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Abstract

Due to technological advancements, people are constantly manipulating multiple connected
and smart devices in their daily lives. Cross-device data management, therefore, remains
the concern of several academic and industrial studies. The proposed frameworks are
mainly based on proprietary solutions called private or closed solutions. This strategy
has shown its deficiency on security issues, cost, developer support and customization. In
recent years, however, the Web has faced a revolution in developing standardized solutions
triggered by the significant improvements of HTML5. With this new version, innovative
features and APIs are introduced to follow business and user requirements. The main
purpose is to provide the web developer with a vendor-neutral language that enables the
implementation of competing application with lower cost. These applications are related
neither to the used devices nor to the installed software.

The main motivation of this PhD thesis is to migrate towards the adoption of stand-
ardized solutions to ensure secure and reliable cross-device data management in both the
client and server side. There is already a proposed standardized Cloud Digital Safe on the
server side storage that follows the AFNOR specification while there is no standardized
solution yet on the client-side. This thesis is focused on two main areas: 1) the proposal
of a standardized Client Digital Safe where user data are stored locally; and 2) the syn-
chronization of these data between the Client and the Cloud Digital Safe and between the
different user devices.

We contribute in this research area in three ways. First, we propose a Client Digital
Safe based on HTML5 Local Storage APIs. We start by strengthening the security
of these APIs to be used by our Client Digital Safe. Second, we propose an efficient
synchronization protocol called SyncDS with minimum resource consumption that ensures
the synchronization of user data between the Client and the Cloud Digital Safe. And
finally, we address security concerns; in particular, the access control on data sharing
following the Digital Safe requirements.

Keywords
Digital Safe, HTML APIs, Local Storage APIs, syncrhonization protocol, Hierarchical
Hash Tree, WebSocket, CP-ABE, time based access control.
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Résumé

Le progrès technologique offre désormais de plus en plus aux utilisateurs divers équipements
connectés et intelligents. En conséquence, la gestion des données entre ces équipements
a fait l’objet d’ un nombre croissant d’études. Les applications déjà proposées sont
principalement basées sur des solutions propriétaires dites solutions privées ou fermées.
Toutefois, cette stratégie a toujours montré ses insuffisances en termes de problèmes de
sécurité, de coût, de simplicité pour les développeurs et de transparence des solutions.
Migrant vers des solutions standardisées, HTML5 propose de nouvelles fonctionnalités
pour répondre aux exigences des entreprises et des utilisateurs. L’objectif principal est de
mettre à la disposition des développeurs web un langage simple pour la mise en œuvre
des applications concurrentes à moindre coût. Ces applications ne sont pas liées ni aux
dispositifs utilisés ni aux logiciels installés.

Nous nous intéressons dans notre thèse à proposer des solutions standardisées adoptées
par l’utilisateur afin d’assurer la gestion des données entre ses différentes machines. Deux
entités sont concernées par la gestion des données: stockage du côté client et du côté
serveur. Pour le stockage côté serveur, un Coffre Fort Cloud standardisé est déjà présent. Il
suit les spécifications d’AFNOR. En ce qui concerne le stockage côté client, aucune solution
standardisée n’est encore proposée. A cet égard, la thèse porte sur deux problématiques
principales. La première concerne la proposition d’un Coffre Fort Client standardisé où les
données de l’utilisateur sont stockées localement. La deuxième problématique traite la
synchronisation entre les Coffres Forts Numériques Client et Cloud.

Trois contributions font l’objet de nos travaux. Dans la première partie, nous propo-
sons un Coffre Fort Client basé sur les APIs HTML5 de stockage. Tout d’abord, nous
commençons par le renforcement de la sécurité de ces API pour fournir une base sécurisée
à notre Coffre Fort Client. Dans la deuxième contribution, nous proposons un protocole
de synchronisation appelé SyncDS qui est caractérisé par son efficacité avec une consom-
mation minimale des ressources. Nous traitons enfin les problèmes de sécurité, et nous
nous concentrons principalement sur le contrôle d’accès dans le cas de partage des données
tout en respectant les exigences des Coffres Forts.

Keywords
Digital Safe, HTML APIs, Local Storage APIs, syncrhonization protocol, Hierarchical
Hash Tree, WebSocket, CP-ABE, time based access control.
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Chapter 1

General Introduction

1.1 Problem statement and motivations

With the technological progress, the users are using multiple connected and smart devices.
Therefore, the cross-device data management remains the concern of multiple research
and industrial works. In fact, various devices, owned by the same user or different ones,
rely on synchronization protocols in order to maintain data consistency. In this context,
several Cloud storage solutions are proposed to handle this issue. They offer to the clients
the possibility to externalize their data. So, they can upload, download, share and access
them whenever and wherever they want.

Dealing with the cross-device management leads to address two entities. First, the server
side framework guarantees the storage of users data in centralized servers. Second, the client
side application ensures the storage locally in the user device and their synchronization
with the server side content.

The existent frameworks in both sides are mainly based on proprietary solutions called
private or closed solutions. This strategy has always shown its deficiency compared to the
standard solutions in terms of security issues, cost, developer support and customization.

The standardization of the storage solution on the server side raises with the Gsafe
project[10]. Adding the probative value in the Cloud storage, the project proposes a Cloud
Digital Safe. It is standardized architecture that provides a secure environment for storing
sensitive documents while guaranteeing integrity over time. The conception of this safe
follows the AFNOR specifications [2].

The motivation of our work is to deal with standardized solutions. In particular, we
incite, first, the proposal of a standardized client side storage solution which guarantees
the local storage of the user data based on HTML5. Second, we emphasizes the proposal
of a standardized protocol which ensures the synchronization between the client and the
Cloud storage servers. In addition to the standardization, the efficiency and the security
are the most important pillars of a synchronization architecture and protocol.

1



1.1. PROBLEM STATEMENT AND MOTIVATIONS

1.1.1 The potential of HTML5

How many times a browser asks the user to update his plugins? Do they have any idea of
the changes brought by this plugin? Is it transparent to them which data this plugin can
handle and which limits are set up to this access? Too many ambiguities are present in
the use of plugin in a browser. The best of proof is that many operating systems such as
iOS and Android refuse the support of browser’s plugins such as the Adobe flash player
because of security and management issues. As an alternative, they migrate towards the
standardized solution which is HTML5.

In terms of security issues, the standardized and open solutions are usually adjusted to
address the security thread. This dynamicity comes first, because of the availability of
specification details, second because of the wide range of public people which are looking for
potential threads. Unlike standardized solutions, proprietary ones rely on its development
teams or try to hide its security problems to prevent outsider exploiting them.

Figure 1.1: Gartner Hyper Cycle for Emerging Technologies 2012 [98]

HTML5 comes with new features to place the functionalities of proprietary solutions
into a standardized format. Multiple analysis reports the prosperous future of HTML5.
Gartner has been publishing its Hype Cycle schemes for Emerging Technologies since 1995.
The interest of this scheme is to represent the evolution of the technologies according to
their maturity, their visibility and their adoption. Published every year, this diagram
illustrates the evolution of different technologies in a progression curve. The report
shows that in 2012, HTML5 is located within the Peak of inflated expectations (figure
1.1). This phase is characterized by the exaggerated and unrealistic expectations of the
technologies. After this phase, HTML5 will drop into the "trough of disillusionment" (the
phase where the technology fails to meet the expectations of users). It will climb the "
slope of enlightenment" in five to ten years where the technology becomes more reliable
and mature.

Mayssa Jemel - 2016 2



CHAPTER 1. GENERAL INTRODUCTION

Gartner analysis [25] consider also HTML5 as one of the TOP 10 technologies and
capacities that will be crucial for organizations that want to exploit the full potential
of mobility as part of their digital business strategy. Even with the lack of HTML5
maturity , it stills an essential technology for organizations which need multiple platforms
applications.

1.1.2 The interest of data synchronization

Remote synchronization has been the subject of significant works that depend on the
purpose of the software and the nature of objects to synchronize. In fact, these objects
can be stored in structured or unstructured databases, in files and folders. The existent
solutions are mainly proprietary. In this context, the issue of file synchronization and
sharing had been the subject of the "Gartner magic Quadrant" [35] which details the
different actors and their positioning (figure 1.2). Gartner has published a report on
the current strategy of companies regarding the interest of sharing and synchronizing
documents produced and used by their clients [33]. This report is entitled "How to build
EFSS plans to address current and future business requirements" (EFSS: Enterprise File
Synchronization and Sharing).

Figure 1.2: Magic Quadrant for Enterprise file synchronization and sharing [33]

Gartner’s, report published at the end of 2014 highlights the interest of data synchron-
ization solutions. It discusses the strategic issues such as the user expectations regarding
the services associated to their documents. First, it emphasizes their benefits in terms of
fluidity of the information exchange process. Second, it highlights the interest of adopting
EFSS in the companies to protect corporate data.
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1.2. CONTRIBUTIONS OF THE THESIS

1.2 Contributions of the thesis
Introducing the synchronization between the different Digital Safes needs (I) to introduce
a Client Digital Safe, (II) define a file synchronization protocol with high quality and
minimal resource consumption and (III) to ensure a secure data synchronization and data
sharing.

As depicted in figure 1.3, the manuscript is divided into four main parts. The first
part presents the security features of the Local Storage and communication APIs which
are adopted in our Client Digital Safe and synchronization protocol. The three last parts
deals with the three main contributions that follow the file synchronization requirements
within the context of Digital Safe.

• (I) The conception of a Digital Safe based on the local Storage APIs;

• (II) Dealing with the efficiency issues of the standardized synchronization protocol;

• (III) Dealing with the security features of the standardized synchronization protocol.

Figure 1.3: Contributions of the thesis

1.2.1 Client Digital Safe based on HTML5

Proprietary solutions are usually adopted for the client side storage and the file synchron-
ization, and require the installation of software or plugins. To overpass these closed tools
and to work with standardized solutions, we propose a HTML5 based Client Digital Safe.
It enables the user to manage his data securely when he is offline or online. Our client
side storage is based mainly on the HTML5 Local Storage API with additional security
considerations to follow the Digital Safe standard requirements. In fact, we add the
confidentiality, the integrity and the metadata integrity into the stored data. We define
also a new Digital Safe API where the Digital Safe specifications are introduced. This API
guarantees the interoperability between the Client and the Cloud Digital Safe. The data
stored in this Digital Safe are subject of synchronization in the second contribution.
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1.2.2 SyncDS: A Digital Safe Based File Synchroniza-
tion Approach

The second contribution of the thesis focuses on a synchronization architecture and protocol
SyncDS (Synchronization protocol in the context of Digital Safe). The synchronization is
ensured between the proposed Client Digital Safe based on HTML5 and the Cloud Digital
Safe. The architecture is divided into four main layers, which are: (1) Client Storage Layer :
the Client Digital Safe, (2) Application Layer : handles the synchronization at the level of
the application, (3) Synchronization Layer : manages the messages exchanged between the
Local and Cloud Digital Safe based on the WebSocket protocol and finally, (4) the Secure
Storage Layer : a standardized architecture that provides a secure environment for storing
sensitive document in the Cloud. The particularity of our architecture is the adoption
of the WebSocket which ensures a bidirectional communication between the client and
the server. This protocol is used to notify the user in case of modifications which need
synchronization. It is used also for the exchanges of synchronization messages and for the
data transfer. Within the different synchronization approaches, the SyncDS protocol holds
three phases: (1) Offline phase, (2) On Connection phase: with the Post changes and the
Synchronize steps and finally the (3) Online phase.

During the on connection phase and more particularly, in the Synchronize step, the
user sends to the server an abstract of his file system to be compared with the one of the
server. This procedure detects the changes performed on the server when the user was
offline.

We focus, in this part, on the format of the abstract. We chose to adopt the Hierarchical
Hash Tree into the abstract format. Indeed, the Hierarchical Hash Tree (HHT) has a
tree structure following the structure of the file system. Each node is identified by a hash
besides the other metadata. For files, this hash matches to the file’s content hash. For
directories, the hash is based on the hashes of directory’s content.

1.2.3 Secure data synchronization in probative value
Cloud

In this part, we address the security requirements of the synchronization protocol that
gathers the file integrity, non-repudiation, authentication, secure synchronization and
the access control. We focus mainly on the access control, especially when the data are
shared between different users. In fact, it is clear that synchronizing data that are already
encrypted by users to multiple destinations may introduce key management challenges.
We propose to use the CP-ABE Ciphertext Policy Attribute based encryption for the
access control management. We add to CP-ABE the notion of timely based access control
where data can be accessed only for a period of time. We address also the security of the
key generation to be retrieved only by the concerned user.
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1.3. ORGANISATION OF THE MANUSCRIPT

1.3 Organisation of the manuscript
Following this introduction, the thesis manuscript is structured into five main chapters as
follows:

In Chapter 2 we present the web revolution and we introduce the innovative features
and APIs of HTML5. Following the requirements of the cross-device data management,
we detail the specification of the HTML5 APIs which ensure the communication and the
local data storage. The security measures taken by each API and their security gaps are
detailed.

In Chapter 3, we start by introducing the security measures fundamentals of the local
storage. In the second part, we present the strength that we brought to the HTML5 Local
Storage APIs. Based on the enhanced HTML5 APIs, we present then the conception of our
standardized client Digital Safe by identifying and describing the different specification of
this safe. The implementation and the integration of this safe into the chromium browser
are specified at the end of the chapter.

Chapter 4 deals with the synchronization protocol between the Client Digital Safe
and the Cloud Digital Safe. We start by presenting, comparing and analyzing the different
approaches adopted for data synchronization. We deal also with the different strategies
used to detect changes between two versions of file systems. Dealing with our contributions,
in the second part, we start by identifying and detailing the different entities of our SyncDS
synchronization architecture as well as the messages exchanged between them. In the
third part, we propose the introduction of the Hierarchical Hash Tree into the abstract
structure, and we detail its associated algorithm. To prove the efficiency of our protocol
with the adoption of HHT and the WebSocket protocol, we present at the end of the
chapter, analytical explanations and empirical evidences.

Chapter 5 starts with a survey of the security services and mechanisms adopted
by data synchronization architectures in general. We address then security concerns; in
particular, the access control on data sharing following the Digital Safe requirements.
Subsequently, a timely-based access control is proposed based on the CP-ABE. We end
our proposal with the validation of our protocol in terms of security.

Chapter 6 We end up with the conclusion of our thesis, and we give a discussion of
the achieved work and the future perspectives.
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2.1. INTRODUCTION

2.1 Introduction
The Web has faced a revolution with HTML5. This new standard introduces innovative
features and APIs to follow the business opportunities and users requirements. As a
vendor-neutral language, these APIs enable the implementation of competing application
with lower cost. Thus, numerous Web actors adopt it even if some security and privacy
issues still exist.

Among the most known HTML5 APIs, we find those that ensure the storage of web
application data locally in the user machine and those that ensure the communication over
the Internet. They have proven their worth in terms of quality of experience enhancement
and web application efficiency. Throughout our research work, we focus on these two kinds
of APIs as they will be adopted in the Digital Safe conception and the synchronization
protocol implementation. As depicted in figure 2.1, 20% of the thesis works focus on the
analysis of security issues and risks of these APIs.

Figure 2.1: Structure of the thesis

This chapter is structured into four sections. We start with an overview on HTML5
standards as well as its global security features. The next two sections deal with the
security measures and gaps of communication and local storage HTML5 APIs. Finally, we
deal with the access control strategies adopted by browsers to secure the web application
and users data.

2.2 Overview on HTML5 security

2.2.1 The Web Revolution

Since 2007, improvement has been made on the HTML standard to promote the web
revolution. Such improvement are held through the experiences feedback of the existing
browsers (Opera, IE, Firefox, Chrome, etc.) as well as the user requirements. As shown
in figure 2.2 since 2004, the Web Hypertext Application Technology Working Group
community (WHATWG) [46] has started working on improving the HTML standard.
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CHAPTER 2. LOCAL DATA STORAGE AND COMMUNICATION HTML5 APIS:
SECURITY MEASURES AND RISKS

Three years later, the HTML5 specification was adopted by the Working group World
Wide Web Consortium (W3C) [22] which is headed by Google. In 2012, W3C inter-
acts with the IETF and proposes Working Draft specifications of HTML5 APIs . So
far, a part of these APIs becomes stable and is implemented in the majority of the browsers.

Figure 2.2: HTML5 evolution

The main goal of the specification is to define an open and an infrastructure independent
language. Thus, it can be deployed by a wide range of products and devices and can reduce
the development cost. First, the web revolution with HTML5 comes, as shown in figure
2.3, by the elimination of the proprietary solutions which needs additional installations
and adaptation to extra languages. Second, HTML5 aims to offer new features already
treated by the Web2.0 services. It aligns with the requirements of the Internet of things,
augmented reality, real-time and peer-to-peer communications, web video, geolocalisation,
offline application etc.

Figure 2.3: HTML5 vs Non HTML5
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2.2. OVERVIEW ON HTML5 SECURITY

2.2.2 Security issues of HTML5

An HTML5 API is an interface which gathers a set of objects, methods and properties
brought together for a particular purpose. With different degrees of maturity, the HTML5
APIs are classified from the less mature to the most mature as following: Working Draft,
Candidate Recommendation, Proposed Recommendation and W3C Recommendation.
These APIs are implemented in the browser, and everyone chooses its own strategy of
deployment. Different criteria can be adopted to classify the whole HTML5 APIs such as
the nature of manipulated elements or the nature of the brought functionality. Throughout
our work, we choose to classify the APIs according to their functionalities. As shown in

Figure 2.4: HTML5 API classification

figure 2.4, they can be classified into six main categories:
- Communication: APIs that ensure the communication between the client, the server
(synchronous or asynchronous), the browsers and the threads;
- Device: APIs that exploit device’s component during the navigation. For example, we
find displaying videos and animations, extracting the device position and orientation, etc;
- Data: APIs that enable the local storage of data in the user’s machine and then their
management;
- User interface: APIs that deal with the ergonomics of web pages to obtain an easier
environment used by the final client;
- Performance optimization: APIs used to compute or ameliorate the navigation per-
formances;
- Security: APIs that add secure functionalities to different web applications.

Each technology has a set of vulnerabilities, and its evolution pushes the attacker to
look for new opportunities of attacks to exploit. Before focusing in details on the security
risk of HTML5 communication and storage APIs, we need to pass through different browser
vulnerabilities. Figure 2.5 shows the browser structure with the HTML5 technology stack
and its adjacent technologies. With the integration of HTML5, new technologies were
emerged and new interactions between them were built. Among the main threats, we find:

• The Javascript is subject to code injection attacks [116]. It is known that web
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SECURITY MEASURES AND RISKS

Figure 2.5: Browser structure with HTML5

technologies allow the data and code to be mixed together. Therefore, when a
malicious code is embedded inside an HTML page as a text, it can be sent for
Javascript engine for execution. Cross-site Scriting (XSS) is a special type of this
attacks and is considered by the OWSAP [11] as one of the top ten security risks
in web application. Besides the data disclosure, XSS concerns the HTML5 tags
such as media, canvas, form and buttons, HTML5 attributes such as form autofocus,
sandbox and HTML5 events and objects such as Drag and Drop API, history API
etc. In addition, XSS can be used for HTML5 Denial of Service (DoS) when the
injected code sends many requests to the victim website.

• Dom based XSS: This kind of attack is on the rise as large applications are built on
Document Object Model, XmlHTTPRequest and Web Messaging [102]. It is an XSS
attack that occurs when an untrusted code is inserted into dynamic code evaluation
constructs without any verification process. In fact, the malicious modifications of
the DOM environment lead to a different execution of the client side code. This
kind of attack has important effects on the HTML5 application that runs widgets
as the entire DOM can be accessed by the attacker. This attack can also affect the
plug-ins installed into the browser since the DOM loads different objects such as
Silverlight and Flash extension.

• Misuse of the Cross Origin Resource Sharing (CORS): The Same Origin Policy (SOP)
is a core policy adopted by some HTML5 API to disable any inter-domain data
exchange. Even if this technique serves as a security function, it stills insufficient
for certain applications. This leads to the emergence of Cross Origin Resource
Sharing. The CORS allows the communication between documents from different
domains. It is built on top of the XmlHttpRequest with new parameters in the
header. However, the CORS header can be crafted or misconfigured to get access to
sensitive informations. This misuse can lead essentially to the Cross-Site Request
Forgery (CSRF). With this attack, the attacker forces the victim to execute actions
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within the authenticated context of a web application without victim’s consent.
When the victim visits the attacker’s web site, it receives a response with the CSRF
header. This response initiates, therefore, an HTTP request to the web application.

• Access to local resources: Even if the browser has the full access to the local resources
of the user’s device such as files, webcam, microphone or geolocalisation, each HTML5
API should ask the user permission to access these resources. For example, the
user selects explicitly a file when using an HTML forms which allow file upload. In
addition, if a web application needs to locate the user’s device, a pop-up appears in
the browser to ask the user’s permission. The user consent is not restricted to the
HTML5 API as it concerns also the plug-ins and extensions. It is the case of the
Shockwave flash. Some HTML5 APIs need to pass through the procedure of user’s
consent and are not taken into consideration by the browser. It is the case of the
LocalStorage API. In fact, a website can store or retrieve freely data on the user’s
machine without his notice.

• Divers HTML5 APIs: The different HTML5 APIs that carries new functionalities,
unfortunately, brings vulnerabilities exploited by attackers. As an example, we find
that the HTML5 fullscreen API can lead to phishing attacks [20], Web Workers API
can be exploited for DoS attacks by using excessive CPU for computation, and a
misuse of the Web Messaging can lead to messaging hijacking [11].

2.3 HTML5 Communication APIs

Figure 2.6: Evolution of HTML communication protocols

Many researchers are working on deploying web environment to be used in devices with
limited capacity [61]. To this end, communication APIs should be adopted. As shown
in figure 2.6, the evolution of the communication technologies over the web life can be
presented as follows:
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• PreAjax: Before Ajax, the response to each request sent to the server is a static web
page;

• Ajax: The dynamicity was added into the web pages through the adoption of Ajax.
In fact, it is used to build dynamic and interactive web site which can be updated
automatically without refreshing. Ajax combines JavaScript, CSS, JSON, XML and
DOM to improve the management of Rich Internet Application;

• Comet [100] is a model that uses the HTTP protocol. It allows a server to push
data to the browser without any request. Therefore, the client polls data by sending
a request that stills open for a long time waiting the availability of a data to be
sent back to the client. With an additional HTTP connection, Comet facilitate
bi-directional communications over two HTTP connections;

• The WebSocket [31] that ensures a bidirectional communication based on full duplex
sockets;

• Web-intent [41] is a framework that enables rich interaction between web applications.
It enables their interconnection without recognizing each other with a limited code
line number. It is modeled after the integration of the Intent system into Android
where the intents are used to ensure the data exchange between the application
components;

• The WebRTC [21] enables a P2P communication between browsers.

With the progress of the communication protocol, new features are considered to add
the efficiency into the Web application. Dealing with the efficient synchronization protocol
in the context of Digital Safe, we will focus mainly on the two new HTML5 APIs which
are the WebRTC and WebSocket. A detailed specification of these APIs and their related
protocol will be presented, and their security analysis will be discussed.

2.3.1 WebRTC and security requirements

In this section, we introduce the WebRTC API and protocol which ensure a Peer-to-Peer
communication between browsers. We study the security and privacy issues of this protocol.

Specification of WebRTC API and protocol

WebRTC [21] changes the way of interaction between users and how a user interacts with
the Internet. It is a free and open project that ensures a bidirectional communication
between browsers. No software or plugins needs to be installed as browser-browser
communication is ensured through simple JavaScript and HTML5 APIs. The basic use
cases of this API are video and audio in real time, web conferences, chatting and direct
data transfer. Standardized by both W3C and IETF, it is based on three steps to ensure
a P2P communication for data exchange(figure 2.7):
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Figure 2.7: WebRTC protocol

• PeerConection: It creates a connection with the peer through predefined servers
(ICE elements: STUN and TURN servers);

• Session description: It exchanges Session Description Messages (SDP) between
the different peers. These messages cover the channel informations and ICE elements;

• DataChannel: It creates a direct channel between browsers to be used for data
exchange.

The Network Address Translation (NAT) causes difficulties in Peer to Peer communic-
ation as the peer acts as a client and server at the same time. Through these problems,
we find, first, that the communication initiated by a peer will be blocked by the NAT as
there is no mapping between the exterior and interior address and port pairs. Second, a
peer is unable to know its public address to provide it to the other peer. To overcome the
complexity of real-world networking, WebRTC uses the Internet Communication Engine
(ICE) with the Servers Session traversal Utilities (STUN) and Traversal Using Relay NAT
(TURN). STUN is a protocol used to help NAT traversal. It helps to obtain the peer’s IP
address-port and to discover if the peer is behind a NAT. TURN is a STUN’s extension
that provides a relay for interchanging data between peers.

WebRTC stills a working draft in the W3C standard specification. Therefore, it is the
concern of multiple research and industrial works. In [87], Kurento software overpasses the
basic exploitation of WebRTC in P2P communication. It proposes a media server based on
WebRTC and a set of APIs which handle transcoding, mixing and routing of audiovisual
flows. This solution enables the development of advanced video applications and advanced
media processing capabilities such as the video indexing and the augmented reality, to
integrate it into the IMS systems for professional application. Based on WebRTC, BOPlish
[56] introduces an architecture for decentralized content publishing between the same
web application launched on different devices. The content distribution is ensured in the
Information-centric networking (ICN) context and used for online games, chat group and
file sharing.
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Security measures taken by the WebRTC

A series of security measures is adopted by the WebRTC API and protocol to prevent
possible attacks. Bellow, we list these principal measures.

• TLS is the most widely adopted protocol for securing the network traffic. It is based
on the TCP as transport protocol. As many applications are adopting the datagram
mode for data transfer, the Datagram Transport Layer security (DTLS) emerged
as a datagram-compatible variant of TLS. DTLS is adopted by the WebRTC below
the Stream control Transmission Protocol SCTP. This protocol guarantees a secured
data exchanges between the far end peers during the datachannel step;

• WebRTC adopts the Secured Real Time Transport Protocol (SRTP) to encrypt the
media streams. This protocol is used rather than DTLS for the exchange of this
kind of stream as it is characterized by its lighter-weight;

• The fingerprint identifies the certificate presented during the DTLS handshake. It is
transported in the SDP where the key exchange occurs in the data channel. The
fingerprint is used to verify that the devices communicating with the DTLS are the
same exchanging the signaling messages, to be sure that there is not man in the
middle attacks;

• The WebRTC has the access to the user’s device resources such as camera and
microphone. However, the user’s consent is required to give permission to the API
to exploit these resources. His consent avoids malicious applications to record his
video or voice without his accord. To meet these requirements, the current browsers
are implementing the user’s permission request for one-time or permanent access.
To go further, they display explicitly in the user interface that these resources are
currently opened and used. For example, Google Chrome shows a red spot for the
camera and a loudspeaker icon for the microphone. Nonetheless, nothing is taken
into consideration in case of data exchange between the peers which can lead to DoS
attacks on his device;

• A solution for far-end authentication is proposed in [21]. It considers that the web
application is launched as untrusted and likely hostile while the browser is considered
as a Trusted Computing Base (TCB). The security architecture is based on the
Identity Provider that supports a protocol such as OpenID or BrowserID. In fact,
each user should have an account with an IdP that he uses to authenticate to other
web sites. The authentication elements are first exchanged between the browser and
the IdP to prove the identities. Second, they are exchanged between the browsers
during the signaling phase over the SDP messages.
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Security gaps of WebRTC

Even if a series of security measures are considered by the WebRTC protocol and API
specification, there are still areas for attackers:

• One of the ICE server disadvantages is the disclosure of the peer IP address. Since
the IP Addresses are stored publicly, the position of the node can be revealed even if
the user refuses to disclose it;

• DOS attacks can be performed by a malicious web application on connected devices
and even on the NAT infrastructure servers [38]. For example, the credentials of the
TURN server are introduced into the web application to configure the connection to
the ICE servers. These credentials can be sent to unauthorized parties and which
can exploit them to attack the TURN server and consume its bandwidth. Therefore,
it is interesting to revoke frequently these credentials and use new ones;

• Once the WebRTC connection is established, a malicious web application can send
and retrieve freely traffic without the consent of the user;

• The signaling protocol is not predefined and imposed by the WebRTC specification.
Therefore, the security of the WebRTC depends heavily on the choice of the adopted
signaling protocol. There are mainly five protocols which can be adopted: WebS-
cocket, SIP over WebsSocket, XMPP/Jingle, XHR/Comet or even the WebRTC’s
Data channel. It is essential to adopt a secured signaling protocol. Otherwise
interception a signaling messages by an attacker leads to a man in the middle attack
[37].

2.3.2 WebSocket and security requirements

In this section, we present the WebSochet API and the bidirectional real time protocol.
Afterward, we list the security measures already considered by the protocol specification
and, we present its security risks.

Specification of WebSocket API and protocol

WebSocket is a new protocol standardized by the IETF [31]. It provides a permanent
two-way communication between the client and the Web server using a single socket. The
first phase of the communication between the client and the server, as shown in figure 2.8,
is the handshake. Once the handshake is established, the client and the server exchange in
both directions a series of messages, each one is composed of one or more frames. There
are several types of frames, and all frames of the same message have the same type. For
example, we find the binary and text types, where frames contain Unicode characters
encoded in UTF-8. There are also control frames (ping and pong) designed for the use of
the protocol itself.
The main characteristics of the Websocket are:
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Figure 2.8: Websocket handshake

• the specification of the API is developed by the W3C and the communication protocol
is standardized by the IETF;

• it is a bidirectional and asynchronous communication that ensures both the push
and pull of informations between the client and the severer;

• it basically uses the port 80 and in case of secured connection the port 443;

• it is based on the TCP transport layer;

• it optimizes the network traffic with only 2 bytes of overhead;

• it reduces the latency.

Security measures taken by WebSocket

Security measures are introduced into the specification of the WebSocket protocol to fight
against possible attacks. Among these measures, we find:
- The encryption of the WebSocket traffic:
A TLS handshake can be achieved just after the WebSocket Handshake. In fact, using the
encryption of the message payload guarantees both the confidentiality and the integrity.
- The specification of the origin into the WebSocket header:
The field origin in the message header of the handshake mentions the origin of the Web
page that loaded the client script. The server can verify this field and choose to accept or
not the request.
- The exchange of a key between the client and the server:
The connection is established only when the browser receives the appropriate value of the
Sec-WebSocket-Accept field. The client will be sure that the response comes from the
server that received his request. The value of Sec-WebSocket-Accept matches to the SHA-1
of the concatenation of Sec-WebSocket-key and a fixed GUID. This technique prevents an
attacker from deceiving the WebSocket server as the Sec-WebSocket field cannot be added
by the XMLHttpRequest code. Thus, the use of the key guarantees that the WebSocket
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protocol is adopted by the two nodes .
- The use of the mask for an unpredictable traffic:
Adopting the WebSocket protocol without the message encryption can be used to disturb
the proper functioning of the intermediate network elements such as proxies. Considering
the following scenario:

GET /ga.js HTTP/1.1
Host: www.google-analytics.com
Protocol: Upgrade

An attacker establishes a WebSocket connection to a target server via a proxy. It sends
then a WebSocket request that mimics a simple HTTP request. The attacker programs its
server to response with a malicious file to such a request. With this approach, the attacker
realizes a cache poisoning of the proxy which is not aware that the communication is based
on the WebSocket protocol (the Upgrade field is not understandable). As consequences,
an HTTP proxy cache poisoning is performed [80]. Each time the client accesses a web
page with the URL http://www.google-analytics.com/ga.js, he receives systematically the
malicious file.
To overcome this type of attack, WebSocket masks the data with a key controlled by the
runtime environment (example: the JavaScript interpreter) and not by the application.
The basic idea is that the payload content cannot be predictable. To overpass the HTTP
proxy cache poisoning , [80] proposes to improve the Websocket protocol by encrypting
the bytes using the stream cipher. Later, the Websocket working group adopted a variant
of this proposal by masking the attacker-controlled bytes using the XOR with a predefined
mask.

Security gaps of WebSocket

The WebSoket API and protocol have adopted several security measures to prevent attacks
on web applications. However, WebSocket stills present security gaps:

• Web applications which use the WebSocket are exposed to the attacks of basic web
applications. In fact, Cross Site Scripting XSS and man in the middle still presents
a risk to the application security. Each attacker who can sniff the HTTP traffic can
use the same methods to intercept or inject code into the WebSocket traffic;

• The denial of service attack (DoS), is also possible with WebSockets. Indeed, it is
possible to use all the resources of a server as no check on the number of WebSocket
connection is imposed. This attack can be done by opening simultaneously multiple
WebSocket connections. This problem is solved at the browser level by imposing
a maximum number of connections. An attacker can also set off a DoS attack. It
exhausts the memory of another node by sending a large frame or by sending a large
number of small frames. Therefore, it is interesting to set a maximum size for frames
and a message size after collecting frames that constitute it.
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2.4 HTML5 Local data storage APIs
In this section, we start by presenting the different HTML5 Local Storage APIs to deal,
thereafter, with the analysis of their security.

Specification of HTML5 Local Storage APIs

To enable the storage of data in the browser, several proprietary solutions have been
implemented before the emergence of HTML5 standards [96]. These solutions can be
extensions and plugins which should be installed into the browser or libraries and should
be integrated into the Web application code. Among the possible storage solutions, we
find:

• Local Shared Objects [48]: Based on Adobe flash and called Flash cookies, it
stores data on user’s device. These data can be found in folders located on paths that
differ according to the operating system. However, this solution is not supported by
the majority of mobile devices;

• Google Gears Storage Provider [9]: Implemented by Google to offer offline
functionalities for the Web application, it uses SQLite database to store information.
Nevertheless, it has been abandoned as it has the same functionalities of HTML5
Local Storage and Offline APIs;

• UserData behavior [14]: It is introduced by the Internet explorer browser. It
stores information and page states in a hierarchical data structure using XML. This
solution is proprietary to IE browser and it is used in several applications to increase
the storage volume of the HTML5 Local Storage APIs.

• Dojox.storage [7]: It is a part of the JavaScript toolkit Dojo which includes
languages utilities, user interface components and other libraries used for building
a web application. Dojox Storage provides a persistent client side storage based
on existent HTML5 APIs. It proposes an encrypted data storage for confidential
informations.

To overpass the proprietary solutions and the introduction of additional plugins, HTML5
proposes three principal APIs that ensure the local storage based on standardized specific-
ations. These APIs differ by the nature of locally stored data. Throughout the manuscript,
we call the set of these APIs as HTML5 Local Storage APIs.

• WebStorage [39] stores key/value pair data in the browser. According to the usage
requirement, two possibilities of storage are available. First, there is the persistent
storage. The data are shared between different tabs and can be deleted only by
the application or by the user. Second, in the case of temporary storage with the
SessionStorage, the data are deleted when the tab is closed. The data of these API
are stored into a SQLite database.
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• Indexed DB [24] is an API that enables web application to store data in an indexed
database. It replaces the traditional relational databases architecture. In fact, an
indexed system allows an optimized and fast access to data.

• FileSystem API [32] simulates a virtual file system in the browser. The imple-
mentation of this API allows web applications to manage files. Hence, applications
can read, write and create files and folders in a sandbox. FileSystem API offers also
two possibilities of storage, persistent and temporary storage.

Figure 2.9: Browser’s architecture with the local data storage

These APIs are implemented in the browser. A browser consists on a group of structured
codes that interpret the web development languages (HTML5, CSS and javascript) and
transform them into a set of instructions (displaying webpage, sending message, storing
data, etc.). As shown in figure 2.9, in the data storage context, the browser engine is
responsible for storing application data in the user machine in appropriate files. These
files, with different extensions, match to the databases (SQLite DB, Level DB) where the
web application data are inserted. In fact, the domain name is used to separate different
domain’s data.

Although browsers follow the same specification, each one implements differently
HTML5 APIs. Several experiment evaluations of the HTML5 Local Storage API [78] [121]
underline that the performances differ greatly from one browser to another. The results,
in [78], show that the indexed DB performs faster in Firefox (using the SQLite database)

Mayssa Jemel - 2016 20



CHAPTER 2. LOCAL DATA STORAGE AND COMMUNICATION HTML5 APIS:
SECURITY MEASURES AND RISKS

than in Google Chrome (using the LevelDB, which is a library proposed by Google to
provide an ordered mapping from string keys to string values).

Security measures taken by HTML5 Local Storage APIs

As it is detailed in the W3C specification, each browser should store the data of each
domain in a separate location. This strategy is called the SOP (Same Origin Policy). It
represents the only form that enables the content protection. This practice prevents any
inter-domain access by linking the stored data to a particular domain.

Security gaps of HTML5 Local Storage APIs

If we analyze in depth the Local Storage APIs, we uncover that attacker can exploit the
APIs conception in the browser to retrieve and to modify user informations [79][39]. The
following attacks affect the confidentiality and availability of data:

- Extracting private information on users
An advertising website can use the LocalStorage API to track the user by extracting
his information across multiple sessions. This strategy allows these web sites to build a
complete profile on user preferences for a marketing and business interests. To reduce the
risk of user tracking, it is possible to adopt several techniques such as:
- refusing access to local data of a domain from other domains which run in iframes;
- removing persistent data after a period of time;
- asking the user’s permission to access the local storage;
- defining a blacklist of domains that should not save data locally.

- DNS Spoofing
It is possible that the data associated with a domain are exposed to DNS spoofing attack.
The attacker can simply use his domain and the DNS server to redirect all the traffic of
the victim to another domain that appears to be those of the Web application. For the
WebStorage API, the hacker can retrieve the keys of data by opening a copy of the same
application on his side and scanning the keys using the browser. Retrieving the key leads
automatically to the recovering of value.

- Shared environment
A user who accesses a given browser may also access data stored in the machine. On the
one hand, the domains focus on saving their data based on the used browser and not on
the user. On the other hand, the Local Storage data is stored unencrypted in SQLite and
indexed file on the client machine. Using the Local Storage represents a significant risk
that mainly concerns confidential data such as passwords and information about the credit
card.
To reduce the risk, the data can be encrypted before storing them. However, if the attacker
can access the stored data, he can also launch the associated application and use them.
To avoid this scenario, it is essential to link the data to the user. Therefore, a user
authentication needs to be performed before Local Storage data decryption.

- Cross Site scripting
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The Cross-Site Scripting allows the injection of malicious code in the contents of a page.
With XSS, the attacker can, for example, retrieve or change data stored in the browser
by LocalStorage API. In the case of the Webstorage API, the injected JavaScript code
contains necessarily the attributes ’getItem’ or ’setItem’ and the name of the relevant key
and value.

- Implementation of the browser
HTML5 introduces the specification of the different APIs used by a Web application
to provide a set of features. Each browser chooses its own strategy to implement these
APIs. We focus on the implementation of the WebStorage API. The W3C standard
specifies that the sub-domains (prefixes or Origin) of a domain should not have extra
space for the storage. However, Chrome, Safari and IE do not respects this rule. Thus, it
is possible to multiply indefinitely sub-domains to fill the space of the disc with content
of the LocalStorage (if the client uses the Google Chrome, the browser will crash when
the data size reaches 970MB). Firefox is the unique browser that implements adequate
measures against this type of attack. In fact, it imposes that all sub-domains of the same
domain share the same space.

- Exploiting metadata
The attacks based on metadata tampering which concern the storage of password in
the browser are well discussed in [53]. In the context of the HTML5 local storage, data
encryption is not enough against the metadata tampering and data recovery. In fact, an
attacker can alter the name of the database files. Therefore, the browser will consider
that the stored data match to the attacker domain. If the domain of the attacker gains
accidentally the permission of the user to manage local data, the attacker will have the
full access. To avoid this kind of attacks, encrypting the metadata of database file remains
essential.

2.5 Access control in browsers

The Same origin Policy (SOP) is a core policy adopted by some HTML5 API to disable
any inter-domain data exchange. Even if this technique serves as a security function, it
stills insufficient for certain applications. This leads to the emergence of other security
measures. The security measure taken by the browser, defined as core policies in figure 2.5,
can be classified into two main categories [57]: strategies which are based on the principle
of SOP by defining additional criteria for policies and other strategies different from the
SOP for more flexibility.
The table below summarizes the different strategies of access control found in the literature.
They are adopted by the browser to manage the web application resources.
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Table 2.1 Access strategies for browser

Access strategy Example

Additions to the SOP

- Splitting one Single Principal: creating an isolated environment.
Exp: iframe in HTML5
- Combining multiple Principal at the server side: Specifying
access control policies at the server side through a HTTP headers. Exp:
CORS, SOMA
- Combining multiple Principal at the client side: Specifying
access control policies at the client side. Exp: PostMessaging, Gazelle
- Cooperation between the client and the server: Specifying
access control policies after a cooperation between the client and the
server. Principals focus mainly on resources exchanged between the
web application and the server. Exp: COP

Changes to the SOP
origin

- Fainer grained Label: The access control scheme is <Protocol,
Host, Port, optionally extra data>. Exp: optionally extra data can be
: Path, server public key, ring access control, token

2.5.1 Additions to Same-Origin Policy

The policy can be used in addition to the Same Origin Policy:

• Cross Origin Resource Sharing (CORS) is a W3C specification that allows the
communication between documents from different domains. It is built on top of
the XmlHttpRequest with new parameters in the header. For example, a resource
loaded from domain A (http://a.example) as an HTML page, makes a request
for a resource of the domain B (http://b.example) such as image using img tag
(http://b.example/image.png);

• iframe [12] is a tag improved by HTML5 to specify an inline frame. It is mainly used
to embed a document within the actual HTML document. Therefore, the resources
of document managed by this tag supports a sandbox properties. These resources
are separated from those of the host document with the same origin;

• SOMA [97] enhances the SOP by adopting a mutual approval to send cross-domain
HTTP requests. In fact, the inclusion of resources into a web page is performed only
by the approval of both the target site and the resource provider. When an approve
is needed from the site operators or from external domains, the content is prevented
to be retrieved from attackers or malicious servers;

• The first draft the Webstorage specification by WHATWG [28] introduced the
globalStorage object used to specify the domains that could access the current
domain’s data. Due to security concerns, this object was removed from the spec and
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replaced with the same origin policy. Cross domain LocalStorage [120] implements an
extension of the web storage specification to enable cross origin communication. The
cross domain storage framework is inspired by the X Window Authentication (XAuth)
protocol implementation, which shares third party authentication information in the
browser. It combines the use of the cross document messaging and the LocalStorage
API to get access to data that was stored by a different domain. Therefore, the cross
origin is performed at the JavaScript level;

• Configurable Origin Principals [57] focuses mainly on the principal that depends on
defining different principals for a unique domain and regrouping many domains into
the same principal. The configuration of the principals is performed between the
different web sites by exchanging the principals between the web sites. With this
strategy, changes concern both sides: the web server and the browser. First, the web
server makes modifications to the web application and the responses to the principal
communications. Second, the browser makes modifications to the WebKit level to
override the Same Origin policy. This strategy focuses on sharing the resources,
mainly on the iframe;

• Multi-principal browser such as Gazelle [112] is proposed. The main goal of the
browser is to separate each element of the same web page. Therefore, each component
does not affect the other elements either the browser or the machine. The separation
of each principal and the security measures are introduced with a novel browser’s
architecture.

2.5.2 Finer grained Label

Finer gained label uses additional element to those defined by the HTML5 specification.
The basic scheme used by the SOP is <Protocol, Host, Port> with the fundamental
problem of coarse granularity. Several researchers worked on adding extra information for
the policy to avoid specific attacks. Therefore, the origin of a resource depends on the
scheme <Protocol, Host, Port, optional extra data> to provide finer granularity. These
enhancements includes:

• Specifying the URL that a resource has the right to access. This strategy is adopted
by the Tahoma Web browsing system [62].

• Enforcing the access using the servers x509 certificates and public key [77] to deal
against the Dynamic Pharming attacks.

• Defining a Mandatory Access Control (MAC) policy based on rings and ACL to
control the access to the objects such is the case of ESCUDO [70].

• Adopting a capability-based access control model for the web browsers. In this
context, the strategy adopted in Contego [86] requires that a principal need to have
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a token to perform certain actions. For example, a JavaScript needs to have an
AJAX request token if it wants to send an AJAX request.

2.6 Conclusion
In this chapter, we introduce, in a first part, the HTML5 as well as an overview of the
security issues of the browsers which adopt this standard. In the second and third parts,
we point out in detail the security issues of the HTML5 APIs of communication and local
storage. Finally, we deal with the security measures taken by the browser to control the
access to the web application resources.

This chapter described the general security of HTML5 with some of its APIs. In the
next chapter, we will focus mainly on the Local Storage APIs to build a secure Digital
Safe based on.
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3.1. INTRODUCTION

3.1 Introduction
Several research and industrial works focus on guaranteeing the security and confidentiality
of the user data when externalized and managed by Cloud Service Provider. While the
majority of the proposition is dedicated to the Cloud infrastructure, few efforts deal with
the security of the data before their externalization and more specifically when they are
stored locally in the user machine.

The existent frameworks are mainly based on proprietary solutions called private or
closed solutions. This strategy has always shown its deficiency compared to the standard
solutions in terms of security issues, cost, developer support and customization.

We propose to overpass the proprietary characteristics to focus on standardized solutions.
As illustrated in figure 3.1, 20% of the thesis works focus on the introduction of a
standardized Client Digital Safe. Two main contributions are subject of this chapter to
propose a secure and standardized local storage. Based on the two standard HTML5 and
AFNOR, we enhance first the security of the HTML5 Local Storage APIS. Second, we
introduce the Client Digital Safe which is based on the enhanced HTML5 Local Storage
and which follows the AFNOR specification.

Figure 3.1: Structure of the thesis

This chapter is structured as follows. We highlight, first, the security measures
considered by the local storage solutions. In the second part, we detail the first contribution
which deals with the enhancement of the security of HTML5 Local Storage APIs. In the
third part, we introduce the Client Digital Safe. We end up with the implementation and
the discussion of performances.

3.2 Security measures for Local storage
The majority of existent solutions focuses their efforts on securing the Cloud infrastructure
to guarantee the user data security. In our work, we give as much importance to the
security of the local storage as the security of the Cloud storage. In this section, we present

Mayssa Jemel - 2016 28



CHAPTER 3. CLIENT DIGITAL SAFE BASED ON HTML5

the security measures which should be taken for the local storage.
It is essential to highlight that in this chapter, we focus mainly on applications which

enable the synchronization of user data across his different devices. We do not consider
the case of data sharing between different users as this context will have the full interest
of the chapter 5.

3.2.1 Data encryption

Data confidentiality is one of the main concerns of users who store their sensitive data
locally or externalized to the Cloud. The problem is how they can be sure that their data
cannot be accessed by attackers who have the full access privilege to their machine or
storage server. In this context, we focus on the different security measures taken by web
applications and browsers.

Web application data encryption

In applications that are Cloud oriented data storage, encryption can be integrated into
the different level of the storage process [94].

• First, we find the server-side encryption where the data are stored encrypted in the
storage servers. In this case, the keys are usually user independent and are managed
by the server owner.

• The second level is the data transmission. It is based on the encryption of the
traffic between the client and the server. Some storage applications use merely
the encrypted transmission such as Google Drive [18]. Others combine it with the
server-side encryption, such as Dropbox [23]. In the case of Dropbox, the connection
between the client and the server is secured with SSL/TLS and the uploaded data
are stored in Amazon S3 storage service encrypted with AES-256 [94].

• The last level is the client side. Cloud-based storage services are fighting again the
attacks originating from the servers that host their data. To this end, they are
migrating toward the encryption of their data on the client side before externalizing
them rather than adopting the server-side encryption. The servers store therefore,
the data without any knowledge of their content. In this case, all the elements
related to the security, such as the keys and the encryption functions, are managed
by the client. Among the Cloud storage solutions that follow this strategy, we find
CloudFogger [5] , Amazon S3 with SafeNet integration [16] and Wuala [17].

Browser data encryption

The measures of security taken by the browser are applied on browser data. It covers user
password (stored for autofill in case of authentication to a web application), bookmarks,
history, open tabs, etc. The browser ensures their security when they are stored locally in
the machine (client side encryption) and when synchronized to the Cloud server. Besides
the browser implementation, additional applications (1Password [1], LastPass [13]) can
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be installed to manage and secure the web application password. As shown in the table
3.2, two techniques are adopted by the browser to encrypt their data locally. The first
technique relay on encrypting data with a user independent key, while the second one uses
a master key strongly linked to the user.

Table 3.1 Security features of storage applications

Web App Key management Encryption Data
Integrity

Metadata
protec-
tion

Web Storage application

Wuala PBKDF2

Client side encryption. AES-
256 for blob encryption,
RSA2048 for signature and for
key exchange

HMAC YES

Amazon
with
safeNet

KMIP Client side encryption. AES-
256 for file encryption NO NO

CloudFogger PBKDF2 Client side encryption. AES-
256 for file encryption NO NO

Google
Drive No key management No data encryption. NO NO

Dropbox key management with a user
independent key Server side encryption. SHA-256 NO

Password Manager in Browsers

1Password
PBKDF2-SHA-1 of a chosen
master Password. It stores
password in the Cloud

AES-256 SHA-256 NO

LastPass PBKDF2-SHA256 of the Mail
address and the password. AES-256 NO NO

3.2.2 Key management

Dealing with the data encryption, leads necessary to raise the issue of key management.
As we focus, in this work, on the client side data security, we list the different strategies
that can be adopted by Web storage application and by browsers.

Web application key management

Ensuring the key management and storage by hardware such as TPM [34] stills among
the most secure solutions. However, this technique is related to the used machine as the
key does not leave it. The commonly used techniques are as follows:

• Encryption key can be fixed by the application and stored locally in files on the user
equipment;

• Encryption key can outsourced to be managed by third parties such as via the Key
Management Interoperability Protocol (KMIP) [67];
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Table 3.2 Key management by different browsers

Browser Algorithm Encrypted data Keys storage

Without master key

Firefox Three Key
Triple-DES

Stores encrypted username-password
and plaintext webpage URL in the
SQlite file signons.sqlite

Stores the Triple-DES keys in the
key3.db file

Opera Three key
triple-DES

Stores encrypted username, password
and URL in the Sqlite database Lo-
gin data

the Triple-DES keys are stored in the
SQlite database Login data

chrome Operating
System API

Stores encrypted password, username
and webpase URL in the SQLite
database file Login data

The password is encrypted using the
Windows API functions. No addi-
tional entropy is provided to the Win-
dows API.

IE Operating
System API

Stores encrypted password and en-
crypted username as a value data
under Windows registery

The password is encrypted using the
Windows API functions.

With master key

Firefox SHA-1 Hach of the master key and the global
160 bit salt to obtain the master key

Master key used to encrypt the 3-
DES keys before storing it to the file
key3.db

Opera SHA-1 Hach of the master key and the global
128-bit salt to obtain the master key

Master key and 3DES keys are used
to double encrypt passwords

• Encryption key can be neither stored locally nor outsourced. They are generated
instantly using some user information and passwords.

Browser key management

Regarding the user password, the five most popular browsers, Firefox, Google, Opera,
Internet Explorer and Safari use different strategies (table 3.2). They either store the
encryption keys in files in the user machine (such as key3.db for Firefox, wandet.dat for
Opera) or use operating system functions like CryptoProtectData and CrypUnprotectData
to perform encryption and decryption operations with predefined keys (Google Chrome,
Internet explorer and Safari).

In other cases, the encryption key is not stored neither locally nor externally. It
is generated from a chosen passphrase that must be remembered by the user. Specific
algorithms are defined for this purpose such as the Password-Based key Derivation Function
(PBKDF2) [75] and cryptographic hash functions. The two browsers Firefox and Chrome
use the Master Password as second mechanism to strengthen the password security. Fixed
by the user, it is used to generate the master key which encrypts the encryption key or
double-encrypts the web application password.

3.2.3 Data Integrity

Clearly "Encryption without integrity-checking is all but useless"[50]. In fact, Guaranteeing
the data integrity is being sure that data are not tampered by a third party without the
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user consent. The data modification may be ensured through a malicious application
or directly by accessing the files and the database where data are stored. To avoid the
tampering attacks, Hash Message Authentication Code (HMAC) algorithm can be adopted
such is the case of Wuala [17] or the Secure Hash Algorithm as in 1Password [1] and
Dropbox [63]. Nevertheless, this safety measure is not being taken seriously by all the
applications.

3.2.4 MetaData Integrity

It is not only the data which are concerned by the integrity as it should be even the
case for the metadata. In fact, metadata such as the directory and the filename may
be encrypted to protect the retrieval of their content. According the application data
structure, this strategy avoids metadata tampering [53]. Some application adopts the
metadata protection by encrypting the filename [17].

3.3 Enhancing the security of the HTML5 local
storage

The Local Storage APIs in their current status can not be used as a fundamental basis of
a secure storage of sensitive data. In this section, we start by highlighting the imminent
interest of adding the security level into these APIs. Our enhancements are essential in
general for web applications in different context, and in particular for web applications that
ensure the storage of user data. We detail, in a second part, these security enhancements.

3.3.1 Imperative interest of securing the Local Stor-
age

The Web has faced a revolution triggered by the new improvement of the HTML standard.
With HTML5, innovative features and APIs are introduced to follow the business and user
requirements. The main purpose is to provide the web developer with a vendor-neutral
language that enables the implementation of competing application with lower cost. These
applications are not related neither to the used devices nor to the installed plugins or
software.

Recognizing the importance of the local storage in web application, HTML5 comes
with three APIs that ensure the local data storage. These APIs differ according to the
nature of stored data. Before the HTML5, the local storage is performed using the cookies
or proprietary solutions.

In fact, client side storage [72] relies on storing web application data on the client
equipment rather than the server. Thus, a part of the application code is transferred from
the server to the browser. The HTML5 Local Storage APIs have several advantages:

• With the local storage, web application on offline mode becomes possible. Since all
required data are stored locally, the user can continue interacting with the application
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even when the network connection is off. The HTML5 offline application API [40]
detects the interruption of the connection to switch to the offline mode. The different
URLs of resources which constitute the web application are listed in a manifest file,
and the resources are stored by the browser in the user machine. The HTML5 Local
Storage APIs can be used in this context to store the web application data;

• Local storage provides richer and more interactive user interfaces [121]. It achieves
also better performance and increases the user experience. In fact, storing the
application resources locally adds the velocity into the access and management of
these resources instead of bringing them from a long away;

• The transfer of the data to the client side removes unnecessary message exchanges
between the client and the server. It is possible to use intelligent asynchronous
requests to exchange only small parts of the data [72] [90];

• The server load is improved, and the service availability is increased [114]. In fact, a
part of the code is transferred to the client side and a part of data stored by web
application is distributed between the different users’ devices.

Dealing with the W3C standard and browser APIs implementation, we notice that
stored data are not protected enough and many attacks can risk their availability and
confidentiality. Thus, we focus on the imperative need to assure the security of these
data. However, the security is not the unique trouble. When a user moves from a machine
to another, the data stored in the first used cannot be retrieved. As a consequence, the
data should be synchronized following the user on his different equipments to ensure their
availability. From these three points, security, synchronization and availability, begins our
contribution. As illustrated in figure 3.2:

Figure 3.2: Content protection and data synchronization

• Content protection In a first step, securing the data locally is required. Therefore,
we propose that the browser gives each user his own secure space where data and
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some metadata are stored encrypted and ready for the synchronization. With this
practice, only the user can have a look on his own data and only web application
with the user permission can retrieve it;

• Secure synchronization Second, the data should be synchronized automatically,
instantly and continuously when the user moves from equipment to another. Ensuring
the synchronization means that data will be stored somewhere in the cloud. Thus,
we notice the supreme interest of the first step and ensure the client-side data
protection before the Cloud storage. The Cloud is considered as an encrypted blob
store. Therefore, the storage provider cannot access to these data;

• Availability anywhere After the content protection in client side and data syn-
chronization, the web application can access the data anytime and from any device.
Of course, clients will be reassured that their data are securely stored and securely
synchronized.

To highlight the necessity of data security and availability, we pursue with use cases
which range from the simplest to the most complicated.

• Some websites are based on the HTML5 Local Storage APIs to autofill a user
informations that can be public or confidential. The current browser API imple-
mentation stores this identifier in clear and only in local machine. With the security
enhancement, the user does not worry about the confidentiality of these information
and with the synchronization, information will be filed automatically even when the
user changes the equipment.

• Externalizing files is one of the main services that came with the Cloud Computing.
However, files are not the unique form that represents the user data. Data can be
saved in databases in key/value form. For more complex one, they can be stored in
an indexed database.

• We propose to overpass the typical use of HTML5 Local Storage APIs and use them
for Cloud storage services. For further details, we can take the example of Dropbox.
This application needs to be installed. It dedicates a specific part in the machine
file system, where data are stored locally. With HTML5 Local Storage APIs, no
application installation is required, and the web applications take advantage of the
API already implemented by the browser. Data will be stored encrypted in every
user machine and in the storage server.

3.3.2 Enhancement of the HTML5 Local data storage
APIs

The first contribution of this chapter is the enhancement of the security of the HTML5
Local Storage API. The goal is to make these APIs in line with the Web application
expectations in terms of secure storage.
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Global system structure of the proposed framework

Through the figure 3.3 are presented the different entities of the proposed system, as well
as the interactions between them. The different entities that interact are:

Figure 3.3: System structure for data protection

• The user: In our proposal, the user should, in the first step, introduce his ID and
password to be authenticated by the browser. In the case of the chrome browser and
Firefox, the user is identified by his email address and its corresponding password.
The user is asked also to introduce a Strong Master Password. As we will see later
in details, this password will be used to generate the key of encryption;

• The browser: With security consideration, we propose to alter the browser with
its Local Storage. In fact, the browser is the main program which enables the
user to visit the Web application using its address. The whole HTML5 APIs are
implemented at this level following the W3C specification. In the context of data
storage, the browser is the intermediate engine between the web application and
the storage space in the device. Therefore, It enables the application to manage the
data stored locally;

• The Web application: Implemented using the JavaScript language, the Web
application follows the predefined functions to store or to recover the data stored by
the browser. These functions depend on the nature of managed data and the used
Local Storage API. For security consideration, this management can be achieved
only with user permission;

• The enhanced Local Storage APIs: These APIs are the main concern of our
contribution. The goal is to add a security layer to the stored data. The Local Storage
APIs of HTML5 are mainly the WebStorage, the indexedDB and the FileSystem
API. After the analysis of the security gaps of these APIs, we emphasize the need of
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adding the data confidentiality, the data integrity and the metadata integrity. These
security features are detailed later.

• The secured space: The data stored by the Local Storage APIs can be found in
the file system of the user. They are stored in clear without any integrity verification.
With our security enhancement, we affirm that data are stored secure.

Every user will have his own Strong Master Password (SMP)[122]. Different techniques
can be used to derive the encryption key from a simple passphrase. They differ according
to the strength of the generated key against brute force attacks.

In our system, we rely on the PBKDF2 (formula (3.1)) as a key deviation function
specified in the password-based Cryptography Specification PKCS#5 [75]. The salt
guarantees that different keys generated from the same SMP are strongly independent.
The iteration with a high count is used to secure the data against brute force and dictionary
attacks [122].

Using the DerivedKey, the browser encrypts or decrypts the web application data
regardless the used device. In our case, the user is the unique entity that has the required
elements to generate the encryption key.

DirevedKey = PBKDF2(SMP, Salt, Iteration, kLen) (3.1)

where:
PBKDF2: Password-Based Key Derivation Function 2
SMP: Strong Master Password
Salt: The salt is generated randomly for the derivation.
Iteration: Number of intern iterations for the derivation
kLen: Derivation Key length

The added security features to the HTML5 Local Storage APIs

As defined in the W3C standard, the unique security strategy for the HTML5 Local
Storage APIs is the single Origin Policy (SOP). With this strategy each domain saves its
data in a separated database as it is illustrated in figure 3.4.

Figure 3.4: Management of local storage

We propose to strengthen the HTML5 Local Data Storage security by enforcing a
user dependent security. As it is depicted in figure 3.5, the user is added to the storage
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strategy. In this case, a specific storage space is defined for each subscribed user. This
space guarantees the data confidentiality, data integrity and metadata integrity.

Figure 3.5: User integration in the management of local storage

• Data encryption

Figuratively speaking, the single key to encrypt and decrypt data is the Strong
Master Password (SMP). For this reason, the derived key or the passphrase should
not be saved in plaintext in the user machine.

As we expect to synchronize the HTML5 Local Storage data, this Client Digital Safe
represents a double-edged sword. First, it ensures the security of data when stored
in the user machine. Thus, there is no risk to recover data without the SMP. Second,
it protects data when synchronized and stored in the Cloud as they are externalized
encrypted.

To deal more in detail with the encryption, only the web application data will be
stored encrypted in the file database and not the whole file. This limitation saves
the database global structure and its basic interaction with the browser. In fact,
in case of data storage by the HTML5 APIs, data are encrypted by the browser in
the first step then saved in the appropriate file of the database. The reverse process
is considered in the case of data retrieval. The browser recover the data from the
database file then decrypt it.

• Metadata integrity

In the context of the HTML5 local storage, data encryption is not enough again
the metadata tampering [53] and data recovery. To avoid this kind of attacks, we
propose to encrypt the metadata of database files using the same SMP derived key
previously adopted for data encryption.

In fact, the database, where the web application data are stored, uses the domain as
a part of its files name. The metadata tampering can be achieved following these
steps:

– An attacker can alter the name of the database files related to another domain.
For example in the case of the WebStorage API, it changes the SQlite File
name from domain-D1.sqlite to domain-attacker.sqlite;
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– The browser will consider that the data stored there match to the attacker
domain;

– The domain of the attacker gains accidentally the permission of the user to
manage local data;

– The user introduces his SMP to allow the web application of the attacker to
manage his data. As a consequence, the attacker will have the full access to
the encrypted data of the domain D1.

These attacks are no longer possible with the metadata encryption as the attacker
cannot predict the name of the database files.

• Data Integrity

In the basic implementation of HTML5 Local Storage APIs, any attacker, who has
the full access to the machine, can modify data from the database files. Thus, no
integrity verification is considered. To strengthen this characteristic, a new event
log file is added into the database folder. This guarantees the data integrity by
computing the hash of the database after every data management. Concisely, we
insert, for every event of data management, the timestamp, the domain name that
initiates the event and the cryptographic hash of the database. Data integrity can be
verified by comparing the last stored hash with the newly computed one. The event
log file can be in turn tampered, that is why we chose to encrypt the information
stored there using the user derived key.

3.4 Client Digital Safe based on HTML5 Local
Storage APIs

After providing a secure basis to store data by Web application in the previous section, we
present the conception of the Client Digital Safe in this section, which is the subject of
our second contribution. We start by presenting the major interest of our standardized
Client Digital Safe compared to the existent solutions. We detail in the second part, the
entities and the specifications of our safe.

3.4.1 Motivation of a Client Digital Safe based on HTML5

On the one hand, the HTML5 standard comes with the Local Storage APIs to enable
the storage of data locally in the user device. In the other side, the standard AFNOR
defines the specifications of a Digital Safe. In our contribution, we mix the both standards
in the context of local data storage and we propose a standardized Client Digital Safe
based on the HTML5 API. By choosing our storage solution, the user decides to have the
full control on his data and digital documents. Simple to implement for service providers
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and to use for clients, this digital safe meets the requirements of the digitization and the
communication of all kinds of digital content. In fact, the characteristics of our Client
Digital Safe is as follows:

• It is a standardized Digital Safe solution which meets the AFNOR specification [2]
first, in terms of structure and format, second in terms of provided security services;

• It integrates the interoperability between the standardized Cloud Digital Safe and the
HTML5 Local Storage APIs. In fact, the Cloud Digital Safe takes into account the
requirements of the Digital Safe, the technical characteristics of Cloud Computing
and the specification of the AFNOR standards. Regarding the HTML5 Local Storag
APIs, they provide a client side storage of user data with all its forms;

• It is an alternative service which replaces the commercialized storage solutions and
presents remedies against frequently encountered problems in terms of standardiza-
tion, transparency, mobility efficiency and security.

Standardized structure
The conception of our Digital safe is based on the HTML5 and AFNOR. They are the two
main standards used and merged within our framework:

• HTML5: HTML5 is the first major update to the HTML specification. New features
for multimedia, interactivity, smart forms are introduced. HTML5 still supports all
HTML features describing not only a new version of this specification, but a series
or combination of technologies designed to make the Web much richer and more
attractive to interact with (through the introduction of API).

• AFNOR: The AFNOR standard is used for archiving sensitive documents while
guaranteeing integrity over time. The Digital Safe specifications are published under
the standard NF Z42-020. The main reason behind the adoption of the AFNOR
specification is that it is better to integrate standardized solution than building
customized one.

Transparency
Transparency is one of the important characteristics of an application and a framework.
In this context, transparency means the complete predictability of the application toward
the users. The output of each operation performed on the Client Digital Safe is completely
expected for a particular input. Frameworks adopting standardized solution in general
and HTML5 standard, in particular, have the advantage of preserving the transparency
with the end user and the service provider.

Mobility and portability :
Users are owning multiple devices used in different contexts and goals. Thus, it is tedious
to follow each device requirements when installing any software.
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This is the case of the majority of existent storage solutions. They propose different
versions according to the used device (mobile and desktop), and according to the OS
installed on the device (Linux, MAC, Windows, Android, IOS, etc.). In the context of
mobile devices, the native applications are used. They can be downloaded from application
stores such as App Store and Google Play.

To overpass these difficulties, we propose a client side storage solution which is based
primary on the HTML5 standard. The use of web applications guarantees that all the
service is controlled by the service provider. Therefore, the compatibility issues between
the user terminal and the service provider network are avoided. The benefits of using web
applications include:
- No software installation is required;
- Automatic update without complex procurement process;
- A wide variety of operating systems (OS) is supported;
- Availability on all devices with a compatible Web HTML5 engine.

Efficient traffic exchange :
Dropbox application, when installed locally in the desktop, exchanges permanently data
with the centralized distant storage servers. This exchange is performed in the background
often without the user knowledge. In our case, the user has the full control on the application
and on the traffic. The access to the distant Digital Safe and the synchronization between
the local Digital Safe and the Cloud Digital Safe starts when the user opens the Web
application and authenticates to the service.

The efficiency of ou framework raises with the choice of the communication protocol
between the local and Cloud Digital Safe as well as the structure of the exchanged data.
This is the main focus of the chapter 4.

Security :
To win the trust of the user and boost their confidence, it is essential to give a high priority
to the security of his stored data. Our Client Digital Safe is the image of the Cloud
Digital Safe on the user device. Therefore, this projection conserves the safety rules and
specifications defined on the standardized Cloud Digital Safe. Data are stored encrypted
and externalized encrypted, integrity of data is preserved over the time and metadata
integrity is guaranteed.

3.4.2 Conception of the Client Digital Safe

The concept of a standardized Digital Safe, was introduced in [93]. It follows the AFNOR
specifications[2] which published the specification under the standard NF Z42-020 [30].
Considered as a subset of NF Z42-013, this standard offers the best features of security,
integrity and quality to preserve the user data in a Digital Safe Component. The require-
ment of the Digital Safe is to guarantee the integrity of the stored data over time. It
provides a secure environment for storing sensitive document. This environment full fit
both the user requirements and Cloud security challenges. It is characterized also by its
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probative value as a proof of data storage is stored in a third trusted party.
Our proposed Client Digital Safe accomplishes the standardize characteristic by follow-

ing the AFNOR standard. Therefore, we detail the networking and deployment architecture
of our framework.

Client Digital Safe: networking architecture

Our Client Digital Safe is the image of the Cloud Digital Safe on the user device. Therefore,
it should have the same characteristics and specification of the Safe hosted in the Cloud.
Different from the existent solution, our Client Digital Safe is distinguished by its non-
proprietary character. In fact, it is based on HTML5 Local Storage APIs.

In the figure 3.6, we present the networking architecture of our framework. We start
by presenting the Cloud Digital Safe component, then those of the Client Digital Safe.

Figure 3.6: Networking architecture

The Cloud Digital Safe is composed of three main components, which are:

• Data Storage server: The user data are divided into blocks and stored in servers.
These storage servers should have large scales and many Cloud storage services can
be used such as Amazon S3 [3], Hadoop Distribute File System (HDFS) [54], Google
File System (GFS) [101], etc. Usually, a Cloud storage service should satisfy the data
availability, high reliability, security, fact access to the data, etc. These system should
support, therefore, data distribution, SLA matching, Quality of service, authority
assignment, audit, certification and access control;

• Metadata Storage server: Each file has his metadata which can be classified into
three kinds:
- Technical metadata: information related to the object representation, integrity
information, and identification informations;
- Management metadata: describing the rule that constitutes the descriptive metadata,
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the service level that involves the availability and security, the rules of accessibility
to the objects and the duration beyond which the data are eliminated or conserved
for eternity;
- Descriptive metadata: includes the descriptive informations of each object. It
implies sustainability informations like objects origin, object description, date, key
words, etc. These data follows a model defined in the management metadata.

A metadata in the case of a Digital Safe is an XML file that lists the different file
information. These XML files are kept stored separated from the file blocs in a server
managed by the Digital Safe service provider;

• Proof Manager: It is a trusted third party Proof Manager that preserves the
proof of data storage. The proof consists on metadata signed by the owner using
his private key. This proof guarantees the non-repudiation and adds the probative
values into the storage. Therefore, it can be used in case of litigation.

Three kind of information are managed by the Cloud Digital Safe which are: the
metadata, the data and the proof of storage. These information are stored respectively in
the Metatada storage server, Data storage servers and Proof manager. Nevertheless, the
HTML5 Storage APIs as defined by the W3C standard can not be used in the context
of the Digital Safe. That is why, additional features should be considered by these APIs.
These APIs should be used to store :

• the metadata following the structure of those stored in the Cloud Digital Safe;

• the data following the AFNOR specification. In the context of the Digital Safe, the
data of the user are stored in a file system with a set of directories and files. Thus,
we focus of the HTML5 FileSystem API among the whole Local Storage APIs ;

• the proof of the storage to be send then to the Proof manager. In our case, a part of
the proof will be considered as the record of the different operations performed on
the client Digital Safe in a log file.

Client Digital Safe: deployment architecture

The deployment architecture is created by mapping the logical functional blocks of the
Digital Safe to a physical environment in order to respect the requirement of the networking
architecture and the Digital Safe specification. As depicted in figure 3.7, in the deployment
architecture, we add the following entities at the application level:

• The synchronization API: It ensures the communication between the Client and
Digital Safe to synchronize their data content. This API has the full access to the
stored data and their metadata and to the log file where stored the storage proofs.
The synchronization protocol is detailed in the chapter 4;
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Figure 3.7: Deployment architecture

Table 3.3 functions of the Digital Safe
Function Description

Function for one Digital Object

Deposit This function aims to insert a Digital Object into the Digital Safe Component
after checking the rules of the user and his legitimacy to perform this action.

Read This function aims to obtain a complete copy of one Digital Object that are
already stored in the Digital Safe Component.

Drop
This function aims to make inaccessible of one Digital Object already stored
in the Digital Safe Component. All records in the log related to this Digital
Object are not affected by the destruction.

Read Metadata This function is designed to obtain the technical metadata associated to one
Digital Object already stored in the Digital Safe Component.

Control

This function is used to verify the existence and integrity of one Digital
Object already stored in the Digital Safe Component. The verification
concerns the existence of the Digital Object and its non-alteration since the
insertion into the Digital Safe Component.
Function for one or multiple Digital Objects

Read log
This function is used to get all the information stored on the log file associated
to a Digital Object preserved or has been preserved in the Digital Safe
Component.

List This function aims to obtain a list of unique identifiers associated of the
different Digital Objects stored in the Digital Safe Component.

Count This function is designed to get the number of the Digital Objects stored in
the Digital Safe Component.

• The Digital Safe API: To manage the Digital Object, the client can use a set
of functions. These functions are described by the standard AFNOR NF Z42-020.
To be conform to the standard, the Digital Safe Component must implement these
functions. An exhaustive list of these actions with there detailed description is shown
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in the table 3.3. Of course, before any execution by the system, it is crucial to verify
that the user has the right to execute the action according to his profile, and the
access control policy.

At the level of this API starts the conception of the Client Digital Safe. It defines
the different specification of the safe following the AFNOR standard. This API
ensures the interoperability between the HTML5 Local Storage APIs and the Cloud
Digital Safe. It is added at the Web application level and it is managed by the
service provider. The specifications of the Local Storage APIs focus on the three
HTML5 API: fileSystem API, IndexedDB API and WebStorage API.

In the table 3.4, we compare the specifications of the AFNOR standard and the
specifications of the HTML5 Local Storage API as defined by W3C. We can say
that the Local Storage APIs as they are defined cannot be used in the context
of the Digital Safe. In fact, a part of the Digital Safe methods are managed by
the HTML5 APIs and another part is not taken into consideration such as Read
Metadata, Control and Read log functions (pointed by the X symbol in the table
3.4).

• Deposit: The deposit function is provided by the different HTML5 Local
Storage APIs. The user can therefore, store files locally in appropriate directories
using a virtual file system. He can also store data as either in key/values format
or in an indexed database;

• Read: The data retrieval is ensured by the different HTML5 Local Storage
APIs;

• Drop: The removal of the data stored locally under all its forms is guaranteed
by the different HTML5 Local Storage APIs ;

• Read Metadata: The metadata retrieval is related only to the FileSystem API.
Neither the WebStorage API nor the Indexeddb API are concerned. However,
the format of files and directories metadata is completely different from the
one defined in the Cloud Digital Safe. With getMetadata method, the web
application can retrieve few information on the file such as its size and its last
modification time. Regarding the standardized Cloud Digital Safe, it stores
the metadata of one file in a separated XML file following the standardized
Metadata Format of Dublin Core [27]. Bellow, in figure 3.8, an example of a file
metadata as should be stored in the Digital Safe. In this example, the metadata
are sorted into four main categories: information related to the file, information
related to the storage, information about the access control policies and finally
information about the synchronization which will be the focus of chapter 5;

Remedies: As the data management is ensured at the Digital Safe API, we
decide to add the construction of the metadata following the standard at this
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Table 3.4 comparison between NF Z42-020 and HTML5 Filesystem API specifications
Specification in the standard NF Z42-020 Specification in the W3C of Local Storage APIs

Deposit

- dirEntry.getDirectory (path, create:true, opt_success
Callback, opt_errorCallback);
- fileEntry.createWriter(successCallback, opt_ errorCall-
back);
- put(Index, value);
- localStorage.setitem(key, value)

Read - fileEntry.file(successCallback, opt_ errorCallback);
- get(Index);
- localStorage.getItem(key);
- localStorage.key(n)

Drop
- fileEntry.remove(successCallback, opt_errorCallback);
- dirEntry.removeRecursively(successCallback, opt_ er-
rorCallback);
- delete();
- clear();
- localStorage.removeItem(key);
- localStorage.clear()

Read Metadata fileEntry.getMetadata;
X
X

Control X
Read Log X

List - dirEntry.createReader.readEntries(successCallback,
opt_errorCallback);
- get(Index);
- localStorage.getItem(key);
- localStorage.key(n)

Count - dirEntry.createReader.readEntries(successCallback,
opt_errorCallback);
- get(Index);
- localStorage.getItem(key);
- localStorage.key(n)

level. To add this metadata file, we chose to add for each created file an adjacent
one where the metadata information are stored. The title of this file is the
concatenation of the created file name with the string "_metadata.xml". The
management of the metadata will, therefore, be done automatically according
to the performed operation.

• Control: The verification of the integrity of the files is not considered by the
Filesystem API. This function gives the user the possibility to control if the
objects stored in the Digital Safe still in their original version without being
altered by an intruder. This intruder can be either a user who has the access
to the machine and to change the database file of the APIs or a malicious web
application.

Remedies: We have already enhanced the HTML5 Local Storage in the
previous section where the data integrity remains essential, The integrity
verification, in this case, is integrated into the Local Storage APIs;

• Read log: The log file is not integrated into the conception of the FileSystem
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API. In fact this file allows to keep traces of the different operation performed
on the Client Digital Safe.

Remedies: We choose to use the WebStorage API to store the historic of
operations performed on the client side ;

• List and Count: No direct instruction is provided by HTML5 APIs to retrieve
the list and the number of the stored data.

Remedies: The Local Storage APIs instruction which ensure the retrieval of
data, should be used in a loop while used in the Digital Safe API to detect
both the list of existent files and their number;

Figure 3.8: File metadata in the Digtal Safe

• The Enhanced Local Storage APIs: These APIs match to the enhancements
made to the basic Local Storage APIs with the following security considerations:
data confidentiality, data integrity and metadata integrity. These enhancements are
subject of the first contribution of this chapter.

The Digital Object managed by the Client Digital Safe should be limited to files
and directories. This fits exactly to the kind of objects managed by the HTML5
FileSystem API.

Mayssa Jemel - 2016 46



CHAPTER 3. CLIENT DIGITAL SAFE BASED ON HTML5

• The WebStorage APIs: It is important, first, to add a log file where the slightest
modification to the Client Digital Safe is kept there. Second, the Safe owner should
be able to access the log information. For the creation of the log file, we will use
the WebStorage API. The historic will be therefor stored in this file. For each
modification made on the Digital Safe, we capture the timestamp, the nature of the
action and the object concerned by the action. The historic of the operations will
be used later for data synchronization. It will be maintained for a period of time
imposed by the server provider.

3.5 Implementation and evaluation
The objective of our work is to propose a standardized Client Digital Safe based on HTML5.
To achieve this goal, both contributions are the subject of this chapter. In the first one,
we enhance the security of HTML5 Locla Storage APIs. Our enhanced APIs are the basis
of the second contribution where we propose to follow the standard specifications for the
conception of our Client Digital Safe.

After the conception comes the implementation step. As a proof of concept, we
implemented our enhancement of the Local Data Storage APIs and our Local Digital Safe
in the Chromium browser. Chromium is chosen, among the existent browsers, because first
it is the open source behind the most used browser Google Chrome. Second, it supports the
local storage HTML5 APIs. Our contribution can be performed on any browser. However,
the purpose of this implementation is to prove the feasibility of our approach.

This browser is installed on a virtual machine with dual 3.5 GHz processors and 5 GB
of memory running in a 64 bit Windows 7 OS.

3.5.1 Data protection into the Chromium browser

Among the Local Storage APIs, we focus in this part on the WebStorage API. In our case,
no modifications are involved into the conception of the Local Storage APIs. The idea is
to add new functionalities to enhance the security management of stored data by being
fully compliant with the standard. The changes brought to the browser code have affected
three files of Chromium which are:
- "/content/renderer/dom_storage/webstoragearea_impl.cc"
- "/content/browser/dom_storage/dom_storage_database.cc"
- "/content/browser/dom_storage/dom_storage_area.cc"

We present in figure 3.9 an architectural overview of the Chromium browser part which
ensures the WebStorage API functionalities. In addition, we highlight the enhancement
introduced into this browser by adding our main security elements (red blocs) which are:
the data encryption, the metadata and the data integrity.

The architecture of the WebStorage API enhancement (figure 3.9) is composed of four
main elements:
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Figure 3.9: Chromium DomStorage Architecture with the HTML5 data protection

• Browser engine: It is the main process and it gathers all the user interface and I/O.
It is the engine that stores and recovers the API data in the SQLite database. As
explained in the chapter 2, the SQLite databases of the different domains are separated
using the domain name in the database name. In the "dom_storage_database.cc"
file to guarantee the metadata integrity, we choose to create the database with a
name that matches to the encryption of the domain using the key derived from the
SMP. In addition, after each modification, we compute the hash of the database
content and we store it in the Integrity file. In case of access to the database, the
current hash is compared to the last stored. In fact, this verification reassures that
no modification was performed directly from the user filesystem and that the data
managed was achieved from the web application. These enhancement are ensured at
the "dom_storage/dom_storage_database.cc" file.

• Renderer engine: It stores a copy of WebStorage API data collected from the Webkit
directly in the DomStorage cached Area. This cached area is intended to be used in
the renderer processes. It contains a complete cache of the stored data for fast access.
To secure the data, we add the data encryption in the renderer engine. Thereby,
encryption occurs before data storage in the DomStorage Cached area with the
SetItem function. Regarding the decryption of data, it happens when the GetItem
function is called in the renderer.

• Webkit: It consists primary of the webcore that represents the core layout function-
ality and the JavascriptCore that runs JavaScript. No modifications are attributed
at this level.

• Common: Shared between the browser and the renderer. It ensures their communic-
ation through Inter-process Communication (IPC). No one modification has been
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made in this entity.

3.5.2 Integration of the Client Digital Safe into the
Chromium browser

As we have detailed previously in the deployment architecture, the Client Digital Safe
concerns mainly the FileSystem API. The implementation of our Client Digital Safe
concerns two parts, the chromium browser to enhance the security of the FileSystem
API and the Web application where the Digital Safe specifications are implemented.
Therefore, as depicted in figure 3.10, we focus on the Chromium components that ensure
the management of the virtual file system. We focus also on the web application to
implement the Digital Safe API. Our contribution and implementation are highlighted in
figure 3.10 by the red blocks.

Implementation at the browser level

This architecture of the browser is structured as follow:

• Webkit: The main code of the FileSystem API is hosted in the Webkit. In fact, the
virtual file system with its data base files are created at this level. This component
receives the Javascript code to interpret it. It sends then the messages of the
FileSystem API into the browser engine and more specifically the FileSystem bloc;

• Browser engine (FileSystem bloc): This engine receives the messages related to the
FileSystem API. It filters them and executes the matched actions on the virtual file
system. The main file that handles the FileSystem operations is "content/browser-
/fileapi/fileapi_message_filter.cc". It is at this level that we integrate the main
Digital Safe requirements. Thus, we add:

- the encryption of the files before their storage in the Client Digital Safe;

- the verification of the file integrity. As the hash of the file are computed in integrity
file, this function verifies that the hash of the current file remains the same as stored
previously. In case of modification, the hash is updated;

- the encryption of the file name to guarantee the metadata integrity.

Implementation at the Web application level

Following the deployment architecture, we add a new Digital Safe API based on Javascript.
At this level, we find the different functions that match to each specification of the standard.

These function are called from the main web application code to manage the different
files and directories stored in the Client Digital Safe.

As we detailed in the Client Digital Safe conception, some of these functions are already
supported by the FileSystem API. Therefore, a simple call with the appropriate attributes
is performed. When the function is not ensured by the HTML5 API, we define new one.
It is the case of the following functions:
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Figure 3.10: The Client Digital Safe implementation

• DigitalSafe.Deposit(file_name, Path): In addition to the creation of the file using
the FileSystem API, we add the creation of the metadata following the structure
defined in the Digital Safe. We add also the action in the log file;

• DigitalSafe.ReadMetadata(file_name): This function reads the metadata of each
stored file;

• DigitalSafe.ReadLog(): This function displays the log file content to the user.

3.5.3 Results and performances discussion

For performance evaluations, we compare the time needed to achieve the data management
of our solution with the Webstorage API and Dojox toolkit [7]. In fact, Dojox proposes
a secure client side storage by setting a passphrase used for encryption. However, this
technology does not ensure neither data integrity nor metadata integrity. Therefore, we
implement three HTML5 applications that store the same data amount using respectively
the basic WebStorage API, the secured WebStorage API and the secured Dojox storage
toolkit.

• The first application stores the data using the basic WebStorage API as defined by
the W3C standard;

• The second application stores the data using our enhanced WebStorage API with
the security considerations (data encryption, data and metadata integrity);
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• The third application stores the data using the Dojox Storage. Dojo toolkit [7]
is an open source modular JavaScript library created to make the development of
cross-platform, Ajax-based applications and websites easier and quicker. It proposes
a new syntax, to store data encrypted in the browser.

Figure 3.11: Performance evaluation of the SetItem operation

Figure 3.12: Performance evaluation of the GetItem operation

To analyze the performances, we capture the time needed to achieve two of the main
CRUD (Create Read Update Delete) operations: reading and writing. In fact, the Update
operation gives the same results of the Create operation, and the Delete operation gives
the same results for the three different applications.

We repeat the operations around forty times to have distinct final results. The figures
3.11 and 3.12 expose respectively the computation time when setting and getting data.
The axis of X and Y match respectively to the data size in bytes and the time of operation
execution in Milliseconds.
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Compared to the Dojox’s solution, our secured WebStorage API exhibits better per-
formances with a very low operation achievement time. Ensuring the confidentiality and
integrity of data stored by the HTML5 WebStorage API comes at a weak cost. As we
can notice, operation execution time when data are secured is higher than the operation
execution time of the basic WebStorage API.

The performance degradation is explained by the fact that addition preprocessing
is applied on data. However, in our case, it stills slightly higher if we compare it with
Dojox Storage Toolkit. In front of the full data protection interest, the minor performance
degradation can be tolerable.

3.6 Conclusion
The HTML5 Local Storage APIs have proven their ability to improve the web application
performances and the quality of experience while giving up the imperative need to focus
on the data security and availability.

In this chapter, we mix the HTML5 standard and the Digital Safe standard to propose
a standardized Client Digital Safe. In the first part, we present the security measures
which should be guaranteed by the local storage. In the second, we give the security gaps
of the Local Storage APIs and we enhance their security. After the security enhancement,
these APIs are used, in the third part, to define the Client Digital Safe.

We implement the enhanced Local Storage APIs and the Client Digital Safe. Imple-
menting our proposition in the Chromium browser and evaluating performance prove that
adding the data protection into the Local Storage APIs is crucial and efficient. In next
chapter, we focus on the protocol that ensures the synchronization between the Client
Digital Safe and the Cloud Digital Safe.
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Chapter 4

SyncDS: A Digital Safe Based
File Synchronization Approach
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4.1. INTRODUCTION

4.1 Introduction
One of the main concerns of Cloud storage solutions is to offer the availability to the end
user. Thus, addressing the mobility needs and devices variety have emerged as major
challenges. At first, data should be synchronized automatically and continuously when
the user moves from one equipment to another. Secondly, the Cloud service should offer
to owners the possibility to share data with specific users.

While the client Digital Safe is the main concern of the previous chapter, in this chapter,
we propose a secure framework and protocol called SyncDS (Synchronization of file in the
context of Digital Safe) that ensure file synchronization between the Client and Cloud
Digital Safes with high quality and minimal resource consumption. As shown in figure 4.1,
this contribution represents 30% of the thesis works.

Figure 4.1: Structure of the thesis

The chapter is organized as follows. The second section surveys synchronization
protocols. The third section deals with our SyncDS protocol and its architecture. The
section four focuses on efficiency of the protocol and more precisely on the strategy of
changes detection between two versions of file systems located in different devices. We
highlight in section five the adoption of the SyncDS protocol in the context of Peer-to-Peer.
The last two sections address the implementation and the analysis of our protocol SyncDS.

4.2 Synchronization protocol: principle and
requirements

4.2.1 Overview on synchronization protocols

Different strategies can be adopted to ensure data availability facing the user mobility and
devices variety. As shown in figure 4.2, these strategies can be classified into two principal
categories: centralized and decentralized strategies and each one can be, in turn, sorted
into replication and distribution.
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Figure 4.2: Centralized-replication and Decentralized-distribution strategies

• Centralized strategy: This strategy relies on centralizing the entire data. There-
fore, they are completely externalized and stored in appropriate servers. Two cases
exist. In the first one, data are stored only in the servers. When a peer needs any
information, it retrieves the data directly from the storage server [93]. In this case,
a continuous connection should be available to manage the data. In the second case,
a copy of user data is stored in his machine too. Thus, the user can manage his data
when he is offline and a continuous synchronization is performed when he is online.

• Decentralized strategy: The privacy offered by popular Cloud file synchronization
and replication services is becoming the concern of the press. In fact, some services
have recently been reported as sharing information with governmental security
agencies without warrants [69]. To overcome these deficiencies, synchronization
solutions are migrating to completely decentralized services using P2P protocols.
Data are, therefore, stored in personal devices without the need of third parties.
Besides the security, these measures rely on the user devices without a need to pay
for external storage solutions.

• Replication: In case of replication, data are completely synchronized. Any modi-
fication that occurs in one device should be applied to the rest of user devices.
As a result, the full data are present in every device. This replication can either
be completely decentralized based on the P2P network such as bittorrent sync
[69], SuperNova [103], PeerSoN [55] or can rely on third parties that manage the
synchronization [73] such as Google drive and Dropbox.

• Distribution: Regarding the distribution, each device holds a portion of data. The
responsibility is load balanced between the different devices [99]. The distribution
respects the low storage memory of devices and adds the efficiency to the data access.

4.2.2 Efficient Synchronization protocol requirements

Remote synchronization has been the subject of significant works that depend on the
purpose of the software and the nature of objects to synchronize. In fact, object can be
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personal data, and information stored either in structured databases or in files and folders.
Among the most known synchronization protocols for personal information, we find Palm
Hotsync , Intellisync and CPISync [107]. These solutions are basically used for PDA and
mobile devices. However, they do not consider the problems of distributed services based
on Cloud and Grid environment. To follow the technological evolutions and the consumer
demands, new protocols are proposed.
In the context of file synchronization, the protocol has to provide four main key properties
that should be respected in order to guarantee an efficient bandwidth, the fastest data
exchange and an effective computation [95] [84] [44] [115] [117]:

• Property 1: Low computation of the data and metadata at the client side. This
property adds the scalability and enables simultaneous synchronization.

• Property 2: Efficient change detection between the file system versions of the client
and the server. The goal is to reduce the time of the changes detection and therefore,
the time of whole synchronization.

• property 3: Reducing the number of synchronized files by finding the maximum
number of matched content.

• Property 4: Reducing the messages exchanged between the client and the server.

4.2.3 Sub-protocol of the synchronization protocol

To define a new synchronization file protocol, it is essential to specify the stack of sub-
protocols where each one ensures a specific functionality [51] [84]. These sub-protocols
are: identities, objects, network, routing, conflict resolution, change and exchange.

Identity and object:

This sub-protocol defines how the devices, users, and objects are identified in the architec-
ture of synchronization.

• The user identification: Each user subscribed to the synchronization solution
is identified by a unique identifier which can be his mail address, a pseudonym, a
random number, etc.

• The data identification: Data are stored in a container or a namespace which
has a unique identifier too. Thus, these data are identified by their path in the user
file system as well as the identifier of the space where they are stored. In addition,
when the file is partitioned into blocks, each block is identified by its hash [108] [95].
Additional identifiers can be added for data synchronization purpose such as in the
case of BittorentSync where the root folder of the user is identified by the SharedID.
This key is requested by one device to be concerned by the data synchronization.
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• The device identification: The device of the user is identified by a unique identifier
to allow the synchronization between the different user devices. It can be based on
the hash of the user certificate (the case of IPFS [51] and SyncThing [36]) or the
name of the used device (case of DropBox and BittorentSync).

network:

It identifies the different networking protocols used to ensure the communication between
the client and the server or between nodes in the case of peer to peer file synchronization.

Choosing the best protocol for the data exchange is very important for the synchroniz-
ation protocol efficiency. In fact, it is crucial to reduce the amount and size of messages
exchanged between both end points. There is two kinds of communications in the case of
file synchronization:

• a channel to ensure the exchange of the data between the nodes.

• a channel to notify the devices concerned by the synchronization. The objective
is to alert these devices that changes occurred and that they need to update their
content.

Various networking protocols and architectures are used including both the notification
and data transfer. As example, Dropbox [63] uses the HTTPS for the data transfer and
the long HTTP polling for the notification. Regarding Google Chrome synchronization,
the data transfer is also based on HTTPS and the notification exploits an existing XMPP-
based Google Talk server [4]. Rest API is also used to ensure data replication in multiple
solutions such as CouchDB [47]. Indeed, Representational State Transfer (REST) is an
architecture that generally runs over HTTP.

In the Peer-to-Peer synchronization solutions, we find for example, BittorentSync [69]
which uses the libutp for data transport. The uTP protocol was developed by Bittorent to
replace TCP. We find also the solution SyncThing [36] which defines the Block Exchange
protocol (BEP) deployed in the highest level on the protocols stack and the Device
Discovery Protocol (DDP) used before the synchronization for nodes discovery.

Routing:

It includes information about the connected nodes, their content and the log of the syn-
chronization. Several solutions are adopted, and they depend mainly on the synchronization
strategy: centralized or decentralized.

These information can be stored in the server side. In the case of Dropbox a Server
File Journal (SFJ) is adopted. It is a big metadata database which contains the blocklist
(hash of file) without the file content. The journal is an append-only record. Each row in
this file matches to the version of the namespace updates, and the keys of the rows are:
Namespace Id, Namespace relative Path, blocklist, journalID. To have an idea about the
different user device, a centralized list of devices linked to the user account is performed.
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It contains the IP address, the country where the device is connected and the approximate
time of most recent activity.

In the decentralized synchronization, information can be exchanged directly between
the nodes and others require to be saved on servers. After the establishment of the
connection in Syncthing [36], both peers send an Index message. This message contains
the name of the folder the number of files, their names and the hashes of file blocs. These
messages help both peers to recompute their knowledge of the data that exist in the cluster
of user devices. A global Discovery server is also used. The purpose is to provide the IP
address of other user peers in the same cluster.

Bittorent sync uses a Tracker server. In this server, several information about the
peers are centralized. To synchronize the folder identified by the ShraedID, a peer sends
a discovery message to the Tracker server. Therefore, the server sends back the list of
other peers that share this folder with their deviceID, IP address and port number. The
particularity of Bittorent Sync is that the synchronization is performed across multiple
devices using distributed technology.

Exchange:

At this level, different steps of the synchronization protocol are defined. The exchange
depends chiefly on the synchronization architecture (centralized or decentralized) as well
as the entities adopted in the architecture.

In fact, in a centralized architecture, the synchronization between two nodes passes
through a third server. Changes performed on the client side are transferred to the
centralized server which transfers them later into the legitimate devices.

In the context of decentralized architecture, the signalization passes through a third
server, and the data transfer is ensured directly between nodes. It is essential to find the
following steps [36] [69] :
- The node retrieves information about the other nodes. These information are stored in a
centralized server or exchanged between the peers.
- Once the nodes are discovered, the push and retrieve of files is similar to the centralized
solutions.

Conflict mechanisms

As the user is using many devices, new versions of the same local file upload can occur
from the different devices at the same time. This can probably lead to a conflict. The
conflict is considered when we need to update a specific file with a new operation and we
find that other operations have already been considered. In our context, we focus mainly
on synchronization of files which accept simultaneous access and a single write at the same
time. Two main approaches are adopted to solve the problem of conflict in our case:

• Saving the original file and creating a second version with the same name followed
by the device and the date of conflict. These both versions are synchronized across
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the devices and the owner decides, when he wants, the version to keep and the one
to remove.

• Identifying the nature of conflict and raising a alert to the user who should decide
immediately which version he wants to keep and synchronize. The protocol SyncView
[115] uses only the timestamp of the file modification in different devices to detect
a conflict. However, this approach may miss update information in case of offline
updates. To overcome this deficiency, the synchronization protocol Synccs [84]
specifies that a file conflict can be caused by four categories of operation: create,
modify, delete and rename. Thus, six kinds of conflict are highlighted: file name
(creating a file with a name that already exists), modify-delete (the local operation
tries to delete an already modified file), modify-modify, delete-modify, rename-delete,
rename-rename.

Changes detection:

This sub-protocol detects the changes that occur in one device and which part of the file
system should be sent to have the same objects in different nodes. Different algorithms of
changes detection was proposed depending on the purpose of the software and the nature
of objects to synchronize.

In the context of file synchronization over the network, the proposed algorithms, as
depicted in figures 4.3, 4.4 and 4.5, can be classified into three main approaches. We
consider that the node A intends to send the changes performed on its file system to the
node B.
Otherwise, the change detection can use operating system modules such as Inotify on Linux

Figure 4.3: Operation approach

or FSEvents API on Mac OS X. It is obvious then that the synchronization application
will depend heavily on the operating system.

- Operation Approach (figure 4.3):
This approach is based on recording the different operations performed on the node

A and sending them to the remote node B [115]. These operations are sent to the node
B to update its replica. However, storing the operation is a consumption of the storage
memory, unless a log merging is adopted such as the case in [84].
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- Changes Approach (figure 4.4):

Figure 4.4: Changes approach

The main idea behind this approach is to save a copy of the last synchronized file
system version (i.e. just before being offline). After a series of modifications and when
the user becomes online, the old copy and the new version are compared. The different
actions performed offline are therefore detected and sent to the remote node B. Unison
[52] is one of the algorithms that adopts this approach. In fact, it is a bidirectional
synchronization algorithm which detects updates on both sides based on the comparison
of the archive and the file system. It applies then the updates based on the recursive
multi-round synchronization protocol.
This approach proved its worth. However, it needs additional storage space for archiving
the file system. In addition, there is a lack of automatic detection since it must be triggered
periodically.

- Differencing Approach (figure 4.5):

Figure 4.5: Differencing approach

The majority of proposed algorithms focuses mainly on detecting the changed bloc
within one file. The Rsync [108] is the most used algorithm in the existing solutions. It is
a single round protocol that splits the file into chunks with the same size. It computes
for each chunk two checksums (MD5 hash and rolling hash). It sends these checksums to
the server which compares them with its version and asks the missing blocks. Research

Mayssa Jemel - 2016 60



CHAPTER 4. SYNCDS: A DIGITAL SAFE BASED FILE SYNCHRONIZATION
APPROACH

works are making effort to enhance it by integrating additional paradigms such as the
divide and coquer [105] and the content defined chunks [43]. In addition, we find the set
reconciliation algorithm [92]. It is based on finding data that are in the intersection and
union of two files with the minimum amount of communication. This protocol is based on
characteristic polynomials. Taper [95] follows also the differencing approach. It is a tiered
approach based on four phases where each phase moves from a larger to a finer matching
granularity. The master sends a tree structure Hierarchical Hash Tree that contains the
hash of the different directories and files of the file system. The main goal is to find the
changed part of files. The phases of Taper are ordered as follows: directory matching,
chunks matching, blocks matching, bytes matching.

In this approach, the node A sends an abstract of its files and directories to the remote
node. This abstract usually includes some metadata of files. In the case of dropbox [63],
the metadata contains the object path, object type (files or directories) and the hashs of
4Mb file blocks. In the case of Rsync [108], it sends the hash of file blocks, and Taper
[95] sends the Hierarchical Hash Tree, the hash of file chunks and the hash of file blocks.
The node B, therefore, compares its abstract with the one received from A to detect the
changes. It applies the changes and it asks A to send back missing blocks of files.

This approach cannot guaranty an automatic synchronization and sending periodically
the abstract leads to an inefficient bandwidth usage. In this case, even the structure of
the abstract should be well chosen to guaranty a fast matching at the target.

The existent solutions focus on detection the changed blocks of files. However, in a
whole synchronization protocol, we need to detect the changes which occur within the
whole file system with its directories and files. Therefore, we focus on different strategies
used to detect changes between two structured data.

4.2.4 Detecting changes in file systems

Adopting the differencing approach leads to focus on detecting the changes between the
abstract sent by node A and the abstract of the node B. In the case of data synchronization,
the abstract consists on a part of the file system metadata. Speaking in terms of graph
theory, a file system can be modeled as a tree structure. Therefore, the metadata of a
file system can be organized to be modeled as a tree structure. The tree is a rooted and
ordered graph built on nodes interconnected with a parent-child relationship. In the file
system context, a node that having no parent is called a root. It is the main directory of
our file system. However, the nodes having no child are the leafs which matches to the
files. Nodes in between are called inner nodes. They represent the different directories of
the file system.

Many works are focusing on general problems of detecting changes between documents,
mostly flat files. For example, Unix diff is one of the most popular change detection
utilities that use the Longest Common Subsequence (LCS) algorithm to compare two
files. We find also the Concurrent Versions System (CVS) which uses the diff algorithm to
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show the differences between different revisions of a given program. However, these two
solutions cannot be generalized as they do not understand the all structure of the data.
Later, structured document differencing algorithms were proposed to fit the requirement
of structured data for Latex and nested-object documents such as LaDiff [60] and MH-Diff
[59] algorithm. Algorithms are proposed also for XML documents such as diffX [45]. It
is based on the bottom-up mapping and the DOM-hash to reduce the size of the trees
to compare. Our change detection algorithm, which will be detailed in section ?? is
inspired from the diffX [45] algorithm, first because it proved its worth in change detection
compared to the other solutions related to structured documents. Second, it is based on
the tree structure considering a structure similar to the Hierarchical Hash Tree.

Using the Hierarchical Hash Tree (HHT), each node of the tree is identified by a hash.
For files, this hash matches to the file content hash. For directories, the hash is based
on the hashes of directory content. In Taper [68], the HHT was basically used to detect
the changed blocks of files. However, in our proposal, the HHT is introduced to detect
the changes that occurred in the whole file system. These changes are basically modify,
move, create, rename and delete operations applied on files or directories. The HHT will
be explained in details in section 4.4.

4.3 SyncDS synchronization protocols

4.3.1 Overall SyncDS architecture

The goal of our framework is to ensure a secure data synchronization between a Client
Digital Safe and a Cloud Digital Safe while considering the probative value. As a first
step, we need to define the architecture as well as the messages exchanged between its
different entities. The SyncDS architecture is divided into four main layers, which are

Figure 4.6: Digital Safe Synchronization Architecture
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from top to bottom of figure 4.6:

• Client storage layer: The data are stored securely in a Client Digital Safe. The
client side storage is based on the HTML5 Local Storage API with additional
security considerations to follow the Digital Safe requirements. The conception and
the implementation of a Client Digital Safe was detailed in the chapter 3.

• Application layer: This part includes the web application with the different
used APIs such as the Synchronization API. This API is introduced into the web
application to detect the user operations on the Client Digital Safe and record them.
It manages then the data synchronization between the Client Digital Safe and the
Cloud Digital Safe in the application side.

• Synchronization control layer: This server is responsible of managing the syn-
chronization. Therefore, it handles the different synchronization requests and re-
sponses as well as the conflict resolution. It also notifies the devices concerned by the
modification to propagate the changes. The concerned devices can be those owned
by the main user or those that share the modified file. In our architecture and for
great performances, we choose the Websocket protocol to ensure the bidirectional
communication between the local and remote Digital Safe.

One of the main challenges that face the synchronization service provider is to set up
a synchronization architecture without a single point of failure. Their first concern
is to provide a continuously service. To address this problem it is essential to build
the redundancy into the synchronization servers and to adopt the load balancing.

• Cloud storage layer: As introduced in [93], it is a standardized architecture that
provides a secure environment for storing sensitive document. This environment full
fit both the user requirements and Cloud security challenges. Going into further
details, this Cloud Digital Safe is composed of three main components.
- First, the metadata server stores the metadata generated for each stored file. A
metadata is an XML file that stores information about its file. We find information
related to the file, information related to the storage, information about the access
control policies and finally information about the synchronization.
- Second, the Storage servers with large scales store the blocs of files. Data replication
is guaranteed by these servers to ensure the data availability.
- Finally, the third party Proof Manager preserves the proof of data storage and
guarantees the non-repudiation. The proof consists on the metadata signed by the
owner using his private key.

4.3.2 SyncDS sub-protocols

Dealing with the SyncDS sub-prototols leads to give first an overview on the identity
and network synchronization sub-protocols. Second, it is essential to detail the exchange,
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change detection and conflict resolution.

Identity

An object, file or directory, is identified by its name preceded by its path. This identifier
is unique as two objects cannot have the same name if located in the same directory. The
user is identified by its mail address as it is unique and his certificate. The device is
identified by the device name followed by the used operating system.

Network

As we defined previously, two kinds of communication should be ensured. The first one for
the notification and the second one to exchange synchronization messages between the
client and the server. In our case, we adopt the WebSocket protocol for both types of
communication.

• Data exchange: The WebSocket is used to ensure the exchange of synchronization
messages between the user device on one side and the synchronization Manager, the
storage servers and the Proof Manager on the other side. Therefore, it is proven that
WebSocket reduces unnecessary network traffic and latency when compared with
HTTP based protocols. It has also additional advantages:

– Bi-directional: In the case of HTTP, a request is usually initiated by the
client. The servers then process this request and answer. Using WebSocket, a
bi-directional protocol is ensured. Both the client and the server can initiate
the message sent without predefined message patterns like the request and the
response.

– Full-duplex: With HTTP, we find the client talks to the server or the server
talks to the client in a particular time. In fact, the client sends a request and
waits for the server response. This is not the case for WebSocket, as the message
exchange of the client is independent of those of the server.

– Single TCP connection: In the basic use case of HTTP, a new TCP con-
nection should be initiated for each HTTP request/response. Otherwise, an
HTTP persistent connection with the keep-alive header to guarantee multiple
request/response over a single TCP connection. Regarding WebSocket, basically
this protocol provides a long-held TCP socket connection.

– Efficiency: Compared to HTTP, WebSocket eliminates the extra headers sizes
and especially reduces the number opening and closing of the socket connections
for a request.

• Notification: It is interesting to use the same protocol for the data exchange and for
the notification. We adopt WebSocket as the bi-directional characteristic fits to the
notification requirement. In fact, it is interesting for a server to initiate the message
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sent. First, the need of synchronization is detected at this level. Secondly, the server
should notify the synchronization request.

4.3.3 Overview on exchange steps

We have defined previously the architecture of our synchronization solution, and this
section focuses on the messages exchanged between the different entities of the architecture.
The figure 4.7 presents an overview on the SyncDS protocol messages. The considered
entities are:

Figure 4.7: Overview on the synchronization protocol SyncDS

• User: The owner of the Digital Safe;

• Local Storage: The Client Digital Safe;

• Synchronization manager: The server which manages the synchronization;

• Metadata server: The server where metadata are stored;

• Storage server: The server where the file blocs are stored;

• Proof manager: The third party that stores the proofs of storage.

Our synchronization protocol SyncDS holds three phases:

• Offline phase: The user makes changes when he is in the offline mode.
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• On connection phase: It represents the action performed when the device comes
back online. This mode has two steps:
- Post changes: The changes performed offline are sent to the server.
- Synchronize: The changes performed on the server side are sent to the device.

• The online mode: The user makes changes when he is online.

These phases are detailed in the next section as we will zoom in on the different blocs.
The novelty in our synchronization protocol is the introduction of the Hierarchical Hash
Tree (HHT) into the abstract structure in the synchronize step (circle 1 in figure 4.7). The
goal is to detect changes between two versions of the same file system. The HHT was
adopted in previous work to detect changes between two versions of one file. To the best
of our knowledge, our work is the first one that adopts the HHT in the context of secure
file synchronization to detect changes between whole file systems. We propose therefore,
the appropriate algorithm to ensure this efficient detection (circle 2 in figure 4.7).

Offline phase

Table 4.1 SyncDS operations

Operation Operation signature
Adding Add(object, nature_object)
Deleting Delete(object)
Modifying Modify(object)
Copying Copy(object, destination)
Moving Move(object, destination)

Renaming Rename(object, new_name)

The particularity of our standardized solution is the possibility to make changes on the
Client Digital even when the web application is offline. All made changes will be updated
in the Cloud Digital Safe just when the user comes back online.
If the connection is not available or possible, the Client Digital Safe records in a log file
the different operations performed locally by the user.

These operations are detected through the enhanced HTML5 fileSystem APIs specific-
ation that follows the Digital Safe requirements. Table 4.1 lists these operations with their
signatures as they will be stored. The object represents the full path of the digital object
and not limited to its name. In addition, nature_object matches to a file or directory.

On connection phase

This phase starts when the user device comes back online while the Digital Safe application
is opened or the user opens the appropriate web application to resume the communication
with his Cloud Digital Safe. The "on connection" phase is a two way synchronization that
includes two steps Post changes and Synchronize.
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Figure 4.8: Offline phase of SyncDS

• Post changes:
In the first step, the client posts changes performed when it was offline. This step is
based on the operation approach. Thus, the log file is sent to the server. The server
then applies on his version the changes as listed in the log file. The different steps
are as follows:

Figure 4.9: On connection phase: post changes

– The client sends to the server the log file where the operations performed offline
are stored.

– The server receiving this file, detects the possible conflicts. In fact, it verifies if
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the same file were managed by the same user in another device or by another
user who shares it when the current device was offline. In our protocol, in
case of conflict detection, the server sends an alert to the client to ask him
his reaction to the conflict. This message explains the conflict type and the
concerned object as shown in the table 4.2.

– When the server receives the reaction of the user, it performs the appropriate
action. It modifies the server version by refreshing the metadata.

– The server asks the client to send the missing blocks of files to the storage
server and the new version of signed metadata to the proof manager.

Table 4.2 Conflict resolution
Conflict type Definition Possible reactions

File name Creating an object with a
name that already exists

- Rename the object added by the user.
- Deleting the object added by the user.
- Deleting the object added when the user was offline.

Modify-Delete Deleting a modified object - Deleting the object modified by the user.
- Adding the object modified by the user.

Modify-Modify Modifying a modified object - Keeping the version of the Cloud.
- Keeping the version of the user.

Delete-Modify Deleting a modified object - Deleting the object.
- Keeping the version of the Cloud.

Rename-Delete Renaming a deleted object - Sending the object with the new name.
- Deleting the object.

Rename-
Rename Renaming a renamed object - Keeping the old name of the object.

- Keeping the new name of the object.

• Synchronize changes:
In the second step, the server reveals changes performed on his side when the user
was offline. These changes can be performed by the same user in a different device
or by another user who shares a part of the file system.

In this step, the differencing approach is adopted. It is based on comparing two
abstracts to detect the changes between two versions of the same file system. In fact,
as depicted in figure 4.10:

– The Client Safe sends an abstract of its file system to the server following the
Hierarchical Hash Tree (HHT) structure.

– Receiving the client abstract version, the synchronization manager generates
the abstract from the metadata server.

– The server compares the two versions of abstracts to detect the changes between
both versions of file systems.

– The changes are sent to the client to apply them at his side. If a new file was
found, the Client Safe retrieves the object from the Cloud Safe.
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Figure 4.10: "On connection" phase: synchronize changes

Online phase

This phase starts when the two file systems versions of far-end are identical. It is a two
way synchronization while the data can have "multiple access and unique modification" at
the same time. Changes made in the client side are sent to the server, while and changes,
made by different devices and synchronized to the server, are sent to the user.

This step is based on the operation approach. Even if Synccs [84] proposes a similar
protocol, its online phase considers a one way synchronization. However, this protocol
does not deal with multi-locations changes. It synchronizes only changes that occur at the
client side which remains insufficient. This point is taken full account in our proposal and
choosing the WebSocket is the best proof. In our synchronization protocol, WebSocket is
used to send data from the client to the server. It is also adopted by the server to send
notifications and data to the client.

The messages exchanged between the Client Digital Safe and the Cloud Digital Safe
are as follows:

• Each operation performed on the client side is sent to the Synchronization manager;

• The Synchronization manager applies these operations and refreshes the Metadata
server content;

• In the case of adding a file, first, the metadata are sent to the Synchronization
manager. Then, the signed metadata are sent to the Proof manager and the file
blocks are sent to the storage server;

• In the case of a modification in the server, the user is notified and receives the
changes.
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Figure 4.11: Online phase

4.4 SyncDS efficiency with the Hierarchical
Hash Tree

In this part, we focus on the "on connection" mode and more specifically on the synchronize
phase. The novelty is the introduction of the Hierarchical Hash Tree (HHT) into the file
system abstract structure to detect changes between two versions of the same file system.
The HHT was adopted in previous work [95] but only to detect changes between two
versions of one file. To the best of our knowledge, our work is the first one that adopts the
HHT in the context of secure file synchronization to detect changes between whole file
systems. We propose the appropriate algorithm to ensure an efficient detection of changes.

In the following sections, we describe, first, the structure of the abstract as it should
be sent by the client and generated from the Metadata server. Secondly, we present the
algorithm of abstracts comparison to generate the script of changes.

4.4.1 Abstract structure

Among the metadata information, we extract the ID, the path, the type and the hash of
the object (file or directory) to build the abstract. The abstract, in this context, can be
modeled into a rooted and ordered tree: rooted as it has a root directory and ordered as
there is an hierarchical relation between files and directories. The special feature of the
abstract, in our proposal, is the introduction of the Hierarchical Hash Tree (HHT). In fact,
two main functions can be considered when talking about HHT:

• The hash of the file: It is computed using the hash function (Message Digest 5) of
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Figure 4.12: Changes detection algorithm
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the file content. This hash is already computed and introduced into the metadata
structure:

HashF (file) = HashMD5(file) (4.1)

• The hash of the directory: To compute this hash, we need first to concatenate the
different hashes of the directory objects, files or directories. Then, we compute the
hash of the concatenation result. The concatenation should follow a specific order of
objects to have a unique hash. In our case, we order the objects in the ascending
number of their IDs.

HashD(dir) = HashMD5(
∑

f,d∈dir

HashF (f) +HashD(d)) (4.2)

4.4.2 Changes detection algorithms

As depicted in figure 4.12, the whole algorithm is composed of two algorithms: isolated
subtree matching and edit script generation. The output of the first algorithm is the
input of the second one. The isolated subtree matching allows the detection of objects
that matches while comparing both abstracts to generate the reduced trees. The second
algorithm uses the both reduced trees to generate the script.

Isolated subtree matching (Algorithm 1)

While comparing both versions of abstracts, the function match(x,y) where x ∈ T1 and y
∈ T2 detects the subtrees that has not been changed in the trees T1 and T2. The match
function should have the following conditions:

match(x, y) =


true if HashF/D(x) = HashF/D(y)

Name(Parent(x)) = Name(Parent(y))

false otherwise.

(4.3)

where:
x ∈ T1;
y ∈ T2;
HashF/D(n): computes the hash of a node which can be a file using the equation 4.1 or a
directory using the equation 4.2;
Parent(n): matches to the parent node of the node n;
Name(n): matches to the name of the node n.
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Algorithm 1 Isolated subtree matching
1: procedure Detect Matching(T1, T2)
2: Input T1, T2: tree
3: Output T1′, T2′: tree
4: Traverse T1 in a level order and top-down
5: let x be the current node
6: if ∃ y ∈ T2/ match(x,y)=true then
7: Delete (subtree(x), T1);
8: Delete (subtree(y), T2);
9: if Name(x) 6= Name(y) then
10: Rename(x,Name(y))
11: end if
12: if ∃ y ∈ T2/ Hash(x)=hash(y) and Parent(x)=Parent(y) then
13: Mark (y, x);
14:
15: end if
16: end if
17: End-traverse
18: if ∃ y ∈ T2/ Mark(y)=True then
19: Copy (x, Name(y) );
20: Delete (subtree(y), T2);
21: end if
22:
23: end procedure
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Using a top-down tree analyses, the first algorithm looks for the set of subtree that
matches between both trees, i.e., matching the trees T1 and T2 leads to find the pair(x,y)
where the subtree of T1 rooted at x and the subtree of T2 rooted at y match (using
equation 4.3).
Starting from the root node, the algorithm finds all the nodes of T2 that matches to the
node of T1. While a match is found both subtrees are erased from the trees (Lines 7 and
8 of the algorithm 1). In case of unmatched, the algorithm recursively passes to the level
bellow of the tree T1 and continues the detection of matched subtree.

When the matched subtrees are found and erased from the trees, the outputs of the
algorithm are two reduced trees each one refers to a version of a file system.

During this phase, if we have two nodes from two trees that match but with different
names (Line 9 of the algorithm 1), this leads to detect the rename operation. We
consider particularly this case for efficiency reasons. Otherwise, the whole directory will
be considered different and will be synchronized while its content has not changed.

Edit script generation (Algorithm 2)

This algorithm has as input the reduced trees T1 and T2 which are the outputs of the
first algorithm. Its output is a script. This edit script contains the different operations
when we applied them of the different nodes of the tree T1, we obtain the tree T2.

In the context of file system synchronization, the tree T1 refers to the reduced tree of
the client file system and T2 refers to the reduced tree of the server file system. During
the synchronize step of the "on connection" phase, the server should therefore send this
script to the client. The client applies the operation of the script on his file system to
provide a version identical to the version of the server.

The algorithm in this phase follows a down-top traversal of the new version of the trees
T1 and T2.
The order of operation detection in this algorithm is important and is considered as follows:
add ,modify, move, delete. Every time that changes have been detected for an object of
the tree, this object will be deleted from the reduced tree.

In this algorithm, the different used functions are detailed in the table 4.3 bellow.

The script generation algorithm is composed of two parts:

• Traversing the reduced tree T2: The tree T2 is traversed to detect the four
operations which are adding, modifying and moving, copying and deleting an object.
In this part of the algorithm, the refresh of hashes’ reduced trees should be done
after the operation Modify, Move and copy. In fact, the new values of hashes will be
used to detect the operations Move, Copy and Delete.

- Add operation (line 6 to 12): It is introduced into a while loop to get the folder
root in case of adding a folder with objects inside;
- Modify operation (line 13 and 14): It needs to find an object in the tree T1
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Algorithm 2 Script generation
1: procedure Generate Script(T1, T2, S)
2: Input T1, T2: tree
3: Output S:List
4: Traverse T2 in a level-order sequence and down-top
5: let y be the current node
6: while 6 ∃ x ∈ T1 / Match(x,y)=True do
7: if 6 ∃ x’ ∈ T1 / Match(x’,Parent(y))=True then
8: y==Parent(y) ;
9: else break;
10: end if
11: end while
12: Add(Path(Parent(y))/Path(y), Type(y))
13: if ∃ x ∈ T1 /( Name(y) = Name(x) and Type(y) = Type(x)) then
14: Modify (Path(x));
15: else if ∃ x ∈ T1 / Parent(y) 6= Parent(x) and Name(y)= Name(x) and Type(y) =

Type(x) and Hash(x) = Hash(y) and parent(y) ∈ T1 then
16: Move (Path(x), Path(Parent(y)));
17: else if ∃ x ∈ T1 / Parent(y) = Parent(x) and Name(y) 6= Name(x) and Type(y)

= Type(x) and Hash(x) = Hash(y) then
18: Rename(x,Name(y));
19: end if
20: End-traverse
21: Traverse T1 in a level-order sequence and down-top
22: let x be the current node
23: for x ∈ T1 do
24: if 6 ∃ y ∈ T2 / Hash(x)= Hash(y) or Name(x)=Name(y) then
25: Delete(x)
26: end if
27: end for
28: end procedure
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Table 4.3 Detailed functions of the script generation algorithm
Function Description

Type(n) returns the type of the node n. It can be a file or
directory.

Path(n) returns the path of the node n.
Name(n) returns the name of the node n.

Subtree(n)
returns the subtree rooted at the node a and ex-
tracted from the Tree T. This subtree matches to
the repository n with its content.

Match(n1,n2) verifies if two nodes n1 and n2 from two different
trees are identical.

Parent(n) returns the node parent of the node n.
HashF/D(n) returns the hash of the file or directory.

which has the same name and type. Having different hash is not checked at this
level as it has been already verified in the first algorithm;
- Move operation (line 15 and 16): It needs to find an object of the tree T1 which
has the same name, type and hash and has a different parent node;
- Copy operation: This operation is detected in the algorithm 1 (line 18 to 20). In
fact, if we find an object which has the same hash and a different parent, we mark it
and we do not delete it. In fact, it can match to another object in T1 detected it
throughout the algorithm. At the end of the algorithm, if this marked object still
exists, therefore, we detect that it has been copied. Unfortunately, we cannot detect
a copied object which has been modified. First, its hash has changed, second, in the
reduced tree we do not have an idea about the existent of the origin of this copy.
- Rename operation: The rename operation is detected in the algorithm 1 (line 9
and 10) when the directory is subject of only name modification. In the algorithm 2
(line 17 and 18), the rename operation is detected in case of renaming a directory
with a modified content. It is sufficient therefore, to verify the hash of directories;

• Traversing the reduced tree T1:
In this part, the delete operation is detected. For each node in the tree T1, the
delete operation is detected if there is not a node of the tree T2 that has the same
hash or the same name.

4.5 SyncDS in the Peer-to-Peer context
Remaining in the objective of synchronizing Client Digital Safe files, in this section, we will
focus mainly on the decentralized strategy. The goal is to emphasize the adoption of the
SyncDS in the Peer-to-Peer context. We notice that besides the widespread adoption of the
Cloud for the storage, a substantial proportion of storage solutions opts for decentralized
services using P2P protocols. Data are, therefore, stored in personal devices without the
need of third parties. They justify their choice by the fact that some Cloud based services
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have recently been reported as sharing information with governmental security agencies
without warrants[69]. In addition, as the user chooses exactly the devices where the data
are saved, he has the full control.

Several solutions are proposed to synchronize data using Peeer-to-Peer protocol. How-
ever, they still adopt proprietary solutions which need additional installation. The most
known ones are BittorentSync [69] and SyncThing [36]. With Bittorent sync, a key should
be entered to synchronize the folder. Neither authentication to approve the add of a user
nor password are required. Even if the risk is limited, anyone can guess or steal this
key and synchronize the relevant data. Syncthing is closely similar to BittorrentSync.
Once downloaded, the application need to be launched and the user will be automatically
redirected to a local interface in the browser.

In this section, we focus on the decentralized strategy, and we highlight the data
synchronization using Peer-to-Peer protocol. The standardized characteristic is guaranteed
as first data are stored in standardized Client Digital Safes. Second, we adopt the
standardized WebRTC protocol. Therefore, we are providing a standardized, efficient,
flexible and cross platform data synchronization framework.

4.5.1 P2P-SyncDS: System requirements:

We focus on the synchronization of data across the user devices. Addressing the Peer-
to-Peer protocol in a standardized synchronization architecture brings to deal with the
WebRTC protocol. It is a free and open project that ensures a bidirectional communication
between browsers of different machines. No software or plugins need to be installed
as browser-browser communication is ensured through simple JavaScript and HTML5
APIs. Standardized by both W3C and IETF, it is based on three steps to ensure a P2P
communication for data exchange: PeerConnection, Session description and DataChannel.
WebRTC remains a work draft and a concern of multiple research works [56] [88] [21].

The WebRTC is based on two main protocols SRTP and SCTP. The Secured Real
Time Protocol SRTP is specifically designed for the transfer of audio and video data. The
Stream Control Transmission Protocol SCTP which runs on top of the DTLS protocol is
used by the Data channel for application data exchange.

With SCTP, WebRTC mimics the WebSocket protocol. Therefore, it has the following
characteristics which emphasize its adoption for the file transfer and synchronization:

• The support of string transfer as well as the blob Javascript binary type;

• The data channel can be configured to support the reliable mode. This mode
guarantees the transmission of the messages as well as the order of their delivery.
The Flow and congestion control mechanisms are also ensured;

• In the context of data synchronization between the user devices, three aspects should
be considered (figure 4.13):
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(1) Securing the data when stored locally in the user device;
(2) Authenticating the far-end devices;
(3) Securing the data transfer between two devices.

Figure 4.13: Secure data distribution

The secure data transfer (3) is already integrated into the WebRTC protocol. In
fact, this protocol uses the Datagram Transport Layer Security (DTLS) to ensure
an end-to-end data encryption. A solution for far-end authentication is proposed
in [21]. It considers that the web application is launched as untrusted and likely
hostile while the browser is considered as a Trusted Computing Base (TCB). The
security architecture is based on the Identity Provider. In fact, each user should
have an account with an IdP that he uses to authenticate to other web sites. The
authentication elements are exchanged between the browser and the IdP to prove
identities. They are also exchanged between the browsers during the signaling
phase over the SDP messages. Regarding the local data protection, adopting the
standardized Client Digital Safe based on the HTML5 Local Storage APIs meets
this security requirement.

4.5.2 P2P-SyncDS: Standardized architecture

In figure 4.14, we detail the interactions between the elements of the architecture:

• Signaling servers: The authentication of the different nodes is performed at this level.
The centralized server detects the devices which are online and those that have just
log in and need to synchronize their Digital Safe content.

• Synchronization API: This API is implemented at the Web Application layer based
on Javascript. It is used to manage the different messages of synchronization between
the two far-end Client Digital Safes. It stores the operations performed when the user
is offline. It starts the proceeding of synchronization whenever the device becomes
online.
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Figure 4.14: Remote data management architecture

• WebRTC API: It is used to ensure the transport of the synchronization messages
between the two browsers and thereby, between the two Digital Safes.

• Enhanced Local Storage APIs: These APIs are the extensions of the basic Local
Storage APIs with security considerations. Data confidentiality, data integrity and
metadata integrity are added.

The presence of the synchronized directory abstract is essential to guarantee the
synchronization of the Digital Safes contents. What ever the chosen strategy, stored
in the centralized center or exchanged directly between the Digital Safes, the abstract
should adopt the HHT in its structure. As shown in the previous section, adopting the
Hierarchical Hash Tree remains crucial to guarantee an efficient changes detection between
two versions of a file system as well as an efficient integrity verification.

4.6 Implementation and proof of concept
Even if the Hierarchical Hash Tree has proven theoretically its efficiency, we need to verify
it through the synchronization framework. Therefore, we focus in this section on the
implementation and the performance evaluation of our SyncDS architecture and protocol.

As a proof of concept and proof of the protocol efficiency, we address mainly three
parts of the synchronization architecture. First, the implementation covers the client
storage layer by granting modification on the chromium browser and particularly in the
file system HTML5 API. Second, it includes the web application. Finally, it holds the
synchronization control layer with its WebSocket server. As shown in figure 4.15, the red
blocks are those added.

The Chromium browser:
The implementation at this level concerns mainly the HTML5 fileSystem API. AS detailed
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Figure 4.15: Implementation of the synchronization architecture and protocol

in the previous chapter, modifications are added into the HTML5 APIs to enhance their
security. These enhancements deal with the data confidentiality, data integrity and
metadata integrity.

Synchronization in the Web application:
A HTML5 web application is developed based on the enhanced File System API and
the basic Webstorage API. This application allows the user to manage his Digital Safe,
store operations when he is offline and ensure synchronization of his Digital Safe content
following the SyncDS protocol.

The added functionalities are introduced based on the JavaScript language using mainly
HTML5 APIs:

• File system synchronization: This block manages the different messages ex-
changed between the client and the synchronization manager server. It is based on
the WebSocket API calling mainly the WebSocket object send() method for each sent
message and the onmessage() function for each received message. These exchanges
should necessarily start by a connection to the WebSocket server using the method
new WebSocket("wss://IP@").

• File system management: It is at this level that user can manage his Client
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Digital Safe. The Javascript code uses therefore the different methods of the HTML5
FileSystem API to define the Digital Safe specifications.

• Offline operations storage: To store the different operations which were performed
on offline mode, the application uses the Offline application API and The WebStorage
API. The first one is essential to detect that the application is disconnected. The
second one follows the user actions when it is offline to store them in a key-value
format.

• Abstract generation: It is at this level that the abstract of the file client file
system is generated following the Hierarchical Hash Tree structure.

Synchronization in the WebSocket Server:
To introduce the WebSocket server, we use the web server Apache with its extension
mod_pywebsocket that supports WebSocket. We add in the server side the detection of
changes by comparing two abstracts (the one sent by the Client Digital Safe and the other
extracted from the Cloud Digital Safe). The Hierarchical Hash Tree is introduced into the
abstract structure. Indeed, the comparison of both abstracts is implemented using the
Java language and more specifically using the TreeModel interface.

In this algorithm, the content of the abstract received from the client is converted
into a tree structure using the Java TreeModel interface. The same step is applied to the
abstract of the server. The algorithm of subtree matching isolation is applied first on
these two trees to obtain the reduced trees. Then, the algorithm of script generation is
applied on the reduced trees to generate the operation which should be applied on the
client version to obtain the server version.

4.7 Analysis of the SyncDS protocol
The proposed protocol SyncDS is a file synchronization protocol that focuses on guar-
anteeing a high quality and minimal resource consumption within a secure environment.
It presents two main novelties. The first one is the non-proprietary characteristic of the
synchronization architecture which has a great importance to integrate a broad range of
competing products and devices. In fact, we enhance HTML5 Local Storage APIs to store
locally user data in a client Digital Safe. We use also the HTML5 Websocket API for the
data transfer between the Cloud and the Client Digital Safe.

The second novelty is the introduction of the HHT to detect changes between two
versions of the same file system. The HHT was adopted in previous work to detect changes
between two versions of the same file. To the best of our knowledge, our work is the first
one that adopts the HHT in the context of secure file synchronization to detect changes
between whole file systems. We proposed therefore, the appropriate algorithm to ensure
this efficient detection. Our protocols brings efficiency in terms of data synchronization
and security verification.
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4.7.1 Efficiency perspective

The proposed protocol adheres to the properties of an efficient synchronization protocol.
To prove this adherence, analytical explanations and empirical evidences are presented.

Property 1:

The low computation of the data and metadata at the client side is respected within our
algorithm. If we compare SyncDS with the already existent synchronization protocols, the
unique additional computation at the source machine is the extraction of the Hierarchical
Hash Tree. More specifically, we add only the computation of the directories hashes as
the files hashes should be computed and introduced into the abstract even with the basic
synchronization protocol.

The overhead on the client side brought on by the adoption of the Hierarchical Hash
Tree is highlighted in figure 4.16. This overhead consists exactly on the computation of
directories hashes. We present first, the time needed to generate the abstract. Second, we
compute the time required to generate the hashes of directories for the HHT structure
while varying the total number of files.

Figure 4.16: Overhead on the client side caused by HHT

As we can notice from figure 4.16, the overload of the Hierarchical Hash tree is low
compared to the whole abstract generation time. Even if the adoption of the HHT comes
with an additional cost, it ensures efficiency of the synchronization protocol which is
highlighted with the following proprieties.

Property 2:

Introducing the Hierarchical Hash Tree improves the efficiency of the change detection
between the file systems of the client and the server. In fact, processing reduced versions
of trees is more efficient than processing the whole trees. This minimizes systematically
the time of script generation.
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Figure 4.17: Performances of the Hierarchical Hash Tree in change detection

Figure 4.18: Overall change detection

To emphasize the congruency of our protocol with this property, we find that the
time parameter of script generation is the most important as it is strongly linked to the
other performance parameters such as the time of whole file synchronization and resources
consumption. In addition, comparing the script generation with and without the HHT is
equivalent to comparing the points of differences between our proposed architecture and
the already commercialized one under the same experimental conditions.

In our framework, we start by capturing the time needed for detecting the changes
performed on the server side to achieve the synchronization process. To highlight the
performances of HHT integration, we compare, in figure 4.17, the time needed for the script
generation with and without the integration of the HHT into the abstract structure. The
experiment is repeated several times for a same number of total files within the same file
system and a random number of changed files and directories (illustrated by the error-bars
in the figure). The axis of X and Y match respectively to the total number of files in
the file system and the time cost of script generation (change detection) in milliseconds.
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In fact, the time of the script generation includes here the time of the subtree matching
phase. As we can notice, the script generation needs more time in the basic method of
change detection than when the HHT is integrated. We notice also that the most time of
script generation when introducing the HHT is consumed by the subtree matching phase.

In figure 4.18, we compare the overall time of change detection of our SyncDS protocol
with the basic protocol. This time includes the abstract sent, the script generation and
the script sent to the client. We remind that the basic protocol uses the HTTP protocol
for the communication between the Client and Cloud Digital Safe without a particular
structure of the abstract. However, in the SyncDS protocol, the WebSocket protocol is
adopted and the HHT is used for the abstract structure. The results show that the change
detection in the basic protocol needs more time compared to our protocol. These results
lead to confirm that the proposed framework and SyncDS protocol, reduce the time of file
synchronization across devices.

Property 3:

The number of synchronized files is reduced while using the Hierarchical Hash Tree. For
classic changes detection [108] [92], they rely on objects name to detect the changes.
Therefore, when an object is renamed, copied or moved, the whole object with its content
is synchronized since it is considered as a new element in the new version of the file
system. With HHT, and as the hash is introduced into the conditions of detection, these
repositories and files are no more considered as new elements and will not be synchronized
as their content already exists in the storage servers.

To demonstrate the strength of the HHT adoption, we explain analytically in details
the example of the copy operation. Let’s assume that when the client was offline, the
content of a directory D1 (its files and directories) has been copied (by another user or by
the same user in a different device) to a new directory D2 with a new name. In the typical
case, when the client connects and becomes online, the directory D2 will be considered as
recently added with a new content. As a consequence, the whole content of D2 will be
synchronized and sent to the client device.

However, using the hash of the directory in the change detection algorithm detects
that the D2 content already exists in the client’s file system. Consequently, this content
does not need to be synchronized, and only the metadata should be updated.

Property 4:

Adopting the WebSocket protocol reduces the messages exchanged between the client
and the server. This reduction is justified by the bidirectional communication ensured by
WebSocket as the server can send any messages to the client without needing a request
from the client. In addition, the size of messages is reduced using the WebSocket protocol.

As depicted in figure 4.19, we compute the time needed to ensure the synchronization
of the files using our architecture and protocol. To emphasize the imminent interest of
the WebSocket protocol integration, we build our synchronization architecture, first based
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Figure 4.19: Performances of the WebSocket protocol in file synchronization architecture

on WebSocket servers, second based on basic Web servers which use HTTP protocol. We
compare then the performances of both architectures. We choose to compare with the
HTTP as it is the basic protocol used by the most synchronization tools. The axis of X
and Y match respectively to the size of synchronized files and the time cost of achieving
the synchronization in milliseconds. As shown by the results, the WebSocket protocol is
by far the most efficient, especially with large files.

4.7.2 Security perspective

The architecture of synchronization is based on the Digital Safe context. This context
focuses mainly on adding the probative value and preserving the integrity of a digital
object over the time.

Introducing the Hierarchical Hash Tree into the synchronization participates directly to
ensure the security of data in addition to the performances enhancement. In fact, verifying
the hash value of the root directory of one file system detects systematically if one object
of the file system has been altered by a third party, or the file system keeps its original
version. In this case, it is no longer necessary to check the hash of objects one by one to
verify the integrity.

4.8 Conclusion
In front of the various owned devices and the need of sharing files between different users,
ensuring an efficient file synchronization protocol is crucial. In this chapter, we propose
an architecture and a protocol that ensure file synchronization in a probative value Cloud.
Two keynote novelties of the SyncDS protocol are highlighted: first, the integration of the
Hierarchical Hash Tree into the metadata abstract to detect the changes during the second
step of the "on connection" mode, second, the integration of the WebSocket protocol and
server into the synchronization architecture.

Our experimental results show that adopting our framework, reduces the time of file
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synchronization across devices and reduces the time of change detection.
The security stills the main concern of the user besides the efficiency. In the next

chapter, we will address the security features of the SyncDS architecture and protocol.
We will focus mainly on the access control in case on data sharing.
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5.1. INTRODUCTION

5.1 Introduction

The main challenges of Cloud storage solutions are to ensure a continuous data synchron-
ization and to guaranty data sharing between different users. Dealing with synchronizing
shared data, two issues are raised. First, synchronizing encrypted data which are shared
by multiple destinations may introduce key and access control management challenges.
Second, it is essential to deal with the states constrains of owners and consumers. In fact,
neither the owner who shared data nor the consumer are usually connected at the same
time. In the context of probative value storage of sensitive data, we address the security
requirement of shared data synchronization which represents 30% of the thesis works (
figure 5.1 ). We focus mainly on the access control, and on the concept of timely file
sharing where shared data are synchronized to legitimate users only for a specified period
of time.

Figure 5.1: Structure of the thesis

This chapter is structured into three parts. We introduce, in the first one, security
measures and mechanisms in the context of file synchronization and sharing. In the second
part, we present the security of SyncDS protocol, and we highlight the timely file sharing.
In the last part, we present the implementation and validation of our SyncDS protocol
security.

5.2 Security concept for file sharing and syn-
chronization

In this section, we introduce the concept of synchronizing shared files with its security
services and mechanisms.
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5.2.1 Synchronization of shared data

The Cloud storage services offer a variety of services for data management and especially
for data sharing. In fact, the data owner can share his data with a specified user or a
group of persons letting them access his data. The users within the context of file sharing
are divided into data owner and data consumer. The owner, besides data creation, storage
and sharing, is responsible of defining the access policy. The data consumer is the user
who downloads and decrypts files shared by the owner. Often, neither the user who shared
data nor the consumer are usually connected. Against this background, the data access
can follow one of these methods:

• Public Sharing: The data is designed to the public without any access control
consideration. In fact, a link is published to access the data.

• Secret-URL Sharing: The owner sends a sharing URL generated by the Cloud Service
Provider to the consumer. Retrieving this URL leads to access to the data without
any authentication or access verification. The owner is therefore, the only responsible
of his data security.

• Secret-Sharing: The owner specifies the list of users to access his data (usually
identified by his email or a series of attributes). The Cloud service provider is then
in command of authenticating the identity of the consumer. It asks them usually to
sign into their accounts to access the data.

Choosing the sharing method depends on the privacy of the shared data. The public
sharing is the simplest method but cannot be applied for sensitive data. The secret
sharing is the most secured as each user is authenticated to the Cloud service provider. A
compromise between simplicity and security is illustrated by the Secret-URL sharing as
the owner gives the URLs to each consumer.

In our thesis, we focus on the share of sensitive documents which are externalized
encrypted. Therefore, it is clear that sharing data, already encrypted by users with
multiple destinations, may introduce key management and access control challenges.

To deal with encrypted data, many issues are raised. How the owner will define the
access policies. How the legitimacies of the consumers are detected? The most challenging
issue is how decryption keys are sent to consumer to decrypt the data.

5.2.2 Security services

In terms of security, the baseline synchronization architecture can be the subject of multiple
attacks. The main attacker goals are the access to user data content and the disturbance
of data exchange. In reality, user data are hosted in large-scale systems, thus, the storage
services are not necessarily trusted. In addition, the access to stored data can be impossible
when the user goes offline or in case of network or service failure.
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To avoid these threats, the synchronization architecture should rely on the following
security services [26]:

• Confidentiality: Data confidentiality is one of the main concerns of users who store
their sensitive data locally or externalized to the Cloud. The problem is how they
can be sure that their data cannot be accessed by attackers who have the full access
privilege to their machine or to storage servers.

First, we find the server-side encryption [18] [23] where data are stored encrypted in
storage servers. In this case, the keys are usually user independent and are managed
by the server owner. Second, when the user does not trust remote servers, it is
comforting for him to send his data encrypted [5] [16] [17]. In this case, the data
encryption is performed at the client side before externalizing them to the Cloud.

• File integrity: This service consists on ensuring that synchronized data still in
their original version as stored by the user [26]. The integrity of file is violated when
the content undergoes changes either during their storage in the servers or during
their transmission.

• Authentication: It consists on authenticating the user before any access to the
service. It verifies the identities of users based on different attributes chosen by the
application.

• Non-repudiation: It is the act of guaranteeing that no one of the two parties
denies the contract of data externalization and storage by the service provider.

• Secure synchronization: It consists on securing the messages of synchronization
between different architecture entities.

• Access control: This service ensures that only users who have the privilege can
access data. These data can be owned by a unique user and can be shared by
multiple users having the privilege to access them.

5.2.3 Security mechanisms

Among the security mechanisms in the context of file synchronization, in this part, we will
focus on the authentication, the secure data exchange and the access control mechanisms.

In storage and synchronization architecture, the authentication and the access control
are two fundamental mechanisms to guaranty the security of a system. Authentication is
used to verify that the user is the one that he claims to be, and the access control verifies
which data he can access in the storage system.
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Authentication:
The commonly used technique to authenticate a user is the password-based authentication.
For a high level of security, the passwords chosen by users are replaced by certificates
which are supplied by trusted third parties. Tokens may be also used as an authentication
mechanism. According to the use case, the token guarantees both user authentication and
authorization.

Our SyncDS synchronization architecture is based on the WebSocket protocol. This
protocol uses the Transport Layer Security (TLS) to ensure the authentication of the
entities and the security of the exchanged traffic [31]. The secured WebSocket starts with
the basic handshake followed by the TCP protocol. The data then is exchanged secured
between clients and servers.

Access control:
The access control verification is performed just after the authentication of the user account
credential and identity. Thus, it comes after the gain of the access to the system. In this
step, the control focuses on system resources. It is mainly used to decide who can do what
to whom in a system. Therefore, three components need to be outlined:

• the subject (who) that matches to the entity (user, process thread or program) that
wishes to manipulate the resources within a system;

• the object (whom) that matches to the resources that need to be controlled through
the access control policy;

• the access rights (what) that present the access policy with the description of rules
used to make the decision.

Basic Access Control Methods
Basic access control mechanisms are based on trusted third parties to protect the access
to data. As depicted in figure 5.3, these servers save the access policy imposed by the
owner. In case on access request by the consumer, they just verify the policy and take the
decision. Various types of mechanisms can be used according to system requirements. In
this context, NIST [91], lists three distinguishable access control methods which are:

Figure 5.2: Basic Access control methods
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• Identity-Based Access Control (IBAC): This kind of access control policy is
based on the identity of the subject to grant or deny access requests. An example of
IBAC commonly used in network security services is the Access Control List (ACL).
It associates to each system resource the set of authorized subjects with their access
rights. However, this method is not suitable for enterprise level use. In fact, it adopts
only one dimension and bypasses the context business functions and characteristics
of the user [119]. Furthermore, IBAC is not scalable as the number of identifiers and
user request access increases in large enterprise [91].

• Role-Based Access Control (RBAC): The access to resources is not based on
the user identity but rather on the user role within the organization [104]. In this case,
the permissions are no more assigned to individual users which leads systematically
to the reduction of the access administrations overheads [119]. However, the RBAC
does not support time based access control while defining an access policy [85].

• Attribute-Based Access control (ABAC): It is a logic access control model
that introduces the subject, the resources and the environment attributes. The first
kind of attributes defines the identity and characteristics of the subject. The second
one is related to the characteristics of the resources acted upon by a subject. Finally,
the environment resources matches to the context or the technical and operational
environment where the access verification occurs.

Advanced encryption for access control
In the context of data synchronization, we need to focus on the data sharing while

highlighting the privacy. The data privacy is susceptible to be compromised as the storage
and the protection are usually delegated to remote storage servers.
The basic access control methods consider that the entities that manage the access control
as fully trusted which is not the case in the Cloud storage services. For this purpose,
advanced encryption methods are adopted to ensure the access control. It preserves the
confidentiality in addition to the key management.
Several cryptographic access control mechanisms were proposed to ensure both file sharing
and privacy when stored in untrusted servers. Their basic approach is based on extern-
alizing the file encrypted by the owner. Thus, the decryption keys are retrieved only by
authorized users. The retrieval of the decryption key can follow one of these three strategies:

• Generated from user profile:
The encryption and decryption keys are designed for a specific or a group of users.
Identity-based encryption (IBE) [42] is one of the first solutions which extends the
public-key paradigm. The basic idea is to generate the public key based on the
consumer identity to encrypt the data. A private key is then generated by a third
trusted party and sent to the consumer to decrypt these data.
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Figure 5.3: Cryptographic Access control methods

Different from the basic public key cryptography used by IBE, the Attribute-Based
Encryption (ABE) is used when the encrypted messages are not intended for a
specific destination. In fact, one to many encryptions is the target. Two kinds of
ABE exist: Ciphertext Policy Attribute Based Encryption (CP-ABE) [71] and Policy
Key Attribute Based Encryption [110] (PK-ABE). In CP-ABE, the access policy is
integrated into the ciphertext, while it is linked to the decryption key in PK-ABE.
In our architecture, we adapt mainly the CP-ABE into the context of shared file
synchronization. This choice is based on the fact that the user is usually defined
by a set of attributes, and these attributes will be linked to the decryption key. In
addition, the time of the synchronization request will be added to the user attributes
to verify his legitimacy.

• Transfered directly to the user:
Under this case, the owner acts as a key distribution entity. It transfers directly
the decryption key to the consumer who is authorized to share the data. Among
the realized works, we find, Plutus [76] which divides the files into filegroups (group
of files having similar sharing attributes). Each file is encrypted with a unique
symmetric key then encrypted with the symmetric key of the filegroup to which it
refers. The filegroup key is further delivered by the owner to authorized consumers.
In case of revocation, all the keys should be updated, and whole files should be
re-encrypted with the new keys. This strategy is not appropriate for fine-grained
access control with a huge number of filegroups. In addition, the owner should be
usually connected to send the decryption key.

• Transfered from third parties:

- Some solutions store the file as a couple of file metadata and file content. With
Sirius [65], besides information related to the file, the metadata includes the access
control policy and a series of data decryption keys encrypted with each authorized
consumer public key. Thus, the size of the metadata is proportional to the number
of authorized users.

- A proxy can be used such as the case in [49]. It is based on the proxy re-encryption
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to secure the file storage. Without retrieving the plaintext, a semi-trusted proxy
converts a ciphertext encrypted under the owner public key into another ciphertext.
The last ciphertext can be decrypted only by the private key of the consumer. The
private and public keys are generated using a set of proxy re-encryption operations.

- The fine-grained access control is also adopted in [118] by mixing the CP-ABE
with the proxy re-encryption. In this solution, the decryption key generation and
the access verification are ensured by the owner. However, in the context of a timely
file sharing, the verification of access privilege cannot be performed when the owner
is offline.

Table 5.1 Comparison of access control schemes used for file sharing

Scheme Retrieving the decryp-
tion key User revocation Timely file sharing con-

text

PLUTUS [76]
The decryption key is dir-
ectly transfered to the au-
thorized consumer

- Re-encrypting the data
with new key;
- The consumer should be on-
line in case of user revoca-
tion.

The key decrypts the data
without any time constraint

SIRIUS [65]

The decryption key are
saved encrypted with the
consumer public key in the
file metadata

- The size of the metadata is
proportional to the number
of authorized consumers;
- Updating the metadata in
case of user revocation.

The key decrypts the data
without any time constraint

CP-ABE [71] Using CP-ABE for key gen-
eration

Re-encrypting the whole
files

The key can have time con-
straint with the problem of
confidentiality against the
Cloud servers

Proxy
re-encryption

[118]

Using the proxy re-
encryption and CP-ABE for
key generation

- The consumer can be off-
line in case of user revoca-
tion;
- Several keys are managed
by the proxy those related to
CP-ABE and those related
to the proxy re-encryption.

The verification of access
privilege in the context of
timely file sharing cannot be
performed when the owner
is offline

5.2.4 Background on CP-ABE in file synchronization

The Ciphertext Policy Attribute Based Encryption (CP-ABE) can be used both for access
control and key management. In fact, it allows the consumer to access the data if it has
the appropriate attributes. Meanwhile, it generates the key to the consumer to decrypt the
data already encrypted by the owner. The problem of the adoption of CP-ABE, as it is
basically defined, presents security threats. In fact, integrating the access verification into
the owner side requires a permanent presence to verify access especially when considering
the time constraint. In addition, when integrating the CP-ABE access verification into
the Synchronization manager, this server has full access to all user decryption keys. This
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constitutes an architecture vulnerability to attacks that might be initiated by the server
when acting maliciously.

Figure 5.4: Ciphertext Policy Attribute Based Encryption

For the access control decision, CP-ABE is based on a set of attributes A, and an
access policy defined by a series of attribute included in A.

• Universal Attributes set (A): It matches to the set of attributes, which can be
related to the externalized data, to the user whether it is owner or consumer and
can be related also to the environment.

• Access structure (P): It is the access policy defined by the consumer. This policy
is defined in the guise of a tree structure where the leafs are the different attributes,
and the interior nodes are the threshold gates. The "and" and the "or" operators
specify the relation between the different attributes.

Four main functions should be used for the generation of the different keys and for the
decryption and decryption of the message:

• Setup: This function generates the Public Key (PK) and the Master Secret Key
(MSK). PK is used by the encryption and decryption functions while the MSK is
used by the Key generation algorithm for secret key generation;

• Key generation (MK, S ⊂ A): It generates the Consumer_public_key. This key
is customized to the consumer according to the set of his attributes;

• Encryption(PK, M, P): This function encrypts the message M using the Public
Key (PK) and according to the Policy chosen by the user. It generates therefore,
the message M.cpabe;

• Decryption(PK, M.cpabe, SK): This function verifies if the consumer attributes
meet the owner access control policy. It decrypts the message M.cpabe using the
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Consumer_Private_Key. If the message M is retrieved, the user with its attributes
is legitimate to access the message content. Otherwise, he is not legitimate.

Several enhancements are introduced into the ABE to meet the secure Cloud storage
requirements. They can be classified as follow:

• Hidding attributes:
With ABE, the ciphertexts reveals some information about the attributes used in the
defined access policy. Therefore, encryption systems were added to hide the access
policies and attributes from the Storage service providers. Several research works
focus on this extension to the ABE. It includes proposals that support restricted
access structure [81] [74] [106] and other proposals more flexible and expressive with
any boolean structure [82].

• Performance enhancement:
Improving the efficiency concerns mainly the applications which need the lowest
energy consumption. It is the case of [109] which aims lightweight devices. It adopts
constant size secret keys using elliptic curve cryptography. B.Waters who participates
in the proposal of the basic CP-ABE, introduces later more enhancement [113]. It
proposes a efficient CP-ABE by choosing the size of the ciphertext which depends
linearly on the number of attributes used in the access policy.

Other proposals focus on raising the efficiency by outsourcing the decryption op-
erations into the Cloud [66] as the decryption complexity strongly depends on the
access structure. Cryptographic techniques such as the proxy re-encryption were
also adopted in the Cloud [49] [118] to reduce the ABE operations.

• Decentralized trusted authority:
In the basic Ciphertext Policy Attribute Based Encryption scheme, data are encrypted
under a unique key given by a central trusted authority. Several proposals have
migrated towards the adoption of multi-authorities. In fact, each party can become
an authority to generate the secret keys. In this context, B.Waters [83] proposes a
new collusion resistant solution. There is no need of a perpetual communication
between the authorities as only one is required to create a set of common global
parameters. Each party creates the public key and private keys of the users according
to their attributes. A user then encrypts his data based on an access matrix, the set
of public keys gathered from concerned parties and the global parameters. In this
proposal, unlike the one adopted in [58], any boolean formula can be introduced,
and no central authority is required.

Unlike the previously proposed solutions that deal with a simple access to shared data,
the novelty of our proposal is to adjust the CP-ABE to synchronizing shared data while
considering the time constraint. In fact, the owner chooses to share his data with specific
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consumers only for a period of time. Beyond this period, the consumer has no more
privilege to access the data. Considering the context of timely shared data synchronization
takes into consideration the states constrains of owners and consumers (Online or offline).

5.3 SyncDS: system model and security require-
ments

The goal of our framework is to ensure a secure data synchronization and sharing between
a Local Digital Safe and a Cloud Digital Safe. As a step towards this goal, we need to
remind the architecture for data synchronization and present the different security roles of
each architecture component.

Figure 5.5: Security aspect in SyncDS architecture

In terms of architecture, shown in figure 5.5, the SyncDS synchronization framework
consists on two main components:

• Client Digital Safe: The data are stored in a Local Digital Safe. The storage is
based on the HTML5 Local Storage API with additional security considerations to
follow the Digital Safe requirements.

• Cloud Digital Safe: As introduced in [93], it is a standardized architecture that
provides a secure environment for storing sensitive document. This environment
fully fits both the user and Cloud security requirements. Three main servers form
the Cloud Digital Safe:
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- Synchronization manager server: It is the front component of the synchroniz-
ation. It notifies the devices of the synchronization and handles the synchronization
requests and responses;
- Storage servers: They are used to store the blocks of data;
- Proof manager server: It preserves the proof of data storage and guarantees
the non-repudiation.

The security services are distributed between the architecture components according
to their roles in the synchronization. The detailed functionalities are described as follows:

• Secure storage:
To win the trust of users and boost their confidence, it is essential to give a high
priority to the security of data both when stored locally and when stored in the
Cloud. As the user does not trust remote servers, it is comforting for him to send
his data encrypted. The Cloud is considered therefore, as an encrypted blob storage
server. Thus, the storage provider cannot access to these data. After the analysis
of the different access control strategies used within the context of data sharing,
we propose the timely CP-ABE which will be detailed in the next section. The
encryption key is therefore generated based on access policy and period of legitimacy.

• File integrity:
In our architecture, the files and directories hashes is introduced into the file metadata.
In fact, this mechanism preserves the file integrity. With the introduction of the
Hierarchical Hash Tree (HHT) as detailed in the chapter 4, checking the hash value
of the file system root directory verifies the integrity of the whole file system. It
detects systematically if an object has been altered by a third party, or the file
system keeps its original version. In this case, it is no longer necessary to check the
hash of files one by one to verify their integrity.

• Non-repudiation:
In the Cloud Digital Safe, a Proof Manager is the entity that stores the metadata
signed by the user private key. Thereby, storing a proof guarantees the non-
repudiation. Therefore, neither the client nor the service provider can deny having
participated in the storage process.

• Authentication:
It consists on verifying the user identity by the Synchronization Manager before any
access to the storage and synchronization services. For the data and proof storage,
the authentication of the user by the Storage servers and the Proof Manager are also
required.

• Secure synchronization:
Securing the messages of synchronization between different architecture entities is
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crucial in our architecture. Encrypting the exchanged messages using a mutually
agreed session key avoids the retrieval of confidential information in case of session
interception. In the conception of our synchronization protocol, the user files are sent
encrypted. To avoid multiple encryptions of the same sent message, the encryption
will occur at the application layer instead of the transport layer. In this case, only
messages with high level of confidentiality are encrypted.

• Access control:
In the case of data sharing between different users, only authorized consumer can
access the data. Even the Cloud provider is concerned by the access control not
to give him any right to access the data. The synchronization Manager, as a front
component of the synchronization architecture, is the first responsible of the access
control. In our proposal, the data owner can share data to consumers over a specific
period of time. Beyond this period the access is denied. This leads to propose a
timely CP-ABE which is subject of our contribution and add the timestamp into
the access control verification.

- Confidentiality against the Synchronization Manager:
The synchronization Manager is a semi-trusted server. Therefore, it is characterized
by its honesty and curiosity. It perfectly follows the architecture and protocol
requirements, but it tries to collect as much information and data as possible. In our
architecture, this server is in charge of the access control and the key management.
It is essential, thus, to prevent it to retrieve the key of data decryption.

- Confidentiality against access of unauthorized consumer:
In our architecture and protocol, access and synchronization of data are restricted
to authorized users with appropriate attributes, and within a specific period defined
by the data owner.

• Key management:
In case of file sharing, retrieving the decryption key by the consumer is essential.
The proposed Timely CP-ABE is used to ensure a secure key distribution at the
Synchronization Manager level.

5.4 SyncDS: Secured file synchronization
In this section, among the security requirements, we will give an overview on the authen-
tication that should be carried between the different entities of the architecture. We will
give a big attention to the access control and key management for the data sharing.

5.4.1 Authentication and secure data exchange

The user of the Client Digital Safe should be authenticated by three entities, which
are: the Synchronization Manager, the Storage server and the Proof Manager. To avoid
multiple authentications based on passwords and certificate, we propose to adopt a hybrid
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authentication paradigm. The certificate is used in the authentication between the client
and the Synchronization Manager to meet the WebSocket security requirements [31]. A
token is used in the authentication between the client and other entities to respect the
security design of Cloud Digital Safe storage servers [93]. This token authorizes also
the user to post or to retrieve the file from the Storage server and to send the proof to
the Proof Manager. The authentication and authorization are managed mainly by the
Synchronization Manager. The tokens are generated by this entity since this server is in
the foreground of the synchronization, and as it controls the access to the Cloud Digital
Safe.

Figure 5.6: Certificate based authentication

• Certificate based authentication
As detailed in figure 5.6, the authentication based on the TLS protocol is as follows:
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Figure 5.7: Token based authentication

- First, the client and the Synchronization Manager exchange their certificates and
their nonces to ensure a mutual authentication.
- The client sends the Pre-master-secret encrypted with the server public key.
- The both entities generate the master secret based on the sent pre-master-key.
Thereafter, the session key Ks(User,Sync) is generated based on the two exchanged
nonces and the master key. This key is used to encrypt a part of the synchronization
messages exchanged between the user and the synchronization Manager.
- Change cipher spec messages are exchanged preceded by the Finished message in
case of changing the specification of the Cipher.

• Token based authentication
After the authentication between the user and Synchronization manager, the client
sends actions which should be carried at the Cloud Digital Safe side. According to
the action, related to the Storage servers or the Proof manager, an authentication to
the concerned server should be performed following these steps:

- The Synchronization Manager sends to the user two tokens. The first one T1 is
intended to the user and it is encrypted using the session key generated during the
certificate based authentication. The second token T2 is designed to the server which
can be the Storage server or the Proof Manager. This token is encrypted using a key
shared previously between the Synchronization Manager and the server;
- The user retrieves the encryption key Ks(User,Server) generated by the Synchron-
ization Manager from T1. It transmits to the server the token T2 and a nonce
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encrypted with the retrieved key;
- At the server side, the session key Ks(User,Server) is retrieved from the received
token T2. The nonce and the validity of the token are verified;
- After the verification, if the user is authorized, a confirmation is sent to the user
containing the nonce encrypted with their session key. Otherwise, a refuse message
is sent;
- Finally, the user sends the action to the server (deposit or retrieve a file in case of
communication to the Storage server and deposit the metadata in the case of the
Proof Manager).

Table 5.2 details on the token fields
Token field Field role

Client The entity that needs to be authenticated which is the client in our
architecture

Server
the entity that authenticates the client. In our case, we have two
servers which should authenticate the client: the Storage servers
and the Proof Manager

Address of the cli-
ent The IP address of the client

IP address of the
server

It matches to the IP address of the Storage server or the IP address
of the Proof Manager

Symmetric key
The session key used to encrypt the traffic between the client and the
server. This key was a part of the token sent by the Synchronization
Manager

Start time: the start time of token validity
Expiration time: the expiration time of token validity

The information that should be introduced within the token are listed in the table 5.2
bellow.

5.4.2 Timely Ciphertext Policy Attribute Based Encryp-
tion

An owner when sharing data has the full right to choose the consumer who can access
them. Our contribution, in this context, is to consider a timely file sharing. In fact, in
addition to the basic access policy, the owner imposes the period of access (figure 5.8).
The privilege to access data begins at the start time of the period and finish at its end
time.

The majority of works based on ABE that we found in the literature places the main
features under the owner control. However, this strategy does not fit to the timely file
sharing expectations. In fact,
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• neither the owner nor the consumer is online at the same time during the data access
and synchronization;

• with the timely access constraint, the access verification is not performed once. The
access or synchronization request should be timestamped to verify periodically if the
consumer still has the access privilege or not.

To highlight our timely CP-ABE, the scheme file sharing will be presented at two
levels: system level and algorithm level. At the system level, we present the interaction
between the different entities with high level operations. The second level describes the
low-level algorithms used at the system level.

Figure 5.8: Timely access control policy

An overview on the access control

We consider that the Synchronization Manager is a semi-trusted server. This means, first,
that the server is honest to follow the architecture and protocol requirements. Second
the server is curious, so it tries to collect as much information and data as possible. As
the data are saved encrypted at the server side, the key of file encryption should not be
retrieved by the server. Otherwise, the server can have the full access to the user data.

For this reason, we divide the encryption key into two keys K1 and K2.

• The first key K1 is sent encrypted to the consumer using his public key. Thus, the
consumer is the unique entity that can retrieve it. This key is sent only once.

• The second key K2 is sent encrypted using the timely CP-ABE. It is then decrypted
by the server to verify the access right of the consumer.

With this division of encryption keys, to access the data, the consumer should obtain from:

• the owner the key K1 during the first request of synchronization;
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• the Synchronization Manager the key K2 and the authorization of downloading
the encrypted file as long as his attributes meet the owner access control policy and
the access is requested during the legitimate period.

With K1 and K2, the consumer computes the encryption key K and can decrypt the file.

Figure 5.9: Timely file sharing

Timely CP-ABE: System Level operation

As depicted in figure 5.9, the high level operation in our architecture can be designed as
follows:

• System setup: This step focuses on the system initialization:
-The Synchronization Manager executes the CPABE_setup to generate the Public
key and the Master Secret Key.
-The Public Key is sent then securely to the owner.

• New File generation:

This procedure is ensured by the data owner as depicted in figure 5.10. This entity:

- generates two keys values K1 and K2;
- computes K = K1 ⊗ K2 to encrypt the file;
- encrypts K1 using the public key of the consumer certificate and sends it securely
to the consumer;
- encrypts K2 using CP-ABE with the appropriate policy to be sent to the Synchron-
ization Manager;
- integrates the k2 into the file metadata;
- sends metadata to the Synchronization Manager;
- encrypts the file using the Key K and sends it to the Storage Server.
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Figure 5.10: New file generation

• Consumer access verification:

In our proposal, we consider the distinction between the first and continuous syn-
chronization request. In fact, the consumer can be offline when the owner makes
changes to his data or to the access policies. In addition, the owner will not neces-
sarily be online when the consumer receives notification for synchronizing. However,
we require that both parties are online for the first request of data sharing.

Figure 5.11: Consumer access verification

In figure 5.11, we present different steps of the verification of consumer legitimacy.

• When a legitimate consumer asks for a file sharing for the first time, it
receives, from the data owner, the key K1 encrypted with his public key
{K1}Kpubconsumer. It receives then the key K2 from the Synchronization Man-
ager. In fact, the Synchronization Manager decrypts {K2}CP − ABE based
on consumer attributes, current time and timely CP-ABE decrypt operation.
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• For a continuous synchronization request, only K2 is sent to the consumer. In
fact, the Synchronization Manager rechecks the access privilege of the consumer,
and regenerates the new key K2.

The legitimate consumer is the unique entity that can retrieve the data. Even if the
Synchronization Manager has the Key K2, it lacks the key K1 to compute K. In the
other side, even if the consumer has the key K1, without the access privilege, he
cannot retrieve the key K2 from the Synchronization Manager to compute K and to
get the authorization to access the data.

• Owner revocation:
When the owner needs to change the access policy, the K2 is encrypted according to
the new policy. Even if the owner goes offline after changing the access policy, the
Synchronization Manager still handles the access verification. When the consumer
has no longer access to the owner data, he is not authorized to retrieve the K2 and
to retrieve the latest version of the file.

• Data deletion:
When an owner wants to delete the data sharing, it updates the concerned metadata.
It is sent then to the Synchronization manager to update the version of the Cloud.

Timely CP-ABE: Algorithm Level operation

Among the known ABE methods, we choose to work with the CP-ABE. In fact, in our
architecture each user has a set of roles and properties. Depending on these properties,
a user gets permission to access the files. These properties can be translated to a set of
attributes. In addition, as we focus on a timely file sharing, the time of an access request
can be merged with the user attributes to generate the encryption key. The different
operations which need to be defined by our Timely CP-ABE are:

• Setup:
It generates the Public Key (PK) and the master secret key (MSK). This function is
performed by the Synchronization Manager.

• Encryption(PK, K2, Policy):
Used by the owner, the function encrypts K2 using the Public Key (PK) and
according to the chosen access Policy. It generates {K2}CP − ABE. This policy is
defined by the access in the guise of a tree structure where the leafs are the different
attributes, and the interior nodes are the threshold gates. To guarantee that file can
be accessed only for a specific period of time (equation 5.1), the user introduces,
besides the attributes that form his access policy (Policy’), the time of start and end
of the access period interval (figure 5.9).

Policy = Policy′ ∧ (TStart ∧ TEnd) (5.1)
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In this case, when the access date is overtaken, the consumer is no more concerned
by the synchronization.

• Key_generation(PK, Consumer_public_key, MSK, A):
Used by the Synchronization Manager, this function generates the Consumer_public_key.
This key is customized to the consumer according to the set of his attributes. In order
to ensure a timely file sharing, the access depends heavily on the period predefined
by the owner in his access policy.

Consequently, the timestamping of the request should be performed at this level,
and this time should be added to the set of user attributes when generation the
decryption key (equation 5.2).

A = UserAttributes ∪ Time_Access_Request (5.2)

• Decryption (PK, Consumer_Private_Key, {K2}CP − ABE):
This function verifies the consumer legitimacy. In fact, it verifies first that the
consumer has the attributes that meet the owner access policy. Second, it verifies
that this request is performed during the period chosen by the owner. When
these conditions are satisfied, this function can decrypt {K2}CP − ABE using the
Consumer_Private_Key. Otherwise, an access denied alert is raised.

5.4.3 Security analysis of data sharing with SyncDS

In our architecture, the secure storage is solved by the externalization the data after their
encryption. The file integrity is guaranteed by the verification of the files and directories
hash stored in the metadata following the Hierarchical Hash Tree structure and finally the
Non-repudiation is ensured by the Proof Manager. In this part, we analyse the satisfaction
of the rest of the security requirement.

• Confidentiality against the Synchronization Manager:
While this server is supposed to harm the confidentiality of data, it must be honest
to follow the data and key management instructions and to process the request of
data access. Even if the Synchronization Manager handles the key managements
and verifies the access legitimacy, it holds only a part of the secret. This secret is
used only to verify that the consumer and the time of access request fit the access
policy imposed by the owner. Thus, it cannot retrieve the user data with this key.

• Confidentiality against the access of unauthorized consumer:
In our proposed protocol, the legitimate consumer who has the access privilege is the
unique entity that can retrieve and decrypt the data. Even if the Synchronization
Manager has the Key K2, the key K1 misses to compute the file encryption key K.
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Figure 5.12: Formal security validation using ATSE and OFMC

In addition, even if the consumer has the key K1 and he has not the privilege of
accessing the owner data, he cannot retrieve the key K2 from the Synchronization
Manager.

Another case is possible. The consumer retrieved previously the both keys K1 and
K2 and actually he has no longer the privilege of accessing the data due to time
expiration or policy changes. In this case, the Synchronization Manager, when
computing the new key K2 does not give him the authorization to retrieve and
synchronize the new version of the data.

5.5 Validation and proof of concept
We need to validate the different security requirement of our SyncDS protocol. Therefore,
we validate the authentication, authorization and confidentiality of shared data against
the service provider using Avispa. We implement also our Timely CP-ABE on the CPABE
toolkit.

5.5.1 Formal security validation of SyncDS

To validate the security properties of the SyncDS protocol, we need to formalize it. Avispa
is one of the most used tools that automatically validate the security of Internet protocols
and applications. This tool is based on the specification language called High Level Protocol
specification Language (HLPSL). HLPSL is an expressive, modular and role-based formal
language. The goals expected from this tool are the authentication of the entities and the
secure data exchange.

The protocol model, in algorithm3, presents the messages exchanged between the
different entities following the Avispa notations. We choose the back-ends Cl-AtSe and
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Algorithm 3 Formal security validation of SyncDS
Notation and Initialization
A: Client
B: Synchronization Manager
C: Storage server
D: Proof Manager
E: Consumer
CA: Certificate Authority

_Ki: private key of the entity i
Ki: public key of the entity i
Kij: key shared only between the entity i and the entity j
Sid: id of the session; Ni: nonce generated by the entity i
Ti: token number i generated by the Synchronization Manager

Keygen: function known by A and B to generate a symmetric key based on (Ni, Nj)
T-CP-ABE: function known by A and B to encrypt the key K1
Compute: function that computes the key K based on K1 and K2
Initially shared: KBC , KBD

Established during protocol: KAC , KAD retrieved from tokens

Authentication based on certificate between the client and the Synchronization Manager
1. A→ B: {A, NA, Sid}KB, {A, KA}_KCA

2. B→ A: {B, NB, Sid}KA, {B, KB}_KCA

3. A→ B: {A, NB} Keygen(NA, NB)
4. B→ A: {B, NA} Keygen(NA, NB)

Authentication based on token between the client and the Storage Server
5. B→ A: {Action, FileID, T1, {T2}KBC}Keygen(NA, NB)
6. A→ C: {T2}KBC ; {userID, N ′

A}KAC

7. C→ A : {N ′
A} KAC

8. A→ C: {Action, FileID}KAC

Authentication based on token between the client and the Proof Manager
9. B→ A: {Action, FileID, T1’, {T2’}KBD}Keygen(NA, NB)
10. A→ D : {T2′}KBD; {userID,N”A}KAD

11. D→ A: {N”A} KAD

12. A→ D : {{metadata}_KA} KAD

Access control verification and key management
13. A → E: {K1}KE

14. A → B: {K2}T-CP-ABE
15. A → C: {File}Compute(K1,K2)
16. E → B: {Get, FileID}KEB

17. B → E: {K2}KEB

18. C → E: {File}Compute(K1,K2)
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the OFMC for the execution tests. Cl-AtSe is a Constraint Logic (CL-Atse) based
Model-Checking of Security Protocols and OFMC is a symbolic model checker for security
protocols.

According to the summary results of the tool output, as shown in figure 5.12, the
proposed protocol is safe, the goals are as specified and there are no major attacks to
SyncDS protocol.

5.5.2 Timely CP-ABE implementation

Table 5.3 Implementation of the timely access control operations

Entity Executed operation Output of the operation
0 Consumer Attributes (Student, Infres_dep)

1 Owner Generate (K1) file named K1 containing the key
K1

2 Owner Generate (K2) file named K2 containing the key
K2

3 Owner Compute (K) file named K containing the key
K

4 Synchronization
Manager cpabe-setup two files named master_key and

pub_key

5 Owner

cpabe-enc pub_key K2 cur-
rent_date < 1427752800 and
current_date > 1425164400
and ((Student and In-
fres_dep) or ( sys_admin
and 2 of (strategy_team,
comelec_department, DSI) ))

a file named K2.cpabe containing
the key K2 encrypted

6 Synchronization
Manager

cpabe-keygen -o con-
sumer_public_key pub_key
master_key Student Infres_dep
’current_date = ’‘date+%s‘

file named consumer_public_key

7 Synchronization
Manager

cpabe-dec pub_key con-
sumer_priv_key K2.cpabe the file named K2

8 Consumer Compute(K1, K2) file named K containing the
shared data decryption key K

The validation of our timely file sharing is based on the CPABE toolkit [29]. This
toolkit provides a set of cryptographic operations used to implement the Ciphertext-Policy
Attribute-Based Encryption scheme. In our architecture, we adjust the toolkit to support
our Timely CP-ABE. As shown in table 5.3, the operations to ensure the timely access
control are applied to the owner, Synchronization Manager and consumer. We add also to
this toolkit the operations handled by the owner to generate K1 and K2 and to compute
the Key K. In addition, we implemented the operation handled by the consumer to retrieve
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the decryption key.
The owner starts by generating the keys K1, K2 and then K (steps 1,2,3). After

the generation of Public Key and Master Secret Key by the Synchronization Manager
(4), the owner encrypts K2 following a specific policy for an access during March 2015
(converted into 1425164400-1427752800 as the number of seconds since midnight on
January 1, 1970) (5). It sends then the encrypted key to the Synchronization Manager.
The Synchronization Manager generates the consumer key (6) by adding the current time
into the consumer’s attributes (0) and decrypts K2.cpabe (7) to verify the access privilege
of the consumer. We consider that the owner has already sent K1 to the consumer during
the first synchronization request. The consumer retrieves the K2 from the Synchronization
Manager and computes the key K (8) to decrypt the shared data.

5.5.3 Performance analysis

For the performance evaluation, we compare the introduction of the timely-file sharing
when it is based on our Timely CP-ABE and when it uses a simple access control list. We
considered, in our analysis, several random access policy schemes and user attributes that
can meet the real file sharing in the context of Digital Safe.

Figure 5.13: Performances of the timely file sharing based on CP-ABE

In the figure 5.13, the axis of X and Y match respectively to the total number of
attributes used in the access policy and the time cost of access verification in seconds. The
results show that it is more efficient to adopt the enhanced CP-ABE in the architecture of
synchronization. More precisely, the enhanced CP-ABE when adopted for the timely-file-
sharing synchronization reduces the verification cost by the fifth compared to ACL. It is
even more efficient as it handles the key management besides the access verification which
is not done by the ACL.
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5.6 Conclusion
The main goal of our work is to develop a framework that ensures the data synchronization
between the Client Digital Safe based on the HTML5 Local Storage APIs and the Cloud
Digital Safe. In addition to the efficiency, our protocol should be characterized by its high
quality and security. In this chapter, we have defined the different security requirements
of the SyncDS architecture and protocol. We focus on the concept of data sharing by
proposing the Timely CP-ABE. It guarantees first that only the legitimate consumers can
decrypt the shared files. It highlights also the notion of the timely access control into the
synchronization of shared files.
We strongly prove that our architecture and protocol are in line with all the safety require-
ments in the context of file externalization and synchronization for Digital Safes.
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Chapter 6

General Conclusion

The majority of existing Cloud storage products adopt proprietary solutions. Their first
concern is to offer the data availability to the end user across his different devices. Second,
they compete on guaranteeing the best security and confidentiality of user data when
externalized and managed by Cloud Service Provider. Proposing proprietary solution has
shown its deficiency on security, cost, developer support and customization issues. In this
respect, our thesis focuses on standardized solutions and Digital Safe context.

Proposing standardized storage solutions leads to deal with three features: storage at
the client side, storage at the server side and data synchronization between both sides.
There is already a proposed standardized Cloud Digital Safe on the server side storage that
follows the AFNOR specification while there is no standardized solution yet on the client
side. This thesis proposes three main contributions that follow the secure and standardizes
storage requirements.

The first contribution deals with the proposal of a standardized Client Digital Safe
based on HTML5 Local Storage APIs and AFNOR specifications.

In the second contribution, we define a file synchronization protocol with high quality
and minimal resource consumption. This efficiency is raised with the WebSocket protocol
and with the integration of the Hierarchical Hash Tree into abstract structure to detect
changes between two versions of the same file system.

Security challenges of our synchronization protocol is subject of the third contribution.
We mainly focus on the access control, and on the concept of timely file sharing were
shared data are synchronized to legitimate users only for a specified period of time. We
propose therefore, a Timely Ciphertext Policy Attribute Based Encryption.

6.1 Summary
Our thesis contributions revolve around the HTML5 APIs and the Digital Safe. Therefore,
the first chapter presents an overview of the HTML5 standard and the security issues
of the browsers which adopt this standard. Among the HTML5 APIs, we focus on the
communication and local storage API. We present their specifications, the considered
security measures of these APIs and their gaps.
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Table 6.1 Commercialized storage vs SyncDS solutions
Criteria Existent solutions SyncDS Contributions

Cloud data
storage Proprietary solutions Standardized solution based on

AFNOR.

- The requirement of the Digital
Safe is to guarantee the integrity
of the stored data over time.
- It is characterized by its probat-
ive value as a proof of data storage
is stored in a third trusted party.

Local data
storage Proprietary solutions

It is a standardized Digital Safe
solution which meets the AFNOR
specification first, in terms of
structure and format, second in
terms of provided security ser-
vices.

- Adopting standardized solutions
guarantees transparency to users
and to service providers.
- No software installation is re-
quired.
- A wide variety of operating sys-
tems (OS) is supported.
- Availability on all devices with
a compatible Web HTML5 engine
is guaranteed.

Adopted
protocols

The synchronization protocol is
based on HTTP and Rest API
for messages exchange. It uses
long HTTP polling (Dropbox) and
XMPP (Google drive) to push no-
tifications to users.

The WebSocket protocol is ad-
opted to ensure a bidirectional
communication between the Cli-
ent and the server. It is used both
for data exchange and notification
sent from the server to the client.

- Reducing the number of ex-
changed messages with the bid-
irectional communication.
- Reducing the time of synchron-
ization with a reduced overhead
size of exchange messages.

Data
security

Data are encrypted by the server
with a user independent key.

Data are encrypted at the Client
side with a user dependent key.

- The data are stored secured with
the enhanced HTML5.
- The Cloud is considered as an
encrypted blob store.
- The storage provider cannot ac-
cess to user data.

Data
sharing

Access Control List (ACL) is used
to define who can share the owner
data.

The owner defines his security
policy. He uses the Timely CP-
ABE to encrypt a part of the key
which will be sent to servers

- Confidentiality against the Ser-
vice provider
- An access control just for a
period of time.

Change
detection

Change detection is based on file
names and folders and hash of files

Change detection is based on the
Hierarchical Hash Tree in addition
to files and folders names.

- Efficient file synchronization
with a reduced change detection
of two file system versions.
- Efficient verification of files integ-
rity.

In the second chapter, we focus on the HTML5 Local Storage APIs. We mix HTML5
and Digital Safe standard to propose a standardized Client Digital Safe. In the first
contribution, we discuss the security measures which should be guaranteed by local storage
solutions and we propose to enhance the security of data stored using HTML5 APIS. In
fact, we add data confidentiality by encrypting data locally, data integrity and metadata
integrity. In the second contribution, we use the enhanced APIs in the conception of Client
Digital Safe based on AFNOR specifications. As a proof of concept, we implement the
enhanced Local Storage APIs and the Client Digital Safe. Implementing our proposition in
the Chromium browser and evaluating performance prove that adding the data protection
into the Local Storage APIs is crucial and efficient.

In the third chapter, we propose an architecture and a protocol called SyncDS, that
ensure file synchronization in a probative value Cloud. To present an efficient protocol
with minimum resource consumption, two keynote novelties are highlighted: first, the
integration of the Hierarchical Hash Tree into the metadata abstract to detect the changes
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between two versions of the file system, second, the integration of the WebSocket protocol
and server into the synchronization architecture.
Several analytical explanations and empirical evidences are presented to emphasize that
using our framework, reduces the time of file synchronization across devices and reduces
the time of change detection.

In addition to the efficiency, SyncDS protocol and architecture should be characterized
by their high quality in terms of security. In the fourth chapter, we have defined the
different security requirements of the SyncDS architecture and protocol. We mainly focus
on the concept of timely data sharing based on the CP-ABE to guarantee that only
the legitimate consumers can decrypt the shared files. By highlighting the notion of
the timely-based access control into the synchronization of shared files, the consumer
legitimacy is limited in time. He can receive the last version of owner version only during
a period predefined by the owner. This period is added into the attributes, and the event
of data synchronization is timestamped.
We strongly prove that our architecture and protocol are in line with all the safety require-
ments in the context of file externalization and synchronization for Digital Safes.

The table 6.1 highlights the contributions of our synchronization architecture and
protocol SyncDS compared to the commercialized solutions.

6.2 Future work and open issues
There are several interesting open issues and possible extensions that deserve to be the
concern of future works:

• HTML5 Local Storage APIs in the IoT context
Web applications are adopting intensively the client side storage. Besides the web
application and user data, these APIs can be used in the context of Web of Things
(WoT). First, many projects [6] [15] [19] are focusing on the skills of client side
web developing languages (JavaScript, HTML5) to start managing elements in the
physical world. Second, the fog computing [64] and its integration into the IoT make
the data storage and computing dense geographically distributed across different
smart things. Therefore, web applications used in WoT context emphasize the need
to store data locally in smart things.

• Collaborative data sharing
In the context of Digital Safe, we focus mainly on sharing document with a single
write and multiple reads constraint. With our protocol, modifications into the same
file cannot be occurred by different users at the same time. Otherwise, a conflict
resolution is raised. The owners then chooses the version he wants to keep.

Several proposed solutions [111] [89] [8] provide the possibility of sharing and collab-
orating on files. Multiple users can therefore access the same file and edit it at the
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same time. These solutions adopt the server side encryption rather than encrypting
data before their externalization. Thus, data and history of edits are revealed to the
service provider.

As future work, it is interesting to deal with file sharing and collaborative editing
when the owner chooses to externalize his data encrypted. Clearly, several issues can
be raised such as the data conflict resolution, time constraint of the data management.
Of course, data security remains the most challenging issue and especially the choice
of the appropriate access control strategy that should meet all the collaborative edits
requirements.

• Dealing with data distribution in the context of Digital Safe:
Different strategies can be adopted to ensure the data availability facing user mobility
and devices variety. These strategies can be classified into replication and distribution.

In case of replication which is adopted by our protocol SyncDS, data are completely
synchronized. Any modification that occurs in one device should happen in the rest
of user devices. As a result, the full data are present in every device. Regarding the
distribution, each device holds a portion of data. The responsibility is load balanced
between the different devices.

Adopting the data replication is the appropriate strategy in the case of smart user
devices with a low storage memory and that are unable to store a big amount of
data. Future works can deal with the secure distribution of local stored data across
many devices according to the Digital Safe requirements, the user behavior and the
device capacities.
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Résumé de thèse

1 INTRODUCTION

L’un des principaux objectifs des solutions de stockage Cloud est de garantir la flexibilité et

la haute disponibilité des données des utilisateurs. Ainsi, faire face aux besoins de mobilité

et la diversité des appareils utilisés émerge comme un défi majeur. D’un côté, les données

doivent être synchronisées automatiquement et en contenu lorsque l’utilisateur passe d’un

équipement à un autre. D’un autre côté, les services doivent offrir à chaque utilisateur

la possibilité de partager ses propres données avec différents utilisateurs. La gestion des

données entre de multiples appareils nous mène à mettre le point sur deux entités principales.

Premièrement, nous trouvons le framework du côté du serveur qui sauvegarde les données

des utilisateurs dans des serveurs centralisés. En deuxième lieu, il y a l’application du côté

client qui assure le stockage des données localement dans l’appareil de l’utilisateur et leur

synchronisation avec le contenu du côté serveur.

Cependant, les frameworks développés dans les deux côtés sont principalement basés sur

des solutions propriétaires dites solutions privées ou fermées. Toutefois, cette stratégie a

toujours montré ses lacunes en termes de problèmes de sécurité, de coût, de simplicité pour

les développeurs et de transparence des solutions.

La motivation de nos travaux est liée à la proposition d’un Coffre Fort Cloud standardisé.

Pour assurer la disponibilité des données à travers les différentes machines, retrouver un

Coffre Fort coté serveur nous mène à proposer un Coffre Fort coté client. Il permettra ainsi

aux utilisateurs d’une part de gérer ses données même lorsqu’ils sont déconnectés. D’autre

part, il assurera la synchronisation de son contenu avec celui du Cloud et des autres machines.

Le Coffre Fort numérique Cloud est défini dans le cadre du projet de recherche Gsafe

(Governmenet Safe). Tout en attachant une importance à la valeur probante dans le stockage

Cloud, le projet propose une architecture standardisée pour le stockage des documents

sensibles. Il fournit un environnement sécurisé pour garantir l’intégrité au fil du temps. La

conception de ce Coffre Fort suit les spécifications définies dans le standard d’AFNOR.

Pour suivre les exigences du stockage standardisé et la disponibilité des données, trois

contributions font l’objet de cette thèse. Nous proposons dans une première partie (I) un

Coffre Fort numérique Client standardisé basé sur les APIs de HTML5 et sur les spécifications

1



d’AFNOR. Dans les deux autres contributions, nous proposons un protocole de synchronisa-

tion d’une part, (II) efficace avec une consommation minimale des ressources et d’autre part,

(III) sécurisé pour assurer le partage des données en suivant les exigences du Coffre Fort

Numérique.

Figure 1: Le plan de contributions

Nos travaux de thèse manuscrit de thèse est structuré en cinq chapitres principaux comme

illustré dans la figure 1

Dans le deuxième chapitre, nous présentons la révolution web ainsi que les fonction-

nalités innovantes et les API de HTML5. Conformément aux exigences de la gestion des

données multi-appareils, nous détaillons les spécifications des API HTML5 qui assurent la

communication et le stockage des données locales. Les mesures de sécurité prises par chaque

API et leurs lacunes en matière de sécurité sont détaillées.

Dans le troisième chapitre, nous commençons par introduire les mesures de sécurité

fondamentales du stockage local. Ensuite, nous présentons les améliorations que nous avons

apportées aux APIs de stockage local de HTML5. Sur la base des APIs de HTML5 améliorées,

nous présentons ensuite la conception de notre Coffre Fort Client standardisé en identifiant

et décrivant les différentes spécifications de ce Coffre Fort.

Le quatrième chapitre traite le protocole de synchronisation entre le Coffre Fort Client

et le Coffre Fort Cloud. Nous commençons par présenter, la comparaison et l’analyse des

différentes approches adoptées pour les protocoles de synchronisation existants. Nous traitons

aussi les différentes stratégies utilisées pour détecter les changements entre deux versions

d’un même systèmes de fichiers. Pour faire face à nos contributions, dans la deuxième partie,

nous commençons par identifier et détailler les différentes entités de notre architecture de

synchronisation ainsi que les messages échangés entre elles. Dans la troisième partie, nous

proposons l’introduction de l’arbre hiérarchique de Hashage (HHT) dans la structure de

l’abstrait, et nous détaillons l’algorithme associé pour la détection des changements entre

deux version du système de fichier. Pour prouver l’efficacité de notre protocole avec l’adoption
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de HHT et le protocole WebSocket, nous présentons à la fin du chapitre, des explications

analytiques et empiriques évidences.

Le chapitre cinq commence par une introduction des services de sécurité et des mé-

canismes adoptés par les architectures de synchronisation des données en général. Nous

abordons ensuite les problèmes de sécurité; en particulier, le contrôle d’accès pour le partage

des données tout en suivant les exigences du Coffre Fort numérique. Par la suite, un contrôle

d’accès qui adopte une dimension temporelle est proposé en se basant sur CP-ABE. Nous

terminons notre proposition avec la validation de notre protocole en matière de sécurité.

1.1 COFFRE FORT NUMÉRIQUE CLIENT BASÉ SUR HTML5:

Des solutions propriétaires sont toujours adoptées pour assurer le stockage côté client et

la synchronisation des données. Ces solutions ont prouvé leurs insuffisances en terme de

mobilité, portabilité, transparence, efficacité et sécurité.

Pour remédier à toutes ces lacunes et adopter des solutions standardisées, nous proposons

un Coffre Fort Numérique basé sur HTML5. Il permet à l’utilisateur de gérer ses propres

données en toute sécurité lorsqu’ il est connecté ou déconnecté. Standardisé, notre stockage

côté client repose principalement sur deux standards: HTML5 et AFNOR.

Figure 2: Structure du système pour la protection des données

Figure 3: Niveau utilisateur dans la hiérarchie du stockage
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La première partie de nos travaux apporte deux contributions principales. Dans un pre-

mier temps, nous nous focalisons sur la sécurité des APIs de HTML5 qui assurent le stockage

des données en local (figure 2). Cette étape demeure indispensable pour la conception de

notre Coffre Fort qui repose principalement sur ces APIs. Il est alors impératif de s’appuyer

sur une base sécurisée. Après une analyse de la sécurité de ces APIs, nous ajoutons la confi-

dentialité des données en les chiffrant localement, la vérification de l’intégrité des données

et l’intégrité des métadonnées en chiffrant les noms attribués aux bases de données utilisées

par les APIs. Nous avons ajouté aussi un niveau utilisateur à la hiérarchie du stockage des

données comme illustré dans la figure 3.

Dans la deuxième contribution, nous nous basons sur les APIs de stockage de HTML5

améliorées pour définir un Coffre Fort numérique Client. Il s’agit de la projection du Coffre

Fort Numérique Cloud sur la machine de l’utilisateur. Pour ce faire, nous définissons une

nouvelle API là où les spécifications du standard AFNOR sont introduites. Cette API garantit

l’interopérabilité entre les APIs de HTML5 et le Coffre Fort situé dans le Cloud. Les données

stockées dans ce Coffre Fort font l’objet de synchronisation dans la deuxième partie de la

thèse. Notre Coffre Fort Client apporte les caractéristiques suivantes par rapport aux solutions

existantes:

- La standardisation puisqu’il s’appuie sur deux standards qui sont HTML5 et AFNOR;

- La portabilité et la mobilité avec des solutions qui ne dépendent pas de la machine utilisée;

- La sécurité puisqu’il suit les exigences définies dans le Coffre Fort Cloud en termes d’accès

et de fonctionnalité ;

- La transparence qui est apportée par l’utilisation des standards.

1.1.1 ARCHITECTURE DU RÉSEAU

Notre Coffre Fort Client est l’image du Coffre Fort Cloud sur la machine de l’utilisateur. Par

conséquent, il devrait avoir les mêmes caractéristiques et les spécifications du Coffre Fort

hébergé dans le Cloud. Différent de la solution existante, notre Coffre Fort Client se distingue

par son caractère non-propriétaire. En fait, il est basé sur les API de stockage local de HTML5.

Dans la figure 4, nous présentons l’architecture réseau de notre framework. Nous com-

mençons par présenter les composants du Coffre Fort Cloud, puis ceux du Coffre Fort Client.

Le Coffre Fort Cloud est composé de trois éléments principaux, qui sont:

• Serveur de stockage des données: Les données utilisateur sont divisées en blocs

et stockés dans des serveurs. De nombreux services de stockage Cloud peuvent être

utilisés tels qu’Amazon S3, Hadoop Distribuer Système de Fichiers (HDFS), Google File

System (GFS) etc. En général, un service de stockage dans le Cloud devrait satisfaire la

disponibilité des données, la fiabilité, la sécurité, l’accès aux données, etc. Ce système
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Figure 4: Architecture réseau

devrait donc prendre en charge la distribution des données, la concordance des SLA,

la qualité de service, l’attribution des pouvoirs, l’audit, la certification et le contrôle

d’accès;

• Serveur de stockage des Metadonnées: Une métadonnée dans le cas d’un Coffre

Fort est un fichier XML qui répertorie les différentes informations sur un fichier. Ces

fichiers XML sont stockés séparément des blocs de fichiers dans un serveur géré par le

fournisseur de services du Coffre Fort Numérique;

• Gestionnaire de preuves: Il s’agit d’un tiers de confiance qui préserve la preuve de

stockage de données. La preuve consiste en des métadonnées signées par le propriétaire

à l’aide de sa clé privée. Cette preuve garantit la non-répudiation et ajoute la valeur

probantes dans le stockage. Par conséquent, il peut être utilisé en cas de litige.

Trois types d’informations sont gérés par le Coffre Fort Cloud: les métadonnées, les données

et la preuve de stockage. Ces informations sont stockées respectivement dans le serveur de

stockage de métadonnées, les serveurs de stockage de données et le gestionnaire de preuves.

Néanmoins, les APIs de stockage HTML5 définies par la norme W3C ne peuvent pas être

utilisées dans le contexte du Coffre Fort. C’est pour cette raison que des fonctionnalités

supplémentaires doivent être prises en compte par ces API. Ces API doivent être utilisées

pour stocker:

• les métadonnées qui suivent la structure de celles stockées dans le Coffre Fort Cloud;

• les données qui suivent la spécification AFNOR. Dans le contexte du Coffre Fort

numérique, les données de l’utilisateur sont stockées dans un système de fichiers
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avec un ensemble de répertoires et fichiers. Ainsi, nous nous concentrons, parmi toutes

les API de stockage local, sur l’API du HTML5 FileSytem;

• la preuve du stockage est envoyée au gestionnaire de preuves. Dans notre cas, une

partie de la preuve sera considérée comme l’enregistrement des différentes opérations

effectuées sur le Coffre Fort Client dans un fichier de journal.

1.1.2 ARCHITECTURE DU DÉPLOIEMENT

L’architecture de déploiement est créée en projetant des blocs fonctionnels logiques du Coffre

Fort vers un environnement physique afin de respecter les exigences de l’architecture réseau

et de la spécification du Coffre Fort. Comme l’illustre la figure 5, dans l’architecture de

déploiement, nous ajoutons les entités suivantes au niveau de l’application:

Figure 5: Architecture de déploiement

• API de synchronisation: Elle assure la communication entre le Coffre Fort Client et

Cloud pour synchroniser leur contenu de données. Cette API a un accès complet aux

données et métadonnées stockées et au fichier journal où sont stockées les épreuves

de stockage.

• API Digital Safe: Pour gérer l’objet numérique, le client peut utiliser un ensemble de

fonctions qui sont décrites par la norme AFNOR NF Z42-020. Pour être conforme à

la norme, la composante de sécurité numérique doit mettre en oeuvre ces fonctions.

Bien entendu, avant toute exécution par le système, il est essentiel de vérifier que

l’utilisateur a le droit d’exécuter l’action en fonction de son profil et de la politique de

contrôle d’accès.

1.1.3 IMPLEMENTATION ET EVALUATION DES PERFORMANCES

Pour la validation de notre Coffre Fort, nous implémentons, d’une part, les modifications

apportées aux APIs de HTML5 de stockage. D’autre part, nous implémentons notre API

Digital Safe basé sur Javascript. Comme indiqué dans la figure 6 avec les rectangles en rouge,
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Figure 6: Implementation du Coffre Fort Client

nous avons ajouté les fonctions de sécurité au niveau du Browser Engine de Chromium et

nous avons développé l’API Digital Safe au niveau de l’application Web.

Nous comparons, dans les figures 7 et 8, les performances des APIs améliorées avec une

librairie qui n’apporte que la confidentialité des données. Les résultats montrent la présence

d’une légère dégradation des performances par rapport aux APIs basiques de HTML5, ce

qui nous semble attendu vu l’ajout de nouvelles fonctionnalités à chaque API. Toutefois, ces

dégradations restent minimes comparées à celles apportées par la librairie Dojox.

Figure 7: Performance du stockage des données avec setitem

2 SYNCDS: SYNCHRONIZATION EFFICACE DES DONNÉES:
La deuxième partie de notre thèse porte sur une architecture et un protocole de synchronisa-

tion dans le contexte du Coffre Fort Numérique appelé SyncDS (Synchronization protocol in

the context of Digital Safe). La synchronisation est assurée entre le Coffre Fort Numérique
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Figure 8: Performance de la récupération des données avec getitem

Client basé sur HTML5 et le Coffre Fort Numérique Cloud.

2.1 SYNCDS: ARCHITECTURE DE SYNCHRONISATION

Dans le cadre du Coffre Fort, nous proposons une architecture, figure 9, composée de quatre

couches principales, qui sont:

Figure 9: Architecture de synchronisation entre Coffres Forts Client et Cloud

• la couche de stockage Client: le Coffre Fort Numérique Client qui sauvegarde les données

localement en toute sécurité

• la couche Application: gère la synchronisation au niveau de l’application

• la couche de synchronisation: gère les messages échangés entre le Coffre Fort Client et

Cloud en se basant sur le protocole WebSocket. A ce niveau, nous trouvons la gestion

des conflits ainsi que la notification des utilisateurs concernés par les modifications

• la couche de Stockage Cloud: une architecture standardisée qui fournit un environ-

nement sécurisé pour le stockage des documents sensibles dans le Cloud.
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2.2 SYNCDS: PROTOCOLE DE SYNCHRONISATION

Notre protocole de synchronisation SyncDS met l’accent sur la haute qualité et la consomma-

tion minimale des ressources dans un environnement sécurisé. Il présente deux nouveautés

principales.

La première est le caractère non propriétaire de l’architecture de synchronisation. Ce

caractère demeure d’une très grande importance pour intégrer une large gamme de produits

et d’appareils concurrents. Nous nous basons sur un Coffre Fort Client standardisé qui fait

le sujet de la première partie de la thèse. Nous nous basons également sur l’API HTML5

Websocket. Ce dernier assure une communication bidirectionnelle entre le client et le

serveur. Nous proposons de l’utiliser pour notifier l’utilisateur des éventuelles modifications

qui ont besoin d’être synchronisées. Il est utilisé aussi pour les échanges de messages de

synchronisation et pour le transfert de fichiers

La deuxième nouveauté apportée par notre solution est l’intégration de l’Arbre Hierar-

chique de Hashage (HHT) pour détecter les changements entre deux versions du même

système de fichiers. Le HHT a été adopté dans des travaux antérieurs pour détecter les

changements entre deux versions d’un même fichier. Notre travail est le premier dans son

genre qui adopte le HHT dans le contexte de synchronisation de fichiers sécurisé pour dé-

tecter les changements entre les systèmes de fichiers en entiers. Le protocole SyncDS détient

trois phases (figure 10):

Figure 10: Différentes étapes du protocole de synchronisation SyncDS

• phase offline: Lorsque l’utilisateur est hors ligne, il peut effectuer des modifications au

niveau de son Coffre Fort Client. Toutes les modifications sont sauvegardées localement

• phase de connexion: Cette étape commence lorsque l’utilisateur revient en ligne. Les

modifications effectuées du côté client et du côté Cloud doivent être synchronisés.
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Deux étapes font l’objet de cette partie, l’envoie des changements et la synchronisation.

Durant la première phase, le Coffre Fort

Figure 11: Détection des changements dans SyncDS

Client envoie les opérations qui ont été effectués hors ligne. Au cours de la phase de la

connexion, et plus particulièrement, au niveau de l’étape Synchronisation, l’utilisateur

envoie au serveur un extrait de son système de fichiers qui donne une image du
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contenu de son système de fichiers. Cet extrait doit être comparé avec celui du serveur

pour détecter les modifications effectuées sur le serveur lorsque l’utilisateur était hors

ligne. Le HHT est introduit à ce niveau pour structurer l’extrait envoyé. En effet, le

Hierarchique Hash Tree a une structure d’arbre qui suit la structure du système de

fichiers. LEs répertoires et les fichiers sont les noeuds des arbres. Outre les métadonnées

basiques, chaque nœud est identifié par un hash. Pour les fichiers, ce hash correspond

à la valeur de hachage du contenu du fichier. Pour les répertoires, le hash est basé sur

les hachage du contenu du répertoire avec ses fichiers et ses répertoires.

• phase en ligne: A ce niveau, on retrouve une synchronisation bidirectionnelle entre le

Coffre Fort Client et le Coffre Fort Cloud. En effet, toute modification qui s’effectue

d’un côté est directement envoyée vers l’autre côté.

Comme représenté dans la figure 11, l’algorithme entier est composé de deux algorithmes:

Matching subtrees et Script generation. La sortie du premier algorithme est l’entrée du second.

A partir des deux extraits des deux versions du système de fichiers, notre algorithme génère

deux arbres tout en suivant la structure de HHT. L’algorithme Matching subtrees récupère

les deux arbres et détecte les nœuds identiques. Ces nœuds sont alors éliminés de l’arbre

pour retrouver des arbres réduits Matching subtrees. Les deux arbres réduits sont l’entrée

de l’algorithme Script generation pour générer le script qui contient différentes opérations.

Dans le cas ou ces opérations sont appliquées sur le premier arbre réduit, nous retrouvons

le deuxième arbre. Le script en question est envoyé par le Coffre Fort Client au cours de la

phase Synchronize de la deuxième étape de notre protocole de synchronisation.

2.3 ÉTUDE DES PERFORMANCES DU PROTOCOLE SYNCDS

Le protocole proposé SyncDS est un protocole de synchronisation de fichiers qui garantie

une meilleure qualité et une consommation minimale des ressources dans un environnement

sécurisé. Il présente deux nouveautés principales. La première est le caractère non proprié-

taire de l’architecture de synchronisation qui a une grande importance pour intégrer une

large gamme de produits et d’appareils concurrents. En fait, nous améliorons les API de

stockage local HTML5 pour stocker localement les données utilisateur dans un Coffre Fort

Client. Nous utilisons également l’API HTML5 Websocket pour le transfert de données entre

le Cloud et le Coffre Fort Cloud et le Coffre Fort Client.

La deuxième nouveauté de notre architecture est l’introduction du HHT pour détecter les

changements entre deux versions du même système de fichiers. Le HHT a été adopté dans

les travaux précédents pour détecter les changements entre deux versions du même fichier.

A notre connaissance, notre travail est le premier qui adopte le HHT dans le contexte de la

synchronisation sécurisée des fichiers pour détecter les changements entre les systèmes de
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fichiers entiers. En effet, cet arbre représente une empreinte des objets stockés localement

ainsi que leur organisation dans le système de stockage local Nous avons alors proposé des

algorithmes de parcours et de comparaison basés sur d’arbres de hachage hiérarchiques ce

qui permet de localiser efficacement les objets à synchroniser.

Pour prouver le concept et valider l’efficacité de notre architecture et protocole, nous

nous concentrons principalement sur trois parties de l’architecture de synchronisation. Tout

d’abord, l’implémentation couvre la couche de stockage côté client par l’amélioration des

APIs de HTML5 et en particulier l’API FileSystem. En second lieu, elle comprend l’application

web avec le développement de l’API de synchronisation. Enfin, elle détient la couche de

synchronisation du côté du serveur de synchronisation basée sur WebSocket et l’intégration

de l’algorithme de détection des changements du système de fichier basé sur le Hierarchical

Hash Tree (HHT).

Nos résultats empiriques et preuves analytiques montrent que l’utilisation de notre

framework, respecte les propriétés d’un protocole de synchronisation efficace. Ces propriétés

sont : Le faible calcul des données et de métadonnées du côté client (figure 12), l’efficacité

de la détection des changements entre les systèmes de fichiers du client et du serveur (figures

13 et 14 ), la réduction du nombre de fichiers synchronisés et enfin la réduction des messages

échangés entre le client et le serveur (figure 15). Les figures représentent des comparaisons

entre les performances de notre architecture et celles des autres protocoles adoptés par les

solutions existantes.

Figure 12: Délai supplémentaire introduit par HHT au niveau du Coffre Fort Client

Notre architecture de synchronisation est proposées dans le contexte Coffre Fort Numérique.

Ce contexte se concentre principalement sur l’introduction de la valeur probante et la préser-

vation de l’intégrité d’un objet numérique au fil du temps.

L’introduction de l’Hierarchical Hash Tree (HHT) dans la synchronisation participe di-

rectement à la sécurisation des données en plus de l’amélioration des performances. En effet,

la vérification de la valeur du hash du répertoire racine d’un système de fichiers détecte
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Figure 13: Performances de HHT lors de la détection des changements

Figure 14: Temps total de la détection des changements

Figure 15: Performances du protocoles WebSocket dans l’architecture de synchronisation

systématiquement si un objet du système de fichiers a été altéré par un tiers ou si le système

de fichiers conserve sa version d’origine. Dans ce cas, il n’est plus nécessaire de vérifier le

hash des objets un par un pour vérifier l’intégrité du système du fichiers.
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3 SYNCDS: PARTAGE DES DONNÉES SÉCURISÉ

Dans cette dernière partie de la thèse, nous abordons les exigences de sécurité du protocole

de synchronisation notamment l’intégrité des fichiers, la non-répudiation, l’authentification,

la synchronisation sécurisée et le contrôle d’accès. Nous nous concentrons principalement

sur le contrôle d’accès, dans le contexte de partage des données entre différents utilisateurs.

3.1 TIMELY-CPAB: CONTRÔLE D’ACCÈS AVEC DIMENSION TEMPORELLE

Pour le partage des données, nous distinguons deux types d’utilisateurs: le propriétaire et

le consommateur des données. Le propriétaire, outre la création, le stockage et le partage

de données, il est responsable de l’imposition de la politique d’accès. Le consommateur est

l’utilisateur qui télécharge et déchiffre les fichiers partagés par le propriétaire.

Plusieurs enjeux majeurs sont soulevés par le partage des données dans le contexte

du Coffre Fort Numérique. Tout d’abord, la synchronisation des données qui sont déjà

chiffrées par les consommateurs vers des destinations multiples introduit des problématiques

de gestion de clés et de contrôle d’accès. Il est essentiel aussi de mettre en évidence que

ni le propriétaire qui a partagé les données ni le consommateur ne sont nécessairement

connectés en même temps. Pour l’enjeux de la sécurité, il est indispensable d’assurer la

confidentialité des données contre l’accès non autorisé des consommateurs ainsi que du

serveur de synchronisation. De plus, nous ajoutons aussi la dimension temporelle pour un

accès restreint dans le temps. Les données sont accessibles alors par les consommateurs

uniquement pendant une période de temps définie par le propriétaire dans sa politique de

sécurité.

Figure 16: Contrôle d’accès avec une dimension temporelle Timely-CP-ABE

Pour soulever tous ces enjeux, nous proposons d’utiliser le chiffrement basé sur les

attributs, Ciphertext Policy Attribute Based Encryption (CP-ABE) pour la gestion du contrôle

d’accès. Nous ajoutons à CP-ABE, l’horodatage pour ajouter une dimension temporelle à

l’accès ainsi que la division de la clé de chiffrement, en deux parties. Une partie est envoyée

directement et seulement au consommateur en toute sécurité. La deuxième partie de la clé
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Figure 17: Protocole de partage des fichiers avec Timely-CP-ABE

est chiffrée en utilisant CP-ABE et envoyée au serveur de synchronisation pour vérifier la

légitimité du consommateur.

La figure 17 illustre, notre protocole de partage de fichiers en considérant le Timely-CP-

ABE. Nous considérons que le Gestionnaire de synchronisation est un serveur semi-fiable.

Cela signifie, d’abord, que le serveur est honnête et suit les exigences de l’architecture et

du protocole. Deuxièmement, le serveur est curieux, donc il essaye de recueillir autant

d’informations et de données que possible. Comme les données sont sauvegardées chiffrées

du côté du serveur, la clé du chiffrement du fichier ne doit pas être récupérée par le serveur.

Sinon, le serveur peut avoir un accès complet aux données des utilisateurs.

Pour cette raison, nous divisons la clé de chiffrement en deux clés K1 et K2.

• La première clé K1 est envoyée chiffrée au consommateur en utilisant sa clé publique.

Ainsi, le consommateur est l’entité unique qui peut la récupérer. Cette clé n’est envoyée

qu’une seule fois.

• La seconde clé K2 est envoyée cryptée à l’aide du Timely-CP-ABE. Elle est ensuite

déchiffrée par le serveur pour vérifier le droit d’accès du consommateur.

Avec cette division des clés de chiffrement et pour accéder aux données, le consommateur

doit obtenir:

• du propriétaire la clé K1 lors de la première demande de synchronisation;

• du Gestionnaire de Synchronisation la clé K2 et l’autorisation de télécharger le fichier

chiffré tant que ses attributs obéissent à la politique de contrôle d’accès du propriétaire

et que l’accès est demandé pendant la période légitime.
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Avec K1 et K2, le consommateur calcule la clé du déchiffrement K et peut déchiffrer le fichier.

3.2 ANALYSE DE LA SÉCURITÉ DU PROTOCOLE

Les services de sécurité sont répartis entre les composants d’architecture en fonction de leurs

rôles dans la synchronisation comme illustré dans la figure 18. Les fonctionnalités détaillées

sont décrites comme suit:

Figure 18: Aspects de sécurité dans l’architecture de SyncDS

• Stockage sécurisé des données:

Pour gagner la confiance des utilisateurs, il est essentiel de donner une haute priorité à

la sécurité des données à la fois stockées localement et stockées dans le Cloud. Comme

l’utilisateur ne fait pas confiance aux serveurs distants, il est réconfortant pour lui

d’envoyer ses données chiffrées. Le Cloud est donc considéré comme un serveur de

stockage de blob chiffré. Ainsi, le fournisseur de stockage ne peut pas accéder à ces

données.

• Integrité des fichiers:

Dans notre architecture, les haches des fichiers et des répertoires sont introduits dans

les métadonnées du fichier. En fait, ce mécanisme préserve l’intégrité du fichier. Avec

l’introduction de l’arbre de hachage hiérarchique (HHT), vérifier la valeur du hash du

répertoire racine du système de fichiers vérifie l’intégrité de tout le système de fichiers.
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Il détecte systématiquement si un objet a été modifié par un tiers, ou le système de

fichiers conserve sa version d’origine. Dans ce cas, il n’est plus nécessaire de vérifier le

hash des fichiers un par un pour vérifier leur intégrité.

• Non-repudiation:

Dans le Coffre Fort Cloud, un Gestionnaire de preuves est l’entité qui stocke les mé-

tadonnées signées par la clé privée de l’utilisateur. Ainsi, le stockage d’une preuve

garantit la non-répudiation. Par conséquent, ni le client ni le fournisseur de services

ne peuvent nier avoir participé au processus de stockage.

• Authentifiation:

Elle consiste à vérifier l’identité de l’utilisateur par le Gestionnaire de synchronisation

avant tout accès aux services de stockage et de synchronisation. Pour la sauvegarde des

données et des épreuves, l’authentification de l’utilisateur par les serveurs de stockage

et le gestionnaire des preuves sont également nécessaires.

• Synchronisation sécurisée:

Sécuriser les messages de synchronisation entre les différentes entités d’architecture

est crucial dans notre architecture. Le chiffrement des messages échangés à l’aide

d’une clé de session mutuellement échangée évite la récupération d’informations

confidentielles en cas d’interception de session. Dans la conception de notre protocole

de synchronisation, les fichiers des utilisateurs sont envoyés chiffrés. Pour éviter les

chiffrements multiples du même message envoyé, le chiffrement se produira au niveau

de la couche application au lieu de la couche transport. Dans ce cas, seuls les messages

à haut niveau de confidentialité sont chiffrés.

• Contrôle d’accès:

Dans le cas du partage de données entre différents utilisateurs, seul le consommateur

autorisé peut accéder aux données. Même le fournisseur de Cloud est concerné par le

contrôle d’accès et ne doit pas avoir le droit d’accéder aux données. Le gestionnaire de

synchronisation, en tant que composant frontal de l’architecture de synchronisation,

est le premier responsable du contrôle d’accès. Dans notre proposition, le propriétaire

des données peut partager des données avec les consommateurs sur une période de

temps spécifique. Au-delà de cette période, l’accès est refusé. Ceci conduit à proposer

un CP-ABE avec une dimension temporelle et ajouter l’horodatage dans la vérification

du contrôle d’accès.

- Confidentialité contre le Gestionnaire de synchronisation:

Bien que ce serveur est censé nuire à la confidentialité des données, il doit être honnête

de suivre les données et les instructions de gestion des clés et de traiter la demande
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d’accès aux données. Même si le Gestionnaire de synchronisation gère les clés et

vérifie la légitimité d’accès, il ne détient qu’une partie du secret. Ce secret est utilisé

uniquement pour vérifier que le consommateur, au moment de la demande d’accès,

obéit à la politique d’accès imposée par le propriétaire. Ainsi, il ne peut pas récupérer

les données de l’utilisateur avec cette clé.

- Confidentialité de l’accès des consommateurs non autorisés:

Dans notre protocole proposé, le consommateur légitime qui a le privilège d’accès est

l’entité unique qui peut récupérer et déchiffrer les données. Même si le Gestionnaire de

synchronisation dispose de la clé K2, la clé K1 manque pour calculer la clé de chiffrement

K. En outre, même si le consommateur a la clé K1 et il n’a pas le privilège d’accéder

aux données du propriétaire. Il ne peut pas récupérer la clé K2 du Gestionnaire de

synchronisation.

Un autre cas est envisageable. Le consommateur a récupéré précédemment les deux

clés K1 et K2 et il n’a plus le privilège d’accéder aux données en raison de l’expiration du

temps ou des changements de politique. Dans ce cas, le Gestionnaire de synchronisation,

lors du calcul de la nouvelle clé K2, ne lui donne pas l’autorisation de récupérer et de

synchroniser la nouvelle version des données.

3.3 ÉTUDE DES PERFORMANCE DU TIMELY-CP-ABE

Pour l’évaluation des performances, nous comparons l’introduction du partage de fichiers

avec la dimension temporelle lorsqu’il est basé sur notre Timely-CP-ABE et lorsqu’il utilise

une simple liste de contrôle d’accès ACL. Nous considérons, dans notre analyse, plusieurs

schémas de politiques d’accès aléatoire et des attributs d’utilisateurs qui peuvent répondre

aux véritables cas de partage de fichiers dans le contexte du Coffre Fort numérique.

Dans la figure 19, les résultats montrent qu’il est plus efficace d’adopter le CP-ABE amélioré

dans l’architecture de synchronisation. Plus précisément, le CP-ABE amélioré lorsqu’il est

adopté pour la synchronisation de partage de fichiers réduit le coût de vérification au

cinquième par rapport à l’ACL. Il est encore plus efficace car il introduit la gestion des clés

en plus de la vérification d’accès; chose qui n’est pas effectuée par l’ACL.

4 CONCLUSION

Trois contributions principales font l’objet de notre thèse de recherche. Dans la première,

nous proposons un Coffre Fort Client standardisé basé sur HTML5. Nous améliorons, par

conséquent, la sécurité des APIs de stockage de HTML5. Ces APIs améliorées sont la base

de notre Coffre Fort client. L’évaluation de la performance prouve que l’amélioration des

APIs de HTML5 est crucial et efficace. Dans la deuxième contribution, nous proposons un

protocole de synchronisation efficace et sécurisé entre les Coffres Forts. Nous avons de même
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Figure 19: Performances du Timely-CP-ABE

démontrer l’efficacité de notre solution. La troisième contribution se concentre sur la sécurité

du partage des fichiers. Nous proposons ainsi un mécanisme de contrôle d’accès avec une

dimension temporelle qui obéit aux exigences du Coffre Fort Numérique. Notre mécanisme

fait preuve d’efficacité et sécurité.

Comme de travaux future, il est intéressant d’adopter les APIS de HTML5 dans le domaine

de l’internet des objets et de se focaliser sur le partage collaboratif des données dans le

contexte du Coffre Fort numérique.
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Appendix A

HTML5 API classification

A.1 HTML5 APIs

Communication and networking
WebSocket Allows the establishment of a bidirectional and asynchronous communica-

tion between the browser and the client to exchange informations
HXMLHttpRequest - Ensures an asynchronous communication between the client and the

server
-In its new version, enhancement were added for a better interoperability
with binary data, blobs and files
- Adopts the Cross Origin Ressource Sharing CORS

WebRTC introduces the possibility to the browser the possibility to communicate
with an other browser based on P2P communication

Web Messaging Ensures the communication between two documents with different origins
within the same browser

Notification Ensures the display of notifications at the user’s computer
Server Sent Events Opens an HTTP connection to receive Push notifications from the server

in the form of DOM events. The API is designated to work with other
pushing systems like SMS Push.

Network informa-
tion

Retrieves informations about the network connection

Device
Geolocalisation Retrieves informations about the position of the device using GPS, WIFI

or cellular network
Battery status Explores informations about the battery status of a device
Screen orientation Retrieves the orientation of the device’s screen
Vibration Accesses au vibration mechanism of the device. Its is a tactile feedback
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A.1. HTML5 APIS

Motion Sensors Provides the developer information about the orientation, the movement
and acceleration of the device.

Web Audio Allows the generation and the process of the sound. It supports 3 types
of audio formats: MP3, WAV and OGG.

Media capture Captures the sound and the video with the hardware of the user( (micro-
phone or webcam)).

video Manages the play of the video on a web page. It supports 3 types of video
formats: MP4, WebM and OGG.

Data
Indexed database Offers the possibility to store data in a structured database.
Application Offline Stores different elements needed from the web application to work in the

offline mode.
File Manipulates files stored locally in the user machine.
FileSystem Simulates a local file system used by the web application to manages files

and repositories.
WebStorage Stores data in the user’s device as a key/value pair.
WebSQL Stores the data in SQL databases. This API has been abandoned in favor

of the indexed database API.
User Interface

SVG Scalable Vector Graphic displays vectorial graphic objects based on XML.
WebGL Brings 3D graphics to a web page. It is closely conform with the OpenGL

ES 2.0 API.
Drag and Drog Allows the user to click on an item and move it to another location while

holding down the mouse button.
Fullscreen Puts in full screen several web application elements such as videos and

images.
Performances optimization

Web Workers Allows developers to use the multi-threading and to run background
scripts that run at the same time with the main web page. The script
communicates with the main web page via the web Messaging API.

Session history and
navigation

Allows you to change URL without reloading the entire web page.

Page visibility detects if the page appears to the user. This avoid for example, periodic
actions such as updating messages while the user does not see the page.
This allows better CPU consumption and energy.
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APPENDIX A. HTML5 API CLASSIFICATION

Animation timing detects the best animation rate based on the visibility state of the page
for better CPU utilization.

Navigation timing Measures the web page loading speed.
Security

Web cryptograph-
ies

Ensures security features such as the hash, the generation and the verific-
ation of signature, the encryption and the decryption.

A.2 HTML5 APIs classifications

Figure A.1: Classification according to the nature of managed elements 1
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A.2. HTML5 APIS CLASSIFICATIONS

Figure A.2: Classification according to the nature of managed elements 2

Figure A.3: Classification according to the actions on managed elements
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Appendix B

HTML5 Local Storage APIs

B.1 WebStorade API

Figure B.1: WebStorage API example
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B.2. INDEXEDDB API

Figure B.2: Javascript of the WebStorage API

B.2 IndexedDB API

Figure B.3: IndexedDB API files
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APPENDIX B. HTML5 LOCAL STORAGE APIS

Figure B.4: Javascript example of the IndexedDB API

B.3 FileSystem API

Figure B.5: Javascript example of the FileSystem API
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B.3. FILESYSTEM API

Figure B.6: FileSystem API example
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Local data storage : security and availability
Mayssa JEMEL

ABSTRACT : Due to technological advancements, people are constantly manipulating multiple connec-
ted and smart devices in their daily lives. Cross-device data management, therefore, remains the concern of
several academic and industrial studies. The proposed frameworks are mainly based on proprietary solutions
called private or closed solutions. This strategy has shown its deficiency on security issues, cost, developer
support and customization. In recent years, however, the Web has faced a revolution in developing standardi-
zed solutions triggered by the significant improvements of HTML5. With this new version, innovative features
and APIs are introduced to follow business and user requirements. The main purpose is to provide the web
developer with a vendor-neutral language that enables the implementation of competing application with lower
cost. These applications are related neither to the used devices nor to the installed software.

The main motivation of this PhD thesis is to migrate towards the adoption of standardized solutions to
ensure secure and reliable cross-device data management in both the client and server side. There is already
a proposed standardized Cloud Digital Safe on the server side storage that follows the AFNOR specification
while there is no standardized solution yet on the client-side. This thesis is focused on two main areas : 1) the
proposal of a standardized Client Digital Safe where user data are stored locally and 2) the synchronization
of these data between the Client and the Cloud Digital Safe and between the different user devices.

We contribute in this research area in three ways. First, we propose a Client Digital Safe based on HTML5
Local Storage APIs. We start by strengthening the security of these APIs to be used by our Client Digital Safe.
Second, we propose an efficient synchronization protocol called SyncDS with minimum resource consump-
tion that ensures the synchronization of user data between the Client and the Cloud Digital Safe. Finally,
we address security concerns, in particular, the access control on data sharing following the Digital Safe
requirements.

MOTS-CLEFS : Digital Safe, HTML APIs, Local Storage APIs, syncrhonization protocol, Hierarchical Hash
Tree, WebSocket, CP-ABE, time based access control.



BIBLIOGRAPHY

Mayssa Jemel - 2016 157


	Acknowledgements
	Abstract
	Résumé
	Glossary
	List of figures
	List of tables
	General Introduction 
	Problem statement and motivations
	The potential of HTML5
	The interest of data synchronization

	Contributions of the thesis
	Client Digital Safe based on HTML5
	SyncDS: A Digital Safe Based File Synchronization Approach
	Secure data synchronization in probative value Cloud

	Organisation of the manuscript

	Local data storage and communication HTML5 APIs: Security measures and risks
	Introduction
	Overview on HTML5 security
	The Web Revolution
	Security issues of HTML5

	HTML5 Communication APIs
	WebRTC and security requirements
	WebSocket and security requirements

	HTML5 Local data storage APIs
	Access control in browsers
	Additions to Same-Origin Policy
	Finer grained Label

	Conclusion

	Client Digital Safe based on HTML5
	Introduction
	Security measures for Local storage
	Data encryption
	Key management
	Data Integrity
	MetaData Integrity

	Enhancing the security of the HTML5 local storage
	Imperative interest of securing the Local Storage
	Enhancement of the HTML5 Local data storage APIs

	Client Digital Safe based on HTML5 Local Storage APIs
	Motivation of a Client Digital Safe based on HTML5 
	Conception of the Client Digital Safe

	Implementation and evaluation
	Data protection into the Chromium browser
	Integration of the Client Digital Safe into the Chromium browser
	Results and performances discussion

	Conclusion

	SyncDS: A Digital Safe Based File Synchronization Approach
	Introduction
	Synchronization protocol: principle and requirements
	Overview on synchronization protocols
	Efficient Synchronization protocol requirements
	Sub-protocol of the synchronization protocol
	Detecting changes in file systems

	SyncDS synchronization protocols
	Overall SyncDS architecture
	SyncDS sub-protocols
	Overview on exchange steps

	SyncDS efficiency with the Hierarchical Hash Tree
	Abstract structure
	Changes detection algorithms

	SyncDS in the Peer-to-Peer context
	P2P-SyncDS: System requirements:
	P2P-SyncDS: Standardized architecture

	Implementation and proof of concept
	Analysis of the SyncDS protocol
	Efficiency perspective
	Security perspective

	Conclusion

	Secure data synchronization in probative value Cloud
	Introduction
	Security concept for file sharing and synchronization
	Synchronization of shared data
	Security services
	Security mechanisms
	Background on CP-ABE in file synchronization

	SyncDS: system model and security requirements
	SyncDS: Secured file synchronization
	Authentication and secure data exchange
	Timely Ciphertext Policy Attribute Based Encryption
	Security analysis of data sharing with SyncDS

	Validation and proof of concept
	Formal security validation of SyncDS
	Timely CP-ABE implementation
	Performance analysis

	Conclusion

	General Conclusion 
	Summary
	Future work and open issues
	Publications

	Appendices
	HTML5 API classification
	HTML5 APIs
	HTML5 APIs classifications 

	HTML5 Local Storage APIs
	WebStorade API
	IndexedDB API
	FileSystem API

	Bibliographie

