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1
Introduction

1.1 Fluid dynamics

Fluid dynamics focus on the evolution of density, velocity, pressure and energy of fluids in general,
through the conservation laws of mass, forces and energy. These physical principles are condensed in
the well-known Navier-Stokes equations, formulated in the early 19-th century by Claude-Louis Navier
[Nav23] and George Gabriel Stokes [S+51]. Although the theoretical aspects of the Navier–Stokes (NS)
equations have been studied by thousands of mathematicians and physicists, the existence and uni-
city of its solution have not been proven to this day. In simple configurations, analytical solutions can
be obtained, such as for the steady incompressible flow in an infinitely long pipe (i.e. Poiseuille flow
[Bat00, Poi40]), which displays a paraboloid axial velocity profile. However, the limited number of ana-
lytical solutions is not sufficient to fully understand the mechanisms of flow motion.

In 1883, Osborne Reynolds performed experiments consisting in studying the water movement in
a long glass pipe with small diameter. Osborne Reynolds’s experiments [Rey83] showed that at high
velocities, the dyed water flowing through the pipe can lose the paraboloid profile, with the dyed layer
broken apart and diffused to arbitrary directions. Reynolds’ experiments led to the definition of one of
the most important scalar in fluid mechanics, the Reynolds number:

Re =
ρUL

µ
,

with ρ the fluid’s density, U the characteristic velocity, L the characteristic length and µ the fluid’s dy-
namic viscosity. The Reynolds number measures the ratio of inertial forces to viscous forces in the flow.
At low Reynolds numbers, the flow tends to be laminar, which means that different parts of the fluid move
in parallel layers, as shown in figure 1.1a. At high Reynolds numbers (usually > 103), the flow becomes
turbulent, meaning that the fluid continuously experiences irregular fluctuations. Eddies of different sizes
are generated and degenerated in turbulent regions of the flow (see figure 1.1b), along with active mass
mixture and energy exchange. At large scales, the fluid motion mostly depends on the boundary con-
ditions, while at small scales, the behavior of eddies follows some unified physical pattern independent
of geometric factors [Pop00], making turbulent flow a complex multiscale structure. A well-established
physical model is the energy cascade theory by Lewis Fry Richardson [RL07], proposed in 1922. In this
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Figure 1.1 | Laminar and turbulent velocity magnitude (m/s) around a 2-D cylinder. At Re = 15, the different layers of
fluid passing around the cylinder remain parallel. At Re = 1.5× 105, the flow is turbulent, and eddies with different sizes are
present behind the cylinder.

model, a simplistic but clear view of the energy budget of turbulence is presented: the energy at lar-
ger eddies is transferred to smaller eddies at the occasion of eddy division, until the eddies are so small
that the viscous dissipation overpasses the energy transfer. Here, an eddy refers to a swirling structure
in turbulent flow, with its moving direction different from the main flow. In 1941, Andreï Nikolaïevitch
Kolmogorov quantitatively obtained the smallest scale at which the cascade ceases using dimensional ana-
lysis [Kol41]. In incompressible homogeneous isotropic turbulence, there exists an inertial range where
the energy transfer obeys a unified law, regardless of other physical properties of the fluids.

Turbulent flows can be encountered at many occasions in the real world. For high-speed airplanes
and vehicles, the flow within a thin layer in contact with the solid surface is known to be turbulent.
Formally called the turbulent boundary layer [Whi11], it has crucial impact on the stability of the moving
body. Turbulence also occurs when two clouds of air with different density, velocity or temperature meet
[Stu88]: the frontal surface triggers turbulent eddies, alongwith intensemass and energy transport. In the
atmosphere, the clouds and inhomogeneous earth surface conditions cause uneven sunshine flux, which
can generate thermal convective turbulence from the earth surface to cloud tops. Understanding and
predicting the events occurring in turbulent flows can hence be beneficial in many situations. However,
the complexity and chaos inherent to turbulence make it almost impossible to analyse dynamics from a
purely theoretical approach. Indeed, turbulence is often quoted as "the most important unsolved problem
in classical physics" [EF11].

1.2 Computational fluid dynamics

Experimentation has represented the main approach to study fluid dynamics since Reynolds’ tube ex-
periments in 1883. Today, modern captors and imaging technologies make it feasible to recover and
precisely measure flow fields in many physical scenarios. Yet, experimentation remains an expensive
and time-consuming approach. The preparation of an experiment usually requires much care and time,
which is a barrier to the reproduction of experimental results. Experimentation is also not acceptable in
inverse designs, because the flow fields are updated every time the control parameter is modified. To this
end, computer-based simulations are nowadays widely adopted for both scientific research and industrial
practice. As a branch of fluid mechanics, computational fluid dynamics (CFD) exploit numerical meth-
ods to obtain physical fields from the resolution of approximated NS equations (in the present thesis,
focus is made on velocity and pressure in the NS equations, and other quantities such as temperature
or concentration are omitted). Compared to experimental methods, initial and boundary conditions, as
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Figure 1.2 | A triangular mesh around a 2-D cylinder used for the finite element method. The elements near the solid
surface are refined in order to accurately capture the geometry characteristics and boundary layer dynamics. The elements in
the outer region are relatively big to reduce the computation cost.

well as geometric characteristics, can be easily controlled in numerical environments. More, numerical
experiments can be repeated without as heavy preparation as for experiments, and multiple instances of
a given configuration can be run simultaneously in parallel. For these reasons, CFD has now become an
essential tool to study fluid dynamics, alongside experimental setups.

A large range of numerical methods are available to numerically solve NS equations. Among these, the
finite difference method (FDM) and the finite element method (FEM) are two widely-spread approaches.
In FDM, the discrete NS equations are solved on a domain discretized using uniform rectangular cells. Al-
though the simplicity of implementation is a key advantage of FDM, themethod presentsmajor drawbacks
when dealing with complex geometries. Indeed, when the physical domain includes curved boundaries,
the latter has to be approximated using the axis-aligned spatial discretization, which is a major source of
inaccuracy. In some cases, FDM can also fail to capture local features due to the isotropic discretization
step size. Although it is possible to reduce the cell size to handle the boundary and inhomogeneity issues,
it significantly increases the computational cost of numerical resolution. Therefore, FDM has limited per-
formance when the computation domain is not piece-wise rectangular. In FEM, the space is discretized
into small and simple subdomains called elements, whose reunion forms a mesh, as shown in figure 1.2.
A set of polynomial basis functions is then defined on the mesh (usually on the nodes), after what the
discrete fields can be reconstructed by linear combination of the basis functions. The coefficients of this
linear combination are obtained from the numerical resolution of a large sparse linear system, obtained
from a so-called variational formulation. Given the intrinsic flexibility of FEM, many type of elements
can be used to discretize the computational domain, and often triangles (resp. tetrahedra) are used in 2-D
(resp. 3-D) problems, allowing it to naturally account for complex geometries. More, the element size
is not expected to be uniform across the computational domain: one can apply local mesh refinement
by decreasing the element size to improve the accuracy in the region of interest [BR78]. FEM was first
proposed for structural analysis in 1943 by Courant [Cou43], and introduced into fluid dynamics in the
1970s. Today, FEM is a vastly spread method, and has been applied to countless physical problems [Pir89].

The development of CFD promotes the study of turbulent flows through turbulence modelling. To
accurately resolve all the scales of turbulent velocity and pressure fields in a CFD computation, the re-
quired mesh size must be inferior to the smallest eddy scale, this approach being called direct numerical
simulation (DNS). Since the smallest scale decrease exponentiallywhen the Reynolds number rises [Pop00],
DNS is barely attainable even for turbulent flows at moderate Reynolds numbers. To this end, various
methods have been developed under the umbrella of turbulence modelling. Distinguished by their accur-
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acy and their complexity, two of these methods are presented in this section. The first one resolves the
Reynolds-averaged Navier–Stokes (RANS) equations, a time-averaged version of the original NS equa-
tions. In this framework, physical quantities are decomposed in the sum of a mean quantity and a zero-
average fluctuation. Applied to the NS equations, this decomposition leads to a set of equations on the
mean flow with an additional fluctuation term, called the Reynolds stress tensor, originating in the non-
linear convection term of NS. A RANS model provides a closure [Bou77] to this term, so that the mean
flow can be resolved. Besides RANS, large eddy simulation (LES) represents another modelling strategy
for turbulent flows. In LES, a low-pass filter is applied to the NS equations, in such a way that only the
large scale motion is to be resolved, rather than the full turbulent scales. As in RANS, the filtered nonlin-
ear convection term leads to a non-closed term due to the small scale motion. Since the objective of LES
models is to relate this term to large-scale flow, they are also called sub-grid scale models [Sma63, Dea70].
LES is generally more expensive than RANS, but also resolves turbulent features more accurately. Yet,
due to its lower cost, RANS is still preferred to LES for industrial applications. According to a 2014 report
from NASA [SKA+14], LES will still remain out of reach for large-scale engineering simulations until the
year 2030.

1.3 Machine learning

As defined by Azencott [Aze19], machine learning (ML) is about the application of optimization methods
to statistical modelling. In practice, ML methods aim at inferring existing relations between quantities
from large set of data samples, or exploring the underlying structure of the data set. The simplest ML al-
gorithm is the least squares linear regression, which is an efficient tool used to discover linear constitutive
laws in mechanics.

Beyond linear methods, multiple nonlinear algorithms have been proposed for complex data model-
ization, including generalized linear methods, random forests [Bre01], or neural networks [MP43], each
algorithm representing a family of parameterized functions. In the age of big data, these algorithms have
been implemented in many different contexts, and their impact on our daily life is rapidly increasing.
Some relevant applications include custom advertizing based on web cookies, fraud detection in banks,
dynamic pricing in flight tickets, etc. Designing efficient models for such real-life scenarios require a
significant amount of feature engineering, i.e. algorithmic and data tuning specific to each field and ap-
plication.

Among all the nonlinear algorithms, neural networks (NN) have been among the most represented in
the recent years. A NN refers to a composition of hidden layers of artificial neurons, with each layer being
a parametrized nonlinear transformation of its inputs. Its construction makes it capable of approximizing
extremely nonlinear functional relations. Of particular interest is the category of deep neural networks
(DNNs), which can automatically learn hierarchical features from the raw data without manual feature
engineering. A DNN can have many hidden layers, thus large number of trainable parameters, and its
training is usually harder than other ML algorithms due to the famous vanishing/exploding gradients
issue [PMB13]. Since 2006, DNNs have gained more and more popularity thanks to new optimization
technics. Hinton et al. [HS06] proposed a smart pre-trainingmethod to initialize the trainable parameters;
the stochastic gradient descent algorithms [Bot10] handle efficiently non-convex optimization and can
lead to globally optimal models. In the meantime, recent toolkits like TensorFlow [AAB+15] and PyTorch
[PGC+17] have made it fairly easy to train large DNNs on GPU cards, thus remarkably reducing training
times.

The convolutional neural network (CNN) is a particular DNN architecture with embedded convolu-
tion operations on 2-D and 3-D tensor inputs. Although first proposed in 1989, CNNs started to be widely
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applied to image-like data since the proposition of AlexNet [KSH12] in 2012: with 60 million trainable
parameters, AlexNet was trained against a data set with 1.2 million high-resolution images to perform
image classification, and reached a test error equals to 17.0%, much better the state-of-the-art which was
equal to 28.2%. Training large CNNs against massive high-quality images has now become a standard
approach to obtain performant and robust classification models. This technology has already been com-
mercialized in various scenarios like automated driving, facial smartphone unlocking, biomedical image
segmentation, among others. The success of CNNs is attracting more and more researchers to develop
new concepts and explore potential applications. A recent extension of CNNs is the graph convolutional
neural networks (GCNNs), which aim at extending CNNs applications from images to graph-based data.
Although its non-Euclidean characteristic makes the convolution on graphs more difficult than on im-
ages, graphs are a common data structure in many domains, including social networks, traffics, protein
molecules and so forth. In the CFD domain, while the cartesian grids used in FDM can be regarded as
image-like data, the meshes used in FEM computations have graph-like structures. In the recent years,
both CNNs and GCNNs have seen an increasing interest among CFD researchers.

1.4 Machine learning for computational fluid dynamics

Since the turbulence models are usually obtained from a mixture of physical knowledge and empirical
evidence, the concept of data fitting is not new in the CFD domain. Indeed, model calibration is about
searching the proper model parameters to enable the model to represent available high-fidelity data.
Otherwise, it is possible to regard a model parameter (or other uncertain quantities) as a random variable,
whose exact distribution is inversely inferred in order to maximize the likelihood of the observations
[XC19].

Combining the tools frommachine learning and traditional model calibration [DIX19], it is possible to
improve existing turbulence models by exploiting available data from experiments or DNS [PD16, LKT16,
WWX17]. In this context, a spatially varying discrepancy term can be introduced into the turbulence
model and calibrated through data assimilation. Once this step is completed, a ML model is trained to
predict the discrepancy, with local velocity and pressure as inputs. Doing so, the discrepancy model can
hence provide local corrections to the original turbulence model. The ML models mentioned here are
point-wise: at any location in the computational domain, features based on velocity and pressure are
selected and designed as the inputs, after what the model gives a prediction of the discrepancy.

The success of ML-augmented turbulence models also opened the door for other ML algorithms to
spread in the CFD community. As a deep learning technique, convolutional neural networks can ap-
proximate highly nonlinear functional relation, and at the same time free users from manual feature
engineering as in point-wise ML models. In the last few years, investigations were conducted on the use
of CNNs for the prediction of aerodynamic force around obstacles [ZSM18, VH20] or full-field steady
flow [GLI16, TWPH20, FFT19]. While traditional CNNs require a data set interpolated on cartesian grids,
GCNNs can be applied directly on triangular meshes, as shown in [PFSGB21] and [XSSZ21]. Applica-
tions considering unsteady flow predictions were also conducted: in [LY19], the authors exploit the flow
snapshots at previous time steps to predict future snapshots. In these applications, DNN-based surrogate
models are trained to fit the available data set. Hence, compared to solving PDEs with traditional iterative
solvers, trained CNNs provide explicit functional relations that only require one forward calculation to
predict the output. Conversely, it is important to underline that the applicability range of a trained model
is extremely limited compared to regular approaches.

Being essentially a data-driven approach, DNN-based surrogate models for fluid dynamics are like
extremely complex black boxes, whose consistency with physical laws is questionable. An emerging
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research axe is that of physics-informed neural networks (PINNs). Conversely to regular neural networks
approaches, PINNs aim at incorporating physical knowledge into NN-based models. This objective can
be reached through incorporating the PDE residuals into the loss used to train the model. Hence, the
approach retained to train PINNs does not require to minimize a data-fitting error. Raissi et al. [RPK19]
demonstrated the interest of PINNs on several textbook problems involving partial differential equations.
To do so, they used a fully connected network architecture with time and coordinate information as
the inputs, making it easy to obtain the partial derivatives in an automatic differentiation framework.
In [WWK21], Wandel et al. considered a physics-informed CNN for 3-D fluid simulation. In the latter
publication, a CNN architecture is employed to map the flow field at a given time step to its counterpart at
the subsequent time step. Being the state-of-art of incorporating physics into NN-based models, PINNs
are being applied to more and more fluid problems, including incompressible laminar flow prediction
[RSL20], turbulence model development [IDC21], flow and transport in porous media [GT21] and so on.

1.5 Outline

The remaining of this manuscript is structured in the following way:

⋄ Chapter 2 presents the basic notions of machine learning and convolutional neural networks, split
into two sections respectively dedicated to network architectures and optimization methods for
neural networks. The machine learning tools used in the manuscript are all summed up in this
chapter.

⋄ Chapter 3 is dedicated to computational fluid dynamics. The generation of laminar and turbulent
flow data sets from CFD tools are covered. The focus is put on the discretization and computational
cost, as a reference to the data-driven based surrogate models.

⋄ In Chapter 4, the laminar and turbulent data sets obtained in Chapter 3 are projected to cartesian
grids and used to train CNN-based surrogate models. The accuracy and computational cost are re-
ported, with a hyper-parameter study to show the impact of the network’s architecture. In the end,
differences between laminar and turbulent flow predictions are pointed out, giving more reflections
on the relation between the network’s modeling capacity and its architecture.

⋄ Chapter 5 presents a novel CNN architecture to make the surrogate model more transparent than
a pure blackbox, which is the case of U-net methods used in chapter 2. When doing prediction, a
trained CNN with the proposed architecture can detect whether it is doing extrapolation, or give
a quantified uncertainty of the predicted velocity and pressure, providing the end-user a metric to
evaluate the quality of the predictions.

⋄ In Chapter 6, the laminar data set is projected to body-fitted triangular meshes, and used to train
GCNN-based surrogate models. The advantage and disadvantage of using the graph-based method
is discussed in detail, through a quantitative comparison with the CNN methods from Chapter
2. Finally as an open topic, an unsupervised physics-informed approach is combined with the
proposed GCNN architecture, which provides a steady solver to the incompressible Navier-Stokes
equations.
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2
Convolutional neural

networks
Résumé

Ce chapitre présente les notions etméthodes de base nécessaires à l’utilisation des réseaux de neurones
convolutifs (CNN). La première section se concentre sur les concepts généraux de ML, après quoi des
généralités sur les neurones artificiels et les réseaux de neurones sont résumées. Étant les outils centraux
des chapitres suivants, trois sections distinctes sont réservées aux réseaux de neurones convolutifs, aux
autoencodeurs et aux réseaux de neurones convolutifs sur graphes. Ensuite, les aspects de l’entrînement
de CNN sont présentés, en mettant l’accent sur l’adaptation aux CNN de l’optimisation basée sur les
gradients.

2.1 Machine learning generalities

As defined by Azencott [Aze19], ML is about the application of optimization methods to statistical mod-
elling. In practice, ML methods aim at inferring existing relations between quantities from large set of
data samples, or exploring the underlying structure of the data set. The simplest ML algorithm is the
least squares linear regression, in which a parameterized linear function is calibrated in order to min-
imize the error of the model predictions against an observed data set. It is necessary to note that, with
the fitting error on the observed data being small, one does not always expect the same error level on
non-observed data. In case of overfitting, the prediction can be totally wrong if the predicted case lies
outside the boundary of the observations.

Besides the least squares linear regression, more complex machine learning algorithms have been
developed to solve advanced problems, among which are generalized linear methods [MN19], tree-based
methods [Qui86, Bre01] and neural networks [MP43]. Each algorithm provides a family of functions
to modelize the observed data, with the family of neural networks having the largest modeling capacity.
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ML algorithm:
a parametrized

function family H

Data with tar-
get values:

{(xi, yi)}ni=1

Loss function
l(h(x), y):

measuring the
prediction error

Optimization
algorithm

h∗ ∈ H , such
that h∗(xi) ≈ yi

(a) Supervised learning

ML algorithm:
a parametrized

function family H

Data without target
values: {xi}ni=1

Loss func-
tion l(h(x))

Optimization
algorithm

h∗ ∈ H , such that
{h∗(xi)}ni=1
minimizes∑n
i=1 l(h(xi))

(b) Unsupervised learning

Figure 2.1 | General frameworks for supervised and unsupervised machine learning. Supervised learning is concerned
withmapping input datawith target values, the loss functionmeasuring the prediction error. Unsupervised learning is concerned
with data without target values, with a case-by-case different loss function. For example the variance loss when projecting the
data into a low-dimensional space is used for principle component analysis.

Indeed, the Universal Approximation Theorem [Cyb89] proves that NNs are able to approximate any con-
tinuous function defined on a bounded set. In practice, it means that NNs are able to modelize extremely
complex functional relations between the input and output data. It is indeed usually hard to manually
quantify how a certain input variable affects the output, for example the impact of temperature on a city’s
daily electricity consumption. Therefore ML algorithms with large modeling capacity are gaining more
and more popularity in many real-life problems.

Besides algorithms, the data is also a crucial part of machine learning. The ML algorithms were ori-
ginially used to modelize data in the format of scalar and vector. However, other data structures like
matrix and graph are also common, which should be flatten into vectors to be compatible with the men-
tioned ML algorithms. With the invention of convolutional neural networks (CNN) in 1988 [Fuk88],
it becomes possible to extend machine learning technics to image-like data. Later, the graph convolu-
tional neural networks (GCNN) can directly modelize data on graphs without destroying the topology
of graphs. This thesis considers the application of CNNs and GCNNs in computational fluid dynamics,
being more specific, in velocity and pressure prediction on cartesian grids and triangular meshes. These
two algorithms will be presented in full details in section 2.2.

Machine learning tasks can be roughly divided into three categories: supervised learning, unsuper-
vised learning and reinforcement learning. Learning is called "supervised" when the data set samples
are associated with target values. The objective of supervised learning is therefore to perform accurate
predictions of an unknown target value when provided new input data. A supervised model is hence
calibrated through minimizing the predicition error over the available data set. Unsupervised learning
refers to the tasks where the observed data samples have no target values. Hence, the cost function to be
optimized is usually case-dependent. A typical example of unsupervised learning is dimension reduction
by principle component analysis (PCA) [Hot33]). PCA calibrates a linear combination of the variables,
in order to maximize the variance within the combination of variables. Finally, reinforcement learning is
about an agent learning to take adequate actions based on states provided by an external environment,
in order to maximize a reward signal. The application of reinforcement learning can be seen in control
and robotics, and machine-based game player (for example the game of Go [SHM+16]). Reinforcement
learning being out of the scope of the present manuscript, the frameworks of supervised learning and
unsupervised learning are presented in figure 2.1.
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2.2 From neurons to convolutional neural networks

2.2.1 Neurons and neural networks

In machine learning, an artificial neuron refers to a parameterized nonlinear operator composed of a
linear transformation followed by a nonlinear activation (as shown in figure 2.2, although sometimes the
activation can be omitted and the neuron degenerates to a linear unit). Let the input vector with d features
denoted by x ∈ R1×d. The output of the artificial neuron is computed as:

y = σ(x ·w+ b), (2.1)

x1

x2

x3

σ, b

w
1

w2

w3

y = σ (z)

z = b+
∑

k wkxk

Figure 2.2 | A neuron has a nonlinear activation step after the linear combination of the input features. Neurons are hence
adapted to nonlinear problems.

where σ refers to a nonlinear function, while w ∈ Rd×1 and b ∈ R refer to the weights and bias of the
neuron. Compared to a simple linear unit, a neuron not only extracts information through combining the
features of the input vector, but also introduces some nonlinearity. Neurons are hence more adapted to
model nonlinear input patterns or input-output relations. In practice, various nonlinear forms are used
(see fig 2.3), among which the sigmoid function, the hyperbolic tangent function (tanh), or the rectified
linear unit (ReLU) [NH10] are some of the most common.

−2 0 2
0

0.2

0.4

0.6

0.8

1

σ(t) = 1
1+e−t

(a) sigmoid function
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(c) ReLu function.

Figure 2.3 | Examples of popular activation functions. The activation functions are prefered to be differential, so that one
can train a neuron by gradient-based optimization algorithms. The ReLu function is not differentiable at x = 0, but one can
define a subgradient for the optimization [Sho12].

The modeling capacity of an ML algorithm is mostly about how complex a mapping it can represent
between its inputs and its outputs. Due to the limited number of parameters and non-linearity, the ca-
pacity of a single neuron is not sufficient to represent highly complex mappings. However, by stacking
multiple layers of neurons connected together as a network, it is possible to increase the complexity of the
input-to-output relation, as shown in figure 2.4. The input vector is passed into a number of independent
neurons in the first layer, each of which provides a scalar output. The outputs of all the neurons in the
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first layer form a vector, which becomes the input of the following layer of neurons. One can repeat this
basic computation block by stacking additional layers. Such a feedforward network of connected neurons
is called a multilayer perceptron (MLP) [?].

input layer hidden layer output layer

Figure 2.4 | An example multilayer perceptron. The input vector x ∈ R3 is regarded as an input layer with 3 neurons. The
second layer is called the hidden layer, with 5 hidden nodes. Finally the output layer has 1 neuron, hence the output of this MLP
is a scalar in R.

In an MLP, the input layer and the output layer are fixed by the task, for example 3 and 1 neurons
are respectively placed in the input layer and the output layer if one trains an MLP to predict children’s
height from the weight, the age and the gender. The number of hidden layers and their respective width
(number of neurons per layer) remain to be customized. Theoretically, it is possible to stack an arbitrary
number of hidden layers before the output layer. In each hidden layer, the number of neurons is also
flexible. Suppose there are dl neurons in the l−th hidden layer, the output vector xl ∈ R1×dl of this layer
is computed as:

xl = σ(xl−1 ·Wl + bl), (2.2)

where Wl ∈ Rdl−1×dl and bl ∈ R1×dl are the weight and bias of the l−th layer. Each column of Wl and
bl refers respectively to the weights and bias of a hidden neuron. For simplicity, here σ(·) denotes the
activation function applied element-wise to the input vector. If an MLP has a total ofL hidden layers with
nonlinear activation σ, followed by an output layer without activation (in other words, the activation of
the output layer is linear), then the final output xout can be computed as:

xout = σ (· · ·σ (x ·W1 + b1) · · ·WL + bL) ·Wout + bout, (2.3)

with x ∈ R1×d being the input vector, Wout and bout being the weights and bias of the output layer.
The composition pattern of an MLP make it possible to increase the modeling capacity by stacking more
hidden layers, which bring more free parameters as well as more nonlinearity. Indeed, the Universal
Approximation Theorem [Cyb89] states that:

For any continuous function defined on the n−dimensional cube [0, 1]n, there exists an MLP with one single
hidden layer and sigmoid activation, which can approximate the function to any desired accuracy.

Therefore, MLPs are powerful tools to extract nonlinear pattern or relation from massive data, where
the nonlinear activation plays a crucial role in this process. To show the importance of nonlinear ac-
tivation, consider replacing σ(·) in equation (2.3) by the identity function or any affine function. Since
the composition of multiple linear operators is equivalent to a single linear operator, the MLP degen-
erates ultimately to a linear unit. Yet, the universal approximation theorem does not indicate how to
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define the exact network architecture for a certain problem. The number and sizes of hidden layers are
hence hyper-parameters to be tuned for each problem. In practice, the grid search (testing all the possible
combinations of hyper-parameters) is a direct method to find architecture with good performance and
acceptable complexity.

The name deep neural networks (DNN) refers to MLPs with many hidden layers, although there
exists no strict boundary between DNNs and shallow MLPs. Since each hidden layer extracts higher-
level features from the previous layer, DNNs are able to extract very abstract features from the input.
Experiments show that DNNs can model complex data with fewer neurons than shallow MLPs at similar
performance [Ben09]. DNNs also have advantages in automatic feature engineering: with shallow MLPs,
it is usually inevitable to select or design useful features as the input vector. However, the first few
layers in DNNs replace the manual feature engineering by parametric feature extraction. The ensemble
of weights and bias of DNNs are calibrated so that the DNNs learn to extract useful features from the raw
data. For this reason, DNNs have been actively applied to hard problems where people lack profound
understanding on the underlying mechanism. For example, Ling et al. [LKT16] improved remarkably
the accuracy of an existing turbulence closure through training a deep neural network with embedded
Galilean invariance.

On the other hand, models based on DNNs are hardly interpretable. It is still a challenge to understand
whyDNNs perform sowell on a large range of data-driven problems. Due to their highmodelling capacity,
DNNs can also easily overfit on the provided observations, and end up with poor performances in a
generalization context (i.e. apply a calibrated model to non-observed cases). The application of DNNs in
physics has received critics due to these disadvantages compared to traditional PDE-based models. Still,
practical methods exist to improve the transparency and robustness of DNN-based models, which will be
presented in the following chapters.

2.2.2 Convolutional neural networks

In traditional linear regression, it is usually preferred to use independent features in the input vector, so
that the calibrated model coefficients indicate the variable importance of the provided features. With deep
neural networks, the features are usually dependent, as feature engineering is nomore required. In certain
cases, the dependence contributes to essential information, as is the case for the neighbouring pixels in an
image, which are naturally highly correlated. When using neural networks to process an image, flattening
it into a one-dimensional vector implies the loss of this structural information, and makes the feature
extraction inefficient. To this end, convolutional neural networks (CNN) were invented [Fuk88] to model
data with local features, including not only images, but also speech and time series [LB+95].

CNNs refer to neural networks with convolutional layers, which are still composed of a number of
neurons. The input of a convolutional layer is usually a tensor with a shape h × w × c, with h, w and
c being the tensor’s height, width and number of channels. For example, a gray image is a tensor with
1 channel, while an RGB image has 3 channels. Rather than performing a dot product with the whole
tensor, a neuron in the convolutional layers focuses on a small receptive field, usually of square shape 1,
with lateral dimension k. The k2 × c components of the tensor are flattened into a vector and processed
by the neuron, from which a scalar output is obtained. For every neuron, its receptive field slides over the
input tensor, from left to right and from top to down. A scalar output is obtained every time the receptive
field moves to a new location. All the scalar outputs are then stacked into a 2-D tensor while respecting
the positions of receptive field. Finally the outputs of different neurons are concatenated in the channel

1Rectangular receptive fields are also allowed but in practice hardly employed.
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(a) A convolutional layer holding three 3× 3 kernels, thus pro-
ducing three activation maps
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(b) Convolution of a kernel with the input image

Figure 2.5 | Representation of a convolutional layer structure. Left: structure of a CNN layer holding multiple convolu-
tional kernels applied to the same input, each producing a specific activation map. Right: detail of a convolutional kernel applied
to an input image and producing an activation map.

direction to form a 3-D tensor, as is shown in fig 2.5. Following the convention of image processing, the
weights of a neuron in the convolutional layers are usually called a convolutional kernel.

Besides the number of kernels, a convolutional layer has 3 other hyper-parameters:

⋄ The kernel size k defines how big the receptive field is. In practice, the kernel size k is usually
smaller than 5, althouth some works let k = 7 [ZF14, SLJ+15] or 11 [KSH12] in the first layer.
Generally large kernels are avoided, as the number of kernel’s weights scales quadratically with k.

⋄ The stride s denotes the number of pixels by which the receptive field slides after each operation
(see figure 2.6a). Larger strides lead to less overlapping between neighboring receptive fields, and
smaller output size.

⋄ The padding operation (see figure 2.6b) increases the height and width of the input tensor by adding
zeros to the left/right or up/down sides. With the kernel size being bigger than 1, the output tensor is
smaller than the input. By padding zeros around the input, one can control the output size, andmore
importantly preserve the boundary information. The padding size p refers to the augmentation of
height/width on each side.

The shape of the output tensor is determined by these hyper-parameters. If a convolutional layer has
dl kernels, the output size hout × wout × cout can be calculated as:

hout =
hin − k + 2p

s
+ 1,

wout =
win − k + 2p

s
+ 1,

cout = dl,

(2.4)
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(a) Convolution with k = 2, s = 3
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(b) Padding with p = 1

Figure 2.6 | Stride and padding operations. With a stride s > 1, the receptive field (the blue pixels) jumps s units every
time it slides. Zero padding allows the convolution kernel to cover all the pixels of the input tensor. By properly choosing the
padding size p at each side, one can have an output tensor with the same height and width of the input.

with hin ×win × cin being the size of the input tensor. For simplicity, an even padding is considered for
all the 4 sides. Sometimes, uneven padding is necessary to obtain integer output shape. The number of
trainable weights and biases in one layer is then given by:

q = (k2cin + 1)dl

In comparison with convolutional layers, traditional layers taking all the features as input are called
fully-connected layers or dense layers. Convolutional layers have the following advantages over dense
layers:

⋄ They can directly extract the local features without destroying the structure of the input tensor.
CNNs are ideal for all image-like data, including cartesian grids. Indeed, the finite differencemethod
has strong connections with convolutional layers. Approximating the gradients on a cartesian grid
is technically a linear convolution with fixed kernels. For example, the kernels for central difference
approximation are shown in figure 2.10.
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0 0
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− 1
2h
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(b) Partial gradient ∂
∂y

Figure 2.7 | The kernels used for gradient approximation based on central difference. h is the grid size. Gradient
approximation on cartesian grids can be regarded as a special convolution, with no nonlinear activation.

⋄ They require fewer trainable weights. A convolutional kernel has k2c weights, while a fully-
connected neuron has hwc weights, which can represent a large amount of unknowns when treat-
ing high-resolution images. Being parsimonious, CNNs can be stacked into extremely deep archi-
tectures, i.e. with many hidden layers, while not exceeding hardware limit. GoogLeNet, the winner
of the 1st place at the ILSVRC image classification competition in 2014 [SLJ+15], is a CNN archi-
tecture with 21 convolutional layers, but only 7 million parameters, the number of kernels in its
convolutional layers ranging from 64 to 1024. By using a fully connected network to process the
224× 224× 3 input images, 7 million parameters would only allow a network with 47 neurons.

⋄ The output of a convolutional layer is an image-like tensor. This property makes CNNs the proper
tools for full-field and end-to-end predictions.
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Besides convolutional layers, the second basic type of layers in convolutional neural networks is the
pooling layer. A pooling layer takes an input tensor and applies downsampling to reduce its height and
width. Average pooling and max pooling [WAH93] are the two most spread approaches, with the latter
being more popular in modern CNNs. As is shown in figure 2.8, a max pooling layer has two hyper-
parameters: the pooling size and the stride. Similarly to convolutional layers, a receptive field slides over
the input tensor with a given stride. In each channel, the pixels in the receptive field are downsampled into
the output tensor. By setting the pooling sizem = 2 and stride s = 2, if necessary with zero padding, one
can halve the height and width of the input tensor. A max pooling layer usually follows a convolutional
layer to preserve only the strongest activations. The pooling layers thus reduce the memory usage and
the computation cost in CNNs, and help avoid overfitting by only preserving the most important features.
The pooling operation also introduces certain translation invariance to the input tensor. This property
is particularly valued in domains such as object detection, as people are interested in the existence of an
object and not specifically in its position in the image.

9 3 2 6

4 1 5 7

8 3 5 1

6 4 7 2

9

8

7

7

Figure 2.8 | Max poolingwith pooling size=(2, 2) and stride= 2. In the receptive field, only the maximum value is preserved
in the output tensor. In CNNs, a max pooling layer is usually used to downsample the feature map of a convolutional layer.

A CNN architecture usually contains a succession of convolutional layers and pooling layers, to ex-
tract the hierarchy of features. If the CNN’s output is expected to be a scalar or vector, dense layers are
used before the output layer. A toy CNN architecture is given as example in figure 2.9. Although this
CNN is of particularly limited size, standard CNN architectures can be orders of magnitude larger. For
example, the AlexNet [KSH12] has 60 million trainable parameters, while the VGG16 net [SZ15] has a
total of 138million parameters. Complex CNNs have very high modeling capacity, and can learn complex
patterns and functional relations from large amounts of data. As some references, the AlexNet and the
VGG16 were trained against more than 1.2 million images.
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Figure 2.9 | A CNN structure composed of convolutional layers, pooling layers and dense layers. The input image is
first passed to 2 consecutive convolutional layers, both with eight 3× 3 kernels. Then a 2× 2 max pooling layer downsamples
the feature map. After this first block is a convolutional layer with 16 kernels, followed by a second pooling layer. The stride size
is equal to 2 in all the layers. By doubling the number of kernels in deeper convolutional layers, one can extract more high-level
features which are saved in different channels. Finally, two dense layers with 8 and 1 neurons respectively compute a scalar
output from the hidden features.
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2.2.3 Auto-encoders

An auto-encoder (AE) is a special type of feedforward neural network. The simplest AE has two parts: an
encoder branch and a decoder branch (see figure 2.10a), the hidden layers being composed either of dense
or convolutional layers. The size of the hidden layers in the encoder branch progressively decrease, until
reaching the bottleneck of the architecture, then start increasing symmetrically to reach the original input
size at the output. Each hidden layer in the encoder extracts a hierarchy of features and projects them into
a lower-dimensional space. At the bottleneck, a compressed representation of the input is obtained, called
latent feature. The decoder then reconstructs the input by decoding the latent features. The training of
AEs is performed through minimizing the reconstruction error, and therefore does not require data with
target values, thus belonging to the class of unsupervised learning techniques.
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(b) Convolutional autoencoder

Figure 2.10 | Autoencoder and convolutional autoencoder architectures. Autoencoders are feedward neural networks
composed of encoders and decoders, which are often symmetric. AEs were created for principle analysis and dimension reduc-
tion. An AE extracts a compressed representation of the essential characteristics of the data set, which are restored in the latent
features of the middle hidden layer.

A convolutional auto-encoder (CAE) has the same architecture than a traditional auto-encoder, al-
though it is not symmetric in terms of the operations performed in the encoder and decoder branches. In
the encoder branch, the dense layer are replaced with convolutional and pooling layers, just as in standard
CNNs. In the decoder branch, upsampling operations are required to restore the original dimensions of
the input. To do so, a popular method is the transposed convolutional layer, which performs upsampling
and convolution at the same time. As is shown in figure 2.11, a transposed convolutional layer has 4
hyper-parameters: the number of kernels c, the kernel size k, the stride s, and the padding size p. The
output tensor will have c channels, with each channel being the convolution result between one kernel
and the input. For each kernel, the transposed convolution performs the following steps: first, s−1 zeros
are inserted between every two neighboring pixels in the same channel, which upsamples the input by
a factor of s. Then, a normal convolution with kernel size k and an actual stride s′ = 1 is applied to
the upsampled tensor. In order to recover the expected output shape, zero padding is necessary, with the
padding size p solved from the equations (2.4). If the output shape is expected to be hout × wout × c, the
padding size is computed as:

2ph = hout − (hin − 1)s+ k − 2,

2pw = wout − (win − 1)s+ k − 2,
(2.5)

where even padding is assumed on both sides. Uneven padding must be adopted if the calculated padding
size is not an integer, which is the case of figure 2.11.
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Figure 2.11 | The transposed convolution with kernel size k = 2 and stride s = 2. Here, the input tensor only has one
channel for simplicity. The upsampling inserts s−1 zeros between every two neighboring pixels. Then, zero padding is applied
in order to control the output size. Here, the padding size p = 1 is determined by the equations 2.4. The upsampled tensor
is convoluted with the kernel, whose actual stride is s′ = 1. The output is a 3 × 4 tensor, with its pixel values computed by
supposing the kernel has zero bias.

AEswere initially designed for principle component analysis [Kra91] and dimension reduction [HS06].
Yet, in the recent years, the application of AEs in anomaly detection processes has increased significantly.
Anomaly detection consists in identifying outliers lying outside of the boundaries of the data set: since
AEs are trained to approximate the identity map on the available data set, the reconstruction of an input
that is too different from other data set elements is likely to be poor. Therefore, the reconstruction error
is often used as a measure to detect anomalies. Trained in a supervised framework, convolutional AEs
can also be exploited for image processing besides anomaly detection. Indeed, they can be trained for
end-to-end prediction tasks, where an input image is mapped to a target image with the same height
and width. For instance, CAEs are used in the biomedical domain for image segmentation tasks [RFB15],
i.e. dividing an image into disjoint parts which are distinguished by the pixel labels inside.

2.2.4 Graph convolutional neural networks

The graph is an unstructured data topology usually denoted by G(V,E), with V = {vi}nv
i=1 being a set

of nodes and E = {ei}ne
i=1 being the set of edges connecting node pairs. The edges can be directed or

undirected depending on the connection property. In the present manuscript, only undirected graphs
will be considered, and the undirected property will be implicitly assumed for graphs in the remaining
chapters. The features on a graph are written into the node feature matrix XV ∈ Rnv×dv and the edge
feature matrix XE ∈ Rne×de , with each row representing the feature vector xv ∈ Rdv on a node and
xe ∈ Rde on an edge. An example of graph is shown in figure 2.12

v1

v2

v3

v4

v5

xe

xv

Figure 2.12 | Nodes, edges and features in a graph. The nodes and edges determine the graph’s topology. The graph
convolution updates the node features by considering the node-node and node-edge interactions.

Social networks, traffic networks, protein molecules and unstructured meshes are some examples
of graph-like data. The motivation of graph convolutional neural networks (GCNN) is to extend CNN
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technics to general graphs, with the core challenge being to devise a proper convolution operation. The
early solution, called the spectral convolution, is inspired by methods of graph signal processing. By
means of graph Fourier transform, the spectral convolution turns the convolution into the product of
the graph’s eigen-decomposed feature matrix and the convolutional kernel in the Fourier space, then
followed by a nonlinear activation [DBV16, KW17]. Such a convolution requires an expensive eigen-
decomposition and a fixed graph topology, i.e. a kernel calibrated on one graph would not be applicable
to other graphs. Therefore, the spectral convolution has limited applicable scenarios. To develop a convo-
lution strategy similar to that of standard CNNs, two major obstacles, originating from the unstructured
topology [ZTXM19, ZCH+20], must be overcome:

⋄ While each pixel in an image has 4 direct neighbors, the nodes in a graph can have a variable
number of connections to other nodes,

⋄ The pixels in the images are always indexed from left to right and from top to bottom, but the
indexing of nodes and edges in a graph are completely arbitrary.

It is hence not adequate to use a constant convolutional kernel sliding over the whole graph. Furthermore,
the kernel must be invariant to the permutation of nodes and edges (convolution methods complying to
these characteristics are called spatial convolutions). In the literature, twomain frameworks are proposed.
In [MBM+17], Monti et al. proposed a parametric weighting function to aggregate neighboring features.
For a node v with a feature vector xv ∈ Rnv , the convolution with a layer of n′

v kernels is written as:

xv′,i = σ


 ∑

u∈N (v)

wi (f(u, v))xu


 , i = 1, 2, ..., n′

v (2.6)

where x′v ∈ Rn′
v is the output feature vector, and N (v) is the set of neighboring nodes of node v. The

most important component of equation (2.6) is the weighting function wi(f(u, v)), which computes a
contribution factor for each node u connected with v. The weighting function wi is shared by all the
edges, so the whole feature matrix is updated by applying (2.6) to all the nodes. The input f(u, v) is
some pseudo-coordinates of u in the neighborhood of v. A simple example of pseudo-coordinates and
weighting function can be:

f(u, v) =
(

1

deg(u) ,
1

deg(v)

)T

,

wi(f(u, v)) = exp
(
− 1

2
(f− fi)TΣ−1

i (f− fi)
)
, for 1 ≤ i ≤ n′

v

(2.7)

with deg(v) being the number of nodes connected to v. The weighting equation in (2.7) is a paramet-
ric Gaussian kernel with diagonal covariance matrix, with fi, Σi being the learnable parameters. For a
convolutional layer with n′

v kernels, the total number of trainable parameters would be 4n′
v .

A second possible convolution strategy is called neural message passing [GSR+17], which was gen-
eralized to the graph network (GN) framework by Battaglia et al. in [BHB+18]. The latter abandons the
idea of weighted summation inherited from traditional CNNs. The message passing procedure is split
into two steps (see figure 2.13):

hv =
∑

u∈N (v)

fe (xu,xv,xe,uv) ,

x′v = fv (xv,hv) ,

(2.8)
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(a) Passing messages from nodes to edges

v1

v2

v3

v4

v5

xe

xv

(b) Passing message from edges to nodes

Figure 2.13 | Message passing on graphs. The message passing procedure splits the interactions among nodes into two steps:
(i) updating edge features by nodes features, and (ii) updating node features by edge features. Both steps require a transformation
function which is invariant to arbitrary nodes and edges indexing.

with xe,uv being the feature vector of the edge connecting nodes u and v. The first step in equation
(2.8) employs an edge kernel fe to update the edge features. Then around each node, the relevant edge
updates are aggregated to node-wise messages hv . The second step employs a node kernel fv to receive
the messages and update the node features. In each convolution layer, the kernels fe/fv are applied to all
the edges/nodes. ShallowMLPs are usually employed as the kernel [BPL+16], with the input vector being
the concatenation of all the variables. The kernel’s output layer remains flexible, so that the dimension
of the message hv and the updated node feature x′v can be customized. However, the message passing
framework was first proposed for directed graphs, where the message sender and the message receiver
are distinct. Here, we propose a modification to the original framework, to make it symmetric in the
context of undirected graphs:

hv =
∑

u∈N (v)

fe
(
xu + xv

2
,
|xu − xv|

2
,xe,uv

)
,

x′v = fv (xv,hv) ,

(2.9)

With the proposed symmetrized node features, the edge convolution step becomes invariant to node
permutation. The convolutional layers based on equations (2.9) are thus potential tools to modelize data
on unstructured meshes used in finite element analysis. Indeed, similar message passing process exists
in gradient approximation in FEM. Figure 2.14 shows the average-based method to calculate the first-
order gradient of a scalar field defined on the nodes [CHM09]. The first step consists in calculating the
gradient in the elements, which is element-wise constant when using linear shape functions. As a simple
example in figure 2.14, let the scalar values and coordinates on the nodes be {zi}3i=1 and {(xi, yi)}3i=1.
The interpolated plane z = ax + by + c inside this element can be obtained by solving a set of local
equations:

axi + byi + c = zi, for i = 1, 2, 3 (2.10)

The gradient in the element ( ∂z∂x ,
∂z
∂y ) = (a, b) is thus a linear interpolation of the node values {zi}3i=1,

meaning that this step passes messages from the nodes to the elements. The second step consists in
obtaining the node-wise gradient through the simple average of element-wise values:
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∂z

∂x
|v =

1

card (Ne(v))

∑

e∈Ne(v)

∂z

∂x

∣∣∣∣
e

,

∂z

∂y
|v =

1

card (Ne(v))

∑

e∈Ne(v)

∂z

∂y

∣∣∣∣
e

,

(2.11)

where card (Ne(v)) is the number of neighboring elements of node v. Although the passage of message
in the FEM example is nodes → elements → nodes, the basic idea is the same as the message passing
nodes→ edges→ nodes in machine learning. Approximating gradients in linear finite element methods
can hence be regarded as a linear convolution, with a spatially varying kernel depending on the node
coordinates.

v1

v2

v3

v4

(a) Calculate element-wise gradient

v1

v2

v3

v4

(b) Calculate node-wise gradient

Figure 2.14 | Gradient approximation in linear FEM. The gradient in elements are determined by node values, which
corresponds to a message passing from nodes to elements. Then around each node, the element-wise gradient are averaged to
obtain the node-wise gradient. The averaging step corresponds a message passing from elements to nodes.

2.3 Optimization for convolutional neural networks

2.3.1 Gradient backpropagation and automatic differentiation

Training a neural network is realized through calibrating its parameters using optimization algorithms.
In this section, we suppose the model is trained in a supervised setting, with the data set denoted by:

(X,Y) = {(xi,yi)}ni=1.

While unsupervised learning uses a different loss function, themethods presented here can be generalized
without further conditions. A supervised model aims at predicting a target value given an input:

ŷ = f(x,θ), (2.12)

where x and y are the input and output. The trainable parameters are represented by a high-dimensional
vector θ, with its dimension being possibly up to several millions for convolutional neural networks. The
prediction error is usually evaluated by a loss function l:

l(ŷ,y) = ||ŷ− y||.
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For regression problems, the quadratic error and absolute error are common choices for the loss function.
The calibration is then realized through minimizing an objective function L defined as the average loss
on the data set plus a regularization term:

min
θ

L(θ,X,Y) = min
θ

1

n

n∑

i=1

l (f(xi,θ) ,yi) + λΩ(θ), (2.13)

withΩ(θ) = ||θ||l1 or ||θ||l2 , being respectively called l1 and l2 regularization. Minimizing the regulariza-
tion termΩ tends to pull the parameters to zero, which leads to less complexmodels and avoids overfitting
due to noisy or too small data set [KH92, Ng04]. The regularization rate λ remains a hyper-parameter of
the model, and needs to be tuned by the user. Following the basic gradient descent algorithm, trainable
parameters are updated iteratively by:

θk+1 = θk − αk

(
1

n

n∑

i=1

∂l(f(xi,θk),yi)
∂θ

+
∂Ω

∂θ

)
, (2.14)

with αk > 0 being the step size at the k−th iteration.
It is well known that the gradient descent leads to a unique minimum if the objective function defined

on a convex set is strictly convex [BBV04]. However, in NN-based machine learning, solving the problem
(2.13) hardly leads to a unique global minimum due to the prevailing non-convexity of L. Optimization
plays hence a crucial role in order to obtain a performant model. Following the update rule given by
equation (2.14), at each iteration one needs to evaluate the gradient contributed by the fitting error and
the regularization. The gradient contributed by the regularization term is easy to obtain:

∂Ω

∂θ
=

{
2θ if Ω = ||θ||l2 ,
sign(θ) if Ω = ||θ||l1 ,

(2.15)

which does not depend on the architecture of the neural network. On the other hand, the fitting error
involves the model output, making it necessary to consider how the output is computed by the network.
For a neural network with N hidden layers {fi}Ni=1 and an output layer fout, one can rewrite equation
(2.12) as:

ŷ = fout(hN ,θout),

hi = fi(hi−1,θi), for i = 2, . . . , N,

h1 = f1(x,θ1),
(2.16)

with hi and θi being respectively the output and the trainable parameters of the i−th hidden layer. The
gradient backpropagation [RHW86] (BP) is a method to compute the the gradient of loss with respect
to each trainable parameter of the network. Instead of using finite difference to treating each trainable
parameter separately, the BP method does it layer by layer following the chain rule:

⋄ For the output layer,
∂l

∂θout
=

∂l

∂ŷ
∂ŷ

∂θout
,

∂l

∂hN
=

∂l

∂ŷ
∂ŷ
∂hN

,

(2.17)
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⋄ For i = N,N − 1, . . . , 2,
∂l

∂θi
=

∂l

∂hi

∂hi

∂θi
,

∂l

∂hi−1
=

∂l

∂hi

∂hi

∂hi−1
,

(2.18)

⋄ For the first hidden layer,
∂l

∂θ1
=

∂l

∂h1

∂h1

∂θ1
(2.19)

In one backprogation, the state gradient ∂l
∂hi

is stored in the memory and reused for the layer closer to
the input. Through equations (2.17-2.19), the prediction error is propagated backward to the neurons in
the first hidden layer.

The BP is an efficient strategy to obtain the exact gradients, as it completely avoids duplicate compu-
tation. It is a special case of the so called reverse mode automatic differentiation (AD) used to compute
gradients. AD is an algorithmic differentiation method to be distinguished from finite difference and
symbolic differentiation. AD is more efficient than finite difference, because it does not apply a small per-
turbation to compute the partial derivative of each trainable parameter separately, which leads to lots of
repeated computations. Compared to symbolic differentiation, AD does not generate complex formulas
for gradient computation.

To be more specific, the forward calculation defined by equation (2.16) is broken down to a sequence
of primitive operations, including multiplication, square, reciprocal and exponent. These operations can
be easily differentiated without doing finite difference. In the implementation of reverse mode AD, the
computer opens a ’tape’ and does the forward calculation, while watching the intermediate operations and
storing the intermediate variables in the memory. Then the operations are differentiated in the backward
sense as described by equations (2.17-2.19).

In the domain of neural networks, reverse mode AD has been proven to be the most efficient approach
for gradient-based optimization [BPRS18]. In popular platforms of neural network programming, reverse
mode AD is pre-implemented so that machine learning practitioners do not need to manually compute
the gradients. The training time of large-scale neural networks is also remarkably reduced thanks to the
high efficiency of this technique.

2.3.2 Stochastic gradient descent

The standard weight update step (2.14) is also called the batch gradient descent, as it uses an objective
function computed over the entire data set. For large data sets and complex neural networks, using batch
gradient descent can lead to unacceptably large memory usage and computational time. To overcome this
issue, stochastic gradient descent (SGD) was proposed by Bottou et al. in [Bot10]. At each iteration of the
SGD, the objective function is defined on a single sample for gradient descent:

Sample i ∼
π
{1, 2, . . . , n},

θk+1 = θk − αk
∂l(f(xi,θk),yi)

∂θ
,

(2.20)

where π denotes the uniform distribution. In practice, the random selection is replaced by using all the
data examples one after the other, with a full passage through the data set called one epoch. After each
epoch, the data set is shuffled to avoid repeated cycles, and the SGD is usually run for many epochs to
sufficiently minimize the error.

21



While the batch gradient descent method (batch GD) decreases the loss value over the whole data set
in the fastest direction, SGD approximates the true gradient by considering a single data sample. Since
the sampling follows a uniform distribution, the stochastic gradient is an unbiased estimation of the true
gradient:

E
i∼
π
{1,2,...,n}

(
∂l(f(xi,θk),yi)

∂θ
|x1,x2, . . . ,xn

)
=

1

n

n∑

i=1

∂l(f(xi,θk),yi)
∂θ

,

which means in the long term, SGD also tries to minimize the objective function. The convergence of
SGD is usually noisy and requires more iterations compared to batch GD. However, this can become an
advantage when training neural networks, as when the objective function is non-convex and possesses
many local minima, the noisy gradient approximation allows SGD to escape local minima and continue
the search of a global minimum. In the contrary, the batch GD can easily get trapped in a local minimum.

A last alternative, introduced in [LZCS14], is called mini-batch gradient descent. The latter aims at
accelerating SGD’s convergence while keeping its noisy convergence path. This method uses a subset
of the data set to approximate the gradient at each iteration. With enough data in a batch, it provides a
descent direction very close to the true gradient:

θk+1 = θk − αk
1

m

∑

xi∈b

∂l(f(xi,θk),yi)
∂θ

, (2.21)

with b the current mini-batch and m being the batch size. In the meantime, with the batch being small
enough, the randomness is preserved to avoid local minima. The proper batch size remains a hyper-
parameter of the method, to be tuned by the user. The batch GD and SGD can be regarded as two extreme
cases of mini-batch GD, with respectively n and 1 being the mini-batch sizes. In practice, the data set
is split into disjoint mini-batches, which are used for gradient approximation one after the other. A full
passage through all the batches is called an epoch, and the data set is shuffled at the start of each new
epoch. A sketch of the convergence passages of the presented gradient descent algorithms is shown in
figure 2.15.

mini-batch GD

ADAM

SGD

batch GD

Figure 2.15 | Batch gradient descent, stochastic gradient descent and mini-batch gradient descent. The batch gradient
descent converges through the shortest passage. The SGD takes a very noisy passage but arrives at the optimum in the end.
Mini-batch gradient descent is a mixture the former two methods.

Still, options exist to accelerate the mini-batch GD. One of the most used algorithm is the adaptive
moment estimation (ADAM) optimizer, introduced in [KB15]. Let the mini-batch gradient at iteration k
be denoted by gk, then the neural network parameters are updated by:
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mk = β1mk−1 + (1− β1)gk,
vk = β2vk−1 + (1− β2)g2k,

θk+1 = θk −
αk√vk + ϵ

mk,

(2.22)

with β1 ∈ [0, 1] and β2 ∈ [0, 1] being two hyper-parameters, and ϵ a small number used to avoid zero
denominator. In equations (2.22), the square g2k, the square root

√vk and the division αk√vk+ϵ involving
vectors are all element-wise operations. Compared to equation (2.21), the ADAM optimizer introduces
two new iterative variables: the momentmk and the adaptive term vk.

⋄ The moment mk decides the descent direction. Its intial value is zero, and it is updated at each
iteration based on its own value and the gradient. The moment is indeed an exponential moving
average of previous gradients, which provides a smoother descent direction to reduce oscillations:

mk =

k∑

i=1

βk−i
1 (1− β1)gi.

⋄ The adaptive term vk brings an element-wise modification to the learning rate αk, with the scale
factor determined by an exponential moving average of the previous partial derivatives [HSS12].
The motivation is to assign different learning rates to neurons in different hidden layers, which is
reasonable for the network’s hierarchical architecture. Figure 2.15 is the contour near the optimum
of some 2-D quadratic function. Closing to the optimum, the objective function has a large derivat-
ive in the y-direction, and a relatively small derivative in the x-direction, which is a very common
case in multi-dimensional optimization. By normalizing the learning rate αk by

√vk+ϵ, the partial
derivative in the y-direction is dumped to avoid oscillation, while in the x-direction the step size is
magnified to obtain a more aggressive descent. With the adaptive term, using a large learning rate
αk is usually encouraged to accelerate the descent further.

2.3.3 Weights and biases initialization

Weights and biases initializations play an important role in the overall performance of the neural network
training. Although there exist no absolute principles, some general rules are listed below:

Zero weights initialization is usually avoided, as it introduces symmetry and usually makes the op-
timization process fail at the first iteration. Indeed, the neurons in the same hidden layer would have the
same contribution in the forward calculation, and would get the same updates in the backpropagation.
Therefore, inside each hidden layer, the neurons would always have the same weights and biases in the
following iterations, thus reducing dramatically the modeling capacity of the network. To this end, the
weights are usually initialized randomly to break the symmetry. Conversely, biases can be simply initial-
ized to zero, as the different neurons contributions are already distinguishable by the random weights.

The initial values should not be too small nor too large. In practice, the initial weights are sampled
from given probability distributions, among which the uniform distribution U [−t, t] and the Gaussian
distribution N (0, σ2) are two commonly used options, with t and σ tunable parameters to modify the
variance. Since the gradient backpropagation is based on chain rule, neural networks with very deep
architecture can suffer from gradient vanishing or gradient exploding issues, which usually result from
too small or too large initial weights. Conversely, initializating weights with adequate magnitudes can
accelerate the training process.
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In order to let the gradient values be independent of the layer’s position (so that all the hidden layers
are updated at the same pace), the Glorot method [GB10] suggests to sample the weights from a modified
uniform distribution:

U
[
−
√

6

dl−1 + dl
,

√
6

dl−1 + dl

]
, (2.23)

or modified Gaussian distribution:

N
(
0,

2

dl−1 + dl

)
, (2.24)

with dl−1 and dl being the dimension of the layer’s input and output. The Glorot method can approx-
imately maintain the variance of the layer-wise gradient across the hidden layers. Since the proposed
distributions in equations (2.23) and (2.24) are zero-centered, this is equivalent to maintain the magnitude
of gradient values in the probabilistic sense. Being originally proposed for hidden layers with a hyper-
bolic tangent activation, the Glorot method needs a slight scaling on its variance term [HZRS15] for other
activations.

2.3.4 Learning rate decay

The learning rate αk determines the step size taken by the network parameters at the k−th iteration of
the optimization process. At the beginning, a large learning rate is usually preferred to quickly decrease
the loss value. While the loss gradually converges, it is often necessary to use smaller learning rates to
smoothly approach the optimum. To this end, a decay schedule for the learning rate usually helps to
accelerate the optimization. For example, one can half the learning rate afterK iterations, which is called
piecewise constant decay:

αk = α0/2
[k/K], (2.25)

with [k/K] being the integer part of k/K . Other standard approaches include the exponential decay:

αk = α0e−k/K , (2.26)

and the inverse time decay:

αk =
α0

1 + k/K
. (2.27)

In order to select a proper decay schedule, the initial learning rate as well as the decaying rate remains
two hyper-parameters to be tuned by the user. A sketch of different decay schedules is shown in figure
2.16.

2.3.5 Validation and test

When training large scale deep neural networks against a data set, over-fitting is an inevitable issue.
Over-fitting means that the model has not only learned generic features from the training data, but also
features specific to the samples present in it. This usually leads to a low fitting error on the training subset,
but to a poor generalization performance on unseen samples. Over-fitting can have several causes: too
complex fitting functions, too small data set, noisy observations... A classical over-fitting example in
polynomial interpolation is shown in figure 2.17. The regularization term in equation (2.13) can help
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Figure 2.16 | Learning rate decay schedules. The curves are plotted with fixed initial learning rate α0 = 0.001 and decay
speed K = 1, 000.

generate simpler models by limiting the magnitude of the trainable parameters. In the example of figure
2.17, a regularization term can decrease the contribution of the 4−th and 3−rd order components, and
reduce the prediction error not only in the interval [0, 5) but also in [5,+∞).
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Figure 2.17 | Overfitting in polynomial interpolation. The sample points are generated from a quadratic function, to which
a Gaussian noise is added. When using a 4th order polynomial to fit the samples, the error on the samples can be small but the
generalization error becomes large.

A different approach is to stop the training at a proper stage, so that the training loss is sufficiently
reduced, and at the same time one is confident to expect a similar generalization loss. To this end, the
observed data set should be split into three subsets for training, validation and testing. The training
subset contains the major part of the data set (usually more than 70%), and is used to calibrate the neural
network. After each training epoch, the averaged loss value on the validation set is evaluated, which
serves as an approximation to the generalization error. In the early stage, both the training loss and
validation loss are expected to decrease rapidly. After a certain number of epochs, one may observe three
different situations:

⋄ In figure 2.18a, the training loss converges, but the validation loss experiences a rebound after the
a descent. This means that the selected NN architecture is too complex in regard of the underlying
patterns in the data set, and the training should have been ceased before the rebound. A possible
remedy would be to use smaller neural networks, and/or to use a stronger regularization term;
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⋄ In figure 2.18b, the training and validation losses are converging similarly. In this case, it is usually
assumed that the model is adequate for the considered problem, and would have similar perform-
ance when applied to unseen inputs. However, this argument is only valid for interpolation. The
extrapolation error, i.e. the prediction error when the model is applied to an outlier with respect to
the available data set, will not necessarily be of similar level. In order to have good performance on
a broader range of data, it is crucial to collect a larger data set with more variability for the model
training.

⋄ In figure 2.18c, both the training and validation losses converge, but the training loss is visibly
larger than the validation one. this means that the selected architecture is not able to fully infer
the underlying pattern in the data set. This case is usually called under-fitting. More layers and
neurons should be added to the network to increase its modeling capacity.

Training
Validation

(a) Over-fitting

Training
Validation

(b) Reasonable fitting

Training
Validation

(c) Under-fitting

Figure 2.18 | Training loss and validation loss. The validation loss is supervised as an approximation to the generalization
error. If the validation loss does not improve anymore, we suppose it is the right moment to terminate the training to prevent
over-fitting. This technique is called early stopping.

In practice, the validation loss is used as an early stopping criterion to the training process. A patience
parameter is set a priori: if the validation loss is not improved for a certain number of epochs, the training
is terminated, and the parameters leading to the smallest validation loss is used for the final model.

Finally the test set is left aside until the training is finished, and is used to evaluate the performance
of the trained model. Since the training is biased to the validation set due to the early stopping criterion,
the validation performance is usually better than the performance on unseen data. Evaluating the error
level on an independent test set provides an more accurate idea of how performant the final model is.

2.4 Some applications of CNNs in CFD

In the recent years, CNNs architectures have been widely exploited in the context of fluid dynamics. In
this section, a selection of recent contributions are presented.

In [GLI16], Guo et al. trained a convolutional auto-encoder for steady velocity approximation around
two-dimensional and three-dimensional obstacles. Instead of a binary representation of the input geo-
metry, the authors used the signed distance function (SDF), which calculates the distance of each pixel to
the solid boundary. Using an encoder to extract latent features from the SDF image, the proposed CNN
architecture has separate decoders to predict different components of the velocity field. The resolved ve-
locity of lattice Boltzmann solver is used as a reference. The 2-D model is trained against a data set with
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100, 000 samples, with the relative error being less than 3%. The 3-D model is trained against a data set
with 0.4 million samples, with the relative error being also lower than 3%.

In [NM20], Nabian et al. enchanced the results of Guo et al. by penalizing the violation of the
divergence-free condition of the velocity, which leads to a physics-regularized loss function:

l = ||vpred − vtrue||2l2 + λ||∇vpred||2l2 , (2.28)

with λ being the regularization rate. Minimizing such a loss function leads to a data-driven surrogate
model with embedded physical prior knowledge, and higher prediction accuracy on the test set was
reported in the article.

In [TWPH20], Thuerey et al. employed a special CAE architecture, called the U-net [RFB15], as sur-
rogate model for Reynolds-averaged Navier-Stokes simulations of airfoil flows. The network takes the
inlet velocity and airfoil boundary as inputs, and outputs a 3-D tensor representing the velocity and the
pressure fields around the airfoils. The model is trained against a data set with 12.8 steady flow fields,
including 1550 different airfoil shapes, a range of Reynolds numbers Re ∈ [0.5, 5] million and a wide
range of attack angles [−22.5◦, 22.5◦]. The prediction error on their test set reaches 2.6% when using a
U-net architecture with 30.9 million trainable parameters.

In [NWK20], Wandel et al. developed a physics-informed training approach for CNNs, making the
obtained model capable of mapping the fluid state from time t to the fluid state at time t+ dt in a single
forward calculation. This approach is highlighted by the physical loss function, which is defined as:

l = αld + βlp + γlb,

with the divergence loss ld, the momentum loss lp and the boundary loss lb read:

ld = ||∇v||2l2 ,

lp = ||ρ
(
∂v
∂t

+ (v · ∇)v
)
+∇p− µ∆v− f ||2l2 ,

lb = ||v− vb||2l2 ,
where the physical quantities and their gradients are discretized on cartesian grids, and the time deriv-
ative is handled by an implicit-explicit scheme. Here α, β and γ are weighting hyper-parameters of loss
terms. By minimizing such a loss function, the obtained CNN model thus repects the physical laws de-
scribed by Navier-Stokes equations, and also the imposed Dirichlet boundary conditions. Furthermore, a
pool of the starting fluid states are randomly generated to train the model by minimizing the additioned
loss computing by these states, so that the model can be generalized to fluid simulation with arbitrary
initial velocity and pressure, making it aware of the evolution of the dynamical system described by the
Navier-Stokes equations. The authors generalized this approach to 3-D incompressible fluid simulation
in [WWK21].

In [VH20], Viquerat et al. trained a CNN for the drag force prediction around arbitrary two di-
mensional obstacles at a low Reynolds number. The concerned CNN stacks 4 convolution-convolution-
pooling blocks, followed by two fully connect layers, and terminated with a linear fully-connected layer
of size 1 outputing the predicted drag (see figure 2.19). The authors generated 12, 000 different obstacles
through a random algorithm, then resolved the laminar flow around them using a finite element solver,
and obtained the drag force. The input of the CNN is an image representing the geometric information
of the concerned obstacle. With 296, 865 trainable parameters, the trained model can give accurate drag
prediction on unseen obstacles, including NACA airfoils, with a relative error smaller than 2%.
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Figure 2.19 | The CNN architecture used for drag prediction in [VH20]. The CNN has 5 repeated conv-conv-pooling
blocks. In the first two blocks, 16 kernels are used in the convolutional layers. In the last three blocks, 32 kernels are used. After
each block, the image size is divided by 2. The last max-pooling layer is followed by a fully-connected layer with 64 neurons.
The architecture is terminated with a linear neuron that outputs the drag prediction.
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3
Workflow of

Computational Fluid
Dynamics

Résumé

Ce chapitre est consacré à la mécanique des fluides numérique classique. Le contenu est organisé
en plusieurs sections pour illustrer le cycle complet d’un projet CFD. Les méthodes présentées dans ce
chapitre sont utilisées pour générer l’ensemble de données pour les chapitres suivants sur les méthodes
d’apprentissage automatique. En tant qu’un phénomène courant dans la vie réelle, l’écoulement externe
concerne un fluide passant par un obstacle solide, y compris des avions volant dans l’atmosphère, le
vent soufflant au-dessus d’un immeuble, etc. La couche limite fait référence à une fine couche de fluide en
contact avec l’interface solide et est reconnue comme la partie la plus intéressante de l’écoulement externe,
car elle détermine la force du fluide sur l’obstacle. D’autre part, le caractéristique d’écoulement dans la
couche limite dépend de la géométrie, c’est-à-dire des caractéristiques de l’obstacle. Dans ce chapitre,
nous générons un ensemble de données d’écoulement externe autour de 2-D obstacles avec différentes
caractéristiques géométriques. Reflet de la complexité géométrique, un algorithme est implémenté pour
générer 12, 000 formes aléatoires. Des simulations CFD sont ensuite exécutées sur toutes les formes pour
obtenir des informations d’écoulement détaillées dans les régimes laminaire et turbulent. L’ensemble de
données est ensuite utilisé pour entraîner les réseaux de neurones dans les chapitres suivants.

3.1 Problem setting

The fluid is assumed to be newtonian, like air and water in common industrial situations. The incoming
flow has a velocity much smaller than the speed of sound, so the fluid is considered incompressible. The
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turbulent regime is attained by controlling the viscosity while fixing the incoming velocity. Since we are
pratically interested in the time-averaged flow and the overall impact of the geometric complexity, the
turbulence is resolved in the RANS framework, with a chosen turbulence closure presented in section
3.3.2. For both laminar and turbulent flows, the following simplifications are applied: the temperature
change is neglected, hence no energy equation is present; the gravity is also neglected for simplicity. By
controling and simplifying these factors, we put the very focus on the role of geometry conditions on
external flow.

In the first step, ns random points are drawn in [0, 1]2 (the unity is metre), and translated so their
center of mass is positioned at (0, 0). An ascending trigonometric angle sort is then performed (see figure
3.1a), and the angles between consecutive random points are then computed. An average angle is then
computed around each point (see figure 3.1b) using:

θ∗i = αθi−1,i + (1− α)θi,i+1,

with α ∈ [0, 1]. The averaging parameter α allows to alter the sharpness of the curve locally, maximum
smoothness being obtained for α = 0.5.

Then, each pair of points is joined using a cubic Bézier curve, defined by four points: the first and
last points, pi and pi+1, are part of the curve, while the second and third ones, p∗i and p∗∗i , are control
points that define the tangent of the curve at pi and pi+1. The tangents at pi and pi+1 are respectively
controlled by θ∗i and θ∗i+1 (see figure 3.1c). A final sampling of the successive Bézier curves leads to a
boundary description of the shape (figure 3.1d).

The sharpness of the curve features is handled with a positive parameter r that controls the dis-
tances [pip∗i ] and [pi+1p

∗∗
i ]. For r = 0, p∗i and p∗∗i respectively coincide with pi and pi+1, and the curve

presents sharp angles at the control points. Intermediate values of r produce smooth curves, with max-
imal smoothness for r = 0.5. When increasing further toward r = 1, p∗i and p∗∗i tend to coincide with
each other, with sharp features to appear near the crossing of the initial and final curve tagents. Finally,
for r > 1, tangled cases start to appear. A variety of shapes obtained with different values of r can be
found in figure 3.2. In the following, r is restricted to the interval [0, 1] to avoid tangled shapes.

Using this method, 12, 000 shapes with wide variaty are attained, as some examples shown in figure
3.3.

3.2 Laminar flow

3.2.1 Navier-Stokes equations

The laminar flowmotion of incompressible newtonian fluids is described by the Navier-Stokes (NS) equa-
tions:

{
ρ (∂tv+ v · ∇v)−∇ · (2ηεεε(v)− pI) = 0,

∇ · v = 0,
(3.1)

where t ∈ [0, T ] is the time, v ∈ Ω the coordinates, v(x, t) the velocity, p(x, t) the pressure, ρ the fluid
density, η the dynamic viscosity and I the identity tensor. εεε(v) = (∇v + ∇vT )/2 is the rate-of-strain
tensor. ∇ · v is the expansion rate of the flow, equal to zero here due to the incompressiblty hypothesis.

The Reynolds number of the flow is defined as:

Re =
ρu0l

η
, (3.2)
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Figure 3.1 | Random shape generation with cubic Bézier curves.

Figure 3.2 | Random shape examples depending on their r value, ranging from 0 to 1. The random points are shown in
blue, and their number ns ranges from 3 to 5, although it is possible to use more. For r = 0, one sees the sharp features of the
curve on the Bézier points. For intermediate values, smooth curves are obtained. Finally, for values close to 1, sharp features
start to appear around the control points (not shown here)
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Figure 3.3 | Shape examples drawn from the dataset. A wide variety of shape is obtained using a restrained number of
points (ns ∈ [4, 6]), as well as the local curvature r and averaging parameter α.

where u0 = 1m/s is the inlet speed of the principle flow, l the characteristic length of the concerned geo-
metry. When the fluid’s physical properties are pre-defined, the Reynolds number is totally determined
by the geometric characteristics of the studied obstacle. For laminar flow, the density and the dynamic
viscosity are set to 1 kg/m3 and 0.1 kg/(m · s). The Reynolds number is hence around 10 across the data
set.

The obstacle center is placed at the origin of a rectangular domain [−5, 10]m × [−5, 5]m, as shown
in figure 3.4. The inflow boundary conditions are v = (u0, 0). For the lateral boundaries, symmetry
conditions ∂u

∂y = v = 0 are used. For the outflow, ∂u
∂x = ∂v

∂x = 0 together with p = 0 are prescribed, and
no slip conditions v = (0, 0) are imposed on the solid surface.

3.2.2 Immersed boundary method for interface description

Classically, the resolution of NS equations around solid obstacle relies on body-fitted methods, where
the mesh boundary follows the geometry of the obstacle. These methods require the generation of a full
mesh (domain and obstacle) for each computation, which can be both time- and memory-consuming (see
figure 3.5a). To overcome this issue, immersed methods based on a unified formulation were introduced
that propose to immerge a boundary mesh of the obstacle in a background mesh (see figure 3.5b).

The first step is to compute the signed distance function (level set) [BDC09] of the given geometry to
each node of the background mesh:

α(x) = ±d(x,Γim), ∀x ∈ Ω, (3.3)

with the following sign convention: α ≥ 0 inside the solid domain defined by the interface Γim, and
α ≤ 0 outside this domain. Using this function, the fluid-solid interface Γim is easily identified as the
zero iso-value of function α:
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Figure 3.4 | Computation domain and boundary condition. The random shapes are always inside a 1m × 1m box with
the geometry center placed at the origin. The incoming flow has a uniform velocity u0 = 1m/s. The dynamic viscosity of the
laminar flow is 0.1 kg/(m · s)

.

(a) Body-fitted mesh (b) Immersed mesh

Figure 3.5 | Comparison of two different methods for interface representation. The body-fitted mesh requires mesh
generation when the studied geometry is changed. The immersed method requires a background mesh for the domain and a
mesh for the obstacle. The CFD solver is equipedwith amesh adaptation technic to refine the elements around the solid interface.
To run CFD simulations on all the 12 000 shapes, one just need one fixed background mesh while changing the obstacle mesh
sequentially.
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Γim = {x ∈ Ω, α(x) = 0}. (3.4)

As explained above, the signed distance function is used to localize the interface of the immersed
structure, but it is also used to initialize the desirable properties on both sides of the latter. Indeed, for
the elements crossed by the level-set functions, fluid-solid mixtures are used to determine the element
effective properties. To do so, a Heaviside function H(α) is defined as follows:

H(α) =

{
1 if α > 0,

0 if α < 0,
(3.5)

With the heaviside equation, one can easily write the unified governing equations for both the fluid
phase and solid phase:

{
ρ∗ (∂tv+ v · ∇v)−∇ · (2ηεεε(v) + τ − pI) = 0,

∇ · v = 0,
(3.6)

with the mixed quantities defined by:

ρ∗ = H(α)ρs + (1−H(α))ρf ,

τ = H(α)τs.

The subscripts f and s refer respectively to the fluid and to the solid. In the latter equality, τ acts as a
Lagrange multiplier that yields εεε(v) = 0 in the solid [HFCC13]. The boundary conditions of the modified
governing equations are the same as described in section 3.2.1, with the no slip conditions on the solid
surface extended to nodes inside the obstacles.

3.2.3 Numerical resolution

The modified equations 3.6 are casted into a stabilized finite element formulation, and solved using a
variational multiscale (VMS) solver implemented in CimLib [HFCC13]. The CFD solver used is equipped
with a remeshing technique [JHVC15] able to track both (i) the fluid/solid interfaces, and (ii) the areas of
strong gradients. Based on the laminar nature of the concerned flow, we set the mesh size in the boundary
layer to 0.01m. The target number of elements is 100 000. This method, exploited in conjunction with
mesh immersion, ensures accurate results for the creation of the data set. In practice, a mesh adaptation
is applied every 10 iterations, with the time step being 0.5s, and the mesh and flow solutions converge
after 40 iterations (see figure 3.6). Given the situation (multiple cheap 2-D simulations), each CFD run
was processed on a single core, with 64 shapes running at the same time on Intel Xeon 2.6GHz cores. The
average computation time was 4.8 minutes, and the whole data set was generated in less than 24 hours.
The physical computational time was chosen large enough so that the stationary flow was established. A
sample of the converged flow fields are shown in figure 3.7.
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Figure 3.6 | The convergence of drag force (N ). The Reynolds number is around 10, which signifies essentially laminar flow
in the computational domain, and it takes only 40 iterations for the convergence.
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(a) Velocity field - x component (b) Velocity field - y component (c) Pressure field

Figure 3.7 | Converged laminar velocity field and pressure field obtained from the CFD solver. The converged mesh
has been shown in figure 3.5b. The mesh adaptation is applied every 10 iterations. After a total of 40 iterations, the flow fields
converge to their stable states.
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3.3 Turbulent flow

In this section the Reynolds number is controled by the dynamic viscosity µ, while keeping the inlet
velocity u0 being 1m/s, so that the incompressibility condition is always valid. In order to generate
turbulence, the Reynolds number must be high enough, but the required minimum value varies case by
case. However, we have a reference in section 1.1, where the turbulent velocity snapshot around a cylinder
is shown in figure 1.1b, with the Reynolds number being 1.5×105. Accordingly, we choose a bigger value,
Re =1× 106, for the external flow in this section, which is certainly high enough to generate turbulence
around the obstacles.

3.3.1 Reynolds-averaged Navier-Stokes equations

In the context of turbulent flows, velocity and pressure experience intense multiscale perturbations in
both time and space, leading to an increasing need of computational resources to resolve all the existing
time and space scales. From an engineering point of view, the time-averaged flow pattern is also interest-
ing and sufficient for many real-life problems. To this end, the so called Reynolds-averaged Navier–Stokes
equations (RANS) can be resolved to directly obtain the time-averaged velocity and pressure fields.The
RANS equations are derived by the Reynolds decomposition of the velocity and pressure [Rey95]:

v(x, t) = v(x, t) + v′(x, t),
p(x, t) = p(x, t) + p′(x, t),

(3.7)

where the mean field components are defined as time averages of instantaneous fields:

v(x, t) = lim
T→∞

1

T

ˆ t0+T

t0

v(x, t) dt,

p(x, t) = lim
T→∞

1

T

ˆ t0+T

t0

p(x, t) dt,
(3.8)

The time average of the fluctuating components v′(x, t) and p′(x, t) is thus zero by definition. By taking
the time average of the original Navier-Stokes equations, one gets:

{
ρ (∂tv+ v · ∇v)−∇ · (2ηεεε(v)− ρR− pI) = 0,

∇ · v = 0,
(3.9)

where the Reynolds stress tensor Rij = vivj arises from the nonlinear convection term v · ∇v. In their
present form, the equations (3.9) are unclosed due to the presence of the Reynolds stress tensor. In order
to resolve the time-averaged velocity and pressure, one needs an additional relation to close the system
using the mean flow variables v and p.

3.3.2 Spalart-Allmaras model

The first solution to the closure problem is attributed to Joseph Valentin Boussinesq [Bou77, Sch07] in the
year of 1877. The Boussinesq’s hypothesis relates the Reynolds stress tensor with the mean flow strain
rate by:

−ρR = 2ηtεεε(v)−
2

3
ρkI, (3.10)
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with εεε(v) = (∇v +∇vT )/2 being the rate-of-strain tensor of the mean flow, and k = 1
2 tr(R) =

1
2vivi

being the turbulence kinetic energy. The quantity ηt > 0 is called the eddy viscosity, and need to be
further modeled. By inserting the equation (3.10) into the original RANS, one gets the following system:

{
ρ (∂tv+ v · ∇v)−∇ ·

(
2(η + ηt)εεε(v)− p′

)
= 0,

∇ · v = 0,
(3.11)

where the turbulent kinetic energy is absorbed into the modified pressure p′. In the following paragraphs,
the mean flow variables v and p′ are denoted by v and p to simplify the notations. The equations (3.11)
are thus rewritten as:

{
ρ (∂tv+ v · ∇v)−∇ · (2(η + ηt)εεε(v)− p) = 0,

∇ · v = 0.
(3.12)

The eddy viscosity restrains the turbulence through a larger effective viscosity η + ηt. The resolved
velocity and pressure from equations (3.12) thus converge to a stable state, which represents the time-
averaged flow. The Spalart-Allmaras (SA) model [SA94] is one of the many eddy viscosity-based models.
Being designed for aerodynamic flows, it is an adequate model for the computation of turbulent flow
around random shapes. It requires to solve a transportation equation to obtain the eddy viscosity field
ηt(x, t) at each time step. The concerned equation modelize a working variable ν̃ as:

∂ν̃

∂t
+v ·∇ν̃−cb1(1−ft2)S̃ν̃+

[
cw1fw −

cb1
κ2

ft2

]( ν̃

d

)2

− cb2
σ
∇ν̃ ·∇ν̃− 1

σ
∇· [(ν + ν̃)∇ν̃] = 0, (3.13)

with the kinematic viscosity ν = η/ρ. The eddy viscosity is retrieved as: ηt = ρν̃fv1, with:

fv1 =
χ3

χ3 + c3v1
, χ =

ν̃

ν
, fv2 = 1− χ

1 + χfv1
, ft2 = ct3e

−ct4χ2
,

fw = g

[
1 + c6w3

g6 + c6w3

] 1
6

, g = r + cw2(r
6 − r), r = min

(
ν̃

S̃κ2d2
, 10

)
,

S̃ = S +
ν̃

κ2d2
fv2, S =

√
2ΩΩΩ(v) : ΩΩΩ(v),

where d is the shortest distance to the solid interface, κ = 0.4 is the von Kármán constant, ΩΩΩ(v) =
(∇v−∇vT )/2 is the rotation tensor, and the remaining model coefficients read:

cb1 = 0.1355, cb2 = 0.622, σ = 2/3, cw1 =
cb1
κ2

+
1 + cb2

σ
,

cw2 = 0.3, cw3 = 2, ct3 = 1.2, ct4 = 0.5.

The equations (3.12) and (3.13) are solved simultaneously to obtain the flow variables (v, p, ν̃). Proper
boundary conditions must be imposed on the working variable ν̃, which will be presented in the next
subsection. In case of non-physical negative eddy viscosity recovered by the SA model, the field of ηt
should be clipped to reserve the non-negative part. However, a variant [AJ12] of the standard SA model,
called the negative SA model, was developed to handle this issue more delicately. The equation (3.13) is
replaced when ν̃ is negative by:
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∂ν̃

∂t
+ v · ∇ν̃ − cb1(1− ct3)Sν̃ − cw1

(
ν̃

d

)2

− cb2
σ
∇ν̃ · ∇ν̃ − 1

σ
∇ · [(ν + fnν̃)∇ν̃] = 0, (3.14)

with fn = (cn1 + χ3)/(cn1 − χ3) and cn1 = 16. In addition, the turbulent eddy viscosity ηt is set to zero
in the regions where the computed value of ν̃ is negative.

3.3.3 Computational domain and discretization

Since turbulent flows display more complex patterns than laminar ones, the computational domain must
be large enough to let the turbulence fully develop. A [−10, 20]m × [−10, 10]m rectangular domain is
used to reduce the impact of far-field conditions, as is shown in figure 3.8. The center of the obstacles are
always placed at the origin. The boundary conditions for velocity v and pressure p remain unchanged
compared to the laminar flow case. As for ν̃, no slip condition ν̃ = 0 is imposed on the solid interface, and
the inflow boundary condition is set to ν̃ = 3ν. Fot lateral boundaries, we use the symmetry condition
∂ν̃
∂y = 0. For the outflow, ∂ν̃

∂x = 0 is prescribed.

Figure 3.8 | Computational domain and mesh for turbulence simulation around random shapes. The domain is larger
than that of laminar flow for the complexity of turbulence. Only the boundary conditions for ν̃ are indicated as the velocity and
pressure follow the same constraints as in laminar flow. The pre-adapted mesh is used for all the 5 Reynolds numbers, with the
boundary element size being 5× 10−5m.

The dynamic mesh adapatation is replaced by pre-adapted meshes to reduce the resolution time. Such
a mesh can be visibly divided into 3 zones (see figure 3.8):

⋄ An outer zone for the main flow.
⋄ A refined zone for the flow close to the obstacles.
⋄ A high-resolution zone for the boundary layer.

The element size at the four sides is around 0.7m, while on the solid interface the element is as small as
5× 10−5m, which is enough for turbulent simulation at Re= 106.

3.3.4 Numerical resolution

The simulation is run from t = 0 with a time step being 0.1s. The drag force is surveilled during the sim-
ulation, and it is observed that 1, 000 iterations is a good balance for the convergence and computational
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time. In practice, the resolved flow variables do not converge to a steady state, but become periodic after
several hundreds of iterations (see figure 3.9). In order to obtain a steady flow pattern for every shape,
the resolved flow fields are manually averaged over the last 600 iterations (see figure 3.10), because the
first 400 iterations are enough for the flow entering the periodic regime. To be more precise, the averaged
drag force in figure 3.9b converges very fast to a stable value, thus confirming that an average window
of 600 iterations is sufficient.

0 200 400 600 800 1,000
2.2

2.3

2.4

2.5

Iteration

D
ra
g
fo
rc
e
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(b) Averaged drag force (N)

Figure 3.9 | Drag force on a random shape during the simulation. The flow enters a periodic pattern fastly. In order to
obtain a stable flow field at the end of simulation, the flow is averaged since the 400th iteration.

Given the situation (multiple expensive 2-D turbulence simulations), only 2, 000 out of the total
12, 000 random shapes are studied, with each CFD run being processed on 28 Intel Xeon 2.6 GHz cores.
Two shapes are simulated at the same time, taking about 3 minutes to finish the simulation. The whole
data set was generated in 2 days. A sample of the converged flow fields are shown in figure 3.11. For a
better visualization, a closer view focusing on the obstacle is provided, with the window being 4m× 6m.

39



−0.408

0.649

1.705

(a) u, instantaneous (b) u, averaged

−1.133

−0.073

0.987

(c) p, instantaneous (d) v, averaged

−1.004

−0.2

0.605

(e) p, instantaneous (f) p, averaged

0

0.016

0.032

(g) ηt, instantaneous (h) ηt, averaged

Figure 3.10 | Turbulent velocity (u, v) and pressure p (Re =1× 106) around an obstacle. The obstacle is colored in black
for a better visulization. The instantaneouos snapshots (on the left) are taken at the end of 1, 000th iterations. The snapshots
from the 400th to the 1, 000th iterations are averaged as shown on the right.
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Figure 3.11 | Averaged turbulent (Re =1× 106) flow fields (v, p, ηt) around a random shape. The obstacle is colored in
black for a better visulization.
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4
Convolutional neural

networks for fast
flow prediction

Résumé

Ce chapitre est consacré à l’exploration des applications CNNpour l’estimation de flux autour d’obstacles
2-D. En raison du coût important des solveurs aux EDP traditionnels, la prédiction de flux rapide est dev-
enue un objectif majeur pour les applications industrielles. Dans le design industriel, comme l’optimisation
de forme par exemple, les équations de Navier-Stokes doivent être résolues à chaque modification de
forme, jusqu’à ce que la géométrie optimale soit trouvée. Dans le cadre de l’apprentissage supervisé, un
CNN peut être entraîné contre un ensemble de données ad-hoc, afin d’obtenir un modèle subrogé capable
de prédire des quantités d’intérêt, accélérant ainsi remarquablement la conception. Les solveurs aux EDP
standard, quant à eux, utilisent des algorithmes itératifs pour calculer les champs de flux satisfaisant aux
contraintes physiques. Par conséquent, à condition d’avoir un ensemble de données adéquat et une phase
de formation, les modèles subrogés basés sur CNN pourraient considérablement accélérer ces phases de
conception.

4.1 Laminar flow prediction

4.1.1 data set

In this chapter, a subset of the data set presented in section 3.2 is used. As a reminder, we consider the
velocity and pressure fields of 2, 000 random shapes at Reynolds 10, to be fitted by a convolutional neural
network. The flow fields are saved in triangular meshes, each of which has about 30 000 nodes. In order
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(a) Network input (b) Velocity field - x component
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(c) Velocity field - y component (d) Pressure field
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Figure 4.1 | The obstacle, velocity field and pressure field for a dataset element. The geometric information is encoded
into a binary field, with the solid obstacles being 0, and the non-solid domain being 1. The binary input 4.1a is the input of the
CNN. The interpolated velocity field (4.1b, 4.1c) and pressure field (4.1d) make a 401× 401× 3 tensor as the output of the CNN.
The solid obstacle is not masked in the flow fields.

to be compatible with CNNs, the latter must be interpolated on cartesian grids. With a grid size equal
to 0.01m (which is the smallest element size in the triangular meshes), the 10m × 15m computational
domain would be transformed to a 2-D array with 1000 × 1500 pixels, and the entire data set would
require a tremendous amount of memory. Hence, we focus on a cropped domain in the vicinity of the
solid obstacles. A 4m× 4m square window, centered on the obstacles, is adopted to generate the data set
used in this chapter. With the aforementioned grid size, the selected window is represented by a 401×401
2-D array. In the data set, each instance holds 4 components, as shown in figure 4.1: the obstacle, the
horizontal velocity, the vertical velocity, and the pressure. Finally, the whole data set with 2, 000 instances
requires 13.5 GB of storage space.

The physical flow fields are normalized and non-dimensionalized before being used to train the CNN.
Technically, the normalized velocity and pressure fields (u, v, p) can be written as:

u = (u− umin)/(umax − umin),

v = (v − vmin)/(vmax − vmin),

p = (p− pmin)/(pmax − pmin),

(4.1)

where the maximum and minimum values are taken over the whole data set. The fluid density ρ =
1kg/m3 and the inlet velocity u0 = 1m/s are used for non-dimensionalization, which does not change
the values of the velocity and pressure.

4.1.2 CNN architecture

Convolutional autoencoders (CAEs) have been frequently used for full-field flow predictions in the re-
cent years. For example, Guo et al. [GLI16] trained CAEs for steady flow prediction around 2-D and
3-D obstacles, while Jin et al. [JCCL18] and Lee et al. [LY19] trained CAEs for unsteady flow prediction
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Figure 4.2 | Sketch of convolutional autoencoder and U-net architectures. Standard CAEs (4.2a) are composed of an
encoder and a decoder paths, and can be exploited either for end-to-end regression tasks (in a supervised way, with labels),
or for the inference of latent space representations (in an unsupervised way, without labels). U-net autoencoders (4.2b) are a
specific class of CAE, in which skip connections are added from the encoder branch to the decoder one in order to mix high-level
features from the latent space with low-level one from the contractive path. They usually present a superior level of performance
on regression tasks.

around cylinders, i.e. to predict the fluid state at the next time step from the the present fluid state. In
this section, a variant of CAE, called the U-net, is used for laminar flow prediction around random 2-D
shapes. Initially introduced by Ronneberger et al. [RFB15] in the field of biomedical image segmentation,
they were recently exploited for flow prediction tasks [TWPH20, FFT19], where they were either traine
to preidct RANS-solved turbulent data or for super-resolution reconstruction of turbulent flows. U-nets
have an autoencoder-like structure, but additionally introduce skip connections between the correspond-
ing convolutional and transposed convolutional layers from the encoder and decoder paths, in order to
mix high-level features from the latent space with low-level ones from the encoder. A sketch of such
architectures is proposed in figure 4.2.

The U-net architecture exploited in this chapter is composed of a number of convolution-convolution-
maxpooling blocks with 3 × 3 convolutional filters and 2 × 2 pooling size for the encoder part, and 5
transposed convolution-convolution-convolution blocks with 2× 2 transposed convolutional filters and
3×3 convolutional filters for the decoder part. In the encoder branch, the amount of convolutional kernels
is doubled after each block, while in the decoder, the amount of kernels is halved after each block. The
U-net’s architecture is hence symmetric, and scalable through a modification of the number of kernels
in the first block. An architecture with 3 convolution-convolution-maxpooling blocks is shown in figure
4.3.

In terms of network architecture, a U-net has two crucial hyper-parameters:
⋄ The number of blocks b in the encoder, which is the same as the number of blocks in the decoder due

to the symmetry. It is easy to see the latent feature tensor’s size is determined by b: h
2b
× w

2b
× 2bm,

where h and w are the height and width of the input array, and m is the number of kernels in the
first convolutional layer. With more blocks, there are also more skip connections from the encoder
to the decoder.

⋄ The number of convolutional kernelsm in the first layer. Together with b, it determines the number
of trainable parameters due to the architecture’s scalability.

The impact of b and m on the U-net’s performance will be studied in the section 4.1.4. Other hyper-
parameters, including the kernel size, the stride size and the activation function, also have their impacts
on the performance. However, they are chosen and fixed following recommendations from the litterature.
The details would be presented in the next subsection, together with the optimization aspects of the
network training.
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Figure 4.3 | The U-net architecture with 3 convolution-convolution-maxpooling blocks in the encoder. The input
image is first passed to 2 consecutive convolutional layers, both with m 3 × 3 kernels. Then a 2 × 2 max pooling layer
downsamples the feature map. The stride size is 2 in all the layers. By doubling the number of kernels in deeper convolutional
layers, one can extract more high-level features which are saved in different channels. The skip connections provide features at
different levels to the decoder, which enforce the geometric characteristics in the flow prediction. Finally a linear convolutional
layer with 3 kernels compute the output velocity and pressure.

4.1.3 Traininig and evaluation

As a first appraoch, an architecture with 5 blocks in the encoder is trained and evaluated as a proof of
concept. With 8 kernels in the first convolutional layer, the network has 1, 944, 763 trainable parameters.
The U-net is implemented and trained in the Keras API [C+15] with the following configurations: neurons
are activated by rectified linear unit (ReLU), batch size equals to 64, weights and bias are initialized by
the Glorot normal method, optimized by the Adam optimizer with an initial learning rate equals to 0.001,
a batch-wise learning rate decay equals to 0.0002, and early stopping patience is 20 epochs. The loss
function is the mean absolute error (MAE), computed as follows:

l
(
ypred, yref

)
=

1

3× 401× 401

∑

1≤i≤3,
1≤j,k≤401

|ypredijk − yrefijk|, (4.2)

with ypred and yref being the predicted and referential flow fields. The data set is divided to three parts
for training, validation and test, with the split ratio being 0.8 : 0.1 : 0.1. In this manuscript, the loss on a
data set, including the validation set or a mini-batch in the training set, refers to the averaged loss values
of the instances in the data set. The model is trained 5 times with random initializations, and the one with
smallest validation loss is selected, with its training history shown in figure 4.4. The training ceases after
237 epochs, taking 3, 630 seconds on a Nvidia Tesla V100 GPU card, and finally attains a validation loss
being 5.7×10−3. Evaluating the selected model on the test set, we observe a test loss equal to 6.03×10−3.
By having a closer look at the distribution of the loss on the test set (with 200 shapes), as is shown in
figure 4.5, we conclude that the trained model has good performance on the unseen data in the test set.
In terms of prediction cost, it takes about 2 seconds to obtain the flow fields around the 200 shapes in the
test set, which marks a considerable speedup over the traditional PDE solvers.

A sample prediction is shown in figure 4.6. The prediction on this sample is globally of high quality,
with an MAE equals to 7.09 × 10−3. The flow pattern around the obstacle is reasonable, but visible
discrepancies are concentrated near the solid interface. Indeed, the U-net not only predicts the velocity
and pressure fields, but also has to reconstruct the obstacle boundary, which cannot be strictly restored
due to the discontinuity and the staircasing effect due to the use of a cartesian grid.
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Figure 4.4 | Training history of the U-net model. The training ceases in few than 250 epochs, in order to avoid overfitting.
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Figure 4.5 | Distribution of the MAE over the test set. The test set contains 200 random Bézier shapes. Only 17 shapes
present an MAE superior to 0.01.
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(a) u, reference (b) u, predicted
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(d) v, reference (e) v, predicted
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(f) v, absolute error
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(g) p, reference (h) p, predicted
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(i) p, absolute error
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Figure 4.6 | Flow predictions on a Bézier shape from the test set using a U-net model. The horizontal velocity (4.6a, 4.6b,
4.6c), vertical velocity (4.6d, 4.6e, 4.6f) and pressure fields (4.6g, 4.6h, 4.6i) display similar error levels. The trained U-net has 8
filters in its first convolutional layer, leading to 1, 944, 763 trainable parameters in total. The output of the U-net is denormalized
to obtain the physical predictions. The error is mostly concentrated in the border of the obstacle.
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Figure 4.7 | The impact of hyper-parameters. All the networks are trained following the same settings presented in section
4.1.3, and each architecture is trained 5 times to get rid of the possible impact of initializations.

4.1.4 Hyper-parameter selection

Among all the configurable parameters, the number of convolution-convolution-maxpooling blocks b and
the number of convolutional kernelsm determine how complex the network is. This section is dedicated
to a quantitative study of these two hyper-parameters. Three values for b and four values for m are
considered, leading to in total 12 configurations of the U-net architecture:

b ∈ {4, 5, 6},
m ∈ {7, 8, 9, 10}.

As is shown in figure 4.7a, increasing the number of blocks b significantly increases the number of
trainable parameters. In each configuration, the network is trained 5 times with different initializations,
and the one with the smallest validation loss is selected as the best model. Then, the averaged MAE on
the test set is used to evaluate the performance of the 12 models. The results are given in figure 4.7b. As
can be seen, using more blocks in the network remarkably improves performance on the test set, thus
underlining the importance of the latent space representation, as the height and width are compressed
by a factor of 2b in the designed autoencoders. However, the marginal utility diminishes when using
too many blocks. It is hence not necessary to use more than 6 blocks, considering the additional cost of
training increasingly complex neural networks. On the other hand, the number of kernels has no clear
impact on the performance.

The predicted velocity and pressure from a U-net with b = 4 and m = 8 are given in figure 4.8 on
a shape from the training set. As can be seen, the segmentation is too coarse to reconstruct the flow
fields on a cartesian grid with the step size being 0.01m. One can hence conclude that the capacity of the
considered architecture is not large enough to modelize the data set features. All these results confirm
the advantage of using deep neural networks to extract hierarchical features. Making the network deeper
is an efficient approach to modelize complex nonlinear phenomena in fluid dynamics.
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(a) velocity−u (b) velocity−v (c) pressure−p

Figure 4.8 | Flow predictions on a Bézier shape from the test set using a U-netmodel with 4 convolution-convolution-
maxpooling blocks. The predicted flow patter shows systematic error, which comes from the lack of learning capacity of the
model.
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4.2 Turbulent flow prediction

In this section, the U-net approach presented in section 4.1 is applied to turbulent flow. Compared to
laminar flow, turbulent flow around obstacles displays more complex patterns around and downstream
of the latter. Therefore, the results presented in this section aim at gauging whether convolutional neural
networks could be used as surrogate models to Navier-Stokes equations with Spalart-Allmaras turbulence
closure.

4.2.1 Data set

Similarly to section 4.1, the velocity and pressure fields around 2, 000 random shapes are used as the data
set to be fitted by convolutional neural networks. Unlike the laminar case though, a 4m × 6m square
window containing the obstacle is adopted to generate the data set for this section. The window covers
the region [−2, 4]m × [−2, 2]m in order to include vortices behind the obstacle. The flow fields in the
window are projected onto a cartesian grid, the grid size being equal to 0.01m, and the selected window
therefore resulting in a 401 × 601 2-D array. In the data set, each instance has 4 components as shown
in figure 4.9: the obstacle, the horizontal velocity, the vertical velocity, and the pressure. The data set
is non-dimensionalized and normalized using the same method as section 4.1.1. Finally, the whole data
set with 2, 000 instances requires 19.7 GB of disque space. By reducing the grid size to 0.001m, the data
set would require 1.92TB of disque space. The boundary element size used for CFD simulation, equal to
5× 10−5m, would lead to more than 769.5TB of data. For academic interest, the grid size is chosen to be
0.01m, although this leads to an information loss in the boundary layer.

(a) Network input (b) Velocity field - x component

0

0.5

1

(c) Velocity field - y component (d) Pressure field

0

0.5

1

Figure 4.9 | The obstacle, velocity field and pressure field for a dataset element. The geometric information is encoded
into a binary field, with the solid obstacles being 0, and the non-solid domain being 1. The binary input 4.9a is the input of the
CNN. The interpolated velocity field (4.9b, 4.9c) and pressure field (4.9d) make a 401× 601× 3 tensor as the output of the CNN.
The solid obstacle is not masked in the flow fields.

4.2.2 Training and evaluation

As the model to fit the data set, a U-net with 7 convolution-convolution-maxpooling and 7 kernels in the
first layer is trained, leading to an architecture with 23, 822, 186 trainable parameters. All the training
configurations are the same as in section 4.1.3. The training ends after 144 epochs, taking 1.07 hours
on a Tesla V100 GPU card (see figure 4.10), with the final validation loss and test loss being respectively
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Figure 4.10 | Training history of the U-net model. The training ceases in few than 150 epochs. A slight overfitting is
observed, but the test loss remains at the same level of validation loss.

equal to 7.92× 10−3 and 7.78× 10−3. An example of prediction from the test set is given in figure 4.11.
The error maps show similar pattern as in the laminar case, with large discrepancy concentrated near the
obstacle.

4.2.3 Impact of network depth

Since the number of kernels proved to have little impact on the U-net performance, the number of
convolution-convolution-maxpooling blocks b is separately studied in this section. Three values of b
are considered: 5,6 and 7. The number of trainable parameters and the averaged MAE on the test set are
compared in figure 4.12. Using a 6−block architecture presents a great advantage, both in performance
and model complexity. The predicted velocity and pressure of the 5− block architecture are also presen-
ted in figure 4.13, where systematic failure of the predictions can be observed, similar to the laminar flow
predicted by the 4−block U-net. Although the 5− block architecture is able to give decent laminar flow
prediction, its capacity is proved to be not sufficient to modelize turbulent flow. To extract essential latent
features for turbulent flow reconstruction around the obstacles, the encoder should have at least 6 blocks,
which confirms the more complex nature of turbulent flow than laminar flow.

4.3 Conclusion

The U-net, a special convolutional auto-encoder, was shown to be able to modelize the laminar and tur-
bulent flow around random 2-D obstacles. On the laminar data set, the trained U-net reaches an MAE
level about 6 × 10−3 on the test set, which corresponds to a high-quality reconstruction of the velocity
and pressure fields, although the fields in the vicinity of obstacles are poorly predicted. The low-quality
prediction of the boundary layer is caused by the discontinuity at the interface, as well as the staircasing
effect with the cartesian grid. One could use higher-resolution grids to capture the interface, but the train-
ing cost would rise rapidly and could easily exceed the hardware limits. On the turbulent data set, the
MAE is approximately equal to 8× 10−3 on the test set, with the predicted flow fields still being accurate
except in the boundary layer. However, compared to laminar flow prediction, two negative points must
be stressed:
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Figure 4.11 | Flow predictions on a Bézier shape from the test set using a U-net model. The horizontal velocity (4.11a,
4.11b, 4.11c), vertical velocity (4.11d, 4.11e, 4.11f) and pressure fields (4.11g, 4.11h, 4.11i) display similar error levels. The trained
U-net has 7 blocks in the encoder and 7 kernels in its first convolutional layer, leading to 23, 822, 186 trainable parameters in
total. The output of the U-net is denormalized to obtain the physical predictions. The error is mostly concentrated in the border
of the obstacle.

⋄ The MAE level, approximately equal to 8 × 10−3, is higher than that of the laminar case, equal
to 6 × 10−3 of laminar case, although a deeper U-net architecture has been used for turbulence
prediction. Additional difficulties could be expected if considering more complex flow patterns.

⋄ The grid size is equal to 0.01m, which implies a much coarser grid compared to the triangular mesh
used for CFD simulation. If using finer grids, the size of the data set would augment quadratically,
making the training requirements exceed standard hardware capacities.

⋄ Using a smaller grid size should have an impact on the required network depth, the trainining cost,
the prediction quality, but this point is not covered due to hardware constraints.

Two hyper-parameters concerning the U-net’s architecture are studied: the number of blocks in the
encoder and the number of kernels in the each convolutional layer, with both parameters having a direct
impact on the latent feature tensor of the auto-encoder architecture. It is evidenced by numerical experi-
ments that there should be enough blocks to extract essential features from the network’s input, and that
the model’s performance is remarkably improved when using more blocks, while the network becomes
deeper and the latent feature tensor are further compressed in the height/width axes. On the other hand,
using more kernels showed negligible impact on the performace.

This chapter allowed to introduce the use of CNNs for fast flow prediction, both at low and high
Reynolds numbers. In the following chapter, the proposed architecture is modified to perform on-the-fly
outlier dectection on top of flow prediction.
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Figure 4.12 | The impact of hyper-parameters. All the networks are trained following the same settings presented in section
4.1.3, and each architecture is trained 5 times to get rid of the possible impact of initializations.
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(a) velocity−u (b) velocity−v (c) pressure−p

Figure 4.13 | Flow predictions on a Bézier shape from the test set using a U-net model with 5 convolution-
convolution-maxpooling blocks. The predicted flow patter shows systematic error, which comes from the lack of learning
capacity of the model.
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5
Anomaly detection

and uncertainty
qantification for

the CNN-based
surrogate model

Résumé

Au cours des dernières années, les méthodes d’apprentissage profond se sont révélées d’un grand
intérêt pour la communauté de la dynamique des fluides numériques, en particulier lorsqu’elles sont
utilisées comme modèles subrogés, que ce soit pour la reconstruction d’écoulement, la modélisation de
la turbulence ou la prédiction de coefficients aérodynamiques. Dans l’ensemble, des niveaux de précision
exceptionnels ont été obtenus, mais la robustesse et la fiabilité des approches proposées restent à explorer,
en particulier en dehors de la région de confiance définie par le jeu de données. Dans cette contribution,
nous présentons une architecture d’autoencodeur avec double décodeur pour la reconstruction de flux
laminaire incompressible avec estimation d’incertitude autour d’obstacles 2-D. L’architecture proposée
est formée sur un ensemble de données composé de flux laminaires calculés numériquement autour de
12, 000 formes aléatoires, et applique naturellement une relation quasi-linéaire entre une branche de
reconstruction géométrique et le décodeur de prédiction de flux. Sur la base de cette caractéristique,
deux processus d’estimation de l’incertitude sont proposés, permettant soit une décision binaire (accepter
ou rejeter la prédiction), soit proposant un intervalle de confiance avec la prédiction des l’écoulement
(u, v, p). Les résultats sur l’ensemble de données ainsi que des formes jamais vues montrent une forte
corrélation positive entre le score de reconstruction et l’erreur quadratique moyenne de la prédiction
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d’écoulement. De telles approches offrent la possibilité d’avertir l’utilisateur de modèles entraìnés lorsque
l’entrée fournie montre un écart trop important par rapport aux données d’entraìnement, ce qui rend le
modèle subrogé conservateur pour une prédiction d’écloument rapide et fiable.

5.1 Introduction

In the previous chapter, numerical experiments were presented to outline the capacities of convolutional
neural networks to modelize complex laminar and turbulent flow data sets, and to use them as surrogate
models for traditional PDE solvers, in adequate contexts. Still, one must keep in mind that, under stability
and convergence assumptions, a PDE solver provides physics-consistent solutions for arbitrary scenarios.
On the other hand, the data-driven approach brings nothing about reliability, and that question is barely
addressed in the CNN litterature. Conversely, as surrogate models rely on data fitting, their accuracy and
robustness cannot be verified outside the boundary of their training data set. In the present chapter, tools
are developed to overcome the latter limitation, answering the question: can CNN models be tailored to
reliably provide a measure of their own prediction accuracy?

The topological complexity of the input space can make it hard to determine whether or not a given
element, provided by an external user, lies within the boundaries of the data set used during training.
More, the end user of the model is usually not in possession of the data set, hence approaches based
on PCA are not a possible option. While very few approaches were proposed to tackle such issues in
the context of CNN-assisted CFD, several outlier detection techniques have been proposed in other do-
mains. Among them, unsupervised methods have attracted much attention, as they do not require labeled
data. In particular, several autoencoder (AE) based techniques were developed for medical and industrial
applications: in [HHWB02], a fully connected AE with three hidden layers is applied to breast cancer
detection; in [CSW+20], a convolutional AE (CAE) is used to detect cracking and spalling defects on con-
crete structures; in [KLH17], CAEs are used to detect miss-printed logo images on mobile phones, and
in [BWAN18], the authors compare several variants of AE on anomaly segmentation in brain magnetic
resonance images.

In this chapter, we introduce an autoencoder architecture with a twin-decoder as a possible tool for
outlier detection in the context of fluid flow predictions. New contributions include:

⋄ A novel twin-AE architecture displaying a strong correlation between the input reconstruction and
the flow prediction error levels by taking advantage of proper skip connections between the two
decoder branches. This correlation is found to be almost linear, at the expense of a slightly lower
flow prediction accuracy than that of a U-net with similar structure;

⋄ Two uncertainty estimation procedures taking advantage of the latter property: (i) a qualitative
procedure based on a user-provided error threshold level, providing binary decisions regarding the
prediction (accept or reject), and (ii) a quantitative procedure, providing the user with a error level
interval on top of the flow prediction. Results over the considered data set as well as unseen shapes
proved these methods to be efficient to detect the applicability limits of the trained model. Both
methods rely on simple concepts, and can be easily applied to other end-to-end prediction tasks.
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Figure 5.1 | Network input, velocity field andpressurefield for a dataset element. The shape is shown in its computational
domain (5.1a), along with the computed velocity field (5.1b, 5.1c) and pressure field (5.1d).

5.2 Data set

The data set is composed of 12, 000 shapes, along with their steady-state velocity and pressure fields at
Re = 10 (see figure 5.1), which are generated by the numerical methods described in section 3.2. The
input fields are resized to 2-D 100 × 150 arrays before being provided to the network, using a grid size
0.1m. The flow fields are normalized and non-dimensionalized using the same method as presented in
section 4.1.1, so that the pixel values are in the range [0, 1].

5.3 CNN architecture

The architecture of the twin-decoder proposed in this section is shown in figure 5.2. Its input consists
in a boolean 1-channel tensor containing the computing domain and the obstacle. Its outputs are (i)
a 1-channel tensor containing the reconstructed input, and (ii) a 3-channels tensor containing the pre-
dicted velocity components and pressure fields. The encoder branch consists in stacked convolution-
convolution-max-pooling blocks using 3 × 3 kernel size, with stride size equal to 1, and zero-padding.
The convolutional layers exploit ReLU as activation functions. After every pooling operation, the number
of kernels used for convolutional layers is doubled, until reaching the bottleneck.

The decoder is composed of two branches, hereafter denoted "shape decoder" and "flow decoder".
Both decoder branches are composed of transposed convolution-convolution-convolution blocks, and
share similar structures. The transposed convolution layers use 2 × 2 kernel size, stride size equal to 2,
zero padding and ReLU activation. Symmetrically to the encoder branch, the number of kernels is halved
after each block in the decoder branches. Finally, a convolutional layer with four 1× 1 kernel is applied
to set the final number of channels (1 for the shape decoder, and 3 for the flow decoder). The output of
our network hence contains 1-channel tensor representing reconstructed input, and a 3-channel tensor
representing the velocity and pressure.
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Figure 5.2 | Proposed twin-decoder architecture. The encoder is based on a pattern made of two convolutional layers
followed by a max-pooling layer. At each occurence of the pattern, the image size is divided by two, while the number of filters,
notedm, is doubled. In both decoder paths, a transposed convolution step is first applied to the input, while the number of filters
is halved. The output of this layer in the flow decoder is then concatenated with its mirror counterpart in the shape decoder.
Finally, two convolution layers are applied. At the end of the last layer, a 1× 1 convolution is applied on each decoder to obtain
a final 3D tensor with 4 channels. Every channel has the same dimension as the input.

The key ingredient of the proposed architecture lies in the skip connections that link the shape de-
coder and the flow decoder. The output of each shape decoder block is concatenated (along the channel
axis, to preserve shape) to the output of the transposed convolution layer of each flow decoder block. This
idea is similar to that of U-net, except that low-level features do not originate from the encoder branch,
but from the reconstruction of the input. Forcing such dependence between the two decoder branches
is expected to induce a strong correlation between their performance levels. In essence, by enforcing
a relation between the shape reconstruction error and the flow prediction error, the proposed method
allows to reject possible outliers based on the reconstruction error. As the latter can be computed for an
arbitrary input, the end-user can be warned if the network prediction can be trusted or not. More details
on the acceptance/rejection procedure are provided in section 5.5.

5.4 Training procedure

The loss function used to train the twin-decoder architecture is a weighted sum of the shape and the flow
decoder losses. Both decoders use the regular mean squared error (MSE) as the loss function:

l
(
ypred, yref

)
=

1

c× 100× 150

∑

1≤i≤c,
1≤j≤100,
1≤k≤150

|ypredijk − yrefijk|2, (5.1)

with c = 1 for the shape decoder and c = 3 for the flow decoder. The final loss function used for training
is:

ltwin = lflow + βlshape, (5.2)

where β is a weighting parameter that remains to be tuned (see section 5.6). The network is trained with
the Adam optimizer using an initial learning rate of 1 × 10−3, which is reduced to 1 × 10−4 after 600
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epochs. To prevent overfitting, the validation loss is monitored, and early stopping is used to determine
the end of the training. The network parameters are initialized using the Glorot normal method, following
[RFB15]. Training is performed using a Nvidia Tesla V100 GPU, using mini-batches of size 128 to limit the
required computational resources. As the hyper-parameters will be compared, training times are given
in section 5.6.

5.5 Trust level based on shape reconstruction

Given a trained twin-decoder neural network, it is feasible to evaluate the trust level of flow prediction
by input reconstruction. As the error levels of the twin decoders are strongly correlated, a qualitative
and a quantitative trust-level methods are proposed, both based on the reconstruction error. Their gen-
eral concepts are proposed in the following sub-sections, while their applications on trained networks
are presented in section 5.9. In the following, the MSE errors for flow and shape reconstructions are
respectively denoted ef and es.

5.5.1 Qualitative method

In this case, the end-user provides an acceptable MSE error level e∗f on the flow prediction. The method
consists in selecting the associated shape reconstruction error e∗s that minimizes the probability of taking
wrong decisions when supposing that the two error levels are linearly correlated. The threshold shape
reconstruction error e∗s is the solution to the following minimization problem:

e∗s = argmin
e

1

N

[
card

(
es < e and ef > e∗f

)
+ card

(
es > e and ef < e∗f

) ]
, (5.3)

where N is the number of scatter points taken into account. The numerator sums the amount of wrong
decisions as the error of both decoders are assumed to be positively correlated. Such a formulation pre-
vents the end-user from making mistakes when accepting or rejecting predictions. An illustration of the
method is shown in figure 5.3a.

5.5.2 Quantitative method

With the quantitative method, the flow prediction error ef and an associated confidence interval δf are
directly estimated from the input reconstruction error es using the following relation:

ef = aes + b+ ϵ, (5.4)

where ϵ follows a normal law of the form:

ϵ ∼ N (0, (ces)
2). (5.5)

The assumption is supported by the linear pattern of error scatter plots. In essence, indexing the standard
deviation on es in (5.5) represents the growing uncertainty on flow prediction as shape reconstruction
turns worse. Under this formulation, the likelihood of ef on N scatter points is:

N∏

i=1

p(eif |eis; a, b, c) =
N∏

i=1

1√
2π(ceis)

2
exp

(
−
(eif − aeis − b)2

2(ceis)
2

)
(5.6)

The optimal parameters a∗, b∗ and c∗ are obtained by minimizing the negative log likelihood:
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Figure 5.3 | Description of the qualitative and quantitative methods on the scatter plots of ef versus es on training and
validation sets for a reference twin auto-encoder architecture. (Left) Qualitative method: given a threshold e∗f , the corresponding
optimal e∗s is found by solving problem (5.3). Then, the end-user rejects predictions that produce shape reconstruction errors
superior to e∗s . Only the predictions falling within the bottom left quarter (in orange) are accepted. (Right) Quantitative method:
ef is modeled as an affine function of es with an uncertainty interval, as shown in relation (5.4). Based on es, the method
provides an estimated ef level, along with a confidence interval for the prediction.

(a∗, b∗, c∗) = argmin
a,b,c

1

2

∑

i

(
eif − aeis − b

ceis

)2

+
∑

i

log(ceis) +
N

2
log(2π), (5.7)

which is achieved using a gradient descent algorithm. An illustration of the method is shown in figure
5.3b. The minimum is determined by training and validation error, then evaluated on the test set. To the
difference of the qualitative method, in which the predictions are either plainly accepted or rejected, such
formulation allows one to estimate ef with a confidence interval δf , without a need of pre-selecting a
threshold accuracy, thus providing an additional flexibility. As an example, given a shape reconstruction
error es, the associated flow prediction accuracy level ef would fall into [(a− 2c)es + b, (a+ 2c)es + b]
with 95% probability.

5.6 Training and hyper-parameter selection

In this section, the impact of three different parameters is explored: (i) the number of convolutional blocks
b, (ii) the number of kernels in the first convolutional layer m, and (iii) the weighting parameter β. In
total, 30 configurations are studied, with the network being evaluated not only on its flow field prediction
performance, but also on the correlation coefficient obtained between ef and es on the validation set. As
the different explorations are detailed below, the corresponding results can be found in figure 5.4.

The number of convolutional blocks b in the encoder (or equivalently the number of transposed
convolution blocks in the decoders) proved to be determinant regarding the performance of the flow
decoder. Based on previous experiments on U-nets, only architectures with 5 or 6 blocks were considered.
Architectures with 5 blocks proved to outperform deeper ones in terms of flow prediction, probably due
to a too high compression rate in the latent space when using 6 blocks. Adversely, architectures with 6
blocks presented a slightly better correlation coefficient between the two decoder errors.
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Figure 5.4 | Hyper-parameter calibration. The performance is evaluated on the validation set. To compare the accuracy of
flow prediction between different architectures, the MSE is averaged over the entire validation set.

The number of convolutional kernels m The flow prediction accuracy is highly dependent on the
number of convolution kernels used in each blocks. Since the architecture is symmetric and scalable, we
use the number of kernels in the first convolutional layer to represent this hyper-parameter. Results show
a clear advantage of using 8 kernels over 4, while increasing from 8 to 12 is not as beneficial. Hence, it is
not necessary to use too many kernels, as a CNN complexity scales with the square of the kernel number.
Similar conclusions hold for the correlation coefficient.

Weighting parameter β The β parameter in the loss function (5.2) proved to have a crucial impact on
correlation of the two decoder errors. Five different values were considered (from 0.1 to 5), with larger
values giving more weight to the shape decoder during the training process. We found that small β values
were very beneficial to the correlation level, while alleviating the differences caused by b. With β = 0.1,
a 5−block architecture with 12 kernels obtained a correlation level of 93%, which represents a strong
linear relation. The impact of β on the flow prediction accuracy is not as clear according to the obtained
results.

5.7 Training cost and accuracy

In order to evaluate the computational cost of the training, we provide the best performance attained by
each combination with respect to the number of trainable parameters in table 5.1. Each point represents
the smallest ef value obtained by tuning β. By using the 5−block architecture with 12 kernels, ef values
as low as 1.4×10−5 can be reached, requiring 1.4million parameters, making it the architecture of choice,
with the best cost-accuracy ratio. Learning time on a Tesla V100 GPU is approximately 0.7 hours. The
training curves for the training and validation subsets are presented in figure 5.5.

On the test set, the proposed model reaches a flow reconstruction accuracy ef = 1.38 × 10−5, thus
showing good generalization capabilities on unseen data. In figure 5.6, a prediction example from the
test set is shown, along with the associated exact solution and a pixel-wise error map. As can be seen,
the velocity and pressure fields are well recovered by the network, the error being concentrated in the
vicinity of the obstacle, i.e. in the area of large pressure and velocity gradients. As the obstacle itself only
represents a small portion of the predicted field, a second metric is proposed: for each element of the
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Figure 5.5 | Training history of themodel. The training is ceased when the validation loss does not decrease for 10 successive
epochs. A slight overfitting can be observed on the trained model.

Table 5.1 | Flow prediction performance obtained for architectures of various complexities. A good ratio must be found
between the final achievable accuracy and the total number of learnable parameters, as training time rises dramatically with the
network complexity. Here, best performance is obtained when b = 5 andm = 12, with a total of 1.4 million parameters.

Architecture Best ef Nb. of parameters

5 blocks - 4 kernels 3.3063× 10−5 157 208

5 blocks - 8 kernels 1.7216× 10−5 627 500

5 blocks - 12 kernels 1.4491× 10−05 1410880

6 blocks - 4 kernels 3.6089× 10−5 592 024

6 blocks - 8 kernels 2.1178× 10−5 2 365 484

6 blocks - 12 kernels 1.8826× 10−5 5 320 384
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test set, the mean pixel-wise relative error is computed on a smaller area surrounding the obstacle. The
corresponding error distributions are plotted in figure 5.7. Overall, the average relative error is 3.92% for
horizontal velocity, 3.57% for vertical velocity and 3.55% for pressure, with very few elements exceeding
6% of relative error, showing again decent generalization capabilities.

5.8 Correlation levels

In this section, the correlation levels obtained between the shape reconstruction and the flow prediction
errors are commented. To further show the interest of the twin-AE architecture, two close network struc-
tures are considered, namely the dual autoencoder (dual-AE), and theU-net dual autoencoder (U-dual-AE).
The dual-AE architecture is simply obtained by removing the skip connections of the twin-AE, while the
U-dual-AE exploits skip connections coming from the encoder path instead of the reconstruction path.
To ensure a fair comparison, the same configuration is used for all three architectures. A concatenation
with constant tensor is applied to the flow decoder of the dual-AE, so its number of parameters is equal
to that of the U-dual-AE and the twin-AE.

The scatter plots obtained with the twin-AE on the training, the validation and the test sets are re-
spectively shown in figures 5.8a, 5.8b and 5.8c. Associated correlation levels are 0.772, 0.931 and 0.954,
meaning that strong linear relations are observed on the validation and test set. Regarding the training
set, the weaker correlation is interpreted as a consequence of the slight overfitting observed during train-
ing (see figure 5.5). In comparison, the obtained correlation level of the dual-AE on the test set is 0.830,
which is significantly weaker than that of the twin-AE, thus proving the interest of the skip connections
between the two decoder branches (see figure 5.8d). The twin-AE also has slightly lower relative errors
than its dual-AE counterpart (3.92%, 3.57% and 3.55% respectively for u, v, p, against 4.30%, 4.05%
and 4.00%). Finally, the U-dual-AE architecture exhibits almost no correlation between es and ef , with
a computed correlation level of 0.385 (see figure 5.8e). Adversely, the relative error levels of the U-dual-
AE are significantly lower (3.01%, 1.94% and 1.94%), which is in line with results from the literature
[CVH19] and the results of previous chapters.

5.9 Trust level based on input reconstruction

This section presents the application of the trust level methods detailed in section 5.5. Again, the under-
lying concept is to take advantage of the strong correlation between shape and flow reconstruction error
levels (see section 5.8) to propose an uncertainty estimation (either qualitative or quantitative) along with
the flow prediction.

5.9.1 Qualitative method

A threshold MSE tolerance for the flow reconstruction is provided by the user, and is here chosen to
be e∗f = 5 × 10−5. The corresponding threshold shape reconstruction error e∗s is obtained by solving
the minimization problem (5.3). As the data set size is relatively limited, the problem is solved by an
exhaustive search, the results of which are shown in figure 5.9a. One observes that choosing e∗s = 1.9×
10−4 minimizes the risks of accepting bad predictions and rejecting good predictions. When testing the
procedure on the elements of the validation and testing sets, it is observed that the mistake rate is close
to 1% in both cases. In figure 5.9b, the false classification rate on the three subsets is plotted as a function
of e∗f , showing that stricter e∗f choices inevitably lead to worse performances with this method. The area
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(a) u, reference (b) u, predicted (c) u, absolute error

(d) v, reference (e) v, predicted (f) v, absolute error

(g) p, reference (h) p, predicted (i) p, absolute error

(j) Shape, reference (k) Shape, predicted (l) Shape, absolute error

Figure 5.6 | Flow and shape predictions around an obstacle from the test set. On this instance, the flow prediction error
is ef = 1.57 × 10−5, with most of the error concentrated on the boundary of the shape, i.e. in the area of large pressure and
velocity gradients. For the u, v and p predictions, the pixels’ value range is still [0, 1]. An RGB colormap is used for better
visualization

.
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(a) Area taken into account to compute re-
lative error histograms.
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Figure 5.7 | Relative error for flow predictions over test set. The black rectangle around the obstacle indicates the area on
which the u, v and p relative errors are computed. The histograms indicate the error levels obtained when comparing predictions
to labels on the 1200 elements of the test set.

of accepted predictions is plotted in figure 5.11a, along with a representation of the elements of the test
set.

5.9.2 Quantitative method

A gradient descent algorithm is used to minimize the negative log-likelihood problem (5.7) over the train-
ing set, in order to obtain the optimal parameter set (a∗, b∗, c∗). With an initial value (a0, b0, c0) =
(0.1, 0, 0.1), the algorithm converges after 6 iterations (see figure 5.10). The optimal parameters retained
are (a∗, b∗, c∗) = (0.257157, 2.24820×10−6, 0.105841), which minimize the negative log likelihood over
the validation set. Hence, ef can be estimated from es as:

ef = 0.257157 es + 2.24820× 10−6 +N (0, (0.105841 es)
2). (5.8)

As shown in figure 5.11b, the regression line and its 1σ confidence interval matches well with the
distribution of the test set, with only a handful of (ef , es) couples falling outside of the range. The fact
that the confidence interval widens with larger values of es translates the increasing scarcity of samples
in the test set when es rises. For the majority of predictions, though, it provides a good grasp of the flow
prediction quality. The 1σ (68% probability) and 2σ (95% probability) confidence intervals for sampled
es values are provided in table 5.2.

5.9.3 Flow prediction on outliers

In this section, the capabilities of the qualitative and quantitative methods to detect invalid inputs and
outliers are evaluated. To do so, multiple shapes are generated that do not fit within the data set, including
polygons with sharp edges (see figure 5.12), shapes included in the data set but misplaced in the input
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Figure 5.8 | Comparison of scatter plots of ef versus es for different sets and architectures. Top row: the correlation
levels obtained with the twin AE on the training, validation and test sets are respectively 0.772, 0.931 and 0.954. Bottom row:
dual AE and U-dual AE architectures show weaker correlation levels on the test set, with respective levels of 0.830 and 0.385.
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(a) False classification rate as a function of e∗s for e∗f = 5×10−5.
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Figure 5.9 | Trust level identification based on the es indicator. (Left) The optimal threshold is obtained by minimizing
the mistaken classification rate on the training and the validation sets. (Right) The mistake rate rises significantly on all three
subsets when decreasing the threshold e∗f value. For the optimal e∗s value, the mistake rate on the validation and test sets is
approximately 1%.
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Figure 5.10 | Minimization of the negative log-likelihood problem (5.7) using the BFGS algorithm.
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Figure 5.11 | Representations of the qualitative and quantitative methods along with the test set scatter plot.

Table 5.2 | Estimating ef for given es values.

es ef (1σ interval) ef (2σ interval)

1× 10−5 [3.76× 10−6, 5.88× 10−6] [2.70× 10−6, 6.94× 10−6]

2× 10−5 [5.27× 10−6, 9.51× 10−6] [3.16× 10−6, 1.16× 10−5]

4× 10−5 [8.30× 10−6, 1.68× 10−5] [4.07× 10−6, 2.10× 10−5]

8× 10−5 [1.44× 10−5, 3.13× 10−5] [5.89× 10−6, 3.98× 10−5]

1.6× 10−4 [2.65× 10−5, 6.03× 10−5] [9.52× 10−6, 7.73× 10−5]

3.2× 10−4 [5.07× 10−5, 1.18× 10−4] [1.68× 10−5, 1.52× 10−4]

66



(a) Polygon (b) Bezier shape misplaced by
(+0.5,−0.5)

(c) Bezier shape misplaced by
(+0.5,+0.5)

(d) Enlarged Bezier shape

Figure 5.12 | Outlier examples for model evaluation. Polygons are generated with fewer sampling points and sharper edges
than the dataset shapes. Misplaced and enlarged shapes have the same curve characteristics as the original data set, but are ill-
positioned, or significantly larger than those of the dataset.

Table 5.3 | Model performance on test set and polygons. The comparison is based on the average pixel-level relative error
in the 30× 45 rectangular zone around the obstacles.

Shape rel. error u rel. error v rel. error p rel. error

Bezier Test Set 3.43% 3.92% 3.57% 3.55%

Polygons 4.16% 6.11% 4.74% 4.70%

Lower right 16.4% 13.5% 17.1% 16.2%

Upper right 16.9% 11.4% 18.2% 14.3%

Enlarged 214% 244% 153% 146%

domain (i.e. moved away from the position used in the data set), and enlarged shapes from the data set.
In total, 120 outliers are tested. In table 5.3, one can see that the relative errors on the different classes of
outliers are systematically larger than those obtained on the data set shapes. While the prediction errors
on polygons are only slightly higher that those from the test set, field prediction errors for misplaced
shapes are systematically superior to 10%. Enlarged shapes present extremely high reconstruction and
prediction errors, higher than 100%. An example of prediction on enlarged Bezier shape is shown in figure
5.13, illustrating the interest of incorporating uncertainty estimation and outlier detection processes in
neural network architectures.

In figure 5.14b, the (es, ef ) scatter plot of the test set is shown, along with the position of the 120
outliers, both for the qualitative and the quantitative methods. As can be seen, most polygons are located
in the accepted region of the qualitativemethod, indicating that the higher average relative error shown in
table 5.3 is caused by a few polygon outliers with large relative errors. When inspecting the polygons set,
it was found out that those with largest ef errors were presenting edges features that were considerably
sharper than the others. Almost all the misplaced and enlarged shapes fall into the rejected area of the
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(a) u, reference (b) u, predicted (c) u, absolute error

(d) v, reference (e) v, predicted (f) v, absolute error

(g) p, reference (h) p, predicted (i) p, absolute error

(j) Shape, reference (k) Shape, predicted (l) Shape, absolute error

Figure 5.13 | Flow and shape predictions around an enlarged Bezier shape. As this input shape is an outlier, the shape
reconstruction is poor, and is associated with large prediction errors (ef = 1.316 × 10−2). For the u, v and p predictions, the
color scales are the same as for figure 5.6.
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(b)Quantitative method: using the regression line from equation
5.8, 106 bad predictions out of 120 outliers fall into the 2σ con-
fidence interval.

Figure 5.14 | Prediction and reconstruction error on the outliers. The qualitative and quantitative methods are illustrated
in (a) and (b).

qualitative method, while also matching well the ±2σ interval of the quantitative method (27 enlarged
shapes out of 30 are not shown due to their out-of-range MSE.). Still, a handful of outliers presenting
low es with large ef are noticed, indicating that the proposed methods are still missing a small amount
of outliers. Overall, the qualitative method efficiently detects most of the outliers, with only 10 out of
120 bad predictions not detected (i.e. 91.6% of outliers detected). The ±1σ interval of the quantitative
method covers 85 out of 120 (70.8%) outliers, while ±2σ interval covers 106 out of 120 (88.3%) outlier
predictions. The results of figure 5.14b also indicate that the uncertainty levels of misplaced and enlarged
inputs are partly under-estimated.

Overall, the qualitative method efficiently diminishes the risk of mis-use of the trained model, by
catching more than 90% of the bad inputs. Still, it remains a limited, binary method, and by construc-
tion approximately discards 1% of the data set points. Conversely, the quantitative method also provides
adequate confidence range for almost all the elements from the test set, and for nearly 90% of the out-
liers. However, the provided error intervals for inputs leading to very large ef errors are underestimated.
Finally, similarly to the qualitative one, the quantitative method cannot account for a handful of points
presenting large ef values in conjunction with small es values.

5.10 Conclusion

A twin-AE architecture for 2-D incompressible laminar flow prediction with embedded uncertainty es-
timation was presented. The underlying motivation was to propose a method to naturally incorporate
outlier detection and uncertainty estimation in the training procedure, in order to provide a decisional
tool to the potential end-user. The embedded uncertainty estimation relies on the coupling of the au-
toencoder for flow prediction with a second autoencoder for input reconstruction, using well-chosen
skip connections. Doing so naturally enforces a quasi-linear relation between the flow prediction error
and the input reconstruction error. Building on this particular trait, simple yet effective qualitative and
quantitative techniques were proposed to detect outliers and provide uncertainty prediction on any input
provided to the trained network.
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The proposed architecture was trained on a data set of 12, 000 laminar flows around random 2-
D shapes, generated using Bezier curves. After hyper-parameter selection, the correlation coefficient
between the reconstruction error and flow prediction error reached 0.95 on the test set. The two meth-
ods were then tested on true outliers presenting different flaws (polygonal shapes that did not belong to
the data set, shapes from the data set misplaced in the input domain, shapes significantly larger than those
of the data set), and proved efficient to either reject shapes with high flow prediction errors, or provide
adequate uncertainty range. Still, a handful of outliers remained undetected, or their associated uncer-
tainty range was under-estimated. Possible improvements could be brought to these methods, either by
improving the network architecture to improve the flow error/reconstruction error correlation level, or
by gaining more control on the data set generation, in order to avoid the inclusion of possible outliers.

These results underline the potential of the proposed approach. Indeed, the implementation of such
methods in prediction tasks can significantly lower the risk of the end-user taking decisions based on
network predictions using inadequate inputs. Efforts shall be pursued for more accurate input recon-
struction. From the experiments on U-Dual-AE, low-level features from its encoder bring great benefits
to flow prediction. If the shape decoder of twin-AE provides equivalently beneficial features, we expect
an improved flow prediction while keeping the strong correlation between its twin decoders.
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6
Graph convolutional
neural networks for

fast laminar flow
prediction

Résumé

Au cours des dernières années, le domaine de la prédiction d’éoulements rapide a été largement dom-
iné par les réseaux de neurones convolutifs basés sur des pixels. Pourtant, l’avènement récent des réseaux
de neurones convolutifs sur graphes (GCNN) a attiré une attention considérable dans la communauté
de la dynamique des fluides numérique. Dans cette contribution, nous proposons une structure GCNN
comme modèle subrogé pour la prédiction d’écoulement laminaire autour d’obstacles bidimensionnels.
Contrairement à la convolution traditionnelle sur les images, la convolution sur graphe peut être directe-
ment appliquée sur des maillages triangulaires ajustés à la géométrie, ce qui permet un couplage facile
avec les solveurs CFD. Le modèle GCNN proposé est calibré sur un ensemble de données composé de
flux laminaires calculés par CFD autour de 2, 000 formes 2-D aléatoires. Les niveaux de précision sont
évalués sur des champs de vitesse et de pression reconstruits autour d’obstacles hors entraînement, et
sont comparés à ceux des architectures U-net, en particulier dans la zone de la couche limite.

71



6.1 Introduction

The use of convolution in neural networks was originally proposed in the context of image processing
[LB+95]. In practice, CNNs can be used to extract local features from grid-based data (including im-
ages) by sliding trainable kernels over an input image and performing convolution at each pixel. Yet,
when exploiting CNNs in the context of flow predictions, the use of uniform cartesian grids can become a
hindrance, due to their poor intrinsic geometrical representation and large associated computational cost.
As is seen in previous chapters, CNNs can perform well on flow prediction tasks, but present issues in
obstacle reconstruction and boundary layer accuracy. For external and wall-bounded flows, body-fitted
or unstructured meshes are usually adopted, in order to respect the geometric characteristics and to ac-
curately capture the physics of the boundary layer. When coupled to CNN-based neural network models,
CFD data has to be interpolated from the mesh representation to ad-hoc cartesian grids, before being
projected back on the mesh, thus leading to precision loss and extended computational load. In [GSW21],
Gao et al. exploit elliptic coordinate transformation to map from the irregular physical domain to a regu-
lar reference domain. This coordinate transformation allows the authors to use a physics-informed CNN
to solve partial differential equations in the reference domain, the physical solution in the irregular do-
main being obtained through an inverse transformation. Compared to fully-connected physics-informed
neural networks, the proposed method converges faster and reaches a better accuracy.

A possible alternative consists in designing efficient convolution operations on graph structures, and
to apply them directly on unstructured meshes. Extending convolutional neural networks to graphs is of
great interest, as many CFD solvers are based on finite element/volume methods, which use unstructured
meshes for discretization. In this regard, the design and use of trained graph neural network models can
significantly enrich CFD workflows by being used for specific tasks during the resolution process, while
still relying on the standard CFD mesh.

Generally speaking, a graph G(V,E) is composed of a set of nodes V and a set of edges E, rep-
resenting the connectivity of nodes. A node-level/edge-level feature vector represents the state of each
node/edge. The goal of a graph convolution operation is to update the feature vectors through aggreg-
ating neighboring information. Two types of graph convolution are to be distinguished, namely spectral
convolutions, and spatial convolutions. By means of graph Fourier transform, spectral convolution turns
convolution into product between the entire graph’s feature matrix and the convolutional kernel [KW17].
In [DABPEK20], the authors combine differentiable PDE solvers and graph convolutional networks (GCN)
to performflowprediction around 2-D airfoils. An initial flowfield is first obtained byCFD simulation on a
coarse mesh, and is then passed to a GCN for a prediction on a refined mesh. This hybrid method provides
better results than coarse CFD simulation alone, and is significantly less computationally-intensive than
running a full CFD simulation on a refined mesh. However, spectral convolution techniques are based
on a global Fourier transform of the entire graph, and therefore require a fixed graph structure. Hence,
spectral convolution has thus limited application in real-world CFD sceneries, and are de facto excluded
from contexts including mesh adaptation.

Spatial convolution is more similar to traditional convolution on cartesian data: a convolution ker-
nel operates locally on the node and its neighbours, the kernel parameters being re-used across the en-
tire mesh. A popular implementation of this concept is the message-passing neural network (MPNN),
proposed by Gilmer et al. for quantum chemistry [GSR+17], which was presented in section 2.2.4. In
[OMHF20], a variant of MPNN, called GraphSAGE [HYL17], is applied to drag force prediction from
given laminar velocity field around airfoils. On a dataset with 1550 different airfoils and 21 angles of
attack, the graph convolution model displays better performance than other machine learning methods.
Battaglia et al. [BHB+18] propose an alternative method, called graph network (GN) blocks, for general
multiple-step graph convolution. A GN block first passes messages from nodes to edges through an edge
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convolution kernel, before updating the edge features. The new edge features are then aggregated to
the nodes, through sum or other permutation invariant operations, as the edge messages. A node con-
volution kernel then takes the old node features and edges messages to obtain the new node features.
In [SGGP+20], the authors use graph networks-based simulators to learn physical systems of particles,
including fluids, rigid solids and deformable materials. The proposed method shows high performance
in reconstructing the results of mesh-free solvers. Pfaff et al. [PFSGB21] apply graph networks to mesh-
based simulations, including incompressible flow around cylinders and compressible flow around airfoils.
The proposed neural network is trained to be an accurate incremental simulator, with capability in ad-
apting the mesh. This method also generalizes well to mesh shapes and mesh sizes which are not present
in the training set. A slightly different spatial convolution considers parameterized weight functions to
aggregate the neighbouring information [MBM+17]. The features and relative position of each node pair
are used to compute an edge weight through some trainable weight function, and a single weight func-
tion is applied to the entire graph inside one convolution. Since the weight function depends on node
features, different aggregation patterns would be obtained at different locations of the graph. Xu et al.
[XSSZ21] applied this method to adjoint vector modelling for 2-D flow around airfoils. The proposed
weight function depends on the edge length and its angle to flow’s principle direction. By training a
graph convolutional neural network with such weight functions, the authors get similar adjoint vectors
to traditional adjoint methods. The predicted adjoint vectors are further used for shape optimization,
with resulting shapes being very close to that obtained with direct adjoint methods.

In this chapter, a graph convolutional neural network (hereafter denoted by GCNN) is implemented
for laminar flow prediction around random 2-D shapes on triangular meshes. In section 6.2 the data set
used in this chapter is presented. In section 6.3, insights about the convolution block and graph neural
network architecture are provided. The training details and a global evaluation of the model are provided
in section 6.4. In section 6.4.2 and 6.4.3, the flow predictions around a cylinder and an airfoil are compared
to baseline CFD results. In particular, the velocity profiles and surface pressure distribution are carefully
studied. In order to further show the potential of ourmethod, drag forces are computed from the boundary
layer information, and compared to the CFD results in section 6.4.4. After that, a hyper-parameter study
is presented in section 6.5 to show the importance of GCNN’s architecture design. Then the proposed
GCNN approach is compared with the U-net approach in terms of accuracy and computational cost in
section 6.6. Finally in section 6.7, as a proof-of-concept of the physics-informed approach, a physics-
informed GCNN is trained to predict the flow around the cylinder in an unsupervised approach. The
chapter is concluded in section 6.8, and several future possible developments are given.

6.2 Dataset

The data set of 2, 000 random shapes used in section 4.1 is employed again for the graph convolutional
neural networks. As we are mainly concerned with the flow patterns near the obstacles, a small domain
containing the obstacle is used for the neural networks’s inference task, given that a converged triangular
mesh such as that presented in figure 3.5b can have more than 30.000 nodes. For each shape, a body-
fitted triangular mesh is generated for the domain [−2, 2]m × [−2, 2]m. The mesh size is 0.01m on the
obstacle’s surface, which is the same as the immersed meshes used for CFD simulation. The element size
grows to 0.4m at the border of the domain. Depending on the complexity of the shapes, the number of
nodes varies from 2, 000 to 4, 000. The velocity and pressure fields from CFD simulations are projected
onto these meshes through linear interpolation (see figure 6.1). For the learning phase, normalization and
non-dimensionalization over the entire data set are also applied, mapping separately the two coordinates
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Figure 6.1 | Triangular mesh, velocity field and pressure field for a dataset element. Body-fitted triangular meshes in a
smaller domain (6.1a) are used for training the neural network, along with the interpolated velocity field (6.1b, 6.1c) and pressure
field (6.1d).

components, the two velocity components and the pressure into the [0, 1] range. The whole data set is
split into a training set with 1600 shapes, a validation set and a test set both with 200 shapes.

6.3 Network architecture

6.3.1 Convolution block

The basic component of the graph convolutional neural network is the convolution block. Here, the
proposed convolution block has two components: a two-step graph convolutional layer adapted from
the literature [BHB+18, SGGP+20, PFSGB21], followed by a two-step smoothing layer. In this section,
the feature matrices on the nodes and the edges are respectively denoted by XV ∈ RNV ×dV and XE ∈
RNE×dE , withNV andNE being the number of nodes and edges. dV and dE are the dimensions of feature
vectors on nodes and edges, which are denoted by xv ∈ RdV and xe ∈ RdE .

Convolutional layer The convolutional layer propagates node-level messages to edges, then aggreg-
ates the new edge features and updates the node features according to the following rules:

x′e = fe
(
xv1 + xv2

2
,
|xv1 − xv2 |

2
,xe
)
,

x′v = fv


xv,

∑

ei∈N(v)

x′ei


 ,

(6.1)

where v1 and v2 are the two nodes connected by edge e, andN(v) is the set of neighbouring edges around
node v. For both convolution kernels fe and fv , a fully-connected feedforward neural network with one

74



Figure 6.2 | Fully-connected feedforward neural network used as convolution kernel. The vectors on the right hand
side in equation (6.1) are concatenated as the inputs of the convolution kernel. In edge convolution, the input dimension is
2dV + dE , while in node convolution, the input dimension is dV + d′E . The number of hidden nodes is always 128.

hidden layer is used (see figure 6.2), the number of neurons in the hidden layer being set to 128. The
number of neurons in the output layer remains modifiable, so the output dimension of the kernel can be
customized.

During the edge convolution step, symmetric node features xv1+xv2
2 and |xv1−xv2 |

2 are preferred over
the raw features xv1 and xv2 in order to preserve permutation invariance. The summation in the node
convolution step is also invariant to permutation of neighbouring edges. As a consequence, the proposed
convolution steps (6.1) are insensitive to nodes and edges indexing.

Smoothing layer The smoothing layer perform an average operation on the output graph. The aver-
aging kernel implemented on triangular meshes is divided into two steps:

x′′e =
x′v1 + x′v2

2
,

x′′v =
1

card(N(v))

∑

ei∈N(v)

x′′ei
(6.2)

The smoothing layer is technically also a convolutional layer. The motivation of adding this layer is
not for message propagation, but to reduce the spatial variability of the node features. It weighs down the
feature map of a convolutional layer through neighbouring compensation. A sequence of convolution-
smoothing blocks can hence regularize the output of the networks to reduce the number of local minima
of the loss function. The smoothing layer is beneficial to further reducing the training loss and producing
continuous flow fields. A similar idea is found in the regularized pooling operation used for convolutional
layers on images [OHZU20]. The final output of a convolution block is the new edge feature matrix
X′
E ∈ RNE×d′E and the smoothed new node feature matrix X′′

V ∈ RNV ×d′V .
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6.3.2 Network architecture

The proposed GCNN architecture is presented in figure 6.3. As can be seen, the node input is com-
posed of three graphs respectively representing (i) the obstacle boundary, (ii) the x coordinates and
(iii) the y coordinates, while the average of the node pairs of each edge is regarded as the edge input.
Eight convolution-smoothing blocks are stacked to form the graph convolutional neural network, fol-
lowed by a 1 × 1 convolution as the output layer. Unless stated otherwise, the intermediate edge and
node features dimensions in each graph convolution layer are respectively (4, 8, 16, 32, 64, 64, 32, 16)
and (8, 16, 32, 64, 64, 32, 16, 8), as indicated in parenthesis in the graph convolution layers of figure 6.3
(a study of the impact of the features dimensions can be found in section 6.6). The final 1 × 1 convolu-
tional layer transforms node features inR8 into vectors inR3, which represent the predicted velocity and
pressure. This symmetric architecture is similar to the encoder-decoder structure used in the U-nets and
twin-decoder architectures (see sections 4.1.2 and 5.3).

An important component of the proposed architecture is the use of skip connections from the input
graph to the convolutional blocks. The coordinates of the nodes are concatenated to the node features
after each smoothing layer. These skip connections provide spatial informations to the edge convolution
steps in equation (6.1). The edge convolution hence takes into account the position of the edge center
and relative position of the node pairs, allowing the convolution kernel to display different patterns at
different locations in the domain.
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Figure 6.3 | Proposed network architecture. The provided input is composed of three graphs respectively representing (i)
the obstacle boundary, (ii) the x coordinates and (iii) the y coordinates. The network has an encoder-decoder structure: in the
encoder, the amount of features is doubled after each smoothing step, while in the decoder, it is halved after each smoothing step.
For each graph convolution layer, the number of edge and node features are indicated in parenthesis. The network is terminated
with a 1× 1 convolutional layer to obtain the three-channel output layer, holding respectively the u and v components of the
velocity, and the pressure field p. The skip connections allow to inject coordinate informations from the input layer at each edge
convolution step of the architecture.
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6.4 Training and evaluation

The presented architecture in section 6.3.2 is trained against the dataset described earlier, and evalu-
ated by various standards. Yet, due to their major outcome on the final performance of the model, some
hyper-parameters deserve further study. Hence, the impact of the choice of activation function, the pres-
ence of smoothing layer, the number of convolution-smoothing blocks and the number of hidden nodes
in the convolutional kernel are studied separately in section 6.5. For now, the results of the following
section represent a proof of concept of the graph convolutional neural networks as surrogate models in
computational fluid dynamics.

6.4.1 Training history

With architecture described in section 6.3.2, the proposed network has 217, 853 trainable parameters,
which are calibrated by minimizing an objective function defined on the predicted and the reference flow
fields. The mean absolute error (MAE) is adopted as the loss function, and is defined as:

L =
1

3NV

NV∑

i=1

(∣∣∣upredi − urefi

∣∣∣+
∣∣∣vpredi − vrefi

∣∣∣+
∣∣∣ppredi − prefi

∣∣∣
)
,

with the considered fields being normalized to [0, 1], as stated earlier. An in-house TensorFlow imple-
mentation is used for the network architecture and training. The convolutional kernels all have 128
hidden neurons, and use the swish function [RZL18] as nonlinear activation:

σ(x) =
x

1 + e−x
(6.3)

which will be compared with ReLU in later sections. The weights and bias of the kernels are initialized
using the Glorot-normal method. The network is trained using the Adam optimizer for at most 1, 000
epochs, with mini-batches of size 64 to limit the required computational resources. Here one mini-batch
is a large graph containing 64 disjoint subgraphs, which is different from the mini-batch constitution in
CNNs. Since the graphs have different number of nodes, they cannot be simply stacked to form a new
axis like images. The learning rate follows a pre-defined epoch-wise decay schedule described as:

ler =
l0r

1 + γe
, (6.4)

where ler is the learning rate used during epoch number e, and γ is the decay rate. In the experiments,
both the initial learning rate and the decay rate were set equal to 0.002. To prevent overfitting, an early
stopping criterion is applied: the training is terminated if the average MAE on the validation set is not
improved in 60 epochs.

The network is trained 5 timeswith different random initializations. In the best case, after 914 training
epochs, the training and validation losses converge respectively to 7.43 × 10−3 and 7.61 × 10−3, while
the MAE over the test set amounts to 7.70× 10−3, as shown in figure 6.4. The proposed model requires
approximately 11.96 seconds per epoch on a Tesla V100 GPU card, while it takes only 14 seconds to
predict the flow fields around the 200 obstacles in the test set. From the MAE distribution over the test
set, shown in figure 6.5, it appears that most elements in the test set are accurately predicted, with a
limited amount of shapes exceeding a MAE level of 0.01. This underlines the capabilities of the model to
generalize on out-of-training data.
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Figure 6.4 | Training history of the model. In fewer than 1, 000 training epochs, the training loss and validation converge.
No obvious overfitting is observed.
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Figure 6.5 | Distribution of the MAE over the test set. The test set contains 200 random Bézier shapes. Only 13% of the
shapes present a MAE value larger than 0.01.
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6.4.2 Flow prediction around a cylinder

To test the trained GCNNmodel on an out-of-training input, we consider the velocity and pressure predic-
tions performed on a 2-D cylinder with radius 0.75m placed at the origin, and embedded in a body-fitted
triangular mesh with 2, 447 nodes, with a 0.01m mesh size on the cylinder. The MAE of the predicted
velocity and pressure fields is 4.3× 10−3, which can be explained by the geometric characteristic of the
cylinder being close to that of the Bézier shapes from the training set. In figure 6.6, we observe almost
symmetric fields with respect to the x−axis for both the velocity and the pressure. Although the shapes
in the training set are not necessarily symmetric, the trained GCNN is is able to reconstruct a symmetric
flow around a cylinder. The velocity profiles and surface pressure distribution displayed in figure 6.7
further confirm the symmetric predictions around a cylinder.

(a) u, reference (b) u, predicted

−0.02

0.667

1.355

(c) u, absolute error

0
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0.063

(d) v, reference (e) v, predicted
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0

0.556

(f) v, absolute error

0
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0.056

(g) p, reference (h) p, predicted
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0.181

1.013

(i) p, absolute error

0

0.072

0.143

Figure 6.6 | Flow and shape predictions around a cylinder using a GCNN model. The normalized velocity and pressure
fields outputted by the network are rescaled to their physical ranges and non-dimensionalized for better demonstration. The
reference (6.6a, 6.6d, 6.6g) and predicted fields (6.6b, 6.6e, 6.6h) are very close, with no specific pattern in the MAE maps (6.6c,
6.6f, 6.6i).

6.4.3 Flow prediction around a NACA12 airfoil

The NACA airfoils from the UIUC database are among the most studied geometries in the CFD com-
munity. In the context of this contribution, the prediction on airfoils is regarded as good test of the
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Figure 6.7 | Velocity and pressure profiles around the cylinder. The velocities are recorded at x = −1 (6.7a, 6.7c) and x = 1
(6.7b, 6.7d), and display the expected symmetry with respect to the x axis. The pressure is recorded on the lower (6.7e) and upper
surfaces (6.7f) of the cylinder. The wiggles in the referential pressure profiles are caused by obstacle boundary resolution by the
immersed boundary method, which employs an element size equal to 0.01m. These numerical artefacts could be reduced using
smaller boundary elements, although we find they do not impact the neural networks training.
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model generalization capabilities on out-of-training shapes, as their geometry is very different from that
of Bézier random shapes. The demonstrated airfoil is NACA12, with an angle of attack equal to 4◦ and
a chord length equals to 1m. The airfoil is embedded into a triangular mesh made of 1489 nodes. The
referential flow fields are from a CFD resolution with the same configurations as the Bézier shapes and
the cylinder. The MAE of the predicted fields obtained from the GCNN model is 1.04 × 10−2, which is
similar to the worst prediction levels observed in the test set. Yet, the predicted fields presented in figure
6.8 display reasonable physical features. Although the model overestimates the velocity magnitude, it
successfully detects the locations where the vertical velocity changes sign or attains local minimum and
maximum, as can be further observed in the plots of figure 6.9. More, the surface pressure distribution is
recovered by themodel, althoughwith an underestimated pressuremagnitude on the leading edge and the
trailing edge. The incorrect velocity and pressure magnitude both result from the dissimilarity between
flow around the airfoil and flow around the Bézier shapes in the training set. Since the GCNN model in
this contribution is trained under the supervised learning framework, it should be conservatively applied
to geometries that are not too different from that of the training dataset.

(a) u, reference (b) u, predicted

0

0.593

1.185

(c) u, absolute error

0

0.054

0.107

(d) v, reference (e) v, predicted

−0.261

0.032

0.325

(f) v, absolute error

0

0.032

0.064

(g) p, reference (h) p, predicted

−0.624

0.476

1.576

(i) p, absolute error

0

0.18

0.359

Figure 6.8 | Flow predictions on a NACA12 airfoil using a GCNN model. Although the field amplitudes are not correctly
evaluated, the velocity (6.8a, 6.8b, 6.8c, 6.8d, 6.8e, 6.8f) and pressure maps (6.8g, 6.8h, 6.8i) display reasonably physical features,
such as sign changes in the vertical velocity or localized high pressure area.
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Figure 6.9 | Velocity and pressure profiles around the NACA12 airfoil. The velocities are recorded at x = −1 (6.9a,
6.9c) and x = 1 (6.9b, 6.9d), and display significant errors around the trailing edge. With significant discrepancy of velocity
magnitude, the physical pattern of the velocity profiles is still well recovered. The pressure is recorded on the lower (6.9e) and
upper surfaces (6.9f) of the airfoil, with remarkable error at the leading and trailing edges.
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6.4.4 Drag force prediction

In this section, the accuracy of the drag force prediction is used as a measure of the quality of the pre-
dicted boundary layer. The drag force at Re= 10 is obtained by integrating the edge-wise contribution of
pressure and viscous force on the obstacle, as shown in equation (6.5).

FD = ex ·
˛
S
(p · n+ µ

∂vs
∂s

) ds, (6.5)

with ex being the unit vector in the x-direction, n and s repectively the inward- and outward-pointing
unit normal vectors, and ∂vs

∂s is the normal gradient of the tangent velocity. The drag forces computed
on the 200 shapes of the test set are compared with their reference drag values in figure 6.10. Overall, a
good agreement is observed, with an average relative error of 3.43%, and a coefficient of determination
equal to 0.987, which is in line with the results of the GraphSage method [OMHF20]. It must be noted
that, in the literature, neural networks are usually directly trained on adequate databases to predict drag
or lift coefficients. With the drag force computed by reconstructed flow fields on triangular meshes, it is
possible to apply the GCNN model to shape optimization in future works.

1 2 3 4

1

2

3

4

reference drag

pr
ed
ic
te
d
dr
ag

Test set
Cylinder
NACA

Figure 6.10 | Drag force computed from the boundary layer reconstruction obtained with the graph neural network.
The included data contains the 200 Bézier shapes from the test set, along with the cylinder and the NACA0012 airfoil considered
in the previous sections. Excellent agreement is observed on most shapes from the test set, with an average relative error of
3.43%. While the cylinder drag is accurately computed, the airfoil drag is off by 26.1% from its reference value.
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6.5 Hyper-parameter study

6.5.1 Smoothing layers

To evaluate the advantages of smoothing the outputs of each convolutional layer, an architecture without
smoothing layers is trained for comparison. Its architecture is the same as figure 6.3, except that all
the smoothing layers are removed. All the training settings remain unchanged, with the network being
trained 5 times with different initializations. Themodel with smallest validation loss is trained 846 epochs
before early stopping, as is shown in figure 6.11a. The validation loss reaches 8.93 × 10−3 at the end of
training, while the averaged MAE reads 9.18 × 10−3 on the test set. This compares with the reference
model (including smoothing layer), which was trained for 914 epochs, resulting in a test loss equal to
7.70×10−3. Therefore, the smoothing layers brings a 15.8% reduction of the prediction error on the test
set. In terms of training time, the model without smoothing layers requires 8.5 seconds for training one
epoch, leading to 1.99 hours training time. The model with smoothing layers took 3.04 hours, due to the
supplementary matrix arithmetics from the smoothing operation (see equation (6.2)).
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Figure 6.11 | Training history of themodels without smoothing layers (6.11a) and using ReLU activation (6.11b). Both
models show inferior performance than the referential model.

6.5.2 Activation function

The swish function is compared to the ReLU activation function when using the same architecture as fig-
ure 6.3. The training ends after 701 epochs, taking 1.94 hours on the Tesla V100 GPU card (10.12 seconds
per epoch). From ReLu-model’s training history, we see the convergence slower than the swish-model.
The averageMAE on the validation and the test sets are respectively equal to 8.57×10−3 and 8.67×10−3.
Under the same training configurations, the accuracy of the swish-model is 11.2% higher. Therefore, the
swish function represents a better choice than the ReLU one in the proposed graph convolutional neural
network. The underlying mechanism of the swish function is explained in the original paper [RZL18]:
both swish and ReLU are unbounded to avoid near-zero gradients during back-propagation, but the swish
function is smoother than ReLU and non-monotonic: the smoothness of swish function leads to a smooth
error landscape, which may make the minimum search easier; being non-monotonic means the pres-
ence of negative derivatives and richer gradient information than the ReLu activation, which is helpful
to gradient-based optimization.
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6.5.3 Multilayer perceptron

Since the convolutional kernel described in figure 6.2 consists in a multilayer perceptron with one hidden
layer, the number of hidden and output nodes both condition its complexity. In this section, the impact
of the width of the hidden layer is evaluated. As a recall, the reference model holds 217, 853 trainable
parameters, using MLPs with 128 nodes in the hidden layer. Two other configurations are considered,
with MLPs comprised of 32 and 64 nodes respectively, leading to two GCNN architectures with 54, 845
and 109, 181 trainable parameters. The performance of the three models are compared in table 6.1.

Table 6.1 | Model performance of different convolutional kernels. The comparison is based on the average MAE on the
test set.

Trainable parameters Training time (hour) Test MAE

32 54,845 1.88 8.46× 10−3

64 109, 181 2.39 7.79× 10−3

128 217, 853 3.04 7.70× 10−3

As can be observed, increasing the number of hidden nodes improves the GCNN’s performance, while
also requiring a longer training time. It is observed that using 64 hidden nodes in the MLPs represents a
good balance. It must also be underlined that the GCNN still reaches a remarkable performance level with
as little as 105 trainable parameters. As a reminder, the U-net architecture could easily reach millions of
parameters while still displaying large discrepancies near the solid interface. For these reasons, GCNN
architectures represent a promising machine learning approach in the context of CFD scenarios. In the
following section, GCNNs’ performances are compared with that of U-net architectures on similar tasks.
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6.6 Comparison with U-nets

U-nets are a popular neural network architecture for end-to-end image prediction, whose performance in
the context of flow prediction was evaluated in previous sections. By design, U-nets require grid-based
data, such as images. As a consequence, flowfields aswell as obstacle boundaries need to be projected onto
a regular cartesian grid, implying geometric inaccuracies and higher data storage requirements. In this
section, U-nets are quantitatively compared with GCNNs on flow prediction tasks. The U-net architecture
is configured as described in section 4.1.2, being symmetric and scalable through a modification of the
number of kernels in the first block, the latter being fixed at 5. The relation between the number of
filters and the number of trainable parameters is shown in table 6.2. Similarly, in a GCNN, one can
modify the node feature dimension of the first convolutional block while proportionally changing the
other intermediate feature dimensions.

1st layer Parameters

7 1, 489, 162

8 1, 944, 763

9 2, 461, 080

10 3, 038, 113

(a) U-net

1st layer Parameters

2 61, 190

4 113, 411

6 165, 632

8 217, 853

(b) GCNN

Table 6.2 | Trainable parameters of U-nets and GCNNs. For simplification, both architectures use symmetric and scalable
configurations. Hence, their complexity can be represented by the number of convolutional filters or node feature’s dimension
in the 1st convolutional layer.

In figure 6.12, a sample prediction obtained by the proof-of-concept GCNNmodel described in section
6.4.1 is presented. As can be observed, the prediction not only presents smaller error levels, but also
displays good performance in the boundary layer region, which was not the case of U-net predictions
(see figure 4.6). More, the presence of the obstacle is naturally accounted for by the GCNN approach,
contrarily to the U-net approach. To perform a fair quantitative comparison with GCNN prediction, the
results obtained with the U-net model are interpolated on the triangular meshes. The average MAE on
the test set is used for comparison, and is displayed in figure 6.13a as a function of the number of trainable
parameters, both for GCNN andU-net. As can be observed, the GCNN requires fewer trainable parameters
than the U-net (approximately 1 order of magnitude) to reach a similar accuracy, highlighting the cost-
efficient of GCNN in field reconstruction compared to grid-based techniques. Indeed, the GCNN is able
to exploit local grid refinement or coarsening to save degrees of freedom, which is a central strength of
finite-element and finite-volume CFD methods. It is also worth mentioning that the number of kernels
in the first convolutional layer has a positive impact on the U-net’s accuracy evaluated on triangular
meshes, while it does not change the MAE evaluated on the cartesian grids (see figure 4.7b). We can thus
conclude that using more kernels makes the U-nets more aware of the discontinuity at the solid interface.
In terms of memory consumption, the GCNN requires 1.05GB to import the data set (including the nodes
coordinates and connectivity, and the velocity and pressure fields), which must be compared to the 13.5
GB required by the U-net architecture for the same task. Hence, the data used for GCNN is more likely
to fit into standard GPU cards.

Yet, the main observed drawback of GCNNs is the larger training time required to reached a con-
verged model. Compared to a traditional convolution, the 4−step graph convolutional block presented in
equations (6.1) and (6.2) requires heavy matrix operations, which significantly increases the time required
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Figure 6.12 | Flow predictions on a Bézier shape from the test set using a GCNN model. The horizontal velocity (6.12a,
6.12b, 6.12c), vertical velocity (6.12d, 6.12e, 6.12f) and pressure fields (6.12g, 6.12h, 6.12i) display similar error levels. The con-
cerned GCNN has 217, 853 trainable parameters in total. The maximum absolute error is much smaller than the U-net method,
with no specific pattern displayed in the error maps.

87



105 106 107
0.5

1

1.5

2

2.5

·10−2

Trainable parameters

M
A
E

U-net
GCNN

(a) MAE on the test set.

105 106 107

1

2

3

Trainable parameters

H
ou

rs
fo
rt
ra
in
in
g

(b) Total training time.

105 106 107
5

10

15

20

25

Trainable parameters

M
em

or
y
us
ag
e
(G
B)

(c) Required memory for gradient backpropagation.

105 106 107
8

10

12

14

16

18

Trainable parameters

Se
co
nd

sp
er

tr
ai
ni
ng

ep
oc
h

(d) Training time per epoch.

Figure 6.13 | Performance comparison between U-net and GCNN in terms of test set MAE (6.13a), total training time
(6.13b), memory usage (6.13c) and per-epoch training time (6.13d). As can be seen, GCNNs require much fewer parameters to
reach the same accuracy of U-nets. However, training GCNNs requires more memory to perform gradient backpropagation and
is more time-consuming considering their smaller model size.

for a forward network pass. In order to implement automatic differentiation, the generated intermediate
variables are not deleted from the memory until one whole back-propagation of the gradients in all the
blocks is finished. The required memory to store the intermediate variables are compared in 6.13c when
batch size is 64. In spite of the small input data size, GCNNs still require a large amount of memory for
the intermediate variables in the training process. The limitation of memory thus does not support using
large batch size, which also slows the training. In figure 6.13b and 6.13d, the training time of both meth-
ods are compared when batch size is 64. Considering the input size as well as the network’s complexity,
training GCNNs is more expensive than training U-nets. However, as a newer method than traditional
CNNs, there is a lot of room for accelerating the training process.
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6.7 Physics-informed graph convolutional neural networks

In the previous sections, the GCNN method has been used to produce surrogate models respecting geo-
metry constraints. To make neural networks aware of physical constraints, this section slightly explores
the recent domain of physics-informed neural networks, and this is an opening to future research topics.

6.7.1 Physics-informed neural networks

As was shown in the flow prediction around the NACA airfoil, the trained GCNN model overestimates
the velocity magnitude and underestimates the pressure, due to the different geometry characteristics
between the airfoil and the Bézier shapes. To improve the model’s performance on a geometry lying
outside of the boundary of the training set, one should avoid over-fitting in the training stage, which
may be realized by adding the l1 or l2 regularization term as part of the loss function. However, the
regularization rate (see equation (2.13)) remains to be tuned by the user, and it must be dependent on the
validation and test set, making the calibrated model biased to the available data. On the other hand, using
a larger training data set with more variability can lead to a performant model on a broader range of data,
but data preparation and training time also scales linearly with the size of the data set. More, this method
still does not jump out of the framework of data fitting, so the obtained model will fail somewhere and
even give predictions violating physical common sense.

One alternative to ensure the physical consistency of NN-based surrogate models is the so called
physics-informed neural networks (PINN). This approach embeds physical laws described by partial dif-
ferential equations into the training stage, so that the model prediction approximately satisfies the phys-
ical constraints [KKL+21]. Given a spatial-temporal process constrained by the parametrized nonlinear
PDE:

∂tv(t,x) + F(v;λ) = 0, x ∈ Ω, t ∈ [0, T ] (6.6)

where F is a nonlinear operator parametrized by λ, there exists three scenarios to embed the constraints
of equations (6.6) in the training stage.

⋄ Proposed by Raissi et al. [RPK19], the solution v(x, t) is predicted by a neural network, whose
weights and bias are calibrated through minimizing an objective function based on the deviation
to the initial conditions, the boundary conditions and the concerned equations:

L =
1

NI/BC

NI/BC∑

i=1

∣∣v(tiv,xiv)− vi
∣∣2 + 1

NF

NF∑

i=1

∣∣∂tv(tiF ,xiF ) + F(v(tiF ,xiF );λ)
∣∣2 (6.7)

Here, {(tiv,xiv, vi)}
NI/BC

i=1 are a set of initial and boundary values, and {(tiF ,xiF )}
Nf

i=1 are a set of
points where the PDE constraint ∂tv(t,x)+F(v;λ) = 0 is enforced. This approach belongs to the
unsupervised framework, i.e. it does not require the preparation of a data set, and the trained model
can not generalize to the problems with new initial/boundary conditions. However, available ob-
servation inside the domain Ω can be included to enhance the training, as is the case of [CWF+21],
where 3D flow fields over heated liquid are recoverd from some experimental measurements and
known physical equations. Still, this approach is different from the surrogate modeling presented
in previous chapters, because our meta models are calibrated on a data set with much variability,
and is expected to generalize well on new prediction tasks. Instead, it is more like a novel type of
PDE solver, whose convergence and computational cost deserve more studies [MMOH20].
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⋄ In the framework of supervised learning, the residuals of PDEs are added to the fitting error as a
regularization term, leading to a loss function in the form of:

l = ||vpred − vtrue||2l2 + λ1||∂tvpred(t,x) + F(vpred;λ)||2l2 + λ2lI/BC , (6.8)

with lI/BC being the deviation to the initial and boundary conditions, and (λ1, λ2) being the
regularization rate. The data set is composed of many solutions v obtained from different ini-
tial and boundary conditions, and the objective function used to train the neural network is the
average of the loss function over the data set, making this method an improved version of the
those already presented in the manuscript. As is already mentioned in section 2.4, Nabian et al.
[NM20] showed the advantage of using physics-driven regularization terms by adding the residual
of zero-divergence condition of the velocity to the velocity prediction error. In some literatures
[ZLS20, GW20], this hybrid training strategy is also called ‘physics-guided data-driven modeling’.

⋄ The third method employs a ‘weakly-supervised learning’ strategy. It is different from the unsu-
pervised one, as it is able to generalize to new prediction tasks; it is however not a pure supervised
approach, as no ground-truth need to be prepared for the training process. Instead, a set of inputs
are randomly generated, after what the training is realized through minizing the batch-wise phys-
ical loss. In [SFG+18], Sharma et al. obtained a CNN-based model mapping the boundary condition
to the solution of the Laplacian equation on a square domain, making the CNN a solver to this
boundary value problem. Similarly, Wandel et al. [NWK20, WWK21] trained CNNs to map the
fluid state at time t to the fluid state at time t+dt, which is realized by generating a pool of random
initial states, then minimizing the additioned residuals of the Navier-Stokes equations computed
by the pool of predicted fluid states at next time step, making the CNN aware of the evolution of
the dynamical system defined by Navier-Stokes equations.

6.7.2 Solving the Navier-Stokes equations by a physics-informed graph convolutional
neural network

As the last work of the manuscript, and an opening for future research topics this section aims at showing
the potential of physics-informed neural networks for the coupling of physics, numerics and machine
learning. Following the unsupervised framework proposed by Raissi et al. [RPK19], we use the GCNN
architecture presented in section 6.3 to recover the steady velocity and pressure fields around a 2-D
cylinder, which is discretized on a triangular mesh with N = 9, 294 nodes shown in figure 6.14.

The cylinder’s radius is 0.75m, with its center placed at the origin, and the boundary conditions being
the same as those imposed for the laminar flow resolution in section 3.2.1. Since we are going to obtain
the steady flow fields as the outputs of a GCNN, the concerned physical and boundary constraints are:





ρ v · ∇v−∇ · (2ηεεε(v)− pI) = 0 on Ω,

∇ · v = 0 on Ω,

Dirichlet(v, p) = 0 on ∂ΩD,

Neumann(v, p) = 0 on ∂ΩN ,

(6.9)

where no time derivative is present. To minimize the residuals of these constraints, the following optim-
ization problem is solved in the automatic differention environment of Tensorflow:

The input graph is the triangular mesh with the coordinates as its node features, which is transformed
by the GCNN to the velocity and pressure values. Right after the GCNN’s output layer, the Dirichlet
boundary conditions are imposed on the flow predictions, following a series of differentiable operations:

90



Figure 6.14 | A triangular mesh around a 2-D cylinder. In total there are 9, 294 nodes, with the element size near the solid
surface being 0.01m.

Input graph:(x, y) GCNN model Output graph:(v, p) Impose Dirichlet
boundary condition

Add the weighted
residuals of the
N-S and the

Neumann conditions

gradients back-propagation, limited-memory BFGS

Figure 6.15 | Theworkflow of physics-informed graph convolutional neural network. The GCNNmodel, the imposition
of Dirichlet boundary conditions, and the residual calculation are all differentiable operations, so that the gradients with repect
to the trainable parameters can be easily obtained in the automatic differentiation framework of Tensorflow. The gradients are
used by the limited-memory BFGS algorithm to update the network’s parameters.

u← u ∗ (1− 1in+solid) + u0 ∗ 1in,
v ← v ∗ (1− 1in+solid+top+bottom),

p← p ∗ (1− 1out),
(6.10)

where the identity fuction1 represents amask indicated by its subscripts. After the imposition of Dirichlet
boundary conditions, the flow fields are used to calculate the residuals of the NS equations as well as the
Neumann boundary conditions, with the required gradients (∇v,∇p) estimated by the average-based
method presented in equations (2.10,2.11). Finally, the loss value is a weighted sum of the node-wise
residuals, with the weight of each node determined by the local element size:

wi =

∑
e∈N (i) area(e)∑
j∈{1,2,...,N}wj

, for i ∈ {1, 2, ..., N}, (6.11)

where area(e) is the area of an element e in the neighbourhood of node i. The automatic differentiaton
setting allows to easily obtain the gradients with respect to the trainable parameters, which is used for
parameter update by a quasi-Newton optimization algorithm, named by
limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) [LN89, DLT+17, NW06]. For a differen-
tiable function l = f(θ), θ is updated at iteration k by:

θk+1 = θk − αkHk∇fk, (6.12)
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where αk is the step size chosen by a line search [Wol69, Wol71],Hk is the approximated inverse Hessian,
and∇fk is the gradient with repect to θ. Instead of inversing the Hessian matrix explicitly, which is too
expensive when θ is high-dimensional, the L-BFGS algorithm approximates Hk through a much less
memory-consuming approach. To do the approximation, the algorithm stores the lastm updates of three
iterative quantities:

sk = θk+1 − θk,

yk = ∇fk+1 −∇fk,
ρk = 1/(yTk sk),

after what these saved vectors are used to estimate Hk∇fk through the following process:
Algorithm 1: L-BFGS
1 q = ∇fk
2 for i = k − 1 to k −m do
3 αi ← ρisTi q
4 q← q− αiyi
5 endfor

6 initialize H0
k =

sTk−1yk−1

yTk−1yk−1
I

7 r = H0
kq

8 for i = k −m to k − 1 do
9 β ← ρiyTi r

10 r← r+ si(αi − β)

11 endfor
12 return Hk∇fk = r

As a true second-order optimization algorithm, L-BFGS has better convergence performance than the
ADAM optimizer used in previous chapters. It is an ideal option for the PI-GCNN solver, as the unsuper-
vised learning framework does not fit a huge data set, implying that enoughmemory space is available for
the implementation of automatic differentiation. Conversely, L-BFGS remains unrealistic for supervised
learning with huge data set and complex network architectures, for which first-order algorithms are the
proper choice.

6.7.3 The performance of PI-GCNNs

Following the workflow in figure 6.15, the physical loss is calculated by the non-dimensionalized flow
fields, and is minimized by the same GCNN architecture of section 6.3, with a total of 217, 341 parameters.
The weights are initalized by the Glorot normal method, and the optimization is stopped if ||∇fk+1 −
∇fk||l2 < 10−9 at iteration k, with a maximum of 300, 000 iterations.

On a NVIDIA Tesla V100 GPU card, the training takes 3.7 hours, leading to a final loss equal to
6.3×10−3. As is shown in the training curve of figure 6.16, the loss decreases fast during the first 50, 000
iterations, then reach a relatively flat level, although the loss value is continuously reduced. The CFD
results are used to compute a referential loss value, which is equal to 7.48× 10−3, thus a bit larger than
that of the GCNN’s outputs. In order to reach the same loss level as the CFD method, the GCNN should
be trained for about 1.58 hours. Still, the training time is much longer than the resolution time of the
CFD solver, which takes only 5 minutes on a single Intel Xeon 2.6 GHz core (see section 3.2.3 for more
details about the CFD resolution).
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Figure 6.16 | Training history of the pysics-informed GCNN. It takes about 1.58 hours to reduce the physical loss to the
same level of CFD results.

The predicted velocity and pressure fields are compared to the CFD results in figure 6.17. As is ob-
served, the prediction is of very high quality in terms of continuity and absolute error, making this work
a proof-of-concept of using GCNNs as an unsupervised ML solver for steady incompressible NS equa-
tions in the laminar regime. The application to more complex problems, like turbulent flow with more
important multiscale property, remains to be validated in the future. On the other hand, the physics-
driven regularized method combined with supervised learning is also promising, as it owns the hybrid
advantages of fast prediction and physical consistency.
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Figure 6.17 | Velocity and pressure resolved by a PI-GCNN. In the left column (6.17a, 6.17d, 6.17g) are resolved by a CFD
solver. In the center column, (6.17b, 6.17e, 6.17h) are resolved by the PI-GCNN. From the error maps in the right column, one
can confirm that the PI-GCNN’s results are on par with those of the traditional CFD solver.
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6.8 Conclusion for GCNNs

In this chapter, graph convolutional neural networks for 2-D incompressible laminar flow prediction were
introduced. Compared to traditional convolution neural networks, the graph basedmethodworks directly
on body-fitted triangular meshes, making it a method of choice for coupling with finite element numer-
ical simulations. The proposed convolution method preserves permutation invariance, and is therefore
insensitive to node and edge indexing. In the framework of supervised learning, the GCNN network was
trained on a dataset of 2, 000 laminar flows around random 2-D shapes, generated using Bézier curves,
resulting in an averaged MAE on the test set at 7.70×10−3, with no evidence of overfitting. The resulting
model was proved to efficiently reconstruct velocity and pressure fields around a cylinder, respecting the
symmetry induced by the input geometry. In particular, the predicted flow remained highly accurate even
in the boundary layer of the obstacle. The predicted flow around a significantly different shape, namely
a NACA12 airfoil, presented higher MAE levels and ill-estimated amplitudes, while still respecting the
physics of the reference flow. The predicted velocity and pressure fields were further used to compute
the drag force by integration of the fields in the boundary layer, resulting in an average relative error
equal to 3.43% on the test set. Finally, the GCNN model performance was compared to that of a standard
U-net model. The GCNN architecture proved its superiority in terms of accuracy and model complexity,
although its required training time was significantly longer. As a challenge, the aspect of optimization
deserves more studies to improve the training convergence and computational cost. Yet, the versatility
of GCNN and its capabilities to work on body-fitted meshes with arbitrarily complex geometric char-
acteristics make it a method of choice for the generation of accurate, fast prediction models coupled to
computational fluid dynamics.

In the framework of unsupervised learning, a physics-informed GCNN is used to obtain the steady
flow fields around a cylinder, through minimizing the residuals of the NS equations discretized on a trian-
gular mesh. The obtained velocity and pressure solutions are on par with the results from the traditional
CFD solver, proving that the latter can be represented by a single forward calculation of a GCNN. As the
intersection of physics, numerics and machine learning, embeding physical knowledge into GCNNs are
likely to produce performant and robust sorrogate models for CFD solvers.
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7
Outlook

In this chapter, we go over the content of the present manuscript, and point out the future possible
works toward more CNN-based surrogate model for steady flow estimation with better performance and
robustness.

7.1 Summary

The work in this manuscript begins from a general introduction of fluid dynamics, computational fluid
dynamics, machine learning and the emerging domain of applying ML methods to traditional CFD. To
provide a solid background to the novelties of the manuscript, the second chapter is dedicated to the
basic concepts of machine learning and convolutional neural networks, from the view of both modeling
and optimization methods. After that, the third chapter employs a traditional solver for Navier-Stokes
equations, to generate two data sets of laminar and turbulent flow around random 2-D obstacles.

The obtained data sets are first used to train U-nets for fast flow prediction. Through numerical
experiments, U-nets prove to be architectures with sufficientmodelling capacity to fit not only the laminar
data set, but also the turbulent one. The obtained surrogate models can predict accurately the velocity and
pressure fields around 2-D obstacles within 0.05 seconds, representing a considerable speed up compared
to tradition PDE solvers. However, large prediction errors are usually observed in the boundary layer, as
the U-net method requires interpolating the original data set on cartesian grids, on which it also has to
reconstruct the solid/fluid boundary. The staircasing effect, together with the possibly fine grid size, are
thus barriers to improvements of the method accuracy.

In the following chapter, a novel auto-encoder architecture with a twin-decoder structure is proposed,
in an attempt to improve the reliability of neural networks prediction regarding to interpolation or extra-
polation. Such a network architecture allows to evaluate the prediction accuracy through a metric based
on the input reconstruction. With the surrogate model obtained in this framework, the end user can
either accept or reject the predicted flow fields based on criteria established on the original dataset, thus
safeguarding the user from using the model outside of its reliability range, or be provided with a well-
calibrated uncertainty level. Such a functionality adds additional transparency to the usual black-box
approach, usually reproached to vanilla CNN models.
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In the next chapter, a graph convolutional neural network architecture is proposed for laminar flow
prediction around random 2-D obstacles. Unlike the U-net method, GCNNs can work on unstructured
data, so the flow fields are interpolated on body-fitted triangular meshes, with the boundary element size
being the same as the grid size used for U-nets. The GCNNs are trained to predict velocity and pressure
values on the nodes, and display higher accuracy than the U-net method, with exceptional performance
within the boundary layer prediction. Furthermore, thanks to the parcimonious representation of fluid
quantities on triangular meshes, the data set used to train GCNNs is far more compact than the data set
for U-nets. The proposed graph-based approach is a meaningful step in order to bridge the gap existing
in the efficient coupling of finite element methods and machine learning approaches.

Finally, a preliminary effort is made on the physical consistency of GCNN-based models. A physics-
informed GCNN is exploited as a direct solver to the steady Navier-Stokes equations, with the laminar
velocity and pressure fields being the outputs of the network, which is trained through minimizing the
residuals of the physical and boundary constraints. The fields obtained with the PI-GCNN are very close
to those of traditional finite element solvers, meaning that the traditional solver’s implicit resolution
process can be represented by a forward calculation of a graph convolutional neural network. In the
future, this approach deserves more consideration as a new modeling methodology, possibly leading to a
new class of direct solvers for PDE problems.

7.2 Future works

The topics presented in this manuscript give rise to a number of possible further developments, lying at
the intersection of computational fluid dynamics, convolutional neural networks and optimization. We
close this manuscript with a short discussion of these topics.

7.2.1 Outlier detection for GCNN-based surrogate models

Unlike physical models including the Navier-Stokes equations, data-driven surrogate models usually dis-
play poor performance on inputs which lie outside of the boundary of their training data set. In the
present manuscript, a methodology based on auto-encoders was proposed, and proved to be efficient in
the context of CNNs. An extension of this work to graph convolutional neural networks could represent
an interesting research topic.

7.2.2 Optimization aspects of GCNNs

GCNNs are the ideal modeling methods for computational fluid dynamics, as they prove to reconstruct
accurately the boundary layer in external flow around 2-D obstacles. With a minimum of network com-
plexity, GCNNs attain better performance than traditional CNNs, making them promising and parsimo-
nious surrogate models. However, the training costs of both the supervised and the unsupervised models
are higher than that of traditional CNNs. A better understanding of the training process (i.e. the gradient
back-propagation with GCNNs) is required to reduce the training cost to a level comparable to CNNs.
For example, a diverse pool of activation functions besides the swish function could be tested, and there
may exist better options as the convolutional kernels rather than using multilayer perceptrons. Alternat-
ively, since the graph convolution method used in this manuscript is based on the neural message passing
framework, other convolution frameworks also deserve trials and could result in different training char-
acteristics.
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7.2.3 GCNNs for turbulence

With the success on laminar flow prediction, it would be interesting to train a GCNN as the surrogate
model for RANS-resolved turbulent flow. Similarly to the U-net approach, one can expect difficulties to
fit the turbulent data set with GCNNs. However, with the grid size being 0.01m in the U-net approach,
the boundary element size can be reduced to 5 × 10−5m thanks to the parsimonious discretization of
triangular meshes. Consequently, graph-based surrogate models are more suitable for turbulent flow
prediction in spite of the optimization difficulties, which are not yet clear considering the multiscale
properties of turbulent flow.

7.2.4 Physics-driven regularization for GCNNs

Finally, the physics-driven regularization approach for supervised learning would be an improvement to
the surrogate models presented in this manuscript. Unlike the iterative solver based on physics-informed
unsupervised learning, physics-informed supervised learning allows the training of a surrogate model
which predicts the flow fields in one single forward calculation, and respects the physical constraints,
making this approach hold hybrid advantages in efficiency as well as physical consistency. By combining
the physics-constrained approach with graph convolutional neural networks, we expect surrogate models
which respects both geometry and physics, thus providing more realistic results, similar in quality to that
of finite element solvers.
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RÉSUMÉ 

 
Au cours des dernières années, les réseaux de neurones ont suscité un grand intérêt dans la 
communauté de la dynamique des fluides computationnelle, en particulier lorsqu'ils sont utilisés 
comme modèles subrogés, que ce soit pour la reconstruction de l'écoulement, la modélisation de la 
turbulence ou pour la prédiction des coefficients aérodynamiques. Cette thèse considère l'utilisation 
de réseaux de neurones convolutifs, une catégorie spéciale de réseaux de neurones conçus pour les 
images, comme modèles subrogés pour la prédiction de l’écoulement stationnaire autour d'obstacles 
2D. Les modèles subrogés sont calibrés dans le cadre de l'ajustement des données, avec l'ensemble 
de données préparé par des solveurs qualifiés aux équations de Navier-Stokes et projeté sur des 
grilles cartésiennes. Une fois calibrés, les modèles montrent une grande précision en termes de 
prédiction de vitesse et de pression, même autour d'obstacles non vus lors de la calibration. Dans 
l'étape suivante, une nouvelle architecture de réseaux de neurones convolutifs est proposée pour la 
détection d’anomalies et la quantification de l’incertitude, permettant au modèle subrogé de savoir 
s'il effectue une interpolation ou une extrapolation tout en faisant la prédiction. Avec ces méthodes, 
l'utilisateur d'un réseau de neurones calibré peut soit décider d'accepter ou non une prédiction, soit 
avoir une estimation quantifiée de l'erreur de prédiction. La troisième contribution consiste à utiliser 
des réseaux de neurones convolutifs sur graphes comme modèles subrogés pour prédire la vitesse et 
la pression sur des maillages triangulaires, qui présentent des avantages significatifs dans la 
représentation géométrique par rapport aux grilles cartésiennes. Grâce au raffinement du maillage 
proche des interfaces solides, le modèle basé sur des graphes peut donner une prédiction de couche 
limite plus précise que les réseaux de neurones convolutifs traditionnels. La dernière partie de cette 
thèse considère l'intégration des connaissances physiques dans la calibration d'un réseau de neurones 
convolutifs sur graphe, qui est calibré en minimisant le résidu des équations de Navier-Stokes sur 
un maillage triangulaire. La vitesse et la pression prédites autour d'un cylindre sont de très haute 
qualité par rapport aux résultats des solveurs numériques qualifiés. N'étant pas dans le cadre de 
l'ajustement des données, cette approche fournit un nouveau solveur d'équations aux dérivées 
partielles, et mérite plus de travail sur sa convergence et son coût de calcul. 
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ABSTRACT 

 

Over the past few years, neural networks have arisen great interest in the computational fluid 
dynamics community, especially when used as surrogate models, either for flow reconstruction, 
turbulence modeling, or for the prediction of aerodynamic coefficients. This thesis considers using 
convolutional neural networks, a special category of neural networks designed for images, as 
surrogate models for steady flow prediction around 2D obstacles. The surrogate models are 
calibrated in the framework of data fitting, with the data set prepared by high-fidelity solvers to 
Navier-Stokes equations and projected onto cartesian grids. Once calibrated, the models show high 
accuracy in terms of velocity and pressure prediction, even around obstacles not seen during the 
calibration. In the next step, a new architecture of convolutional neural networks is proposed for 
anomaly detection and uncertainty quantification along with the steady flow prediction, making the 
surrogate model aware whether it is doing interpolation or extrapolation while doing prediction. 
With these methods, the user of a calibrated neural network can either decide whether to accept a 
prediction or not, or have a quantified estimation of the prediction error. The third contribution is to 
use graph convolutional neural networks as surrogate models to predict velocity and pressure on 
triangular meshes, which have significant advantages in geometry representation compared to 
cartesian grids. Thanks to the mesh refinement close to the solid interfaces, the graph-based model 
can give more accurate boundary layer prediction than traditional convolutional neural networks. 
The last part of this thesis considers integrating physical knowledge into the calibration of a graph 
convolutional neural network, which is calibrated by minimizing the residual of Navier-Stokes 
equations on a triangular mesh. The predicted velocity and pressure around a cylinder are of very 
high quality when compared to the results of high-fidelity numerical solvers. Being not in the 
framework of data fitting, this approach provides a novel solver to partial differential equations, and 
deserves more work on its convergence and computational cost. 
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