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Introduction

Since the decades of the 50s automotive parts has been created using �ber reinforced com-
posites, bringing a whole novel technology for the industry. Aluminum semi-structural
parts presented in cars have been replaced by their counterpart made of composites.
While replacing for reinforced composites those parts made of aluminum, a reduction in
the production cost and the weight of the �nal part is granted. Such market has gained
ground along the years and we �nd nowadays many producers of automotive components
with those reinforced composites. The main challenge of this technique yields on guaran-
teeing good mechanical behavior while respecting the quality in the design of complexes
geometries. The amount of �ber within the composite is proportional to the mechani-
cal exigence that the part undergoes. However, �bers induces complex mechanical 
ows
complicating the process to obtain a suitable part.

Another fact that motivates the use of �ber-reinforced composites parts is the en-
vironmental regulations restricting automotive pollution. European laws demand the
decreasing ofCO2 emissions emitted by cars for the year of 2020. By looking at the
emissions emitted by car in 2012 (Figure 1) theCO2 level permitted per weight is going
to be reduced by a �x amount of 15g=km. For an average car weight of 1400Kg the
emissions records in the range of 135g=km. Thus, the reduction of 15g=km implies a
reduction of 11% in emissions forcing the producers to improve their fabrication process
and provide better solutions.

There are di�erent strategies to reduceCO2 emissions in a car (Fig. 2). From the
mechanical e�ciency of the car, one gets the improvement on the motor e�ciency, driven
chain or the reduction of tire resistance against the road. Any of these solutions are
directly translated to a reduction of power to complete 100 km. Speci�cally for the pur-
poses of this work, another straightforward manner of decreasing emissions consists in
lightening the car. Producers of automotive parts are needed to provide with an equiva-
lent automotive component with a remarkably cut down of the weight. For that, speci�c
steel parts will be replaced for its counterparts made of �ber reinforced composites.

So farsemi-structural automotive parts made of composites are presented in the mar-
ket. Nevertheless, in order to ful�ll the European regulations the producers must extend
their approaches tostructural parts. Sheet Molding Compounds materials (SMC) rein-
forced with glass �ber arises as one possible composite used for this purpose.

As pictured in Figure 3 engineers has already study the feasibility of modifying the
fabrication process of structural and semi-structural auto parts gaining up to 110Kg
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Figure 1: Possible ways to reduce CO2 emission.

in weight. This implies a decreasing of 10gr of CO2 per 100km. Nevertheless, �ber
reinforced composites parts call for challenging mechanics and behavior since �bers rein-
forcements come together with non homogeneous properties.

The main goal of this work is to model the industrial process when creating a car part
of any kind shown in the previous �gure. Assisting the engineering task of predicting
the mechanical response of the molding process to ensure the quality of the part. The
pieces in which we can save the most of weight are submitted to structural loading and
engineers need to guarantee the good mechanical resistance of the reinforced part. The
fabrication of the automotive parts are done by compression molding process explained
in the next section.

Compression molding cycle

Compression molding is a well known manufacturing technique for composites parts. This
process has undergone a remarkable growth since the 1950s during the development of
Sheet M olding Compounds (SMC) for the automotive industry.

In compression molding process, the amount of material required is placed between
the upper and lower molds. During compression, the mold cavity at approximately 150oC
is �lled by the 
owing of the SMC plies until a chemical reaction occurs. After forming,
the �nal shape is released from the press and the thermal equilibrium is obtained by the
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Figure 2: View of potential parts to be replaced by �ber reinforced composites in order
to gain up to 110 Kg of weight saving. (Image courtesy of Plastic Omnium)

natural convection of the piece with the air as depicted in Figure 4.

As presented by [1] the compression process is composed of four basic phases.

1. Precharge, preparation and placement: A stack composed between three to six layers
of molding material (about 7 mm of thickness) is placed in a mold at temperature
of 150oC. This amount of material is weighted before placed in the mold. The
position, geometry and composition in
uence the part quality, a�ecting the �ber
orientation evolution and the appearances of defects during molding. Normally,
this precharge has a speci�c geometry, covers a speci�c volume of the mold and is
denoted aspreform , designed to minimize the lost of quality during the process.

2. Mold closure: After the preform is being placed inside the mold, the upper mold
part moves down to touch the surface of the preformed piece, this step from the
deposition to the contact of the punch against the preform last about 10 s. From
this point, the compression begins with a speed in the range of 5-10 mm/s. The
preform �lls and releases the air entrapped through the shear edges of the mold.
The force required to move the punch during deformation reached a machine limit,
decreasing the velocity of the punch and making the compression slower and slower.
Finally the mold cavity if �lled and the materials is retain between the punch and
the mold.

3. Curing: While keeping the mold closed, the molding pressure is maintained for
a determinate period of time. This step is performed while the inhibitors of the
chemical paste are consumed and the chemical reaction consolidates the piece. The
compressed material is then considered as rigid. Curing time depends on the resin
mixture formulation, sheet thickness and mold temperature.
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Figure 3: View of potential parts to be replaced by �ber reinforced composites in order to
gain up to 110Kg of weight saving. In white the parts conceding the exterior bodywork,
the gray stands for structural parts and the black for semi-structural parts. (Image
courtesy of Plastic Omnium)

4. Part release: After consolidation, the part is removed from the mold walls by means
of air ejectors pins to ensure the best quality after molding. The part cools down
outside the mold by natural convection and the geometry variations of the part due
to thermal contraction reaches its equilibrium. The mold cavity is prepared and
sets for the next molding cycle.

The process cycle lasts from one to three minutes depending on the part thickness.
For the automotive industry the challenge is to produce one part in one minute. The
relative residence time of each stage can be visualized in Fig.6. As observed, the curing
time is the longest stage of the process. For the material, the temperature ranges from
130oC to 160oC under a molding pressure of the order of 10 MPa as depicted in Figure 5.

Some of the compression molding advantages can be addressed [1]: High reproducibil-
ity of the molded part, wide variety of mechanical properties by controlling the �ber
content on the part, interior and exterior surface already �nished, it allows as well the
fabrication of complex geometries having ribs, curvatures, holes, inserts, etc. Moreover,
many components can be consolidated in a single part without secondary assembly steps.
SMC parts (thermosets) exhibit better dimensional stability than thermoplastic compos-
ites. Thermal expansion coe�cient of the SMC can be set to be compatibles to steel or
aluminum ones.
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Figure 4: The compression Molding Process [1]

Figure 5: Temperature and pression during a complete cycle [1]

Compression molding pressure and temperature

For the automotive industry, the �rst application of glass �ber reinforced polymer is
found in the front panel of the GM Corvette developed in 1953 [2]. Nowadays, the most
used form for compression molding is found in SMC materials. Their �rst applications
are found in electrical and industrial products such as electrical �xtures, control boxes,
light �ttings tool boxes and machine guards [1]. But it was until the early 1970s that
the production of exterior body parts leans towards SMCs as molding component. At
that time starting by producing grille opening panels and hoods. It was also in the mid-
1970s that high strength SMCs were then introduced. Applied to produce semi-structural
automotive components, SMCs are found in bumper beams, road wheels, cross-members,
tailgates and exterior body panels, namely, More than 1 million tailgates produced only
in 2013, 5 million until end of 2014 produced by the enterprise Plastic Omnium for the
Range Rover Evoque.
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Figure 6: Relative time for each stage of molding compression process [1]

Figure 7: Representation of (a) vehicles parts to be built by high performance SMC
composites, (b) zoom of the composite material at a scale of 25mm and (c) at scale a
scale of 1 mm.

This tailgate (See Figure 8 ) incorporates a composite design seen �rst on the Peugeot
508 SW. The innovative technology on this vehicle features an inner panel made of SMC
with a polypropylene thermoplastic outer panel.

SMC as molding material

Sheet molding compound material used for compression molding represents the optimal
ratio due to their low cost (cheapest composite per unit mass, about two times more
expensive than steel per unit mass) and mold e�ciency [1]. SMC is a composite material
(in a sheet form) made of basically two components: resin and �ber (See Figure 9).
The thermoset resin is mixed with reinforcing �bers adopting a single form denoted as
compound. The manufacturing of SMC is illustrated in Figure 11.

Chopping �bers falls on the prepared resin within a thin layer covered by a plastic
�lm made of polyethylene. Such resin contains initiators and �llers during the adopted
mixture and entraps the �ber embedding the mixture. A second �lm, containing the
prepared resin is placed on top, thus covering the �bers content. During the process
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Figure 8: Examples products made of composites

Figure 9: Made components of SMC materials: Resin + Fiber bundles

air is entrapped between the �bers and the resin. This sandwich passes by compaction
rolls wetting the �bers with the constituents. In Figure 12 is seen the reinforcements
(�bers) to the paste resin mixture. The width of the SMC sheet is limited to the SMC
manufacturing machine ranging from 0.61 to 1.52 m, whereas the thickness is commonly
3 mm. The resin is slightly cured to an intermediate stage guaranteeing the handling of
the SMC plies for rool-up and shipment.

Due to the volatile nature of styrene, SMC is refrigerated since its shelf-life depends
on the storage temperature. Extra additives such as Fillers (calcium carbonate (CaCO3))
are added in SMCs to reduce the materials cost and minimize the volumetric shrinkage
of the resin.

A standard SMC weight content ranges from 30 to 50% of �ber (25 to 75 mm long,
frequently E-glass �ber 25.4 mm). Approximately 25% of resin and 25� 45% �ller (cal-
cium carbonate, alumina or clay). For structural applications the �ber content ascend
from 50 to 70% in weight corresponding to 40 to 55% in volume. In the latter, SMC
materials behaves as compressible materials for the �rst stages of the compression due to
the entrapped air between �ber bundles.

Materials: Two industrial formulations of SMC with two �ber contents prepared by
MCR -Plastic Omnium (Tournon-sur-Rhône, France) are subject of study in this work. A
tomography is pictured in Figure 10. The �rst SMC formulation, which was denoted by
the indicator (UL), is typically used to produce lightweight automotive semi-structural
parts. Its behavior is mainly incompressible and corresponds to usual models found in the
literature. It consists of a polyester-based paste reinforced with 29 wt% of 
at glass �ber
bundles with a 25-mm length, approximately 0.05 mm in height and 0.5 mm in width.
The second SMC formulation is used to produce structural parts. It is denoted by the
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Figure 10: Tomography of SMC studied in this work. Left SMC UL - Right SMC HP
(High pro�le). In white the �ber bundles, in black the air entrapped in gray the paste.

indicator (HP) and is made of a vinylester-based paste reinforced with 50 wt% of glass
�ber bundles having similar dimensions than those of the (UL) formulation. Its behavior
is compressible since the porosity content of the preform ranges between 20� 25%. This
behavior has not been yet described and it represents a whole section of modeling of this
work.

Compressibility in concentrated SMC

Modeling SMC materials implies dealing with a multiphase problem mainly governed
by �ber and paste interaction. The �ber concentration plays a role in the resistance of
the �nal part as well as on the complexity of its modeling. Typically, depending on the
mechanical loading of the fabricated part, higher �ber concentration are needed. How-
ever, as pictured in Figure 3.2 for Ultra Light (UL) parts the mixture can be considered
incompressible, whereas for high performance (HP) application, the entrapped air in the
composite is translated into a 25% of porosity, triggering the need of compressible models.

An uni�ed model

The compression molding of �ber reinforced composites undergoing a chemical reaction
represents an example of an unsteady, non-isothermal three dimensional 
ow of com-
pressible, viscoplastic 
uids. One of the characteristics of the process is the coupling
of the heating and the 
ow into the mold cavity. Whereas the mechanics gradients are
mainly in the plane of the structure the thermal variation are more important within the
thickness of the sample. In order to get a full understanding of the process a 3D modeling
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Figure 11: SMC manufacturing process [1]

is required.
During the �lling, when the stack of SMC 
ow into the cavity, we can consider the


ow to be incompressible, however, the �ber network might contain entrapped air in-
ducing a compressible stage during the compression. While the air is expelled from the
composite, the thickness of the material is reduced without 
owing. When the porosity
are lower then 3% the material start to 
ow. The contact between the mold and sample
creates a mechanical condition de�ning the nature of the compression. If slip condition
is presented, the 
ow is purely extensional whereas at the presence of any friction the
shearing becomes predominant. The process induces both normal and shear stresses. The
�ber network induces an orthotropic behavior in the planar coordinates. As well the 
ow
shearing attempts to re-orient the �ber towards the 
ow direction increasing the local
viscosity of the material. During this stage, the thermal e�ects are only presented in the
surface of the sample, since the di�usion in the thickness is slow comparing to the �lling
stage. At the end of the �lling, there is an increase of the pressure and the thermal cycle
�nishes the process.

During the holding stage the thermal e�ect induces dilatation of the SMC contained
by the mold and punch cavity. Such dilation is normally controlled from the conception
process, however it induces thermal stresses. Whereas the temperature increasing reduces
the composite viscosity the pressure reduces. However, once the ignition time for the ki-
netics triggers the reaction, there is an increment of the pressure since polymerization
(solidi�cation) of the part begins. Polymerization contracts the material and a strong
shrinkage is presented reducing the dimensional geometry of the �nal part.

When the pressure of the piece seems to be stable, the molding part is considered
and assumed to be fully solidi�ed. The rigid part is ejected from the mold. The process
simulation and objective of this thesis can be spitted into two main task:
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Figure 12: Photography showing chopped glass �ber bundles falling onto the plastic �lm
covered by paste resin

- A mechanical model of the material describing its anisotropy due to the �ber network
in a general constitutive law, taking into account both viscous and compressible behavior.

- A thermal model of the material includes the kinetics representative of SMC mate-
rials, its coupling with thermal properties and chemical reaction and its implication on
the mechanical behavior.

Previous works

The main aim of numerical simulation for compression molding process goes further than
analyzing the processing stage, but predicting the end-use condition of the molded part.
In the work of [3], a simulation of a 
atten sample assuming an isotropic mechanical model
was used to estimate the �lling process. Complemented by the thermal simulation, such
approach has presented the �rst advantages of the simulation of the compression molding
of SMC materials. Even-though such example remain a 2D approach it �tted experimen-
tal data collected by the authors. Other authors has mainly focused on only one stage of
the process. Either the �lling or the curing. The mechanical modeling has been studied
with the work of Barone et al [4] and later improved with the study of Kotsikoset al
[5]. The work of Le Corre [6] concluding that SMC materials behaves anisotropically,
gave rise to an orthotropic model developed by Dumontet al in [7]. Regarding thermal
approaches, �rst studies were accomplished by Lee in [8] and by Maazouza [9] using a
model based on the radical polymerization mechanisms. The fully 3D modeling of SMC
materials however has not been yet tackle because of numerical limitations. Being able
to have reasonable computational time remains an open challenged. Techniques of mesh
adaptation to reduce computational cost is trending nowadays being that the main ad-
vantages on which our work is based with respect to other studies of SMC.

So far, to our knowledge, a fully 3D thermo-mechanical model for dealing with SMC
materials in compression molding are not yet proposed. Mostly they take into account
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Figure 13: Evolution of the porosity as function of the equivalent deformation. High
Performance SMC are compressible whereas Ultra Light one can be consider as incom-
pressible

independently the compression stages decoupling totally mechanics with thermics.

Context, objectives and outline

Plastic Omnium Auto exterior has interest in having a numerical tool to assist the large
engineering campaigns, when deciding the designing of an auto part. On that purpose,
this general project has been created.

This project belongs to an assembly of three projects to study the thermo-chemo-
mechanical behavior exhibited by Sheet molding Compounds (SMC). One of the project
is in charge of the characterization of the speci�ed SMC materials provided by Plastic
Omnium. This project will formulate the rheology equations and formulation of the
material. Here denoted as the3SR laboratory. The second project is in charge of the
thermo-chemical characterization of the SMC as well as the coupling with the mechanical
part. They are in charge of the changes exhibited by the material when the reaction takes
place. We denoted this team asLTN laboratory. Last but not least, the third project
is in charge of all the numerical developments required to perform numerical simulations
using the software Rem3D.

Before this work, REM3D was not counting with a Compression module to per-
form compression molding simulations. Additionally the tools available to perform such
simulations where mainly:

� a mechanical solver, determining the velocity and the pressure for isotropic mate-
rials;
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Figure 14: Project launched by Plastic Omnium Auto exterior

� a transport solver, determining the 
ow front position;

� a temperature solver to determine the temperature in the composite.

In general, the material could only be considered asincompressible , thermically
and mechanically isotropic as well asno-coupling of the �ber orientation into
the mechanical solver . Thermo-kinetical coupling to the mechanical solver due to
dilatation or contraction was approximated. Validation of the models were not performed
to �ber reinforced composites for molding compression. For that reason, knowing the
geometry and the compression parameters, the purpose of our work focuses on:

General objectives

To enrich the software Rem3D to study molding compression processes, dedicated to
Sheet Molding Compounds (SMC) for ultralight and high performance SMC:

� position of the 
ow front at each instant of the compression stage.

� thermodynamical characterization of the materials at each instant of the mold-
ing process determining its pressure, velocity, stress tensor, density, temperature,
conversion degree.

� prediction of the mechanical force need to deform the piece.
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� detection of starting time of the reaction under industrial parts.

� shrinkage and expansion during heating/cooling inside the mold.

Speci�c objectives

In order to achieve and ful�ll the general objective, the scope of the work has been divided
into speci�c tasks:

Firstly, material compressibility must be taken into account when dealing with high
�ber concentration composites. This represents a more realistic study of the geometry
variation of the �nal form. For this geometrical variations, a corresponding computation
of the density needs to be performed. A suitable compressible mechanical solver should
be provided in order to describe such evolution of the porosity inside the composite mate-
rial. This solver has to deal with both compressible and incompressible behavior of SMC.
At the same time, a smooth transition between a compressible to an incompressible me-
chanical solver. Thus, enabling the continuous computation of the molding process. At
this point, an important results is the pressure trace on the molding part, a detailed
information of what happens inside the mold.

Secondly, because of the reactive nature of the reinforced composite a proper com-
putation of the temperature pro�le along the process is needed. Even more during the
reaction that solidi�es the part. Predicting precisely when it starts and how long it last
provides an important information of the molding process.

Thirdly, the compression molding itself is characterized for having particular macro
calculation such as the compression force. Then, by using this forces most of the producers
of auto parts tun the compression speed in order to not exceed an upper bound. Inside
our numerical framework this represents as well a non-trivial task. Imposition of the
boundary condition to immersed bodies also needs to be studied to avoid numerically
perturbations of the velocity pro�le during the simulation. Another highlighted point is
the conservative properties of level set approaches. For geometries of high aspect ratio
the choice of mesh size also represents a challenge since the computational cost should
be kept bounded. A strategy dealing with all theses aspects is also oriented along this
work. Recalling the speci�c objectives we get:

� Implement a monophase rheology model for SMC behaviors.

� Enrich the monophase model to take into account the porosity exhibited in �ber
reinforced composites with high �ber content.

� Implement the kinetics formulation for the case of SMC.

� Propose and implement a fully thermo-chemo-mechanical model for SMC .

� set a strategy to compute the compression force within the immersion approach

� Implement the piloting of the compression process imposing the force .

� Propose a methodology to take into account the friction against the mold walls.

19



� Determine the �ber orientation for compression molding processes.

� automotic selection of time step and numerical parameters to ensure numerical
convergence.

We attempt to deal with all these issues in a single formulation enabling the contin-
uous computation of the molding part.

This work is divided into 4 Chapters. After this introduction, we will described the
governing equations of the anisotropic compressible reactive 
ows given by the continuum
mechanics for viscous 
uids. Then, we introduce our numerical framework introducing
the conservative problems encountered during this work and describing the techniques
used for the solution. There, a solution is provided for the problem of the mass lost due
to the inherent non-conservative properties of level set methods.

Later, the mechanical and themo-kinetical model used for both SMC studied in this
work is given. There, the implementation of an anisotropic uni�ed solver is provided.
A solver enabling the continuous computation during porosity closure. Additionally a
solver that by acting on a structural tensor is able to take into account the �ber network
orientation. The solver is also enriched with the thermal coupling adding the thermal
dilatation and kinetical shrinkage. The thermal solver is presented and the coupling with
the kinetics model is provided.
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Chapter 1

Anisotropic compressible
thermo-mechanical model for SMC
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Summary

Fiber reinforced composites materials as SMC (Sheet Molding Compounds) are used for
manufacturing automotive parts. These materials are made of two main components:

23



a mixture of viscous paste denoted as matrix, reinforced by �ber bundles widely-spread
covered by a second layer forming a sandwich. Its numerical modeling implies a multi-
phase material, exhibiting a strong anisotropy since the �ber network is presented in a
plane. In Addition, the reinforced materials in raw state is considered viscous and once
squeezed in a hot mold undergoes a chemical reaction transforming its viscous phases
into a rigid body. Thus, the modeling of SMC materials implies a thermo-mechanical
problem coupling thermal e�ects to the mechanical response and phase transformation.

A fully thermo-mechanical model is proposed taking into considerations all the observe
mechanism related in the literature of SMC materials. We use the governing equations to
elaborate a model considering the anisotropy of the material, its viscous dependency on
the strain rate, its thermal behavior and the description of the chemical reaction trans-
forming the viscous raw state into a consolidated part. This model coordinates the physics
and is intended to be used to predict stress evolution along the compression process, tem-
perature evolution during the heating of the part and �nally the prediction/description
of the chemical reaction.

We proceed to coupled all those mechanism of interaction using continuum mechan-
ics. We supposed a homogeneous compressible anisotropic material and we describe its
motion with the velocity and pressure pro�le. We make used of the heat equation coupled
to the kinetical model to describe the thermo-kinetical behavior of SMC.

Normally fully three dimensional simulations (3D) required a high computational cost
respect to planar assumptions (2D) or well decoupled systems. However, those approx-
imations are not able to predict the thermo-mechanical response of this materials. The
model here presented is used on a numerical platform able to discretize the computational
domain smartly by using mesh adaptations techniques. The model is implemented in a
Finite Element Library and is based on a Eulerian approach using level set methods.

R�esum�e en Fran�cais

Mat�eriaux composites renforc�es de �bres comme SMC (Sheet Moulding Compounds)
sont utilis�es pour la fabrication de pi�eces automobiles. Ces mat�eriaux sont constitu�es de
deux composants principaux: un m�elange de pâte visqueuse d�enomm�ee matrice, renforc�ee
par des faisceaux de �bres largement r�epandus recouverts d'une seconde couche formant
un sandwich. Sa mod�elisation num�erique implique un mat�eriau multi-phase, pr�esentant
une forte anisotropie puisque le r�eseau de �bres est pr�esent�e dans un plan. En outre,
les mat�eriaux renforc�es �a l'�etat brut sont consid�er�es visqueux et une fois press�es dans
un moule chaud subit une r�eaction chimique transformant ses phases visqueuses en un
corps rigide. Ainsi, la mod�elisation des mat�eriaux SMC implique un probl�eme thermo-
m�ecanique de couplage des e�ets thermiques �a la r�eponse m�ecanique et �a la transformation
de phase.

Un mod�ele enti�erement thermo-m�ecanique est propos�e en prenant en consid�eration
tout le m�ecanisme d'observation li�e dans la litt�erature de mat�eriaux SMC. Nous utilisons
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les �equations gouvernantes pour �elaborer un mod�ele en tenant compte de l'anisotropie du
mat�eriau, de sa d�ependance visqueuse �a la vitesse de d�eformation, de son comportement
thermique et de la description de la r�eaction chimique transformant l'�etat brut visqueux
en une partie consolid�ee. Ce mod�ele coordonne la physique et est destin�e �a être utilis�e
pour pr�edire l'�evolution des contraintes le long du processus de compression, l'�evolution
de la temp�erature pendant le chau�age de la pi�ece et en�n la pr�ediction / description de
la r�eaction chimique.

Nous proc�edons �a coupler tous ces m�ecanismes d'interaction en utilisant la m�ecanique
du milieux continu. Nous supposons un mat�eriau homog�ene compressible anisotrope
et nous d�ecrivons son mouvement avec le pro�l de vitesse et de pression. Nous util-
isons l'�equation de la chaleur coupl�ee au mod�ele cin�etique pour d�ecrire le comportement
thermo-cin�etique de SMC.

Normalement, les simulations �a trois dimensions (3D) n�ecessitaient un coût de calcul
�elev�e en fonction des hypoth�eses planaires (2D) ou des syst�emes bien d�ecoupl�es. Cepen-
dant, ces approximations ne sont pas capables de pr�edire la r�eponse thermo-m�ecanique de
ces mat�eriaux. Le mod�ele pr�esent�e ici est utilis�e sur une plate-forme num�erique capable
de discr�etiser le domaine de calcul intelligemment en utilisant des techniques d'adaptation
de maillage. Le mod�ele est impl�ement�e dans une biblioth�eque d'�el�ements �nis et est bas�e
sur une approche eul�erienne utilisant des m�ethodes level-set.

1.1 Introduction

Modeling SMC materials during compression molding implies the study of non-isothermal
unsteady compressible 
ows. From one side, the �ber network induces an anisotropic
mechanism, more speci�cally, an orthotropic behavior normal to the �ber plane. From
the other side, thermal evolution modi�es the mechanical response and triggers a chem-
ical reaction until the part is consolidated. After �lling the cavity, the coupled thermo-
mechanical mechanisms enable the thermal expansion and chemical shrinkage, potential
candidates of the geometry di�erences between the mold cavity and the �nal part.

In this chapter, we establish the thermo-mechanical model solved within SMC com-
pression molding simulations and describe the numerical methods employed. The stack
of SMC plies is considered as a compressible 
uid. Firstly, the hot temperature induces a

uidi�cation (a softening), the material �lls the mold cavity and then (or simultaneously)
the hot temperature triggers a chemical reaction consolidating the part.

We consider that the anisotropy of the SMC is due to the �ber network and we present
hereafter the governing equations describing all the observed behavior of SMC materials
during processing. In the �rst part of this chapter, the equations issued from continuum
mechanics on compressible materials are introduced, considering temperature and chem-
ical evolution and its coupling with the mechanical response. The mass and momentum
conservation lead to a system having as variables the velocity and the pressure. Neglect-
ing inertial e�ects, as usual in polymer 
ows, we get a compressible version of the Stokes
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problem. The Mixed Finite Element framework is applied to solve such equations. We
integrate in the formulation the thermal e�ect by means of a general de�nition of strain
rate contributions leading to the thermo-mechanical coupling system.

We notice that the density variations within the material are related to porosity clo-
sure in the early compression stage. Those density variations of the material are also
related to its dilatation and shrinkage coe�cients. We present a splitting technique to
compute the density evolution. For that, it seems natural to assign the evolution of the
porosity volume fraction to a relative density and the thermal expansion and chemical
shrinkage to the evolution of adense state density. In order to couple the resolution
of the density equation to the resolution of the mechanical problem, we relate a partial
pressure to the trace of the visco-plastic strain rate. This variable change enables the
coupling of the two equations, in which a compressible factor evolves during the porosity
closure. We present then the mechanical formulation taking into account the porosity
dynamics and thermo-kinetic evolution.

The energy equation is introduced supposing also a compressible behavior of the ma-
terial and the kinetics of the chemical reaction. We generalized the heat equation by
considering an anisotropic behavior of the thermal conductivity, the thermal dilatation,
the pressure-volume work and the reaction enthalpy.

After de�ning the whole set of equations of our thermo-mechanical model, the numer-
ical framework is introduced. There, we recall the governing equations by detailing its
discrete resolution in our numerical software using the Finite Element Method. The sta-
bilization of the mechanical problem by introducing a bubble space and the stabilization
of the thermo-kinetical problem with the Streamline Upwind Petrov-Galerkin (SUPG)
strategy are brie
y explained. The mesh algorithm to adapt the discrete space is ex-
plained and is coupled to a time-adaptation strategy. This adaptive time-step bounds
the temporal evolution in order to control the non-linearity of the thermo-kinetical resolu-
tion. Finally, at the end of the chapter, the full thermo-mechanical algorithm is presented.
The chronological resolution order is provided while picturing the non-linear behavior of
the full system.

1.1.1 Momentum Equation

In a general form, the mechanical equilibrium of any material is given by the resolution
of the conservative equation. We can then write the equilibrium of the momentum [1] in
the form:

r � � = �

 
dv
dt

� f

!

(1.1)

In eq. (1.1), � is the Cauchy stress tensor,� the density of the material,v the velocity
and f the volumetric forces. For the case of viscous materials, we neglect the inertia

e�ects by ignoring the term
dv
dt

.
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1.1.2 Mass conservation

Additionally, the mass conservation states that any variation on the density is subject to
the total variation of the 
uxes in the neighboring, here described as the divergence of
the 
ux as:

r � v = �
1
�

d�
dt

: (1.2)

In eq. (1.2) the density variation can be expressed by thermodynamics state functions.
One can describe it by a function� = f (p; e) where p is the pressure ande the internal
energy. Then,

r � v + � p
dp
dt

= � e
de
dt

: (1.3)

The expression given by eq. (1.3) has been used in other works [2] dealing with com-
pressible 
ows. Mainly with gases, where the variation of the density can be directly
related to energy changes. Furthermore, the energy variation for SMC materials depends
on the temperature and on the degree of conversion of the chemical reactione = f (T; � ).
The density is then written as� = f (p; T; � ), whereT is the temperature of the compos-
ites, � the conversion degree of the polymerization reaction andp the pressure. We can
then relate the density variation with respect to other thermo-mechanical properties to
obtain:

�
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�

d�
dt

=
� 1
�
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(1.4)
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�

d�
dt

= � t
dT
dt

+ � �
d�
dt

� � p
dp
dt

(1.5)

Then, replacing the expressions provided by eq. (1.4) and eq. (1.5) into the mass
conservation, we get:

r � v + � p
dp
dt

= � t
dT
dt

+ � �
d�
dt

(1.6)

For high concentration SMC a volume variation is observed, where the sample thick-
ness is reduced while the projected surface is unchanged. In this stage, the SMC UL
voids are dynamically expelled from the core towards the exterior, whereas for the SMC
HP the pores are closed without translation. This porosity closure, called densi�cation,
reduces the volume of the SMC up to 25% (HP) and 3% (UL). The densi�cation step
increases the pressure of the material since it becomes more and more incompressible.
Once the porosity concentration is low enough, a squeeze 
ow motion is observed. In the
studied materials, only high concentrated SMCs evidence a compressible step.

The expression given by eq. (1.6) is a general de�nition of the mass conservation.
However, from the characterization perspective, it results more appropriate to couple
directly in the stress tensor the compressible behavior by using a term proportional
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to the volume variation. Then, an equivalent formulation for the mass conservation is
retrieved when connecting the porosity closure to the density. Indeed, the SMC materials
or well the densi�cation for porosity closure is a not reversible process. The dependence
of compressible behavior proportional todp=dt implies that the decrease in pressure
translates a recovery of the porosity level. For instance, by increasing the pressure, the
volume of the material decreases, whereas by decreasing the pressure the negative sign of
the factor dp=dtwill induce an increment of volume. However, for densi�cation problems,
when the material is released and the non-longer forces acts on it, the volume remains
unchangeable. This, motivates the reasoning on a compressible factor proportional to
the pressure instead of its temporal derivative. As discussed later on this chapter, the
proposed model for compressibility of SMC due to porosity evolution is more suitable to
be written in the form:

r � v + �p = � t
dT
dt

+ � �
d�
dt

; (1.7)

the � factor takes into account the amount of porosity remaining in the material and
is associated to the volumetric deformation" v as explained later. During this compaction
the density of the material is modi�ed. By recalling the physical aspects of our thermo-
mechanical model, we remark that the density is modi�ed during the porosity closure and
by the thermal evolution. At last, the curing of the part also implies volume variations.
The compression step lasts between 3 to 5 seconds while the thermo-kinetical cycle around
1 to 2 minutes. Mostly, the variation of the density corresponding to pore closure acts
at the beginning of the process. Such phenomena may be somehow decoupled from the
other sources of compressibility such as thermal and kinetical evolution. For that reason,
the density is expressed as the multiplication of two contributions. The relative density,
� r , associated to the viscoplastic strain rate and the dense state density,� d, associated
to the volume variations in the dense material due to thermal expansion and chemical
shrinkage. The density is then written as:

� = � r � dense(T; � ) (1.8)

The use of the velocity �eld obtained from the resolution fo the mechanical problem
to obtain the evolution of the relative density has been used in [3]. A similar approach
is found in the de�nition of the Green equivalent strain rate studied as well by Abouaf
[4], [5]. Since the nature of our SMC densi�cation problem relies on a mechanism similar
to powder compaction, we prefer to use this approach. According to M. Bellet (private
communication, July 2016) such approach can be extended to take into account the
volume evolution from thermal variations. As in his case, for the study of thermo-
mechanical modeling of spark-plasma sintering of metal powder and using the de�nition
in eq. (1.8), the evolution of the density is given by:

1
�

d�
dt

=
1
� r

d� r

dt
+

1
� d

d� d

dt
(1.9)

For the numerical viewpoint, both contributions of eq. (1.9) need to be computed. In
the following, we show how to calculate the evolution of bothrelative and dense state
densities.
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Strain rate tensor for thermo-mechanical modeling

Firstly, let us address the strain rate deformation tensor _" as the summation of the
viscoplastic strain rate tensorD , the thermal strain rate tensor _" th and the chemical
strain rate tensor _" ch:

_" = D + _" th + _" ch =
1
2

�
r v + r T v

�
(1.10)

The expression given in eq. (1.10) de�nes the total strain rate, which is the one
provided by the symmetric part of the velocity gradient. The thermal strain rate tensor
_" th depends on the expansion tensor� t and on the temperature evolution. Similarly,
the chemical strain rate tensor _" ch depends on the chemical shrinkage tensor� � and
on the reticulation process evolution. Tensors are used in order to take into account
the anisotropic behavior of the thermal dilatation and chemical shrinkage on SMC. As
detailed later on this work (??), the thermal and kinetical anisotrope strain rates read:

_" th = � t
dT
dt

; (1.11)

_" ch = � �
d�
dt

; (1.12)

where� t and � � are the tensorial representations of such anisotropic behaviors.

Describing the total contribution in the motion of the SMC as the contribution of
the viscoplastic, thermal and chemical strain rates is inspired from principles of thermo-
mechanical modeling as presented in [6] for solid deformation. Here, we extend the ap-
proach to highly viscous 
uid materials. Without thermo-chemical e�ects, the mechanical
response of viscous materials is related directly to the velocity symmetric gradient (nor-
mally, D = _" ). Nevertheless, when accounting for other sources of deformation in our
material, namely due to thermal and chemical evolution, the viscous strain rate tensor
takes the form of eq. (1.13):

D = _" � _" th � _" ch: (1.13)

Similarly, we can associate the trace of this tensor to the velocity divergence through
eq. (1.14):

tr (D ) = r � v � tr ( _" th ) � tr ( _" ch): (1.14)

One remarks that the viscoplastic strain rate tensorD becomes_" for the cases where
thermal or kinetical deformations are neglected. Its trace is thus directly related to the
divergence of the velocity (tr (D ) = r � v).

When dealing with thermo-mechanical problems, only the viscoplastic strain rate ten-
sorD generates viscoplastic stresses. That is the reason why the dilatation or contraction
changes must be suppressed as suggested by eq. (1.13).
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Evolution of the relative and dense state density

By integrating the expression of the divergence of the velocity given in eq. (1.14) and the
expression of the density evolution given by eq. (1.9) in the mass conservation equation
of eq. (1.2), the equation ruling the density evolution is:

tr (D ) + tr ( _" th ) + tr ( _" ch) = �
1
� r

d� r

dt
�

1
� d

d� d

dt
(1.15)

Furthermore, we considered that the thermal dilatation and chemical shrinkage of the
paste simply result on the variation of the dense density� d and do not a�ect the relative
density � r . Allowing us to split the relation of eq. (1.15) into the relative and dense state
densities, produces two separated governing equations. The relative density is ruled by
the trace of the viscoplastic strain rate, eq. (1.16):

tr (D ) = �
1
� r

d� r

dt
(1.16)

and the dense state density is driven by the trace of the thermal and chemical evolution
eq. (1.17):

tr ( _" th ) + tr ( _" ch) = �
1
� d

d� d

dt
(1.17)

The relative density can then be rewritten by using eq. (1.14), obtaining:

1
� r

d� r

dt
+

�
r � v � tr ( _" th ) � tr ( _" ch)

�
= 0 (1.18)

The expression given by eq. (1.18) is used then to compute the evolution of the rela-
tive density during the thermo-mechanical process.

From the mechanical point of view, the evolution of the relative density can be also
related to the variation of the porosity fraction � p inside the material. Another way to
express the relative density is by providing it as function of� p:

� r = 1 � � p (1.19)

This approach is preferred since all other mechanical properties will be then related
to the porosity evolution. A phenomenological expression to update the porosity fraction
� p during the compression is provided in Chapter 3. Finally, the evolution of the density
in this work is computed by:

� = � r � d (1.20)

� r = 1 � � p(" v) (1.21)
1
� d

d� d

dt
= tr ( _" th ) + tr ( _" ch) (1.22)
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and the evolution of the porosity� p is given by a phenomenological relation of the
viscoplastic volumetric deformation" v computed using the expression:

d"v

dt
= tr (D ) = r � v � tr ( _" th ) � tr ( _" ch) (1.23)

One remarks that either solving the relative density equation in eq. (1.18) or solving
the relative density by a function of the porosity fraction eq. 1.21 (depending as well as
the volumetric deformation governed by eq. (1.23) ), implies the resolution of a di�erential
equation taking as entry the termr � v � tr ( _" th ) � tr ( _" ch). However, solving the porosity
fraction connects the updating of the �ber fraction� f evolution during the densi�cation
step.

1.1.3 Mass conservation and mechanical problem

In mechanical modeling, the Cauchy stress tensor can be always described by its deviatoric
s and volumetric p parts. In order to present the equation governing the mixed problem
in terms of the velocity-pressure variables, as usual for a viscoplastic material, a particular
splitting is proposed. For SMC compressible materials, we can write its stress tensor as
follows:

� = s � pI with s = dev(� ) and p = �
tr (� )

3
(1.24)

However, in order to describe the porosity evolution inside the SMC by the term
tr (D) and to have a clear transition between the compressible behavior of SMC towards
its dense state, we prefer to use the following splitting:

� = ŝ � p̂I ; (1.25)

whereŝ stands for the anisotropic behavior law doctored in [7]:

ŝ = � 0� eq

�

D + � 1(M : D )M +
1
2

� 2(D � M + M � D )
�

(1.26)

There, coe�cient � i are determined by experimental test and the structural tensor
M stands for the construction of the orthotropic model knowing the normal to the
�ber plane in the SMC. Then, p̂ is related to the trace of the viscoplastic strain rate
and to a non-dimensional parameter� 3 representing the evolution of the porosity inside
the material. The parameter � 3 increases to in�nity and tr (D ) tends to zero during
the porosity closure. The choose of the construction of the term� 3 tr (D) responds to
characterization demands since the rheology for compressible SMC are directly related
to this term. A more detailed construction is given in Chapter 3. In here, we de�ne the
partial pressure to be equal to the multiplication of this terms since it would imply a
more stable numerical resolution. This partial pressure is then of the form:

p̂ = � � 3 � tr (D ); (1.27)

This splitting implies a system (D ; p̂) of the following form:
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� (D ; p̂) = ŝ(D ) � p̂I ; (1.28)

tr (D ) =
� 1
�� 3

p̂: (1.29)

We replace the de�nition of the viscoplastic strain rate given by eq. (1.14) and we
introduce the compressibility factor� .

r � v � tr ( _" th ) � tr ( _" th )
| {z }

tr (D )

= � �
|{z}
1

�� 3

p̂ (1.30)

The �nal set of equations is obtained by replacing the viscoplatic strain rate given by
eq. (1.13)

r � ŝ( _" � _" th � _" ch) � r p̂ = 0 (1.31)

and introducing a compressibility factor� within the mass equation, eq. (1.30), written
in its (v; p̂) formulation:

r � v + � p̂ � tr ( _" th ) � tr ( _" ch) = 0 (1.32)

The system given by eqs. (1.31-1.32) represents the coupled resolution of the mechan-
ical problem for SMC materials taking into account porosity closure, thermal expansion
and kinetical shrinkage. Please notice, that by ignoring all volumetric variations eq.
(1.32) corresponds to the incompressible (divergence free ) case solving the Stokes prob-
lem. There, if isotropic behavior (� 1 = � 2 = 0), and incompressibility tr (D ) = 0, p̂
equals the pressurep. For the general case, a relation between the apparent pressure ^p
and the pressurep is given by:

p = p̂ �
tr (ŝ)

3
= p̂ �

� 0 � eq

3
(tr (D ) + ( � 1 + � 2) M : D ) (1.33)

The advantages of this formulation is the straightforward relation with compressible
and incompressible cases. Enabling us to write an uni�ed numerical procedure to fully
describe the compressible-incompressible transition. Typically,� decreases in the formu-
lation while porosity gets closed. The formulation then becomes as the incompressible
one according to eq. (1.30) .

1.1.4 Energy equation

The last conservative equation is the energy transfer, given by the �rst thermodynamic
law:

dE = �Q � �W; (1.34)
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which represents the state variation of the system due to the interactions with the
neighboring. In eq. (1.34)E, Q and W are the extensive properties (mass dependent)
and account for the internal energyU, the heat entering the systemQ and the work
delivered by the materialW [8]. Those properties depend on intensive properties such as
the temperatureT , the entropy s , the internal energye, the pressurep, the velocity v.
By replacing the extensive properties to their corresponding intensive one and by taking
their di�erential, we can write the most general energy equation also known as the heat
equation for any generic material:

E =
Z



� e d
 ; (1.35)

The energyE represents the energy associated to the control volume. We can show
[9] that the energy variation (without assuming constant density) is ruled by eq. (1.36):

dE
dt

=
Z



�

de
dt

d
 ; (1.36)

using the de�nition in eq. (1.34) and the expression of the internal energy eq. (1.36)
enables to write the energy equation [1]:

Z



�

de
dt

d
 = �
Z

�
q � nd� +

Z



_!d 
 (1.37)

After using the Green-Ostrogradski theorem, or the divergence theorem, and using
the local form of the energy equation, we obtain:

�
de
dt

= �r � q+ _! (1.38)

In eq. (1.38),q denotes the heat 
ux inside the material and _! the internal work acting
as the dissipation term, since it represents the irreversible work done by the viscous forces.
In order to express the energy equation in state variables, we generally need to deploy
the de�nitions of all these terms in variables recognized by our model. Those variables
are the temperature, the pressure and the velocity [1] (a full development is given in
Chapter A ), the left term can be then written:

�
de
dt

= �
dh
dt

� � v
t T

dp
dt

� pr � v; (1.39)

where we kept the enthalpy de�nition to be general. Hereh = hT + h� , containing the
energy subject to thermal variations and the energy subject to chemical reactions. The
term � v

t yields for the volumetric dilatation factor (scalar) of our material. Now, the
right term of eq. (1.38) is divided in two contributions. First, the internal work, which is
de�ned as:

_! = � : _" = � pr � v + s : _" (1.40)

Then, by using Fourier's law, the heat 
ux is given by the di�usion of heat along the
material (it is expressed here for anisotropic materials), using the tensor of conductivity
k that accounts for the anisotropic thermal behavior exhibited by the �ber network.
Applying Fourier's law, we relate the heat 
ux to the thermal gradient through:
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_q = kr T (1.41)

In brief, the general expression of the energy equation for compressible reactive
anisotropic materials may be written in two di�erent forms. Using the Cauchy stress
tensor as:

�
dh
dt

� � v
t T

dp
dt

� pr � v = r (k r T) + � : _" (1.42)

or using the deviatoric stress tensor as:

�
dh
dt

� � v
t T

dp
dt

= r (k r T) + s : _": (1.43)

In the study to be performed in this work, we will prefer the second version i.e.
eq. (1.43) using the deviatoric stress tensor for the internal work. please notice that
for the incompressible case both expressions remain the same. Moreover, we develop the
enthalpy in its thermal and chemical contribution. The �rst described by the temperature

T and the heat capacity at constant pressurecp by means of the term
dhT

dT
= cp. The

second depending on the reaction degree� , whose contribution is assigned by the term
dh�

d�
= � H � . thus, the energy equation for compressible reactive materials states:

� c p
dT
dt

� � � H �
d�
dt

� T � v
t
dp
dt

= r (k r T) + s : _" (1.44)

1.1.5 Summary of conservative equations for compressible re-
active 
ows

The model describing the thermo-mechanical behavior of SMC materials is summarized
in this section. The problem statements require the computation of the velocityv, ap-
parent pressure ^p, the volumetric deformation " v, relative density � r , dense density� d,
temperature T and conversion degree or curing state� . The thermo-mechanical model
contains mechanical properties depending on the �ber volume fraction� f . The evolution
of such parameter is given by a direct relation of the porosity volume fraction. In general,
� f = f (� p(" v)), for that reason, the equations governing the thermo-mechanical model
presented in this section is given by the following system:

r � ŝ � r p̂ = 0 (1.45)

r � v + � p̂ � tr ( _" th ) � tr ( _" ch) = 0 (1.46)

d"v

dt
= r � v � tr ( _" th ) � tr ( _" ch) (1.47)
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1
� r

d� r

dt
+ r � v � tr ( _" th ) � tr ( _" th ) = 0 or � r = 1 � � p (1.48)

1
� d

d� d

dt
+ tr ( _" th ) + tr ( _" th ) = 0 (1.49)

� c p
dT
dt

� � � H �
d�
dt

� T � v
t
dp
dt

= r (k r T) + s : r v (1.50)

d�
dt

= F (�; T ) (1.51)

Those equations need to be enriched by de�ning the partial deviatoric stress tensorŝ
as function of the viscous strain rate tensorD and the kinetic model for the computation

of
d�
dt

as well as, dilatation and shrinkage coe�cients de�ning the strain rate tensor_" th

and _" ch.

This full thermo-kinetic-rheological model accounts for velocity-stress relation and
also enables the calculation offree dilatation (or contraction) inducing a velocity pro-
�le at zero stress thanks to the de�nition of our viscous strain rate tensorD . Additionally
it takes into account the thermal and the kinetical contribution in all the conservative
equations.

After having presented all the equations according to our thermo-mechanical model,
we proceed to present the numerical framework used in this study. We introduce the
weak formulation of the aforementioned system as well as its stabilization.

1.2 Discretization and numerical framework

The numerical framework of this work is given by the Finite Element Method [10], assem-
bled with a mesh adaptation tool, in an Eulerian framework. The main variables are the
velocity (v), the pressure (p), the temperature (T) and the conversion degree (� ). The
problem to be solved is then composed of four equations: First, we write the weak form
for the momentum equation by using the splitting given in the later section. In here, ^p
and ŝ are kept as primitive variables. The second equation corresponds to the weak form
of the volumetric part of the constitutive equations, taking into account the thermal and
kinetics, as well as the description of the porosity closure by the term (� ) (functional
variable of the volumetric deformation). The third equation states for the energy balance
having the anisotropic conductivity as entry and also the heat source coming from the
reaction rate. As will be described in Chapter 3 the viscous stress tensor in its anisotropic
form is given by the general form:

� = ŝ(D ) � p̂I ; (1.52)
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with,
ŝ(D ) = 2 � D + T4 : D + T2 D + D T 2 (1.53)

By using the de�nition of the strain rate tensor1 and following the procedure described
in [11], we can write the system as:

D = _" � _" th � _" ch (1.54)

Expressions for the thermal and kinetic strain rate are provided in??. Notice that
here, any assumption regarding the nature of this tensor has been established. Further-
more, the trace of the viscoplastic strain rate tensorD can be associated to the porosity
evolution of the material as a pressure proportional factor� . Details on the numerical
construction of the porosity evolution is given in Chapter 3. Knowing that the viscous
nature of the stress is linear in its formulation, we write a relation similar to the one
found in [12], where the viscous stress is only related to the viscous strain rate:

ŝ(D ) = ŝ( _" ) � ŝ( _" th ) � ŝ( _" ch) (1.55)

Conservation equations for the compressible reactive SMC in our numerical frame-
work, where inertial forces were neglected and planar isotropic consideration for thermal
and mechanical properties were done, states as:

r � (2� _" + T4 : _" + T2 _" + _" T 2) � r p̂ = r �
�
ŝ( _" th ) + ŝ( _" ch)

�
(1.56)

r � v + � p̂ = tr ( _" th ) + tr ( _" th ) (1.57)
@�d
@t

+ v � r � d � � d

�
tr ( _" th ) + tr ( _" th )

�
= 0 (1.58)

@"v
@t

+ v � r " v = r � v � tr ( _" th ) � tr ( _" th ) (1.59)

� c p

 
@T
@t

+ v � r T

!

� r (k r T) � T � v
t
dp
dt

= � � H � F (�; T ) + s : r v (1.60)

@�
@t

+ v � r � = F (�; T ) (1.61)

Note that the velocity is present in the resolution of the thermal problem for convective
purposes and also in the solution of the reaction degree� . Furthermore, the density
variation during the thermo-kinetical evolution also needs to be described. We split in
this work the coupling among them as follows:

� velocity (v) - apparent pressure (^p) are coupled strongly;

� temperature (T) and conversion degree (� ) are coupled by means of a point �xed
resolution;

� density (� ) is then solved separately by an advection equation

In order to study the �nite elements method used to solve the velocity/pressure prob-
lem, as well as the temperature/conversion degree one, we have written the weak formu-
lation of the mechanical and the thermal problem in the following section.

1the symmetric gradient tensor is de�ned as _" =
1
2

�
r v + r t v

�
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1.2.1 Mixed variational formulation and discretization - me-
chanical problem

Let us introduce the L2(
) and H 1(
), the classical Sobolev spaces (Lebesque and
Hilbert). Let � and Q be Hilbert spaces andP a Lebesque space,P = L2(
), with

L2(
) =
�

v : 
 �! R;
Z




�
�
�v2

�
�
� < 1

�

(1.62)

For the mechanical problem , we state Q � P, Q dense inP , such askqkP �
kqkQ . We establish the variational form of eq. (1.56): �nd (v; p̂) 2 � � Q such that,
8(w; p) 2 � � Q; for (f; g ) 2 � 0 � Q0

8
>>>>>>>>><

>>>>>>>>>:

Z



2� _"(v) : r w +

Z



T4 : _"(v) : r w +

Z



T2 _"(v) : r w

+
Z



_"(v)T2 : r w �

Z



p̂r � w = �

Z



f w +

Z



s( _" th + _" ch) : r w

�
Z



pr � v �

Z



p � p̂ = �

Z



p

�
tr ( _" th ) + tr ( _" th )

�

(1.63)

beinga a bounded bilinear form on� � � , and b a bounded bilinear form on� � p and
d a bounded bilinear form onQ � P. Associating to these forms, we solve the problem:
for (f; g ) 2 � 0 � Q0, �nd ( v; p̂) 2 v � Q such that 8(w; p) 2 � � P the system satis�es:

(
a(v; w) + b(p̂; w) = hf; w i
b(v; p) + d(p̂; p) = hg; pi

(1.64)

Some conditions are required to the bilinear form in order to guarantee the well
representation of the problem [13]. First,a must be coercive on� , then b must satisfy
the inf-sup condition [14] on� � P and d need to be bounded from below in the P norm
[15],[16]:

9 � > 0 such that a(w; w) � � kwk2
� ; 8w 2 � (1.65)

9 � > 0 such that inf
p2 Q

sup
w2 �

b(w; p)
kvk� kpkP

� �; w 2 �; p 2 Q (1.66)

9 
 > 0 such that d(p; p) � � 
 kpk2
P ; 8p 2 Q (1.67)

Choosing
 small enough (even negative), it can be shown [17], [2] that the solution
(v; p̂) exists and is unique.

Let 
 h be a discrete space composed of simplexK such as:


 h =
[

K 2 Th (
)

K (1.68)

In isotropic mesh cases,h indicates the approximation accuracy of the subspace. This
related to the mesh spacing and the diameter of the elements by the relation:

h = max
K 2 Th (
)

diam(K ) (1.69)
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For anisotropic meshes, the indicator of accuracy can be de�ned by a global error
depending on local mesh sizes [18] and related to the physical variable solutions. A more
general treatment for the study of the error in anisotropic meshes are subject of study in
[19],[20], [21].

Then, the projection operator � h from the continuousU onto the discreteUh space
satis�es:

(
U ! Uh

u ! � hu = argmin (ku � uhk)
(1.70)

Having a dimensional space represented by an Eulerian mesh conformed by simplexes
K , we search for the solution of the discrete problem composed of functional spacesVh and
Qh of �nite dimensions such that the solution (v; p̂) 2 � � Q is close to (vh; p̂h) 2 � h � Qh.
This can be expressed in its bilinear form in the variational system:

(
a(vh; wh) + b(p̂h; wh) = hf; w h i
b(vh; ph) + d(p̂h; ph) = hg; ph i

(1.71)

Furthermore, we assume that, in the discrete problem,a,b and d satisfy the same
conditions than in the continuous one. Furthermore, it is proven in [2] the existence and
unicity of solution to the discrete problem.

Let dv be the dimensions ofVh, dp the dimension of thePh and let us choosef � mgm=1 ;:::;dv

a basis of the spaceVh and f � mgm=1 ;:::;dv
basis ofPh. We write the approximated velocity

vh and the approximated pressureph on theses basis through:

vh =
X

Vm � m (1.72)

p̂h =
X

P̂m � m (1.73)

which represent the discrete interpolation of the solution, (v; p̂). Assuming our test
functions (wh; p̂h) to be the approximate interpolation functions (� m ; � m ), our variational
problem may be written in the equivalent matrix form:

 
Avv Bvp

B̂pv Dpp

!  
V
P̂

!

=

 
F
G

!

(1.74)

where V 2 R; V = ( V1; :::; Vdv )t is the velocity solution vector, andP̂ 2 Rdp ; P̂ =
�
P̂1; :::; P̂dv

� t
is the apparent pressure solution vector (in this casedp = 1). The implicit

contribution of the variational problem is given by the formulation of the viscous stress
(Avv and Bvp) and the velocity-pressure contribution of mass equation (̂Bpv and Dpp). As
depicted in??, the trace of the thermal dilatation tensor as well as the kinetical shrinkage
is related to the velocity, temperature and the reaction degree variables, acting on the
mass equation by means of the expressions:

tr ( _" th ) = � v
t
@T
@t

+ v � � t r T (1.75)

tr ( _" ch) = � v
�

@�
@t

+ v � � � r � (1.76)
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where is introduced the tensor of thermal dilatation� t built with the thermal dilatation
term in each principal direction. The tensor of chemical shrinkage,� � , is also de�ned.
These tensors account for the anisotropy of the thermal and chemical volume variations.
The volumetric variation coe�cients, here denoted with the upper index "v", is obtained
taking the trace of the thermal and chemical dilatation/contraction tensors. The tensorial
representation established the directional tendency of the material to undergo geometrical
variations due to thermal or chemical variations. The trace however, stands for the total
volume variations and is the term found to be inserted in the mass conservation equa-
tion. A detailed explanation of this derivation is given in??. Additionally, by deploying
the total temporal derivative in its two part (local and convective), the convective part
depending on the velocityv is used as implicit term in our velocity/pressure problem.
Finally, the mass equation is written:

r � v � v � � t r T � v � � � r � + �q
| {z }

implicit

= � v
t
@T
@t

+ � v
�

@�
@t| {z }

explicit

(1.77)

Writing the equations of our thermo-mechanical modeling into the corresponding ma-
trix contribution, we get from the following left hand side members:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

A 2 M dv ;dv (R) ; Apm =
Z


 h

2� _"(vh) : r � m + T4 : _"(vh) : r � m+

T2 _"(vh) : r � m + _"(vh) T2 : r � m + r p̂h � � m

B 2 M dv ;dp (R) ; Bmp =
Z


 h

� � m r � vh + � m vh � � t r T + � m vh � � � r �

D 2 M dp ;dp (R) ; Dmp =
Z


 h

� q h � m

(1.78)

and on the right hand side the terms:
8
>><

>>:

F 2 Rdv ; Fvm =
Z


 h

� f � � m � � extra : r � m

G 2 Rdp ; Gpm =
Z


 h

� � m � v
t
@T
@t

� � m � v
�

@�
@t

(1.79)

being � extra an extra stress contribution as suggested by eq.section 1.2 as function of
the thermal and chemical strain rate tensor ( _" th and _" ch). This represents the coupling
with the thermal and chemical evolution.

For sake of simplicity, we present the formulation in a more compact development.
The assembled matrix of the thermo-mechanical problem stands:

Avv = �
Z

s(v) : r w d
 (1.80)

Bvp = �
Z

pr � w d
 (1.81)

B̂pv = �
Z

(qr � v + d � v q) d
 (1.82)

Dpp =
Z

� p q d
 (1.83)
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please notice that di�erent to the Stokes problem for incompressible 
ows, the matrix
B̂pv does not correspond to the transpose ofBvp.

1.2.2 Stabilization of the mechanical problem

We need now to choose independent spaces (Vh and Ph) that satisfy the same conditions
imposed to the discrete problem [22, 23]. In this work, we choose subspaces (Vh; Ph) given
by the usual name MINI-elementP1 + =P1, as explained in [23]. This choice enables
to have linear continuous velocity and pressure �elds on 
h. The velocity is given by a
combination of a linear part and a piece-wise, designated usually as bubble function. The
�nite element spaceVh is written as Vh = vh � bh, where

vh =
n
wh 2 C0 (
 h)d : wh jK 2 P1 (K )d

o
(1.84)

being P1(K ) the space of polynomials of degree inferior or equal to one. The bubble
must verify the conditions given by eq.1.65. The bubble function vanishes at the boundary
of K and is continuous inside the element. The bubble is also de�ned inK as a polynomial
acting on each of the three sub-triangles in 2D and four sub-tetrahedral in 3D, named also
the pyramidal version of the bubble function. The discrete space in which is associated
states:

bh =
n
bh 2 C0 (
 h)d : bh j@K = 0 and bh jK i = 0 2 P1 (K i )

d ; i = 1; :::; D
o

(1.85)

whereD is the topological dimension (3 nodes in 2D or 4 nodes in 3D) and (K i ) ; i =
1; :::; D is a decomposition ofK into D subsimplexes. Those sub-simplexes have a common
vertex in the barycenter ofK . Finite element spaces for the pressure are de�ned:

Ph =
n
qh 2 C0 (
 h) : qh jK 2 P1 (K )

o
(1.86)

The dimensions of both sub-spaces are:

dim(Vh) = d � (Nn + Ne) dim(Ph) = Nn (1.87)

being Ne the number of elements andNn the nodes in the meshTh(
). By adding
the bubble, the global system to solve is now given by:

0

B
@

Avv 0 Bvp

0 Abb Bbp

B̂pv B̂pb Dpp

1

C
A

0

B
@

Vl

Vb

P

1

C
A =

0

B
@

Fl

Fb

G

1

C
A (1.88)

whereVl 2 Rd� Nn is the nodal velocity vector andVb 2 Rd� Ne represents the barycen-
ter velocity vector. P 2 RNn is the pressure vector. For numerical construction, we
address here some properties of the bubble functions, the �rst obtained by the Gauss
divergence theorem denoted as the transmissible property of the bubble and the second
due to the orthogonality of the bubble function respect to C. Both detailed in [24] :
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Z

K
p̂hr � bh = �

Z

K
r p̂ � bh (1.89)

Z

K
C : r bh = 0; 8 tensor C constant in K (1.90)

In order to reduce our system, we can use a classical technique by condensing the
bubble function, such that:

AbbVb + BbpP = Fb ! Vb = A � 1
bb (Fb � BbpP) (1.91)

this provides a mixed velocity-pressure formulation having as unknowns the nodal
velocities and pressures. The �nal system is written:

 
Avv Bvp

B̂pv Cvb + Dpp

!  
V
P

!

=

 
Fl

Fp

!

(1.92)

with,

Cvb = � B̂pb A � 1
bb Bbp and Fp = G � B̂pb A � 1

bb Fb (1.93)

In what concerns the implementation of this formulation in Cimlib [25, 26, 27], we
have integrated in the library a newStokes Anisotrope Compressible solver as a
heritage of an available solver (StokesMiniTestBulle) available in the numerical library of
CEMEF. The new terms added are underlined.

� for the linear subspace vh:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

A 2 M dv ;dv (R) ; Apm =
Z


 h

2� _"(v) : r � m + T4 : _"(v) : r � m+

T2 _"(v) : r � m + _"(v)T2 : r � m � r p � � m

B 2 M dv ;dp (R) ; Bmp =
Z


 h

� � m r � v + � m v � � t r T + � m v � � � r �

D 2 M dp ;dp (R) ; Dmp =
Z


 h

� p � m

(1.94)

� and for the bubble bh:

8
>>>>>>>><

>>>>>>>>:

A 2 M dv ;dv (R) ; Apm =
Z


 h

2� _"(vb) : r � m + T4 : _"(vb) : r � b
m+

T2 _"(vb) : r � b
m + _"(vb)T2 : r � b

m � r p � � b
m

B 2 M dv ;dp (R) ; Bmp =
Z


 h

� � m r � vb + � m vb � � t r T + � m vb � � � r �

(1.95)
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1.2.3 Computation of local matrices - momentum equation

Term T4 : _" : To introduce the �rst anisotropic term due the �ber network, we �rst
simpli�ed its integral by noticing that:

Z



(T4 : _") r v =

Z



T4 : r vh : r wh (1.96)

In the discrete space, the expression is written:

Z

K

dX

ijkl

Tijkl Vm
@�l
@xk

@�j
@xi

(1.97)

Term T2 _" + _" T 2: The second anisotropic term is also simpli�ed by deriving:
Z



(T2 _" + _" T 2) : r v =

Z



T2r vh : r wh + ( T2r vh)t : r wh (1.98)

and its discrete contribution is written:

Z

K

dX

ijk

Tik Vm
@�k
@xj

@�j
@xi

+
Z

K

dX

ijk

Tki Vm
@�j
@xk

@�j
@xi

(1.99)

1.2.4 Computation of local matrices - mass equation

Term v � d: The term to take into account the implicit part of the volumete variation
states:

Z



(v � d) q =

Z

K

dX

i

Vm � i
m di � m (1.100)

Term �p : The term taking into account the compressible part resulting:
Z



� p q =

Z

K
� p̂h qh =

Z

K
� P̂m � m � m (1.101)

Remark: The integration space for the mass term implemented in this work are pro-
portional to the multiplication of the test function without derivatives (term v q and term
p q). The space assigned to the bilinear form for this case is of second order (multiplica-
tion of two piece-linear functions). The Gauss points used in the integration corresponds
after multiplication to a second order polynomial expression.

1.2.5 Resolution and stabilization of the thermo-kinetical prob-
lem

The heat equation is formulated as the particular case of an unsteady convective-di�usion-
reaction equation. Classical Galerkin methods fail and generate numerical oscillations of
the solution, when the convection term becomes important. Same oscillations problems
are founded in di�usion problems during the treatment of thermal shocks. These non-
physical oscillations for the classical Galerkin methods come from the discretization of
the �rst order spatial derivative in the convective term, overcoming others di�usion or
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reaction contributions. To avoid these instabilities, several techniques are described in
literature, among them, the SUPG (Streamline Upwind Petrov Galerkin ) [28], the SCPG
(Shock Capturing Petrov-Galerkin) [29] and the RFB (Residual Free Bubble) [30]. All
theses methods attempt to stabilize the numerical oscillation by adding an extra di�usion
during numerical resolution. In this work, we use the RFB for di�usive dominant problem,
whereas the SUPG method for the convective dominant cases.

Let us use the spaces de�ned in section 1.2.1For the thermo-kinetical problem ,
the Galerkin variational formulation is given ,in its weak form, as follows: �ndu 2 H 1

0 (
)
and �nd a 2 H 1

0 (
) such that:

8
>>>><

>>>>:

Z



� c p

dT
dt

u �
Z



� � H �

d�
dt

u �
Z



T � v

t
dp
dt

u �
Z

K
r (k r T) u =

Z

K
s : r v u

Z




d�
dt

a =
Z



F (�; T ) a

(1.102)

Instead of solving the coupled system, we use a �xed point method and we split both
resolutions. For the thermal resolution, the reaction represents a source input denoted
as _q. So, for the thermal problem, we solve foru 2 H 1

0 (
) such that

Z



� c p

dT
dt

u �
Z



T � v

t
dp
dt

u �
Z

K
r (k r T) u =

Z

K
s : r v u +

Z

K
q u (1.103)

and for the conversion degree,� resolution, we look, fora 2 H 1
0 (
) to �nd � such

that:

Z




d�
dt

a =
Z



F (�; T ) a (1.104)

The stabilization of the thermal problem is given by de�ning test functions u,
such that:

u = uh + � v � r uh (1.105)

As noticed in the previous expressions, the term� represents a numerical variable
in order to stabilize the method. Basically, by adding a di�usive term to the scheme,
we guarantee a stable solution. The new term stabilizes the convection scheme, since
it adds a di�usion in the direction of the velocity v. Many works established that the
stabilization term � can be related to the terms de�ning the convection-di�usion-reaction
equation by the following relation [31]:

� K =

 
4k
h2

K
+

2jvj
hK

+ j� 0j

! � 1

(1.106)

and � 0 is by de�ned using all the terms proportional toT [32]:

� 0 =
� c p

� t
+ � v

t
dp
dt

(1.107)

hK is the characteristic dimension of the triangle in the streamline direction [31],[33]
computed by the form [34]:
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hK = 2

 kX

�

�
�
�
�
�

ai

kak
@N�
@xi

�
�
�
�
�

! � 1

(1.108)

The stabilization of the reaction problem is given by de�ning the test function
a as:

a = ah + � v � r ah (1.109)

In a similar ways, as has been done for the thermal problem, the stabilization term is
given by taking only the convective term of the stabilization term de�ned in eq. (1.106),
obtaining:

� K =

 
2jvj
hK

!

(1.110)

We coupled this stabilization of the numerical resolution with a strategy for adapting
the time step. We de�ne our interval � t i such that the gradient of the temperatureT
and the conversion degree� are bounded to guarantee an accurate description during the
chemical reaction. The next section deals with the description of strategy for space and
time adaption.

1.3 Space and time adaptation

This section explains the strategy to improve the mesh discretization with a mesh adap-
tation technique based on a posteriori edge-error estimation. In Figure 1.1 an example of
mesh adaptation is given in the computational domain, whereas in Figure 1.2 the contour
of the mesh located at the iso-value zero of the level is presented. The mesh is anisotropic
and follow the level set gradients of the embedded bodies. Such mesh is built following a
metric construction. The metrics concept is introduced connecting it with the topology
of the space. We coupled our resolution with this mesh adaptation strategy in order to
reduce the computational cost and increase the accuracy. Additionally, due to the non
linear behavior of our thermal and mechanical properties, the variations per increment
must be controlled. The needs of time adaptation comes from the strong sharp behavior
of the kinetic reaction in the composite. The formulation of the Stokes problem is not
time dependent, however, the compressibility factor depends on a volumetric deforma-
tion which is time dependent. The heat equation and conversion degree evolution are
strongly related to a time discretization. For that reason, a strategy for time adapta-
tion is adopted. The temporal variation per time step is computed taken both its local
variations and the convective part. The latter is determined using the velocity and edge
gradient and by coupling the temporal strategy to the metric de�nition. The next time
step is then obtained by bounding the projected variation.

1.3.1 Mesh adaptation on a edge-based error prediction

Let a mesh �eld in the space be described by the junction of edges of elementsK .
One edge contains two nodes de�ned by the subindexi; j with the value of the function
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Figure 1.1: Example of mesh adaptation along the level set �elds. We visualize the
di�erent domains, namely, the punch and mold in red, the SMC in green, the air in blue.

Ui = uh(x i ) and coordinatesX i and being any variableF ij = F j � F i . The metric is
de�ned, in dimensiond and per nodei containing K (i ) surrounding elements as:

M i =
jK (i )j

d

0

@
X

j 2 K (i )

X ij 
 X ij

1

A

� 1

: (1.111)

Let Gi be the gradient of a functionUi de�ned directly at the node i of the mesh. Gen-
erally this gradient may be obtained by solving a minimization problem of the piecewise
constant gradient on elements (for the case of P1 elements). These gradients are computed

on the edges and moved as solution on the nodes through
�

argmin
G

� X �
�
�G � X ij � U ij

�
�
�
2
��

or by using the metric through the expression:

Gi = d M i � U i : (1.112)

Figure 1.2: Mesh adaptation contour for 3D embedded body. Notice the mesh size along
the curvatures of the geometry.

Coupez [21] shows that each measure of the interpolation error on the edgeeij is equal
to the di�erence of the gradient through:
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ei;j =
�
�
�Gij � X ij

�
�
� (1.113)

The idea of the remeshing step is to minimize the erroreij in a simplex K, under the
constraint of a �xed number of nodes (equivalent to a �xed number of edges,A). The
mesh is optimized when the local error on each edge is the same. In order to get this
homogeneous error, some nodes need to be moved, deleted or created. A concentration
of nodes relies in regions of important gradients. Coupez [21] proposed to modify the
length of the edges, obtaining the same result. Firstly, a normalized global error along
all the edgeseedge is de�ned depending on the number of edgesA given as:

eedge =
P

i 6= j jK (ij )j eij

Ad
(1.114)

whereK (ij ) is the patch of elements sharing the edgeX ij , eedge provides an estimation
of the minimal average error that the current mesh, limited by the edgesA, will have
once the mesh is well adapted. Consequently, comparing theeedge with the local error eij

a stretching edge factorsij is obtained. Notice that the factor
1
d

appears as dependent

of the space dimensiond 2:

sij =

 
eedge

eij

! 1
d

(1.115)

Then the new length distribution vector X̂ ij is computed using:

X̂ ij = sij X ij (1.116)

X i X j
X̂ i X̂ j

sij X ij

The stretching factor sij not only modi�es the edge length but also rotates a single
element since the stretching factors are not the same for all the edges of a simplex. Coupez
[21] showed that the new error on the edge isenew

ij = sij
2eij . In addition, as a consequence

of repeating the process iteratively, a mesh in which the error is homogeneous and the
stretching factor sij tends to 1 everywhere is obtained. Visually, we found �ner meshes
in the direction of higher gradients and coarser meshes in stable domains.

2In the work of Coupez [21], it was proved that factor 1=d actually is replaced by p=p+ 2, which
measures a limit condition on the mesh when forcing a �xed number of edges. Here, for sake of simplicity,
we present the strategy for a non-limit edge condition. The reader is referred to [21] for details when the
number of edges is �xed. The procedure evoked here remains the same as in the original paper.
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Local Remesh

Generally, the remeshing technique is adopted in the whole computational domain. In
order to optimize this task and reduce the computational cost, a more suitable strategy
is to adjust only a particular subset of an existent low-quality grid. The local remeshing
step removes the low-quality elements modifying its topology until a certain quality is
reached. The concept of quality of the element is here extended not only to a geometrical
factor, i.e stretched or isotropic elements. Instead, we use the junctions of functionU i (a
vectorial �eld) and relate its error to the element quality. For our case, these functionU i

contains a level set function, the velocity �eld, the temperature and the reaction degree.
By adopting this strategy, we only modify the elements below a given quality.

Lagrangian-Eulerian adaptive mesh strategy

In our particular case, the mobile body (punch) has a de�ned velocity pro�le. Its asso-
ciated level set moves with a �xed velocity. After the mesh is well adapted, the level set
is displaced in the next time step causing the changing of the quality of the elements in
its vicinity. The punch moves with a known velocity. If the re�ned mesh related to this
level set is also displaced in time, the good quality of the mesh is kept, and the remeshing
step can be avoided. For that reason, we treat the mobile body as a Lagrangian space
(see Figure 2.9b).

Punch

Die

Composite
Air

Lagrangian Mesh

Adaptive Mesh

Body Immersion

Figure 1.3: Strategy for body immersion with an adaptive mesh procedure. The meshes,
Lagrangian in the punch and Eulerian in the air, die and preform

By mixing the mesh motion formulation, a transition zone between Lagrangian Adap-
tive mesh and Eulerian space is represented.

Since our computational domain remains the whole picture, a convection velocityu
for the transport of variables needs to de�ned. The velocity to transport the �elds in our
formulation states:

u = v � vmesh (1.117)
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The mesh velocity is the velocity associated to the mesh motion during the simulation.
For nodes that does not move this velocity is zero. For nodes moving at the imposed
velocity such as the punch (vmesh = vBC ). For the Lagrangian zonevmesh = v and for the
Eulerian part vmesh = 0. Please notice thatu = 0 in the Lagrangian mesh, meaning not
transport is needed andu = v in the Eulerian, which is the general formulation of our
framework.

1.4 Time adaptation based on a bounded increment
gradient

General idea

The strategy is based on the principle of bounding the increment variation of the variable
U. Knowing its temporal derivative, _U, we look for:

� Ut = Ut+1 � Ut = _U � t � � MAX (1.118)

We search for a time step �t such that the function U i does not vary more than the
bounded value � MAX .

Strategy in our numerical framework

For a given scenario in timet, computed using a time step �t � , we compute now the
temporal variation Gt

i of the variable U, as:

Gt
i =

U i � U i � 1

� t
+ v � dM i � U i

| {z }
dU
dt

=
@U
@t

+ v � r U

(1.119)

where we use the estimation of the spatial gradient ofU by projecting the metric M ,
de�ned in eq. (1.111), in the direction of the variableU, as used in the mesh adaptation
strategy. Please notice thatdM i � U i = Gi according to eq. (1.112) . The predictive
variation is given by the projection of the gradient in the current time step:

� t
i =

�
�
�Gt

i

�
�
� � t � (1.120)

Similarly to the space adaptation procedure, we compare the temporal variation with
respect to a given bounded value �temp and we determine the temporal stretching factor
st as:

st = MAX

 
� t

i

� temp

! � 1

(1.121)

Finally, this stretching factor gives rise to the next time step �t with the form:

� t = st � t � (1.122)
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Notice that the stretching factor is 1 when the discrete evolution equals the criterion
(� t

i = � temp ).

1.4.1 Resolution and optimization

The resolution of the linear system is performed using the PETSC (Portable, Extensible
Toolkit for Scienti�c Computation) library, through a preconditioned iterative method.

� Transport of the levelSet function + Correction for mass conservation (See
Chapter 2)

Computing of the position of each phase by adopting a convective scheme for the

uid and a rigid motion for the punch and the mold.

� Mesh adaptation

min f eij g = L2 : eij f v; T; �; �; � � g

� Mechanical problem (non-linear - �xed point )
�
�
�
�
�
�
�
�
�
�
�

8
>><

>>:

r � (2� _" + T4 : _" + T2 _" + _" T2) � r p̂ = � extra ( _" th ; _" ch)

r � v + � p̂ � tr ( _" th ) � tr ( _" th ) = 0

� � � � � � � � � � � � ��
update �; T 2; T4

) (vt+1 ; pt+1 )

� Evolution of the viscoplastic volumetric deformation in the material
8
><

>:

@"v
@t

+ v � r " v = � p̂

� r = 1 � � p(" v)

enabling the actualization of the porosity fraction� p, the local �ber fraction � f and
viscosity consistency� f .

� Thermo-Kinetical problem (non-linear - �xed point )

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

8
>>>>>>>>><

>>>>>>>>>:

� r � d cp
dT
dt

� r (k r T) = � � H � F (�; T ) + T � T
dp
dt

+ s : r v

d�
dt

= F (�; T )

1
� d

d� d

dt
= � v

T
dT
dt

+ � v
�

d�
dt

update �; C p; F (�; T )

) (T t+1 ; � t+1 ; � t+1
d )
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� Calculation of next time-step � t

bound
n
G t

i

o
= Gt

i f T; �; � g

1.5 Conclusions

A full thermo-mechanical model was introduced to compute the reactive, non-isothermal
3D compressible 
ows, based on continuum mechanics principles. Compressibility and
reaction induce new unknowns with respect to the traditional isothermal incompressible

ows found in literature when dealing with SMC materials. The porosity on the mate-
rial decreases during the compression of the piece and is always a non-reversible process.
From that, its modeling does not depend on the sign of pressure evolution. Thermal and
chemical evolution however, does modi�es the density in a reversible way. Its model-
ing, as the one found in literature for other materials, depends on the derivative of the
temperature and conversion degree. Integrating a model accounting for all these phe-
nomenological evolution has not been established before for the study of SMC materials.
The full thermo-mechanical coupling, integrates the general contribution of diverse source
of strain rates deformations into a momentum a mass conservation equations. We prove
the a full thermo-mechanical system may required the resolution of 6 equations having
as variables the velocity, the pressure, the volumetric deformation, the temperature, the
reaction degree and the dense state density.

In addition, this chapter discussed the integration of such anisotropic behavior of SMC
in our numerical framework. There, we present the Finite Element Method approach used
in this work. We presented punctually all the contributions of the anisotropic compress-
ible Stokes solver we implemented, with respect to the standard Stokes resolution.

The next chapter focus on the description of the level set method and its strategy
when modeling multy-body objects. Some drawbacks of the methodology are highlighted
and the solution for the problem of mass lost on dynamics immersed objects is given.
Additionally, it is shown the potential of our numerical tools to deal with complicated
3D geometries in compression molding simulations.
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Summary

In this chapter, the use of level-set method to describe surface under deformation is con-
sidered. The methodology of level-set approach as a signed distance function being mostly
narrow-banded is introduced. Particularly, the strategy used in this work to deal with
compression molding simulation is explained detailing the advantage and requirements
of the implicit description of surfaces. Mainly the punch, the mold and the pre-form are
described by the implicit level set function in a whole domain (immersion framework).
The narrow-banded level set used generally to improve and simplify the convection al-
gorithm to describe the motion of the object as well as to support a mesh adaptation
strategy is revised. Here, it is used the linear hyperbolic tangent band and the convection
is supported on a local booster (reinitialization of normal velocity to move the iso-values
for keeping metrics properties).

Consequently, �rst a study on consevative properties of this method is carried out
concluding that during compression the gradient of the velocity within the thickness can
induces volume/mass lost of the preform due to the discrete scheme of the level set ad-
vection step. This volume lost is a known drawback of the level set method. For the case
of a simple disk compression, during this phd was recorded a volume lost of 6%, whereas
for industrial applications the lost was recorded up to 30%. A study of the impact of
the mesh adaptation and the time step discretization is performed concluding that the
mesh adaptation algorithm causes higher lost than using a �x isotropic mesh and that
smaller time step for the convection also translates higher volume lost. These results can
be understood since the mesh adaptation algorithm has a step of transport of variables
and the updated con�guration might not be conservative. The time step discretization
show that if the time step is smaller, the lost per iteration is smaller. However, since to
complete the same simulation more iterations are used, the lost at the end of simulation
are higher. Knowing that this topic di�ers form the main objective of this work, a en-
gineering solutions was proposed. Based on a Newton-Raphson algorithm a corrective
procedure is used and detailed to recover the volume/mass lost per iteration along the
computation fo industrial parts. An exmaple using industrial geometry proves the decre-
ment from 30% down to 0.1%.

The last section of the chapter introduces a immersed technique to compute the
compression force during deformation of the part. A problem for immersion domain
where the standard formula force equal stress times surface can be not obvious since the
surface are not explicit. The strategy is based on the viscous power dissipation principle
and proved to reduce oscillations and to provide with the same solution that standards
highly mesh dependent solutions.

R�esum�e en Fran�cais

Dans ce chapitre, on consid�ere l'utilisation de la m�ethode de level-set pour d�ecrire la
surface sous d�eformation. La m�ethodologie de l'approche de niveau comme une fonction
de distance sign�ee �etant principalement �a bande �etroite est introduite. En particulier, la
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strat�egie utilis�ee dans ce travail pour traiter la simulation de moulage par compression
explique l'avantage et les exigences de la description implicite des surfaces. Principale-
ment, le poin�con, le moule et la pr�eforme sont d�ecrits par la fonction implicite de r�eglage
de niveau dans un domaine entier (cadre d'immersion). Le jeu de niveaux �a bande �etroite
utilis�e g�en�eralement pour am�eliorer et simpli�er l'algorithme de convection qui d�ecrire
le mouvement de l'objet ainsi que pour soutenir une strat�egie d'adaptation de maillage
est r�evis�e. Ici, on utilise la bande tangente hyperbolique lin�eaire et la convection est
support�ee sur un booster local (r�einitialisation de la vitesse normale pour d�eplacer les
iso-valeurs en gardant les propri�et�es des distances).

Par cons�equent, d'abord, une �etude sur les propri�et�es conservatives de cette m�ethode
est r�ealis�ee en concluant que pendant la compression, le gradient de la vitesse dans
l�epaisseur peut induire une perte de volume / masse de la pr�eforme due au sch�ema discret
de l'�etape d'advection dans la m�ethode level-set. Ce volume perdu est un inconv�enient
connu de la m�ethode level-set. Pour le cas d'une compression de disque simple, pendant ce
�chier a enregistr�e un volume perdu de 6 %, alors que pour les applications industrielles,
la perte a �et�e enregistr�ee jusqu'Ã  30 %. Une �etude de l'impact de l'adaptation du mail-
lage et de la discr�etisation du pas de temps est r�ealis�ee en concluant que l'algorithme
d'adaptation du maillage entrâ�ne une perte plus �elev�ee que l'utilisation d'un maillage
�xe isotrope et que le temps de passage plus petit pour la convection traduit �egalement
une perte de volume plus �elev�ee. Ces r�esultats peuvent être compris puisque l'algorithme
d'adaptation au maillage comporte une �etape de transport des variables et la con�gura-
tion mise �a jour pourrait ne pas être conservatrice. La discr�etisation temporel montre que
si l'intervalle de temps est plus petit, la perte par it�eration est plus petite. Cependant,
puisque pour compl�eter la même simulation, plus d'it�erations sont utilis�ees, les pertes �a
la �n de la simulation sont plus �elev�ees. Sachant que ce sujet di��ere de l'objectif prin-
cipal de ce travail, des solutions d'ing�enierie ont �et�e propos�ees. Bas�e sur un algorithme
de Newton-Raphson, une proc�edure corrective est utilis�ee et d�etaill�ee pour r�ecup�erer le
volume / la masse perdue par it�eration le long du calcul des pi�eces industrielles. Un
example utilisant la g�eom�etrie industrielle prouve le d�ecr�ement de 30 % �a 0.1 %.

La derni�ere section du chapitre introduit une technique immerg�ee pour calculer la
force de compression lors de la d�eformation de la pi�ece. Un probl�eme pour le domaine de
l'immersion o�u la formule standard for�ce �egale constrainte fois surface n'est pas Ã©vidente
car la surface n'est pas explicite. La strat�egie est bas�ee sur le principe de dissipation de
la puissance visqueuse et s'est av�er�ee r�eduire les oscillations et fournir la même solution
que les normes de solutions fortement d�ependantes de mailles.

2.1 Introduction

The Level set approach is a conceptual framework for the analysis of surfaces and shapes
initiated by Osher [1]. Such modeling eases the numerical computations involving curves
or surfaces and can be performed on Cartesian grids without needs of space transforma-
tion. Within the Eulerian framework, the level set method enables, by solving di�erential
equations, the tracking of topology changes, when modeling time-varying objects. More
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often, it provides an implicit function which allows the description of the interface, to
which we can link other functionalities. For instance, a direct and accurate computation
of the surface normal vector and its curvature, in particular, during ongoing simulations.

Punch (phase 2)

Die (phase 3)

Composite (phase 1)
Air (phase 4)

Rigid Body

Rigid Body

Body Immersion

Figure 2.1: Schematic illustration of the di�erent phases in compression molding that
may be consider for the modeling. All phases "immersed" are in a single computation
domain. We distinguish the composite (H1), the punch (H2), the die (H3) and the air
(H4) by means of implicit functions.

In fact Level set is a framework to describe boundaries. Using Level set in immersion
methods extends such framework to a volumic representation of objects. In order to rep-
resent volumes using this implicit function, one considers a single computation domain
and each object (body) is "immersed". In Figure 2.1 the di�erent necessary objects for
compression molding simulation are the composite, the die and the punch. All immersed
in the domain. As a result, four phases appear: one per whole body and the fourth one
denoted as the air.

In this work, we solve the governing equations for 
uid dynamics applied to compres-
sion molding simulation in the whole computational domain. All the bodies immersed
in the computational domain are analyzed by adopting adequate behavior laws and con-
stitutive equations. Two objects are considered as rigid tools, whereas the composite
material and the air are modeled as explained in Chapter 1. However, the motion of the
punch and of the die bodies is pre-de�ned since the velocity is given as input parameter.
In our formulation, those bodies (assumed rigid) are modeled by increasing its viscosity
in order to have strain rates much lower than the one of SMC and air. The motion of
the interfaces are ruled by:

3 bodies + air =

8
>>>>>>><

>>>>>>>:

1 Mobile �! velocity v imposed

2 Fluids (SMC + Air) �! velocity v obtained by r � � = ~0

1 Static �! velocity v = ~0
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(a) Visualization of the �nner discretization along
the interfaces of the body, where we notice a thick
region of small mesh sizes.

(b) Visualization of the �nner
discretization in a thicknessE.
The interface is located in the
middle of the thickness.

Figure 2.2: Immersed Body Approach: the composite and the dies are immersed and
tracked by a level set approach coupled with mesh adaptation.

In order to improve the discrete description of each phase, the topology (mesh) is
re�ned in the vicinity of the respective interfaces after immersion. We solve the 
ow
physics in the whole domain and the mesh is adapted (Figure 2.2) along a thickness
E in the neighborhood of the interfaces. Figure 2.2a shows the anisotropic mesh sizes,
highly dense near the interface. There, a thick region containing the minimum mesh size
is observed. Usually, the interface between two bodies is located in the center of the
aforementioned region or thickness, as illustrated in Figure 2.2b.

A �rst option for the implicit function computation is to use the level set function,
� , which is the signed distance function and an independent one should be de�ned per
object. However, one level set function enables the di�erentiation of two bodies. The
relation Phases = Level sets + 1 allows to have one level set less than bodies in our
computation domain. Particularly for representing 4 phases we required just of three
Level sets. When assigning one level set function to a particular phase, this function is
de�ned positive inside the phase, negative at the exterior and zero in the interface as
de�ned eq. (2.1) :

� =

8
>>>>><

>>>>>:

+ d(x; �) if inside the body

0 if in �

� d(x; �) if outside the body

(2.1)

Once assigned a Level set per body, we have a fully implicit description where all the
interfaces are de�ned by its corresponding level set function. Knowing the velocity of each
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object, we reconstruct a distance to an interface by solving a PDE. More speci�cally, to
displace an interface, we solve a convection equation ,eq. (2.2), using the velocity resulting
from the resolution of the conservation equations:

@�
@t

+ v � r � = 0; (2.2)

This resolution will need to be coupled to a re-distancing algorithm to re-establish
the metric properties of� , either by solving the eikonal equation [2] or by adopting an
uni�ed formulation [3]. Further details will be given in the next section. We mainly need
to adapt the mesh because we need a good continuous description of the properties that
are normally discontinuous. Once the level set is moved, the spatial discretization must
follow the interface to preserve a smooth discrete description of the continuous� and of
the discontinuous properties.

In order to couple this level set to the mesh adaptation algorithm, the level set function
� is smoothly bounded along a characteristic thicknessE (here denoted as narrow Level
set). In Figure 2.3 the narrow level set function is introduced without applying a smooth
transition. One of the advantages of the narrow level set is the limitation of the convection
equation to a space near the interfaces. Additionally, connecting the level set gradient
to the mesh provides an intrinsic coupling of the discretization with the kinematics as
will be depicted later on this chapter. However, the truncation needs to be smooth since
the trucanted level set illustrated in Figure 2.3 contains to point where the gradient is
in�nite. This causes numerical problems when solving eq. (2.2).

� 0:6 � 0:5 � 0:4 � 0:3 � 0:2 � 0:1 0 0:1 0:2 0:3 0:4 0:5 0:6
� 0:6

� 0:4

� 0:2

0

0:2

0:4

0:6

Distance to surface

Level set function and its associated Heaviside

Level set�
trucanted Level set�̂

Figure 2.3: Representation of level set function� as a distance and the truncated level
set function �̂

After the truncation of the level set� , the identi�cation of the two materials bounding
this interface is performed. The inherent properties of these materials such as the density
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� , the viscosity � , etc must be distinguished in the �nite spaceE. We de�ne then the
Heaviside functionH per phase to equal 1 in one phase and 0 in the other phases. This
function is equal to 0:5 at the interface and normally is discontinuous. We need to make
it continuous since the function is applied on discrete spaces and discrete functions can
causes numerical instabilities during resolution. We attempt to describe its discontinuity
by assigning a continous evolution of the function and its gradient along the characteristic
thicknesse. Normally, the thickness of this transition is given by a space regione such
that e < E , in which any property changes smoothly between one body to another. It
was shown in [4, 5, 6] the evolution in the convergence of the method being strongly
dependent on this thicknesse. Summing up, the thicknessE and e de�ne two important
characteristic lengths of the approach:

� E �! de�nes the smoothing length for the phase function

� e �! de�nes the numerical precision through the smoothing of the physical prop-
erties.

Coarse Mesh Fine Mesh Coarse Mesh

� after convection� before convection

Air
� 2; � 2

Composite
� 1; � 1

� � t+� t

e

E

Figure 2.4: Relative position of the interface within the �ne mesh zone, before and after
the convection scheme. The �ne mesh zone of thicknessE contains not only the interface
after convection, but also the thick spacee for numerical precision.

These two thickness are independent and the only condition established so far is that
e < E . Figure 2.4, schematically shows the level set convection within the mesh thickness
E. The level set� is displaced to the position� t+� t , but the thicknesse after convection
remains inside the thicknessE. If the interface leaves the �nner region, the PDE using
for the level set convection may cause instabilities in the solution. Such instabilities will
determine unaccurate physical properties of the density, viscosity, etc that will cause fur-
ther problems during the mechanical resolution. By guaranteeing that after convection
the thicknesse remains inside the �ne mesh zone, the good description of the physical
parameters before and after convection are guaranteed. Since the thicknesse always re-
mains inside the �nner volume delimited byE. Eventually, the re-meshing tool is called
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and the interface is set again inf the middle of thick regionE. This represents one of
the advantages implicitly contained by using two independent thicknesse; E instead of a
only one characteristic length.

All the previous points, addressed in this introduction, embed issues when using the
level set approach as phase description support. Those issues were translated into a not
proper description of the convective scheme within the level set advection step, loss of
volume and penetration of the tools into the bodies, due to rigid motion of the punch
and die. They were treated in this work and are detailed in the following.

A �rst issue to be treated concerns the choice of a smooth function̂� and the suitable
strategy to choose the thicknesse. Former works were performed [7] taking a hyperbolic
tangent level set supported on a thicknessE. Then, in order to compute the Heaviside
function, a non-linear expression to the hyperbolic level set function is calculated. The
question remains for the Heaviside functionH that is supported on a non-linear function,
that needs also to be de�ned.

Another problematic, associated to the discrete resolution of the convective scheme
in the level set method, is addressed hereafter. The non-conservative form of the discrete
function eq. (2.2) does not guarantee the conservation of the volume for incompressible

ows or mass for more complex problems. Many authors have suggested improvements to
the level set method by coupling the convection equation to a correction step, recovering
the conservative and metrics properties. However, even if those strategies have improved
the convection step, the methods has not been well established for complex 3D industrial
cases. Further studies should be conducted to justify their robustness.

In our case, the velocity pro�le of the mold and of the punch are known in our numer-
ical set up, with a de�ned velocity pro�le. In immersed methods only the imposition of
Dirichlet conditions in the boundaries of the domain guarantee a stable solution. Impos-
ing to the whole body a rigid motion may introduced instabilities int he solution. The
modeling of stable rigid motions in embedded geometries is of interest when dealing with
compression molding simulations and is discussed later in this chapter.

The steps described in the following of this chapter are hereafter introduced. Firstly
the level set approach is formalized and the step assigned to conserve its metric prop-
erties is analyzed. Examples of di�erent smoothed level set and Heaviside functions are
given, focusing on their connection between the thicknessesE and e. We will see that
the introduction of a linear hyperbolic tangent level set as smooth function enables the
exact computation of a Heaviside function and of a Dirac function within the thick-
nesse. A study on local re-initialization is conducted, focused on the in
uence of the
re-initialization velocity, when solving the convection-reinitialization step. There, we pro-
pose a strategy to improve the computation of the reinitialization of the level set based
on the normal velocity gradient.

Secondly, as a straightforward application of the linear hyperbolic tangent level-set, we
have developed a conservative strategy to correct the volume loss during the convection
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of the level set in discrete schemes. Our methodology introduced as handy in a Newton-
Raphson algorithm, requires the computation of a Dirac function as the derivative of our
assigned Heaviside function. The Dirac function stands within the thicknesse, putting
in evidence the advantages of the linear hyperbolic tangent level set. We enriched the
method to account for mass conservation, when studying compressible 
ows. We present
numerical cases, where the conservation algorithm proof pro�ciency and we comment on
the limitations of the approach.

In the last section, we address the problem of computing the compression force on a
"di�used" or implicit boundary" interface approach. The force is the mechanical variable
describing basically all the rheological response of the material under deformation. The
force is used to validate the numerical approach when comparing it with the force exerted
by the machine in experimental tests. Instead of computing the force by a surface integral
as used in standard methods, we use a virtual work principle based on the viscous power.
Thus, we associate deformation energy to the compression force getting stable and proper
values.

2.1.1 Background in Level set methods

Level set methods were introduced to represent implicitly interfaces and free surfaces �
by de�ning a scalar �eld � (x ), eq. (2.3), such that:

� = f x =� (x ) = 0 g: (2.3)

where� (x) was de�ned previously.
For multi domain body immersed computations, a level set is de�ned to each body.

By making use of this de�nition, a smooth Heaviside function eq. (2.4), will be built over
a characteristic thickness of 2e, as de�ned by:

H e(� ) =

8
>>>>>><

>>>>>>:

1 if � > e

1
2

 

1 +
�
e

+
1
�

sin(
��
e

)

!

if � e < � < e

0 if � < e

(2.4)

This enables a continuous de�nition of the properties transition along the interfaces.
This functions will help during the resolution of the mechanical problem to identify
the di�erent phases in the domain, assigning as inlet the properties of each material
independently. For instance, given a property� to each material, we can de�ne a single
space-dependent for the numerical resolution by doing:

� = HSMC � SMC + Hmold � mold + Hpunch � punch + Hair � air ; (2.5)

The last phase (air) is de�ned as the complementary of the other phases (Hair = 1 �
HSMC � Hmold � Hpunch ).

After resolution of the system given in section 1.1.5, the immersed bodies can be
identi�ed by H (� ) and the boundary @
 n of each sub-set by the iso-value zero� n = 0.
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Moreover, the interface may evolve since a velocity �eld a�ects not only the sub-set but
also the interfaces. For tracking the evolution of the interface, each sub-set� is convected.

Convection and Re-initialization

Once our level sets functions de�ned; fort = 0 as � 0, their motion can be described by
the advection relation, using the transport velocity �eld u :

@�
@t

+ u � r � = 0; (2.6)

� (t = 0; x) = � 0; (2.7)

which generalizes eq. (2.3). Convecting the �eld� only guarantees its iso-value zero
to be correct. For whatever velocity �eld, solving eq. (2.6) normally disturbs the metric
properties of the level set function since the transport velocityu in the direction of the
level set gradient causes the iso-contours� to get closer or farther from the interface. This
implies that for any iso-value� 6= 0 the convection step will enhance loss of the distance
property. For this reason, in order to recover the distance properties, a re-initialization
step is performed, by solving the eikonal equation:

kr � k = 1: (2.8)

Some authors [2] solve directly eq. (2.8) when redistancing is necessary, others [8, 9, 10]
couple the convection-reinitialization steps and solve a generalized form of the advection
equation given by eq. (2.9):

@�
@t

+ ( u + � U ) � r � = � s (� ); (2.9)

where� is a numerical coe�cient, so-calledbooster, depending on mesh-size and time-

step, U is a re-initialization velocity de�ned by U = s(� )
r �
jr � j

and s(� ) is the sign

function (by convention equals 1 inside the object, 0 at his boundary, -1 at the exterior).
The selection of both� and the time step are based on the Courant-Friendriechs-Levy
condition (CFL condition) computed taking the size of the element in the direction of
the velocity u .

2.1.2 Narrow band level-set function

In order to solve the convection equation, an accurate description of the velocity �eldu
in the whole domain must be guaranteed. However, the usage of a level set present lots
of advantages. Let us bound� in the space such that only in the vicinity of@
 n it varies
from [� E; E ].

� by limiting the value of the distance function, a boundary condition may be �xed
and set to � E;
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� convecting in the whole domain a level set seems ine�cient, since the re-initialization
step will always be done.

� we can couple the mesh adaptation to this narrow function bounding the �ne mesh
to the interest zone, by using its gradient to automatically generate mesh sizes.

Thus, one may use a smoothly truncated distance function, keeping the same iso-value
zero and switch properly to a constant value when the distance increases. One example
is the hyperbolic tangent level set function, eq. (2.10) [7] :

� E = E tanh

 
�
E

!

� �; when E tends to in�nite or in the vicinity of the interface

(2.10)
Normally, the parameter E de�nes the bounded values of the level set. The space

region where the function varies from [� E; E ] approximately equals 3E. Another example
of truncated level set, is the linear sinus eq. (2.11) [7]:

� E =

8
>>>>>>>><

>>>>>>>>:

2E
�

if � > E

2E
�

sin(
��
2E

) if � E < � < E

�
2E
�

if � < � E

(2.11)

In this case, the mixture thicknesse is independent of the value ofE.

Advection of the narrow level set

If the level set function is smoothed, the re-initialization procedure applied can be better
used by taking advantage is smoothing.

As explained in [3], the re-initialization step using a pseudo-time to apply the iterative
algorithm states eq. (2.12):

8
>>>>><

>>>>>:

@�E

@�
+ �U: r � E = �s (� E )g(� E )

� E (� = 0; x) = � t � 1(x)

� E (�; x = @
) = � E

(2.12)

recalling that U = s(� E )
r � E

jr � E j
, where the solution at any time in the boundary of


 is set to the bounded value of the smoothed level-set. The functiong(� ) is given by
eq. (2.13):

g(� E ) = jr � E j (2.13)

Then, the re-initialization function may now be given by eq. (2.14):
8
>>>>>><

>>>>>>:

@�E

@�
+ �s (� E )( jr � E j � g(� E )) = 0

� E (� = 0; x) = � n+1 (x)

� E (�; x = @
) = � E

(2.14)
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where s(� E ) is the sign function. The factor
�
jr � E j � g(� E )

�
represents the di�erence

between the discrete gradient and the exact nodal gradient computed using eq. (2.15) as
function of the smoothing function. For example:

g(� E ) =

8
>>>>>>><

>>>>>>>:

1 for no smoothing

1 �

 
� E

E

! 2

for hyperbolic tangent smoothing
vu
u
t 1 �

 
�� E

2E

! 2

for sinus smoothing

(2.15)

Oncejr � E j equalsg(� E ) ,the re-initialization algorithm converges. Moreover, we can
de�ne a regularized sign function,s(� E ), for a smooth transition, as follows, eq. (2.16):

s(� E ) =
� E

j� E j + E
(2.16)

where the transition is proportional to the the size of the element in the velocity direction.
The thickness of the transition is proportional to the mesh size (E � h).

Meanwhile, the CFL condition, eq. (2.17), in pure advection problems states:

j~vj � t
� x

� 1 (2.17)

The choice of the� parameter is based on the condition:

� � j �U j �
h(U)K

� t
(2.18)

whereh(U) is the size of elementK in the direction of U.
After de�ning the narrow level set, using one of the previous forms, the smoothed

Heaviside shape function can be obtained from eq. (2.19) using:

H E =
1
2

 

1 +
� E

E

!

(2.19)

This expression is equal to 1 inside the object, 0 outside and 0.5 in the interface
(� E = 0 in the interface ). However, respect to the discontinuous case this functions
contains a smooth transition respect to the standard Heaviside function explained in the
introduction.

2.2 Approach

In this section, we present our proposal for the smoothing of level set functions. First,
we present the linear tangent hyperbolic level set used in this work and we write our
Heaviside function, directly as a function of the smoothed level set. Then, we introduce
the formulation for the re-initialization technique by adapting such equation to our linear
tangent hyperbolic. Finally, we propose the computation of important numerical param-
eters, like� , as dependent of the gradient of the velocity in the normal direction. Arising
to the discussion of a local parameter instead of a constant value.
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2.2.1 Linear hyperbolic tangent

As previously mentioned, the importance of truncating the level-set enables a faster res-
olution of eq. (2.9). Also, an accurate resolution is given by guaranteeing a smooth
solution for the velocity in the vicinity of � = 0. Using a hyperbolic tangent automat-
ically smoothed allows us to write the re-initialization step, where the gradient of the
level set is represented by a functiong(� ) containing explicitly � .

We seek for an level set function such that the thicknesse of the mixing layer can be
de�ned in the region in which � E is linear, guaranteeing:

� E
� ! 0 = �; (2.20)

that imposes some conditions betweene and E. For ensure this linearity, in this work,
we apply a linear hyperbolic tangent function of the distance, eq. (2.21):

� E =

8
>>>>>>><

>>>>>>>:

e+ E tanh(
� � e

E
) if � > e

� � if � e < � < e

� e+ E tanh(
� + e

E
) if � < � e

(2.21)

The main contribution of this Level-set construction yields on the exact value of the
smooth level set along the thickness of the numerical precisione (notice that � E = � in
the region � e < � < e ). The level-set is equal to the distance function. The previous
expression (sinus and tangent hyperbolic) where approximate values of the distance, while
this construction ensure the exact distance values.

A smoothed Heaviside function is employed over a characteristic thickness of 2e using
as input the truncated level-set� E eq. (2.22) :

H (� E ) =

8
>>>>>><

>>>>>>:

1 if � E > e

1
2

 

1 +
� E

e
+

1
�

sin(
�� E

e
)

!

if � e < � E < e

0 if � E < � e

(2.22)

We extend the descriptive functions by adding a Dirac function to the approach, thus
enabling operations in the subset@
 inside the volume 
. The Dirac function associated
to the Heaviside function de�ned in eq. (2.22) stands:

� e(� E ) =

8
>>><

>>>:

0 if j� j > e

1
2e

 

1 + cos(
�� E

e
)

!

if � e < � < e
(2.23)

In Figure 4.1, the linear-levelset, the Heaviside and Dirac functions are plotted. Ad-
ditional conditions state for the relation between the thicknesse and the spatial dis-
cretization, with e = O(hd) where hd represents the mesh size in the normal direction
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Level set function and its associated Heaviside and Dirac

Dirac cos(� )
HeavisideLevelset

linear hyperbolic Level set

Figure 2.5: When usingE = 0:15 and e = 0:1 we de�ne level set eq. (2.21) and its
respective Heaviside eq. (2.22)

to the interface. Additionally, we found that to numerically guarantee the the integral

I =
Z e

� e
� e(� E )d
 = 1, the thickness e should be at least �ve mesh sizese = 5hd. In the

numerical experiments, we sete = 6 hd.

In the vicinity of the interface, the latter parameter can be determined according to
eq. (2.24):

hd = max
j;i 2 K

r � � X ij ; (2.24)

whereK is a mesh element in the tight sub-layer around the interface andX ij = X j � X i

is an edge ofK .
For the linear hyperbolic tangent the value of the reinitialization function,g(� ), results

in eq. (2.25):

g(� " ) =

8
>><

>>:

1 �

 
� " � e

E

! 2

if j� j � e

1 if � e < � < e

(2.25)

2.2.2 Re-initialization velocity - A local description

The coe�cient � , mentioned in eq. (2.18), represents a numerical parameter to line spa-
tial and temporal metrics and has been used for a long set of simulations as presented
in [10, 11, 12]. However as its de�nition shows, the choice of a re-initialization velocity
does not depend on a local evolution of the surface. For instance if rigid body motions�
should equal to 0, since the level set has not been deformed. The booster� should re
ect
the amount of reinitialization required depending on how much the level set is locally
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deformed.

Three sources of level set deformation are here described. Firstly, one related to purely

ow kinematics. Secondly, another source due to numerical di�usion associated to the
numerical discretization of the advection step given by eq. (2.6). Thirdly, the discretiza-
tion of sharped edges, which tends to get smooth due to the resolution of eq. (2.14), being
di�cult to overcome without a mesh adaptation technique.

based on 
ow kinematics

Let us de�ne 
 s a subset of 
 2 Rd and let @
 s describes the boundary of 
s such
that @
 s 2 
. Let us now divide the boundary @
 s into two sections such that@
 s =
@
 1 [ @
 2, in which we apply di�erent boundary conditions. Let us de�ne a level set� s

through eq. (2.26):

@
 s = f8 �=� s = 0g: (2.26)

This implies that our level set function is de�ned along the domain@
 s. Let us de�ne,
for each sub-domain@
 1 and @
 2, a thick vicinity � 
 1 and � 
 2, compact in a thickness
[� e; e], such that the velocity condition is given by eq. (2.27)-eq. (2.28)

� 
 2

@
 1


 s u = ~v 2 @
 1; (2.27)

u � r � = 0 2 � 
 2: (2.28)

When solving eq. (2.14), the solution in the subset 
s needs the convection of� = 0
along @
 s and also the re-initialization of its vicinity � 
 s. However, solving in@
 2 does
not imply convection of the � = 0 and it implies also that no re-initialization is needed.
For that reason, the use of a locally� should be instead implemented. Also, in the cases
where the normal velocity on� is more important (and for that the re-initialization is
more important) a di�erent � should be used. This indicates that assigning a local�
proportional of the local normal velocity (u � r �̂ ) seems a better strategy as was also
suggested in [9]. In our work, we propose a� proportional to the gradient of such velocity,
through eq. (2.29):

� � r
�
u � r �̂

�
r �̂ � t (2.29)

being r �̂ the unit-normalized gradient representing the normal to the interface� .
This gradient is narrow banded, it is zero everywhere except in the vicinity of the inter-
face. This concept points out the need of a� value proportional to the velocity gradient
in the normal direction. This expression of� is proportional to the time step, namely, if
a gradient normal to the velocity exist, the iso-values displacement are proportional to
the time step and thus its re-initialization velocity.

Horizontal extension of a circle
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(a) - constant booster t=0s (b) - constant booster t=1s (c) - constant booster t=2s

(d) - local booster t=0s (e) - local booster t=1s (f) - local booster t=2s

Figure 2.6: Deformation of the circle and convection using a constant (a-b-c) and local
de�ned � (d-e-f).

To better illustrate this point, let us de�ne a circle with an initial diameter of 0.1 m
immersed in a box of 0.3m� 0.2m. This circle is submitted to a velocity pro�le of the
form:

v =

8
><

>:

2 (x � xo)
3

2 (y � yo)
2

(2.30)

This velocity pro�le in eq. (2.30) is not divergence free. According to the proposed
local booster, when convecting the level set function some areas required more and some
less speed to reinitialize. In this study, the velocity pro�le is at the origin of an horizontal
stretching of the circle, while shrinking it vertically. The local � is higher in the hori-
zontal direction while lower in some particular sections of the circle. In Figure 2.6, we
compare the solutions for the convection of the circle under the de�ned velocity pro�le.
The level set convection using a constant� loses its metric properties, visualized by the
deformed iso-values. Notice, that for the case with local� , the iso-values remains correct.

The simulations were performed setting a �xed time step, �t = 0:01s. As indicated by
eq. (2.29), the gradient of the velocity in the normal direction is too high a decrease of the
time step should be then applied. In such manner, a combination of the CFL condition
and a bounded local� can be studied to improve re-initialization strategies of level set
methods. However, a deeper study in such �eld is out of scope from the objective of this
work. Further understanding is proposed as a perspective, at the end of this document.

Another important point when using level set methods is the evaluation of their
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conservative properties. The convective scheme of the approach is not conservative,
providing possible mass lost compromising the numerical results.

2.2.3 E�ect of mesh adaptation on volume conservation

In this section, we will focus on the conservative properties of the level set method and its
sensibility to the mesh discretization in the case of compression molding, by de�ning the
simple compression of a cylinder in 2D and 3D. We solve a standard Newtonian Stokes
problem and compare the mass (or volume since density is constant) of the part during
the compression. We set the compression a constant time step and a �xed velocity of the
punch. the initial thickness of the sample is 6 mm and the initial diameter is of 50 mm.
The compression ends at a thickness of 2.6 mm. The initial and �nal state are pictured
in Figure 3.18a.

(a) Simulation - t = 0 (b) Simulation - t = t f inal

(c) Simulation - t = 0 (d) Simulation - t = t f inal

Figure 2.7: Initial and �nal con�guration of the simple compression case. Final defor-
mation � ln(hf =ho) = 0 :8. (a) and (b) velocity pro�le in the piece at the initial and �nal
position. (c) and (d) cross section of the compression of the 
uid.

The point to illustrate in this section is the conservation of the volume of the piece
during the compression. We de�ne the volume loss as the di�erence of volume compared
to the initial volume divided by the original volume, de�ned as:

error % =
Vo � V (t)

Vo
� 100 (2.31)
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Generally, we observe a relative loss of volume related to the non-conservative convective-
scheme of the level set formulation and the numerical di�usion due to the re-meshing
routine. When re-meshing, the level set �eld on the old mesh is linearly interpolated on
the new mesh, which induces numerical errors related to the interpolation. Even for the
isotropic mesh case, (without re-meshing) volume is lost along the deformation process.

0 1 2 3 4 5 6 7 8

�10� 2

0

1

2

3

t=tref �

E
rr

or
%

Numerical precision

Fixed Mesh 400k
Mesh Adaptation 8k
Mesh Adaptation 16k
Mesh-Adaptation 32k

Figure 2.8: In
uence of mesh adaption on volume conservation.hmin = 1e � 03mm,
� t = 1e � 02s

In Figure 2.8, we plot the volume lost for four di�erent cases. The �rst case concern
the use of an isotropic mesh, without activating the mesh adaptation tool. We notice that
along the whole compression the volume lost reaches 0.7%. However, in order to keep
the accuracy of the method de�ne by a minimal mesh sizehmin , the same everywhere,
we have �xed the number of nodes required 400k nodes to perform this simulation. Mesh
adaptation allow us to adapt the mesh in the regions of stronger gradients (dynamically)
more important. Three cases, with di�erent number of mesh nodes, where chosen to
study the in
uence of mesh sizes.

For 8k, 16k and 32k nodes, the volume lost of the same test case is drawn in Fig-
ure 2.8. We notice that the �ner the mesh discretization the lower the error in the volume
during the simulation. Additionally, we notice that the rate of volume loss increases when
the thickness of the sample decreases, probably, due to the high gradients of the velocity
pro�le in such narrow space. There a adaptive time step will then improve this resolution.

A more challenging con�guration (to be chosen for the industrial case) has been used
as reference study and is presented in Figure 2.9. In this case, the punch compress the
preform until the mold cavity is ful�lled and this case will be studied during the develop-
ment of this manuscript. Hereby, we focus on the initial test, without any optimization,
where a considerable mass loss was encountered.

Figure 2.10, illustrates the �nal deformation of the preform, once the punch reaches its
�nal position. The �nal con�guration pictures how the preform (purple) did not �ll the
mold cavity (The expected �lled regions is visualized in green). The plot of the volume
evolution during the simulation shows a remarkable loss up to 30%. As visualized in the
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(a) Compression of an Industrial part.

Punch

Mold

Preform

Body Immersion

(b) Schematic illustration immersion of di�erent
phases: punch, composite and die.

Figure 2.9: Industrial case presentation. (a) the three bodies de�ning the mold, punch
and the geometry of the preform. (b) Schematic of the immersion in our numerical tool.

image, the compression of 
at geometries with a ratio length/thicknessl=d >> 1 induces
high velocity in the 
ow front while compressing the part due to the incompressibility
condition. In Figure 2.11, the accumulative losserror and the relative loss � error (loss
of the current time step) is presented during the deformation. We notice also the ten-
dency of the local loss to increase as the thickness becomes smaller.

Basically this lost is due to many factors. At �rst point, the not-divergence free of
the velocity pro�le from the numerical discretization during the �nite element resolution.
The level set convection equation that by de�nition is not presented in a conservative
form. The mixed velocity pro�le computed in the domain (compressible for the air, in-
compressible for the preform) that can cause a semi-compressible pro�le in the vicinity of
the interface. The acceleration of the 
uid during the compression at thickness becomes
smaller. Another source is then associated to the time step that should be adapted to
responds the 
ow conditions at any time step.

Particularly, we notice that the lost per iteration is lower than 0.1%, implying that
the volume loss is mainly due to the accumulation of minor errors, mainly during the
convection scheme. This point is further discussed in the next section, as well as, the
methods implemented to decrease this volume loss. Even thought, the conservative (or
not) approaches seems out of the scope of the frame of this work, we propose in section 2.3
a suitable strategy to deal with this problem on simple and industrial cases.

2.3 Volume/mass Conservation on level set methods

Adapted three-dimensional multi-phase descriptions to simulate compression molding
processes enables a direct study of complex phenomena, such as thermo-mechanical inter-
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(a) View of incomplete mold �lling during
reference compression case due to material
loss.
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(b) Volume variation during Simulation for
the reference case.

Figure 2.10: Volume loss on an industrial part Compression from 6mm to 2.5mm. With-
out any optimization, a global 30% of loss is observed in particular by the incomplete
�lling of the mold cavity.

actions. In such a context, topological changes and phase interactions are di�cult to be
reproduced by traditional Lagrangian methods. In these cases, immersion methods and
more speci�cally level set methods [13] are a more suitable approach a seen previously.
Re-initialization of the distance function is required to maintain the unitary gradient of
the level set function, by solving a Hamilton-Jacobi equation as in [14]. To accelerate
computations, the convection step can be modi�ed to integrate the re-distancing in this
single equation [15, 10].

In general level set methods framework are better than other techniques fo rimmersion
domain such as the Volume-Of-Fluid (VOF) [16], since in those methods mostly an in-
terface reconstruction from the element volume fraction is required. Despite, the bene�ts
and ease of use of the level set method, a lack of conservative properties inherent to the
approach is found, making the task in multiphase calculations 
ows di�cult since the
mass/volume of the body immersed is continuously degradated due to di�usive numeri-
cal errors. To overcome this problem, several authors [17, 18, 8, 19, 20], have adjusted
the methodology proposing a conservative formulation, enabling the use of recovery al-
gorithms to correct the level set after the convection step, keeping not only the unitary
gradient, but also the conservation of the mass/volume. More recently methodologies,
using fast marching methods [21, 22], improved also the accuracy on the normal com-
putation from the smooth distance, enhancing the convection and re-initialization step.
The drawback of such methods rely on the use of numerical parameters that should be
calibrated.

While adjusting the unitary gradient of the level set is needed to preserve the pro�les
and improve conservation, the excessive use of it deteriorates the solution by compound-
ing errors as stated in [9]. Such e�ect is explained by the di�usion term presented in
the conservative re-initialization strategy where a �ctitious viscosity is used to smooth
the surfaces [18], [8], [20]. The starting point to minimize such issue consist to only
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Figure 2.11: relative error eq. (2.31) in volume as a function of the sample thickness
during compression of an industrial piece using the volume recovery strategy

re-initialize regions where the unitary gradient has been modi�ed. Sato [23] relates the
amount of local re-initialization on purely 
ow kinematics. However, in the work of Owkes
and Desjardins [24], a calibration metric based on the amount of deformed level set was
proposed and they included the e�ect of the numerical di�usion errors. Such work was
enriched by the contribution of [9], improving the regions where very small level set de-
formation was found, proposing a more localized re-initialization strategy. Such strategy
is based on the normal velocity of the interface and the amount of deformation along the
vicinity of the surface.

In this work, we present a particular extension of traditional level set approaches to
multi-phase 
ows, with an improvement given by a smoothed level set, supported with a
linear region in the vicinity of the zero iso-value, and the use of mesh adaptation coupled
with an edge-error estimation metric in order to guarantee a precise description of the
gradients. Furthermore, a strategy for conserving the volume after the advection step
has been also implemented, where we attempt to avoid the use of problem-dependent
parameters and we try to propose a more stable algorithm using a Dirac computed from
the distance function.

2.3.1 Objective

The mass of a object occupying the region 
� (t) = f x =� s(x ) > 0g, and having a density
� s is given by:

M (t) =
Z


 �
� sd
 =

Z



� sH (� )d
 (2.32)

the convection of the mass implies, for any domain 
� � 
:

@
@t

Z



� sH (� )d
 + r �

� Z



� sH (� )ud


�

= 0: (2.33)
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It is important to notice that both eq. (2.6) and eq. (2.33) are valid representations
of the interface dynamics for the entire domain [25]. We label eq. (2.6) thelevet set
advection and eq. (2.33) themass advection . Both equations are respected if the level
set function is properly convected.

The question addressed in this section relies on keeping the conservative properties of
the level set functions when solving their advection using �nite element methods.

It has already been noticed that the �nite element solution of the level set advection
does not necessarily guarantee a conservation of the mass advection [20]. For that reason,
many works have been performed in order to address this issue [18, 8].

2.3.2 Background in conservative strategies

Correction of the level set function to guarantee conservation can be performed in many
di�erent ways, mainly by solving an extra equation to �nd the necessary factor to apply
to the already convected level set� .

Conservative methods

Kees [20] introduced a strategy in which a normal convection-reinitialization of the level
set is �rstly done using eqs. 2.6 and 2.8 or even any other reinitialization method. Then,
the convection of a conservative Heaviside function, denoted bŷH , is done using the mass
advection equation eq. (2.34):

@̂H
@t

+ r �
�
Ĥ u

�
=0 (2.34)

Finally, the author compared the computed Heaviside functionH (� ) to the conserva-
tive Ĥ . Then, they suggested to �nd the conservative level set� c associated toĤ using
eq. (2.35) such that the discrete smoothed Heaviside obtained through the corrected level
set � c eq. (2.36) equals the conservative Heaviside obtained by the solution of eq. (2.34).

(
H (� + � 0) � Ĥ = � � � 0

r � 0 � n = 0 on @

(2.35)

� c = � + � 0 (2.36)

Two remarks can be given to eq. (2.35). The parameter� avoids the level-set displace-
ment to be a constant along@
, thus allowing a mapping of corrections i.e. the level set
is displacement depends on the space. In addition, k di�uses the new level-set correction
guaranteing a stable and smooth conservative level set. However, this parameters needs
to be calibrated and can induces to much di�usion during the numerical resolution fo the
conservative level set.

One other strategy has been introduced by Olsson [18], using directly the discrete
smooth Heaviside as the level set eq. (2.37). In their work, the resolution of the mass
advection, eq. (2.33), is used with the variable� , following eq. (2.38):
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� = H (� ) (2.37)
@�
@t

+ r � (u � ) = 0 (2.38)

Eq. (2.38) presents conservative properties inherent to the mass equation. The metric
properties are retrieve, solving a the following equation:

@�c
@�

= r �
�
�

�
(r � c � n0)n0

�
� � c(1 � � c)n0

�
(2.39)

the conservative re-initialization recommended by Olsson and Kreiss solves the re-
distancing of the level set by using a pseudo time� and a di�usion term depending on
a �ctitious viscosity � . The re-initialization step, eq. (2.39), is performed, conditioning
that the modi�cation of the distance function in the vicinity of � = 0 does not modify
the location of the interface in discrete schemes. This is achieved by guaranteeing that
the 
ux on the interface � is zero ( r � � =0 � n0 = 0). This condition is respect if the choice
of the normal n0 in eq. (2.39) [8], chosen at the initial pseudo time� = 0 eq. (2.40). The
upper index " 0 " is referred to the normal at pseudo time� = 0, more speci�cally:

n0 =
r � � =0

jr � � =0 j
(2.40)

For simulations were the contact angle in the surface modi�es a certain response in
the mechanical model, one can follow the work of [26]. Therein is presented the modi�-
cation of eq. (2.40) by adding another di�usion term in the tangential direction as well
as a smoothing technique to compute the normaln0.

Both strategies hereabove have been successfully applied in several benchmarks and
examples [18, 8, 20], both providing a local correction of� . However, both strategies
demand a viscosity-di�usion value,� or � . The tuning of these values might be problem-
dependent. The higher the value of such di�usion, the less-sharper geometries will be
obtained. Also, they imply solving either an extra di�erential equation or well di�using
the solution each time increment. At the same time, the authors have not addressed this
problems under adaptive anisotropic mesh techniques. In the next section, we present a
simple correction strategy using a Newton-Raphson algorithm which does not require the
resolution of other di�erential equation and more important, the tuning of new numerical
parameter.

2.3.3 Proposed strategy

In order to apply the algorithm, the initial mass M 0 is �rstly computed at t = 0:

M 
 �

0 =
Z



� 0 H (� (t = 0)) d
 (2.41)

Consequently, we can de�ne the mass at any instant as:
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M 
 �
=

Z



� (� ) H (� )d
 (2.42)

Here, the general expression of the density is used since it is time-space dependent
in our problems. After convecting the level set function� , the mass/volume embedded
by the iso-value zero might di�er. At any t > 0, the mass in eq. (2.41) and in eq. (2.42)
enclose errors due to the discrete resolution of the convective scheme. De�ningf as the
di�erence between the current mass respect to the initial, one gets:

f (� ) =
Z



� (� ) H (� ) d
 � M 
 �

0 : (2.43)

For obtaining a � c that satis�es f = 0 we use an iterative Newton-Raphson algorithm.
Then at iteration n+1, � n+1 is given by:

� n+1 = � n �
f (� n )
f 0(� n )

(2.44)

beingn+1 the new estimation of� , and � c = � n+1 whenf (� n+1 ) = 0. This algorithm
is applied after convecting the level set function using eq. (2.6).

The expression given in eq. (2.44) requires the computation off 0(� ):

f 0(� ) =
df (� )

d�
=

d(
R


 � (� ) H (� )d
))
d�

(2.45)

Denoting with 0 the derivative with respect to � and using the property

d
d�

� Z
g(� )d


�

=
Z @

@�
(g(� )) d
 (2.46)

we get:

d (
R


 � (� ) H (� )d
))
d�

=
Z

(� 0(� ) H (� ) + � (� ) H 0(� )) d
 (2.47)

Where � 0 and H 0 are obtained by taking into account the fact that:

dH(� )
d�

= � (� ) (2.48)

where � (� ) is the Dirac function associated to the Heaviside function de�ned by
eq. (2.22). The variation of the density with respect to the levelset� , �nally is given
by:

d� (� )
d�

=
d� (� )
dH(� )

dH(� )
d�

=
d� (� )
dH(� )

� (� ) (2.49)

we recall that � (� ) is de�ned as:

� (� ) = � sH (� ) + � 1 (1 � H (� )) (2.50)
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where � s is the density of the subset 
� and � 1 the density of the exterior media
surrounded by@
 � . After derivation, with respect to � we obtain:

d�
d�

= ( � s � � 1 ) � (� ) (2.51)

Getting the two contributions together, we have:

d(
R


 � (� ) H (� )d
))
d�

= ( � s � � 1 ) � (� ) H (� ) + � (� ) � (� ); (2.52)

and taking a common factor, by using the de�nition of� and noticing that:

� s H (� ) � � 1 H (� ) + � s H (� ) + � 1 � � 1 H (� ) = 2 � � � 1 ; (2.53)

we get:

d (
R


 � (� ) H (� )d
))
d�

=
Z

(2� (� ) � � 1 ) � (� ) d
 (2.54)

In this expressions,� is the density space function,� 1 is the density of the external
bodiesf � 1 = � (� = � E)g and � (� ) is the Dirac function associated toH (� ) de�ned in
eq. (2.23). Finally, the Newton-Raphson algorithm for correcting the level set� states:

� n+1 = � n �
R

� (� ) H (� ) d
 � M 0
R

(2� (� ) � � 1 ) � (� ) d

(2.55)

Three remarks may be outlined and must be taken into account.
Remark 1: Ihe case where� (� ) = � 1 = � cte, the algorithm represents also the volume

conservation.

Remark 2: No assumption regarding the density� or well the Heaviside functionH (� )

were performed. However, the choice of� (� ) needs to ful�ll the condition
dH(� )

d�
= � (� ).

Remark 3: The correction algorithm takes always the initial mass as reference to
convergence, avoiding accumulative errors due to numerical discretization. Similarly, the
non-convergence of one time increment will not modify the stability, proving robustness
to the method.

Applying this algorithm requires a good description of the Heaviside and of the Dirac
function in the discrete scheme. For that reason, we use the anisotropic mesh adaptation
tool based on an edge error estimation. Such topic has been subject of discussion in,
Chapter 1, section 1.3.
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2.3.4 Strategy to avoid penetration of recovered-level-set into
tools

For compression cases, is we displaced the level set to the space belonging to the punch and
die, we get penetration problems. This section address this issue and how we handle it to
displace the level set after the correction and avoid such penetration. The methodology
described in section 2.3.3 displaced the level set contour� keeping its mass constant
after the convection scheme. The resulting� c however, might penetrates other bodies
in the case of multi-body immersion physics. This section develops an strategy to force
level set displacement on region of free domains. Thus, enabling the displacement to be
carried out avoiding penetration problems. For our multi-body problems, the discrete
space where the air is de�ned is considered as the free domain. The punch and the mold
are considered as rigid bodies and not displacement towards their sub-domain is allowed.

Punch

Mold

Air

Composite �

� c

Penetration

� c
np = � + � � free

Figure 2.12: Schematic illustration of the displacement of the iso-contour zero after ap-
plying recovery our algorithm

In Figure 2.12, � c
np represents a conservative level set which does not penetrates any

tool. The displacement, independent of the spatial position and obtained by the Newton
algorithm is modi�ed, to de�ne a spatial displacement (not constant) � � free de�ne only
is particular regions of the domain. Such displacement is obtained by adding af free

variable which in the air and the composite equals 1 and equals zero in the tools.

We can use the Heaviside function of the mold and punch to de�ne the tools space,
by creating a variable of the free surfacef free , which states that eq. (2.56):

f free = 1 � H (� tools ): (2.56)

Notice that such function equals 0 ifH tools = 1 which means that � is in contact with
the tool and positive at the free surface.
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Adding a factor f free allows us to control to where is being displaced the level set
function and to avoid penetration problems. Nevertheless, in the recovery algorithm,
states that the convection of the function is performed everywhere in a homogeneous
way. In fact, when including the tools, in the system, some regions will not displaced,
since the surface in contact do not belong to the free zone. Thus, causing the total mass
recovery not to be fully compensated. In order to solve this, it is included a surface
factor aiming to take this e�ect into account by allowing larger displacements in the free
regions. This factor relates the di�erence between a bubble in the free space correction or
a compression molding simulation. In Figure 2.12 the blue line represents the conservative
non-penetrated level set� c

np . As illustrates in this �gure, the displacement is larger. To
recover the proper amount of mass loss, we use the factorf surface given in eq. (2.57). This
factor also represents the ratio between the full surface of the level set and the surface
sharing a free displacement.

f surface =
R

� (� )d

R

(1 � 2H (� tools )) � (� ) d

(2.57)

For example, if the body shares the half of its surface with the tools such factor
equals 2. Meaning that a double displacement needs to be performed in the free surface
to compensate the real mass loss. Following this reasoning, the expression given in
eq. (2.55) is then modi�ed to include the local free surface factorf free and the surface
ratio f surface obtaining:

� c
np = � � f surface f free

R
� (� ) H (� ) d
 � M 0

R
(2� (� ) � � 1 ) � (� ) d


(2.58)

Expression given in eq. (2.58) recovers the mass loss during the convective scheme of
eq. (2.6) including the tools. Now one can de�ne the local �� free displacement by means
of eq. (2.59) and by knowing that the� 1 in the free domain equals� air , one may write:

� � free = f surface f free
M 0 �

R
� (� ) H (� ) d


R
(2� (� ) � � air ) � (� ) d


(2.59)

2.3.5 Maximum volume loss per iteration guaranteeing accu-
rate displacement

When solving the recovery algorithm the level set displaced should remains inside the
�ne mesh zone (FMZ). We shall thus guarantee:

� � �
MeshZone

2
(2.60)

The �ner meshed zone illustrated in Figure 2.13, can be estimated knowing which
gradient of the level set function has compact support on a domain equals to 3E, such
that:

81



Punch

Mold

Air
� 1 = � air

Composite � � c
np

3E � e
2

Figure 2.13: Schematic illustration of the displacement of iso-contour zero inside the Fine
Meshing Zone (FMZ), after applying the recovery algorithm

MeshZone = 3E � e (2.61)

by using the de�nition of our recovery algorithm eq. (2.55) and knowing that �M =Z
� (� ) H (� ) d
 � M 0, we can write, eq. (2.62):

� M
R

(2� (� ) � � 1 ) � (� ) d

�

3E � e
2

(2.62)

which allows us to evaluate the maximum mass loss to be recovered inside a well
described meshed zone by eq. (2.63):

� Mmax =
3E � e

2

Z
(2� (� ) � � 1 ) � (� ) d
 (2.63)

In the monophasique incompressible case, we obtain, eq. (2.64):

� Mmax

�
= � Vmax =

3E � e
2

Z
� (� ) d


| {z }
Surface moved

(2.64)

Including the non-penetration condition (if tools) we get eq. (2.65):

� Vmax =
3E � e

2 f surface

Z
� (� ) d
 (2.65)
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2.3.6 Exact displacement of the hyperbolic tangent level set

The euclidean distance associated to the level set function is de�ned always parallel
to the normal of the interface, given by the direction of the gradient of the level set
gradient. Mathematically, a parallel displacement of a functionf (x) is obtained by
applying f (x + � ).The displacement of the hyperbolic tangent level set� to obtain the
conservative non penetrated solution� c

np is given by eq. (2.66) :

� c
np =

� + E tanh

 
� free

E

!

1 +
�
E

tanh

 
� free

E

! ; (2.66)

To Sum up: the complete algorithm to recover the mass/volume loss is given by
solving eq. (2.58) to compute the displacement and then by using eq. (2.66) to compute
the conservative value of the modi�ed level set function. But we remark that we need to
solve eqs. (2.59) and (2.56) in order to take into account for the presence of the tools. In
the following section, we present the case of the reference geometry introduced early in
this chapter in order to prove the methodology for mass conservation of the method. For
sake of simplicity, we considered constant density of the part, getting by consequence the
conservation of the volume.

2.4 Application of the conservative strategy in an
industrial geometry

(a) View of the mesh adapted (b) Adaptation respect to Dirac function

Figure 2.14: Mesh view at the boundary of domain. Three bodies immersed in a single
numerical domain (a). Close up of mesh adaptation following the Dirac function on the
surfaces (b).

The strategy explained in section 2.3 is tested in this section for the case presented
in Figure 2.9. The resolution of the advection problem for the level set displacement of
the preform induces a volume loss reaching up to 35%, as illustrated in Figure 2.19. The
strategy evoked in the previous section required the computation of a Dirac function. In
order to ensure the convergence of the algorithm, this function should be well described
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by the discretized mesh. The �rst point addressed is the de�nition of the �elds assigned
to the multi-�eld mesh adaptation. Then, the features of the problem are de�ned, like
the velocity of the punch and the numerical speci�cations according to our framework.
Later, snapshots of the deformation process are presented during the part compression.
The evolution of the volume during compression is presented, compared to the original
case, proving the enhancements of the aforementioned algorithm.

2.4.1 Mesh adaptation on multiple �elds

The theory of mesh adaptation have been �rstly extended to the case ofmulti-�eld
adaptation in the works of Gruau [27] and Nguyen [28]. In [11] several examples of
mesh adaptation respect to the velocity �eld have been shown, while in [29] adaptation
with respect to a level set �eld has been addressed.
In our numerical schemes, it is necessary to adapt the mesh to several �elds. AL2 norm
is computed to adapt the mesh with respect to the distribution of the error on each �eld,
by proposing that the equivalent errorêij is given by the L2 norm of all the particular
errors eij associated to each �eld:

êij = L2 : eij

(

� �
�

E + e
; 2�� � �; � v argmax (j~vj ; vmin )

)

(2.67)

Figure 2.15: Mesh adaptation during compression, with the contour along the piece.

The factor � x represents the weight on the error contribution of each �eldx to overall
the metric calculation. In here, we do not intersect the metric of each �eld but, instead
we add the contribution of each �eld pounded by the coe�cient � in order to obtain a
global scalar error associated to each edge.

Figure 2.14 shows the initial adapted mesh according to the level set functions of the
preform, punch and mold and the Dirac function associated to the preform. By iterative
correction, starting from a isotropic box, the mesh adaptation tool reaches the discretiza-
tion observed in 2.14a. We notice the particular re�ned thickness along the preform,
where a Dirac function has been de�ned. In 2.14b, the zoom in the corner of the preform
shows the two levels of adaptation: one supported on a thicknessE following the level
set strategy, a second supported on the thicknesse of the Dirac function.
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Compression Molding
Compression Velocity 1 mm/s
Initial Preform Thickness 6.2 mm

Table 2.1: Velocity and initial thickness of the preform.

Figure 2.15 provides a view of a section of the preform, highlighting the �ner regions
arising during the simulation. The mesh follows dynamically the compression process,
until the part has attained its �nal deformation. The images show the level set contours
wero of the three bodies, even if all bodies are embedded in a single volumic mesh as
pictured in Figure 2.14.

After these de�nitions concerning the mesh adaptation strategy, we proceed to explain
the speci�cations of the problem hereafter presented.

� Immersion of the three geometries in a box. (1m � 0:28m � 0:4m). The numerical
speci�cation are shown in Figure 2.16. Number of nodes used on the simulation,
CPU time, minimum and maximum mesh size are de�ned.

Numerical
Number of Nodes 250k
CPU time 40 cores - 5 days
Minimum mesh size 0.1mm
Time step adaptive
Thickness Level Set 5hmin

Thickness Mixture 2hmin

Thickness Viscous layer 2hmin

Figure 2.16: Initial view of the immersed bodies. Information on numerical discretization,
CPU used and level set thickness de�nitione,E.

2.4.2 Test Conditions

An incompressible SMC material, having an initial geometrical con�guration (preform) is
compressed to �ll the cavity (mold) by the motion of an upper die (punch). Informations
concerning velocity of the punch and on the initial thickness of the preform are given in
Table 2.1. In Figure 2.16, the discretization is provided, as well as the mesh size and the
level set de�nition parameters used in the simulation.

The preform is deformed until �lling the mold cavity. Figure 2.17 shows the error in
the mass/volume, enhancing the improvements of the presented algorithm in the indus-
trial piece.
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Figure 2.17: relative error in volume as function of the sample thickness during compres-
sion of industrial piece using volume recovery strategy

The punch deforms the material until a thickness of 2:3mm is reached. In the fol-
lowing, only a section of the 3D geometry is used. The reduced part is shown for sake
of simplicity. First, di�erent snapshots illustrate the �lling of the mold. The evolution
of the part is given in Figure 2.18. There, the algorithm of mass conservation was ac-
tivated and the �nal volume lost registered was 0.4%. Compared to the lost without
mass conservation algorithm of 35%, a clear improvement is obtained by the algorithm
proposed in section 2.3.3. The time step for the simulation reaches a minimum of 0:02s.
The velocity in the 
ow front increases with the thickness reduction. In Figure 2.19, the
comparison of the full geometry is given. The compression of the piece at the beginning of
this work, and the compression of the piece after implementation of the recovery Newton
algorithm. Despite the ease of the implemented solution in this work, the improvements
visually are remarkably. The algorithm prove to be robust and of easy implementation.
A more adapted strategy for future works should be used working directly in the level
set convection step.

2.4.3 short-shots comparison

In Figure 4.29, a comparison of the simulated part with partial-�lled molded parts test
performed in Plastic Omnium are provided. There, a di�erent thickness of the the preform
deformation is compared the 
ow front position. Basically, this information allow us to
verify the �lling of the part. The four comparisons presented prove the good agreement
of the �lling of the piece with the numerical simulation.

The force during the compression of the piece remains one of the quantity to compare
with the experimental data. In immersion methods, more precisely supported on a level
set strategy, the computation of the force is not a evident task. The upcoming section
deals with a strategy adopted in this work in order compute the compression force for
any given geometry.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.18: View of the deformation during the descending of the punch. Velocity pro�le
of the part. The cavity of the mold is �lled, while the thickness of the part is reduced.
Test on a reduced volume of industrial geometry.

2.5 Stable and robust strategy for the computation
of compression force in immersion domains

For immersed body approaches the computation of �elds implying a surface integral in 3D
and a line integral in 2D, is not a evident task. The representation of implicit surfaces by
implicit functions has its advantages that were discussed early in this chapter. However,
in order to compute scalar macroscopic variables such as the compression force to deform
a body, surface integral appears of the type:

Z
� n dS; (2.68)

being � n any variable to integrate along a surface S� V, in here the normal stress.
Several authors addressed this problem by assigning a Dirac function supported on the
level set function. In [30] , [31] , [32] , [33] , [34], [35] many examples of Dirac functions,
strategies to reduce the numerical oscillations are found. In particular, in [36] and [37]
the computation of the force in 
uid dynamics problems was addressed, by the resolution
of a linear system. In [38], the force is determined explicitly by the resolution of a
penalization strategy to impose boundary conditions. The force is then computed at
the interfaces. Eventhough all these strategies rely on the level set method, or well in
immersion body methods, they are susceptible to numerical oscillations. In the level set
approach supported with mesh adaptation was proven that the major error of the method
yield on the interfaces. In brief, the force is computed in the regions or major uncertainty
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(a) without algorithm (b) with algorithm

Figure 2.19: Volume lost on industrial piece after deformation of the part. 30% lost
observed by the incomplete �lling of the mold cavity (a). 0.1% lost after implementation
of recovery algorithm using Newton method (b).

of the method. For our applications, the force correspond to the macroscopic term more
important to be compared to the rheological experiences. In this section, we propose a
methodology supported on the principle of virtual work transforming a surface integral
into a volumetric integral without making appear the Dirac function.

2.5.1 Viscous Power and Compression Force

Deformation and 
ow material requires energy. For polymers having high viscosity such
energy can be related to viscous dissipation. Let a volumeV of material to be deformed
by a stress� on its surface. The rate of workW done on the material is calculated by
integrating (n � � � v) over the surface.

W =
Z

S
(n � � � v) ds; (2.69)

n being the outward unit normal on the surface and (n � � ) is the force per unit surface.
Multiplication with the velocity gives the rate of work per unit surface. By using Gauss
Theorem, this surface integral is equivalent to a volume integral taking its divergence in
the volume V contained by all the surface@V:

Z

S
(n � � � v) ds =

Z

V
r � (� � v) dV; (2.70)

the term inside the integral is replaced by the indentity:

r � (� � v) = � : r v + v � r � �: (2.71)

The second term vanishes for 
uid satisfying Stokes equation (r � � = 0) since inertial
and gravity are neglected. Hereby however, we consider the general case where the
divergence of the stress is provided by a force per unit volumef such as:

r � � = f : (2.72)

Finally, the relation between the surface integral to the volume integral stands for all
the surface embedding the volumeV:
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Figure 2.20: Molding Compression - Comparison of 
ow front real piece / simulated part.
At a thickness of 2.8mm.

Z

S
(n � � � v) ds =

Z

V
� : r v dV +

Z

V
f � v dV: (2.73)

The surface integral acts on three main zones in our multy-phases problem. The
contact with the Mold at ( v = 0 ), the contact with the punch at (v = vpunch ez ) and
air/
uid interface obtained by the surface tension (n � � = 0) hereby neglected. Rewriting
expression eq. (2.73) one gets:

vpunch

Z

punch
(ez � � ) ds

| {z }
f c

=
Z

V
� : r v dV +

Z

V
f � v dV: (2.74)

Therefore, for the case of compression molding simulations, the compression forcef c

can be obtained by the relation:

f c =
1

vpunch

� Z

V
� : r v dV +

Z

V
f � v dV

�

: (2.75)

The main interest on this strategy relies on a direct calculation of
Z

n � �ds by means

of a volume integration supported on a mathematical development instead of a discrete
scheme.

In Figure 2.21, the force comparison between the numerical approach and the analytic
solution [39] for the slip and no-slip case are compared. The example of the compression
of a cylinder at constant speed. Along the deformation, the material required more force
to be compressed. This force required energy. This is the principle of this strategy. Notice
the good agreement between the numerical prediction and the reference solution. The
strategy reduce remarkably the oscillations found in previous work [30, 31, 32, 33, 34, 35]
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Figure 2.21: Compression force for the compression of a cylinder Figure 3.18a. Compar-
ison of analytical case [39] for the slip and no-slip case with numerical predictions of this
work.

for the computation of surface integrals.

Additionally when accounting for complex geometries such as the industrial cases, the
surface integral demands the projection of the stress tensor on the normal direction. In
our methodology, the orientation is given by the direction of the punch velocity. Since
the viscous energy computation is a scalar factor, the strategy is robust and non direction
dependent.

2.6 Conclusions

In this chapter, the numerical framework, namely, the level set method using immersed
geometries in a single computation domain was addressed. Additionally, the strategy to
account for multi bodies simulations with di�erent physical properties was discussed and
the Heaviside side function was de�ned. We discuss on the level set convection and the
reinitialization, in order to preserve the metric properties. For the objectives of this work,
three main contribution were addressed in this chapter. We discussed on the computation
of a local booster depending on the deformation of the iso-values of the level set. Meaning,
the gradient of the normal velocity. This strategy enables a local computation of the
booster. We prove by means of the extension of a circle that the local booster proposed
enable a wide range of values improving the level set reinitialization step. This point needs
a further study for other kind of simulations such as 
uid dynamics in other approaches
than compression molding. Another point discussed was the conservative properties of
standard level set methods. After the literature review, we propose here a solution for
the numerical lost of the volume during the convection step. The lost of volume/mass is
basically due to the convection step of a non-conservative form of the advection equation
and also the interpolation after the re-meshing step. The spatial discretization was proven
to be also an indicator of the mass lost. We proposed an strategy based on a Newton-
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Raphson algorithm that recover the volume progressively based on the principle of free
space. We performed a test on a 3D geometry proven the robustness of the algorithm
and its easy implementation in any numerical tool For our case, we reduce from 35% of
mass lost to 0.4%. Such methodology implies the computation of a Dirac function and
can be used for volume or mass conservation since it is the �rst approach that really
accounts for the density variation on its algorithm. The third point addressed here,
was the computation of the compression force. Here an strategy based on virtual work
principle enable the computation of the force by means of the viscous dissipation. This
strategy proof to provide the exact solution for the slip and non-slip case. Additionally,
it reduces the oscillations connected to the other methods.
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Chapter 3

Uni�ed compressible/incompressible
anisotropic viscous model
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Summary

The study of the rheological behaviour of SMC materials implies the study of the viscous
paste joined with the interactions �ber-�ber and �ber-matrix. The presence of �ber in-
duces an anisotropic behavior on the direction normal to the �ber plane. Previous work
concluded that the viscous planar isotropic model proposed in the literature conveys the
best results. The anisotropy of the materials are more important when increasing the
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�ber content. So far the contact �ber-matrix have been supposed perfect and then the
material mixture was supposed incompressible. However, the higher the �ber content the
more di�cult to the �ber to coextensively align with the matrix. For the purposes of
this work, high �ber content in volume is used on the SMC sample study herein. The
lost of contact during the fabrication process of the �ber with the matrix causes the
macroscopic behavior of the stack of plies of SMC to behave as a compressible material
the �rst 30% of material deformation. At isothermal conditions, the porosity within the
material originally at 30% closes progressively until the material is fully incompressible.

In order to deal with both approaches in this work an uni�ed formulation is proposed,
describing the transition compressible/incompressible of the material. This compressible
behavior modi�es the evolution of the viscosity along the compression as well as other
rheological features used to describe the stress during the compression. For the purposes
of this work the high performance SMC material (SM-HP) is described by this procedure.
The uni�ed methodology enables the description of incompressible SMC as well. Three
main cases has been study: the compression in plane strain, simple compression and
compaction test.

The parameter� 3 used to described the compressible behavior enrich the incompress-
ible formulation of the Dumont model proposed in 2003. The compressible behavior of
SMC has been characterized in the frame of collaboration with the laboratory 3SR in
Grenoble-France. All the equations related to the compressible behavior used in this
work is a prove of the communications expressed along this Phd in order to proposed a
macroscopic compressible SMC rheological model.

R�esum�e en Fran�cais

L'�etude du comportement rh�eologique des mat�eriaux SMC implique l'�etude de la pâte
visqueuse jointe aux interactions �bre-�bre et �bre-matrice. La pr�esence de �bres induit
un comportement anisotrope sur la direction normale au plan de la �bre. Les travaux
ant�erieurs ont conclu que le mod�ele isotrope planaire visqueux propos�e dans la litt�erature
donne les meilleurs r�esultats. L'anisotropie des mat�eriaux est plus importante lorsqu'on
augmente la teneur en �bres. Jusqu'�a pr�esent, la matrice de �bres de contact a �et�e sup-
pos�ee parfaite et le m�elange de mati�ere �etait suppos�e incompressible. Cependant, plus la
teneur en �bres est �elev�ee, plus la �bre est di�cile �a aligner avec la matrice. Aux �ns de
ce travail, une teneur �elev�ee en �bres en volume est utilis�ee dans l'�etude de l'�echantillon
SMC dans le pr�esent document. La perte de contact pendant le processus de fabrication
de la �bre avec la matrice provoque le comportement macroscopique de l'empilement
de plis de SMC pour se comporter comme mat�eriau compressible les 30 premiers% de
d�eformation mat�erielle. Dans les conditions isothermes, la porosit�e dans le mat�eriau �a
l'origine �a 30 %, se ferme progressivement jusqu'�a que le mat�eteriau soit totalement in-
compressible.

A�n de traiter les deux approches dans ce travail, une formulation uni��ee est pro-
pos�ee, d�ecrivant la transition compressible / incompressible du mat�eriel. Ce comporte-
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ment compressible modi�e l'�evolution de la viscosit�e le long de la compression ainsi que
d'autres caract�eristiques rh�eologiques utilis�ees pour d�ecrire le stress pendant la compres-
sion. Aux �ns de ce travail, le mat�eriel SMC haute performance (SM-HP) est d�ecrit par
cette proc�edure. La m�ethodologie uni��ee permet �egalement la description de SMC in-
compressible. Trois cas principaux ont �et�e �etudi�es: la compression plane, la compression
simple et le test de compactage.

Le param�etre � 3 utilis�e pour d�ecrire le comportement compressible enrichit la formula-
tion incompressible du mod�ele Dumont propos�e en 2003. Le comportement compressible
de SMC a �et�e caract�eris�e dans le cadre de la collaboration avec le laboratoire 3SR �a
Grenoble-France. Toutes les �equations li�ees au comportement compressible utilis�e dans
ce travail sont une preuve des communications exprim�ees le long de ce doctorat a�n de
proposer un mod�ele rh�eologique SMC compressible macroscopique.

Introduction

Modeling �brous materials requires an accurate description of its anisotropic behavior.
The �ber network associated to the thermoset matrix enhances the mechanical properties
of the overall composite [1], but also complicates its mechanical response. Nowadays, glass
�ber composites processed by compression molding are used as semi-structural parts since
they exhibit advantageous mechanical resistance, relative lower weight and are used for
the production of car body parts [2]. It is interesting to better understand the �ber-
matrix interaction when undergoing large deformations, in order to predict the composite
behavior in practical applications. To attain this target, improved models considering
�ber and �ber/matrix coupling are needed. Many works attempt to study the 
ow
of SMC preform during compression molding [3, 4, 5, 6]. Based on the observations
made in those works, their rheological behaviors are addressed but can seem incomplete
[7, 8, 9, 10, 11, 12, 13]. In fact, the SMC has been studied numerically using simpli�ed
models assuming isotropic pseudo-plastic materials [14, 15, 16]. The isotropic models
therein used are not consistent with the anisotropic microstructure of SMC, since widely
spread �bers build a higher-
ow-resistance structure in the plane parallel to sheets. The
introduction of an anisotropy representation of the stress tensor starts from the 90s [17].
Despite the good agreement with experimental data shown in that work, this model
presents some limitations on the stress behavior for di�erent con�gurations. That has
casted doubt on this initial approach and has encouraged further authors to extend this
model. After a decade of technological improvement, Dumont and co-workers [18] have
proposed a viscous and transverse isotropic model for reinforced composites, �tting the
stress levels obtained experimentally. Therein, a rheometer was used to reproduce realistic
deformation on SMC sample, enhancing the characterization of such materials under real
industrial conditions. Shear-compression tests performed in [19, 2] on SMC samples were
complemented with the plane strain and simple compression test performed by Dumont
[20] on SMC materials for several �ber concentrations. It is found that the SMC materials
have shear-thinning behavior which depends also on the �ber concentration. After the
anisotropic model, which is the departure point of this work, many works were carried
out to compare experimental data to its predictions [21, 22, 23, 24, 25]. This model was
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also able to describe the behavior of other kind of �ber plane materials such as BMC
[26]. So far, the viscous isotropic transverse model is the only model which is able to
reproduce all kinds of kinematics applied to incompressible SMC materials, namely, the
simple compression, the plane strain and the shearing. Therefore in this chapter, we
describe the implementation of such rheological behavior in our numerical platform [27]
and computations are performed on these three typical 
ows: simple compression, plane
strain and shear.

Figure 3.1: Matrix and �bers are modeled as a homogeneous mixture

Usually, simulations on SMC are performed considering a single and incompressible
phase Figure 3.1. However as explained in the introduction chapter, air is entrapped in
the stack of SMC layers as the �ber content increases. This induces a compressible step
in the early stages of preform deformation. To take into account for such phenomenon,
the model is enriched by porosity evolution term which modi�es the diagonal of the
stress tensor according to the observations of the porosity evolution during compression
experiments [28]. The extended model developed in collaboration with 3SR laboratory
(Grenoble), enables the computation of the compressible stress during the porosity clo-
sure. A volumetric term evolves during the material deformation turning the compressible
material into a fully incompressible one.

In order to deal with both incompressible and compressible behaviors, an uni�ed
anisotropic formulation is proposed to perform numerical computations. The implemen-
tation of both models in our numerical software is explained in section 3.3 in which both
models are assembled in one uni�ed approach. Detailed explanations on all the parame-
ters needed to handle this anisotropic compressible model for SMC materials are given.
The characterization of the compressible behavior of high concentrated SMC materials
will be addressed in section 3.3.2, the evolution of the �ber volume concentration during
the porosity closure is then discussed in section 3.3.3. Then, following a micro-macro ex-
tension, it is presented the model for the viscosity of SMC in section 3.3.1. The numerical
implementation detailing the coupling with the mass equation is given and its consider-
ations for other anisotropic problems are established. A summary of all the constitutive
equations to be solved are addressed and compressible cases are studied. Here-under,
computations are mainly made for the compaction case (also called OEDO test) and
stress levels are compared from compressible case to the incompressible one. That gives
a clear picture of the stress and material evolution during the compressible/incompressible
transition. Finally, the classical compression case is studied when the material changes
from a densi�cation state (pore closure step) towards a pure squeeze 
ow motion.
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3.1 Modeling Incompressible SMC

From their experimental observations [18], Dumontet al. have proposed a macroscopic
viscous transverse isotropic model for SMC materials [20] which is considered as contin-
uum media. This constitutive model assumes that there is a plug 
ow and the �bers
spread in anin-plane way. Therefore, �bers are considered to be randomly distributed in
the plane along the sheets during the whole deformation. Averaging the �ber directions
modi�es homogeneously the macroscopic stress, leading to a plane isotropy. A symmetric
structural tensor, M , is then built considering the unitary normal vector to the plane of
the sheet. The stress tensor� is written depending on the strain rate tensorD by the
form:

� = � 0� eq

�

D + � 1(M : D )M +
1
2

� 2(D � M + M � D )
�

� p̂ I (3.1)

where� i are rheological parameters depending on the �ber fraction� f and the orthotropic
strain rate invariants; p̂ stands for a partial pressure acting on the material;� eq stands
for an equivalent viscosity at a given strain rate.

The total pressure is obtained by taking the volumetric contribution of the stress
tensor de�ned by:

p = �
1
3

tr (� ) (3.2)

Taking into account of incompressibility conditiontr (D ) = 0 and the symmetric form
of M and D gives tr(M � D ) = tr( D � M ) = M : D . As M is a structural tensor build
with orthonormal rotational vector that implies tr (M ) = 1 and the expression of the
material pressure is simpli�ed to:

p = p̂ �
� 0� eq

3
(� 1 + � 2)(M : D ) (3.3)

which gives the link between the partial pressure ^p and the total pressure. Thefore, the
arbitrary pressure p̂ assigned in [20] represents a partial contribution of the volumetric
stress.

3.2 Modeling Compressible SMC

The viscous orthotropic model presented in the previous section 3.1 has been used for
volume �ber concentration of 3.5%, 7.1%, 10.8%, 14.7% and 18.8%. For these low �ber
concentrations, the anisotropic behavior of the SMC can be assumed incompressible and
it is described by the expressions given in [18] and presented in the previous section
(Equation (eq. (3.1). However, as automotive applications demands a strong cut down of
vehicle weight, the �ber concentration in the SMC reaches up to 24% and 38% in volume.
The fabrication process of the SMC shown in Figure 12 entraps air within the stack of
layers. This entrapped air, denoted here as porosity, becomes important when the �ber
volume concentration increases. As depicted in Figure 3.2, the porosity captured through
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the �ber network inherent in the fabrication process, modi�es the SMC behavior. Apply-
ing a compression to SMC sheet, we notice a compressible step until a critical value from
which the volume strain remains constant. The colored tomography pictures show the
porosity inside the material before compression and the normal stress pro�le indicates a
modi�cation of the rheological behavior during the compression. For UL SMC (24% of
�ber concentration) the porosity reaches 2%, whereas for the HP SMC (38% of �ber con-
centration) it reaches 30%. This amount of porosity induces a compressible behavior for
the SMC. The air is expelled when material deformation occurs. For molding compres-
sion, the porosity concentration decreases with deformation. Accordingly, the porosity
closure depends on the volumetric deformation and it is independent of the strain rate [29].

Figure 3.2: Porosity in tomography pictures for a cylinder sample of HP SMC (diameter
50 mm and height 6mm). Evolution of the stress, volume strain as function of the axial
deformation in a simple compression. .

Therefore, modeling of SMC for high �ber concentration has to be adapted to take
into account of this compressible behavior. With respect to the previous model, it has
to be improved thanks to experimental measurements made by D. Ferre-Sentis during
his PhD work. By adding a term proportional to the volume variation of the material,
here represented as the trace of the viscoplastic strain rate, the stress tensor is written
as follow:

� = � 0� eq

�

D + � 1 (M : D ) M +
� 2

2
(M � D + D � M ) + � 3tr (D )I

�

(3.4)

where the compressibility of the material is taken into account with the term� 3 tr (D )I .
This compressible modeling has been found in other works on isotropic materials in which
the stress tensor is linked to the velocity divergence [30]. Following the procedure brie
y
explained in chapter Chapter 1, a di�erent formulation is used in order to facilitate the
numerical implementation.
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The new contribution to the modeling of SMC materials from the rheological point
of view is given by expression eq. (3.4). Note that the anisotropic model presented here
enables the computation of SMC compression molding materials as well as problems of
�ber reinforced injection simulations.

By comparing the expressions of stress tensor for both incompressible and compress-
ible cases, it follows that the term� 0� 3� tr( D) becomes ^p once the porosity gets closed.
During the densi�cation the � 3 term increases and the volumic variation tr(D) decreases
until the incompressible conditiontr (D) = 0 is achieved. From a numerical point of view,
multiplying two terms having two di�erent behaviors (one tends to in�nity whereas the
other tends to 0) might cause numerical instabilities. More important, when tr(D) tends
to zero the term multiplied by � 3 becomes a partial pressure ^p which needs to be coupled
with the mass conservation equation. In the upcoming section, we propose to de�ne a
variable � which allows dealing with both cases and at the same time a direct coupling
with the mass conservation equation. Thus, a clear and smooth transition between the
compressible case and the incompressible case is recovered.

3.3 Uni�ed Compressible-Incompressible Model for
SMC

For compression molding simulations, the models presented in eq. (3.1) and eq. (3.4)
are needed and we have to deal with a compressible/incompressible transition. In this
section, we unify both approaches into an uni�ed formulation which is able to change
from one behavior to another by using a single parameter� . We show in the sequel that
both compressible and incompressible cases can be written in a compact form already
presented in eq. (3.5):

� = 2� D + T4 : D + T2 D + D T 2 + qI (3.5)

where� represents the equivalent viscosity of composite,T4 a fourth-order tensor describ-
ing the anisotropy of the material;T2 a tensor also describing the anisotropic contributions
of �ber network and q states for all the volumetric contributions presented in the incom-
pressible or compressible models.

In the sequel, the equivalent form for the compressible case is presented, as well as,
the coupling of the velocity-pressure problem for the uni�ed formulation.

For the compressible case, we start writing down the expression given in section 3.2,
the stress tensor stands:

� = � 0� eq

�

D + � 1 (M : D ) M +
� 2

2
(M � D + D � M ) + � 3 tr( D )I

�

: (3.6)

This expression takes into account the compressibility of material by the term� 3 tr( D ).
By replacing this term by the variablep̂, the Cauchy stress can be presented as:

� = ~s � p̂I (3.7)
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� = � 0� eq

�

D + � 1 (M : D ) M +
� 2

2
(M � D + D � M )

�

| {z }
~s

+ � 0 � eq � 3 tr (D )I
| {z }

� p̂I

(3.8)

� 0 � eq � 3 tr (D )
| {z }

r� v

= � p̂ (3.9)

where ~s is the viscous stress for SMC materials introduced in [18], and ^p is a measurement
of the compressibility (or incompressibility) depending on the factor� 3 tr( D )I . The
de�nition of � is then changed by this splitting, whereas the relation given for ^p de�nes
the new velocity divergence condition.

In this point, we introduce the compressibility factor� as a function of the rheological
parameter � 3.

� =
1

� 0 � eq � 3
(3.10)

Which allows to write a relation between the divergence of the velocity with the partial
pressure ^p:

tr (D ) + � p̂ = 0 (3.11)

Please notice for� 3 ! 1 , � ! 0 (= > r � v = 0; incompressible case). This strategy
actually uni�es the compressible and the incompressible cases thanks to factor� .

Under such constructionthe system to solve the mechanical problem is given
by:

r � ~S � r p̂ = 0 (3.12)

(3.13)

r � v + � p̂ = 0 (3.14)

and the total pressure for both compressible or incompressible cases can be then obtained
by taking:

p = p̂ �
� 0 � eq

3
(tr( D ) + ( � 1 + � 2) M : D ) (3.15)

If � 3 ! 1 , the 
uid becomes incompressible (tr(D ) = 0) and p̂ corresponds to the
partial pressure due to the incompressibility, whereas the total pressure is

p = p̂ �
� 0� eq

3
(� 1 + � 2)M : D (3.16)

the Cauchy stress� is given by eq. (3.7) while the deviatoric stress is given by:

s = � + pI (3.17)
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or well given in term of ~S:

s = ~S +
� 0 � eq

3
(tr (D ) + ( � 1 + � 2) M : D ) I (3.18)

By solving the set of equations described in the system of equations 3.13, we obtain
the velocity pro�le v and a partial pressure ^p. This construction simpli�es the numerical
task of building the anisotropic solver. Additionally, we have as well used a more general
integration using a fourth-order tensorT4. This strategy comes for the idea of generalized
the solver up to other anisotropic behavior laws (for instance the Lipscomb Model [31]).
The solver build under the frame of this PhD also enable the description of the mechanical
motion for injection of polymer reinforced by �bers. The reader is invited to check an
extension of this work in Appendix (Chapter F).

3.3.1 Viscosity model for SMC materials

Based on homogeneous rheometry experiments performed on SMC7520-26 and SMC719
formulations, a continuum one-phase rheological model has been proposed in [29]. In
order to take into account of the planar micro-structure induced by the �ber bundle
network, the nonlinear viscous character of its deformation and the compressible behavior
of the part, the composite is seen as a shear-thinning compressible 
uid. The viscosity
follows a power law and is given by the formula:

� eq = � 0 (� f � � c)
2 D n� 1

eq (3.19)

wheren is the index of the power law andDeq an equivalent shear rate which takes into
account of the anisotropy of our composite. The dependence with respect to �ber con-
centration is due to the material compressibility (the volumic concentration is directly
related to the porosity). Finally, the viscosity of the part increases during the densi�-
cation by a quadratic expression (See Figure 3.4). Here,� f stands for the volume �ber
concentration of the material and� c a �tting parameter allowing a better agreement with
experimental data. During the compaction of SMC, the �ber volume fraction� f increases
whilst � p decreases. Then, the viscosity increases since the number of contact �ber-�ber
increases. The proposed form forDeq (the equivalent strain rate) is:

D 2
eq = � 0

�
D : D + � 1(M : D )2 + � 2(D � M ) : D + � 3tr( D )2

�
(3.20)

where the viscosity� 00 correspond to the axial viscosity recorded during homogeneous
plane strain compression for an axial strain rate of 1s� 1 applied on a SMC sample. The
temperature dependency of the viscosity is given by an Arrhenius relation as found in
[20] and [26]. For modeling such temperature dependence, we use values found for similar
SMCs studied in the literature [24] (See Figure 3.3). The Arrhenius expression states:

� 0 = � 00 eb( 1
T � 1

To ) (3.21)

with � 00 the viscosity at the reference temperature and the reference strain rate. The
data can be read from Table 3.1 and Table 3.2. The viscosity evolution without chemical
reaction stands:
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� = ~� 00 eb( 1
T � 1

T o ) (� f � � c)
2 D n� 1

eq (3.22)

and the evolutions of each terms as function of the temperature and volume �ber fraction
are given in Figure 3.3 and Figure 3.4 respectively.

Parameters for evolution of �
Material HP SMC UL SMC
� 0 20MPa s 120MPa s
� c 0.02 0.02
b 3200 4900
To 296 296

Table 3.1: Parameters for viscosity

constitutive parameters
Material SMC HP SMC UL
� 0 1.06 1.06
� 1 1.36 1.42
� 2 -1.92 -1.97
n 0.25 0.35

Table 3.2: Rheological parameters of SMC
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Figure 3.3: Evolution of the reference
viscosity as a function of the temper-
ature. Arrhenius law with b = 4900
TR = 296 K .
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Figure 3.4: Evolution of the SMC vis-
cosity as a function of �ber-�ber inter-
action (� c = 0:02).

3.3.2 The Compressible/Incompressible transition - Evolution
of parameter � 3

The parameter� 3 is used to describe the compressible nature of the SMC when it traps
air because of the fabrication process. While compressing the SMC sample, expelling
the porosity (or densi�cation) occurs in the �rst stage when there is no motion in the
transverse direction. The height decreases while no material 
ow is observed. When
the air is compacted by the deformation, the� 3 term reaches a high number and the
materials becomes incompressible. According to [29], the evolution of the constitutive
parameter � 3 as function of �ber concentration is proposed on the form:
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� 3 = k e

� b
� c

f + H (3.23)

In Figure 3.5, the evolution of � 3 de�ned by eq. (3.23) with respect to the �ber
concentration is plotted. The volume �ber concentration� f is a bounded value. For
HP SMC, the initial value of the volume �ber fraction equals 28% before the porosity
closure. Once the porosity reaches 0%, the incompressible �ber fraction� dense

f equals
38% (additional information are given in Table 3.4). The value� 3 increases meaning
that the porosity is expelled. The parametersk, b, c and H are given in Table 3.3. In
the mechanical resolution, the evolution of� 3 is taken into account by means of the
compressibility term � (see eq. (3.10)) and its variation is also plotted in Figure 3.5. It is
positive while the material is compressible and tends to 0 as the porosity decreases and
therefore the material becomes incompressible.

0:27 0:28 0:29 0:3 0:31 0:32 0:33 0:34 0:35 0:36 0:37 0:38 0:39

0
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4

5

�ber concentration � f

Evolution of parameters describing compressible/incompressible transition

� 3 HP
� eq � HP

Figure 3.5: Evolution of compressible state in SMC as function of the volume �ber
fraction: (blue line) Dimensionless rheological parameter� 3 ; (green line) numerical
parameter � . Parameters for the SMC HP are given in Table 3.3.� 3 is the parameter
proposed by [29] whereas� is the parameter used for the computations. They are linked
by the relation eq. (3.10)

3.3.3 Evolution of porosity and �ber fraction concentration

For the high pro�le SMC, the initial porosity fraction is around 25% of the volume of
the material. During the compression, this value decreases modifying many properties
of the material such as viscosity, density and compressibility. By knowing the �ber con-
centration in the dense state and computing the volume evolution of the sample, the
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Parameters for evolution of � 3

Material SMC HP SMC UL
k 6e+05 incompressible
b 0.5 -
c 3.2 -
H 0.446 0.446

Table 3.3: Parameters needed to computation of� 3 and coming from experimental mea-
surements [29].

Parameters for the evolution of � p; � f ; � m

Material SMC HP SMC UL
� dense

f 0.38 0.24
� dense

m 0.62 0.76
� po 0.25 0.026
� mo 0.47 0.74
� fo 0.28 0.234
� 1.0 1.0

 0.01 0.01
" vcrit 0.25 0.0265

Table 3.4: Parameters needed to compute the volume fractions of HP and UL SMCs.

new concentrations of �ber, paste and porosity are obtained. Firstly all initial concen-
trations are calculated knowing the initial porosity state� po = 0:25 and the dense �ber
concentration � dense

f = 0:38 (known by the fabrication process). The initial �ber con-
centration is then obtained by � fo = � dense

f (1 � � po) and the matrix concentration by
� mo = � dense

m (1 � � po) or by the mass conservation as� mo = 1 � � fo � � po.

According to the rheological measurements and the phenomenological observations,
we can associate the volumetric deformation with the porosity evolution. At macroscopic
level and a simple squeeze 
ow, the volumetric deformation is obtained using:

" v = ln
� V

Vo

�

(3.24)

For our simulations, we describe the volume variation as a local variable. For that the
volumetric part of the strain rate tensor is taken and the volumetric variation follows:

d"v

dt
= tr( D): (3.25)

The porosity is then calculated using an experimental expression eq. (3.26) proposed
in [29] and used in previous work [32]:

� p = �
�
2

�

(� " v � " vo) �
q

(" v � " vo)2 + 
 2
�

+ � po (3.26)
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where the �tting parameter � stands for the slope of the linear transition of the volumetric
deformation with the porosity closure;
 is the numerical parameter used to avoid that
the volumetric deformation exceeds the critical value" vcrit . The value " vo in eq. (3.26) is
obtained through the expression:

" vo = �

 2 �

� 2" vcrit

�

� 2

4" vcrit

�

(3.27)

Finally the matrix concentration is updated as well as the �ber fraction concentration
thanks to this sequence of equations:

� m = � dense
m (1 � � p) (3.28)

� f = � dense
f (1 � � p) (3.29)

or
� f = 1 � � m � � p (3.30)
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Figure 3.6: Evolution of the porosity, �ber and matrix volume concentration with respect
to the volumetric deformation of HP SMC.

In Figure 3.6 is plotted the evolution of the porosity, �ber and matrix volume concen-
tration as function of the volumetric deformation" v. In the �tting presented in eq. (3.26)
� stands for the slope of the curves presented in Figure 3.6 while the material is still com-
pressible. Please notice the volumetric deformation for compression cases are negatives.
Once the volumetric deformation reaches the critical value" vcrit = � 0:25 the linear be-
havior is modi�ed by the convex parameter
 assigned to the concavity of the transition
once the incompressible limit is reached. Then, the relative density is obtained:
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� r = 1 � � p (3.31)

Notice that the information of � p enables the direct computation of the relative density
and the information of the �ber concentration � f allows us to update the viscosity of the
material � according to our rheological model de�ned in section 3.3.1.

Additionally, the evolution of the relative density can be obtained by solving eq. (1.18)
directly, as suggested in Chapter 1. However, the procedure depicted in this section also
enables the updating of the �ber concentration� f and also the viscosity consistency as
required in section 3.3.1.

3.4 Summary of mechanical resolution

After having introduced the mechanical behavior of SMC and their constitutive param-
eters, a summary of set of equations to solve numerically are addressed hereunder. The
planar isotropic model for SMC is de�ned by a structural tensor denoted asM account-
ing for the normal e3 of to the �ber network ( M = e3 
 e3). The anisotropic stress tensor
is written in its compact form:

� = 2� D + T4 : D + T2 D + D T 2 + qI (3.32)

where ^� is the updated viscosity andT4 and T2 account the anisotropy exhibits for
such materials and they are functions of the structural tensorM . With this formalism,
the connection with model described earlier in this chapter is made by taking :

� =
� 0� f (Deq)

n� 1

2
Viscosity (3.33)

T4 = 2 � 1 � (M 
 M ) 4th order Tensor (3.34)

T2 = � 2 � M Tensor (3.35)

The consistency of the material depends on the local �ber concentration� f

� f = � 0 (� f � � c)
2 (3.36)

and the equivalent viscoplastic strain rateDeq retrieved accordingly to the expression:

D 2
eq = � 0

�
D : D + � 1(M : D )2 + � 2(D � M ) : D + � 3(tr( D ))2

�
(3.37)

Finally the mechanical problem is given by �nding (v; q) such as:

r � � (D ; q) = 0 (3.38)

tr( D ) + � p̂ = 0 (3.39)

For compressible SMCs, the �ber fraction concentration� f and the relative density� r

need to be update during the compression molding process. As described in section 3.3.3,
those parameters depend on the volumic deformation" v obtained by solving:

d"v

dt
= tr (D) (3.40)

That enables the computation of� p and then � f , which is used as entry to update the
viscosity � and the compressibility� in the mechanical problem.
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3.5 Numerical cases

In order to check the implementation of the mechanical resolution in our Finite Element
Library, several numerical tests were performed. First, the rheological cases for the de-
termination of the orthotropic incompressible viscous model explained in section 3.1are
reproduced. There, three cases are presented: simple compression, plain strain compres-
sion and shear test. The equivalent stress level and equivalent strain rate are summarized
in a single comparative plot. The model prediction is superimposed putting in evidence
the validation of the incompressible model. Secondly, the feasibility of the uni�ed model
for the case of high concentrated SMC and its compressible/incompressible transition is
studied on a compaction case. There, the materials is densi�ed until the incompressible
state is reached. The normal and lateral stress are compared to analytical formulas and
experimental measurements. Thirdly, the compression of a sample with 38% of �ber con-
centration is studied, evolving from a compressible case towards a fully incompressible
compression. In this latter case, the in
uence of slip and no-slip boundary conditions
are studied. We observe the stress evolution during the compaction and during 
ow mo-
tion. Finally, the plain strain compression of the same material is reproduced and the
stress prediction is compared to the ones provided by the compressible model presented in
section 3.2. All simulations are made by using the uni�ed model presented in section 3.3.

3.5.1 Standard SMC - incompressible case

Assuming that the compositeis a homogeneous phase (composed of the �ber and the resin
paste) as illustrated in Fig.3.1, the two equivalent components (stress and strain rate)
are de�ned according to eq. (3.41) and eq. (3.42) (deduced from the viscous transverse
isotropic model presented in section 3.1):

� 2
eq =

1
2

�
(1 + 2H ) s : s + (5 + H � 6L) (M : s)2 � 2 (1 + 2H � 3L) (s � M ) : s

�
(3.41)

D 2
eq = � 0

�
D : D + � 1 (M : D )2 + � 2(D � M : D

�
(3.42)

all rheological parameters are constant and the coe�cient� i can be expressed as function
of H and L (for example, H = 0:446 andL = 15:8 for UL SMC). The tensor s states
for the deviatoric stress tensor. The orthogonal directionn represents the normal to
�ber network (here, the vertical direction) and it intervenes in the model by means of
the tensor M = n 
 n. The parametersL, H account for �ber concentration, their
determinations and relations are detailed in [18].

The geometries of the three rheological experiments are plotted in Figure 3.7. The
mechanical equations solved in this section are presented in section 3.4. Here, the com-
pressibility factor � is set to 0 (incompressible case) and the equation for the volume
strain evolution is not necessary. Finally the system solved is:

r � � (D ; p̂) = 0 (3.43)

tr( D ) = 0 (3.44)

The initial dimensions of studied sample are respectively: for simple compression,
a cylinder used having a height of 7:6 mm and a radius of 50:0 mm (Figure 3.18a );
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Figure 3.7: Sketchs of geometries studied in our numerical applications: simple compres-
sion, plane strain and oedo test.

for plane strain, a cube with a height of 7:6 mm, a width of 60 mm and a depth of
40 mm (Figure 3.18b). They are compressed until reaching both a height of 4mm (47%
of compression ). For shear computation, we use the same sample as for the plane strain
problem.

Experiments presented in [18] gave values of equivalent strain rateDeq and equivalent
stress� eq de�ned by eq. (3.41) and eq. (3.42) for the three experiments, two di�erent
�ber concentrations (3.5% and 14.7%) and three applied strain rates [10� 4; 10� 2; 1]s� 1.
The composite resulting consistency stated for the two di�erent concentrations� f

3:5% =
0:763 MPas and � f

14:7% = 4:886 MPas Theses experimental values were compared with
the analytical solutions and the results of our numerical computations. A total of six-
teen simulations were performed with slip boundary conditions. Since the Cauchy tensor
is constant in the domain, a space constant stress tensor de�nes the stress state. The
results presented in Figure 3.8 point out a good agreement between numerical computa-
tions and the experimental measurements used to characterize the material. Important
to mention that the experimental cases hereunder compared satisfy slip wall condition.
In fact, such friction-less conditions were reproduced experimentally by lubricating the
contact sample/wall. The numerical strategy used to tackle this boundary condition in
the framework of immersion methods is detailed in Appendix:Chapter B. We also notice
the linear tendency in this log-log plot. The reference value of the stress atDeq = 1s� 1 in
this curve represents the viscosity� 0 that depends on the �ber concentration� f which is
assumed constant for incompressible SMC. The slope of the line stands for the viscoplas-
tic strain rate dependency indexn, here n = 0:44. Clearly, the viscosity of the mixture
increases with �ber concentration.

In this section, We prove that for the incompressible model the numerical compu-
tations predict equivalent stress correctly. It is worth notice that the equivalent stress
tensor eq. (3.41) depends only on anisotropic parametersH and L. As proved in [20],
the incompressible model �ts very well experimental data and by extension our numeri-
cal results as well. In the next section, a numerical test is carried out using the uni�ed
model to predict the stress evolution during the compressible step of compression of SMC
sample.
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Figure 3.8: Incompressible Model for SMC: Comparisons between Experimen-
tal/Analytical/Numerical predictions for Simple Compression, Plane Strain Compres-
sion and Shear. Computations are made for standard SMC having �ber volume fractions
� = 3:5% and� = 14:7% at room temperature.

3.5.2 High performance SMC - Compressible case

In the following, the compressible case is studied when high performance SMC is mod-
eled. We present the analysis of compressible SMC for three con�gurations: a purely
compaction case, a classical squeeze 
ow and a plane strain compression.

Compaction of HP SMC - Oedometric Compression

High performance SMC materials exhibits a compressible step during compression mold-
ing. The dedicated con�guration to check this compressibibility is the compaction set up
pictured in Figure 3.9. In this apparatus, the sample is blocked inside a circular cavity
and it is deformed until the material becomes incompressible. The cavity surrounded
the SMC sample restricts its radial movements. Therefore, only vertical deformation is
allowed and the SMC porosity decreases progressively during the compaction process .
The internal pressure in sample increases while porosity closes. That translates into an
increment of the stress needed to deform the sample. A constant strain rate deformation
_h=h is imposed and the evolution of the stress during vertical deformation is recorded,
When the level of porosity is low enough, the material behaves as an incompressible 
ow
and the stress tends to in�nite. In the experimental test, the compression ends when the
machine limit compression force is reached. The vertical displacement is directly related
to the macroscopic volumetric deformation by means of relation eq. (3.24).

The compaction test (also called densi�cation test) has been performed on two sam-
ples of HP SMC. The normal and lateral stress level were recorded. The normal stress is
obtained by dividing the force of the machine to the surface of the sample. In this case,
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the surface of the sample does not change as only axial deformation is allowed. Note that
the normal experimental stress presented here is obtained by assuming an uniform stress
level within the material. An approximation that might not be truth at the extremities
of the sample as shown in the numerical simulation.

THe initial sample has a diameter of 120mm and a height of 9:5 mm. To get an
uniform top surface a pre-compression of 200N is carried out. This stands for the pre-
charge in compression molding process for industrial parts. The machine is set to respect
a constant strain rate compressionv=h (v being the punch velocity ) and it stops when
the compression force reaches 90kN . The compression test conditions are described in
Table 3.5. The sub-index 1 or 2 are used along the text to identify the experimental
conditions.

r

z

_h
h

F;

� L

� n

Punch

Sample

Die

Figure 3.9: Oedo con�guration for compressible SMC: the SMC sample is blocked in a
ring in oder to allow only vertical deformation.

Experimental setup for HP SMC
Case v=h Timp h0 hf Fmax

1 0:003s� 1 20 oC 9.5 7.2 90KN
2 0:03 s� 1 20 oC 9.5 7.3 90KN

Table 3.5: Experimental conditions for the densi�cation case of HP SMC

The immersion of the sample mold and punch is pictured in Figure 3.10. As observed
in Figure 3.11 the volumetric deformation" v equals the deformation rate". During
this densi�cation, the porosity volume fraction decreases and the volume �ber fraction
increases as well as the relative density� r . For the compaction case, we notice also that
the porosity �ber fraction does not follow a linear tendency.

Hereunder, a spatial description of the porosity closure is pictured in Figure 3.12.
During the densi�cation, the porosity evolves depending on its position. The porosity
in the center tends to close before the porosity close to the external radius. This non-
uniformity is due to boundary conditions at the mold/sample contact. In Figure 3.12a,
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Figure 3.10: Compaction of SMC sample: the densi�cation occurs due to porosity closure;
Visualization of the sample contained by the mold and punch (left); 2D visualization of
a middle plane cut showing the pressure at an intermediate time (right).
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Figure 3.11: Oedometric Compression: Compactation of SMC sample for the case 2 by
using compressible model; Evolution of porosity, �ber and matrix volume concentration
as a function of vertical deformation; Evolution of volumic deformation as function of
vertical deformation.

the sample contains a homogeneous initial porosity fraction of 25%. During the com-
pression the volumetric deformation follows the equation eq. (3.40) and the material is
densi�ed. Its porosity along the sample is obtained thanks to the relation given in sec-
tion 3.3.3. In Figure 3.12b and Figure 3.12c, we noticed that the porosity after some
deformation reaches 10% in the center and is about 15% at the mold lateral contact. In
Figure 3.12d the material porosity is lower than 0.2% and the simulation stops. In Fig-
ure 3.11, the volumetric deformation" v and the volume concentration of the �ber matrix
and porosity evolution during the axial deformation is presented. As expected, we ob-
serve that the volumetric deformation is linear with respect to vertical deformation until
a deformation larger than 0:2. Afterward, a change in the slope of the curve is observed
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since the porosity begins to be low enough and the material becomes incompressible.

(a) t1 : Initial porosity pro�le in the sample (b) t2 : Porosity at deformation " = 0 :2

(c) t3 : Porosity at deformation " = 0 :22 (d) t4 : Porosity at deformation " = 0 :28

Figure 3.12: Porosity concentration evolution during oedo compression: compress-
ible/incompressible transition of SMC.

The pressure increases during the porosity closure since the material becomes incom-
pressible (See Figure 3.13). According to the model, the pressure departs from a stable
value 3.13a and increases during deformation Figure 3.13b and Figure 3.13c. Logically,
the lower the porosity inside the material, the lower its capacity of being compressed, the
higher the pressure. In 3.13d a snap of the pressure is presented before the simulation
stop. In order to avoid numerical problems once the material is fully incompressible, the
simulation is stoped when the porosity is lower than 0.1%. Consequently, the velocity pro-
�le presented in Figure 3.14 moves from a compressible pro�le as in Figure 3.14a towards
an incompressible pattern visualized in Figure 3.14d characterized by the squeeze 
ow
pro�le [33, 34]. From a linear pro�le in the vertical direction and zero-radial velocity as
depicted in Figure 3.14b, it moves to a standard squeeze 
ow pro�le at the incompressible
state. The modi�cation of the compressible pro�le towards the incompressible one occurs
at " = 0:22 (see Figure 3.14c) where there is the compressible/incompressible transition.
When the materials becomes incompressible (or almost) the immersion method meets
di�culties to impose the velocity inside the punch and the mold.. The pressure increases
until a point where the viscosity a�ected to the mold (hereby chosen as 1000 times higher
than viscosity of SMC), is not su�cient to ful�ll its role. The strain rate on the mold
side reaches the same order of magnitude than for the SMC.
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(a) t1 : Pressure at deformation" = 0 :01 (b) t2 : Pressure at deformation" = 0 :2

(c) t3 : Pressure at deformation" = 0 :22 (d) t4 : Pressure at deformation" = 0 :28

Figure 3.13: Pressure pro�le evolution during oedo compression and the compress-
ible/incompressible transition: the pressure increase exponentially when the material becomes
incompressible.

3.5.3 Comparison of stress level with experimental data

According to our model, the normal and lateral stresses during the compaction test
(compression OEDO) states (See details in section D.2.3):

� L = � 0 (� f � � c)
2 � 3 (1 + � 1 + � 2 + � 3)

n � 1
2 D n

33 (3.45)

� n = � 0 (� f � � c)
2 (1 + � 1 + � 2 + � 3)

n +1
2 D n

33 (3.46)

where� 0 is the viscosity of the HP SMC given in Table 3.1. The volume �ber concentra-
tion � f changes during the simulation and modi�es mainly the coe�cient� 3. The con-
stitutive parameters � i are described in Table 3.2 and section 3.3.2. Assuming constant
strain rate during the deformation, these analytic stress levels are plotted in Figure 3.15
and Figure 3.16. They are compared with the numerical stresses provided by the nu-
merical simulations and the experimental measurements performed on samples of SMC
materials. Theses comparisons are made by looking at the evolution of the stress during
the vertical deformation for the two strain rate velocities summarized in Table 3.5. The
behavior of the stress is the same for both velocities. There is only a modi�cation of
stress level since the model is of purely viscous in nature. The analytic model and the
numerical simulations predict the same stress level as pictured in Figure 3.15a and Fig-
ure 3.15b where the vertical and the lateral stresses during the compaction are plotted.
Thus, that validates the numerical implementation of the set of equations modeling the
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(a) t1 : compressible velocity pro�le (b) t2 : velocity pro�le at " = 0 :2

(c) t3 : compressible/incompressible transi-
tion " = 0 :22

(d) t4 : incompressible velocity pro�le - end
of simulation - squeeze 
ow

Figure 3.14: Velocity pro�le evolution during oedo compression and compress-
ible/incompressible transition: the velocity pro�le is vertical and linear at the beginng and
has a typical squeeze 
ow patterns at �nal state.

SMC behavior.

The di�erences found with respect to experimental data during the densi�cation are
mainly due to the di�culty to reproduce equivalent experiments for SMC samples. In
fact, it is not surprising to found high dispersion (until 50%) with measurements per-
formed for SMCs. This dispersion brings problem when deciding the reference curve to
set the model parameters values, namely, to characterize the mechanical properties of
the material. In addition, the model proposed for the evolution of the porosity parame-
ter by means of� 3 term remains an open question. The model proposed here supposes
an isotropic closure of the porosity since the orthotropic parameters� 1 and � 2 remain
constant. The characterization was performed for many strain rates and di�erent temper-
atures, here we only presented two cases at ambient temperature. Despite the di�erence
between experimental and numerical values, the model proves to follow the evolution
of stress level according to the experimental data. Meaning that previous of this work
this stress evolution was not possible. It remains as perspective to try to improve the
modeling by assigning a orthotropic evolution of the porosity and by determining a bet-
ter description of the porosity closure in relation with the given values for the viscosity
proposed in [29]. From the numerical point of view, our reference curve is the predictions
of our model, and we notice a good agreement implying that our implementation in the
software was done correctly. The main improvements of the model will be noticed for
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squeeze 
ow and plane strain compression.

The stress level using the numerical simulation also reproduced the model predictions
for the second strain rate Figure 3.16. There, the model and the numerical predictions
are in agreement, whereas the results with experimental data di�ers. We notice by the
curve shape that the lateral stresses behaves di�erently during the compaction indicating
once again the non-isotropic evolution of the stress during the porosity closure.
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(a) Vertical stress during the porosity closure
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(b) Lateral stress during porosity closure.

Figure 3.15: Stress pro�le evolution during Oedo compression for the case 1. Comparisons
between model predictions, simulation results for 2D and 3D cases and experimental data.

The ratio between the two stresses, the lateral and the axial, is a measure of the
compressibility and anisotropy of material. Indeed, according to the model, the initial
stresses ratio equals the rheological parameterH = 0:446. During the compaction, the
lateral stress increases faster than the axial ones. Thus, when incompressible state arises,
such ratio equals the unity. The evolution during the densi�cation is strongly related
and ruled by the evolution of parameter� 3 (and therefore by its experimental �tting
from experimental data). In Figure 3.17 the evolution of both strain rate compression
are compared to the one predicted by the model.

The compaction case enables the veri�cation of the volumetric deformation with the
porosity closure. The important value for the molding process is the amount of defor-
mation before it behaves as an incompressible material. And therefore, it is necessary to
develop a progressive strategy to deal with the compressible and/or incompressible case
when the material is not avoided to 
ow in real con�gurations. The simple compression
case is a more representative con�guration in relation with the compression molding pro-
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(a) Vertical stress during porosity closure
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(b) Lateral stress during porosity closure

Figure 3.16: Stress pro�le evolution during Oedo compression for the case 2. Comparisons
between model predictions, simulation results for 2D and 3D cases and experimental data.
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evolution during compaction test

cess. There, the material is free to 
ow in the radial/horizontal direction. That case is
studied as follow in order to evaluate when the material starts to 
ow, at which axial
deformation and how the stress behaves in such case.
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(a) Simple Compression (b) Plane strain compression

Figure 3.18: Numerical immersion of the di�erent phases (punch, mold and SMC) in the
computational domain: (a) for the simple compression case, (b) for the plane compression.

3.5.4 Compressible/Incompressible Transition for a Squeeze Flow

For the simple compression case the numerical con�guration is shown in Figure 3.18.
The analytic solutions are provided in section D.2.1. Two wall boundary conditions are
studied: slip contact and sticky (no-slip) contacts. In molding compression applications
the friction between the mold wall and the sample modi�es the mechanical behavior and
therefore the force applied on the punch.. For a slip contact, the material is subjected to
a purely elongational 
ow whereas a sticky contact causes that the 
ow is dominated by
the shear. The friction condition is a combination of both cases. The most predominant
kinematic in SMC compression molding is an equivalent of the squeeze 
ow and it is
studied by numerous authors [35, 36, 37, 38]. The comparison between analytic solutions
and the numerical computations can only be done for the slip boundary condition for
which it is possible to exhibit such solution by using continuum mechanics. Therefore,
further to such studies, we also present in this section the case for a non-slip boundary
condition. There, we point out the di�erences in the behavior of the porosity closure and
stress level for both boundary cases.

In Figure 3.19 and Figure 3.20, the evolution of the compressible parameter� in-
troduced in this work is presented. In Figure 3.19a the initial porosity concentration
� po = 28%. At deformation about � 25% the material reaches the transition state pic-
tured in Figure 3.19c. We notice than also in Figure 3.21 the volumetric deformation
presented in Figure 3.24a has a change in its slope and its tendency becomes 
atter.
Thus part of the vertical deformation is transformed in surface deformation. When the
material reaches the incompressible state Figure 3.19c it 
ows. A further snap is taken
at deformation " � 0:6 where the material is fully incompressible 3.19d since its porosity
concentration in lower than 0.1% as shown in Figure 3.21b.

Accordingly for the slip contact, the analytic solution states as shown in section D.2.1

� 33 = � 0 (� f � � c)
2 �

n +1
2

0

�

1 + � 1 + � 2 +
� 3

1 + 2� 3

� n +1
2

D n
33 (3.47)
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(a) t1 : beginning of compression (b) t2 : " v = 0 :15: - compressible behavior

(c) t3 : transition to incompressible behavior
(d) t4 : �nal position - (incompresible behav-
ior)

Figure 3.19:Compression of HP SMC. Porosity concentration in the material at the beginning
of compression. Notice the evolution until � p � 0 when volumetric deformation equals critical
state. Compressible/incompressible transition as critical state is reached. Complete squeeze

ow behavior at the end (incompressible).

and the variable � 3 is updated knowing that the trace of the viscoplastic strain rate
stands in this case as:

T r(D ) =
1

1 + 2� 3
D33 (3.48)

In Figure 3.22 the stress for the slip condition is compared to the analytic solution.
Firstly, it is important to observe the behavior of the stress evolution for this viscous
model. At constant strain rate, normally, an incompressible viscous model predicts a
constant stress value. Clearly, the shape of this stress curve along deformation does
not behave like that. The evolution of the stress along deformation will depend on
compressible behavior and friction condition against the wall. The compressible transition
is determined by noticing that the slope of the linear behavior of the stress in the early
compression stages (deformation< 0.2) changes abruptly. In the previous section, we have
shown that the porosity closure of the material increases the internal pressure making it
more di�cult to compress. The same behavior is also found during these computations.
Then, the material 
ows and the friction against the mold play an important role. For the
slip case, once the material becomes incompressible, the viscous stress remains constant.
For the no-slip case, the stress will linearly increases during the deformation since more
surface is in contact with the mold, requiring more energy to displace the material. The
reference curve eq. (3.47) for the slip case is plotted in dashed line inFigure 3.22 and
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Figure 3.20: Compressible/incompressible transition during porosity closure: evolution
of the compressible term� de�ned in eq. (3.10)
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(a) Volume variation during compression
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(b) Transition compressible-incompressible

Figure 3.21: Evolution of the viscoplastic volume deformation " v and the volume concentra-
tion in compression test during compressible/incompressible transition of SMC: slip boundary
conditions (continuous line); No-slip boundary condition (dashed line).

the two boundary conditions are depicted with blue and red lines. In the framework of
immersed domain method, the slip boundary condition is recovered by adding a constant
viscous layer as explained in [39], the numerical prediction are represented by the blue line.
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This numerical stress is slightly higher and increases weakly with the vertical deformation.
This latter means that the viscosity of the additional has to depend on the local tangential
stress to better satis�ed the slip condition. It seems that there is a small friction for large
deformation. For the no-slip case, there is no analytic solution but the analyze of curve
shape can still be made: the stress behaves as for the slip case during the densi�cation;
then the stress level increases as the surface in contact with the mold does. These two
curves represent the bounded values of stress and all other friction cases remain inside
this range.
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Figure 3.22: Normal stress during compressible/incompressible squeeze 
ow. For the analytic
solution, the slip case is reproduced by the numerical simulation. The non-slip case reproduces
higher normal stress due to the shearing of the material. In both cases, the stress during the
compressible step increases linearly with the volumetric deformation.

3.5.5 Plane Strain Compression

Figure 3.23: Plane strain: Compression of SMC within a channel.

To check the capability of the developed model and its numerical implementation,
compression moldings for plane strain compression (ps) were simulated. For that pur-
pose, an initial SMC sample of dimensionwo � Lo � h0 = 40 mm � 60 mm � 6:5 mm
located in the center of a rectangular mold having a channel length of 80mm. The charge
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is compressed until the mold cavity is ful�lled. The deformation follows the kinematics
given in Figure 3.23.

For this case, we study the evolution of the porosity� p, the volume strain " v and the
plane stresses during the compression. Only, the no-slip boundary condition is addressed
as there are numerical di�culties to set slip boundary condition for the plane compression.
The viscous layer approach under this con�guration induces penetration of the sample
into the mold, since it induces a non-zero velocity of the material towards the mold.
There is also the problem of vertical wall. Further strategies should be integrated to deal
with the slip case during compression in immersed domain method (Nistche method for
example). The molding con�guration gives rise to two main stresses: a �rst one along
the axis of compression� 33, a second one along the vertical plane of mold in contact with
the material � 22. The analytic solutions for slip boundary condition are determined in
Appendix:section D.2.1 and stand as:

� 33 = � 0 (� f � � c)
2 �

n +1
2

0

�

1 + � 1 + � 2 +
� 3

1 + � 3

� n +1
2

D n
33 (3.49)

� 22 = � 0 (� f � � c)
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Figure 3.24:Compressible/incompressible transition for plane strain compression: (a) evolution
of viscoplastic volume strain " v as a function of vertical deformation; (b) evolutions of stresses
for no-slip numerical computations (NS) and slip analytic solutions.

The analytic and computed evolution of the stresses during the plane strain compres-
sion have been plotted in Figure 3.25. The materials behaves as incompressible after
a vertical deformation of 0.4 until its porosity concentration vanishes. We also notice
changes on the shape of curves depicting the stress behavior at this point. The stresses
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