
HAL Id: tel-03752344
https://pastel.hal.science/tel-03752344

Submitted on 16 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software switch deployment in SDN-enabled network
virtualization environment

Yimeng Zhao

To cite this version:
Yimeng Zhao. Software switch deployment in SDN-enabled network virtualization environment. Net-
working and Internet Architecture [cs.NI]. Télécom ParisTech, 2016. English. �NNT : 2016ENST0029�.
�tel-03752344�

https://pastel.hal.science/tel-03752344
https://hal.archives-ouvertes.fr

T

H

È

S

E

2016-ENST-0029

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité - Informatique et Réseaux

présentée et soutenue publiquement par

Yimeng ZHAO
le 24 05 2016

Déploiement du Switch Logiciel Dans SDN-enabled Réseau
Environnement de Virtualisation

Directeur de thèse : Michel Riguidel
Co-encadrement de thèse : Luigi Iannone

Jury
M. Ken Chen, Professeur, University of Paris 13 Rapporteur
M. Vania Conan, Directeur de recherche, Thales Rapporteur
M. Claude Chaudet, Ingénieur de recherche, Axon Square Examinateur
M. Walid Dabbous, Directeur de recherche, INRIA Examinateur
M. Damien Saucez, Researcher, INRIA Invité
M. Luigi Iannone, Maître de conférences, Telecom Paristech Directeur de thèse
M. Michel Riguidel, Professeur, Telecom Paristech Directeur de thèse

TELECOM ParisTech
école de l’Institut Télécom - membre de ParisTech

Software Switch Deployment in
SDN-enabled Network Virtualization

Environment

Yimeng ZHAO

Department of Computer and Networking
Telecom Paristech

Acknowledgements

I would like to show great appreciation and gratitude to my doctoral advisors, Michel Riguidel
and Luigi Iannone. Michel’s wisdom and experience always helped me in numerous ways of
my work. His deep insight across literature, history, painting and music also greatly extends
my vision during the past years. Luigi has set an example of an excellent researcher to me.
He kindly provides opportunities for me in all related academical and industrial activities.
I have been fortunate enough to work with them, and thank them for their enthusiasms,
patience, encouragement and trust to my work.

I am grateful to Professor Ken Chen and Director Vania Conan as the reviewers of my
thesis. Thanks for their constructive suggestions in the details. I also owe my thanks to
Director Walid Dabbous, Researcher Claude Chaudet and Damien Saucez for their interest
and participation in my thesis defense as the examinator.

It was a great pleasure to work at 23 avenue d’Italie where I could share plenty of
moments, chats and stories from such a group of kind persons: Adel Sohbi, Danilo Cicalese,
Mario Alvarado Ruiz, Karel De Vogeleer, Felipe Díaz Sánchez, Han Qiu, Yue Li, Wenqin
Shao and Xiaoxing Yu. I also owe a debt of gratitude to my friends, Hao Cai, Pengwenlong
Gu, You Wang, Mengying Ren and Kaikai Liu, who work at 46 Rue Barrault. I show my
great appreciation to all these friends for their kindness and various support throughput my
past years in Telecom ParisTech.

In fact, I started my doctoral studies in Shanghai JiaoTong University before I came to
Paris. I had a good memory and met many nice friends there throughout the years. So special
thanks go to my former supervisors, Professor Yue WU and Xinping GUAN.

Last, but not least, I appreciate all the support from my family during PhD studies.
Especially from my mother who has her own doctorate, her understanding and encouragement
are indispensable for me to accomplish my thesis work.

Yimeng ZHAO
Paris, France

May, 2016

Abstract

Due to the growing trend of “Softwarization”, virtualization is becoming the dominating
technology in data center and cloud environment. Software Defined Network (SDN) and Net-
work Function Virtualization (NFV) are different expressions of “Network Softwarization”.
Software switch is exactly the suitable and powerful tool to support network softwarization,
which is also indispensable to the success of network virtualization. Regarding the challenges
and opportunities in network softwarization, this thesis aims to investigate the deployment of
software switch in a SDN-enabled network virtualization environment.

In this thesis, we first focus on the evaluation of software switch as data plane. Two
typical implementations of OpenFlow-enabled software switch, namely OpenvSwitch and
OFsoftswitch, are selected for measurements. We carry out a systematic measurement that
exploits various performance factors from both hardware and software comprehensively. In
addition, we also provide insights on the implementation of in-band control and compare
it with out-of-band control. Second, the controller is evaluated due to its critical role in the
architecture of SDN. The evaluation is fair and fully reproducible. Moreover, our results are
compared to previous works to have an insight on what has changed and why. Beyond simple
use of benchmark tools, the impacts of system wide settings (e.g., the interpreter, Hyper-
Threading technology) are also investigated. Besides centralized controller, a preliminary
study on distributed controller is also carried out to investigate the synchronization traffic
among multiple controller nodes. Third, we aim at fine-grained resource control on software
switch. Instead of focusing on individual switch, the orchestration of multiple software
switches from a global view is investigated. For this purpose, we implement a prototype of
Service Function Chaining (SFC) architecture where multiple switches and service functions
are required to coordinate with each other. A runtime is then proposed to support automated
fine-grained resource allocation in SFC scenario. This runtime is not only effective in
resource allocation among multiple software switches to improve the overall performance,
but also capable to provide stable real-time bandwidth dynamically.

Résumé

Avec la prévalence de logicielisation, virtualisation est devenue une technologie dominante
dans des data-centres et clouds. Deux aspects principaux de la logicielisation de réseaux
sont Software Defined Network (SDN) et Network Function Virtualization (NFV), dont un
des outils essentiel sont les switches logiciels, à l’opposition des switches matériaux. Les
switches logiciels sont également indispensables pour le succès de NFV. Cette thèse vise à
relever des défis principaux dans la logicielisation de réseaux. Spécifiquement, elle porte sur
le déploiement des switches logiciels dans un réseau virtuel avec SDN.

Premièrement, nous avons évalué la performance de switch logiciel en tant que plan
de transfert. Deux implémentations de switch logiciel, Openvswitch et OFsoftswitch, font
l’objet de notre étude. Dans nos expérimentations, nous avons exploré des divers métriques
de performance, ceux concernant les aspects logiciels aussi bien que ceux matériaux, d’une
façon systématique. En plus, nous avons étudié le contrôle en bande de switch logiciel et
l’avons comparé avec l’approche hors bande. Deuxièmement, le contrôleurs, en raison de
son rôle stratégique dans un réseaux SDN, est étudié. Nous avons évalué ses réalisations
différents d’une façon reproductible et impartiale. En outre, nous avons également comparé
nos résultat avec ceux des travaux précédents, en donnant un aperçu sur les différences
et des raison sous-jacentes. Au delà d’une simple exploitation des outils de benchmark,
nous avons étudié les impacts de configurations globales de réseau, e.x. interprète et hyper-
threading. Plus loin, nous avons étudié le scénario avec des contrôleurs distribués, à l’opposé
de contrôleur centralisé qui est plus facile à implémenter mais aussi plus fragile. Le problème
de synchronisation entre les multiples instances de contrôleur sont exploré est illustré.
Troisièmement, nous visons à attribuer des ressources avec fine granularité à l’aide de
switch logiciel. Au lieu de se limiter sur un seul switch, nous avons élaboré l’orchestration
de plusieurs switches d’un perspective global. A cette fin, nous avons mis en œuvre un
prototype de Service Function Chaining (SFC), où multiples switches et fonctionnalités
réseaux s’échangent entre eux. Puis, nous avons également fournis une plateforme qui
permet l’allocation des ressources automatisée avec fine granularité. Non seulement cette
plateforme améliore la performance globale, mais elle est aussi capable de garantir une bande
passante stable requise par des applications d’une manière dynamique.

Table of contents

List of figures xiii

List of tables xvii

1 Introduction 1
1.1 Software switch . 1

1.1.1 Definition of software switch . 2
1.1.2 Software forwarding . 2
1.1.3 Comparison with other technologies 3

1.2 Software switch in network virtualization 5
1.3 Software switch in Software Defined Network 7
1.4 Other promising scenarios . 9

1.4.1 Network Function Virtualization 9
1.4.2 Network-as-a-Service (NaaS) . 10

1.5 Summary . 10
1.5.1 Main contributions . 10
1.5.2 Thesis structure . 11

2 Background & Related Work 13
2.1 OpenFlow-enabled software switch . 13
2.2 Related work . 15

2.2.1 Switch performance . 17
2.2.2 I/O framework design . 18
2.2.3 Switch control path . 22
2.2.4 Controller performance . 24
2.2.5 Analytical model . 26

2.3 What is missing? . 27
2.3.1 In-band control . 27

x Table of contents

2.3.2 Fine-grained resource control . 28
2.4 Summary . 29

3 Software Switch Performance Evaluation 31
3.1 Selected OpenFlow-enabled switches . 32
3.2 Evaluation environment . 33

3.2.1 Experimental setup . 34
3.2.2 OFsoftswitch performance improvement 36

3.3 Performance factors . 37
3.3.1 Periodic performance . 38
3.3.2 Baseline . 39
3.3.3 I/O operation . 40
3.3.4 Rule-based forwarding . 41
3.3.5 Impact of rule actions . 42
3.3.6 Polling & Overhead . 44
3.3.7 Veth interface . 45
3.3.8 Impact of CPU running frequency 46
3.3.9 Chaining software switches . 46
3.3.10 Tiered latency in SDN . 48

3.4 In-band control . 48
3.4.1 In-band solution . 50
3.4.2 OpenvSwitch in-band implementation 51
3.4.3 Learning switch with selected flows 53
3.4.4 In-band control latency . 54

3.5 Summary . 55

4 Controller Performance Evaluation 59
4.1 Centralized controller performance evaluation 59

4.1.1 Selected controller . 60
4.1.2 Test Environment . 62
4.1.3 Cbench . 62
4.1.4 Cbench Validation . 62
4.1.5 Methodology . 63
4.1.6 On the Accuracy of Latency Measurements 64

4.2 Evaluation results . 64
4.2.1 Python Controllers and Python Interpreters 65
4.2.2 Hyper-Threading . 65

Table of contents xi

4.2.3 Controllers Baseline . 66
4.2.4 Distributed Controllers Baseline 66
4.2.5 Number of Switches . 67
4.2.6 Threads Number – HT disabled 69
4.2.7 Threads Number – HT enabled . 70
4.2.8 Correlation between Throughput and Latency 72
4.2.9 Fairness . 73
4.2.10 Comparison with previous works 73

4.3 Distributed controller synchronization . 74
4.3.1 Synchronization in in-band scenario 74
4.3.2 Synchronization traffic characteristics 75
4.3.3 Control traffic contention . 77
4.3.4 Coordination latency . 78

4.4 Summary . 79

5 Fine-grained Resource Control 81
5.1 Resource contention and allocation . 82

5.1.1 Received packet processing in Linux 82
5.1.2 CGroups and CPUFreq . 83

5.2 Resource allocation for Service Function Chaining 84
5.2.1 Service Function Chaining (SFC) 84
5.2.2 Network Service Header (NSH) 85
5.2.3 Implementation of SFC . 86
5.2.4 Resource allocation on SFC . 88

5.3 Automated fine-grained provision . 91
5.3.1 Case study . 91
5.3.2 Runtime Framework . 93
5.3.3 Best-effort based SLA . 94
5.3.4 Feedback control . 95

5.4 Evaluation . 96
5.4.1 Best-effort allocation . 97
5.4.2 Runtime dynamic allocation . 98

5.5 Summary . 100

6 Conclusion & Future Work 103
6.1 Thesis summary . 103
6.2 Publication . 105

xii Table of contents

6.3 Discussion & Future work . 105

References 107

Appendix A Source Code 117
A.1 OFsoftswitch . 117
A.2 Ryu . 117
A.3 Mininet . 117

Appendix B Résumé en Français 119

List of figures

1.1 The trend of virtualization for server access ports 2
1.2 Comparison among various architectures of packet forwarding 3
1.3 Network virtualization . 5
1.4 VM traffic forwarding places . 6
1.5 Simplified SDN architecture . 7
1.6 Main components of an OpenFlow-enabled switch 8
1.7 Vision of Network Function Virtualization 9

2.1 Overview on previous related works . 16
2.2 Packet processing in operating system . 19

3.1 Simplified structure of OpenvSwitch and OFsoftswitch 33
3.2 Server setup in previous works . 34
3.3 Testbed configuration example . 34
3.4 Packet processing flow chart . 37
3.5 Periodic performance of software switch 38
3.6 Impact of packet size on I/O . 40
3.7 Impact of number of rules . 42
3.8 Topology for action measurement . 43
3.9 Throughput with multiple output ports . 43
3.10 Impact of traffic pattern in OFsoftswitch 45
3.11 Impact of veth queue in OpenvSwitch . 45
3.12 Impact of number of rules . 46
3.13 Chained switches . 47
3.14 Tiered latency in software switch . 49
3.15 Out-of-band control and in-band control 50
3.16 Booting up framework for in-band control 51
3.17 In-band control in OpenvSwitch . 52

xiv List of figures

3.18 Network stack for in-band control . 52
3.19 The procedure to establish in-band control connection 54
3.20 In-band control example . 55
3.21 Reactive vs. Proactive . 55

4.1 Test Environment configuration. 63
4.2 Latency measurement with OpenvSwitch and Cbench. 65
4.3 Per-switch latency with different numbers of switches (single thread). . . . 68
4.4 Throughput achieved with different numbers of switches (single thread). . . 68
4.5 Per-switch latency with different numbers of threads (HT-disabled). 69
4.6 Throughput achieved with different numbers of threads (HT-disabled). . . . 70
4.7 Per-switch latency with different numbers of threads when Hyper-Threading

is enabled (64 switches). 71
4.8 Throughput achieved with different numbers of threads when Hyper-Threading

is enabled (64 switches). 71
4.9 Correlation between throughput and latency in Beacon. 72
4.10 Data partitioning in Hazelcast . 75
4.11 Joining: Per-controller (bars) vs Total (dash line) traffic. 76
4.12 Relationship among various control messages. 77
4.13 Intent installation testbed . 78
4.14 Intent installation latency . 78

5.1 Packet processing in Linux Networking 83
5.2 Network Service Header Format . 85
5.3 TLV format of optional context header . 86
5.4 Framework of Service Function Chaining 87
5.5 Network protocol stack in NSH . 88
5.6 Service Function Chaining topologies. 90
5.7 Simulation on resource allocation. 90
5.8 Case study for SFC . 92
5.9 Runtime framework . 93
5.10 Runtime control schema . 95
5.11 Various topologies for best-effort basis SFC 97
5.12 Improvement achieved with resource allocation in best-effort basis 98
5.13 Static allocation vs Runtime allocation . 99
5.14 Dynamic behavior of runtime allocation 100

B.1 La virtualisation du réseau . 120

List of figures xv

B.2 L’aperçu des études antérieures . 123
B.3 La configuration de banc de test . 126
B.4 L’organigramme de traitement du paquet 128
B.5 Exemple de in-band contrôle . 130
B.6 Le débit obtenu avec un nombre différent de switch (un thread). 132
B.7 Le débit obtenu avec un nombre différent de thread (HT-désactivé). 133
B.8 Le débit obtenu avec un nombre différent de thread (HT-activé). 133
B.9 Corrélation entre le débit et la latence dans Beacon. 134
B.10 Le banc de test pour la installation de intent 135
B.11 La latence d’installation de intent . 135
B.12 Le cadre de Service Function Chaining . 138
B.13 Le cadre de runtime d’allocation des ressources 139
B.14 L’Amélioration réalisée avec l’allocation des ressources en Best-effort . . . 140
B.15 Le comportement dynamique d’allocation de runtime 141

List of tables

2.1 OpenFlow-enabled Software Switches . 15
2.2 Packet forwarding framework techniques 21
2.3 Software switch performance improved by framework 22

3.1 OpenvSwitch VS. OFsoftswitch . 32
3.2 Software version . 36
3.3 OFsoftswitch performance improvement 37
3.4 Baseline performance . 39
3.5 Offload performance . 41
3.6 Tiered Processing Latency – RTT (ms) . 49

4.1 SDN Controllers Summary . 61
4.2 Distributed Controller Summary . 62
4.3 Pyhton Interpreter Impact . 66
4.4 Controllers Baseline . 67
4.5 Distributed Controller Baseline . 67
4.6 Latency Comparison . 72
4.7 Throughput Variation among Multiple Switches 73
4.8 Time in Achieving Fairness . 73
4.9 Comparison With Previous Work . 74
4.10 Traffic vs. primary controller (Mbps). 76

5.1 CPU bandwidth required for each service node (1500B packet) 92
5.2 CPU bandwidth required with 512B packet 93

B.1 Les switches logiciels OpenFlow-enabled 122
B.2 OpenvSwitch VS. OFsoftswitch . 126
B.3 La performance de base . 128
B.4 SDN contrôleur . 131

xviii List of tables

B.5 La performance de base du contrôleur . 132
B.6 Trafic vs. contrôleur principal (Mbps). 135

Chapter 1

Introduction

A growing trend of “Softwarization” is happening in almost every field of Information
and Communication Technology (ICT). The virtualization of servers is now prominent in
the majority of data centers. Similarly in network area, both Software Defined Network
(SDN) and Network Function Virtualization (NFV) are different expressions of Software
Defined Infrastructures (SDI) in an overall transformation trend of “Network Softwarization”.
Software switch is exactly the suitable and powerful tool to support SDN and NFV. Regarding
the challenges and opportunities in network softwarization, this thesis aims to investigate the
deployment of software switch in a SDN-enabled network virtualization environment. In
our study, we first focus on the performance evaluation of mainstream OpenFlow-enabled
software switches. Then a reality check on controller performance is carried out due to its
importance in SDN framework. Finally, we propose an automated runtime framework to
provide dynamic and adaptive resource allocation for software switches. In this section, a
brief introduction of software switch and its promising deployment scenarios are provided.

1.1 Software switch

Software switches are emerging as one of the most promising solutions for data center
and virtualized network infrastructure [125][66]. It is reported in [49] that over 70% x86
workloads in data center are virtualized and the adoption rate of server virtualization will rise
to over 80% in the next 2 years. In the meanwhile, from a perspective of networking, the
growth rate of virtual server access ports is faster than physical ports as shown in Fig. 1.1.
As a result of this growing trend, over 2/3 of all server access ports are already virtualized in
2015. Over 40% network administrators adopt software forwarding mechanism (i.e., virtual
switch) to manage network virtualization environment.

2 Introduction

Fig. 1.1 The trend of virtualization for server access ports

1.1.1 Definition of software switch

Differently from the traditional definition in telecommunication [42] that refers to the central
device or software used to connect telephone calls with different other phone lines, we
define “software switch” as the virtual switch built on general purpose computer system to
implement packet forwarding as well as other network functionality. More specifically, the
general computer system in this thesis is limited to x86 architecture, and other platforms like
ARM or FPGA are not considered. The typical implementations of software switch include
Linux Bridge [4], Click Router [89], virtual switches in VMware ESX [123] or Microsoft
Hyper-V [99], etc.

1.1.2 Software forwarding

Software forwarding approach has been developed for decades of years. Every server
virtualization environment contains virtual switches that are used to connect multiple virtual
machines. Linux bridge is this kind of virtual switch which has already been widely deployed
with KVM [15]/QEMU [39] hypervisors. Click [89] is another well-known open-source
software architecture for building flexible and configurable routers. Meanwhile, there
are also good closed-source implementations from industry. VMware proposes vSphere
Distributed Switch (VDS) for its ESX [123] environment in order to help facilitate the move
to virtualization in data center. Cisco also develops an alternative solution for ESX called
Nexus 1000V [7]. However, all these implementations either lack dynamic programmability
and rich context for customized traffic control, or bind to specific platform without open-
source support and general interface. In order to address these problems, SDN-enabled
software switch is proposed to provide flexibility in customizing packet processing as well
as standard control and management interfaces. OpenvSwitch [27] is a production quality,

1.1 Software switch 3

Fig. 1.2 Comparison among various architectures of packet forwarding

multilayer, SDN-enabled virtual switch under the open source Apache 2.0 license. It not
only supports various protocols, including OpenFlow, NetFlow, sFlow, IPFIX, ets, but is
also designed to support distribution across multiple physical servers similar to VMware’s
VDS or Cisco’s Nexus 1000V. OpenvSwitch has been successfully combined in considerable
products and deployed in large production environments (e.g., OpenStack [34]).

1.1.3 Comparison with other technologies

In order to build specialized packet processing platforms, a variety of technologies based on
different kinds of hardware and software have been developed. These solutions can be mainly
divided into three categories: Software, Application-Specific Integrated Circuit (ASIC) and
Network Processor Unit (NPU). Their comparisons from various aspects are listed below.

• Flexibility & Performance: In ASIC-based solutions, the data plane is implemented
with dedicated hardware which leads to high performance. However, ASICs lack
flexibility to adopt new features and result in high cost for upgrading system. NPUs
are originally expected to provide both high performance as ASIC-based solution and
flexibility as software-based solution. They are specifically conceived for network
function purposes and supposed to be used in parallel to allow workload balancing.
However, NPU processing is only based on proprietary microcode which is a develop-
ment hurdle in terms of available expertise and tool chain. Software-based solutions
are built upon general-purpose CPU. Both control functionality and packet forwarding
are performed by software. This provides great flexibility in introducing new features
and value-added services with growing complexity. The deployment and upgrade
of the system are also convenient due to software. But in the meanwhile, software
forwarding introduces additional overhead in packet processing, which leads to lower

4 Introduction

performance. Fig. 1.2 summarizes the comparison between three mentioned solutions
on the basis of flexibility and performance.

• Price: When comparing price performance, we mainly focus on the switching at
the edge. In edge scenarios, the switch should not only provides 10Gbps or higher
bandwidth, but also supports a huge number of tunnels (N2 in the number of N servers
is quite common). In order for software switch to support 10Gbps, at least one CPU
core is needed. Given a fairly modern CPU, one core weighs at around $100, and
the motherboard and packaging support require additional $50. However, an ASIC
hardware (e.g., a standard server NIC) around $150 is never recommended for high
end scenarios. Similarly, NPU-based NICs are even more costly as much as 2-5 times
of software solutions [108][45], which is largely due to supply chain issue and the
immaturity of its market. Although dedicated hardware consumes less power than
software forwarding in x86 [108], CPU resource assigned to software switch can
be dynamically recycled according to workloads in order to lower total OPerational
EXpenditure (OPEX).

• Driver & Tool chain: ASIC-based specific NICs have no or poor support of drivers for
virtualization environment. NPU-based NICs are also rarely supported by mainstream
virtualization platforms such as VMWare, Citrix, or common Linux distributions.
Only software solutions rely on the underlying operating system and provide the
appropriate drivers as well as configuration tools. Although the development tool for
embedded NPU has come for a long way, it is still not comparable with the support
of standard x86/Linux environment. Embedded development often leads to relatively
specialized developers, expensive tools and complex debug environments. Furthermore,
the openness of x86 environment stimulates the evolution of new development tools
like DPDK [14], Netmap [21] and OpenOnload [33], which can significantly improve
overall performance and reduce the complexity of development.

As summarized above, dedicated hardware provides higher performance as well as lower
OPEX. While software forwarding achieves great flexibility in deploying and extending
the system. It also motivates a series of open source projects for high performance packet
processing based on commodity server. Although NPU is expected to be capable of both high
performance and flexible processing, the market share of NPU is still not comparable with
ASIC-based devices or software solutions even after a decade of development. This is mainly
due to the lack of general support for hypervisor and middleware layers. Each solution has
its own advantages and should be applied in suitable scenarios according to deployment
requirements. For instance, dedicated hardware solution is more compelling in hosting the

1.2 Software switch in network virtualization 5

Fig. 1.3 Network virtualization

applications with small-sized and latency-sensitive traffic (e.g., voice and video). NPUs
are usually adopted in middlebox to provide specific L4-L7 network functions with stateful
processing such as Deep Packet Inspection (DPI). Software-based solution is dominant in
data center and cloud environment which requires complex functionality at edge in order to
support multi-tenant virtualization.

1.2 Software switch in network virtualization

Network virtualization allows the coexistence of multiple virtual networks that are sharing
the same underlying physical infrastructures [70]. It separates traditional functionality of the
network into two roles: Infrastructure Provider that builds physical network infrastructures
and Service Provider that creates and manages virtual network as well as provides end-to-end
network as a service. On the one hand, network virtualization is capable to combine multiple
physical networks (or subnets) into one virtual network, e.g., VLAN. This simplifies the
complexity of network management without modifying underlying infrastructures, which is
treated as external network virtualization. On the other hand, internal network virtualization
can break one physical network into several isolated virtual networks by using virtual nodes
(virtual machines or containers) and virtual interfaces, which improves the utilization of
physical resources. Both external and internal network virtualizations are integrated in a
distributed system (e.g., data center or cloud) to provide an efficient, controlled, and secure
sharing of the networking resources. Fig. 1.3 shows a typical network virtualization scenario.
VMA, VMB and VMC are in the same subnet, while VM1 to VM5 belong to the other subnet.
Although the VMs in the same subnet are running on different physical hosts, by using
network virtualization, they can be managed in isolated logical networks through customized
virtual topologies as shown in logical view.

6 Introduction

Fig. 1.4 VM traffic forwarding places

In order to implement network virtualization, it is crucial to forward VM traffic correctly
and efficiently. There has long been an argument on the right place for inter-VM traffic
forwarding. As shown in Fig. 1.4, in order to forward the traffic from VM1 to VM3, three
potential places are marked: (1) virtual switch inside host, (2) host physical NIC and (3)
first-hop physical switch. HP ProCurve [11] is a typical physical switch solution, requiring
that each packet sent from VM should be tagged in order to be differentiated by physical
switch. The tagging operation can be done either by the virtual switch in the hypervisor or
by the NIC. The rationality for this approach is that dedicated switching hardware performs
much faster than software. The downsides are also obvious: first, the bandwidth for inter-VM
traffic is limited by the first-hop link. Second, it also consumes additional bandwidth of
first-hop link and interferes with the traffic between VMs and the outside hosts because of
hair-pinning method. Another proposal is to bypass the hypervisor and implement all inter-
VM networking in NIC. However, switching in NIC has never been accepted by the market,
because the performance of switching chipsets on NICs are not comparable to those used
in standard switching gears. Furthermore, bypassing hypervisor obviates many advantages
of virtualization. Software switching inside hypervisor seems to be the best choice, since
it saves network resources (e.g., links or NIC) without offloading the decision to dedicated
hardware (e.g., first-hop switch). Software switch essential fits in virtualization environment
and can be easily integrated into any hypervisor or operating system.

As demonstrated in [67], there are more and more network deployment scenarios that
are limiting the intelligence to network edge and keeping the core network simple. For
instance in WANs, the inter-domain policies are usually implemented at the provider edge by
applying MPLS. Similarly in network virtualization, a tunnel-based overlay is usually adopted
in distributed data centers to provide connectivity across WAN. This overlay approach is
compatible with existing IP-based Internet. All the encapsulation/decapsulation operations
are implemented only at edge, i.e., the software switch. Various tunneling protocols have been
proposed by Internet Engineering Task Force (IETF), including GRE, VXLAN, STT, LISP,
GENEVE, etc. These protocols choose different layers for encapsulation and aim at specific

1.3 Software switch in Software Defined Network 7

Fig. 1.5 Simplified SDN architecture

scenarios. Most of tunneling protocols are originally supported in Linux kernel, which can be
easily integrated into software switch. Moreover, OpenvSwitch supports user-space tunneling
in a platform independent way.

1.3 Software switch in Software Defined Network

The main idea of Software Defined Network (SDN) is to break the vertical integration by
separating the networks control plane from the underlying data plane. SDN adopts a relatively
centralized control plane and provides a global view of the whole network. A simplified
view of SDN architecture is shown in Fig. 1.5. The forwarding element make forwarding
decisions based on flow information (i.e., 12-tuple of header fields in OpenFlow 1.0) instead
of traditional destination information. Any unmatched packet in forwarding element will be
submitted to the controller for further instructions. The controller platform achieves direct
control over the state of underlying forwarding elements by a well-defined programmable
southbound interface. OpenFlow [31] is the most notable implementation of southbound
API, and there are also other southbound protocols such as POF [118] and ForCES [124].
Various network applications are built upon controller platform through a northbound API.
This API abstracts the low-level instruction sets from southbound and provides high-level
programming functions for application developers. The typical northbound APIs include
Frenetic [76], NetCore [100][115], etc.

As shown in Fig. 1.6, an OpenFlow-enabled switch consists of one or more flow tables
used for packet classification and one or more OpenFlow channels for connecting external
controllers. The switch and the controller communicates with each other via OpenFlow
protocol. Each flow table contains a set of flow entries. Each flow entry consists of match
fields, counters, and a set of instructions to apply to matching packets. Matching procedure
starts at the first flow table and may continue to additional flow tables of the pipeline. Flow
entries match packets in priority order, with the first matching entry in each table being used.

8 Introduction

Fig. 1.6 Main components of an OpenFlow-enabled switch

If a matching entry is found, the instructions associated with this flow entry are executed. If
no match is found in a flow table, the packet may be forwarded to the controllers, dropped,
or to the next flow table. The controller can add, modify, or delete flow entries in flow tables.

Network virtualization has gained a new traction with the advent of SDN. Since network
virtualization aims at decoupling network resources from underlying hardware, SDN offers a
standard interface between controller applications and underling forwarding devices, which
is a natural platform for network virtualization. For instance, Network Virtualization Plat-
form (NVP) [91] is designed for multi-tenant data centers on the basis of SDN. NVP uses
OpenvSwitch in all transport nodes (hypervisors, service nodes, and gateway) to forward
packets. OpenvSwitch is remotely configurable by NVP controller to manage flow tables
as well as overlay tunnels. Network virtualization has been one of the drivers behind the
emergence of software switch. The SDN-enabled software switches are more promising to
provide great flexibility in enabling network virtualization:

• The combination of SDN and software switch creates a pure software environment
regardless underlying hardware infrastructures, which is convenient for the deployment,
upgrading and migration of virtualization system.

• SDN-enabled software switch provides a unified and standard way to manage and
configure the network virtualization dynamically.

• Software switch can follow the high-speed evolution of SDN. For instance, the Open-
Flow specification is updated every year (from v1.0 in 2009 to v1.5 in 2014). Nowa-
days, nearly all hardware switches still only support specification v1.0, while software
switches have already been running on v1.3 or v1.4.

• The overlay tunnels usually terminate inside virtual switches within hypervisors. SDN-
enabled software switch can easily support hundreds of thousands of tunnels as well as
provide customized network functionalities to enhance edge intelligence.

1.4 Other promising scenarios 9

Fig. 1.7 Vision of Network Function Virtualization

1.4 Other promising scenarios

Besides SDN and network virtualization, software switch also finds its place in other emerging
networking technologies such as Network Function Virtualization (NFV) and Network-as-a-
Service (NaaS).

1.4.1 Network Function Virtualization

Network Function Virtualization (NFV) aims to transform the traditional way in deploying
network functions by evolving standard virtualization technology to consolidate various
types of network equipment or middlebox (e.g., Firewall, Load Balancer, WAN accelerator,
etc.) onto standard high volume commodity servers [48][79]. As shown in Fig. 1.7, NFV
implements network equipment or middlebox in the form of Virtual Network Functions
(VNF) [50] that can be deployed and migrated to any location according to dynamic practical
requirements. The typical use case of NFV is Service Function Chaining (SFC) [110][88]
that aims to steer service-specific traffic to traverse multiple network functions in a given
order. NFV and SDN are mutually beneficial and highly complementary to each other, but
not dependent on each other. SDN can simplify NFV deployments, operations and migrations
as well as enhance its performance. Meanwhile, NFV can provide underlying infrastructures
for running SDN.

Software switch can be treated as the simplified VNF which only provides basic packet
forwarding. Furthermore, a SDN-enabled software switch that supports fine-grained flow
table control is capable to act as stateless Firewall or simple Load Balancer. Similarly to
software switch, VNF based on standard commodity server also needs to address performance
degradation problem, especially on heterogeneous hardware platforms. Any data plane
acceleration technology (e.g., NAPI or DPDK) originally designed for software switch can be
also applied in VNF to minimize the processing overhead and boost the performance. When

10 Introduction

multiple VNFs are consolidated on the same server, software switches are used to forward the
traffic among VNFs. Hence, the coordination between VNFs and software switches impact
the overall performance, which should be considered and designed as a whole.

1.4.2 Network-as-a-Service (NaaS)

Network-as-a-Service (NaaS) [71] is proposed as a framework to integrate cloud environment
with direct and secure access to the network infrastructure. NaaS allows tenants to customize
forwarding decisions and network management based on application needs. Differently
from traditional application-agnostic network services, by applying NaaS, the underlying
network services are exposed and manageable by upper layer application, which improves the
efficiency in implementing advanced network services, including in-network data aggregation,
redundancy elimination, smart caching, etc.

Software switch built on commodity server has advantages in reducing costs, short-
ening update cycle and allowing rapid innovation. The flexibility of software switch in
customization should be further extend for tenants to implement part of the application logic
in cloud network. NetAgg [98][114] is a typical software forwarding platform that provides
application-specific on-path aggregation in data centers.

1.5 Summary

Network softwarization is gradually and inevitably breaking the traditional vertical integration
of vendor-specific network architecture, which allows multitude of services that could be
created and provided through highly dynamic and borderless platforms of logical resources,
fully decoupled from the underlying physical infrastructures. Software forwarding gains
popularity as the basis for network softwarization, since it leads to costs savings, increased
flexibility and programmability. Specifically, software switch, which has been widely
deployed and tested in host virtualization environment, is a good start point to investigate the
impact of software-based network virtualization combined with cutting-edge technologies
such as SDN and NFV.

1.5.1 Main contributions

This thesis focuses on the deployment of software switch in SDN-enabled network virtualiza-
tion environment. Our main contributions are listed as follows.

1.5 Summary 11

1. We carry out a systematic measurement on software switch performance in virtualiza-
tion environment in order to overcome the shortcomings in previous partial benchmark
tests. Our result highlights various performance factors from both hardware and soft-
ware aspects. Numerical results are shown to evaluate their impacts, which is helpful to
understand the limitation of software switch in deployment and point out the potential
for improvement.

2. A comprehensive performance evaluation of five major open-source SDN controllers
is provided. The measurements have been set up to be fair and easily reproducible.
In order to provide a reality check beyond a simple benchmark, we not only examine
general system wide settings, but also design specifically crafted scenarios for various
measurement metrics. Our evaluation can be used as an indication of which controller
is suitable in which scenario.

3. Aiming at the aspects ignored in previous studies, the design principle of SDN in-band
control is explained in detail for the first time. The synchronization traffic among
distributed controllers is also investigated for the first time. As a starting point, some
preliminary results are provided to indicate future research directions.

4. We investigate the orchestration of multiple software switches on shared physical
resources instead of focusing on the performance of single switch. In multiple-switch
scenario, an automated runtime is proposed to support fine-grained resource allocation,
which improves the overall performance. The runtime is also capable to provide
stable real-time bandwidth in a Service Function Chaining scenario. Moreover, this
runtime is a general framework that can be extended to support various resources and
service-level objectives.

1.5.2 Thesis structure

The rest of this thesis document is structured as follows:
Chapter 2 first introduces mainstream open-source OpenFlow-enabled software switches.

Then the related work on software switch deployment are classified and summarized based on
SDN architecture. By analyzing the limitation of previous studies, we indicate our research
directions and how they are supposed to overcome the existing shortcomings.

In Chapter 3, we focus on the evaluation of software switch as data plane. Two typical
implementations of OpenFlow-enabled software switch, namely OpenvSwitch and OF-
softswitch, are selected for measurements. Since former benchmark tests only rely on partial
parameters or configurations, we carry out a systematic measurement that exploits various

12 Introduction

performance factors from both hardware and software comprehensively. Quantitative results
are used to evaluate the impact of factor. Combined with implementations, we discuss the
cause of performance issues and reveal some clues in further improvement. For instance,
our measurements and analysis prove that software switch performance is sensitive to traffic
pattern, which can be further used to optimize the overall performance by properly customiz-
ing the topology and traffic. In addition, we also provide insights on the implementation of
in-band control and compare it with out-of-band control.

We evaluate the controller in Chapter 4 due to its critical role in the architecture of
SDN. In order to provide fair and reproducible results on controller performance, only open-
source controllers and benchmark tools are chosen. Moreover, our results are compared
to previous works to have an insight on what has changed and why. The evaluation is
also beyond simple use of benchmark tools, the impacts of system wide settings (e.g., the
interpreter, Hyper-Threading technology) are also investigated. Based on the outcome of the
evaluation, it is helpful to derive some useful recommendations on which SDN controller is
most suitable for which scenario. By combining the result of data plane in Chapter 3, the real
bottleneck of the whole system in different scenarios can be identified. Besides centralized
controller, a preliminary study on distributed controller is also carried out to investigate the
synchronization traffic among multiple controller nodes.

Chapter 5 investigates fine-grained resource control on software switch. Different from
previous works, we not only aim to guarantee the performance of individual switch, but
also focus on the orchestration of multiple software switches within limited resources from
a global view. For this purpose, we implement a prototype of Service Function Chaining
architecture where multiple switches and service functions are required to coordinate with
each other. Our case study demonstrates the effectiveness of suitable resource allocation
among multiple software switches in improving the overall performance. Hence, we propose
a runtime to support automated fine-grained resource allocation. The runtime is also capable
to provide stable real-time bandwidth for Service Function Chaining scenario dynamically.

Last but not least, we draw the conclusion of current work in Chapter 6. Meanwhile, we
also underline how the presented work can be deepened with further works.

Chapter 2

Background & Related Work

Since traditional software switches (e.g., CLICK, Linux Bridge, etc.) have been widely
deployed in various industrial environments over a decade, their deployment issues are
already well studied. The promising technologies including SDN and network virtualization
further stimulate the development of software switch. A growing number of SDN-enabled
software switches are expected in the near future. However, due to the immaturity, SDN
raises questions regarding its performance and scalability. The switch that represents data
plane in SDN plays an indispensable role for answering these questions. Hence understanding
the performance and limitation of SDN-enable software switch is crucial to its success in
deployment.

2.1 OpenFlow-enabled software switch

Several OpenFlow-enabled software switches are already available, while their usability
differs from conceptual prototype to production quality. A selection of open source imple-
mentations are introduced as follows.

• OpenvSwitch [27]: OpenvSwitch is a open source, production quality, multilayer
virtual switch. It is designed to enable massive network automation through program-
matic extension, while still supporting standard management interfaces and protocols
(e.g., NetFlow, sFlow, IPFIX, RSPAN, CLI, LACP, 802.1ag). In addition, it is designed
to support distribution across multiple physical servers.

• OpenFlow Reference Switch [30]: This is the first prototype of OpenFlow-enabled
software switch that provides OpenFlow switching capability to a Linux PC with
multiple NICs. It defines the basic and necessary components to implement a OpenFlow
switch. Many follow-up OpenFlow switch implementations are based on it.

14 Background & Related Work

• OFsoftswitch [29]: This is an OpenFlow v1.3 compatible user-space software switch
that is intended for fast experimentation purposes. The code is based on the OpenFlow
Reference Switch and the Ericsson TrafficLab v1.1 softswitch implementation, with
modification to support OpenFlow v1.3.

• Indigo [13]: Indigo Virtual Switch (IVS) is an open source virtual switch for Linux.
It is compatible with KVM hypervisor and leveraging OpenvSwitch kernel module
for packet forwarding. IVS is built on the Indigo Framework and leverages LoxiGen
generated code (loci) to handle OpenFlow messages.

• LINC [16]: LINC is a pure OpenFlow software switch written in Erlang, which is
also implemented in user-space as an Erlang node. It provides great flexibility and
allows quick deployment of new OpenFlow features by sacrificing the performance.
It supports OpenFlow specification from v1.2 to v1.4 as well as OF-Config v1.1.1
management protocol.

• OpenFlowClick [32]: OpenFlowClick encapsulates OpenFlow Reference Switch as a
Click element, which can be connected to other elements to reuse their functionality.
This design combines OpenFlow forwarding control mechanisms with per-packet
processing capability of Click.

• Pantou [37]: Pantou turns a commercial wireless router/Access Point to an OpenFlow-
enabled switch. OpenFlow is implemented as an application on top of OpenWrt.
Pantou is based on the BackFire OpenWrt release (Linux 2.6.32). The OpenFlow
module is based on OpenFlow Reference Switch.

According to above introductions, all software switches are either based on OpenvSwitch
or OpenFlow Reference Switch except LINC, which indicates that the original designs of
OpenFlow-enabled software switches are few. Table 2.1 further summaries the main charac-
teristic of selected software switches. Nearly all implementations choose C as programming
language to guarantee high performance. Erlang is used only by LINC to provide high
flexibility but sacrifice the performance. For maintenance, OpenvSwitch and Indigo are
developed by commercial companies, which can provide periodical updates and new releases.
Especially for OpenvSwitch, due to its popularity and wide deployment, its development
is so intensive to meet performance requirements in various real scenarios. OFsoftswitch
and LINC that are from academic communities can also keep updating timely and adding
new features gradually. The other implementations have not been updated for a quite long
time. For supported version of OpenFlow specification, v1.0 and v1.3 are two important
milestones. Since v1.0 is the first published formal version of OpenFlow, and v1.3 represents

2.2 Related work 15

Table 2.1 OpenFlow-enabled Software Switches

Product Developer Code Base Language OF version Update
OpenvSwitch Nicira Original C v1.0 & v1.3 08/2015
OF ref switch Stanford Original C v1.0 06/2011
OFsoftswitch CPqD OF ref switch C&C++ v1.3 07/2015

Indigo Big Switch OpenvSwitch C v1.0 07/2015
LINC FlowForwarding Original Erlang v1.2 ∼ v1.4 08/2015

OpenFlowClick Stanford OF ref switch C v0.9 08/2009
Pantou Stanford OF ref switch C v1.0 08/2010

another big step forward by introducing multiple flow tables and other useful concepts.
However, only OpenvSwitch, OFsoftswitch and LINC support up to v1.3, while the others
only for v1.0. Based on our comprehensive comparison on performance, maintenance and
supported OpenFlow version, OpenvSwitch and OFsoftswitch are two most representative
implementations. More details of their implementations can be found in Chapter 3.

2.2 Related work

This thesis is supposed to carry out a comprehensive study on SDN-enabled software switch.
It integrates several subjects that are only investigated separately before. Fig. 2.1 shows a
simplified SDN framework to present current mainstream research areas in related works.
The switch is composed of two compact elements, forwarding engine and OpenFlow module.
Forwarding engine is in charge of data traffic forwarding, while OpenFlow module communi-
cates with controller through control network and manipulates forwarding engine according
to the instructions from controller. Similarly, in controller, the OpenFlow module is used to
interact with switch. The application built on OpenFlow module implements the real control
logic. The related works can be mainly divided into four categories according to the areas
depicted in Fig. 2.1 (marked by numerated blocks in dash line).

(1) In switch (data plane), the performance of forwarding engine is paramount to the
success of the whole framework, especially in software switch which has performance
concerns compared with dedicated hardware. Besides performance evaluation of
forwarding engine, there are a number of works aiming at performance improvement
by applying new I/O framework. They exploit the potential advancements from both
hardware and software perspectives.

(2) The interaction between OpenFlow module and forwarding engine is crucial for the
efficiency of data plane. Since it matters not only the latency of the flow installation

16 Background & Related Work

Fig. 2.1 Overview on previous related works

but also the capacity in handling new flow requests simultaneously. In general cases,
OpenvSwitch performs more efficiently and more predictably than most of vendor-
specific hardware switches on switch control path [83].

(3) In SDN framework, each switch needs to establish and maintain a TCP connection
with its controller. There are two categories on how this connection traverses the
network, namely “in-band” control and “out-of-band” control. Out-of-band uses a
dedicated control network that is completely different from data network controlled
by the switches, while in-band control shares the same data switching network. As
a consequence, in-band control introduces complexity and additional latency in the
transmission of control messages. The impact of in-band control still needs further
investigation.

(4) Differently from traditional network, SDN adopts a centralized control plane called
controller. The controller is a critical cornerstone in SDN paradigm, since it provides
key support of all networking control logic, in accordance with the polices defined
by network operators. Hence the controller directly determines the scalability and
availability of the whole system. In such a context, it is necessary to understand the
implementations of controllers and identify their bottlenecks, which in return provides
advice on selecting suitable controller for a given scenario.

As concluded above, the deployment of SDN software switch covers several aspects from
both switch and controller sides. Furthermore, due to the decoupling of data plane and
control plane, SDN introduces new challenges besides the problems in traditional network.
We further discuss the related works in details.

2.2 Related work 17

2.2.1 Switch performance

There are very few formal performance evaluations of software switch in SDN architecture
in contrast with many uncompleted and partial evaluations published as blogs on Internet.
OpenvSwitch now is the most widely used SDN software switch. It is a multi-layer, open
source virtual switch for network virtualization. Nearly all formal publications on software
switch performance evaluation target on OpenvSwitch. The developers of OpenvSwitch
detail the implementation in [105] and highlight the design of caching technique and flow
classification system. A two layer caching system is adopted in datapath: a microflow

cache and a secondary layer megaflow cache. The microflow cache is dealing with
forwarding decisions for per transport connection, while the megaflow cache is handling
forwarding decisions for traffic aggregation beyond individual connection. Several micro
benchmarks on caching effectiveness and efficiency are given in order to better understand
its design criteria. When comparing to Linux bridge, OpenvSwitch achieves identical
throughput but higher CPU usage in the simplest configuration. However, with more complex
configurations, the CPU usage in Linux bridge increases over 26-fold due to per-packet
overhead. While OpenvSwitch can remain constant throughput and CPU usage as before,
which proves the advantage of megaflow cache.

Bianco et al. re-evaluate OpenvSwitch, Linux bridge and Linux IP routing in [60]. The
testing scenarios cover different traffic patterns and switch configurations. The result shows
that OpenvSwitch performs equivalently or better than the other two in most cases, but only
slightly worse when processing 64-byte packets. OpenvSwitch also shows good fairness
capability in handling multiple flows simultaneously. A more comprehensive analysis work
on OpenvSwitch performance characteristics is carried out in [73]. Under various scenarios
involving physical and virtual network interfaces, it shows that OpenvSwitch always turns
out to be a good general purpose software switch for most scenarios. Furthermore, an
investigation on CPU load of context switching and vNIC queuing leads to a few guidelines
for cloud system operators: Virtual machines and NIC interrupts should be explicitly pinned
to disjoint sets of CPU cores. A similar conclusion can be found in [101] that proposes a
software packet processing unit to adaptively distribute so f tirq on multiple cores.

All above evaluations measure OpenvSwitch directly and explicitly. Meanwhile, many
projects targeting various research goals choose OpenvSwitch as the underlying software
basis and build their prototype upon it. This again proves that OpenvSwitch is flexible and
capable of implementing various functions and meeting various requirements. Moreover,
the benchmark of these systems can be used as an indirect indicator of the performance of
OpenvSwitch. For example, Chin Jr. et al. modify OpenvSwitch as a network monitor to
achieve high-performance detection of DoS attack. Cloud Rack [109] has emerged to provide

18 Background & Related Work

a cost-efficient solution for virtual topology migration. Xing et al. propose SDN-based
Intrusion Prevention System (IPS) based on Snort and OpenvSwitch, which can successfully
alert all the threats that are sent at 15000 packets per second. There are also considerable
amount of papers only investigating hardware OpenFlow switch (TCAM-based). However,
due to the huge implementation differences between hardware and software switches, the
conclusions in these papers can not be introduced to software switch.

As we can see, all the studies mentioned above are only based on OpenvSwitch, which
lacks universality to obtain a general conclusion for SDN-enabled software switch. Even
only aiming at OpenvSwitch, the performance evaluation is just the first step, the guidance
on how to use OpenvSwitch in given scenarios is supposed to be more valuable. How-
ever, few suggestions for future deployment are explicitly provided, remaining for further
investigations.

2.2.2 I/O framework design

Nowadays, 10Gbps interfaces are commonly used in servers. However, a standard Linux
network stack is incapable of achieving line rate of its interface. This is mainly due to the
overhead introduced by kernel architecture in operating system. CPU quickly becomes the
bottleneck even only for normal forwarding without complex operations on packets. SDN
framework requires more flexible and complicate packet processing, which further imposes
great pressure on CPU. In order to achieve high-speed packet processing, several common
guidelines are followed.

• Polling: The traditional scheme in handling incoming traffic is to generate an interrupt
per packet. In scenario involving high packet arrival rate, it easily leads to livelock
due to frequent interrupt requests and significantly limits the processing efficiency.
Instead, polling scheme adopts a proactive manner to periodically check for the arrival
of incoming packets without being interrupted, which eliminates the overhead of
interrupt processing. Hence polling is more suitable for heavy traffic load. However,
in an idle scenario, too frequent polling also introduces significant CPU overhead
by repeatedly checking incoming packets that have not yet arrived. An alternative
solution called NAPI [17] is invented by combining the advantages of both polling
and interrupt schemes. NAPI works in interrupt mode by default and has the ability to
switch to polling mode during the period of high traffic load for the sake of reducing
total number of interrupts.

• Zero copy: In operating system, the standard scheme in processing a packet is shown
in Fig. 2.2. The packet received by Network Interface Card (NIC) is first moved to

2.2 Related work 19

Fig. 2.2 Packet processing in operating system

kernel receive buffer through Direct Memory Access (DMA) transfer. The packet is
then copied to user buffer as a system call by CPU for further user-space operations.
When sending a packet, it is first copied to kernel space by CPU and then to NIC by
DMA. As we can see, user-space packet forwarding requires two CPU data copies and
two context switches. Zero copy aims at eliminating CPU copy as well as reducing
context switches by arranging for a buffer pool to reside in a shared region of memory
accessible to both user application and kernel. A true zero copy also requires a dynamic
large buffer pool in case of memory overflow.

• Bypass: The default network stack in operating system is designed to provide a
wide range of networking functionality. As a consequence, this generality leads to
performance degradation which prevents high-speed packet processing. Hence a
workaround is to bypass the default network stack and deliver the packet directly to
the forwarding application in user-space. For basic routing and switching, a network
stack is not even needed. However, in SDN scenario, a network stack is a must to
establish and maintain TCP connection with the controller. The implementation of
bypass usually requires the support of NICs.

• Batching: I/O batching technology is universally used in all high-performance so-
lutions. By batching together multiple packets and processing them as one system
call, the original RX/TX overhead and CPU load can be greatly reduced. The main
drawback of batching is that per packet latency is enlarged due to the queuing time for
forming a batch.

• Pre-allocating: The operating system always spends a significant amount of time
allocating and de-allocating buffers dynamically. A pre-allocated large enough packet
buffer is helpful for forwarding application to reduce this overhead without requiring
further buffer operations. The huge pages [12] are usually used as pre-allocated buffers
to present large regions of memory that allow user applications to access directly.

20 Background & Related Work

Other technologies based on specific hardware support are also proposed. For instance,
multi-queue allows NIC to receive packets in multiple hardware queues and so improve
load balancing on multi-core system. Since this thesis focuses on software implementation
built on general purpose hardware, the dedicated hardware support is not in our scope. The
techniques summarized above can be applied separately or combined together to take effect.
We briefly review several representative high-performance packet processing frameworks
and examine the techniques they choose.

• mmap [18]: mmap is a feature added to standard UNIX sockets in Linux kernel. It
provides a size-configurable circular buffer mapped between kernel and user-space
that can be used to either send or receive packets. mmap implements packets zero copy
between two domains, which in return saves CPU resource. However, mmap uses two
separate buffers for receiving and sending packets, and thus it can not realize true zero
copy in a forwarding scenario. Because packets are still processed by kernel network
stack and copied between two buffers.

• PF_RING ZC [23]: PF_RING ZC (Zero Copy) is a flexible packet processing frame-
work that achieves 10 Gbps line rate packet processing (both RX and TX) at any
packet size. It is developed by ntop [22] as a commercial library that only provides
5 minutes free use for testing purpose. It implements zero copy operations as well
as programming patterns for inter-process and inter-VM (KVM) communications.
PF_RING ZC also supports huge pages as well as per-NUMA node buffer.

• Netmap [21]: Netmap is a framework for high speed packet I/O, which is implemented
as a single kernel module and available for FreeBSD, Linux and now also Windows.
The network driver of Netmap is based on regular Linux driver and works transparently
for operating system and traditional applications [111]. Similarly, it provides zero
copy, kernel bypass, batch processing and multi-queue support to boost performance.
Although it supports pre-allocated TX/RX buffers, their sizes are fixed once created.
This prevents true zero copy in certain scenarios where a large amount of packets
overflow the memory.

• DPDK [14]: The Intel Data Plane Development Kit (DPDK) is a collection of libraries
and drivers for fast packet processing. It provides not only basic forwarding functions
for sending and receiving packets, but also additional user-level functionality such as a
longest prefix matching algorithm or a multi-core framework with enhanced NUMA-
awareness. DPDK implements a run-to-completion model for packet processing over
multiple logical cores as well as a pipeline model that passes packets or messages

2.2 Related work 21

Table 2.2 Packet forwarding framework techniques

Framework Zero-copy Bypass Batching Polling Pre-allocating Pcap
mmap P ×

√ √ √ √

DPDK
√ √ √ √ √ √

Netmap
√ √ √ √ √ √

PF_RING ZC
√ √ √ √ √ √

PacketShader ×
√ √ √ √

×

among cores via the rings. The driver of DPDK is not transparent to Linux kernel, so
once started, NIC is unavailable to the kernel. In order to achieve extreme performance,
DPDK polls the devices in continuous loop, therefore, the CPU usage is always 100%
regardless of the offered load.

• PacketShader [80]: PacketShader is a high-performance PC-based software router
platform that accelerates packet processing with GPUs. It offloads computation and
memory-intensive router applications to GPUs while optimizing the packet reception
and transmission on Linux. Its I/O engine is designed for user-level application. The
original packet I/O path in Linux is modified by adopting huge page buffer, batch
processing, NUMA-aware data placement and multi-core scalability, and the default
kernel stack is also bypassed.

As summarized in Table 2.2, mmap only implements an incomplete version of zero copy
without memory sharing between sending and receiving buffer, so it is marked as P (Partial).
Since mmap is only an added feature to Linux kernel, it can not bypass the default kernel
stack. Due to the use of GPU, PackerShader has no support for zero copy and provides
no functionality for packet capture (Pcap). DPDK, Netmap and PF_RING ZC adopt all
techniques to boost performance. Since all these three frameworks are evolving in similar
way, their performance gains also turn out to be close to each other based on their official
benchmarks.

SDN-enabled software switch can also be accelerated by above frameworks. Table
2.3 lists the related works that boost OpenvSwitch performance by different frameworks.
Due to the differences of testbed and scenario in each reference, their results can not be
compared directly and fairly, but we can still draw some general conclusions. DPDK gains
6× improvement on OpenvSwitch [73] [74]. The original switch [107] based on DPDK
performs slightly worse than OpenvSwitch. While Netmap achieves 3.85× improvement.
Since this result was carried out in 2012, both Netmap and OpenvSwitch have been improved
a lot in recent years, and we believe that a better result is expected by using the latest version.
The 8× improvement in PacketShader [80] is based on a NVIDIA GTX480 graphic card. It

22 Background & Related Work

Table 2.3 Software switch performance improved by framework

Framework Switch Year Baseline Improved Ratio
PacketShader [80] OF ref switch 2010 4Gbps 32Gbps 8

Netmap [21] OpenvSwitch 2012 0.78Mpps 3.0Mpps 3.85
DPDK [107] Original 2013 - 10Mpps -

DPDK [73] [74] OpenvSwitch 2014 1.88Mpps 11.31Mpps 6.02

has 15 Streaming Multiprocessors (SMs), each of which consists of 32 Stream Processors
(SPs), resulting in 480 cores in total.

By applying high-speed packet processing framework, the performance can be signifi-
cantly improved by several times. For a single CPU core running over 3GHz, the maximum
throughput is slightly above 10Mpps, as indicated in [73] [74] [107]. And more performance
improvement can be obtained on a multi-core system. 6Wind [1] has announced in 2014
that OpenvSwitch can be accelerated to deliver 200Gbps for 1280-byte packet and 50Gbps
for 64-byte packet with 10 cores. However, this improved performance still can not be
comparable with dedicated hardware switch. For a 4-port 40Gbps ethernet switch which is
common in data center, in order to achieve line rate on each port with 64-byte packet (full
duplex mode), the backplane bandwidth should be at least 625Mpps. This is at least 6 times
of 6Wind’s demo, not mentioning hardware switches with more ports.

Furthermore, these performance improvements can not be fully introduced to SDN,
because above results are only conducted in a simple Layer 2 forwarding scenario. While
SDN represents much more than a learning switch, more complex operations on packets
are required by SDN. It is also not practical to treat SDN-enabled switch as a pure data
plane device, since it needs frequent communications with the controller, which in return
impacts the overall performance of data plane. In brief, it is still a considerable long way for
software switch to catch up the performance of dedicated hardware. At present, it is more
reasonable to accept the fact that software switch has relatively lower performance compared
to hardware switch. We focus on how to deploy software switch more intelligently based on
their characteristics. In SDN framework, besides data plane performance, the performance of
control plane and its interaction with data plane should be given equal attention.

2.2.3 Switch control path

As previously explained in Fig. 2.1, forwarding engine works as a fast path that is controlled
by OpenFlow module. In hardware switch, forwarding engine is implemented by TCAM,
while in OpenvSwitch, it is a kernel module associated with hashtable for fast lookup. For
both TCAM and hashtable, their sizes can not be infinite to hold all matching rules. Thus,

2.2 Related work 23

new rules should be added and old ones should be evicted. Besides reactively install rules
when receiving unmatched packets, the controller can also proactively push rules to switch
in advance. All these operations are executed by OpenFlow module and take effect on
forwarding module. Hence the interaction between OpenFlow module and forwarding engine
(or called as “switch control path”) determines not only the efficiency of flow operation but
also the capacity of the whole framework [96]. As a potential bottleneck, several studies are
carried out to exploit the impact of control path inside the switch.

OFLOPS [113] is an open and generic OpenFlow-enabled switch benchmark tool that
mainly focuses on measuring the capabilities and bottlenecks between forwarding engine
and OpenFlow module. Hardware instrumentation can be combined in OFLOPS with an
extensible software framework. For instance, OFLOPS can utilize specialized NetFPGA
platform in order to guarantee accuracy at sub-millisecond level [53]. In the measurements,
OpenvSwitch is compared with three selected hardware switches based on PowerPC. First,
through functionality testing, OpenvSwitch is proved to have fully implemented all actions
defined in OpenFlow specification v1.0, while the hardware switches only support partial
actions. Second, the average delay in installing/modifying a flow entry is measured. The
delay in OpenvSwitch is 0.3∼0.4ms which is at least one order of magnitude smaller than
the result in hardware switches. Third, the average delays in querying traffic statistics in
OpenvSwitch and hardware switches are around 10ms and 100ms respectively. OpenvSwitch
is still 10 times faster than hardware switches. Finally, an artificial scenario is used to evaluate
the impact where flow installation and frequent traffic statistic queries coexist. OpenvSwitch
exhibits a marginal decrease in the median insertion delay as well as an increase in its
variance, which is caused by default scheduling mechanism used in OpenvSwitch. This
problem has been solved in the latest version of OpenvSwitch by introducing a more efficient
scheduling framework with multi-thread support. This result implies that the user-space
daemon of OpenvSwitch could be the bottleneck when dealing with massive interrupts caused
by polling events. OFLOPS-Turbo [112] is one fork from original OFLOPS project and aims
to be capable of testing next generation OpenFlow-enabled switches with support for 10GbE
traffic. OFLOPS-Turbo is built on a series of NetFPGA-10G cards running a open source
traffic generation and capturing system called Open Source Network Tester (OSNT) [52].

The diversity of SDN switch implementation including various hardware capabilities and
software behaviors make it difficult to understand and accurately control the switches in SDN
framework [81]. Tango [97] is proposed to explore the issues of SDN control in the presence
of switch implementation diversity. OpenvSwitch and three hardware switches from different
vendors are selected for measurements. The conclusion is in agreement with OFLOPS [113].
OpenvSwitch outperforms hardware switches over 10 times in installing and modifying the

24 Background & Related Work

flow entries. On hardware switches, the order of executing different rule operations (add,
modify or delete) has a significant impact on overall performance, which can be neglected
in OpenvSwitch. Moreover, OpenvSwitch provides a constant performance base on various
rule-type patterns. All these results indicate that the performance of OpenvSwitch is more
stable and superior to hardware switches.

Both OFLOPS and Tango are originally designed for hardware switch benchmarking.
And OpenvSwitch is just used as a reference in contrast with hardware switches. It is also
proved in [83] that OpenvSwitch is a poor approximation of hardware switch. However, few
works aim to provide a specific and in-depth evaluation on software switch control path,
although the performance of control path in software switch is higher and more predictable
than hardware switch. Moreover, switch control path is only one of the components in the
whole control path, the other components are control network and controller. All these three
components take effect on overall performance comprehensively. Thus, the control network
and the controller should be also taken into consideration for completeness.

2.2.4 Controller performance

In SDN paradigm the controller is a critical cornerstone, since it provides key support for
networking control logic, in accordance with the policies defined by network operators. SDN
is mainly based on a logically centralized control plane in emerging deployment scenarios
(e.g., data centers, cloud, network virtualization). In SDN scheme, the first packet of a new
flow is sent to the controller by the first forwarding device, and then this device waits for
the instructions from the controller. This reactive scheme introduces additional latency to
the forwarding of flows. Meanwhile, a large amount of control traffic may make control
plane as a potential bottleneck. Because of such approach, the performance of the controller
directly determines SDN scalability in such scenarios, becoming crucial to the success of
SDN ecosystem.

The previous efforts addressing scalability issue can be divided into three main categories:
high-performance framework, control offloading and distributed controller. Beacon [75],
Floodlight [10] and Maestro [103] are representative centralized controllers that achieve
high performance to handle over 5M requests per second. They all adopt well-known
high-performance techniques, such as batch processing, buffering and multi-thread, to
improve the total throughput. In order to alleviate the aggregated high load on control plane,
DIFANE [127] offloads certain control functions from controller onto selected authoritative
switches. These switches are responsible for installing rules on remaining switches. Aiming
at data center, DevoFlow [72] can identify elephant flow and mice flow. Only elephant
flows are handled by controller in order to reduce control overhead. Mice flows are simply

2.2 Related work 25

forwarded based on several pre-installed wildcard rules, requiring no more instructions from
controller. Contrary to centralized controller, distributed controller can be scaled up to meet
the requirement of large scale scenarios. Distributed controller relies on data distribution
mechanisms and requires data consistency among multiple geographically distributed nodes.
Botelho et al. have proved in [63] that high-performance, distributed and fault-tolerant
data stores can be applied in SDN scenarios. Onix [92], OpenDayLight [28] and ONOS
[26] are examples of distributed controller driven by industry. They are all hosted by a
large community involving tens of vendors and collaborators, such as Google, Cisco, IBM,
VMWare, HP, Juniper and Huawei. Their prototypes have been already successfully deployed
in several production scenarios combined with other new technologies like OpenStack [34]
and Docker [8].

The current implementations of controller are so diverse including various programming
languages, different run-time technologies, and feature sets. Hence a performance evaluation
is not only essential to understand these implementations and identify their bottlenecks, but
also helpful to select suitable controller for a given scenario. Especially when the usability of
such controllers differs from conceptual prototype to production quality, the performance
evaluation must be carried out fairly and comprehensively to check what is the reality. In the
past few years, number of works have carried out a partial performance evaluation. These
works usually propose a new controller and use selected performance benchmarks to verify
their advantages over others. Previous works on SDN controller performance benchmark
is strongly related to the history of the release of controllers. Cai et al. [103] presented
Maestro as a scalable controller in 2011. It had outperformed old versions of Nox and
Beacon. In 2012, Tootoonchian et al. [120] first introduced multi-thread support to Nox, and
consequently it defeated others at that time. Finally, the new version of Beacon [75] arrived
in 2013 and brought significant improvement to outperform other controllers. Shalimov et al.
explored the reliability and security of controller alongside performance in [116]. It proved
that Ryu is more robust in handling malformed OpenFlow message, avoiding crash. As we
can see, the advantages of controllers were usually temporary, because, in the meanwhile,
the other controllers were as well evolving and improving. Thus, the performance evaluation
of controllers had a hard time in converging on a conclusion. Since the majority of the
controllers are mature enough now in their development, it is needed to re-investigate their
performances in a fair manner.

To foster the evaluation of controllers, several frameworks such as Cbench [5], OFCBench-
mark [84], OFCProbe [85] have been proposed. Cbench is a benchmark tool specifically
designed for OpenFlow controllers. Cbench can emulate a configurable number of switches
which connect to the controller by sending request messages and watching for reply messages.

26 Background & Related Work

Similarly, OFCBenchmark and OFCProbe also use emulated virtual switches to flood con-
troller, but with more flexibility on switch configurations. The standard method to evaluate
controllers is also discussed by IETF [59], defining a number of tests used to measure the
performance characteristics of SDN controllers. In [122], Turull et al. further evaluates the
performance of network virtualization applications build on various controllers. But the
results are highly related to the implementation details of applications, which can not lead to
a general conclusion. The controller is essentially a software program running on the basis
of related hardware or software, however, these system-wide factors are usually overlooked
in previous evaluations and should be taken into consideration in our studies. The evaluation
of distributed controller is more complex, and the original benchmark tools for centralized
controller are no longer suitable, which needs further investigation.

2.2.5 Analytical model

Besides above evaluation works based on practical deployment and experimentation platform,
analytical modeling is also used to obtain a quick estimation on the performance, without
requiring extensive simulation studies and expensive testbeds. In [86], Jarschel et al. model
the relationship between forwarding speed and blocking probability of OpenFlow architecture
as a first step. It indicates the importance of controller performance, especially in high-speed
networks with 10Gbps or higher links. Since the model is based on a M/M/1−S feedback
queue, it can only analyze the scenario where one switch is connected to the controller.
In [126], Yao et al. consider a multi-switch scenario and model the switch-controller
communication as a batch arrival process Mk/M/1. In addition, it also provides a preliminary
analysis on multi-controller scenario. Azodolmolky et al. introduce network calculus theory
[56] [55] to model the behaviors of SDN controller and switch. This model can calculate
the upper bound estimation of packet delay and required buffer size of switch based on the
specification of various arrival processes. The packet processing delay of OpenvSwitch and
buffer requirement of Beacon are demonstrated in the paper.

Beifus et al. carry out an in-depth investigation on packet processing latency in Linux
network stack [58]. By reviewing the implementation code of PC-based packet processing in
Linux, the NIC driver, NAPI mechanism and IRQ handler in operating system are modeled
and simulated in ns-3. Taking OpenvSwitch as an example, the results show that this model
can predict the packet latency with sub-microsecond accuracy except for some corner cases.

Although the analytical model is convenient to get a quick idea about the performance
of design, most of them are still too rough to obtain an accurate and meaningful result for
practical use. Even [58] is a good attempt for modeling realistic packet latency, it still can
not handle several corner cases. An accurate model needs to take all variables and factors

2.3 What is missing? 27

into account, which requires lots of efforts to fully understand the whole framework in detail.
Such a deep understanding is always acquired by extensive simulation studies.

2.3 What is missing?

The previous works mentioned above have covered different subjects related to software
switch and SDN, including performance evaluation, framework design and analytical model-
ing. However, there are still many aspects that are overlooked.

2.3.1 In-band control

As explained in Fig. 2.1, there are two schemes to connect switches with the controller in
SDN, namely “in-band” control and “out-of-band” control. Out-of-band control requires
an independent control network that is separated from normal data network. Out-of-band
control can simplify the switch implementation and keep the control traffic away from the
interference of data traffic. While in-band control is easier to deploy without requiring
additional control network. Both in-band and out-of-band control have their own advantages
and are suitable for different scenarios.

In-band control is rarely mentioned previously and its impact is still unknown to network
operations. In in-band scenario, it is challenging to handle network state update like device
failover and rerouting, since any misconfiguration or wrong operation may result in the
failure of the whole network. Regarding network update problem, [128] generates a correct
ordering of the switches in which an update can be successfully implemented. Peregrine
[121] is proposed as an Ethernet-based SDN (not OpenFlow) which adopts an in-band control
network architecture. It mainly addresses two deployment issues: how to evolve the network
from its initial bootstrapping mode to the explicit routing mode at run time and how to support
fast failover for physical failures that break both control plane and data plane. Furthermore,
[106] demonstrates that the bandwidth and the latency of control network have a negative
impact on the overall performances of SDN framework. Especially for in-band control, the
bandwidth and the latency are affected by the interference of data traffic, which makes the
prediction of performance even more difficult.

Besides controller-switch traffic, distributed controllers require additional controller-
controller traffic for information synchronization to act as a logically centralized controller.
The synchronization traffic further increases the complexity of deployment. This is espe-
cially true in in-band scenario where control network and data network are the same. The
interference between control traffic and data traffic can not be avoid and may impact the

28 Background & Related Work

overall performance. Without the dedicated out-of-band control network, the control traffic
need to occupy a certain amount of bandwidth of data traffic. Overloaded data traffic may
disrupt the transmission of control messages. The synchronization traffic contributes more
than normal controller-switch traffic to the overall control traffic. Obadia et al. tackle the
problem of minimizing the total control traffic generated by distributed SDN controllers
in [104]. This problem is first modeled based on Mixed Integer Linear Program (MILP).
A greedy algorithm is then proposed to find a near optimal placement and a spanning tree
topology for controller nodes.

Although a limited number of works start to study the impact of in-band control, it is still
far away from well investigated. Even the fundamental design principles of in-band control
are not clearly clarified, not to mention other general conclusions for in-band control. In
order to better understand in-band control, it is reasonable to start from a specific software
switch like OpenvSwitch which supports both in-band and out-of-band control. The direct
comparison between two schemes is helpful to observe the differences and identify the
potential problems.

2.3.2 Fine-grained resource control

Compared with dedicated hardware, software switch brings more flexibility in deployment
and upgrading. But software switch also leads to unstable performance in the meanwhile. For
instance, the performance of software switch depends on CPU resource, and modern CPUs
have features to change their running frequency dynamically according to workload. Hence
the performance of software switch can not be kept consistent due to frequency variation.
Even if the CPU frequency can be locked, the operating system background services that are
running periodically or sporadically may also impact software switch performance. Fine-
grained control on CPU resource is needed in software switch to provide predictable and
stable performance.

Rather than focusing on individual switch performance, more efforts should be made
in orchestration and coordination among multiple and various switches/network functions.
Blaiech et al. propose a simple load balancing mechanism between software switches and
NPU-based switches in [61]. This mechanism manages all software switches as a whole and
ignore their internal conflicts. In [69], Chang et al. build a spring-based resource management
model for end-to-end QoS of flows with given CPU and bandwidth resources. However, the
basis of this model is not convincible, since it treats processing delay and available bandwidth
as two independent resources. While in fact, these two resources are highly correlated in
software switch. Moreover, in NFV and NaaS, multiple software switches and virtual network
functions are usually required to cooperate with each other to implement a series of services

2.4 Summary 29

or tasks. A typical example is Service Function Chaining (SFC) which steers service-specific
traffic to traverse network service functions (or middleboxes) in the given order. Since all
software switches and virtual functions are sharing the same underlying physical resources,
the competition and interference on resource can not be avoided. Fine-grained resource
allocation is also helpful in these scenarios to minimize the interference as well as maximize
the overall performance.

2.4 Summary

The combination of SDN and software switch is so promising that it has gained much
attention from both academic and industry. But SDN and software switch are not panaceas
and have their own limitations for practical use. It is argued in [90] that existing framework of
SDN can not meet the need of real-life ISP traffic. Besides the issue of controller scalability,
greater performance bottleneck may be located in the current OpenFlow switches. The
performance issue of software switch is well-known and remains a hot topic in research.
The combination of SDN and software switch also introduces new challenges such as the
installation delay of flow rules. However, the deployment and performance problems of
software switch are not yet systematically investigated in previous works. Several existing
limitations are summarized as follows.

• Although there are different implementations of SDN-enabled software switches, previ-
ous performance evaluations all concentrated only on OpenvSwitch. Due to the lack of
in-depth analysis and comprehensive comparison between different implementations,
their conclusions can not provide the general characteristics of software switch.

• Most of previous studies investigate software switch as a standalone part and overlook
the impact of other components in SDN framework such as control plane and control
network, which can not lead to convincible results for practical use.

• Comparing with improving the performance of individual software switch, the orches-
tration and coordination among multiple software switches are even more important,
especially in network virtualization environment where dozens of software switches
are sharing the same underlying physical resource.

• Even if the performance of software switch can be greatly improved by new I/O
frameworks, it still can not be comparable with dedicated hardware. Hence it is more
reasonable to deploy software switch in suitable scenarios based on its characteristics.

In addition to the limitations mentioned above, it is challenging to integrate software
switch into emerging technologies as SDN and NFV, since these technologies are immature

30 Background & Related Work

now and still evolving at a fast pace. The OpenFlow specification is updated and renewed
every few months. More and more functions are added with the releases of new versions, e.g.,
multiple flow tables in v1.1, tunnel ID support in v1.3, etc. Besides OpenFlow, there are also
other implementations of northbound API like POF [118] and P4 [62]. So it is hard to find
out general and long term conclusions on software switch among various implementations
and different versions. NFV refers to the softwarization of traditional network functions
(e.g., Firewall, Load Balancer, DPI, etc.) other than basic forwarding. The work on the
definition and specification of NFV is still ongoing. European Telecommunications Standards
Institute (ETSI) [9] is selected to be the home of Industry Specification Group for NFV and
working on the standardization of NFV. Meanwhile, Open Platform of NFV (OPNFV) [36]
is launched by Linux Foundation to help ETSI bring NFV from specifications to reality using
open source methodologies. By combining our research with the related work from ETSI
and OPNFV, it is helpful to extend some of our conclusions on software switch to NFV.

Chapter 3

Software Switch Performance Evaluation

Dedicate hardware switches built on specific ASIC chips are capable of providing decent
and reliable performance. While the performance of software switch on x86 server is not
comparable to legacy hardware switch due to various factors from both hardware and software
perspectives. The x86 CPU is originally designed for high-performance computation rather
than high-performance packet forwarding, hence this general purpose framework introduces
large overhead in processing packets compared to dedicated switching chips. Various software
implementations also result in significant difference in performance. Moreover, software
switch is essentially a service running above the operating system. Thus the contention on
CPU resource among software switches and other services in operating system can not be
avoided, which further increases the uncertainty of its performance.

Although software switch has performance concerns compared to dedicated hardware, it
is gradually adopted in SDN and network virtualization based on the following reasons. First,
software switches and hardware switches focus on different domains and responsibilities.
Hardware switches are usually deployed in core network to guarantee high-performance
traffic forwarding, while software switches reside in edge servers to connect virtual machines
to external networks as well as provide customized network functions. Second, software
switch provides high programmability and customization to satisfy various requirements and
frequent modifications. Third, software switch essentially fits in virtualization environment.
It is the basis of upper layer virtual services such as NFV and cloud computing.

In order to address the contradiction between the popularity of software switch and its
limited performance for practical SDN deployment, a performance evaluation is necessary to
identify the main performance factors and potential bottlenecks. As the data plane in SDN
framework, software switch not only implements packet forwarding based on flow rules, but
also interacts with the control plane. Hence, a comprehensive performance evaluation of
software switch should also take SDN-related features into consideration.

32 Software Switch Performance Evaluation

Table 3.1 OpenvSwitch VS. OFsoftswitch

Softswitch Implementation Specification Thread Flow Table Type
OpenvSwitch Kernel space 1.0 & 1.3 Multiple Hashtable
OFsoftswitch User space 1.3 Single Lineartable

3.1 Selected OpenFlow-enabled switches

OpenFlow has become the de facto standard of SDN. Because the concept of SDN derives
from OpenFlow, and OpenFlow has been widely deployed in various scenarios such as
data centers and campus networks. Other southbound APIs all follow the similar design as
OpenFlow and are immature for a performance evaluation aiming at providing long term
results. As summarized in Section 2.1, OpenvSwitch and OpenFlow reference switch are
two representative OpenFlow-enabled software switches, since other implementations are
all based on them. However, the source code of OpenFlow reference switch has not been
maintained and updated since 2011. OFsoftswitch is inherited and modified from OpenFlow
reference switch to support OpenFlow v1.3, and its maintenance is still quite active. Hence
OpenvSwitch and OFsoftswitch are selected for performance evaluation. According to the
brief comparison in Table.3.1, we can see that OpenvSwitch and OFsoftswitch are quite
different in various aspects, which is helpful to lead to a more general conclusion.

Fig. 3.1 shows a simplified structure of OpenvSwitch and OFsoftswitch. Each software
switch has at least two fundamental components: one OpenFlow module to communicate
with the controller (“ovs-vswitchd” in OpenvSwitch, “ofprotocol” in OFsoftswitch) and
one datapath for packet forwarding (“kernel datapath” in OpenvSwitch, “ofdatapath” in
OFsoftswitch). There are several main differences between OpenvSwitch and OFsoftswitch:
1) OpenvSwitch uses a built-in database (“ovsdb-server”) to store various types of data besides
OpenFlow related information, that is why OpenvSwitch can support various management
interfaces and protocols (e.g., NetFlow, sFlow, IPFIX, RSPAN, CLI, etc.). 2) The datapath
in OpenvSwitch is a kernel module that allows fast forwarding. Since the packets are
received/sent by kernel, a kernel datapath can avoid large overhead in transition between user
and kernel spaces. 3) OpenvSwitch supports multi-thread, while OFsoftswitch only runs in
single thread.

Although the datapath in kernel is more efficient, the datapath in user-space has its own
advantages. First, all components in user-space can be monitored, isolated, managed as
processes. But the kernel module is controlled automatically and uniquely by operating
system and most of execution details are invisible, which can not guarantee optimized
resource allocation and security boundary in complex scenarios. Second, kernel programming

3.2 Evaluation environment 33

Fig. 3.1 Simplified structure of OpenvSwitch and OFsoftswitch

is much more complex and time-consuming. It is also impractical to put all OpenFlow
processing into a kernel module because of the relative difficulty of developing in the kernel
and updating kernel modules. Third, the user-space datapath is portable and can be easily
deployed in a number of different operating systems or other platforms besides x86. Fourth,
more and more efforts are shifting from kernel space to user-space, and user-space is more
promising to the emerging technologies like NFV. By applying tool kits like DPDK [14],
the user-space datapath can achieve equivalent or even better performance than kernel space.
However, these user-space tools are not as mature as kernel technologies. Their usability,
stability and reliability still need further evaluation, which is out of the scope of this thesis.
Regarding the performance characteristics of kernel and user-space datapaths, OpenvSwitch
and OFsoftswitch are evaluated to investigate their similarities and differences.

3.2 Evaluation environment

This section mainly focuses on the performance evaluation of software switch in virtualization
environment. The testbeds in previous works ([73][60][51][68]) all follow the same design
as shown in Fig. 3.2: two servers A and B are used as load generators and packet counters
respectively, and the Device under Test (DuT) runs software switch on a third server. Both
server A and B are connected to C with 10GbE (Gigabit Ethernet) NICs. The limitations of
this testbed is manifold: 1) since all traffic load is generated outside the DuT, the maximum
load is constrained by the NIC bandwidth, and 10Gbps is not sufficient to overload software
switch when using MTU size packets; 2) the testing scenario is not practical with only two
physical ports, and no further results with more than two ports are provided; 3) the deployment

34 Software Switch Performance Evaluation

Fig. 3.2 Server setup in previous works

Fig. 3.3 Testbed configuration example

of software switch in network virtualization environment is usually overlooked or not well-
studied. In order to address above limitations, our testbed is built on a single server and all
components are virtualized. In virtualization context, virtual machines/containers coexist
with software switches on the same server. They not only generate substantial CPU load for
computation, but may also generate substantial traffic load for mutual communication.

3.2.1 Experimental setup

Fig. 3.3 explains how to set up the testbed in fully virtualized environment. There are 3
necessary components for software switch performance evaluation:

• Virtual host: Similar to the physical servers in Fig. 3.2, virtual host is the source/destination
of data traffic. In performance evaluation, iperf and netperf are used in virtual host
to generate testing traffic. In order to isolate multiple virtual hosts, a lightweight
virtualization mechanism “Network namespace” is used instead of traditional virtual
machine technology like KVM [15]. Network namespaces are containers for network
states. They provide specific processes with exclusive ownership of interfaces, ports,
and routing tables. Virtual or real devices can be added to each network namespace.
LXC [47] and Docker [8] are all based on network namespace to provide operating-
system-level virtualization. Compared with full virtualization such as Hyper-V [99]
or VMware ESX [123], operating-system-level virtualization imposes little or no
overhead, because the programs in containers use normal system calls and interfaces

3.2 Evaluation environment 35

without the need to be running in intermediate virtual machines. That is why more and
more companies have deployed containers in production in the past few years.

• Virtual switch: In performance evaluation, OpenvSwitch (OVS) and OFsoftswitch
(OFS) are used as virtual switches. In Linux there are built-in virtual ethernet devices
such as Linux bridge and TAP device. From the perspective of implementation, Open-
vSwitch relates to Linux bridge while OFsoftswitch is similar to TAP device. Both
OpenvSwitch and Linux bridge reside in kernel and follow the same design to capture
packets from interfaces. OpenvSwitch is gradually replacing Linux bridge, since it pro-
vides more flexibility in managing the network in dynamic virtualization environment
without performance degradation. OFsoftswitch and TAP devices both provide packet
reception and transmission for user-space programs, and all the operations on packet
forwarding and modification are executed in user-space.

• Virtual link: Virtual network interfaces (veth) pair is used as virtual link to connect
virtual devices. Veths always exist in pairs. A pair of veths are connected as a pipe,
i.e., any packet received by one veth interface will come out from the other peer veth
interface. Veth can be associated with virtual switches or virtual hosts, as shown in
Fig. 3.3. From the perspective of virtual devices and virtual hosts, veths are treated as
normal network interfaces, and related network parameters (e.g., MAC addresses, IP
addresses, MTU, etc.) can be customized according to requirements.

Mininet [20] is a network emulator that allow to create a SDN network of virtual hosts,
switches, controllers, and links on a single Linux server, using container virtualization.
Mininet also provides a rich set of Python APIs to manage the virtual networks and devices
in a unified manner. In our performance evaluation, mininet is used to establish testing
topology as well as execute test scripts. By default in mininet, virtual hosts are running
in containers with private network namespace, and all virtual switches are running in the
same root network namespace. We modified it to also run virtual switches in container for
better isolation. Ryu [40] is used as a remote controller instead of default ovs-controller.
OpenvSwitch and OFsoftswitch are connected to the controller using out-of-band control for
simplicity1. The loopback interface is used for communication between switches and the
controller in order to eliminate potential bottleneck. The version of OpenFlow specification
is v1.3. Only IPv4 traffic is used for performance evaluation.

The testbed server has one Intel Xeon E5-1620 CPU with 4 cores (8 logical cores when
enabling Hyper-Threading) each running at 3.6GHz. The memory configuration is 4×2GB

1OpenvSwitch supports both in-band and out-of-band control while OFsoftswitch only supports out-of-band
control. More details of in-band control and the comparison between two control schemes in OpenvSwitch are
provided in following chapters.

36 Software Switch Performance Evaluation

Table 3.2 Software version

Software Version
Ubuntu 14.04 Kernel 3.13.0
OpenvSwitch 2.4.0
OFsoftswitch -

Controller(Ryu) 3.17
Mininet 2.2.0+
Python 2.7.6
iperf 2.0.2

netperf 2.7.0
Wireshark 1.10.6

DDR3 with 1600 MHz. The software information is listed in Table 3.2. For OFsoftswitch, no
formal version number is provided. Furthermore, we modify it for performance improvement,
which is to be explained next.

3.2.2 OFsoftswitch performance improvement

Although OFsoftswitch is based on user-space datapath, we find that there is still room for
improvement after analyzing its source code. OFsoftswitch uses Netbee library [44] to parse
and classify the packets. Instead of creating codes for customized packet processing in appli-
cations, NetBee provides powerful tools (such as the NetPDL protocol definition language or
the NetVM packet processing virtual machine) to implement the same functionality more
quickly and concisely. However, Netbee framework sacrifices the performance to meet the
requirement of generic packet processing. In order to replace original Netbee library for
improvement, we rewrite a packet classification function that exactly targets the matching
fields that are pre-defined in OpenFlow. For further improvement, we not only simplify the
processing pipeline by removing optional features according to OpenFlow specification, but
also optimize the parameters like polling cycle.

The performance comparison between original and our modified versions is listed in
Table 3.3. For Round Trip time, our modified version is 1.61× faster. When measuring
the maximum available bandwidth for TCP traffic, our modified version achieves 4.11×
throughput of original version. Since the performance can be improved significantly and
no obvious side effect is observed, we use our modified OFsoftswitch instead of original
version in latter evaluations. For more details about OFsoftswitch modification, please refer
to Appendix A.

3.3 Performance factors 37

Table 3.3 OFsoftswitch performance improvement

Original Modified Modified/Original
RTT (ms) 0.29 0.18 1.61

Throughput (Mbps) 195 803 4.11

Fig. 3.4 Packet processing flow chart

3.3 Performance factors

In this section, we investigate main performance factors and evaluate their impacts. Fig.
3.4 summarizes a standard flow chart for packets processing in software switch according
to OpenFlow specification. The theoretical time for processing a packet should be: T =

tpolling+tI/O+trules+tactions+toverhead . Software switch uses polling mode to check available
data on ports. tpolling represents this time cost for polling check. If a new packet arrives at the
port, I/O module first reads the packet and copies it into memory. Then this packet is matched
with rules in flow table pipeline2 in order of priority until one rule is hit. trules refers to total
matching time. If no rule matches the packet, this packet is submitted to the controller for
further instructions. Next, associated actions listed in matched rule are applied to the packet
sequentially. The time for executing the actions is represented by tactions. Finally, I/O module
sends the packet out from memory. For simplicity, tI/O is the total time of packet reading
and sending. After processing one port, software switch loops back to the polling step and
repeats above process on next port. tpolling is treated as an overhead, as it always exists
no matter whether there are available packets. In each polling round, there exists another
fixed overhead toverhead . It is due to software design like recycling resources or registering
event handler. All these overheads are marked with grid lines in the flow chart. According
to the flow chart, we divide total processing time into independent parts and measure their
performance impacts respectively.

2OpenFlow specification v1.0 only has single flow table, while v1.3 supports multiple flow table which can
be used as a pipeline.

38 Software Switch Performance Evaluation

(a) OFsoftswitch

(b) OpenvSwitch

Fig. 3.5 Periodic performance of software switch

3.3.1 Periodic performance

In performance evaluation, it is important to guarantee the accuracy of the result and minimize
the variation among numerous measurements. The oscillation of performance on software
switch is observed in stress test. We measure the maximum bandwidth of TCP traffic
on OpenvSwitch and OFsoftswitch for an hour, and the results are shown in Fig. 3.5
respectively. We can see a clear periodic cycle of performance on both switches. Because
many background services have to run periodically to ensure the functionality of operating
system. These services share a certain amount of CPU resource with software switches
and lower their performance. The range of oscillation in OFsoftswitch is around 6% of
average performance, while the oscillation is larger in OpenvSwitch at around 18%. Since the
datapath of OpenvSwitch and the background services both reside in kernel, it is reasonable
that OpenvSwitch faces a more fierce contention on CPU than OFsoftswitch and has a more
significant performance oscillation. It is necessary to take this performance oscillation into
consideration when measuring the available bandwidth. The periodic cycle of performance
oscillation is 495s on our testbed3. Hence, in the latter performance evaluations, the testing
time is always set as an integral multiple of 495s in order to obtain a more accurate result
with less variation.

3We also measure this periodic cycle on different servers as well as other Linux operating systems, all
results are around 500s.

3.3 Performance factors 39

Table 3.4 Baseline performance

Scenario RTT (ms) TCP (Mbps) UDP (Mbps)
Direct veth pair 0.023 8460 12020

LinuxBridge+veth 0.037 5205 7274
OpenvSwitch+veth 0.034 7150 7780
OFsoftswitch+veth 0.095 803 1130

3.3.2 Baseline

We start our measurement with the most simple configuration, which is used as a baseline.
Two virtual hosts (containers) are connected to the same software switch/Linux bridge. For
comparison, an extremely basic scenario where two virtual hosts are connected directly by
one veth pair is also evaluated. A veth pair can be treated as a simplified software hub with
only two ports. All parameters of veth are set as default value4.

Table 3.4 lists the RTT time as well as TCP and UDP throughput of a single flow. RTT
is defined as round trip time, hence the total time is composed by the transmission time
on link and the processing time in software switch: ttotal = tlink + tswitch. In the scenario
with direct veth pair, tlink equals to 2 times of unidirectional transmission delay on veth pair:
tlink = 2× tveth. In other scenarios, ttotal contains 4 times of unidirectional transmission delay
on veth pair and the processing time inside the software switch: tlink = 4× tveth + tswitch.
Since virtual hosts share the same clock on the same server, it is convenient to calculate the
transmission delay on veth pair by comparing the two timestamps of the same packet that
are captured on each veth. Wireshark is used to capture the packets. The result shows that
tveth is around 2.5∼3 µs. Based on above result and analysis, we can further calculate the
processing time inside each switch: tbridge is around 8∼10 µs; tovs is around 5∼7 µs; to f s

is around 60∼70 µs. Between two kernel implementations, OpenvSwitch runs faster than
Linux bridge. OFsoftswitch is one order of magnitude slower as a user-space implementation,
because each packet has to endure kernel-to-user-space transition which results in additional
data copies and large overhead.

For throughput, the throughput of UDP traffic is higher than TCP in all cases. Unlike
TCP, UDP generates no ACK packet, hence UDP can achieve the same throughput as TCP
with less packets. In hardware switch, each network interface works independently, and no
interference occurs among them. While in software switch, there exists CPU contention
among multiple virtual interfaces since they share the same physical resource. Hence the total
amount of packets that can be processed on all interfaces has a upper limit. Furthermore, UDP

4TCP Segmentation Offload (TSO)/Generic Segmentation Offload (GSO)/UDP Fragmentation Offload
(UFO) is off, and txqueuelen in veth is set as 1000.

40 Software Switch Performance Evaluation

Processing Latency in Switch
Switch OpenvSwitch OFsoftswitch

Size (B) Avg (µs) Std Avg (µs) Std
64 6.2 0.53 63.4 4.9
512 6.3 0.49 64.1 6.5

1024 6.4 0.67 64.3 5.7
1500 6.4 0.65 64.5 6.8

Fig. 3.6 Impact of packet size on I/O

requires no congestion control or error correction, thus it costs less computation resources.
That is why UDP can achieve higher throughput than TCP in software switch. According to
the results, OpenvSwitch performs around 25% better on TCP and 7% better on UDP than
Linux bridge. OFsoftswitch still provides only 803 Mbps on TCP and 1130 Mbps on UDP.
Due to better performance and more flexibility, OpenvSwitch is gradually replacing Linux
bridge in most scenarios.

3.3.3 I/O operation

I/O includes both packet reception and transmission, and the main factor in I/O is packet size.
In this part, the impact of packet size on I/O operation is investigated. We use unidirectional
single UDP flow to measure the maximum bandwidth with various packet sizes (from 64
Bytes to 1500 Bytes).

As observed in Fig. 3.6, in spite of the difference in implementation, the throughput
of both OpenvSwitch and OFsoftswitch is proportional to the packet size. The degree of
linear fitting is over 99.5% and 99.95% respectively. This result implies that “packets per
second (pps)” value is independent of packet size. The further calculation shows that pps
is around 650k in OpenvSwitch and 90k in OFsoftswitch. OFsoftswitch is a user-space
implementation, so memory copy between kernel and user-space costs most of CPU time and
acts as bottleneck. While in OpenvSwitch, a large amount of CPU time is spent on kernel
system calls so f tirq and spin_lock. This is related to the design of veth interface which acts
as potential bottleneck. More details are explained in Section 3.3.7.

We further measure the processing time of various packet sizes inside software switch
under light traffic load. The table in Fig. 3.6 shows that the processing time is relatively
constant with small variation. The difference between processing large and small packets

3.3 Performance factors 41

Table 3.5 Offload performance

Stream TCP (Mbps) UDP (Mbps)
Offload Disable Enable Ratio Disable Enable Ratio

OpenvSwitch 7150 25600 3.6 7780 50038 6.4
OFsoftswitch 803 9560 11.9 1130 20045 17.7

can be neglected. Our results indicate that packet size has no influence on the packet rate.
The explanation is as follows: The virtual interface handles all incoming packets in the
same manner regardless of packet size; furthermore, sk_buff s are always allocated to fit a
maximum sized packet; the forwarding decision in software switch is only based on packet
header which is a fix length.

In modern NIC, traditional segmentation/fragmentation techniques on TCP/UDP stream
that have to be done by CPU can be offloaded to NIC for performance improvement. These
operations include TCP Segmentation Offload (TSO), Generic Segmentation Offload (GSO)
and UDP Fragmentation Offload (UFO). However, veth has no real implementation of offload.
When enabling offload on veth, it simply sends out jumbo frames (around 64KB) without
segmentation. If MTU is also set as the same large value as frame size, the throughput can be
significantly improved. As shown in Table 3.5, the throughput can reach at least 10Gbps even
for OFsoftswitch. To achieve 10Gbps throughput with 64KB packet, only 20k pps is needed.
This value can be easily provided by OFsoftswitch (90k pps at maximum). It should be noted
that the actual throughput is even higher than the value listed in the Table 3.5. Because we
notice that the benchmark tool iperf/netperf has become the real bottleneck in the evaluation.
In network virtualization scenarios where large MTU is available, it is reasonable to enable
offload features and allow jumbo frame transmission for performance improvement. In latter
measurements, we disable offload feature by default in order to obtain more accurate results
on performance evaluations.

3.3.4 Rule-based forwarding

OpenFlow-enabled switch uses flow-based traffic forwarding. Each packet processed by the
switch is compared against the rules in flow table based on the order of priority until one rule
is matched. Thus, the number of rules has a great effect on software switch performance
due to matching operation. OFsoftswitch uses a linear table for matching rules, hence
trules is proportional to the number of rules it matches. We force each incoming packet
to be compared with a given number of rules before matching the right one. Fig. 3.7a
shows the relationship between the number of rules and maximum bandwidth of single flow
in OFsoftswitch. As expected, when the number of rules increases, OFsoftswitch costs

42 Software Switch Performance Evaluation

(a) Throughput (b) Processing time in OFsoftswitch

Fig. 3.7 Impact of number of rules

more CPU time on rule matching, which lowers the total throughput. With 2000 rules,
OFsoftswitch can only achieve 200 Mbps throughput (around 17k pps). We further measure
the processing time trules with different numbers of rules to be matched. As shown in Fig.
3.7b, the processing time trules is proportional to the number of rules, and the degree of linear
fitting is over 99.5%. According to this linear relationship, the time for matching single rule
is 0.09∼0.1 µs.

OpenvSwitch uses a two-layer rule matching framework: a kernel hashtable and a user-
space daemon. The kernel hashtable works as a cache to store recently matched rules for
fast lookup5. The packet is first checked in kernel hashtable. If missed, it is submitted to
user-space daemon for further lookup, and the matched rule in user-space will be installed in
kernel hashtable. User-space daemon also adjusts the size and evicts rules in kernel hashtable
in order to keep the most active flows in the kernel while not incurring too much overhead on
keeping track of flow stats. Each flow rule in kernel hashtable has a default idle timeout as 10
seconds. In this measurement, we only focus on the impact of rules in kernel hashtable and
avoid the interaction with user-space. The kernel hashtable should guarantee that matching
time is a constant value regardless of the number of rules as long as the packet hits the
hashtable. As proved in Fig. 3.7a, OpenvSwitch provides stable maximum bandwidth, and
the number of rules has no impact on total throughput.

3.3.5 Impact of rule actions

Each flow rule is associated with zero or more actions that indicate how to handle the
matching packets. If no action is present, the packet will be dropped. The switch must

5The kernel module in OpenvSwitch is designed as a microflow cache in which a single cache entry exact
matches with all the packet header fields supported in OpenFlow specification.

3.3 Performance factors 43

Fig. 3.8 Topology for action measurement

Fig. 3.9 Throughput with multiple output ports

execute all action in the lists according to the specified order. However, packet output
ordering is not guaranteed within a port.

The actions that can be applied are various from basic operations like rewriting packet
headers to complex ones like packet encapsulation (VLAN or MPLS). In software switch,
the time cost of action depends on its complexity. In order to measure the impact of various
actions, we design a testing scenario as shown in Fig. 3.8. The source and destination hosts
are connected by two software switches linearly. Virtual switch1 first modifies the packet, and
then switch2 undo the modification (For VLAN/MPLS, switch1 inserts the shim layer and
then switch2 removes it). The baseline is set as basic forwarding without any modification
on packets. The comparison shows that the throughput has no difference with various actions.
The further measurement shows that the time cost of various actions differs from 0.01 µs to
0.02 µs. This overhead is so tiny to be ignored when compared with total processing time.

The most basic action is packet forwarding. In a multicast or monitoring system, one
packet should be copied and sent out on more than one port. This additional copy and trans-
mission degrades the total throughput. Fig. 3.9 shows the relationship between throughput
(TCP and UDP) and the number of output ports. The throughput of OpenvSwitch decreases
around 40% with 4 output ports compared with one port. The impact on OFsoftswitch
is smaller, the result with 4 ports can still achieve 75% of the throughput with one port.
Moreover, the result with 3 ports and 4 ports are close to each other. Since a significant
performance degradation can be observed, the deployment of software switch in such a
multicast or monitoring system should be designed more carefully.

44 Software Switch Performance Evaluation

3.3.6 Polling & Overhead

Different from hardware implementation where multiple ports can run in parallel, software
switch uses polling mode to check available packets on ports. As shown in Fig. 3.4, besides
the fixed overhead in a polling round, checking available packets on each port introduces
additional overhead. For example in OFsoftswitch, each port is polled actively in a Round-
Robin manner from user-space, and all ports share the same CPU core. For each polling
round, at most one packet can be processed on each port. Therefore, the maximum “packets
per polling round (pppr)” is equal to the number of ports. When the number of ports is fixed
as n, we define an indicator called “Effective packet processing ratio (r)” which represents
the ratio between actual time for packet processing and the total time including polling and
overhead. The theoretical value of r is defined as:

r =
pppr× tprocessing

n× tpolling + pppr× tprocessing + toverhead

where tprocessing = tI/O + trules + tactions and pppr ≤ n. Clearly, the total packets can be pro-
cessed “pps” is proportional to r. OFsoftswitch is a single thread user-space implementation,
therefore the maximum CPU resource it can use is fixed as one core. In order to maximize
total pps, OFsoftswitch should try to send out packets as many as possible in one round to
lower the share of overhead. According to the design of OFsoftswitch the number of packets
it can process depends on the number of the ports and the traffic pattern on each port.

In order to evaluate such aspect, we design a crafted testing scenario: OFsoftswitch has
2,4,6,8 ports in each test, the packets arrived on each port are carefully controlled in order to
guarantee that only given number of packets can be processed by OFsoftswitch in each polling
round. The results in Fig. 3.10 show that when the number of ports is fixed, the larger the
pppr, the larger total pps achieved. When pppr is fixed, more ports results in performance
degradation, as more CPU time is wasted on polling check. When pppr is equal to n, along
with the increase of n, r tends to reach its upper limit as tprocessing/(tprocessing + tpolling). As a
consequence, when n is over 6, the total throughput tends to converge to a constant value
around 110k.

Differently from OFsoftswitch that adopts a simple user-space polling method, Open-
vSwitch uses NAPI (default packet reception API in Linux kernel) to handle arrived packets
more intelligently. Instead of processing only one packet on each port in each round, NAPI
allows to poll a certain number of packets on the same port simultaneously in each round
when traffic load is heavy. This effectively lower the share of toverhead in each round. NAPI
also adopts interrupt-based processing when traffic load is light, which eliminates useless
polling check on empty ports. Furthermore, the kernel datapath of OpenvSwitch supports

3.3 Performance factors 45

Fig. 3.10 Impact of traffic pattern in OF-
softswitch

Fig. 3.11 Impact of veth queue in Open-
vSwitch

multi-core processing. Hence, the impact of traffic pattern on the performance of Open-
vSwitch theoretically can be significantly alleviated as long as the kernel resource is still
available. For evaluation, we start a single flow on each port of OpenvSwitch simultaneously.
The result shows that the throughput of each flow is as same as the value when it is running
alone, which proves our above analysis.

3.3.7 Veth interface

By default, veth provides a “qdisc” queue [46] in transmission side, which is a single queue
with default length as 1000. This queue is used for traffic shaping as well as providing QoS.
However due to its single queue design, it can not scale well for multi-thread programs
or multi-core system. As shown in Fig. 3.11, with queue design, when multiple flows are
running on one port at the same time, the total throughput has no obvious improvement. Most
of CPU time is spent on kernel system call spin_lock, which means that there is intensive lock
contention on the queue among multiple flows. This “qdisc” queue becomes the bottleneck
in this scenario.

In order to boost the performance, this queue is removed and the measurement is repeated.
The total throughput is roughly proportional to the number of flows, which has clear improve-
ment compared to previous result with queue. For OFsoftswitch case, the real bottleneck
is still on user-space packet processing, thus veth queue has no impact on its performance.
Although the performance can be improved by removing veth queue, this also sacrifices the
features in fine-grained control on traffic. In latter evaluations, we still keep the use of queue
due to its functionality on traffic control.

46 Software Switch Performance Evaluation

(a) Throughput (b) Round Trip Time

Fig. 3.12 Impact of number of rules

3.3.8 Impact of CPU running frequency

Software switching is essentially a CPU-intensive task, and the performance of software
switch greatly depends on the power of CPU. Thus we measure the relationship between CPU
running frequency and software switch performance. As shown in Fig. 3.12, the throughput
is proportional to the frequency of CPU. The higher the frequency, the lower the RTT value.
The RTT value is roughly proportional to the reciprocal value of CPU frequency.

In above measurements, we manually set the running frequency of CPU. Intel CPUs have
features to change its running frequency according to workload. This behavior brings benefits
in energy saving on the one hand, but results in unstable and unpredictable performance on
the other hand. For instance, light traffic load motivates CPU to lower its running frequency
at only 1.2GHz, while the frequency is set at 3.6GHz with heavy traffic load. There is a
tradeoff between energy saving and high performance. Thus the deployment of software
switch should find a balance between QoS and energy aspects according to real needs.

For OFsoftswitch, it is convenient to monitor its CPU usage and allocate CPU resource
by its user-space process. While it is impossible to control OpenvSwitch in the same way.
The kernel datapath in OpenvSwitch can not be scheduled or monitored directly from user-
space. It simply runs in-line in so f tirq on the CPU that the packet is originated on. Since it
resides in kernel, it always has a higher priority in execution than normal processes. Hence,
OpenvSwitch is not suitable for the scenarios where explicit CPU control is required.

3.3.9 Chaining software switches

In Openstack [34] scenario, it is common to chain multiple virtual switches to provide
network virtualization in different levels and granularities. More generally in NFV scenario,
multiple virtual network functions are assembled in a chain to provide a series of complex

3.3 Performance factors 47

(a) Round Trip Time (b) Throughput

Fig. 3.13 Chained switches

services. In order to connect and manage these network functions efficiently, multiple
switches are usually chained together, and network functions are connected to chained
switches. For measuring the impact of the number of chained switches, multiple software
switches are chained in a line between two virtual hosts. The throughput and latency results
with different number of chained switches are shown in Fig. 3.13. As expected in Fig. 3.13a,
RTT value is proportional to the number of switches in both OpenvSwitch and OFsoftswitch
cases. In OpenvSwitch, RTT value still can be kept below 0.1ms even with 10 switches.

OFsoftswitch and OpenvSwitch show different behaviors on throughput result in Fig.
3.13b. The throughput of OFsoftswitch is independent of the number of chained switches.
The total throughput of a chain depends on the minimum throughput (potential bottleneck)
among all switches on the chain. In the measurement, each OFsoftswitch is running on an
isolated CPU core, so each can achieve its maximum throughput due to its single thread
design. Hence the total throughput with chained switches is as the same as with only one
switch. Since we have only 4 cores, the maximum number of OFsoftswitches is limited to 3
in order to guarantee each switch can occupy a single core. For OpenvSwitch, a significant
performance drop is observed with the increase of chained switches. The throughput with 4
switches only achieves less than 50% performance of single switch, and the throughput with
10 switches achieves only 25%. This is due to the internal contention inside Linux kernel.
More switches raise more interrupts for receiving packets, so most CPU resource is wasted
on handling queued software interrupts instead of forwarding packets. Furthermore, the
performance variation is also greatly enlarged with more switches. As discussed in Section
3.3.1, the performance oscillation of single OpenvSwitch is around 18%, while it reaches up
to 40% with 10 switches. This implies that OpenvSwitch is not capable to provide a stable
performance with multiple datapaths inside the same kernel.

48 Software Switch Performance Evaluation

3.3.10 Tiered latency in SDN

SDN adopts a centralized control plane to install flow rules on each connected switch.
When the first packet of a new flow arrives at the switch, it is forwarded to the controller
for forwarding decision. This reactive behavior introduces additional latency overhead in
processing the first packet of flows, compared with traditional proactive routing scheme.
After the new rule is installed on the switch, the latter packets from the same flow is forwarded
directly inside switch without further interaction with the controller. We define the path
go through the controller as “Control path” which is marked in Fig. 3.14. As explained in
Section 3.3.4, OpenvSwitch has a two-layer rule matching framework, with a kernel module
as a cache and a user space daemon (ovs-vswitchd) as the actual flow table. The kernel
module only stores the recently matched rules to forward the packets in kernel without going
through user-space. This is treated as “Fast path”. While OFsoftswitch has no “Fast path”
without kernel implementation. Since the kernel cache has a default idle timeout as 10s, if
one flow is inactive over 10s, the related forwarding rule will be evicted from the kernel
module even if it is still in the flow table in user-space. The next arrived packet will miss in
the kernel, and it requires user-space daemon to reinstall the rule in the kernel module. This
user-space path is named as “Slow path” as shown in Fig. 3.14. So in OpenvSwitch, there are
totally 3 different paths (Fast, Slow and Control) to forward a packet. While OFsoftswitch
has only slow path and control path.

Table 3.6 lists the RTT results for a packet passing through different paths. In the
measurement, the controller is running on the same server as software switches, so the
transmission delay between the controller and the switch is quite tiny. The RTT value of
three paths in OpenvSwitch are clearly in three different orders of magnitude. Kernel path
is fastest, which is around 10 times faster than user-space path, and 100 times faster than
control path. OpenvSwitch performs worse than OFsoftswitch in slow path. This is due to
the additional matching in kernel module and the interaction between kernel module and
user-space daemon, which introduces more overhead than the processing in OFsoftswitch.
The results of control path prove that OpenvSwitch is more efficient in handling OpenFlow
messages than OFsoftswitch. Short-lived flows or inconsecutive flows may frequently go
through slow path or control path instead of fast path, so it is necessary to take different paths
into account when designing latency-sensitive SDN network.

3.4 In-band control

In OpenFlow network, there are two different types of traffic: control traffic and data traffic.
Control traffic contains all the control messages defined in the OpenFlow specification, while

3.4 In-band control 49

Fig. 3.14 Tiered latency in software switch

Table 3.6 Tiered Processing Latency – RTT (ms)

Path Fast Slow Control
OpenvSwitch 0.019 0.23 2.3
OFsoftswitch - 0.095 2.7

data traffic includes all the other traffic. The network that the control traffic traverses over is
treated as control network, similarly, there is data network for data traffic.

Each OpenFlow switch needs to establish and maintain a TCP connection to its controller.
There are two basic categories on how this connection traverses the network: it is either using
a dedicated network which is completely different from the one controlled by the switches,
or it is overlapping the network that the switches control. The former case is treated as
"Out-of-band control", while the latter case is "In-band control".

Out-of-band control has the following benefits:

• Simplicity: Out-of-band control simplifies the switch implementation.

• Reliability: Switch traffic volume can not interfere with control traffic.

• Integrity: Devices not on the control network can not impersonate other devices.

• Confidentiality: Devices not on the control network can not snoop on control traffic.

In-band control, on the other hand, has the following advantages:

• No dedicated port: There is no need to dedicate a physical switch port to control,
which is important on specific switches that have few ports (e.g., wireless routers).

• No dedicated network: There is no need to build and maintain a separate control
network, which is helpful to reduce proliferation of switches and wiring.

50 Software Switch Performance Evaluation

Fig. 3.15 shows the differences between out-of-band and in-band control frameworks. We
simplify the internal structure of OpenFlow switch as two parts: a “FlowTable” that forwards
incoming packets based on the flow rules installed by the controller, and a “OpenFlow (OF)”
core module that communicates to the controller as well as manipulates the FlowTable
according to the instructions from the controller. In out-of-band control, there exists one
dedicated control port and one dedicated control network. So OF module can communicate
to the controller directly without involving FlowTable. Control traffic and data traffic are
separated by ports (control port and data port) and traversing on different networks (control
network and data network). While in in-band scenario, without the dedicated control network,
control traffic and data traffic are mixing together on the same network and arriving at
FlowTable simultaneously.

In order to make a fresh OpenFlow-enabled switch start to work, it has to connect to the
controller at first. Thus, the existence of control network is a prerequisite for switches. In
in-band scenario, the control network is the same one as the data network. This will result
in a contradiction when booting up the network: the switches require a control network to
contact the controller, but the control network can not be established until the switches can
contact the controller. The contradiction implies that switches must recognize control traffic
without involving the controller.

3.4.1 In-band solution

The booting up problem of in-band control requires that the control traffic can be forwarded
correctly by the switches before establishing the TCP connections between switches and
the controller. Fig. 3.16 shows a general framework to solve this problem. When mixed
control traffic and data traffic are arriving at the switch, a filter is first used to recognize all
the control traffic and then deliver the control traffic to a forwarding module (Data traffic are

Fig. 3.15 Out-of-band control and in-band control

3.4 In-band control 51

Fig. 3.16 Booting up framework for in-band control

dropped by filter until the switch can connect to the controller). The forwarding module is
responsible to establish the connection between OF module of each switch and the controller.
It must make the correct forwarding decision independently, which requires itself to be a
stand-alone system differently from default OpenFlow framework.

This framework also raises a new problem. After the connection is established, the OF
module should continue to forward the control traffic by itself or not? It is reasonable to
assume that the controller should take over the control traffic from forwarding module, on
the basis that the controller should be in full charge of the switch. However, this is not
practical. Since any misconfiguration on flows or network events (e.g., link failure) can result
in the collapse of the control network. Hence, a more reasonable design should prevent the
controller interfering the forwarding of control traffic in order to guarantee the availability of
the control network. The control traffic should be invisible to the OF module.

3.4.2 OpenvSwitch in-band implementation

OpenvSwitch supports both out-of-band and in-band control. The design principles behind
in-band control in OpenvSwitch are explained in [105]:

1. In-band control must be implemented regardless of whether the switch is connected to
the controller or not.

2. The switch must recognize all control traffic.

3. In-band control must override flows set up by the controller.

These three principles can exactly match the explanation in Section 3.4.1. The first two
principles are claimed to realize a control network without involving the controller, while the
last principle emphasizes that the control traffic should own a higher priority than normal
data traffic and be out of the control scope of OpenFlow framework.

Fig. 3.17 demonstrates the internal logic of in-band control in OpenvSwitch, which is
also a practical implementation of the framework in Fig. 3.16. It is helpful to understand the

52 Software Switch Performance Evaluation

Fig. 3.17 In-band control in OpenvSwitch

Fig. 3.18 Network stack for in-band control

implementation details by comparison between two figures. In order to recognize the control
traffic, the FlowTable can be used as a filter. In OpenvSwitch, in-band control is implemented
as “hidden” flows (they are invisible to OpenFlow) and at higher priorities than flows set
up by the controller. Since the controller can not interfere with control traffic, it avoids the
potential risk of breaking the connectivity of control network by misconfiguration. A learning
switch is used in the OpenvSwitch to forward control traffic (corresponding to forwarding
module in Fig. 3.16). It can work independently to guarantee the connectivity of control
network. Once the control network starts to work, the data traffic can be forwarded as normal
flows according to the instructions from the controller. In OpenvSwitch implementation,
there are actually two network stacks, learning switch and OpenFlow, that are handling
control traffic and data traffic separately. Fig. 3.18 displays the layer structure of these two
network stacks. The layer of FlowTable and LearningSwitch is inserted between port layer
and default kernel network stack. This is implemented by hooking functions that is similar
to Linux bridge. Although FlowTable and LearningSwitch are working independently, they
are sharing the same underlying ports and they also have interactions with each other. They
use a specific port called “internal port” to connect to original kernel network stack. Various
applications including OpenFlow module are still running above kernel stack.

3.4 In-band control 53

3.4.3 Learning switch with selected flows

To establish the control network, the correct flows should be selected by FlowTable and
then forwarded to the learning switch. These flows are divided into two groups: the flows
that achieve connectivity of the control network and the flows that recognize the control
messages. In OpenFlow, all control messages are encapsulated in TCP. Thus, it is convenient
to recognize the control traffic by two simple flow rules:

(a) TCP traffic to the controller’s IP and port.
(b) TCP traffic from the controller’s IP and port.
The learning switch works in MAC layer. In order to achieve connectivity, only ARP

related flows are needed, which also can be defined by two simple flow rules:
(c) ARP replies to the local port’s MAC address.
(d) ARP requests from the local port’s MAC address.
The packet that matches any of above rules will be forwarded by the learning switch.

The goal of these rules is to be as narrow as possible to allow a switch to join a network and
communicate with the controller. Since these rules have higher priority than the controller’s
rules, if they are too broad, they may prevent the controller from implementing its policy.

Fig. 3.19 is a simple example that demonstrates the procedure to establish the control
network step by step. We assume that the controller (c) is directly connected to the switch s1.
In Step one, (1) s1 needs to establish TCP connection to the controller, and it only knows
the IP address of the controller and the destination port (6633 by default). So the kernel
network stack first generates an ARP request. This request matches flow rule (d), so it is
forwarded to learning switch. The learning switch then floods this ARP request. (2) When
the controller side receives the ARP request, its network stack sends out ARP reply back to
s1. ARP reply matches flow rule (c). The learning switch learns the MAC address of the
controller. After knowing the MAC address, the TCP connection can be established. (3)
Once connected, both the switch and the controller must immediately send a Hello message
with the version field set to the highest version supported by the sender. OF module sends
out a Hello message to the controller. This message matches flow rule (a). According to
the MAC address table, the learning switch sends out the message on the right port to the
controller. (4) The controller also needs to send out a Hello message to s1. This message
matches flow rule (b). The learning switch then submits it to OF module. If the negotiation of
OpenFlow version succeeds, the control network between s1 and the controller is established.

In Step 2, we further assume that another switch s2 is connected to s1. s2 also needs to
communicate with the controller. (1) Similarly, the ARP request is first flooded to s1. (2)
The ARP request can not match any flow rule in s1. Since s1 is already connected with the
controller, this ARP request is encapsulated in a Packet_In message and forwarded to the

54 Software Switch Performance Evaluation

Fig. 3.19 The procedure to establish in-band control connection

controller. (3) When receiving the Packet_In message, the controller sends out a Packet_Out
message to s1 with forwarding instruction. (4) s1 forwards the ARP request to the controller
based on the instruction in the Packet_Out message. Step 3 is quite similar to Step 2. In Step
3, s1 forwards the ARP reply from the controller back to s2.

After establishing the TCP connection, the controller and s2 exchange Hello message
in Step 4. (1) s2 sends out a Hello message. (2) The Hello message first arrives at s1 and
matches flow rule (a). So learning switch further receives it and learns s2 MAC address.
Then this message is sent out to the controller. (3) The Hello message from the controller to
s2 arrives at s1. (4) The Hello message matches flow rule (b) in s1 and is forwarded to s2
according to the MAC address table. Now the control network between s2 and the controller
is also established.

Any other switch that connects to s1 or s2 can follow the similar procedure to connect to
the controller. Hence, we have proved the in-band control can be implemented by only 4 flow
rules. It should be noted that in this example we assume that both switches and controller are
in the same subnet. However, additional flow rules are needed in more complex scenarios
(e.g., through gateway, between VMs).

3.4.4 In-band control latency

The reactive behavior to install flow rules in SDN has introduced additional latency in
processing new flows compared with traditional routing scheme, since the first packet of a
new flow have to be forwarded to the controller through control network. Without a dedicated
control network in in-band control scenario, this latency can be further enlarged due to the
topology and the link state of data network.

Fig. 3.20 displays a basic example of in-band control scenario: n switches are linearly
connected; there is one host on each end of switch chain; the controller connects directly to

3.5 Summary 55

Fig. 3.20 In-band control example

Fig. 3.21 Reactive vs. Proactive

switch 1. In order for switch n to communicate with the controller, the control messages
have to pass through all the other switches (with a serial number smaller than n) to arrive
at the controller. This behavior results in large latency due to long control path. When host
1 generates a new flow to be received by host 2, the first packet of this flow will arrive at
each switch sequentially. Each switch has to communicate with the controller through a
long control path. The total control latency is the sum of the latency on each switch. We set
link delay as 0.1ms to simulate the real scenario. Fig. 3.21 shows the processing latency
of in-band control with different number of switches based on the topology in Fig. 3.20.
The latency increases quickly up to 33ms with 10 switches, which is already not suitable for
latency-sensitive environment. In order to address this problem, a proactive flow installation
scheme is proposed. Instead of waiting for requests from each switch, the controller should
install rules on all related switches at the same time once it receives the request from the
first switch. As shown in Fig. 3.21, a proactive scheme can significantly reduce the latency
into an acceptable range. Because this scheme not only eliminates the accumulative effect of
latency on each switch, but also installs rules more efficiently by proactively pushing rules.

3.5 Summary

In this chapter, we focus on the performance analysis of two OpenFlow-enabled software
switches, namely “OpenvSwitch” and “OFsoftswitch”, in virtualization environment. Our

56 Software Switch Performance Evaluation

measurements are carried out in a fully virtualized environment, which is different from
previous studies that usually aim at physical platform and use software switches in the same
way as dedicated hardware. The roles of software switch are diverse when combined with
new networking technologies such as SDN and NFV. It is no longer a dumb device with
limited intelligence or functionality. Instead, it is extended and generalized to support various
network services. For example in NFV, software switch is the basis to assemble multiple
virtual network functions in the right order to deliver expected services in more flexible
manner. In SDN, the OpenFlow-enabled software switch can also act as NAT or stateless
Firewall by simple configuration. Furthermore, the immaturity of SDN and NFV makes the
deployment of software switch even more challenging. Hence our evaluation is based on
this context to investigate the performance characteristic of software switches deployed in
network virtualization environment. This is also helpful to identify the real bottleneck and
lead to more rational deployment decisions.

In the course of analysis, we first analyze the OpenFlow-enabled packet processing
and divide it into several main factors, and then evaluate these factors on two software
switches separately. Although the implementation of OpenvSwitch and OFsoftswitch are
quite different, they still share some common conclusions. For instance, the pps throughput of
single flow is independent of packet size; the impact of various actions on performance can be
ignored. On the contrary, they also show quite different behaviors in other aspects. Although
OpenvSwitch has a kernel datapath that brings high performance for packet forwarding,
it results in larger performance oscillation due to intensive contention with other kernel
modules and operating system background services. OFsoftswitch is a single-thread user-
space implementation which can only achieve total throughput around 1Gbps. It allows
accurate and fine-grained control on CPU resource as well as provides stable and predictable
performance. Since more and more efforts are working on performance improvement for
user-space datapath recently, the user-space datapath implementation is more promising than
the kernel one.

Besides the performance factors inside software switch, we further investigate the external
factors such as veth pair and CPU frequency. Since we mainly focus on a container environ-
ment, veth pair is the standard way to connect different network namespaces. Although veth
provides rich features, it has performance concerns with default qdisc queue design. It can
not utilize multiple CPU cores efficiently and can not scale well with multiple concurrent
flows. This default queue can be removed from veth for performance improvement, but
meanwhile all related features such as traffic shaping or QoS are also disabled. There is a
trade-off between performance and security features. Similarly, modern CPU has an adaptive
frequency setting to fit various workloads based on the consideration of energy saving. It

3.5 Summary 57

is necessary to balance energy cost and performance according to the real needs. The more
complex scenario where multiple software switches are chained together is also evaluated.
This indicates the limitation of OpenvSwitch to run multiple kernel datapaths. The reac-
tive scheme in SDN framework results in tiered latencies through different paths (control,
slow, fast). It is necessary take these tiered latencies into consideration when designing a
latency-sensitive network.

In-band control is convenient for deployment without requiring a dedicated control
network. However, it is rarely mentioned in previous studies. We systematically discuss the
design principles behind in-band control. Combined with the in-band control implementation
in OpenvSwitch, we further explain why and how in-band control works in real scenarios.
In-band control introduces larger latency in handling new flows due to long control path. A
proactive rule installation scheme is proposed to address latency problem. The simulation
result shows that the latency can be reduced to an acceptable range by using proactive scheme.

In summary, our studies investigate and summarize the deployment issues of OpenFlow-
enabled software switch from the perspective of performance. Various performance factors
are evaluated in a fully virtualized environment. Our results can be used as a guideline to
design a practical SDN-enabled network based on software switches. They are also helpful
to achieve fine-grained resource control on software switch, which is explained in Chapter 5.

Chapter 4

Controller Performance Evaluation

The controller is a critical component in the SDN paradigm, since it provides key support for
networking control logic, in accordance with the policies defined by network operators. SDN
is mainly based on a relatively centralized control plane in emerging deployment scenarios
(e.g., datacenter and cloud). Because of such centralized approach, the performance of the
controller directly determines SDN scalability in such scenarios, which becomes crucial to
the success of SDN ecosystem.

The implementations of controller is very diverse, with more than 30 controllers pro-
posed by both industry and academic. These implementations use various programming
languages, different run-time technologies, design approaches, and feature sets. The usability
of controllers differs from conceptual prototype to production quality. In such a context, a
performance evaluation is essential to understand these implementations and identify their
bottlenecks, but also to select suitable controller for a given scenario. Number of works have
proposed a partial performance evaluation in past few years. These works mostly proposed a
new controller and utilized selected performance benchmark to verify their advantages over
others. However, such advantages were only temporary, since other controllers were also
evolving and improving in the meanwhile. Thus, the performance evaluation of controllers
had a hard time in converging on one conclusion. Now, the majority of the controllers are
mature enough in their development that is time to re-investigate their performance in a fair
manner, in order to check what is the reality.

4.1 Centralized controller performance evaluation

Our evaluation targets exactly this goal: having a fair evaluation of the most relevant
controllers, and providing an indication of which one is suitable in which scenario. The
focus is on centralized controllers, namely: Ryu [40], Pox [3], Nox [2], Floodlight [10], and

60 Controller Performance Evaluation

Beacon [75]. Although several implementations of distributed controller, generally treated as
network orchestrators, have been already proposed, they are still under heavy development.
Hence, they are not ready for a performance evaluation aiming at providing long term results.
Furthermore, Heller et al. [82] prove that one controller is often sufficient to meet existing
reaction-time requirements by placing it at a suitable location.

In order to guarantee that the proposed results are fully reproducible, only open-source
controllers and benchmark tools have been chosen. Moreover, our results are compared to
previous works in order to have an insight on what has changed and why. However, unlike
other prior evaluations, we go beyond the simple usage of benchmark tool an investigate the
performance impact of systems settings (e.g., the use of Hyper-Threading, the interpreter) as
well. Based on the outcome of the evaluation, it is helpful to derive some recommendations
on which SDN controller is most suitable for which scenario.

4.1.1 Selected controller

Based on the requirement of open source and popularity, five major centralized controllers
have been selected for performance benchmark evaluation, namely Ryu, Pox, Nox, Floodlight
and Beacon:1

Ryu: Ryu [40] is a component-based SDN framework written in Python. Ryu supports
various protocols including OpenFlow and Netconf. Ryu fully supports versions 1.0,
1.2, 1.3, and 1.4 of OpenFlow, as well as the Nicira Extensions.

Pox: Pox [3] is a networking software platform written in Python. Pox provides “Pythonic”
OpenFlow interface and reusable sample components for path selection, topology
discovery, etc.

Nox: Nox [2] is written in C++. It was initially developed side-by-side with OpenFlow and
was the first OpenFlow controller. It has been the basis for research projects in the
early exploration of SDN.

Floodlight: Floodlight [10] is an enterprise-class, Java-based OpenFlow controller. Flood-
light is the core of a commercial controller product from Big Switch Networks. Flood-
light can handle mixed OpenFlow and non-OpenFlow networks.

Beacon: Beacon [75] is a fast, cross-platform, Java-based OpenFlow controller that supports
both event-based and threaded operation. Beacon runs on many platforms, from high
end multi-core Linux servers to Android phones.

1Maestro (Java-based [103]) has not been updated since 2011, thus it has been excluded from the evaluation.

4.1 Centralized controller performance evaluation 61

Table 4.1 SDN Controllers Summary

Controller Ver. Lang. OF Release Thread
Pox 0.2.0 Python 1.0 10/2013 Single
Ryu 3.19 Python 1.0∼1.4 03/2015 Single
Nox 0.9.2 C++ 1.0&1.3 02/2014 Mult.

Floodlight 0.90 Java 1.0 11/2012 Mult.
Beacon 1.0.4 Java 1.0 09/2013 Mult.

Table 4.1 summarizes the main characteristics of selected controllers. All controllers have
(reasonably) chosen cross-platform languages (i.e., Python, C++, or Java). They also follow
a modular design to exploit code re-usability. Their features highly depend on the chosen
languages and related libraries. As can be seen, new releases of the selected controllers
date back to one year ago, except for Ryu.2 Both Ryu and Floodlight have support for
OpenStack. Only Ryu supports the newest version of OpenFlow specification (v1.4). Ryu
also provides complete unit tests, development documents, and compatible checks with
existing OpenFlow-enabled switches.

As previously mentioned, network orchestrators (distributed controllers) are still at early
stages, impeding an accurate performance evaluation. Nevertheless, for completeness, it is
worth to mention two important orchestrator projects, namely OpenDayLight and ONOS:

OpenDayLight: OpenDaylight [28] is the biggest SDN collaborative open source project
and is hosted by the Linux Foundation. The project goal is to accelerate the adoption
of SDN and create a solid foundation for Network Function Virtualization (NFV).
OpenDaylight is leading the transformation to Open SDN by uniting the industry
around a common SDN platform.

ONOS: As the main challenger of OpenDayLight, Open Network Operating System (ONOS) [26]
aims at high availability, performance and scale-out in real use cases of service
providers. Its mission is to produce the Open Source Network Operating System
that will enable service providers to build real SDN Networks.

As summarized in Table 4.2, OpenDayLight and ONOS are similar on most aspects.
Because of their distributed nature, the design is much more complex introducing large
overhead on overall performance and demanding a large amount of computation resources.
Hence, they cannot be directly compared to centralized controllers and are excluded from the
detailed performance evaluation. However, some discussion on their limited performance
and known issues is provided in latter sections.

2BigSwitch has already released two new versions of Floodlight, v1.0 and v0.91, on 30/12/2014, but these
new versions have compatible problems with Cbench, hence, v0.90 is used in this evaluation.

62 Controller Performance Evaluation

Table 4.2 Distributed Controller Summary

Orchestrator Ver. Lang. OF Release
OpenDayLight Helium-SR3

Java 1.0&1.3 03/2015ONOS 1.1.0

4.1.2 Test Environment

The test environment is built on one server that has single Intel Xeon E5-1620 CPU, with 4
cores running at 3.6GHz. The operating system is Ubuntu 14.04 LTS with default networking
configuration. For Java-based controllers the JDK used is OpenJDK (v2.4.7). For Python-
based controllers, both CPython (v2.7.6) and PyPy (v2.4.0) have been used as interpreters
for comparison. Since the benchmark tool Cbench only supports OpenFlow specification
1.0, all controllers have been configured in v1.0 mode. For simplicity, each tested controller
only runs a layer 2 learning switch application. In order to unleash all potential of each
controller, their configurations have been optimized according to the guidelines proposed by
their official websites and development communities.

4.1.3 Cbench

Cbench (Controller benchmarker) [5] is a benchmark tool specifically designed for OpenFlow
SDN controllers. Cbench emulates a configurable number of switches, which connect to a
controller by sending request message Packet_In and watching for reply message Flow_Mod.
There are two modes in Cbench, namely “Latency” and “Throughput”.

In Latency mode, each configured switch sends a single Packet_In message to the
controller and waits for a Flow_Mod message, then repeats this process. The total number of
responses received during test period is then used to calculate the average processing latency.

In Throughput mode, each configured switch constantly sends as many Packet_In mes-
sages as possible, in order to measure the maximum capacity of controller.

Jarschel et al. [84] argue on the limitation of Cbench, while proposing their own bench-
mark tool. Nevertheless, of the alternative benchmark tools, very few are open source or
provide high availability as Cbench does. Furthermore, Cbench has been widely used and
tested in both academic and industrial environments, hence, the choice of using such a tool.

4.1.4 Cbench Validation

As Cbench only acts as emulated switches, before using it for benchmark, it should be
compared to real software switches in order to validate its results. To this end, OpenvSwitch

4.1 Centralized controller performance evaluation 63

Fig. 4.1 Test Environment configuration.

has been chosen as a reference for comparison. OpenvSwitch has been configured to work
in a similar way as Cbench, sending Packet_In messages to the controller and receiving
Flow_Mod messages in return. The maximum throughput that the controller can sup-
port has been measured. Taking Ryu as an example, the result given by Cbench is 106K
responses/millisecond, while it achieves only 103K in OpenvSwitch scenario. Because
OpenvSwitch also sends out other types of messages besides Packet_In message, which
slightly lowers the throughput. Considering that, the results can be regarded as in agreement
with each other.

The difference between Cbench and a real software switch should be mentioned. Cbench’s
emulated switch is just kind of traffic generator that is able to send Packet_In messages as
fast as possible, while the real switch usually has a smaller sending buffer and lower sending
rate, since it needs to implement internal control logic. Because the focus of the evaluation
is to benchmark the controller, rather than investigate the interaction between switch and
controller, Cbench provides accurate results for this purpose.

4.1.5 Methodology

Normally, Cbench and controller software should be running on separated servers in order to
emulate real scenarios. However, this requires multiple servers and high-speed dedicated
network links in order to flood the controller. Due to hardware limitation of the available test
environment, instead, in our case both softwares run on the same server. As a workaround,
in each experiment linux kernel commands isolcpus and taskset are used to isolate CPU
resources between Cbench and the controller under evaluation, as sketched in Fig. 4.1. The
Cbench process is always attached to the same single core. The controller software is
evaluated using a variable number of cores. Each emulated switch of the Cbench process
connects to the controller through a TCP connection. Since all traffic goes through the local
loopback, link bottleneck is eliminated and it is possible to fully focus on the impact of CPU

64 Controller Performance Evaluation

resources. It is worth to remark that there is always a saturation case, when the controller
tries to use all of the CPU cores. In this case, the results show how, because of the CPU
contention among controller, Cbench, and operating system, performance behaves.

4.1.6 On the Accuracy of Latency Measurements

In SDN framework, when switch receives the first packet of a new flow, it needs to ask
controller for forwarding decision. This reactive behavior introduces a large latency overhead
in the first packet of flows, compared with traditional proactive routing scheme. This overhead
is composed by processing delay in both switch and controller as well as transmission delay
on the link: toverhead = tcontroller + tlink + tswitch. In order to clarify the concept of latency,
we choose OpenvSwitch as an example to explain it in a real scenario. Fig. 4.2 displays a
simplified architecture of OpenvSwitch. As explained in Section 3.1 and 3.3.10, OpenvSwitch
has a two-layer design, with a kernel module as fast path and a user-space daemon (ovs-
vswitchd) for global control. Any unmatched packet arrived at kernel module will be first
submitted to user-space daemon and then (if still no match exists) further submitted to the
remote controller. Sending/receiving buffers exist on both kernel module and user-space
daemon. These queuing systems introduce additional latency. Furthermore, there is also
some other internal control logic in OpenvSwitch, which further increases the latency. All
these factors contribute to tswitch.

The dominant latency factor differs depending on the specific scenarios. In datacenters
where tlink is usually kept very small, tswitch is the main factor. However, tlink dominates
in WAN scenarios. In our test environment, the Cbench emulated switches have no real
queuing system and control logic. Hence, the latency result in Cbench is only responsible
for controller and link aspects, while the influence from the switch side is overlooked. This
means that the above equation can be simplified to toverhead = tcontroller + tlink. Furthermore,
tlink is quite small in our test environment, because of the use of the loopback interface.

4.2 Evaluation results

We first explore the impact of environment settings, and then present the benchmark results
following the order of complexity of configuration. All measurements are running for 500s
and repeated 100 times. The relative standard error is always below 8% and hence, for the
sake of clarity, not further discussed and represented in the various results.

4.2 Evaluation results 65

Fig. 4.2 Latency measurement with OpenvSwitch and Cbench.

4.2.1 Python Controllers and Python Interpreters

Python language has gained popularity due to its high code readability and concise syntax.
In the context of SDN, there are several controllers developed in Python, including Ryu and
Pox, which are two of the selected controllers. However, its inefficiency as a script language
prevents its wide deployment in operation-intensive scenarios.

To improve the efficiency of the original CPython interpreter, an alternative interpreter,
PyPy, has been developed in recent years. PyPy is a Python interpreter and just-in-time
compiler which focuses on speed, efficiency and compatibility with the original CPython
interpreter. To investigate the impact of the interpreter for the Python-based controllers, both
of them have been used for Ryu and Pox. The obtained results are summarized in Table 4.3.

Concerning latency, PyPy achieves around 3.8 times speed up for both Pox and Ryu,
when compared to CPython. When using CPython, Pox achieves only half of the throughput
achieved by Ryu. Again, PyPy helps to boost the throughput performance of Pox and
Ryu by 9.4× and 4.4× respectively. When using PyPy, Pox and Ryu achieve the same
throughput at about 105 thousands responses per second. Because clearly PyPy improves the
performance of Python-based controllers significantly, In the rest of the evaluation the results
of Python-based controllers presented in measurement are all performed using PyPy.

Inspired by Python case, Java-based and C++-based controllers have been evaluated as
well, with different versions of JDK or C++ compilers. The result shows their performance
differences can be neglected and are not discussed any further.

4.2.2 Hyper-Threading

Hyper-Threading (HT) is Intel’s proprietary simultaneous multi-threading implementation
that is used to improve parallelism of computations performed on x86 class microprocessors.
When enabled, for each processor core that is physically present, the operating system

66 Controller Performance Evaluation

Table 4.3 Pyhton Interpreter Impact

Latency (milliseconds)
Controller CPython PyPy PyPy/CPython

Pox 0.156 0.042 3.75
Ryu 0.143 0.037 3.86

Throughput (responses/milliseconds)
Controller CPython PyPy PyPy/CPython

Pox 11.2 105 9.38
Ryu 24.1 106 4.40

actually sees two logical cores, sharing the workload between them when possible. Enabling
HT results in performance improvements of 15% in some cases, but also may result in
performance degradation in some other cases. How much performance improvement can be
achieved by HT highly depends on the software. In order to quantify the impact of HT on the
controllers, the measurements are carried out twice, with HT disabled and enabled, so as to
obtain a direct comparison.

4.2.3 Controllers Baseline

We start our measurement with most simple configuration, which is used as baseline. Each
controller runs in single thread, and the number of Cbench emulated switches is set to one.
HT remains disabled. Table 4.4 summarizes the throughput obtained in both latency mode
(L) and throughput mode (T) for each controller. Note that “rps/ms” represents responses per
millisecond, while “1/L” represents the actual latency (recall Cbench counts the number of
sequential responses when in latency mode). Beacon performs much better than others in
both modes. There is no doubt that Python-based controllers provide the lowest performance
even using PyPy. Floodlight and Nox are close to each other, while Nox has a smaller latency.
This ranking remains unchanged in most of the results presented in the following tests.

Remark that the ratio of T/L indicates the capability of the controller in handling multiple
incoming packets simultaneously. This capability depends on comprehensive effects of
language features, related libraries, as well as software design. Beacon outperforms by far the
others. Floodlight, the closer competitor, showing less than half the performance of Beacon.

4.2.4 Distributed Controllers Baseline

Although OpenDayLight and ONOS are designed for distributed platform, it is still meaning-
ful to measure their performance on single node. We follow the same configuration as for the
controllers baseline. As shown in Table 4.5, the overall throughput of both controllers are at

4.2 Evaluation results 67

Table 4.4 Controllers Baseline

Controller L (rps/ms) T (rps/ms) T/L 1/L(ms)
Pox 24 105 4.38 0.0416
Ryu 27 106 3.93 0.037
Nox 56 687 12.2 0.0179

Floodlight 45 670 14.89 0.0222
Beacon 61 2302 37.74 0.0164

Table 4.5 Distributed Controller Baseline

Controller L(rps/ms) T(rps/ms) T/L 1/L(ms)
OpenDayLight 9 8 0.888 0.111

ONOS 38 49 1.29 0.026

least one order of magnitude smaller than Java-based controllers (i.e., Beacon and Floodlight).
OpenDayLight is built on multi-core processing model and needs a large amount of CPU
resources. Clearly the single core scenario significantly constrains its performance. ONOS
performs far better than OpenDayLight, but still considerably worse than others. During our
measurements, number of issues appeared for both OpenDayLight and ONOS. First, both
show unpredictable performance degradation when running for a long time. Second, when
increasing the number of switches, their overall throughput drops significantly. For instance,
ONOS achieves only 8 rps/ms with 16 switches. Third, memory leaks appear under high
volume flooded traffic. These problems imply that distributed controller measurements would
not provide accurate long term result. Furthermore, due to their complex architecture and
functionality, metrics other than Cbench-based latency and throughput should be considered,
which is to be discussed in the next section. Because of the above, in the rest of this section
we only focus on controllers.

4.2.5 Number of Switches

After getting the baseline performance of each controller, it is time to look at more complex
configurations. In this part, the number of emulated switches is changed while keeping
other parameters fixed. Fig. 4.3 shows the average per-switch latency for different numbers
of switches. Fig. 4.3a shows the overall behavior, while Fig. 4.3b zooms in the case of
small number of switches. When the number of switches increases, the latency increases
approximately linearly. The latency rises from 0.01ms when there is only one switch, up
to more than 10ms with 256 switches. When multiple switches are connected, one TCP
connection per switch is maintained, on which the controller usually adopts a Round-Robin
poll policy, thus the linear relationship. In the range of small numbers, we see some tiny

68 Controller Performance Evaluation

(a) Overall (b) Zoom

Fig. 4.3 Per-switch latency with different numbers of switches (single thread).

Fig. 4.4 Throughput achieved with different numbers of switches (single thread).

deviations on Floodlight and Beacon, which is mainly due to the default configuration of
working pool in the software.

The total throughput (responses/ms) achieved with different numbers of switches is shown
in Fig. 4.4. The performances are relatively stable regardless of the number of switches when
their number is under 128. Because in throughput mode, the receiving buffer of controller
is always full no matter how many switches are connected. When the number reaches 256,
a performance degradation appears on all controllers except the Python-based ones. This
implies that the maintenance of a large number of connections is expensive. Especially for
Nox, which is totally stuck, implying that Nox is not capable to handle a large number of
overloaded connections. There is a significant fluctuation around 16 and 32 for Pox, which is
due to some compatibility issues of PyPy and needs further investigation. Beacon remains
the best performing.

4.2 Evaluation results 69

(a) 16 switches (b) 64 switches

Fig. 4.5 Per-switch latency with different numbers of threads (HT-disabled).

4.2.6 Threads Number – HT disabled

In this part, the impact of the number of threads used by the controllers is investigated, with
fixed number of switches. Two numbers of switches is used, 16 and 64, in order to cover
different deployment scales. Hyper-threading is disabled in this test. Pox and Ryu are not
evaluted because they run only in single thread.

Fig. 4.5 shows the average per-switch latency with different numbers of threads. The
results in both 16 and 64 switches cases have the same overall trend, but are different in the
latency value. Note that only the results from 1 thread to 3 threads are valuable in analyzing
the impact of threads. The result with 4 threads is the saturated case described in Sec. 4.1.5,
since only 4 cores are presented.

With the increase of threads, the per-switch latency decreases on all controllers. Floodlight
and Nox reach their lowest latency with 3 threads. While Beacon behaves quite differently, it
achieves lowest latency with only 2 threads. The lowest per-switch latency of each controller
is close to each other and around 0.35ms for the 64-switches case and slightly less than 0.1ms
for the 16-switches case.

The results for the throughput are presented in Fig. 4.6. For the interval from 1 to 3,
as expected, the performance increases approximately linearly with the increase of threads.
In both 16 and 64 switches cases Nox and Floodlight behave almost the same, both going
from less than a thousand responses/ms up to around two thousand responses/ms. Beacon
can achieve up to 6 million responses per second with 3 threads in the 64-switches case
(slightly less for the 16-switches case), with no improvement when using four cores. Except
for Beacon, in the throughput case it looks like other controllers achieve different degrees of
performance gain with 4 threads compared with 3 threads. This means that the controllers
are able to use part of the fourth core, even when competing with Cbench and the operating

70 Controller Performance Evaluation

(a) 16 switches (b) 64 switches

Fig. 4.6 Throughput achieved with different numbers of threads (HT-disabled).

system, which is the opposite of the result of latency mode. On the one hand, this is due to
the fact that, in throughput mode, Cbench uses less CPU compared with latency mode, since
the blocking method in latency mode is a CPU consuming operation. On the other hand, the
controller has much more traffic to be handled than in latency mode, which leads to a more
aggressive demand of CPU resources. From such a point of view, Floodlight appears to be
the best at stealing CPU resources from Cbench and the operating system.

4.2.7 Threads Number – HT enabled

To further investigate the impact of the number of controllers’ threads, HT is enabled in
this test, so to evaluate its effectiveness. With HT enabled, each single physical core acts
as two logical cores. Similar to previous setting, we let Cbench and operating system run
on one logical core and controller on other cores. When setting the number of threads to 7,
the controller and Cbench, while running on separate logical cores, are actually sharing one
single physical core. So this represents the saturated case presented in Section 4.1.5. For
such a reason, there is no use in exploring the performance in the case of eight threads. When
adding logical cores to the controller, a fixed order is followed. Since there are 4 physical
cores, providing 8 logical cores, they are represented as “(1,2)(3,4)(5,6)(7,8)”, which means
logical core 1 and 2 are on the same physical core. The adding order is 1-2-3-4-5-6-7. This
order is helpful to observe how much gain is achieved by enabling HT. In this test, the number
of switches is set to 64.

The average per-switch latency with different numbers of threads is shown in Fig. 4.7.
This result is quite different from Fig. 4.5b and contains no clear trend, while varying in
the same range of values. Both Floodlight and Nox achieves the lowest latency with 3 or 4

4.2 Evaluation results 71

Fig. 4.7 Per-switch latency with different numbers of threads when Hyper-Threading is
enabled (64 switches).

Fig. 4.8 Throughput achieved with different numbers of threads when Hyper-Threading is
enabled (64 switches).

threads. Beacon fluctuates slightly all the way. Compared with Fig. 4.5b, we see that the
results with HT-enabled is actually slightly worse than HT-disabled.

Fig. 4.8 shows the result of the total throughput with different numbers of threads. Nox
and Floodlight show a clear stair-like curve, which means the results between 1 and 2, 3
and 4, 5 and 6 are quite close. This indicates that adding one more logical core from the
same physical core can only gain limited performance. Beacon instead shows a behavior
close to linear. Compared with the results in Fig. 4.6b, both Beacon and Floodlight achieve
around 10% performance gain in average, while Nox has negligible improvement. Thus HT
is actually useful for Java-based controllers, but not that much for C++-based controllers.

How to map working threads to cores is critical in multi-thread programing. The incorrect
setting may result in performance degradation. Nox and Beacon set thread parameter
manually, while Floodlight set it automatically. It is normally recommended to set the number
of thread as same as the number of logical cores.3 Nox is an exception in our measurements,
it needs to be set as the number of physical cores to achieve the best performance even when

3Recall that when disabling HT, logical core is just the physical core.

72 Controller Performance Evaluation

Table 4.6 Latency Comparison

Controller
Latency(ms)

Empty buffer Full buffer Ratio
Pox 0.0417 5.26 126
Ryu 0.0385 2.63 68
Nox 0.0179 149 8358

Floodlight 0.022 76.9 3461
Beacon 0.0163 50 3050

Fig. 4.9 Correlation between throughput and latency in Beacon.

enabling HT. When deploying controller in virtual environment, thread parameter should be
selected with more cautions, since the relationship among vCPUs is more complex.

4.2.8 Correlation between Throughput and Latency

In the previous part of the evaluation, the latency is measured with an idle controller. This
means that the receiving buffer of the controller is empty and any new arrived packet can be
handled immediately. But when the workload increases, the buffer will be filled gradually.
This results in additional latency by introducing queuing time in buffer. To measure the
latency under heavy workload, an extreme scenario has been chosen, where the receiving
buffer is always full. Table 4.6 shows the latency measured with full buffer compared with
empty buffer scenario. We see that the latency can be enlarged by thousands times.

Although the latency is unacceptable when buffer is full, the throughput reaches to its peek
at the same time. So there is a trade-off between latency and throughput. Fig. 4.9 displays
the correlation between throughput and latency in Beacon.4 We see that Beacon is able to
keep latency in a reasonable range (<0.1ms) as well as achieve high throughput (around 1750
rps/ms). This is important for network operators to balance latency and throughput according
to practical needs.

4Due to the limitation of our platform, the correlation patterns of other controllers are not included.

4.2 Evaluation results 73

Table 4.7 Throughput Variation among Multiple Switches

Controller Pox Ryu Nox Floodlight Beacon
Variation(%) 3 <1 >50 23 11

Table 4.8 Time in Achieving Fairness

Controller Pox Ryu Nox Floodlight Beacon
Time(s) 19∼21 <1 4 or ∞ 5∼6 3∼4

4.2.9 Fairness

When connected with multiple switches, the controller should process packets from each
switch in a fair manner. Especially when the given workload is larger than the capacity of the
controller. Table 4.7 shows the relative standard deviation of throughput among 128 switches
connected to the same controller. Python-based controllers show extreme good fairness,
followed by Java-based controllers. The fairness variation on Nox is much larger than others.

We further design a specifically crafted scenario to evaluate the speed to achieve fairness.
The measurement starts with 128 switches in order to overload the controller. When all the
switches are already equally and fairly served, a new emulated switch is added. The time
needed by new switch to be served equally as other switches can be used as an indicator
of fairness. The smaller the time, the faster fairness the controller achieves. From the
measurements in Table 4.8, it results that Ryu is the best again, followed by Beacon, then
Floodlight, then Pox. Nox behaves unpredictably, since the new switch has a 0.5% chance to
be not served.

4.2.10 Comparison with previous works

Previous works on SDN controller performance benchmark is strongly related to the history
of the development of controllers. Hence the versions of controllers and the results are quite
different from each other. Table 4.9 presents a summary of how the evaluation presented in
our result compares to selected previous works. Although these works have chosen different
test setup, they all lead to the conclusion that Beacon is the best performing. The benchmark
of Floodlight is inconsistent with our result, because previous work did not use a minimal,
optimized configuration. Nox selected in [116] turned out to be the older version that did not
support multi-thread.

74 Controller Performance Evaluation

Table 4.9 Comparison With Previous Work

Throughput (rps/ms) with 3 threads
[75] [116] [117] Our Results

Beacon 2500 3300 3800 6000
Floodlight 400 900 600 2100

Nox 1800 400 1000 1850

4.3 Distributed controller synchronization

In SDN, distributed controller [93] (also known as controller cluster [26][28]) is designed
to improve the resilience and scalability of the control plane, since a centralized controller
would be a single point of failure and presents scale-out limitations. Even if multiple
controllers are geographically distributed, they still act as a centralized control plane. In
order to function correctly and consistently, the synchronization and coordination among
multiple controllers is critical for the whole system. As discussed in previous section, the
performance evaluation of distributed controller at large scale requires considerable amount
of computation resource which is not practical to our testing platform5. Instead, we mainly
focus on the synchronization and coordination among multiple controller nodes. We study the
characteristics of synchronization traffic as well as the latency introduced by the coordination
among multiple nodes.

4.3.1 Synchronization in in-band scenario

Synchronization generates a type of controller-controller traffic other than traditional controller-
switch control traffic. In an in-band scenario, without a dedicated out-of-band control network,
the control traffic and data traffic are sharing the same underlying network links and ports.
Thus, they may interference with each other and this impact is still unknown to network
operators. For the afore-mentioned reasons, analysis and evaluation of in-band control traffic
is paramount in identifying key issues and assessing their impact.

Since ONOS [26] cluster has been already successfully deployed in various scenarios,
we selected it to investigate interference among different types of traffic. A controller cluster
is essentially a distributed system following Brewer’s CAP theorem [64], which basically
states how it is impossible to simultaneously provide all three guarantees: Consistency(C),
Availability(A)S, and Partitiontolerance(P). Because usually P is a must, there is a trade-off
between C and A. In the case of ONOS (v1.1.0), Hazelcast [43] is used for clustering, which

5The official development communities of OpenDayLight and ONOS have released several basic evaluation
on large scale deployment.

4.3 Distributed controller synchronization 75

Fig. 4.10 Data partitioning in Hazelcast

is rather an AP system (i.e., favoring Availability in the event of a partition). By default,
Hazelcast has 271 partitions (i.e., memory segments where data entries are stored) distributed
equally among cluster nodes.6 Fig. 4.10 shows how data is partitioned and stored. In order to
store a given (key,value) pair, first the key is serialized and then passed to a hash function
to get its partition number. At the end, the value is stored on the node which the partition
number belongs to. For reliability, there is also a copy of the value stored on a different
node as a backup. ONOS uses the above feature to actually store various data (including
hosts, devices, flows, intents, etc.), which, hence, is distributed among the controllers, thus
generating synchronization traffic, in order to guarantee consistency.

4.3.2 Synchronization traffic characteristics

In order to simulate a in-band ONOS cluster scenario, Mininet [20] and Docker [8] are
combined and modified7 to satisfy following requirements: i) OpenvSwitch runs in in-band
mode in an isolated network namespace; ii) ONOS runs in Docker container; iii) a general
simulation tool needed to set up the topology, also providing a generic unified API; iv) a
packet capture system so to monitor the control traffic. The measurement is based on a linear
10 switches topology with 10 hosts on each switch. The switches are evenly distributed to
controller nodes.

By default, ONOS creates a logically full-mesh cluster. The cluster-head is the oldest
controller in the cluster, which periodically sends the partition table to other controllers.
When a new controller joins/quits the cluster, re-partitioning is required. We measure the
volume of data the cluster-head sends to each controller in case of a new controller joining.
This is shown in Fig. 4.11, with the relationship between the number of controllers and
the volume of traffic they receive from the cluster-head. The more the controller the lower
the amount of data sent to each of them, however, by multiplying the traffic volume by the
controller number, the results tend to be a constant value. This indicates that a fixed-size data
of partition table is distributed evenly among controllers, every time the cluster members

6Hazelcast uses 271 because of its DHT internals when distributed among less than 100 nodes.
7For more details about this demo scenario, please refer to Appendix A.

76 Controller Performance Evaluation

Fig. 4.11 Joining: Per-controller (bars) vs Total (dash line) traffic.

Table 4.10 Traffic vs. primary controller (Mbps).

Primary c1 ↔ c2 c1 ↔ c3 c2 ↔ c3 Total
c1 31.6 30.1 8.6 70.3
c2 89.6 12.3 27.0 128.9
c3 14.2 90.3 21.3 125.8

change. This re-partitioning duration is usually kept small (<200ms), and the peak rate can
go up to 40Mbps.

We analyzed as well the cross-correlation of traffic between different controller pairs.
The traffic between the primary (c1) and two backups (c2 and c3) is highly correlated (98%
coefficient), which is reasonable because of c1 cluster-head role. The traffic between two
backups is correlated as well with above traffic, but with a coefficient of only 80%.

In an idle state, the average controller-controller traffic rate is below 5Mbps. While in a
heavy-loaded scenario where thousands of Packet_in messages are received by controller,
the traffic rate reaches to 90Mbps. Table 4.10 shows the average traffic (with full-loaded
controller) between each controller pair when a different primary controller is chosen. We
can see that the traffic patterns are significantly different due to the data partitions. When
c1 is primary, the overall traffic is much smaller than other cases. Clearly further research
on the selection of the primary controller is necessary to understand and optimize the
synchronization traffic.

Based on above results, the total synchronization traffic (90Mps for worst case) is
considered to be negligible compared to today’s bandwidth (over 10Gbps). Hence, the impact
of the control traffic on data traffic is minimal. On the other side, the impact of the data traffic
on control traffic can be alleviated by adopting higher priority queue for control traffic.

4.3 Distributed controller synchronization 77

Fig. 4.12 Relationship among various control messages.

4.3.3 Control traffic contention

We further examine the conflict among various types of control traffic. In ONOS cluster, when
the controller receives a Packet_In, it first generates a Flow_Add and then a Packet_Out.
For certain packet, e.g., ARP broadcast, it is unnecessary to add a new flow rule, so only
Packet_Out is generated. Controller cluster needs two-layer synchronization. The first
layer is betweeen the controller and switches: when the controller adds a new rule, besides
Flow_Add, a Barrier_Request8 is also sent to the switch immediately after Flow_Add.
The controller then waits for a Barrier_Reply to confirm the installation of the rule. The
second layer is among controller nodes: once confirmed that the rule is already installed, the
controller starts to synchronize this rule message with other nodes.

Fig. 4.12 shows the relationship among various control messages when different Packet_In
workloads are given. As expected, the synchronization traffic is roughly proportional to
Flow_Add all the way. Because any new installed flow triggers synchronization. The ra-
tio between synchronization traffic and the number of Flow_Add: 60Kbps per Flow_Add.
Packet_Out is always approximately equal to Packet_In.

When Packet_In rate is below 1800 pkts/s, Flow_Add rate is proportional to Packet_Out
and a bit lower. However, when Packet_In rate is over 1800 pkts/s, both Flow_Add and
synchronization traffic start to decrease along with the increase of Packet_In. Because the
controller has reached the upper limit of its processing capacity, and there exists resource
competition between Packet_Out and Flow_Add. It usually takes hundreds of microseconds
for switch to install a new rule, which is much slower than processing a Packet_Out message.
Furthermore, there exists certain percentage of Packet_In that only results in Packet_Out (i.e.,
ARP broadcast request). Hence, it is reasonable that Packet_Out can win over Flow_Add in
competition. Since the synchronization traffic is positively correlated to Flow_Add, it is also
impacted by overloaded Packet_Out. This reveals the fact that there is no priority among

8A barrier request can be used by the controller to set a synchronization point, ensuring that all previous
state messages are completed before the barrier response is sent back to the controller.

78 Controller Performance Evaluation

Fig. 4.13 Intent installation testbed

Fig. 4.14 Intent installation latency

various control messages. All these messages are handled sequentially and equally in both
controller and switch. However, the processing order of control messages can impact the
total throughput in an indirect way, especially when the given workload is larger than the
capacity of the controller.

4.3.4 Coordination latency

The coordination among multiple controller nodes introduces additional latency to install
flow rules, especially when the switches belong to other controller nodes. Fig. 4.13 shows
a controller cluster testbed with 3 nodes. 6 switches are linearly connected, and each node
controls 2 switches as shown in the figure. “Intent” is the concept defined by ONOS which
specifies the network control desires in the form of policy rather than mechanism. ONOS can
translate the intent into a set of flow rules to be installed on related switches. For example
in our testing case, the test script that is used to generate batches of “intents” is running on
ONOS1. This intent is to allow that any host on sw1 and sw6 can communicate with each
other. According to the definition of the intent, ONOS1 should generate a set of rules to
build the bidirectional connection between sw1 and sw6. In ONOS cluster, only the node
that directly controls the switch can install rules on it. Hence even if the rules for sw3 and
sw4 are generated in ONOS1, they have to be first delivered to ONOS2 and then installed by
ONOS2. This behavior enlarges the latency to install rules. In order to evaluate this latency,

4.4 Summary 79

we compare the latency results with different number of controller nodes. Fig. 4.14 shows
the latency results to install different number of intents with different number of nodes. As
expected, larger latency exists in a multiple nodes scenario compared with standalone node
due to the coordination among nodes. For large size of intents (i.e., 100 and 1000), when
the cluster size increases, the latency tends to decrease. Because each node only processes a
smaller number of intents due to distributed workload.

4.4 Summary

In this chapter, a comprehensive performance evaluation of five major open-source SDN
controllers is first carried out. The measurements have been set up to be fair and easily repro-
ducible. Beyond a simple benchmark, general system wide settings like Python interpreter
and Hyper-Threading are also examined in order to evaluate their impacts on controllers per-
formance. We also design several crafted scenarios to provide a comprehensive understanding
of controller performance and its limitation.

Based on the evaluation, some general conclusions can be derived. Beacon wins on almost
every aspect. It is very fast, also providing good fairness. As the first SDN controller, Nox still
suffers from scalability and fairness issues. Floodlight ranks as average, although it is marked
as enterprise-class. With the help of PyPy, both Pox and Ryu can handle 100K packets per
second, which is sufficient in a large number of scenarios. Ryu is more competitive due
to its active development community. Its master branch code is updated weekly to support
latest OpenFlow specification. The combination with new technology as OpenStack [34]
and Docker [8] helps Ryu to evolve with new features more quickly than others. From
an academic perspective, each controller is a good starting point for SDN related research.
While in industrial community, Floodlight and Ryu are more popular due to their rich set
of features. The performance is no longer the only dimension in choosing controllers. The
usability, reliability and security are equally important. Since the functionalities of controller
are growing more complex in a fast pace, it is hard for independent controller developer
to follow, and a large community is usually needed. OpenDayLight is founded by Linux
Foundation; NTT is behind Ryu; ONOS also has close cooperation with leader companies
in the communications industry. During measurement, we also see a clear limitation of
centralized controller in large scale scenarios, which implies that the distributed controller is
necessary for SDN further development and deployment.

Different from centralized controller, distributed controllers are designed to suit large
scale network as well as provide fault tolerance. They are gaining momentum, with number of
projects already existing, e.g., Onix [92], OpenDayLight [28] and Open Network Operating

80 Controller Performance Evaluation

System (ONOS) [26]. Distributed controller is supposed to run on a cluster of servers through
mutual synchronization and coordination, which makes their performance evaluation much
more complex than centralized ones. Hence, instead of carrying out an enhanced performance
evaluation on distributed controller, we mainly focus on the synchronization and coordination
behaviors among controller nodes. We use an in-band control scenario to measure the
characteristics of synchronization traffic. Although the result indicates that the total volume
of synchronization traffic can be ignored compared to today’s bandwidth, there exists conflict
among various control messages, which lowers the efficiency of synchronization. This
implies that the control message should be associated with a priority when processed by
the controller and switches. The distributed controller can increase the total throughput by
processing simultaneously on multiple nodes. Meanwhile, the latency due to coordination
and synchronization is also enlarged. Based on these facts, a more efficient and effective
east/westbound API among controller nodes still needs further investigation.

Chapter 5

Fine-grained Resource Control

Software switch brings more flexibility in network management and deployment compared
with dedicated hardware solution. For instance, when combined with SDN, software switch
provides a centralized flow-based forwarding scheme by decoupling data plane and control
plane; in NFV, software switch is the basis to provide customized network service (or
service chain) dynamically on demand regardless underlying physical topology. Furthermore,
software switch stimulates the development of open-source “White box” switches that are
built on generic hardware platforms such as commodity servers, which is helpful in reducing
both OPerational EXpenditures (OPEX) and CAPital EXpenditures (CAPEX).

However, the performance of software switch built on commodity server is not as fast
and stable as dedicated hardware. Besides the overhead introduced by the network stack
in Linux kernel, there exist intensive CPU contention among software switches, operating
system and other services. For example, the packet processing load can be concentrated on a
particular CPU core. To address this problem, Receive Side Scaling (RSS) [41] is designed
for NIC to distribute the load into multiple CPU cores. But RSS is vendor-specific technology
which mainly focuses on hardware interrupts. Similar study can be found in [119] which
also proposes a generic load balancing framework for multi-core system and multi-queue
NIC. Although Virtual Switch Extension (VSE) [101][102] can adaptively distribute SoftIRQ
requests on multiple cores based on CPU load, it is designed to manage only one instance
of virtual switch and provide no QoS control. While in NFV scenario, it is common that
multiple software switches and virtual network functions coexist on the same server, and
each switch and service should be granted a certain amount of CPU resource to fulfill its
functionality. Furthermore, as mentioned in Section 3.3.8, modern CPUs have features to
change their running frequency adaptively according to workload. Thus the performance of
software switch can not be kept consistent due to changeable frequency. Even if the CPU

82 Fine-grained Resource Control

frequency is locked, the background services of operating system are running periodically or
sporadically, which also impacts the total performance as described in Section 3.3.1.

For above reasons, fine-grained resource control is important to the success of software
switch deployment. It not only helps to deliver stable and predictable performance to meet
user-defined QoS requirements, but enforces the allocations among contended resource
in order to minimize the interference as well as maximize the overall performance. In
this chapter, we first explore the general packet processing in Linux to understand the
background of resource contention. The related resource control mechanisms in Linux are
further explained. Then we implement a prototype of Service Function Chaining (SFC)
architecture where multiple switches and service functions are required to coordinate with
each other. In SFC scenario, we examine the effectiveness of fine-grained resource allocation.
Finally, combined with previous studies on software switch performance evaluation, we
propose an automate resource allocation runtime by introducing classical control theory.
This runtime not only aims to orchestrate multiple virtual service nodes to boost the overall
performance, but also provides fine-grained control to satisfy SLA requirements adaptively
without overprovision.

5.1 Resource contention and allocation

In cloud or data center where virtualization technology is widely deployed, multiple virtual
machines (VM) share the same underlying server to run customized compute-intensive appli-
cations, and resource contentions among VMs can not be avoid. The emerging technologies
like network virtualization and NFV are facing the same resource contention problem. In
order to guarantee the required network performance and network functionality, multiple
software switches and virtual network functions are consolidated and orchestrated.

5.1.1 Received packet processing in Linux

Fig. 5.1 shows the general packet processing in Linux kernel. When the packet arrives,
the hardware NIC first raise a HardIRQ (Hardware Interrupt ReQuest) to notify a specific
CPU core. Then the packet is transferred from the NIC into the ring buffer inside Linux
kernel. After that, a SoftIRQ (Software Interrupt ReQuest) is issued on the same CPU core.
Next, the kernel TCP/IP network stack handles the packet according to its header space.
Finally, the packet is passed to process-level socket buffer to be further processed by targeted
network application. The packet processing can be divided into 3 steps: HardIRQ, SoftIRQ
and Process handling. In fully virtualized testbed where all traffic load is generated and

5.1 Resource contention and allocation 83

Fig. 5.1 Packet processing in Linux Networking

consumed inside the same server, HardIRQ step can be excluded, since no packet is received
and processed by hardware NIC. Thus we only focus on SoftIRQ and Process steps.

By default in Linux, SoftIRQs and processes are distributed among multiple cores
dynamically and randomly by operating system. This introduces additional overhead for
copying process contexts among cores and prevents flexible and accurate control on CPU
resource. For HardIRQ, DMA is responsible for memory copying without involving CPU.
While SoftIRQ is fully performed by CPU. Especially when numerous SoftIRQs concentrate
on the same core, the overall performance significantly degrades due to locking behavior.
Since SoftIRQ has higher priority than normal process, intensive SoftIRQ processing may
also prevent the execution of normal processes. For user-space software switch, it is necessary
to guarantee the CPU resource for user-space processing as well as SoftIRQ.

5.1.2 CGroups and CPUFreq

CGroups (Control Groups) [6] is the Linux kernel feature that is used to control resources
usage of single process or a collection of processes. It is designed to provide a unified
interface to realize fine-grained control over allocating, prioritizing, denying, managing, and
monitoring various system resources (e.g., CPU, memory, disk I/O, network, etc). CGroups
is also the foundation for operating system-level virtualization such as Docker [8], LXC [47],
OpenVZ [35], etc.

In CGroups, a subsystem (also called resource controller) represents a single resource,
such as CPU bandwidth or memory usage. There are two main subsystems that are related to
CPU control, namely “cpu” and “cpuset”. “cpu” is used as the scheduler to provide CGroup
tasks access to the CPU. It supports two types of schedulers: Completely Fair Scheduler
(CFS) is a proportional share scheduler which divides the CPU time proportionately among
multiple processes (or process groups) according to the priority assigned to each process;
Real Time scheduler (RT) allows to explicitly specify the total amount of CPU time that
real-time tasks can use. “cpuset” is used to specify individual CPU cores and memory nodes
that specific tasks can access.

84 Fine-grained Resource Control

CPU frequency scaling enables the operating system to scale the CPU frequency adap-
tively in order to save power. CPU frequencies can be scaled automatically depending on the
system load, in response to ACPI events, or manually by userspace programs. CPU frequency
scaling is also implemented in the Linux kernel, which is called “CPUFreq”. CPUFreq
allows to change the clock speed of CPUs on the fly by user-space programs.

The combined use of CGroups and CPUFreq can achieve fine-grained CPU control. In
order to fully control the CPU resource of software switch, we use OFsoftswitch instead of
OpenvSwitch. Because as a kernel implementation, SoftIRQs in OpenvSwitch are managed
and distributed by kernel without any explicit API for user-space. While SoftIRQs in
OFsoftswitch are always associated with its user-space process, which allows us to manage
the CPU usage of OFsoftswitch through its user-space process. Furthermore, more and
more projects (e.g., DPDK [14], mTCP [87], etc.) are creating a new network stack fully
in user-space to replace the default kernel one for fast processing. Hence, OFsoftswitch is
chosen as a representative of user-space implementation in the following sections.

5.2 Resource allocation for Service Function Chaining

We extend our vision from the performance of individual software switch to global optimiza-
tion among multiple switches based on fine-grained resource allocation. The emergence of
SDN and NFV is accelerating the development and deployment of software switches and
virtual network functions to satisfy various stringent requirements of network softwariza-
tion. Service Function Chaining (SFC) is widely recognized as an important and promising
application under this background. Hence, we extend OFsoftswitch to support SFC and
demonstrate the effectiveness of resource allocation in SFC scenarios.

5.2.1 Service Function Chaining (SFC)

The delivery of end-to-end services often requires various network functions to provide
key security, network management and performance guarantees. These network functions
include traditional firewalls and IP Network Address Translator (NAT), as well as other
application-specific functions. A service chain is defined as an ordered set of abstract service
functions that must be applied to packets/flows selected as a result of classification. The
concept of Service Function Chaining (SFC) [78][95] allows to steer service-specific traffic to
traverse network service functions in the given order. SFC refers to decouple the deployment
of network functions from underlying infrastructures.

5.2 Resource allocation for Service Function Chaining 85

Fig. 5.2 Network Service Header Format

The current deployment model of network service functions still suffers from being
static, which is tightly coupled to underlying network topology and physical resources. This
constrains the flexible and dynamic service delivery and potentially inhibits the network
operator optimizing their service resources. Instead of static service insertion that requires
modifications on topology and routing, service functions are treated as virtual resources in
SFC with associated attributes that is available for scheduled consumption. The specific
traffic can be steered to the requisite service functions according to predefined policies, along
with metadata information to realize policy enforcement. Service overlay is introduced to
implement SFC. Service overlay first classifies incoming traffic based on policy rules, then
encapsulates the packets in a network transportation header and delivers them to the initial
service function in a service chain. The packets must be re-classified at each service function
node and then steered to the next one in the chain. Network Service Header (NSH) defines
the header format to create a dedicated service overlay which is independent of underlying
transport layer.

5.2.2 Network Service Header (NSH)

Network Service Header [77] is the shim layer added to a packet or frame that is used to
create a service overlay. The packets and the NSH are boths encapsulated by an outer header
for transport. NSH is transport agnostic. Thus it can be imposed between the original packet
and various outer network encapsulations such as MPLS, VXLAN or GRE.

Fig. 5.2 illustrates the format of NSH. First 4 bytes are defined as a “Base Header”,
next 4 bytes are “Service Path Header”, and then either 16 bytes predefined “Mandatory
Context Headers” or “Optional Variable Length Context Headers” are attached. Base header
provides basic information of service header and payload protocol. More specifically, the
“Ver” (version) field occupies 2 bits and is set to 0x0 by default. “O” bit indicates whether
this is an operation and management (OAM) packet. “C” bit indicates whether a critical
metadata TLV in optional context headers is present. All other flag fields are reserved for

86 Fine-grained Resource Control

Fig. 5.3 TLV format of optional context header

future use. The “Length” field counts the total bytes including the Base Header, the Service
Path Header and the Context Headers. NSH further defines two MetaData formats (“MD
Types”) for Context Headers: 0x1 (Mandatory) and 0x2 (Optional Variable Length). The
“Next Protocol” field indicates the protocol type of the original packet.

Service Path Header contains two parts: Service Path Identifier and Service Index. Service
Path Identifier defines a service path, and all participating nodes must use this identifier for
Service Function Path (SFP) selection. Service Index provides the current location within the
SFP. Service Index must be modified by service functions after performing required services.

Context headers are used to carry opaque metadata and customized variable length
information. When MD Type is set as 0x1, four mandatory context headers, 4-byte each, are
added after service path header. If MD Type is set as 0x2, optional variable length context
headers are added after service path header instead of mandatory context headers. It must
be of an integer number of 4 bytes and follows the TLV (Type, Length, Value) format as
shown in Fig. 5.3. “TLV Class” defines the scope of the “Type” field that is used to identify
a specific vendor or specific standards body allocated types. “C” bit corresponds to the flag
bit in the Base Header. “Type” indicates the specific type of information being carried. The
exact value of a given type is provided in “Variable Metadata”.

5.2.3 Implementation of SFC

Fig. 5.4 shows the overview of SFC framework as well as the packet processing in service
overlay. The main components are explained as follows:

Ingress(Classifier)/Egress: When a flow arrives at the boundary of service domain, the
ingress switch first checks its headers. Normally, 5-tuple (IP source/destination, protocol
type, source/destination port) in header space is used to decide which service should be
applied. If application-layer service differentiation is required, the payload should also be
checked. Then all the packets from this flow are encapsulated in UDP and NSH. A Service
Path ID is assigned to indicate the unique service path. Corresponding to ingress, egress
switch is responsible for decapsulating NSH and ends the service chain.

Service switch: Service switch is in charge of steering service-specific traffic to given
network functions in the correct order according to NSH. This demands service switch to

5.2 Resource allocation for Service Function Chaining 87

Fig. 5.4 Framework of Service Function Chaining

be aware of NSH and to modify NSH when needed. Service switch can be implemented
by modifying OpenFlow-enabled software switch. The OpenFlow controller also should
be modified to be capable of NSH related operations. Service switch can modify Service
Index value to indicate which service function has already been applied in a chain. If
necessary, service switch can also modify the value of Service Path ID. Besides service
overlay forwarding, service switch also supports normal packet forwarding.

Service function: Service functions are running as applications inside containers/VMs
which are directly connected to service switches. So service switch acts as a proxy to decide
which service functions should be applied to the traffic. Instead of placing on physical
topology, this form of virtual service functions can be inserted into or moved from service
path dynamically and conveniently. It is further assumed that all service functions should
also be aware of NSH and process the packets according to its original header instead of
NSH outer header.

Service application: Service application is running above the controller to fulfill service
chaining enforcement. It contains three main modules: Service Path Selection, Performance
Monitor and Resource Allocation. Service Path Selection module is used to determine the
service path for specific service function chain. We assume that all the topology information
of switches and service functions are registered in the controller. Thus the controller is
able to calculate the shortest service path for service chain and install forwarding rules on
service switches. Performance Monitor module is able to collect statistics of specific flow
from switches in order to monitor real-time running status and calculate available bandwidth.
Resource Allocation module further uses gathered information to optimize the resource
allocation among multiple service nodes according to various operation requirements, e.g.,
maximizing the overall performance, satisfying specific QoS, etc.

88 Fine-grained Resource Control

Fig. 5.5 Network protocol stack in NSH

In order to implement SFC, we modify OFsoftswitch and Ryu controller to support NSH.
We follow IETF draft (“UDP Transport for Network Service Header”) [94] to encapsulate
NSH and original packet in UDP without requiring additional headers as overhead1. The
network protocol stack is shown in Fig. 5.5, which is similar to VXLAN. In NSH, for
simplicity, no optional Context Header is attached after Service Path Header. The source
port used in the UDP overlay is set as 60001. The checksum in UDP header is set to
zero for performance consideration. In OFsoftswitch, the flow table is extended to support
encapsulation/decapsulation of NSH as well as matching/modifying NSH fields. Hence, the
modified OFsoftswitch can be used as ingress/egress switch and service switch. Furthermore,
OFsoftswitch can also act as proof-of-concept service functions, e.g., stateless Firewall,
simple NAT, gateway, etc. For control plane, Ryu is selected and modified to support NSH
related operations. So Path Selection module is able to install NSH-related rules on service
switch. The Performance Monitor module is implemented by standard OpenFlow control
messages for flow statistics. An external API based on CGroup and CPUFreq is also provided
to achieve fine-grained CPU resource control. For more details about the implementation of
SFC, please refer to Appendix A.

5.2.4 Resource allocation on SFC

The deployment of SFC based on software switch and virtual network function is challenging.
First, both software switch and service function are required to bind to a large amount of
computation resources. For instance, in order to realize 10 Gbps line rate forwarding speed
for 64B packet on single port, one CPU core running at 3 GHz is needed [107], not to
mention offering equivalent performance for complex network functions like Deep Packet
Inspection (DPI) or web proxy. Second, data center and cloud are usually virtualized to
support multi-tenant processing and operating. There should be isolated software switches or
virtual services deployed for each tenant. It is common that multiple service instances coexist
on the same physical hardware and share limited resources, which shifts performance issue
to a more critical level. Moreover, certain VMs running intensive computation applications
may also occupy considerable CPU resource. Third, different from server virtualization

1According to this design, the total encapsulation overhead is: 14(MAC)+20(IP)+8(UDP)+8(NSH) =
50(bytes). In order to prevent fragmentation of UDP overlay transport, it is necessary to reconfigure the MTU
value or the size of original packets to accommodate this encapsulation overhead.

5.2 Resource allocation for Service Function Chaining 89

where each VM usually runs as a standalone part with negligible inter-traffic with other VMs,
the performance of SFC depends on the coordination of all the service functions along the
service path. When multiple software switches and service functions coexist on the same
server, CPU resource becomes the bottleneck which limits the overall performance. Instead
of over provisioning of computation resources, we aim to orchestrate multiple services and
switches within limited resources to achieve optimized total throughput.

Our idea is similar to NaaS [71] that involves the optimization of resource allocations
by considering network and computing resources as a unified whole. By default on multi-
core operating system, the processes are distributed among multiple cores dynamically and
randomly. For SFC, the operating system is not aware of how many CPU resources should be
assigned to each function or switch for given service chain. All of them are treated equally
without priority or QoS guarantee. Hence, a customized and fine-grained control mechanism
on CPU resource is necessary for improving SFC performance.

To this end, we design a simple scenario to demonstrate the effectiveness of resource
allocation in SFC. The given scenario is described as follows: the network service domain is
constituted of 3 intermediate service switches (S1, S2, S3) connected in a line. S1 is ingress
switch while S3 is egress switch. 2 service functions (F1, F2) are needed in service path
following the order as first F1 then F2, and both functions can be attached to any switch. For
simplicity, F1 and F2 are also set up as service switch which simply sends out all incoming
traffic, and no real service function executes inside. We further assume that these 5 switches
(S1, S2, S3, F1, F2) are sharing 3 CPU cores (C1, C2, C3).

Moreover, Section 3.3.6 implies that the number of ports and the traffic pattern on each
port impact the performance of OFsoftswitch. We further conclude that the network topology
has influence on OFsoftswitch performance, since it defines the connection graph and port
configuration. In SFC scenario, different connections between service functions and service
switches result in different service topologies. This inspires us to combine the topology
design with resource allocation coordinately for optimized throughput in scenarios like SFC
where the network topology can be customized. We formulate this optimization problem
as follows: 1) according to given service chain, we first pick out representative topologies
among all possible ones; 2) in each selected topology, we then applied different resource
allocation mechanisms among multiple service nodes (switches and service functions) based
on their needs on CPU resource; 3) we choose the combination of topology and resource
allocation mechanism that provides best performance.

Fig. 5.6 enumerates 2 representative topologies. Since the service functions are also
set up as same as switches, other topologies are either redundant or isomorphism to these 2
topologies. The service path is listed under each topology. The table in Fig. 5.7 indicates

90 Fine-grained Resource Control

Fig. 5.6 Service Function Chaining topologies.

CPU Allocation
Allocation S1 S2 S3 F1 F2
Method 1 C1 C2 C3 C1 C2
Method 2 C1 C2 C3 C1 C3
Method 3 C1 C2 C3 C2 C3
Default Deployed randomly by OS

Fig. 5.7 Simulation on resource allocation.

how CPU cores are assigned to each software switch. 3 customized CPU allocation methods
are listed in detail to compare with default scheduling method by operating system (OS).
When enabling customized allocation, each switch process can only run on a single core.
We apply these allocation methods to each topology and measure the maximum available
bandwidth. From the results in Fig. 5.7, default OS scheduling shows slight performance
difference on two topologies, which is 341 and 336 Mbps respectively. In both topologies,
each customized CPU allocation provides equivalent or better performance than default OS
scheduling. In Topology 1, Method 3 achieves best performance as 411Mbps while Method 2
achieves best performance as 445Mbps in Topology 2. Hence the best coordination between
topology and resource allocation is “Topology 2 + Method 2”, which achieves over 30%
performance improvement than default scheduling by OS.

In OS default scheduling, each software switch is not attached to specific cores, thus
its running core is frequently changed. The context switch introduces additional overhead,
especially when each CPU core has been already fully occupied by numerous SoftIRQs. In
Topology 2, clearly S2 requires more CPU than other switches, since it directly connects
with 2 service functions. Hence it is reasonable for S2 to occupy a single core. In Method 2,
the workloads on each core are distributed evenly, and each core is almost fully occupied.
That is why Method 2 achieves best overall performance. In Topology 1, both S1 and S2
are connected with one function, so both of them need more CPU resource than others. In

5.3 Automated fine-grained provision 91

this case, the workloads can not be evenly distributed, and part of CPU is still idle. Thus the
performance improvement is not as significant as in Topology 2.

There is still room for further improvement in resource allocation. First, in this case,
we aim to provide an optimized bandwidth for SFC in a best-effort basis. However, in
practice, the bandwidth usage in cloud is used for pricing. So it is necessary to provide a
fixed and stable bandwidth for customers. This can be achieved by controlling CPU in a fine
granularity. Second, we iterate all possible CPU allocation methods manually and statically
to find out the best solution, which is not practical and costly in time. Hence, an automated
CPU provision runtime is needed to perform resource allocation intelligently. The runtime
should be to adjust the CPU affinity as well as CPU resource for a given task dynamically
and efficiently. Third, more complex scenarios should be taken into consideration for further
validating the effectiveness of resource allocation.

5.3 Automated fine-grained provision

In cloud environment, the pay-as-you-go model has been widely adopted to provide Infrastruc-
ture-as-a-Service (IaaS). Similarly, NaaS is a business model for delivering network services
virtually in cloud on a pay-per-use basis. And SFC can be treated as one of typical and
important applications of NaaS. SFC requires users to explicitly specify the total amount of
resource to reserve. However, the users can only coarsely estimate the resource needed due to
ignorance on the performance of service providers’ platform. Hence, users are usually prone
to oversubscribe the resource from service provider, which leads to inflated cost. From the
perspective of service provider, overprovision lowers the utilization of underlying physical
resources. The emergence of SDN and NFV enables SFC to be deployed in a fully virtualized
manner. This brings great flexibility in network management, especially in fine-grained
resource allocation. Based on these facts, we aim to present a resource allocation runtime for
SFC that can satisfy the user-defined Service-Level Agreement (SLA) as well as leverage the
utilization of underlying hardware.

5.3.1 Case study

In order to provide motivations and contexts for automated fine-grained provision, we present
a case study for demonstration. Fig. 5.8 shows a simple SFC scenario where a Firewall
(FW) is first configured to block specific hosts from accessing Internet and then a NAT is
used to translate private IP addresses to public ones. Two service switches (S1 and S2) are
used as ingress and egress of service domain respectively. FW connects to S1, while NAT

92 Fine-grained Resource Control

Fig. 5.8 Case study for SFC

Table 5.1 CPU bandwidth required for each service node (1500B packet)

Service node S1 S2 FW NAT
CPU BW (%) 22 20 11 12

connects to S2. Both FW and NAT are proof-of-concept service functions that are modified
by OFsoftswitch. According to user-defined SLA, the input bandwidth between hosts and S1
is required to be 100Mbps.

According to the SLA that defines the service chain and input bandwidth, service provide
needs to decide the CPU bandwidth assigned to each service node (FW, NAT, S1, S2)
to guarantee the 100Mbps input bandwidth. In existing solutions, static CPU bandwidth
allocation is adopted to provide 100Mbps. The result of required CPU bandwidth for each
node is listed in Table 5.1. According to Section 3.3.1, due to the interference of background
services, the real-time bandwidth provided by static allocation is not a constant value. It is
sometimes higher than 100Mbps and sometimes lower. The 100Mbps bandwidth achieved
only represents an average value of real-time bandwidth over a period of 495s2.

In order to quantify the deviation of real-time bandwidth, the Mean Absolute Percentage
Error (MAPE) is used as a metric. MAPE [19] is defined as a measure of prediction accuracy
of a forecasting method in statistics. It usually expresses accuracy as a percentage. MAPE is
formulated by equation:

MAPE =
1
n

n

∑
t=1

∣∣∣∣At −Ft

At

∣∣∣∣
where At is the actual value at time t and Ft is the forecast value at t. In our SFC scenario, At

represents the real-time bandwidth while Ft represents the input bandwidth defined in SLA.
The total time period is 495s, and we sample real-time bandwidth per second. Hence, the
MAPE value in our case is calculated to be 11%. In order to minimize MAPE, fine-grained
and dynamic provisions are needed. This is also helpful to build an accurate pricing model
as well as reduce OPEX.

In former case, only 1500-byte packets are used to generate traffic from the hosts.
According to previous study in Section 3.3.3, the pps (packets per second) throughput in

2Section 3.3.1 indicates that the period of our platform is 495s. To set testing period as 495s is helpful to
acquire more accuracy result.

5.3 Automated fine-grained provision 93

Table 5.2 CPU bandwidth required with 512B packet

Service node S1 S2 FW NAT
CPU BW (%) 62 57 29 33

Fig. 5.9 Runtime framework

OFsoftswitch is quite stable regardless of packet size. So if the hosts generate only 512-byte
packets, in order to still provide 100Mbps, more CPU bandwidth is required for each service
node. The result of required CPU bandwidth for 512-byte packets is shown in Table 5.2. We
can see that all CPU bandwidths are approximately increased by 3 times. Moreover, in Fig.
5.8, the actual traffic volume received by S2 and NAT depends on the packets allowed by
FW. The result in former case is obtained based on the fact that all the traffic are approved
to access Internet. However, if part of hosts or traffic are blocked by FW, the required CPU
bandwidth for S2 and NAT will decrease according to the percentage of traffic blocked.
Considering the impact of traffic characteristics, an automated runtime should be combined
with fine-grained provision to allocate resources dynamically and adaptively.

5.3.2 Runtime Framework

As discussed above, a SFC resource allocation runtime is needed to support dynamic allo-
cations based on SLA requirement and traffic characteristics instead of static methods. It
provides the ability for service provider to bridge SLA requirement and the actual resource
needed dynamically in order to reduce OPEX or maximize the utilization of underlying
infrastructure. In SFC scenario, the resource to be allocated is CPU bandwidth. The runtime
is deployed above SDN controller as an application.

Fig. 5.9 depicts the overview of SFC runtime. First, the user defines the SLA, i.e.,
input bandwidth of a predefined service chain. We assume that the topology of service
chain is fixed. Second, the runtime determines the resource needed for each service node to
satisfy SLA requirement, then the CPU bandwidth is assigned to each node by CGroups API.

94 Fine-grained Resource Control

Third, the runtime periodically monitors real-time bandwidth through standard OpenFlow
API or other external APIs. OpenFlow provides internal counters to record the number of
packets that match specific flow table or flow entry, which can be used to calculate real-time
bandwidth. The error between SLA and real-time bandwidth is further used to adjust the
assigned CPU bandwidth. Since this is a closed-loop system that provides feedback of the
actual state, it is supposed to provide a stable bandwidth with minimized oscillation.

5.3.3 Best-effort based SLA

Besides the SLA that defines the input bandwidth of specific SFC, there is a different type
of SLA that subscribes a fixed amount of physical/virtual resources. It requires service
provider to implement specific SFC base on subscribed resources in a best-effort manner.
The demo in Section 5.2.4 belongs to this type of SLA. In that case, we manage to maximize
the throughput of specific SFC by setting CPU affinity for each service nodes. The runtime
proposed should support both two types of SLA.

The implementation of resource allocation in best-effort basis is quite different from
providing fixed bandwidth. Since multiple service nodes are competing CPU resource, the
main idea is to distribute service nodes on different cores by setting CPU affinity for each node
in order to minimize the interference among them as well as maximize the CPU utilization.
It is also helpful to avoid frequent context switches. However, the default operating system
scheduling does not perform well for this purpose. In order to find out the best allocation, we
first need to formulate this scheduling problem. We assume that there are n service nodes
running coordinately to provide a service chain. Bi represents the weight value of required
CPU bandwidth for service node i. We further assume that there are m(m ≤ n) available

Algorithm 1: Greedy algorithm
Input: Array(B) = [B1,B2, . . . ,Bn], Array(C) = [C1,C2, . . . ,Cm] where C j is an empty

array
Output: Array(C)

1 Array(S) = [S1,S2, . . . ,Sm] and S j=0;
2 while Array(B) is not empty do
3 Select Bk where Bk = max(B);
4 l = index of Sl where Sl = min(S);
5 Remove Bk from Array(B) and add it to Cl;
6 Sl = Sl +Bk;
7 end
8 return Array(C);

5.3 Automated fine-grained provision 95

Fig. 5.10 Runtime control schema

CPU cores and C j represents core j. Each service node should be assigned to a specific CPU
core3. C j is further defined as a set, Bi ∈C j means Bi is running on C j. The goal is to find
one allocation that distributes multiple service nodes (Bi) among multiple cores (C j) most
evenly, which can achieve maximum CPU utilization. This is a NP-hard problem, the time
complexity of a brute force search is O(nm). For efficiency, we propose a simple greedy
algorithm which time complexity is O(n ∗ logn). The evaluations of best-effort resource
allocation and proposed greedy algorithm are further provided in Section 5.4.1.

5.3.4 Feedback control

Compared to best-effort based service, it is more complex to provide a fixed bandwidth
automatically and dynamically. Since traditional static allocation is no longer suitable, we
introduce a feedback loop system to enhance dynamic allocation. Fig. 5.10 illustrates the
overall architecture of control schema. The runtime periodically compares the real-time
bandwidth against the target one defined by SLA and updates the CPU bandwidth assigned
to service node iteratively. Each update process can be divided into following steps:
(1) Since the runtime is deployed above SDN controller, it can use standard OpenFlow API.
The service nodes (service switches and service functions) in our model are all modified
from OFsoftswitch, so they are compatible with OpenFlow. OpenFlow provides counters to
record the number of packets processed by specific flow table or flow entry. By periodically
gathering this information, the real-time bandwidth can be calculated.
(2) Resource Updating module compares the real-time bandwidth with SLA bandwidth.
For instance, the bandwidth defined by SLA is represented as BSLA, while Bt represents
the real-time bandwidth measured at time t. The CPU bandwidth assigned to achieve Bt is
defined as Ct . By default, all previous real-time bandwidth and CPU bandwidth information
are stored. The new CPU bandwidth Ct+1 for time (t +1) should be determined based on
collected information. Theoretically, the throughput of software switch is proportional to
CPU bandwidth, which implies this is a linear system. Hence, according to classical control

3The service node in our case is running in single thread, so it can be only attached to single core.

96 Fine-grained Resource Control

theory [54], we adopt a P (Proportional) controller to determine Ct+1. This is mathematically
expressed as: Ct+1 = P ∗ (BSLA −Bt)+Ct where P is the proportional gain. P is a tuning
parameter which is used to adjust the control loop for desired control response. P is usually
decided empirically based on specific platform and control requirement. Moreover, we further
modify the basic P controller model to better fit our scenario. We find that CGroups may act
inaccurately sometimes and result in some deviations on real-time bandwidth during a short
period of time less than 1s. For this kind of deviation, it is not necessary to reallocate CPU
bandwidth, because this is a false positive alarm. Hence we add a threshold on bandwidth
deviation as Dbw. Only if |BSLA −Bt |> Dbw, the reallocation is triggered. We also replace
Bt with B̄t that represents the average value of previous observed real-time bandwidth during
a fixed time window. The window size is defined as w, so B̄t = (∑t

t−w+1 Bi)/w. This time
window is a buffer to check whether a real bandwidth change happens. Correspondingly,
after one reallocation is triggered, its impact on B̄t also takes at least w time to be fully
observed. So there should be a cooldown time after reallocation. During cooldown time, no
reallocation can be triggered. The cooldown time cd is equal to w by default.

(3) Once the reallocation is triggered, Resource Allocation module then applies the new
CPU bandwidth to service node by CGroups-based API. We assume that no resource scarcity
occurs during resource allocation process, the remaining CPU resource is always available.
The smallest unit in the allocation is 1% CPU time of single core. Although CGroups
supports finer control granularity, the results do not perform well in practical use. Hence the
runtime avoids the use of granularity smaller than 1% CPU time for accuracy.

The runtime monitors the real-time bandwidth and updates the resource model every
second. We choose this empirical value to yield precise resource allocation and respon-
siveness of the system. Because higher updating frequency impacts the accuracy of CPU
resource allocation performed by CGroups, while lower frequency leads to slow response to
the variation of real-time bandwidth.

5.4 Evaluation

In this part, two different types of SLA in SFC, namely “Best-effort basis” and “Fixed
bandwidth” are evaluated separately. The testbed is the same one as described in Section
3.2.1 and Table 3.2. More specifically for CPU configuration, we disable Hyper-Threading,
Enhanced Intel SpeedStep and Turbo Boost Technologies in order to avoid the interference
of external factors and enhance the accuracy of the control schema. In the evaluation, we
manually set CPU frequency at 3.6GHz instead of using its default adaptive policy.

5.4 Evaluation 97

Fig. 5.11 Various topologies for best-effort basis SFC

5.4.1 Best-effort allocation

In Section 5.2.4, we have already demonstrated the effectiveness of resource allocation in
performance improvement on a topology with 5 nodes and 3 CPU cores. In order to acquire
one more general conclusion, we include more testing topologies with different number of
nodes that are shown in Fig. 5.11. The number of nodes in each topology increases from 2 to
10. Switches (S) are always connected in a line, while service functions (F) are attached to
switches. Each switch connects at most 2 service functions. All the service functions are
configured as same as in Section 5.2.4. In each topology, different numbers of CPU cores
(2/3/4 cores) are provided for resource allocation. The goal of this evaluation is two-fold: to
quantify the improvement achieved by resource allocation and to validate the effectiveness
of proposed greedy algorithm.

We start the evaluation by using default OS scheduling and obtain its throughput. Then
we record the CPU usage for each service node, which is then used as the weight value
Bi defined in Section 5.3.3. Next, according to the number of cores provided, the greedy
algorithm is used to decide the allocation. Moreover, we also find out the best allocation
by brute force search, which is used as a reference. Finally, the throughputs by applying
above allocations are compared with the result by default OS scheduling to calculate the
percentage of improvement. The result is shown in Fig. 5.12. We find that the allocation
decided by the greedy (or called “greedy allocation”) algorithm is always in agreement with
the best allocation, so we only show the result by applying greedy allocation in Fig. 5.12
for simplification. There is only one exceptional case when 7 nodes are sharing 3 cores.
The best allocation can achieve 20% improvement which is marked in dash line, while
the improvement by greedy allocation is a bit smaller at around 15%. The percentage of

98 Fine-grained Resource Control

Fig. 5.12 Improvement achieved with resource allocation in best-effort basis

improvement achieved is various based on different numbers of service nodes and cores. By
observing the overall trend of improvement, the greedy allocation always performs better
than or equally to default OS scheduling. The only performance degradation occurs when 4
nodes are sharing 3 cores. Since the degradation is only 2% that can be ignored. When the
number of service nodes (Ns) is smaller than the number of cores (Nc), no improvement is
shown, because each node can occupy the resource of a full single core in both OS scheduling
and greedy allocation cases. When Ns is significantly larger than Nc, the improvement
is also negligible. Due to the large number of nodes, the intensive CPU contention and
mutual interference on limited number of cores are unavoidable no matter what kind of
allocation is applied. Most of significant improvements that are over 15% usually happen
when Nc < Ns < 3∗Nc. Based on above results, our greedy allocation is proved to be more
effective compared to default OS scheduling.

5.4.2 Runtime dynamic allocation

The evaluation on runtime dynamic allocation aims to validate its capability in providing
stable bandwidth defined by SLA. We assume that SLA only defines the specific service
chain and its input bandwidth. In order to satisfy the requirements, the runtime just fixes the
input bandwidth at ingress switch according to SLA and guarantees that the CPU resources
assigned to other service nodes are sufficient for actual needs and will not act as bottleneck
in service chain. We further assume that no resource scarcity occurs on service nodes.
Therefore, the impact of service nodes other than ingress switch can be ignored, and the
runtime only needs to focus on the resource control of ingress switch. Based on above
analysis, the evaluated service chain can be extremely simplified as topology (2) shown in
Fig. 5.11. Only two switches are presented in the topology. S1 is ingress while S2 is egress.

5.4 Evaluation 99

(a) Static allocation

(b) Runtime allocation

Fig. 5.13 Static allocation vs Runtime allocation

The service path is S1-S2. The input bandwidth in SLA is defined as 400Mbps. Iperf is used
to measure the real-time TCP bandwidth controlled by runtime dynamic allocation.

We first compare the stability of real-time bandwidth between static allocation and
runtime allocation. The packet size is fixed as 1500 bytes. Fig. 5.13 shows the real-time
bandwidth provided by two allocations over a period of 1500s. As shown in Fig. 5.13a,
although the average bandwidth provided by static allocation is close to 400Mbps, the real-
time bandwidth is either 10Mbps higher or 10Mbps lower than target value. As described
in Section 5.3.1, MAPE is used to quantify the deviation between real-time bandwidth and
target bandwidth. In static allocation, MAPE is 2.8%. In runtime allocation, the parameters
defined in Section 5.3.4 are set as follows: we empirically select proportional gain (P) as 1/5;
the threshold of bandwidth deviation (Dbw) that triggers reallocation is set as 6Mbps; Both
time window (w) and cooldown time (cd) are set as 5s. As shown in Fig. 5.13b, most of the
time the real-time bandwidth can be fixed at around 400Mbps. MAPE in runtime allocation
is 1.2%, which is only half of the value in static allocation. This means that the runtime is
capable of providing a more accurate real-time bandwidth. However, in runtime allocation,
we can see more intensive fluctuations than in static allocation. This is the side effect of CPU
bandwidth reallocation. Every time CGroups reallocates the CPU bandwidth, there exists a
short period of time that the CPU bandwidth can not be assigned correctly as defined. Even
so, our runtime is still proved to outperform static allocation with smaller MAPE.

We further check the dynamic behavior of runtime allocation when traffic characteristics
change. All the parameters are configured as same as former case except Dbw. We enlarge Dbw

as 20Mbps. Because the real-time bandwidth fluctuates more intensively in this evaluation,
a larger Dbw is helpful to avoid frequent and unnecessary reallocations. In the beginning,

100 Fine-grained Resource Control

Fig. 5.14 Dynamic behavior of runtime allocation

the traffic contains only 1500-byte packets that belong to Flow1, and the runtime provides
stable real-time bandwidth. At 100th second, Flow2 that contains only 512-byte packets joins
the traffic. The dynamic reactions of real-time bandwidth and CPU bandwidth allocation
are shown in Fig. 5.14. As explained in Section 5.3.1, smaller packets reduce the overall
bandwidth, since pps (packets per second) is a constant value with fixed CPU bandwidth.
Consequently, the overall bandwidth decreases from 400Mbps to 300Mbps. By monitoring
real-time bandwidth, the runtime can detect this change and react accordingly. Due to the
existence of time window (w), it takes at least 5s for the runtime to be aware of bandwidth
change. And then CPU bandwidth reallocation is triggered. The runtime executes reallocation
twice to achieve 400Mbps again, so the total reaction time is about 10s. Next, Flow2 quits at
300th second. Contrary to the behavior when it joins, the overall bandwidth first significantly
increases and then returns to 400Mbps under the control of runtime. The runtime executes
reallocation 3 times and the total reaction time is 15s.

Above evaluation result demonstrates that the runtime is capable of providing stable
real-time bandwidth even when there are variations on traffic characteristics. The feedback
system always introduces a control latency (or called reaction time). In our case, the reaction
time is 10-15s. This time depends on the values of parameters P and w. With larger P and
smaller w, the reaction time of the system can be reduced, but the inaccuracy and fluctuation
of the system is also enlarged at the same time. Moreover, due to the side effect of CGroups,
it is not practical to reallocate CPU bandwidth frequently. Hence we select these values in
consideration of balancing between the reaction time and the stability of the system.

5.5 Summary

In this chapter, we extend our vision from the performance of individual software switch
to global optimization among multiple switches. For this purpose, we first explore the

5.5 Summary 101

general packet processing in Linux in order to understand the background of resource
contention among multiple software switches. Then we introduce two Linux kernel tools,
namely “CGroups” and “CPUFreq”, which are used to achieve fine-grained CPU control.
Next, Service Function Chaining (SFC) is presented as one typical scenario where multiple
software switches/virtual network functions coexist are sharing the same underlying physical
resources. SFC combines the advantage of both SDN and NFV to extremely simplify the
deployment of composite service that are constructed from one or more L4-L7 network
functions. Since SFC is a new approach for service delivery and operation, the work on its
definition and implementation is still active and ongoing under IETF. We follow IETF drafts
to implement a prototype of SFC by using Network Service Header (NSH). The prototype
not only supports service chaining control by extending standard OpenFlow API, but also
provides performance monitor and fine-grained CPU control for service node. Based on the
prototype, we propose a simple SFC scenario where 5 service nodes are sharing 3 CPU cores.
We demonstrate that the overall SFC performance in a best-effort basis can be improved
over 30% by applying suitable resource allocation compared to default OS scheduling. This
result proves the necessity and effectiveness of resource allocation in SFC, which also further
inspires us to develop an automate runtime for fine-grained resource allocation.

The pay-as-you-go model has been widely adopted to provide Infrastructure-as-a-Service
(IaaS) and Network-as-a-Service (NaaS). SFC is one of typical applications of NaaS to
deliver network services on a pay-per-user basis. It is important for service providers to meet
the requirements of user-defined SLA. Meanwhile, users are usually prone to oversubscribe
the resource from service provider, which lowers the utilization of underlying physical
resource. For above reasons, fine-grained resource allocation is necessary and helpful in SFC
deployment. We find that static resource allocation can not perform well in complex scenario
where the characteristics of traffic can change. In order to overcome the shortcoming of static
allocation, an automated runtime is proposed to support dynamic resource allocation.

The runtime is implemented as an application that is running on SDN controller. It
supports two different types of SLA, namely “Best-effort basis” and “Fixed bandwidth”.
In “Best-effort basis” SLA, the user subscribes a fixed amount of physical/virtual resources
and requires service provider to implement the specific service chain base on subscribed
resources in a best-effort manner. We formulate this allocation problem and it turns out to be
NP-hard. For efficiency, we propose a greedy algorithm to solve it. Various testing topologies
with different number of service nodes and CPU cores are used to evaluate the effectiveness
of resource allocation. The result shows that the greedy algorithm can always correctly find
out the best allocation except only one case. And runtime allocation always performs better
than or equally to OS default scheduling. Especially when the number of service nodes

102 Fine-grained Resource Control

(Ns) and the number of cores (Nc) satisfy the following relationship as Nc < Ns < 3∗Nc, the
average improvement is about 15%.

“Fixed bandwidth” SLA aims at providing a fixed real-time bandwidth automatically and
dynamically, which is quite different from best-effort basis. Since traditional static allocation
is no longer suitable, we introduce a feedback loop system to enhance dynamic allocation.
According to classical control theory, a simple P (Proportional) controller is used to perform
resource allocation. We further modify the basic P controller model to better fit our scenarios
by introducing new parameters (bandwidth deviation threshold, buffer window and cooldown
time). We empirically choose the parameter values in consideration of balancing between
precise resource allocation and responsiveness of the system. In the evaluation, we first
compare the stability of real-time bandwidth between static allocation and runtime allocation
when the traffic characteristics remain unchanged. The MAPE value in runtime allocation
is only 1.2% compared to 2.8% in static allocation, which proves that runtime dynamic
allocation outperforms static allocation in providing accurate real-time bandwidth. Then we
check the dynamic behavior of runtime allocation when traffic characteristics change. The
result demonstrates that runtime allocation is capable of providing stable real-time bandwidth
even when there are variations on traffic characteristics. The reaction time is 10-15s.

The runtime is proposed as a general framework that can be extended to support different
types of resources and various service-level objectives. In our SFC scenario, CPU bandwidth
is the unique bottleneck resource. In order to control other bottleneck resources, it is needed
to implement related API for monitoring and allocating the given resource. For instance,
the resource control on memory can be easily supported by using memory subsystem in
CGroups. Moreover, in addition to the SLAs we have evaluated, other service objectives like
energy saving or maximization of infrastructure utilization can be achieved as long as related
control algorithms or policies are added to the runtime.

Chapter 6

Conclusion & Future Work

Due to the growing trend of “Softwarization”, virtualization is becoming the dominating
technology in data center and cloud environment. Software switch is indispensable to the
success of network virtualization, especially when combined with emerging SDN and NFV.
For this purpose, this thesis exactly targets the deployment issues of software switch in SDN-
enabled network virtualization environment, which is also helpful to indicate its deployment
in practical use.

6.1 Thesis summary

SDN and NFV are emerging networking technology that are both designed to facilitate
the deployment and management of network by open standard APIs instead of traditional
vendor-specific manner. Software switch is the powerful tool to implement SDN and NFV
related services. However, the combination of software switch and NFV/SDN is still far
from well studied. Based on these facts, we first explore the current studies in Chapter 2.
And then we summarize the main problems into 4 categories according to the hierarchy of
SDN: data plane, interaction between OpenFlow and data plane, control network and control
plane. Next, we indicate the missing subjects in previous works such as in-band control and
fine-grained resource allocation. Finally, in order to improve previous studies and fill the
gap, we carry out our study in following 3 directions: software switch evaluation, controller
evaluation and fine-grained resource control.

In Chapter 3, due to the concern on software switch performance, a systematic perfor-
mance evaluation is carried out. We select two representatives of OpenFlow-enabled software
switch, namely OpenvSwitch and OFsoftswitch. Since the implementations of two switches
are quite different in various aspects, the comparison between them is helpful to lead to a
more general conclusion. Based on the analysis of OpenFlow packet processing, we select

104 Conclusion & Future Work

several main performance factors and evaluate their impacts. For completeness, other factors
related to operating system and underlying hardware are also investigated. More specially, we
discuss the efficiency of veth pair as virtual interface and how it is balancing the performance
and security features when combined with software switch. We draw conclusions of both
differences and similarities between two selected switches. These conclusions point out the
suitable scenario for each software switch. For instance, OpenvSwitch is capable of provid-
ing high-speed packet processing, while OFsoftswitch is suitable for the scenarios where
fine-grained resource control is required. Moreover, we demonstrate the design principle
behind in-band control. Compared with out-of-band control, in-band control introduces
larger latency in handling new flows due to long control path. This problem can be solved by
proactive rule installation scheme.

Since the controller is the cornerstone to the success of SDN architecture, a fair and fully
reproducible performance evaluation of controller is provided in Chapter 4. Beyond a simple
benchmark, we not only examine general system wide settings like Python interpreter and
Hyper-Threading to evaluate their impacts, but also design specifically crafted scenarios for
further measurements. Based on the outcome of the evaluation, we find that performance
is no longer the only dimension in choosing controllers. The usability, reliability and
security are equally important. Since SDN is evolving in a fast pace and results in growing
complexity of the controller, it is hard for independent developer to follow, instead a large
group of communities or companies is needed. We also see the necessity of distributed
controller in large scale scenarios because of the performance limitation of centralized
controller. Due to the importance of synchronization traffic in implementing the functionality
of distributed controller, a preliminary study is provided to investigate its traffic characteristic.
The result shows that the conflict among various control messages lowers the efficiency of
synchronization. This study also implies that the control message should be associated with
a priority when processed by the controller and switches, which further requires combining
the design of east/westbound API and southbound API.

Chapter 5 investigates the resource contention and resource allocation among multiple
software switches. We first explore the general packet processing in Linux to understand
the background of resource contention. Then we build a prototype of Service Function
Chaining architecture where multiple switches or service functions are sharing the same
underlying hardware. Next our case study demonstrates that the overall performance of the
SFC prototype can be significantly improved by suitable resource allocation. This inspires us
to propose an automated runtime for fine-grained resource allocation. The runtime supports
two different types of SLA for SFC, namely “Best-effort basis” and “Fixed bandwidth”.
For “Best-effort basis” SLA, we formulate the problem and propose a greedy algorithm to

6.2 Publication 105

solve it. The result shows that our allocation always performs better than or equally to OS
default scheduling. For “Fixed bandwidth” SLA, we introduce classical control theory to
enhance dynamic resource allocation. The runtime is proved to be capable of providing stable
real-time bandwidth even when the traffic characteristics change. The runtime is presented as
a general framework that can be extended to support different types of resources and various
service-level objectives.

6.2 Publication

We report here the list of already published papers and submitted ones, which are related to
this manuscript. Each paper is also associated with its related chapters.

1. Y. Zhao, L. Iannone, M. Riguidel. Measuring In-Band Overhead of SDN Controller
Clusters. In Proceedings of CoNEXT Student Workshop ’15, Heidelberg, Germany,
Dec, 2015. (Chapter 4)

2. Y. Zhao, L. Iannone, M. Riguidel. On the Performance of SDN controllers: A Reality
Check. In Proceedings of 2015 IEEE Conference on Network Function Virtualization
and Software Defined Network (NFV-SDN), San Francisco, CA, USA, Nov, 2015.
(Chapter 4)

3. Y. Zhao, L. Iannone, M. Riguidel. Software Switch Performance Factors in Network
Virtualization Environment. In Proceedings of 2014 IEEE 22nd International Confer-
ence on Network Protocols (ICNP), Raleigh, NC, USA, Oct, 2014. (Chapter 3 and
Chapter 5)

6.3 Discussion & Future work

In this thesis, we attempt to tackle a number of critical problems in software switch de-
ployment in network virtualization environment, which raises a couple of open problems.
Therefore, our study can be extend and enhanced in following directions.

The evaluations should be carried out on an enhanced testbed. Our testbed is equipped
with single 4-core CPU, which only meets the minimum requirement for multi-thread
testing. This directly constrains the scale of our testing scenario. When evaluating the
greedy algorithm, the maximum number of service nodes are limited within 10. In order
to comprehensively evaluate the effectiveness of our resource allocation scheme, more
CPU cores are needed. Similar issue also exists in distributed controller evaluation. Since
distributed controllers usually bind to a large amount of resources for parallel computation,

106 Conclusion & Future Work

our testbed can not be comparable with official testing platform that at least two 10-core
CPUs are provided [25]. With a powerful testbed, we can further replace the emulated
benchmark tools with real traffic tests. For example, we can use numerous software switches
instead of Cbench to evaluate the controllers, which is more close to the reality. Many global
research networks for academic purpose such as Ofelia [24] or PlanetLab [38] could be taken
into consideration to build such a testbed for large scale deployment.

Distributed controllers designed for large scale networks are gaining momentum, with
number of projects already existing. The evaluation of distributed controller is more com-
plex than centralized controller. Because the performance of distributed controller not only
relies on the underlying computation resources, but also depends on the efficiency of syn-
chronization as well as the placement of controller nodes. However, the specifications of
east/westbound APIs are still under discussion, and their implementations are various in
different products. Our investigation on synchronization traffic is a start point to evaluate
the effectiveness of existing implementations, which is helpful to indicate the potential
bottleneck and could be used as a feedback to modify the existing system. More efforts and
investigations could follow this direction to establish an ecosystem for effectively developing
and testing east/westbound APIs.

As mentioned in Chapter 5, the runtime is rather a general framework that can be enhanced
to support various types of resources and service-level objectives. In order to control the
CPU resource for service node more precisely, we could build a resource–performance
model for each service function. For this purpose, both offline and online profiling can be
applied. NFV-VITAL [65] is a general offline framework for performance characterization
of various Virtual Network Functions (VNFs) in a real private cloud deployment. Bartolini
et al. propose AutoPro [57] as a runtime that adopts control theory to build and update
the resource-performance model through online estimation. Besides resource–performance
model, traffic predication is also helpful to enhance resource allocation. Because the resource
required for each function directly depends on traffic characteristics, and accurate traffic
predication allows the system to react in advance to reduce the response time.

References

[1] 6WINDGate and SDN.
http://www.6wind.com/software-defined-networking/6windgate-sdn/.

[2] About Nox. http://www.noxrepo.org/nox/about-nox/.

[3] About Pox. http://www.noxrepo.org/pox/about-pox/.

[4] Bridge Linux Foundation.
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge.

[5] Cbench. https://github.com/andi-bigswitch/oflops/tree/master/cbench.

[6] CGroups - The Linux Kernel Archives.
https://www.kernel.org/doc/Documentation/cgroups.

[7] Cisco Nexus 1000V Switch for VMware vSphere.
http://www.cisco.com/c/en/us/products/switches/nexus-1000v-switch-vmware-
vsphere/index.html.

[8] Docker. https://www.docker.com/.

[9] European Telecommunications Standards Institute (ETSI). http://www.etsi.org/.

[10] FloodLight OpenFlow Controller. http://www.projectfloodlight.org/floodlight/.

[11] HP ProCurve. https://en.wikipedia.org/wiki/ProCurve.

[12] Huge Pages - The Linux Kernel Archives.
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt.

[13] Indigo virtual switch. http://www.projectfloodlight.org/indigo-virtual-switch/.

[14] Intel Data Plane Development Kit. http://www.dpdk.org.

[15] Kernel Virtual Machine (KVM). http://www.linux-kvm.org/page/Main_Page.

[16] LINC OpenFlow software switch. https://github.com/FlowForwarding/LINC-Switch.

[17] Linux Foundation. NAPI.
http://www.linuxfoundation.org/collaborate/workgroups/networking/napi.

[18] Linux Kernel Contributors. Packet_mmap.
https://www.kernel.org/doc/Documentation/networking/packet_mmap.txt.

108 References

[19] Mean absolute percentage error.
https://en.wikipedia.org/wiki/Mean_absolute_percentage_error.

[20] Mininet An Instant Virtual Network on your Laptop (or other PC). http://mininet.org/.

[21] Netmap - a framework for fast packet I/O. https://github.com/luigirizzo/netmap.

[22] ntop: High Performance Network Monitoring Solution. http://www.ntop.org/.

[23] ntop. PF_RING ZC (Zero Copy).
http://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/.

[24] OFELIA: A European project providing OpenFlow-based experimental facilities.
http://www.fp7-ofelia.eu/.

[25] ONOS Blackbird Performance Evaluation.
https://wiki.onosproject.org/display/ONOS11/Blackbird+Performance+Evaluation.

[26] Open Networking Operating System. http://onosproject.org/.

[27] Open vSwitch. http://openvswitch.org/.

[28] OpenDayLight Platform. https://www.opendaylight.org/.

[29] OpenFlow 1.3 Software Switch. https://github.com/CPqD/ofsoftswitch13.

[30] OpenFlow Reference Switch. http://yuba.stanford.edu/git/gitweb.cgi?p=openflow.git.

[31] OpenFlow specification v1.0.
http://archive.openflow.org/documents/openflow-spec-v1.0.0.pdf.

[32] OpenFlowClick. http://archive.openflow.org/wk/index.php/OpenFlowClick.

[33] OpenOnload. http://www.openonload.org/.

[34] OpenStack. https://www.openstack.org/.

[35] OpenVZ Virtuozzo Containers Wiki. https://openvz.org/Main_Page.

[36] OPNFV Linux Foundation. https://www.opnfv.org.

[37] Pantou: OpenFlow 1.0 for OpenWRT.
http://archive.openflow.org/wk/index.php/Pantou_:_OpenFlow_1.0_for_OpenWRT.

[38] PlanetLab: An open platform for developing, deploying and accessing planetary-scale
services. https://www.planet-lab.org/.

[39] QEMU Open source processor emulator. http://wiki.qemu.org/Main_Page.

[40] Ryu SDN Framework. http://osrg.github.io/ryu/.

[41] Scaling in the Linux Networking Stack.
https://www.kernel.org/doc/Documentation/networking/scaling.txt.

References 109

[42] Softswitch Wikipedia. https://en.wikipedia.org/wiki/Softswitch.

[43] The Leading Open Source In-Memory Data Grid. http://hazelcast.org/.

[44] The NetBee Library. http://www.nbee.org/doku.php.

[45] The Rise of Soft Switching Part IV: Comments on the Hardware Supply
Chain. http://networkheresy.com/2011/09/29/the-rise-of-soft-switching-part-iv-
comments-on-the-hardware-supply-chain/.

[46] Traffic Control HOWTO. http://linux-ip.net/articles/Traffic-Control-HOWTO/.

[47] What’s LXC? https://linuxcontainers.org/lxc/introduction/.

[48] Network Functions Virtualization – Introductory White Paper.
https://portal.etsi.org/nfv/nfv_white_paper.pdf, Oct. 2012.

[49] The software defined data center. http://www.emc.com/collateral/presentations/
7-vmware-afternoon-sessions.pdf, 2013.

[50] Network Functions Virtualization – Use Cases.
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v0101
01p.pdf, June 2014.

[51] V. Abidi, Y. Chen, and M. Hamilton. An Automation Framework and Methodology for
Measuring OVS Performance. http://openvswitch.org/support/ovscon2015/17/1050-
abidi.pptx.

[52] G. Antichi, M. Shahbaz, Y. Geng, N. Zilberman, A. Covington, M. Bruyere, N. McKe-
own, N. Feamster, B. Felderman, M. Blott, A. Moore, and P. Owezarski. OSNT: open
source network tester. Network, IEEE, 28(5):6–12, September 2014.

[53] P. Arlos and M. Fiedler. A Method to Estimate the Timestamp Accuracy of Mea-
surement Hardware and Software Tools. In Proceedings of the 8th International
Conference on Passive and Active Network Measurement, PAM’07, pages 197–206,
Berlin, Heidelberg, 2007. Springer-Verlag.

[54] K. J. Åström and B. Wittenmark. Adaptive control. Courier Corporation, 2013.

[55] S. Azodolmolky, R. Nejabati, M. Pazouki, P. Wieder, R. Yahyapour, and D. Sime-
onidou. An analytical model for software defined networking: A network calculus-
based approach. In Global Communications Conference (GLOBECOM), 2013 IEEE,
pages 1397–1402, Dec 2013.

[56] S. Azodolmolky, P. Wieder, and R. Yahyapour. Performance Evaluation of a Scalable
Software-Defined Networking Deployment. In Software Defined Networks (EWSDN),
2013 Second European Workshop on, pages 68–74, Oct 2013.

[57] D. B. Bartolini, F. Sironi, D. Sciuto, and M. D. Santambrogio. Automated Fine-
Grained CPU Provisioning for Virtual Machines. ACM Trans. Archit. Code Optim.,
11(3):27:1–27:25, July 2014.

http://www.emc.com/collateral/presentations/7-vmware-afternoon-sessions.pdf
http://www.emc.com/collateral/presentations/7-vmware-afternoon-sessions.pdf

110 References

[58] A. Beifus, D. Raumer, P. Emmerich, T. Runge, F. Wohlfart, B. Wolfinger, and G. Carle.
A study of networking software induced latency. In Networked Systems (NetSys), 2015
International Conference and Workshops on, pages 1–8, March 2015.

[59] V. Bhuvaneswaran, B. Anton, and et al. Benchmarking Methodology for OpenFlow
SDN Controller Performance. draft-bhuvan-bmwg-of-controller-benchmarking-00,
Sept. 2014.

[60] A. Bianco, R. Birke, L. Giraudo, and M. Palacin. OpenFlow Switching: Data Plane
Performance. In Communications (ICC), 2010 IEEE International Conference on,
pages 1–5, May 2010.

[61] K. Blaiech, S. Hamadi, A. Mseddi, and O. Cherkaoui. Data plane acceleration for
virtual switching in data centers: NP-based approach. In Cloud Networking (CloudNet),
2014 IEEE 3rd International Conference on, pages 108–113, Oct 2014.

[62] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4: Programming Protocol-
independent Packet Processors. SIGCOMM Comput. Commun. Rev., 44(3):87–95,
July 2014.

[63] F. A. Botelho, F. M. V. Ramos, D. Kreutz, and A. N. Bessani. On the Feasibility of
a Consistent and Fault-Tolerant Data Store for SDNs. In Proceedings of the 2013
Second European Workshop on Software Defined Networks, EWSDN ’13, pages
38–43, Washington, DC, USA, 2013. IEEE Computer Society.

[64] E. A. Brewer. Towards Robust Distributed Systems. In Proc. of the 9th Annual ACM
Symposium on Principles of Distributed Computing, (PODC ’00), New York, USA,
2000.

[65] L. Cao, P. Sharma, S. Fahmy, and V. Saxena. NFV-VITAL: A framework for character-
izing the performance of virtual network functions. In Network Function Virtualization
and Software Defined Network (NFV-SDN), 2015 IEEE Conference on, pages 93–99,
Nov 2015.

[66] M. Casado. OpenStack and Network Virtualization. http://blogs.vmware.com/tribal
knowledge/2013/04/openstack-and-network-virtualization.html, April 2013.

[67] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian. Fabric: a retrospective on
evolving SDN. In Proceedings of the first workshop on Hot topics in software defined
networks, pages 85–90. ACM, 2012.

[68] M. Challa. OpenvSwitch Performance measurements & analysis.
http://openvswitch.org/support/ovscon2014/18/1600-ovs_perf.pptx.

[69] Y.-H. Chang, T.-Y. Chung, and Y.-M. Chen. Spring-based resource management for
end-to-end services in next-generation networks. In Ubiquitous and Future Networks
(ICUFN), 2015 Seventh International Conference on, pages 701–706, July 2015.

[70] N. M. K. Chowdhury and R. Boutaba. A survey of network virtualization. Computer
Networks, 54(5):862–876, 2010.

References 111

[71] P. Costa, M. Migliavacca, P. Pietzuch, and A. L. Wolf. NaaS: Network-as-a-service
in the Cloud. In Proceedings of the 2Nd USENIX Conference on Hot Topics in
Management of Internet, Cloud, and Enterprise Networks and Services, Hot-ICE’12,
pages 1–1, Berkeley, CA, USA, 2012. USENIX Association.

[72] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Banerjee.
DevoFlow: Scaling Flow Management for High-performance Networks. In Proceed-
ings of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11, pages 254–265, New
York, NY, USA, 2011. ACM.

[73] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle. Performance characteristics of
virtual switching. In Cloud Networking (CloudNet), 2014 IEEE 3rd International
Conference on, pages 120–125, Oct 2014.

[74] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle. Assessing Soft-and Hardware
Bottlenecks in PC-based Packet Forwarding Systems. ICN 2015, page 90, 2015.

[75] D. Erickson. The Beacon Openflow Controller. In Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking, HotSDN ’13,
pages 13–18, New York, NY, USA, 2013. ACM.

[76] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story, and
D. Walker. Frenetic: A Network Programming Language. SIGPLAN Not., 46(9):279–
291, Sept. 2011.

[77] P. Garg, P. Quinn, R. Manur, J. Guichard, S. Kumar, A. Chauhan, B. McConnell,
M. Smith, C. Wright, U. Elzur, J. M. Halpern, W. Henderickx, T. Nadeau, S. Majee,
D. T. Melman, K. Glavin, and P. Agarwal. Network Service Header. Internet-Draft
draft-quinn-sfc-nsh-07, Internet Engineering Task Force, Feb. 2015.

[78] J. M. Halpern and C. Pignataro. Service Function Chaining (SFC) Architecture. IETF
RFC 7665, Nov. 2015.

[79] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. Network function virtualization:
Challenges and opportunities for innovations. Communications Magazine, IEEE,
53(2):90–97, 2015.

[80] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: A GPU-accelerated Software
Router. In Proceedings of the ACM SIGCOMM 2010 Conference, SIGCOMM ’10,
pages 195–206, New York, NY, USA, 2010. ACM.

[81] K. He, J. Khalid, A. Gember-Jacobson, S. Das, C. Prakash, A. Akella, L. E. Li,
and M. Thottan. Measuring Control Plane Latency in SDN-enabled Switches. In
Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined Networking
Research, SOSR ’15, pages 25:1–25:6, New York, NY, USA, 2015. ACM.

[82] B. Heller, R. Sherwood, and N. McKeown. The controller placement problem. In
Proceedings of the first workshop on Hot topics in software defined networks, pages
7–12. ACM, 2012.

112 References

[83] D. Y. Huang, K. Yocum, and A. C. Snoeren. High-fidelity Switch Models for Software-
defined Network Emulation. In Proceedings of the Second ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking, HotSDN ’13, pages 43–48, New York,
NY, USA, 2013. ACM.

[84] M. Jarschel, F. Lehrieder, Z. Magyari, and R. Pries. A Flexible OpenFlow-Controller
Benchmark. In Software Defined Networking (EWSDN), 2012 European Workshop
on, pages 48–53, Oct 2012.

[85] M. Jarschel, C. Metter, T. Zinner, S. Gebert, and P. Tran-Gia. OFCProbe: A platform-
independent tool for OpenFlow controller analysis. In Communications and Elec-
tronics (ICCE), 2014 IEEE Fifth International Conference on, pages 182–187, July
2014.

[86] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia. Modeling
and performance evaluation of an OpenFlow architecture. In Teletraffic Congress
(ITC), 2011 23rd International, pages 1–7, Sept 2011.

[87] E. Y. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm, D. Han, and K. Park. mTCP:
A Highly Scalable User-level TCP Stack for Multicore Systems. In Proceedings of
the 11th USENIX Conference on Networked Systems Design and Implementation,
NSDI’14, pages 489–502, Berkeley, CA, USA, 2014. USENIX Association.

[88] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind, A. Manzalini, F. Risso,
D. Staessens, R. Steinert, and C. Meirosu. Research Directions in Network Service
Chaining. In Future Networks and Services (SDN4FNS), 2013 IEEE SDN for, pages
1–7. IEEE, 2013.

[89] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click Modular
Router. ACM Trans. Comput. Syst., 18(3):263–297, Aug. 2000.

[90] X. Kong, Z. Wang, X. Shi, X. Yin, and D. Li. Performance evaluation of software-
defined networking with real-life ISP traffic. In Computers and Communications
(ISCC), 2013 IEEE Symposium on, pages 000541–000547, July 2013.

[91] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton, I. Ganichev,
J. Gross, P. Ingram, E. Jackson, A. Lambeth, R. Lenglet, S.-H. Li, A. Padmanabhan,
J. Pettit, B. Pfaff, R. Ramanathan, S. Shenker, A. Shieh, J. Stribling, P. Thakkar,
D. Wendlandt, A. Yip, and R. Zhang. Network Virtualization in Multi-tenant Datacen-
ters. In 11th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14), pages 203–216, Seattle, WA, Apr. 2014. USENIX Association.

[92] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ramanathan,
Y. Iwata, H. Inoue, T. Hama, and S. Shenker. Onix: A Distributed Control Platform
for Large-scale Production Networks. In Proceedings of the 9th USENIX Conference
on Operating Systems Design and Implementation, OSDI’10, pages 1–6, Berkeley,
CA, USA, 2010. USENIX Association.

[93] D. Kreutz, F. M. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S. Azodolmolky,
and S. Uhlig. Software-defined networking: A comprehensive survey. proceedings of
the IEEE, 103(1):14–76, 2015.

References 113

[94] S. Kumar, L. Kreeger, S. Majee, W. Haeffner, R. Manur, and D. T. Melman. UDP
Transport For Network Service Header. Internet-Draft draft-kumar-sfc-nsh-udp-
transport-01, Internet Engineering Task Force, Nov. 2015. Work in Progress.

[95] S. Kumar, M. Tufail, S. Majee, C. Captari, and S. Homma. Service Function Chaining
Use Cases In Data Centers. Internet-Draft draft-ietf-sfc-dc-use-cases-03, Internet
Engineering Task Force, July 2015.

[96] M. Kuzniar, P. Peresini, and D. Kostic. What you need to know about SDN control
and data planes. Technical report, 2014.

[97] A. Lazaris, D. Tahara, X. Huang, E. Li, A. Voellmy, Y. R. Yang, and M. Yu. Tango:
Simplifying SDN Control with Automatic Switch Property Inference, Abstraction,
and Optimization. In Proceedings of the 10th ACM International on Conference on
Emerging Networking Experiments and Technologies, CoNEXT ’14, pages 199–212,
New York, NY, USA, 2014. ACM.

[98] L. Mai, L. Rupprecht, A. Alim, P. Costa, M. Migliavacca, P. Pietzuch, and A. L. Wolf.
NetAgg: Using Middleboxes for Application-specific On-path Aggregation in Data
Centres. In Proceedings of the 10th ACM International on Conference on Emerging
Networking Experiments and Technologies, CoNEXT ’14, pages 249–262, New York,
NY, USA, 2014. ACM.

[99] Microsoft. Hyper-V Windows Server.
https://technet.microsoft.com/en-us/windowsserver/dd448604.aspx, 2014.

[100] C. Monsanto, N. Foster, R. Harrison, and D. Walker. A Compiler and Run-time
System for Network Programming Languages. SIGPLAN Not., 47(1):217–230, Jan.
2012.

[101] S. Muramatsu, R. Kawashima, S. Saito, and H. Matsuo. VSE: Virtual Switch Extension
for Adaptive CPU Core Assignment in Softirq. In Cloud Computing Technology and
Science (CloudCom), 2014 IEEE 6th International Conference on, pages 923–928,
Dec 2014.

[102] S. Muramatsu, R. Kawashima, S. Saito, H. Matsuo, H. Nakayama, and T. Hayashi.
A Software Approach of Controlling the CPU Resource Assignment in Network
Virtualization. IEICE Transactions on Communications, 98(11):2171–2179, 2015.

[103] E. Ng. Maestro: A System for Scalable OpenFlow Control. Technical report, TSEN
Maestro-Technical Report TR10-08, Rice University, 2010.

[104] M. Obadia, M. Bouet, J.-L. Rougier, and L. Iannone. A greedy approach for mini-
mizing SDN control overhead. In Network Softwarization (NetSoft), 2015 1st IEEE
Conference on, pages 1–5, April 2015.

[105] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme, J. Gross, A. Wang,
J. Stringer, P. Shelar, K. Amidon, and M. Casado. The Design and Implementation of
Open vSwitch. In Proceedings of the 12th USENIX Conference on Networked Systems
Design and Implementation, NSDI’15, pages 117–130, Berkeley, CA, USA, 2015.
USENIX Association.

114 References

[106] K. Phemius and M. Bouet. OpenFlow: Why latency does matter. In Integrated
Network Management (IM 2013), 2013 IFIP/IEEE International Symposium on, pages
680–683, May 2013.

[107] G. Pongrácz, L. Molnár, and Z. L. Kis. Removing Roadblocks from SDN: OpenFlow
Software Switch Performance on Intel DPDK. In Proceedings of the 2013 Second
European Workshop on Software Defined Networks, EWSDN ’13, pages 62–67,
Washington, DC, USA, 2013. IEEE Computer Society.

[108] G. Pongrácz, L. Molnár, Z. L. Kis, and Z. Turányi. Cheap Silicon: A Myth or
Reality? Picking the Right Data Plane Hardware for Software Defined Networking.
In Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, HotSDN ’13, pages 103–108, New York, NY, USA, 2013. ACM.

[109] Y. Pu, Y. Deng, and A. Nakao. Cloud Rack: Enhanced virtual topology migration
approach with Open vSwitch. In Information Networking (ICOIN), 2011 International
Conference on, pages 160–164, Jan 2011.

[110] P. Quinn, J. Guichard, R. Fernando, Surendra, P. Agarwal, R. Manur, A. Chauhan,
N. Leymann, M. Boucadair, C. Jacquenet, M. Smith, N. Yadav, T. Nadeau, K. Gray,
B. McConnell, and Kevin. Network Service Chaining Problem Statement, draft-quinn-
nsc-problem-statement-03. https://datatracker.ietf.org/doc/draft-quinn-nsc-problem-
statement/, 2013.

[111] L. Rizzo, M. Carbone, and G. Catalli. Transparent acceleration of software packet
forwarding using netmap. In INFOCOM, 2012 Proceedings IEEE, pages 2471–2479,
March 2012.

[112] C. Rotsos, G. Antichi, M. Bruyere, P. Owezarski, and A. Moore. OFLOPS-Turbo:
Testing the Next-Generation OpenFlow switch. In European Workshop on Software
Defined Networks (EWSDN), page 2p, 2014.

[113] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore. OFLOPS: An Open
Framework for Openflow Switch Evaluation. In Proceedings of the 13th Interna-
tional Conference on Passive and Active Measurement, PAM’12, pages 85–95, Berlin,
Heidelberg, 2012. Springer-Verlag.

[114] L. Rupprecht. Exploiting In-network Processing for Big Data Management. In
Proceedings of the 2013 SIGMOD/PODS Ph.D. Symposium, SIGMOD’13 PhD Sym-
posium, pages 1–6, New York, NY, USA, 2013. ACM.

[115] C. Schlesinger, M. Greenberg, and D. Walker. Concurrent NetCore: From Policies to
Pipelines. SIGPLAN Not., 49(9):11–24, Aug. 2014.

[116] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky. Advanced Study
of SDN/OpenFlow Controllers. In Proceedings of the 9th Central & Eastern
European Software Engineering Conference in Russia, CEE-SECR ’13, pages 1:1–1:6,
New York, NY, USA, 2013. ACM.

References 115

[117] S. Shin, Y. Song, and et al. Rosemary: A Robust, Secure, and High-performance
Network Operating System. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’14, pages 78–89, New York, NY,
USA, 2014. ACM.

[118] H. Song. Protocol-oblivious Forwarding: Unleash the Power of SDN Through a Future-
proof Forwarding Plane. In Proceedings of the Second ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networking, HotSDN ’13, pages 127–132, New York,
NY, USA, 2013. ACM.

[119] V. Tanyingyong, M. Hidell, and P. Sjodin. Improving performance in a combined
router/server. In High Performance Switching and Routing (HPSR), 2012 IEEE 13th
International Conference on, pages 52–58, June 2012.

[120] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood. On Con-
troller Performance in Software-defined Networks. In Proceedings of the 2Nd USENIX
Conference on Hot Topics in Management of Internet, Cloud, and Enterprise Net-
works and Services, Hot-ICE’12, pages 10–10, Berkeley, CA, USA, 2012. USENIX
Association.

[121] C.-C. Tu, P.-W. Wang, and T.-c. Chiueh. In-Band Control for an Ethernet-Based
Software-Defined Network. In Proceedings of International Conference on Systems
and Storage, SYSTOR 2014, pages 1:1–1:11, New York, NY, USA, 2014. ACM.

[122] D. Turull, M. Hidell, and P. Sjodin. Performance evaluation of openflow controllers
for network virtualization. In High Performance Switching and Routing (HPSR), 2014
IEEE 15th International Conference on, pages 50–56, July 2014.

[123] VMware. vSphere ESX and ESXi Info Center. http://www.vmware.com/products/esxi-
and-esx/overview.html, 2014.

[124] Z. Wang, T. Tsou, J. Huang, X. Shi, and X. Yin. Analysis of Comparisons between
OpenFlow and ForCES. ForCES, IETF, Sept. 2012.

[125] A. Weissberger. VMware’s Network Virtualization Poses Huge Threat to Data Center
Switch Fabric Vendors. http://viodi.com/2013/05/06/vmwares-network-virtualization-
poses-huge-threat-to-data-center-switch-fabric-vendors/, May 2013.

[126] L. Yao, P. Hong, and W. Zhou. Evaluating the controller capacity in software de-
fined networking. In Computer Communication and Networks (ICCCN), 2014 23rd
International Conference on, pages 1–6, Aug 2014.

[127] M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable Flow-based Networking
with DIFANE. In Proceedings of the ACM SIGCOMM 2010 Conference, SIGCOMM
’10, pages 351–362, New York, NY, USA, 2010. ACM.

[128] S. Zhang, S. Malik, S. Narain, and L. Vanbever. In-Band Update for Network Routing
Policy Migration. In Network Protocols (ICNP), 2014 IEEE 22nd International
Conference on, pages 356–361, Oct 2014.

Appendix A

Source Code

Most of our implementations are modified from previous open source projects that are pub-
lished on GitHub. So we also upload related codes to GitHub in my personal repositories as
https://github.com/zeinsteinz. It is convenient to download and explore the codes. For in-
stance, in order to find out all the modifications on OFsoftswitch, we can find all commitment
history in a diff mode by using following link https://github.com/zeinsteinz/ofsoftswitch13/
commits/master. A brief introduction of each repository is provided as follows.

A.1 OFsoftswitch

https://github.com/zeinsteinz/ofsoftswitch13

For OFsoftswitch, we have made two main modifications. One is to improve its perfor-
mance in packet parsing by more efficient codes to replace original Netbee library. The other
one is to extend it to support NSH for SFC implementation.

A.2 Ryu

https://github.com/zeinsteinz/ryu

Similar to OFsoftswitch, Ryu is also modified to support NSH related operations such as
field matching/modification as well as encapsulation/decapsulation.

A.3 Mininet

https://github.com/zeinsteinz/mininet

https://github.com/zeinsteinz
https://github.com/zeinsteinz/ofsoftswitch13/commits/master
https://github.com/zeinsteinz/ofsoftswitch13/commits/master
https://github.com/zeinsteinz/ofsoftswitch13
https://github.com/zeinsteinz/ryu
https://github.com/zeinsteinz/mininet

118 Source Code

Aiming at in-band control simulation, Mininet is modified to allow OpenvSwitch running
in private network namespace. It is also extended to support Docker for distributed controller
measurement. In addition, several test scripts and customized CLI commands are provided
as well.

Appendix B

Résumé en Français

1. Introduction

Une tendance croissante des “ Softwarization ” qui se passe dans presque tous les domaines
de la technologie de la communication et Information. La virtualisation des serveurs est
maintenant de premier plan dans la majorité des centres de données. De même dans la zone
du réseau, tant par Software Defined Network (SDN) et Network Function Virtualization
(NFV) sont des expressions différentes de Software Defined Infrastructure (SDI) dans une
tendance de transformation globale de “ La Softwarization du Réseau”. Switch logiciel est
exactement l’outil approprié et puissant pour soutenir SDN et NFV. En ce qui concerne les
défis et opportunités dans la softwarization du réseau, cette thèse vise à étudier le déploiement
de switch logiciel dans un environnement de la virtualisation du réseau SDN-enabled. Dans
notre étude, nous nous concentrons d’abord sur l’évaluation des performances des switches
logiciels OpenFlow-enabled. Ensuite, une vérification de la réalité sur la performance du
contrôleur est effectuée en raison de son importance dans le cadre de SDN. Enfin, nous
proposons un cadre d’exécution automatique pour fournir une allocation dynamique et
adaptative des ressources pour les switches logiciels. Dans cette section, une introduction du
switch logiciel et ses scénarios de déploiement prometteurs sont fournis.

Différemment de la définition traditionnelle dans les télécommunications [42] qui fait
référence au dispositif central ou d’un logiciel utilisé pour connecter des appels téléphoniques
avec différentes autres lignes téléphoniques, nous définissons “ switch logiciel ” en tant
que switch virtuel construit sur le système informatique d’usage général pour mettre en
œuvre le transfert de paquets ainsi que d’autres fonctionnalités réseau. Plus précisément, le
système informatique général dans cette thèse est limitée à l’architecture x86, et d’autres
plates-formes comme ARM ou FPGA ne sont pas considérés. Les implémentations typiques

120 Résumé en Français

Fig. B.1 La virtualisation du réseau

de switch logiciel incluent Linux Bridge [4], Click routeur [89], switches virtuels VMware
ESX [123] ou Microsoft Hyper-V [99], etc

La virtualisation du réseau permet la coexistence de plusieurs réseaux virtuels qui parta-
gent les mêmes infrastructures physiques sous-jacents [70]. Elle sépare la fonctionnalité
traditionnelle du réseau en deux rôles: fournisseur d’infrastructure qui construit les infras-
tructures du réseaux physiques et fournisseur de services qui crée et gère le réseau virtuel et
fournit réseau de bout en bout en tant que service. Fig. B.1 montre un scénario typique de la
virtualisation du réseau. VMA, VMB et VMC sont dans le même sous-réseau, tandis que
VM1 à VM5 appartiennent à l’autre sous-réseau. Bien que les machines virtuelles dans le
même sous-réseau sont en cours d’exécution sur les différents hôtes physiques, en utilisant la
virtualisation du réseau, ils peuvent être gérés dans des réseaux logiques isolés grâce à des
topologies virtuelles personnalisées. Dans la virtualisation du réseau, une superposition à
base de tunnel est généralement adoptée dans les centres de données distribués pour fournir
une connectivité à travers WAN. Toutes les opérations d’encapsulation / décapsulation de
sont mises en œuvre que sur le bord, le switch logiciel. Différents protocoles de tunneling
ont été proposés par Internet Engineering Task Force (IETF), y compris GRE, VXLAN, STT,
LISP, GENEVE, etc. Ces protocoles choisissent différentes couches d’encapsulation et visent
à des scénarios spécifiques. La plupart des protocoles de tunneling sont initialement pris en
charge dans le noyau Linux, qui peut être facilement intégré dans le switch logiciel.

L’idée principale du Software Defined Network (SDN) est de briser l’intégration verticale
en séparant le plan de contrôle des réseaux à partir du plan de données sous-jacentes. SDN
adopte un plan de contrôle relativement centralisé et fournit une vue globale de l’ensemble du
réseau. La virtualisation de réseau a acquis une nouvelle traction avec l’avènement de la SDN.
Parce que la virtualisation de réseau vise à découpler les ressources du réseau à partir de
matériel sous-jacent, SDN offre une interface standard entre les applications de commande et
dispositifs de transmission sous-fifre, qui est une plate-forme naturelle pour la virtualisation

121

du réseau. Par exemple, Network Virtualization Platform (NVP) [91] est conçu pour les
centres de données multi-locataires sur la base de SDN. NVP utilise OpenvSwitch dans tous
les nœuds de transport (hyperviseurs, les nœuds de service et passerelle) pour transférer des
paquets. OpenvSwitch est configurable à distance par le contrôleur NVP pour gérer les tables
de débit ainsi que les tunnels de recouvrement. La virtualisation du réseau a été l’un des
facteurs à l’origine de l’émergence du switch logiciel. Les switches logiciels SDN-enabled
sont plus prometteuses pour fournir une grande souplesse pour permettre la virtualisation du
réseau. Outre SDN et la virtualisation de réseau, le switch logiciel trouve aussi sa place dans
d’autres technologies de réseau émergentes telles que la Network Function Virtualization
(NFV) et le Network-as-a-Service (NaaS).

Le softwarization de réseau est progressivement et inévitablement briser l’intégration
verticale classique de l’architecture de réseau spécifique au fournisseur, qui permet multitude
de services qui pourraient être créés et fournis par le biais des plates-formes dynamiques
et sans marge de ressources logiques, totalement découplée des infrastructures physiques
sous-jacents. La transfert de paquets par un logiciel gagne la popularité comme base pour
le softwarization du réseau, car elle conduit à des économies de coûts, une plus grande
flexibilité et la programmabilité. Plus précisément, le switch logiciel, qui a été largement
déployé et testé dans un environnement de virtualisation hôte, est un bon point de départ pour
étudier l’impact de la virtualisation du réseau basé sur un logiciel associé à des technologies
de pointe telles que SDN et NFV.

2. Contexte

Parce que les switches logiciels traditionnels (par exemple, Click, Linux Bridge, etc.) ont
été largement déployées dans divers environnements industriels plus d’une décennie, leurs
problèmes de déploiement sont déjà bien étudiés. Les technologies prometteuses, y compris
SDN et la virtualisation de réseau stimuler davantage le développement de switch logiciel.
Un nombre croissant de switches logiciels SDN-enabled sont attendus dans un avenir proche.
Toutefois, en raison de l’immaturité, SDN soulève des questions quant à sa performance et
scalabilité. Le switch qui représente plan de données dans SDN joue un rôle indispensable
pour répondre à ces questions. Par conséquent, comprendre où la performance et la limitation
des switch logiciel SDN-enabled est indispensable à son succès dans le déploiement.

Plusieurs switches logiciels OpenFlow-enabled sont déjà disponibles, tandis que leur
utilisation diffère du prototype conceptuel à la qualité de la production. Une sélection
d’implémentations open source sont introduits dans le Tableau B.1. Tous les commutateurs
logiciels sont soit basés sur OpenvSwitch ou OpenFlow Reference Switch sauf LINC,

122 Résumé en Français

Table B.1 Les switches logiciels OpenFlow-enabled

Product Developer Code Base Language OF version Update
OpenvSwitch Nicira Original C v1.0 & v1.3 08/2015
OF ref switch Stanford Original C v1.0 06/2011
OFsoftswitch CPqD OF ref switch C&C++ v1.3 07/2015

Indigo Big Switch OpenvSwitch C v1.0 07/2015
LINC FlowForwarding Original Erlang v1.2 ∼ v1.4 08/2015

OpenFlowClick Stanford OF ref switch C v0.9 08/2009
Pantou Stanford OF ref switch C v1.0 08/2010

qui indique que les dessins originaux de switches logiciels OpenFlow-enabled sont rares.
Presque toutes les implémentations choisir C comme langage de programmation pour garantir
une haute performance. Erlang est utilisé uniquement par LINC pour fournir une grande
flexibilité, mais sacrifier la performance. OpenvSwitch et Indigo sont développés par des
sociétés commerciales, qui peuvent fournir des mises à jour périodiques et les nouvelles
versions. Surtout pour OpenvSwitch, en raison de sa popularité et déploiement à grande
échelle, son développement est si intensive pour répondre aux exigences de performance
dans divers scénarios réels. OFsoftswitch et LINC qui sont des communautés universitaires
peuvent également garder à jour en temps opportun et en ajoutant de nouvelles fonctionnalités
progressivement. Les autres implémentations n’ont pas été mises à jour depuis longtemps.
Pour version prise en charge de la spécification OpenFlow, v1.0 et v1.3 sont deux étapes
importantes. Parce que OpenFlow v1.0 est la version officielle d’abord publié et OpenFlow
v1.3 représente un autre grand pas en avant en introduisant plusieurs tables de flux et
d’autres concepts utiles. Cependant, seulement OpenvSwitch, OFsoftswitch et LINC soutien
v1.3, tandis que les autres seulement pour v1.0. Sur la base de notre comparaison sur
les performances, la maintenance et version prise en charge OpenFlow, OpenvSwitch et
OFsoftswitch sont deux implémentations les plus représentatives.

Cette thèse est censé mener une étude approfondie sur switch logiciel SDN-enabled. Il
intègre plusieurs sujets qui ne sont étudiés séparément avant. Fig. B.2 montre un cadre
simplifié de SDN pour présenter des domaines de recherche traditionnels en cours. Le switch
est composé de deux éléments compacts, le module de transfert et le module de OpenFlow.
Le module de transfert est en charge de la transmission du trafic de données, alors que le
module de OpenFlow communique avec le contrôleur via le réseau de contrôle et manipule
le module de transfert selon les instructions du contrôleur. De même, dans le contrôleur, le
module de OpenFlow est utilisé pour interagir avec le switch. L’application intégrée sur le
module de OpenFlow implémente la logique de contrôle réel. Les travaux connexes peuvent

123

Fig. B.2 L’aperçu des études antérieures

être principalement divisés en quatre catégories en fonction des zones représentées sur la Fig.
B.2 (marquée par des blocs dans la ligne du tableau de bord).

(1) Dans le switch (plan de données), la performance du module de transfert de paquets est
primordiale pour le succès de l’ensemble du cadre, en particulier dans switch logiciel
qui a problèmes de performances par rapport à un matériel dédié. Outre l’évaluation
des performances du module de transfert, il y a un certain nombre de travaux visant à
l’amélioration des performances en appliquant nouveau cadre I/O. Ils exploitent les
progrès potentiels des deux perspectives, matérielles et logicielles.

(2) L’interaction entre le module de OpenFlow et le module de transfert est cruciale pour
l’efficacité du plan de données. Car il est important non seulement le temps d’attente
de l’installation d’écoulement, mais également de la capacité dans le traitement de
nouvelles demandes de débit simultanément. Dans les cas généraux, OpenvSwitch
effectue de manière plus efficace et plus prévisible que la plupart des switch matériels
spécifiques au fournisseur sur le circuit de contrôle de switch [83].

(3) Dans le cadre SDN, chaque switch doit établir et maintenir une connexion TCP avec son
contrôleur. Il existe deux catégories sur la façon dont cette connexion traverse le réseau,
à savoir “out-of-band contrôle” et “in-band contrôle”. Out-of-band contrôle utilise un
réseau de contrôle dédié qui est complètement différent du réseau de données contrôlée
par les switches, tandis que in-band contrôle partage même réseau de commutation de
données. En conséquence, in-band contrôle introduit une complexité et une latence
supplémentaire dans la transmission des messages de contrôle. L’impact du in-band
contrôle a besoin de complément d’enquête.

(4) Différemment de réseau traditionnel, SDN adopte un plan de contrôle centralisé
appelé contrôleur. Le contrôleur est une fondation critique dans SDN paradigme,
car elle fournit un soutien essentiel de toute logique de réseau, conformément aux

124 Résumé en Français

politiques définies par les opérateurs de réseau. Par conséquent, le contrôleur détermine
directement la scalabilité et la disponibilité de l’ensemble du système. Dans ce contexte,
il est nécessaire de comprendre les implémentations de contrôleurs et d’identifier
leurs goulots d’étranglement, ce qui en retour fournit des conseils sur la sélection de
régulateur approprié pour un scénario donné.

Comme il a déjà été mentionné, le déploiement de switch logiciel SDN-enabled couvre
plusieurs aspects des switches et contrôleurs côtés. En outre, en raison du découplage du plan
de données et plan de contrôle, SDN introduit de nouveaux défis en plus des problèmes de
réseau traditionnel. Les études précédentes ont étudié différents sujets, y compris l’évaluation
de la performance, la conception du cadre et de la modélisation analytique. Cependant, il y a
encore beaucoup d’aspects qui sont négligés.

Comme cela est expliqué à la Fig. B.2, il existe deux systèmes de se connecter des
switches avec le contrôleur dans SDN, à savoir “out-of-band contrôle” et “in-band contrôle”.
Out-of-band contrôle nécessite un réseau de contrôle indépendant qui est séparé du réseau de
données normal. Out-of-band contrôle peut simplifier la mise en œuvre du switch et maintenir
le trafic de contrôle loin de l’interférence du trafic de données. Tandis que in-band contrôle
est plus facile à déployer sans nécessiter réseau de contrôle supplémentaire. Out-of-band
contrôle et in-band contrôle ont leurs propres avantages et sont adaptés à différents scénarios.
In-band contrôle est rarement mentionné précédemment, et son impact est encore inconnu
à l’exploitation du réseau. Dans le scénario de in-band contrôle, il est difficile de gérer le
changement d’état du réseau, comme la défaillance des dispositifs et le reroutage, car toute
erreur de configuration ou mauvaise opération peut entraîner d’une panne réseau. Bien qu’un
nombre limité d’études commencent à étudier l’impact du in-band contrôle, il est encore loin
de bien étudié. Même les principes fondamentaux de conception de in-band contrôle ne sont
pas clairement précisées, pour ne pas mentionner d’autres conclusions générales pour in-band
contrôle. Afin de mieux comprendre in-band contrôle, il est raisonnable de commencer à
partir d’un switch logiciel spécifique comme OpenvSwitch qui prend en charge à la fois
in-band contrôle et out-of-band contrôle. La comparaison directe entre les deux système de
contrôle est utile d’observer les différences et d’identifier les problèmes potentiels.

En comparaison avec le matériel matériel dédié, switch logiciel apporte plus de flexibilité
dans le déploiement et la mise à niveau. Mais switch logiciel conduit également à des
performances instables. Plutôt que de se concentrer sur la performance individuelle de
switch, davantage d’efforts doivent être faits dans l’orchestration et la coordination entre les
plusieurs switches/fonctions du réseau. Dans NFV et NaaS, plusieurs switches logiciels et
les fonctions du réseau virtuel coopèrent généralement avec l’autre pour mettre en œuvre
une série de services ou de tâches. Un exemple typique est Service Function Chaining (SFC)

125

qui dirige le trafic spécifique au service pour parcourir les fonctions de service du réseau (ou
middleboxes) dans l’ordre donné. Comme tous les switches logiciels et fonctions virtuelles
partagent les mêmes ressources physiques sous-jacents, la compétition et l’interférence sur
la ressource ne peuvent être évités. l’allocation des ressources à grains fins est également
utile dans ces scénarios pour minimiser l’interférence ainsi que de maximiser la performance
globale.

La combinaison de SDN et switch logiciel est si prometteur qu’il a gagné beaucoup
d’attention à la fois académique et de l’industrie. Mais SDN et switch logiciel ne sont pas
des panacées et ont leurs propres limites. Les problèmes de déploiement et de performance
de switch logiciel ne sont pas encore systématiquement étudiés dans les études précédentes.
Plusieurs limitations existantes se résument comme suit.

• Bien qu’il existe différentes implémentations de switch logiciels SDN-enabled, les
évaluations de performance précédentes toutes concentrées uniquement sur Open-
vSwitch. En raison de l’absence d’analyse approfondie et une comparaison complète
entre les différentes implémentations, leurs conclusions ne peuvent pas fournir les
caractéristiques générales du switch logiciel.

• La plupart des études précédentes étudier switch logiciel comme une partie autonome
et négliger l’impact des autres composants dans le cadre SDN tels que le plan de
contrôle et le réseau de contrôle, qui ne peut pas conduire à des résultats convincible
pour l’usage pratique.

• En comparant avec l’amélioration de la performance du switch logiciel individuel,
l’orchestration et la coordination entre les plusieurs switches logiciels sont encore
plus importants, en particulier dans le réseau de virtualisation environnement où les
plusieurs switches logiciels partagent la même ressource physique sous-jacente.

• Même si la performance du switch logiciel peut être grandement améliorée par de
nouveaux cadres de I/O, il ne peut toujours pas être comparable avec du matériel
spécifique. Par conséquent, il est plus raisonnable de déployer switch logiciel dans les
scénarios appropriés sur la base de ses caractéristiques.

3. L’évaluation de la performance du switches logiciel

Afin de résoudre à la contradiction entre la popularité du switch logiciel et ses performances
limitées pour le déploiement dans SDN, une évaluation de la performance est nécessaire
d’identifier les principaux facteurs de performance et les goulets d’étranglement potentiels.
OpenvSwitch et OFsoftswitch sont sélectionnés pour l’évaluation des performances en tant

126 Résumé en Français

Table B.2 OpenvSwitch VS. OFsoftswitch

Softswitch Implementation Specification Thread Flow Table Type
OpenvSwitch Kernel space 1.0 & 1.3 Multiple Hashtable
OFsoftswitch User space 1.3 Single Lineartable

Fig. B.3 La configuration de banc de test

que deux switch logiciels OpenFlow-enabled représentatifs. Selon la brève comparaison dans
le Tableau. B.2, OpenvSwitch et OFsoftswitch sont très différentes dans les divers aspects,
ce qui est utile de conduire à une conclusion plus générale.

Notre banc de test est construit sur un seul serveur et tous les composants sont virtualisé.
Dans le contexte de la virtualisation, les machines virtuelles/conteneurs coexistent avec
des switches logiciels sur le même serveur. Ils génèrent non seulement la charge CPU
importante pour le calcul, mais peuvent également générer une charge de trafic importante
pour la communication mutuelle. Fig. B.3 explique comment configurer le banc de test dans
un environnement entièrement virtualisé. Il y a 3 éléments nécessaires à l’évaluation des
performances de switch logicielle:

• Hôte virtuel: Hôte virtuel est la source/destination du trafic de données. Dans
l’évaluation des performances, iperf et netperf sont utilisés dans l’hôte virtuel pour
générer du trafic de test. Afin d’isoler plusieurs hôtes virtuels, un mécanisme de
virtualisation légère “network namespace” est utilisé à la place de la technologie tradi-
tionnelle de la machine virtuelle comme KVM [15]. Network namespaces sont des
conteneurs pour les états du réseau. Ils fournissent des processus spécifiques avec la
propriété exclusive des interfaces, des ports et des tables de routage. Les périphériques
virtuels ou réels peuvent être ajoutés à chaque network namespace.

• Switch virtuel: Dans l’évaluation des performances, OpenvSwitch (OVS) et OF-
softswitch (OFS) sont utilisés comme switches virtuels.

127

• Lien virtuel: Virtual network interfaces (veth) paire est utilisé comme lien virtuel pour
connecter des périphériques virtuels. Veths existe toujours par paires. Une paire de
veths sont connectés comme un tuyau, à savoir, tout paquet reçu par une interface de
veth sortira de l’autre interface veth. Veth peut être associée à des switches virtuels ou
hôtes virtuels, comme représenté sur la Fig. B.3. Du point de vue des périphériques
virtuels et des hôtes virtuels, veths sont traités comme des interfaces réseau normales.

Mininet [20] est utilisé pour établir des tests topologie ainsi que d’exécuter des scripts de
test. OpenvSwitch et OFsoftswitch sont connectés au contrôleur en utilisant le out-of-band
contrôle. Le loopback interface est utilisé pour la communication entre les switches et le
contrôleur afin d’éliminer goulot d’étranglement potentiel. La version de la spécification
OpenFlow est v1.3. Seul le trafic IPv4 est utilisé pour l’évaluation des performances. Le
serveur de banc de test a un CPU Intel Xeon E5-1620 avec 4 cœurs (8 cœurs logiques lors
de l’activation de Hyper-Threading), chacun fonctionnant à 3.6GHz. La configuration de la
mémoire est de 4×2GB DDR3 1600 MHz.

Nous étudions les principaux facteurs de performance et d’évaluer leurs impacts. Fig.
B.4 résume un organigramme standard pour le traitement des paquets dans le switch logiciel
selon la spécification OpenFlow. Le temps théorique pour le traitement d’un paquet doit être:
T = tpolling + tI/O + trules + tactions + toverhead . Le switch logiciel utilise le mode de polling
pour vérifier les données disponibles sur les ports. tpolling représente ce coût en temps pour
polling sur les ports. Si un nouveau paquet arrive au port, module I/O lit d’abord le paquet et
le copie dans la mémoire. Ensuite, ce paquet est recherché dans les règles de pipeline de flux
avec l’ordre de priorité jusqu’à ce qu’une règle est trouvé. trules fait référence au temps de
recherche totale. Si aucune règle ne correspond au paquet, ce paquet est soumis au contrôleur
pour obtenir des instructions supplémentaires. Ensuite, les actions associées dans la règle
appariés sont appliquées au paquet séquentiellement. Le temps pour l’exécution des actions
est représenté par tactions. Enfin, le module I/O envoie le paquet à partir de la mémoire. Pour
plus de simplicité, tI/O est le temps total de lecture du paquet, et envoyer le paquet. Après
le traitement d’un port, le switch logiciel retourne à l’étape du polling et répète processus
ci-dessus sur le port suivant. tpolling est traitée comme une surcharge, car il existe toujours,
peu importe s’il y a des paquets disponibles. Dans chaque polling ronde, il existe une autre
frais généraux fixes toverhead . Elle est due à la conception de logiciels, comme le recyclage
des ressources ou l’enregistrement gestionnaire d’événements. Tous ces frais généraux sont
marqués avec des lignes de la grille dans l’organigramme. Selon l’organigramme, on divise
le temps de traitement total en parties indépendantes et de mesurer leurs impacts sur les
performances.

128 Résumé en Français

Fig. B.4 L’organigramme de traitement du paquet

Table B.3 La performance de base

Scenario RTT (ms) TCP (Mbps) UDP (Mbps)
Direct veth pair 0.023 8460 12020

LinuxBridge+veth 0.037 5205 7274
OpenvSwitch+veth 0.034 7150 7780
OFsoftswitch+veth 0.095 803 1130

Nous commençons notre mesure avec la plus simple configuration, qui est utilisé comme
une base de référence. Deux hôtes virtuels (conteneurs) sont connectés au même switch
logiciel/Linux Brdige. A titre de comparaison, un scénario extrêmement basique où deux
hôtes virtuels sont directement reliés par une paire de veth est également évaluée. D’après
les résultats de la Tableau. B.3, OpenvSwitch effectue environ 25% de mieux sur TCP et 7%
de mieux sur UDP que Linux Bridge. OFsoftswitch fournit encore que 803 Mbps sur TCP
et 1130 Mbps sur UDP. En raison de meilleures performances et une plus grande flexibilité,
OpenvSwitch remplace progressivement Linux Bridge dans la plupart des scénarios.

I/O comprend à la fois la réception et la transmission de paquets, et le principal facteur
de I O est la taille des paquets. Dans cette partie, on étudie l’impact de la taille des
paquets sur le fonctionnement des I/O. Nous utilisons simple flux UDP unidirectionnel pour
mesurer la bande passante maximale avec différentes tailles de paquets (de 64 octets à 1500
octets). D’après les résultats, en dépit de la différence de mise en œuvre, la bande des deux
OpenvSwitch et OFsoftswitch est proportionnelle à la taille du paquet. Le degré d’ajustement
linéaire est supérieur à 99.5% et 99.95% respectivement. Ce résultat implique que “paquets
par seconde (pps)” valeur est indépendante de la taille du paquet.

Le nombre de règles a un grand effet sur les performances du switches logiciels en raison
du temps de recherche total. OFsoftswitch utilise une table linéaire pour rechercher les règles
de correspondance, donc trules est proportionnelle au nombre de règles qu’il recherche. Nous
obligeons chaque paquet entrant à comparer avec un nombre donné de règles avant trouver

129

à la bonne. Selon les résultats, lorsque le nombre de règles augmente, OFsoftswitch coûte
plus de temps du CPU, ce qui réduit la bande totale. Avec 2000 règles, OFsoftswitch ne
peut atteindre 200 Mbps (environ 17k pps). Nous mesurons encore le temps de traitement
trules avec un nombre différent de règles à mettre en correspondance. Le temps de traitement
trules est proportionnelle au nombre de règles, et le degré d’ajustement linéaire est supérieur
à 99.5%. Selon cette relation linéaire, le temps pour faire correspondre seule règle est de
0.09 ∼ 0.1 µs. Le hashtable du noyau dans OpenvSwitch garantir que le temps pour faire
correspondre est une valeur constante quel que soit le nombre de règles.

Chaque règle est associé à zéro ou plusieurs actions qui indiquent comment gérer les pa-
quets correspondants. Les actions qui peuvent être appliquées sont différentes des opérations
de base comme la réécriture têtes de paquets pour les complexes comme l’encapsulation
des paquets (VLAN ou MPLS). Le résultat montre que la bande n’a pas de différence avec
diverses actions. Dans un système de multidiffusion, un paquet doit être copié et envoyé à
plus d’un port. Cette copie et transmission supplémentaire dégrade la bande total. Ls bande
de OpenvSwitch diminue d’environ 40% avec 4 ports de sortie par rapport à un seul port.
L’impact sur OFsoftswitch est plus petit, le résultat avec 4 ports peut encore atteindre 75%
de la bande avec un port. Comme une dégradation significative des performances peut être
observée, le déploiement de switch logiciel dans un système de multidiffusion doit être conçu
plus attentivement.

Différent de la mise en œuvre du matériel où plusieurs ports peuvent fonctionner en
parallèle, switch logiciel utilise le mode de polling pour vérifier les paquets disponibles sur les
ports. Sur la Fig. B.4, outre les frais généraux fixes dans un tour de polling, la vérification des
paquets disponibles sur chaque port introduit une charge supplémentaire. Afin de maximiser
totale pps, OFsoftswitch devrait essayer d’envoyer des paquets autant que possible en un
seul tour pour réduire la part des frais généraux. Différemment de OFsoftswitch qui adopte
un mode de polling simple dans user-space, OpenvSwitch utilise NAPI pour gérer les paquets
arrivés plus intelligemment. Par conséquent, l’impact du modèle de trafic sur la performance
de OpenvSwitch peut être atténué de manière significative, tant que la ressource du noyau est
toujours disponible.

Chaque switch OpenFlow doit établir et maintenir une connexion TCP à son contrôleur.
Il existe deux catégories de base sur la façon dont cette connexion traverse le réseau: il
est soit en utilisant un réseau dédié qui est complètement différent de celui commandé par
les switches, ou il partage le même réseau des switches. Le premier cas est traité comme
“Out-of-band contrôle”, alors que ce dernier cas est “In-band contrôle”.

Dans SDN, le mode réactif à installer des règles a introduit latence supplémentaire dans
le traitement de nouveaux flux par rapport au schéma de routage traditionnel. Sans un réseau

130 Résumé en Français

Fig. B.5 Exemple de in-band contrôle

de contrôle dédié dans le scénario de in-band contrôle, cette latence peut encore être élargie
en raison de la topologie et l’état du réseau. Fig. B.5 affiche un exemple de scénario dans
in-band contrôle: n switches sont linéairement connecté; deux hôte sont reliés à l’extrémité
de la chaîne de switch; le contrôleur se connecte directement au switch 1. Pour switch n
communiquer avec le contrôleur, les messages de contrôle doivent passer par tous les autres
switches pour arriver au le contrôleur. Ce comportement résulte en grande latence grâce
à la longue route de contrôle. Afin de remédier à ce problème, une solution d’installation
proactif est proposé. Au lieu d’attendre les demandes de chaque switch, le contrôleur doit
installer des règles sur tous les switches liés en même temps une fois qu’il reçoit la demande
du premier switch. Le régime proactif peut réduire considérablement la latence à un niveau
acceptable. Parce que ce système élimine non seulement l’effet cumulatif de la latence sur
switch, mais installe également des règles plus efficacement en poussant de manière proactif.

Dans cette section, nous nous concentrons sur l’analyse des performances des deux
switches logiciels OpenFlow, à savoir “OpenvSwitch ” et “OFsoftswitch”, dans un environ-
nement entièrement virtualisé. Au cours de l’analyse, nous analysons d’abord le traitement
des paquets par OpenFlow et le diviser en plusieurs facteurs principaux, puis évaluer ces
facteurs sur deux switches séparément. Outre les facteurs de performance à l’intérieur de
switch logiciel, nous étudions en outre les facteurs externes tels que veth paire et la fréquence
du processeur. In-band contrôle est pratique pour le déploiement sans nécessiter un réseau
de contrôle dédié. Toutefois, il est rarement mentionné dans les études précédentes. Mais
in-band contrôle introduit plus grande latence dans le traitement de nouveaux flux à cause
de longue route de contrôle. Un schéma d’installation de la règle proactif est proposée pour
régler le problème de latence. Nos résultats peuvent être utilisés comme un guide pour la
conception d’un réseau SDN sur la base du switches logiciels. Ils sont également utiles pour
obtenir le contrôle des ressources à grains fins sur switch logiciel.

131

Table B.4 SDN contrôleur

Controller Ver. Lang. OF Release Thread
Pox 0.2.0 Python 1.0 10/2013 Single
Ryu 3.19 Python 1.0∼1.4 03/2015 Single
Nox 0.9.2 C++ 1.0&1.3 02/2014 Mult.

Floodlight 0.90 Java 1.0 11/2012 Mult.
Beacon 1.0.4 Java 1.0 09/2013 Mult.

4. L’évaluation des performances du contrôleur

Le contrôleur est un élément essentiel dans le paradigme SDN, car elle fournit un soutien
important pour la mise en logiques de contrôle du réseau. SDN est principalement basée sur
un plan de contrôle relativement centralisé dans les scénarios émergents. En raison de cette
approche centralisée, les performances du contrôleur détermine directement le scalabilité de
SDN dans de tels scénarios, qui devient crucial pour le succès de la SDN écosystème.

Nos objectifs d’évaluation sont: avoir une évaluation juste pour les contrôleurs, et fournir
une indication dont l’un est approprié dans lequel le scénario. nous nous concentrons sur les
contrôleurs centralisés, à savoir: Ryu [40], Pox [3], Nox [2], Floodlight [10], et Beacon [75].
Tableau B.4 résume les principales caractéristiques des contrôleurs sélectionnés.

Le banc de test est construit sur un serveur qui a seul processeur Intel Xeon E5-1620,
avec 4 cœurs à 3.6GHz. Tous les contrôleurs ont été configurés en mode OpenFlow v1.0.
Cbench [5] est utilisé comme outil d’évaluation. Pour plus de simplicité, chaque contrôleur
testé uniquement exécute une application de L2 learning switch. Afin de libérer tout le
potentiel de chaque contrôleur, leurs configurations ont été optimisés selon leurs sites officiels
et les communautés de développement.

Nous explorons d’abord l’impact de l’interpréteur Python. Afin d’améliorer l’efficacité de
l’interpréteur original CPython, un interpréteur de remplacement, PyPy, a été développé au
cours des dernières années. Pour étudier l’impact de l’interpréteur pour les contrôleurs basés
sur Python, deux d’entre eux ont été utilisés pour Ryu et Pox. En ce qui concerne la latence,
PyPy atteint environ 3.8 fois l’amélioration pour les deux Pox et Ryu, comparativement à
CPython. Encore une fois, PyPy contribue à améliorer les performances de débit de Pox et
Ryu de 9.4× et 4.4× respectivement. Lorsque vous utilisez PyPy, Pox et Ryu atteindre le
même débit à environ 105 milliers de réponses par seconde. Parce que PyPy améliore les
performances des contrôleurs basés sur Python significative, dans le reste de l’évaluation des
résultats des contrôleurs basés sur Python sont toutes effectuées en utilisant PyPy.

Nous commençons alors notre mesure avec la configuration la plus simple, qui est utilisé
comme une référence. Chaque contrôleur fonctionne sur un thread unique, et le nombre de

132 Résumé en Français

Table B.5 La performance de base du contrôleur

Controller Throughput (rps/ms) Latency (ms)
Pox 105 0.0416
Ryu 106 0.037
Nox 687 0.0179

Floodlight 670 0.0222
Beacon 2302 0.0164

Fig. B.6 Le débit obtenu avec un nombre différent de switch (un thread).

switch émulé par Cbench est fixé à un. Tableau B.5 résume les résultats de l’évaluation, en
notant que “rps/ms” représente réponses par milliseconde. Beacon surpasse de loin les autres.
Il ne fait aucun doute que les contrôleurs basés sur Python offrent la plus faible performance.
Floodlight et Nox sont proches les uns des autres, tandis que Nox a une latence plus petite.
Ce classement reste inchangé dans la plupart des résultats des évaluations suivantes.

Dans cette partie, le nombre de switch émulés est modifiée et les autres paramètres
fixes. Lorsque le nombre de switch augmente, le temps de latence augmente à peu près
linéairement. Le temps de latence augmente de 0.01ms quand il n’y a qu’un seul switch,
jusqu’à plus de 10ms avec 256 switches. Lorsque plusieurs switches sont connectés, une
connexion TCP est maintenue pour chaque switch. Le contrôleur adopte généralement une
méthode de Round-Robin, donc la relation linéaire. Le débit total (réponses/ms) obtenue
avec des nombres différents de switches est représenté sur la Fig. B.6. Les performances sont
relativement stables lorsque le nombre de switch est inférieure à 128. Lorsque le nombre
atteint 256, une dégradation des performances apparaît sur tous les contrôleurs. Ceci implique
que le maintien d’un grand nombre de connexions est coûteuse.

L’impact du nombre de thread utilisés par les contrôleurs est ensuite étudiée, avec un
nombre fixe de switch. Deux numéros de switch est utilisé, 16 et 64. Lorsque Hyper-
Threading est désactivé, le débit sont présentés dans la Fig. B.7. Pour l’intervalle entre 1 et
3, comme prévu, la performance augmente à peu près linéairement avec l’augmentation de

133

(a) 16 switches (b) 64 switches

Fig. B.7 Le débit obtenu avec un nombre différent de thread (HT-désactivé).

Fig. B.8 Le débit obtenu avec un nombre différent de thread (HT-activé).

thread. Dans les deux cas avec 16 et 64 switches, Nox et Floodlight se comportent à peu près
le même. Beacon peut atteindre jusqu’à 6 millions de réponses par seconde avec 3 threads
dans le cas avec 64 switches. Lorsque Hyper-Threading est activé, Fig. B.8 montre le résultat
du débit total. Nox et Floodlight ont une courbe comme les escaliers, ce qui signifie que les
résultats entre 1 et 2, 3 et 4, 5 et 6 sont assez proches. Cela indique que l’ajout d’un cœur
logique du même cœur physique ne peut obtenir des performances limitées. Par rapport aux
résultats de la Fig. B.7b, Beacon et Floodlight atteindre environ 10% gain de performance de
en moyenne, tandis que Nox a une amélioration négligeable. Ainsi HT est réellement utile
pour les contrôleurs basés sur Java, mais pas beaucoup pour les contrôleurs basés sur C++.

Dans l’évaluation précédente, la latence est mesurée avec un contrôleur libre. Cela
signifie que la mémoire tampon de réception est vide, et tout paquets arrivé peut être
traité immédiatement. Mais quand la charge de travail augmente, le tampon sera rempli
progressivement. Il en résulte une latence supplémentaire en introduisant le temps d’attente
dans le tampon. Donc, il y a un compromis entre la latence et le débit. Fig. B.9 affiche la
corrélation entre le débit et la latence dans Beacon. Nous voyons que Beacon est capable de

134 Résumé en Français

Fig. B.9 Corrélation entre le débit et la latence dans Beacon.

obtenir une faible latence (<0.1ms) ainsi que d’atteindre un débit élevé (vers 1750 rps/ms).
Ceci est important pour les opérateurs de réseau pour équilibrer la latence et le débit en
fonction des besoins pratiques.

Dans SDN, contrôleur distribué [93] est conçu pour améliorer la résilience et la scalabilité
du plan de contrôle. Même si plusieurs contrôleurs sont distribué géographiquement, ils
se comportent comme un plan de contrôle centralisé. Afin de fonctionner correctement, la
synchronisation et la coordination entre plusieurs contrôleurs est critique pour l’ensemble du
système. Dans cette section, nous nous concentrons principalement sur la synchronisation et
la coordination entre les nœuds de multiples contrôleurs. Nous étudions les caractéristiques
du trafic de synchronisation ainsi que la latence introduite par la coordination entre plusieurs
nœuds. La mesure est basée sur un topologie linéaire avec 10 switches, et 10 hôtes sont
connectés à chaque switch. Les switches sont uniformément distribués aux nœuds du
contrôleur. Le contrôleur est ONOS (v1.1.0), et Hazelcast [43] est utilisé pour former le
cluster dans ONOS.

Par défaut, ONOS crée un cluster logique full-mesh. Le cluster-head est le plus ancien
contrôleur du cluster, qui envoie périodiquement la table de partition à d’autres contrôleurs.
Lorsque les contrôleurs ne sont pas occupés, le taux de trafic entre contrôleur-contrôleur est
en dessous de 5Mbps. Alors que dans un scénario lourd chargé où des milliers de Packet_in
messages sont reçus par le contrôleur, le taux de trafic atteint à 90Mbps. Tableau B.6 montre
le trafic moyen (avec contrôleur complet chargé) entre chaque paire de contrôleurs quand
un contrôleur principal différent est choisi. Lorsque c1 est primaire, le trafic global est
beaucoup plus petite que les autres cas. Plus de recherches sur la sélection du contrôleur
principal est nécessaire de comprendre et d’optimiser le trafic de synchronisation. Sur la
base des résultats ci-dessus, le trafic de synchronisation totale (90Mps pour le pire des cas)
est considéré comme négligeable par rapport à la bande d’aujourd’hui (plus de 10Gbps). Par
conséquent, l’impact du trafic de contrôle sur le trafic de données est minime. D’un autre
côté, l’impact du trafic de données sur le trafic de contrôle peut être atténué en mettant la
priorité sur le trafic de contrôle.

135

Table B.6 Trafic vs. contrôleur principal (Mbps).

Primary c1 ↔ c2 c1 ↔ c3 c2 ↔ c3 Total
c1 31.6 30.1 8.6 70.3
c2 89.6 12.3 27.0 128.9
c3 14.2 90.3 21.3 125.8

Fig. B.10 Le banc de test pour la installation de intent

La coordination entre les nœuds de contrôleurs multiples introduit une latence supplé-
mentaire pour installer des règles de flux, en particulier lorsque les switches appartiennent
à d’autres nœuds de contrôleurs. Fig. B.10 montre un banc de test de cluster de contrôleur
avec 3 nœuds. 6 switches sont connectés linéairement, et chaque nœud contrôle 2 switches
comme indiqué sur la figure. “Intention” est le concept défini par ONOS qui spécifie les
désirs de contrôle de réseau sous la forme de la politique. ONOS peut traduire l’intention
dans un ensemble de règles de flux pour être installé sur les switches connexes. Par exemple,
dans notre cas de test, le script de test qui est utilisé pour générer des lots de “intentions” est
en cours d’exécution sur ONOS1. Cette intention est de permettre que tous les hôtes sur sw1
et sw6 peut communiquer les uns avec les autres. Selon la définition de l’intention, ONOS1
devrait générer un ensemble de règles pour établir la connexion bidirectionnelle entre sw1 et
sw6. Dans ONOS cluster, seul le nœud qui contrôle directement le switch peut installer des
règles à ce switch. Par conséquent, même si les règles de SW3 et SW4 sont générés dans
ONOS1, ils doivent être livrés à ONOS2 puis installé par ONOS2. Ce comportement agrandit

Fig. B.11 La latence d’installation de intent

136 Résumé en Français

le temps de latence pour installer des règles. Afin d’évaluer cette latence, nous comparons les
résultats de latence avec un nombre différent de nœuds de contrôleur. Fig. B.11 montre les
résultats de latence pour installer un nombre différent d’intention avec un nombre différent
de nœuds. Comme prévu, plus grande latence existe dans un scénario de multiples nœuds
par rapport au seul nœud en raison de la coordination entre les nœuds. Pour la grande taille
d’intention (à savoir, 100 et 1000), lorsque la taille augmente, le temps de latence a tendance
à diminuer. Parce que chaque nœud ne traite un plus petit nombre d’intentions en raison de
la répartition de la charge de travail.

Dans cette section, une évaluation de la performance de cinq open-source SDN con-
trôleurs est effectuée. La performance n’est plus la seule dimension dans le choix de
contrôleurs. La facilité d’utilisation, la reliabilité et la sécurité sont tout aussi importants.
Étant donné que les contrôleurs sont de plus en plus complexe dans un rythme rapide, il est
difficile pour les développeurs indépendant à suivre, et une grande communauté est générale-
ment nécessaire. Pendant l’évaluation, nous voyons aussi une limitation claire du contrôleur
centralisé dans un grand scénario, ce qui implique que le contrôleur distribué est nécessaire
pour SDN. Différent de contrôleur centralisé, les contrôleurs distribués sont conçus pour un
grand scénario ainsi que de fournir la tolérance de pannes. Les contrôleurs distribués peut
augmenter le débit total en traitant simultanément sur plusieurs nœuds. Pendant ce temps, la
latence due à la coordination et la synchronisation est également agrandie. Sur la base de ces
faits, une est/ouest API plus efficace entre les nœuds du contrôleur doit encore une enquête
plus approfondie.

5. Contrôle des ressources avec fine granularité

La performance du switches logiciel intégré sur le serveur ne soit pas aussi rapide et stable que
le matériel dédié. Outre la surcharge introduite par la pile réseau dans le noyau Linux, il existe
intensive conflits de ressources CPU entre les switches logiciels, le système d’exploitation
et d’autres services. Alors que dans le scénario NFV, il est fréquent que plusieurs switches
logiciels et fonctions réseau virtuelles coexistent sur le même serveur, et chaque switch
et service sera donné d’une certaine quantité de ressources CPU pour remplir sa fonction.
Pour les raisons précitées, le contrôle des ressources avec fine granularité est important
pour le succès du déploiement de switch logiciel. Il permet non seulement d’offrir des
performances stables et prévisibles pour répondre aux besoins de qualité de service définies
par l’utilisateur, mais renforcer l’affectation des ressources afin de minimiser les interférences,
ainsi que de maximiser la performance globale. Dans cette section, nous mettons en œuvre
un prototype de Service Function Chaining (SFC) où plusieurs switches et les fonctions de

137

service sont nécessaires pour coordonner les uns avec les autres. Dans ce scénario de SFC,
nous examinons l’efficacité de l’allocation des ressources à grains fins. Enfin, combinée avec
des études antérieures sur l’évaluation des performances de switch logiciel, nous proposons
une plateforme qui automatiser l’allocation des ressource par l’introduction de la théorie du
contrôle classique.

Dans le cloud ou le centre de données où la technologie de virtualisation est largement
déployée, plusieurs machines virtuelles (VM) partagent le même serveur sous-jacent pour
exécuter des applications de calcul intensif, et les conflits de ressources entre les machines
virtuelles ne peuvent pas être éviter. Les nouvelles technologies telles que la virtualisation du
réseau et NFV sont confrontés au même problème de conflits de ressources. Afin de garantir
la fonctionnalité de la performance du réseau, plusieurs switches logiciels et des fonctions de
réseau virtuel sont consolidées et orchestrées.

CGroups (groupes de contrôle) [6] est la fonctionnalité du noyau Linux qui est utilisé
pour contrôler l’utilisation des ressources de processus unique ou un ensemble de processus.
Il est conçu pour fournir une interface unifiée pour réaliser un contrôle précis sur l’attribution,
la priorité, en niant, la gestion et le suivi des différentes ressources du système (par exemple,
CPU, mémoire, disque I/O, réseau, etc.).

Les processeurs actuels disposent de technologies pouvant influer sur la fréquence du
CPU pour mieux réguler la consommation et le dégagement de chaleur selon l’utilisation. les
fréquences du processeur peuvent être changé automatiquement en réponse à des événements
ACPI, ou manuellement par les programmes de l’espace utilisateur. Le contrôle de fréquence
du CPU est également mis en œuvre dans le noyau Linux, qui est appelé “ CPUFreq ”.
CPUFreq permet de changer la vitesse d’horloge du CPU par les programmes de l’espace
utilisateur. L’utilisation combinée de CGroups et CPUFreq peut réaliser le contrôle du
processeur à grains fins sur OFsoftswitch.

Nous étendons notre vision de la performance du switch logiciel individuel à l’optimisation
globale entre plusieurs switches basés sur l’allocation des ressources à grains fins. L’émergence
de la SDN et NFV accélère le développement et le déploiement des switches logiciels et des
fonctions de réseau virtuel pour satisfaire différentes exigences strictes de softwarization
réseau. Service Function Chaining (SFC) est largement reconnu comme une application
importante et prometteuse dans ce contexte. Une chaîne de service est défini comme un
ensemble ordonné de fonctions de service abstraites qui doivent être appliquées aux pa-
quets/flux sélectionné en tant que résultat de la classification. Le concept de Service Function
Chaining (SFC) [78][95] permet d’orienter le trafic spécifique au service pour parcourir les
fonctions de service de réseau dans l’ordre donné. SFC se réfère à découpler le déploiement
des fonctions de réseau à partir d’infrastructures sous-jacentes. Fig. B.12 montre la vue

138 Résumé en Français

Fig. B.12 Le cadre de Service Function Chaining

d’ensemble du cadre SFC ainsi que le traitement des paquets en la couche de service à l’aide
du Network Service Header (NSH). Les principaux composants sont Ingress/Egress, Switch
de Service et Fonction de Service.

Afin de mettre en œuvre SFC, nous modifions OFsoftswitch et le contrôleur Ryu pour
soutenir NSH. Nous suivons le projet de l’IETF [94] pour encapsuler NSH et paquet
d’origine dans UDP. Dans OFsoftswitch, le tableau des flux est étendu pour supporter
l’encapsulation/décapsulation de NSH ainsi que recherche/modification des champs de NSH
correspondants. Par conséquent, OFsoftswitch peut être utilisé comme Ingress/Egress et le
switch de service. En outre, OFsoftswitch peut également agir en tant que fonction de service,
par exemple, Firewall, NAT, Gateway, etc. Pour le plan de contrôle, Ryu est sélectionné et
modifié pour le soutien des opérations de NSH. Donc, le module de sélection de chemin est en
mesure d’installer des règles NSH liées au switches de service. Le module de l’analyseur de
performances est mis en œuvre par les messages standard de OpenFlow pour les statistiques
de flux. Une API externe basée sur CGroup et CPUFreq est également prévu de réaliser un
contrôle précis des ressources CPU.

Dans un environnement de cloud, le modèle pay-as-you-go a été largement adopté
pour fournir Infrastructure-as-a-Service (IaaS). De même, NaaS est un modèle de gestion
pour la prestation de services de réseau pratiquement dans cloud sur une base de pay-
per-use. SFC peut être considéré comme l’une des applications typiques et importants de
NaaS. SFC oblige les utilisateurs à spécifier explicitement le montant total des ressources
à la réserve. Cependant, les utilisateurs ne peuvent grossièrement estimer la ressource
nécessaire en raison de l’ignorance sur la performance de la plate-forme de fournisseurs de
services. Par conséquent, les utilisateurs a généralement tendance à sursouscrire la ressource
auprès du fournisseur de services, ce qui conduit à des coûts gonflé. Du point de vue
du fournisseur de services, surbudgétisation réduit l’utilisation des ressources physiques

139

Fig. B.13 Le cadre de runtime d’allocation des ressources

sous-jacents. L’émergence de la SDN et NFV permet SFC d’être déployé d’une manière
entièrement virtualisé. Cela apporte une grande flexibilité dans la gestion du réseau, en
particulier dans l’allocation des ressources à grains fins. Sur la base de ces faits, nous nous
efforçons de présenter un runtime d’allocation des ressources pour SFC qui peut satisfaire
l’accord de Service-Level défini par l’utilisateur.

Fig. B.13 représente la vue d’ensemble du SFC runtime. Tout d’abord, l’utilisateur
définit le SLA, à savoir, la bande passante d’entrée d’une chaîne de service prédéfinie. Nous
supposons que la topologie de la chaîne de service est fixe. D’autre part, le runtime détermine
la ressource nécessaire pour chaque nœud de service pour satisfaire le SLA, la bande passante
de processeur est attribué à chaque nœud par l’API CGroups. Troisièmement, le runtime
surveille périodiquement la bande passante en temps réel via l’API OpenFlow standard ou
d’autres API externes. OpenFlow fournit des compteurs internes pour enregistrer le nombre
de paquets qui correspondent à la table de flux spécifique, qui peuvent être utilisés pour
calculer la bande passante en temps réel. L’erreur entre le SLA et la bande en temps réel est
en outre utilisé pour ajuster la bande passante de CPU affectée. Étant donné que c’est un
système en circuit fermé qui fournit des évaluations de l’état actuel, il est censé fournir une
bande passante stable avec oscillation minimisée.

Deux types différents de SLA dans SFC, à savoir “Best-effort basé” et “Bande-Fixe
basé” sont évalués séparément. Pour “Best-effort basé” SLA, nous fournissons 9 topologies
différentes avec un nombre différent de nœuds (y compris les fonctions de service et switches
de service). Dans chaque topologie, des nombres différents de cœurs de processeurs (2/3/4
cœurs) sont prévus pour l’allocation des ressources. Le résultat est représenté sur Fig.
B.14. En appliquant l’allocation des ressources automatisée, le pourcentage d’amélioration
obtenue est variée en fonction de différents nombres de nœuds et de cœurs. En observant
la tendance générale d’amélioration, l’allocation effectue toujours supérieure ou égale à un
défaut ordonnancement du système d’exploitation. Lorsque le nombre de nœuds de service

140 Résumé en Français

Fig. B.14 L’Amélioration réalisée avec l’allocation des ressources en Best-effort

(Ns) est plus petit que le nombre de cœurs (Nc), aucune amélioration est représentée, parce
que chaque nœud peut occuper la ressource d’un cœur complet unique à la fois. Lorsque
Ns est nettement plus grande que Nc, l’amélioration est également négligeable. En raison
du grand nombre de nœuds, les conflit intensive de CPU et les interférences mutuelles sur
les cœurs sont inévitables, peu importe quel type d’allocation est appliquée. La plupart
des améliorations significatives qui sont plus de 15% se produisent généralement lorsque
Nc < Ns < 3∗Nc.

L’évaluation sur l’allocation dynamique de runtime vise à valider sa capacité à fournir
une “bande-fixe” SLA. Nous supposons que SLA définit seulement la chaîne de service
spécifique et sa bande passante d’entrée. Afin de satisfaire aux exigences, le runtime fixe
simplement la bande passante d’entrée au switch d’entrée selon la SLA et garantit que les
ressources CPU affectés à d’autres nœuds de service sont suffisantes pour répondre aux
besoins réels. La bande passante d’entrée est défini comme 400Mbps. Au début, le trafic ne
contient que des paquets de 1500 octets qui appartiennent à Flow1, et le runtime fournit une
bande passante en temps réel stable. Flow2 qui ne contient que des paquets de 512 octets
rejoint le trafic au 100ème de seconde et quitte au 300ème de seconde. La bande passante
en temps réel va changer en conséquence. Le runtime peut détecter ce changement, puis
déclencher une réallocation de la bande passante du processeur. Les réactions dynamiques
en temps réel l’allocation de bande passante et CPU bande passante sont présentés sur la Fig.
B.15. Cela démontre que le runtime est capable de fournir une bande passante en temps réel
stable, même quand il y a des variations sur les caractéristiques de la trafic. Le temps de
réaction est d’environ 15 secondes.

Dans cette section, nous étendons notre vision de la performance du switch logiciel
individuel à l’optimisation globale entre plusieurs switches. Service Function Chaining
(SFC) est présentée comme un scénario typique où des switches logiciels multiples/fonctions

141

Fig. B.15 Le comportement dynamique d’allocation de runtime

de réseau virtuel coexistent partagent les mêmes ressources physiques sous-jacents. Nous
suivons les projets de IETF pour mettre en œuvre un prototype de SFC en utilisant de
Network Service Header (NSH). Sur la base de ce scénario de SFC, un runtime automatique
est proposé de soutenir l’allocation dynamique des ressources. Il prend en charge deux types
de SLA différents, à savoir “Best-effort basé” et “Bande-Fixe basé”. Dans “Best-effort basé”
SLA, l’utilisateur souscrit un montant fixe de ressources physiques/virtuels et les fournisseur
de services mettent en œuvre la chaîne de service spécifique sur les ressources souscrites
d’une manière best-effort. “Bande-Fixe basé” SLA vise à fournir une bande passante fixe en
temps réel automatiquement et dynamiquement. Le runtime est proposé comme un cadre
général qui peut être étendu pour supporter différents types de ressources et divers objectifs
de niveau de service.

6. Conclusion

En raison de la tendance croissante de “Softwarization”, la virtualisation devient la technolo-
gie dominante dans le centre de données et de l’environnement de cloud. SDN et NFV sont
la technologie de réseau émergent pour faciliter le déploiement et la gestion du réseau par les
API standards ouverts au lieu de manière spécifique au fournisseur traditionnel. Le switch
logiciel est l’outil puissant pour mettre en œuvre des services de SDN et NFV. Cependant,
la combinaison de switch logiciel et SDN est encore loin d’être bien étudié. Sur la base de
ces faits, nous réalisons notre étude en suivant 3 directions: l’évaluation de switch logiciel,
l’évaluation du contrôleur et le contrôle des ressources à grains fins.

Dans 3ème section, en raison de l’importance de la performance du switch logiciel, une
évaluation systématique de la performance est réalisée. Nous choisissons deux représentants
du switch logiciel OpenFlow, à savoir OpenvSwitch et OFsoftswitch. Nous tirons les conclu-

142 Résumé en Français

sions des différences et des similitudes entre les deux switches sélectionnés. Ces conclusions
soulignent le scénario adapté à chaque switch logiciel. De plus, nous démontrons le principe
de conception derrière le in-band contrôle. Nous discutons aussi la solution potentielle
pour la latence supplémentaire introduite par in-band contrôle. Comme le contrôleur est
la pierre angulaire de la réussite de l’architecture SDN, une évaluation juste et totalement
reproductible du contrôleur est fourni dans 4ème section. Au-delà d’une évaluation simple,
non seulement nous examinons les paramètres de système général tels que l’interpréteur
de Python et Hyper-Threading pour évaluer leurs impacts, mais aussi concevoir des scénar-
ios spécifiquement pour d’autres mesures. Sur la base des résultats de l’évaluation, nous
constatons que la performance est plus la seule dimension dans le choix de contrôleurs.La
facilité d’utilisation, la reliabilité et la sécurité sont tout aussi importants. On voit aussi
la nécessité de contrôleur distribué dans de grands scénarios en raison de la limitation des
performances du contrôleur centralisé. En raison de l’importance du trafic de synchronisation
pour mettre en œuvre la fonctionnalité de contrôleur distribuée, une étude préliminaire est
prévue pour examiner la caractéristique de trafic. La 5ème section examine la contention des
ressources et l’allocation des ressources entre les switches logiciels multiples. Nous constru-
isons un prototype de Service Function Chaining où plusieurs switches ou des fonctions de
service partagent le même matériel sous-jacent. Un runtime automatique est proposé pour
l’allocation des ressources à grains fins dans le scénario de SFC. Le runtime prend en charge
deux types de SLA différents pour SFC, à savoir “Best-effort basé” et “Bande-Fixe basé”.
Le runtime est prouvé être capable de fournir une bande passante en temps réel stable selon
SLA et de maximiser la chaîne de service spécifique d’une manière best-effort. Le runtime
est présenté comme un cadre général qui peut être étendu pour supporter différents types de
ressources et divers objectifs de niveau de service.

Dans cette thèse, nous essayons de résoudre un certain nombre de problèmes critiques
dans le déploiement du switch logiciels dans un environnement de virtualisation de réseau,
ce qui pose quelques problèmes ouverts. Par conséquent, notre étude peut être étendre et
renforcée dans les directions suivantes.

Les évaluations doivent être effectuées sur un banc de test amélioré. Puisque les con-
trôleurs distribués se lient généralement à une grande quantité de ressources pour le cal-
cul parallèle. Avec un banc de test puissant, nous pouvons en outre remplacer les outils
d’évaluation émulés avec des tests de trafic réel. Par exemple, nous pouvons utiliser de
nombreux switches logiciels au lieu de Cbench pour évaluer les contrôleurs, qui est plus
proche de la réalité. De nombreux réseaux de recherche académique tels que Ofelia [24] ou
PlanetLab [38] pourrait être pris en considération pour construire un banc de test pour le
déploiement à grande échelle. Contrôleurs distribués conçus pour réseaux à grande échelle

143

gagnent malgré tout en popularité, avec le nombre de projets déjà existants. L’évaluation
du contrôleur distribué est plus complexe que le contrôleur centralisé. Étant donné que la
performance du contrôleur distribué repose non seulement dépend du ressources de calcul
sous-jacent, mais dépend aussi de l’efficacité de la synchronisation, ainsi que l’emplacement
des nœuds de contrôleur. Des efforts et des enquêtes pourraient suivre cette direction pour
établir un écosystème pour développer et tester les est/ouest APIs efficacement. Le runtime
est un cadre général qui peut être améliorée pour supporter différents types de ressources.
Afin de contrôler la ressource pour le nœud de service plus précisément, nous pourrions
construire un modèle de ressources performances pour chaque fonction de service. Outre le
modèle de ressources performance, la prédiction de trafic est également utile pour améliorer
l’allocation des ressources. Parce que la ressource nécessaire pour chaque fonction dépend
directement des caractéristiques du trafic, et précise prédicat du trafic permet au système de
réagir à l’avance pour réduire le temps de réponse.

Software Switch Deployment in SDN-enabled
Network Virtualization Environment

Yimeng ZHAO

RESUME : Avec la prévalence de logicielisation, virtualisation est devenue une technologie dominante
dans des data-centres et clouds. Deux aspects principaux de la logicielisation de réseaux sont Software De-
fined Network (SDN) et Network Function Virtualization (NFV), dont un des outils essentiel sont les switches
logiciels, à l’opposition des switches matériaux. Les switches logiciels sont également indispensables pour le
succès de NFV. Cette thèse vise à relever des défis principaux dans la logicielisation de réseaux. Spécifique-
ment, elle porte sur le déploiement des switches logiciels dans un réseau virtuel avec SDN.

MOTS-CLEFS : Switch Logiciel, Software Defined Network, Network Function Virtualization, La Softwari-
zation du Réseau

ABSTRACT : Due to the growing trend of “Softwarization”, virtualization is becoming the dominating
technology in data center and cloud environment. Software Defined Network (SDN) and Network Function
Virtualization (NFV) are different expressions of “Network Softwarization”. Software switch is exactly the sui-
table and powerful tool to support network softwarization, which is also indispensable to the success of
network virtualization. Regarding the challenges and opportunities in network softwarization, this thesis aims
to investigate the deployment of software switch in a SDN-enabled network virtualization environment.

KEY-WORDS : Software Switch, Software Defined Network, Network Function Virtualization, Network
Softwarization

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Software switch
	1.1.1 Definition of software switch
	1.1.2 Software forwarding
	1.1.3 Comparison with other technologies

	1.2 Software switch in network virtualization
	1.3 Software switch in Software Defined Network
	1.4 Other promising scenarios
	1.4.1 Network Function Virtualization
	1.4.2 Network-as-a-Service (NaaS)

	1.5 Summary
	1.5.1 Main contributions
	1.5.2 Thesis structure

	2 Background & Related Work
	2.1 OpenFlow-enabled software switch
	2.2 Related work
	2.2.1 Switch performance
	2.2.2 I/O framework design
	2.2.3 Switch control path
	2.2.4 Controller performance
	2.2.5 Analytical model

	2.3 What is missing?
	2.3.1 In-band control
	2.3.2 Fine-grained resource control

	2.4 Summary

	3 Software Switch Performance Evaluation
	3.1 Selected OpenFlow-enabled switches
	3.2 Evaluation environment
	3.2.1 Experimental setup
	3.2.2 OFsoftswitch performance improvement

	3.3 Performance factors
	3.3.1 Periodic performance
	3.3.2 Baseline
	3.3.3 I/O operation
	3.3.4 Rule-based forwarding
	3.3.5 Impact of rule actions
	3.3.6 Polling & Overhead
	3.3.7 Veth interface
	3.3.8 Impact of CPU running frequency
	3.3.9 Chaining software switches
	3.3.10 Tiered latency in SDN

	3.4 In-band control
	3.4.1 In-band solution
	3.4.2 OpenvSwitch in-band implementation
	3.4.3 Learning switch with selected flows
	3.4.4 In-band control latency

	3.5 Summary

	4 Controller Performance Evaluation
	4.1 Centralized controller performance evaluation
	4.1.1 Selected controller
	4.1.2 Test Environment
	4.1.3 Cbench
	4.1.4 Cbench Validation
	4.1.5 Methodology
	4.1.6 On the Accuracy of Latency Measurements

	4.2 Evaluation results
	4.2.1 Python Controllers and Python Interpreters
	4.2.2 Hyper-Threading
	4.2.3 Controllers Baseline
	4.2.4 Distributed Controllers Baseline
	4.2.5 Number of Switches
	4.2.6 Threads Number – HT disabled
	4.2.7 Threads Number – HT enabled
	4.2.8 Correlation between Throughput and Latency
	4.2.9 Fairness
	4.2.10 Comparison with previous works

	4.3 Distributed controller synchronization
	4.3.1 Synchronization in in-band scenario
	4.3.2 Synchronization traffic characteristics
	4.3.3 Control traffic contention
	4.3.4 Coordination latency

	4.4 Summary

	5 Fine-grained Resource Control
	5.1 Resource contention and allocation
	5.1.1 Received packet processing in Linux
	5.1.2 CGroups and CPUFreq

	5.2 Resource allocation for Service Function Chaining
	5.2.1 Service Function Chaining (SFC)
	5.2.2 Network Service Header (NSH)
	5.2.3 Implementation of SFC
	5.2.4 Resource allocation on SFC

	5.3 Automated fine-grained provision
	5.3.1 Case study
	5.3.2 Runtime Framework
	5.3.3 Best-effort based SLA
	5.3.4 Feedback control

	5.4 Evaluation
	5.4.1 Best-effort allocation
	5.4.2 Runtime dynamic allocation

	5.5 Summary

	6 Conclusion & Future Work
	6.1 Thesis summary
	6.2 Publication
	6.3 Discussion & Future work

	References
	Appendix A Source Code
	A.1 OFsoftswitch
	A.2 Ryu
	A.3 Mininet

	Appendix B Résumé en Français

