

dp

dt
− p∇ · v = ∇ (k∇T ) + σ : ε̇ (1.42)

or using the deviatoric stress tensor as:

ρ
dh

dt
− χvt T

dp

dt
= ∇ (k∇T ) + s : ε̇. (1.43)

In the study to be performed in this work, we will prefer the second version i.e.
eq. (1.43) using the deviatoric stress tensor for the internal work. please notice that
for the incompressible case both expressions remain the same. Moreover, we develop the
enthalpy in its thermal and chemical contribution. The first described by the temperature
T and the heat capacity at constant pressure cp by means of the term dhT

dT
= cp. The

second depending on the reaction degree α, whose contribution is assigned by the term
dhα
dα

= ∆Hα. thus, the energy equation for compressible reactive materials states:

ρ cp
dT

dt
− ρ∆Hα

dα

dt
− Tχvt

dp

dt
= ∇ (k∇T ) + s : ε̇ (1.44)

1.1.5 Summary of conservative equations for compressible re-
active flows

The model describing the thermo-mechanical behavior of SMC materials is summarized
in this section. The problem statements require the computation of the velocity v, ap-
parent pressure p̂, the volumetric deformation εv, relative density ρr, dense density ρd,
temperature T and conversion degree or curing state α. The thermo-mechanical model
contains mechanical properties depending on the fiber volume fraction φf . The evolution
of such parameter is given by a direct relation of the porosity volume fraction. In general,
φf = f(φp(εv)), for that reason, the equations governing the thermo-mechanical model
presented in this section is given by the following system:

∇ · ŝ−∇p̂ = 0 (1.45)

∇ · v + βp̂− tr(ε̇th)− tr(ε̇ch) = 0 (1.46)

dεv
dt

= ∇ · v − tr(ε̇th)− tr(ε̇ch) (1.47)
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1
ρr

dρr
dt

+∇ · v − tr(ε̇th)− tr(ε̇th) = 0 or ρr = 1− φp (1.48)

1
ρd

dρd
dt

+ tr(ε̇th) + tr(ε̇th) = 0 (1.49)

ρ cp
dT

dt
− ρ∆Hα

dα

dt
− T χvt

dp

dt
= ∇ (k∇T ) + s : ∇v (1.50)

dα

dt
= F (α, T ) (1.51)

Those equations need to be enriched by defining the partial deviatoric stress tensor ŝ
as function of the viscous strain rate tensor D and the kinetic model for the computation
of dα

dt
as well as, dilatation and shrinkage coefficients defining the strain rate tensor ε̇th

and ε̇ch.

This full thermo-kinetic-rheological model accounts for velocity-stress relation and
also enables the calculation of free dilatation (or contraction) inducing a velocity pro-
file at zero stress thanks to the definition of our viscous strain rate tensorD. Additionally
it takes into account the thermal and the kinetical contribution in all the conservative
equations.

After having presented all the equations according to our thermo-mechanical model,
we proceed to present the numerical framework used in this study. We introduce the
weak formulation of the aforementioned system as well as its stabilization.

1.2 Discretization and numerical framework

The numerical framework of this work is given by the Finite Element Method [10], assem-
bled with a mesh adaptation tool, in an Eulerian framework. The main variables are the
velocity (v), the pressure (p), the temperature (T ) and the conversion degree (α). The
problem to be solved is then composed of four equations: First, we write the weak form
for the momentum equation by using the splitting given in the later section. In here, p̂
and ŝ are kept as primitive variables. The second equation corresponds to the weak form
of the volumetric part of the constitutive equations, taking into account the thermal and
kinetics, as well as the description of the porosity closure by the term (β) (functional
variable of the volumetric deformation). The third equation states for the energy balance
having the anisotropic conductivity as entry and also the heat source coming from the
reaction rate. As will be described in Chapter 3 the viscous stress tensor in its anisotropic
form is given by the general form:

σ = ŝ(D)− p̂I, (1.52)
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with,
ŝ(D) = 2ηD + T4 : D + T2 D +D T2 (1.53)

By using the definition of the strain rate tensor 1 and following the procedure described
in [11], we can write the system as:

D = ε̇− ε̇th − ε̇ch (1.54)
Expressions for the thermal and kinetic strain rate are provided in ??. Notice that

here, any assumption regarding the nature of this tensor has been established. Further-
more, the trace of the viscoplastic strain rate tensor D can be associated to the porosity
evolution of the material as a pressure proportional factor β. Details on the numerical
construction of the porosity evolution is given in Chapter 3. Knowing that the viscous
nature of the stress is linear in its formulation, we write a relation similar to the one
found in [12], where the viscous stress is only related to the viscous strain rate:

ŝ(D) = ŝ(ε̇)− ŝ(ε̇th)− ŝ(ε̇ch) (1.55)
Conservation equations for the compressible reactive SMC in our numerical frame-

work, where inertial forces were neglected and planar isotropic consideration for thermal
and mechanical properties were done, states as:

∇ · (2ηε̇+ T4 : ε̇+ T2 ε̇+ ε̇ T2)−∇p̂ = ∇ ·
(
ŝ(ε̇th) + ŝ(ε̇ch)

)
(1.56)

∇ · v + βp̂ = tr(ε̇th) + tr(ε̇th) (1.57)
∂ρd
∂t

+ v · ∇ρd − ρd
(
tr(ε̇th) + tr(ε̇th)

)
= 0 (1.58)

∂εv
∂t

+ v · ∇εv = ∇ · v − tr(ε̇th)− tr(ε̇th) (1.59)

ρ cp

(
∂T

∂t
+ v · ∇T

)
−∇ (k∇T )− T χvt

dp

dt
= ρ∆Hα F (α, T ) + s : ∇v (1.60)

∂α

∂t
+ v · ∇α = F (α, T ) (1.61)

Note that the velocity is present in the resolution of the thermal problem for convective
purposes and also in the solution of the reaction degree α. Furthermore, the density
variation during the thermo-kinetical evolution also needs to be described. We split in
this work the coupling among them as follows:
• velocity (v) - apparent pressure (p̂) are coupled strongly;

• temperature (T ) and conversion degree (α) are coupled by means of a point fixed
resolution;

• density (ρ) is then solved separately by an advection equation
In order to study the finite elements method used to solve the velocity/pressure prob-

lem, as well as the temperature/conversion degree one, we have written the weak formu-
lation of the mechanical and the thermal problem in the following section.

1the symmetric gradient tensor is defined as ε̇ = 1
2
(
∇v +∇tv

)
36



1.2.1 Mixed variational formulation and discretization - me-
chanical problem

Let us introduce the L2(Ω) and H1(Ω), the classical Sobolev spaces (Lebesque and
Hilbert). Let µ and Q be Hilbert spaces and P a Lebesque space, P = L2(Ω), with

L2(Ω) =
{
v : Ω −→ R;

∫
Ω

∣∣∣v2
∣∣∣ <∞} (1.62)

For the mechanical problem, we state Q ⊂ P, Q dense in P , such as ‖q‖P ≤
‖q‖Q. We establish the variational form of eq. (1.56): find (v, p̂) ∈ µ × Q such that,
∀(w, p) ∈ µ×Q, for (f, g) ∈ µ′ ×Q′

∫
Ω

2ηε̇(v) : ∇w +
∫

Ω
T4 : ε̇(v) : ∇w +

∫
Ω
T2ε̇(v) : ∇w

+
∫

Ω
ε̇(v)T2 : ∇w −

∫
Ω
p̂∇ · w = −

∫
Ω
f w +

∫
Ω
s(ε̇th + ε̇ch) : ∇w

−
∫

Ω
p∇ · v −

∫
Ω
p βp̂ = −

∫
Ω
p
(
tr(ε̇th) + tr(ε̇th)

)
(1.63)

being a a bounded bilinear form on µ×µ, and b a bounded bilinear form on µ×p and
d a bounded bilinear form on Q× P . Associating to these forms, we solve the problem:
for (f, g) ∈ µ′ ×Q′, find (v, p̂) ∈ v ×Q such that ∀(w, p) ∈ µ× P the system satisfies:{

a(v, w) + b(p̂, w) = 〈f, w〉
b(v, p) + d(p̂, p) = 〈g, p〉 (1.64)

Some conditions are required to the bilinear form in order to guarantee the well
representation of the problem [13]. First, a must be coercive on µ, then b must satisfy
the inf-sup condition [14] on µ× P and d need to be bounded from below in the P norm
[15],[16]:

∃ α > 0 such that a(w,w) ≥ α ‖w‖2
µ , ∀w ∈ µ (1.65)

∃ β > 0 such that inf
p∈Q

sup
w∈µ

b(w, p)
‖v‖µ ‖p‖P

≥ β, w ∈ µ, p ∈ Q (1.66)

∃ γ > 0 such that d(p, p) ≥ −γ ‖p‖2
P , ∀p ∈ Q (1.67)

Choosing γ small enough (even negative), it can be shown [17], [2] that the solution
(v, p̂) exists and is unique.

Let Ωh be a discrete space composed of simplex K such as:

Ωh =
⋃

K∈Th(Ω)
K (1.68)

In isotropic mesh cases, h indicates the approximation accuracy of the subspace. This
related to the mesh spacing and the diameter of the elements by the relation:

h = max
K∈Th(Ω)

diam(K) (1.69)
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For anisotropic meshes, the indicator of accuracy can be defined by a global error
depending on local mesh sizes [18] and related to the physical variable solutions. A more
general treatment for the study of the error in anisotropic meshes are subject of study in
[19],[20], [21].

Then, the projection operator Πh from the continuous U onto the discrete Uh space
satisfies: {

U → Uh
u→ Πhu = argmin (‖u− uh‖)

(1.70)

Having a dimensional space represented by an Eulerian mesh conformed by simplexes
K, we search for the solution of the discrete problem composed of functional spaces Vh and
Qh of finite dimensions such that the solution (v, p̂) ∈ ν×Q is close to (vh, p̂h) ∈ νh×Qh.
This can be expressed in its bilinear form in the variational system:{

a(vh, wh) + b(p̂h, wh) = 〈f, wh〉
b(vh, ph) + d(p̂h, ph) = 〈g, ph〉

(1.71)

Furthermore, we assume that, in the discrete problem, a,b and d satisfy the same
conditions than in the continuous one. Furthermore, it is proven in [2] the existence and
unicity of solution to the discrete problem.

Let dv be the dimensions of Vh, dp the dimension of the Ph and let us choose {φm}m=1,...,dv
a basis of the space Vh and {λm}m=1,...,dv basis of Ph. We write the approximated velocity
vh and the approximated pressure ph on theses basis through:

vh =
∑

Vm φm (1.72)

p̂h =
∑

P̂m λm (1.73)

which represent the discrete interpolation of the solution, (v, p̂). Assuming our test
functions (wh, p̂h) to be the approximate interpolation functions (φm, λm), our variational
problem may be written in the equivalent matrix form:(

Avv Bvp

B̂pv Dpp

)(
V

P̂

)
=
(
F
G

)
(1.74)

where V ∈ R, V = (V1, ..., Vdv)
t is the velocity solution vector, and P̂ ∈ Rdp , P̂ =(

P̂1, ..., P̂dv
)t

is the apparent pressure solution vector (in this case dp = 1). The implicit
contribution of the variational problem is given by the formulation of the viscous stress
(Avv and Bvp) and the velocity-pressure contribution of mass equation (B̂pv and Dpp). As
depicted in ??, the trace of the thermal dilatation tensor as well as the kinetical shrinkage
is related to the velocity, temperature and the reaction degree variables, acting on the
mass equation by means of the expressions:

tr(ε̇th) = χvt
∂T

∂t
+ v · χt∇T (1.75)

tr(ε̇ch) = χvα
∂α

∂t
+ v · χα∇α (1.76)
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where is introduced the tensor of thermal dilatation χt built with the thermal dilatation
term in each principal direction. The tensor of chemical shrinkage, χα, is also defined.
These tensors account for the anisotropy of the thermal and chemical volume variations.
The volumetric variation coefficients, here denoted with the upper index ”v”, is obtained
taking the trace of the thermal and chemical dilatation/contraction tensors. The tensorial
representation established the directional tendency of the material to undergo geometrical
variations due to thermal or chemical variations. The trace however, stands for the total
volume variations and is the term found to be inserted in the mass conservation equa-
tion. A detailed explanation of this derivation is given in ??. Additionally, by deploying
the total temporal derivative in its two part (local and convective), the convective part
depending on the velocity v is used as implicit term in our velocity/pressure problem.
Finally, the mass equation is written:

∇ · v − v · χt∇T − v · χα∇α + βq︸ ︷︷ ︸
implicit

= χvt
∂T

∂t
+ χvα

∂α

∂t︸ ︷︷ ︸
explicit

(1.77)

Writing the equations of our thermo-mechanical modeling into the corresponding ma-
trix contribution, we get from the following left hand side members:



A ∈Mdv ,dv (R) , Apm =
∫

Ωh
2ηε̇(vh) : ∇φm + T4 : ε̇(vh) : ∇φm+

T2 ε̇(vh) : ∇φm + ε̇(vh) T2 : ∇φm +∇p̂h · φm

B ∈Mdv ,dp (R) , Bmp =
∫

Ωh
−λm∇ · vh + λm vh · χt∇T + λm vh · χα∇α

D ∈Mdp,dp (R) , Dmp =
∫

Ωh
β qh λm

(1.78)

and on the right hand side the terms:
F ∈ Rdv , Fvm =

∫
Ωh
−f · φm − σextra : ∇φm

G ∈ Rdp , Gpm =
∫

Ωh
−λmχvt

∂T

∂t
− λmχvα

∂α

∂t

(1.79)

being σextra an extra stress contribution as suggested by eq.section 1.2 as function of
the thermal and chemical strain rate tensor (ε̇th and ε̇ch). This represents the coupling
with the thermal and chemical evolution.

For sake of simplicity, we present the formulation in a more compact development.
The assembled matrix of the thermo-mechanical problem stands:

Avv = −
∫
s(v) : ∇w dΩ (1.80)

Bvp = −
∫
p∇ · w dΩ (1.81)

B̂pv = −
∫

(q∇ · v + d · v q) dΩ (1.82)

Dpp =
∫
β p q dΩ (1.83)
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please notice that different to the Stokes problem for incompressible flows, the matrix
B̂pv does not correspond to the transpose of Bvp.

1.2.2 Stabilization of the mechanical problem
We need now to choose independent spaces (Vh and Ph) that satisfy the same conditions
imposed to the discrete problem [22, 23]. In this work, we choose subspaces (Vh, Ph) given
by the usual name MINI-element P1 + /P1, as explained in [23]. This choice enables
to have linear continuous velocity and pressure fields on Ωh. The velocity is given by a
combination of a linear part and a piece-wise, designated usually as bubble function. The
finite element space Vh is written as Vh = vh ⊕ bh, where

vh =
{
wh ∈ C0 (Ωh)d : wh|K ∈ P1 (K)d

}
(1.84)

being P1(K) the space of polynomials of degree inferior or equal to one. The bubble
must verify the conditions given by eq.1.65. The bubble function vanishes at the boundary
of K and is continuous inside the element. The bubble is also defined in K as a polynomial
acting on each of the three sub-triangles in 2D and four sub-tetrahedral in 3D, named also
the pyramidal version of the bubble function. The discrete space in which is associated
states:

bh =
{
bh ∈ C0 (Ωh)d : bh|∂K = 0 and bh|Ki = 0 ∈ P1 (Ki)d , i = 1, ..., D

}
(1.85)

where D is the topological dimension (3 nodes in 2D or 4 nodes in 3D) and (Ki) , i =
1, ..., D is a decomposition ofK intoD subsimplexes. Those sub-simplexes have a common
vertex in the barycenter of K. Finite element spaces for the pressure are defined:

Ph =
{
qh ∈ C0 (Ωh) : qh|K ∈ P1 (K)

}
(1.86)

The dimensions of both sub-spaces are:

dim(Vh) = d× (Nn +Ne) dim(Ph) = Nn (1.87)

being Ne the number of elements and Nn the nodes in the mesh Th(Ω). By adding
the bubble, the global system to solve is now given by:

Avv 0 Bvp

0 Abb Bbp

B̂pv B̂pb Dpp


VlVb
P

 =

FlFb
G

 (1.88)

where Vl ∈ Rd×Nn is the nodal velocity vector and Vb ∈ Rd×Ne represents the barycen-
ter velocity vector. P ∈ RNn is the pressure vector. For numerical construction, we
address here some properties of the bubble functions, the first obtained by the Gauss
divergence theorem denoted as the transmissible property of the bubble and the second
due to the orthogonality of the bubble function respect to C. Both detailed in [24] :
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∫
K
p̂h∇ · bh = −

∫
K
∇p̂ · bh (1.89)∫

K
C : ∇bh = 0,∀ tensor C constant in K (1.90)

In order to reduce our system, we can use a classical technique by condensing the
bubble function, such that:

AbbVb +BbpP = Fb → Vb = A−1
bb (Fb −BbpP ) (1.91)

this provides a mixed velocity-pressure formulation having as unknowns the nodal
velocities and pressures. The final system is written:(

Avv Bvp

B̂pv Cvb +Dpp

)(
V
P

)
=
(
Fl
Fp

)
(1.92)

with,

Cvb = −B̂pb A
−1
bb Bbp and Fp = G− B̂pb A

−1
bb Fb (1.93)

In what concerns the implementation of this formulation in Cimlib [25, 26, 27], we
have integrated in the library a new Stokes Anisotrope Compressible solver as a
heritage of an available solver (StokesMiniTestBulle) available in the numerical library of
CEMEF. The new terms added are underlined.

• for the linear subspace vh:



A ∈Mdv ,dv (R) , Apm =
∫

Ωh
2ηε̇(v) : ∇φm + T4 : ε̇(v) : ∇φm+

T2ε̇(v) : ∇φm + ε̇(v)T2 : ∇φm −∇p · φm

B ∈Mdv ,dp (R) , Bmp =
∫

Ωh
−λm∇ · v + λm v · χt∇T + λm v · χα∇α

D ∈Mdp,dp (R) , Dmp =
∫

Ωh
β p λm

(1.94)

• and for the bubble bh:



A ∈Mdv ,dv (R) , Apm =
∫

Ωh
2ηε̇(vb) : ∇φm + T4 : ε̇(vb) : ∇φbm+

T2ε̇(vb) : ∇φbm + ε̇(vb)T2 : ∇φbm −∇p · φbm

B ∈Mdv ,dp (R) , Bmp =
∫

Ωh
−λm∇ · vb + λm vb · χt∇T + λm vb · χα∇α

(1.95)
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1.2.3 Computation of local matrices - momentum equation
Term T4 : ε̇: To introduce the first anisotropic term due the fiber network, we first
simplified its integral by noticing that:∫

Ω
(T4 : ε̇)∇v =

∫
Ω
T4 : ∇vh : ∇wh (1.96)

In the discrete space, the expression is written:

∫
K

d∑
ijkl

Tijkl Vm
∂φl
∂xk

∂φj
∂xi

(1.97)

Term T2 ε̇+ ε̇ T2: The second anisotropic term is also simplified by deriving:∫
Ω

(T2 ε̇+ ε̇ T2) : ∇v =
∫

Ω
T2∇vh : ∇wh + (T2∇vh)t : ∇wh (1.98)

and its discrete contribution is written:

∫
K

d∑
ijk

Tik Vm
∂φk
∂xj

∂φj
∂xi

+
∫
K

d∑
ijk

Tki Vm
∂φj
∂xk

∂φj
∂xi

(1.99)

1.2.4 Computation of local matrices - mass equation
Term v · d: The term to take into account the implicit part of the volumete variation
states:

∫
Ω

(v · d) q =
∫
K

d∑
i

Vm φim di λm (1.100)

Term βp: The term taking into account the compressible part resulting:∫
Ω
β p q =

∫
K
β p̂h qh =

∫
K
β P̂m λm λm (1.101)

Remark: The integration space for the mass term implemented in this work are pro-
portional to the multiplication of the test function without derivatives (term v q and term
p q). The space assigned to the bilinear form for this case is of second order (multiplica-
tion of two piece-linear functions). The Gauss points used in the integration corresponds
after multiplication to a second order polynomial expression.

1.2.5 Resolution and stabilization of the thermo-kinetical prob-
lem

The heat equation is formulated as the particular case of an unsteady convective-diffusion-
reaction equation. Classical Galerkin methods fail and generate numerical oscillations of
the solution, when the convection term becomes important. Same oscillations problems
are founded in diffusion problems during the treatment of thermal shocks. These non-
physical oscillations for the classical Galerkin methods come from the discretization of
the first order spatial derivative in the convective term, overcoming others diffusion or
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reaction contributions. To avoid these instabilities, several techniques are described in
literature, among them, the SUPG (Streamline Upwind Petrov Galerkin ) [28], the SCPG
(Shock Capturing Petrov-Galerkin) [29] and the RFB (Residual Free Bubble) [30]. All
theses methods attempt to stabilize the numerical oscillation by adding an extra diffusion
during numerical resolution. In this work, we use the RFB for diffusive dominant problem,
whereas the SUPG method for the convective dominant cases.

Let us use the spaces defined in section 1.2.1 For the thermo-kinetical problem,
the Galerkin variational formulation is given ,in its weak form, as follows: find u ∈ H1

0 (Ω)
and find a ∈ H1

0 (Ω) such that:



∫
Ω
ρ cp

dT

dt
u−

∫
Ω
ρ∆Hα

dα

dt
u−

∫
Ω
Tχvt

dp

dt
u−

∫
K
∇ (k∇T ) u =

∫
K
s : ∇v u

∫
Ω

dα

dt
a =

∫
Ω
F (α, T ) a

(1.102)

Instead of solving the coupled system, we use a fixed point method and we split both
resolutions. For the thermal resolution, the reaction represents a source input denoted
as q̇. So, for the thermal problem, we solve for u ∈ H1

0 (Ω) such that

∫
Ω
ρ cp

dT

dt
u−

∫
Ω
Tχvt

dp

dt
u−

∫
K
∇ (k∇T ) u =

∫
K
s : ∇v u+

∫
K
q u (1.103)

and for the conversion degree, α resolution, we look, for a ∈ H1
0 (Ω) to find α such

that: ∫
Ω

dα

dt
a =

∫
Ω
F (α, T ) a (1.104)

The stabilization of the thermal problem is given by defining test functions u,
such that:

u = uh + τ v · ∇uh (1.105)
As noticed in the previous expressions, the term τ represents a numerical variable

in order to stabilize the method. Basically, by adding a diffusive term to the scheme,
we guarantee a stable solution. The new term stabilizes the convection scheme, since
it adds a diffusion in the direction of the velocity v. Many works established that the
stabilization term τ can be related to the terms defining the convection-diffusion-reaction
equation by the following relation [31]:

τK =
(

4k
h2
K

+ 2 |v|
hK

+ |σ′|
)−1

(1.106)

and σ′ is by defined using all the terms proportional to T [32]:

σ′ = ρ cp
∆t + χvt

dp

dt
(1.107)

hK is the characteristic dimension of the triangle in the streamline direction [31],[33]
computed by the form [34]:
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hK = 2
(

k∑
α

∣∣∣∣∣ ai‖a‖ ∂Nα

∂xi

∣∣∣∣∣
)−1

(1.108)

The stabilization of the reaction problem is given by defining the test function
a as:

a = ah + τ v · ∇ah (1.109)

In a similar ways, as has been done for the thermal problem, the stabilization term is
given by taking only the convective term of the stabilization term defined in eq. (1.106),
obtaining:

τK =
(

2 |v|
hK

)
(1.110)

We coupled this stabilization of the numerical resolution with a strategy for adapting
the time step. We define our interval ∆ti such that the gradient of the temperature T
and the conversion degree α are bounded to guarantee an accurate description during the
chemical reaction. The next section deals with the description of strategy for space and
time adaption.

1.3 Space and time adaptation
This section explains the strategy to improve the mesh discretization with a mesh adap-
tation technique based on a posteriori edge-error estimation. In Figure 1.1 an example of
mesh adaptation is given in the computational domain, whereas in Figure 1.2 the contour
of the mesh located at the iso-value zero of the level is presented. The mesh is anisotropic
and follow the level set gradients of the embedded bodies. Such mesh is built following a
metric construction. The metrics concept is introduced connecting it with the topology
of the space. We coupled our resolution with this mesh adaptation strategy in order to
reduce the computational cost and increase the accuracy. Additionally, due to the non
linear behavior of our thermal and mechanical properties, the variations per increment
must be controlled. The needs of time adaptation comes from the strong sharp behavior
of the kinetic reaction in the composite. The formulation of the Stokes problem is not
time dependent, however, the compressibility factor depends on a volumetric deforma-
tion which is time dependent. The heat equation and conversion degree evolution are
strongly related to a time discretization. For that reason, a strategy for time adapta-
tion is adopted. The temporal variation per time step is computed taken both its local
variations and the convective part. The latter is determined using the velocity and edge
gradient and by coupling the temporal strategy to the metric definition. The next time
step is then obtained by bounding the projected variation.

1.3.1 Mesh adaptation on a edge-based error prediction
Let a mesh field in the space be described by the junction of edges of elements K.
One edge contains two nodes defined by the subindex i, j with the value of the function
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Figure 1.1: Example of mesh adaptation along the level set fields. We visualize the
different domains, namely, the punch and mold in red, the SMC in green, the air in blue.

Ui = uh(xi) and coordinates Xi and being any variable F ij = F j − F i. The metric is
defined, in dimension d and per node i containing K(i) surrounding elements as:

M i = |K(i)|
d

 ∑
j∈K(i)

X ij ⊗X ij

−1

. (1.111)

Let Gi be the gradient of a function Ui defined directly at the node i of the mesh. Gen-
erally this gradient may be obtained by solving a minimization problem of the piecewise
constant gradient on elements (for the case of P1 elements). These gradients are computed
on the edges and moved as solution on the nodes through

(
argmin

G

(∑∣∣∣G ·X ij − U ij
∣∣∣2))

or by using the metric through the expression:

Gi = d M i · U i. (1.112)

Figure 1.2: Mesh adaptation contour for 3D embedded body. Notice the mesh size along
the curvatures of the geometry.

Coupez [21] shows that each measure of the interpolation error on the edge eij is equal
to the difference of the gradient through:
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ei,j =
∣∣∣Gij ·X ij

∣∣∣ (1.113)

The idea of the remeshing step is to minimize the error eij in a simplex K, under the
constraint of a fixed number of nodes (equivalent to a fixed number of edges, A). The
mesh is optimized when the local error on each edge is the same. In order to get this
homogeneous error, some nodes need to be moved, deleted or created. A concentration
of nodes relies in regions of important gradients. Coupez [21] proposed to modify the
length of the edges, obtaining the same result. Firstly, a normalized global error along
all the edges eedge is defined depending on the number of edges A given as:

eedge =
∑
i 6=j |K(ij)| eij

Ad
(1.114)

where K(ij) is the patch of elements sharing the edge X ij, eedge provides an estimation
of the minimal average error that the current mesh, limited by the edges A, will have
once the mesh is well adapted. Consequently, comparing the eedge with the local error eij

a stretching edge factor sij is obtained. Notice that the factor 1
d

appears as dependent
of the space dimension d 2:

sij =
(
eedge

eij

) 1
d

(1.115)

Then the new length distribution vector X̂ ij is computed using:

X̂ ij = sij X ij (1.116)

X i Xj
X̂ i X̂j

sij X ij

The stretching factor sij not only modifies the edge length but also rotates a single
element since the stretching factors are not the same for all the edges of a simplex. Coupez
[21] showed that the new error on the edge is enewij = sij

2eij. In addition, as a consequence
of repeating the process iteratively, a mesh in which the error is homogeneous and the
stretching factor sij tends to 1 everywhere is obtained. Visually, we found finer meshes
in the direction of higher gradients and coarser meshes in stable domains.

2In the work of Coupez [21], it was proved that factor 1/d actually is replaced by p/p + 2, which
measures a limit condition on the mesh when forcing a fixed number of edges. Here, for sake of simplicity,
we present the strategy for a non-limit edge condition. The reader is referred to [21] for details when the
number of edges is fixed. The procedure evoked here remains the same as in the original paper.
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Local Remesh
Generally, the remeshing technique is adopted in the whole computational domain. In
order to optimize this task and reduce the computational cost, a more suitable strategy
is to adjust only a particular subset of an existent low-quality grid. The local remeshing
step removes the low-quality elements modifying its topology until a certain quality is
reached. The concept of quality of the element is here extended not only to a geometrical
factor, i.e stretched or isotropic elements. Instead, we use the junctions of function U i (a
vectorial field) and relate its error to the element quality. For our case, these function U i

contains a level set function, the velocity field, the temperature and the reaction degree.
By adopting this strategy, we only modify the elements below a given quality.

Lagrangian-Eulerian adaptive mesh strategy
In our particular case, the mobile body (punch) has a defined velocity profile. Its asso-
ciated level set moves with a fixed velocity. After the mesh is well adapted, the level set
is displaced in the next time step causing the changing of the quality of the elements in
its vicinity. The punch moves with a known velocity. If the refined mesh related to this
level set is also displaced in time, the good quality of the mesh is kept, and the remeshing
step can be avoided. For that reason, we treat the mobile body as a Lagrangian space
(see Figure 2.9b).

Punch

Die

Composite
Air

Lagrangian Mesh

Adaptive Mesh

Body Immersion

Figure 1.3: Strategy for body immersion with an adaptive mesh procedure. The meshes,
Lagrangian in the punch and Eulerian in the air, die and preform

By mixing the mesh motion formulation, a transition zone between Lagrangian Adap-
tive mesh and Eulerian space is represented.

Since our computational domain remains the whole picture, a convection velocity u
for the transport of variables needs to defined. The velocity to transport the fields in our
formulation states:

u = v − vmesh (1.117)
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The mesh velocity is the velocity associated to the mesh motion during the simulation.
For nodes that does not move this velocity is zero. For nodes moving at the imposed
velocity such as the punch (vmesh = vBC). For the Lagrangian zone vmesh = v and for the
Eulerian part vmesh = 0. Please notice that u = 0 in the Lagrangian mesh, meaning not
transport is needed and u = v in the Eulerian, which is the general formulation of our
framework.

1.4 Time adaptation based on a bounded increment
gradient

General idea

The strategy is based on the principle of bounding the increment variation of the variable
U . Knowing its temporal derivative, U̇ , we look for:

∆U t = U t+1 − U t = U̇ ∆t ≤ ∆MAX (1.118)
We search for a time step ∆t such that the function U i does not vary more than the

bounded value ∆MAX.

Strategy in our numerical framework

For a given scenario in time t, computed using a time step ∆t−, we compute now the
temporal variation Gt

i of the variable U , as:

Gt
i = U i − U i−1

∆t + v · dM i · U i︸ ︷︷ ︸
dU

dt
= ∂U

∂t
+ v · ∇U

(1.119)

where we use the estimation of the spatial gradient of U by projecting the metric M ,
defined in eq. (1.111), in the direction of the variable U , as used in the mesh adaptation
strategy. Please notice that dM i · U i = Gi according to eq. (1.112) . The predictive
variation is given by the projection of the gradient in the current time step:

∆t
i =

∣∣∣Gt
i

∣∣∣∆t− (1.120)
Similarly to the space adaptation procedure, we compare the temporal variation with

respect to a given bounded value ∆temp and we determine the temporal stretching factor
st as:

st = MAX
(

∆t
i

∆temp

)−1

(1.121)

Finally, this stretching factor gives rise to the next time step ∆t with the form:

∆t = st ∆t− (1.122)
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Notice that the stretching factor is 1 when the discrete evolution equals the criterion
(∆t

i = ∆temp).

1.4.1 Resolution and optimization
The resolution of the linear system is performed using the PETSC (Portable, Extensible
Toolkit for Scientific Computation) library, through a preconditioned iterative method.

• Transport of the levelSet function + Correction for mass conservation (See
Chapter 2)
Computing of the position of each phase by adopting a convective scheme for the
fluid and a rigid motion for the punch and the mold.

• Mesh adaptation

min {eij} = L2 : eij {v, T, α, φ, δφ}

• Mechanical problem (non-linear - fixed point )∣∣∣∣∣∣∣∣∣∣∣


∇ · (2ηε̇+ T4 : ε̇+ T2 ε̇+ ε̇ T2)−∇p̂ = σextra(ε̇th, ε̇ch)
∇ · v + βp̂− tr(ε̇th)− tr(ε̇th) = 0
−−−−−−−−−−−−−−

update η, T2, T4

⇒ (vt+1, pt+1)

• Evolution of the viscoplastic volumetric deformation in the material
∂εv
∂t

+ v · ∇εv = βp̂

ρr = 1− φp(εv)

enabling the actualization of the porosity fraction φp, the local fiber fraction φf and
viscosity consistency ηf .

• Thermo-Kinetical problem (non-linear - fixed point )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



ρr ρd cp
dT

dt
−∇ (k∇T ) = ρ∆Hα F (α, T ) + TχT

dp

dt
+ s : ∇v

dα

dt
= F (α, T )

1
ρd

dρd
dt

= χvT
dT

dt
+ χvα

dα

dt
update κ,Cp, F (α, T )

⇒ (T t+1, αt+1, ρt+1
d )
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• Calculation of next time-step ∆t

bound
{
Gt
i

}
= Gt

i {T, α, φ}

1.5 Conclusions
A full thermo-mechanical model was introduced to compute the reactive, non-isothermal
3D compressible flows, based on continuum mechanics principles. Compressibility and
reaction induce new unknowns with respect to the traditional isothermal incompressible
flows found in literature when dealing with SMC materials. The porosity on the mate-
rial decreases during the compression of the piece and is always a non-reversible process.
From that, its modeling does not depend on the sign of pressure evolution. Thermal and
chemical evolution however, does modifies the density in a reversible way. Its model-
ing, as the one found in literature for other materials, depends on the derivative of the
temperature and conversion degree. Integrating a model accounting for all these phe-
nomenological evolution has not been established before for the study of SMC materials.
The full thermo-mechanical coupling, integrates the general contribution of diverse source
of strain rates deformations into a momentum a mass conservation equations. We prove
the a full thermo-mechanical system may required the resolution of 6 equations having
as variables the velocity, the pressure, the volumetric deformation, the temperature, the
reaction degree and the dense state density.

In addition, this chapter discussed the integration of such anisotropic behavior of SMC
in our numerical framework. There, we present the Finite Element Method approach used
in this work. We presented punctually all the contributions of the anisotropic compress-
ible Stokes solver we implemented, with respect to the standard Stokes resolution.

The next chapter focus on the description of the level set method and its strategy
when modeling multy-body objects. Some drawbacks of the methodology are highlighted
and the solution for the problem of mass lost on dynamics immersed objects is given.
Additionally, it is shown the potential of our numerical tools to deal with complicated
3D geometries in compression molding simulations.
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Summary

In this chapter, the use of level-set method to describe surface under deformation is con-
sidered. The methodology of level-set approach as a signed distance function being mostly
narrow-banded is introduced. Particularly, the strategy used in this work to deal with
compression molding simulation is explained detailing the advantage and requirements
of the implicit description of surfaces. Mainly the punch, the mold and the pre-form are
described by the implicit level set function in a whole domain (immersion framework).
The narrow-banded level set used generally to improve and simplify the convection al-
gorithm to describe the motion of the object as well as to support a mesh adaptation
strategy is revised. Here, it is used the linear hyperbolic tangent band and the convection
is supported on a local booster (reinitialization of normal velocity to move the iso-values
for keeping metrics properties).

Consequently, first a study on consevative properties of this method is carried out
concluding that during compression the gradient of the velocity within the thickness can
induces volume/mass lost of the preform due to the discrete scheme of the level set ad-
vection step. This volume lost is a known drawback of the level set method. For the case
of a simple disk compression, during this phd was recorded a volume lost of 6%, whereas
for industrial applications the lost was recorded up to 30%. A study of the impact of
the mesh adaptation and the time step discretization is performed concluding that the
mesh adaptation algorithm causes higher lost than using a fix isotropic mesh and that
smaller time step for the convection also translates higher volume lost. These results can
be understood since the mesh adaptation algorithm has a step of transport of variables
and the updated configuration might not be conservative. The time step discretization
show that if the time step is smaller, the lost per iteration is smaller. However, since to
complete the same simulation more iterations are used, the lost at the end of simulation
are higher. Knowing that this topic differs form the main objective of this work, a en-
gineering solutions was proposed. Based on a Newton-Raphson algorithm a corrective
procedure is used and detailed to recover the volume/mass lost per iteration along the
computation fo industrial parts. An exmaple using industrial geometry proves the decre-
ment from 30% down to 0.1%.

The last section of the chapter introduces a immersed technique to compute the
compression force during deformation of the part. A problem for immersion domain
where the standard formula force equal stress times surface can be not obvious since the
surface are not explicit. The strategy is based on the viscous power dissipation principle
and proved to reduce oscillations and to provide with the same solution that standards
highly mesh dependent solutions.

Résumé en Français

Dans ce chapitre, on considère l’utilisation de la méthode de level-set pour décrire la
surface sous déformation. La méthodologie de l’approche de niveau comme une fonction
de distance signée étant principalement à bande étroite est introduite. En particulier, la
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stratégie utilisée dans ce travail pour traiter la simulation de moulage par compression
explique l’avantage et les exigences de la description implicite des surfaces. Principale-
ment, le poinçon, le moule et la préforme sont décrits par la fonction implicite de réglage
de niveau dans un domaine entier (cadre d’immersion). Le jeu de niveaux à bande étroite
utilisé généralement pour améliorer et simplifier l’algorithme de convection qui décrire
le mouvement de l’objet ainsi que pour soutenir une stratégie d’adaptation de maillage
est révisé. Ici, on utilise la bande tangente hyperbolique linéaire et la convection est
supportée sur un booster local (réinitialisation de la vitesse normale pour déplacer les
iso-valeurs en gardant les propriétés des distances).

Par conséquent, d’abord, une étude sur les propriétés conservatives de cette méthode
est réalisée en concluant que pendant la compression, le gradient de la vitesse dans
lépaisseur peut induire une perte de volume / masse de la préforme due au schéma discret
de l’étape d’advection dans la méthode level-set. Ce volume perdu est un inconvénient
connu de la méthode level-set. Pour le cas d’une compression de disque simple, pendant ce
fichier a enregistré un volume perdu de 6 %, alors que pour les applications industrielles,
la perte a été enregistrée jusqu’Ãă 30 %. Une étude de l’impact de l’adaptation du mail-
lage et de la discrétisation du pas de temps est réalisée en concluant que l’algorithme
d’adaptation du maillage entrâıne une perte plus élevée que l’utilisation d’un maillage
fixe isotrope et que le temps de passage plus petit pour la convection traduit également
une perte de volume plus élevée. Ces résultats peuvent être compris puisque l’algorithme
d’adaptation au maillage comporte une étape de transport des variables et la configura-
tion mise à jour pourrait ne pas être conservatrice. La discrétisation temporel montre que
si l’intervalle de temps est plus petit, la perte par itération est plus petite. Cependant,
puisque pour compléter la même simulation, plus d’itérations sont utilisées, les pertes à
la fin de la simulation sont plus élevées. Sachant que ce sujet diffère de l’objectif prin-
cipal de ce travail, des solutions d’ingénierie ont été proposées. Basé sur un algorithme
de Newton-Raphson, une procédure corrective est utilisée et détaillée pour récupérer le
volume / la masse perdue par itération le long du calcul des pièces industrielles. Un
example utilisant la géométrie industrielle prouve le décrément de 30 % à 0.1 %.

La dernière section du chapitre introduit une technique immergée pour calculer la
force de compression lors de la déformation de la pièce. Un problème pour le domaine de
l’immersion où la formule standard forçe égale constrainte fois surface n’est pas Ãľvidente
car la surface n’est pas explicite. La stratégie est basée sur le principe de dissipation de
la puissance visqueuse et s’est avérée réduire les oscillations et fournir la même solution
que les normes de solutions fortement dépendantes de mailles.

2.1 Introduction

The Level set approach is a conceptual framework for the analysis of surfaces and shapes
initiated by Osher [1]. Such modeling eases the numerical computations involving curves
or surfaces and can be performed on Cartesian grids without needs of space transforma-
tion. Within the Eulerian framework, the level set method enables, by solving differential
equations, the tracking of topology changes, when modeling time-varying objects. More

57



often, it provides an implicit function which allows the description of the interface, to
which we can link other functionalities. For instance, a direct and accurate computation
of the surface normal vector and its curvature, in particular, during ongoing simulations.

Punch (phase 2)

Die (phase 3)

Composite (phase 1)
Air (phase 4)

Rigid Body

Rigid Body

Body Immersion

Figure 2.1: Schematic illustration of the different phases in compression molding that
may be consider for the modeling. All phases ”immersed” are in a single computation
domain. We distinguish the composite (H1), the punch (H2), the die (H3) and the air
(H4) by means of implicit functions.

In fact Level set is a framework to describe boundaries. Using Level set in immersion
methods extends such framework to a volumic representation of objects. In order to rep-
resent volumes using this implicit function, one considers a single computation domain
and each object (body) is ”immersed”. In Figure 2.1 the different necessary objects for
compression molding simulation are the composite, the die and the punch. All immersed
in the domain. As a result, four phases appear: one per whole body and the fourth one
denoted as the air.

In this work, we solve the governing equations for fluid dynamics applied to compres-
sion molding simulation in the whole computational domain. All the bodies immersed
in the computational domain are analyzed by adopting adequate behavior laws and con-
stitutive equations. Two objects are considered as rigid tools, whereas the composite
material and the air are modeled as explained in Chapter 1. However, the motion of the
punch and of the die bodies is pre-defined since the velocity is given as input parameter.
In our formulation, those bodies (assumed rigid) are modeled by increasing its viscosity
in order to have strain rates much lower than the one of SMC and air. The motion of
the interfaces are ruled by:

3 bodies + air =



1 Mobile −→ velocity v imposed

2 Fluids (SMC + Air) −→ velocity v obtained by ∇ · σ = ~0

1 Static −→ velocity v = ~0
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(a) Visualization of the finner discretization along
the interfaces of the body, where we notice a thick
region of small mesh sizes.

(b) Visualization of the finner
discretization in a thickness E.
The interface is located in the
middle of the thickness.

Figure 2.2: Immersed Body Approach: the composite and the dies are immersed and
tracked by a level set approach coupled with mesh adaptation.

In order to improve the discrete description of each phase, the topology (mesh) is
refined in the vicinity of the respective interfaces after immersion. We solve the flow
physics in the whole domain and the mesh is adapted (Figure 2.2) along a thickness
E in the neighborhood of the interfaces. Figure 2.2a shows the anisotropic mesh sizes,
highly dense near the interface. There, a thick region containing the minimum mesh size
is observed. Usually, the interface between two bodies is located in the center of the
aforementioned region or thickness, as illustrated in Figure 2.2b.

A first option for the implicit function computation is to use the level set function,
φ, which is the signed distance function and an independent one should be defined per
object. However, one level set function enables the differentiation of two bodies. The
relation Phases = Level sets + 1 allows to have one level set less than bodies in our
computation domain. Particularly for representing 4 phases we required just of three
Level sets. When assigning one level set function to a particular phase, this function is
defined positive inside the phase, negative at the exterior and zero in the interface as
defined eq. (2.1) :

φ =



+d(x,Γ) if inside the body

0 if in Γ

−d(x,Γ) if outside the body

(2.1)

Once assigned a Level set per body, we have a fully implicit description where all the
interfaces are defined by its corresponding level set function. Knowing the velocity of each
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object, we reconstruct a distance to an interface by solving a PDE. More specifically, to
displace an interface, we solve a convection equation ,eq. (2.2), using the velocity resulting
from the resolution of the conservation equations:

∂φ

∂t
+ v · ∇φ = 0, (2.2)

This resolution will need to be coupled to a re-distancing algorithm to re-establish
the metric properties of φ, either by solving the eikonal equation [2] or by adopting an
unified formulation [3]. Further details will be given in the next section. We mainly need
to adapt the mesh because we need a good continuous description of the properties that
are normally discontinuous. Once the level set is moved, the spatial discretization must
follow the interface to preserve a smooth discrete description of the continuous φ and of
the discontinuous properties.

In order to couple this level set to the mesh adaptation algorithm, the level set function
φ is smoothly bounded along a characteristic thickness E (here denoted as narrow Level
set). In Figure 2.3 the narrow level set function is introduced without applying a smooth
transition. One of the advantages of the narrow level set is the limitation of the convection
equation to a space near the interfaces. Additionally, connecting the level set gradient
to the mesh provides an intrinsic coupling of the discretization with the kinematics as
will be depicted later on this chapter. However, the truncation needs to be smooth since
the trucanted level set illustrated in Figure 2.3 contains to point where the gradient is
infinite. This causes numerical problems when solving eq. (2.2).

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Distance to surface

Level set function and its associated Heaviside

Level set φ
trucanted Level set φ̂

Figure 2.3: Representation of level set function φ as a distance and the truncated level
set function φ̂

After the truncation of the level set φ, the identification of the two materials bounding
this interface is performed. The inherent properties of these materials such as the density
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ρ, the viscosity η, etc must be distinguished in the finite space E. We define then the
Heaviside function H per phase to equal 1 in one phase and 0 in the other phases. This
function is equal to 0.5 at the interface and normally is discontinuous. We need to make
it continuous since the function is applied on discrete spaces and discrete functions can
causes numerical instabilities during resolution. We attempt to describe its discontinuity
by assigning a continous evolution of the function and its gradient along the characteristic
thickness e. Normally, the thickness of this transition is given by a space region e such
that e < E, in which any property changes smoothly between one body to another. It
was shown in [4, 5, 6] the evolution in the convergence of the method being strongly
dependent on this thickness e. Summing up, the thickness E and e define two important
characteristic lengths of the approach:

• E −→ defines the smoothing length for the phase function

• e −→ defines the numerical precision through the smoothing of the physical prop-
erties.

Coarse Mesh Fine Mesh Coarse Mesh

φ after convectionφ before convection

Air
ρ2, η2

Composite
ρ1, η1

φ φt+∆t

e

E

Figure 2.4: Relative position of the interface within the fine mesh zone, before and after
the convection scheme. The fine mesh zone of thickness E contains not only the interface
after convection, but also the thick space e for numerical precision.

These two thickness are independent and the only condition established so far is that
e < E. Figure 2.4, schematically shows the level set convection within the mesh thickness
E. The level set φ is displaced to the position φt+∆t, but the thickness e after convection
remains inside the thickness E. If the interface leaves the finner region, the PDE using
for the level set convection may cause instabilities in the solution. Such instabilities will
determine unaccurate physical properties of the density, viscosity, etc that will cause fur-
ther problems during the mechanical resolution. By guaranteeing that after convection
the thickness e remains inside the fine mesh zone, the good description of the physical
parameters before and after convection are guaranteed. Since the thickness e always re-
mains inside the finner volume delimited by E. Eventually, the re-meshing tool is called
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and the interface is set again inf the middle of thick region E. This represents one of
the advantages implicitly contained by using two independent thickness e, E instead of a
only one characteristic length.

All the previous points, addressed in this introduction, embed issues when using the
level set approach as phase description support. Those issues were translated into a not
proper description of the convective scheme within the level set advection step, loss of
volume and penetration of the tools into the bodies, due to rigid motion of the punch
and die. They were treated in this work and are detailed in the following.

A first issue to be treated concerns the choice of a smooth function φ̂ and the suitable
strategy to choose the thickness e. Former works were performed [7] taking a hyperbolic
tangent level set supported on a thickness E. Then, in order to compute the Heaviside
function, a non-linear expression to the hyperbolic level set function is calculated. The
question remains for the Heaviside function H that is supported on a non-linear function,
that needs also to be defined.

Another problematic, associated to the discrete resolution of the convective scheme
in the level set method, is addressed hereafter. The non-conservative form of the discrete
function eq. (2.2) does not guarantee the conservation of the volume for incompressible
flows or mass for more complex problems. Many authors have suggested improvements to
the level set method by coupling the convection equation to a correction step, recovering
the conservative and metrics properties. However, even if those strategies have improved
the convection step, the methods has not been well established for complex 3D industrial
cases. Further studies should be conducted to justify their robustness.

In our case, the velocity profile of the mold and of the punch are known in our numer-
ical set up, with a defined velocity profile. In immersed methods only the imposition of
Dirichlet conditions in the boundaries of the domain guarantee a stable solution. Impos-
ing to the whole body a rigid motion may introduced instabilities int he solution. The
modeling of stable rigid motions in embedded geometries is of interest when dealing with
compression molding simulations and is discussed later in this chapter.

The steps described in the following of this chapter are hereafter introduced. Firstly
the level set approach is formalized and the step assigned to conserve its metric prop-
erties is analyzed. Examples of different smoothed level set and Heaviside functions are
given, focusing on their connection between the thicknesses E and e. We will see that
the introduction of a linear hyperbolic tangent level set as smooth function enables the
exact computation of a Heaviside function and of a Dirac function within the thick-
ness e. A study on local re-initialization is conducted, focused on the influence of the
re-initialization velocity, when solving the convection-reinitialization step. There, we pro-
pose a strategy to improve the computation of the reinitialization of the level set based
on the normal velocity gradient.

Secondly, as a straightforward application of the linear hyperbolic tangent level-set, we
have developed a conservative strategy to correct the volume loss during the convection
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of the level set in discrete schemes. Our methodology introduced as handy in a Newton-
Raphson algorithm, requires the computation of a Dirac function as the derivative of our
assigned Heaviside function. The Dirac function stands within the thickness e, putting
in evidence the advantages of the linear hyperbolic tangent level set. We enriched the
method to account for mass conservation, when studying compressible flows. We present
numerical cases, where the conservation algorithm proof proficiency and we comment on
the limitations of the approach.

In the last section, we address the problem of computing the compression force on a
”diffused” or implicit boundary” interface approach. The force is the mechanical variable
describing basically all the rheological response of the material under deformation. The
force is used to validate the numerical approach when comparing it with the force exerted
by the machine in experimental tests. Instead of computing the force by a surface integral
as used in standard methods, we use a virtual work principle based on the viscous power.
Thus, we associate deformation energy to the compression force getting stable and proper
values.

2.1.1 Background in Level set methods
Level set methods were introduced to represent implicitly interfaces and free surfaces Γ
by defining a scalar field φ(x), eq. (2.3), such that:

Γ = {x/φ(x) = 0} . (2.3)

where φ(x) was defined previously.
For multi domain body immersed computations, a level set is defined to each body.

By making use of this definition, a smooth Heaviside function eq. (2.4), will be built over
a characteristic thickness of 2e, as defined by:

He(φ) =



1 if φ > e

1
2

(
1 + φ

e
+ 1
π

sin(πφ
e

)
)

if −e < φ < e

0 if φ < e

(2.4)

This enables a continuous definition of the properties transition along the interfaces.
This functions will help during the resolution of the mechanical problem to identify
the different phases in the domain, assigning as inlet the properties of each material
independently. For instance, given a property η to each material, we can define a single
space-dependent for the numerical resolution by doing:

η = HSMC ηSMC +Hmold ηmold +Hpunch ηpunch +Hair ηair, (2.5)

The last phase (air) is defined as the complementary of the other phases (Hair = 1 −
HSMC −Hmold −Hpunch).

After resolution of the system given in section 1.1.5, the immersed bodies can be
identified by H(φ) and the boundary ∂Ωn of each sub-set by the iso-value zero φn = 0.

63



Moreover, the interface may evolve since a velocity field affects not only the sub-set but
also the interfaces. For tracking the evolution of the interface, each sub-set φ is convected.

Convection and Re-initialization

Once our level sets functions defined; for t = 0 as φ0, their motion can be described by
the advection relation, using the transport velocity field u:

∂φ

∂t
+ u · ∇φ = 0, (2.6)

φ(t = 0, x) =φ0, (2.7)

which generalizes eq. (2.3). Convecting the field φ only guarantees its iso-value zero
to be correct. For whatever velocity field, solving eq. (2.6) normally disturbs the metric
properties of the level set function since the transport velocity u in the direction of the
level set gradient causes the iso-contours φ to get closer or farther from the interface. This
implies that for any iso-value φ 6= 0 the convection step will enhance loss of the distance
property. For this reason, in order to recover the distance properties, a re-initialization
step is performed, by solving the eikonal equation:

‖∇φ‖ = 1. (2.8)

Some authors [2] solve directly eq. (2.8) when redistancing is necessary, others [8, 9, 10]
couple the convection-reinitialization steps and solve a generalized form of the advection
equation given by eq. (2.9):

∂φ

∂t
+ (u + λU) · ∇φ = λ s(φ), (2.9)

where λ is a numerical coefficient, so-called booster, depending on mesh-size and time-
step, U is a re-initialization velocity defined by U = s(φ) ∇φ

|∇φ|
and s(φ) is the sign

function (by convention equals 1 inside the object, 0 at his boundary, -1 at the exterior).
The selection of both λ and the time step are based on the Courant-Friendriechs-Levy
condition (CFL condition) computed taking the size of the element in the direction of
the velocity u.

2.1.2 Narrow band level-set function
In order to solve the convection equation, an accurate description of the velocity field u
in the whole domain must be guaranteed. However, the usage of a level set present lots
of advantages. Let us bound φ in the space such that only in the vicinity of ∂Ωn it varies
from [−E,E].

• by limiting the value of the distance function, a boundary condition may be fixed
and set to −E;
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• convecting in the whole domain a level set seems inefficient, since the re-initialization
step will always be done.

• we can couple the mesh adaptation to this narrow function bounding the fine mesh
to the interest zone, by using its gradient to automatically generate mesh sizes.

Thus, one may use a smoothly truncated distance function, keeping the same iso-value
zero and switch properly to a constant value when the distance increases. One example
is the hyperbolic tangent level set function, eq. (2.10) [7] :

φE = E tanh
(
φ

E

)
≈ φ, when E tends to infinite or in the vicinity of the interface

(2.10)
Normally, the parameter E defines the bounded values of the level set. The space

region where the function varies from [−E,E] approximately equals 3E. Another example
of truncated level set, is the linear sinus eq. (2.11) [7]:

φE =



2E
π

if φ > E

2E
π

sin(πφ2E ) if −E < φ < E

−2E
π

if φ < −E

(2.11)

In this case, the mixture thickness e is independent of the value of E.

Advection of the narrow level set

If the level set function is smoothed, the re-initialization procedure applied can be better
used by taking advantage is smoothing.

As explained in [3], the re-initialization step using a pseudo-time to apply the iterative
algorithm states eq. (2.12):

∂φE

∂τ
+ λU.∇φE = λs(φE)g(φE)

φE(τ = 0, x) = φt−1(x)
φE(τ, x = ∂Ω) = −E

(2.12)

recalling that U = s(φE) ∇φ
E

|∇φE|
, where the solution at any time in the boundary of

Ω is set to the bounded value of the smoothed level-set. The function g(φ) is given by
eq. (2.13):

g(φE) = |∇φE| (2.13)
Then, the re-initialization function may now be given by eq. (2.14):

∂φE

∂τ
+ λs(φE)(|∇φE| − g(φE)) = 0

φE(τ = 0, x) = φn+1(x)

φE(τ, x = ∂Ω) = −E

(2.14)
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where s(φE) is the sign function. The factor
(
|∇φE| − g(φE)

)
represents the difference

between the discrete gradient and the exact nodal gradient computed using eq. (2.15) as
function of the smoothing function. For example:

g(φE) =



1 for no smoothing

1−
(
φE

E

)2

for hyperbolic tangent smoothing√√√√1−
(
πφE

2E

)2

for sinus smoothing

(2.15)

Once |∇φE| equals g(φE) ,the re-initialization algorithm converges. Moreover, we can
define a regularized sign function, s(φE), for a smooth transition, as follows, eq. (2.16):

s(φE) = φE

|φE|+ E
(2.16)

where the transition is proportional to the the size of the element in the velocity direction.
The thickness of the transition is proportional to the mesh size (E ∼ h).

Meanwhile, the CFL condition, eq. (2.17), in pure advection problems states:
|~v|∆t
∆x ≤ 1 (2.17)

The choice of the λ parameter is based on the condition:

λ ∼ |λU | ∼ h(U)K
∆t (2.18)

where h(U) is the size of element K in the direction of U .
After defining the narrow level set, using one of the previous forms, the smoothed

Heaviside shape function can be obtained from eq. (2.19) using:

HE = 1
2

(
1 + φE

E

)
(2.19)

This expression is equal to 1 inside the object, 0 outside and 0.5 in the interface
(φE = 0 in the interface ). However, respect to the discontinuous case this functions
contains a smooth transition respect to the standard Heaviside function explained in the
introduction.

2.2 Approach
In this section, we present our proposal for the smoothing of level set functions. First,
we present the linear tangent hyperbolic level set used in this work and we write our
Heaviside function, directly as a function of the smoothed level set. Then, we introduce
the formulation for the re-initialization technique by adapting such equation to our linear
tangent hyperbolic. Finally, we propose the computation of important numerical param-
eters, like λ, as dependent of the gradient of the velocity in the normal direction. Arising
to the discussion of a local parameter instead of a constant value.
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2.2.1 Linear hyperbolic tangent
As previously mentioned, the importance of truncating the level-set enables a faster res-
olution of eq. (2.9). Also, an accurate resolution is given by guaranteeing a smooth
solution for the velocity in the vicinity of φ = 0. Using a hyperbolic tangent automat-
ically smoothed allows us to write the re-initialization step, where the gradient of the
level set is represented by a function g(φ) containing explicitly φ.

We seek for an level set function such that the thickness e of the mixing layer can be
defined in the region in which φE is linear, guaranteeing:

φEφ→0 = φ, (2.20)

that imposes some conditions between e and E. For ensure this linearity, in this work,
we apply a linear hyperbolic tangent function of the distance, eq. (2.21):

φE =



e+ E tanh(φ− e
E

) if φ > e

±φ if −e < φ < e

−e+ E tanh(φ+ e

E
) if φ < −e

(2.21)

The main contribution of this Level-set construction yields on the exact value of the
smooth level set along the thickness of the numerical precision e (notice that φE = φ in
the region −e < φ < e). The level-set is equal to the distance function. The previous
expression (sinus and tangent hyperbolic) where approximate values of the distance, while
this construction ensure the exact distance values.

A smoothed Heaviside function is employed over a characteristic thickness of 2e using
as input the truncated level-set φE eq. (2.22) :

H(φE) =



1 if φE > e

1
2

(
1 + φE

e
+ 1
π

sin(πφ
E

e
)
)

if −e < φE < e

0 if φE < −e

(2.22)

We extend the descriptive functions by adding a Dirac function to the approach, thus
enabling operations in the subset ∂Ω inside the volume Ω. The Dirac function associated
to the Heaviside function defined in eq. (2.22) stands:

δe(φE) =


0 if |φ| > e

1
2e

(
1 + cos(πφ

E

e
)
)

if −e < φ < e
(2.23)

In Figure 4.1, the linear-levelset, the Heaviside and Dirac functions are plotted. Ad-
ditional conditions state for the relation between the thickness e and the spatial dis-
cretization, with e = O(hd) where hd represents the mesh size in the normal direction
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Figure 2.5: When using E = 0.15 and e = 0.1 we define level set eq. (2.21) and its
respective Heaviside eq. (2.22)

to the interface. Additionally, we found that to numerically guarantee the the integral
I =

∫ e

−e
δe(φE)dΩ = 1, the thickness e should be at least five mesh sizes e = 5hd. In the

numerical experiments, we set e = 6 hd.

In the vicinity of the interface, the latter parameter can be determined according to
eq. (2.24):

hd = max
j,i∈K

∇φ ·Xij, (2.24)

where K is a mesh element in the tight sub-layer around the interface and X ij = Xj−X i

is an edge of K.
For the linear hyperbolic tangent the value of the reinitialization function, g(φ), results

in eq. (2.25):

g(φε) =


1−

(
φε − e
E

)2

if |φ| ≤ e

1 if −e < φ < e

(2.25)

2.2.2 Re-initialization velocity - A local description
The coefficient λ, mentioned in eq. (2.18), represents a numerical parameter to line spa-
tial and temporal metrics and has been used for a long set of simulations as presented
in [10, 11, 12]. However as its definition shows, the choice of a re-initialization velocity
does not depend on a local evolution of the surface. For instance if rigid body motions λ
should equal to 0, since the level set has not been deformed. The booster λ should reflect
the amount of reinitialization required depending on how much the level set is locally
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deformed.

Three sources of level set deformation are here described. Firstly, one related to purely
flow kinematics. Secondly, another source due to numerical diffusion associated to the
numerical discretization of the advection step given by eq. (2.6). Thirdly, the discretiza-
tion of sharped edges, which tends to get smooth due to the resolution of eq. (2.14), being
difficult to overcome without a mesh adaptation technique.

based on flow kinematics

Let us define Ωs a subset of Ω ∈ Rd and let ∂Ωs describes the boundary of Ωs such
that ∂Ωs ∈ Ω. Let us now divide the boundary ∂Ωs into two sections such that ∂Ωs =
∂Ω1 ∪ ∂Ω2, in which we apply different boundary conditions. Let us define a level set φs
through eq. (2.26):

∂Ωs = {∀φ/φs = 0} . (2.26)

This implies that our level set function is defined along the domain ∂Ωs. Let us define,
for each sub-domain ∂Ω1 and ∂Ω2, a thick vicinity δΩ1 and δΩ2, compact in a thickness
[−e, e], such that the velocity condition is given by eq. (2.27)-eq. (2.28)

δΩ2

∂Ω1

Ωs u = ~v ∈ ∂Ω1, (2.27)
u · ∇φ = 0 ∈ δΩ2. (2.28)

When solving eq. (2.14), the solution in the subset Ωs needs the convection of φ = 0
along ∂Ωs and also the re-initialization of its vicinity δΩs. However, solving in ∂Ω2 does
not imply convection of the φ = 0 and it implies also that no re-initialization is needed.
For that reason, the use of a locally λ should be instead implemented. Also, in the cases
where the normal velocity on φ is more important (and for that the re-initialization is
more important) a different λ should be used. This indicates that assigning a local λ
proportional of the local normal velocity (u · ∇φ̂) seems a better strategy as was also
suggested in [9]. In our work, we propose a λ proportional to the gradient of such velocity,
through eq. (2.29):

λ ∼ ∇
(
u · ∇φ̂

)
∇φ̂ ∆t (2.29)

being ∇φ̂ the unit-normalized gradient representing the normal to the interface φ.
This gradient is narrow banded, it is zero everywhere except in the vicinity of the inter-
face. This concept points out the need of a λ value proportional to the velocity gradient
in the normal direction. This expression of λ is proportional to the time step, namely, if
a gradient normal to the velocity exist, the iso-values displacement are proportional to
the time step and thus its re-initialization velocity.

Horizontal extension of a circle
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(a) - constant booster t=0s (b) - constant booster t=1s (c) - constant booster t=2s

(d) - local booster t=0s (e) - local booster t=1s (f) - local booster t=2s

Figure 2.6: Deformation of the circle and convection using a constant (a-b-c) and local
defined λ (d-e-f).

To better illustrate this point, let us define a circle with an initial diameter of 0.1 m
immersed in a box of 0.3m × 0.2m. This circle is submitted to a velocity profile of the
form:

v =


2 (x− xo)3

2 (y − yo)2
(2.30)

This velocity profile in eq. (2.30) is not divergence free. According to the proposed
local booster, when convecting the level set function some areas required more and some
less speed to reinitialize. In this study, the velocity profile is at the origin of an horizontal
stretching of the circle, while shrinking it vertically. The local λ is higher in the hori-
zontal direction while lower in some particular sections of the circle. In Figure 2.6, we
compare the solutions for the convection of the circle under the defined velocity profile.
The level set convection using a constant λ loses its metric properties, visualized by the
deformed iso-values. Notice, that for the case with local λ, the iso-values remains correct.

The simulations were performed setting a fixed time step, ∆t = 0.01s. As indicated by
eq. (2.29), the gradient of the velocity in the normal direction is too high a decrease of the
time step should be then applied. In such manner, a combination of the CFL condition
and a bounded local λ can be studied to improve re-initialization strategies of level set
methods. However, a deeper study in such field is out of scope from the objective of this
work. Further understanding is proposed as a perspective, at the end of this document.

Another important point when using level set methods is the evaluation of their
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conservative properties. The convective scheme of the approach is not conservative,
providing possible mass lost compromising the numerical results.

2.2.3 Effect of mesh adaptation on volume conservation
In this section, we will focus on the conservative properties of the level set method and its
sensibility to the mesh discretization in the case of compression molding, by defining the
simple compression of a cylinder in 2D and 3D. We solve a standard Newtonian Stokes
problem and compare the mass (or volume since density is constant) of the part during
the compression. We set the compression a constant time step and a fixed velocity of the
punch. the initial thickness of the sample is 6 mm and the initial diameter is of 50 mm.
The compression ends at a thickness of 2.6 mm. The initial and final state are pictured
in Figure 3.18a.

(a) Simulation - t = 0 (b) Simulation - t = tfinal

(c) Simulation - t = 0 (d) Simulation - t = tfinal

Figure 2.7: Initial and final configuration of the simple compression case. Final defor-
mation −ln(hf/ho) = 0.8. (a) and (b) velocity profile in the piece at the initial and final
position. (c) and (d) cross section of the compression of the fluid.

The point to illustrate in this section is the conservation of the volume of the piece
during the compression. We define the volume loss as the difference of volume compared
to the initial volume divided by the original volume, defined as:

error% = Vo − V (t)
Vo

× 100 (2.31)
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Generally, we observe a relative loss of volume related to the non-conservative convective-
scheme of the level set formulation and the numerical diffusion due to the re-meshing
routine. When re-meshing, the level set field on the old mesh is linearly interpolated on
the new mesh, which induces numerical errors related to the interpolation. Even for the
isotropic mesh case, (without re-meshing) volume is lost along the deformation process.

0 1 2 3 4 5 6 7 8
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2
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Numerical precision

Fixed Mesh 400k
Mesh Adaptation 8k
Mesh Adaptation 16k
Mesh-Adaptation 32k

Figure 2.8: Influence of mesh adaption on volume conservation. hmin = 1e − 03mm,
∆t = 1e− 02s

In Figure 2.8, we plot the volume lost for four different cases. The first case concern
the use of an isotropic mesh, without activating the mesh adaptation tool. We notice that
along the whole compression the volume lost reaches 0.7%. However, in order to keep
the accuracy of the method define by a minimal mesh size hmin, the same everywhere,
we have fixed the number of nodes required 400k nodes to perform this simulation. Mesh
adaptation allow us to adapt the mesh in the regions of stronger gradients (dynamically)
more important. Three cases, with different number of mesh nodes, where chosen to
study the influence of mesh sizes.

For 8k, 16k and 32k nodes, the volume lost of the same test case is drawn in Fig-
ure 2.8. We notice that the finer the mesh discretization the lower the error in the volume
during the simulation. Additionally, we notice that the rate of volume loss increases when
the thickness of the sample decreases, probably, due to the high gradients of the velocity
profile in such narrow space. There a adaptive time step will then improve this resolution.

A more challenging configuration (to be chosen for the industrial case) has been used
as reference study and is presented in Figure 2.9. In this case, the punch compress the
preform until the mold cavity is fulfilled and this case will be studied during the develop-
ment of this manuscript. Hereby, we focus on the initial test, without any optimization,
where a considerable mass loss was encountered.

Figure 2.10, illustrates the final deformation of the preform, once the punch reaches its
final position. The final configuration pictures how the preform (purple) did not fill the
mold cavity (The expected filled regions is visualized in green). The plot of the volume
evolution during the simulation shows a remarkable loss up to 30%. As visualized in the
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(a) Compression of an Industrial part.

Punch

Mold

Preform

Body Immersion

(b) Schematic illustration immersion of different
phases: punch, composite and die.

Figure 2.9: Industrial case presentation. (a) the three bodies defining the mold, punch
and the geometry of the preform. (b) Schematic of the immersion in our numerical tool.

image, the compression of flat geometries with a ratio length/thickness l/d >> 1 induces
high velocity in the flow front while compressing the part due to the incompressibility
condition. In Figure 2.11, the accumulative loss error and the relative loss ∆error (loss
of the current time step) is presented during the deformation. We notice also the ten-
dency of the local loss to increase as the thickness becomes smaller.

Basically this lost is due to many factors. At first point, the not-divergence free of
the velocity profile from the numerical discretization during the finite element resolution.
The level set convection equation that by definition is not presented in a conservative
form. The mixed velocity profile computed in the domain (compressible for the air, in-
compressible for the preform) that can cause a semi-compressible profile in the vicinity of
the interface. The acceleration of the fluid during the compression at thickness becomes
smaller. Another source is then associated to the time step that should be adapted to
responds the flow conditions at any time step.

Particularly, we notice that the lost per iteration is lower than 0.1%, implying that
the volume loss is mainly due to the accumulation of minor errors, mainly during the
convection scheme. This point is further discussed in the next section, as well as, the
methods implemented to decrease this volume loss. Even thought, the conservative (or
not) approaches seems out of the scope of the frame of this work, we propose in section 2.3
a suitable strategy to deal with this problem on simple and industrial cases.

2.3 Volume/mass Conservation on level set methods

Adapted three-dimensional multi-phase descriptions to simulate compression molding
processes enables a direct study of complex phenomena, such as thermo-mechanical inter-
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(a) View of incomplete mold filling during
reference compression case due to material
loss.
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(b) Volume variation during Simulation for
the reference case.

Figure 2.10: Volume loss on an industrial part Compression from 6mm to 2.5mm. With-
out any optimization, a global 30% of loss is observed in particular by the incomplete
filling of the mold cavity.

actions. In such a context, topological changes and phase interactions are difficult to be
reproduced by traditional Lagrangian methods. In these cases, immersion methods and
more specifically level set methods [13] are a more suitable approach a seen previously.
Re-initialization of the distance function is required to maintain the unitary gradient of
the level set function, by solving a Hamilton-Jacobi equation as in [14]. To accelerate
computations, the convection step can be modified to integrate the re-distancing in this
single equation [15, 10].

In general level set methods framework are better than other techniques fo rimmersion
domain such as the Volume-Of-Fluid (VOF) [16], since in those methods mostly an in-
terface reconstruction from the element volume fraction is required. Despite, the benefits
and ease of use of the level set method, a lack of conservative properties inherent to the
approach is found, making the task in multiphase calculations flows difficult since the
mass/volume of the body immersed is continuously degradated due to diffusive numeri-
cal errors. To overcome this problem, several authors [17, 18, 8, 19, 20], have adjusted
the methodology proposing a conservative formulation, enabling the use of recovery al-
gorithms to correct the level set after the convection step, keeping not only the unitary
gradient, but also the conservation of the mass/volume. More recently methodologies,
using fast marching methods [21, 22], improved also the accuracy on the normal com-
putation from the smooth distance, enhancing the convection and re-initialization step.
The drawback of such methods rely on the use of numerical parameters that should be
calibrated.

While adjusting the unitary gradient of the level set is needed to preserve the profiles
and improve conservation, the excessive use of it deteriorates the solution by compound-
ing errors as stated in [9]. Such effect is explained by the diffusion term presented in
the conservative re-initialization strategy where a fictitious viscosity is used to smooth
the surfaces [18], [8], [20]. The starting point to minimize such issue consist to only
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Figure 2.11: relative error eq. (2.31) in volume as a function of the sample thickness
during compression of an industrial piece using the volume recovery strategy

re-initialize regions where the unitary gradient has been modified. Sato [23] relates the
amount of local re-initialization on purely flow kinematics. However, in the work of Owkes
and Desjardins [24], a calibration metric based on the amount of deformed level set was
proposed and they included the effect of the numerical diffusion errors. Such work was
enriched by the contribution of [9], improving the regions where very small level set de-
formation was found, proposing a more localized re-initialization strategy. Such strategy
is based on the normal velocity of the interface and the amount of deformation along the
vicinity of the surface.

In this work, we present a particular extension of traditional level set approaches to
multi-phase flows, with an improvement given by a smoothed level set, supported with a
linear region in the vicinity of the zero iso-value, and the use of mesh adaptation coupled
with an edge-error estimation metric in order to guarantee a precise description of the
gradients. Furthermore, a strategy for conserving the volume after the advection step
has been also implemented, where we attempt to avoid the use of problem-dependent
parameters and we try to propose a more stable algorithm using a Dirac computed from
the distance function.

2.3.1 Objective
The mass of a object occupying the region Ω∗(t) = {x/φs(x) > 0}, and having a density
ρs is given by:

M(t) =
∫

Ω∗
ρsdΩ =

∫
Ω
ρsH(φ)dΩ (2.32)

the convection of the mass implies, for any domain Ω∗ ⊂ Ω:
∂

∂t

∫
Ω
ρsH(φ)dΩ +∇ ·

(∫
Ω
ρsH(φ)udΩ

)
= 0. (2.33)
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It is important to notice that both eq. (2.6) and eq. (2.33) are valid representations
of the interface dynamics for the entire domain [25]. We label eq. (2.6) the levet set
advection and eq. (2.33) the mass advection. Both equations are respected if the level
set function is properly convected.

The question addressed in this section relies on keeping the conservative properties of
the level set functions when solving their advection using finite element methods.

It has already been noticed that the finite element solution of the level set advection
does not necessarily guarantee a conservation of the mass advection [20]. For that reason,
many works have been performed in order to address this issue [18, 8].

2.3.2 Background in conservative strategies
Correction of the level set function to guarantee conservation can be performed in many
different ways, mainly by solving an extra equation to find the necessary factor to apply
to the already convected level set φ.

Conservative methods

Kees [20] introduced a strategy in which a normal convection-reinitialization of the level
set is firstly done using eqs. 2.6 and 2.8 or even any other reinitialization method. Then,
the convection of a conservative Heaviside function, denoted by Ĥ, is done using the mass
advection equation eq. (2.34):

∂Ĥ

∂t
+∇ ·

(
Ĥu

)
=0 (2.34)

Finally, the author compared the computed Heaviside function H(φ) to the conserva-
tive Ĥ. Then, they suggested to find the conservative level set φc associated to Ĥ using
eq. (2.35) such that the discrete smoothed Heaviside obtained through the corrected level
set φc eq. (2.36) equals the conservative Heaviside obtained by the solution of eq. (2.34).

{
H(φ+ φ′)− Ĥ = κ∆φ′
∇φ′ · n = 0 on ∂Ω (2.35)

φc =φ+ φ′ (2.36)

Two remarks can be given to eq. (2.35). The parameter κ avoids the level-set displace-
ment to be a constant along ∂Ω, thus allowing a mapping of corrections i.e. the level set
is displacement depends on the space. In addition, k diffuses the new level-set correction
guaranteing a stable and smooth conservative level set. However, this parameters needs
to be calibrated and can induces to much diffusion during the numerical resolution fo the
conservative level set.

One other strategy has been introduced by Olsson [18], using directly the discrete
smooth Heaviside as the level set eq. (2.37). In their work, the resolution of the mass
advection, eq. (2.33), is used with the variable φ, following eq. (2.38):
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φ =H(φ) (2.37)
∂φ

∂t
+∇ · (uφ) = 0 (2.38)

Eq. (2.38) presents conservative properties inherent to the mass equation. The metric
properties are retrieve, solving a the following equation:

∂φc
∂τ

= ∇ ·
(
ε
(
(∇φc · n0)n0

)
− φc(1− φc)n0

)
(2.39)

the conservative re-initialization recommended by Olsson and Kreiss solves the re-
distancing of the level set by using a pseudo time τ and a diffusion term depending on
a fictitious viscosity ε. The re-initialization step, eq. (2.39), is performed, conditioning
that the modification of the distance function in the vicinity of φ = 0 does not modify
the location of the interface in discrete schemes. This is achieved by guaranteeing that
the flux on the interface Γ is zero (∇φφ=0 · n0 = 0). This condition is respect if the choice
of the normal n0 in eq. (2.39) [8], chosen at the initial pseudo time τ = 0 eq. (2.40). The
upper index ” 0 ” is referred to the normal at pseudo time τ = 0, more specifically:

n0 = ∇φτ=0

|∇φτ=0|
(2.40)

For simulations were the contact angle in the surface modifies a certain response in
the mechanical model, one can follow the work of [26]. Therein is presented the modifi-
cation of eq. (2.40) by adding another diffusion term in the tangential direction as well
as a smoothing technique to compute the normal n0.

Both strategies hereabove have been successfully applied in several benchmarks and
examples [18, 8, 20], both providing a local correction of φ. However, both strategies
demand a viscosity-diffusion value, ε or κ. The tuning of these values might be problem-
dependent. The higher the value of such diffusion, the less-sharper geometries will be
obtained. Also, they imply solving either an extra differential equation or well diffusing
the solution each time increment. At the same time, the authors have not addressed this
problems under adaptive anisotropic mesh techniques. In the next section, we present a
simple correction strategy using a Newton-Raphson algorithm which does not require the
resolution of other differential equation and more important, the tuning of new numerical
parameter.

2.3.3 Proposed strategy
In order to apply the algorithm, the initial mass M0 is firstly computed at t = 0:

MΩ∗

0 =
∫

Ω
ρ0 H(φ(t = 0))dΩ (2.41)

Consequently, we can define the mass at any instant as:
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MΩ∗ =
∫

Ω
ρ(φ) H(φ)dΩ (2.42)

Here, the general expression of the density is used since it is time-space dependent
in our problems. After convecting the level set function φ, the mass/volume embedded
by the iso-value zero might differ. At any t > 0, the mass in eq. (2.41) and in eq. (2.42)
enclose errors due to the discrete resolution of the convective scheme. Defining f as the
difference between the current mass respect to the initial, one gets:

f(φ) =
∫

Ω
ρ(φ) H(φ) dΩ−MΩ∗

0 . (2.43)

For obtaining a φc that satisfies f = 0 we use an iterative Newton-Raphson algorithm.
Then at iteration n+1, φn+1 is given by:

φn+1 = φn − f(φn)
f ′(φn) (2.44)

being n+1 the new estimation of φ, and φc = φn+1 when f(φn+1) = 0. This algorithm
is applied after convecting the level set function using eq. (2.6).

The expression given in eq. (2.44) requires the computation of f ′(φ):

f ′(φ) = df(φ)
dφ

= d (
∫

Ω ρ(φ) H(φ)dΩ))
dφ

(2.45)

Denoting with ′ the derivative with respect to φ and using the property

d

dφ

(∫
g(φ)dΩ

)
=
∫ ∂

∂φ
(g(φ)) dΩ (2.46)

we get:

d (
∫
Ω ρ(φ) H(φ)dΩ))

dφ
=
∫

(ρ′(φ) H(φ) + ρ(φ) H ′(φ)) dΩ (2.47)

Where ρ′ and H ′ are obtained by taking into account the fact that:

dH(φ)
dφ

= δ(φ) (2.48)

where δ(φ) is the Dirac function associated to the Heaviside function defined by
eq. (2.22). The variation of the density with respect to the levelset φ, finally is given
by:

dρ(φ)
dφ

= dρ(φ)
dH(φ)

dH(φ)
dφ

= dρ(φ)
dH(φ) δ(φ) (2.49)

we recall that ρ(φ) is defined as:

ρ(φ) = ρsH(φ) + ρ∞ (1−H(φ)) (2.50)
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where ρs is the density of the subset Ω∗ and ρ∞ the density of the exterior media
surrounded by ∂Ω∗. After derivation, with respect to φ we obtain:

dρ

dφ
= (ρs − ρ∞) δ(φ) (2.51)

Getting the two contributions together, we have:

d (
∫

Ω ρ(φ) H(φ)dΩ))
dφ

= (ρs − ρ∞) δ(φ) H(φ) + ρ(φ) δ(φ), (2.52)

and taking a common factor, by using the definition of ρ and noticing that:

ρs H(φ)− ρ∞ H(φ) + ρs H(φ) + ρ∞ − ρ∞ H(φ) = 2ρ− ρ∞, (2.53)

we get:

d (
∫

Ω ρ(φ) H(φ)dΩ))
dφ

=
∫

(2ρ(φ)− ρ∞) δ(φ) dΩ (2.54)

In this expressions, ρ is the density space function, ρ∞ is the density of the external
bodies {ρ∞ = ρ(φ = −E)} and δ(φ) is the Dirac function associated to H(φ) defined in
eq. (2.23). Finally, the Newton-Raphson algorithm for correcting the level set φ states:

φn+1 = φn −
∫
ρ(φ) H(φ) dΩ−M0∫

(2ρ(φ)− ρ∞) δ(φ) dΩ (2.55)

Three remarks may be outlined and must be taken into account.
Remark 1 : Ihe case where ρ(φ) = ρ∞ = ρcte, the algorithm represents also the volume

conservation.

Remark 2 : No assumption regarding the density ρ or well the Heaviside function H(φ)

were performed. However, the choice of δ(φ) needs to fulfill the condition dH(φ)
dφ

= δ(φ).

Remark 3 : The correction algorithm takes always the initial mass as reference to
convergence, avoiding accumulative errors due to numerical discretization. Similarly, the
non-convergence of one time increment will not modify the stability, proving robustness
to the method.

Applying this algorithm requires a good description of the Heaviside and of the Dirac
function in the discrete scheme. For that reason, we use the anisotropic mesh adaptation
tool based on an edge error estimation. Such topic has been subject of discussion in,
Chapter 1, section 1.3.
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2.3.4 Strategy to avoid penetration of recovered-level-set into
tools

For compression cases, is we displaced the level set to the space belonging to the punch and
die, we get penetration problems. This section address this issue and how we handle it to
displace the level set after the correction and avoid such penetration. The methodology
described in section 2.3.3 displaced the level set contour φ keeping its mass constant
after the convection scheme. The resulting φc however, might penetrates other bodies
in the case of multi-body immersion physics. This section develops an strategy to force
level set displacement on region of free domains. Thus, enabling the displacement to be
carried out avoiding penetration problems. For our multi-body problems, the discrete
space where the air is defined is considered as the free domain. The punch and the mold
are considered as rigid bodies and not displacement towards their sub-domain is allowed.

Punch

Mold

Air

Composite φ

φc

Penetration

φcnp = φ+ ∆φfree

Figure 2.12: Schematic illustration of the displacement of the iso-contour zero after ap-
plying recovery our algorithm

In Figure 2.12, φcnp represents a conservative level set which does not penetrates any
tool. The displacement, independent of the spatial position and obtained by the Newton
algorithm is modified, to define a spatial displacement (not constant) ∆φfree define only
is particular regions of the domain. Such displacement is obtained by adding a ffree
variable which in the air and the composite equals 1 and equals zero in the tools.

We can use the Heaviside function of the mold and punch to define the tools space,
by creating a variable of the free surface ffree, which states that eq. (2.56):

ffree = 1−H(φtools). (2.56)

Notice that such function equals 0 if Htools = 1 which means that φ is in contact with
the tool and positive at the free surface.
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Adding a factor ffree allows us to control to where is being displaced the level set
function and to avoid penetration problems. Nevertheless, in the recovery algorithm,
states that the convection of the function is performed everywhere in a homogeneous
way. In fact, when including the tools, in the system, some regions will not displaced,
since the surface in contact do not belong to the free zone. Thus, causing the total mass
recovery not to be fully compensated. In order to solve this, it is included a surface
factor aiming to take this effect into account by allowing larger displacements in the free
regions. This factor relates the difference between a bubble in the free space correction or
a compression molding simulation. In Figure 2.12 the blue line represents the conservative
non-penetrated level set φcnp. As illustrates in this figure, the displacement is larger. To
recover the proper amount of mass loss, we use the factor fsurface given in eq. (2.57). This
factor also represents the ratio between the full surface of the level set and the surface
sharing a free displacement.

fsurface =
∫
δ(φ)dΩ∫

(1− 2H(φtools)) δ(φ) dΩ (2.57)

For example, if the body shares the half of its surface with the tools such factor
equals 2. Meaning that a double displacement needs to be performed in the free surface
to compensate the real mass loss. Following this reasoning, the expression given in
eq. (2.55) is then modified to include the local free surface factor ffree and the surface
ratio fsurface obtaining:

φcnp = φ− fsurface ffree

∫
ρ(φ) H(φ) dΩ−M0∫

(2ρ(φ)− ρ∞) δ(φ) dΩ (2.58)

Expression given in eq. (2.58) recovers the mass loss during the convective scheme of
eq. (2.6) including the tools. Now one can define the local ∆φfree displacement by means
of eq. (2.59) and by knowing that the ρ∞ in the free domain equals ρair, one may write:

∆φfree = fsurface ffree
M0 −

∫
ρ(φ) H(φ) dΩ∫

(2ρ(φ)− ρair) δ(φ) dΩ (2.59)

2.3.5 Maximum volume loss per iteration guaranteeing accu-
rate displacement

When solving the recovery algorithm the level set displaced should remains inside the
fine mesh zone (FMZ). We shall thus guarantee:

∆φ ≤ MeshZone
2 (2.60)

The finer meshed zone illustrated in Figure 2.13, can be estimated knowing which
gradient of the level set function has compact support on a domain equals to 3E, such
that:

81



Punch

Mold

Air
ρ∞ = ρair

Composite φ φcnp

3E − e
2

Figure 2.13: Schematic illustration of the displacement of iso-contour zero inside the Fine
Meshing Zone (FMZ), after applying the recovery algorithm

MeshZone = 3E − e (2.61)

by using the definition of our recovery algorithm eq. (2.55) and knowing that ∆M =∫
ρ(φ) H(φ) dΩ−M0, we can write, eq. (2.62):

∆M∫
(2ρ(φ)− ρ∞) δ(φ) dΩ ≤

3E − e
2 (2.62)

which allows us to evaluate the maximum mass loss to be recovered inside a well
described meshed zone by eq. (2.63):

∆Mmax = 3E − e
2

∫
(2ρ(φ)− ρ∞) δ(φ) dΩ (2.63)

In the monophasique incompressible case, we obtain, eq. (2.64):

∆Mmax

ρ
= ∆Vmax = 3E − e

2

∫
δ(φ) dΩ︸ ︷︷ ︸

Surface moved

(2.64)

Including the non-penetration condition (if tools) we get eq. (2.65):

∆Vmax = 3E − e
2 fsurface

∫
δ(φ) dΩ (2.65)
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2.3.6 Exact displacement of the hyperbolic tangent level set
The euclidean distance associated to the level set function is defined always parallel
to the normal of the interface, given by the direction of the gradient of the level set
gradient. Mathematically, a parallel displacement of a function f(x) is obtained by
applying f(x + δ).The displacement of the hyperbolic tangent level set φ to obtain the
conservative non penetrated solution φcnp is given by eq. (2.66) :

φcnp =
φ+ E tanh

(
δfree

E

)

1 + φ

E
tanh

(
δfree

E

) , (2.66)

To Sum up: the complete algorithm to recover the mass/volume loss is given by
solving eq. (2.58) to compute the displacement and then by using eq. (2.66) to compute
the conservative value of the modified level set function. But we remark that we need to
solve eqs. (2.59) and (2.56) in order to take into account for the presence of the tools. In
the following section, we present the case of the reference geometry introduced early in
this chapter in order to prove the methodology for mass conservation of the method. For
sake of simplicity, we considered constant density of the part, getting by consequence the
conservation of the volume.

2.4 Application of the conservative strategy in an
industrial geometry

(a) View of the mesh adapted (b) Adaptation respect to Dirac function

Figure 2.14: Mesh view at the boundary of domain. Three bodies immersed in a single
numerical domain (a). Close up of mesh adaptation following the Dirac function on the
surfaces (b).

The strategy explained in section 2.3 is tested in this section for the case presented
in Figure 2.9. The resolution of the advection problem for the level set displacement of
the preform induces a volume loss reaching up to 35%, as illustrated in Figure 2.19. The
strategy evoked in the previous section required the computation of a Dirac function. In
order to ensure the convergence of the algorithm, this function should be well described
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by the discretized mesh. The first point addressed is the definition of the fields assigned
to the multi-field mesh adaptation. Then, the features of the problem are defined, like
the velocity of the punch and the numerical specifications according to our framework.
Later, snapshots of the deformation process are presented during the part compression.
The evolution of the volume during compression is presented, compared to the original
case, proving the enhancements of the aforementioned algorithm.

2.4.1 Mesh adaptation on multiple fields
The theory of mesh adaptation have been firstly extended to the case of multi-field
adaptation in the works of Gruau [27] and Nguyen [28]. In [11] several examples of
mesh adaptation respect to the velocity field have been shown, while in [29] adaptation
with respect to a level set field has been addressed.
In our numerical schemes, it is necessary to adapt the mesh to several fields. A L2 norm
is computed to adapt the mesh with respect to the distribution of the error on each field,
by proposing that the equivalent error êij is given by the L2 norm of all the particular
errors eij associated to each field:

êij = L2 : eij
{
χφ

φ

E + e
, 2εχδ δ, χv argmax (|~v| , vmin)

}
(2.67)

Figure 2.15: Mesh adaptation during compression, with the contour along the piece.

The factor χx represents the weight on the error contribution of each field x to overall
the metric calculation. In here, we do not intersect the metric of each field but, instead
we add the contribution of each field pounded by the coefficient χ in order to obtain a
global scalar error associated to each edge.

Figure 2.14 shows the initial adapted mesh according to the level set functions of the
preform, punch and mold and the Dirac function associated to the preform. By iterative
correction, starting from a isotropic box, the mesh adaptation tool reaches the discretiza-
tion observed in 2.14a. We notice the particular refined thickness along the preform,
where a Dirac function has been defined. In 2.14b, the zoom in the corner of the preform
shows the two levels of adaptation: one supported on a thickness E following the level
set strategy, a second supported on the thickness e of the Dirac function.
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Compression Molding
Compression Velocity 1 mm/s
Initial Preform Thickness 6.2 mm

Table 2.1: Velocity and initial thickness of the preform.

Figure 2.15 provides a view of a section of the preform, highlighting the finer regions
arising during the simulation. The mesh follows dynamically the compression process,
until the part has attained its final deformation. The images show the level set contours
wero of the three bodies, even if all bodies are embedded in a single volumic mesh as
pictured in Figure 2.14.

After these definitions concerning the mesh adaptation strategy, we proceed to explain
the specifications of the problem hereafter presented.

• Immersion of the three geometries in a box. (1m× 0.28m× 0.4m). The numerical
specification are shown in Figure 2.16. Number of nodes used on the simulation,
CPU time, minimum and maximum mesh size are defined.

Numerical
Number of Nodes 250k
CPU time 40 cores - 5 days
Minimum mesh size 0.1mm
Time step adaptive
Thickness Level Set 5hmin
Thickness Mixture 2hmin
Thickness Viscous layer 2hmin

Figure 2.16: Initial view of the immersed bodies. Information on numerical discretization,
CPU used and level set thickness definition e,E.

2.4.2 Test Conditions
An incompressible SMC material, having an initial geometrical configuration (preform) is
compressed to fill the cavity (mold) by the motion of an upper die (punch). Informations
concerning velocity of the punch and on the initial thickness of the preform are given in
Table 2.1. In Figure 2.16, the discretization is provided, as well as the mesh size and the
level set definition parameters used in the simulation.

The preform is deformed until filling the mold cavity. Figure 2.17 shows the error in
the mass/volume, enhancing the improvements of the presented algorithm in the indus-
trial piece.
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Figure 2.17: relative error in volume as function of the sample thickness during compres-
sion of industrial piece using volume recovery strategy

The punch deforms the material until a thickness of 2.3mm is reached. In the fol-
lowing, only a section of the 3D geometry is used. The reduced part is shown for sake
of simplicity. First, different snapshots illustrate the filling of the mold. The evolution
of the part is given in Figure 2.18. There, the algorithm of mass conservation was ac-
tivated and the final volume lost registered was 0.4%. Compared to the lost without
mass conservation algorithm of 35%, a clear improvement is obtained by the algorithm
proposed in section 2.3.3. The time step for the simulation reaches a minimum of 0.02s.
The velocity in the flow front increases with the thickness reduction. In Figure 2.19, the
comparison of the full geometry is given. The compression of the piece at the beginning of
this work, and the compression of the piece after implementation of the recovery Newton
algorithm. Despite the ease of the implemented solution in this work, the improvements
visually are remarkably. The algorithm prove to be robust and of easy implementation.
A more adapted strategy for future works should be used working directly in the level
set convection step.

2.4.3 short-shots comparison
In Figure 4.29, a comparison of the simulated part with partial-filled molded parts test
performed in Plastic Omnium are provided. There, a different thickness of the the preform
deformation is compared the flow front position. Basically, this information allow us to
verify the filling of the part. The four comparisons presented prove the good agreement
of the filling of the piece with the numerical simulation.

The force during the compression of the piece remains one of the quantity to compare
with the experimental data. In immersion methods, more precisely supported on a level
set strategy, the computation of the force is not a evident task. The upcoming section
deals with a strategy adopted in this work in order compute the compression force for
any given geometry.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.18: View of the deformation during the descending of the punch. Velocity profile
of the part. The cavity of the mold is filled, while the thickness of the part is reduced.
Test on a reduced volume of industrial geometry.

2.5 Stable and robust strategy for the computation
of compression force in immersion domains

For immersed body approaches the computation of fields implying a surface integral in 3D
and a line integral in 2D, is not a evident task. The representation of implicit surfaces by
implicit functions has its advantages that were discussed early in this chapter. However,
in order to compute scalar macroscopic variables such as the compression force to deform
a body, surface integral appears of the type:∫

σn dS, (2.68)

being σn any variable to integrate along a surface S ⊂ V, in here the normal stress.
Several authors addressed this problem by assigning a Dirac function supported on the
level set function. In [30] , [31] , [32] , [33] , [34], [35] many examples of Dirac functions,
strategies to reduce the numerical oscillations are found. In particular, in [36] and [37]
the computation of the force in fluid dynamics problems was addressed, by the resolution
of a linear system. In [38], the force is determined explicitly by the resolution of a
penalization strategy to impose boundary conditions. The force is then computed at
the interfaces. Eventhough all these strategies rely on the level set method, or well in
immersion body methods, they are susceptible to numerical oscillations. In the level set
approach supported with mesh adaptation was proven that the major error of the method
yield on the interfaces. In brief, the force is computed in the regions or major uncertainty
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(a) without algorithm (b) with algorithm

Figure 2.19: Volume lost on industrial piece after deformation of the part. 30% lost
observed by the incomplete filling of the mold cavity (a). 0.1% lost after implementation
of recovery algorithm using Newton method (b).

of the method. For our applications, the force correspond to the macroscopic term more
important to be compared to the rheological experiences. In this section, we propose a
methodology supported on the principle of virtual work transforming a surface integral
into a volumetric integral without making appear the Dirac function.

2.5.1 Viscous Power and Compression Force
Deformation and flow material requires energy. For polymers having high viscosity such
energy can be related to viscous dissipation. Let a volume V of material to be deformed
by a stress σ on its surface. The rate of work W done on the material is calculated by
integrating (n · σ · v) over the surface.

W =
∫
S

(n · σ · v) ds, (2.69)

n being the outward unit normal on the surface and (n · σ) is the force per unit surface.
Multiplication with the velocity gives the rate of work per unit surface. By using Gauss
Theorem, this surface integral is equivalent to a volume integral taking its divergence in
the volume V contained by all the surface ∂V :∫

S
(n · σ · v) ds =

∫
V
∇ · (σ · v) dV, (2.70)

the term inside the integral is replaced by the indentity:

∇ · (σ · v) = σ : ∇v + v · ∇ · σ. (2.71)
The second term vanishes for fluid satisfying Stokes equation (∇·σ = 0) since inertial

and gravity are neglected. Hereby however, we consider the general case where the
divergence of the stress is provided by a force per unit volume f such as:

∇ · σ = f . (2.72)
Finally, the relation between the surface integral to the volume integral stands for all

the surface embedding the volume V :
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Figure 2.20: Molding Compression - Comparison of flow front real piece / simulated part.
At a thickness of 2.8mm.

∫
S

(n · σ · v) ds =
∫
V
σ : ∇v dV +

∫
V
f · v dV. (2.73)

The surface integral acts on three main zones in our multy-phases problem. The
contact with the Mold at (v = 0), the contact with the punch at (v = vpunch ez) and
air/fluid interface obtained by the surface tension (n ·σ = 0) hereby neglected. Rewriting
expression eq. (2.73) one gets:

vpunch

∫
punch

(ez · σ) ds︸ ︷︷ ︸
fc

=
∫
V
σ : ∇v dV +

∫
V
f · v dV. (2.74)

Therefore, for the case of compression molding simulations, the compression force fc
can be obtained by the relation:

fc = 1
vpunch

(∫
V
σ : ∇v dV +

∫
V
f · v dV

)
. (2.75)

The main interest on this strategy relies on a direct calculation of
∫
n ·σds by means

of a volume integration supported on a mathematical development instead of a discrete
scheme.

In Figure 2.21, the force comparison between the numerical approach and the analytic
solution [39] for the slip and no-slip case are compared. The example of the compression
of a cylinder at constant speed. Along the deformation, the material required more force
to be compressed. This force required energy. This is the principle of this strategy. Notice
the good agreement between the numerical prediction and the reference solution. The
strategy reduce remarkably the oscillations found in previous work [30, 31, 32, 33, 34, 35]
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Figure 2.21: Compression force for the compression of a cylinder Figure 3.18a. Compar-
ison of analytical case [39] for the slip and no-slip case with numerical predictions of this
work.

for the computation of surface integrals.

Additionally when accounting for complex geometries such as the industrial cases, the
surface integral demands the projection of the stress tensor on the normal direction. In
our methodology, the orientation is given by the direction of the punch velocity. Since
the viscous energy computation is a scalar factor, the strategy is robust and non direction
dependent.

2.6 Conclusions
In this chapter, the numerical framework, namely, the level set method using immersed
geometries in a single computation domain was addressed. Additionally, the strategy to
account for multi bodies simulations with different physical properties was discussed and
the Heaviside side function was defined. We discuss on the level set convection and the
reinitialization, in order to preserve the metric properties. For the objectives of this work,
three main contribution were addressed in this chapter. We discussed on the computation
of a local booster depending on the deformation of the iso-values of the level set. Meaning,
the gradient of the normal velocity. This strategy enables a local computation of the
booster. We prove by means of the extension of a circle that the local booster proposed
enable a wide range of values improving the level set reinitialization step. This point needs
a further study for other kind of simulations such as fluid dynamics in other approaches
than compression molding. Another point discussed was the conservative properties of
standard level set methods. After the literature review, we propose here a solution for
the numerical lost of the volume during the convection step. The lost of volume/mass is
basically due to the convection step of a non-conservative form of the advection equation
and also the interpolation after the re-meshing step. The spatial discretization was proven
to be also an indicator of the mass lost. We proposed an strategy based on a Newton-
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Raphson algorithm that recover the volume progressively based on the principle of free
space. We performed a test on a 3D geometry proven the robustness of the algorithm
and its easy implementation in any numerical tool For our case, we reduce from 35% of
mass lost to 0.4%. Such methodology implies the computation of a Dirac function and
can be used for volume or mass conservation since it is the first approach that really
accounts for the density variation on its algorithm. The third point addressed here,
was the computation of the compression force. Here an strategy based on virtual work
principle enable the computation of the force by means of the viscous dissipation. This
strategy proof to provide the exact solution for the slip and non-slip case. Additionally,
it reduces the oscillations connected to the other methods.
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Summary
The study of the rheological behaviour of SMC materials implies the study of the viscous
paste joined with the interactions fiber-fiber and fiber-matrix. The presence of fiber in-
duces an anisotropic behavior on the direction normal to the fiber plane. Previous work
concluded that the viscous planar isotropic model proposed in the literature conveys the
best results. The anisotropy of the materials are more important when increasing the
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fiber content. So far the contact fiber-matrix have been supposed perfect and then the
material mixture was supposed incompressible. However, the higher the fiber content the
more difficult to the fiber to coextensively align with the matrix. For the purposes of
this work, high fiber content in volume is used on the SMC sample study herein. The
lost of contact during the fabrication process of the fiber with the matrix causes the
macroscopic behavior of the stack of plies of SMC to behave as a compressible material
the first 30% of material deformation. At isothermal conditions, the porosity within the
material originally at 30% closes progressively until the material is fully incompressible.

In order to deal with both approaches in this work an unified formulation is proposed,
describing the transition compressible/incompressible of the material. This compressible
behavior modifies the evolution of the viscosity along the compression as well as other
rheological features used to describe the stress during the compression. For the purposes
of this work the high performance SMC material (SM-HP) is described by this procedure.
The unified methodology enables the description of incompressible SMC as well. Three
main cases has been study: the compression in plane strain, simple compression and
compaction test.

The parameter α3 used to described the compressible behavior enrich the incompress-
ible formulation of the Dumont model proposed in 2003. The compressible behavior of
SMC has been characterized in the frame of collaboration with the laboratory 3SR in
Grenoble-France. All the equations related to the compressible behavior used in this
work is a prove of the communications expressed along this Phd in order to proposed a
macroscopic compressible SMC rheological model.

Résumé en Français

L’étude du comportement rhéologique des matériaux SMC implique l’étude de la pâte
visqueuse jointe aux interactions fibre-fibre et fibre-matrice. La présence de fibres induit
un comportement anisotrope sur la direction normale au plan de la fibre. Les travaux
antérieurs ont conclu que le modèle isotrope planaire visqueux proposé dans la littérature
donne les meilleurs résultats. L’anisotropie des matériaux est plus importante lorsqu’on
augmente la teneur en fibres. Jusqu’à présent, la matrice de fibres de contact a été sup-
posée parfaite et le mélange de matière était supposé incompressible. Cependant, plus la
teneur en fibres est élevée, plus la fibre est difficile à aligner avec la matrice. Aux fins de
ce travail, une teneur élevée en fibres en volume est utilisée dans l’étude de l’échantillon
SMC dans le présent document. La perte de contact pendant le processus de fabrication
de la fibre avec la matrice provoque le comportement macroscopique de l’empilement
de plis de SMC pour se comporter comme matériau compressible les 30 premiers% de
déformation matérielle. Dans les conditions isothermes, la porosité dans le matériau à
l’origine à 30 %, se ferme progressivement jusqu’à que le matéteriau soit totalement in-
compressible.

Afin de traiter les deux approches dans ce travail, une formulation unifiée est pro-
posée, décrivant la transition compressible / incompressible du matériel. Ce comporte-
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ment compressible modifie l’évolution de la viscosité le long de la compression ainsi que
d’autres caractéristiques rhéologiques utilisées pour décrire le stress pendant la compres-
sion. Aux fins de ce travail, le matériel SMC haute performance (SM-HP) est décrit par
cette procédure. La méthodologie unifiée permet également la description de SMC in-
compressible. Trois cas principaux ont été étudiés: la compression plane, la compression
simple et le test de compactage.

Le paramètre α3 utilisé pour décrire le comportement compressible enrichit la formula-
tion incompressible du modèle Dumont proposé en 2003. Le comportement compressible
de SMC a été caractérisé dans le cadre de la collaboration avec le laboratoire 3SR à
Grenoble-France. Toutes les équations liées au comportement compressible utilisé dans
ce travail sont une preuve des communications exprimées le long de ce doctorat afin de
proposer un modèle rhéologique SMC compressible macroscopique.

Introduction

Modeling fibrous materials requires an accurate description of its anisotropic behavior.
The fiber network associated to the thermoset matrix enhances the mechanical properties
of the overall composite [1], but also complicates its mechanical response. Nowadays, glass
fiber composites processed by compression molding are used as semi-structural parts since
they exhibit advantageous mechanical resistance, relative lower weight and are used for
the production of car body parts [2]. It is interesting to better understand the fiber-
matrix interaction when undergoing large deformations, in order to predict the composite
behavior in practical applications. To attain this target, improved models considering
fiber and fiber/matrix coupling are needed. Many works attempt to study the flow
of SMC preform during compression molding [3, 4, 5, 6]. Based on the observations
made in those works, their rheological behaviors are addressed but can seem incomplete
[7, 8, 9, 10, 11, 12, 13]. In fact, the SMC has been studied numerically using simplified
models assuming isotropic pseudo-plastic materials [14, 15, 16]. The isotropic models
therein used are not consistent with the anisotropic microstructure of SMC, since widely
spread fibers build a higher-flow-resistance structure in the plane parallel to sheets. The
introduction of an anisotropy representation of the stress tensor starts from the 90s [17].
Despite the good agreement with experimental data shown in that work, this model
presents some limitations on the stress behavior for different configurations. That has
casted doubt on this initial approach and has encouraged further authors to extend this
model. After a decade of technological improvement, Dumont and co-workers [18] have
proposed a viscous and transverse isotropic model for reinforced composites, fitting the
stress levels obtained experimentally. Therein, a rheometer was used to reproduce realistic
deformation on SMC sample, enhancing the characterization of such materials under real
industrial conditions. Shear-compression tests performed in [19, 2] on SMC samples were
complemented with the plane strain and simple compression test performed by Dumont
[20] on SMC materials for several fiber concentrations. It is found that the SMC materials
have shear-thinning behavior which depends also on the fiber concentration. After the
anisotropic model, which is the departure point of this work, many works were carried
out to compare experimental data to its predictions [21, 22, 23, 24, 25]. This model was
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also able to describe the behavior of other kind of fiber plane materials such as BMC
[26]. So far, the viscous isotropic transverse model is the only model which is able to
reproduce all kinds of kinematics applied to incompressible SMC materials, namely, the
simple compression, the plane strain and the shearing. Therefore in this chapter, we
describe the implementation of such rheological behavior in our numerical platform [27]
and computations are performed on these three typical flows: simple compression, plane
strain and shear.
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Figure 3.1: Matrix and fibers are modeled as a homogeneous mixture

Usually, simulations on SMC are performed considering a single and incompressible
phase Figure 3.1. However as explained in the introduction chapter, air is entrapped in
the stack of SMC layers as the fiber content increases. This induces a compressible step
in the early stages of preform deformation. To take into account for such phenomenon,
the model is enriched by porosity evolution term which modifies the diagonal of the
stress tensor according to the observations of the porosity evolution during compression
experiments [28]. The extended model developed in collaboration with 3SR laboratory
(Grenoble), enables the computation of the compressible stress during the porosity clo-
sure. A volumetric term evolves during the material deformation turning the compressible
material into a fully incompressible one.

In order to deal with both incompressible and compressible behaviors, an unified
anisotropic formulation is proposed to perform numerical computations. The implemen-
tation of both models in our numerical software is explained in section 3.3 in which both
models are assembled in one unified approach. Detailed explanations on all the parame-
ters needed to handle this anisotropic compressible model for SMC materials are given.
The characterization of the compressible behavior of high concentrated SMC materials
will be addressed in section 3.3.2, the evolution of the fiber volume concentration during
the porosity closure is then discussed in section 3.3.3. Then, following a micro-macro ex-
tension, it is presented the model for the viscosity of SMC in section 3.3.1. The numerical
implementation detailing the coupling with the mass equation is given and its consider-
ations for other anisotropic problems are established. A summary of all the constitutive
equations to be solved are addressed and compressible cases are studied. Here-under,
computations are mainly made for the compaction case (also called OEDO test) and
stress levels are compared from compressible case to the incompressible one. That gives
a clear picture of the stress and material evolution during the compressible/incompressible
transition. Finally, the classical compression case is studied when the material changes
from a densification state (pore closure step) towards a pure squeeze flow motion.
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3.1 Modeling Incompressible SMC

From their experimental observations [18], Dumont et al. have proposed a macroscopic
viscous transverse isotropic model for SMC materials [20] which is considered as contin-
uum media. This constitutive model assumes that there is a plug flow and the fibers
spread in an in-plane way. Therefore, fibers are considered to be randomly distributed in
the plane along the sheets during the whole deformation. Averaging the fiber directions
modifies homogeneously the macroscopic stress, leading to a plane isotropy. A symmetric
structural tensor, M , is then built considering the unitary normal vector to the plane of
the sheet. The stress tensor σ is written depending on the strain rate tensor D by the
form:

σ = α0ηeq

(
D + α1(M : D)M + 1

2α2(D ·M + M ·D)
)
− p̂ I (3.1)

where αi are rheological parameters depending on the fiber fraction φf and the orthotropic
strain rate invariants; p̂ stands for a partial pressure acting on the material; ηeq stands
for an equivalent viscosity at a given strain rate.

The total pressure is obtained by taking the volumetric contribution of the stress
tensor defined by:

p = −1
3tr(σ) (3.2)

Taking into account of incompressibility condition tr(D) = 0 and the symmetric form
of M and D gives tr(M ·D) = tr(D ·M ) = M : D. As M is a structural tensor build
with orthonormal rotational vector that implies tr(M ) = 1 and the expression of the
material pressure is simplified to:

p = p̂− α0ηeq

3 (α1 + α2)(M : D) (3.3)

which gives the link between the partial pressure p̂ and the total pressure. Thefore, the
arbitrary pressure p̂ assigned in [20] represents a partial contribution of the volumetric
stress.

3.2 Modeling Compressible SMC
The viscous orthotropic model presented in the previous section 3.1 has been used for
volume fiber concentration of 3.5%, 7.1%, 10.8%, 14.7% and 18.8%. For these low fiber
concentrations, the anisotropic behavior of the SMC can be assumed incompressible and
it is described by the expressions given in [18] and presented in the previous section
(Equation (eq. (3.1). However, as automotive applications demands a strong cut down of
vehicle weight, the fiber concentration in the SMC reaches up to 24% and 38% in volume.
The fabrication process of the SMC shown in Figure 12 entraps air within the stack of
layers. This entrapped air, denoted here as porosity, becomes important when the fiber
volume concentration increases. As depicted in Figure 3.2, the porosity captured through
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the fiber network inherent in the fabrication process, modifies the SMC behavior. Apply-
ing a compression to SMC sheet, we notice a compressible step until a critical value from
which the volume strain remains constant. The colored tomography pictures show the
porosity inside the material before compression and the normal stress profile indicates a
modification of the rheological behavior during the compression. For UL SMC (24% of
fiber concentration) the porosity reaches 2%, whereas for the HP SMC (38% of fiber con-
centration) it reaches 30%. This amount of porosity induces a compressible behavior for
the SMC. The air is expelled when material deformation occurs. For molding compres-
sion, the porosity concentration decreases with deformation. Accordingly, the porosity
closure depends on the volumetric deformation and it is independent of the strain rate [29].

Figure 3.2: Porosity in tomography pictures for a cylinder sample of HP SMC (diameter
50 mm and height 6 mm). Evolution of the stress, volume strain as function of the axial
deformation in a simple compression. .

Therefore, modeling of SMC for high fiber concentration has to be adapted to take
into account of this compressible behavior. With respect to the previous model, it has
to be improved thanks to experimental measurements made by D. Ferre-Sentis during
his PhD work. By adding a term proportional to the volume variation of the material,
here represented as the trace of the viscoplastic strain rate, the stress tensor is written
as follow:

σ = α0ηeq

[
D + α1 (M : D)M + α2

2 (M ·D +D ·M ) + α3tr(D)I
]

(3.4)

where the compressibility of the material is taken into account with the term α3 tr(D)I.
This compressible modeling has been found in other works on isotropic materials in which
the stress tensor is linked to the velocity divergence [30]. Following the procedure briefly
explained in chapter Chapter 1, a different formulation is used in order to facilitate the
numerical implementation.
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The new contribution to the modeling of SMC materials from the rheological point
of view is given by expression eq. (3.4). Note that the anisotropic model presented here
enables the computation of SMC compression molding materials as well as problems of
fiber reinforced injection simulations.

By comparing the expressions of stress tensor for both incompressible and compress-
ible cases, it follows that the term α0α3ηtr(D) becomes p̂ once the porosity gets closed.
During the densification the α3 term increases and the volumic variation tr(D) decreases
until the incompressible condition tr(D) = 0 is achieved. From a numerical point of view,
multiplying two terms having two different behaviors (one tends to infinity whereas the
other tends to 0) might cause numerical instabilities. More important, when tr(D) tends
to zero the term multiplied by α3 becomes a partial pressure p̂ which needs to be coupled
with the mass conservation equation. In the upcoming section, we propose to define a
variable β which allows dealing with both cases and at the same time a direct coupling
with the mass conservation equation. Thus, a clear and smooth transition between the
compressible case and the incompressible case is recovered.

3.3 Unified Compressible-Incompressible Model for
SMC

For compression molding simulations, the models presented in eq. (3.1) and eq. (3.4)
are needed and we have to deal with a compressible/incompressible transition. In this
section, we unify both approaches into an unified formulation which is able to change
from one behavior to another by using a single parameter β. We show in the sequel that
both compressible and incompressible cases can be written in a compact form already
presented in eq. (3.5):

σ = 2ηD + T4 : D + T2 D +D T2 + qI (3.5)

where η represents the equivalent viscosity of composite, T4 a fourth-order tensor describ-
ing the anisotropy of the material; T2 a tensor also describing the anisotropic contributions
of fiber network and q states for all the volumetric contributions presented in the incom-
pressible or compressible models.

In the sequel, the equivalent form for the compressible case is presented, as well as,
the coupling of the velocity-pressure problem for the unified formulation.

For the compressible case, we start writing down the expression given in section 3.2,
the stress tensor stands:

σ = α0ηeq

[
D + α1 (M : D)M + α2

2 (M ·D +D ·M) + α3 tr(D)I
]
. (3.6)

This expression takes into account the compressibility of material by the term α3 tr(D).
By replacing this term by the variable p̂, the Cauchy stress can be presented as:

σ = s̃− p̂I (3.7)
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σ = α0ηeq

[
D + α1 (M : D)M + α2

2 (M ·D +D ·M )
]

︸ ︷︷ ︸
s̃

+ α0 ηeq α3 tr(D)I︸ ︷︷ ︸
−p̂I

(3.8)

α0 ηeq α3 tr(D)︸ ︷︷ ︸
∇·v

= −p̂ (3.9)

where s̃ is the viscous stress for SMC materials introduced in [18], and p̂ is a measurement
of the compressibility (or incompressibility) depending on the factor α3 tr(D)I. The
definition of σ is then changed by this splitting, whereas the relation given for p̂ defines
the new velocity divergence condition.

In this point, we introduce the compressibility factor β as a function of the rheological
parameter α3.

β = 1
α0 ηeq α3

(3.10)

Which allows to write a relation between the divergence of the velocity with the partial
pressure p̂:

tr(D) + βp̂ = 0 (3.11)

Please notice for α3 →∞, β → 0 (=> ∇ · v = 0; incompressible case). This strategy
actually unifies the compressible and the incompressible cases thanks to factor β.

Under such construction the system to solve the mechanical problem is given
by:

∇ · S̃−∇p̂ = 0 (3.12)
(3.13)

∇ · v + βp̂ = 0 (3.14)

and the total pressure for both compressible or incompressible cases can be then obtained
by taking:

p = p̂− α0 ηeq
3 (tr(D) + (α1 + α2)M : D) (3.15)

If α3 → ∞, the fluid becomes incompressible (tr(D) = 0) and p̂ corresponds to the
partial pressure due to the incompressibility, whereas the total pressure is

p = p̂− α0ηeq

3 (α1 + α2)M : D (3.16)

the Cauchy stress σ is given by eq. (3.7) while the deviatoric stress is given by:

s = σ + pI (3.17)
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or well given in term of S̃:

s = S̃ + α0 ηeq
3 (tr(D) + (α1 + α2)M : D) I (3.18)

By solving the set of equations described in the system of equations 3.13, we obtain
the velocity profile v and a partial pressure p̂. This construction simplifies the numerical
task of building the anisotropic solver. Additionally, we have as well used a more general
integration using a fourth-order tensor T4. This strategy comes for the idea of generalized
the solver up to other anisotropic behavior laws (for instance the Lipscomb Model [31]).
The solver build under the frame of this PhD also enable the description of the mechanical
motion for injection of polymer reinforced by fibers. The reader is invited to check an
extension of this work in Appendix (Chapter F).

3.3.1 Viscosity model for SMC materials
Based on homogeneous rheometry experiments performed on SMC7520-26 and SMC719
formulations, a continuum one-phase rheological model has been proposed in [29]. In
order to take into account of the planar micro-structure induced by the fiber bundle
network, the nonlinear viscous character of its deformation and the compressible behavior
of the part, the composite is seen as a shear-thinning compressible fluid. The viscosity
follows a power law and is given by the formula:

ηeq = η0 (φf − φc)2 Dn−1
eq (3.19)

where n is the index of the power law and Deq an equivalent shear rate which takes into
account of the anisotropy of our composite. The dependence with respect to fiber con-
centration is due to the material compressibility (the volumic concentration is directly
related to the porosity). Finally, the viscosity of the part increases during the densifi-
cation by a quadratic expression (See Figure 3.4). Here, φf stands for the volume fiber
concentration of the material and φc a fitting parameter allowing a better agreement with
experimental data. During the compaction of SMC, the fiber volume fraction φf increases
whilst φp decreases. Then, the viscosity increases since the number of contact fiber-fiber
increases. The proposed form for Deq (the equivalent strain rate) is:

D2
eq = α0

(
D : D + α1(M : D)2 + α2(D ·M) : D + α3tr(D)2

)
(3.20)

where the viscosity η00 correspond to the axial viscosity recorded during homogeneous
plane strain compression for an axial strain rate of 1 s−1 applied on a SMC sample. The
temperature dependency of the viscosity is given by an Arrhenius relation as found in
[20] and [26]. For modeling such temperature dependence, we use values found for similar
SMCs studied in the literature [24] (See Figure 3.3). The Arrhenius expression states:

η0 = η00 e
b( 1
T
− 1
To

) (3.21)

with η00 the viscosity at the reference temperature and the reference strain rate. The
data can be read from Table 3.1 and Table 3.2. The viscosity evolution without chemical
reaction stands:
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η = η̃00 e
b( 1
T
− 1
To) (φf − φc)2 Dn−1

eq (3.22)

and the evolutions of each terms as function of the temperature and volume fiber fraction
are given in Figure 3.3 and Figure 3.4 respectively.

Parameters for evolution of η
Material HP SMC UL SMC
η0 20MPa s 120MPa s
φc 0.02 0.02
b 3200 4900
To 296 296

Table 3.1: Parameters for viscosity

constitutive parameters
Material SMC HP SMC UL
α0 1.06 1.06
α1 1.36 1.42
α2 -1.92 -1.97
n 0.25 0.35

Table 3.2: Rheological parameters of SMC
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Figure 3.3: Evolution of the reference
viscosity as a function of the temper-
ature. Arrhenius law with b = 4900
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Figure 3.4: Evolution of the SMC vis-
cosity as a function of fiber-fiber inter-
action (φc = 0.02).

3.3.2 The Compressible/Incompressible transition - Evolution
of parameter α3

The parameter α3 is used to describe the compressible nature of the SMC when it traps
air because of the fabrication process. While compressing the SMC sample, expelling
the porosity (or densification) occurs in the first stage when there is no motion in the
transverse direction. The height decreases while no material flow is observed. When
the air is compacted by the deformation, the α3 term reaches a high number and the
materials becomes incompressible. According to [29], the evolution of the constitutive
parameter α3 as function of fiber concentration is proposed on the form:
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α3 = k e

−b
φcf +H (3.23)

In Figure 3.5, the evolution of α3 defined by eq. (3.23) with respect to the fiber
concentration is plotted. The volume fiber concentration φf is a bounded value. For
HP SMC, the initial value of the volume fiber fraction equals 28% before the porosity
closure. Once the porosity reaches 0%, the incompressible fiber fraction φdensef equals
38% (additional information are given in Table 3.4). The value α3 increases meaning
that the porosity is expelled. The parameters k, b, c and H are given in Table 3.3. In
the mechanical resolution, the evolution of α3 is taken into account by means of the
compressibility term β (see eq. (3.10)) and its variation is also plotted in Figure 3.5. It is
positive while the material is compressible and tends to 0 as the porosity decreases and
therefore the material becomes incompressible.

0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39
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fiber concentration φf

Evolution of parameters describing compressible/incompressible transition

α3 HP
ηeq β HP

Figure 3.5: Evolution of compressible state in SMC as function of the volume fiber
fraction: (blue line) Dimensionless rheological parameter α3 ; (green line) numerical
parameter β. Parameters for the SMC HP are given in Table 3.3. α3 is the parameter
proposed by [29] whereas β is the parameter used for the computations. They are linked
by the relation eq. (3.10)

3.3.3 Evolution of porosity and fiber fraction concentration
For the high profile SMC, the initial porosity fraction is around 25% of the volume of
the material. During the compression, this value decreases modifying many properties
of the material such as viscosity, density and compressibility. By knowing the fiber con-
centration in the dense state and computing the volume evolution of the sample, the
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Parameters for evolution of α3
Material SMC HP SMC UL
k 6e+05 incompressible
b 0.5 -
c 3.2 -
H 0.446 0.446

Table 3.3: Parameters needed to computation of α3 and coming from experimental mea-
surements [29].

Parameters for the evolution of φp, φf , φm
Material SMC HP SMC UL
φdensef 0.38 0.24
φdensem 0.62 0.76
φpo 0.25 0.026
φmo 0.47 0.74
φfo 0.28 0.234
δ 1.0 1.0
γ 0.01 0.01
εvcrit 0.25 0.0265

Table 3.4: Parameters needed to compute the volume fractions of HP and UL SMCs.

new concentrations of fiber, paste and porosity are obtained. Firstly all initial concen-
trations are calculated knowing the initial porosity state φpo = 0.25 and the dense fiber
concentration φdensef = 0.38 (known by the fabrication process). The initial fiber con-
centration is then obtained by φfo = φdensef (1− φpo) and the matrix concentration by
φmo = φdensem (1− φpo) or by the mass conservation as φmo = 1− φfo − φpo.

According to the rheological measurements and the phenomenological observations,
we can associate the volumetric deformation with the porosity evolution. At macroscopic
level and a simple squeeze flow, the volumetric deformation is obtained using:

εv = ln
(
V

Vo

)
(3.24)

For our simulations, we describe the volume variation as a local variable. For that the
volumetric part of the strain rate tensor is taken and the volumetric variation follows:

dεv
dt

= tr(D). (3.25)

The porosity is then calculated using an experimental expression eq. (3.26) proposed
in [29] and used in previous work [32]:

φp = −δ2

(
(−εv − εvo)−

√
(εv − εvo)2 + γ2

)
+ φpo (3.26)
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where the fitting parameter δ stands for the slope of the linear transition of the volumetric
deformation with the porosity closure; γ is the numerical parameter used to avoid that
the volumetric deformation exceeds the critical value εvcrit. The value εvo in eq. (3.26) is
obtained through the expression:

εvo = −
γ2 −

(2εvcrit
δ

)2

4εvcrit
δ

(3.27)

Finally the matrix concentration is updated as well as the fiber fraction concentration
thanks to this sequence of equations:

φm = φdensem (1− φp) (3.28)

φf = φdensef (1− φp) (3.29)

or
φf = 1− φm − φp (3.30)
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Figure 3.6: Evolution of the porosity, fiber and matrix volume concentration with respect
to the volumetric deformation of HP SMC.

In Figure 3.6 is plotted the evolution of the porosity, fiber and matrix volume concen-
tration as function of the volumetric deformation εv. In the fitting presented in eq. (3.26)
δ stands for the slope of the curves presented in Figure 3.6 while the material is still com-
pressible. Please notice the volumetric deformation for compression cases are negatives.
Once the volumetric deformation reaches the critical value εvcrit = −0.25 the linear be-
havior is modified by the convex parameter γ assigned to the concavity of the transition
once the incompressible limit is reached. Then, the relative density is obtained:
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ρr = 1− φp (3.31)
Notice that the information of φp enables the direct computation of the relative density

and the information of the fiber concentration φf allows us to update the viscosity of the
material η according to our rheological model defined in section 3.3.1.

Additionally, the evolution of the relative density can be obtained by solving eq. (1.18)
directly, as suggested in Chapter 1. However, the procedure depicted in this section also
enables the updating of the fiber concentration φf and also the viscosity consistency as
required in section 3.3.1.

3.4 Summary of mechanical resolution
After having introduced the mechanical behavior of SMC and their constitutive param-
eters, a summary of set of equations to solve numerically are addressed hereunder. The
planar isotropic model for SMC is defined by a structural tensor denoted as M account-
ing for the normal e3 of to the fiber network (M = e3⊗ e3). The anisotropic stress tensor
is written in its compact form:

σ = 2ηD + T4 : D + T2 D +D T2 + qI (3.32)
where η̂ is the updated viscosity and T4 and T2 account the anisotropy exhibits for

such materials and they are functions of the structural tensor M . With this formalism,
the connection with model described earlier in this chapter is made by taking :

η = α0ηf (Deq)n−1

2 Viscosity (3.33)

T4 = 2 α1 η (M ⊗M) 4th order Tensor (3.34)
T2 = α2 η M Tensor (3.35)

The consistency of the material depends on the local fiber concentration φf

ηf = η0 (φf − φc)2 (3.36)
and the equivalent viscoplastic strain rate Deq retrieved accordingly to the expression:

D2
eq = α0

(
D : D + α1(M : D)2 + α2(D ·M) : D + α3(tr(D))2

)
(3.37)

Finally the mechanical problem is given by finding (v, q) such as:

∇ · σ(D, q) = 0 (3.38)
tr(D) + βp̂ = 0 (3.39)

For compressible SMCs, the fiber fraction concentration φf and the relative density ρr
need to be update during the compression molding process. As described in section 3.3.3,
those parameters depend on the volumic deformation εv obtained by solving:

dεv
dt

= tr(D) (3.40)

That enables the computation of φp and then φf , which is used as entry to update the
viscosity η and the compressibility β in the mechanical problem.
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3.5 Numerical cases
In order to check the implementation of the mechanical resolution in our Finite Element
Library, several numerical tests were performed. First, the rheological cases for the de-
termination of the orthotropic incompressible viscous model explained in section 3.1are
reproduced. There, three cases are presented: simple compression, plain strain compres-
sion and shear test. The equivalent stress level and equivalent strain rate are summarized
in a single comparative plot. The model prediction is superimposed putting in evidence
the validation of the incompressible model. Secondly, the feasibility of the unified model
for the case of high concentrated SMC and its compressible/incompressible transition is
studied on a compaction case. There, the materials is densified until the incompressible
state is reached. The normal and lateral stress are compared to analytical formulas and
experimental measurements. Thirdly, the compression of a sample with 38% of fiber con-
centration is studied, evolving from a compressible case towards a fully incompressible
compression. In this latter case, the influence of slip and no-slip boundary conditions
are studied. We observe the stress evolution during the compaction and during flow mo-
tion. Finally, the plain strain compression of the same material is reproduced and the
stress prediction is compared to the ones provided by the compressible model presented in
section 3.2. All simulations are made by using the unified model presented in section 3.3.

3.5.1 Standard SMC - incompressible case
Assuming that the compositeis a homogeneous phase (composed of the fiber and the resin
paste) as illustrated in Fig.3.1, the two equivalent components (stress and strain rate)
are defined according to eq. (3.41) and eq. (3.42) (deduced from the viscous transverse
isotropic model presented in section 3.1):

σ2
eq = 1

2
(
(1 + 2H) s : s+ (5 +H − 6L) (M : s)2 − 2 (1 + 2H − 3L) (s ·M) : s

)
(3.41)

D2
eq = α0

(
D : D + α1 (M : D)2 + α2(D ·M : D

)
(3.42)

all rheological parameters are constant and the coefficient αi can be expressed as function
of H and L (for example, H = 0.446 and L = 15.8 for UL SMC). The tensor s states
for the deviatoric stress tensor. The orthogonal direction n represents the normal to
fiber network (here, the vertical direction) and it intervenes in the model by means of
the tensor M = n ⊗ n. The parameters L, H account for fiber concentration, their
determinations and relations are detailed in [18].

The geometries of the three rheological experiments are plotted in Figure 3.7. The
mechanical equations solved in this section are presented in section 3.4. Here, the com-
pressibility factor β is set to 0 (incompressible case) and the equation for the volume
strain evolution is not necessary. Finally the system solved is:

∇ · σ(D, p̂) = 0 (3.43)
tr(D) = 0 (3.44)

The initial dimensions of studied sample are respectively: for simple compression,
a cylinder used having a height of 7.6 mm and a radius of 50.0 mm (Figure 3.18a );
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Figure 3.7: Sketchs of geometries studied in our numerical applications: simple compres-
sion, plane strain and oedo test.

for plane strain, a cube with a height of 7.6 mm, a width of 60 mm and a depth of
40 mm (Figure 3.18b). They are compressed until reaching both a height of 4mm (47%
of compression ). For shear computation, we use the same sample as for the plane strain
problem.

Experiments presented in [18] gave values of equivalent strain rate Deq and equivalent
stress σeq defined by eq. (3.41) and eq. (3.42) for the three experiments, two different
fiber concentrations (3.5% and 14.7%) and three applied strain rates [10−4, 10−2, 1]s−1.
The composite resulting consistency stated for the two different concentrations ηf3.5% =
0.763 MPas and ηf14.7% = 4.886 MPas Theses experimental values were compared with
the analytical solutions and the results of our numerical computations. A total of six-
teen simulations were performed with slip boundary conditions. Since the Cauchy tensor
is constant in the domain, a space constant stress tensor defines the stress state. The
results presented in Figure 3.8 point out a good agreement between numerical computa-
tions and the experimental measurements used to characterize the material. Important
to mention that the experimental cases hereunder compared satisfy slip wall condition.
In fact, such friction-less conditions were reproduced experimentally by lubricating the
contact sample/wall. The numerical strategy used to tackle this boundary condition in
the framework of immersion methods is detailed in Appendix:Chapter B. We also notice
the linear tendency in this log-log plot. The reference value of the stress at Deq = 1s−1 in
this curve represents the viscosity η0 that depends on the fiber concentration φf which is
assumed constant for incompressible SMC. The slope of the line stands for the viscoplas-
tic strain rate dependency index n, here n = 0.44. Clearly, the viscosity of the mixture
increases with fiber concentration.

In this section, We prove that for the incompressible model the numerical compu-
tations predict equivalent stress correctly. It is worth notice that the equivalent stress
tensor eq. (3.41) depends only on anisotropic parameters H and L. As proved in [20],
the incompressible model fits very well experimental data and by extension our numeri-
cal results as well. In the next section, a numerical test is carried out using the unified
model to predict the stress evolution during the compressible step of compression of SMC
sample.
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Figure 3.8: Incompressible Model for SMC: Comparisons between Experimen-
tal/Analytical/Numerical predictions for Simple Compression, Plane Strain Compres-
sion and Shear. Computations are made for standard SMC having fiber volume fractions
φ = 3.5% and φ = 14.7% at room temperature.

3.5.2 High performance SMC - Compressible case
In the following, the compressible case is studied when high performance SMC is mod-
eled. We present the analysis of compressible SMC for three configurations: a purely
compaction case, a classical squeeze flow and a plane strain compression.

Compaction of HP SMC - Oedometric Compression

High performance SMC materials exhibits a compressible step during compression mold-
ing. The dedicated configuration to check this compressibibility is the compaction set up
pictured in Figure 3.9. In this apparatus, the sample is blocked inside a circular cavity
and it is deformed until the material becomes incompressible. The cavity surrounded
the SMC sample restricts its radial movements. Therefore, only vertical deformation is
allowed and the SMC porosity decreases progressively during the compaction process .
The internal pressure in sample increases while porosity closes. That translates into an
increment of the stress needed to deform the sample. A constant strain rate deformation
ḣ/h is imposed and the evolution of the stress during vertical deformation is recorded,
When the level of porosity is low enough, the material behaves as an incompressible flow
and the stress tends to infinite. In the experimental test, the compression ends when the
machine limit compression force is reached. The vertical displacement is directly related
to the macroscopic volumetric deformation by means of relation eq. (3.24).

The compaction test (also called densification test) has been performed on two sam-
ples of HP SMC. The normal and lateral stress level were recorded. The normal stress is
obtained by dividing the force of the machine to the surface of the sample. In this case,
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the surface of the sample does not change as only axial deformation is allowed. Note that
the normal experimental stress presented here is obtained by assuming an uniform stress
level within the material. An approximation that might not be truth at the extremities
of the sample as shown in the numerical simulation.

THe initial sample has a diameter of 120 mm and a height of 9.5 mm. To get an
uniform top surface a pre-compression of 200 N is carried out. This stands for the pre-
charge in compression molding process for industrial parts. The machine is set to respect
a constant strain rate compression v/h (v being the punch velocity ) and it stops when
the compression force reaches 90 kN . The compression test conditions are described in
Table 3.5. The sub-index 1 or 2 are used along the text to identify the experimental
conditions.

r

z

ḣ

h
F,

σL

σn
Punch

Sample

Die

Figure 3.9: Oedo configuration for compressible SMC: the SMC sample is blocked in a
ring in oder to allow only vertical deformation.

Experimental setup for HP SMC
Case v/h Timp h0 hf Fmax
1 0.003 s−1 20 oC 9.5 7.2 90 KN
2 0.03 s−1 20 oC 9.5 7.3 90 KN

Table 3.5: Experimental conditions for the densification case of HP SMC

The immersion of the sample mold and punch is pictured in Figure 3.10. As observed
in Figure 3.11 the volumetric deformation εv equals the deformation rate ε. During
this densification, the porosity volume fraction decreases and the volume fiber fraction
increases as well as the relative density ρr. For the compaction case, we notice also that
the porosity fiber fraction does not follow a linear tendency.

Hereunder, a spatial description of the porosity closure is pictured in Figure 3.12.
During the densification, the porosity evolves depending on its position. The porosity
in the center tends to close before the porosity close to the external radius. This non-
uniformity is due to boundary conditions at the mold/sample contact. In Figure 3.12a,
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Figure 3.10: Compaction of SMC sample: the densification occurs due to porosity closure;
Visualization of the sample contained by the mold and punch (left); 2D visualization of
a middle plane cut showing the pressure at an intermediate time (right).
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Figure 3.11: Oedometric Compression: Compactation of SMC sample for the case 2 by
using compressible model; Evolution of porosity, fiber and matrix volume concentration
as a function of vertical deformation; Evolution of volumic deformation as function of
vertical deformation.

the sample contains a homogeneous initial porosity fraction of 25%. During the com-
pression the volumetric deformation follows the equation eq. (3.40) and the material is
densified. Its porosity along the sample is obtained thanks to the relation given in sec-
tion 3.3.3. In Figure 3.12b and Figure 3.12c, we noticed that the porosity after some
deformation reaches 10% in the center and is about 15% at the mold lateral contact. In
Figure 3.12d the material porosity is lower than 0.2% and the simulation stops. In Fig-
ure 3.11, the volumetric deformation εv and the volume concentration of the fiber matrix
and porosity evolution during the axial deformation is presented. As expected, we ob-
serve that the volumetric deformation is linear with respect to vertical deformation until
a deformation larger than 0.2. Afterward, a change in the slope of the curve is observed
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since the porosity begins to be low enough and the material becomes incompressible.

(a) t1 : Initial porosity profile in the sample (b) t2 : Porosity at deformation ε = 0.2

(c) t3 : Porosity at deformation ε = 0.22 (d) t4 : Porosity at deformation ε = 0.28

Figure 3.12: Porosity concentration evolution during oedo compression: compress-
ible/incompressible transition of SMC.

The pressure increases during the porosity closure since the material becomes incom-
pressible (See Figure 3.13). According to the model, the pressure departs from a stable
value 3.13a and increases during deformation Figure 3.13b and Figure 3.13c. Logically,
the lower the porosity inside the material, the lower its capacity of being compressed, the
higher the pressure. In 3.13d a snap of the pressure is presented before the simulation
stop. In order to avoid numerical problems once the material is fully incompressible, the
simulation is stoped when the porosity is lower than 0.1%. Consequently, the velocity pro-
file presented in Figure 3.14 moves from a compressible profile as in Figure 3.14a towards
an incompressible pattern visualized in Figure 3.14d characterized by the squeeze flow
profile [33, 34]. From a linear profile in the vertical direction and zero-radial velocity as
depicted in Figure 3.14b, it moves to a standard squeeze flow profile at the incompressible
state. The modification of the compressible profile towards the incompressible one occurs
at ε = 0.22 (see Figure 3.14c) where there is the compressible/incompressible transition.
When the materials becomes incompressible (or almost) the immersion method meets
difficulties to impose the velocity inside the punch and the mold.. The pressure increases
until a point where the viscosity affected to the mold (hereby chosen as 1000 times higher
than viscosity of SMC), is not sufficient to fulfill its role. The strain rate on the mold
side reaches the same order of magnitude than for the SMC.
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(a) t1 : Pressure at deformation ε = 0.01 (b) t2 : Pressure at deformation ε = 0.2

(c) t3 : Pressure at deformation ε = 0.22 (d) t4 : Pressure at deformation ε = 0.28

Figure 3.13: Pressure profile evolution during oedo compression and the compress-
ible/incompressible transition: the pressure increase exponentially when the material becomes
incompressible.

3.5.3 Comparison of stress level with experimental data
According to our model, the normal and lateral stresses during the compaction test
(compression OEDO) states (See details in section D.2.3):

σL = η0 (φf − φc)2 α3 (1 + α1 + α2 + α3)
n−1

2 Dn
33 (3.45)

σn = η0 (φf − φc)2 (1 + α1 + α2 + α3)
n+1

2 Dn
33 (3.46)

where η0 is the viscosity of the HP SMC given in Table 3.1. The volume fiber concentra-
tion φf changes during the simulation and modifies mainly the coefficient α3. The con-
stitutive parameters αi are described in Table 3.2 and section 3.3.2. Assuming constant
strain rate during the deformation, these analytic stress levels are plotted in Figure 3.15
and Figure 3.16. They are compared with the numerical stresses provided by the nu-
merical simulations and the experimental measurements performed on samples of SMC
materials. Theses comparisons are made by looking at the evolution of the stress during
the vertical deformation for the two strain rate velocities summarized in Table 3.5. The
behavior of the stress is the same for both velocities. There is only a modification of
stress level since the model is of purely viscous in nature. The analytic model and the
numerical simulations predict the same stress level as pictured in Figure 3.15a and Fig-
ure 3.15b where the vertical and the lateral stresses during the compaction are plotted.
Thus, that validates the numerical implementation of the set of equations modeling the
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(a) t1 : compressible velocity profile (b) t2 : velocity profile at ε = 0.2

(c) t3 : compressible/incompressible transi-
tion ε = 0.22

(d) t4 : incompressible velocity profile - end
of simulation - squeeze flow

Figure 3.14: Velocity profile evolution during oedo compression and compress-
ible/incompressible transition: the velocity profile is vertical and linear at the beginng and
has a typical squeeze flow patterns at final state.

SMC behavior.

The differences found with respect to experimental data during the densification are
mainly due to the difficulty to reproduce equivalent experiments for SMC samples. In
fact, it is not surprising to found high dispersion (until 50%) with measurements per-
formed for SMCs. This dispersion brings problem when deciding the reference curve to
set the model parameters values, namely, to characterize the mechanical properties of
the material. In addition, the model proposed for the evolution of the porosity parame-
ter by means of α3 term remains an open question. The model proposed here supposes
an isotropic closure of the porosity since the orthotropic parameters α1 and α2 remain
constant. The characterization was performed for many strain rates and different temper-
atures, here we only presented two cases at ambient temperature. Despite the difference
between experimental and numerical values, the model proves to follow the evolution
of stress level according to the experimental data. Meaning that previous of this work
this stress evolution was not possible. It remains as perspective to try to improve the
modeling by assigning a orthotropic evolution of the porosity and by determining a bet-
ter description of the porosity closure in relation with the given values for the viscosity
proposed in [29]. From the numerical point of view, our reference curve is the predictions
of our model, and we notice a good agreement implying that our implementation in the
software was done correctly. The main improvements of the model will be noticed for
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squeeze flow and plane strain compression.

The stress level using the numerical simulation also reproduced the model predictions
for the second strain rate Figure 3.16. There, the model and the numerical predictions
are in agreement, whereas the results with experimental data differs. We notice by the
curve shape that the lateral stresses behaves differently during the compaction indicating
once again the non-isotropic evolution of the stress during the porosity closure.
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(a) Vertical stress during the porosity closure
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(b) Lateral stress during porosity closure.

Figure 3.15: Stress profile evolution during Oedo compression for the case 1. Comparisons
between model predictions, simulation results for 2D and 3D cases and experimental data.

The ratio between the two stresses, the lateral and the axial, is a measure of the
compressibility and anisotropy of material. Indeed, according to the model, the initial
stresses ratio equals the rheological parameter H = 0.446. During the compaction, the
lateral stress increases faster than the axial ones. Thus, when incompressible state arises,
such ratio equals the unity. The evolution during the densification is strongly related
and ruled by the evolution of parameter α3 (and therefore by its experimental fitting
from experimental data). In Figure 3.17 the evolution of both strain rate compression
are compared to the one predicted by the model.

The compaction case enables the verification of the volumetric deformation with the
porosity closure. The important value for the molding process is the amount of defor-
mation before it behaves as an incompressible material. And therefore, it is necessary to
develop a progressive strategy to deal with the compressible and/or incompressible case
when the material is not avoided to flow in real configurations. The simple compression
case is a more representative configuration in relation with the compression molding pro-
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(a) Vertical stress during porosity closure
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(b) Lateral stress during porosity closure

Figure 3.16: Stress profile evolution during Oedo compression for the case 2. Comparisons
between model predictions, simulation results for 2D and 3D cases and experimental data.
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Figure 3.17: Stress ratio σrr
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evolution during compaction test

cess. There, the material is free to flow in the radial/horizontal direction. That case is
studied as follow in order to evaluate when the material starts to flow, at which axial
deformation and how the stress behaves in such case.
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(a) Simple Compression (b) Plane strain compression

Figure 3.18: Numerical immersion of the different phases (punch, mold and SMC) in the
computational domain: (a) for the simple compression case, (b) for the plane compression.

3.5.4 Compressible/Incompressible Transition for a Squeeze Flow

For the simple compression case the numerical configuration is shown in Figure 3.18.
The analytic solutions are provided in section D.2.1. Two wall boundary conditions are
studied: slip contact and sticky (no-slip) contacts. In molding compression applications
the friction between the mold wall and the sample modifies the mechanical behavior and
therefore the force applied on the punch.. For a slip contact, the material is subjected to
a purely elongational flow whereas a sticky contact causes that the flow is dominated by
the shear. The friction condition is a combination of both cases. The most predominant
kinematic in SMC compression molding is an equivalent of the squeeze flow and it is
studied by numerous authors [35, 36, 37, 38]. The comparison between analytic solutions
and the numerical computations can only be done for the slip boundary condition for
which it is possible to exhibit such solution by using continuum mechanics. Therefore,
further to such studies, we also present in this section the case for a non-slip boundary
condition. There, we point out the differences in the behavior of the porosity closure and
stress level for both boundary cases.

In Figure 3.19 and Figure 3.20, the evolution of the compressible parameter β in-
troduced in this work is presented. In Figure 3.19a the initial porosity concentration
φpo = 28%. At deformation about ≈ 25% the material reaches the transition state pic-
tured in Figure 3.19c. We notice than also in Figure 3.21 the volumetric deformation
presented in Figure 3.24a has a change in its slope and its tendency becomes flatter.
Thus part of the vertical deformation is transformed in surface deformation. When the
material reaches the incompressible state Figure 3.19c it flows. A further snap is taken
at deformation ε ≈ 0.6 where the material is fully incompressible 3.19d since its porosity
concentration in lower than 0.1% as shown in Figure 3.21b.

Accordingly for the slip contact, the analytic solution states as shown in section D.2.1

σ33 = η0 (φf − φc)2 α
n+1

2
0

(
1 + α1 + α2 + α3

1 + 2α3

)n+1
2
Dn

33 (3.47)
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(a) t1 : beginning of compression (b) t2 : εv = 0.15: - compressible behavior

(c) t3 : transition to incompressible behavior
(d) t4 : final position - (incompresible behav-
ior)

Figure 3.19: Compression of HP SMC. Porosity concentration in the material at the beginning
of compression. Notice the evolution until φp ≈ 0 when volumetric deformation equals critical
state. Compressible/incompressible transition as critical state is reached. Complete squeeze
flow behavior at the end (incompressible).

and the variable α3 is updated knowing that the trace of the viscoplastic strain rate
stands in this case as:

Tr(D) = 1
1 + 2α3

D33 (3.48)

In Figure 3.22 the stress for the slip condition is compared to the analytic solution.
Firstly, it is important to observe the behavior of the stress evolution for this viscous
model. At constant strain rate, normally, an incompressible viscous model predicts a
constant stress value. Clearly, the shape of this stress curve along deformation does
not behave like that. The evolution of the stress along deformation will depend on
compressible behavior and friction condition against the wall. The compressible transition
is determined by noticing that the slope of the linear behavior of the stress in the early
compression stages (deformation< 0.2) changes abruptly. In the previous section, we have
shown that the porosity closure of the material increases the internal pressure making it
more difficult to compress. The same behavior is also found during these computations.
Then, the material flows and the friction against the mold play an important role. For the
slip case, once the material becomes incompressible, the viscous stress remains constant.
For the no-slip case, the stress will linearly increases during the deformation since more
surface is in contact with the mold, requiring more energy to displace the material. The
reference curve eq. (3.47) for the slip case is plotted in dashed line inFigure 3.22 and
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Figure 3.20: Compressible/incompressible transition during porosity closure: evolution
of the compressible term β defined in eq. (3.10)
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Figure 3.21: Evolution of the viscoplastic volume deformation εv and the volume concentra-
tion in compression test during compressible/incompressible transition of SMC: slip boundary
conditions (continuous line); No-slip boundary condition (dashed line).

the two boundary conditions are depicted with blue and red lines. In the framework of
immersed domain method, the slip boundary condition is recovered by adding a constant
viscous layer as explained in [39], the numerical prediction are represented by the blue line.
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This numerical stress is slightly higher and increases weakly with the vertical deformation.
This latter means that the viscosity of the additional has to depend on the local tangential
stress to better satisfied the slip condition. It seems that there is a small friction for large
deformation. For the no-slip case, there is no analytic solution but the analyze of curve
shape can still be made: the stress behaves as for the slip case during the densification;
then the stress level increases as the surface in contact with the mold does. These two
curves represent the bounded values of stress and all other friction cases remain inside
this range.
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Figure 3.22: Normal stress during compressible/incompressible squeeze flow. For the analytic
solution, the slip case is reproduced by the numerical simulation. The non-slip case reproduces
higher normal stress due to the shearing of the material. In both cases, the stress during the
compressible step increases linearly with the volumetric deformation.

3.5.5 Plane Strain Compression

Figure 3.23: Plane strain: Compression of SMC within a channel.

To check the capability of the developed model and its numerical implementation,
compression moldings for plane strain compression (ps) were simulated. For that pur-
pose, an initial SMC sample of dimension wo × Lo × h0 = 40 mm × 60 mm × 6.5 mm
located in the center of a rectangular mold having a channel length of 80 mm. The charge
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is compressed until the mold cavity is fulfilled. The deformation follows the kinematics
given in Figure 3.23.

For this case, we study the evolution of the porosity φp, the volume strain εv and the
plane stresses during the compression. Only, the no-slip boundary condition is addressed
as there are numerical difficulties to set slip boundary condition for the plane compression.
The viscous layer approach under this configuration induces penetration of the sample
into the mold, since it induces a non-zero velocity of the material towards the mold.
There is also the problem of vertical wall. Further strategies should be integrated to deal
with the slip case during compression in immersed domain method (Nistche method for
example). The molding configuration gives rise to two main stresses: a first one along
the axis of compression σ33, a second one along the vertical plane of mold in contact with
the material σ22. The analytic solutions for slip boundary condition are determined in
Appendix:section D.2.1 and stand as:

σ33 = η0 (φf − φc)2 α
n+1

2
0

(
1 + α1 + α2 + α3

1 + α3

)n+1
2
Dn

33 (3.49)

σ22 = η0 (φf − φc)2 α
n+1

2
0

α3

1 + α3

(
1 + α1 + α2 + α3

1 + α3

)n−1
2
Dn

33 (3.50)
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Figure 3.24: Compressible/incompressible transition for plane strain compression: (a) evolution
of viscoplastic volume strain εv as a function of vertical deformation; (b) evolutions of stresses
for no-slip numerical computations (NS) and slip analytic solutions.

The analytic and computed evolution of the stresses during the plane strain compres-
sion have been plotted in Figure 3.25. The materials behaves as incompressible after
a vertical deformation of 0.4 until its porosity concentration vanishes. We also notice
changes on the shape of curves depicting the stress behavior at this point. The stresses
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Figure 3.25: Compressible/incompressible transition for plane strain compression: (a) evolution
of viscoplastic volume strain εv as a function of vertical deformation; (b) evolutions of stresses
for no-slip numerical computations (NS) and slip analytic solutions.

(σ33 and σ33) given by analytic solutions stand for slip boundary condition and remain
nearby constant when the material becomes incompressible. As in [26], the analytic
solutions and experimental stresses differ due to friction along the mold. From this com-
parison, we can see the influence of the friction or well the boundary condition during
compression with respect to the prediction of stress level. The compression curves during
this experimental test are rather related to the configuration for which there is a high
friction against the mold.

3.6 Conclusions
In this chapter, we addressed the problem of compressible SMC materials and its rheo-
logical model. Large volume fiber concentration in SMC materials improves mechanical
properties of the rigid part once molded. However, as presented in this chapter the fab-
rication process entraps air among the fiber bundles inducing a compressible behavior of
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the SMC. Usally, such compressibility is not taken into account since the porosity is less
than 1%. For standards SMC, the model proposed in literature by Dumont can be used.
This model is the first model assigned to describe SMC as an orthotropic material. Basi-
cally different behaviors stand in the thickness and in the plane of fibers. The numerical
simulations described the model are proposed for several molding conditions and fit well
experimental data.

However, for the SMC studied in this section containing 38% of volume fiber concen-
tration carries 25% of porosity. The compressible behavior was modeled and its evolution
is described by a term related to the volumetric changes in the expression of stress tensor.
The model was used to predict the mechanical response in a compaction test. A new
formulation for the compressible SMC is here presented followed by the work performed
during this PhD as part of the collaboration with the laboratory 3SR in Grenoble-France.
The compressible model however, did not show a clear transition between the compress-
ible SMC behavior and the incompressible one. We presented in this chapter an unified
model. Such model described by the term of a compressibility factor, β, enables a sin-
gle formulation for both compressible and incompressible SMC and allows a continuous
computation. For the incompressible cases, we predict the stress level of the simple com-
pression, plane compression and shear. The numerical model used described the same
stress level of the model proposed by Dumont et at. For the compressible case, the pure
compaction computations show the ability to get the compressible/incompressible transi-
tion. Further, plane strain and axisymetric compressions are addressed for two boundary
conditions at the SMC/mold interface: the slip and the no-slip case. We also point out
that the porosity closure can be detected by looking at the slope variation of the stress
during the compression.

In conclusion, this model enables thanks to the compressible factor β, an easy compu-
tations of dense state of SMC. The model here proposed improves the rheological model,
since it is based on a stable numerical formulation when the materials becomes incom-
pressible. The model using the fourth order tensor as input also enables simulation for
fiber-reinforced simulations in injection molding cases extending its implementation to
further fiber reinforced problems. Compare to current models in literature, no models, to
our knowledge, have been introduced to deal with compressible and incompressible SMC.
More important, this model enrichs the model presented in [20].

Coupling the compressison of SMC with the thermal exchange between the mold
stands forward a more complete modeling of SMC. The next chapter deals with the
thermal treatment assigned to SMC materials and we compare such predictions under
chemical reaction with experimental data.
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Chapter 4

Thermo-Kinetic Modeling of SMC
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Summary
The study of the thermo-kinetical behavior of SMC materials is object of study in this
chapter. The hot molds walls heats up the SMC increasing its temperature. The temper-
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ature of the sample causes the chemicals components of the matrix mixture to react and
trigger a chemical reaction denoted as curing. Such mechanism also causes the transfor-
mation of the matrix from a viscous paste state towards a consolidated part considered
rigid.

In this chapter a themo-kinetical model for studying the temperature evolution during
curing as well as the phase transformation is proposed. The model used is the so-called
Bailleul model. The materials has been characterized using a device know as the PVT-α.
This work has been performed by the laboratory of thermo-kinetical of Nantes - France
(LTN). This laboratory has proposed a fully thermo-kinetical model for the two types of
SMC study herein. As complement of this collaboration, the laboratory also provided
us with experimental data for 2 different configurations in each one of the two materials
here studied. We use the model and test it during the heating of a cylinder sample en-
capsulated in a hot mold and during the compression in a channel.

Two main cases are in this chapter compared. Before those test all the equations
related to the thermo-kinetical model are depicted. The chapter focus in detail on de-
scribing the heat source injected into the energy equation that is proposed as a function
chemical reaction evolution. the variable used to described the curing state is dneoted
as α. So we move from a standard temperature finite elements resolution to a coupled
temperature-conversion degree resolution (T-α unknowns). The fist test is a cylinder
sample blocked where the temperature of the surface increases by 3 degres per minute
(slow reaction). The main objective was to make evolve the temperature of the sam-
ple controlling the thickness gradient. After about 1500 seconds the material reacts for
SMC-UL and after 1800 second for the SMC-HP. The numerical prediction of the same
test proves that the model allows us to fit experimental data based on temperature evo-
lution in the core of the sample as well as thickness evolution during the steps of heating-
reacting - and cooling. As complement of this study a sensibility case of characterized
properties such as chemical energy, conductivity, heat capacity, thermal contact resis-
tance was performed concluding that the variables the modify the most the reaction time
and the temperature peak are the thermal contact resistance and the chemical energy of
the paste. For that reason it is important to well characterized such properties for further
materials.

A second test case was studied where the material is compresses during heating. This
case consisted in model a real compression molding experience where the hot wall of a
mold compresses the sample until reach certain thickness. There the molds holds until
the chemical reaction takes place and the material is fully consolidated. The experimental
data recorded force during the test, temperature in the center of the sample and in lateral
positions as well as heat fluxes sensor where placed on the mold and punch surfaces. The
comparison of the experimental data with the numerical simulations predictions are in
general a nice estimation of this work under real industrial conditions. The temperature
evolution for SMC-UL is in good agreement with the experimental data. The core surface
temperature and the heat fluxes computed numerically proves that the model and the
simulation set describes fairly good the experimental test. The force during the compres-
sion however is relatively not so well predicted based on the main reason that the friction
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against the mold is here not precisely modeled. The same procedure is repeated for the
SMC-HP but there the chemical reaction describe numerically are in less agreement with
the experience. Finally, at the end of the chapter the prediction of the thermo-kinetical
model for a industrial geometry is given showing that for a piece used in Plastic Om-
nium Auto Exterior the reaction time under the condition of mold temperature around
150Celsius is about 45 seconds.

Résumé en Français

L’étude du comportement thermo-cinétique des matériaux SMC fait l’objet d’une étude
dans ce chapitre. Les murs de moules chauds chauffent le SMC en augmentant sa
température. La température de l’échantillon fait réagir les composants chimiques du
mélange de matrice et déclencher une réaction chimique indiquée comme durcissement.
Un tel mécanisme provoque également la transformation de la matrice d’un état de pâte
visqueux vers une partie consolidée considérée comme rigide.

Dans ce chapitre, on propose un modèle thérmo-cinetique pour étudier l’évolution
de la température pendant le durcissement ainsi que la transformation de phase. Le
modèle utilisé est le modèle Bailleul. Les matériaux ont été caractérisés à l’aide d’un
périphérique connu sous le nom PVT - α. Ce travail a été réalisé par le laboratoire
de thermo-cinétique de Nantes - France (LTN). Ce laboratoire a proposé un modèle
entièrement thermo-cinétique pour les deux types d’étude SMC dans le présent docu-
ment. En complément de cette collaboration, le laboratoire nous a également fourni des
données expérimentales pour 2 configurations différentes dans chacun des deux matériaux
étudiés ici. Nous utilisons le modèle et le testons lors du chauffage d’un échantillon de
cylindre encapsulé dans un moule chaud et pendant la compression dans un canal.

Deux cas principaux sont comparés dans ce chapitre. Avant ces essais, toutes les
équations liées au modèle thermo-cinétique sont représentées. Le chapitre se concentre
en détail sur la description de la source de chaleur injectée dans l’équation d’énergie
qui est proposée comme une fonction d’évolution de la réaction chimique. La variable
utilisée pour décrire l’état de durcissement est calculée comme alpha. Nous passons
donc d’une résolution standard d’éléments finis à une résolution de degré de conversion
de température couplée (T - α inconnus). Le premier test est un échantillon de cylindre
bloqué où la température de la surface augmente de 3 degres par minute (réaction lente).
L’objectif principal était de faire évoluer la température de l’échantillon contrôlant le
gradient d’épaisseur. Après environ 1500 secondes, le matériau réagit pour SMC-UL et
après 1800 secondes pour SMC-HP. La prédiction numérique du même test prouve que
le modèle nous permet d’adapter les données expérimentales basées sur l’évolution de la
température dans le noyau de l’échantillon ainsi que l’évolution de l’épaisseur pendant
les étapes de réaction au réchauffement et de refroidissement. En complément de cette
étude, un cas de sensibilité des propriétés caractérisées telles que l’énergie chimique, la
conductivité, la capacité calorifique, la résistance au contact thermique a été réalisé en
concluant que les variables qui modifient le temps de réaction et le pic de température
sont la résistance au contact thermique et l’énergie chimique De la pâte. Pour cette rai-
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son, il est important de bien caractériser ces propriétés pour d’autres matériaux.

Un deuxième cas de test a été étudié où le matériau se comprime pendant le chauffage.
Cette affaire consistait en un modèle d’expérience en moulage par compression réelle
où la paroi chaude d’un moule comprime l’échantillon jusqu’à atteindre une certaine
épaisseur. Les moules se maintiennent jusqu’à ce que la réaction chimique ait lieu et
que le matériau soit complètement consolidé. Les données expérimentales ont enregistré
une force pendant le test, la température au centre de l’échantillon et dans les positions
latérales ainsi que le capteur de flux de chaleur placé sur les surfaces du moule et du
poinçon. La comparaison des données expérimentales avec les prédictions des simula-
tions numériques est en général une bonne estimation de ce travail dans des conditions
industrielles réelles. L’évolution de la température pour SMC-UL est en accord avec les
données expérimentales. La température de la surface centrale et les flux de chaleur cal-
culés numériquement prouve que le modèle et l’ensemble de simulation décrivent assez
bien le test expérimental. Cependant, la force pendant la compression n’est relative-
ment pas bien prédite en fonction de la raison principale pour laquelle le frottement
contre le moule n’est ici pas précisément modélisé. La même procédure est répétée pour
le SMC-HP, mais la réaction chimique décrivant numériquement est moins conforme à
l’expérience. Enfin, à la fin du chapitre, la prédiction du modèle thermo-cinétique pour
une géométrie industrielle est donnée montrant que pour une pièce utilisée dans Plastic
Omnium Auto Exterior, le temps de réaction sous l’état de la température du moule
autour de 150Celsius est d’environ 45 secondes.

Introduction

Consolidation mechanism modifies the viscous nature of the polymer arrangement, by
connecting the whole molecule chains, hardening the macroscopic behavior of polymer
compound. This process transforms a viscous composite body into a rigid part. The ma-
terials studied in this work, once consolidated are used as lighted structural pieces and
therefore it is important to model its behavior from the viscous state to the rigid state.
The resin in thermoset preform of Sheet Molding Compound (SMC) has the chemical
component which at hot temperatures reacts and consolidates the product. The final
composite is then a rigid part, containing mineral fillers and long chopped fibers of 25-50
mm length [1]. Due to its rigid mechanical behavior once consolidated, those products are
used to manufacture semi-structural parts such as tailgates, front end carriers, bumpers,
inside hatchbacks and trunk floor or well other applications mentioned in Chapter 3.
During compression molding of composites parts, specifically those used in the automo-
tive industry, two main features have to be analyzed: firstly, the deformations step for
which a proper mechanical modeling describing the anisotropic behavior of the SMC was
presented in the previous section; secondly, the study of the cross-linking reaction and its
influence on its thermal/mechanical properties which is the main subject of this chapter,
. Many authors have focused on studying the mechanical behavior during the mold filling
and some few have proposed or characterized a thermochemical model adapted to SMC.
Barone et al [2] and Kotsikos et al [3] started describing the SMC as viscosplastic de-
formable body before curing. Le Corre, however, [4] improved the modeling by observing
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the anisotropic behavior on the mechanical response and by adding the thermal influence
on their viscosity. Later, Dumont et al in [5] proposed a model that accounts for the
anisotropic behavior exhibited by reinforced materials by means of structural tensors. In
[6] a study on the molding process for parts molded at room temperature was provided.
However, models taking into account the thermo-kinetic nature of such composites re-
mains a complementary key towards the thermo-mechanical modeling of reinforced parts.
First studies were accomplished by Lee in [7] and Maazouza [8] using a model based on
the radical polymerization mechanisms. For structural parts, where fiber concentration
increases up to 38% in volume, the mechanical model modified by the fiber concentration
was study in Chapter 3 and in the following, a thermo-kinetical model coupled with the
mechanical response is introduced based on the collaborative work performed in [9].

Within the framework of producing structural parts, updated formulations with stronger
curing mechanism are found. However, those formulations lead to different molding be-
havior with respect to standard SMC products [5]. During industrial SMC compression,
a strong thermo-mechanical coupling between thermal and chemical mechanisms defines
the final geometry of the molded part. Specifically heating, flow, cross-linked reaction and
cooling are active conditions faced during the compression cycle. The increase in fiber
concentration within the material decreases the thermal conductivity of the compound,
translated into a very local exothermic reaction, inducing temperature and conversion
degree gradients through the thickness [10] [11] [12]. Coupling those physics with ther-
mal expansion and chemical shrinkage enhances the modeling of the final geometry and
improve the estimation of the residual stresses [13] [14] [15]. This reaction increases the
viscosity of the part since the cure of thermoset resins converts liquid monomers into
three dimensional networks [16]. As part of this project, the high concentrated SMC ma-
terials were characterized [17] and a consistent model is here presented. In this study, we
observe not only the thermal evolution of the sample, but we also include resin reaction
mechanism. Both, thermal and kinetic evolution are coupled to the mechanical problem
by means of the variation of dense density. A first introduction of the thermo-mechanical
model was presented in [18] and here we extend the approach to fully coupled simulations.

In this chapter, firstly the fully thermo-kinetical model is introduced following the
work in [17]. The form of the cross-linking reaction using Bailleul model is explained, as
well as, its connection to all thermal and kinetical properties. The evolution of the density
with respect to thermal expansion and chemical shrinkage is presented complementing
the full description provided in Chapter 1. Moreover, this model can also deal with the
anisotropic volume variation induced by the fiber network. Secondly, we study the tem-
perature evolution in the sample under reaction and thickness evolution in a static PVT-α
experiment and comparisons between computations and experimental measurements are
made. After validating the model, compression molding simulation under plane strain
condition for isotherm setups at 50oC and 80oC are studied. The aims is to analyze the
viscosity evolution with temperature without reaction and characterized the friction of
the SMC sample with the mold. Then, plane strain compression is performed on real
industrial conditions at mold temperature of 150oC while the SMC sample has an initial
temperature of 30oC. The SMC sample is deformed until filling the mold cavity. The
sample is hold until reaction is triggered and the temperature, reaction degree and thick-
ness evolution during the molding cycle are compared with experimental data coming
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from [17].

4.1 Thermo-kinetical modeling of SMC
Let us consider a sample of fiber reinforced composite, such as SMC, described by an or-
thotropic non-Newtonian compressible constitutive law and modeled by the Compressible-
Stokes equation presented in Chapter 3. For non-isothermal computations, we extend the
modeling by adding the thermal evolution of sample, describing its thermal and kinetical
evolution as active variable (T, α). Including a model for the evolution of the conversion
degree α, the governing equations for the thermal evolution is given by the compressible
heat transfer equation:

ρ cp
dT

dt
− ρ∆Hα

dα

dt
− Tχvt

dp

dt
= ∇ (k∇T ) + s : ∇v (4.1)

dα

dt
= F (τ, α, T ) (4.2)

with T the temperature, α the reaction degree, ρ the density of the mixture, s the devi-
atoric stress tensor, v the velocity, p the pressure and χvt the volumic thermal expansion
coefficient of the mixture. The thermal parameters cp states for the heat capacity of
the mixture, κ the conductivity tensor, ∆Hα the chemical energy in the composites and
F (τ, α, T ) the evolution function of the conversion degree dα/dt. The variable τ states
for the spare time that requires the system before reacting, known as induction period.

4.1.1 Expressions for the evolution of thermal properties
The thermal properties of the SMC materials under study depend on the temperature T .
Likewise, accounting for the polymerization process undergone by the paste, its properties
depends on the conversion degree α. According to the characterization given by the
Laboratory of thermo-kinetics in Nantes (Table 4.1) [9], the expressions for the heat
capacity cp and the transverse conductivity κ stand:

cp (α, T ) = Xf cp,f (T ) + (1−Xf ) [α cp,cured(T ) + (1− α) cp,uncured(T )] (4.3)

The heat capacity responds to a mixture of the fiber with the paste. Firstly, it de-
pends on the massive fiber fraction concentration Xf and its heat capacity cp,f . Then,
the contribution of the paste before reaction cp,uncured and in cured state cp,cured.

For the conductivity, the characterization is provided directly with the SMC solving
an inverse heat conduction problem [19]. There, the material is studied as a homogeneous
mixture. The properties of the axial conductivity (normal to the fiber network) reads:

κ (α, T ) = α κcured(T ) + (1− α) κuncured(T ) (4.4)

The planar orientation of the fiber network may induces an anisotropic behavior of the
thermal evolution in SMC materials. Thus, opening up the discussion of considering as
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Thermal parameters for SMC under study
parameters HP SMC UL SMC
Xf 0.5 0.28
cp,f 1.247 T + 781.0 1.247 T + 781
cp,cured 4.77 T + 1045.0 3.63 T + 1095
cp,uncured 3.43 T + 1246.0 2.64 T + 1386
κcured 1.0E − 04 T + 0.571 0.25 + 0.0005 T
κuncured 5.0E − 04 T + 0.497 0.28
Temperature in Kelvin for conductivity and in Celsius for rest of properties

Table 4.1: Thermal properties for HP and UL profiles

well a tensor of conductivity. A further discussion followed by a model to take into account
this anisotropic behavior is carried out later in this chapter (see section 4.1.5). Another
property evolving during the thermo-kinetical cycle is the density. Since the materials
undergoes thermal and chemical changes, thermal dilatation and chemical shrinkage takes
place during the molding of the part. Thus, modifying the geometrical aspect of the piece,
caused by density variations. Such evolution responds to a continuous variation of the
volume ruled by the mass conservation equation. This variation during the thermal and
chemical evolution is studied in section 4.1.4. In the following, we introduce the kinetical
model employed to describe the curing mechanism of SMC profiles.

4.1.2 Kinetic Evolution of SMC - Bailleul’s Model

Cross linking reaction is usually described by a macro-scale variable denoted as reaction
degree. Despite polymerization includes many chemical reactions, the empirical models
stand the hypothesis of describing the curing behavior by a unique local reaction. Several
kinetic models has been reported for thermoset resins and were associated to composite
materials. Those models are mainly distinguished as phenomenological [20],[21],[22] and
mechanistic [23] [24]. According to the work presented in [17, 9], the cure of SMC high
profiles parts are modeled by the empirical kinetic equation developed by Bailleul [20].
In such model, the induction period is considered. This corresponds to a spare time while
the inhibitors presented in the reactive system are consumed, preventing the initiation of
the reaction by neutralizing free radicals. This ignition time is governed by its own kinetic
and by the imposed temperature. However, the model do not consider the vitrification
phenomenon (or diffusion effect). If the curing temperature occurs in the vicinity of
the glass transition temperature, a slowing down of the reaction takes place. This is
caused by the decrease of mobility of the polymer chains. Such effect might lead to
partial conversion and must be described by a gradual diffusion effect on reaction kinetic
during the cure [25]. Fortunately, this effect is more probable to occur for low curing
temperatures compare to imposed mold temperature in compression molding process.
The kinetic model used to describe the curing of SMC materials stands:

dα

dt
= W (h(t)) K(T ) G(α), (4.5)
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The computation of the reaction rate evolution F (α, T ) eq. (4.2) is usually described
by the product of a temperature function K(T ) eq. (4.6), a function depending on the
conversion degree G(α) eq. (4.7) and by a boolean function depending on the induction
time:

K(T ) = kref exp
(
−A

(
Tref
T
− 1

))
(4.6)

G(α) =
∑

ai α
i. (4.7)

The induction period function h(T ) (eq. (4.8)) reads:

h(T, t) = tref − τ(T, t). (4.8)

The two contributions of the kinetic model are plotted in Figure 4.2. We notice
that the shape of the reaction is supported by the evolution of function G(α). Also, at
higher temperatures the reaction is stronger, notice the increment of K(T ) respect to
T . The activation function W (h(t)) equals to zero if the ignition period has not been
reached yet (h(T, t) > 0) and to 1 once all the inhibitors of the resin have been consumed
(h(T, t) ≤ 0). The function τ(T, t) evolves according to

dτ

dt
= exp

(
−B

(
Tref
T
− 1

))
(4.9)

The ignition time τ can also be expressed in its differential form, in order to be used
in a convection scheme during the compression molding simulations and reads:

∂τ

∂t
+ v · ∇τ = exp

(
−B

(
Tref
T
− 1

))
(4.10)

In general, all thermal parameters depend not only on temperature T but also on
the conversion degree α. From a numerical perspective, we focus on modeling the the
thermo-rhelogical-kinetic coupling of fiber reinforced materials studied by R. Cardinaud
[9]. The values for parameters kref , A, Tref , ai, tref , B depend on the resin composition.
They are determined by R. Cardinaud and they are reported in Table 4.2.
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Material HP SMC UL SMC
∆Hα 76000 J/kg 142560 J/kg
- K(T )
kref 0.05055 0.08246
A 46.7518 32.8898
Tref 393.0K 373K
- G(α)
α0 7.5590e-04 5.0932e-05
α1 3.7372e-01 2.2797e-01
α2 -1.1417 -7.7730e-01
α3 1.6229 1.2529
α4 -1.2695 -1.0881
α5 4.1529e-01 3.8455e-01
- h(T, t)
tref 98.1 325.14
B 78.76 68.85

Table 4.2: Kinetical parameters for UL and HP SMCs.
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for ultra light (UL) and high performance
(HP) SMPCs.

Under an isotherm condition, the time to trigger the reaction is obtained by vanishing
eq. (4.8) in which the ignition time follows eq. (4.11). That gives a reaction time ton

ton = tref

e−B(Tref/T−1) (4.11)

which plotted in Figure 4.3. From this expression, important information can be obtained:
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the higher the temperature the faster the reaction is triggered; the high performance
profile (HP) is more reactive than the lighter profile (UL). Notice that when a point of
the material is at temperatures higher than 150oC (423 K), the material reacts in less
than 1 second. However, the energy released by the UL profile is higher causing that in
real conditions the maximum temperature in the system is found for this profile. Under
real conditions, the induction time can not be estimated easily since it depends on the
thermal history. For compression molding process, the temperature in the sample evolves
from 25oC (298 K) until 150oC (423 K).
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Figure 4.3: Reaction time at constant temperature: time taken for the material to react
according to the temperature.

The mold hot temperature imposition will then define the thermal history according
to the conductivity of the material. The temperature on the surface of the SMC is also
affected directly by the thermal contact resistance. Thus, it modifies the determination
of the beginning of reaction. In addition, this provides a first notion of thermal gradients
within the thickness. Due to this thermal gradient, then it is natural to find that the
reaction starts in the surface earlier than in the core. Whereas the mechanical gradients,
namely, pressure and stresses, occur along the piece, the thermal evolution is more pre-
dominant within the thickness. The justification of fully 3D simulations is then hereby
justified.

Kinetic and thermal variations cause local changes in the material density which is
translated into an induced velocity. Hereafter, we model the effect of thermal and kinetic
variations on the strain rate tensor. The coupling with mechanical problem is introduced
and focused on a 3D examples.

4.1.3 Expansion and Shrinkage of SMC
Let consider the thermal strains produced by temperature changes during the heat con-
duction and the chemical strains during the crosslinking reaction. These strains have
inherently a volumic nature (thermal expansion or chemical contraction) and do not
cause any shear, placing their displacements only in the main directions of the strain
rate tensor. The total strain rates (ε̇) are then due to the (additive) contribution of the
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mechanical strain rate (here considered as viscoplastic) (D), i.e., those produced by the
stresses, the thermal strain rate (ε̇th) and the chemical strain rate (ε̇ch):

ε̇ = D + ε̇th + ε̇ch. (4.12)

Finally, the anisotropic volumic variations due to thermal and kinetic evolution are mod-
eled by the tensor of dilation and shrinkage.

For example, the thermal strain rate is a tensor computed using the dilatation factor
χt and the temporal temperature variation:

ε̇th = χt
dT

dt
(4.13)

where χt states, in the case of SMC materials, for the tensor of anisotropic dilatation
coefficients defined by

χt =

χ
x
t 0 0

0 χyt 0
0 0 χzt

 (4.14)

where usually χx,yt < χzt if the vertical axis is the plane perpendicular to fiber network.
Therefore, a thermal variation of dT/dt induces different displacements in the plane of
the fiber and in the thickness (for isotropic materials that displacements would be the
same).

In the Eulerian framework, we express the temporal derivative by taking in account
of the convective part which gives rise to

ε̇th = χt
∂T

∂t
+ χtv · ∇T (4.15)

The trace of this tensor defines a volumic variation which can be translated as a
density variation. For example by taking the trace of thermal dilatation tensor, we can
write:

tr(ε̇th) = (χxt + χyt + χzt )
∂T

∂t
+ (χxt + χyt + χzt ) v · ∇T (4.16)

by defining the volumetric dilatation coefficient χvt = χxt + χyt + χzt and by noticing that
the second terms can be grouped, we write:

tr(ε̇th) = χvt
∂T

∂t
+ χvt v · ∇T (4.17)

The same reasoning for the chemical shrinkage gives:

ε̇ch = χα
∂α

∂t
+ χαv · ∇α (4.18)

and its trace stands:

tr(ε̇ch) = χvα
∂α

∂t
+ χvα v · ∇α (4.19)
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.
By taking tensors defined by dilatation and shrinkage coefficients, we can study the

volumetric variation as a directional depending phenomena. For instance, we encounter
lower dilatation and contraction terms in the fiber plane. The fiber network induces a
mechanism of braking the natural dilatation or contraction of the matrix in our reinforced
composite. It is easier to move along the normal direction and more difficult towards the
fiber network alignment. From thermo-mechanical point of view, we found in here another
source of anisotropy.

Thermal and chemical dilation in any reference system

By knowing the normal to the fiber plane in any point of our material, we can define the
anisotropic dilatation and shrinkage tensors. Let be M = n ⊗ n the structural tensor
built with the vector normal n to the fiber plane. The tensors are built automatically by
using the following expressions:

χt = χplanet (I−M) + χnormalt M (4.20)

χα = χplaneα (I−M) + χnormalα M (4.21)

SMC materials under study have different compressible properties under heating than
cooling. A more general approach should include thermal expansion coefficients that
depends on the sign of the cooling rate. In the scope of this work, we only study the
compressibility of SMC under heating.

By assuming n = e3 the tensor of thermal dilatation coefficient χt and the tensor of
chemical shrinkage coefficients χα states:

χt =

χ
plane
t 0 0
0 χplanet 0
0 0 χnormalt

 (4.22)

χα =

χ
plane
α 0 0
0 χplaneα 0
0 0 χnormalα

 (4.23)

For UL and HP SMCs, the values are presented in Table 4.3. There, we noticed
the high ratio (≈ 20) between the normal and transverse coefficients. The strain rate
induced in the normal direction are by far the ones inducing geometrical modifications
of the piece. During heating or transformation (from viscous state towards consolidated
state) the volumic variations induces variation of material density. In the following, we
link such volumic variations to the density evolution of the part.

4.1.4 Evolution of the density due to thermal and kinetical evo-
lution

According to the multiplicative decomposition introduced in Chapter 1, the density is
split in two terms called the relative density ρr and the dense density ρd. The relative
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Anisotropy in SMC materials during volume variations
Material HP SMC UL SMC

uncured
dilatation coefficient in the plane χplanet 5.6e-5 5.7e-5
dilatation coefficient through the thickness χnormalt 2.8e-4 2.86e-4

cure
dilatation coefficient in the plane χplanet 3.3e-5 3.8e-5
dilatation coefficient through the thickness χnormalt 1.66e-4 1.89e-4
shrinkage coefficient in the plane χplaneα -1.8e-3 -2.5e-3
shrinkage coefficient through the thickness χnormalα -3.6e-2 -5.09e-2

Table 4.3: Anisotropic Dilatation and shrinkage coefficients for UL and HP SMCs.

Density references for SMC under study
Material HP SMC UL SMC
ρ(φp = φpo, Tref , α = 0) 1550 1367
ρ(φp = 0, Tref , α = 0) 1940 1400
ρcured 2000 1444

Table 4.4: Values of reference density for UL and HP SMCs.

density evolution is presented in Chapter 3 and in this section, we focus on the evolution
of the dense density mainly due to the thermal and kinetic effects. Consequently, the
dense density is a function of the temperature and the degree of reaction and is ruled by
the differential equation:

− 1
ρd

dρd
dt

= tr(ε̇th) + tr(ε̇ch) (4.24)

Notice that for isotropic materials, if the volumetric thermal dilation coefficient χvt
and the volumetric chemical shrinkage χvα are constant, the differential equation has an
exact solution of the form:

ρd = ρ0e
χvt (T−Tref )+χvαα (4.25)

where ρ0 corresponds to a reference density at Tref and in raw state (α = 0) (some values
are given in Table 4.4). In our simulations, we solve the differential equation taking into
account both convective and local variation of the dense density as:

1
ρd

(
∂ρd
∂t

+ v · ∇ρd
)

= χvt
∂T

∂t
+ v · χvt∇T︸ ︷︷ ︸
tr(ε̇th)

+χvα
∂α

∂t
+ v · χvα∇α︸ ︷︷ ︸
tr(ε̇ch)

(4.26)

which enhances the formulation given in Chapter 1. The anisotropy on the thermal/chemical
volume changes is also present for other thermal properties such as the conductivity κ.
The transverse conductivity faces the fiber network while the planar conductivity acts all
along the fiber lengths. That point is analyzed in the next section.
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4.1.5 Anisotropic Conductivity in thermal resolution
Due to the fiber network, the thermal properties of the SMC are anisotropic. That
intervenes for the conductivity as well as the thermal dilatation and chemical contraction
coefficients. In particular for SMC, the properties can differ between its planar and normal
direction. In order to take into account such anisotropy, the thermal solver should be as
well enriched to account for anisotropic conductivity inputs κ. The conductivity in any
framework is expressed as the rotation matrix R of the main system into the reference
framework and the reference conductivity tensor κ123:

κ = Rtκ123R (4.27)

and the reference conductivity tensor is built using the structural construction tensor
M introduced earlier to model the anisotropic mechanical behavior of SMC. There, two
inputs are required: the conductivity in the normal κn and the planar κt directions:

κ123 = κt(I−M123) + κnM123 (4.28)

After having introduced all the details of the thermo-kinetical modeling of SMC pro-
file, we noticed the strong links between variables and the statement of anisotropic thermal
behavior inducing as well an anisotropic mechanics. The heat equation and the kinetic
models are solved and the density is updated. To account for inhibition time an extra
differential equation needs to be solved. In section 4.1.7 a summary of all equations to be
solved is given as well as the link to the expression require for the fully thermo-kinetical
resolution. At the same time, such summary helps to condense the equations and work
as reference for the current work.

4.1.6 Mechanical coupling - Complex viscosity
A complex viscosity evolution can be noticed from experimental test. According to com-
pression test performed to the past of the high profile SMC (HP), the Modified Castro
& Macosko model is used to model the crosslinking effect on the viscosity.

η = η0(T )
( αgel

αgel − α

)A+Bα

− 1
 (4.29)

where η0(T = 118oC) = 7000Pa.s, A = 11, B = 1 and αgel = 0.56. These parame-
ter values were identified from oscillatory tests done at isothermal temperature (around
118oC or 391 K ) and for a fixed frequency of 0.5 Hz. This formulation complements the
thermal Arrhenius law usually applied to SMC. This modified Castro & Macosko model
was proposed in [9] for the paste of HP SMC. We did not include this viscosity evolution
in our modeling, since the material once reacted is in static molding conditions.

The mechanical transition between viscous SMC stresses until consolidated solid me-
chanics is a requirement for the computation of residual stresses. Connecting a viscous
approach to a solid motion is considered as a further topic to be discussed for future
work.
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4.1.7 Thermal resolution for SMC materials
For the resolution of SMC materials, the heat equation is solved taking into account the
non-constant values of the thermal variables and it is coupled to the kinetic equation by
solving:

ρr ρd cp
dT

dt
−∇ (k∇T ) = ρr ρd ∆Hα

dα

dt
+ TχT

dp

dt
+ +s : ∇v (4.30)

dα

dt
= F (τ, α, T ) (4.31)

The dense density evolution is ruled by the expression:

1
ρd

dρd
dt

= χvt
dT

dt
+ χvα

dα

dt
(4.32)

with χvt and χvα being respectively the thermal expansion and chemical shrinkage coeffi-
cients. In order to take into account the induction period before the beginning of reaction
and to determine this starting time, a convection scheme of the ignition time variable τ
is solved:

∂τ

∂t
+ v · ∇τ = exp

(
−B

(
Tref
T
− 1

))
(4.33)

This ignition time is compared to the reference time depending on the material and
will define the beginning of reaction. For the whole thermo-kinetical problem, we solve
four differential equations coupled by a point fixed method.

In the next section, we perform numerical computations of experimental apparatus
with the numerical model proposed in this chapter. There, we look at the numerical
predictions on temperature evolution, detection of reaction, heat fluxes and others to
verify and validate our numerical approach and the thermal characterization of the SMC
under study.
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4.2 Kinematic reaction of SMC in a PVTα apparatus
The PVT-α mold (Figure 4.4) is a device developed in the kinetic laboratory of Nantes
[26] in which heat flux, surface molding cavity temperature and volume variations are
measured continuously during the curing cycle of composite sample. This apparatus,
based on a plunger-type dilatometer, is constituted of a cylindrical stainless steel cavity
with a 50 mm internal diameter in which a 4 − 6 mm thick sample is positioned. This
instrument is equipped with a LVDT-type displacement sensor and with two heat flux
sensors (Figure 4.4a). In addition, the mold design enables a 1D heat transfer through the
sample thickness, improving the characterization accuracy. Volume variations are iden-
tified by recording the sample thickness assuming constant diameter. The thermal cycle
to cure SMC samples consists in (i) setting the mold-sample system to 35oC (308 K),
imposing a punch pressure of 2 MPa while heating up the sample up to 180oC (453 K)
at a rate of 3 oC/min.

(a) Cross section of PVT-α mold.
(b) View of the numerical set up for the PVT-
α.

Figure 4.4: (a) Details of experimental mold for sample of 6 mm × 50 mm dimension.
Location of LVDT and other sensors. (b) visualization of immersed mold and sample
into computational domains.

The thermo-kinetic model is validated by comparing experimental recorded measure-
ments with numerical predictions for core temperature and sample thickness variation.
The PVT-α apparatus contains a thermocouple located at the center of sample. The
thermocouples enable the recording of temperature evolution along the heating and the
LVDT sensor measures the thickness variation along the heating and during curing.

4.2.1 Numerical modeling
The PVT-α test was simulated in our numerical platform. The mold, punch and SMC
sample are immersed in a computational domain of dimension 100mm×100mm×100mm.
In Figure 4.5, the numerical representation of the PVT-α is given. The computational
domain contains four phases. A rigid mold with conductivity κ, in which its rigid motion
is modeled by a high viscous fluid, here ηmold = 103ηSMC . The mold embeds the whole
sample of SMC from the bottom to the lateral along the circular surface. The punch is
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modeled by two bodies. A rigid punch with the same characteristics as the rigid mold
and a moving punch. The moving punch is used to allow the SMC to dilate with the
heating. The thermal conductivity of the moving punch remains the same as the rigid
punch, however, we set a lower viscosity ηd for this body, such as, ηd = 10−2ηSMC . The
SMC is placed between the mold and the punch and the thermal contact resistance is
modeled by an additional small layer with a specific conductivity. The details of this
modeling is explained in Appendix: C. The heating in during the simulation is obtained
by the updating of the temperature on the boundary of the computational domain ∂Ω.
We imposed a temperature T (t) in ∂Ω of the form, T (t) = 25oC + 3oC/min × t. We
imposed v = 0 along ∂Ω. We use a mesh with 4000 nodes and adaptive time step.

Rigid Die

Mold

T(t) imposed

T(t) imposed

Composite

Deformable Die

RTC

Figure 4.5: Numerical modeling of PVT-α test. Imposition of temperature in the domain
and thermal contact resistance (RTC).

We perform the simulation for both SMC. The temperature evolution in the center
of sample is recorded. For estimating the thickness evolution along the simulation, we
follow the vertical coordinate of the level set in the symmetry plane.

In Figure 4.6, we follow through the snapshots the locations where the reaction starts
and where it ends. The pictures prove that the reaction occurs first in the surface and
evolves progressively whereas in the core it evolves faster.

4.2.2 Study of UL SMC
For the UL SMC, the reaction begins around 1500 s and lasts approximately 80 s. We
observe in Figure 4.7 that temperature along the sample increases due to the exothermic
reaction. Figure 4.8 compare experimental and calculated results on the temperature
range 350− 460oK during the heating ramp of the PVT-α apparatus. It is worth noted
that the temperature increment in the sample crosses up to 460oK during the cross-linking
reaction. A temperature elevation of about 70oK with respect to the mold temperature.
The strong exothermic nature of the chemical reaction meets difficulties to diffuse due
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Figure 4.6: Reaction, heat released and temperature evolution during crosslinking pro-
cess.

to its relative low thermal conductivity. The apparent chemical shrinkage has an ampli-
tude of 4.3% and the final volumetric shrinkage is around 2.5%. However the peak of
temperature seems underestimated by the numerical computations. The reaction degree
evolution during the thermal cycle is also presented.

In section 4.5 the velocity of the part induced by the thermal gradient is depicted.
We notice the velocity profile along the sample due to density variations. The SMC
level-set is convected with the velocity profile determining implicitly the material new
surface. Due to the thermal coupling, a thickness evolution is observed. Additionally,
the ignition time resolution enables the prediction of the beginnings of reaction. For UL
SMC, the reaction begins in places where τ > 325 s. This value depends on the thermal
history. The thickness evolution and the density variations are plotted in Figure 4.10.
The experimental measurements and the numerical predictions are in agreement.

4.2.3 Study of HP SMC
Similarly, in Figure 4.11, the temperature, the reaction degree, the thickness evolution
and the density during PVT-α apparatus is presented. The HP SMC material induces
a weaker reaction (observed by a lower temperature peak compared to UL SMC). The
reaction takes longer time and that means that the reaction mechanism is slower than
for UL SMC. Thickness and density evolution are shown in Figure 4.12.
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(a) Temperature (b) Reaction

Figure 4.7: (a) Temperature profile in Kelvin and reaction degree (b) along the sample
during beginning of cross-linking reaction.
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Figure 4.8: (a) Numerical temperature compared with the records of measured temperature in
PVT-α test. (b) The numerical simulation predicts the evolution of the cross-linking reaction.

A sensibility analysis has been performed in order to study the thermal parameters
which have the most influence on the the reaction. A set of height simulations were
performed by modifying the energy released by the reaction, the conductivity of the
mixture, the heat capacity, and the thermal contact resistance by 10%. In this manner,
we evaluated their influences on the temperature peak and the beginning of the reaction.
In Appendix: E the effect of each parameter on the time evolution of the temperature and
the reaction for the PVT-α test is given. For sake of simplicity, we present in Figure 4.13
a summary. We notice the maximum temperature find in the center of the sample along
the reaction and the time variation for the beginning of the reaction, with respect to the
values given by the first computations earlier in this section. For example, a positive
value gives the amount of second that it is necessary to wait before the beginning of
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(a) Cross section: induced velocity in mm/s
of SMC sample due to thermal gradient.

(b) Density kg/m3 along the piece for SMC
UL due to consolidation process.

Figure 4.9: (a) Velocity profile during reaction. In (b) density along the sample during
consolidation.
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Figure 4.10: (a) Evolution of sample thickness during PVT-α test. Comparison measurements
with numerical prediction. (b) Numerical prediction of density evolution during experimental
test.

the reaction. This value is taken by comparing the time difference when the core of the
sample has a reaction degree α = 0.5. We notice that thermal contact resistance (RTC)
and the reaction energy are parameters which have the most influence on the reaction
modeling than conductivity and heat capacity. They delay the beginning of the reaction
and also control the peak in the temperature found in the sample more importantly.

This sensibility analysis gives us information about the accuracy needed to character-
ize the materials. During the simulation of this test, the thermal contact resistance RTC
is assumed constant and chosen equal to 5 10−4 m2 K W−1. During the simulation the
value of RTC is assumed constant.
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Figure 4.11: (a) Numerical temperature compared with recorded measured temperature in
PVT-α test. (b) The numerical simulation predicts the evolution of the cross-linking reaction.
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Figure 4.12: (a)Evolution of sample thickness during PvT-α test. Comparison measurements
with numerical prediction. (b) Numerical prediction of density evolution during experimental
test.

The thermo-kinetic numerical scheme used also impacts the evolution of temperature
and reaction degree. At each time step, we used a fixed point scheme in order to solve all
the nonlinearities. The thermo-kinetic problem is a coupled system and the non-updating
of properties and variables along the iterations may results in incorrect solutions. In
addition the use of adaptive time step improves the efficiency of the numerical resolution
by detecting the time of the reaction beginning and describing it properly. The conversion
degree value α is very sensible to the numerical scheme. If the temperature-reaction-
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property coupling is not well satisfied, non-realistic values such as α > 1 can be obtained.
We have checked that this fix point scheme is necessary to obtain the good behavior of
the variables.
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Figure 4.13: Influence of the thermal parameters accuracy on maximum temperature
during reaction and on variation on beginning of reaction

In the next section, we present the case of the SMC compression within a channel
(plane compression) which corresponds to apparatus built in ??. These computations are
done at iso-temperatures of 50oC (323K) and 80oC (353K) for which there is no reaction.
The force applying on the punch to fulfill the mold cavity is compared to experimental
measurements. We evaluate the viscosity of the material using the Arrhenius law and
compare the slip and no-slip case during the compression of the sample for both material
(UL and HP).

4.3 Isothermal Cases - Plane Compression
The plane compression test consists on compressing the material while conducting mo-
tion along a channel. The SMC is placed in the center of a mold and compressed while the
geometry of the channel enables only deformation in one direction, namely, longitudinal
direction. In Figure 4.14, it is shown an example of plane compression test. It is seen
how the material deforms along a plane. This test has a plane state of deformation along
ε11 and ε33, while stresses are mainly in σ22 and σ33 direction.

The tested materials are the UL SMC and HP SMC supplied by Plastic Omnium
(Saint Julie, France). The produced sheets are made of a polyester based paste matrix
containing 24% of glass fiber bundles for the UL SMC and 38% of fiber in volume for the
HP SMC. Compression molding experiments were performed on a laboratory hydraulic
press (maximum axial force of 9 kN . The press was equipped with a standard rectangular
mold able to produce thin (≈ 2 mm) plates with a in-plane (e1, e2) surface of 140 ×
40 mm2. Temperature, pressure and heat flux sensors were located in the upper and

150



Figure 4.14: Plane strain compression velocity. SMC materials flows within a channel.
Snaps of deformation for various times

lower part of mold as depicted in Figure 4.15. The sensor locations (here labeled as T or
P) correspond to pressure signal (P) and temperature and fluxes (T) records.

Figure 4.15: Sketch of experimental setup: definition of direction (e1 e2 e3) and positions
of sensors.

Experimental procedure - case 1

The first experimental procedure was to set plane compression without reaction.
Isothermal compression test were performed at temperatures of 50oC and 80oC. The

main point was to correlate the viscosity thermal translation given by the Arrhenius
expression in 3 with respect to temperature and to compare the experimental force during
the test for two boundary conditions: slip and no-slip case. In such manner,it would be
possible to get information on the friction between the mold and the SMC.

The mechanical modeling of the three bodies in our numerical approach is given by
assigning a high viscosity to the mold and the punch as explained previously in 3. Here,
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ηm = ηp = 103 ηSMC
eq . In such ways, the mold and the punch can be considered rigid

by comparing to the SMC. The boundary condition for the velocity is only imposed at
the boundary of computational domain to avoid numerical singularities. Therefore, the
border of the mold is set to v = ~0, while it is vx = vy = 0 and vz = vimposed for the punch
border.
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Figure 4.16: Thickness evolution during isothermal test

In the experimental test, the initial thickness of the UL SMC sample is 7.3 mm
whereas it is 6 mm for the HP SMC. The velocity imposed on the punch vimposed is non-
constant. As explained previously, the test condition attempts to imposed constant strain
deformation rate vz/h. However, once the maximum force of the machine is reached the
velocity is imposed to keep that a constant force of 9 kN . This implying a change on
the slope in the curve given the thickness evolution during the test. In Figure 4.16, the
thickness evolution along the test during the isothermal experiments are presented for
both materials and both iso-thermal conditions. Please notice that the compression test
start somewhere around 9 to 11 seconds. This is due to the spare time between the
initialization of the recording data compare to the time the punch start to move and
touches the SMC.

In our numerical simulation, we imposed the velocity of the punch to follow up the
experimental condition. In that manner, we ensure the same kinematics conditions during
the test (velocity and thickness evolution), while comparing the force prediction in our
numerical simulations.

In Figure 4.17 and Figure 4.18, the force prediction along the test is compared to the
experimental recorded data. For the time of comparison of this plot, the friction of the
SMC sample against the mold has not been experimentally measured. For that reason,
we proceed to compare the force to the limit cases: slip and no-slip conditions.

At 50oC, we notice that for the slip and no-slip cases the departure of the force
in the experimental data is closer to the slip case. However, during the compression,
the experimental force gets close to force computed with the non-slip condition. Before
reaching the final thickness and the end of test, the force is located between the slip and
no-slip case curves. For isothermal cases the evolution of the viscosity is only related to
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the kinematics aspects. For the HP case, we notice that the curve of the experimental
force is located mostly between the slip and no-slip curves.

At 80oC, the experimental force for the UL case is closer tot the slip case at the
beginning of compression. After 3 seconds, the force is located between the slip and
no-slip cases meaning a friction at the SMC/mold interface. The temperature at 80oC
makes the SMC less viscous and a lower compression force induces the SMC motion.
Therefore the kinematics is more associated to slip cases. The HP curve indicates that the
experimental data and the slip case are basically the same during the expelling of porosity
(10-10.5s). After materials becomes incompressible, the force is placed in between the
non-slip and slip cases meaning a friction during the test.

These comparison proves the evolution of the friction nature with respect to tem-
perature and flow kinematics. The response of the experimental force compared to slip
and no-slip cases gives us information on the friction temperature dependency of SMC
against the mold and flow motion (or stress) dependency. A campaign to characterize the
SMC friction should be carried out. However, noticing the kinematic conditions of the
friction according to [27] the plane compression test is not the best test to characterize
such condition. They proposed a circular rheometer, where pressure sensors are located
along the radial direction. Thus, along the compression of the sample, the difference on
the pressure signal along the radial direction of the sample enables by analytic contin-
uum mechanics equations to obtain an approximation of the friction coefficient without
assuming any a priori model. This work remains for perspectives and is encouraged for
future work.
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Figure 4.17: Evolution of stresses during channel compression for SMC HP and UL at isother-
mal conditions of 50oC and 80oC without reaction.
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Figure 4.18: Evolution of stresses during channel compression for SMC HP and UL at isother-
mal conditions of 50oC and 80oC without reaction.

4.4 Compression, heating and reaction of SMC
In this section, we use the same hydraulic press described in Figure 4.15. The compression
strategy remains the same, however in order to take into account the reaction of the
material and to simulate the real compression molding process non-isothermal conditions
are studied. The mold temperature is set to an usual industrial value and the SMC
sample to room temperature. During the compression, the thermal exchange between
mold and SMC heats up the part triggering the reaction. We follow the reaction thanks
to heat flux sensors and the measurements of temperature along the mold surfaces.

Experimental procedure - case 2

The tests were carried out setting a constant temperature in the mold and punch located
at 50 mm from the surface respectively (see Figure 4.15). The imposed temperature is
kept constant to 150oC (423 K) and a vertical kinematic is chosen for the punch. It
corresponds to a deformation velocity v/h of 0.3s−1. The experimental procedure has
three main steps. First, the sample of initial dimensions 60 mm× 40 mm× h0 at room
temperature is set in the middle of the hot mold, at that point the material enters in
contact with the lower and lateral sides of mold whereas the upper side lefts free. A spare
time tr of ≈ 15 s is intentionally imposed in order to simulate the charge positioning in
real compression molding. Therefore there are thermal transfers between the mold and
the SMC before compression begins. The punch goes down at constant speed until it
enters in contact with the SMC sample. After this contact, the punch speed is piloted
by keeping the strain rate constant until the maximum force is reached. Then, the SMC
deformation is made by applying a constant force. When the material fulfills the mold
cavity, no longer vertical deformation is detected. The material remains kept into the
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mold until the chemical reaction is triggered. The sensor of flux and temperature detect
the end of the reaction and the sample is released from the mold. The final thickness hf of
the sample is measured. These values as well the experimental conditions are summarized
in Table 4.5.

Experimental conditions
Material v/h Timp ho hf tr Fmax
UL 0.3s−1 150 oC 7.34 2.6 15 s 9 kN
HP 0.3s−1 150 oC 6.37 2.16 15 s 9 kN

Table 4.5: Molding conditions for both UL and HP SMCs

Modeling of thermal evolution in the mold and punch

Since the temperature imposition is set at 50 mm from the SMC surfaces, the thermal
evolution inside the mold and punch is necessary to have an accurate description of
thermal transfer. The thermal properties of the mold and punch - made with 40CMD8
steel - are provided in Table 4.6.

Thermal properties of Mold and punch
Property value units
cp 475 J kg−1 K−1

ρ 7850 kg m−3

κ 36 W m−1 K−1

Table 4.6: Mold thermal properties

Figure 4.19: Thermo-mechanics of plane strain compression: views of velocity and tem-
perature during the thermo-mechanical simulations

Once described the modeling of the mold assigned by its conductivity, the thermal
contact resistance during the test is not assumed constant as explained in the sequel.

Thermal contact resistance (RTC) in SMC materials

Concerning the RTC values during the compression test, we take into considerations two
situations labeled as RTC-static and RTC-dynamic: the static case during the first 15 s
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where the SMC sample is deposed into the mold and the dynamic case where the SMC
is compressed by the punch. It is natural to understand that the RTC values are not
the same in these two cases. For that reason, we model a different RTC(-static) when
the contact between the SMC and the mold is done at ambient pressure and a RTC(-
dynamic) when the punch squeezes the SMC part. Here, we use RTC = 2 10−3 m2.K.W−1

for the static case and RTC = 5 10−4 m2.K.W−1 once the punch touches the part. The
change from the static to dynamic case is performed immediately once t = tr. A linear
evolution between this two limit values to take into account the evolution of the thermal
contact between mold walls and SMC surfaces during the compression step escapes from
the scope of this work. It can be described by the evolution of the deformation (or as a
function of the thickness reduction) according to the observations in [9].

The experimental data recorded on the sensor located according to Figure 4.20 and
Figure 4.21 measure a surface temperature evolution in the mold and punch during the
thermal cycle including the local increments due to the chemical reaction.

4.4.1 Analysis in the Mold and Punch Surfaces
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Figure 4.20: Comparisons between experimental measurements and simulations of UL SMC
for a plane compression: (a) temperature; (b)pressure and thickness.

In Figure 4.19 the velocity field and the temperature along a partial section during
the compression of the piece is presented. We can notice as well the mesh during the
simulation.

In Figure 4.20 the temperature evolution on the mold surface is compared to the
recorded measured in the sensor T2. The temperature in the sensor begins at about
145oC (418 K) with respect to the imposed value 150oC (423 K). The resistance of the
steel mold imposes 5 degree less in the surface of the SMC due to 50 mm distance be-
tween the thermal regulation and the SMC surface. The contact between the cold SMC
and the mold surfaces decreases the temperature in the sensor until 138oC (411 K). The
simulation is able to detect such mold cooling since the thermal equation is solved on the
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Figure 4.21: Comparisons between experimental measurements and simulations of HP SMC
for a plane compression: (a) temperature; (b)pressure and thickness.

whole domain. The external walls of mold maintained to 150oC (423 K) heat the part
continuously and finally the SMC temperature increases triggering the reaction. We no-
tice the peak of temperature around 147oC (423 K) on the sensor recording Figure 4.20a.
Figure 4.20b shows that the numerical evolution of the sample thickness meets the mea-
sured data. This is obtained by imposing a velocity directly related to the punch velocity
used during the experimental procedure. Finally the conduction in the piece defines the
new unsteady state. According to this comparison, the numerical model predicts the
temperature evolution correctly.

In Figure 4.22, the heat flux measured in the center (T2) and in the lateral position
(T1) are compared. The continuous line stands for the experimental data whereas the
dashed lines for the numerical predictions Figure 4.22a. The heat flux measured in
position T2 detects the contact of the mold with the sample at ≈ 15 s resulting in a
negative heat flux. It means that the heat goes from the mold towards the part. The
experimental heat flux in the lateral position T1 shows the cross-linking process. The
reaction moves from the hottest part of the sample towards the center. The heat flux is
detected to be higher in the sensor located at position T2. The shapes of numerical and
experimental curves are in relative good agreement. However, the numerical simulation
predicts the beginning of the reaction with a little delay. For this matter, according to
the sensibility analysis perform in the case of PVT-α test, the value of thermal resistance
during the plane compression must be the most determinant factor to fit the experimental
data with the numerical prediction.

The total heat flux measured in the center is obtained by the addition of the flux
measured in the two sensors T2 and T3. The numerical and experimental total heat
fluxes are then compared. We notice a nice agreement between both results. We quantify
the delay of reaction for the numerical computations and it is around 4 s for UL SMC.
In Figure 4.22b the thickness evolution measured by the LVDT sensor shows a dilatation
zone due to the thermal expansion followed by a shrinkage due to the chemical reaction.

157



In Figure 4.21 the temperature for the HP SMC is compared. Similar to the case of
UL SMC, the modeling of the mold and SMC enables the visualization of the mold cooling
when contacts is set (after ≈ 15 s) Figure 4.21a. For this case the mold temperature does
not present a peak since this material is less reactive because of the presence of more fiber
in its volume. The variations of experimental and numerical thicknesses are compared
in Figure 4.21b noticing the good agreement which comes from the suitable boundary
conditions imposed on the punch. The heat flux presented in Figure 4.23 shows the
numerical prediction to anticipate the reaction Figure 4.23a. Additionally the shape on
the heat flux curve is narrow for the numerical case. The wider experimental curve seems
to measured a smoother reaction. The total heat flux is then compared Figure 4.23b.
With respect to UL SMC, the LVTD sensor does not record a thermal dilation before the
chemical shrinkage for HP SMC.
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Figure 4.22: Evolution of Heat Flux recorded during experience of channel compression for
UL SMC. Comparison with numerical prediction. Continuous line stands for experimental data
and dashed lines for numerical results.

The measured data recorded during the experimental campaign was compared to the
numerical prediction. Measured data at the surface level of the mold and punch. Those
data provide information on the thermal evolution outside the SMC. To get information
inside the SMC, the numerical data are presented in the next section. The numerical
simulations allow us to see the evolution of the cross-linking reaction inside the material.

4.4.2 Analysis of thermal evolution inside the SMC
After comparing the mold and punch experimental data with computational results, we
can analyze information of the thermal evolution given by the numerical simulation.

The temperature in the SMC and the reaction evolution during the compression pro-
cess is presented for the UL profile in Figure 4.24 and for the HP profile in Figure 4.25.
We notice the evolution of the temperature in Figure 4.24a in two different positions( at
the surface and in the middle of SMC sample). The core is highlighted in red and the

158



0 20 40 60 80 100 120
−4,000

−2,000
0

2,000

4,000

6,000

8,000

time [s]

H
ea

t
Fl

ux
-W

/m
2

Heat Flux during test

Center
Lateral

(a) Heat Flux evolution

20 40 60 80 100 1200

0.5

1

1.5
·104

∆Hα

time [s]

H
ea

t
Fl

ux
-W

/m
2

Exothermic of HP SMC

Power

2.2

2.25

2.3

shrinkage

th
ick

ne
ss

[m
m

]

h(t)

(b) Total heat flux

Figure 4.23: Evolution of Heat Flux recorded during experience of channel compression for
HP SMC. Comparison with numerical prediction. Continuous line stands for experimental data
and dashed lines for numerical results.
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Figure 4.24: Evolution of temperature and reaction recorded during plane compression ofUL
SMC.

surface in blue. The compression molding process hereby simulated has three main stages
as mentioned before. During the static step, where the piece is placed in the mold and
is heated up from the bottom, the surface temperature at the depth of 0.5 mm is about
360 K whereas the core departs at 300 K. During the first 15 s, we notice a conduc-
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Figure 4.25: Evolution of temperature and reaction recorded during plane compression of HP
SMC.

tion from the mold surface to the core of the sample. When the second step begins and
the compression of the part is carried out, we notice how the conduction from the mold
surface to the core of the part occurs faster. Basically, the reduction of the thickness
makes the heat to travel faster towards the core having as result an increment on the
temperature rate. During the compression step, we notice that the sensor located at the
surface captures the beginning of the reaction. At about 45 s, the reaction occurs in
the core as notice in Figure 4.24b. The reaction begins at the surface of material but
finish first in the core. Figure 4.24b shows the sharp behavior of the reaction in the core
of sample. The strong gradient of the reaction creates numerical instabilities that were
solved by the use of adaptive time method. The mesh is also adapted with respect to
the conversion degree gradient. These two last improvements are not discussed further
in this section, however there are directly related to our numerical strategy used to deal
with the multiphysics thermo-mechanical problem.

For the high profile SMC, the temperature peak is almost not detected at the surface.
The core temperature in Figure 4.25a does not present a high difference with respect
to the mold temperature. The reaction evolution in Figure 4.25b proves that for this
material the reaction in the core and the surface is less differentiate than in the case
for UL SMC. That enables a more homogeneous reaction along the thickness. The high
profile SMC seems to have a less sharp thermo-kinetical behavior than lighter profile.
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4.4.3 Evolution of velocity profile during plane compression for
high performance SMC

The velocity profile evolution during the compression molding process taking into account
all the physics involved is summarized in Figure 4.26. At first, the thermal evolution
induces the thermal dilatation assigning a velocity profile as pictured in Figure 4.26(a).
Notice that the mold and punch velocities are zero. This velocity shows the thermo-
mechanical coupling of the mass equation which modifies the density of the material.
In Figure 4.26(b) the punch compresses the sample and the the velocity profile is linear
during the porosity closure. The porosity of the HP SMC basically allows deformation
along the thickness. Notice it goes from it maximum (punch speed) towards zero (mold
speed). In Figure 4.26(c) the compressible/incompressible transition is observed on the
velocity profile. By looking at the common velocity profile found in squeeze flow motion
(d), the transition velocity profile while the porosity concentration is not 0 but not high
enough, is a combination of the profiles pictured in (b) and (d).

Figure 4.26: Velocity profile evolution of HP SMC
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4.5 Heat transfer and reaction in industrial like ge-
ometries

In order to prove the the efficiency of our model for complex geometries, we study the
thermo-kinetical evolution on a mold which gathers all the industrial features Figure 4.27.
In this section, only the thermal part of the process is computed. The mechanical defor-
mation of the part is not presented in this section, however it was introduced and analyzed
in Chapter 3 and a summary of the deformation mechanism is recalled in Figure 4.28.

Figure 4.27: Compression of industrial part.

We focus this section on the static heating and the chemical reaction after the mold
filling. The SMC thickness is of 2 mm and the mold and punch are supposed to be in
the static position touching the preform part as depicted in ??. The mold cavity is then
fulfilled and the punch is at rest. The initial conditions and thermal boundary conditions
for the thermal cycle are summarized in Table 4.7.

Figure 4.28: Molding Compression - Dedicated mold
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Figure 4.29: Geometry 3D view and cut plane

Initial Conditions
Material UL SMC
thickness 2 mm
Mold and Punch Temperatures 420 K
TSMC(t = 0 s) 320 K

Simulation
CPU time 15 h in 40 cores
Mesh nodes 400 k
hmin mesh 0.04 mm
∆t adaptive

Table 4.7: Thermal conditions and numerical parameters

The heat is conducted towards the SMC sample until triggering the chemical reaction
translated into the evolution of the conversion degree. The thermal evolution is depicted
during two steps. First, the heating part is dominated by only conduction heat transfer.
There, several snaps depict the evolution of the temperature along the piece in Figure 4.30
Second, once the reaction is triggered as shown in Figure 4.31, the snaps picture the
evolution of the temperature and the conversion degree α in Figure 4.32.

During the heating up of the part from the hot walls, the evolution on temperature is
shown in Figure 4.30. The three dimensional piece is cut in by a plane along its largest
dimension to show the thermal evolution within the thickness. Snaps at times equals to
6.8 s, 17.5 s, 22.5 s and 25 .7s show the heating time of the part. Notice the temperature
range inside the interval [320 K, 420 K].

Secondly, at around 28.1 s the chemical reaction starts to become visible. In Fig-
ure 4.31, snaps of the temperature evolution during reaction are complemented by the
evolution of reaction degree. The chemical reaction releasing heat induces an increase
of part temperature higher than the mold temperature set at 420 K. As pictured in
the snapshots of Figure 4.31, the maximum temperature found in the part reached the
temperature of 500 K (230oC). It is shown in three cut planes: two in the transverse
direction and one along the largest dimension of the part. The mesh adaptation is also
plotted.

We notice that the reaction starts from the hottest point defined as the regions where
the mold is covering most of the SMC material. That correspond to the end of the ribs or
well the regions with small thicknesses. We notice that the reaction is not homogeneous
along the length and is localized also within the thickness. Notice the temperature scales
up to 500 K.

Consequently, the heat released warms up the part and the inactive parts start to
react in their turn. at about 40 s most of the materials is consolidated in rigid state and
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(a) t = 6.8s (b) t = 17.5s

(c) t = 22.5s (d) t = 25.7s

Figure 4.30: Temperature evolution of UL SMC heats by walls maintained at temperature
of T = 420 K: the temperature profiles are shown on a cut section before the beginning
of chemical reaction.

at 45 s the material is fully solid. According to snapshots shown in Figure 4.32 the latest
points to react are the regions where the ribs start, notably the regions which are heated
last.

For accomplishing this simulation, the use of time adaptation is required in order to
describe properly the evolution of the cross-linking reaction. The time step found during
the reaction reaches 6 ms. Indeed the heating of the part is done in 720 increments (up
to 25 s) and the reaction from [25 s, 45 s] is performed in 1650 increments. In total for
modeling 60 s of process, we make 2550 iterations using adaptive time steps.

The numerical prediction under the aforementioned thermal boundary conditions es-
tablished that a UL SMC is fully reacted after 45 s. This values are in agreement with
the industrial process for which the pieces are demanded to be fully processed for a total
time below than 60 s.

The simulation describes the temperature evolution in industrial part, where the con-
duction mechanism heats the piece then triggering the chemical reaction. The simulation
predicts a beginning of reaction at about 28.1 s and a full consolidated part at 44 s.
The model here presented is numerically stable and can be used for other industrial
geometries.
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(a) t = 28.1 s - Temperature (b) t = 28.1 s - Reaction

(c) t = 32.8 s - Temperature (d) t = 32.8 s - Reaction

Figure 4.31: Temperature and Conversion degree evolution snapshots during crosslinking
reaction. The temperature in the piece increases due to exothermic reaction.

4.6 Conclusions

This chapter dealt with the thermo-chemical evolution of SMC materials under compres-
sion molding simulations. From the physical and mechanical point of view, the thermal
heating of the piece induces changes to the piece far beyond only temperature modifica-
tions. In the following, we address the physical mechanisms encountered in the part and
how we dealt with that in this work.

The hot mold conducts heat towards the SMC part. The standard heat equations
for incompressible flows have been extended to account for the compressible behavior
of SMC. The temperature evolution induces first a volume change due to thermal di-
latation. In this work, we integrated this issue by means of a volumetric term in the
mass equation during the resolution of the mechanical problem. This term is integrated
implicitly to avoid numerical instabilities. The density is then updated by the resolution
of a convection-reaction equation. The chemical reaction of SMC resin does not occur
immediately. First, the inhibitors are consumed, translated into a spare time before the
beginning of reaction. Therefore, the presented chemical model establishes a dependence
on the thermal story of the part. For this reason, we proceed to model an ignition time
by solving a convective equation taking into account the spatial thermal history. Once
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(a) t = 40.1 s - Temperature (b) t = 40.1 s - Reaction

(c) t = 44.3 s - Temperature (d) t = 44.3 s - Reaction

Figure 4.32: Temperature and conversion degree profiles on cut planes in the last five
seconds of the reaction.

this ignition time τ reached a reference value tr, the reaction is triggered. We model the
reaction by a convection equation coupled by a fixed point method to the resolution of
heat equation. A set of four equations are then solved to take into account the thermal
evolution of the part on thermal and mechanical properties.

Each sections of this chapter are illustrated by examples coming from laboratory or
industrial apparatus. The thermo-kinetic model is checked by comparing the temperature
profiles with experimental data for both SMC. This comparison proves detection and
predictions of the reaction similar as the experimental data. The dilation and contraction
of the part coupled to the thermal and kinetic problem is also compared for experimental
tests where the SMC sample increases its thickness while being heated and decreases its
thickness during the reaction. The model here presented coupled the dilatation terms and
predicts the geometrical evolution as the experimental data recorded. For both materials,
good agreement was obtained. Further on the modeling, we predict the temperature and
heat fluxes evolution during the compression of a sample in plane strain compression. The
aim is to estimate the SMC thermal prediction under dynamics conditions. A compression
from 6 mm to 2.8 mm is achieved and then the mold is kept closed until reaction occurs.
In those cases, the predicted reaction is very similar to the experimental data. The heat
fluxes data are compared and a good agreement is found. The modeling of the mold and
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punch also improves the global numerical simulation of the process.
In general, we conclude that the thermo-kinetic model assigned to the SMC presented

in this work describes very well the experimental data and encourages further improve-
ments related to mold/SMC interfaces (RTC and friction conditions). The differences
encountered during these comparisons yield on the estimation of the thermal contact
resistance, the friction coefficient, the underestimated viscosity coupling with respect to
temperature and conversion degree. For further studies, we recommend to look at these
variables in order to get a proper fully modeling of the process.
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Chapter 5

Conclusion and outlook for future
work
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In this PhD work, we have addressed the problem of solving compression molding
simulation for SMC products, by describing and predicting all thermo-mechanical aspects
to model a fully industrial process. To reach this objective, we used an existent Finite
Element Library as well as literature models and information representing the latest state
of the art on this subject.

After three years of work, a manuscript with four chapters has been written, detailing
every macroscopic aspect of SMC products. Literature review on these materials con-
cludes that the more adapted model so far, used is the one declared in [1]. The review
also indicated that thermo-mechanical coupling studying SMC materials is not frequent
in literature. In fact, only few examples have coupled those mechanisms and none of
them adopted appropriate mechanical models accounting for anisotropic behavior due to
the concentration of long fibers in the material. Usually authors tend to assign in their
viscous material an standard isotropic model such as the power law model. Additionally,
coupling mechanical and thermal evolution is the only way to guarantee that the filling of
the mold cavity occurs before the triggering of the cross-linking reaction. If the material
reacts during the filling, the final part will be fragile. The thermal coupling during and
after filling allow us to predict the beginning of the reaction. Clear objectives of this work
stated to model a fully thermo-mechanical process of the SMC compression molding on
complex geometries found in industrial applications.

5.1 Synthesis and conclusion
For accomplishing this task, this work discuss has first presented the mechanical behavior
of SMC materials during molding and the kinetic model that describes the cross-linking
reaction of the resin (paste). Taking into account for the anisotropy and compressibility
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are the two main contributions of this work from the mechanical viewpoint. In the follow-
ing, a description of each aspect is given from both physical and numerical perspectives.

Rheological behavior

When studying the rheological behavior of SMC during the filling of the mold, we have
presented a model accounting for the anisotropic behavior of such composites. The
model assumed a viscous transverse isotropic behavior supposing a power law for the
flow dynamic description. Meaning fibers are widespread along the SMC layers but the
fibers are not orientated in the normal direction (usually the axe of compression). The
fiber concentration (>15%) induces an homogeneous behavior in the plane but not in
the thickness of the stack of SMC layers, translated into anisotropy. In fact, the plane of
the fiber is assumed to be isotropic whereas the anisotropy behavior is modeled assuming
a different strain rate-stress relation along the normal plane. Numerically, a fourth-
order tensor model has been proposed and implemented from the description given in [1].
The Dumont’s models for compression molding and the Lipscomb’s model for injection
molding can be both generalized from our approach.

The model has also been enriched to take into account for the compressible behav-
ior due to porosity closure during the early stages of compression, representing the
densification of the material under deformation. When the air is expelled, the material
becomes less compressible, until reaching an incompressible state with no-porosity. This
process is non-reversible. According to the rheological model proposed to account for
this phenomena, a direct relation to the pressure in the mass conservation equation can
be found. Thus, the compressibility is assigned to a term proportional to the pressure
and a compressible factor. Such factor depends on the volumetric deformation of the
product and tends to zero when the materials becomes incompressible. The comparison
with experimental data shows the agreement on the shape of the curve during the evo-
lution of the compressible/incompressible stress. An anisotropic compressible solver was
implemented in REM3DR that accounts for anisotropic by means of a structural tensor
and an evolving compressible behavior by a pressure-proportional term. Behavior which
is related to a density evolution of SMC.

Continuum mechanics conservation equations for viscous anisotropic compressible ma-
terials are considered. Porosity closure and thermo-kinetical changes have a direct influ-
ence in the density evolution of the material. Since the density can be considered as a
thermo-dynamic variable, conservation of mass is developed in terms of velocity, pressure,
temperature and chemical reaction. Eliminating the direct contribution of the density
in the mass equation gives rise to the notion of isothermal compressibility, dilatation,
shrinkage. Those parameters are material dependent coefficients that can vary or remain
constant.

Mass and momentum equations are solved coupled at a given temperature state of our
computation domain. This means that a splitting scheme between the mechanics and the
thermal response have been used and implemented, leading to the resolution of a system
of equations having as unknowns the velocity and pressure (for a given temperature).
Then, the thermal problem is solved.

Numerically, the anisotropic compressible Stokes problem was solved using a Mixed
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Finite Element method. The computational domain is discretized using tetrahedral el-
ements and an enriched continuous test function (combination of a linear and a piece-
wise) for the velocity, and a piece-wise linear function for the pressure, temperature and
conversion degree fields. The linear system is non-symmetrical and non-linear (due to
the viscosity power law relation and the compressible coefficient). Both anisotropic and
compressible responses of the implemented solver have been checked with the model
predictions.

Heat transfer and chemical reaction - thermo-kinetical
model
The chemical reaction of SMC materials is an exothermic reaction ruled by a thermo-
kinetical model accounting for the inhibitors presented in the resin. The SMC materials
heat up and after reaching certain thermal state where all inhibitors were consumed, a
chemical reaction releasing heat causes the material to consolidates and becomes rigid.
The reaction releases heat increasing the temperature of the part up to a temperature of
50oC higher than the mold. For a given temperature, the material requires a certain time
to react, which depends on the inhibitors presented in the mixture of the resin and on the
thermal story of the SMC. The considered thermal model required the resolution of the
heat equation coupled to a phenomenological model describing the reaction evolution,
enriched with the equation ruling the inhibition time required to consume the inhibitors
presented in the SMC mixture.

Formulation of the heat equation included the heat coming from the reaction by
a source term. The heat released by the reaction was computed directly knowing the
density, the chemical energy of the system and the conversion degree evolution given
by the Bailleul’s model [2], a temperature-reaction dependent model. In order to know
when to activate such model, the ignition time needed to be computed. This thermal
time depends on the thermal history of the part and once this spare time reaches a
reference value the reaction is triggered. Basically, the inhibitors consumption is space
and time dependent. To compute the ignition time and to take into account its time-space
dependency, a convection equation was solved.

This methodology is consistent with thermo-kinetical model and has proven to predict
the reaction of the part in agreement with experimental results.

Numerically, the thermo-kinetical model is solved by an intermediate coupling scheme.
The heat and the conversion degree evolution equation given by the Bailleul’s model, as
well as the convective scheme for the ignition time, are coupled by a fixed point scheme.
The chemical reaction lasts few seconds with respect to the thermal cycle. As an exam-
ple, the reaction of a sample takes approximately 60 seconds to start but lasts around
10 seconds. The reaction profile distribution in time and space is a sharp function. For
that reason, a mesh adaptation and time step adaptation strategies were employed and
modified for this case.

Thermal and kinetical changes of the piece induce a variation on the local density of
the material. For that reason, the density is updated as well, after solving the thermo-
kinetical problem. In the first chapter, we have introduced a technique to use a multi-
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plicative contribution from the porosity closure and the thermal variations, named relative
and dense state densities. The relative density is modified following the volumetric de-
formation whereas the thermo-kinetical evolution modifies the dense state density, which
decreases if the temperature increases meaning an increment on the volume of the piece.
When the reaction occurs, the material consolidates, which also increases the density
meaning also the part’s shrinkage.

Thermal dilatation and chemical shrinkage coefficients are function of the thermo-
dynamic state, mainly depending on the reaction degree and the temperature. These
coefficients are also founds to be directional dependent. For that reason, they are written
in its tensorial representation. In the fiber plane, dilatation or shrinkage terms differs
from the normal direction. The thermo-kinetical strain rate tensors depend on these
directions. Meaning that for a given temperature change, the dilatation of the part is
higher in the thickness than in the plane.

Finally, a full thermo-mechanical model was here proposed, taking into account all
the observed phenomena during SMC compression. It has been proven that it predicts
similar results as the one observed in experimental tests and, to our knowledge, is the
first model coupling such physical phenomena to be implemented in a numerical tool.

Compression molding applications

At the beginning of this work, REM3D was a software mainly devoted to injection
molding applications. Today, the developments and strategies proposed during this PhD
allow the software to deal with compression molding problems. In this work, we shown
its ability to cover the main stages of the compression molding process: namely, from
deposition of the piece, filling of the mold cavity, consolidation of the part and part
release. The first result of this work is thus the extension of Rem3D to compression
molding problems, from deposition to ejection of the part. Here, we considered also
porosity closure, the compression stage, the thermal evolution and the conversion of the
viscous material to a rigid part. Determination of physical variables such as pressure,
temperature, conversion degree, stresses and reaction time are also possible with our
approach.

A splitting technique of the density evolution by porosity closure and by a thermo-
dynamical evolution enables a de-coupling of both contributions, easing the numerical
description of the density. Therefore, the information on the relative density can be used
to estimate the fully expelling of the air during compression, allowing us to know if the
density of the part has evolved for the porosity or for the thermo-kinetical variations,
providing important information on what is happening inside the material.

The anisotropy exhibited by the composite is also taken into account by coupling the
mechanical solver to a orientation tensor or structural tensor, defined according to the
application. The mechanical solver predicts, the stress level, close to the one found in
experimental test.

In this work, comparison with the literature and experiments have been performed,
validating the thermo-mechanical model and detecting the domains where the approach
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needs to be improved. To our knowledge, this work has produced the only software
that considers fully 3D anisotropic compressible behavior in all stages of the compression
molding process simulation. The software is able to provide thermo-mechanical solutions
considering the evolution of the temperature and stresses and its coupling.

5.2 Perspectives and improvements
At the current stage of development, improvements in the numerical methods, as well as
in the physical models can be proposed for future developments. As in the previous case,
they are divided in the mechanical, thermo-kinetical and compression molding areas.

For the mechanical resolution...
From the mechanical viewpoint, the stress evolution during the compaction of the SMC
sample in the oedometric test shows differences with the model proposed in this project.
Basically, these differences may come from the fitting curve used in α3 or well by the
isotropic nature of the stress in the term α3 tr(D) I. Further models including a transverse
isotropic porosity evolution will include two terms acting on the direction of the structural
term M . This will allow an orthotropic evolution of the porosity during the densification
stage.

A more stable proposition for the equivalent strain rate should be provided. This term
is used as input for updating the viscosity and its transition towards the incompressible
case has only been considered for the densification. The multiplication of the term α3 with
the trace of the viscoplastic strain tensor tr(D) carries some numerical difficulties when
α3 increases, causing thus numerical instabilities on the computation of the viscosity
during the simulation. A formulation implying the integration of the β factor instead
seems more logic. However, the dependence of β to the viscosity η and to the equivalent
strain rate introduce a non-linear dependency not so easy to explore.

From the numerical perspective, the structural tensor M should be included as a local
field. Meaning that for 3D complex geometries, the M tensor needs to be build from the
normal to the local fiber plane all along the part. IN this work we assumed that the
normal to the fiber plane was always the vertical direction. Consequently, the Folgar and
Tucker equation for the evolution of the orientation of fibers may be computed in order to
compute the normal of the fiber plane. The principal directions of the orientation tensor
will define the fiber plane by noticing the space in which most of the fiber are aligned.
Then, a mechanical coupling can be obtained by taking the normal to this plane and by
building the tensor M . In that way, a fully 3D anisotropic mechanical problem can be
solved for complex geometries.

For the thermo-kinetical resolution...
A sensibility study on the boundary conditions will conclude the dependence of the model
and of the numerical response to fit experimental data. Some thermal aspects involved
during the simulation presented here were not fully discussed on this work. For instance,
the thermal contact resistance between the wall and SMC plays a roll on the heat transfer
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during the compression and holding stages. Additionally, this value can evolve at the
beginning of the compression step. In appendix, we have detailed the methodology used
to account for the thermal contact resistance and how it can be easily implemented, even
in immersed methods. For that, we use a narrow layer of different thermal characteristics
close to the contact mold/SMC.

The characterization of the SMC materials on thermal evolution is usually assigned
to follow an Arrhenius type law. However, the friction against the mold during the
characterization test can induce errors on the parameters associated to such fitting. A
fully thermo-mechanical coupling using inverse analysis would produce a more accurate
characterization. A joint work on experimental-numerical inverse characterization should
be performed, since the model is fully described and the software has been enriched to
account for all these physics.

For the compression molding domain...
The improvements of the boundary condition imposition play an important roll on the
results presented in this work. The mechanical and thermal conditions should be imple-
mented from real industrial conditions or well by real data recorded during experimental
tests. The main problem remains on imposing boundary conditions in immersed meth-
ods in regions inside the computational domain. Imposing fields inside the domain can
cause instabilities on the solution and cause divergence in some cases. A penalization
strategy can be implemented for this purpose. The Nitsche method [3] seems to be a
good approach. The same methodology for penalization can include a term to account
for friction between the SMC and the mold walls. In this way, imposing either slip or
no-slip conditions can become more natural when simulating the process. The analysis,
characterization and modeling of friction for contact between SMC materials and mold
remains in this work an open question as well. The friction coefficient depends on local
conditions such as normal stress, relative velocity and temperature. A strategy for its
characterization was proposed in [4]. Friction on immersion methods differs from La-
grangian approach since here it has to be supported on a level set approach. Meaning
that an implicit function of the surface should carry the friction law and integrate a cou-
pling on the mechanical problem without inducing instabilities. A viscous layer approach
was proposed in [5]. Nevertheless for the use of such technique, an imposition of the full
immersed body (for the mold and punch) should be considered. This carries instabilities
next to the implicit surfaces since the velocity field presents a discontinuity. A more
adapted approach should be implemented to deal with this problem.

A level set convection scheme where the mass is conserved. This point has been
addressed in this work and a pragmatical solution was used. Works on a conservative
level set convection scheme during re-meshing supported on stabilized Finite element
methods is a wide open field. The causes of mass lost come from the stabilization of
the numerical schemes, the time and mesh discretization, the interpolation error and
the interpolation during the re-meshing, as noticed in this work. These are the main
points to address when proposing a conservative method. Future work may concern the
introduction of a strategy supported on level set approaches to deal with this problem.
The complexity of such method implies a fully parametric study to determine the main
causes of loss with level set approaches.
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The use of a multi-phase approach for the SMC. Here, the fiber and the resin where
considered as one single homogeneous phase. The use of a biphasic-model for the fiber and
the matrix, including a third phase (the air) should improve the mechanical modeling.
The computational cost added to industrial simulations may be compensated by the
description of fiber migration. In fact, the compression process induces fiber migration
modifying the local fiber concentration. This migration, once the part is consolidated,
may affect its mechanical resistance. In order to account for this fiber segregation fiber
and matrix should compute a different velocity profile. In a homogeneous approach,
as the one presented in this work, the computed velocity represents the velocity of the
mixture of fiber-and-matrix. First attempts for a biphasic model were already proposed
in [6] and [7] but remained a theoretical model to be integrate in numerical tools.

Furthermore, this work can be improved by assigning an evolution of the viscosity
with respect to the conversion degree coefficient during the curing. A modified Castro-
Makosco equation is presented in chapter 4 and has been only characterized for the paste
and not for SMC materials. Further characterization should conclude if the modified
relation remains the same for the composite (paste + fibers).

After consolidation of the part, the SMC is a rigid composite. The behavior of the
rigid phase (assumed solid) can be introduced by means of a displacement-based formu-
lation. However, this might lead to numerical problems such as bad matrix conditioning
when interacting both solid and viscous phases. In order to have an stable formulation,
a multi-phase formulation can be exploited, translating into a fluid-structure problem.
Furthermore, an accurate rheological behavior of the solid phase is required to predict
the correct residual stress in the part after deformation and equilibrium.
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Appendix A

variation of internal energy for
reacting compressible materials

For the modeling of SMC or any compressible materials that undergoes a chemical reac-
tion the internal energy is function of the temperature T , the specific volume υ and the
chemical reaction α. We write then following a similar procedure depicted in [1]:

de =
(
∂e

∂υ

)
T

dυ +
(
∂e

∂T

)
υ

dT (A.1)

We will expressed these two term as function of the state variables p, T , υ.
- We use now the state equation that links the variation of the specified volume with

the pressure and the temperature.

dυ =
(
∂υ

∂p

)
T

dp+
(
∂υ

∂T

)
p

dT (A.2)

By inserting solution of eq. (A.2) in eq. (A.1) we get:
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)
T

(∂υ
∂p
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T

dp+
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∂υ

∂T

)
p

dT


︸ ︷︷ ︸

dυ

+
(
∂e

∂T

)
υ

dT (A.3)

Writing the left term of expression eq. (A.3) as:

de =
(
∂e

∂p

)
T

dp+
(
∂e

∂T

)
p

dT (A.4)

we come up with the expression:(
∂e

∂T

)
p

=
(
∂e

∂υ

)
T

(
∂υ
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p

+
(
∂e

∂T
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(A.5)

- By using the definition of the heat capacity:

cp =
(
∂e

∂T

)
p

+ p

(
∂v

∂T

)
p

(A.6)

181



using:

de = T ds− p dv (A.7)

and Maxwell relations, we get:

de = cpdT − pdv −
(
∂v

∂T

)
p

Tdp (A.8)

the term ρ
de

dt
from the energy equation using the continuity equation, the relation

v = 1/ρ and introducing the dilatation term χT is then written as:

ρ
de

dt
= ρ cp

de

dt
− p∇ · ~v − χT T

dp

dt
(A.9)

this represents the heat equation used in this work since the material are not supposed
to be incompressibles.
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Appendix B

Friction Modelling

In this section, we present a numerical strategy to take into account for friction during
compression molding, by considering a viscous thin layer between the two bodies in
contact, whose objective is to modify the slip contact condition. These first studies on
this topic need to be improved for more complex compression molding geometries, but
they have provided a good framework to take into account for friction phenomena in
Rem3DÂő numerical basis context.

B.1 Relation of viscous layer with Friction theories
Accounting friction using a viscous film is inspired on the boundary layer approach (See
Fig. B.1 ). A layer of thickness eL is superimposed between the two bodies in contact.

x

y

Material 1

Material 2

eL

v2

v1

Boundary Layer

Figure B.1: Representation of the boundary layer

On this incompressible layer, the shearing transmitted from Body 1 to Body 2 will
cause a jump in the velocity of both bodies. The shear rate γ̇ is expressed according to:

γ̇ = (v1 − v2)
eL

(B.1)

We recall that (v1 − v2) is exactly the definition of relative velocity vr. The strain
rate tensor in the layer writes:
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D =

 0 γ̇/2 0
γ̇/2 0 0
0 0 0

 (B.2)

An equivalent strain rate can be defined depending on the rheology selected for this
layer. In this case, for example if we take the layer to be powerlaw type, we write the
equivalent strain rate as:

˙̄ε =
√

2D : D = |γ̇| (B.3)

Now, we write the shear stress τxy as function of the consistency of the material (KL)
and the power index m:

τLayerxy = 2KL

(
vr
eL

)m−1

︸ ︷︷ ︸
ηL

(
vr

2eL

)
= KL

emL
vmr (B.4)

In literature, friction can be described, for instance, using the Norton friction Law
[ref] or Coulomb friction Law. The tangential friction stress exerted to body 1 from body
2 τ1−2 states:

τ 1−2
xy = αfv

m
r (B.5)

Where α represents the friction coefficient between the two surfaces. Normally, ob-
tained through experimental results. This allows us to make an straightforward link to
the approach study here.

The viscous friction approach mentioned in here requires to induce the same stress.
From equations B.4 B.5, this relationship is obtained:

αf = KL

emL
(B.6)

We recall that the strategy of the relation B.6 vary from the rheology assigned to
the boundary layer and the friction law used when characterizing experimentally the
phenomenological friction. In any case, the Global definition states:

τLayer = τfriction (B.7)
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B.2 Friction against wall

Simple shear between parallel plates containing two fluids

x

y

Material 2

Material 1

eL,ηL

hb = 0.1m

vx = 1 m/s

vx = 0

P = 0
vy = 0 vy = 0

η2 = 1Mpas

η1 = 4Mpas

Figure B.2: Simple Shear test performed on square 2x1 (m) containing two Newtonian
fluids with η1/η2 = 4

In this simulation we address the following problem: Two material with viscosity ratio
r = η1

η2
> 1 undergone shearing through a cavity having parallel plates as presented in

Fig. B.2. We desire to study the influence of the contact between the two fluids when this
contact moves from no-slip to slip. The only parameter to be modified is the viscosity
of the boundary layer ηL that varies from 100 to 5e− 05. In this study we neglected the
inertial terms.

Results

For the extreme cases studied in here, we present the velocity field along the domain in
Fig.B.3. We visualize how for the no slip case the velocity goes smoothly from zero to
one having a constant gradient. Whereas for the slip case, there is a jump in the velocity
field from zero to one exactly in the position of boundary layer.
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Figure B.3: Analytical vs. Numerical solution for the contact condition Slip and No-Slip.

The problem in discussion can be solved analytically. Such solution is as presented in
eq.B.8, where δ states for the slip condition in the layer:

vx1(y) = U1 y (B.8a)
vx2(y) = r U1 (y − 1) + 1 (B.8b)

U1 = 1
r (1− hb) + hb + δ

(B.8c)

The factor δ equals infinite or zero for the slip and no-slip cases respectively.
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Appendix C

Thermal Resistance modelling

C.1 Weak formulation
Let us start by writing the weak formulation on each domain. We impose the temper-
atures T1 and T2 in the boundary and we note TC1 and TC2 as the contact temperature
respectively:

Ω1T1 imposed Ω2 T2 imposed

0 L1

n1

T c1

n2

T c2

L2

In this way, one gets the weak formulation in the form:

〈K1∇T1,∇w1〉Ω1 − 〈K1∇T1 · n1,∇w1〉δΩ1 = 0 + CL in Ω1

〈K2∇T2,∇w2〉Ω2 − 〈K2∇T2 · n2,∇w2〉δΩ2 = 0 + CL in Ω2

We search for a solution in the whole domain Ω.
We have Ω = Ω1 ∪ Ω2 et n1 = −n2, obtaing the following weak formulation:

〈K∇T,∇w〉Ω − 〈K1∇T c1 −K2∇T c2 , nw〉δΩ1,2 = 0

which implies :
K1∇TC1 = K2∇TC2

and if: K1 = K2 = K, we get :
TC1 = TC2
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However, this solution do not describe the conditions addressed in this section, since a
temperature jump is establish in the interface, we should set: TC1 6= TC2 . For that reason,
we add a third body of thickness e between the two previous domains:

Ω1 Ω2

0 L1 L2

KeT−e T+
e

e

T1 imposÃľe T2 imposÃľe

In this way, the new weak formulation stands:

〈K1∇T1,∇w1〉Ω1 − 〈K1∇T1 · n1,∇w1〉δΩ1 = 0 + CL in Ω1

〈Ke∇Te,∇we〉Ωe − 〈Ke∇Te · ne,∇we〉δΩe = 0 + CL in e

〈K2∇T2,∇w2〉Ω2 − 〈K2∇T2 · n2,∇w2〉δΩ2 = 0 + CL in Ω2

making the same conditions applied previously, we get:

TC1 = T−e et TC2 = T+
e

Which allos us to describe by means of a smooth transition, the temperature jump in
the interface between the two sub-domains Ω1 and Ω2. In fact, we get a jump along the
thickness e, visualized on the following picture:

L2

T

T1

T1c

T2c

L1 T2

Figure C.1: Temperature field along the bodies in contact : Contact thermal resistance
modeling by the insertion of a third thin body of thickness e.

After having proposed a solution to the problem of the temperature jump. We will
then evaluated the value of the conductivity in the thickness associated to the third body
in order to guarantee the same heat flux.
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C.1.1 Analitical solution 1D case
We seek to determine the value of the conductivity Ke of the added layer. Denoting Te
as the temperature in the layer, we ensure the continuity of the heat flux in the body by
the expression:

Ke
∂Te
∂y

=
TΩ2(L1 + e

2)− TΩ1(L1 − e
2)

RTC

After computation we get the following expression:

Ke = 2eK1K2

2K1K2RTC + eK1 + eK2
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Appendix D

Rheological setups for dense and
porous SMC - Analytical formula for
purely elongational flow

D.1 Rheological setups for incompressible case
No slip condition are assumed on the wall, and therefore the stress tensor and the pressure
are constant on the whole domain.

D.1.1 Simple compression
Assuming the incompressibility

D11sc = D22sc = −1
2D33sc = −1

2
ḣ

h

and ( with volume conservation V = πD2
0/4h0 )

σ33sc = 4
π

F3sc

D2
0

h

h0

where F3sc is the axial force measured on the upper wall.
Starting with the model expresses in Chapter 3, one gets

D2
eq = α0

(
1 + α1 + α2 + 1

2

)
D2

33

The equation σ11sc = 0 gives p̂ = α0ηeqD11sc (atmospheric pressure is neglected) and
finally the axial stress tensor and the total pressure are

σ33sc = ηeqα0 (1 + α1 + α2)D33sc − p̂ (D.1)

p = −1
3 (α1 + α2)D33sc + p̂ (D.2)

or

σ33sc = ηeqα0

(
1 + α1 + α2 + 1

2

)
D33sc (D.3)

p = −1
3ηeqα0

(
1 + α1 + α2 + 1

2

)
D33sc (D.4)
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D.1.2 Plane strain compression
The volume conservation gives

D11ps = l̇

l
= −D33ps = − ḣ

h

and
σ33ps = F3psh

L0l0h0
; σ22ps = F2ps

l0h0

The incompressible model expresses in the first section gives

D2
eq = α0 (2 + α1 + α2)D2

33

As in the previous section, the equation σ11sc = 0 gives p̂ = α0ηeqD11ps (atmospheric
pressure is neglected). Finally the non null components of stress tensor and the pressure
are

σ33ps = ηeqα0 (1 + α1 + α2)D33ps − p̂ (D.5)
σ22ps = −p̂ (D.6)

p = −1
3ηeqα0 (α1 + α2)D33ps + p̂ (D.7)

or

σ33ps = ηeqα0 (2 + α1 + α2)D33ps (D.8)
σ22ps = ηeqα0D33ps (D.9)

p = −1
3ηeqα0 (3 + α1 + α2)D33ps (D.10)
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D.2 Rheological setups in the compressible case
In the sequel, it is assumed that the equivalent viscosity follows a power law

ηeq = η0

(
Deq

D0

)n−1

the parameters η0 et n depend on fiber concentration.

η0 = η00 (φ− φc)2 .

Different apparatus proposed here correspond to M = e3 ⊗ e3 and

D2
eq = α0

[
D2

33 (1 + α1 + α2) +D2
11 +D2

22 + α3 (D11 +D22 +D33)2
]

D.2.1 Simple compression (sc)
For a simple compression and perfect slip condition

σ =

 0 0 0
0 0 0
0 0 σ33

 ; ε =

 ε11sc 0 0
0 ε22sc 0
0 0 ε33sc

 ; D =

 D11sc 0 0
0 D22sc 0
0 0 D33sc


and

D33sc = ḣ

h
; ε33sc = ln( h

h0
)

The Dimitri’s model gives for viscous stress tensor

σ = α0ηeq


 D11sc 0 0

0 D22sc 0
0 0 D33sc

+ α1D33sc

 0 0 0
0 0 0
0 0 1

+ α2D33sc

 0 0 0
0 0 0
0 0 1



+α3 (D11sc +D22sc +D33sc)

 1 0 0
0 1 0
0 0 1


 (D.11)

as σ11sc = σ22sc = 0 (the pressure of atmosphere is neglected), one gets

D11sc = D22sc = − α3

1 + 2α3
D33sc (D.12)

and
Tr(D) = 1

1 + 2α3
D33sc

Finally

σ33sc = ηeqα0

(
1 + α1 + α2 + α3

1 + 2α3

)
D33sc (D.13)

p = −1
3ηeqα0

(
1 + α1 + α2 + α3

1 + 2α2

)
D33sc (D.14)
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and
D2
eq = α0

[
1 + α1 + α2 + α3

1 + 2α3

]
D2

33sc (D.15)

The combination of the two last equations with power law gives

σ33sc = η0α
n+1

2
0

(
1 + α1 + α2 + α3

1 + 2α3

)n+1
2
D33sc

(
D33sc

D0

)n−1
(D.16)

For α3 →∞ we recover the expression of compressible case.

D.2.2 Plane strain compression (ps)
For plane strain compression (there is motion in the 2nd direction) , one has

σ =

 0 0 0
0 σ22ps 0
0 0 σ33ps

 ; ε =

 ε11ps 0 0
0 0 0
0 0 ε33ps

 ; D =

 D11ps 0 0
0 0 0
0 0 D33ps


For a plane compression, the initial volume is V = h0l0L0 and one imposes

D33ps = ḣ

h
; ε33ps = ln( h

h0
)

σ = α0ηeq


 D11ps 0 0

0 0 0
0 0 D33ps

+ α1D33ps

 0 0 0
0 0 0
0 0 1

+ α2D33ps

 0 0 0
0 0 0
0 0 1



+α3 (D11ps +D33ps)

 1 0 0
0 1 0
0 0 1


 (D.17)

as σ11ps = 0 (atmospheric pressure neglected), one gets

D11ps = − α3

1 + α3
D33ps (D.18)

and
Tr(D) = 1

1 + α3
D33ps (D.19)

D2
eq = α0

[
1 + α1 + α2 + α3

1 + α3

]
D2

33ps (D.20)

Finally

σ33ps = α0ηeq

(
1 + α1 + α2 + α3

1 + α3

)
D33ps (D.21)

σ22pc = α0ηeq
α3

1 + α3
D33ps (D.22)

p = −1
3α0ηeq

(
1 + α1 + α2 + 2 α3

1 + α3

)
D33ps (D.23)
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or

σ33ps = η0α
n+1

2
0

(
1 + α1 + α2 + α3

1 + α3

)n+1
2
D33ps

(
D33ps

D0

)n−1
(D.24)

σ22pc = η0α
n+1

2
0

α3

1 + α3

(
1 + α1 + α2 + α3

1 + α3

)n−1
2
D33ps

(
D33ps

D0

)n−1
(D.25)

D.2.3 Oedometric compression (oc)
For plane oedometric compression, there is no motion in the 1rst and 2nd directions,

σ =

 σ11oc 0 0
0 σ22oc 0
0 0 σ33oc

 ; ε =

 0 0 0
0 0 0
0 0 ε33oc

 ; D =

 0 0 0
0 0 0
0 0 D33oc


We impose

D33oc = ḣ

h
; ε33oc = ln

(
h0

h

)
The stress tensor is

σ = α0ηeq


 0 0 0

0 0 0
0 0 D33oc

+ α1D33oc

 0 0 0
0 0 0
0 0 1

+ α2D33oc

 0 0 0
0 0 0
0 0 1



+α3D33oc

 1 0 0
0 1 0
0 0 1


 (D.26)

and
D2
eq = α0 [1 + α1 + α2 + α3]D2

33oc (D.27)
Then

σ11oc = σ22oc = ηeqα0α3D33oc (D.28)
σ33oc = ηeqα0 [1 + α1 + α2 + α3]D33oc (D.29)

(D.30)

and the ratio
σ33oc

σ11oc
= 1 + α1 + α2 + α3

α3
(D.31)

Or

σ11oc = σ22oc = η0α
n+1

2
0 α3 [1 + α1 + α2 + α3]

n−1
2 D33oc

(
D33oc

D0

)n−1
(D.32)

σ33oc = η0α
n+1

2
0 [1 + α1 + α2 + α3]

n+1
2 D33oc

(
D33oc

D0

)n−1
(D.33)

(D.34)
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The axial force is linked to axial stress by

σ33oc = 4
π

F3oc

D2
0

and the pressure is

p = −1
3Tr(σ) = −1

3α0ηeq [1 + α1 + α2 + 3α3]D33oc

D.2.4 Shear strain rate (s)
For a shear strain rate associating the 1rst and 3th directions,

D =

 0 0 D13s
0 0 0

D13s 0 0


The stress tensor is

σ = α0ηeq


 0 0 D13s

0 0 0
D13s 0 0

+ α2

2

 0 0 D13s
0 0 0

D13s 0 0


 (D.35)

and
D2
eq = 2α0

[
1 + α2

2

]
D2

13s (D.36)

Then

σ13s = ηeqα0

[
1 + α2

2

]
D13s (D.37)

(D.38)

or

σ13s = η02n−1
2 α

n+1
2

0

[
1 + α2

2

]n+1
2
D13s

(
D13s

D0

)n−1
(D.39)

(D.40)

D.2.5 Traction (t)
For traction along the first direction,

σ =

 σ11t 0 0
0 0 0
0 0 0

 ; ε =

 ε11t 0 0
0 ε22t 0
0 0 ε33t

 ; D =

 D11t 0 0
0 D22t 0
0 0 D33t


with

D11t = l̇

l
; ε11t = ln

(
l0
l

)
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The stress tensor is

σ = α0ηeq


 D11t 0 0

0 D22t 0
0 0 D33t

+ α1D33t

 0 0 0
0 0 0
0 0 1

+ α2D33t

 0 0 0
0 0 0
0 0 1



+α3 (D11t +D22t +D33t)

 1 0 0
0 1 0
0 0 1


 (D.41)

Then

σ11t = ηeqα0 [D11t + α3Tr(D)] (D.42)
(D.43)
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Appendix E

Sensibility analysis on thermal
characterization of SMC light profile

A sensibility analysis on thermal properties is explained in the Appendix. The main
information is found in the text in Chapter 4. Here; you can find the plots of the evolution
of Temperature and reaction according to the sensibility analysis and comparison to the
reference value obtained with the characterized values.
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Figure E.1: Influence of the thermal parameters accuracy on maximum temperature
during reaction and on variation on beginning of reaction
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Appendix F

Evolution of the fiber orientation
and Impact on rheological response

Fibers are widely used to reinforce polymer materials and improved its mechanical proper-
ties. However, the introduction of fibers within a polymer or composites will be translated
into an anisotropy behavior in mechanical and thermal response of such material.
Since bundle-fibers normally differ in mechanical and thermal properties in compared to
the composites.

The orientation of the fibers enable us to define characteristic resistance properties of
the piece in compression molding after solidification. Normally we would like to have the
fibers oriented to the main directions of the mechanical solicitations. Therefore,
we need to know and follow all the fiber path during the compression process so
as to solve these unknown.

In this section, we introduce the mechanics of the fiber movements and its formal
formulation according to the available literature. Special attention is focused on the
latest models developed during the last five years.

F.0.1 Fibre orientation description - Micro scale
This forces are the ones provided to the suspensions (fibers) caused by the surrounding
fluid. It is divided by translation movement of the particle and rotation movement of the
particle. Which defines a really understandable relation of the evolution of the fiber. The
fiber will be described by its gravity center. The translation is obtained in the core of the
fiber at the send velocity than the medium, and the vorticity of the fiber obtained from
the angular velocity is given by the velocity gradient of the medium. [Jeffery,1922] has
them proposed the base of the suspension models:

ṗJefα = −1
2W · pα + λ

2 (D · pα −D : pα ⊗ pα ⊗ pα) (F.1)

the coefficient λ depends on form ratio of the ellipsoid, in here the geometry of the
fiber is cylindrical, so this value is close to 1.

For Industrial application ingeneral, this approach is hardly costly. Modelling thou-
sands of fiber will required extremely power form a machine. This is due to the micro-
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scopic analysis scale it is described. However, it is too small from the rheological point
of view. [Ausias,2007]. An homogenisation procedure is used to obtain the equivalent
orientation of a representative Volume Element (VER). It is required to used an interme-
diate scale in which th ehteory of continous mechanics works. This allows to described
an tensor orientation description in such VER, explained as follows.

F.0.2 Orientation tensor description - Macro scale
For the population of fibres containing in a VER, a distribution orientation function is
used, as the probability to find a fiber aligned to a particular direction. This enables th
eformulation fo the macroscopic orientation tensor a (second order tensor) and A (fourth
order tensor) described in [Advani & Tucker,1987].

a =
∫
pα ⊗ pα ψ(pα) dpα (F.2)

A =
∫
pα ⊗ pα ⊗ pα ⊗ pα ψ(pα) dpα (F.3)

The equivalent orientation evolution equation for the macroscopic tensor is given by:

ȧ = Da

Dt
= 1

2 (Ωa− aΩ) + λ

2 (Da+ aD − 2A : D) (F.4)

Later improved by [Folgar & Tucker, 1984], which takes into account the particles
interactions (for non - diluted regimes ), by adding a diffusion term.

ȧ = Da

Dt
= 1

2 (Ωa− aΩ) + λ

2 (Da+ aD − 2A : D) + 2CIDeq (I − 3a) (F.5)

After many experiments the diffusion term CI can be obtained from an empirical
relation : CI = 0.0184exp(−0.7148fr) [Bay,1991]. Being f the fiber fraction in volume
and r the radius of the cylinder fiber.

The relation F.5 has a complex a non linear term A : D. Since the computation of the
fourth order tensor, requires many different mathematical treatments, an approximation
of the tensor A has to be done, usually called a closure approximations.

Closure Approximations

Nowadays, the two families of closures the most recent are the natural closure [Verleye
& Dupret, 1994] and the orthotropic one [Wetzel & Tucker, 1999]. Both coming
from the same basics. The eigenvalues of the tensor a (λ1, λ2, λ3) are used to compute
the the fourth order tensor A. Where the eigenvectors are the same as the tensor a.
If we represent the tensor A in that system, most of the components are zero, whereas
the others can be expressed as function of (λ1, λ2, λ3). In fact it is shown in [Cintra
& Tucker, 1995] that it can be written as a contracted tensor Anm ⇐⇒ Aijkl. Then,
transporting this tensor Anm to the tensor on the main refence system A∗nm, we need
to define each component A∗nm as function of the eigenvalues λ1, λ2 (remember λ3 =
1− λ1 − λ2).
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A∗11 = f11(λ1, λ2) (F.6)
A∗22 = f22(λ1, λ2) (F.7)
A∗33 = f33(λ1, λ2) (F.8)

for the rest of the terms, we use the polynomial proposition of [Wetzel,1999] base on
the coefficients Cmm of [VerWeyst,1998].

A∗nm = f(Cnm, λ1, λ2) (F.9)
All the details are found in [Ausias,2007]. It is important to say that this model is

the best between all the models described in the literature until the year 2000. However,
different models came out due to the complex industrial processes requiring a better
description since normal models have fallen in accuracy.

Figure F.1: Influence of fiber on mechanical field, difference of a simulation in which fiber
orientation does not modify the rheology of the fluid (left), simulation when coupling
both effects (right).

F.0.3 Complex Models for Fiber Orientation Evolution
In the last decade new better adapted models have been proposed to account for fiber ori-
entation prediction. These models correct some acceleration on the orientation evolution
that can be found using previous models. They include an anisotropic diffusion coeffi-
cient instead of the standard isotropic CI , which describe better the physical interaction
between fibers.
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Figure F.2: Closure approximation effect on fiber orientation response.

Figure F.3: Representation of the fiber in its main direction using tensorial properties
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Anisotropic Rotary Diffusion Model for Fiber Orientation in short and long-
fiber Thermoplastics

The Folgar and Trucker model, widely used accounts for fiber-fiber isotropic interaction
through the isotropic diffusion coefficient CI . Nevertheless, such model does not match
all aspects of composites with long discontinuous charges. Therefore, this models focus
on takes into account an Anisotropy Rotary Diffusion (ARD), deduced form
kinetics theories. Basically such anisotropy depends itself on the current orientation
state. As a second improvement exhibited in this model, they use a Reduced Strain
Closure (RSC) which translates to set a parameter in charge of the well prediction of
the orientation evolution to fit experimental data.
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Résumé
Ce travail porte sur la simulation
numérique et la modélisation du
comportement thermo-mécanique
des matériaux composites renforcés
par des fibres. Spécifiquement les
matériaux SMC (Sheet Moulding
Compound) sont utilisés dans le pro-
cessus de moulage par compression
pour construire des pièces auto-
mobiles de haute performance. Ce
travail est divisé en quatre chapitres,
décrivant tout d’abord un modèle
thermo-mécanique entièrement
couplé pour les matériaux SMC
standards et innovants à haute
concentration en fibres (> 25% en
volume). Le SMC est traité comme
un mélange incompressible de fibre
et de résine complété éventuellement
par une phase de porosité com-
pressible. Son anisotropie est
modélisée au moyen de tenseurs
structurels. La cinétique de réaction
et de consolidation de la pièce est
également modélisée et étudiée. Les
données expérimentales mécaniques
et thermiques enregistrées sur des
échantillons de matériaux SMC sont
comparées au modèle et à la solution
numérique fournie par ce travail.
D’un point de vue numérique, nous
utilisons la méthode des domaines
immergées où chaque phase est
distinguée par une fonction distance
signée. Nous décrivons le procédé
de moulage par compression en
proposant une résolution compress-
ible anisotrope unifiée capable de
décrire la transition compressible /
incompressible du matériau SMC
sous déformation. Cela permet de
décrire la réponse mécanique du
SMC et de prédire localement la
consolidation (durcissement) de la
pièce le long du cycle thermique.

Mots Clés
Composites renforcés par fibres,
Anisotropie, Porosité, Modèle
mécanique, Modèle thermique,
Modèle cinétique, Domaine
d’immersion, level-set approache,
Compressible

Abstract
This work deals with the numerical
simulation and modeling of thermo-
mechanical analysis of fiber rein-
forced composites materials. Specif-
ically for SMC (Sheet Molding Com-
pound) materials that are used in
compression molding processes to
build automotive high performance
parts. The work is divided into four
chapters, firstly describing a fully cou-
pled thermo-mechanical model for
standard SMC materials and for inno-
vative SMC with high fiber concentra-
tion (> 25% in volume). The SMC is
treated as an incompressible mixture
of fibers and paste complemented by
a compressible porosity phase. Its
anisotropy is modeled by means of
structural tensors. Kinetic of reac-
tion and consolidation of the part is
also modeled and studied. Mechan-
ical and thermal experimental data
recorded on samples of SMC mate-
rials are compared to the model and
numerical solution provided in this
work. A numerical framework, we use
the immersed boundary method and
the level set method. We describe
the compression molding process
by proposing an unified anisotropic
compressible resolution able to de-
scribe the transition between com-
pressible/incompressible of SMC ma-
terials under deformation. We are
able to describe the mechanical re-
sponse of the SMC and to predict lo-
cally the consolidation (curing) of the
part throughout the thermal cycle.

Keywords
fiber-reinforced composites, SMC,
Sheet Moulding Compounds,
Anisotropy, porosity, Mechanical
model, thermal model, kinetical
model, Immersion Domain, level-set
approach, compressible
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