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Introduction

The ability of the human mind to create new forms of technology is rather ex-
ceptional, take for instance the works presented in [1, 2] where the basis of what
was called “a-machines” (later called Turing Machines) was first described, or
the analogous works given in [3] where the notions of λ-calculus were introduced.
Both works independently answered to the Entscheidungsproblem (the decision
problem) [4] as unsolvable. Although the proof of unsolvability of this problem
has had a great impact on the understanding of the limits of algorithms, these
works have also set the foundation of modern digital computing which is respon-
sible for the exponential development of our technologies, our society, and the
way we perceive the world and universe today.

Of course, one of the many domains that owes its success to digital computing
and computer science is the field of numerical simulations, which have helped to
revolutionize the engineering of new devices and systems and to recreate physical
situations/problems that would be very difficult (near impossible) to manage by
conventional mathematical approaches. The complexity of modern engineering is
also in constant growth as a response to the progressive demand for more efficient
and sustainable systems. Here our society becomes every day more dependent
on computer science and numerical simulations (even though it is still a very
reserved topic for some computer enthusiasts, engineers, and scientists) and is
therefore accompanied by a necessary enhancement of their performance.

Generally, two strategies allow increasing the efficiency of a computer-based
numerical simulation: the first consists in enhancing the hardware used to per-
form such simulation (hardware optimization) and the second, to improve the
algorithms behind the simulation without harming the accuracy of its predic-
tions (software optimization). Many efforts in the last few decades have been
concentrated on increasing the clock speed of microprocessors. Continuous ad-
vances in hardware in the last few years have been focused on reducing the cost
and increasing the power efficiency of microprocessors. Usually, an increase of
the transistor density allows for a lower power consumption (performing more in-
structions without getting too hot), which usually limits the CPU performance.
Also, a higher transistor density can provide more cores per chip, allowing higher
performance in multitasking or enabling more threads for applications optimized
to run in a parallel context. At the time of writing, last generation high-end com-
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puters (accessible to the general public) include processors with up to 64 cores,
achieving speeds of up to 4.5 GHz, and Random Access Memory (RAM) slots
with a maximum size of 32 Gb (although most processors only support RAM
slots of up to 16 Gb of size).

Although hardware optimizations rely exclusively on the hands of the lead
companies in the sector, software optimizations for computer-based numerical
simulations are scattered around the private and public domains, and are gen-
erally produced on demand for specific applications. Of course, a wide range of
software improvements can be done to improve the global efficiency of a com-
putational procedure. Improvements on the Operative System (OS) or in the
compiler/interpreter of the algorithm in question can produce huge improvements
in its CPU-time. However, these aspects are usually taken as an accessory on
the enhancement (or in the creation of new) numerical strategies where the main
endeavor still consists in upgrading the main numerical algorithms responsible
for the simulation.

One example of a framework that has constantly reach its limits in terms
of computational performance is the field of massive multi-domain simulations.
This terminology can be understood as the modeling of physical phenomena in
a given domain partitioned in a large number of sub-domains, each presenting
its own characteristics. Another vision may be that of the evolution of complex
interface networks in a domain with heterogeneous properties depending on these
interfaces. A field of predilection for these kinds of simulations is that of mate-
rials science. Indeed, almost all the materials that surround us can be studied
in this context of massively multi-domain problems when they are explored at
the mesoscopic scale. Existing defects within matter can be formulated in terms
of energy. The microstructure, through its evolutions, aims generally to min-
imize this stored energy. This field is obviously academically and industrially
exciting as microstructures are of prime importance concerning the final in-use
material properties (mechanical strength, fatigue limit, crack resistance, stress
corrosion resistance,...). Precise numerical modeling of materials is then a topic
of prime importance largely due, firstly, to the demonstrated value of predictive
simulations of materials behavior, in greatly reducing the time and cost of de-
veloping new materials and, secondly, to the theoretical interest of such strategy
to improve our understanding of materials science phenomena. In the context
of monophase solid metallic materials, the simulations can take into account a
wide range of variables (grain orientations, the curvature of interfaces, dislocation
density, etc.) that translate into displacements and interactions between Grain
Boundaries (GB). The efficient treatment of the moving interfaces between grains
is then critical, considering the number of grains needed (hence the number of
interfaces) to form a valid Representative Volume Element (RVE) of the material
(usually composed of thousands of grains).
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This special field of research is the main focus of the software DIGIMU® devel-
oped at CEMEF and Transvalor company in collaboration with several partners:
Safran, Aubert & Duval, Framatome, CEA, Timet, ArcelorMittal, Constellium
and Ascometal. DIGIMU® currently includes 2D and 3D tools for the gener-
ation of large polycrystals and the modeling of GB migration (GBM) due to
grain growth (GG), recrystallization (ReX) in dynamic (DRX), post-dynamic
(PDRX), metadynamic (MDRX) or static (SRX) conditions, and Smith-Zener
pinning mechanism (SZP) under the influence of second phase particles (SPPs).
Additionally, recent developments have been focused on the proposition of new
models able to take into account anisotropic grain boundary properties, the in-
fluence of dynamic SPPs and coupled crystal plasticity models.

DIGIMU® has been developed employing Finite Element (FE) technology us-
ing unstructured FE meshes, coupled with the Level-Set (LS) approach [5]. This
numeric formulation has the advantage of being able to take into account very
large deformations of the domain with relative ease. This is very valuable for the
metal forming industry as usual thermomechanical treatments (TMT) are within
this regime. Numerous improvements have been made to the DIGIMU’s core
algorithm in the last few years regarding its performance and robustness [6, 7].
Of course, the FE-LS model is not the only approach capable to perform simu-
lations for microstructural evolutions and a great interest remain for alternative
(existing or new) models, usable, in a similar manner as in DIGIMU®, in a large
deformation context.

Currently, the DIGIMU approach has been optimized to the point where in-
creasing its performance is a very difficult task. However, recent studies [8] have
mentioned that a great amount of computational time (more than the 70% of
the total time) is spent by the remeshing algorithm, used to capture the grain
boundaries with an anisotropic refined mesh. This is why in this work, an entire
chapter (Chapter 2) will be dedicated to the study of the performance of the FE-
LS model, using alternative remeshing techniques that could potentially replace
the current strategy employed by DIGIMU.

Moreover, a new method able to perform massive-multidomain simulations in
a large deformation context will be introduced. The new method is inspired by
Front-Tracking [9, 10, 11, 12, 13] and Vertex [14, 15, 16, 17, 18] approaches in the
sense that geometrical properties are only computed at the interfaces and the mi-
gration of the GBs is defined thanks to a Lagrangian scheme. Of course, the main
ambition of the new approach is the improvement of the computational perfor-
mance when simulating evolving microstructures while maintaining an equivalent
accuracy.

The majority of the works presented in this manuscript have been published
[19, 20] or are under review for publication [21, 22]. The chapters of this manuscript
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follow approximately the order of publication. As such, the reader may find some
repetitions involving the definition of some notions, especially at the beginning of
each chapter. We have considered that these repetitions do not harm the context
at hand, but are instead helpful to guide the reader to the principal aspects of
each chapter.

In the first chapter of this manuscript, the notions involving the dynamics
behind the evolutions of microstructures (mainly for GG and ReX) will be given
followed by a description of the existing full-field models used in this context.
Additionally, a brief insight into the treatment of Eulerian methodologies will be
discussed as well as some examples of applications using the concept of LS as an
input to obtain body-fitted meshes.

In the second chapter, a thorough analysis of the performance of the current
model employed by DIGIMU® will be performed. A section focused on the last
advances proposed for the LS-FE method will be given. Additionally, differ-
ent numerical configurations will be tested, corresponding to different remeshing
strategies often performed in the context of FE models to capture regions of in-
terest in a domain, which in the context of microstructural evolutions are the
GBs. The limits of the FE-LS in terms of performance will be explored and the
best remeshing configuration will be identified.

The third chapter will introduce the new 2D methodology denominated TOpo-
logical REmeshing in lAgrangian framework for Large interface MOTION (To-
RealMotion, hereafter TRM) as an alternative for the modeling of massive-
multidomain problems applied to GG. The presented method maintains the dis-
cretization of the interior of the domains, using an evolving unstructured tri-
angular mesh (valid for a FE study) and treats the topological events such as
the disappearance of domains or the creation of interfaces using selective local
remeshing operations.

Then, in the fourth chapter, the parallel implementation of the TRM model
will be presented: the algorithms developed to address the parallel framework
will be explained and several test cases will be performed to characterize the
speed-up of the TRM model in parallel. Here, tests involving up to 560000 grains
will be performed, being the first approach (to the knowledge of the author) to
attempt simulations of this magnitude in the context of unstructured finite ele-
ment meshes.

The fifth chapter will explain the developments of the TRM model oriented to
the modeling of ReX. Here, the experience acquired through the development of
DIGIMU® will be used and translated to the TRM approach, in addition to some
necessary implementations: a nucleation method, responsible for the appearance
of new grains, and a phenomenological approach to use the dislocation density in
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the form of Stored Energy (SE) as an input for the GBM.

The sixth chapter will explore the use of the TRM model in the context of
anisotropic GB properties. Special attention will be given in this context to mul-
tiple junctions, and the formulation of a GBM model taking into account such
anisotropic quantities.

Finally, a short last part will set the perspectives for futures works and po-
tential applications of the TRM model.
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Chapter 1

Literature Review

Most mathematical/numerical models are based and/or developed to reproduce
physical phenomena. However, the formulation of such a model is not, in general,
the unique nor the truthful approach for a given physical mechanism. e.g. mi-
crostructural evolutions such as GG and ReX have been attempted to be described
by a series of phenomenological and numerical models, all having their strengths
and weaknesses. In this chapter, some of these models will be described, partic-
ularly the so-called full-field (FF) models, which have been successfully applied
in this context, to reproduce morphological and statistical quantities, critical for
the metal-forming industry. Of course, the intention is not to offer an extensive
definition of all models, but the notions involving their mathematical foundations.

Then, a brief discussion will be held to contextualize current strengths and
weaknesses of the presented models, both from a numerical (pertinence of the
results and ease of implementation) and computational perspectives. In this
context, we will list the FF models developed by the community at the time
of writing, but of course, this list is in constant evolution given the increasing
number of methods being developed.
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CHAPTER 1. LITERATURE REVIEW

1.1 An insight over microstructural evolutions
of monophase metallic materials

Modern notions used to describe and to study metal alloys are centered on the
fact that, at the mesoscale, their structural composition is made of grains, each
representing a crystal1 with its own crystallographic orientation and chemical
composition [24]. At this scale, the microstructure of the material appears as an
aggregate of such grains delimited by the denominated grain boundaries. Such
an arrangement is commonly known as a polycrystal.

The physical (mechanical, thermal, electrical, magnetic...) properties of a
given metal alloy can be drastically changed by the application of a thermome-
chanical treatment. In fact, a TMT can alter the structure of the metal at the
microscopic scale, changing, firstly, the polycrystal structure formed by grains
and GBs and secondly, in some cases, the local chemical composition of the alloy
through the segregation/absorption of given elements (which can form or dissolve
phases present in the material). For simplicity, in this work, we will focus on mi-
crostructural evolutions that do not produce a change of phase of the material,
hence in monophase microstructures.

1.1.1 Microstructural evolutions during TMT
When hot metal forming is considered, in the context of a monophase polycrystal,
three principal mechanisms are involved in the dynamics of the microstructural
state of the material: recovery, ReX and GG [25].

Recovery mechanisms are associated with the minimization of the energy ac-
cumulated in the bulk of the material in the form of crystallographic defects
(dislocations), during deformation. Recovery is then defined as the mechanism,
taking place under the influence of temperature, where dislocations interact with
each other and annihilate or rearrange in energetically lower configurations. Re-
covery, however, is not normally related to the evolution of grain boundaries as
it is a relatively homogeneous process taking place inside the crystallographic
structure, hence being able to create substructures (or subgrains) inside a grain
but not GBM.

Recovery, however, is not able to completely eliminate defects inside the crys-
tal and in most cases the energy dissipated through this mechanism is not very
representative. Generally, very high concentrations of dislocations within a ma-
terial lead to a much more dissipative mechanism called recrystallization. This
mechanism is indeed divided in two parts: Firstly, recovered or deformed zones

1A crystal structure is a state of matter characterized by the regular arrangement of a unit
motif over relatively large atomic distances [23].
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rearrange into new dislocation-free crystallites (new grains) presenting its own
crystallographic orientation, hence introducing new GBs. Secondly, The new
grains growth at the expense of the high stored energy present in their surround-
ing matrix (surrounding grains).

Even though ReX can lead to grain structures with a very low concentration
of dislocations, the resulting microstructure may still contain energy in the form
of GBs, which leads to GBM by curvature flow, i.e. the GG mechanism. During
GG, the energy minimization is then driven by the reduction of the total amount
and energy density of grain boundaries, Curved grain boundary migrates toward
its center of curvature [26], inducing to a higher mean grain size by the disap-
pearance of small grains and the grow of large grains.

Even though these mechanisms may appear simple, their combination during
simple modern TMTs can result in very complex microstructures. Small changes
in the parameters of the treatment can lead to completely different final mi-
crostructural states. While characterizing a metallic material at the grain scale is
a very mature field of research [27, 24, 28, 29, 30, 31, 32], the prediction of such
states in function of the known variables of the TMT applied to a given material
is not straightforward. Multiple models have been developed to give a more un-
derstanding point of view regarding these aspects, and in the last few years, the
metal forming industry has become more and more interested in such numerical
solutions. The next section is dedicated to this field of research, listing some
of the most relevant numerical models, specifically those denominated full-field
models, intended to simulate microstructural evolutions using a full description
of the polycrystal at the mesoscopic scale.

1.2 Modeling of ReX and related phenomena
One of the first models involving the migration of a GB, based on the observa-
tions given in [33, 26, 34], was proposed in [35, 36]. It was assumed that a driving
force acting on the boundary was only produced by the surface tension of the
boundaries, hence being directly proportional to its curvature. These conclusions
were also based on the similarities encountered between the shapes of cells in
foams and of metal grains, which were pointed out by the authors in [34, 37].

Consequently, in [36] it was proposed, in an isothermal context, the equation:

G = Mγκ, (1.1)

where G is the GBM rate, γ is the surface energy of the GB, κ is the local
magnitude of the curvature in 2D (trace of the curvature tensor in 3D) of the
interface, and M is the mobility. Large discussions concerning the meaning of
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M are present in the literature. In the context of hot metal forming and when
modeling at the mesoscopic scale is considered, M is generally defined through
an Arrhenius law:

M = M0 ∗ e−Qt/RT , (1.2)

where R is the ideal gas constant, Qt is a term defining the thermal activation
energy of the material and M0 is a constant material property.

Note that in [26], the concept of direction of boundary migration was already
studied: curved grain boundary migrates toward its center of curvature. This
direction of migration is the same as the one given by the normal vector −n⃗ to
the grain boundary (pointing in its convex direction), making the vector of the
velocity of boundary migration v⃗c = −G n⃗ and thus using Eq. 1.1:

v⃗c = −Mγκn⃗, (1.3)

where Equation 1.3 is generally accepted in the literature as the velocity of
migration of grain boundaries under the influence of surface tension.

Even though the understanding of the local behavior of grains boundaries
in a microstructure was already quite advanced at that time, the limitations in
computational power did not allow the study of a microstructure in a full field
context, and in [36] these assumptions where instead used in the development of
a phenomenological law aiming to predict the value of the mean grain size (the
well-known Burke & Turnbull model).

In [36] it is also mentioned that another proposition for a driving force acting
during grain growth was given by Jan Czochraiski2 in [39]3: grains formed by
recrystallization have residual strain energy and upon further heating the more
perfect ones will grow at the expense of the less perfect ones. This postulate was
perhaps the first explanation of another driving pressure produced by the SE of
grains due to plastic deformation [25]:

[E] = τ [ρ], (1.4)

where [E] and [ρ] denote respectively the difference in the SE and the dislo-
cation density between two neighboring grains and τ is the dislocation line energy.

Of course, a relation can be established for the velocity of GBM due to SE
effects [40]:

2More information about the life and the huge contribution to the microelectronics industry
of Jan Czochraiski can be found in [38].

3Although reference [39] is well cited in [36] there is no record of this publication in the
major scientific databases.
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v⃗e = M [E]n⃗, (1.5)

however, this mechanism as a driving force was not taken into account in [36]
and it had not a proper application until the apparition of full field models. The
concept of stored energy will be rediscussed in chapter 5.

Later, the relations given in Eq. 1.3 and in Eq. 1.5 were contextualized into
a single relation: v⃗ = MPn⃗ where the term P (the total driving pressure) sum-
marizes the effects given by the surface tension and the stored energy, (as well
as any other sources producing a driving force not studied in this work) [25, 40].

1.3 Classical Full Field Models for Microstruc-
tural Evolutions

Predicting mean quantities such as the mean grain size of a microstructure can be
carried out using physical-based phenomenological laws which typically are based
on a large list of simplifications, such as the analytical form of grains, typically
taking shapes of circles or spheres. These mean field models [41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51] have been progressively enhanced over time and correspond
to a good compromise in terms of accuracy of the predictions and computational
performance [51]. Mean field models are a pertinent choice, if for the considered
application, it is only necessary to know the qualitative evolution of a few param-
eters (such as mean grain size, grain size distribution or recrystallized fraction).
However, mean field models are unable to accurately predict polycrystal topology
and the morphology of grains. Moreover, heterogeneous properties (anisotropy
of γ and M , population of SPPs...) can lead to much more complex evolutions,
which are not accessible to phenomenological and mean field approaches. In such
a context, it is necessary to perform simulations in a full field framework, where
the simulated domain reflects a one-to-one map to the real microstructure4 being
simulated. In other words, full field simulations aim to obtain a higher level of
detail by simulating the evolution of real microstructures where grains are mutu-
ally interacting grains [52] and not of a hypothetical statistical representation of
a microstructure as in mean field models.

In this section, a list of full field models will be given, explaining the concept
behind each one of them, and some of the results available in the literature. Of
course, I do not pretend here to provide an exhaustive study of all these meth-
ods, but to give some of the relevant information about each, which will allow to

4Here a real microstructure refers to a topologically connected microstructure [52] obtained
by a Scanning Electron Microscopy (SEM) or 3D X-ray imaging techniques [53, 54] or to a
virtual microstructure generated using the concept of Voronoi or Laguerre Voronoi cells [55, 56,
57].
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better place the works presented in this PhD thesis.

There are typically two main families of methods to describe moving inter-
faces: Front-Capturing (FC) and Front-Tracking (FT) Methods [58]. FC models
implicitly (indirectly) define interfaces by capturing the change of state of a field
variable. Two examples of FC approaches are given below: Multi Phase Field
(MPF) and LS models. FT models explicitly (directly) define interfaces using
a set of interconnected segments (in 2D) or surfaces (in 3D). By this definition,
Vertex models (also described below) are FT models, as vertices are connected
between them to form the segments that define the boundaries between domains.

1.3.1 Monte Carlo models
The first full field model for the simulation of microstructural evolutions was pre-
sented in [52] using a MC model:

The simulation domain is represented by a regular lattice where the mi-
crostructure is mapped. The lattice is conformed of sites with polyhedral shapes
(triangular, squared or honeycomb shapes) typically taking the form of pixels in
2D or voxels in 3D. Each site i is given an orientation Si in the form of an integer
between 1 and Q (where Q defines the maximum number of possible orientations
in the microstructure), and grain boundaries are defined to be the edges between
two neighbors sites with different orientation. Grain boundary energy is derived
from the Hamiltonian:

H =
∑
−J(δSiSj

− 1), (1.6)

where the summation term is carried out for all nearest neighbors sites j of
site i and δah is the Kronecker delta symbol; and J is a boundary energy term
given by the unlikeness of two consecutive sites. If two neighbors sites have a dif-
ferent orientation, they contribute the amount of J to the energy of the system
and zero otherwise.

Boundary migration is then obtained by the integration of an MC approach
over the simulation domain: a site i and a new trial orientation S∗

i (different from
Si) are selected both at random. A transition occurs (Si is attributed the value
of S∗

i ) depending on the transition probability factor W which classically takes
the form:

W =

e(−∆G/KbT ) ∆G > 0
1 ∆G ≤ 0

(1.7)

where ∆G is the change in energy caused by the orientation S∗
i applied to site

i, Kb is the Boltzmann constant and T is the absolute temperature. If the local
change in the energy is less than or equal to zero the transition is applied, while
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for changes in the local energy greater than zero, the probability of reorientation
is given by e(−∆G/KbT ).

The unit of time for these simulations is represented by the Monte Carlo Step,
which refers to N reorientation attempts, where N is the total number of sites in
the lattice. Each site may be chosen several times which also means that another
may not be tested.

Results obtained with this model forty years ago set a great achievement on
the understanding of global microstructural evolutions. Indeed, MC approaches
have brought a new perspective to the discussion of GBM, compared to existing
mean field approaches. Better agreement with existing 2D experimental data was
obtained, for example, experimental observations of GG given in [59] showed a
global behavior of the mean grain size R as follows:

R = ktn, (1.8)

where k is a constant (typically described by an Arrhenius equation), t is the
time and the exponential factor n is fitted from the experimental data with a
mean value of 0.4.

The author in [52] emphasizes that while phenomenological models (like Burke
& Turnbull models [36, 60]) predict a value of n around 0.5, the MC approach
was able to predict values of n of around 0.41± 0.03 for high values of Q, hence
being in ”better” agreement with experimental data. Moreover, the author also
remarks that literature had attributed the differences between the exponential
factor of phenomenological models and experimental data to the presence of im-
purities, preferred grain orientation, or second phase particles. This reasoning
was disproved and the differences were attributed to the fact that phenomenolog-
ical models are unable to reproduce behaviors of systems with a strong dependency
over the vertices in a topologically connected domain [52]. This discussion also
illustrates the undeniable interest of FF approaches.

The MC approach was presented in numerous articles, all aiming to respond
to different mechanisms involved in microstructural evolutions. In [61] the influ-
ence of SPPs was studied, in [62] abnormal grain growth (AGG) due to SPPs was
discussed and in [63] the influence of anisotropic grain boundaries (misorientation
dependence) based on a Read-Shockley formulation was introduced [64]. The lat-
ter was indeed the first model attempting to simulate microstructural evolutions
in such a context.

Further studies of the MC method added the influence of SE, this was done
by the modification of Eq. 1.6, in order to take into account a bulk energetic term
[65]:
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H =
∑
−J(δSiSj

− 1) + Ej, (1.9)

where Ej denotes the SE of site j.

This modification allowed the authors in [65] to perform for the first time ReX
simulations using a full field approach: Homogeneous5 [65] and Heterogeneous [66]
SRX under site saturated6 and constant nucleation rate7 were performed, show-
ing good agreement with theoretical predictions and experimental data.

These studies were later extended to the simulation of DRX [67] where the
dependence of the SE was correlated as proportional to the dislocation density
ρ which in turn was related to the flow stress σ as proportional to the square
root of ρ. Moreover, the rate of change of SE values ∆Ei was set constant for
all sites i during a simulation, hence heterogeneities on the SE were able to be
simulated as the sites belonging to new nuclei were attributed a value of Ei = 0,
this is, in turn, reflected as to obtain a homogeneous and constant SE value per
grain. No deformation of the domain (hence no plastic strain) was taken into
account under the assumption that grain shapes tend to remain equiaxed [68].
Additional studies in this matter were developed later in [69, 70, 71] where the
influence of dynamic recovery, nucleation rate mechanisms and temperature were
respectively discussed.

Additional studies [72] have been carried out in order to enhance the original
algorithm, by reducing the range of possibilities for the reorientation mechanism,
taking into account the orientation of the neighbors sites only. This modification
allows a grain mobility independent of the number of considered orientations (Q)
and avoid coalescence between neighbor grains with the same orientation. How-
ever, it was shown that coalescence events were not a critical mechanism when
studying a large number of grains as this mechanism appears rarely on the original
algorithm. These studies also showed a different behavior regarding the exponen-
tial factor n and a better fitting of the grain size orientation to a log-normal curve.

More recently, in [73], a hybrid MC/CA model was proposed, intended to
gather the strengths of the two models: curvature driven GBM, “accurately”
reproduced from the point of view of MC, and the modeling of primary ReX
“accurately” reproduced from the point of view of CA models. See the next
section for a description of CA models.

5Historically, the terminology homogeneous ReX is used when the nucleation takes place
regardless of the nuclei position, contrary to Heterogeneous ReX when the nucleation is oriented
to appear at specific locations such as grain boundaries and triple junctions.

6Site saturated nucleation corresponds to a SRX scenario where the totality of nuclei involved
in the simulation takes place instantaneously, typically at the beginning of the simulation.

7Constant nucleation rate refers to the fact that the number of nuclei per unit of volume of
unrecrystallized material per unit time is constant.
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1.3.2 Cellular Automaton models
The concept of cellular automaton was first introduced in [74], here the authors
focused on the study of self-reproducible biological processes. Later, in a series of
published works [75] Stephen Wolfram starts the study of one-dimensional cellular
automata based in a systematic set of rules, these studies let to the publication of
a controversial work aiming towards a fundamental theory of physics [76] under
the speculation that the universe is essentially discrete and behave as a cellular
automaton.

CA models in general have to define at least the following properties [77]:

• The geometry of cells (hence the spatial dimension is also defined).

• The states a cell is able to take.

• A formal definition of the neighborhood of a cell.

• The transitioning rules for a cell, defining the state of each cell in the next
time step taking into account its old state and the state of the cells in its
neighborhood.

Applications on microstructural evolutions using the concept of CA were first
introduced by Hasselbarth [77] for simulations of ReX: the presented model con-
sisted of a 2D lattice composed of squared sites, these sites had two states, they
were either recrystallized or not. At the beginning of the simulation, all sites
were set to unrecrystallized, then different rules for nucleation were considered:
site saturated nucleation and constant nucleation rate, where the nucleation sites
were chosen at random. The GBM due to the appearance of new grains was
modeled following two different approaches: the first where cells with at least
one recrystallized neighbor are changed to the recrystallized state and the sec-
ond where additionally to the presence of a ReX cell in its neighborhood, the
transition depends on a probability function. Finally, all cells of the lattice are
evaluated but transitions only occur at the end of a time step, hence all states in
the new increment are determined by the states in the old increment.

The influence of a heterogeneous nucleation rate and growth rate were studied
in [77]. The results of this work showed a good agreement with the Johnson and
Mehl [78], Avrami [79, 80, 81] and Kolmogorov [82] (JMAK) model regardless of
the neighborhood definition of cells. Although this article set the first attempt to
simulate microstructural evolutions, involving a rather complex mechanism such
as ReX, this work did not implement a mechanism based on neither GB energy
nor SE. Instead, the model was defined through the assumption of a hypothetical
heterogeneity on the SE field, translated into high or low nucleation rates and
in high or low GBM rates (for example allowing cells transitions only every nth

increments in certain regions).
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The works of Hesselbarth motivated further studies where the influence of
second phase particle impingement was studied [83] under the assumption that
recrystallization could not happen in cells representing a particle, leading to rea-
sonable quantitative results.

Later, the idea to use CA on microstructural evolutions lead to the develop-
ment of a GG model using a similar concept [84]. Here, some of the components
of the MC method were used and some others were developed.

Figure 1.1: a) Von Neumann’s definition of neighbor cells (a, b, c, d, e) of a cell c,
the center cell c is also regarded as a neighboring cell. b) Energy barrier between
two states (blue and orange). The center cell evolves to state orange when its
energy is sufficiently high. Redrawn from source: [84].

Figure 1.1a gives the Von Neumann’s definition of neighbor cells which were
used in [84] (contrary to [77] where multiple definitions of neighborhood were
used), here a central cell c is surrounded by four neighboring cells (a, b, d, e).
The transition of cell c is then determined by the following rules:

1. The states are defined by the integers from 1 to Q (where Q similarly to MC
represents the maximum number of possible grain orientations), instead of
recrystallized and unrecrystallized states as in [77], moreover, Q takes the
number of 1000.

2. If at least three surrounding cells (a, b, d, e) have the same state as the
central cell c, the latter maintains its state.

3. Cell c must overcome the energy barrier to modify its state. This is done
as in MC methods by the use of a probabilistic law with a similar form of
Eq. 1.7: W = e(−Eb/KbT ) where Eb is an energy barrier that the cell must
overcome to transition, see Fig. 1.1b.
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This approach is nearly identical to the one introduced in [72] for MC meth-
ods (Eq. 1.6), except for the strategy adopted for transitioning cells: this is given
by rule 2 and the fact that transitions only occur at the end of a time step and
all cells are evaluated, instead of the use of a random selection of cells and the
notion of the MC steps.

Additionally, the energetic term Eb was held constant for all cells while the
temperature T was considered high enough to approve all transitions (W = 1).

Stochastic CA models for the simulation of ReX and GG in 2D and 3D were
developed in [85, 86], where the authors focused on the implementation of CA
models using a phenomenological equation [60]8 as a transitioning rule, allowing
to treat the evolution of microstructures on a real space and time scale by the use
of realistic boundary mobility and energy data. The stochastic behavior of the
model relies on the fact that the transitioning of the orientation of a given cell
is performed with a certain probability by a Monte Carlo step, once this transi-
tion probability was determined by the phenomenological law. Additionally, to
perform simulations of ReX in 3D, this model was able to use data issued from
simulations of crystal plasticity in order to set the initial state of the simulated
domain.

Even though the CA model was already able to model PDRX (i.e. the use
of SE as a driving force) satisfactory, the ability to correctly simulate boundary
migration due to curvature-flow was still an open subject. This motivated the
works presented in [73] where a hybrid model was presented, using the inherent
properties of the MC method to approach curvature-flow behavior. The resulting
model was applied to simulate a Gibbs-Thomson like metastable configuration,
giving statistically satisfactory results in a given range of data.

Since [85, 86, 73], stochastic CA models employ probabilistic equations of
the form P = v/vmax where P is the probability of transition, v is the velocity
in the considered cell and vmax is the maximum possible velocity in the lattice
(computed using instant microstructural states and field properties). the choice
concerning the transition of the cell is based on the probability P and, of course,
all transitions occurring, as established by the CA model, at the end of a time
step. In this context, the development of an accurate description of GG remains,
however, an open question. This is due to the high difficulty to evaluate geomet-
rical properties (such as curvature) in configurations using this type of domain
discretization. For example, the works presented in [87] in the context of so-
lidification applications, particularly in the use of a template-based curvature
computation, motivated recent developments on the CA model [88, 89] in the

8The actual mathematical form of the phenomenological law used in [85, 86] was not the
original form of the linearized symmetric rate equation for thermally activated GBM under the
influence of free energy gradients presented in [60], but an analog probabilistic form.
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context of SRX and DRX.

Further studies involving the CA method can be found in [90] where the
authors make a thorough comparison of the MC and the CA models in a SRX
context. In [91] the authors present a detailed description of the implementation
of a parallel algorithm to perform cellular automata computations in the context
of microstructural evolutions. A benchmark of the parallel implementation was
performed and the results can be found in Fig. 1.2, where the speed up9 is plotted
against the number of computational nodes (CPUs) used, and for various sizes of
the CA lattice.

Figure 1.2: Performance results of the CA framework of Rauch et al. Source:
[91].

Finally, a new numerical model based on CA was proposed in [92, 93] for
the simulation of DRX. The model couples a FE resolution to deal with domain
deformation while Random Cellular Automata (RCA) models the nucleation and
GBM. RCA models rely on the assumption that the cellular automata cells di-
rectly correspond with finite element integration points, allowing remeshing if
needed from the analogous FE mesh while the notion of neighboring is taken
based on the distance of cells. This model is still in development and remains a
promising alternative to model complex microstructural evolutions.

9The speed up in [91] was obtained as a result of the quotient of a sequential algorithm
execution time and a parallel execution time using a specific number of cores
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1.3.3 Vertex Models
One of the first Vertex models applied to microstructural kinetics was the one
presented by Soares et al. [94] based on the works of [95] applied to the evolution
of soap froth. This model considers that the evolution of an interface network can
be simulated from the movement of its triple junctions (multiple junctions with
three connections), a proposition first introduced in [96], which enables to avoid
the computation of curvature by the use of straight lines as grain boundaries. The
motion equation of the triple junctions used by Soares et al. was derived from a
thermodynamics study (unlike the one proposed in [96]) and can be summarized
as:

v⃗ = M
∑

ε⃗i, (1.10)
where v⃗ and M are respectively the velocity and mobility of a vertex and ε⃗i

denotes each of the line tensions acting at a vertex. In this model, vertices at all
times only have 3 possible connections, avoiding higher order multiple junctions
configurations by means of unitary topological changes (see transformations T1
and T2 of Fig. 1.3). Moreover, M and |εi| = ε were assumed constant, hence the
model was tested only under isotropic conditions. In a similar manner as in MC
studies, the model showed agreement in the context of GG with phenomenologi-
cal laws with an exponent factor of n = 0.52 in Eq. 1.8.

A more general model was proposed by Kawasaki et al. in [14]. Here the
authors were able to propose an implicit equation for the computing of the velocity
of each vertex, which is based on a dissipative equation of motion of the form:

∂R

∂v⃗
= −∂ν

∂r⃗
, (1.11)

where R represents the Rayleigh dissipation function and ν the potential
function. This equation can be described as: the amount of free-energy dissipated
following the movement of the vertices with a velocity v⃗ is equal to the negative
change on the potential energy following a change in the position of vertices r⃗.
Kawasaki et al. then derive its implicit formulation as:

1
3
∑ |r⃗ij|

Mij

n⃗ij ⊗ n⃗ij · (v⃗i + 1
2

v⃗j) = −
∑

γij
r⃗ij

|r⃗ij|
= −

∑
γij t⃗ij, (1.12)

where r⃗ij is the vector r⃗i − r⃗j, r⃗i is the position of vertex i, n⃗ij, γij and Mij

are the normal unit vector, the boundary energy and the mobility of the grain
boundary segment delimited by vertices i and j, v⃗i is the unknown velocity of
vertex i, t⃗ij is the unit vector in the direction of r⃗ij and the summation is carried
out for each vertex j connected to a given vertex i.

Equation 1.12 can be approximated by averaging over all the directions of n⃗ij

and v⃗j which yields:
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1
6M

(∑
|r⃗ij|

)
v⃗i = −γ

∑
t⃗ij, (1.13)

this equation being introduced as model II by Kawasaki et al. allows to
explicitly compute the velocity at each vertex i in function of the position of its
connected vertices. More information about the differences between Eq. 1.12 and
Eq. 1.13 can be found in Appendix A of [14].

Figure 1.3: 2D Topological transformations: a) recombination (T1), b) annihi-
lation of small three-sided grain (T2), c) elimination of a grain with two triple
points (T3), d) an example of the occurrence of a T3 transformation and e) T2
transformation shown as equivalent to a sequence of T1 and T3 transformations.
Source: [15]

Ten years later, the works of Weygand et al. [15] extended the concept of
Kawasaki et al., by implementing a vertex model capable of modeling curved
grain boundaries. The model used real and virtual vertices, where the virtual
vertices were used to discretize the grain boundaries between triple junctions
(real vertices). Weygand et al. also used directly Eq. 1.12 in order to compute
the velocity values of all vertex (both real and virtual) instead of the explicit
approximated Eq. 1.13 used by Kawasaki et al. in their study. Furthermore,

30



CHAPTER 1. LITERATURE REVIEW

they also introduce a topological operation inherent to the use of virtual vertices,
corresponding to the topological operation T3 given in Fig. 1.3.

Additionally, in [15] the notion of micro-stepping was first applied in this
context:

Micro-stepping is necessary given the unstable nature of some vertices that
disrupt the smoothness of grain boundaries (vertices that are too off positioned
regarding the tendency of their contiguous vertices) and which may appear after
a topological change or another numerical phenomenon. Micro-stepping was then
implemented by using the following reasoning: no segment should shrink nor ex-
tend more than a fraction f = dl/l of its length l (where the reported value for
f was 0.5), leading to a maximum time step allowed per vertex.

Finally, the movement of vertex i was done using the following equation:

r⃗i(t + dt) = r⃗i(t) + v⃗i(t)dt, (1.14)

where t is the time and dt is the time step. This equation was used both for
hole steps and micro steps. Using this model, Weygand et al. found that multiple
junctions evolve so to fulfill their equilibrium angles [25].

The works of Weygand et al. then lead to a series of publications where ReX
[97] and the effects of SPPs [98] were studied, as well as the influence of the
reduced mobility at multiple junctions and grain boundaries [99, 100] over GG,
and finally, extending its work to three dimensions [101, 100, 16].

A second kind of Vertex models were introduced by Frost et al. [102], where
the main difference is that real vertices were positioned at their angles of equi-
librium while the movement of virtual vertices is derived directly from their local
curvature using Eq. 1.3.

Vertex models continue to be developed given their very attractive way to han-
dle phenomenon such as grain boundary anisotropy (see for instance [17]), their
accurateness and their computational performance. However, a much greater ef-
fort must be done (in terms of implementation) in order to handle coherent topo-
logical transformations, mainly in 3D, comparatively speaking to models such as
Monte Carlo, Cellular Automata, Phase-Field or Level-Set for which topological
transformations are treated automatically.

Other FT approaches different from the Vertex model can be found in the lit-
erature. In [9] in the context of 2D GG, the authors introduce a FT methodology
where instead of using a dissipative equation of motion, a variational approxi-
mation of the curvature of the interface is preferred, to compute the velocity at
every vertex except for those being triple junctions (see section 6.4 of [9] for more
information). Triple junctions are positioned in order to respect the equilibrium

31



CHAPTER 1. LITERATURE REVIEW

in a similar manner to the works of Frost et al. [102]. Moreover, the study pre-
sented in [9] is not only dedicated to the modeling of 2D GG but also to the
more general context of surface minimization, for which the author gives many
examples in 2D and 3D. Another example of FT models is given in [10], where
a FE model, based on a variational formulation for GB motion by viscous drag,
is used to solve the equations governing the grain boundary motion of an arbi-
trary shaped surface and its interaction with SPPs in 3D. The model was later
extended in [11, 12] to take into account motion by curvature flow but in the con-
text of a single grain boundary; hence, real polycrystal structures were not tested.

Finally, another Front-Tracking model was proposed in [13] where the move-
ment of grain boundaries is dictated by the minimization of the total energy
of the system by moving each node along the energy gradient towards a lower
total energy state. In this model the energy term can be defined via SE, GB en-
ergy, and non-conservative reaction terms. The evaluation of the energy gradient
field is determined for every node via a local finite-difference method centered at
the node in question, and the movement is made in the direction of the maxi-
mal energy reduction. The authors tested this model in the context of isotropic
and anisotropic GBM where melting was simulated through a second phase, at-
tributing an ”energy-based” melting-fraction function where the more the melting
fraction deviates from the target value, the more the melting/crystallization en-
ergy dominates. However, no information regarding the GB anisotropy function
was given, even though some results shows anisotropic GB behavior between the
solid-solid and solid-liquid boundaries.

1.3.4 Phase Field models
Another model that can be used for the modeling of microstructural phenomena
at the mesoscale, is the Phase-Field (PF) model [103]. The first applications of
these models in the context of microstructural evolutions were aimed at the simu-
lation of the solidification of a melted substance (hence the name “Phase-Field”)
[104, 105]. This model has been extended to the study of many physical phe-
nomena such as solid-state phase transformations, crack propagation, dislocation
dynamics, GG and ReX, and more. The model is developed under the assump-
tion that the definition of a microstructure, both the compositional/structural
domains and the interfaces, can be made, as a whole by using a set of field vari-
ables [106]. These variables are defined as conserved (meaning that they have
to satisfy a given local conservation condition) and non-conserved. The defini-
tion of microstructures using such a way, reduces the topological complexity of
a multidomain problem, as interfaces between grains or between phases evolve
implicitly when these variables evolve. Furthermore, the evolution of these field
variables (hence of the microstructural state they describe) is given by the mini-
mization of the free energy of the system F , which can be expressed as [103]:
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F =
∫

V

f(c1, c2, ...cn, η1, η2, ...ηp) +
n∑

i=1
αi(∇ci)2 +

3∑
i=1

3∑
j=1

p∑
k=1

βij∇iηk∇jηk

 dV,

(1.15)
where f is the local free energy density, ci and ηi correspond to the conserved

and non-conserved field variables and αi and βij are gradient energy coefficients.
The choice about the form of the functional f depends in general on the physical
mechanism being simulated and the parameters being used. Two models aiming
to simulate the same physical process can indeed have a different form of the
local free energy density function and still give similar results for the predicted
steady-state.

Once the expression for the local free energy density f is set by the physical
phenomena to be simulated, the total free energy F can be minimized solving a
set of PDEs denominated the Cahn-Hilliard [107] and Allen-Cahn [108] equations:

∂ci

∂t
+∇Mij∇

∂F

∂cj

= 0, (1.16)

∂ηp

∂t
+ Lpq

∂F

∂ηq

= 0, (1.17)

where Lpq and Mij are kinetic parameters related to the dissipation of energy
of the system (usually atom or interface mobility).

The PF model was first applied to GG by Chen et al. in [109]. In this context,
the PF method uses a set of non-conserved field variables ηi in order to define the
structural domain and the interfaces of the microstructure. The use of several
field variables in this context was later denominated in [110] as the Multi Phase-
Field (MPF) method, as opposed to the PF method, which only employs one
field variable intended to simulate dual phase change problems [111]. In [109],
these field variables are defined over a 400x400 squared lattice, taking values
in the range [-1,1], and are set to smoothly evolve at interfaces between grains
(of course this is not strictly possible given the discrete properties of Eulerian
meshes). The local free energy density used was:

f =
p∑

i=1

[
−kα

2
η2

i + kβ

4
ηi

]
+ kγ

p∑
i=1

p∑
j>i

η2
i η2

j , (1.18)

where kα, kβ, and kγ are phenomenological parameters. Furthermore, the free
energy expression used in [109] for the non-conserved field variables derived from
Eq. 1.15 is given by:

F =
∫

V

[
f(η1, η2, ...ηp) +

p∑
i=1

β

2
∇2ηi

]
dV, (1.19)
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where βij = δijβ/2, δij is the Kronecker delta, and the term ∇2ηk corresponds
to the laplacian of the field variable ηk.

Using Eq. 1.18 in Eq. 1.19, then replacing F in Eq. 1.17 and ignoring the cross
terms of the kinetic dissipation energy parameter Lpq (hence Lpq = Lp), the final
set of kinetic equations can be written:

∂ηi

∂t
= −Li

kαηi + kβηi + 2kγηi

p∑
j ̸=i

η2
j − β∇2ηi

 , i = 1, 2, ...p. (1.20)

which in [109] was solved using a forward Euler technique. Results for the
evolution of this model using 36 field variables (i.e. 72 orientations) are given in
Fig. 1.4. Of course, in such a case, multiple grains were attributed to one single
phase field, allowing coalescence. The authors claim that a large number of field
variables is ideal to simulate this kind of problem. They provide results indicating
that the growing exponent n fits almost perfectly the value of 0.5 for simulations
using 4 and 36 field variables, even though simulations using 4 field variables did
not obtain a good agreement with classical microstructure topologies. Here the
model uses kα = kβ = kγ = 1.0, β = 2.0, and Li = 1.0 for all i and a time step of
∆t = 0.1.

Figure 1.4: Evolution of the grain boundary network due to GG for the phase
field model of Chen et al., using kα = kβ = kγ = 1.0, β = 2.0, and Li = 1.0 for
all i and a time step of ∆t = 0.1, for the time steps: a) 200, b) 1000, c) 4000 and
d) 10000. Source: [109].

The model presented by Chen et al. denominated Continuum-Field model,
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has been further studied [112, 113, 114, 115, 116] and extended to take into
account inclination-dependent and misorientation-dependent anisotropic grain
boundary properties [117, 118, 119, 120, 121], GBM under the influence of SE
[122] and ReX [123].

A second kind of MPF model for the simulation of microstructural evolutions
was introduced by Steinbach et al. [110, 124, 125, 126, 127]. Steinbach adopted
a slightly different approach where field variables ηi take values in the range [0,1]
(this was later also adopted by Chen’s group in his approach) and where:

p∑
i=1

ηi = 1. (1.21)

This is given by the fact that for Steinbach, the distinct phases represent
volumetric fractions, thus their sum not being able to be greater than 1 in any
region of the domain. Similarly to Chen’s works, Steinbach’s works were also
extended to misorientation-dependent anisotropic grain boundary properties [128,
129, 130] and ReX [131, 132, 133].

1.3.5 Level-Set models
The final category of numerical approach able to simulate multidimensional prob-
lems (hence microstructural evolutions) discussed in this state of the art, is the
denominated LS model.

Level-Set models were introduced by Osher et al. in [134], as a simple, and,
robust alternative for the analysis of moving interfaces and shapes. It uses the
concept of level-set functions to implicitly define sharp interfaces (contrary to PF
models which use a diffuse description of interfaces), i.e, the LS method defines
an interface Γ(t) as the zero-isovalue of a smooth function ϕ(x, t), defined over a
domain Ω:

ϕ(x, t) = 0, ∀ x ∈ Γ(t) (1.22)

where typically ϕ(x, t) takes positive values in the region delimited by Γ(t) and
negatives outside. This formulation is of great significance as boundaries are de-
fined through time as the evolution of a signed smooth field ϕ(x, t), and complex
operations in the topology of Γ(t) (coalescence, appearance and disappearance of
domains) are handled at the level of ϕ(x, t), instead of being manipulated directly
on the definition of interfaces as in vertex-models. This model has been success-
fully applied to the propagation and interaction of fronts in multiple numerical
models [135, 136].

In practice, the form of ϕ(x, t) is commonly taken as the euclidean distance
to the interface Γ(t):

35



CHAPTER 1. LITERATURE REVIEW

(a) (b)

(c) (d)
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Figure 1.5: Global treatment in order to eliminate non-physical vacuum regions
on a FE discretization. Two colored LS (a) with no treatment of vacuum regions,
(b) result after applying Eq. (1.24). Three colored LS (c) with no treatment of
vacuum regions (d) result after applying Eq. (1.24). Source: [19].

ϕ(x, t) = d(x, Γ(t)), ∀ x ∈ Ω (1.23)

where d(x, Γ(t)) is the signed distance function of a point x to the interface
Γ(t) which can be obtained thanks to the so-called LS reinitialization operation
(see below section 1.3.5). This framework is very advantageous as multiple geo-
metric properties (normal, curvature...) of Γ(t) can be obtained as a function of
d(x, Γ(t)), thus as a function of ϕ(x, t).

The modeling of multidomain (more than 2) systems forming a partition of
the global domain and using the LS method was proposed in [137]. Here, the
authors propose to give each simulated domain a LS field, and introduce a coupling
mechanism for the treatment of non-physical overlapped (or vacuum) regions:

ϕ̂i = 1
2

(
ϕi −max

j ̸=i
ϕj

)
, ∀i = 1 . . . N, (1.24)

where ϕ̂i is then used as the corrected LS function ϕi. The effect of this treat-
ment is illustrated in Fig. 1.5 for a 2D configuration.

The works presented in [137] set the basis for the treatment of physical prob-
lems such as GG and ReX which are strongly influenced by the motion of multiple
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junctions.

The evolution of interfaces can be simulated in this context by the transport
equation:

∂ϕi

∂t
+∇(ϕiv⃗) = 0, (1.25)

where v⃗ is a velocity field defined over Ω, which is determined from the phys-
ical process being simulated (see Equations 1.3 and 1.5).

The studies presented in [137] were then extended in [138] to take into ac-
count heterogeneous GB properties (for example, as a function of the length of
interfaces) and bulk properties (for example, as a function of the total area of a
grain) using the works presented in [139]. Additionally, in [138], the restriction on
the creation of voids and overlaps was implemented in a variational sense (hence
being enforced in the resolution of the FE problem). However, the computational
performance of the methods presented in [138] is still questionable and in general,
simpler LS models are used.

The Level-set method was further studied by Bernacki et al. [5, 140] where
the concepts in [137] were extended to take into account SE values. Further works
on the development of the LS method involve ReX [141, 6, 7, 142], heterogeneous
and anisotropic grain boundary properties [143, 144, 23, 145], the influence of
second-phase particles [146, 147] and the coupling of the LS method with Crystal
Plasticity (CP) simulations [148, 149]. Additionally, some of these works concern-
ing the enhancement of the LS-FE algorithm which are also used in the context
of this manuscript (mainly in chapters 2 and 3), are summarized in section 1.3.5.

Moreover, the LS method has been also applied in the context of a fast Fourier
transform (FFT) resolution for GG and SRX [150, 151, 152, 153], being able to
perform simulations with a very large number of grains (up to 650000 initial
grains). FFT-LS approaches are, however, limited to a context without deforma-
tion (SRX, GG, MDRX) as they rely on the use of regular grids, contrary to the
FE-LS model which is able to employ unstructured meshes (hence to remesh) for
simulations subjected to very large deformations [7].

Global LS functions and Reinitialization

Until now, the treatment of interfaces in a polycrystal has been described assum-
ing that each LS function ϕi represents the boundary of a grain. In simulations
involving thousands of grains, however, which are generally necessary for physi-
cal representativity, the computational cost of such approach becomes prohibitive
because Eq. (1.25) must be solved thousands of times on the whole domain, ad-
ditionally, of course, to the memory management problem of storing the LS fields.
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This problem can be overcome by the use of Global Level-Set (GLS) func-
tions, which include multiple grains in a single distance field [146, 8]. Color-
ing/Recoloring techniques make it possible to identify sets of non-connecting
grains that can share a GLS. In the case of a GG simulation, topological events
(mostly grain vanishing) occur, which often leads non-connecting phases to be-
come adjacent. This is why dynamic re-coloring methods [8, 146], which transfer
grains between GLS functions, are used to ensure that the GLS functions remain
valid. With this technique, it is possible to limit, independently of the total num-
ber of grains, the number of GLS functions (and thus the number of diffusion
equations to solve) to a few tens in 3D and less than 10 in 2D, which is compu-
tationally affordable.

An additional consideration is that, after the resolution of the partial differen-
tial equations (PDE) describing the behavior of the polycrystal at high temper-
atures, the LS fields may become distorted, losing its metric properties inherent
to distance functions [154], used in the formulation of the FE problem. Hence, it
is necessary to reinitialize the LS functions, i.e. to maintain them as signed dis-
tance functions. Many methods have been proposed in the literature to perform
this task, for instance, fast marching methods on regular grids [155, 156, 157] or
solving a Hamilton-Jacobi equation [135] or optimized convective-diffusive for-
mulations [154] both using unstructured finite element meshes. Other methods
(such as the one used in the present work in chapter 2) prefer to recompute the
distance to the iso-zero level-set in a purely geometric manner with a parallel-
efficient algorithm based on spatial partitioning trees [158].

1.3.6 Summary and discussion
Monte Carlo methods were the first FF numerical framework used to simulate
microstructural evolutions, they use a very simple and generic concept, able to
be implemented in a straightforward way, both in a sequential and parallel con-
text. However, their stochastic component and their definition of simulated time
step (the Monte Carlo step) make them dependent on a time-scaling strategy.
This problem can be avoided by the use of Cellular Automata models as they
are based on a thermodynamic basis, hence relying on a physical space and time
step, although they need a slightly more complex implementation in a parallel
context, as CA models rely on the information of the vicinity of cells. MC and
CA models, present however a weakness concerning the discretization of domains,
as a homogeneous static discretization must be set at the beginning of the simu-
lation, hence being very difficult to optimize particular situations (e.g. the size of
inserted nuclei is mostly defined by the size of one cell). This “static” discretiza-
tion via pixels/voxels also gives particular difficulties for problems subjected to
very large deformation, such as those intended to simulate DRX in the context
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of industrial TMTs.

One of the most important results of Vertex models (the Kawasaki’s kind) is
that multiple points arrange themselves in order to fulfill their equilibrium con-
dition [16, 15], contrary to Vertex models (the Frost’s kind) that impose their
equilibrium without any thermodynamic consideration [102]. Thus, all Vertex
models should give very similar (and very accurate [25]) results except for the
initial, very quick, transient state obtained when a multiple junction is formed.
Moreover, although the computational performance of vertex models should be
essentially higher than models using a Front-Capturing approach, the implemen-
tation of Vertex models becomes very complex, especially in a 3D context, as
all topological changes on the microstructure need to be addressed “manually”
by algorithms intended to do so. Additionally, another weakness of the Vertex
model is the impossibility to take into account intragranular phenomena, such as
the ones studied in [159].

The MPF model uses a diffuse interpretation of boundaries, meaning they are
defined within a domain volume (in 3D or surface in 2D) by the field variables.
Furthermore, the definition of the free energy density function f (see Eq. 1.15) is
not straightforward (both to derive and to give a physical meaning to each term)
which have to lead to different definitions of this functional in the literature, yet
giving similar results for a given phenomenon. Additionally, the minimization of
the free energy can lead to poor computational performance because of the co-
dependent formulation of the evolution of field variables (i.e. the minimization
of free energy for all field variables must be performed simultaneously) and the
definition of interfaces (diffuse interfaces) which is, in general, questionable as
it is not representative of the physical “thickness” of grain boundaries. These
difficulties of the MPF model can be solved by the use of LS methods based
on distance functions, as they are able to define sharp interfaces and rely on
the transport equation (Eq. 1.25) to make evolve the domains, using a prede-
fined boundary velocity. However, the kinetics formulation of the LS approach
can make it difficult to take into account certain properties of the GB [143, 23].
MPF and LS models still depend on the availability of a numerical solver, hence
their implementation may become a difficult task if such tools are not available.
Nonetheless, their inherent capabilities to handle topological events make them
very attractive models for the simulation of microstructural evolutions.

The principal weakness of the MPF and LS models based on a FE resolu-
tion remains their computational cost, which is commonly high for simulations
involving millions of FE elements (a normal number of elements in the context of
GG and ReX for a representative test case). An alternative to the FE resolution
is to use a FFT resolution which has been shown to obtain better performances
[152, 153, 123], however, limiting their study to a no-deformation context.
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A particular point of interest is the one concerning the modeling of DRX
in context of very large deformations, for which the only works addressing this
situation, are those using a LS-FE framework with unstructured FE meshes [7].
This is a major advantage of the LS-FE model over all other cited models as for
simulations intending to characterize real TMTs, and in general, for the metal
forming industry, this aspect is of prime importance.

As mentioned in the introduction of this thesis, the procedure having the
greatest impact in the performance of the FE-LS framework is the remeshing
[141], which is, a priori, necessary for two reasons: The first is to (hypothetically
and ironically) reduce the computational cost of the whole numerical framework,
by maintaining a refined mesh in the regions near GBs (i.e. refined within a given
thickness centered at the GBs), as these regions are the only ones that have a
relevant evolution in terms of LS field data [160], while the bulk of the grains
is remeshed with a much coarser mesh. It could be a very dangerous reasoning
as, for domains being substructured with thousands of subdomains (grains), it is
possible that the refined thickness becomes of the same magnitude as the grain
size, hence refining a significant percent of the total domain (if not all the do-
main), and thus spending time in the remeshing step where a static mesh (refined
everywhere) could conceivably produce similar results, mainly in 3D. The second
and most relevant reason for which remeshing is necessary, is precisely that in
the context of very large deformations, the mesh needs to be updated so its qual-
ity does not become too poor. The next chapter will be dedicated to giving a
brief introduction to metric-based remeshing, then a more quantitative point of
view regarding the use of remeshing strategies for the LS-FE model will be given,
along with the introduction of a new body-fitted remeshing algorithm, specially
developed for multidomain systems using a LS or a MPF description.

Finally, only two models use directly the definition of a velocity for the GBM
as mentioned in section 1.1: the Level-Set model and the Frost’s Vertex model.
All other models are based on either stochastic or thermodynamic formulations,
still reproducing similar results. The models presented in this thesis will directly
use the velocity equations 1.3 and 1.5 as an approximation for the movement of
grain boundaries in context of GG and ReX while thermodynamic formulations
will be avoided.
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Résumé en Français du Chapitre 1
Ce chapitre détaille les bases scientifiques pour les travaux développés et expliqués
par la suite sur ce manuscrit de thèse. Il est principalement dédié à l’introduction
des notions de recristallisation et de croissance de grains. Les principales méth-
odes à champ complet (ainsi que leur historique) utilisées/développées dans ce
contexte sont rappelées.

Les avantages et faiblesses de ces différentes méthodes existantes sont mises
en évidence, montrant ainsi les forts avantages de l’approche LS en très grande
déformation, la facilité d’implémentation des modèles Monte Carlo et Cellular
Automata et le faible coût numérique des modèles Front-Tracking.
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Chapter 2

Discussion of the FE-LS
methodology

As discussed in chapter 1, the LS method is a powerful approach to model dy-
namic interfaces in the context of large deformations. The LS method has been
applied to the simulation of microstructural evolutions as Grain Growth and Re-
crystallization at the mesoscale [7]. Interfaces between grains are implicitly de-
scribed in an Eulerian framework, as the zero-isovalue of the LS fields and their
evolution is governed by a transport formulation in the form of partial differen-
tial equations. The LS approach circumvents the notoriously difficult problem
of generating interface-conforming meshes for geometries subjected to large dis-
placements and changes in the topology of the domains.

Generally, to maintain high accuracy when using the LS method, moving
interfaces are captured by a locally refined FE mesh with the help of mesh adap-
tation techniques. In a microstructural problem, the large number of interfaces
and the fine mesh required in their vicinity make the mesh adaptation process
very costly in terms of CPU-time particularly in 3D [8].

In the first part of this chapter, some of the concepts regarding the remeshing
of numerical domains will be given, mainly in the context of anisotropic mesh
adaptation and body-fitted remeshing. We will see that one of the methods to
model microstructural evolutions (the so-called Level-Set method) can be coupled
with a remeshing technique to obtain body-fitted meshes of polycrystal domains.

Then, a new mesh adaptation strategy is developed and applied to LS-FE
simulations in the context of GG. It maintains the benefits of the classical Eule-
rian LS framework, while enforcing at all times the conformity of the FE mesh to
implicit interfaces by means of local remeshing operations. Special treatments for
vacuum regions have been adopted and will be presented within the generalization
of a previous adaptation algorithm presented in [161]. A detailed study concern-
ing the source of errors will be presented and compared for different remeshing
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strategies including the presented one. Finally, we will illustrate how the new
method decreases the requirement in mesh density while maintaining the accu-
racy at the interfaces, and a discussion regarding the best remeshing strategy to
model LS-FE in this context will be given.

This chapter has been partially published in [19].
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2.1 Introduction

Because most virtual polycrystalline microstructure generation tools are based
on the concept of Voronoï cells or Laguerre Voronoï cells [55, 56, 57], meshing
virtual microstructures does not raise any major challenge. The generation of an
interface-conforming (i.e. body-fitted) mesh usually consists in discretizing cells
facets, and then the volume within each cell [162]. However, for real polycrys-
tals, observed using Scanning Electron Microscopy (SEM) or 3D X-ray imaging
techniques [53, 54], a Voronoï/Laguerre-Voronoï space partitioning is, of course,
not accessible. While there has been much research on real 3D microstructures
meshing methods [163, 164], the generalization of these methods to massively
multiphase materials such as polycrystals is not straightforward [165, 166]. The
main challenge is linked to multiple junctions, namely interfaces between more
than two grains where obtaining both high mesh quality and fidelity with respect
to experimental data can be complex.

Once a mesh has been generated, modeling large plastic strains and subse-
quent microstructure evolutions such as ReX, GG or solid/solid phase transfor-
mations (SSPT) in a FE framework is also very challenging. As a consequence,
many researchers have chosen to avoid the use of meshes where grain boundaries
are explicitly meshed (i.e. with a conformal mesh), and instead, use implicit in-
terface approaches (also called Eulerian approaches) such as the LS [134] or the
MPF method [111] as described in chapter 1. While results using explicit inter-
face methods are restricted to limited deformations, implicit interface methods
have given access to the modeling of a wider range of thermomechanical phenom-
ena. For instance, the LS method has been successfully used to simulate SRX or
DRX in context of large deformations [154, 146, 6, 7]. However, the absence of a
conformal mesh at grain boundaries typically seems to require a finer discretiza-
tion [140] which could be a difficulty in terms of numerical cost mainly in 3D
[8]. Thus, there is an interest for alternative methods with similar capabilities
and robustness as the LS method, but based on explicit and reasonable interface
meshing/remeshing.

In this chapter, a new methodology, based on a previous work originally ap-
plied to mechanical fracture problems [161], is proposed to generate conforming
FE meshes using as input a LS or MPF data set. First, a brief introduction to
the concepts of metric-based remeshing will be given along with the concept of
the body-fitted mesh regeneration algorithm proposed in [161]. Then, based on
these works, a new mesh adaption technique will be proposed to handle large
deformations and displacements of GB interfaces. The abilities to generate and
adapt conformal FE meshes thanks to the intermediate use of LS functions are
particularly useful for the modeling of topological events such as grain disap-
pearance during GG. An alternative method based on the full reconstruction of
the computational mesh at each time step is presented in [142]. Here, all pro-
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posed algorithms are based only on local mesh modifications, and not on full
mesh reconstructions. Of course, the new remeshing algorithm will be used in
the context of GG mechanism using a LS-FE framework and will be compared to
a classical front capturing remeshing technique using the same numerical frame-
work [5, 167, 168, 169]. A detailed description of the potential sources of errors
during a simulation for each approach is presented, tested and compared, using
a specific test case featuring an analytical solution when subjected to capillarity
effects, namely the circle shrinkage case. Then, comparisons involving accuracy
for more demanding test cases are given, and finally, comparisons of CPU time
are performed for a large 2D polycrystal involving 10000 initial grains.
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2.2 Remeshing strategies in context of FE mod-
eling of multiphase systems

When using an Eulerian approach, the mesh is generally adapted periodically
through time in the regions near to the interfaces [5, 167, 7, 170] and this process
leads to high CPU times. One solution is to combine the benefits of Lagrangian
and Eulerian methods: Arbitrary Lagrangian Eulerian (ALE) methods. Nor-
mally, on an ALE framework, the interfaces are described in a Lagrangian way
(body-fitted interfaces) and the inner and outer nodes (those not belonging to
the interface) behave in a Lagrangian-Eulerian way (see [171] for a good exam-
ple in the context of large deformation of interfaces). However, a standard ALE
method doesn’t allow topological changes on the mesh and this can be an issue:
the mesh can get tangled depending on the update technique used to move each
vertex [172].

In the context of the DIGIMU project, tens of thousands of interfaces need
to be handled. In the case of an implicit formulation of these (using LS or MPF
methods), the number of mesh elements required to treat them is very high and
the number of operations performed to update the mesh or the remeshing dur-
ing interface migration can give as a result a prohibitive CPU time, mainly in a
three-dimensional context.

Instead of using a pure ALE method or a very refined mesh on an Eulerian
formulation, a possible solution could be the use of body-fitted re-meshing algo-
rithms to make an explicit mesh over the implicitly-defined moving interface. In
this section, the work of some authors in the field of LS methods coupled with
body-fitted mesh generation algorithms will be discussed([173], [174]) along with
some basic concepts used on metric-based remeshing strategies and the compu-
tation of mesh quality.

2.2.1 Mesh quality
The quality of the mesh is the factor that defines whether or not a mesh (or a
subset of it) is acceptable. Normally, the quality of an element k is given by
a value Q(k) ∈ [0, 1] where Q(k) = 1 represents a perfect element (equilateral
triangle in 2D and a regular tetrahedron in 3D in the context of Euclidean space)
and Q(k) = 0 a fully degenerated one. Q(k) is invariant to rotation, translation
and change of orientation.

Authors in the literature have different approaches to define an expression for
Q(k) because not all of them have the same needs in terms of shape and size.
Here we will only consider some examples used in the context of a mesh made by
simplexes:
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Q(k) = c0
ρ(k)
Dk

, used on [174] (2.1)

Q(k) = c0
|k|
hd

, used on [173, 175] (2.2)

where for an element k, Dk is the diameter of its circumscribed circle/sphere,
ρ(k) its in-radius, |k| represents its volume and finally, h the average length of
its edges. d represents the space dimension of the calculation and c0 is a constant
used to scale the values of Q(k) in the range of [0, 1]. Note that each property
of k can be calculated on the Euclidean space (represented by a canonical Eu-
clidean metric field) or in any other metric space M defined by a positive definite
symmetric tensor (as we will see for anisotropic mesh adaptation).

The value of Q(k) can be coupled with other expressions in order to have
multiple criteria for one element, for example in [173]:

Q(k) = min(c0
|k|M
hd

M

, hd
M ,

1
hd

M

), (2.3)

where the extra terms take into account the size of the element. Here the
subscript M means that all quantities are calculated on the metric space defined
by M .

2.2.2 Metric-based Remeshing
The procedure to enhance mesh quality taking into account the existing topology
of an unstructured mesh can be done using a remeshing approach. When the
criteria of the quality is measured using a scaled and/or rotated euclidean metric
(this is for M = cs(x)R(x), where cs(x) is a size factor and R(x) is a rotation matrix),
the remeshing procedure will try to obtain elements in the shape of equilateral
triangles (in 2D) or regular tetrahedra (in 3D) with edges of the size of cs(x).
Moreover, if the metric space takes a more general form (e.g. M = R(x)T(x)S(x),
with S(x) a scaling matrix and T(x) a shearing matrix), the remeshing algorithm
will try to approach the forms of more irregular triangles (or tetrahedra).

A given algorithm (the remeshing algorithm) will perform topological changes
on the connectivity, insertion/deletion of nodes and/or displacements in the po-
sition of the nodes of the existing mesh, in order to obtain these shapes. A
remeshing procedure can be established by the following steps [173]:

• iteratively applying remeshing operators on a subset of the mesh Ψo, ob-
taining a new possible replacing subset Ψi for each iteration.
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• Classify each possible replacing subset Ψi based on its quality Q(Ψi), for
example using

Q(Ψi) = min
k∈Ψi

(Q(k)), used on [173, 175] (2.4)

and take the best subset Ψm.

• Replace Ψo by the best configuration Ψm if the quality of Ψm is greater
than quality of Ψo.

.
A good example of metric-based remeshing strategy is the one proposed by

Gruau et al. in [175], here the authors used Eq. 2.3 to compute the quality of a
simplex k with vertex S0, ....Sd, using the following definitions:

|k|M(k) = |k|
√

det(M(k)), (2.5)

c0 = d!√
d + 1

2d/2, (2.6)

hM(k) =

 2
d(d + 1)

∑
0≤i<j≤d

(Sj − Si)T M(k)(Sj − Si)

1/2

, (2.7)

where the desired metric of simplex k, M(k), is obtained as the average of the
desired metric at vertex S0, ....Sd:

M(k) = 1
d + 1

d∑
i=0

M(Si). (2.8)

The algorithm proposed by Gruau et al. then iterates on the nodes and the
edges of the mesh, one by one, by proposing new configurations for a patch1

of elements, (see Figure 2.1(a-b) and 2.2(a-b)). The new configurations will be
proposed by a reconnection operator named star-connection, developed by the
authors (see Figure 2.1(c-h) and 2.2(c-e)).

For each one of the new configurations, the quality will be computed. Finally,
the algorithm will choose the one having the best quality for its worst element as
denoted by Equation 2.4.

Other good examples of anisotropic remeshing strategies can be found in
[176, 177, 178, 179, 180, 181, 182, 183] for metric-based remeshing. One of the
differences between these approaches and the one in [175] is that instead of using

1a patch of elements in this context is defined as the mesh subset Ψj
o obtained by the union

of elements containing the node j or the intersection of the elements containing the nodes in
edge j
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Figure 2.1: 2D Examples of the operations made by the star-connection operator
applied on a node (patch defined by the union of elements containing the node): a)
initial configuration, b) region to optimize, (c-h) candidates for the best configuration,
Source: [173].

the star-connection algorithm, the authors perform topological changes in the
mesh by the use of local remeshing operators, such as: vertex-smoothing, edge-
swapping, edge-collapse and edge-splitting. These remeshing operators will be
defined and used in chapter 3.

2.2.3 Body-Fitted remeshing of implicit defined interfaces
An extension of the work of Gruau et al. was proposed by Shakoor et al. in
[161, 173]. The main new feature being the possibility to create a body-fitted
mesh of an implicitly defined interface and to make anisotropic mesh adaptation
at the same time.

The interface fitting algorithm presented in [173] can be decomposed in two
steps: fitting the interface by cutting the edges and adapting the mesh near to
the interface to obtain good-quality elements.

Initially, the algorithm will find each edge crossed by the interface. This is
done by evaluating the LS function and by storing the edges whose nodes change
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Figure 2.2: 2D Examples of the operations made by the star-connection operator
applied on an edge (patch defined by the intersection of elements containing the
nodes of the edge): a) initial configuration, b) region to optimize, (c-e) candidates
for the best configuration, Source: [173].

sign (this means that the zero-value of the LS function lies on that edge). The
next step is to split the edge (i, j) taking into account the position of the zero
value of the LS function. This can be made by adding a node on the coordinates
of the intersection Sij [173]:

Sij = Si − (Si − Sj) ϕ(Si)
ϕ(Si)− ϕ(Sj)

, (2.9)

where Si and ϕ(Si) corresponds to the position and the value of the LS func-
tion of the node i. The inserted node Sij needs to be fixed, and it can not
be removed from the mesh by the adaptation process nor moved by a vertex
smoothing algorithm. Yet, some re-meshing operators need to be allowed near
the interface, otherwise, the resulting quality of the split elements would be very
poor. In fact, once the new nodes are placed, the star-reconnection algorithm (see
section 2.2.2) will reconstruct the mesh in the vicinity of the interface. Of course,
the resulting body-fitted mesh on the interface is not allowed to be altered, thus
two consecutive nodes having φ = 0 must remain connected after this last step.

In practice, these constraints are very restrictive and they can lead to a very
aggressive remeshing on the interface. To solve this, a new idea is introduced:
relaxation on the interface. Basically, the remeshing algorithm will allow to per-
form a reconnection or to delete a node of the interface (those with φ = 0) if the
relative change of the volume occupied by each phase is lower than a factor ϵQ.
However, relaxation is only necessary if the algorithm for remeshing is not effi-
cient enough to obtain good qualities with a few iterations of the star-connection
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algorithm on the nodes near the interface.

The authors improved the star-connection algorithm to increase its robustness,
leading to a very rarely need for relaxation on the volume preservation. The
changes lie in the addition of a new possibility called wide gather. If the target
was an edge as in Fig. 2.2 and no modification was performed (because none of the
configurations lead to a better quality), the operation is triggered. Basically, the
patch is extended to the elements which contain the nodes of the edge as shown
in Fig. 2.3a, this will allow a wider range of operations on the patch including
edge-collapse (Fig. 2.3i).

Figure 2.3: Example of a patch at the wide gathered neighboring of an edge: (a)
initial patch, (b) external faces extraction, (c-i) candidates. Source: [173]

Applications of this remeshing strategy to void coalescence can be found on
[184].

The algorithm described in this section has clear advantages in terms of pre-
cision at the definition of the interface (as one can define a real discontinuity in
the properties at the interface). However, some disadvantages are also present.
During the mesh adaptation process to obtain good-quality elements at the in-
terface, the concatenated interpolations on the mesh could lead to numerical
diffusion. Finally, even if the improved star-connection algorithm is very robust,
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all possible combinations for the reconnection need to be tested on each node,
and this may lead to disadvantages in terms of computational performance. A
numerical study, aimed to quantify the profits of using a body-fitted mesh on the
cases where currently an anisotropically-adapted Eulerian mesh is used, will be
the purpose of section 2.5, where special attention will be given to the treatment
of triple junctions and the modeling of topological events.

Alternatively, a similar work aiming to obtain a body-fitted mesh of implicitly
defined interfaces, was presented in [174], where the authors, in a similar manner
as in [181, 182, 183], considered the separated definition of remeshing operators
(vertex-smoothing, edge-swapping, edge-collapse and edge-splitting) in order to
fit and adapt the mesh.

Finally, I would like to highlight the work of Pascal Frey et al. [174], on
the open source tool called MMG3D, which as said before uses almost the same
principle as in [161]. This work however will not be used in this manuscript, as the
methodology in [161] is already available and implemented in our computational
environment.
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2.3 A new fitting and joining algorithm for the
remeshing of multiphase systems in a FE
context

Simulations involving GG and the appearance of new grains (nucleation), are
particularly complex at the topological level, because it is physically normal that
domains appear and disappear constantly. A body-fitted remesher in this context
would need to be robust enough to take into account these topological changes
and efficient enough to treat the hundreds of thousands of interfaces present dur-
ing the simulation.

Currently, the meshes used for these simulations in DIGIMU are not body-
fitted. In fact, anisotropic mesh adaptation using metric-based remeshing is used
in order to create a very refined mesh in the regions near to the grain interfaces.
This is necessary if one intends to capture a continuous variation of properties
with the help of LS functions and to obtain a highly accurate solution. However,
the CPU-time used for the remeshing is too high, and limits the potential of the
developed models. Another example lies in the context of the apparition of new
grains. Currently in 2D, the mesher predicts the emplacement of the new nuclei
and predisposes a very refined mesh on the regions where these nuclei are going
to appear. However, in 3D, this process leads to prohibitive CPU-times and it
has been found that it is more efficient to keep a fine isotropic mesh right from
the beginning of the simulation than to apply a current remeshing strategy to
treat these topological events [51].

Moreover, when generating the LS fields based on Voronoï cells or Laguerre-
Voronoï cells over an implicit mesh, vacuum regions will appear because the mesh
can not ensure that some of the edges (or facets in 3D) will not be crossed by the
zero-isovalue of the LS functions. In other words, for a LS function defined as a
signed distance function to the interface:

ϕ(x) = −d(x, Γ) x ∈ Ω−
ϕ(x) = +d(x, Γ) x ∈ Ω+

ϕ(x) = 0 x ∈ Γ

where Ω− and Ω+ define the exterior and the interior of grains and d(x, Γ) is
the Euclidean distance between a point and the GB, and in the context of FE-LS
polycrystal modeling where multiple LS functions (ϕi)i=1...N are used2, the set
Ω∅ = {x ∈ Ω, maxi=1...N ϕi(x) < 0} will not be empty, given the non-presence of

2N is not necessarily the number of grains, as coloring techniques can be used to gather
different grains into the same LS function and dynamically adapt this coloring throughout the
simulation [146], see section 1.3.5.
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nodes in the regions defined by Ω∅

The presence of non-physical vacuum regions at the multiple junctions with
the LS method is well known. Eq. 1.24, proposed in [137], is classically used
[140, 167, 146, 158, 168, 169] to treat it.

As stated above, the set Ω∅ does not contain mesh nodes, and if Eq. (1.24) is
applied between two LS functions as in Fig. 1.5(a), Ω∅ is empty (see Fig. 1.5(b)).
However, when applying the same procedure on three LS as in Fig. 1.5(c), it can be
seen that this treatment does not totally remove vacuum regions (see Fig. 1.5(d)).
Another technique is proposed in [152, 145] to overcome this problem, but it will
not be considered here.

2.3.1 Vaccum-less body-fitted remeshing of grain bound-
aries

In this section, a generalized version of the so-called interface fitting algorithm,
introduced in section 2.2.3, is proposed to remove the remaining vacuum regions
while constructing a conform FE mesh of the interface. This algorithm is based
on purely topological mesh operations and can be easily extended to 3D. As the
initial interface fitting algorithm consists simply in splitting mesh edges inter-
sected by a LS function, and introducing this intersection as a new mesh node,
it will not remove vacuum regions. Instead, entire mesh elements will be formed
in these regions that do not belong to any grain. This is illustrated in Fig. 2.4(c)
and (d).

In order to obtain a mesh fitted to the grain boundaries and without creating
any vacuum region in the domain, the following general interface joining algorithm
is proposed:

Algorithm 1 Fitting and Joining remeshing algorithm [19]
1: for all T = d . . . 1 do
2: for all T -simplices S of the mesh do
3: Compute all intersections between edges of S and any interface
4: Insert the barycenter of these intersections in the mesh by splitting S
5: Set the LS function associated to any interface that intersected edges

of S to zero on the inserted node

where d is the number of spatial dimensions. We consider the hierarchical or-
ganization of simplicial meshes, i.e. each 3-simplex (tetrahedron) has 2-simplicial
faces (triangles), which in turn have 1-simplicial edges (line segments).

A 2D example of the results obtained with this interface joining technique is
shown in Fig. 2.5.
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Initial Algorithm

Initial Algorithm

(a) (b)

(c) (d)

Figure 2.4: Example of FE discretization of the interfaces between two and three
colored grains in 2D: (a) two implicit LS with no vacuum region, (c) three implicit
LS with vacuum region and (c) and (d) results of the initial interface fitting
algorithm on (a) and (c) respectively.

(a) (b) (c)

Figure 2.5: Solution of the three grains 2D problem: (a) result after using
Eq. (1.24), (b) result after the first iteration of the joining algorithm, (c) result
after the second and last iteration of the joining algorithm.
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(a) (b)

(c) (d)

Figure 2.6: Example of a 2D polycrystal of 25 grains represented by 4 LS func-
tions (blue, cyan, yellow, green). In (a) and (b), interfaces (white) are implicitly
discretized and cross mesh elements, with elements containing vacuum regions
(red) at some multiple junctions. In (c) and (d), interfaces are explicitly meshed
using both interfaces joining and mesh adaption, so those vacuum regions are
eliminated in the final mesh, with no significant deterioration of element shape.

This procedure prevents elements of the mesh that are intersected by interfaces
to remain partly filled with vacuum. Elements that do not contain a junction
(or at least three phases) are also treated by the algorithm, which avoids the
creation of elements entirely contained in a vacuum. The output mesh is usually
of poor quality, hence this interface joining process is generally followed by a mesh
adaption step to restore a good element shape close to grain boundaries. This
adaption may also follow some local mesh refinement criterion [185, 161]. An
example of 2D result with a larger microstructure meshed using both the joining
algorithm and mesh adaption is described in Fig. 2.6.
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2.4 Grain growth modeling

2.4.1 Model and numerical method

Governing Equations

In first approximation, as mentioned in chapter 1. GG by capillarity can be
described by a pure advective process. At the polycrystal scale, the velocity v⃗
at every point on the interfaces can be approximated by Eq. 1.3. The isotropy
hypothesis remains here to consider M as only dependent on the temperature
and γ as constant. In this context, the substitution of Eq. 1.3 into the transport
equation 1.25 of each level-set function ϕi results in:

∂ϕi

∂t
−Mγκn⃗ · ∇⃗ϕi = 0. (2.10)

Most of the methods described hereafter can be extended to the context of
anisotropic grain boundary energy γ or mobility M [143, 144], but this will not
be considered here.

Eq. (2.10) is notoriously difficult to properly solve by usual numerical meth-
ods. The local curvature κ involves second derivatives of the level-set function
ϕi, whose numerical estimate is very irregular, despite the large number of meth-
ods that have been proposed in the literature to obtain smooth and accurate
approximations (see for instance [186, 187, 188]). Moreover, the computation of
the curvature is often performed as a post-processing of the level-set function
solution and not as an inherent part of the numerical scheme used to discretize
Eq. (2.10). The time-explicit nature of this staggered approach implies the use
of very small time steps because of restrictive stability conditions.

This is why it is preferred in this work to rewrite Eq. (2.10) by adding an
additional assumption: the LS fields ϕi remain at all times signed distance func-
tions (|∇⃗ϕi| = 1) around their zero-isovalues during boundary migration. The
resulting diffusive equation for the LS functions reads:

∂ϕi

∂t
−Mγ∆ϕi = 0. (2.11)

Eq. (2.11) is in general much more stable than Eq. (2.10) and avoids the di-
rect calculation of κ. It is solved by a standard linear Finite Element method in
space combined with a backward Euler scheme in time. The implementation is
fully parallel and has been shown to be perform efficiently on a large number of
processors [154].
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Interface treatment and Remeshing

Three different combinations of interface representation and mesh adaptation
strategies are compared in the numerical tests performed in this chapter (see
Sec. 2.5).

The first approach consists in using a Static Mesh (SM), disabling mesh adap-
tation so that the mesh remains the same all along the simulation. The interface
is then implicitly represented by the level-set functions.

In the second approach, interfaces are still described by level-set functions
only, but they are better captured by locally refining the mesh in their vicinity
through Isotropic Mesh Adaptation (IMA). The local refinement makes it possi-
ble to better resolve the curvature of the grain boundaries.

The third approach consists in applying the New Fitting And Joining Algo-
rithm (NFJA) described in Sec. 2.3 to track interfaces explicitly with a body-fitted
mesh. With this technique, a mesh adaptation step is still required in order to
improve the low mesh quality resulting from the fitting procedure and to accu-
rately capture the interface curvature through local mesh refinement.

The mesh adaptation procedure involved in the IMA and NFJA approaches
relies on local topological mesh operations, that are applied iteratively with the
objective of improving a mixed criterion [189]. The criterion combines an evalu-
ation of the local element quality and the conformance of the local edge length
to a prescribed size field. Anisotropic meshes could have been generated in the
vicinity of the interface through metric-based techniques [175, 190]. However,
we have found highly anisotropic meshes to be of little interest in this specific
context: as level-set functions are linear in the normal direction to interfaces,
the main driver of the accuracy is the mesh size in the tangential direction, that
determine the resolution of the interface curvature.

Considering a mesh size hint at the interface, the mesh size field h is defined
by:

h =


hint if |ϕ| ≤ 4hint

hint + 7(|ϕ| − 4hint)
4

if |ϕ| ∈ [4hint, 8hint]
8hint if |ϕ| ≥ 8hint

(2.12)

This definition makes it possible to obtain a band of four refined elements on
each side of the interface and a coarser (8 times larger) mesh in the bulk of the
phase in a very similar way as in [191].
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Additional tools

In this work, with the purpose of high performance, for all the presented cases,
we will use the tools mentioned in section 1.3.5, corresponding to the Global
Level-Set framework, Coloring/Recoloring techniques of [8, 146] and the Direct
(Geometric) reinitialization protocol of [158].

General Algorithm

The general approach can be summarized as follows:

Algorithm 2 Grain growth and body-fitted remeshing algorithm [19]
1: Generate Initial State with a Coloring Method
2: while Time < FinalT ime do
3: for all LS Field ϕ do
4: Solve PDEs with a FE method for ϕ

5: for all LS Field ϕ do
6: Apply Eq. 1.24 to ϕ

7: for all LS Field ϕ do
8: for all Grain G in ϕ do
9: Transport G to another ϕ if necessary (Re-Coloring)

10: for all LS Field ϕ do
11: Reinitialize ϕ

12: if Remeshing Active then
13: if Body-Fitted Remesh then
14: Remesh with the NFJA method
15: if Interface Capturing Remesh then
16: Remesh with the IMA method

2.4.2 Source of errors
Each one of the numeric models has a different set of sources of errors that have
been classified as follows: errors given by the direct reinitialization algorithm, er-
rors given by the remeshing and transport process and finally, errors given by the
resolution of the diffusion equation in the considered FE framework (P1, unstruc-
tured FE mesh). We will detail each one of the sources of errors excluding the
ones obtained by the FE solution of the EDP which are considered as a function
of the convergence parameter given to the FE solver and common to the different
FE remeshing strategies proposed here.
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Direct reinitialization errors

Using the direct reinitialization method proposed in [158] is a very fast way of
reinitializing a LS field, however, some errors will be present when the FE dis-
cretization uses linear elements. Consider the configuration of figure 2.7(a), in
this case, the zero-isovalue of the LS field (ϕ) is obtained by interpolating the
LS values within the elements where a change of sign of the LS was found, a se-
quence of segments defining the interface is identified. Then, the reinitialization
algorithm will recompute the distance of each one of the nodes to the nearest part
of the nearest segment. Applying this procedure to node A, B and C of figure
2.7(a) will result in a shrinking of the concave phase: the initial LS values are
given on A, B and C by the positive norm of vector d⃗a and the negative norm of
vectors d⃗b and d⃗c (|d⃗a|, -|d⃗b| and -|d⃗c|). The zero-isovalue of the interpolation of
these LS values within element K will be the segment s used to reinitialize nodes
A, B and C. For nodes B and C, the value of the computed distance to segment S
is the same as the initial LS values for these nodes (|d⃗bs| = |d⃗b| and |d⃗cs| = |d⃗c|).
However, the nearest distance of node A to the segment S is the norm of the
vector d⃗as (which is orthogonal to S). As |d⃗as| < |d⃗a|, when interpolating the
new reinitialized LS field, its zero-isovalue will be different from the initial one
(see figure 2.7(b)). Normally, these errors increase when the curvature of the
zero-isovalue increase, and they become null if the zero-isovalue is a straight line.
A way to avoid this phenomena, is by using body-fitted interfaces like the ones
obtained using the fitting and joining algorithm presented in this paper.

Remeshing and transport errors

It is well known that the process of transporting a numeric field from a mesh to
another causes errors, mainly if the interpolation used for the transport has a
low order. Figure 2.8 shows one example of loss of surface when a mesh using
linear elements transports one LS field to another mesh. Figure 2.8(a) shows the
initial mesh with its given zero-isovalue of the LS field. Each node of the new
mesh (Fig. 2.8(b)) will compute its LS value from the interpolation of the LS
field over the old mesh. Many case scenarios can occur. For instance, if one edge
of the new mesh is completely inside of one of the elements of the old mesh (as
in Fig. 2.9 see edge z⃗y), the old isovalues (including the zero-isovalue) over that
edge will be transported to it as they intersect the same edge. In other words, the
interpolation of the old LS to the nodes of that edge will cause that the isovalues
computed in the old element along the edge and the new interpolation over the
edge, coincide. However, this is not the case for all the edges of the new mesh,
many of them will cross the edges of the old mesh (as in Fig. 2.9 see edge x⃗y). As
the interpolation over each one of the nodes of those edges comes from different
elements, the isovalues on those edges will not coincide with the interpolation of
the LS of the old mesh along those edges, hence causing errors.
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Figure 2.7: Reinitialization errors: a) initial configuration, interpolation of the
initial LS field to its zero-isovalue, b) new interpolation after reinitializing com-
pared to the initial one. Errors in the computation of the distance to the linear
interpolation of the zero-isovalue of the LS produce the shrinkage of the concave
phase.
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new zero-isovalue

(a) (b)

  surface lost 
after transport

initial zero-isovalue

Figure 2.8: Transport Errors: a) Initial configuration, interpolation of the initial
LS field to its zero-isovalue over the old mesh. b) New interpolation after remesh-
ing and transporting the LS field to the new mesh, superposition of the phase
before and after the remeshing/transport process, a loss of surface is identified.

As for the reinitialization errors, transport errors will cause the concave phase
to shrink, producing a loss of surface. Once again, this phenomenon can be
avoided if the nodes of the new mesh coincide with the zero-isovalue of the old
mesh, which is exactly the way of producing new meshes by using the new fitting
and joining algorithm.

Errors of the New Fitting and Joining Algorithm

One of the issues when using the new fitting and joining algorithm is that some
of the elements at the interface end up with very poor quality (in terms of shape
and size) when the zero-isovalue crosses the element too near to a node (see
Fig. 2.10(a)). One way to avoid this problem is by pushing the interface to
the node before applying the fitting algorithm to the patch of elements (see
Fig. 2.10(b)). This procedure is triggered if the volume of one of the elements
after fitting is smaller than a user defined value δv (the element colored in red in
Fig. 2.10(a) left).

Once the fitting algorithm has finished, a mesh adaptation procedure begins
in order to improve the quality of the mesh near to the fitted interface. Small
changes on the volume of each phase are allowed under a percent value δp also
user-defined. Take for instance the example showed in Fig. 2.11. An initial fit-
ting process is done over the initial configuration (Fig. 2.11(top-left)) giving as a
result the body-fitted mesh (Fig. 2.11(top-right)) containing potentially ill con-
ditioned elements (see elements attached to nodes A, B and C), then, a first
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Figure 2.9: Transport example from two elements (ABC and ACD) to one ele-
ment (xyz), a surface-loss after the transport is found on element xyz as the new
linear interpolation crosses the edge AC.

adaptation process will over node A, which is going to move the same node to
a position where the quality of the whole element patch of node A is improved
(Fig. 2.11(bottom-right)) till then, no change on either of the phases is registered.
Then, a second adaptation attempt is done: the patch of elements surrounding
node B in Fig. 2.11(bottom-right) contains two phases. If by applying a remesh-
ing operation to this element patch, the quality is improved and the maximum
volume change of the two phases (in this case, the yellow phase) does not go over
the allowed user-defined percent (percent of the initial volume of the phase on the
element patch) the operation is registered, else, the operation is discarded and
no change on the patch is made. An additional constraint is added to the nodes
of the boundary of the FE domain: when performing the adaptation step, the
nodes of the boundary are not allowed to move, even if the movement increases
the quality of the local patch. This condition enables to maintain the calculation
domain boundaries during interfaces migration. Finally, point deletions are al-
lowed in the same way as for all the other nodes (if the changes do not reduce or
increase the volume of the local patch over the allowed user-defined percent).

These processes operations cause errors on the surface of the phases, producing
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AA

A A

Pushing

Fitting

Fitting

(a)

(b)

Figure 2.10: Fitting Relaxation: a) left: Initial configuration, right: fitting with-
out relaxation, elements with a very small volume < δv are colored red. b) left:
relaxation of the interfaces by pushing the boundaries to node A, the surface-loss
of the yellow phase is colored pink, right: fitting after relaxation.

some of them to expand or to shrink. We will measure the effect of the relaxation
with the help of the following test cases. The other sources of errors explained
before will be studied and compared too.

2.5 Numerical results

2.5.1 Considered geometries
Equation 2.11 will be considered to obtain the evolution of the LS fields for
several test cases, each one responding to different interesting topological situa-
tions: sphere shrinkage, T-Junction, square shrinkage and finally, a 2D Laguerre-
Voronoi tessellation composed of 10000 grains. For each one of these geometrical
configurations, the three remeshing approaches (SM, IMA, NFJA) will be com-
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Lower than a percent value 
of the yellow phase on the
last element patch of node B.

Adapt B

Adapt A

Fitting
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Figure 2.11: Adaptation Relaxation: (top-left): Initial Configuration, (top-right):
Fitted Mesh, (bottom-right): adapted node A (vertex displacement), (bottom-
left): adapted node B (edge BC collapsed on C)

pared.

2.5.2 Circle shrinkage
The circle shrinkage test case, being the most basic of all, enables to observe the
response of the interface to the instantaneous curvature and so to observe the
topological disappearance of the grain. This case allows to compare the shape
evolution of the phase defined by the positive values of ϕ to the analytic solution;
The evolution of the analytical circle radius r is simply given by the following
differential equation:

dr

dt
+ Mγ

1
r

= 0 =⇒ r (t) =
√

r2
0 − 2Mγt. (2.13)

This equation can be rewritten in terms of the surface of the circle S, with a
linear solution, as:
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dS

dt
+ 2πMγ = 0 =⇒ S (t) = S0 − 2πMγt. (2.14)

As mentioned before, solving Eq. 2.11 in a FEM context implies some errors.
Here we will quantify each source of errors using the surface Sϕ of the phase ϕ
describing the “circle”. In reality, the phase ϕ can not define a perfect circle but
the errors given by its real shape will be neglected.

We can establish the signed difference between the numeric surface computa-
tion Sϕ and the analytic value S as the total error E∗∗:

E∗∗
(ϕ,h,t,∆t) = Sϕ(ϕ,h,t,∆t) − S(t), (2.15)

where h is the mesh size at the interfaces and ∆t is the time step. Eq 2.15
can be rewritten in order to obtain the error per increment E∗:

E∗∗
(ϕ,h,t,∆t) − E∗∗

(ϕ,h,t−∆t,∆t) = Sϕ(ϕ,h,t,∆t) − Sϕ(ϕ,h,t−∆t,∆t) + S(t−∆t) − S(t), (2.16)

E∗
(ϕ,h,t,∆t) = ∆Sϕ(ϕ,h,t,∆t) −∆S(t,∆t). (2.17)

Finally, we can express the relative error as:

E(ϕ,h,t,∆t) =
∆Sϕ(ϕ,h,t,∆t) −∆S(t,∆t)

∆S(t,∆t)
. (2.18)

The term ∆Sϕ(ϕ,h,t,∆t) is actually the addition of the different contributions
to the change of surface given by the different treatments done during a compu-
tational increment: solution of the EDP in the FE context, reinitialization and
remeshing. The latter itself is also differentiated in the change of surface given
by the processes of transport, fitting and adaption as explained in section 2.4.2.
This can be summarized as follows:

∆Sϕ(ϕ,h,t,∆t) = ∆Ssolver(ϕ,h,t,∆t) + ∆Sreinit(ϕ,h,t,∆t) + ∆Sremesh(ϕ,h,t,∆t), (2.19)

∴ E(ϕ,h,t,∆t) =
∆Ssolver(ϕ,h,t,∆t) −∆S(t,∆t)

∆S(t,∆t)
+

∆Sreinit(ϕ,h,t,∆t)

∆S(t,∆t)
+

∆Sremesh(ϕ,h,t,∆t)

∆S(t,∆t)
.

(2.20)
Finally, Expressions for the three principal sources of error can be established:

ξsolver(ϕ,h,t,∆t) = 100 ·
∆Ssolver(ϕ,h,t,∆t) −∆S(t,∆t)

∆S(t,∆t)
, (2.21)

ξreinit(ϕ,h,t,∆t) = 100 ·
∆Sreinit(ϕ,h,t,∆t)

∆S(t,∆t)
, (2.22)
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Figure 2.12: Circle shrinkage test case: initial state.

ξremesh(ϕ,h,t,∆t) = 100 ·
∆Sremesh(ϕ,h,t,∆t)

∆S(t,∆t)
, (2.23)

where the terms ξi represent the relative error given by the procedure i (solver,
reinit and remesh). The dependence of ϕ for the different values of ξi describes
the error produced by how far the phase ϕ is to represent a perfect circle of sur-
face Sϕ, in this study, this dependence will be neglected and we will focus on the
evolution of the error as a parameter of the mesh size h, the time t and the time
step ∆t. Note that we have not used an absolute value to describe each error.
Indeed, we want to observe if the numeric models are quicker or slower than the
analytic solution: a negative (resp. positive) value of the error would mean that
phase ϕ shrinks too fast (resp. low) during the considered step.

In the following, dimensionless simulations will be considered and the value
of the reduced mobility M · γ will be assumed to be unitary.
The initial radius is set as r0 = 0.3 (initial surface S0 ≈ 0.2827) and the circle is
immersed in the center of a 1× 1 square as illustrated in Fig. 2.12.

As stated before, three meshing configurations will be compared, the first one
will use the interface fitting and joining algorithm to remesh every time step,
the second one will use an interface capture meshing (a mesh refined only at the
interfaces but not fitted) and the last one will use a static mesh with a uniform
mesh size. Examples of each meshing approach are given in Fig. 2.13. Note that
for the static mesh, all the domain must be refined in order to maintain the same
level of accuracy as for the other cases during the interface migration.

Multiple runs with different mesh sizes h and time steps dt were made for
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(a) (b)

(c) (d)

(e) (f)

Figure 2.13: Meshes obtained for each one of the configurations for the circle
shrinkage test at t = 0 and with a mesh size h = 0.01 at the interface. (a,b)
Using the interface fitting and joining algorithm. (c,d) Using a classic interface
capturing algorithm. (e,f) Static mesh.
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each one of the configurations. Eq. 2.11 was solved with a standard diffusion FE
solver with a precision of 10−10 for a P1 (linear) interpolation.

One example of the obtained results for the evolution of the surface for the
configuration with a static mesh is summarized in Fig. 2.14, Ks and Kr are the
median values of the surface change when solving the FEM problem and when
reinitializing respectively. These values can be replaced in Equations 2.21 and
2.22 as ∆Ssolver and ∆Sreinit to obtain the values of ξsolver and ξreinit. Figure 2.15
shows the values of ξsolver and ξreinit for different time steps and mesh sizes. Note
that for this case ξtransport, ξfit and ξadapt are equal to zero because there is no
remeshing.

It is interesting to see that errors given by the reinitialization procedure are
much more important than those obtained by using a FEM to solve Eq. 2.11
and that they tend to be bigger when the time step decreases. In fact, from our
observations ∆Sreinit is not dependent of the time step dt used (it depends only
on the mesh size h), however, a smaller dt means more increments to simulate
the same time, and as the error from the reinit accumulates, the more increments
the bigger the value of ξreinit.

A similar computation can be made for the IMA and the NFJA approaches.
When using the IMA approach, the value ξtransport ̸= 0 because the remeshing
makes the procedure of transport unavoidable. however, as there are no fitting,
ξfit = 0 and ξadapt = 0. The values of ξsolver and ξreinit are almost equal to those
of the SM method displayed in Figures 2.15 as the only difference near to the
interface between these two approaches is that a procedure of remeshing is done
between time steps. Figure 2.16 shows the results for the values ξsolver, ξreinit and
ξtransport for different values of the mesh size h and the time step dt in context of
the IMA strategy. The values of ξtransport were found to be very small compared
to those of ξreinit and ξsolver hence, they can be neglected in the following.

Finally, when using the NFJA approach, as explained in section 2.4.2, ξtransport

= 0 and ξreinit = 0. however, ξfit ̸= 0 and ξadapt ̸= 0 as a fitting procedure is used.
The NFJA allows controlling the two variables δv and δp introduced in section
2.4.2, these variables control directly the values of ξfit and ξadapt. A very low
value of δv will cause that the algorithm allows to get very small elements after
fitting while the value ξfit tends to zero. In the same way, a very low value of
δp will cause that even though a very poor quality of elements was found after
fitting, the algorithm could not modify the interface in order to improve that
quality, while the value ξadapt tends also to zero.

Figure 2.17 shows the values of ξsolver and ξadapt for one example with δv =
10−10 and δp = 2 · 10−2. For these values, ξfit is very low and can be neglected.
An example of a mesh obtained with these values is showed too. In the same way,
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Figure 2.14: Results for the static mesh configuration using a dt = 2 ·10−5 and for
different mesh sizes h. Top: Evolution of Sϕ . Middle: evolution of ∆Ssolver, Ks
is the median value for each h. Bottom: evolution of ∆Sreinit, Kr is the median
value for each h.
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Figure 2.15: Results for the static mesh configuration. values of ξsolver and ξreinit

for different values of the time step and the mesh size.
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Figure 2.16: ξsolver, ξreinit and ξtransport for different mesh sizes h and time steps
dt for the IMA case
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Mesh sample
Inital step h=0.01

Figure 2.17: ξsolver and ξadapt for different mesh sizes h and time steps dt for the
NFJA case with δv = 10−10 and δp = 2 · 10−2

74



CHAPTER 2. DISCUSSION OF THE FE-LS METHODOLOGY

Mesh sample
Initial step h=0.01

Figure 2.18: ξsolver and ξadapt for different mesh sizes h and time steps dt for the
NFJA case with δv = 10−10 and δp = 2 · 10−3
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Figure 2.18 shows another example for the values of δv = 10−10 and δp = 2 · 10−3.
It is interesting to see that for the latter, ξadapt can be neglected and the remaining
errors are given by the value of ξsolver and additionally, ξsolver is lower than the
one from figure 2.17. Of course, the curvature of the interface is better preserved
when δp is low but the mesh obtained with such values is nearly degenerated.
Results show that the FEM solver is more sensitive to the small changes in the
description of the surface than to the quality of the elements, and that it will be
actually more accurate to maintain the interface as it is after fitting than to try
to improve the mesh quality field with remeshing operations.

Figure 2.19 shows the value of ξtotal = ∑
ξi for the IMA method and for

the NFJA with the two sets of constants used in Figures 2.17 and 2.18. The
smallest ξtotal was found for the NFJA approach with the values δv = 10−10 and
δp = 2 · 10−3. Even though the ξsolver was very high for the NFJA in comparison
to the one given by the IMA, results show that with the right choice for δv and δp

for the NFJA approach, one can be more accurate on the prediction of the evo-
lution of interfaces when using Eq. 2.11 and a body-fitted mesh in a FEM context.

2.5.3 T-Junction case
The presence of triple points is needed in the description of 2D polycrystals,
they represent the junction between 3 grains presenting different properties. The
T-junction problem is an initially unstable configuration of three interfaces (for
three grains at a 90°-90°-180° initial configuration) that converge to a 120°-120°-
120° quasi steady-state equilibrium as the Mγ term is assumed here isotropic.
The equilibrium of the triple point is given by the Herring’s equation [192]. It will
bring the system to a state where the surface energy is minimized and the three
lines will arrange themselves in a stable 120°-120°-120° (Young’s Equilibrium)
configuration evolving after with a homogeneous velocity given by the migration
of the curved interfaces and the Neumann boundary conditions [129] (see figure
2.20). Curved Interfaces around the junction will maintain its shape and make
the triple point move at a constant velocity until they collapse with another mul-
tiple point within the microstructure.

Comparing the results from the T-junction test and the square-shrinkage is
much more difficult because there is no analytic solution for these problems con-
cerning the way to reach the quasi steady-state. However, as illustrated in the
precedent study over the circle-shrinkage test, convergence is obtained when the
mesh size decreased. This result will be used to obtain a reference case for the T-
junction problem. Several computations were turned with different static meshes.
Figure 2.21 shows the interfaces ϕ1−ϕ2 and ϕ1−ϕ3 after t=0.35 for the T-Junction
configuration. At this time, the quasi steady-state is ensured. As convergence
is obtained when the mesh size decreases, the simulation with 500000 elements
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(c)

(b)

(a)

Figure 2.19: ξtotal = ∑
ξi for different mesh sizes h and time steps dt (a) ξtotal for

the IMA method. (b) ξtotal for the NFJA with δv = 10−10 and δp = 2 · 10−2. (c)
ξtotal for the NFJA with δv = 10−10 and δp = 2 · 10−3.
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(last one from figure 2.21) will be used as reference.

φ1

φ2

φ3

φ1

φ2

φ3

120
°

120°

12
0°

vcte

Figure 2.20: T-Junction Case. left: initial state, right: steady state.

250000 Elements
500000 Elements

125000 Elements

31250   Elements
62500   Elements

15625   Elements

Figure 2.21: T-Junction Case: static Mesh, convergence analysis. Only the in-
terfaces between ϕ1−ϕ2 and ϕ1−ϕ3 are shown (see figure 2.20 for the notation).

Figure 2.22 shows the ϕ1 phase for the reference model and the geometric dif-
ference of the same phase obtained with the other models (the IMA and NFJA)
at time t= 0.35. Compared to the reference model, the error in the area of the ϕ1
phase is ξIMA = 10.1% and ξNF JA = 15.4%. Hence, the IMA approach is clearly
more accurate. An acceleration of the multiple point was found for the NFJA
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Figure 2.22: ϕ1 phase for the reference model and the geometric difference of the
same phase obtained with the other models (the IMA and NFJA) at time t=
0.35. values for the area of each section is given.

Finally, during the simulation campaign, some differences on the capabilities
of the algorithms were observed. Some limits were observed when using the IMA
method: the minimum number of refined elements at each side of the interface
is around 4. This number of elements ensures that the numeric diffusion ob-
tained at the remeshing step over the metric field is not too important, hence the
remeshing success. Otherwise, as illustrated in Fig. 2.23 the remeshing may fail
after some increments. On the other hand, the NFJA method is able to remesh
successfully every time step, as some of the new nodes are fitted to the interface
hence the metric field can not be numerically diffused there.

2.5.4 Square-Shrinkage case
The square shrinkage test makes it possible to observe the behavior of each model
when four triple points converge to the same position. The instability of this con-
figuration suggests that the 4 triple points should become 2 triple points and not
1 quadruple point. Figure 2.24 shows the normal behavior of this test case: ini-
tially there are 5 phases where the central phase ϕ1 represents a perfect square;
then, each one of the triple points reaches a quasi steady-state similar to the one
obtained for the T-Junction problem. At this stage, each one of the interfaces of
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t=0.000

t=0.005

t=0.010

NFJA 2h IMA 2h IMA 4h

Figure 2.23: T-Junction Case. Numeric diffusion of the metric field used by the
mesh adaptation algorithm for the IMA case. The needed thickness of refined
elements of each side of the interface is around 4 (4 elements) for the IMA model
and around 2 for the NFJA.

the phase represented by ϕ1 is shrinking at a constant rate. Finally, ϕ1 disap-
pears and a new interface is created given the absolute numerical instability of the
quadruple point. Here two possible configurations are possible for the creation of
the new interface (ϕ2−ϕ4 or ϕ3−ϕ5). The choice of the created interface should
be given by the difference in the surface energy of each one of the possibilities,
the one with the lowest energy is the one that should be created, however, in our
study isotropic grain boundary properties are considered, and either of the two
decompositions is valid.

In the context of a FE level-set method, it is almost impossible to obtain a
perfectly symmetric quadruple junction that will maintain its stability: a sym-
metric (four right angles) quadruple junction is a meta-stable state that will
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decompose in a lower energy state, i.e. two triple junctions, with an infinitesimal
perturbation δ. As mentioned in section 2.4, the LS method depends on the FE
mesh discretization, convergence stop criterion of the FE solver, the interpolation
degree and the approximations made such as the application of Eq. (1) or the
reinitializing method used. Finally, by applying this method to the considered
geometry (square shrinkage), the angles between the 4 interfaces at the moment
when the quadruple point appears will be of 90 + Θ where Θ >> δ, triggering its
decomposition. In fact, It is actually highly probable that the quadruple point
never really appears (two very close triple points appearing instead).

φ1

φ4

φ3φ2

φ5

φ1

φ4

φ3φ2

φ5

φ4

φ3φ2

φ5

φ4

φ3φ2

φ5

Figure 2.24: Square-Shrinkage. left: initial state, center: square shrinking, right:
the square disappears and a new interface is made (ϕ2 − ϕ4 or ϕ3 − ϕ5).

Similarly to the T-Junction test case, a convergence analysis was made using
static meshes in order to obtain the reference evolution for this configuration.
Convergence was obtained after using a static mesh with 1 million elements. our
reference will employ a static mesh with 2 million elements.

Figure 2.25 shows the comparison of the NFJA and IMA methods to the ref-
erence after t=0.05. The error in the area of the ϕ1 phase was ErrNF JA = 38.4%
and ErrIMA = 16.3%. Once again an acceleration on the evolution of the NFJA
was observed. Another difference from the reference model was that both NFJA
and IMA methods created interface ϕ3 − ϕ5 while the reference model created
ϕ2 − ϕ4 (See Figure 2.26).
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NJFA
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Figure 2.25: Square-Shrinkage. Comparison of the ϕ1 phase at t=0.05 [s].

NFJA

Reference

IMA

Figure 2.26: Square-Shrinkage. Comparison of the interfaces after the disappear-
ance of the ϕ1 phase. t=0.1.

2.5.5 2D-10000 grains case
Here, the New Fitting and Joining Algorithm is also compared with a more classic
method of mesh adaptation where the interfaces are captured with a non-conform
local refined mesh as detailed in section 2.4.1 and described as the Isotropic Mesh
Adaptation (IMA) technique instead of tracked with a body-fitted mesh adap-
tation algorithm. Both cases will be compared to a reference case, which is the
convergence of the evolution of the mean grain size (equivalent radius in num-
ber) when using a homogeneous refined static mesh. When a homogeneous static
mesh is considered transport errors are not present. In addition, if the mesh
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zoom section

Figure 2.27: Initial state of the microstructure composed of 10000 grains build
thanks to a Laguerre-Voronoï algorithm.

size is small, errors on the reinitialization procedure become less important as
the distance functions are better described and finally, vacuum regions become
smaller. Hence the case with the homogeneous refined static mesh will be treated
as the better solution in terms of precision and errors of the two other cases will
be computed thanks to its evolution.

The initial microstructure considered is composed of 10000 grains generated
using the concept of Laguerre-Voronoi cells [55, 56, 57]. Fig. 2.27 illustrates
the initial state for a square domain with surface A = 10[mm2] and a grain
size lognormal distribution with a mean value of m = 0.017[mm] and standard
deviation σ = 0.006[mm]. The values for M and γ are chosen as representa-
tive of a 304L stainless steel at 1050◦ Celsius (with M = M0 ∗ e−Q/RT where
M0 is a constant M0 = 1.56e11[mm4/Js], Q is the thermal activation energy
Q = 2.8 · 105[J/mol], R is the ideal gas constant, T is the absolute temperature
T=1323 [K] and γ = 6 · 10−7[J/mm2]). The isothermal treatment is simulated
during 3600 seconds.

Figure 2.28 describes the evolution of the mean grain size (calculated in num-
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Figure 2.28: Convergence analysis when a homogeneous static mesh is considered:
evolution of the mean grain size of the microstructure

ber) when different static meshes are considered. We assume that convergence is
reached when the accumulated L2 error in time remains lower than 5% at 3600s.
Hence, the simulation employing a mesh size h = 0.001[mm] will be considered
as the reference case in the following.

Figure 2.29 shows the evolution of each case, the one using the IMA technique
for the capturing of the interfaces and the New Fitting and Joining Algorithm
(NFJA). Note that two curves are listed for the NFJA method, one (the NFJA)
corresponds to a simulation which remeshing is done by employing the same met-
ric field as in the IMA case, the other (NFJA Improved) corresponds to another
where the metric field had been improved as shown in Fig. 2.23.

Figure 2.30 shows the comparison of the grain size distributions weighted by
surface of each model (IMA, NFJA and Static Mesh) and for the reference case
with a mesh size of h = 0.004, for the times t = 1800 and t = 3600. Figure 2.31
shows the L2-Error over these grain size distributions for multiple mesh sizes
h = [0.01, 0.008, 0.006, 0.004, 0.002].

Finally, a summary of these results can be made in a single chart: Figure 2.32
shows the evolution of the L2 Error in function of the Total CPU-time at the end
of the simulation for every case. These charts show that for a precision greater
than 5% on the prediction of the mean grain size and greater than 10% on the
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(a)

(b)

(c)

Figure 2.29: Results for each case: (a) using a classic meshing adaptation (IMA)
technique, (b) using the New Fitting and Joining Algorithm (NFJA), (c) using the
NFJA method with the improvements on the metric field explained in Fig. 2.23
and the reference curve. Left: evolution of the mean grain size and right: CPU-
time of simulations, the reference case is not plotted.
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(a)

(b)

Figure 2.30: Grain size distributions weighted by surface for the different models
and for a mesh size h = 0.004. (a) state at time t = 1800, (b) state at time
t = 3600
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(a)

(b)

Figure 2.31: L2-Error over the grain size distributions vs the mesh size h. (a)
state at time t = 1800, (b) state at time t = 3600
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prediction of the grain size distributions the fastest method is the one using a
static mesh, meaning that the procedure of remeshing regardless which one we
use seems not to give any advantage in terms of CPU-time for the considered
configuration.

2.6 Discussion and conclusions
Figure 2.29 shows that the behavior of the CPU-time for each of the simulation
is not linear, this is due to the fact that the number of grains is also changing
during the simulation: the fewer grains there are, the smaller the zone needed
to maintain with a refined mesh and the smaller the time of computation by
increment.

Figure 2.32(a) and (b) illustrate that for IMA and the NFJA methods the
accuracy range is wider than for the one using a static mesh. CPU-time for both
cases (IMA and NFJA) are very near, however, they represent very different pro-
cesses. The time needed to remesh with the NFJA for a fixed number of elements
is higher because the fitting process adds an extra amount of computational work.
On the other hand, some of our observations showed that the NFJA needed fewer
mesh elements to properly define the interface even if the asked metric field was
the same. Thus the proposed new front-tracking approach appears already as
competitive compared to the existing LS front-capturing approach used in the
state of the art in the context of unstructured FE mesh [7, 6, 143, 169]. How-
ever, when comparing the CPU-time obtained for the simulations using a static
mesh, every test (except for the one with h = 0.002) turn out to have a lower
CPU-time than for the corresponding IMA and NFJA approaches. This result
in addition to the fact that the error ranges are close, take us to conclude that
the remeshing process (IMA and NFJA) does not reduce the computation time
of a 2D few-thousand multidomain simulation in context of the proposed recent
algorithm (diffusive formulation, coloring/recoloring algorithms, optimized direct
reinitialization and treatment at multiple junctions).

Figures 2.30, 2.31 and 2.32(b) show that in one hand the IMA case behaves
better in terms of accuracy on the prediction of the grain size distributions con-
trary to 2.32(a) where the NFJA case predicts better the mean grain size. Of
course, the grain size distribution gives a better description of the global state of
the polycrystal hence we conclude that the IMA approach is more accurate for a
fixed mesh size. On the other hand, if comparing the CPU-time in either 2.32(a)
or (b) the computational cost needed for the IMA case is always higher than for
the NFJA case, but the error given by the NFJA remains too important (even
for the smallest mesh size h, last point from right to left) to consider it at the
optimal candidate for a multidomain simulation. In fact, comparing the grain
size distributions (see Figure 2.30) reveals that the kinetics of the NFJA method
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(a)

(b)

Figure 2.32: L2 Error vs the Total CPU-time at the end of the simulation. Each
point of the same curve represent a simulation with a different mesh size (from
left to right: h = [0.01, 0.008, 0.006, 0.004, 0.002]) . (a) L2-Error over the mean
grain size, (a) L2-Error over the grain size distributions
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is clearly different from the one using an implicit description of the interfaces
(IMA or Static Mesh) being faster on the evolution of the small grains and slower
on the evolution of the big ones. This conclusion seems coherent with the results
described for the T-junction and square-shrinkage cases where the kinetics of the
triple junctions was systematically overestimated by the NJFA approach compar-
atively to others. If this weakness is automatically linked to the mesh topological
operations realized at the multiple junctions, to solve is not straightforward and
constitutes a perspective of this new approach.

Indeed, this approach remains clearly of interest as further improvements
could be made with the use of the NFJA that could result in a suitable method
to model multidomain problems with a diminution of the CPU-time and of the
error that could not be possible to make by employing a more classical approach.
Indeed, with this approach, geometrical data such as interface normal and curva-
tures can be computed directly from the body-fitted mesh using the position of
the interface nodes only, instead of relying on the costly and inaccurate approxi-
mation of the LS field derivatives which could lead to the direct use of Eq. 2.10 in
a stabilized framework, or even lead to the use of a Lagrangian scheme, in which
grain boundary kinetics is simulated via the direct movement of the boundary
nodes, and not through the resolution of a transport equation. These develop-
ments are in fact the topic of discussion in chapters 3, 4, 5 and 6 of the present
manuscript.
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Résumé en Français du Chapitre 2
Ce chapitre est dédié à l’introduction d’une nouvelle stratégie de remaillage ex-
plicite. Sur la première partie de ce chapitre, deux stratégies de remaillage ap-
pliquées aux interfaces sont détaillées: maillage implicite et maillage explicite
des interfaces. Un maillage implicite requiert une discrétisation assez dense aux
environs des interfaces pour atteindre une représentation précise des discontinu-
ités physiques, alors qu’un maillage explicite n’a pas de besoin spécifique pour
bien définir les interfaces des grains sur une microstructure. Dans ce sens, une
méthode a été proposé par Shakoor et al. permettant d’obtenir une discrétisa-
tion explicite des interfaces sur domaines initialement discrétisés implicitement à
l’aide de l’approche LS. En principe, l’utilisation de cette méthode pourrait ré-
duire la densité des maillages utilisés par la méthode LS sans réduire la précision
sur la définition des interfaces, et donc, autoriser une meilleure performance des
simulations des évolutions microstructurales. Elle n’est cependant pas directe-
ment applicable au contexte des jonctions multiples.

Ainsi, une extension de cette méthodologie a été développée et est présen-
tée. Différents cas tests sont présentés pour évaluer les différentes stratégies
disponibles: maillages implicites adaptés avec des éléments isotropes (IMA) aux
interfaces, maillages explicites statiques raffinés sur tout le domaine (sans re-
maillage aux interfaces) (SM), et nouveaux maillages explicites (NFJA) avec dif-
férentes configurations de densité.

Les résultats montrent qu’en 2D la méthode SM présente les meilleurs ré-
sultats en matière de performance et de précision, suivi par la méthode NFJA.
Toutefois, ces tests ont été réalisés sur un environnement favorable à la méthode
implicite et plusieurs améliorations pourraient être réalisées dans le contexte du
modèle NFJA: le calcul des propriétés géométriques aux interfaces pourrait être
effectué sur les interfaces uniquement, au lieu d’utiliser des gradients des fonctions
LS. Ceci pourrait conduire à l’utilisation de l’équation de transport (Eq. 2.1) di-
rectement, ou même, le développement d’un modèle Lagrangien des mouvements
des interfaces, où le mouvement des noeuds ”fittés” du maillage représenterait les
mouvements des joints de grains.
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Chapter 3

A novel highly efficient
Lagrangian model

In this chapter, a new method for the simulation of evolving multi-domains prob-
lems will be presented. The method is inspired by the front-tracking approaches
where only the interfaces between domains are discretized. The presented method
maintains the discretization of the interior of the domains using an evolving tri-
angular mesh (valid for a FE study) and treats the topological events such as the
disappearance of domains or the creation of interfaces by means of selective local
remeshing operations. Geometric properties are only computed on the interfaces
using local spline reconstructions and interfaces are moved using a Lagrangian
approach ensuring at all times the validity of the mesh.

Accuracy and computational cost of this method will be evaluated in the con-
text of microstructural evolutions, specifically for the GG mechanism and it will
be compared to a more classical front capturing approach based on a LS descrip-
tion already detailed in chapters 1 and 2.

This chapter has been published in [20].
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3.1 Introduction
As introduced in chapter 1, Multiple numerical models have been developed
to simulate multidomain problems. In the context of the FE Method, the LS
method is a powerful tool capable of accurately handle large interface deforma-
tions and topological events with relative ease. The FE-LS numerical framework
has been successfully applied to predict the microstructural evolution of a poly-
crystalline material subjected to thermal or thermomechanical processes, where
phenomenons as GG [5] and ReX could appear [6, 7, 142, 145]. However, the
time needed to perform such simulations could go from some minutes for a do-
main with hundreds of grains in 2D, to many days (even weeks) for a simulation
involving hundreds of thousands of grains in 3D.

In section 1.3.5 it was discussed that some optimizations could be applied to
the FE-LS method with the objective of reducing its computational cost (hence
the CPU-Time) without reducing its accurateness [8, 19]. However, these op-
timizations have a certain limit imposed by the nature of the FE method (dis-
cretization of the domain, interpolation degree and resolution) and the LS method
(reinitialization and treatment of vacuum regions).

Another numerical approach to simulate multidomain problems is the Voronoi
implicit interface method (VIIM) introduced in [193] and further discussed in
[194] which uses a single unsigned level-set and a Voronoi approach to solve the
inconsistencies at the interface produced after affecting the level set field with
a given velocity (by solving the necessary equations of the related phenomena),
over a fixed Eulerian mesh.

Alternatively to the FE-LS method, models based on the Lagrangian displace-
ment of interfaces can be used as in the context of vertex approaches [14, 15,
16, 17, 18] or front-tracking methodology [9, 10, 11, 12, 13]. These methods ex-
plicitly describe the interfaces in terms of vertices. Each increment, the velocity
of the interfaces is computed and applied. The application of these strategies is
less demanding than for the FE-LS method, because the dimension of the dis-
cretization and the computation is reduced by one dimension (only interfaces
are discretized, while the grain interior is not). Nonetheless, difficulties of these
approaches remain the complexity of handling all the possible topological events,
such as the disappearance and appearance of new interfaces and domains or the
contact between crossing interfaces. Another issue of this method is that it is not
possible to take into account in the computations, physical mechanisms occurring
inside the grains as there is not a discretization inside of them.

In this paper, a new method for the simulation of evolving microstructures
by curvature flow is presented. The method is inspired by the vertex approaches
in the sense that geometrical properties are only computed at the interfaces and
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the migration of the grain boundaries is defined thanks to a Lagrangian scheme.
However, The presented method maintains the discretization of the bulk of the
grains using an evolving triangular mesh, hence the discretization will remain
valid for a FE computation if needed (like in context of crystal plasticity or dy-
namic recrystallization computations). The treatment of the topological events
such as the disappearance of domains or the creation of interfaces can be han-
dled by means of selective local remeshing operations performed on the triangular
mesh.

The proposed numerical approach: TOpological REmeshing in lAgrangian
framework for Large interface MOTION (ToRealMotion, hereafter TRM) will be
compared to the FE-LS approach using a classical front capturing LS-FE frame-
work [5, 167, 168, 169]. These comparisons will be based on specific test cases
for 2D-GG, using the same approach and results presented in chapter 2. Given
the application of the new model in this chapter, the term domain will reference
an individual grain in a microstructure, however, the new TRM approach can be
extended to any massively multi-domain problem immersed in a FE mesh.
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3.2 Numerical method

3.2.1 Data structure: points, lines and surfaces
In the present numerical method, multiple data structures have to be defined.
These data structures are organized following the geometric entity that they rep-
resent. This way, three classes of geometric entities are defined: Points, Lines
and Surfaces. Each one of these classes of entities contains its own data structure
with a set of nodes and elements (elements only in the case of Surfaces) that are
used for its discretization on the triangular mesh.

Inspired by the classification of low-degree manifolds [195], a degree is at-
tributed to each node of the FE mesh. This degree depends on the class of
the geometrical entity that they locally represent: Nodes representing a point
(P-Nodes) have a degree equal to 0, Nodes representing a line (L-Nodes) have
a degree equal to 1 and Nodes representing a surface (S-Nodes) have a degree of 2.
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Figure 3.1: discrete geometric connectivity immersed in a triangular mesh. a)
Mesh containing 21 Nodes: 3 P-Nodes (red), 5 L-Nodes (blue) and 13 S-Nodes
(yellow). b) structure of line L1, c) structure of line L2, d) structure of point P1.

The simplest data structure is given for a point, this geometric entity is rep-
resented by one P-Node and a set of local geometric connections (at least 3
connections). These connections refer to the current linking of this point to other
points or other lines as shown in Fig. 3.1 (a) and (d), here the point P1 is con-
nected to the point P2 and to two lines L1 and L2 containing L-Nodes N2 and
N10 respectively. Note that in Fig. 3.1(a) even if point P2 is directly connected
to L-Node N10 by the mesh, this does not mean that there exists a geometric
connection between them, otherwise N10 could not be a L-Node but a P-Node
because it would have 3 geometric connections.
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Node N1

Connections
Type Entity Node

Point Connection P2 N21
Line Connection L1 N2
Line Connection L2 N10

Table 3.1: example of the data structure of point P1 from figure 3.1.

The data structure of geometric lines is a little more complex, a normal struc-
ture of a line consists of a set of L-Nodes (containing at least 1 L-Node) and 2
optional limit points. Additionally, we have chosen to maintain an order on each
line, beginning with an initial point, then the ordered set of L-Nodes and ending
with the final point. This choice was made to ease the approximation of the lines
by natural splines as it will be explained further. Figure 3.1(b) and (c) illustrate
two examples of lines: lines L1 and L2, where L1 is a typical line with two points
and 3 L-Nodes and L2 a line with only one point and 2 L-Nodes, each line can be
ordered either way, L1 from point P1 to P3 or inversely and L2 from P1 to L-Node
N15 or inversely. Moreover, note that the connection P1 to P2 do not represent
a line because there is not a L-Node between them. While P − P Connections
represent an interface as well as geometric lines, they will be treated differently
in the presented model. Tables 3.1 and 3.2 summarize an example of the data
structure of point P1 and line L1 from Fig. 3.1.

Initial point P1

Node set
local index Node

0 N2
1 N3
2 N4

Final point P3

Table 3.2: example of the data structure of line L1 from Fig. 3.1.

Finally, the data set of geometric surfaces contain a non empty set of elements,
a set of S-Nodes, a set of limit lines and a set of limit points. Here, the order
has been chosen not to be relevant, thus all sets are unordered. Figure 3.2(a)
shows the same discretization of Fig. 3.1(a) with additional element information
and Figures 3.2(b-d) show its decomposition in surfaces S1, S2 and S3. Table 3.3
presents an example of the data structure of Surface S2.
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Figure 3.2: discrete geometric connectivity immersed in a triangular mesh. a)
Mesh of Fig 3.1(a) with additional element information b) structure of surface
S1, c) structure of surface S2, d) structure of surface S3.

Element set
E15
E13
E16
E14
E17
E18
E24
E19
E25
E26

Node set
N11
N13
N12
N14

Point set
P1
P2
P3

Line set
L1

Table 3.3: example of the data structure of surface S2 from Fig. 3.2.

3.2.2 Preprocessor: LS-TRM interface and geometric re-
construction

Considering the importance and the capabilities of the LS method, we have con-
sidered it useful to develop an interface between this method and the presented
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model. This interface will treat any initial state described using one or multiple
LS fields to be used as an entry state on the TRM model. The interfaces will pro-
duce a body-fitted mesh and a set of nodal data representing the degree of each
node as explained at the beginning of section 3.2.1. Moreover, the body-fitted
mesh and the nodal degree data will be used on the reconstruction of the geomet-
ric entities presented also in section 3.2.1. The idea behind this reconstruction is
to allow the code to optimize operations such as the computation of geometrical
properties of the interface, which only needs to be performed on line entities for
the presented 2D model.

Body fitted mesh

Normally, when using the LS method, interfaces are described implicitly as the
zero iso-value of the considered LS fields [146, 6], each field is interpolated on
the FE mesh allowing to identify each grain as a sequence of implicit segments
(usually different from the edges of the mesh), as a consequence, the mesh used
to define the LS fields is not directly suitable for the TRM model. First, the
LS data set must be used to obtain a body fitted mesh, where the interpolated
interfacial segments are also represented by the edges of the mesh. This particu-
lar purpose can be addressed by the use of the remeshing technique presented in
chapter 2, where the works introduced in [184, 161] lead to the development of a
new remeshing procedure, able to produce vacuum-less body-fitted meshes, via a
fitting and joining algorithm (see chapter 2).

Figure 3.3 illustrates the behavior of the algorithm when performed on a typ-
ical multiple junction of three domains. Figure 3.3(b) clearly shows how all the
created nodes lie at the interface between two domains except for one, which is
at the multiple point between the three domains. This reconstruction is here
purely geometrical as its aim is to close vacuum regions around triple junctions
and not to give its exact position inside an element, as we have considered that
the accuracy of the definition of a multiple point should be defined by the ele-
ment size and not by its undefined location over one single element. Furthermore,
one could give weights to each intersection in order to place the triple point in
a more energetically stable position if necessary. However, for our TRM model
this is not relevant as this procedure only serves as a part of the pre-processor step.

Up to this point, the fitted mesh is sufficient for the TRM model, however, the
mesh is optionally adapted using local remeshing operations with the intention
of increasing its quality (which is very poor at the boundaries after the fitting see
3.3(b)), of course, these adaptations are done without disrupting the fitting of
the mesh. Fig. 3.3(c) shows the resulting body-fitted mesh after the adaptation
procedure.
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a) b) c)

Figure 3.3: Example of behaviour of the fitting and joining procedure presented
in [19] when performed over a triangular mesh with 3 LS fields interpolated
linearly, each color represents a phase. a) initial state, interfaces are implicitly
described, b) state after applying the fitting and joining algorithm, nodes appear
at the interface between 2 phases and at the multiple junction. Vacuum regions
disappear and all elements belong to one phase. c) Resulting mesh after the mesh
adaptation procedure introduced in chapter 2.

Nodal geometric tagging

Using a LS approach and a body-fitted mesh makes it possible to obtain the sur-
face nodes by looping over all the domain and extracting all the nodes for which
at least one of the LS fields is zero. However, this information is not sufficient.
Triple points need to be identified before one attempts to reconstruct the analog
data structure presented in section 3.2.1.

Once the body fitting mesh is obtained, a nodal tagging is performed. Each
node will be tagged regarding its geometric degree as explained at the beginning
of section 3.2.1. This is achieved by iterating over all the LS fields stored on a
node, if one of its LS fields is positive, this means that we are at the interior of a
phase and a degree equals to 2 (S-Node) must be attributed to that node. Then,
if two of the LS fields are equal to zero and the rest are negative, that node lies
on a line and a degree equals to 1 (L-Node) is given to it. Finally, if more than
2 level set fields are equal to 0 this node is a multiple point, hence obtaining at
the end a degree of 0 (P-Node). Fig. 3.4 shows an example of nodal geometric
tagging over the body fitted mesh obtained in Fig. 3.3.

Once the tagging is complete, the level set information is not necessary any
further, the interface is complete and the new data set (body-fitted mesh and
tagging) is ready to be sent to the TRM model for the geometric reconstruction.

Point reconstruction

The point reconstruction is always the first step of the geometrical reconstruction
process. Points are the entities that hold lines together and that allow the com-
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L-Node

S-Node

a) b)

Figure 3.4: Example of the nodal geometric tagging performed on a body fitted
mesh. a) considered topology and b) resulting nodal tagging.

putation of the apparent geometrical properties of the interface at P-Nodes. Each
node tagged as a P-Node will initiate the creation of a point entity, this node is
automatically attributed to the new created point. Concerning the connections
of the point (explained in section 3.2.1) As there are no lines nor points created
yet, connections will not be attributed on the creation process.

Once all points are created, point connections can be created. This is done
by iterating over all points and querying if their corresponding P-Node N0 is
connected to any P-Node N1 on the triangular mesh, if it is true, the point of
P-Node N0 will add N1 as a connection.

Lines reconstruction

Once all points are reconstructed, the line reconstruction is performed, section
3.2.1 shows that line entities maintain an ordered L-Node sequence. This order is
generated by performing a recursive algorithm on the tagged L-Nodes of the mesh.

If a node is connected to a multiple point in 2D, the latter will be considered
as the end or the beginning of the line (depending on the stage of the recursive
algorithm).

The reconstruction procedure initiates by defining a queue of L-Nodes to be
attributed, this queue corresponds at this stage as all tagged L-Nodes. The first
L-Node of the queue is considered as the initial node for the recursive algorithm
which will search for adjacent L-Nodes that still appear in the queue. The pro-
cedure is repeated recursively on the adjacent nodes till one of the neighbors is
tagged as a P-Node (which has a corresponding point already created). Each time
a node is treated, it is erased from the queue of L-Nodes available. Moreover, the
points found will be stored as members of the lines and they will be taken into
account for the calculations of the geometrical properties of the interface.
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Figure 3.5: Example of construction of a line in 2D. a) L-Node N0 is chosen
as the initial node of the recursive algorithm, each treated L-Node launches the
procedure on each adjacent L-Node not treated until it founds an adjacent P-
Node. Only some relevant elements are plotted. b) Local node patch of Node
N0, when treating N0, N1 initiates a recursive thread while N3 launches another.
c) Local node patch of node N5, the second thread launched by N3 is stopped by
the presence of P-Node N15.

For the example shown in Fig. 3.5(a), two lists of nodes are created by two
corresponding recursive threads, each thread is launched by the presence of a
L-Node in the local neighborhood of node N0 (see Fig. 3.5(b)) that still appear
on the queue. The recursion stops once one of the neighbor nodes is a P-Node as
in Fig. 3.5(c), where the coupled point P1 of the P-Node N4 is added to the list
as a final point. Two lists are then created, the first is composed by the L-Nodes
N1, N2, N4 and point P1 and the second by N3, N6, N5 and point P2. The line
will then be defined as the concatenation of the inverse first list, the initial node
N0 and the second list of L-Nodes, its initial point will be defined as the point
found by the first thread while its final point as the point found by the second
thread.

By performing this algorithm, each L-Node of the mesh is identified and af-
fected to a specific line having in account its relative position to other nodes on
the same line. This information will be used to choose a patch of nodes that will
serve as the support for an approximation/interpolation of the interface.

Once all lines are created, the missing connectivity of the point entities can be
created. This is done by iterating over all lines, creating a connection between its
initial/final point and the current line. Note that this is a dual link: lines store
the points that are attached to it and points store to which lines it is attached,
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this strategy enables to perform quick connection searches on both ends (points
and lines).

Surface reconstruction

Surface reconstruction was developed similarly to the line reconstruction algo-
rithm. Here, a queue containing all S-Nodes from the mesh is initially created,
then a recursive algorithm identifies S-Nodes and elements belonging to the same
domain while storing limit lines and limit points found.

Take for example the state presented in Fig. 3.6, a set of S-Nodes (yellow)
and a set of L-Nodes (blue) has been tagged and one line L1 (green) has been
identified by the process presented in section 3.2.2. Here two domains separated
by L1 need to be identified. Initially, the first S-Node of the queue is chosen to
initiate the recursive algorithm, this initial S-Node is inserted to a new (empty)
Surface S1 along with its element patch giving end to the first iteration. The
next iteration computes a new set GnewSN of S-Nodes to be added to S1, this set
of S-Nodes is composed by the set of nodes appearing on the element set of S1
(Elements(S1)), minus the set of nodes already inserted in S1 (Nodes(S1)):

ELTs = Elements(S1) (3.1)

where function Elements(S1) extract the elements present in surface S1
1.

GNE =
{

Nodes(Elti) ∀ Elti ∈ Elts
}

(3.2)

GSNE =
{

Ni/Ni ∈ GNE with Type(Ni) = SNode
}

(3.3)

where function Nodes(Elti) extract the nodes belonging to Elti
2, Type(Ni)

extracts the type of the node Ni (P-Node, L-Node or S-Node), GNE are the nodes
used to form the set of elements ELTs, and GSNE are the S-Nodes present in
GNE extracted with the expression Type(Ni) = SNode.

GnewSN = GSNE \Nodes(S1) (3.4)

the nodes in GnewSN are colored in white in each frame of Figure 3.6. Once
these nodes are computed, they are inserted in Surface S1 and extracted from the
queue.

1Function Elements(Entity) extracts the Elements present in Entity, where Entity can be
a surface or a node. When extracting the elements from a node N , the result will be the set of
elements surrounding N .

2Function Nodes(Entity) extracts the nodes present in Entity, where Entity can be a point,
a line, a surface or an element.
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e) f)

Elements
inserted

Elements
 inserted

Elements
already present

S-Nodes 
inserted

S-Nodes 
inserted

Initial node

Figure 3.6: Example of construction of a surface in 2D, L-Nodes - blue, S-Nodes
- yellow, Line L1 - green, elements in the queue - gray, elements attributed to
Surface S1 - orange. a) an Initial S-Node is chosen, b) the L-Node is inserted in
Surface S1 along with its element patch, c) and d) the new S-Nodes of the inserted
elements are also inserted to S1. Each new S-Node inserts its unattributed ele-
ments (those that do not belong to any surface) to S1. e) the first element having
a node belonging to line L1 inserts it to the limit lines of S1. f) the recursion
stops as there are not new S-Nodes to insert in the next iteration.

The set of nodes filtered Gother from GNE in Eq. 3.3 (Gother = GNE \GSNE)
are the nodes having a Type(Ni) = PNode or Type(Ni) = LNode, these nodes

104



CHAPTER 3. A NOVEL HIGHLY EFFICIENT LAGRANGIAN MODEL

are used to add their coupled geometric entity (line or point) to S1 as a limit
entity as explained in section 3.2.1.

The new set of S-Nodes GnewSN enables also to compute the new elements
to be inserted in S1: the set of elements GElt of their element patch that do not
belong already to S1:

GElt =
{

Elements(Ni) ∀ Ni ∈ GnewSN

}
\ Elements(S1). (3.5)

Finally, the recursion stops once the set GnewSN is void, meaning that there
are no more S-Nodes to treat for that surface/phase as in Fig. 3.6(f). Note that
the queue of S-Nodes is still not empty, hence the recursion restarts with the first
node of the queue (which necessary belongs to a new surface S2). This process is
repeated till the queue is empty.

Once all surfaces, lines and points are created, the preprocessing is complete.

3.2.3 Computation of geometrical properties: curvature
and normal

One of the objectives of the presented TRM method is to allow a more efficient
way to calculate some geometrical properties by looping only over the nodes be-
longing to the interface.

With the basis of the data structure presented in section 3.2.1 and the pre-
processing procedure presented in section 3.2.2, it is possible to approximate each
geometric line to the analog parametric curve given by its ordered list of nodes.
The choice of the mathematical approach for the approximation will be given
with the aim of the desired information (curvature and normal). Having this in
mind, one approach has been taken into account: Natural Parametric Splines
(NPS) [196] which allow capturing the local variations of normal and curvature
with a piece-wise polynomial of third degree.

Natural Parametric Splines

A spline is defined as a function constructed piece-wise which is totally con-
strained by applying certain conditions to the external limits of each sub-region.
The choice of the conditions will change the behavior of the parametric inter-
polation; in our case, we will limit our study to natural splines: a fitted surface
for which the continuity of the first and the second derivative is assured at every
node in addition to the conditions for the most outer nodes where the second
derivative is imposed to zero. In our algorithm, we have chosen to compute the
splines using each node of a given line as the geometrical support.
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The main difference of the NPS approach with other methods (for example a
moving least square (MLS) approach as in [197, 198]) is that the curvature and
the normal are calculated locally without over smoothing the interface, allowing
to capture the small variations of curvature from node to node with a relative
high precision. However, the solution over time for a velocity proportional to the
curvature could be unstable for high values of time step dt, but if dt is sufficiently
low, the interface should find a position that minimizes the surface energy at all
points (see Figure 3.7).

NPS approximation

ti

ti+1

Curves obtained by the

Figure 3.7: Parametric piece-wise curve of a NPS approximation. Local cur-
vatures are captured; The interface is capable to correct itself over time into a
smooth interface if dt is low.

The stability of the TRM model using natural parametric splines will be
discussed in section 3.4.2.

3.2.4 Selective remeshing operations: preserving topology
One of the main features of the presented TRM model is its remeshing proce-
dure. Section 3.2.1 presented the data structure employed by the TRM model,
this data structure needs to be maintained at all times to ensure all geometric
computations over the defined geometric entities. Of course, when a remeshing
procedure is performed, the mesh is changed and the sets defining each geometric
entity have to evolve to new valid sets. Therefore, the remeshing procedure must
take into account the local data structure of the nodes and elements involved in
each remeshing operation.

Local remeshing operations are generally employed by mesh adaptation tech-
niques in order to improve the local overall mesh quality Q of an element patch
computed over different criteria (shape, volume, mesh size...). Generally, the
element patch is replaced by another element patch with better quality. Cur-
rently, there are two ways of implementing a remeshing procedure: the first im-
plements a so called star-connection algorithm, which performs several attempts
of reconnecting a local subset of elements until its minimum quality criteria is
achieved [184]. The second uses the separate definition of local remeshing opera-
tions (vertex smoothing, node collapsing, edge splitting, edge swapping….) to be
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performed on the mesh, depending on its local requirements (edge size, element
shape…) [199, 200] allowing to have more control over the operations performed
on the mesh but penalizing the variety of solutions to a given triangulation and
in general, being more complex in terms of programming. We have opted for the
latter because our main interest is to have control over the local topology at a
given point, hence, the purpose of this section is to introduce some remeshing
operations along with their restrictions to some of the local geometries defined
on the triangular grid. Here the notion of mesh quality Q will be computed as
a factor of the shape and the size of the elements using the same approach as in
[184], however, it has to be noted that the selective remeshing procedure is not
only driven by the local overall mesh quality Q of an element patch but also by
the local topological degree of the nodes of the patch.

Selective node collapsing

Node collapsing is one of the most used algorithms when attempting to coarsen a
mesh. Even when using the star-connection algorithm, the majority of iterations
performed are equivalent to node collapses within an element patch. A Node
collapse is performed when two connected nodes are below a certain distance δc

the one from the other. The value of δc that triggers a node collapse is usually
a percentage of the local mesh size desired. Figure 3.8 illustrates the mechanism
of a node collapse performed to node N4 over node N1 (N1 collapses N4), here
elements E11 and E12 are deleted.

Figure 3.8: Example of node collapsing. a) initial state, elements to disappear
are colored green b) state after collapsing

In our TRM model, node collapse should be avoided when the operation can
not determinate to which geometric entity the remaining node will belong. To
do this, the operation is performed based on the topological degree hierarchy T
explained in section 3.2.1:
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T (N) = 0 ∀ N/Type(N) = PNode
T (N) = 1 ∀ N/Type(N) = LNode
T (N) = 2 ∀ N/Type(N) = SNode

where N is a given node and T (N) is the topological degree of N . Node
collapse is then allowed to be performed to Nj over Ni (Ni collapses Nj) if
T (Nj) ≥ T (Ni), meaning that P-Nodes can collapse all type of nodes, L-Nodes
can only collapse S-Nodes and L-Nodes, and S-Nodes can only collapse S-Nodes.
In all cases, the remaining node maintains its own degree and its own coupled
geometric entity.

Additionally, two more conditions have to be met when collapsing L-Nodes:
two connected L-Nodes can collapse if they belong to the same geometric line (see
figure 3.9) and if they are consecutive within the line (see figure 3.10). Similarly,
if a L-Node Nj connected to a P-Node Ni, Ni can collapse Nj if the coupled point
of Ni appears as a limit point on the coupled line of Nj and if they are consecutive
within the line.

Ni Nj

Collapsing 
zone of Ni

Figure 3.9: Node Collapsing. Some nodes are within the collapsing zone of Ni:
Two S-Nodes (yellow) will collapse, one L-Node (blue) cannot collapse and one
P-Node (red) cannot collapse. Ni cannot collapse P-Nodes (topological degree),
Ni can collapse L-Nodes but Nj does not belong to the same line.

Selective edge splitting

Contrary to node collapsing, edge splitting is often used on the procedure of re-
fining a mesh, it is performed by the insertion of a new node, the creation of
some new elements and the re-connection of the element patch involved after
the insertion. Similarly to the node collapse procedure, edge splitting is often
driven by the size of the edges, splitting all edges having a distance greater than
a predefined parameter δs. Figure 3.11 shows one example of an edge splitting
performed in the edge N2N10, the element patch involved before and after the
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Ni Na
Collapsing 
zone of Ni

Nb

Nc

Nd

Figure 3.10: Node Collapsing. Some nodes are within the collapsing zone of Ni:
four L-Nodes (blue) Na, Nb, Nc and Nd. Only Nodes Nb and Nc can collapse as
they are consecutive to Ni within the same line.

splitting is colored green.

N13

Figure 3.11: Example of edge splitting. a) initial state, the edge N2N10 will be
split, elements involved in the procedure are colored green b) state after splitting.

Edge splitting is allowed for every edge on the mesh on our TRM model
but having certain conditions: in order to maintain a given coherence on the
description of the geometric entities defined on the mesh, the inserted node has
to present a coherent type and to be added to the right geometric entity. Three
possible cases are considered:

• when splitting a connected P-P edge (an edge with two P-Nodes as vertices
where each point appear on the list of connections of the other point as pre-
sented in section 3.2.1) the inserted node Nnew will be of type Type(Nnew) =
LNode and a line must be created, the line will have the two points from
the two P-Nodes as limit points and one L-Node (Nnew) on its structure.
Nnew will be inserted at the center of the edge.
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• When splitting a P-L edge (an edge with one P-Node and one L-Nodes as
vertices) or a L-L edge (an edge with two L-Nodes as vertices) that are
connected3 on one geometric line, the inserted node Nnew will be of type
Type(Nnew) = LNode and will be inserted at its corresponding position on
the line data structure. Additionally, Nnew will be inserted at the midpoint4

of the parametric approximation of the line between its previous and next
nodes (L-Node or P-Node) on the line. An example of this case is shown
in Fig. 3.12

• For every other case, the inserted node Nnew will be of type Type(Nnew) =
SNode and will be inserted on the corresponding geometric surface at the
center of the edge.

Nnew

parametric 

Nprev

Nnext

Parametric approx

Nnext

Nprev

a) b)

Figure 3.12: Example of edge splitting of a L-L edge within a geometric line,
the connections within the geometric line are displayed green, the parametric
approximation of the line is displayed in cyan. a) initial state, the edge NprevNnext

will be split, b) state after splitting, Node Nnew is placed at the midpoint of the
parametric approximation of the line between nodes Nprev and Nnext

Selective edge swapping

Edge swapping is another remeshing operation that changes the connectivity of
the mesh but contrary to node collapsing and edge splitting, it does not insert nor
deletes a node. This operation is very useful when the mesh is subjected to large
displacements or shearing, as it allows to unblock very distorted meshes [172, 171].

In the presented TRM model, edge swapping is forbidden wherever it destroys
any boundary connection (This is for example if two L-Nodes belong to the same
line and are consecutive).

3Connected nodes do not mean that they share an element on the finite element mesh but
that they belong to the same line and are consecutive within the line, see Figures 3.9 and 3.10
for examples of non-connected nodes

4Here the midpoint corresponds to the scalar mean value of the parametric variable between
the next and previous node.
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Figure 3.13: Example of edge swapping. a) initial state, the edge N2N10 will swap,
elements involved in the procedure are colored green b) state after swapping

Selective vertex smoothing

Figure 3.14: Example of vertex smoothing. a) initial state, the node N4 will be
smoothed, elements involved in the procedure are colored green b) state after
smoothing

Vertex smoothing is the most simple remeshing operator, it consists in mov-
ing nodes to a location where the quality Q of the local patch is improved (usu-
ally taken as the patch barycenter). Figure 3.14 shows one example of a vertex
smoothing operation performed over node N4, the local patch involved in the op-
eration is colored green. This example illustrates how this simple operation can
dramatically improve the mesh quality shape of the elements involved.

Of course, vertex smoothing in our procedure is not allowed on nodes Ni with
a degree T (Ni) ≤ 2 as this procedure would change the position of points and
lines, reducing the precision of the upcoming geometric computations. A variant
of the vertex smoothing operator called selective vertex gliding will be introduced
further, to be performed on L-Nodes allowing to have a better discretization on
domain boundaries.
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Selective vertex gliding

a)

b)

Figure 3.15: Example of vertex gliding when performed on some of the L-Nodes
(blue) of a given line using its parametric approximation (cyan), a) initial state
and upcoming gliding (white arrows), b) final state after gliding.

Here a new operator is introduced in order to improve the discretization of
geometric lines. This operator “glides” L-Nodes over the parametric approxima-
tion of the line to the midpoint between its previous and next nodes (L-Node or
P-Node) on the line. The intention behind this operator is to allow nodes to be
equidistant on a line, reducing instabilities and ensuring the same precision over
each parametric segment. The choice of gliding each node using the midpoint,
instead of redistributing all nodes over the line at the same time enables to reduce
the possible flipping of some of the elements of the boundary in which case the
operation is discarded.

Figure 3.15 shows an example of vertex gliding when performed on some of
the L-Nodes (blue) of a given line using its parametric approximation (cyan).
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3.2.5 Lagrangian movement
Once a velocity has been computed on the mesh, whether it is issued from a geo-
metric property obtained with the help of the interface approximation explained
in section 3.2.3 or not, each node Ni of the mesh is allowed to be moved to a new
position r⃗i in a Lagrangian way using the velocity vector field v⃗ and a given time
step dt in a forward Euler scheme.

r⃗i = r⃗i
0 + v⃗i

0 · dt. (3.6)
where r⃗i

0 and v⃗i
0 are the position and velocity of the node Ni before its dis-

placement.

Mesh conformity (in a FE sense) must be ensured at all times in our TRM
model, this is why it is necessary to check every movement to avoid flipping on
the concerned element patch. Figure 3.16 shows one example of element flipping
on Element E4 when node N4 is moved to a location outside its element patch.

E2

E2

Figure 3.16: Example of element flipping, a) initial state, the displacement vector
of N4 v⃗ · dt lies outside the element patch. b) state after updating the position of
N4, element E4 has been flipped.

Even though this behavior is very rarely encountered by the proposed TRM
model with standard parameters, a very big dt or very small mesh sizes could
cause a more regular appearance of this mechanism. When a flipping is encoun-
tered by the TRM model, it responds by iteratively halving the magnitude |v⃗|
and checking if the movement still produces a flipping. When a valid configura-
tion is obtained the movement is saved and the algorithm continues to the next
node. Even if this procedure changes the behavior of the Lagrangian movement,
it allows not to damage the mesh while moving. Moreover, as the corrections
are made locally and for very few displacements, precision should not be highly
influenced.
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3.3 Grain growth modeling with the TRM model
As mentioned in chapter 1, the simulation of microstructural evolutions are given
by the addition of complex and different mechanisms as GG [5, 167, 201, 168, 169],
ReX [5, 154, 140, 146, 6, 7, 142] or ZP [98, 10, 11, 12]. Here we will consider
only GG in order to test and compare the TRM model to other more classical
approaches.

During grain growth the velocity v⃗ at every point on the interfaces can be
approximated by Eq. 1.5. In this chapter, isotropic conditions will be considered:
the mobility M is only dependent on the temperature and the GB energy γ is
constant.

In this section, two numerical models will be taken into account for the mod-
eling of GG by capillarity using Eq. 1.5, the first will use the implicit description
and evolution of grain boundaries by the resolution of PDEs over LS fields in
an FE context [140, 167, 168], and the other using the presented TRM model
composed by the presented formalisms: the data structure and preprocessor of
sections 3.2.1 and 3.2.2, the approach for the computation of geometric proper-
ties of section 3.2.3, the remeshing strategy of section 3.2.4 and the Lagrangian
description and evolution of grain boundaries of section 3.2.5.

3.3.1 Topologic remeshing and Lagrangian movement ap-
proach

Here the main procedure for the modeling of GG using the TRM model will be
presented, nonetheless, once again, the presented algorithm can be modified in
order to simulate other different multi-domain problems by changing the velocity
equation used in this context. Multiple topological changes on the polycrystal
structure ( grain disappearance and quadruple point dissociation) usually encoun-
tered on GG will be taken into account on the modeling algorithm.

Velocity computation and interface migration

After obtaining a valid data structure for the whole polycrystal topology using
the procedure explained in section 3.2.2 the model is ready to initiate the simu-
lation of the migration of GBs. Initially, the algorithm performs the calculation
of the local curvature κ and the local normal vector n⃗ with the help of the ap-
proximation by splines explained in section 3.2.3. These geometrical values can
be used on Eq. 1.5 to obtain a value for the local velocity vector v⃗ for every node
of the interface, i.e. for every L-Node in our structure.

Note that the velocity at multiple junctions (P-Nodes) can not be deduced
from Eq. 1.5 as the curvature and normal at these points can not be mathemati-
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cally computed. An alternative approach is needed: Model II of [14], where the
product κn⃗ is obtained from an approximation of the free energy equation of the
whole system in a vertex context.

Boundary conditions are also modeled through the use of Model II. We do
so by changing the status of every L-Node found in the domain boundary to a
P-Node. Then, every P-Node of the boundary creates a “virtual” connection (a
connection to take into account in Model II) to the two adjacent nodes also
belonging to the domain boundary. Finally, only the tangent5 component of the
velocity v⃗ obtained for these P-Nodes is used in the movement.

With the local velocity v⃗ obtained on the GB, it is possible to move the GB
network using the procedure explained in section 3.2.5 over every node at the
interface.

remeshing strategy

Till now, the steps explained in section 3.3.1 can be done iteratively to try to
obtain the general behavior of the GBM, however, after a few iterations, the mesh
could get stained as only the nodes of the interfaces are moving (the element flip-
ping prevention will eventually discard all displacements). Hence there is a need
for a general remeshing strategy that improves the mesh quality and prevents
a mesh stagnation to happen. This remeshing strategy not only has to change
the mesh structure of S-Nodes, but also L-Nodes and P-Nodes. For this, all the
selective remeshing operators presented in section 3.2.4 will be used:

Node collapse and edge splitting: edge size control

If we consider for example a grain shrinking, interfaces (lines) given for that grain
will decrease their length until they completely disappear, nodes (L-Nodes and
P-Nodes) on the interface need to be gradually remeshed (collapsed) in order to
allow the interface length diminution. Consider now the opposite case, where a
grain is growing, some interfaces of that grain are going to increase their length
and in order to maintain a certain accuracy on its approximation, it will be
needed to insert some nodes in them. This operation can be made via the edge
splitting remeshing operation performed on an edge of the line. Now, not only
interfaces need to be remeshed, also volumes are shrinking and expanding, hence
some remeshing operations are needed within the grains too. Node collapsing and
edge splitting will be also available on these regions to control the size of the edges.

5In this context, the tangent component refers to the tangent of the domain limits and not
to the tangent of the GB intersecting the domain boundaries.
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A global node collapse strategy is performed over all nodes driven by a col-
lapsing distance field δc which we have chosen to be dependent on the degree of
the nodes involved on the collapsing. Note that when a node collapsing is per-
formed on one node Ni, this node will query all its neighbors nodes Nj for their
distance dij to Ni (|NiNj|), if this distance dij > δc(Ni, Nj) and the collapsing is
able to be done (see conditions in section 3.2.4) the operation is performed. In
our model we have chosen to make some relations for the values of δc:


δc(Ni, Nj) = dmin ∀ Ni / Type(Ni) = PNode
δc(Ni, Nj) = dmin ∀ (Ni, Nj) / Type(Ni) = LNode, Type(Nj) = SNode

δc(Ni, Nj) = 3dmin ∀ (Ni, Nj) / Type(Ni) = LNode, Type(Nj) = LNode
δc(Ni, Nj) = 6dmin ∀ (Ni, Nj) / Type(Ni) = SNode, Type(Nj) = SNode


(3.7)

where dmin is a user defined parameter defining the global minimum edge size.
The chosen relative values allow to maintain the minimum length of the edges
depending on where it is located in the geometrical structure, i.e. the minimum
allowed length of edges composed by only S-Nodes will be 2 times larger than for
edges composed by only L-Nodes, enabling a denser discretization at the domain
boundaries.

A global edge splitting strategy has also been implemented, driven by a split-
ting coefficient δs defined on the topological degree of the nodes Ni and Nj of the
edge:



δs(Ni, Nj) = dmax ∀ (Ni, Nj) / Type(Ni) = PNode, Type(Nj) = PNode
δs(Ni, Nj) = dmax ∀ (Ni, Nj) / Type(Ni) = PNode, Type(Nj) = LNode

δs(Ni, Nj) = 3dmax/2 ∀ (Ni, Nj) / Type(Ni) = PNode, Type(Nj) = SNode
δs(Ni, Nj) = dmax ∀ (Ni, Nj) / Type(Ni) = LNode, Type(Nj) = LNode

δs(Ni, Nj) = 3dmax/2 ∀ (Ni, Nj) / Type(Ni) = LNode, Type(Nj) = SNode
δs(Ni, Nj) = 3dmax ∀ (Ni, Nj) / Type(Ni) = SNode, Type(Nj) = SNode


(3.8)

where dmax is also a user defined parameter, defining the maximum distance
between nodes on the edges of the interfaces.

Finally, a global relation between dmin and dmax has been taken into account
as htrm = dmin = dmax/6 in order to pilot the mesh size at the interfaces with a
single parameter htrm, being the minimum distance between nodes at the interface
in the tangent direction.

Vertex smoothing, vertex sliding and edge swapping: shape quality
control

Shape quality is not very important for the approximation of interfaces, however,
it is important for their movement as the flatter the elements of the interface in
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their normal direction, the higher the risk of stagnation (see Fig. 3.16). Vertex
smoothing, vertex sliding and edge swapping are performed to address this prob-
lem: a global vertex smoothing procedure is first performed on every S-Node of
the mesh in order to homogenize the mesh triangulation, then, vertex sliding is
performed on the L-Nodes of the mesh and finally, a global edge swapping oper-
ator is performed for all elements with a shape quality Qs < qs where qs is a user
defined parameter, the operation is performed over the edges of the elements one
at a time, checking if the quality Qmean of the element patch of that edge (see
figure 3.13) is improved, if it is, the operation is performed and the algorithm
continues to the next edge.

The final remeshing algorithm performed in our TRM model can be summa-
rized as:

Algorithm 3 TRM Remeshing algorithm [20]
for all Nodes : Ni do

for all Neighbors of Ni : Nj do
if δc(Ni, Nj) < |NiNj| then

selective node collapse : Nj → Ni

for all S-Nodes : SNi do
selective vertex smoothing : SNi

for all L-Nodes : LNi do
selective vertex gliding : LNi

for all Edges : {Ni, Nj}j>i do
if δs(Ni, Nj) > |NiNj| then

selective edge splitting : Ni, Nj

for all Elements with Qs < qs : Ei do
for all Edges of Ei: {Nj, Nk}k>j do

if quality Qmean(Nj, Nk) will improve by swapping then
selective edge swapping : {Nj, Nk}

Grain Disappearance

Grain disappearance is a product of multiple topological changes on the poly-
crystal structure where complete interfaces from a grain successively collapse into
multiple junctions, eventually reducing the volume of the grain to a single point.
In the presented TRM model, this topological event is automatically handled by
the node collapsing strategy of the remeshing algorithm, note that P-Nodes have
a certain predominance over all other types of nodes when using the selective
node collapsing algorithm of section 3.2.4, meaning that always when a phase
disappears a point of its interface will remain at the moment of the event.
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Interface (Line) creation

At the end of a grain disappearance event, it is highly possible that a multiple
junction with more than 3 connected interfaces appears. This configuration is
highly unstable in our physical context as a lower energy state can be obtained
by creating new interfaces and redistributing the multiple junction in several
triple junctions (multiple junction with 3 connected interfaces) [19]. In the case
of anisotropic GB properties, the decomposition procedure is as follows: first, the
decomposition procedure can not be performed arbitrarily, an order is imposed
by the values of the surface energy of interfaces and their geometrical configu-
ration. Consider the state presented in Fig. 3.17 (a) and (b) with a multiple
junction of 4 phases (ϕ1, ϕ2, ϕ3, ϕ4) with anisotropic GB properties, here the
local energy state depends on the energy values, the length and the different an-
gles between interfaces (α1, α2, α3, α4). Here the structure decomposition can
occur in 2 different ways: Figure 3.17 (c) and (d) show two examples of decom-
position of the quadruple junction into 2 triple junctions with different energy
states. It is clear that only one of these states (the one with the lowest energy
state) can occur even if both reduce the local energy state of the quadruple junc-
tion shown in Fig. 3.17 (b). The determination of the right decomposition when
using anisotropic properties is a complex procedure because, in addition to the
multiple possibilities, the values of the surface energy of every interface depend
on multiple local microstructural variables [143]. This will be discussed further
in a future chapter focused on the simulation of microstructural evolutions with
anisotropic properties using the TRM model.

When using isotropic GB conditions, the decomposition is only dependent
on the angles between interfaces, as the lowest energy state can be obtained by
the separation of the two interfaces presenting the lowest angle between them.
An example of decomposition of a quadruple point is shown in Fig. 3.18, the
decomposition is done by a partial reconstruction of the element patch surround-
ing the multiple point. Note that this remeshing operation is different from all
operations presented in section 3.2.4. In fact, this operation is not accessible by
a reconnection procedure of the star-connection algorithm of [184]. It consists on
the splitting of a node of the mesh and a special mesh reconnection which does
not erase the preexistent connections, note that all the edges from the previous
mesh (Fig. 3.18(a)), still exist in the new mesh (Fig. 3.18(b)) plus three additional
edges connected to the new node.

The new P-Node is located along the line determined by the angle α4/2 mea-
sured from one of the two separated interface to the inner side of ϕ4 at a distance
δp from the initial multiple point. The value of δp is also a user defined parameter
usually taken as δp > δc to prevent the two P-Nodes to be collapsed by the se-
lective node collapsing strategy in the next increment, allowing them to separate
over time, reducing the total boundary energy of the GB network.
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Figure 3.17: Example of a multiple junction decomposition with anisotropic ener-
gies, a) initial state. b) detailed view of the multiple junction. c) decomposition
example, interfaces of ϕ4 are separated from the initial multiple junction and a
new interface is created (ϕ1 - ϕ2) d) decomposition example, interfaces of ϕ1 are
separated from the initial multiple junction and a new interface is created (ϕ4 -
ϕ3)

3.3.2 The TRM algorithm for grain growth
The complete sequence for an increment of the TRM model is presented in Algo-
rithm 4.
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a) b)

c) d)

Figure 3.18: Example of a multiple junction decomposition with isotropic bound-
ary energies, a) initial state. b) detailed view of the multiple junction. Here
α4 < α1 < α3 < α2, the choice of the phase to detach from the multiple point is
determined by the lowest angle. c) final state after the decomposition procedure,
two new elements are created. d) detailed view of the decomposition, interfaces of
ϕ4 are separated from the initial multiple junction and a new interface is created
(ϕ1 - ϕ2), the new point will be placed along the line determined by the angle
α4/2 measured from one of the two detached interfaces to the inner side of ϕ4 at
a distance δp from the initial multiple point.
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Algorithm 4 Isotropic Grain Growth TRM Algorithm
1: Perform Remeshing Algorithm (Algorithm 3)
2: for all Points: Pi do
3: while Number of Connections > 3 do
4: split multiple point Pi.
5: for all Lines : Li do
6: Compute the natural spline approximation of Li.
7: for all L-Nodes : LNi do
8: Compute curvature and normal (κn⃗) over LNi.
9: for all P-Nodes : PNi do

10: Compute the product κn⃗ over PNi using model II of [14].
11: for all L-Nodes and P-Nodes : LPNi do
12: Compute velocity v⃗i of Node LPNi

13: Iterative movement with flipping check over LPNi
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3.4 Numerical results
A series of test cases have been realized to validate the TRM method using the
same examples presented in chapter 2 for the benchmark of the LS method, results
of that study will be used to compare the new TRM model to the LS approach.
These benchmarks are focused mainly on the precision and the computational
cost of the model, allowing to compare which approaches are more suitable for
the simulation of GG under isotropic conditions.

3.4.1 Considered geometries
Correspondingly to chapter 2 the considered geometries will respond to different
typical situations encountered during the GG mechanism, the first three cases
being dimensionless and the last case representing a more realistic configura-
tion. Firstly a circle shrinkage test will be used to test the accuracy and the
stability of the TRM model. Next, a T-Junction configuration to evaluate the
response of the model face to the evolution of an unstable triple junction. Then,
a square shrinkage test to test the typical topological changes experienced during
GG: grain disappearance and interface creation. Finally, one case using a 2D
Laguerre-Voronoi tessellation composed of 10000 grains will be used to test the
computational cost of the TRM model under typical conditions.

In chapter 2, three remeshing approaches in the context of the LS GG simula-
tion have been tested: Static Mesh (SM), Isotropic Mesh Adaptation (IMA) and
a New Fitting and Joining Algorithm (NFJA), these three approaches (SM, IMA,
NFJA) will be compared to the TRM model knowing that the best approach in
terms of stability, accuracy and computation time, was the one using a static
mesh (see chapter 2 conclusions).

3.4.2 Circle shrinkage
Similarly to chapter 2, the circle shrinkage test will be used to observe the re-
sponse of the model to the instantaneous local curvature, hence allowing to ob-
serve the stability of the interface subjected to a velocity directly proportional to
the local geometric properties (n⃗ and κ).

The error to the analytical evolution of this test (see Eq. 2.14) will be com-
puted in two ways, the first using a classical L2-Error computation over the
surface of the circular6 domain obtained by the TRM model, and the second
using Eq. 2.18 Which express the relative error in terms of surface change per
increment.

6In fact, the numeric circular domain can not define a perfect circle but the errors given by
its real profile are ignored.
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Note that the circle is obtained differently in the LS context (where it is de-
fined by the positive interpolated domain of the LS field) than in the TRM model
(where it is obtained by simply extracting the elements denoted by the Surface
Scirc of the circle).

Correspondingly to chapter 2, we will compute a mean value for ∆sϕ(h,∆t) of
∆sϕ(h,t,∆t) to obtain a mean value of the error E(h,∆t) for each simulation having
a different set of parameters of ∆t and h. Moreover, dimensionless simulations
will be considered and unitary values for the mobility M and the surface energy
γ will be used. Here we will use the same initial state and dimensions used in the
circle shrinkage test of chapter 2 (see Fig. 2.12).

Figure 3.19: Example of the evolution of the circle shrinkage test using the TRM
method and a parameter htrm = 0.006, the mesh and the surface field per domain
are displayed. a) Initial state, and b) to f) state at t = 0.01, t = 0.02, t = 0.03,
t = 0.04 and t = 0.05.

Multiple runs with different mesh sizes htrm and time steps dt were made for
the TRM model. One example of the evolution of the mesh for the circle shrink-
age test when using the TRM method is given in Fig. 3.19.
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Figure 3.20: Evolution of the surface of the circle shrinkage test for the circu-
lar phase using the TRM method for different values of dt. The correspond-
ing analytic evolution (Reference) is also shown. a) for a mesh size parameter
htrm = 0.002, b) htrm = 0.004, c) htrm = 0.006, d) htrm = 0.008.

Figure 3.20 describes 4 subsets of evolutions of the circular phase, each subset
for simulations with a different time step dt but maintaining a constant mesh size
parameter htrm. Figure 3.21 illustrates the corresponding L2-Error evolution for
the 4 subsets of Figure 3.20. Figures 3.20(c-d) and 3.21 (c-d) exhibits the nor-
mal behavior of the model when subjected to normal conditions, the maximum
error being not higher than 1%. Fig. 3.20(a) details the evolution of multiple
simulations that eventually encountered instabilities in the velocity computation
and produced a divergence from the analytical solution, Figure 3.20(b) shows
the transition between the normal response (for time steps dt = 1 · 10−5 and
dt = 2 · 10−5) and an unstable response (for time steps dt = 3 · 10−5, dt = 4 · 10−5

and dt = 5 ·10−5) of the TRM model. These instabilities manifest in the L2-Error
plots (Fig. 3.21(a-b)) as sudden increases in the error value that go up to 16%
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Figure 3.21: L2-Error computation for the evolution of the surface of the circle
shrinkage test for the circular phase using the TRM method for different values of
dt. a) for a mesh size parameter htrm = 0.002, b) htrm = 0.004, c) htrm = 0.006,
d) htrm = 0.008.

in the worst case (not shown in the figures). Figure 3.22 illustrates the corre-
sponding mean velocity v⃗ of the interface along with the analytic velocity shown
as reference; stable responses show velocity values around the reference curve
while unstable responses present an oscillatory global diminution on the velocity
computation, this diminution is due to the fact that some of the nodes present
a negative velocity value (where the direction of the velocity vector −→v points to
the outer region of the circular phase). As mentioned in section 3.2.3 the solu-
tion over time for a velocity proportional to the curvature when using natural
parametric splines as approximations could lead to instabilities when using high
values of time step dt.

It is interesting to see that the obtained result for a simulation with a mesh
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Figure 3.22: Mean velocity of the interface the circle shrinkage test using the TRM
method for different values of dt. The corresponding analytic velocity (Reference)
is also shown. a) for a mesh size parameter htrm = 0.002, b) htrm = 0.004, c)
htrm = 0.006, d) htrm = 0.008.

size parameter htrm = 0.004 and a time step dt = 3 ·10−5 lies exactly on the tran-
sition between the stable and the unstable region, Figures 3.20(b) and 3.21(b)
show that with these values, the evolution of the surface is still very near the ref-
erence curve, obtaining an L2-Error of only 1% at the end of the simulation, while
Fig. 3.22(b) shows that the evolution of the interface encountered a diminution on
the computation of the mean velocity for a while (between time = (0.032, 0.42))
but it auto-stabilized after, hence presenting a ”semi-stable” behavior.

Complementary simulations were made in order to identify the region of stabil-
ity of the TRM model in function of the time step dt and the mesh size parameter
htrm. the results of this study are summarized in Fig. 3.23 and hereafter we will
restraint the content of the present chapter to this stable region.
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Figure 3.23: Stability of the model in function of the mesh size htrm parameter
and the time step dt.

Finally, Fig. 3.24 shows the different curves obtained when using Eq. 2.18 to
compare the errors of the TRM method to the different approaches presented
in chapter 2, the error of the TRM method for the stable responses was always
ξT RM < 2% regardless of the mesh size and the time step used in the stable zone.
These results are very promising as the accuracy of the TRM model in the stable
region was the best.

3.4.3 T-Junction case
The T-Junction test case (see Fig. 2.20) will be used in order to observe the evo-
lution of a triple point when using the TRM method and the so called model II
described in [14] to compute the velocity of multiple points. Of course, results
obtained here will be compared to the ones obtained in chapter 2 for the LS-FE
model.

As stated in chapter 2, for the models based on the evolution of Level-Set
fields on a Finite Element framework, convergence is obtained when the mesh
size decreases, hence a simulation with 500000 elements (where convergence has
been obtained, see Fig. 2.21) has been used as reference.

A test using the same parameters as in chapter 2 (dt = 5 · 10−5 and htrm =
0.006) was made, the evolution of the mesh and surfaces for this test is described
in Fig. 3.25. The triple point was found to be very near to the position of the ref-
erence case while the interfaces showed a similar curved shape (see Fig. 3.26) after
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Figure 3.24: Comparisons of the error for different models for the circle shrinkage
test using Eq. 2.17. a) Level-Set FE Static Mesh (SM) b) Level-Set FE Isotropic
Mesh Adaptation (IMA) c) Level-Set FE New Fitting and Joining Algorithm
(NFJA), d) TRM (TRM).
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a time t = 0.035 where the quasi steady-state is already ensured. Moreover, the
surface difference between the TRM model and the reference case shows an error
of ξT RM = 1.9% while the other models using a LS approach obtained errors of
ξIMA = 10.1% and ξNF JA = 15.4% .These results show the potential of the TRM
method coupled with the explicit computation of the velocity at triple points of
[14], as the results were almost the same as for the reference configuration.

Figure 3.25: Example of the evolution of the T-junction test using the TRM
method and a parameter of htrm = 0.006, the mesh and the surface field per
phase are displayed. a) Initial state, b) state at t = 0.1, c) state at t = 0.2 d)
state at t = 0.3, e) state at t = 0.4, f) state at t = 0.5.

3.4.4 Square-Shrinkage case
As mentioned in chapter 2, the symmetry of the Squared-Shrinkage test makes
it possible that the 4 triple points converge at the same place at the end of the
shrinking, producing a meta-stable configuration: the quadruple point. Given
this meta-stable state, the quadruple point should decompose into two triple
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Figure 3.26: Difference between the growing phase of the T-junction test case for
the reference model and the geometric difference of the same phase obtained with
the other models (the IMA and NFJA) at time t= 0.35. Values for the area of
each section are given.

points, reducing the total surface energy of the system (see Fig. 2.24).

As explained in section 3.3.1, the final decomposition state should be taken
according to the configuration with the lowest total surface energy value, however,
in the isotropic case, the choice for the decomposition is merely dependent on the
angles between the interfaces at the multiple point. In the current case scenario
where symmetry has been imposed at the initial state, these angles should be
around 90◦ +ξan where ξan takes into account the numeric error (rounding errors,
numeric precision or accuracy of the model). In the context of the TRM model,
these small differences between the 4 angles are enough to decompose this meta-
stable configuration into the expected two triple points configuration (either one
of the two final configurations shown in Fig. 2.24 are valid).

One test for the square shrinkage case using the same parameters as in chapter
2 (dt = 5 · 10−5 and htrm = 0.006) was made, the evolutions of the mesh and
surfaces for this test are described in Fig. 3.27.

Figure 3.28 illustrates the comparison of the TRM model and the methods
used in chapter 2 to the reference case (Using a LS-FE method with a static mesh
composed of 2 millions elements) after t=0.05. The error in the area of the square
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Figure 3.27: Example of the evolution of the square shrinkage test using the TRM
method and a parameter of htrm = 0.006, the mesh and the surface field per phase
are displayed. a) Initial state, b) state at t = 0.0225, c) state at t = 0.045 d)
state at t = 0.0675, e) state at t = 0.09, f) state at t = 0.1125.

shaped phase was ξT RM = 6.6% while for the other cases was ξNF JA = 38.4% and
ξIMA = 16.3%.

3.4.5 2D-10000 grains case
Finally, a massive multidomain test composed of 10000 initial grains is consid-
ered, corresponding to the same test (same initial topology and thermomechanical
properties) of the test presented in section 2.5.5. Here, the TRM model will be
compared to the Isotropic Mesh Adaptation (IMA) case and to the Static Mesh
(SM) case using a mesh size of h = 0.004 mm at the interfaces, additionally,
statistical comparisons with the response obtained by a FE-LS approach as pre-
sented in [5, 167, 7, 170] will be given, this approach uses a more classic method
of mesh adaptation during calculations where the interfaces are captured with
an anisotropic non-conform local refined mesh and it will be described as the
Anisotropic Meshing Adaptation (AMA) case. Finally, the same reference case

131



CHAPTER 3. A NOVEL HIGHLY EFFICIENT LAGRANGIAN MODEL

Figure 3.28: Square-Shrinkage. Comparison of the ϕ1 phase at t = 0.05 (left
side). Values for the area of each domain are given (right side).

of section 2.5.5 will be used in this context to compare the different models (a
SM model using a mesh size of h = 0.001 mm).

One test using the TRM method has been performed using a mesh size pa-
rameter htrm = 0.004 mm and a constant time step dt = 10 s. The evolution of
the microstructure through time can be observed in Fig. 3.29, here a comparison
with the SM model has been given. A detailed view of the same comparison can
be found in Fig. 3.30 where a more specific comparison between grains can be
made. The overall comparison shows that the grain growth phenomena occurs
very similar in both cases, the morphology of the grains is very similar at the dif-
ferent moments during the simulation, while a very small difference in the grain
sizes values (see the color distribution in Fig. 3.29(c-d)) can be observed.

A more quantitative comparison in terms of the evolution of the mean grain
size and the grain size distributions can be observed in Figures 3.31 and 3.32
respectively. Here the comparisons with the AMA, the IMA and the reference
cases are also displayed. These comparisons show that the speed of grain growth
when using the TRM model is a little “slower” compared to the other three cases.
However, its evolution is very near to the evolution of the SM case which has been
the best case scenario in the comparisons made in chapter 2 to the reference case.

The CPU-time evolution over time for the different models can be found in
3.33, where the TRM model has been the one with the lowest computational cost,
performing 14,8 times faster than the SM model and 156 times faster than the
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Figure 3.29: 2D 10000 grains case. Comparison of the evolution of the TRM
model (right) and the SM model (left). a) Initial state b) state at t = 840 s c)
state at t = 1940 s d) state at t = 2780 s.

AMA case. These results are very promising as the ratio accuracy - CPU-time of
the TRM model shows a significant improvement against all the other models.

Finally, the mobility term M can be fitted in order to minimize the difference
between the curves of the grain size of the different models and the reference.
A correction factor of -12.8% for the SM model and of +6.69% for the TRM
model is necessary to minimize the error between both models and the reference
response. Figures 3.34 and 3.35 shows the evolution of the grain size and the
grain size distributions respectively for the SM and the TRM model after the
adaptation of the mobility. These results illustrate a well known behavior of full
field simulations of GG: the reduced mobility is classically impacted by the choice
of the numerical method and is not only a universal physical parameter. Here the
TRM model performed 13.63 times faster than the SM model to obtain a similar
response.
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Figure 3.30: 2D 10000 grains case. detailed view of the evolution of the TRM
model (right) and the SM model (left). a) Initial state b) state at t = 840 s c)
state at t = 1940 s d) state at t = 2780 s.
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Figure 3.31: Evolution of the grain size distribution pondered by surface for the
different models. The TRM model appears to be slower than the others.
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Figure 3.32: Grain size evolution for the 10000 grains test case. The TRM model
appears to be slower than the others.

Figure 3.33: CPU-time comparison for the 10000 grains test case. the TRM
model was 14,8 times faster that the SM model and 156 times faster than the
AMA case.
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Figure 3.34: Grain size evolution for the 10000 grains test case after a correction
on the Mobility M of -12.8% and +6.69% for the SM model and the TRM model
respectively. All curves are superposed. This result illustrates a well known be-
havior of full field simulations of GG: the reduced mobility is classically impacted
by the choice of the numerical method and is not only an universal physical
parameter.
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Figure 3.35: Evolution of the grain size distribution pondered by surface after a
correction on the Mobility M of -12.8% and +6.69% for the SM model and the
TRM model respectively.
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3.5 Discussion and conclusion
The development of the TRM method has implemented multiple concepts: the
initial LS-TRM preprocessor and geometrical reconstruction have granted a way
to characterize microstructures defined using the LS approach to a body-fitted
geometric-based data structure. This data structure was intentionally developed
in order to approximate the interfaces with piece-wise third degree polynomials
(natural splines) and to remesh using selective remeshing operators based on the
local geometry present on the mesh. These developments coupled with an explicit
Lagrangian movement of the interface have allowed to successfully simulate com-
plex microstructural evolutions such as two dimensional grain growth. Multiple
test cases were reproduced in order to compare the behavior of the model when
subjected to different situations.

Firstly the sphere shrinkage test has aided to identify a stability range where
the TRM model performs very accurately, obtaining errors not higher than 1% to
the analytical solution. Then, the T-junction case and the square shrinkage case
were used to evaluate the evolution of multiple junctions and the disappearance
of a grain. Finally, a test using 10000 initial grains was performed and compared
to other more classical methods to perform full field simulations such as grain
growth.

The results are very promising as the accurateness of the model on the sphere
shrinkage, T-junction and square shrinkage tests is very high, obtaining lower
errors than any other model tested. On the final test, the evolution of the mean
grain size and the grain size distributions showed that the TRM model is slightly
“slower” than the other models; comparisons on the evolution of the grains showed
that the morphology of the solution is very similar to the one obtained with the
SM model (which had been the best case scenario in chapter 2).

A significant improvement in the computational cost of the full field modeling
of grain growth was observed with the TRM model, being 14,8 times faster than
the SM model and 156 times faster than the AMA case. Furthermore, Figures
3.31 and 3.32 illustrated the difference between the evolution of the grain size
distribution and the mean grain size respectively for the different models, the
TRM model obtained the nearest response to the reference followed by the SM
case, with an L2-Error of 4.9% and 10.3% respectively on the prediction of the
mean grain size and 10.2% and 19.8% L2-Error respectively on the prediction of
the grain size distribution.

A final simulation was performed for the 10000 grains test case after adapting
the values of the mobility M (which is classically always impacted by the chosen
model) for the TRM and the SM models to obtain the same response as in the
reference case for the evolution of the mean grain size. The value of the initial
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mobility (M = 8.27549 · 10−07 mm4/Js) was corrected in -12.8% for the SM
model (Msm = M ∗ (1 − 0.128) = 7, 21623 · 10−07 mm4/Js) and of +6.69% for
the TRM model (Mtrm = M ∗ (1 + 0.0669) = 8, 829120 · 10−07 mm4/Js). Figures
3.35 and 3.34 illustrate the evolution of the mean grain size and the grain size
distribution respectively after the correction, an L2-Error of 2.06% and 14.32%
over the mean grain size and grain size distribution respectively was obtained for
the TRM model and of 0.734% and 5.06% respectively for the SM model. Here
the SM model performed better in terms of accuracy while the TRM model was
13.63 times faster in terms of CPU-time.

Even though the development of this model was only used to simulate 2D
isotropic GG, the TRM approach can be applied to simulate mechanisms such as
2D ReX or 2D microstructural evolutions taking into account anisotropic grain
boundary properties. Further efforts will be made in order integrate these mecha-
nisms as well as the development of a parallel implementation of the TRM model,
these developments will be the subject of study of the following chapters.
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Résumé en Français du Chapitre 3
Ce chapitre introduit une nouvelle méthode pour la simulation des problèmes
massivement multi-domaines avec applications aux évolutions de microstructures.
Cette nouvelle méthode s’apparente en partie aux méthodes de type front-tracking
comme les approches vertex mais introduit différentes innovations.

La nouvelle méthode introduite dans ce chapitre, ToRealMotion (TRM), utilise
les notions de i. discrétisation explicite des interfaces (de type body-fitted) et ii.
du mouvement Lagrangien des noeuds des interfaces pour simuler la migration
des interfaces. Toutefois, la nouvelle méthode TRM maintien une discrétisation
du volume des domaines à l’aide d’un maillage non-structuré où certaines des
arêtes correspondent directement aux segments définissant les interfaces. Cette
approche permet d’obtenir un meilleur contrôle sur les évènements topologiques
se produisant pendant la simulation, étant donné que ces évènements peuvent
être traduits par des opérations de remaillage. De la même façon, conserver un
maillage de type non-structuré permet le calcul des problèmes aux Éléments Finis
(EF) directement sur la discrétisation du modèle TRM (par exemple, calculs de
plasticité cristalline).

La nouvelle méthode a été testée sur différentes configurations, identiques à
celles étudiés sur le chapitre 2 pour la caractérisation du modèle Level-Set (LS)
couplé à une résolution EF. Les résultats des cas académiques montrent que la
méthode TRM possède une très grande précision, meilleure que celle proposé par
la méthode LS-EF sur des configurations similaires (à pas de temps et taille de
maille équivalente). De même, la méthode TRM a été testée sur une simulation
de croissance de grains incluant 10000 grains initiaux, montrant un bon accord
avec les résultats obtenus avec la méthode LS-EF, mais avec un temps de calcul
largement minoré: 14,3 fois moins important que pour le meilleur cas de figure
obtenu pour la méthode LS-EF.

Ainsi, la méthode TRM s’avère prometteuse et est développée plus avant dans
les chapitres suivants.
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Chapter 4

Parallelization of the TRM model

A new method for the simulation of evolving multi-domains problems has been in-
troduced in chapter 3: the TRM model, for which the accuracy and performance
of the sequential method have been proven very promising. In this chapter, fur-
ther developments of the model will be presented. The main focus here is to
develop a robust parallel implementation of the TRM model using a distributed-
memory approach with the Message Passing Interface (MPI) library OpenMPI.
The intention behind the development of the TRM model in a parallel context,
is not only to accelerate the current CPU-times obtained by the sequential ap-
proach, but also to be able to simulate microstructural evolutions in the context
of large RVE (105 to 107 grains). In this chapter, the new parallel implementa-
tion will be discussed and tested in the context of motion by curvature flow for
polycrystals, i.e. by considering GG mechanism. Results of the performance of
the model are given and comparisons with other approaches in the literature are
discussed.

This chapter has been submitted for publication for publication in [21].
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4.1 Introduction

As we have seen, the simulation of the dynamics of massive multidomain prob-
lems, have been addressed by several numerical approaches [52, 61, 77, 14, 9,
134, 137, 109, 110], especially in the context of modeling the microstructure of
metallic materials. Usually, these approaches aim to enhance the accuracy and
the performance of the developed framework by means of computational opti-
mizations, especially when the model intends to simulate thousands of domains.
The LS method coupled with a FFT framework (FFT-LS) [153, 150, 152] is an
example of a highly efficient method in this context, accounting for a better com-
putational performance than FE-LS approaches, and being able to simulate a
very high number of grains (≈ 6 · 105 initial grains where used in [152] in a 2D
GG context). The FFT-LS approach is, however, limited by the use of regu-
lar grids, an aspect that could restrict its domain of use to a static context or
for small deformations where remeshing is not necessary. Hence, this approach
can not be used for the modeling of DRX that the FE-LS method has already
proven to be able to simulate [7]. As an alternative to all aforementioned mod-
els (MC, CA, LS and MPF and Vertex methods), in chapter 3, inspired by the
Lagrangian component of Vertex [94, 14, 15, 16, 17, 18] and Front-Tracking ap-
proaches [102, 9, 10, 11, 12, 13], we have proposed the TRM model. This model
can approach the computational performance of FFT-LS simulations, while not
presenting limits given by its numeric framework.

The initial TRM model algorithm proposed in chapter 3 described a series of
selective remeshing operations strongly influenced by the works in [199, 200] and
a data structure adapted specifically to multidomain problems. All remeshing
operations were performed over a local patch of elements while the data structure
was based on the local topology (of the simulated domain) that each node repre-
sents (multiple junction or Point, grain boundary or Line, grain bulk or Surface).
Geometric properties of the interface were computed with the help of piece-wise
polynomials (Natural Splines) and the movement of interfaces was based on a
Lagrangian model. Moreover, some topological changes on the structure of the
multidomain problem were addressed by means of local remeshing operations,
where the Node-Collapse algorithm was used to treat the disappearance of do-
mains while the Point-Splitting algorithm allowed the creation of new interfaces.

The performance of the TRM model was tested and compared against a clas-
sical front capturing LS-FE framework [5, 167, 7] in an isotropic GG context.
Multiple test cases were performed concluding in an improvement of the accu-
racy and performance when using the TRM model. A 14 times reduction in the
computational cost was observed as compared to the best-case scenario of the
LS-FE framework.

Even though the results obtained in chapter 3 are very good, the current
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state of the TRM model lacks a very important component in order to make
a more accurate comparison in terms of computational performance: a parallel
implementation. Two categories of parallel frameworks can be designed to use
all the capabilities offered by modern computational units. These two categories
are differentiated by the management of the active memory of the running pro-
cesses: shared memory, where all cores share and interact with the same location
in memory, and distributed memory, where each process has its own independent
memory location. The choice of whether to use one or the other relies strongly
on the hardware architecture on which the model is intended to run. Normally
an application with a shared memory framework can not be used over a super-
computer cluster with thousands of cores, as the memory in these systems is not
connected to a single board but it is distributed between several independent
CPUs connected to the same network. In other words, shared memory can only
be used in single machines while distributed memory is intended to be used both
within single machines and over a network of interconnected CPUs. Each core in
a distributed memory system needs a way to communicate information to other
cores. This communication can be established by the use of standard protocols
such as MapReduce [202] or the Message Passing Interface (MPI) [203]. These
methods of sending data between cores cause some overhead on the global multi-
core application, hence obtaining a lower performance than when using a shared
memory approach. On the other hand, shared memory protocols can also add
some overhead when implementing an environment safe of race conditions: when
two or more cores try to write to the same memory location at the same time.
Here, a distributed memory approach using the MPI protocol in order to address
the parallel implementation of the TRM model is proposed to enable a broader
range of hardware compatibility.

Very few publications exist in the literature regarding the parallel implementa-
tion of Front-Tracking models, examples of these works can be found in [204, 205]
in the context of two-phase flows, and in [206] in a more general context of multi-
phase flows, however, tested for only just a few domains (3 domains). Similarly,
examples of vertex models using a parallel scheme can be found in [207, 208]
using a GPU-based parallel approach (hence using a shared memory approach)
in the context of molecular-dynamics simulations. These examples, although
very impressive, are considerably different from the TRM approach, as an im-
portant strength of the proposed methodology is to deal with unstructured finite
element meshes, allowing (i) the discretization of domain boundaries by more
than a vertex-vertex connection [207, 208], (ii) the direct evolution/migration of
the nodes of the mesh as a mean of boundary kinetics, without the use of two
discretization approaches [204, 205] and (iii) large deformation modeling (thus
adapted to the context of recrystallization modeling in hot metal forming) which
is generally not accessible to regular grid approaches (MC, CA, and FFT models).

In this chapter, the parallel implementation of the TRM model will be pre-
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sented and tested in multiple hardware settings. The special algorithms to address
the parallel framework will be explained. Moreover, an additional tool is needed
when performing parallel computations over a distributed memory approach, in
order to solve mesh-based problems: the initial partitioning of the numerical do-
main and the redistribution (when necessary) of charges (repartitioning) through
the evolution of the simulation. Here we opted to use the open-source library
Metis [209] to obtain the initial partitioning while the redistribution algorithm
has been developed and will be also presented in this paper.

Performance and speed-up of the model will be given and compared to other
highly efficient parallel methods in the literature in the context of GG using a
FFT-LS approach [153, 152].
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4.2 The TRM model: sequential approach in a
GG context

In chapter 3, a numerical method for the TRM model was presented, this nu-
merical method is built on a data structure defining the current state of the
multidomain framework, defining geometrical entities such as points, lines and
surfaces. Each point is composed of a P-Node (defining a node of the mesh with
a topological degree equal to 0) and a set of connections to other points and lines.
Each line is defined by an ordered set of L-Nodes (nodes with a topological degree
equal to 1), an initial point and a final point. Finally, surfaces are defined by a
set of S-Nodes (nodes with a topology degree equal to 2), a set of elements and
a set of delimiting lines and points.

Once the data structure was defined, a preprocessor of the TRM model was
introduced. This preprocessor makes an interface between the LS domain defi-
nition and the TRM data structure based on the works presented in [19, 161],
where an initially implicit mesh (with an immersed LS data set as in [146, 6])
is transformed into a body-fitted mesh via a joining and fitting algorithm, where
all limits of domains are explicitly defined by some of the nodes of the mesh
(see Fig. 3.3 for an illustration). Subsequently, four algorithms for the recon-
struction of the domains for the TRM model were presented: Nodal geometric
tagging, Point Reconstruction, Line Reconstruction, and Surface Reconstruction.
These algorithms completely define the data structure of the TRM model of a
LS data set immersed into a body-fitted mesh. It is important to emphasize
that from this point forward, the LS data set is no longer of use for our model,
and that all geometric properties of the interfaces and domains are computed us-
ing purely geometric approximations built upon the data structure of the TRM
model. Natural parametric splines [196] are used to approximate the domain
interfaces (lines) with third degree piece-wise polynomials, local geometric prop-
erties of the interfaces such as the curvature κ and the normal n⃗, are deducted
from these approximations.

Once a velocity has been computed on the mesh, depending on the physical
model being simulated, each node Ni of the mesh is moved to a new position r⃗i

in a Lagrangian way using Eq. 3.6.
Mesh conformity (in a FE sense) is ensured by a locally-iteratively movement-

halving algorithm, reducing at each iteration the movement by half when an in-
valid mesh configuration is encountered, i.e. an element flipping (see Fig. 3.16).

TRM model also involves a particular remeshing procedure. The TRM data
structure needs to be maintained at all times during remeshing to ensure all ge-
ometric computations over the defined geometric entities. When a remeshing
procedure is performed, the mesh evolves and the sets defining each geometric
entity have to adapt. Therefore, the remeshing procedure must take into account
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the local data structure of the nodes and elements involved in each remeshing op-
eration. The remeshing strategy of the TRM model uses the separate definition
of local selective1 remeshing operators: selective vertex smoothing, selective node
collapsing, selective edge splitting, selective edge swapping and selective vertex
gliding, see chapter 3 for a complete definition of each operator. As a general
rule, the remeshing procedure is performed to increase the general quality Q of
the mesh (or a patch of elements of the mesh). Here, the mesh quality Q is as
a factor of the shape and the size of the elements using the same approach as in
[184]. However, the selective remeshing procedure is not only driven by the local
mesh quality Q, but also by the local topological degree of the nodes involved in
the operation. In chapter 3 a global remeshing procedure was introduced, driven
by two nodal fields δc and δs corresponding to the collapsing and splitting fields,
and a minimum quality shape coefficient qs. The complete remeshing procedure
is summarized in Algorithm 3.

Finally, the TRM model was applied to the modeling of isotropic GG (see
section 3.3) where special attention was given to all possible topological changes
occurring on the grain boundary network during this phenomenon.

1The word selective denotes a variation of the original remeshing operations when performed
over the data structure of the TRM model, as each remeshing operation is performed differently
over nodes with different topology (P-Node, L-Node and S-Node)
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4.3 Parallel strategy for the TRM model
The TRM model introduced in chapter 3 lacks an important component to be a
competitive tool to the more classical methods presented in the literature for the
modeling of microstructural evolutions, this component is the ability to perform
large computations thanks to a parallel implementation.

As mentioned in the introduction, in order to address the parallel implemen-
tation of the TRM model a distributed memory approach is proposed, using the
standard communication protocol MPI [203] to communicate information between
processes.

Regardless of the choice of the memory management of the parallel frame-
work (shared memory or distributed memory system), two additional tools are
needed when performing parallel computations to solve mesh-based problems:
the initial partitioning of the numerical domain and the redistribution of charges
(repartitioning) through the evolution of the simulation. These two tools are
essential to ensure an equilibrium of the memory and the charge that each core
has to handle. In a distributed memory system, the whole numerical domain
can be divided to give to each core one part of that domain to handle at the
beginning of the simulation. Multiple tools already exist in order to partition
a mesh made of simplices, normally these tools can work with topologies much
more complex than an Eulerian mesh, as they are engineered to treat graphs1.
Here we opted to use the free library Metis [209] to obtain the initial partitioning.

Once the partition of the domain is performed and a strategy for the re-
equilibrium of charges is developed, one problem arises: making changes on the
mesh at the boundaries of each partition is very difficult. Every partition involved
in the remeshing of the local patch of elements needs to perform exactly the same
operations but without all the information required (because a part of the local
patch of elements is not present in its memory). This has been addressed by
using the properties of the repartitioning process as explained further.

In this section the parallel implementation of the TRM model will be ex-
plained, all situations described before will be addressed below.

4.3.1 Initial partitioning
Two ways of partitioning an Eulerian mesh are classically used: the first is to
partition the graph of the mesh (each node is a vertex in the graph and each
edge of the elements is an edge on the graph) to obtain multiple subsets of nodes.
Each partition will receive a subset where their nodes are not present in any other

1mathematical structures used to model pairwise relations (edges) between objects (vertices,
nodes or points)
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subset. The second is to compute the partition over the dual graph of the mesh
(or dual graph of a planar graph2) of the initial mesh. In the dual graph, each
vertex represents an element of the initial planar graph and each edge represents
an edge of the initial planar graph that is shared by two elements. A planar
graph may have multiple dual graphs, depending on the embedding of the pla-
nar graph in the plane (at this stage it is no longer a planar graph but a plane
graph). However, once this embedding is defined, the dual graph of the plane
graph is completely defined. Coherent Eulerian meshes are planar graphs: in a
2D context, the computation of the dual mesh uses each 2-simplex (elements)
as a vertex and each 1-simplex (edges) as an edge, while in a 3D context each
3-simplex (elements) is treated as a vertex and each 2-simplex (facets) as an edge.
Partitioning the dual graph of the mesh produces subsets of elements of the initial
mesh, each partition will receive a subset where their elements are not present in
any other subset. Figure 4.1 shows examples of the dual graph of a mesh in 2D
and 3D.

Figure 4.1: Example of dual graph in 2D and 3D. a) mesh and dual graph of the
mesh, green points are nodes from the mesh and red points are nodes from the
dual graph of the mesh, b) mesh in 3D c) dual graph of the mesh in b).

Metis can make partitions using either the graph of the mesh or the dual graph
of the mesh. In our context, we have chosen to use the dual mesh. When a mesh

2a graph that can be projected into a plane and that its edges intersect only at their nodes
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is directly partitioned, some of the edges of the mesh crossed by the boundaries
of partitions must be managed. While it is still possible to use this configuration
in a parallel context by repeating the elements that contain at least one edge
crossed by the partitions as in [189, 210], in our context where a certain geomet-
rical data structure must be respected, using such a way of partitioning is more
complex. By partitioning the dual mesh, even though each part receives elements
not belonging to any other part, some nodes can be shared by several parts at
the same time, and from this point forward these are defined as Shared-Nodes.
Figure 4.2 shows examples of partitions made using the graph of the mesh and
the dual graph of the mesh in two parts and three parts.

Once the mesh is partitioned, each core receives a part of the elements that are
more or less equally distributed among all the other cores. However, this is true
only during the preprocessor step of the simulation. Once the TRM model starts
remeshing and changing the position of nodes, the charge of each core evolves
(see section 4.3.3 for this aspect).

4.3.2 Numbering geometric entities and regularization
In the present parallel context, some geometric entities may appear in more than
one partition at the same time. This creates issues as the algorithms to recon-
struct the geometric entities had been developed in a sequential context (see
section 3.2.2). By performing the sequential algorithms for the reconstruction
of entities, each partition will consider that the geometric entities stop at the
boundaries between partitions. Problems as the one presented in Fig. 4.3 could
arise: in this configuration with two surfaces and a line, the expected identifica-
tion of each geometrical entity should be the one illustrated in Fig. 4.3.a, instead,
as each partition does not contain all the information, the identification of enti-
ties would be the one illustrated in Fig. 4.3.c where multiple geometric entities
of the same type (Point, Line or Surface) can have the same identity (i.e. Surf1
from Part1 and Surf1 from Part2) but do not correspond to the same entity, or
inversely, entities having different identities within the same partition but being
the same entity in the whole domain (e.g. Line1 and Line1 from Part2 or Surf1
and Surf3 from Part2).

We have solved these situations in a two-step process: first a non-repeating
numbering system in parallel and then a regularization of the identity of entities
crossed by the partitions.

The non-repeating numbering system can be implemented very easily: Each
geometric type (Point, Line or Surface) will be numbered according to the par-
tition where it is present, starting with the number of the local partition (i.e. if
numbering in Part3 the first Line will be numbered as Line3 the first point as
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Figure 4.2: Example of partitioning using the mesh and the dual mesh. a) mesh
to partition, b) and d) partitioning using the mesh in two parts and three parts
respectively, each part is represented by a color on the nodes, each part receives
nodes not belonging to any other partition, some vertex (in color) are crossed
by the partitioning. c) and e) partitioning using the dual mesh in two parts and
three parts respectively, each part is represented by a color on the elements, each
part receives elements not belonging to any other partition, some nodes (colored
nodes) are in several partitions at the same time, these are Shared-Nodes.

Point3 and the first surface as Surf3) subsequently the numbering increases by
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Figure 4.3: Example of the initial numbering of geometric entities of a domain
crossed by the boundaries partitions. a) geometric entities to number and also
sequential numbering b) the same domain partitioned in three parts, each color
represents a partition, c) configuration of the geometric entities on each part of
the domain, the numbering is done by default d) configuration of the geometric
entities on each part of the domain, the numbering for each geometric type (Point,
Line or Surface) begins with the number of the local partition and increases by
the number of total partitions, e) configuration of the geometrical entities after
renumbering.
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the number of total partitions (i.e. if numbering, in Part3 and the total number
of partitions is 4, the second Line will be numbered as Line7). This numbering
system is illustrated in Fig. 4.3.d. This solves the problem that multiple entities
can be identified as the same in different partitions but not correspond to the
same (see Fig. 4.3.c).

The regularization helps to identify the entities that have been crossed by
the boundaries of the partitions. This procedure is implemented via a local iden-
tification of the entities coupled to the shared-nodes, a communication process
of that information, a remote identification of all entities and a re-numbering
of the entities that need it. Algorithm 5 contextualizes this procedure with the
help of a recursive function presented in Algorithm 6. Note that the lines 4: and
10: of Algorithm 5 send information to other partitions. These operations are
realized in the actual implementation using some predefined functions of MPI
(MPI_Alltoallv and MPI_AllGatherv) performed over all cores. The purpose of
the call of Algorithm 6 in line 14: is to fill the set SameEntity. This set gathers
list groups the identities given to a single geometric entity over all partitions, this
list is computed with the same information in all cores hence it gives the same
answer in all of them. In the configuration given in Fig. 4.3.d, when Algorithm
5 is performed over the Surfaces (the geometric entities defining Surfaces in the
TRM model), SameEntity would store two lists one for each iteration of the while
loop of line 11: in the first iteration the list would be composed of three pairs:
{{Surf1, Part1}, {Surf5, Part2}, {Surf3, Part3}} and the second iteration of
four pairs: {{Surf4, Part1}, {Surf8, Part2}, {Surf2, Part2}, {Surf6, Part3}}.
On each iteration, the entity will be named on all partitions with the lowest iden-
tity found for it, hence in our example, Surf5 and Surf3 will be named Surf1
in their respective partitions and Surf4, Surf8, and Surf6 will be named Surf2
in their respective partitions. This finally solves the inconsistencies found by the
initial numbering of entities (see Fig. 4.3.e).

At this stage one final situation that needs solving appears: if there are non
locally connected3 entities in the same partition with the same identity (e.g. Surf2
in Part2 and Line1 in Part2 of Fig. 4.3.e) these entities have to be gathered in
one single entity. This procedure is easily made for surfaces as it is only necessary
to exchange the nodes and elements from one Surface to the other and to remove
the one that remains empty. On the other hand, in order to regroup Lines, a piece
of additional information is needed as one Line can now be made of disconnected
segments and this was not taken into account in the algorithms developed in
chapter 3. This has been solved by adding a piece of additional information to
L-Nodes: the previous and the next nodes on its Line. If there is no previous node
or next node at that position in the Line, the value attributed to it is Null. i.e. if
in a Line L1 the L-Node b is the first Node, the L-Node c is the second node and

3Geometric entities that are connected on partitions different from where part of them are
stored
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the Line has an initial Point with a P-Node a, the previous and next nodes of b
are a and c respectively and the previous node of c is b. Note that node a does
not have information about its previous and next node as it is a P-Node and not
a L-Node. This implementation solves the fact that one line can be segmented in
multiple parts without the need for further changes to the already existent code.

Algorithm 5 Identity Regularization Algorithm performed on Parti

1: for all Shared-Nodes : Ni do
2: for all SharedRanks of Ni : Partj do
3: IL ← local identity of the coupled entity of Ni

4: send to Partj: Pair(Ni, IL)4

5: for all Parts: Partj ̸= Parti do
6: for all Received Pairs from Partj: Pairk do
7: Ni ← the Node First(Pairk)
8: IL ← local identity of the coupled entity of Ni

9: IR ← Second(Pairk)
10: send to all Parts: Triplet(IL, IR, Partj) 5

11: while Triplets to Treat do
12: TT ← Take First Non-Treated Triplet
13: Create empty list of Pairs: SameEntity ▷ [Identity, Partition]
14: Call RecursiveTripletTreatment(TT , SameEntity)
15: ILowest ← the lowest value of the first item in all pairs of SameEntity
16: for all Pairs in SameEntity : Pairk do
17: if Second(Pairk) == Parti then
18: IOld ← First(Pairk)
19: change identity of the entity with number IOld to ILowest

Algorithm 6 Recursive function for the identification of the same entity given
a triplet Tx and a list of pairs to fill PL

1: function RecursiveTripletTreatment(Tx, PL)
2: IL ← First(Tx) (local identity)
3: IR ← Second(Tx) (remote identity)
4: Partr ← Third(Tx) (remote Partition)
5: for all Received Triplets from Part RPart : Tripleti do
6: if Tripleti is still not treated and First(Tripleti) == IR then
7: Set Tripleti as treated
8: Add to PL : Pair(Second(Tripleti), Third(Tripleti))
9: Call RecursiveTripletTreatment(Tripleti, PL)
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4.3.3 Re-Equilibrium of charges, repartitionning: Mesh
Scattering

Repartitioning in a distributed memory framework is much more complex than
making an initial partitioning as all the information is scattered through all pro-
cesses. Even though there exist tools that solve these kinds of problems (e.g.
an extension of Metis called ParMetis [209]) we have opted to develop our own
repartitionner. This is mainly because in the present context we have to make
sure that the data structure of the different geometric entities stays consistent
during the repartitioning process. Of course, our objective is not to develop a
partitioner having all the capabilities of the well-established libraries of the do-
main, but to develop a simple and robust way of exchanging information between
process having parts of a scattered unstructured mesh on its memory.

Dynamic Ranking System.

The repartitioning algorithm developed for the TRM model will use a ranking
system to determine the direction of the information flow, each process having its
own unique rank6. This rank can be determined for example by using the number
of elements, the number of nodes, the number of edges, or the total surface of the
domain stored on each process, and in the case were two processes have the same
value, a random attribution is held. Here, we will use the number of elements to
obtain the rank Ri of process i. Once each process has determined the number
of elements present on its memory, this information is sent to all other cores via
MPI, each core makes the comparison procedure and stores a list RankingOrder
of the ranks of each core, the lower the number of elements on a partition, the
higher is its rank. This list is computed equally on all cores. Moreover, if each
part i needs the rank of part j, this information is obtained via RankingOrder[j].

Shared-Nodes.

As defined before, Share-Nodes are the nodes belonging to multiple processes at
the same time, these nodes reside at the boundaries between partitions. Addi-
tionally to the Dynamic Ranking System, some other information will be required
for the repartitioning operation, this information denotes for all Shared-Nodes,
to which partitions they are shared. by considering for example Fig. 4.2.c, here
the red nodes are shared by the cyan and by the yellow partitions, the red nodes
from the cyan partition must know that they are shared by the yellow partition
and vice versa. Some nodes can be shared by more than two partitions as in
Fig. 4.2.e. In this particular case, three partitions share the magenta node. when
this node is processed the blue part must know that it is shared by the yellow
part and the red part. This information can be obtained very easily: each part
communicates via MPI to all processes which nodes are at its boundary, then for

6in our scope, these ranks refer to different ranks than those attributed to each process by
MPI, at the beginning of the parallel environment.
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all received nodes, if the node exists in the current part, it means that it is shared
with the sender part. Every Shared-Node then stores a list SharedRanks with
the parts containing it.

Unidirectional Element Sending.

As explained in section 4.3.1, our parallel scheme maintains sets of non-repeated
elements scattered in all processes, this means also that the repartitioning scheme
must exchange elements between partitions maintaining also this property. If a
partition sends one element, this element must have only one destination to main-
tain coherence in the proposed algorithm. This goal is achieved using the ranking
system and the SharedRanks list of the Shares-Nodes in Algorithm 7.

Algorithm 7 Unidirectional element selection in Part Parti

1: Store a list of list: SharedNodesPerPart
2: for all Shared-Nodes : Ni do
3: for all SharedRanks of Ni : Partj do add item Ni to

SharedNodesPerPart[Partj]
4: Store a list of list: ElementsToSendToPart
5: for all Parts: Partj do
6: if RankingOrder[Parti]<RankingOrder[Partj] then
7: for all SharedNodesPerPart[Partj] : Nj do add Elements(Nj)7 to

ElementsToSendToPart[Partj]
8: take out repeated elements in ElementsToSendToPart[Partj]
9: for all Parts: Partj do

10: for all ElementsToSendToPart[Partj] : Ej do
11: for all Nodes(Ej)8 : Nk do
12: for all SharedRanks of Nk : Partk do
13: if RankingOrder[Partj]<RankingOrder[Partk] then
14: Erase Ej from ElementsToSendToPart[Partj]

In the first part of this Algorithm 7, two lists are created, these lists contain
the Share-Nodes and the Elements to send to each partition. Note that each core
performs this algorithm, hence, each core has a list of elements to send to all the
other cores (even if that list is empty). A first selection is made via the inequality
of line 6: of Algorithm 7, where the list of elements to export only accepts the ele-
ments that have at least one node shared with a partition with a superior rank (a
partition with a lower number of elements). In the last section of the algorithm,
a final selection is made for the elements that are in the list to be sent to multiple
cores (i.e. for elements with nodes shared by more than two cores at the same
time). The final destination selection for these contentious elements is achieved
by choosing the partition with the highest rank (lines 10: to 15: of Algorithm

157



CHAPTER 4. TRM PARALLELIZATION

7), erasing the element in question from all the other lists. Once this algorithm
is executed in all partitions, a scattering process begins, sending all elements to
their new partitions along with some associated information: Node positions,
Node fields, element fields and some data necessary to rebuild the structure of
the geometric entities involved in the scattering (see section 4.3.4).

Figure 4.4 illustrates one example of the behavior of the unidirectional element
selection algorithm for three partitions. The rank of each partition is computed
according to the number of elements in decreasing order. In Fig. 4.4.b are shown
the elements to be sent to Part2. Here, Elements 3, 4 and 5 appear only to be
sent to Part2, and not to Part1. This filter is applied at the initial part of the
algorithm as the inequality RankingOrder[Part3]<RankingOrder[Part1] is not
evaluated to true. Elements 1 and 2 appear initially on the list to be sent to
Part2 and Part3 but are filtered in the last part of the algorithm, as Part2 is of
higher rank. In Fig. 4.4.c the selected elements to be sent to Part3 are displayed.
Note that some of the elements of Part3 are going to be sent to Part2 hence
they appear in a different color. Also, the intersection of elements from Part1
to be sent to Part2 and Part3 is empty, hence no errors will be made in the
scattering process. Figure 4.5 illustrates the initial and the final configuration
after the scattering. The boundaries of all parts are displaced by the scattering
including the shared node between the three parts (Node a) after the scattering,
Node b is shared by the three parts while Node a is part of the bulk nodes of Part2.

4.3.4 Geometry reconstruction
In the parallel re-equilibrium of charges explained in section 4.3.3, a particular
problem appears. When exchanging elements and nodes between partitions, a
reconstruction of the geometrical entities that involve those elements and nodes
have to be considered. Having the data structure presented in section 3.2.1, it
is clear that these reconstructions must be addressed depending on the type of
geometry in question. While the case of Surfaces is trivial (they move along with
elements), the consideration of the geometric entities attached to L-Nodes and
P-Nodes is more complex.

When reconstructing the entities coupled to the new L-Nodes and P-Nodes
(Lines and Points) more information is needed from the sending part: new P-
Nodes on the receiving partition need to create new Points, hence, information
regarding the connections of that point to other points and lines is needed (see the
data structure of points of section 3.2.1). In some cases, this information needs to
be collected from multiple partitions at the same time as illustrated in Fig. 4.6.
Here the scattering procedure is being performed near a Point attached to the
P-Node a, in the initial configuration (Fig. 4.6.a). This Point is in the memory
of Part1 and Part3 (hence P-Node a is a Shared-Node). The connections of
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Figure 4.4: Example of the behaviour of the Unidirectional selection element
algorithm. a) initial state with three parts, the name and the rank of each
partition is displayed. b) Selected elements to be sent to Part2, elements 3, 4
and 5 appear only to be sent to Part2, and not to Part1. Elements 1 and 2
appear initially on the list to be sent to Part2 and Part3 but they are filtered in
the last part of the algorithm, as the higher rank of the nodes of these elements
belongs to Part2. c) selected elements to be sent to Part3, the intersection of
elements from Part1 to be sent to Part2 and Part3 is empty.
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Figure 4.5: Example of the new configuration of each part after the scattering
of Fig. 4.4 to their respective new partitions, the boundaries of all parts are
displaced by the scattering including the shared node between the three parts a)
initial configuration, node a is shared by the three parts, b) configuration after
scattering, now node b is shared by the three parts while node a is part of the
bulk nodes of part 2.

L-Nodes a and b are only known by Part1 and Part3 while the connection to
P-Node c is known by both partitions, note that Part2 does not have any of the
previous information regarding the connections of P-Node a. After the scattering,
elements 1 and 2 were sent to Part2 by Part1 and Part3 respectively, thus both
partitions need to send the adjacent information to create all the nodes unknown
by Part2. Part1 sends the node a and b and Part3 sends the node a and d, both
partitions sent information regarding the node a because they have no way to
know that the other partition has already sent it. This is not necessarily a costly
step because the information regarding the connections of the Point of P-Node a
can be attached to the communication. Indeed, information regarding all connec-
tions of the the P-Nodes being sent to other partitions is also broadcasted. This
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means that Part1 sends the P-Node a along with the identities c and b and Part3
sends also the P-Node a along with the identities c and d corresponding to the
connections known by Part1 and Part3 respectively. Part2 receives two times
the P-Node a, however it is only created once. On the other hand, the informa-
tion received about its connections is used: Part2 searches on its memory for the
existence of the nodes b, c and d received in the communication to be connected
to the Point of P-Node a and if they exist, the connection is made. Note that
the P-Node c can not be found by Part2 hence that connection can not be created.

Figure 4.6: Example of the scattering near a P-Node a the corresponding con-
nections of its coupled Point are displayed in yellow to L-Nodes b and d and
to P-Node c. a) Initial configuration, connections to the Point of P-Node a are
stored in Part1 and Part3 and b) Configuration after the scattering, connections
to the Point of P-Node a are distributed within all parts

Line reconstructions are performed similarly as for Points. The data struc-
ture of Lines is special as it is composed of an ordered sequence of L-Nodes and
optional initial and final Points as stated in section 3.2.1. Furthermore, in section
4.3.2 of this chapter an additional property was included for L-Nodes: informa-
tion regarding the previous and next nodes within the same Line was added.
This additional property helps to reconstruct the Lines involved in the scattering
by sending the identity of the previous and next nodes along with the L-Node,
additionally to the identity of the Line where it must be added. The position
of the L-Node within that Line is then obtained by its relative position to these
next and previous nodes if they exist in the memory of the partition (similarly
to the reconstruction of Points). If one of those nodes do not exist, it means
that the Line is segmented at that L-Node. Figure 4.7 shows the initial and final
states of a scattering between two partitions where a Line has been crossed by
the boundary of two partitions Part1 and Part2. In the scattering, two L-Nodes
are sent by Part1 to Part2. Node a carries the identity of its previous (L-Node g)
and next (L-Node b) nodes. Similarly, node d carries the identity of its previous
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(L-Node e) and its next (L-Node h) nodes. This information helps to connect
the new nodes in Part2 to the Line in their respective positions and to fill the
information about the previous node of L-Node b and the next node of L-Node
e (and vice versa). Note that even though the information about the previous
node of L-Node a was sent, this information is not used as the node g does not
appear in the memory of Part2 (see Fig. 4.7.d). Consequently, the information
of the previous node of L-Node a is set as Null.

Figure 4.7: Example of the scattering with a Line (yellow) crossed by the bound-
ary of two partitions Part1 and Part2, the assembled and separated views are
displayed, the assembled view shows the domain being simulated while the sep-
arated view show the actual memory of each partition. a) and c) Initial configu-
ration, assembled and separated views respectively, b) and d) configuration after
scattering, assembled and separated views respectively.
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4.3.5 Blocking remeshing at partition boundaries

Making changes to the mesh at the boundaries of each partition is very difficult
because part of the local patch of elements is not present in its memory. Every
partition involved in the remeshing of the local patch of elements needs to per-
form the same operation but without all the information required. We have solved
this in a simple manner by blocking all operations involving a change (change of
connectivity or position) on the edges belonging to the boundaries between par-
titions. For example, in Fig. 4.5.a, Node Collapse is blocked between nodes a and
c, Edge Splitting and Edge Swapping is also blocked for the edge ac delimited by
the same nodes. However, note that this is not the case for nodes d and e, while
Node Collapse is still blocked between those nodes, Edge Swapping and Edge
Splitting is allowed for edge de, as this would not change the configuration of the
edges of the boundaries between partitions. Other operations are also blocked as
the Vertex Smoothing and the Node Gliding operations which are not allowed for
any of the nodes at the boundary between partitions.

The repartitioning approach was also developed as a solution for the complex-
ity of the remeshing process in parallel. Indeed, the repartitioning process pre-
sented in section 4.3.3 exchanges a complete layer of elements between the sending
partition and the receiving partition, hence completely changing the boundaries
every time it is performed. Figure 4.5.b illustrates how all the blocked operations
mentioned above between edges ac and de are unblocked since these edges no
longer belong to the boundary. A new remeshing process can be executed for
all elements and nodes involving the previously blocked (now unblocked) edges
to complete the remeshing process of the whole domain. The solution for the
remeshing process is not the same as if it would be performed in a sequential
framework as the different remeshing operations are not performed in the same
order. However, the influence of this artifact is expected to be minimal. This will
be proven and discussed further in sections 4.4 and 4.5.

4.3.6 Other parallel treatments

At this stage, two particular problems need to be solved. These particular situa-
tions correspond more directly to the physical model. However, they may appear
for the majority of boundary migration problems modeled with the TRM model.
The first is the computation of properties at Shared-Nodes and the second is the
Lagrangian movement of these nodes. Within the parallel framework used for
the TRM model, Shared-Nodes do not have all the necessary information of their
surroundings in the total domain, hence the treatments mentioned above can not
be computed in the default sequential way as in chapter 3.
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Computation of properties at Shared-Nodes.

Figure 4.8: Example of Line patch completion with temporary nodes (nodes in
green), a) configuration for two partitions, b) Part1 after adding the needed
temporary nodes c) Part2 after adding the needed temporary nodes.

For GG mechanism, the necessary geometric properties to be computed are
the mean curvature κ and the normal n⃗ of the interfaces. As mentioned in sec-
tion 4.2, these properties are computed for L-Nodes using piecewise polynomials
of third order (Natural Parametric Splines [196]). Hence the information needed
is the position of the nodes contiguous to the Shared-Nodes of each partition.
This information is transmitted by the neighboring partitions and stored in tem-
porary nodes. Figure 4.8 shows this situation, here the blue nodes correspond
to L-Nodes belonging to the partition while the green nodes correspond to the
temporary nodes obtained. Geometrical properties can now be computed for the
L-Nodes b and e on each partition, obtaining the same result in both of them.
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These temporary nodes only exist during the computation of the geometrical
properties. A similar operation is done for P-Nodes however only one contiguous
temporary node is necessary for the computation of model II of [14] (used for the
computation of the points’s velocity in our model).

Lagrangian movement in Parallel.

The Lagrangian movement presents a very similar problem as the one exposed in
the previous section. In section 3.2.5, it is shown that the Lagrangian movement
checks for invalid configurations every time one nodes moves (see Fig. 3.16). In
our parallel context, this can not be checked for all the elements when a Shared
Node is moved as some of these elements belong to other partitions and do not
exist on the memory of the local partition. The solution to this has been imple-
mented as follows: considering that all Shared-Nodes computed the same velocity
(using the method of section 4.3.6), each partition makes their respective flipping
checking for the elements known to them. If flipping is encountered, this is com-
municated to all partitions where the Node is shared and the movement is stored
for retrying with half the displacement in a further iteration, thus obtaining the
same response as it would be in a sequential implementation.

4.3.7 The TRM algorithm for grain growth in parallel
The final sequence for a time step of the TRM model in the context on GG is
summarized in Algorithm 8.
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Algorithm 8 Grain Growth TRM Algorithm in parallel
1: Remeshing Algorithm over non-blocked entities (Algorithm 3 with the

constraints explained in sec 4.3.5)
2: Recompute Ranking System (section 4.3.3)
3: Mesh Scattering (section 4.3.3)
4: Reconstruct Geometries (section 4.3.4)
5: Remeshing Algorithm over non-blocked entities
6: Complete Lines and Point Connections (temporary nodes) (section

4.3.6)
7: for all Points: Pi do
8: while Number of Connections > 3 do
9: split multiple point Pi.

10: for all Lines : Li do
11: Compute the natural spline approximation of Li.
12: for all L-Nodes : LNi do
13: Compute curvature and normal (κn⃗) over LNi.
14: for all P-Nodes : PNi do
15: Compute the product κn⃗ over PNi using model II of [14].
16: Delete temporary nodes
17: for all L-Nodes and P-Nodes : LPNi do
18: Compute velocity v⃗i of Node LPNi

19: Iterative movement with flipping check in parallel (section 4.3.6)
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4.4 Numerical results
In chapter 3, three test cases corresponding to the Circle-Shrinkage, T-Junction,
and Square-Shrinkage tests, were performed in order to validate the accuracy of
the TRM model. A final test was performed to validate the model in the context
of a more realistic environment, where a 2D 10000 grain test was performed to
compare the results to a classical LS-FE approach. Here we will perform 2 sets
of 2D simulations over a large number of grains, using strong and weak scaling
benchmarks: the first will consider a constant domain size performed with Np

number of cores, during the strong scaling the mean charge per core will evolve
inversely proportional to the number of cores for a fixed domain size. Then, a
set of simulations using weak scaling will be performed for a simulated domain
increasing its size proportionally to the number of cores Np considered. For ex-
ample, the simulation performed over 2 cores will consider a total domain surface
twice as large as the one performed over 1 core.

All simulations will be performed on a cluster facility composed of nodes1

Bullx R424 equipped with two processors Intel Xeon E5-2680v4 with 14 cores
each (for a total of 28 cores per node) at 2.4 GHz. The nodes are connected
using an Infiniband FDR at a speed of 56 Gb/s. Hereafter we will use the syntax
NnxNp to describe the configuration used in our computations, where the term
Nn describes the number of CPUs used and Np the number of cores used per
CPU, hence, for example for a simulation using 56 cores distributed on 2 CPUs
the syntax 2x28 will be used.

4.4.1 Strong scaling benchmark)
Here two similar tests to the one presented in chapter 3 with 10000 initial grains
will be performed. The size of the domain will be extended to fit first 50000 and
then 560000 grains, maintaining the same initial grain size distribution, the same
thermal treatment (1 hour at 1050 ◦C) and identical physical properties: the
generation of the initial tessellation will be performed with a Laguerre-Voronoi
cell generation procedure [55, 56, 57] over a squared domain and the values for
M and γ are chosen as representative of a 304L stainless steel at 1050 ◦C (with
M = M0 ∗ e−Q/RT where M0 is a constant M0 = 1.56 · 1011 mm4/Js, Q is the
thermal activation energy Q = 2.8 · 105 J/mol, R is the ideal gas constant, T is
the absolute temperature T = 1323 K and γ = 6 · 10−7 J/mm2) [6, 7]. More-
over, the initial grain size distribution is imposed as a Log-Normal distribution
curve with a median value of 0.017 mm and a standard deviation of 0.006 mm.
Additionally, maximal and minimal limits for the size of grains introduced are
defined as 0.04 mm and 0.011 mm respectively. With this distribution, one can

1Here the meaning of the word node represents a physical CPU connected in the cluster
network.
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expect to obtain approximately 1000 grains for every 1 mm2 of surface. As such,
the simulation with 50000 grains fits in a domain with 50 mm2 and the one with
560000 grains in a domain of 560 mm2 of surface. After the generation of the
Laguerre-Voronoi tessellation, the real number of grains was 52983 and 544913
grains for the domains of 50 and 560 mm2 respectively.

2D grain growth 50000 Initial grains.

Multiple simulations for the case with 50 mm2 of surface were performed on 1
(sequential), 2, 4, 10, 20, 28, 56 (2x28) and 84 (3x28) cores, the mesh size param-
eter and the time step will be held constant and equal to to htrm = 0.004 mm
and dt = 10 s respectively.

Figure 4.9: Results of the test with a surface of 50 mm2 performed in 1, 2, 3 and
4, 10, 20, 28, 56 (2x28), and 84 (2x28) cores. Here the mesh size parameter is
the same for all runs and equivalent to htrm = 0.004 mm and the time step is
dt = 10 s. Left: Mean grain size evolution, right: L-2 Error of the evolution of
the Mean Size with the test performed in sequential (1 core) as a reference.

Figure 4.9 gives the results for the evolution of mean grain size pondered by
surface and the L2-Error (measured with respect to the sequential case) for the
test with 50 mm2 of surface. Here, all parallel tests behave almost exactly like
the sequential one (1 core). The L2-Error is found to be lower than 0.05 % con-
cerning the test performed in sequential. Similarly, Fig. 4.10 shows the evolution
of the mean grain size distributions performed in 1, 28, 56 and 84 cores. Once
again the results are almost identical for all tests. This is illustrated in Fig. 4.11
which shows that the error over the grain size distributions in surface is in all
cases lower than 1.0 %. Furthermore, Fig. 4.12 shows the CPU-time needed for
all the configurations to accomplish the test. Here, the parallel tests obtained a
speed-up2, being the test with 56 cores the fastest one contrary to the expected

2The speed up in the strong scaling benchmark is obtained by dividing the CPU-time of the
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Figure 4.10: Results of grain size distribution for the test with a surface of 50
mm2 performed in 1, 28, 56 (2x28) and 84 (3x28) cores. Initial state (top),
distributions after 1800 s (center), distributions after 3600 s (bottom).

behavior, where the fastest test should be the one performed with 84 cores. In
fact, the simulation performed over 84 cores may be over-partitioned, meaning
that the number of partitions is too high compared to the number of elements in

sequential case by the CPU-time of the parallel case in question.
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Figure 4.11: L2-Error over the grain size distribution for the test with a surface
of 50 mm2 performed in 2, 4, 10, 20, 28, 56 (2x28) and 84 (3x28) cores compared
to the simulation performed in 1 core.

Figure 4.12: CPU-times for the test with a surface of 50 mm2 performed in 2, 4,
10, 20 and 28 cores (left) and 28, 56 (2x28) and 84 (3x28) cores (right).

the simulation.

Figure 4.13 illustrates 2 examples of the evolution of elements on each par-
tition for 2 cases: 2 cores and 4 cores. Note that in this case (the parallel case,
contrary to the sequential one), the response is not a curve but a range of data
in the Y axis, as the amount of Elements on each partition is changing every
time the mesh scattering is performed. Note that this range is higher when the
number of cores increases, as the boundaries between partitions present more
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changes, however for this two examples this range is well contained around 1/2
and 1/4 of the total number of elements, for the simulation performed with 2
and 4 cores respectively. The re-equilibrium of charges here is optimal. Fig-
ure 4.14 gives the mean number of elements and its range for the simulations
performed in 10, 20, 28, 56 and 84 cores, here two plots are given: for the simu-
lations performed in one CPU (one node) and in multiple CPUs (multiple nodes).

Figure 4.13: Number of elements per core for the for the test with a surface of 50
mm2 performed in 2 and 4 cores compared to the total number. The evolution
of the number of elements (left) and a zoom at the begining of the simulation is
shown (right). a) 2 cores, b) 4 cores.

One interesting index to follow is the value obtained by dividing the range
of elements over its mean value, hereafter called the index EROM . In parallel
computations, this index has been plotted in Fig. 4.15 and shows how many of
the elements may be scattered relative to the mean number of elements on each
partition. The index EROM reflects the maximum limit percent of elements
being transported from one partition to another by the Mesh Scattering procedure
presented in section 4.3.3, hence one can use it to study the global efficiency of
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Figure 4.14: Mean number of elements per core for the test with a surface of 50
mm2 performed in 10, 20, 28, 56 (2x28) and 84 (3x28) cores. The evolution of
the number of elements for the simulations contained in one node (left) and in
multiple nodes (right) is shown. The range for the number of elements of all cores
in the same simulation is shown in the same color with an alpha component.

the numerical procedure. Here we define the efficiency of one increment i for a
simulation with Np number of cores as follows:

Efficiency = ti
1

ti
Np
·Np

(4.1)

where the term ti
Np

determines the CPU-time needed to perform increment
i in a simulation with Np number of cores. This equation computes the num-
ber of resources needed for an increment of a parallel simulation compared to
a sequential one. Figure 4.16 plots the Efficiency of the simulation for the case
with 50000 grains against the mean number of elements (left) and against our
EROM index (right). Of course the lower the efficiency per increment for a given
simulation, the lower we expect to be the speed-up of the parallel simulations.
The mean efficiency of the 84 cores test (approximately 0.29) is much lower than
the mean efficiency of the 56 cores test (approximately 0.48), thus a reduction
of the efficiency of 65% for an increase in the number of cores of 50% (from 56
to 84 cores). These results suggest that the simulation performed with 84 cores
is indeed over partitioned and that one should aim to obtain a mean number of
elements not lower than 10000 or an EROM index not higher than 30% (The
real impact of the EROM index will be studied in the case at a constant charge).
Note, however, that the relative overhead obtained by the high number of parti-
tions is not higher than the reduction in CPU-time obtained, as the speed-up is
still greater than 1 even for the simulation with 84 cores.

Finally, Fig. 4.21 plots the speed-up of the parallel implementation of the
TRM model against the number of cores, here the reference for the optimal
speed-up is also shown. Of course, the optimal speed-up can not be obtained
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Figure 4.15: Range of the number of elements over the Mean number of elements
per core (index EROM) for the test with a surface of 50 mm2 performed in
10, 20, 28, 56 (2x28) and 84 (3x28) cores. The percent value increases with the
number of cores plotted every 10 increments.

Figure 4.16: Efficiency of the simulation for the case with a surface of 50 mm2

against the mean number of elements (left) and against the EROM index (right).

in our case as the operations produced by the communication create additional
overhead.

2D grain growth 560000 Initial grains.

Here a similar GG test will be performed but the surface of the domain will be
increased to 560mm2. The test will be performed on 1, 14, 28, 56 (2x28), 84
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Figure 4.17: Initial state of the case with a surface of 560 mm2, 544913 grains
are shown in the bigger image. Subsequent zoom views are given.

(3x28), 112 (4x28) and 140 (5x28) cores. Figure 4.17 illustrates the initial mi-
crostructure for this case. To the knowledge of the author, this is the maximum
amount of grains that have been simulated using 2D unstructured FE meshes,
and the second largest simulation in the context of GG, the first being the one
presented in [152] for a microstructure with 671000 initial grains, but in a FFT
context (thus using regular grids).
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Figure 4.18: Results of the case with a surface of 560 mm2 performed in 1, 14,
28, 56 (2x28), 84 (3x28), 112 (4x28) and 140 (5x28) cores. Here the mesh size
parameter is the same for all runs and equivalent to htrm = 0.004 mm and the
time step is dt = 10 s. left: Mean grain size evolution, right: L-2 Error of the
evolution of the Mean Size with the test performed in sequential (1 core) as a
reference.

Figure 4.19: L2-Error over the grain size distribution for the case with a surface
of 560 mm2 performed in 14, 28, 56 (2x28), 84 (3x28), 112 (4x28) and 140 (5x28)
cores compared to the simulation performed in 1 core.

Figure 4.18 gives the results for the evolution of mean grain size and its L2-
Error for the test with 560 mm2 of surface. Similarly, Fig. 4.19 plots the L2-Error
over the grain size distribution of the present test. The range of both L2-Errors
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has been reduced by at least 1/5 compared to the tests with 50 mm2 of surface.
At this level, we consider that the influence of the parallel TRM model over the
precision of the simulation is quasi-non-existent, while for the test with 50 mm2

of surface this influence is very low.

Figure 4.20: Range of the number of elements over the Mean number of elements
per core (index EROM) for the test with 560 mm2 of surface performed in 14,
28, 56 (2x28), 84 (3x28), 112 (4x28) and 140 (5x28) cores. The percent value
increases with the number of cores plotted every 10 increments.

By increasing the simulated domain size, the index EROM should be reduced
as the mean number of elements per core is increased. Figure 4.20 shows the evo-
lution of the index EROM for the present test, here the evolution of this index
has been reduced by more than half (considering the simulation with 3x28 in
both the 50000 grains and the 560000 grains case) which maintains the efficiency
of a time step over 0.4 accordingly to Fig. 4.16.

Figure 4.21 illustrates the evolution of the speed-up of both test cases. This
result shows that the speed-up is relatively the same up to 56 (2x28) cores but it
diverges for a higher number of cores in favor of the simulation with 560 mm2 of
surface. The maximum speed-up obtained was for the case with a surface of 560
mm2 performed over 140 (5x28) cores for which a speed-up of 48.5 was obtained,
this simulation took 38 minutes and 45 seconds while the one performed in 1
core took 31 hours and 20 minutes. The total number of grains at the end of
this simulation was of 117157 grains, hence 21.5 % of the total initial number of
grains while for the simulation with 50 mm2 of surface was of 10399, hence 19.6
% of the total initial number of grains.
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Figure 4.21: Performance of the TRM model in a strong scaling benchmark: the
domain surface is maintained constant while the number of cores increases, two
test were performed, one with a surface of 50 mm2 and the second with a surface
of 560 mm2. The data is compared to the optimal speed up (Reference).

4.4.2 Weak scaling benchmark
When performing a benchmark on a strong scaling context, the amount of mem-
ory that a core has to maintain decreases when the number of cores increases.
Of course in the same context, when performing a sequential simulation all the
memory has to be maintained by only one core, making it longer to read or to
add pieces of information to the data set of the running process. This artifact
makes it, that the optimization made by the parallel implementation in a strong
scaling context, be both, for memory management (to access and to write in a
given memory location) and in number of operations (such as remeshing or mov-
ing nodes) to perform by a core. On the other hand, the weak scaling benchmark
aims to measure the speed-up3 generated by a parallel implementation only on
the number of operations to be performed inside a core, as the memory to be
maintained by every core is constant when the number of cores increases. While
it is not possible to maintain an equally distributed and constant charge on all
cores here, it is possible to approach the concept by increasing the size of the sim-
ulated domain proportionally to the number of cores used in a parallel simulation

3contrary to the speed up in the strong scaling benchmark, the speed up for the weak scaling
benchmark is obtained by multiplying the CPU-time of the sequential case with the number of
cores of the parallel case, divided by the CPU-time of the parallel case.
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Figure 4.22: Mean size results of the case with a DSPP of 2 mm2 performed in
1, 2, 4, 6, 10, 18, 28, 56 (2x28), 84 (3x28), 112 (4x28) and 140 (5x28) cores.
The plot has been divided in two plots for a clearer visibility: top: simulations
performed over one Node (1, 2, 4, 6, 10, 18, 28), bottom: simulations performed
over multiple Nodes (28, 56 (2x28), 84 (3x28), 112 (4x28), 140 (5x28)). Each plot
is given its respective L2-Error to the response of the largest simulation in this
context (140 (5x28) cores).

with the TRM model. Two sets of simulations will be performed: the first with a
domain surface per core (DSPP) of 2 mm2 (approximately 2000 grains per core)
and the second with a DSPP of 4 mm2 (approximately 4000 grains per core).
Moreover, even though the same grain size distribution is used in the generation
of the Laguerre-Voronoi tessellation, it is not possible to obtain a perfectly equal
statistical distribution for different sizes of domains. As such, at the beginning
of the simulations, small variations on the mean grain size or the grain size dis-
tributions may appear.

Figure 4.22 and 4.23 give the results for the evolution of the mean size of the
cases with a DSPP of 2 mm2 and 4 mm2 respectively. Furthermore, L2-Error
plots are also given corresponding to the difference of the simulations performed
in parallel to the reference cases (here chosen as the largest simulation of each
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Figure 4.23: Mean size results of the case with a DSPP of 4 mm2 performed in
1, 2, 3, 5, 9, 14, 28, 56 (2x28) and 140 (5x28) cores. The plot has been divided
in two plots for a clearer visibility: top: simulations performed over one Node (1,
2, 4, 6, 10, 18, 28), bottom: simulations performed over multiple Nodes (28, 56
(2x28), 140 (5x28)). Each plot is given its respective L2-Error to the response of
the largest simulation in this context (140 (5x28) cores).

context which was performed in 140 (5x28) cores: 280 and 560 mm2 respectively
for the cases with a DSPP of 2 mm2 and 4 mm2). In both cases, the curves ap-
pear to be very similar to their references with an error inferior to 3%. Note that
the L2-Error have a tendency to decrease when the simulation domain increases
(as expected), and that the error after a total surface of 56 mm2 (approximately
56000 initial grains) is inferior to 1%.

Figure 4.24 illustrates the evolution of the mean size distribution in surface
for one set of simulations with a DSPP of 2 mm2, at the beginning, after 1800
s and after 3600 s of simulated time, here only the simulations performed in 1,
28, 56, 84, 112, and 140 cores are plotted for a clearer visualization. Figure 4.25
gives the evolution of the L2-Error over the grain size distributions for both sets
of simulations with a DSPP of 2 mm2 and of 4 mm2 and for all the simulations
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Figure 4.24: Results of grain size distribution for the test with a DSPP of 2
mm2 performed in 1, 28, 56 (2x28), 84 (3x28), 112 (4x28) and 140 (5x28) cores.
Initial state (top), distributions after 1800 s (center), distributions after 3600 s
(bottom).

performed. Similarly to the evolution of the mean grain size, the L2-Error is
obtained to be lower than 3% after a domain size of 56 mm2, suggesting that
our microstructure can be statistically well represented by a simulation with over
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Figure 4.25: L2-Error of the grain size distribution for the test with a DSPP of 2
mm2 (left) and a DSPP of 4 mm2 (right) compared to of the largest simulation
of each context (140 (5x28) cores) (280 and 560 mm2 respectively). Each plot
have been divided in two for a clearer visibility: top: simulations performed over
one Node, bottom: simulations performed over multiple Nodes.

56000 initial grains. On the contrary, simulations performed with a domain of
20 mm2 and below, show an error at the end of the simulation of more than 5%
which suggest that they contain too few grains (at the end of the simulation)
or that statistical results may be highly influenced by the boundary conditions,
simulations with lower than 20000 grains should be avoided in our GG context.

Figure 4.26 illustrates the evolution of the number of elements for the simula-
tion with a DSPP of 2 mm2, the mean number of elements is very well maintained
for all cores although their range in the Y axis increases for the simulations with a
high number of cores, similarly to the results obtained for the test with a variable
cores charge. The evolution of the EROM index is presented in Fig. 4.26 for both
sets of simulations, where the sets using a DSPP of 4 mm2 have a lower overall
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Figure 4.26: Mean number of elements per core for the test with a DSPP of 2
mm2 performed in 2, 28, 84 (3x28) and 140 (5x28) cores. The range for the
number of elements of all cores in the same simulation is shown in the same color
with an alpha component.

value, this suggests that the efficiency of these simulations should be higher than
the efficiency of those with a DSPP of 2 mm2.

Figures 4.28 and 4.29 show the CPU-time and the speed-up of both sets of
simulations. Note than in Fig. 4.28, the scales have been adapted so the reference
curve (the value of the CPU-time for the sequential simulation) be at the same
height for both the simulations with a DSPP of 2 mm2 (Fig. 4.28.a) and of 4 mm2

(Fig. 4.28.b), hence allowing a better comparison of the relative CPU-time needed
for all simulations when compared to their respective reference. Clearly, the sim-
ulations with a DSPP of 4 mm2 need a relatively lower CPU-time to achieve the
end of the simulations. This can also be seen in Fig. 4.29: for the simulations
run in one node (one single CPU with a maximum 28 cores) the speed-up is very
similar, however above 28 cores (for multiple nodes) the speed-up favors the sim-
ulations with a higher DSPP.
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Figure 4.27: Range of the number of elements over the Mean number of elements
per core (index EROM) for the test with a DSPP of: a) 2 mm2 and b) 4 mm2

per core.

Figure 4.28: CPU-times at the end of the simulation for the test with a DSPP
of: a) 2 mm2 and b) 4 mm2 per core.
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Figure 4.29: Performance of the TRM model in a weak scaling benchmark: the
domain surface increases proportionally to the number of cores, two test were
performed, one with a DSPP of 2 mm2 (approximately 2000 grains per core) and
the second with a DSPP of 4 mm2 (approximately 4000 grains per core). The
data is compared to the optimal speed up (Reference).
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4.5 Discussion and conclusion

The parallel implementation of the TRM method employs several sub-algorithms,
each one of them addressing a different problem: the partitioning of the domain,
using the dual graph of the initial mesh with the open-source library Metis, and
the re-numbering scheme developed to maintain the coherence between partitions
generated by the initial partitioning. Similarly, the mesh scattering algorithm
allows a re-equilibration of the charges between partitions. The remeshing is
performed in a 2-step remeshing sequence by blocking the boundaries between
partitions (which are dynamic, following the mesh scattering algorithm) and the
Lagrangian movement has been adapted to a parallel context. Predictions were
validated in parallel compared to sequential simulations.

Two sets of test cases were studied. The first characterized the performance
of the TRM model using a strong scaling benchmark. The accuracy of our model
when performed in sequential and parallel was studied, obtaining the same re-
sponse with negligible errors in every test. The speed-up for these simulations
was shown to be dependent on the mean number of elements and on the “Element
Range over Mean” index EROM . It was observed that for simulations performed
with a high number of cores the speed-up may not be satisfactory if the number
of elements is too low or if the EROM index is too high. For a simulation with
600000 initial elements (52983 initial grains) performed over 84 cores, the speed
up was lower than for the same simulation performed over 56 cores. These results
suggest that this simulation performed with 84 cores is indeed too partitioned,
and that one should aim to obtain a mean number of elements not lower than
10000 or a EROM index higher than 30%. Then a test with 544913 initial grains
was performed obtaining good results in terms of speed-up for all simulations.
The maximum speed-up obtained was for the case with a 544913 initial grains,
performed over 140 (5x28) cores for which a speed-up of 48.5 was obtained, this
simulation took 38 minutes and 45 seconds to perform 360 increments while the
one performed in 1 core took 31 hours and 20 minutes. The total number of
grains at the end of this simulation was of 117157 grains, hence 21.5 % of the
total initial number of grains while for the simulation with 52983 initial grains
was of 10399, hence 19.6 % of the total initial number of grains.

Tests using a weak scaling benchmark were performed with a simulated do-
main increasing its size proportional to the number of cores considered. Here a
wide range of simulations were performed divided into two sets: the first with a
domain surface per core (DSPP) of 2 mm2 (approximately 2000 grains per core)
and the second with a DSPP of 4 mm2 (approximately 4000 grains per core).
The results of these simulations showed that the speed-up obtained for the simu-
lations with a DSPP of 4 mm2 was higher than for the simulations with a DSPP
of 2 mm2 as a relatively higher EROM index was found for the latter.
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Another observation of the weak scaling benchmark was that the L2-Error
over the grain size distributions is obtained to be lower than 3% after a do-
main size of 56 mm2, suggesting that our microstructure can be statistically well
represented by a simulation with over 56000 initial grains. On the contrary, sim-
ulations performed with a domain of 20 mm2 and below, show an error at the
end of the simulation of more than 5% which suggest that they contain too few
grains (at the end of the simulation, 3954 grains for the case of with 20000 initial
grains) or that statistical results may be highly influenced by the boundary con-
ditions (in our case, orthogonality of grain boundaries with the domain limits).
Thus, it seems that simulations with lower than 4000 grains at any time during
the simulation should be avoided when studying statistical values of a predicted
(simulated) microstructure in our GG context. This also enforces the argument
behind the studies aiming to increase the performance of massive multidomain
simulations, as the main obstacle to increasing the number of domains in such
simulations is given by their high computational cost.

In the context of massive multidomain simulations, to the knowledge of the
authors, only two methodologies in the literature have attempted to perform
simulations with hundreds of thousands of domains: the one in [153] with a max-
imum number of 100000 grains and the one in [150, 152] with 671000. Results
in [153] showed a better speed-up of their parallel implementation than the one
presented in this chapter for our TRM model. Concerning the CPU-time, the
parallel strategy presented in [153] was able to perform 20 increments of a simu-
lation with 100000 initial grains in 32 s when performed in 128 cores. In [152] no
data concerning the speed-up was provided, however, it was mentioned that the
simulation with 671000 initial grains was performed until less than 4000 grains
remained, with a total CPU-time between 9 and 12 days, when running on 18
Intel Nahalem cores. Moreover, the main originality of the proposed model here,
is, for the first time, to exhibit very efficient simulations in the context of un-
structured finite element meshes (regular grids in FFT context are considered
in [153, 152]). Indeed, such a strategy will enable to consider large deformation
of the calculation domain, paving the way to more complex mechanisms such
as dynamic recrystallization. Our meshing/remeshing strategy, conserving a de-
scription of the bulk of the grains, will make it possible to investigate mechanisms
involved in the grain boundary network, but also, in the grains substructures.

The implementation of this parallel scheme corresponds to the first perspec-
tive fulfilled for the general TRM approach. Other perspectives concern: the
development of a DRX and PDRX TRM model and the possibility to perform
simulation taking into account heterogeneous or anisotropic grain boundary prop-
erties, these questions will be discussed in the following chapters.
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Résumé en Français du Chapitre 4

Ce chapitre a été dédié à l’introduction de nouveaux développements pour la
méthode TRM introduite au chapitre 3, avec comme objectif la parallélisation de
ses algorithmes. En effet, même si la méthode TRM a obtenu de meilleur temps
de calcul que la méthode LS-EF, il est nécessaire qu’elle soit capable d’effectuer
des simulations sur des stations de calcul à grand nombre de processeurs (clus-
ters), afin d’être compétitive comparativement aux autres méthodes détaillées au
chapitre 1 (Monte-Carlo, Cellular-Automata, LS, Multi Phase-Field), incorporant
naturellement cette possibilité.

Les nouveaux développements pour la méthode TRM incluent plusieurs sous-
algorithmes, chacun dédié à résoudre un problème spécifique. Ainsi la liste des
nouveaux développements est comme suit: i. le développement d’une interface
avec les outils de partitionnement des graphes de la librairie open-source Metis
pour l’obtention d’un premier partitionnement du domaine; ii. un algorithme
d’identification des entités divisés par les bords des partitions; iii. un algorithme
de rééquilibrage et repartitionnement des charges; iv. un nouveau protocole de
remaillage en parallèle et v. l’adaptation du modèle de mouvement Lagrangien
des noeuds.

La nouvelle méthode parallélisée a été mise à l’épreuve sur des simulations
de croissance de grains comportant un nombre élevé de grains initiaux. Deux
types de benchmark ont été testés, le premier ayant une “charge variable” par
processeur (CVPP), où un domaine de taille fixe est simulé sur un nombre vari-
able de processeurs, et le deuxième avec une “charge constante” par processeur
(CCPP), où la taille de domaine est choisie comme directement proportionnelle
au nombre de processeurs utilisés. Le nombre maximal de grains initiaux testé
sur les travaux de ce chapitre a été de l’ordre de 5.5 × 105 (conservant environ
20% des grains à la fin de la simulation), avec un nombre maximal de processeurs
utilisées de 140. La simulation avec un nombre maximal de grains, calculé sur
le nombre maximal de processeurs (5.5 × 105 grains sur 140 processeurs), prend
environ 39 minutes de temps de calcul. Le temps de calcul est divisé par 48.5 par
rapport à la même simulation réalisée en séquentiel. Or, les résultats à CCPP
montrent que le modèle améliore sa performance en parallèle lorsque le nombre
de grains initiaux par partition (GIPP) augmente. Ainsi, les simulations avec
4000 GIPP sont plus performantes que celles avec 2000 GIPP.

Finalement, des observations sur les courbes d’évolution de tests à CCPP ont
permis de conclure que les variations sur les résultats statistiques des modèles à
croissance de grains à champ complet (Full-Field) liés à la taille du Volume Élé-
mentaire Représentative (VER) sont réduits à moins de 3% pour les simulations
comportant plus de 50000 grains initiaux (ou conservant au moins 10000 grains
pendant la durée de la simulation).
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La méthode TRM parallélisée est donc capable de modéliser la croissance de
grains en champ complet à des échelles uniquement atteignables à ce jour par des
méthodes utilisant une discrétisation du domaine basée sur des grilles régulières et
une résolution de type FFT (transformé de Fourier). Ceci confirme la pertinence
de la nouvelle méthode et justifie son développement. Sur les chapitres suivants,
la méthode TRM sera étendue pour la simulation d’autres mécanismes propres
aux évolutions microstructurales: recristallisation dynamique et post-dynamique
et la prise en compte d’anisotropies sur la définition des propriétés des joints de
grains.
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Chapter 5

Modeling of dynamic and
post-dynamic recrystallization
with the TRM model

A new method for the simulation of evolving multi-domains problems has been
introduced in chapter 3 and further developed in parallel in chapter 4. However,
in chapters 2 and 3, the new TRM model has only been applied in the context of
isotropic GG with no consideration for the effects of the SE due to dislocations.
In this chapter, further developments and studies of the TRM model will be pre-
sented, mainly on the development of a model taking into account GBM by SE.
Further developments for the nucleation of new grains will be presented, allowing
to model DRX and PDRX phenomena. Here, the results for multiple test cases
will be given in order to validate the accuracy of the model taking into account
GG and SE. Finally, the computational performance will be evaluated for the
DRX and PDRX mechanisms and compared to a classical FE framework using a
LS formulation.

The contents of this chapter have been submitted for publication in [22].
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5.1 Introduction
The modeling, at the mesoscopic scale, of GG and ReX in polycrystalline mate-
rials during thermal and mechanical treatments has been the focus of numerous
studies in the last decades. Indeed, as aforementioned, mechanical and functional
properties of metals are strongly related to their microstructures which are them-
selves inherited from thermal and mechanical processing.

When looking to the so-called FF methods, based on a full description of the
microstructure topology and modeling of GBM at mesoscopic scale, and when
large deformations have to be considered (common in metal forming context),
LS and MPF approaches in context of unstructured FE mesh and FE remeshing
strategies, remain the main powerful and generic approaches but with a strong
limitation in terms of computational cost.

In this context vertex and front tracking approaches appear as interesting
candidates. An explicit description of the interfaces is considered and GBM is
imposed at each increment by computing the velocity of the nodes describing the
interfaces. While having a deterministic resolution (solving of partial differential
equation - PDE), this methodology is very efficient. However, the implementation
of algorithms allowing topological events in this context is not straightforward
and the fact that these methods do not describe the bulk of the grains could be
limiting for some metallurgical mechanisms, such as the appearance of new grains
(nucleation is in general taken into account exclusively at the vicinity of multiple
junctions) or substructures inside the grains.

The previous chapters have been dedicated to the creation of an improved
front-tracking method, solving these weaknesses: the TRM model. This new
model maintains the interior of grains meshed, handling with relative ease the
topological changes of the grain boundary network and allowing the treatment of
in-grain operations. Additionally, the TRM model has proven to have a higher
computational performance than classical FE-LS models for the same accuracy.
The objective of the present chapter is then to extend and apply the TRM model
to handle Dynamic ReX (DRX) and Post-Dynamic Rex (PDRX) phenomena,
namely, reproducing previous methodologies for the modeling of these mecha-
nisms, published in a FE-LS context [7].
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5.2 The TRM model: towards the modeling of
complex phenomena

The TRM model has been presented in chapter 3, then adapted to a parallel
computational environment in chapter 4. This model uses the logic behind front-
tracking methods where the discretization of interfaces is the minimal topological
information allowing to model 2D-GBM. The TRM model goes a step further by
implementing also a discretization of the interior of the grains in the form of sim-
plexes to allow the interaction of the grain boundaries with the bulk of the grains
and preventing inconsistencies of the physical domain such as the overlapping of
regions. The data structure of the TRM model is then built on top of a mesh
with elements and nodes, enabling also the possibility to compute FE problems
on it (see section 3.2.1 for more information regarding the data structure of the
TRM model).

This data structure contains the pieces of information needed to describe dis-
crete geometrical entities such as Points, Lines and Surfaces. The classification
of these entities is helpful when computing geometric properties: the area of sur-
faces can be computed by adding the contribution of each element of the grain,
while the curvature κ and normal n⃗ of interfaces can be obtained by approximat-
ing the interface with a high order mathematical form (higher than the linear
discretization of the domain) such as a least square approximation or with piece-
wise polynomials such as natural parametric splines. We have opted to use the
latter in order to obtain such geometrical quantities.

The TRM model allows physical mechanisms to be simulated. These phys-
ical mechanisms represent how the different geometries are supposed to evolve
and interact based on their current state. The TRM model has been developed
to move the different nodes of the mesh based on a user-defined velocity field v⃗
and a time step dt. Once a velocity is defined a new position for each node Ni

on the mesh can be obtained using Eq. 3.6. Here, each node displacement can
potentially produce an overlap1 of some of the elements attached to the node.
The TRM model hence ensures the local conformity of the mesh employing a
“locally-iteratively movement-halving”, that finds iteratively the approximated
maximal displacement that a node can make in the direction of the velocity vi

before an overlap takes place. This procedure ensures at all times that both, the
mesh and the microstructural domain are valid.

The TRM model can be extended to model GBM when SE and capillarity
act simultaneously as driving pressures, for which the velocity v⃗ describing these
mechanisms has to be derived. Similarly, ReX can be simulated through the ap-

1An overlap in a mesh is produced when an element is partially or completely superposed
by another element hence disrupting the 1:1 mapping of the numerical domain to the physical
domain, such a mesh can not be used in a Finite Element resolution (see Fig. 3.16).
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pearance of new grain boundaries (those delimiting new grains during nucleation),
for which a remeshing strategy can be established. The following sections are de-
voted to the implementation of i. a new velocity term v⃗ taking into account
SE into the dynamics of grain boundaries, along with some necessary changes
concerning topological operations that may occur during the modeling of this
mechanism (section 5.3) and ii. a remeshing procedure to include new domains
(grains) in the microstructure and the laws governing their apparition as a func-
tion of the TMT followed by the material (section 5.4), where the methodologies
proposed in [7] regarding this aspect were used.

5.3 Grain boundary migration under capillarity
and SE driving pressures

The simulation of microstructural evolutions are given by the addition of complex
and different phenomena as GG [5, 167, 201, 168, 169], ReX [5, 154, 140, 146,
6, 7, 142] or Zener Pinning (ZP) [98, 10, 11, 12, 147]. In chapter 3, GBM with
no influence of SE was used to compare the TRM model to other approaches
(LS-FE [140, 167, 168]), the base model used to represent this phenomenon is
commonly known as migration by curvature flow. The velocity v⃗ at every point
on the interfaces can be approximated following Eq. 1.3. In an isotropic context
as considered in this chapter, the terms M and γ are supposed as invariant in
space.

Of course, when post-dynamic phenomena such as SRX or MDRX are con-
sidered, the SE will act as another driving pressure of the GBM. Note that the
SE within a grain can be variant, as there could be regions on the grain that have
accumulated more or fewer dislocations during the considered TMT.

At the mesoscopic scale, the SE can be discussed following different hypothe-
ses. Crystal plasticity calculations and EBSD experimental data can bring dislo-
cation density field and so SE field with fine precision until intragranular hetero-
geneities. While this information is directly usable in pixel/voxel based stochas-
tic approaches such as MS or CA methodologies, generally it is homogenized by
considering constant value per grain in deterministic front-capturing (MPF, LS)
and front-tracking approaches. If this choice seems quite natural for phenomena
where SE gradients and nucleation of new grains are mainly focused on GB like
for discontinuous DRX (DDRX), it could be a strong assumption for phenomena
where the substructure evolution is important, like for continuous DRX (CDRX).
This aspect was for example studied in [159] in the context of SRX with a FE-LS
numerical framework. It was concluded that intragranular gradients on the SE
could indeed have a big impact on the grain morphology and that simulations
taking into account such variations were more in accordance with experimental
observations than simulation using a constant value of SE, but with an important
numerical cost as the FE mesh must be then adapted at the intragranular het-
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erogeneities scale. In the following, a constant homogenized energy per grain is
assumed. Nonetheless, the approach presented in this chapter to model GG with
a SE field can be used in the context of a heterogeneous intragranular energy
field, this aspect will be investigated in a forthcoming publication.

Thus, here SE can act on the displacement of the interface by considering the
difference of SE at both sides of the interface. We will adopt a slightly modified
methodology to the one presented in [154] to quantify it:

v⃗e = −Mδ(ϵ̇)[E]ijn⃗, (5.1)

where the term [E]ij defines the difference of SE E between the grains i and
j (Ei −Ej), the term δ(ϵ̇) is a mobility coupling factor whose nature is explained
in [7] appendix c2 and where the direction of the unit normal n⃗ sets, for a given
node of the interface, the order of the indices as: first the index i and then j.

Note that this definition holds even if the direction of n⃗ is ambiguous (in the
case of a flat interface with no convex side) as the direction of the velocity v⃗e will
be then pointed, in all cases, from the lower to the higher value of SE no matter
what the direction of n⃗ is. Moreover, the value of SE can be computed using the
equation:

E = 1
2

µb2ρ, (5.2)

where b corresponds to the norm of the Burgers vector and µ corresponds to
the elastic shear modulus of the material.

Finally, the contribution of driving pressures due to SE and capillarity can be
accounted by linearly adding the two velocities as in [154, 6]:

v⃗ = −M(δ(ϵ̇)[E]ijn⃗ + γκn⃗), (5.3)

where v⃗ denotes the final velocity of the interface during GBM when SE effects
are included.

5.3.1 Velocity at multiple junctions
Equation 1.3 can only be used in a one-boundary problem, as in a more general
context, the presence of multiple junctions (the intersection points of more than
3 interfaces) makes it impossible to compute a curvature κ or a normal n⃗ at
these points. As explained in chapter 3, we have used an alternative method-
ology to compute the velocity due to capillarity at multiple points: Model II of
[14], where the product κn⃗ is directly obtained from an approximation of the free
energy equation of the whole system in a vertex context.

2A mobility coupling factor function of the effective strain rate ϵ̇ with δ(ϵ̇) = 1 when ϵ̇ = 0.
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Similarly, Eq. 5.1 only holds in a one-boundary problem as neither the value
of [E]ij nor the value of n⃗ can be obtained at these points. To solve this, a
different approach has been developed to compute a “resultant” velocity due to
store energy v⃗e at multiple junctions. This approach is illustrated in Fig. 5.1
where for the sake of clarity, the value of M has been held constant and equal to
1. Fig. 5.1.a shows a typical configuration where the boundaries of three grains
converge to a single point, each grain i has its own SE Ei where E1 > E3 > E2.
The values of the velocity for each normal boundary have been computed with
Eq. 5.1 and are shown as white arrows for each node in the boundary of Fig. 5.1.b,
here the index on the normal n⃗ij term is only representative of their direction
and serve to set the indices of each [E]ij terms, these expressions do not follow
the Einstein notation summation laws, all summations will be represented by the
conventional Σ operator.

If a portion of differential size dr centered at the multiple point is evaluated
(see Fig. 5.1 c)) the boundaries between grains will appear as flat, here the differ-
ence on the SE can be seen as a distributed difference of potential [E]ij applied
on the length of the grain boundary of size dr (analog to a given pressure acting
as a resultant force on a given interface). A normal n⃗′

ij can be obtained and
used to compute a velocity of each boundary (Fig. 5.1.d) applied at its center.
Note that the direction of n⃗′

ij can be chosen ambiguously on this linear segment,
however, as mentioned before, an eventual ambiguity on the direction of n⃗ do
not represent an ambiguity on the term −[E]ij · n⃗ij as [E]ij · n⃗ij = [E]ji · n⃗ji with
[E]ji = −[E]ij and n⃗ji = −n⃗ij. These velocities can be divided and applied at
the ends of each boundary and finally added at the junction point (Figures 5.1.e
and 5.1.f respectively) to obtain a valid velocity vector field at multiple junctions.
The expression on Fig. 5.1.f can be extended to the case where the values of M
are neither constant nor equal to 1:

v⃗e =
−ΣMδ(ϵ̇)[E]ijn⃗

2
, (5.4)

of course, this expression can be also used in cases of multiple junctions of any
order where more than three interfaces meet. Eq. 5.4 will be used to compute
the value of ve at multiple junctions as an approximation to the yet unknown
behavior of such configurations under the influence of SE in a transient state.

5.3.2 Topological changes: capillarity, stored energy
Multiple changes in the topology of the microstructure occur during GG and ReX.
In general, the topological changes during GG are given by the disappearance of
grains: on a shrinking grain, each of their boundaries evolves until they collapse
to multiple junctions. Eventually, all boundaries collapse to a single multiple
junction and the domain occupied by the grain disappears. This behavior was
implemented on the original TRM model presented in chapter 3 by means of the
application of the selective node collapse operator, where some restrictions were
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Figure 5.1: Graphical demonstration of the obtention of Eq. 5.4, a) typical triple
junction configuration with values of SE homogenized on each grain and the
normal vectors n computed at the nodes of the interfaces pointing to their convex
side, b) computation of the term −[E]ij · n⃗ij for each node of the interface except
for the node at the triple junction, c) definition of the same configuration as in
a) but in a differential portion of radius dr, d) the resultant driving forces are
applied at the center of the segments on the differential portion, e) and f) the
driving forces are distributed at the ends of each segment and an expression can
be formulated at the triple junction for its resultant driving force.

made regarding the order of collapsing.

In chapter 3 we opted to use this methodology to produce coherent topological
changes on the microstructure, leading to a series of rules on the selective node
collapse operator (see section 3.2.4). These rules gave to the P-Nodes a higher
influence over other kind of nodes and prevented the collapsing of non-consecutive
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nodes as illustrated in Figures 3.9 and 3.10.

The implementation of such node collapsing strategy allows a high control
over the order on which the topological changes occur, unfortunately, this kind
of reasoning can only be used on isotropic GG and can not be used when SE
or spatial heterogeneities of the mobility/interface energy must be taken into ac-
count.

When considering SE, the kinetics of the GB are not only led by the movement
of multiple points; flat surfaces can evolve with a given velocity and the velocity
of simple boundaries may become much more important than the velocity of mul-
tiple junctions. Fig. 5.2 illustrates this behavior with six grains with a specific
SE state. The circular grain in the middle grows due to its low SE compared to
the SE of its surrounding grains. The circular grain is indeed surrounded by an
initially squared grain that starts shrinking by the combined effects of capillarity
at their external boundaries and the surface taken away by the circular growing
grain. Fig. 5.2 (right), shows the moment when the boundary of the circular
grain and the external boundaries of the initially square grain collide, unchaining
a series of topological changes on the microstructure. These topological changes
are illustrated in Fig. 5.3, where new multiple junctions (Points) appear, grain
boundaries (Lines) are split, and grains (Surfaces) are divided.

32.5210 1.50.5

Stored Energy

Figure 5.2: Six grains with a specific SE balance, the circular grain in the middle
grows due to its low SE compared to the SE of its surrounding grains. The initially
squared grain shrinks by the combined effects of capillarity at their external
boundaries and the amount of surface taken away by the circular growing grain.
Left: initial state, center: the circular grain grows, right: the boundary of the
circular grain and the external boundaries of the initially square grain collide.

These several changes on the microstructure (contact of different grain bound-
aries in non-convex grains) can not be accomplished by the TRM model if the
rules described above and illustrated by figures 3.9 and 3.10 are maintained.
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Figure 5.3: Details of the final event of Fig. 5.2, highlighting the changes on the
microstructure. Here, Points describe multiple junctions, Lines grain boundaries
and Surfaces grains.

This is why these two rules need to be overridden and a new condition imple-
mented: If two non-consecutive nodes (nodes not connected by the microstruc-
tural wireframe) collapse, the classification of the remaining node is a P-Node.
Additionally, the remaining node is moved to the barycenter of the initial nodes
involved in the collapse and the surrounding geometrical entities (points, lines
and surfaces) are checked and updated if necessary. Take for example the same
configuration shown in Fig. 3.9 now in Fig. 5.4: here the collapsing of nodes Ni

and Nj is possible, the remaining node Ni is placed in the middle of the edge
NiNj and its classification is changed from L-Node (blue) to P-Node (red). Now
their surroundings need to be checked for possible changes on the topology: all
three Lines (grain boundaries in cyan) need to erase node Nk as a final/initial
point and put in its place P-Node Ni, similarly, one of the lines has to add Nk

as a node in their sequence of L-Nodes hence Nk changes also its classification to
L-Node.

Figure 5.4: Node Collapsing of Fig. 3.9, when allowing the collapse between non
consecutive nodes. S-Nodes are displayed in yellow, L-Node in blue and P-Nodes
in red. The collapsing of nodes Ni and Nj produces a new P-Node (Ni) while the
preexistent P-Node Nk needs to be reclassified as a L-Node. Left: initial state,
right: state after collapse.

Similarly, the situation presented in Fig. 3.10 can be reproduced with the new
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Figure 5.5: Node Collapsing of Fig. 3.10, when allowing the collapse between non
consecutive nodes. S-Nodes are displayed in yellow, L-Node in blue and P-Nodes
in red. a) Initial state; b) L-Node Ni performs the first collapse with Na. This
produces L-Node Ni to be moved to the center of the edge NiNa and to become a
P-Node. Moreover, the collapsing zone of Ni changes its position and leave Node
Nc out; c) The collapse also has produced a Surface to be divided in two (cyan
and orange Surfaces); d) Additional collapses are performed between P-Node Ni

and L-Nodes Nb and Nd, these collapses are performed in the conventional way
without moving Ni as it is a P-Node now.

rules of collapsing: on the initial state (Fig. 5.5.a), the collapsing zone of Ni puts
L-Nodes Na, Nb, Nc and Nd inside. The first node to be collapsed is L-Node
Na. After this initial collapse (Fig. 5.5b)) the collapse produces L-Node Ni to be
moved to the center of the edge NiNa and to become a P-Node. Moreover, the
collapsing zone of Ni changes its position and leave L-Node Nc out hence it will
not be collapsed. Additionally, a new topological change is identified (Fig. 5.5.c),
here the collapse is also responsible for the fact that a Surface is divided in two
new surfaces (cyan and orange Surfaces). Finally, the remaining collapses are
performed between P-Node Ni and L-Nodes Nb and Nd (Fig. 5.5.d), these col-
lapses are performed in the conventional way following the rules of collapsing
between P-Nodes and L-Nodes presented in chapter 3.
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The new node collapsing rules have been implemented in the TRM model
and will be used from this point forward in the cases where SE is present. This
node collapsing technique will be able to perform the majority of the topological
changes in the microstructure. Furthermore, for the purpose of this chapter,
the creation of boundaries by the decomposition of unstable multiple junctions
(multiple junctions with more than 3 meeting boundaries) is handled via the
procedure introduced in section 3.3.1 without any further implementation.

5.3.3 The TRM algorithm under the influence of capillar-
ity and stored energy

Finally, the algorithm for a time step of the TRM model in the context of isotropic
grain growth under the influence of SE and capillarity is presented in Algorithm
9, where the step “Perform Remeshing and Parallel Sequence” corresponds to the
parallel implementation of the TRM model presented in chapter 4.

Algorithm 9 Isotropic Grain Growth TRM Algorithm for capillarity and SE
1: Perform Remeshing and Parallel Sequence
2: for all Points: Pi do
3: while Number of Connections > 3 do
4: split multiple point Pi.
5: for all Lines : Li do
6: Compute the natural spline approximation of Li.
7: for all L-Nodes : LNi do
8: Compute curvature and normal (κn⃗) over LNi then compute v⃗c for LNi

(Eq. 1.3).
9: Compute the v⃗e for LNi (Eq 5.1)

10: for all P-Nodes : PNi do
11: Compute the product κn⃗ over PNi using model II of [14] then compute

v⃗c for PNi (Eq. 1.3).
12: Compute v⃗e for PNi (Eq. 5.4)
13: Delete Temporal Nodes
14: for all L-Nodes and P-Nodes: LPNi do
15: Compute final velocity v⃗ of Node LPNi (Eq. 5.3)
16: Iterative movement with flipping check in parallel

5.4 Recrystallization
In order to model ReX with the TRM model, two additional components are
necessary: the first is a procedure allowing to change the topology of the mi-
crostructure and to introduce new grains (i.e. nuclei); the second component
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is a model of the apparition of nuclei which depends on thermomechanical con-
ditions. Here DDRX context is considered. Of course, PDRX and subsequent
GG phenomena can also be investigated by considering microstructure evolutions
when the deformation is completed. The combination of these two mechanisms
can describe multiple TMTs that are used today in the material forming industry.

With the purpose of simplicity, in this chapter we will use the same method-
ology presented in [7] for the laws governing the introduction of new nuclei during
the modeling of hot deformation:

In [7], the evolution of the dislocation density is accounted by a Yoshie-
Laasraoui-Jonas Law [211] as follows:

∂ρ

∂ϵp
eff

= K1 −K2ρ, (5.5)

which can be evaluated in a discretized time space with an Euler explicit
formulation for the next increment step as :

ρ(t+∆t) = K1∆ϵ + (1−K2∆ϵ)ρ(t), (5.6)

where ρ(t) is the value of the dislocation density at time t and where the value
of ∆ϵ can be computed as ˙ϵp

eff ·∆t with ∆t the time step.

As explained in [7], when a grain boundary migrates, the swept area is as-
sumed almost free of dislocations. This aspect is modeled by attributing to these
areas a value of dislocation density equal to ρ0, then, for the grains with part of
their domain presenting ρ0, their dislocation density is homogenized within the
grain (as intragranular gradients on the SE are not taken into account either in [7]
nor in the present work), the final value of ρ for the growing grains is computed
as:

ρ(t+∆t) = ρtS(t) + ∆Sρ0

S(t+∆t) , (5.7)

where St and ∆S denote the surface at time t and the change of surface of a
given grain.

Additionally to Eq. 5.7, in PDRX the annihilation of dislocations by recovery
must be taken into account. This is done thanks to the following evolution law:

dρ

dt
= −Ksρ, (5.8)

where Ks is a temperature-dependent parameter representing the static re-
covery term. This recovery law is only taken into account in PDRX as in DRX,
Eq. 5.7 already takes into account the annihilation phenomenon.
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5.4.1 Nucleation laws
The procedure consists in introducing volume (surface in 2D) of nuclei at a rate
of Ṡ, once the local value of dislocation density has reached a critical value: ρc.
In [6, 7, 212] this value was obtained by iterating until convergence the following
equation:

ρ(i+1)∗

c =

 −bγϵ̇ K2
Mδ(ϵ̇)τ2

ln(1− K2
K1

ρi
c)


1
2

with ρi
c = ρi−1

c + c · (ρ(i)∗

c − ρi−1
c ), (5.9)

where i represents the iteration number, c is a convergence factor (c < 1 cho-
sen for the works of this chapter as c = 0.1), K1 and K2 represents the strain
hardening and the material recovery terms in the Yoshie–Laasraoui–Jonas equa-
tion discussed in [211], the term b = 1 in 2D and b = 2 in 3D, τ is the dislocation
line energy and ϵ̇ is the effective deformation rate used during the deformation of
the material.

When solving this equation, two special cases may produce an erroneous com-
putation: the first is given when K1/K2 ∗ ρc > 1 for which the logarithm is un-
defined, the solution to this is to limit the value of ρc < K2/K1 whenever this
situation occurs. The second is when ϵ̇ = 0 which corresponds to the intervals
where PDRX is considered. Two solutions may be considered for this situation:
the first is to block the nucleation when it is not necessary (metadynamic evo-
lution for example), and the second to supply value of ϵ̇ > 0 to Eq. 5.9. Here,
we have chosen the latter, for which an apparent effective strain rate ϵ̇s is used
instead ϵ̇ in PDRX:

ϵ̇s =
∫ t

0 ϵ̇2 dt∫ t
0 ϵ̇ dt

, (5.10)

which accounts for the instant mean value of the real effective strain rate.

Once a value of ρc is computed, the surface per unit of time Ṡ of nuclei to be
inserted can be computed with the following equation corresponding to a variant
of the proportional nucleation model [70]:

Ṡ = KgPc, (5.11)

where the term Kg is a probability constant depending on the processing con-
ditions and Pc is the total perimeter of the grains whose dislocation density is
greater than ρc.

Another constraint is given by the minimal radius r∗ of nucleation (the radius
at which the nuclei should be inserted in the domain so the capillarity forces
would not make it disappear) which can be computed thanks to the following
equation [213]:
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r∗ = ω
γ

(ρc − ρ0)τ
, (5.12)

where ω > 1 is a safety factor ensuring the growth of the nucleus at the
moment of its apparition. The term ω accounts for the non-spherical shape of
a grain inserted in a discretized domain such as in the TRM model. In section
5.5.1 a value for this factor will be obtained based on numerical tests.

5.4.2 Nucleation approach for the TRM model
Having defined the tools needed to obtain the kinetics of the grain boundaries,
where the pressure behind such kinetics can be of different nature: capillarity,
SE or both. However, in order to model ReX it is necessary to have a way to
introduce new grains into the domain of the TRM model. Nucleation, similarly
to boundary migration, is one of the ways of the microstructure to relax the
high gradients of the SE appearing during or after a TMT. Nucleation has been
addressed by several approaches for each methodology able to simulate such be-
havior: LS-FE methods, relay on the definition of circular LS fields (different
from the already defined LS fields occupying the same spatial domain) to form
nuclei [8, 7], CA and MC methods change the crystallographic orientation and
SE value of some cells [77, 214, 90, 215] in order to nucleate while vertex models
form new grains by redefining new vertex and interfaces in the shape of triangles
around the preexistent vertex points [18].

In the present work, a remeshing-reidentification procedure will be performed
around a central node Ni in order to introduce nuclei. A circular region with
center Ni will be drawn and all edges crossed by this circle will be similarly split
at the intersection as in [161] and in chapter 2 by successively applying an edge
splitting operation, regardless of the classification of the nodes defining the edge
(P-Node/L-Node/S-Node) (see Fig. 5.6). The classification of the new nodes be-
ing placed by the splitting algorithm is as L-Nodes unless the split edge represents
a grain boundary, in which case the inserted node will be classified as a P-Node
(see Figures 5.7.b middle and 5.7.c middle). Once all edges are split, a Surface
Identification algorithm will be performed over node Ni (see section 3.2.2), all
identified elements and nodes will be inserted into a new empty Surface defin-
ing the nucleus, and extracted from their previous Surfaces (grains), new Lines
(grain boundaries) will be built with their respective Points (multiple junctions)
if any were formed by the nucleation process and all remaining lines and points
inside the new surface will be destroyed (remaining lines and points can appear
if the nucleation took place near a grain boundary) see Figures 5.7.a, 5.7.b and
5.7.c left. However, in a parallel context an additional constraint has been added:
shared nodes can not be involved in the nucleation process, neither as a central
node nor one of the nodes of a split edge. This constraint was added because of
the lack of information (position of the edges to cut) around shared nodes and the
performance of the nucleation process (as a great amount of information would be
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necessary to be transferred to other processes). This constraint should not have
a great impact on the general behavior of the model as the domain of each pro-
cesses (and their shared nodes) is changed by the Unidirectional Element Sending
algorithm presented in chapter 4, every time step, hence constantly unblocking
the restriction to nucleate over the same region.

Figure 5.6: Remeshing steps for the nucleation process of the TRM model. Top:
initial state with a selected node (cyan) and a circle drawn over the mesh, middle:
successive edge splitting steps to form the interfaces of the nucleus, bottom: the
elements inside the nucleus are identified and extracted from its previous Surface
container.

203



CHAPTER 5. TRM MODELING OF DRX AND PDRX

Figure 5.7: Examples of the formation of nucleus over different types of nodes,
a) S-Node at the center and no crossed lines, b) L-Node at the center and one
crossed line, two P-Nodes are created, the initial line is divided and two new lines
are created, c) P-Node at the center, 3 P-Nodes are created, the P-Node at the
center is detached from all its lines and converted to S-Node, 3 new lines are
created.
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5.5 Numerical tests
In this section different academic tests will be performed to evaluate the perfor-
mance of the TRM model when simulating GBM under the influence of capillarity
and SE. For these academic tests, dimensionless simulations will be considered.
Moreover, the results of simulations using the DRX and PDRX frameworks de-
scribed in section 5.4 will be given, these simulations will use the nucleation
approach presented in section 5.4.2 specially developed for the TRM model. The
different physical parameters will be taken as representative of the 304L stainless
steel. Comparisons with LS-FE predictions will be discussed.

5.5.1 Circular Grain: competition between capillarity and
stored energy

In this test case, it will be evaluated the accuracy of the model when the geometric
configuration leads to a competition between the driving forces given by the
capillarity and the SE. Here we will adopt a value of boundary energy and mobility
equal to γ = 1 and M = 1 respectively. A circular domain with a value of SE
E = α is immersed in a squared domain with an attributed value of SE E = β (see
Figures 5.8.a and 5.8.b left) where β > α. The difference on the SE [E] = β − α
at the boundary will try to make the circle expand at a rate ve = M [E] = [E]
while the capillarity effect will try to make it shrink at a rate vc = Mκ = κ where
κ is the local curvature. The analytical model for this configuration can be put
in terms of a non-linear ordinary differential equation in terms of the radius r of
the circle as follows:

dr

dt
= −1

r
+ [E], (5.13)

or in terms of the surface S of the circle:

dS

dt
= 2(−π +

√
πS[E]), (5.14)

We have used an Euler explicit approach to solve this equation and the results
are used to compare the response of the TRM model for different values of [E]
for two cases: the first is given for an initial radius of r0 = 0.3 and the second
for r0 = 0.025 (see Figures 5.8.a and 5.8.b left). The initial mesh for each one
of the two cases is given in Figures 5.8.a and 5.8.b right respectively. Note how
in the first case, the initial circle boundary is discretized by a number of nodes
sufficiently capable of capturing precisely the value of its curvature, hence it will
serve to evaluate the accuracy on the kinetics of a typically curved boundary,
while in the second case, the circle boundary is only defined by a few nodes al-
lowing to evaluate the behavior of a nucleus when it is inserted on the domain.

Results for this first case are given in Fig. 5.9 along with the solution of
Eq. 5.14 for different values of [E], Fig. 5.9.left illustrates how the references
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Figure 5.8: Circle Test, left: initial state and right: initial mesh a) r = 0.3 radius
(Surface=0.287) b) r = 0.025 radius (Surface=0.01963)

curves are superposed to the different simulated curves with a very low error
(around 2 % max see Fig. 5.9.right). Furthermore, the analytic metastable case
(given for [E] = 10/3) shows a very good behavior losing only 1.2% of its surface
at t = 0.09.

Similarly, The results for the second circle case are given in Fig. 5.10. Here it
is appreciated how for the cases where the capillarity is the higher driven force
([E] = 0, 10, 20, 30), the circle disappears at the good rate. An interesting dis-
cussion concerns the case with [E] = 40 which corresponds analytically to the
metastable configuration. In TRM simulation, the grain disappears. This behav-
ior is due to the low number of nodes at the interface, producing an overestimation
on the computed value of its curvature, making it shrink from the very first in-
crement. A value of [E] ≈ 48, 5 was necessary on the simulated side to maintain
a metastable position (an increase of 21.2% accordingly to its analytical value).
Moreover, for this value, the error on the prediction of the evolution of the surface
was also the highest, going up to 92% after t = 0.003. Of course, this error is
given as the simulated circle maintains its surface, while the analytical solution
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Figure 5.9: Evolution of the surface (left) and L2 error (right) for the circle test
case for an initial circle radius r = 0.3 (Surface=0.287) a mesh size h = 0.006 and
a delta time dt = 3·10−5, the analytical results (References) are shown superposed
to the simulated curves in black dashed lines. The expected metastable curve is
given for a [E] = 10/3 (Red curve).

shows a continuous increase. The curves corresponding to [E] = 50, 60, 70, 80
(for which the higher driving force is the SE) show a decreasing error when the
value of [E] increases. This result can be used on the determination of factor
ω used in Eq. 5.12 where the authors have estimated that a value of ω = 1.5
(which counteracts for an increase of 50% over the analytical value of [E] for a
metastable state, see the curve [E] = 60 in Fig. 5.10.) is sufficient in order to
give the inserted nucleus a growing state and prevent its early disappearance.

Figure 5.10: Evolution of the surface (left) and L2 error (right) for the circle
test case with an initial circle radius of r = 0.025 (Surface=0.01963) a mesh size
h = 0.025 and a delta time dt = 1 · 10−5, the analytical results (References)
are shown as dashed lines of the same color of their corresponding simulated
evolution. The expected metastable curve is given for a [E] = 40 (orange curve),
but metastability was found for [E] = 48.491 (Red curve)
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5.5.2 Triple junction: The capillarity effect on the quasi-
stable shape of multiple junctions

In [139, 216] analytic solutions for the movement of multiple junctions in a quasi
steady-state under the influence of SE were presented. In [139] the so called
“Vanishing Surface Tension” (VST) test was introduced to demonstrate the non-
uniqueness of the solution presented in [216] hereafter called the “Sharp” solution,
this test (the VST test) takes the form of the limit problem given by:

v⃗ · n⃗ = −M([E]ij + ϵγκ), with ϵ→ 0, (5.15)
which has subjected to several 2D test cases and a perturbation analysis to

demonstrate that the VST solution corresponds to one of the solutions when ϵ = 0
and to the unique solution otherwise.

These solutions were later studied in [5, 154] using a LS-FE model to obtain
the same behavior both in 2D and 3D. Here we have reproduced with the TRM
model two tests that show the same behavior as in [139, 5, 154] for the 2D so-
lutions. For all tests, the “Sharp” solution was obtained when capillarity effects
were taken into account (with ϵ = 1) and the VST solution when no capillarity
was introduced in the system (hence with a value of ϵ = 0). Furthermore, we
have developed analytic equations for the evolution of the growing surface in our
specific case (see Fig. 5.11), these analytic evolutions are valid up to the point
of contact of the multiple junction with the lower edge of the equilateral triangle
(the limits of our domain) and allow us to make a more quantitative comparison
in terms of error.

Figure 5.11: Initial state for the triple junction test, three phases immersed in a
domain in the shape of an equilateral triangle, this shape is intended to maintain
an orthogonal position of the boundaries with respect of its limits while the
configuration evolves. a) Initial configuration and b) initial mesh.

For this test case, the initial conditions are those presented in Fig. 5.11.left,
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three phases immersed in a domain in the shape of an equilateral triangle, this
shape is intended to maintain an orthogonal position of the boundaries with re-
spect of its limits while the configuration evolves. Two of the phases (the two
in the lower part of the domain) will have a constant value of SE of α and the
third phase a value of β < α, this configuration will produce a global movement
of the triple junction downwards at a constant and normal velocity of the flat
interfaces equals to α−β. Eventually, the triple point will reach the bottom part
of the domain making it to split and evolve towards a lower energy state; even
though this portion of the simulation is showed in some of the results it is not
relevant to our study, hence we will give quantitative results up to the point of
splitting. The initial mesh for every test performed is shown in Fig. 5.11.right
corresponding to a mesh size parameter of htrm = 0.006. Furthermore, values for
the boundary energy and mobility have been set to γ = 1 and M = 1 respectively.

The analytic solution for the evolution of the surface of the upper phase (the
growing phase) for the Sharp solution is given by:

SCap =
(

2a√
3
− y

)2 √3
4

, (5.16)

where a is the length of one of the sides of the equilateral triangle (here a = 1)
and y is the vertical position of the triple junction measured from the base of the
triangle and given by the following expression:

y = a

2
√

3
− |v⃗ · n⃗| 2t√

3
, (5.17)

where t is the time and the expression |v⃗ · n⃗| is the instant normal velocity of
the flat phase boundaries, i.e. α− β.

Similarly, the analytic response of the VST solution in terms of surface for
the growing phase is given by

SNoCap = SCap +
(

π

6
− 1√

3

)
(|v⃗ · n⃗|t)2. (5.18)

Two test were performed: one with β = 2 and α = 4, i.e. |v⃗ · n⃗| = [E] = 2
and one with β = 10 and α = 20, i.e. |v⃗ · n⃗| = [E] = 10. The two tests were
performed with a time step ∆t = 1 · 10−5. Results for the evolution of the mesh
and the surface are given in Figures 5.12 and 5.13 for the first and the second case
respectively. It is clear that the accuracy on the scalability of the solution is very
good as Figures 5.12.a, b and c are almost equal to the ones of Figures 5.13.a,
b and c respectively which were obtained for a velocity 5 times higher. Note
that the only different frame is given for Figures 5.12.d right and 5.13.d right as
here the capillarity effects over the limits of the domain are not negligible and in
Fig. 5.12.d right the configuration have had 5 times more time to evolve to its
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Figure 5.12: States for the triple junction test case with a value of [E] = 2, left:
with ϵ = 0 and right: with ϵ = 1 at a) t = 0.02 b) t = 0.04, c) t = 0.06, d)
t = 0.08.

given state.

The evolution of the surface of the growing phase and its error with respect
to equations 5.16 and 5.18 is given in Fig. 5.14, where the L2-Error for both cases
was lower than 0.8%.
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Figure 5.13: States for the triple junction test case with a value of [E] = 10, left:
with ϵ = 0 and right: with ϵ = 1 at the instant a) t = 0.004 b) t = 0.008, c)
t = 0.012, d) t = 0.016.

5.5.3 DRX/PDRX case
Here a simulation with a few initial grains will be performed using the recrystal-
lization method mentioned in section 5.4: the initial tessellation will be realized
thanks to a Laguerre-Voronoi cells generation procedure [55, 56, 57] over a rect-
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Figure 5.14: Evolution of the surface of the growing phase of the triple junction
test case, from top to bottom: (top) Evolution of the surface, (center) Zoom in
the red zone, (bottom) L2-Error over the evolution of the surface. Left: results
for the test with [E] = 2 and right: with [E] = 10

angular domain of initial dimensions 0.65 × 0.328 mm (see Fig. 5.15) and the
values for M , γ, τ and ks are chosen as representative of a 304L stainless steel
at 1100 ◦C (with M = M0 ∗ e−Q/RT where M0 is a constant M0 = 1.56 · 1011

mm4/Js, Q is the thermal activation energy Q = 2.8 · 105 J/mol, R is the ideal
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Figure 5.15: Initial State for the DRX/PDRX test case.

gas constant, T is the absolute temperature T = 1353 K, γ = 6 · 10−7 J/mm2,
τ = 1.28331 · 10−12 J/mm and ks = 0.0031 s−1 [6, 7] ). Additionally, the pa-
rameters K1, K2, Kg and δ are taken as dependent of the absolute value of the
component xx of the strain rate tensor ε̇ (|ε̇xx|) which is defined as corresponding
to a plane deformation case. These parameters will be obtained using a linear
interpolation of the values presented in Tab. 5.1.

Table 5.1: Parameter data table for the DRX PDRX test case, when in range
|ε̇xx| = [0.01, 0.1] s−1 the values are interpolated. If |ε̇xx| > 0.1 the value for the
corresponding parameter will the same as for |ε̇xx| = 0.1 s−1, the same strategy
applies when |ε̇xx| < 0.01.

|ε̇xx| s−1 K1 mm−2 K2 Kg mm · s−1 δ
0.01 1.105 ·109 9 1.3 ·10−4 0.937
0.1 1.55 ·109 6.9 9 ·10−4 2.245

Moreover, during PDRX (|ε̇xx| = 0), the parameter δ will take the value of
9.18 following the findings in [51]. Also, as explained in section 5.4.1, during
PDRX the parameter ρc will be computed using the apparent effective strain
rate ϵ̇s (see Eq. 5.10 and Fig. 5.17.right) instead of the effective strain rate ϵ̇
(equals to 0 in this regime). Finally, outside the range of interpolation, the val-
ues are computed as follows: if |ε̇xx| > 0.1 the values of all parameters will take
the same values as for |ε̇xx| = 0.1 s−1, similarly, the same strategy applies when
|ε̇xx| < 0.01, using the values for |ε̇xx| = 0.01 s−1 (see Fig. 5.16 for an illustration
of the values of K1, K2, Kg and δ in function of |ε̇xx|).

Four cycles of deformation/coarsening will be applied as illustrated in Fig. 5.17,
Fig. 5.17.right shows the computed values of the effective strain rates ϵ̇s and ϵ̇,
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Figure 5.16: Evolution of the parameters of table 5.1 in function of |ε̇xx|.

Figure 5.17: Deformation loading strategy for the DRX and PDRX case: right:
the computed values of the effective strain rates ϵ̇s and ϵ̇, left: the strain defor-
mation component ε̇xx, where multiple markers have been drawn, corresponding
to different states during the simulations.

while Fig. 5.17.left shows the strain deformation component ε̇xx, where multiple
markers have been displayed, these markers correspond to different states along
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with the simulation that will be useful when analyzing the results.

Statistical comparisons of the TRM model and the response obtained by a
FE-LS approach presented in [5, 167, 7, 170] will be given. This approach uses a
more classic method of mesh adaptation during calculations where the interfaces
are captured with an anisotropic non-conform local refined mesh. This method-
ology will be denoted in the following as the Anisotropic Meshing Adaptation
(AMA) model.

Figure 5.18: States 1 to 3 (see figure 5.17) obtained with the TRM model. 1: the
firsts nuclei appear, 2: end of the first stage of deformation, 3: end of the first
grain coarsening stage.

A well-known behavior of full-field simulations of microstructural evolutions
is that the reduced mobility (γM product) is classically impacted by the choice
of the numerical method and is not only a universal physical parameter. In other
words, the reduced mobility is a physical parameter that needs to be identified
comparatively to experimental data. This identification may lead to different
values depending generally on the numerical method used [215]. In chapter 3,
the reduced mobility was adjusted in order to minimize the L2-difference be-
tween the mean grain size evolution curves considering TRM or AMA numerical
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strategies. The same methodology was used here in the global thermomechani-
cal paths leading to an increase of 40% in the optimal identified reduced mobility.

Here, we have chosen the AMA case as a reference even though there is no
way to know which model gives the most accurate response to the given physical
problem; this choice on the other hand is given as an example of how the TRM
model can indeed obtain similar responses to well-established models in the field
of microstructural evolutions.

Multiple microstructural states have been retrieved from the results given by
the TRM model. These states are marked with numbers corresponding to the
states of Fig. 5.17:

States 1 to 3 are given in Fig. 5.18, here state 1 illustrates the apparition of the
firsts nuclei in the positions where the dislocation density field reaches its value
ρ ⩾ ρc. Then state 2 gives the end of the first stage of deformation where more
nuclei have appeared, note that the value of the SE in some of the small grains
is different from others, these grains have been present longer in the domain and
consequently have been subjected to strain hardening, contrary to the nucleus
that have appeared later, during or at the end of this deformation stage. Finally,
state 3 shows the end of the first grain coarsening stage, where nuclei have had
time to grow as a product of the high difference in energy with their surroundings.

Figure 5.19: States 4 to 6 (see figure 5.17) obtained with the TRM model. 4: the
nuclei appear on the regions where ρ > ρc, 5: all the domain is now above the
value of ρc hence the nucleation occurs everywhere, 6: end of the second stage of
deformation, here the maximum number of grains is reached (4250 grains).

States 4 to 6 are presented in Fig. 5.19. In stage 4 only a small percent of the
domain have a dislocation density of at least ρc and nucleation is restricted to
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these zones, contrary to stage 5, where a bigger part of the domain has reached
the value of ρc, consequently, new grains appear everywhere. Finally, the end of
the second deformation stage is given in state 6 where the first peak of number
of grains is reached (4250 grains).

Figure 5.20: States 7 to 10 (see figure 5.17) obtained with the TRM model. 7:
end of the second grain coarsening stage, the number of grains drops very quickly
given by the increase of the value of δ from 2.245 to 9.18 (its dynamic vs its static
value), 8: end of the third deformation stage, 9: end of the third grain coarsening
stage, 10: end of the fourth deformation stage.

States 7 to 10 are given in Fig. 5.20, these steps are representative of the ends
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of the third and fourth deformation/coarsening cycles, where during the defor-
mation the nucleation process increases the number of grains while in the grain
coarsening stages the high value of the parameter δ (2.245 to 9.18 its dynamic
vs its static value) makes the grain number decrease rapidly (see Fig. 5.25.a) for
the evolution of the number of grains).

Figure 5.21: States 11 to 14 (see Fig. 5.17) obtained with the TRM model. these
state correspond to a value of time t of 30, 40, 50 and 60 seconds respectively.

States 11 to 14 are provided in Fig. 5.21, these states correspond to a value
of time t of 30, 40, 50 and 60 seconds respectively. In this range of time no
deformation is considered. Note how the limits of the scale in Fig. 5.21 change as
a product of the disappearance of high energetic grains and to the annihilation
of dislocations simulated through Eq. 5.8.

Statistical values for the states 4 to 6 and 11 to 14 are given in figures 5.23
and 5.24 respectively. The grain size distributions for the TRM model without
a mobility increase and with a mobility increase of 40% have been plotted along
with the response given by the AMA case. Similarly the evolution of the mean
grain size are provided for all simulations in Fig. 5.22.left and the L2-difference
to the AMA case is given in Fig. 5.22.right

Finally, the evolution of some representative values are given in Fig. 5.25: the
evolution of the number of grains, the recrystallized fraction, the mean value of
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Figure 5.22: Evolution of the Mean grain size (left) for the TRM model and the
L2-difference with the AMA simulation (right).

ρ pondered in surface (ρ) and the total perimeter of the grains whose dislocation
density is greater than ρc (Pc) are provided.

These results show a good agreement between the general behavior of the
TRM model and the behavior of the AMA simulation when an increase of 40%
is considered to the reduced mobility Mγ value (following the findings of chapter
3). The computational cost for the different iterations of the TRM model is given
in Fig. 5.26, where for the slower simulation, the time needed for its completion
was of 25 min while the fastest took 20 min, a very small CPU-time compared to
the time needed for the AMA case (4 hours and 38 min).
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Figure 5.23: Grain size distributions pondered in surface for the states 4 to 6
(example of a deformation Stage). A peek on the nucleus size can be observed.
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Figure 5.24: Grain size distributions pondered in surface for the states 11, 13 and
14 (example of a grain coarsening stage). The values are distributed more evenly
on the size range (x axis) as a product of the grain growth.
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Figure 5.25: different values as a function of time for the DRX and PDRX test
case, a) Number of grains, b) Recrystallized fraction, c) Mean value of ρ pondered
by surface, and d) Critical perimeter for the computation of the nucleation rate
in Eq. 5.11.
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Figure 5.26: CPU-time for the different simulations using the TRM model, the
computational cost drops as the number of simulated grains decreases.
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5.6 Discussion and conclusion
In this chapter, the TRM model presented in chapters 3 and 4 in the context of
GBM by capillarity has been adapted in order to take into account bulk terms
due to the SE during plastic deformation. This adaptation has made possible
the integration of a recrystallization model to the TRM approach, for which a
nucleation procedure has also been presented.

The algorithms presented in section 5.3.1 and represented by Eq. 5.4 for the
computation of the velocity at multiple junctions, although intuitive have not
been published before to the knowledge of the authors, only [142] shows a similar
(more indirect) approach in the context of vertex simulations.

Results for the circle test case and tripe junction case have demonstrated the
high accuracy of the TRM model in the modeling of boundary migration due to
capillarity and SE, where in the normal context (for typical grain boundaries and
multiple junctions), an error no greater than 2% was found. Also, the circle test
case showed the typical behavior of a nucleus when subjected to a wide range
of SE around its metastable point and helped define the safety factor ω used
in Eq. 5.12, defining the minimal radius to nucleate in the context of the TRM
model.

Finally, a DRX/PDRX test case was considered in order to test the recrys-
tallization model provided in section 5.4 for 304L stainless steel at 1100 ◦C. A
reference test case using the same ReX model but with a FE-LS strategy was also
considered (AMA case) [5, 167, 7, 170]. Following the findings of chapter 3, an
optimal reduced mobility was calibrated to perform the tests (40% higher than
the mobility used in the AMA case context). Results show a very good agreement
between the two models. Moreover, the CPU-times of the TRM model were much
lower being between 20 to 25 minutes against the 4 hours and 38 minutes needed
for the AMA case for its completion.

The works developed in this chapter regarding the new possible topological
operations, inherent to GBM governed by different driving pressures can also be
used in the context of anisotropic grain boundary properties, as in such a context,
boundaries may exhibit similar behaviors (sub-segmentations of preexistent in-
terfaces, see Fig. 5.3). The application of the TRM to an environment with high
heterogeneities on the definition of grain boundary properties will be presented
in chapter 6.
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Résumé en Français du Chapitre 5
La nouvelle méthode TRM introduite aux chapitres 3 et 4 est étendue pour
étudier des phénomènes relatifs à la recristallisation (ReX) dynamique (DRX)
et post-dynamique (PDRX). À cet effet, plusieurs modifications et nouveaux
développements ont été réalisés:

• Une nouvelle formulation discrète pour le calcul de la vitesse aux jonctions
multiples, issue des pressions exercées par l’énergie stockée, a été proposée.

• Des modifications sur le comportement du remaillage ont été réalisées, afin
de prendre en compte un spectre plus large des changements topologiques
pouvant apparaître à cause du nouveau terme de vitesse.

• Une procédure de remaillage pour l’apparition de nouveaux grains (germes)
a été établie afin de créer les nouveaux joints de grains.

• Des lois de nucléation phénoménologiques, utilisées récemment sur des sim-
ulations de type LS-EF, ont été implémentées dans le contexte du modèle
TRM.

Ces nouveaux développements permettent la simulation de cas académiques
portant sur le comportement du modèle face à des mécanismes de type ReX, où
plusieurs forces motrices agissent sur les interfaces (capillarité et énergie stockée).
Ces résultats montrent un bon comportement du modèle et une erreur faible sur
les différents tests.

Finalement, un chemin thermomécanique réaliste (au sens industriel) a été
considéré. Il a permis de mettre en évidence la capacité de l’approche TRM de
modéliser, en grandes déformations, des mécanismes de type DRX et PDRX. Les
résultats montrent un bon accord avec les prédictions LS-EF, mais en des temps
de calculs bien meilleurs (20 à 25 minutes pour l’approche TRM, 4h 38min pour
l’approche LS-EF)

Les développements de ce chapitre concernant les nouveaux changements
topologiques peuvent aussi être appliqués au contexte où les propriétés de joint
des grains ont un caractère anisotrope. Cet aspect est discuté dans le chapitre
suivant.
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Chapter 6

Towards the modeling of
heterogeneous and anisotropic
phenomena with the TRM model

This chapter presents the implementation and application of the new front-
tracking methodology introduced in chapter 3, to the context of anisotropic grain
boundary motion. The new formulation of the boundary migration velocity can
take into account any source of heterogeneity both at grain boundaries as well as
at multiple junctions. Special attention is given to the decomposition of multiple
junctions (MJs) of high order, for which an algorithm is proposed based on the
reduction of the local grain boundary energy. Numerical test cases are provided
at the end of the chapter in the context of highly heterogeneous systems, and
comparisons with a recently developed LS-FE strategy are given. Finally, the
computational performance of the model will be studied comparing the CPU-
times obtained with the same model but in a homogeneous context.
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6.1 Introduction

The grain boundary motion of polycrystals has been studied for many decades,
both, from an experimental and a numerical point of view. The majority of ex-
perimental observations at this scale suggest that the migration of boundaries is
in general, a strongly heterogeneous phenomenon, involving complex dynamics
and topological transformations of the grain boundary network. However, it is
generally accepted in the literature, that the microstructure of given materials
(such as 304L stainless steel) behave homogeneously enough to ignore their het-
erogeneities when polycrystal modeling is considered. This hypothesis is used in
numerical environments to propose FF models of microstructural evolution, using
isotropic grain boundary properties, e.g. isotropic GG.

This is, however, a strong hypothesis when properties of GBs in a material
are known as highly heterogeneous, for example, when a strong texture with par-
ticular γ values are involved, or when special GBs (e.g. twin boundaries [25]) are
present.

Commonly in the literature [23], the source of the anisotropy of GBs have
been considered given as a function of the disorientation angle θ and the inclina-
tion of the interface. Typically θ is function of the three Euler angles (φe1, Φ, φe2)
defining the crystallographic misorientation between two adjacent grains, and the
inclination can be considered through the local normal vector n⃗ of the interface.
This gives a total of 5 degrees of freedom (DOF) system defining the values of
GBs properties, which can be expressed as a function of the tuple (Mlw, n⃗). These
kinds of systems at the polycrystal scale need to be modeled through the use of a
numerical approach able to take into account this kind of data set. As such, in the
same manner as in [217], here we will differentiate three kinds of numerical mod-
els in this context: isotropic, heterogeneous, and anisotropic models. Isotropic
models are those considering GBs properties as constant for its formulation (e.g.
the LS model given by Eq. 2.10 is a simplification of Eq. 1.25 where γ and M have
been considered as invariant in space). On the contrary, Anisotropic models,
are those using a formulation where, any assumption regarding the invariability
of these quantities in space is discarded, being able to use properties dependent
on the tuple (Mlw, n⃗) (i.e. X(Mlw,n⃗) where X is either γ or M).

Of course, anisotropic models are much more complex than those using the
isotropic hypothesis, since, in this context, special attention must be given, for
example, to the meaning of the surface tension component of interfaces, as one
must be aware that torque terms, derived from the variation of the GB energy γ
on the parametric space of a surface may appear [218]. As such, deriving a math-
ematical model ready to use an anisotropic set of GBs properties is a complex
task, and historically, authors in the literature have proposed alternatives: het-
erogeneous models. Heterogeneous models consider within their formulation
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the existence of a variation of properties, in function of only the misorientation
between two adjacent grains Mlw (X(Mlw)), neglecting its dependence on n⃗. In
this context, a given GB is given homogenized intrinsic properties (constant in its
parametric space), but not equal to the ones of other GBs. i.e. grain boundary
properties only change at multiple junctions (MJ) (or multiple lines in 3D) when
crossing from one GB to another.

Several approaches have been proposed in the literature to model heteroge-
neous/anisotropic GG. Beginning with the Monte Carlo and extending to Phase-
Field, Level-Set and Vertex approaches, heterogeneous (X(Mlw)) [63, 143, 144,
130], and anisotropic (X(Mlw,n⃗)) [23, 145, 17] models have been proposed. How-
ever, it has been mentioned in the previous chapters that all these methods are
constraint by different reasons each, typically: i. the use of regular grids [152, 153]
(difficulty to model deformation), ii. high computational cost [23], iii. the un-
clear definition of the grain boundary properties and the use of its derivatives
in the model formulation (quite common in heterogeneous formulations), and
iv. the no-discretization of grain interiors [14, 17] (leading to the difficulty to
model intragranular phenomena). Additionally to these aspects, in the context
of anisotropic boundary properties modeled using Phase-Field models, although
being an appropriate numerical environment, showing interesting results in this
context, one should be aware of inherent numerical instabilities, especially for
high heterogeneous/anisotropic systems [130, 120].

As an alternative to model anisotropic or heterogeneous microstructural evo-
lutions, we propose the TRM model presented in chapter 2. In this chapter,
the needed implementations in order to model fully anisotropic grain properties
with the TRM model will be presented. Special attention will be given to the
development of a robust high order MJ decomposition algorithm and to the refor-
mulation of the velocity equation at triple junctions extending the methodology
presented in [14] to an anisotropic context, using the notions used in [17] for its
discrete formulation. Finally, for the purpose of this chapter, the TRM model
will be tested in multiple heterogeneous environments identical to the ones pre-
sented in [143, 144] while the numerical test in a fully anisotropic environment is
a perspective and will be presented in a forthcoming publication.
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6.2 Numerical method
In this section, the necessary concepts and new implementations needed by the
TRM model in order to model GBM using anisotropic grain boundary proper-
ties will be explained. In fact, the topological changes that may occur in this
context have the same level of complexity as the ones produced by GBM under
the influence of stored energy, hence no supplementary development is needed
regarding this aspect. However, notions regarding the anisotropic formulation of
a velocity by capillarity in such an anisotropic context, have not been covered in
the works presented in the previous chapters. Additionally, in chapter 3 it was
mentioned that the decomposition of MJs of high order had been simplified when
using isotropic GB properties, and a more developed algorithm was needed to
obtain valid predictions in an anisotropic context. These notions will be covered
in this section, along with a quick note on the computation of misorientation and
disorientation angles.

Hereafter, we will consider that γ(Mlw,n⃗), while the mobility term M will be
considered constant in space. This framework is largely accepted and used at the
polycrystal scale. However, it also must be highlighted that the description of γ
or the reduced mobility (Mγ) is an active topic of research due to misfits between
some experimental works and the actual picture of these parameters [219, 220].
Recent advances concern the introduction of models using tensorial mobility and
disconnection models used at the GB scale [221, 222].

6.2.1 Grain boundary motion by capillarity: Anisotropic
context for the TRM model

In [17], a formulation for the computation of the velocity of GBs and triple
junctions using anisotropic GB properties was proposed in the context of the
Vertex model. This formulation uses the tensile character of the capillarity forces
exerted at every node based on a discrete analysis, similarly to the one used in
this work in chapter 5 for the computation of a velocity from a stored energy field
at triple junctions. The model in [17] writes for the velocity at MJs:

v⃗ci = Mi

∑
j

γij t⃗ij + τijn⃗ij

|NiNj|

 , (6.1)

where the index i denotes the node representing the MJ Ni and j their connec-
tion to node Nj, Mi is the mobility of node Ni, γij, t⃗ij and n⃗ij are respectively the
boundary energy, the unit tangent vector and the normal of the segment NiNj.
Note that γij = γji but t⃗ij = −t⃗ji and the direction of the normal n⃗ij is arbi-
trary. Finally, note the apparition of the term τij which correspond to the torque
experienced by the segment NiNj due to the change of the GB energy given by
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its dependence on the inclination angle ω [218], this torque term is defined as
follows:

τij = − dγ

dωij

. (6.2)

In [14], three formulations were given for the computation of the velocity at
triple junctions in the context of isotropic GB properties, from which we have used
the so-called model II to find our velocity at MJs in chapter 3, 4 and 5. This
formulation can be rewritten in the context of heterogeneous grain boundary
properties (hence, in the absence of torque terms) and for MJs of arbitrary order,
in a very similar way as in Eq. 6.1:

v⃗ci = Mi

( ∑
j γij t⃗ij∑

j |NiNj|

)
, (6.3)

where the only difference with Eq. 6.1 is that the terms in the numerator
contribute all in the same amount to the summatory, instead of being escalated
each by a the term |NiNj|−1. Indeed, in our experience, the homogenization of
the contributions of the numerator term by the separated summatory ∑j |NiNj|
has proven to be more stable than the one given in Eq. 6.1, especially when the
value of any |NiNj| approaches to zero (or when |NiNj| << |NiNk| for all k ̸= j).
For this reason, the use of Eq. 6.3 is preferred here but maintaining the torque
terms of Eq. 6.1:

v⃗ci = Mi

(∑
j γij t⃗ij + τijn⃗ij∑

j |NiNj|

)
. (6.4)

This equation can be used along with Eq. 5.4 for the modeling of GBM under
the influence of stored energy and anisotropic grain boundary properties.

Finally, note that torque effects do not only have to be accounted at MJs but
they also appear at GBs. To formulate this for the velocity at GBs we will use a
combination of the discrete approach given in [17] and the standard approach of
the TRM model:

v⃗ci = Mi

(
−γijκin⃗i +

∑
j τijn⃗ij∑

j |NiNj|

)
(6.5)

where the terms κi and n⃗i are computed in the conventional way using the
numerical approximation by splines at the node i. Note that n⃗i ̸= n⃗ij, as n⃗ij

denotes the normal of the segment NiNj and n⃗i the normal to the numerical
approximation evaluated at node i. We acknowledge that this formulation is
somewhat unusual and it will be corrected in future works, with a formulation
completely based on the approximation of interfaces by high order piece-wise
polynomials (splines).
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6.2.2 Minimal-state energy of high-order MJs

Figure 6.1: Possible decompositions of a MJ of fifth order, data regarding the
orientation of each grain is given. One possible decomposition for every phase
involved is depicted. The decomposition of a 5th order MJ results in a 4th order
MJ and a 3rd order MJ.

In this section, we provide an algorithm for the decomposition of high order
MJs when anisotropic GB properties are considered. The main challenge here
is to explore all possible configurations that may proceed after a decomposition
process. As such, the size of the possibilities set P (z), is only dependent on the
order of the MJ z to be decomposed. A 4th order MJ (i.e. 4 grain boundaries
meeting in a point) can be decomposed only in two ways (see Fig. 3.17). However,
the possibilities set P (z) grows much higher when the MJ increases its order.
Consider the configuration given in Fig. 6.1, here a 5th order MJ is given as well
as the initial 5 possible decompositions by the separation of consecutive interface
pairs. Note however that each possibility is conformed by one 4th order MJ and
one 3rd order MJ, from which the 4th order MJ can be decomposed in two 3rd
order MJ. In total, for a 5th order MJ, 5 possible decompositions are allowed
when decomposing all MJ with z > 3 (P 3

(5) = 5 where the upper script means
that all final MJ are z = 3, see Fig. 6.2). P 3

(z) increases rapidly with the order z of
the MJ: for z = (2, 3, 4, 5, 6, 7, 8, ...), P 3

(z) = (1, 1, 2, 5, 14, 42, 132, ...). In general,
the number of possible combinations in this context is obtained by the use of the
Catalan numbers [223] formula Cn:
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P 3
(z) = C(z−2) = (2(z − 2))!

(z − 1)!(z − 2)!
. (6.6)

Of course, the probability of encountering a MJ of order z also decreases as z
increases, as for a MJ of order z to form, it would require that all P(z−1) possible
decompositions were stable. Of course, this notion of stability is related to the
total minimum energy state able to be reproduced, for a given initial configura-
tion. Note that this notion makes also possible that, one could obtain a total
minimal energy state for a MJ with z > 3, in which case this MJ should not be
decomposed [17]. As such, not only the configurations given by P 3

(z) need to be
considered, but also those intermediate (e.g. the ones given in Fig. 6.1), hence
giving P(z) >> P 3

(z).

For the purpose of this work, we have simplified this aspect by accepting
configurations presenting local minimal energy states and by not testing all pos-
sible configurations P(z). Algorithm 10 gives the procedure used in the TRM
model to decompose a MJ. Here we have used the function Eb(B) which gives
the total surface energy of the internal boundary segments B, of a given ele-
ment patch ep, obtained thanks to the function Boundaries(ep), also, we use
the function GL(i, j, N) which returns a list of size i with the jth set of con-
secutive1 boundary segments attached to Node N (i.e. for the case given in
Fig. 6.1, GL(2,1,Nj) = {NjN3, NjN4}, GL(2,2,Nj) = {NjN4, NjN5}, GL(2,3,Nj) =
{NjN5, NjN1}, GL(3,1,Nj) = {NjN3, NjN4, NjN5}... ) and finally, the function
Boundaries(ep). The algorithm first searches between each pair of consecutive
segments, the one that would reduce the boundary energy the most if it is sep-
arated from the MJ (just as depicted in Fig. 6.1), and selects this configuration.
Then, if this configuration actually reduce the initial GB energy given by the
initial state, the initial configuration is replaced and the algorithm continues to
the next MJ. If not, instead of searching between pairs, the algorithm will re-
iterate between consecutive triplets of lines if the order z of the MJ is sufficiently
high (at least z = 6) and so on. Finally, if no configuration tested has a lower
energy than the initial configuration, the algorithm considers the MJ as stable
and continues to the next. Note that the decompositions are made one at a time
for a given MJ each time Algorithm 10 is called. This means that a MJ of order
z = 5 can be entirely decomposed in two increments and one with z = 6 in three.

Of course, this procedure accepts decompositions that could not have a total
minimal energy state (the configuration with the minimum possible boundary
energy) specially for MJ of too high order (z > 6). However, in practice, such
configurations have a very low (almost null) probability of appearance in real
microstructures.

1Consecutivity is measured in this context following polar coordinates (i.e. the angle made
by a given line and the x axis)

233



CHAPTER 6. TOWARDS TRM ANISOTROPIC MODELING

Algorithm 10 MJ decomposition algorithm for the TRM model
1: for all Points: Pi do
2: if z(Pi) > 3 then
3: Ni ← Node representing Pi

4: ep0 ← Elements(Ni)
5: B0 ← Boundaries(ep0)
6: E0 ← Eb(B0)
7: Emin ← ∞
8: S0 ← tuple (ep0, B0)
9: i ← 2

10: for all number of connections of Ni : j do
11: {Lj} ← GL(i,j,Ni)
12: Separate {Lj} from Ni by adding a new Node Nj

13: Create new boundary (PP-Connection) NiNj

14: Bj ← NiNj ∪ B0
15: if Eb(Bj) < Emin then
16: Emin ← Eb(Bj)
17: epj ← Elements(Nj) ∪ ep0
18: Smin ← tuple (epj, Bj)
19: if Emin < E0 then
20: Replace S0 by Smin

21: else if i < z(Pi)/2 then
22: i ← i + 1
23: goto 10:
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Figure 6.2: Final possible decompositions of the MJ of Fig. 6.1 into MJ of 3rd
order, the background color of each final configuration matches similar configu-
rations.

6.2.3 Computation of the disorientation angle

The computation of a misorientation and a disorientation angle in this work
will be performed in a similar way as in [144]. A misorientation is computed
between two neighbors grains Gl and Gm presenting the orientations Ol and Om
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respectively. Such a set of misorientation can be expressed as:

M∗
lw = O−1

l Ow. (6.7)
It is however necessary to compute a misorientation taking into account the

minimization of the disorientation angle θ(Ol, Ow). Hence for all possible sym-
metric representation of the misorientation M∗

lw, with (Si, Sj) ∈ H2 the space
group of the crystal:

Mlw = S−1
i M∗

lwSj
mini,j θ(OlSi,OwSj)

. (6.8)

The search of the minimal disorientation has been implemented using a brute
force algorithm, every misorientation computation needs to iterate over all possi-
ble symmetric representations and select the one with the lowest θ. In this work,
we will consider only cubic type crystals, hence 24 symmetric representations
must be iterated for every misorientation computation.

In the context of the TRM model, these operations need to be done during
two stages of the algorithm:

The first misorientation computation is held before the computation of the
velocity of nodes vi as all boundary properties need to be defined at this stage.
The computation is done once per Line, which attributes all misorientations and
disorientation angles for all L-Nodes and segments of the Lines entities. Note that
a Line can only compute one misorientation, hence it is not necessary to com-
pute it for every node belonging to this line. However, some edges still need to
define their orientation, these are the ones describing a PP-Connection, namely,
the edges defining a connection between two Point entities (see section 3.2.1 for
more information about the data structure used by the TRM model). This com-
putation is necessary as, even though the notion of grain boundary energy do not
hold at MJs in the same way as for normal boundaries, the GB properties of all
interfaces attached to the MJ are needed.

The second misorientation computation is performed during the decomposi-
tion of MJs for all possible new interfaces (see line 13-15: of Algorithm 10). This
could be indeed a very demanding procedure as, for instance, each possible de-
composition will have to search the minimal disorientation angle between all 24
equivalent symmetries defined for the crystal. We will study the relative cost of
the misorientation computation at the end of section 6.3.
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6.3 Numerical results
In this section the TRM model will be tested in a heterogeneous context, meaning
that the influence of the inclination angle ω over the value of γ will be ignored.
γ is then considered only dependent on the disorientation angle θ and being for
all segments defining the boundary between two given grains but different from
all other boundaries. In such a context, the torque term τ is equal to 0 for all
boundary segments and the velocity of all nodes can be computed using Eq. 6.3.

All tests performed in this section have been inspired by the ones presented in
[143, 144] in the same heterogeneous context. In [143], the classical FE-LS formu-
lation of [137, 5, 146] has been reformulated with the main objective of simulating
this kind of phenomena, taking into account the gradients terms produced by a
variation of γ, that were otherwise neglected in a homogeneous context (where
γ is constant in Ω). Given the fact that this formulation takes into account all
variational terms that are relevant in this context, it will be named hereafter
the heterogeneous FE-LS formulation. The numerical testing of this approach
was divided into two parts: firstly, in [143], the numerical analysis is focused on
the evolution of multiple junctions, as a mean to test the heterogeneous FE-LS
formulation presented in the same publication. Secondly, in [144], the same het-
erogeneous FE-LS formulation was tested in the context of heterogeneous GG,
using different formulations for the computation of the grain boundary energy γ,
as a function of the disorientation angle.

We will reproduce these studies with the TRM model.

6.3.1 Triple junction test case
The first test corresponds to the triple junction test, also used in chapter 5. Here,
however, stored energy values are not considered, and the motion of the triple
junction is dictated by the GB energies of the interfaces meeting at the central
node. Fig. 6.3(left) illustrates this aspect, where the term γij denotes the GB
energy between grains Gi and Gj and ϕi is the angle measured at the junction
between the interfaces of grain Gi and the other two grains. For the purpose
of this test, γ13 = γ23, this will provoke a vertical movement of the junction for
any value of γ12 ̸= γ23, until it arrives at its equilibrium position. As such, we
will study the motion and the equilibrium of the junction in function of the ratio
r = γ23/γ12. In this test, dimensionless simulations will be considered, the value
of the grain boundary energies γ13 = γ23 = 0.1 will be held constant as well as
the mobility term M = 1. Moreover, for practical reasons2, Dirichlet boundary
conditions with v⃗i = 0 ∀Ni ∈ ∂Ω, hence impeding the movement of the nodes at

2For r < 1, the MJ moves downwards, which when using Neumann type boundary conditions,
induce a global movement of the interfaces in the same direction, and eventually leads to the
contact of the junction with the base of the triangle. This behavior is not wanted in this context.
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Figure 6.3: Initial state for the triple junction test, three phases immersed in a
domain in the shape of an equilateral triangle, the intersection of the domain
with the interfaces is fixed (Dirichlet conditions v⃗i = 0 ∀Ni ∈ ∂Ω). a) Initial
configuration and b) initial mesh.

the intersection of the GBs and the edges of the triangular domain. Finally, the
mesh size parameter htrm = 0.006 (see chapter 3. for the description of the metric
of the mesh in function of this parameter) and the time step dt = 5e− 5 will be
used for all tests. These values were selected correspondingly to the limit of the
stability region of the TRM model when using piece-wise polynomials (splines)
as a mean to obtain values of curvature and normal (see chapter 3). The initial
mesh is depicted in Fig. 6.3(right).

While there is not an analytical formulation for the movement of multiple
junction during its transient state in this context, the triple junction presents
stationary dihedral angles relying on the energies of the grain boundaries meeting
at the junction [192]. In the absence of torque terms, i.e. when the energy of each
interface is maintained constant, these angles can be computed through Young’s
equilibrium, which resolves for the dihedral angles ϕ1, ϕ2 and ϕ3 (see Fig. 6.3)
the relation:

sin ϕ1

γ23
= sin ϕ2

γ13
= sin ϕ3

γ21
(6.9)

Similarly to [143], ratios in the range of r = [0.53, 10] have been tested and
the obtained equilibrium angles have been compared to the analytical equilibrium
state obtained thanks to Eq. 6.9. Fig. 6.4(left) illustrates the evolution of the φ3
angle for different values of r obtained with the TRM model. These values are
compared to the ones obtained in [143] (see Fig. 6.4(right)), where we have found
that the TRM model evolves faster to its equilibrium state than the heterogeneous
FE-LS method for values of r > 1.67. Also, the TRM model is able to reproduce
more accurately the analytical values of φ3 for r < 1.0. This can also be seen
in Fig. 6.5 where the final value of φ3 is plotted against the grain boundary en-
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Figure 6.4: Triple junction test case: Evolution of the φ3 angle for different values
of r, (left) TRM and (right) LS-FE models. The plotted data for the LS-FE model
was taken from [143].

Figure 6.5: Triple junction test case: (left) Final value for the φ3 angle plotted
against the grain boundary energy ratio r and compared to the analytical equi-
librium value, and (right) L2-Error. The plotted data for the LS-FE model was
taken from [143].

ergy ratio r and compared to the analytical equilibrium value via a L2-Error plot.

Figure 6.6 illustrates the final interface states for both approaches at the end
of the simulation. In [143] it was found that, while the equilibrium angles of ϕ3
were accurately described for values of r > 2.5 near the junction, the behavior
of the interfaces was strongly affected by the boundary conditions applied to the
FE resolution, inducing non-minimal energy configurations. This behavior was
not found nor expected with the TRM model as boundary conditions only affect
the velocity of nodes belonging to the boundary, and as a result, the TRM model
reduces in all cases (until the equilibrium) the total energy of the system. This
result can be found in Fig. 6.7 where the evolution of the normalized GB energy
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Figure 6.6: Triple junction test case: final interface states for the (left) TRM and
(right) LS-FE models. The displayed for the LS-FE model was taken from [143].

EΓ (each curve has been escalated to start from a value equals to 1), has been
plotted as a function of time.

Figure 6.7: Triple junction test case: evolution of the normalized total grain
boundary energy EΓ for the (left) TRM and (right) LS-FE models. The plotted
data for the LS-FE model was taken from [143].

6.3.2 2D GG with heterogeneous GB properties: 5000 ini-
tial grains

Similarly to the triple junction test case, in this section, we reproduce the test-
ing carried out in [144] in the context of the heterogeneous FE-LS formulation
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applied to 2D-GG. Therefore, a squared RVE domain of 1.5 mm of side length,
containing approximately 5000 initial grains will be used to model annealing.
Moreover, even though the statistical data used in [144] for the generation of the
initial Laguerre-Voronoi tessellation is given, we were unable to obtain exactly
the same subdivision of the domain. Fig. 6.8(top-left) illustrates the initial state
of the polycrystal used in all forthcoming simulations. This polycrystal contains
exactly 5089 initial grains and its grain size distribution (pondered by surface) is
given in Fig. 6.8(top-right). Additionally, in all cases, the mobility term will be
held constant and equal to 1.

Of course, before being able to measure a misorientation and grain boundary
properties as a function of them, a grain orientation is given to each grain. These
orientations are computed at random using a uniform generation random function
for each one of the Euler angles (φ1, Φ, φ2). Fig. 6.8(bottom-left) shows the initial
microstructure colored following the orientation magnitude e =

√
φ2

1 + Φ2 + φ2
2 of

each grain. Disorientation angles (θ) have been computed for each Line, L-Node
and PP-Connection (i.e. for all nodes and segments belonging to the GBs) of the
interface using the methodology presented in section 6.2.3. Fig. 6.8(bottom-right)
gives the disorientation angle distribution obtained for our initial microstructure.
The Mackenzie plot [224] for disorientation angles of a cubic sample has been also
plotted showing a very good agreement which our statistical initial generation.

The first set of simulations in this section are dedicated to measure the ac-
curacy of the TRM model to reproduce results using different sets of numerical
parameters, such as the mesh size and time step (htrm, dt) and in the context of
heterogeneous grain boundary properties. A Read-Shockley (RS) type function
[64] has been used for this analysis for the determination of the GB energy γ in
function of the disorientation angle θ:

γ =

γmax

(
θ

θmax

) (
1− ln

(
θ

θmax

))
θ < θmax

γmax θ ≥ θmax

(6.10)

where γmax is the maximal grain boundary energy equals to 1.012 Jm−2 and
θmax corresponds to a threshold angle equals to 30◦. These values are identical
to the ones used in [144], where the authors have explained that contrary to the
common usage of the RS function (using values for θmax in the range of [10◦, 15◦])
the value of θmax = 30◦ has been chosen to exaggerate the heterogeneities at the
GB properties.

Figure 6.9(top) gives the evolution of various parameters for the first 3 hours
of simulated time using a constant mesh size of htrm = 0.003 mm and for various
time steps dt. The mean grain size, the number of grains and the total GB energy
have been plotted, showing a tendency of the data to converge to a fixed solution
when the time step decreases. Fig. 6.9(bottom) gives the L2-difference of each
iteration taking as a reference the curve using dt = 5 s, confirming these results.
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Figure 6.8: Initial state of the 2D heterogeneous GG test case, (top-left) grain
size field, (top-right) grain size distribution weighted by surface area, (bottom-
left) grain orientation field and (bottom-right) probability density plot of the
disorientation angle weighted by length of interface.

Similarly, the simulations were repeated using a constant time step dt = 50 s and
for various mesh sizes, here the tendency of the curves when decreasing the mesh
size is also to converge to a given fixed evolution (see Fig. 6.10), reducing the
L2-difference to the reference curve (here the one using htrm = 0.002 mm) with
every iteration. This study shows that one can expect good accuracy when using
a set of parameters (htrm, dt) in the surroundings of (0.003 mm, 50 s), hence
these values will be used in the subsequent analyses.

Even though we have already given some results for GG under the influence of
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Figure 6.9: Sensitivity to the time step dt for the 2D heterogeneous GG test
case using the TRM model and htrm = 0.003 mm. The evolution of different
parameters is given when using the RS function for the determination of the
GB energy γ in function of the disorientation angle θ: (left) grain Size, (center)
number of grains and (right) total GB energy. Each value (top) is compared
to the evolution of the smallest dt and the L2-difference to this value is given
(bottom).

heterogeneous GB properties, the variation on the heterogeneities using a RS type
function is not very high. This is not a surprise as a very low percent of the grain
boundaries present a disorientation angle value in the “variational” zone of the RS
function (see Fig. 6.8(bottom-right) for the values with a disorientation angle θ <
30◦) and the majority of interfaces present a disorientation angle θ ≥ 30◦ meaning
that they will acquire a value of γ = γmax. To give a broader representativity of
the heterogeneous LS-FE formulation, in [144], multiple functions were used to
compute the value of γ as a function of the disorientation angle. In this section,
we will test the TRM model using two of the new functions presented in [144] to
increase the variability on the GB energy values. As such, the results presented
here can be directly compared to those presented in [144]. The functions used
correspond to the Read-Shockley+ and the Gaussian functions, being the ones
giving the higher heterogeneous configurations, these functions were defined as
follows:

RS+

γ =


γ′

max

(
θ

θmax

) (
1− ln

(
θ

θmax

))
θ < θmax

γ′
max θmax ≤ θ ≤ θthresh

0.1γ′
max θ > θthresh

(6.11)

where γ′
max = 1.1 Jm−2 and θthresh = 55◦.

243



CHAPTER 6. TOWARDS TRM ANISOTROPIC MODELING

Figure 6.10: Sensitivity to the mesh size htrm for the 2D heterogeneous GG test
case using the TRM model and dt = 50 s. The evolution of different parameters
is given when using the RS function for the determination of the GB energy γ in
function of the disorientation angle θ: (left) grain Size, (center) number of grains
and (right) total GB energy. Each value (top) is compared to the evolution of
the smallest htrm and the L2-difference to this value is given (bottom).

Gaussian
γ = γg exp −(θ − θµ)2

2θ2
σ

(6.12)

where γ′
q = 1.54 Jm−2, θµ = 40◦ and θσ = 10◦.

These formulations were used along with the RS function and a homogeneous
formulation (γ = 1.012 Jm−2) in the TRM model for the full field modeling of
annealing, using the initial configuration given in Fig. 6.8. Fig. 6.11 shows the
initial and the final states of the GB network where the color code is represen-
tative of the GB energy of each interface. Here, it is clear how the case using
a RS formulation is too “homogeneous”, presenting just a few variations in the
GB properties (even at the end of the simulation), while the RS+ and Gaussian
are more heterogeneous. Additionally, in the RS+ and Gaussian cases, interfaces
with a high GB energy seem to be eliminated during the early stages of the simu-
lations, giving a higher predominance to low-energy GBs, which is clearly not the
case for the RS configuration. This discussion will be supported below in a more
quantitative manner. Finally, another important aspect seen in the final states
of the RS+ and Gaussian cases is the appearance of stable high-order multiple
junctions predicted in section 6.2.2.
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Figure 6.11: States of the microstructure (top) at the beginning of the simulation
and (bottom) at the end of the simulation, for the cases from right to left: Gaus-
sian, RS and RS+. A much higher heterogeneity is found in the cases using the
Gaussian and RS+ functions, the presence of stable high order multiple junctions
can also be remarked for these configurations.

Figure 6.12 illustrates the normalized GB disorientation distributions for the
heterogeneous test cases given for the initial state and for every hour of annealing.
These data are also compared to the Mackenzie plot. Results show how the RS
does not present an evolution of this property but maintains its tendency to ap-
proach the Mackenzie plot, hence not giving almost any preference to low energy
GBs. Contrarily, the Gaussian and RS+ cases tend to avoid the disorientation
angles that produce a high energy GBs, having maximum values at the disorien-
tation angles producing low energy GBs (e.g for the RS+ case a maximum have
been found for values of disorientation θ > θthresh = 55◦). These results can also
be observed in terms of the normalized grain boundary energy distributions given
in Fig. 6.13, the Gaussian and RS+ cases tend to make disappear high energy
GBs, giving a much higher predominance to low energy GBs in only the first hour
of treatment and continue to promote their permanency (or their appearance) as
times advances, while for the RS case, the changes on the distribution of energy
remain negligible.
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Figure 6.12: Probability density plot of the disorientation angle weighted by
GB length, for the cases using the Gaussian, RS and RS+ functions for the
computation of the GB energy γ, and for different times.

Low energy GBs predominance may produce a deceleration of the evolution
of the grain size in the domain. Fig. 6.14 illustrates the grain size distribution of
the different test cases showing how the RS configuration produces a grain size
distribution with higher sizes while the RS+ and Gaussian cases promote smaller
grains.

Fig. 6.15 gives the evolution of the mean grain size, the total number of grains,
the total GB energy and CPU-time of each simulation. Here, it can be seen how
the reduction of the GB energy is much higher for the more heterogeneous cases,
even though their number of grains and mean size appears to have a ”slower”
evolution than for the RS and homogeneous cases. It can also be seen that the
responses of the homogeneous and the RS cases are very similar, while the CPU-
time is much higher in the RS case and in general, the higher the heterogeneity of
the case, the higher is its computational cost. This behavior can be anticipated
by seeing the evolution of the number of grains, as the more homogeneous cases
reduce much faster this quantity. Fig. 6.16(a) gives the CPU-time per increment
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Figure 6.13: Normalized grain boundary energy distribution using various func-
tions for the computation of the GB energy γ. The distributions are given for
every hour of thermal treatment.

plotted against the number of grains of the simulation for each case, the results
show that for the same number of grains, the Gaussian and RS+ cases are still
more time-consuming. One of the reasons for this result is given by the fact that
the total length of grain boundaries is not reduced equally for all the configura-
tions. Fig. 6.16(b) gives the total GB length plotted against the number of grains
of the simulation showing how the Gaussian and RS+ cases have a much higher
total GB length per number of grains than the RS and the homogeneous cases.
This result, in turn, can not be anticipated as one could actually have guessed
the contrary, by seeing the curves of evolution of the total GB energy given in
Fig. 6.15(bottom-left) in function of time and as illustrated in Fig. 6.15(c) in
function of the number of grains. Once again, this result is a product of the
preference of the higher heterogeneous cases for grain boundaries of low energy,
but also by the more frequent apparition of high-order multiple junctions, that
decelerate the reduction of the total GBs length.
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Figure 6.14: Grain size distributions weighted by surface using various functions
for the computation of the GB energy γ. The distributions are given for every
hour of thermal treatment.

Figure 6.15(d) gives the relation between the CPU-time per increment and
the total GB length, showing how the computational cost of the TRM model in
this context can be more related to the length of boundaries than to the number
of grains. Additionally, it is noticeable that the difference between the com-
putational cost of the homogeneous and the heterogeneous cases. This can be
explained by the fact that for the homogeneous case, it is not necessary to com-
pute the misorientation at GBs nor the lowest energy configuration in the event
of a separation of MJs. These operations are very demanding as both rely on an
iterative computation of the lowest rotation angle between two orientations in a
set of 24 possible rotations, where all of them have to be tested.

The results presented in this section regarding the evolution of the microstruc-
tural properties are very similar to the ones obtained in [144] in the context of
the heterogeneous FE-LS formulation. This suggests that both methodologies
are valid in order to predict microstructural states in a full field context, as even
though the mechanisms behind their evolution are the same, they have been mod-
eled using a completely different numerical scheme, still producing a very similar
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Figure 6.15: Evolution of different parameters as a function of time, for the 2D
heterogeneous GG test case simulated with the TRM model: (top-left) mean
grain size pondered by surface, (top-right) number of grains, (bottom-left) total
grain boundary energy EΓ and (bottom-right) CPU-time of the simulation

outcome. Moreover, the computational power needed to produce these results
using the heterogeneous FE-LS may be much higher than the one needed by the
TRM. The TRM model was able to perform all simulations in less than 1 hour
and 24 minutes in a sequential context an Intel® Core™ i7-7600U processor.
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Figure 6.16: Computational cost of the 2D heterogeneous GG test case as a
function of a) the number of grains and c) the total GBs length. Additionally,
b) gives the total length of GBs as a function of the number of grains. The red
circles in every frame give the beginning of the simulation. The heterogeneous
cases present a much higher computational cost than the homogeneous case as a
consequence of the computation of the misorientation and disorientation angles
at the interfaces.

250



CHAPTER 6. TOWARDS TRM ANISOTROPIC MODELING

6.4 Discussion, conclusion and perspectives

In this chapter, we have provided the necessary implementation for the modeling
of grain growth using heterogeneous grain boundary properties with the TRM
model. These implementations consist in the development of a numerical frame-
work developed on top of the TRM base code, able to measure the misorientation
between neighbors grains. These measurements have been developed in order to
only be calculated at grain interfaces, namely, L-Nodes and PP-Connections.
Additionally, the implementation of a new separation algorithm for high-order
multiple junctions was necessary. The new algorithm iterates between all possi-
ble decompositions conformed by the subsequent separation of pairs of interfaces
from the multiple junction, storing for all iterations the total GB energy change
∆EΓ and selecting/applying the one with the lowest ∆EΓ only if its value is lower
than zero (as for events with a minimum value of ∆EΓ > 0 the original configu-
ration should remain stable).

The new methodology implemented for the TRM model was tested in the
context of heterogeneous grain boundary properties, using identical test cases
like the ones presented in [143, 144]. The results show that the TRM model is
able to produce more accurate results regarding the equilibrium angles of triple
junctions when compared to the analytical values given by Young’s equilibrium.
Additionally, the TRM model ensures at all times low-energy stable configura-
tions contrary to the heterogeneous LS-FE model presented in [143] which may
produce stable configurations with non-minimal energy states. Furthermore, the
TRM model was tested in a GG context using heterogeneous grain boundary
properties in function of the disorientation angle. The initial configuration of
all tests was statistically identical to the one presented in [144] with 5089 initial
grains. Sensitivity analyses were performed, resulting in a tendency of the model
to converge to a fixed solution when decreasing the set of parameters (htrm, dt)
controlling the mesh size and the time step respectively. Then, multiple for-
mulations for the determination of the grain boundary energy γ in function of
the disorientation angle θ were used, namely the Read-Shockley (RS) [64], the
modified Read-Shockley (RS+) and the Gaussian formulations used in [144]. The
results obtained in these tests showed a very similar statistical and mean behavior
with the results presented in [144] for the same formulations of γ(θ) but used in
a LS-FE context, hence validating both approaches at this scale.

A quick study on the computational performance of the TRM model was
also performed for the last set of simulations. The results show that the CPU-
time per increment is proportional to the total length of GBs. Additionally, the
computational needs of the heterogeneous cases are higher than when using a ho-
mogeneous configuration, as the computation of the disorientation angles, even if
it is only performed at the interfaces, remains very costly, taking up to the 60%
of the total CPU-time.
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Finally, further analyses need to be performed with the TRM model involv-
ing a much higher number of initial grains, in order to measure the impact of
the size of the domain on the statistical behavior of grains under the influence
of heterogeneous grain boundary properties. This remains a perspective of the
present work, along with the application of the TRM model in a fully anisotropic
context where the influence of the inclination of the interface on the computation
of γ would also be taken into account.
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Résumé en Français du Chapitre 6
Ce chapitre a été consacré aux développements du schéma numérique permettant
au modèle TRM la prise en compte des anisotropies/hétérogénéités sur la défini-
tion des propriétés physiques des joints de grain.

Une nouvelle formulation pour le terme de vitesse issue de la capillarité a
été proposée. Ce terme de vitesse permet d’introduire les termes torque présents
sur les arêtes des interfaces lors d’une variation dans l’énergie de surface sur la
longueur d’un joint de grains.

D’un autre côté, des développements concernant un algorithme de séparation
des jonctions multiples d’ordre élevé (points quadruples, quintuples...) ont été
introduits. Cet algorithme est basé sur la minimisation locale de l’énergie de
surface dans les voisinages des jonctions multiples en testant plusieurs décompo-
sitions possibles et en choisissant celle avec l’énergie totale la plus faible.

Le modèle a été testé sur un environnement hétérogène: l’énergie des inter-
faces varie uniquement en fonction de l’angle de désorientation des joints de grain.
Étant donné que cette désorientation est constante sur le long d’un joint de grain,
les termes torque sont nuls. Cette considération a permis d’effectuer un cas test
quantifiant l’erreur sur les angles à l’équilibre (équilibre de Young), obtenues aux
jonctions multiples. La méthode TRM s’avère très précise.

Un deuxième cas test hétérogène a été effectué, reproduisant les conditions
initiales (même distribution de taille de grains et même nombre de grains), util-
isées pour la caractérisation d’un modèle LS-EF publié dans un article récent.
Les résultats du modèle TRM sous ces conditions montrent un bon accord avec
ceux obtenus avec le modèle hétérogène LS-EF.

Finalement, la performance numérique du modèle TRM sous conditions hétérogènes
a été comparé à celle avec des conditions homogènes. Cette comparaison mon-
tre une augmentation significative des ressources nécessaires pour des conditions
hétérogènes (un temps de calcul global 5 fois plus important). Cela s’explique,
en partie, par le calcul de la désorientation entre grains voisins.

La méthode TRM est ainsi validée sur un contexte hétérogène, elle est en cours
de test sur un environnement complètement anisotrope (dépendance à l’angle de
désorientation et à l’inclinaison) et les résultats seront présentés dans une future
publication.
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Perspectives

Even though we have provided an accurate and efficient framework for the mod-
eling of microstructural evolutions in a 2D context, the work regarding the TRM
model is far from being finished. Indeed we have covered aspects such as grain
coarsening during annealing, ReX mechanisms, and the influence of heteroge-
neous grain boundary properties during GG, all of them in a 2D context.

Other microstructural mechanisms involve the application of the TRM model
in a fully anisotropic (5 parameters dependence) context, as an extension of the
works presented in chapter 6. These aspects are intended to be studied in the
subsequent PhD work of [225]. Another perspective of the present work is the
development of the TRM approach for the modeling of the Smith-Zener pin-
ning phenomenon by taking into account static or evolving SPPs, this study is
currently being developed in the context of the FE-LS method in [226] and is
expected to be developed also in the context of the TRM model in future works.

A great interest of the present work is the ability of the TRM model to
simulate all these mechanisms using a very high number of grains over small
CPU-times. This aspect was illustrated in chapter 4 of this work, where the
TRM model was used to simulate annealing for a test case made of 545000 ini-
tial grains, to the point where only 1/5 of the initial grains remained (1 hour of
thermal treatment) under 40 minutes of CPU-time, in a cluster station with 140
cores. These works can be extended to study the influence of the size and the
initial subdivision of the domain on the reliability of the obtained results. i.e,
the TRM model can help answer the question of, for simulations using the same
initial grain size distribution, how big must a full field simulation be, to provide
accurate statistical and morphological predictions regardless of the initial sub-
division of the domain (i.e. the algorithm or random generator used to create
the initial microstructural state)?. This question has been formally expressed in
the recent PhD works of [23], and it may have different answers in function of
the considered microstructural attributes or mechanisms being studied (GG, the
anisotropy of GBs properties, ReX...). Other questions regarding this aspect may
be risen, such as, is it the same to simulate 100 different microstructures all with
the same initial grain boundary distribution than 1 simulation 100 times bigger?
or the analogous question, now in the context of heterogeneous GBs, regarding
the initial orientations of grains.
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Moreover, another high perspective of these works is the extension of the
TRM method to a 3D context, which represents a great challenge but not an
impossible one. Many of the algorithms implemented and presented in this PhD
work have been developed to be used in a 3D context. Additionally, the fact that
the model has been built upon unstructured meshes based on simplexes (which
need to maintain a correct geometrical description of the domain they represent)
is an advantage of the TRM model over other Front-Tracking methods regarding
their 3D implementation, as all topological changes of the microstructure can be
reduced to simple local remeshing operations performed at the boundaries be-
tween grains.

Similarly, the use of unstructured FE meshes carries the benefit of using the
FE method for the resolution of more complex formulations. For instance, the
TRM model produces meshes being directly applicable to the context of crystal
plasticity, a subject of great interest studied in the PhD works of [227], that could
refine the stored energy data used during ReX and give a more realistic displace-
ment field of an RVE subjected to a thermomechanical loading (see chapter 5
where plane deformation hypotheses were used).

Indeed, refining the stored energy field description during full-field simula-
tions can lead to the study of the substructures (subgrains) and to propose more
precise nucleation models.

Moreover, until now, full-field models have been limited to the study of RVEs
that, even though they contain a high number of grains, they are usually repre-
sentative of very small portions of the material. The works presented in this thesis
can make it to take full-field simulations to another scale, where 107 or 108 grains
would be considered, hence being able to predict the microstructural behavior of
whole (small) macroscopic parts, and thus allowing the study of aspects such as
the influence of a temperature gradient and its evolution over time, or the use
of the real deformation field of components being formed. Such simulations are
not possible today and multiscale computations are the norm. Theoretically, the
TRM model could perform simulations at the scale of a small part in a matter
of days (around 6 days in a cluster station with 140 cores for a GG simulation
involving 108 initial grains and 1 hour of TMT). Such computations will also
enable to discuss the limits of RVE computations.

Furthermore, there is a high interest in the application of a deep learning
(DL) (multilayered neural network) protocol to enrich the remeshing strategy
employed by the TRM model. In fact, in chapter 2 the star-connection algorithm
is introduced as a tool for metric-based remeshing. Then in chapter 3, we defined
the remeshing procedure of the TRM model, based on the use of remeshing oper-
ators (edge-splitting, node-collapse...), and we mentioned that our decision was
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based on the fact that we wanted to maintain a complete control over the remesh-
ing procedure (which may not be the case when the star-connection algorithm
is preferred), as from it depends the topological changes occurring in the grain
boundary network. However, this decision may decrease the ability of the TRM
model to generate metric-based unstructured meshes. Two potential candidates
may solve this issue: i. the use of the star-connection algorithm in the bulk of
the grains, blocking all operations modifying the segments of grain boundaries
(Lines), and ii. the use of a reconnection algorithm (such as the star-connection
algorithm) as a generator for a database containing a set of the best possible
reconnection (result) of a set of element patches (entry); the idea would be
to use this database in a DL environment, able to access/interpolate a result in,
theoretically, a fraction of the time that would employ the original reconnection
algorithm3 to generate the same (or a very similar) result. In this scenario, the
database can also contain data regarding the position of the internal node (see
Fig. 2.1.h) that would maximize the element quality of a given patch in a given
metric space. The development of such an environment will be the subject of my
postdoctoral research in 2021.

Finally, Even though all applications of the TRM model in this manuscript
have been performed in the context of microstructural evolutions, the TRM model
can be applied to other solid-state phenomena in the context of multidomain
simulations, using other boundary motion mechanisms and another definition of
the boundary properties.

3Reconnection algorithms perform iteratively the same operations even if the input data
(element patch and quality criteria) is the same (or very similar) to already treated patches.
This could make the mesh adaptation process very costly in terms of CPU-time
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MOTS CLÉS

Eléments Finis, Modèles Lagrangiens, Maillage des interfaces, Levelset, Simulations multidomaines.

RÉSUMÉ

Les industries stratégiques ont un besoin toujours plus croissant dans l’utilisation des matériaux métalliques. Il y ainsi
aujourd’hui une demande forte dans le fait d’être capable de prédire l’évolution des microstructures de ces matériaux lors
de leur mise en forme car leurs caractéristiques microstructurales sont intrinsèquement liées à leurs propriétés en service.
Dans ce contexte de problèmes massivement multidomaines, de nombreuses méthodes dites à champ complet et qui
décrivent les réseaux de joints de grains à l’échelle de la microstructure ont été développées ces quarante dernières
années. Dans un contexte de grandes à très grandes déformations comme c’est le cas pour les procédés industriels
de mise en forme à chaud, l’approche levelset (LS) couplée à une formulation éléments finis (EF) et des méthodes de
remaillage reste l’approche la plus générique et la plus efficace.
Si des améliorations récentes ont été rapportées (logiciel DIGIMU par exemple), la principale faiblesse de cette approche
reste son coût numérique  qui limite le nombre de grains considérés dans les simulations et implique des temps de calculs
importants, principalement en 3D.
Dans ces travaux, les performances réelles de l’approche LSFE sont étudiées et une alternative, dénommée ToRe
alMotion, capable de réaliser des simulations massivement multidomaines en 2D, est introduite. Cette nouvelle ap
proche, appartenant à la famille des méthodes de type « suivi de front », inclut différentes innovations et a été parallélisée.
Les propriétés géométriques des interfaces intervenant dans le calcul des cinétiques sont évaluées uniquement aux in
terfaces et la migration du réseau de joints de grains est réalisée en lagrangien tout en conservant un maillage EF
conforme et global (sousentendant que le coeur des grains est également maillé). Cette méthodologie permet ainsi
une meilleure adaptabilitée aux mécanismes intragranulaires que les approches de type « suivi de front » classiques.
Bien sur, une des ambitions principales de ce travail réside dans l’amélioration des performances numériques de l’état
de l’art tout en conservant la précision et le côté générique (multimécanismes) de l’approche LSFE en grandes dé
formations. Ainsi, de nombreux cas tests 2D en croissance de grains (GG) et recristallisation (ReX) sont réalisés pour
prouver l’efficacité de la méthode. Les résultats s’illustrent par une réduction importante des temps de calcul et offrent
d’importantes perspectives dans le contexte de la métallurgie numérique.

ABSTRACT

Strategic industries make extensive use of metallic materials. Today, there is a strong demand from these industries to pre
dict, during hot metal forming processes, the microstructural evolutions of these materials, which are of prime importance
concerning their final inuse properties.
In this context of massive multidomain problems, numerous fullfield approaches that describe grain boundary (GB) net
work motion at the mesoscopic scale have been developed for forty years. When very large deformations are investigated,
as in the context of realistic industrial thermomechanical treatments, the levelset (LS) approach in the context of finite
element (FE) formulations and meshing/remeshing algorithms remains the most powerful and versatile numerical tool.
Even if recent improvements were realized (context of DIGIMU software), the main weakness of this approach remains
its numerical cost, which limits the number of grains considered (small representative volume elements) and still implies
long calculation times, especially in 3D.
In these works, the performance of FELS models is studied and a new method denominated ToRealMotion, capable to
perform 2D massive multidomain simulations is introduced. This new method, belonging to the family of fronttracking
methods, includes various innovations and has been parallelized. Geometrical properties used in the kinetics are only
computed at the interfaces, and GBs migration is defined thanks to a Lagrangian scheme, keeping a FE discretization of
the bulk of the grains through the concept of bodyfitted unstructured FEmeshes. This aspect allows for higher adaptability
than traditional FrontTracking models. Of course, one of the main ambitions of this new approach is the improvement of
the computational performance when simulating evolving microstructures, while keeping the precision and versatility of the
FELS approach. As such, 2D numerical cases in the context of grain growth (GG) and recrystallization (ReX) are provided
to prove the efficiency of this new approach. These results show impressive reductions in the computational costs and
offer promising perspectives on the modeling of massive multidomain simulations in terms of numerical performance and
precision in the modeling of numerous solidstate phenomena.

KEYWORDS

Finite Elements, Lagrangian Models, BodyFitted Mesh, Levelset, Multidomain simulations.


