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The autonomous vehicle (AV) is a major challenge for the mobility of tomorrow. Progress is being made every day to achieve it; however, many problems remain to be solved to achieve a safe outcome for the most vulnerable road users (VRUs). One of the major challenges faced by AVs is the ability to efficiently drive in urban environments. Such a task requires interactions between autonomous vehicles and VRUs to resolve traffic ambiguities. In order to interact with VRUs, AVs must be able to understand their intentions and predict their incoming actions.

In this dissertation, our work revolves around machine learning technology as a way to understand and predict human behaviour from visual signals and more specifically pose kinematics. Our goal is to propose an assistance system for the AV that is lightweight, scene-agnostic that could be easily implemented in any embedded device with real-time constraints.

Firstly, in the gesture and action recognition domain, we study and introduce different representations for pose kinematics, based on deep learning models as a way to efficiently leverage their spatial and temporal components while staying in an euclidean grid-space. Secondly, in the autonomous driving domain, we show that it is possible to link the posture, the walking attitude and the future behaviours of the protagonists of a scene without using the contextual information of the scene (zebra crossing, traffic light...). This allowed us to divide by a factor of 20 the inference time of existing approaches for pedestrian intention prediction while keeping the same prediction robustness. Finally, we assess the generalization capabilities of pedestrian crossing predictors and show that the classical train-test sets evaluation for pedestrian crossing prediction, i.e., models being trained and tested on the same dataset, is not sufficient to efficiently compare nor conclude anything about their applicability in a real-world scenario. In order to make the research field more sustainable and representative of the real advances to come, we propose new protocols and metrics based on uncertainty estimates under domain-shift.
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Résumé en Français

Le véhicule autonome est un défi majeur pour la mobilité de demain. Des progrès sont réalisés chaque jour pour y parvenir ; cependant, de nombreux problèmes restent à résoudre pour obtenir un résultat sûr pour les usagers de la route les plus vulnérables. L'un des principaux défis auxquels sont confrontés les véhicules autonomes est la capacité à conduire efficacement en milieu urbain. Une telle tâche nécessite la gestion des interactions entre les véhicules et les usagers vulnérables de la route afin de résoudre les ambiguïtés du trafic. Afin d'interagir avec ces usagers, les véhicules doivent être capables de comprendre leurs intentions et de prédire leurs actions à venir.

Dans cette thèse, notre travail s'articule autour de la technologie d'apprentissage automatique comme moyen de comprendre et de prédire le comportement humain à partir de signaux visuels et plus particulièrement de la cinématique de pose. Notre objectif est de proposer un système d'assistance au véhicule qui soit léger, agnostique à la scène et qui puisse être facilement implémenté dans n'importe quel dispositif embarqué avec des contraintes temps réel.

Premièrement, dans le domaine de la reconnaissance de gestes et d'actions, nous étudions et introduisons différentes représentations de la cinématique de pose, basées sur des modèles d'apprentissage profond afin d'exploiter efficacement leurs composantes spatiales et temporelles tout en restant dans un espace euclidien. Deuxièmement, dans le domaine de la conduite autonome, nous montrons qu'il est possible de lier la posture, l'attitude de marche et les comportements futurs des protagonistes d'une scène sans utiliser les informations contextuelles de la scène. Cela nous permet de diviser par un facteur 20 le temps d'inférence des approches existantes pour la prédiction de l'intention des piétons tout en gardant la même robustesse de prédiction. Finalement, nous évaluons la capacité de généralisation des approches de prédiction d'intention de piétons et montrons que le mode d'évaluation classique des approches pour la prédiction de traversée de piétons, n'est pas suffisante pour comparer ni conclure efficacement sur leur applicabilité lors d'un scénario réel. Nous proposons de nouveaux protocoles et de nouvelles mesures basés sur l'estimations d'incertitude afin de rendre le domaine de recherche plus durable et plus représentatif des réelles avancées à venir. 
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Context

The ultimate goal of the intelligent transportation research field should be to show that robots can cohabit with humans and can efficiently share space. For instance, an unused electric scooter could share the curb with dozens of pedestrians so that it can park in a place that does not obstruct the majority of the pedestrian flow, a personal assistance robot could follow the elderly in crowded spaces such as shops so that they do not have to carry their groceries, an autonomous vehicle could easily navigate throughout the crowded streets of downtown centers of major cities while ensuring the flow of traffic... All of them while respecting arbitrary safety and ethical rules such as keeping a safe distance from the other protago- indicates which direction he is presently going, a hand gesture could be considered an explicit form of communication with the driver to signal gratitude or dissatisfaction, the same way that establishing eye contact with the driver could be considered as an implicit form of communication to ensure that you have been seen.

Understanding the intention of the protagonists of a scene from the driver's perspective could therefore prove useful for the deployment of autonomous vehicles because:

• It would improve safety for the most vulnerable road users: knowing the intention of pedestrians to cross the road before they actually set foot on the road would allow the vehicle to warn the driver or automatically perform maneuvers. Therefore, preserving the pedestrians' integrity in a more efficient way than when triggered by an emergency stop once the pedestrians have moved on to the road and become a direct obstacle for the vehicle would be safer for all actors.

• It would ensure the flow of traffic: 98% of autonomous vehicles accidents are due to an unexpected stop of the ego-vehicle [START_REF] Favarò | Examining accident reports involving autonomous vehicles in california[END_REF]. As communication helps to disambiguate certain traffic situations, failing to understand the most basic forms of communication between road users can potentially slow down the flow of traffic.

• It would help identify unscrupulous actions such as stepping in front of the ego-vehicle to force it to stop or change its route [Färber, 2016].

CHAPTER 1. INTRODUCTION

Objectives

The initial objectives of this thesis are to explore deep learning approaches as a way to efficiently leverage spatial and temporal components of pedestrian poses kinematics and efficiently detect their intention of crossing in urban traffic environments. In order to delimit the scope of this thesis while trying to address theses broad objectives, we orient our research with several research directions:

Question Second, the complexity of an action recognition algorithm is directly impacted by the number of perception modalities it uses. Fusing multiple perceptive modalities into a single representation often lead to a high complexity, a high training time and a consequent inference time due to the presence of multiple networks extracting features for each modality (RGB, Optical Flow, Pose Dynamics...). Considering the importance for crossing prediction algorithms to run efficiently for real-time usage while being robust to a multitude of complexities and conditions, our goal is to propose a model using only one perception modality for pedestrian intention prediction that reaches the performance of multi-modal approaches.

Third, while empirically measuring the overall progress of pedestrian intention prediction algorithms over time tends to be more and more established due to the new publicly available benchmarks, know-

CHAPTER 1. INTRODUCTION
ing how well existing predictors react to unseen data remains an unanswered question. We question the legitimacy of the current evaluation protocols to adequately represent the applicability of evaluated pedestrian prediction models for real-world scenarii.

Publications and communications

The main publications and communications of this thesis can be synthesized as follows:

Human Activity Recognition With Pose-driven Deep Learning Models 

Outline

This thesis is laid out in five chapters:

Introduction We briefly described the context of this thesis, the problems it addresses, and the thesis's primary contributions.

Human Activity Recognition With Pose-driven Deep Learning Models In this chapter, we provide historical notes on human actions understanding and an overview of modern computer vision modalities for action recognition. We then introduce the different families and inductive biases of deep learning architectures for skeletal sequences modeling. Existing approaches fall into four broad main categories:

recurrent neural networks, convolutional neural networks, attention-based associative memory neural networks and graph-neural networks. Thereafter, we question the importance of representations, inductive biases and their roles for skeletal action recognition. Firstly, we evaluate the importance of explicit temporal modeling for gesture recognition: while gestures are temporal phenomena, many gestures and actions might actually be inferred based on spatial poses only. We propose a fully-connected autoencoder, that does not benefit from any inductive bias and enforces the mapping from inputs to outputs in the embedding via statistical regularizations. We show that the proposed approach reaches the performances of classic sequence modeling architectures on action classification tasks with little available data. Secondly, we investigate the importance of sending informative-representation ready data to a deep learning architecture, prior to the learning of multiple layers of feature hierarchies that automatically build high-level representations of the raw input. By normalizing the input data based on physical world constraints of the body structure, we show that for action classification tasks with little data, networks benefit from handcrafted features and could rely on fewer hidden layers to learn informative representations of data.

From Action Recognition to Pedestrian Intention Prediction In this chapter, we first provide an overview of existing approaches for pedestrian action prediction. The majority of existing techniques to pedestrian action prediction are trajectory-based, which means they depend on previously observed pedestrian positions to anticipate pedestrian positions in the future. These methods are successful when pedestrians have already crossed or are going to cross, i.e., these algorithms react to an action that has already occurred rather than predicting it. We first propose an asymmetrical bidirectional recurrent neural network architecture called U-RNN to encode pedestrian trajectories and evaluate its relevance to replace LSTMs for various trajectory-based models. Secondly, we address the problem of pedestrian discrete intention prediction: instead of focusing on continuous trajectories describing the expected future movement of the pedestrian and merely relying on scene dynamics to predict intentions, we define the intentions of a pedestrian as a combination of his/her high-level discrete behaviors such as his/her pose dynamics, head orientation... Finally, we show that it is possible to make the link between the posture, the walking attitude and the future behaviours of the protagonists of a scene without using the contextual information of the scene (pedestrian crossing, traffic light...). This allowed us to divide by a factor of 20 the inference speed of existing approaches for pedestrian intention prediction while keeping the same prediction robustness.
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Assessing the Generalization of Pedestrian Crossing Predictors this last chapter is deliberately more exploratory. Pedestrian crossing prediction has been a topic of active research, resulting in many new algorithmic solutions, While measuring the overall progress of those solutions over time tends to be more and more established due to the new publicly available benchmark and standardized evaluation procedures, knowing how well existing predictors react to unseen data remains an unanswered question.

This evaluation is imperative as serviceable crossing behavior predictors should be set to work in various scenarios without compromising pedestrian safety due to misprediction. 

Historical Notes on Human Actions Understanding

The understanding of human gesture, both in the way it is performed and in the way it is interpreted, has been a subject of interest in several disciplinary fields, such as science and art over the centuries.

Classical antiquity can be considered the birth period of the most important technical contributions to the understanding of human movement [START_REF] Klette | Understanding human motion: A historic review[END_REF]. Motion patterns of humans were usually in various domains2 . The genesis of human motion computer analysis can probably be found in the work of [Johansson, 1973, Johansson, 1976] and presented in Fig 2 .4.

Figure 2.4: Outline contours of a walking and a running subject (A) and the corresponding dot configurations (B). Picture credit [Johansson, 1973] The idea behind Johansson experiment is that humans can recognize human body motion actions, using the motion of the body's joints positions only. The given representation is a high-level, sparse, representation of the human body and should also be sufficient for the computer to understand the semantics of a gesture without the context. The resulting configuration of joints being rather similar to the one employed in modern marker-based motion capture systems or pose estimation models based on RGB data, Johansson's experiment is often considered as the beginning of human motion computer analysis.

Finally, with the progress and diversity in terms of data acquisition sensors, the modern representations of motion in computer vision are not limited to the skeletal perception modality. In the following section, we provide an overview of modern computer vision modalities for action recognition.

Overview of Modern Computer Vision Modalities for Action Recognition

Humans' actions can be represented using various visual modalities, namely, RGB, depth, infrared, point cloud, or skeleton (see Figure 2.5). Actions can even be represented using non-visual modalities such as audio [START_REF] Gao | Listen to look: Action recognition by previewing audio[END_REF], radars [START_REF] Chen | Classification of human activity based on radar signal using 1-d convolutional neural network[END_REF] or even wifi-signals [Li et al., 2019c]. Each modal- modalities to obtain a multi-modal representation of the scene, but this is at the expense of the inference speed of the model and it highly depends on the quality of the fusion or co-learning algorithm.

RGB videos

The RGB modality refers to images or sequences of images captured by RGB cameras to replicate what we, as humans see. It is the easiest perception modality to collect and it contains a lot of information about the context of the given recorded scene. RGB-based deep learning models have the advantage of using the most commonly used modality for action recognition. Therefore, one can benefit from huge large-scale web videos to pre-train their models for better recognition performance [START_REF] Karpathy | Large-scale video classification with convolutional neural networks[END_REF], Duan et al., 2020, Ghadiyaram et al., 2019]. However, due to heterogeneity in terms of backgrounds, context, inherent differences of the performers (age, physique, ethnicity...), viewpoints, scaling, and lighting conditions, action recognition from RGB data might be difficult to perform as there might be huge intra-classes differences. Moreover, RGB videos being massive data volumes, modeling the spatiotemporal components of human actions via videos has the disadvantage of leading to high computational Stream [Simonyan and Zisserman, 2014] by using a third stream to add the motion saliency stream on top of the appearance information and motion information streams [START_REF] Zong | Motion saliency based multi-stream multiplier resnets for action recognition[END_REF], others proposed to reduce the computational costs of the overall approach by either feeding low-resolution RGB frames to speed up the computation [START_REF] Karpathy | Large-scale video classification with convolutional neural networks[END_REF] or either avoiding computing perfectly accurate optical flow [Zhang et al., 2016, Piergiovanni and[START_REF] Piergiovanni | [END_REF]. Finally, some works tried to enhance the long-term-dependency-modeling capacity of two-stream networks as this is their main drawback by simply dividing each action video into three segments and processed each segment with a two-stream network. To produce the video-level prediction, each segment's score is then fused with average pooling [Wang et al., 2016a] or element-wise multiplication [START_REF] Diba | Deep temporal linear encoding networks[END_REF]. RNN-based models use convolutions as a feature extracting method for each frame in the sequence, extracted features are then used as input for a LSTM layer to consider the temporal relationships of each frame features. [Baccouche et al., 2011] introduced a two-steps scheme automatically learning spatiotemporal features via 3D convolutions and uses them to classify the entire sequence by using recurrent neural networks. Similarly, [START_REF] Donahue | Long-term recurrent convolutional networks for visual recognition and description[END_REF] proposed a 2D convolutional neural network to extract frame-level RGB features followed by LSTMs to generate the overall action label. Some works extended the existing approaches by using GRUs [START_REF] Shi | Learning long-term dependencies for action recognition with a biologically-inspired deep network[END_REF], Dwibedi et al., 2018] or using Bi-directional LSTM instead of regular LSTM in order to learn both the forward and backward temporal information of an action [START_REF] Ullah | Action recognition in video sequences using deep bi-directional lstm with cnn features[END_REF], He et al., 2021].

Considering that

The last type of deep learning framework to model human motion in RGB camera streams consists of scaling 2D convolutions to 3D convolutions, thus capturing simultaneously the spatial and temporal context information in videos [START_REF] Ji | 3d convolutional neural networks for human action recognition[END_REF]. Every flavor-of-the-month deep-learning architecture for image classification got its 3 dimensional variant: DenseNet [START_REF] Huang | Densely connected convolutional networks[END_REF] got Temporal 3D CNN [Diba et al., 2017a], Resnet [START_REF] He | Deep residual learning for image recognition[END_REF] got 3D ResNets [START_REF] Hara | Learning spatio-temporal features with 3d residual networks for action recognition[END_REF], EfficientNet [START_REF] Tan | Efficientnet: Rethinking model scaling for convolutional neural networks[END_REF] got EfficientNet3D [Kopuklu et al., 2019]... Some works investigated the combination of 3D convolutions with two-stream designs [Carreira andZisserman, 2017, Wang et al., 2017], thus drastically increasing the complexity and computational burden of the proposed approaches. In the opposite direction, some works proposed to reduce the computational complexity and parameters size of the given methods by factoring 3D convolutions [START_REF] Qiu | Learning spatio-temporal representation with pseudo-3d residual networks[END_REF], Xie et al., 2018] or by inserting temporal information over 2D Capsule Network with a zero computational cost instead of relying on 3D

Convolutions [START_REF] Voillemin | 2d deep video capsule network with temporal shift for action recognition[END_REF].

In conclusion, the RGB video modality is one of the most explored modality for action recognition, CHAPTER 2. HUMAN ACTIVITY RECOGNITION WITH POSE-DRIVEN DEEP LEARNING MODELS which makes it a modality of choice when dealing with tasks with not enough training data as one can benefit from huge large-scale datasets to pre-train their architectures. It is the easiest modality to collect and use as it provides a lot of information and context around the action. However, due to huge intra-classes differences, it is highly sensitive to viewpoint, background and illumination conditions.

Last but not least, dealing with high data volume such as raw videos makes the architectures expensive computationally which can be an issue when aiming at real-time scenarios.

Depth data

Depth maps are images in which the pixel values describe the distance between a given viewpoint and the scene's points. A depth camera is the sensor device that is used to create a depth image. The main advantage of depth information is that it provides 3d structural information and geometric shape information of the scene compared to raw RGB. However, it lacks colors and texture information which is problematic as it has been shown that convolutional neural networks tend to classify images by texture rather than by shape [START_REF] Hermann | The origins and prevalence of texture bias in convolutional neural networks[END_REF]. Another drawback of the Depth data modality is that it has a limited [START_REF] Gao | Rgb-d-based object recognition using multimodal convolutional neural networks: A survey[END_REF] Due to the availability of low-cost and reliable sensors during the last decade such as the Microsoft's Kinect [Zhang, 2012], there has been a rise in the domain of multi-modal RGB+D deep learning approaches for action classification [START_REF] Imran | Human action recognition using rgb-d sensor and deep convolutional neural networks[END_REF], Wang et al., 2018, Wang et al., 2020a].

However, most of the time, datasets with depth data are recorded in controlled environments: [START_REF] Shahroudy | Ntu rgb+ d: A large scale dataset for 3d human activity analysis[END_REF], De Smedt et al., 2017]. In the context of pedestrian intention prediction, at the beginning of the thesis, there was not a single academic dataset containing depth data from stereo vision for urban traffic environments. Therefore, we will not expand more on the fusion possibilities between depth, RGB and even skeleton modalities. It would have been possible to use depth estimation algorithms from monocular vision such as P3Depth [START_REF] Patil | P3depth: Monocular depth estimation with a piecewise planarity prior[END_REF], AdaBins [Bhat et al., 2021] or TransDepth [START_REF] Yang | Transformers solve the limited receptive field for monocular depth prediction[END_REF] but it would be at the cost of a computationally expensive task.
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Infrared data

Infrared sensors do not need to rely on external ambient light, and thus are particularly suitable for any tasks performed in dark environments, when the lightning conditions are not sufficient enough for other perception modalities to be applicable such as during the night. However, infrared images may suffer from low contrast and low signal-to-noise ratio, which makes it challenging to consider, for robust human action recognition. Moreover, infrared cameras are sensitive to sunlight. Overall infrared cameras should be considered as a specific use case sensor: when illuminations conditions are not good enough to process efficiently what the camera sees. We will not expand much on the architectures used for gesture recognition via infrared data. Firstly because they are very similar to those used in RGB streams: RNNbased models [Kawashima et al., 2017, Imran and[START_REF] Imran | [END_REF] two-stream models [START_REF] Mehta | Motion and region aware adversarial learning for fall detection with thermal imaging[END_REF] and 3D convolutions [START_REF] Shah | A spatio-temporal deep learning approach for human action recognition in infrared videos[END_REF]. Secondly because throughout the thesis, we do not consider nightly environments to be one interesting enough use case: the tasks of predicting pedestrian intentions is complicated enough with good conditions, the point of adding a specific use case requiring a specific sensor would not help much.

Point Clouds

A point cloud is a set of data points in space. The points may represent a 3D shape or object under a spatial reference system. There are two main ways to obtain 3D point cloud data, using 3D sensors such as LiDARs, or using image-based 3D reconstruction. As a 3D data modality, point cloud can efficiently represent the latent geometric structure and distance information of object surfaces, which provide additional cues for gesture recognition. Nevertheless, similarly to depth data, point clouds are lacking color and texture information. Secondly, they are highly complex structures and processing all the points within the point cloud sequence to leverage the spatio-temporal textures of a gesture is often computationally expensive. One straightforward technique for extracting spatio-temporal information from point cloud sequences is to transform point cloud sequences to 3D point clouds and use static point cloud methods (e.g. PointNet++ [START_REF] Qi | Pointnet++: Deep hierarchical feature learning on point sets in a metric space[END_REF] got its 3 dimensional variant 3DV-PointNet++ [START_REF] Wang | 3dv: 3d dynamic voxel for action recognition in depth video[END_REF]). However, by transforming point cloud sequences into a static 3D point cloud, one might lose spatio-temporal information in the process. Some methods, attempted to extract dynamic features from point cloud sequences, either by disentangling space and time in point cloud sequences [START_REF] Min | An efficient pointlstm for point clouds based gesture recognition[END_REF], Fan et al., 2021], or by leveraging both time and space components conjointly [Liu et al., 2019, Fan et al., 2022]. However, similarly to the depth modality, we will not expand much more on the Point Clouds modality as it would not have been possible to use considering the current state of academic datasets for pedestrian intention prediction.

Pose Kinematics

The detection and pose estimation of humans is the first and necessary step in pose-based action recognition, of which posture analysis is an essential component. Nowadays, pose estimation approaches are not limited to the use of motion capture systems or depth cameras. RGB data can be used to infer 2D body poses [START_REF] Cao | Realtime multi-person 2d pose estimation using part affinity fields[END_REF], 3D body poses [START_REF] Martinez | A simple yet effective baseline for 3d human pose estimation[END_REF] and even track people in realtime [START_REF] Xiu | Pose Flow: Efficient Online Pose Tracking[END_REF]. This breakthrough has stimulated the skeletal modality interest since it proved to be sufficient to describe and understand the motion of a given action without any background context. This has made pose-based action recognition preferred over other modalities on a huge amount of real-time scenarios for human action recognition such as human-robot interaction [Mazhar et al., 2018, Bujalance Martin andMoutarde, 2019], medical rehabilitative applications [Mousavi Hondori andKhademi, 2014, Chang et al., 2011] and even sports analytics [START_REF] Wang | Ai coach: Deep human pose estimation and analysis for personalized athletic training assistance[END_REF], Zecha et al., 2018]. 

Bottom Up Approaches

Bottom up approaches are generally based on matching algorithms, graph theory, combinatorial optimization or even greedy algorithms allowing to assign to each keypoint a unique person in the image once all the keypoints have been obtained thanks to convolutive approaches. For instance, [START_REF] Pishchulin | DeepCut: Joint Subset Partition and Labeling for Multi Person Pose Estimation[END_REF] propose to extract candidate keypoints thanks to classical architectures such as Faster RCNN [START_REF] Ren | Faster r-cnn: Towards real-time object detection with region proposal networks[END_REF] or Dense CNN [START_REF] Huang | Densely connected convolutional networks[END_REF] and then solve the problem of classification (e.g. elbow, knee, head...) and allocation of these keypoints thanks to linear programming and a combinatorial simplex optimization algorithm. [START_REF] Cao | Realtime multi-person 2d pose estimation using part affinity fields[END_REF] propose an approach that detects keypoints in the image using a two-branch convolutional architecture: one inferring a set of 18 heatmaps, each representing a particular part of the human pose skeleton, and the other branch inferring a set of 38 Part Affinity Fields representing the degree of association between the keypoints. Bipartite graphs are then generated based on these outputs and the Hungarian algorithm is used to prune the graph and thus optimally assign each keypoint to a single person. [START_REF] Newell | Associative embedding: End-to-end learning for joint detection and grouping[END_REF] propose an approach that teaches a network to simultaneously produce keypoint detections and assignments thanks to two cost functions: one for detection and one for matching. [Insafutdinov et al., 2016] propose a bottom up approach able to work on a sequence of images in a sequential way and are no longer restricted to the frame by frame approach of the previous methods. After having detected the keypoints of each frame, they are associated in the form of a spatio-temporal graph, the problem of assigning keypoints to a person is then assimilated to a minimum cut problem in graph theory. Finally, [Kreiss et al., 2019, Kreiss et al., 2021] propose a multi-person 2D human pose estimation that addresses failure modes that are particularly prevalent in the transportation domain, i.e. crowded images in low resolution with partially occluded pedestrians that occupy a small portion of the image.

Top Down Approches

Unlike Bottom Up approaches which rely on the quality of their matching algorithm, Top Down methods rely on the inference quality of their person detection model. Computationally speaking, these methods increase significantly in execution time according to the number of people in the image but are gener-CHAPTER 2. HUMAN ACTIVITY RECOGNITION WITH POSE-DRIVEN DEEP LEARNING MODELS ally more robust. Mask R-CNN [START_REF] He | Mask R-CNN[END_REF], initially a segmentation model, can be modified at the output of the mask to obtain poses. The basic architecture first extracts features from an image using convolutions. These features are used by a Region Proposal Network (RPN) to obtain candidate bounding boxes for the presence of objects. By combining the information about the location of the person thanks to the bounding boxes and the keypoints obtained from the mask, we obtain the skeleton of the human pose for each person present in the image. [START_REF] Iqbal | Multi-Person Pose Estimation with Local Joint-to-Person Associations[END_REF] show that the multi-pose estimation problem can be formulated as a set of association problems for each of the detected persons in the image. Thus, for each detected person, one can generate a skeleton using a single-person pose estimator inside the bounding box position of the given protagonist. Since this approach does not take into account occlusion or truncation problems for each of the obtained bounding boxes, they reuse the linear programming system of [START_REF] Pishchulin | DeepCut: Joint Subset Partition and Labeling for Multi Person Pose Estimation[END_REF] on each of the graphs inferred for each bounding box. Since the size of the graphs is much smaller than in the Bottom Up approach, the speed of inference obtained is globally better. [START_REF] Papandreou | Towards Accurate Multi-person Pose Estimation in the Wild[END_REF] propose a top down approach, where keypoint estimation is not performed by regression for each keypoint but by estimating heatmaps and a magnitude vector allowing to best target the keypoint position in the heatmap. This approach allows to potentially obtain several keypoints of the same class in the same bounding box and thus, to a certain extent, overcome the occlusion problem for the estimation of poses in a 2D space. AlphaPose [START_REF] Fang | RMPE: Regional Multi-person Pose Estimation[END_REF] propose an approach to facilitate pose estimation when the obtained person detection bounding boxes are inaccurate.

Since pose estimation is performed on the boundig box obtained from a detection algorithm, errors in the localization of these bounding boxes when using the detector can result in a non-optimal operation of the pose extraction algorithm. The authors therefore propose the use of a Symmetric Spatial Transformer Network (SSTN) to extract a quality area from an inaccurate bounding box. A pose estimator is then used on this extracted region and the resulting coordinates are transformed to match the original space.

The question of dimension

One of the main limitations of a 2D approach is the ability to treat occlusions between pedestrians in a 2-dimensional space. Therefore, in order to improve pose detection, the question of adding a third dimension may arise. The methods for 3D pose estimation are much less mature than those for 2D pose estimation. One of the main reasons to date would be the lack of available reliable datasets [Yang et al., 2018a].

However, some types of approaches can be discerned: estimating a 2D pose and reconstructing a 3D pose, directly performing the regression of a 3D pose, or treating the 3D pose estimation problem jointly or even iteratively with the regression of a 2D pose.

[ [START_REF] Chen | 3D Human Pose Estimation = 2D Pose Estimation + Matching[END_REF] propose, for example, an architecture passing through the estimation of an intermediate pose in 2D and estimating the value of the pose depth using the k-nearest neighbors' algorithm on a 3D pose database. [START_REF] Martinez | A simple yet effective baseline for 3d human pose estimation[END_REF] show that translating points in a 2-dimensional space into a 3-dimensional space is a task that can be solved with a simple multilayer perceptron (MLP).

Analogously, [START_REF] Nie | Monocular 3d human pose estimation by predicting depth on joints[END_REF] predict the depth of human joints based on their 2D locations using recurrent approaches (Long short-term memory -LSTM).

On the other hand, [Li and Chan, 2014] propose a convolutional approach directly performing a regression of the skeleton in 3 dimensions. [START_REF] Sun | Compositional human pose regression[END_REF] propose to base their regression on the joins of the keypoints and not the keypoints of the skeleton. [START_REF] Tekin | Structured prediction of 3d human pose with deep neural networks[END_REF] train an auto-encoder on CHAPTER 2. HUMAN ACTIVITY RECOGNITION WITH POSE-DRIVEN DEEP LEARNING MODELS skeletons with a sparse latent space of greater dimension than the input's. Then they regress with a convolutional neural network taking as input the image corresponding to the skeleton, the values of the latent space for a given training instance and use the decoder part in order to retrieve the pose in 3D. [START_REF] Mehta | Single-shot multi-person 3d pose estimation from monocular rgb[END_REF] propose a 3D pose regression method reusing the same bottom-up approach as [START_REF] Cao | Realtime multi-person 2d pose estimation using part affinity fields[END_REF] to associate keypoints and define occlusion-robust pose-map (ORPM), allowing to infer the whole-body pose even in case of strong partial occlusions by other persons or objects.

Finally, [START_REF] Simo-Serra | A joint model for 2d and 3d pose estimation from a single image[END_REF] propose to partition the 3D pose estimation problem by simultaneously estimating the 2D and 3D poses and then combining the results obtained. [START_REF] Tome | Lifting from the deep: Convolutional 3d pose estimation from a single image[END_REF] propose an iterative refinement method in which 3D inferences help refine and improve 2D estimates, and then translate the prediction from 2-dimensional space into a 3-dimensional space. In [START_REF] Rogez | Lcr-net++: Multi-person 2d and 3d pose detection in natural images[END_REF],

the estimation of 2D/3D human poses is performed jointly through a localization-classification-regression (LCR-Net) architecture. The localization is performed thanks to an RPN, suggesting candidate poses at different locations of the image, and a classifier evaluates the plausibility of the different pose proposals. Finally a regression refines the pose proposals in 2D and 3D. Similar work has been proposed

by [Benzine et al., 2019, Benzine et al., 2020] to efficiently extract conjointly 2D and 3D poses for a possibly large number of people at low resolution. Therefore trying to scale up the current focus of single-person pose estimation or estimation of 3D pose of few people at high resolution.

The issue of sequentiality

On the basis of the multi-person pose estimators described above, it is natural to seek to extend them from the frame-by-frame approach and thus take into account the sequential information present in the sequence.

Many of the approaches are based on the graph partitioning work of [START_REF] Pishchulin | DeepCut: Joint Subset Partition and Labeling for Multi Person Pose Estimation[END_REF] and [Insafutdinov et al., 2016] for the frame by frame approach. The notable difference to take into account sequentiality is to extend the graph of keypoints in space at each frame into a spatio-temporal graph.

However, current linear programming solvers take a long time to converge and real-time usage becomes complicated or impossible considering the size of the graph for a video. A current line of research tends to explore more efficient and scalable top-down solutions by first estimating the pose of several people in each image and then linking them in terms of appearance similarity and temporal relationship. Thus, [START_REF] Xiu | Pose Flow: Efficient Online Pose Tracking[END_REF] propose PoseFlow, a sequential approach to AlphaPose [START_REF] Fang | RMPE: Regional Multi-person Pose Estimation[END_REF] by maximizing the overall confidence of pose inference for a temporal sequence. First, a top-down estimation of the poses for each image is performed. Pose Flows are constructed by associating poses that correspond to the same person across frames through an estimate of the distance between poses. Using a sliding window, the poses of each person in the frame are normalized to the previous and next positions in the video. [START_REF] Ning | LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking[END_REF] propose a top-down approach where the matching of poses to a person refers to a distance between two poses based on the optical flow. [START_REF] Xiao | Simple Baselines for Human Pose Estimation and Tracking[END_REF] propose a top-down approach in which the identification of a person over time is based on two complementary pieces of information: spatial coherence and pose coherence. Tracking and identification are performed using a geometric convolutional Siamese network to determine the degree of similarity between features extracted from two poses. [START_REF] Raaj | Efficient online multi-person 2d pose tracking with recurrent spatio-temporal affinity fields[END_REF] reuse the Part Affinity Field principle for static frames of [START_REF] Cao | Realtime multi-person 2d pose estimation using part affinity fields[END_REF] in a sequential form thanks to a recurrent architecture where the network uses as input CHAPTER 2. HUMAN ACTIVITY RECOGNITION WITH POSE-DRIVEN DEEP LEARNING MODELS the heatmaps of the previous frames to estimate those of the current frame.

Overall, Top Down sequential methods based on pose matching should be prioritized because the location of a person may vary according to a sudden change of camera angle, while his or her pose will remain almost the same, in order to obtain a better tracking of the protagonist of the scene and not to mix the skeletal kinematics of two people at different moments in the sequence but close in space, which would render the second part of the approach: biased by using wrong data.

Poses, Actions and Trajectories

In our context of interpreting actions from estimated poses kinematics (see section 2.2.5), we define here the different concepts derived from pose-based modeling, following the nomenclature proposed by [Picard, 2011] and extended by [Barnachon, 2013]:

A gesture is described as a movement that conveys a purpose. Unlike a mechanical system, the distinction comes from the conscious will of the human being who consciously produces the gesture.

An articulation/joint; , is a given -dimensional point in a reference frame. With ∈ [2; 3], for readability purposes we continue the specification of each concepts for = 3.

=               (2.1)
A pose, , is the -dimensional position of all the given articulations at a given time . We define a pose as the union of the positions of the articulations for a given timestamp as:

( ) = ∈A ( ) = ∈A        ( ) ( ) ( )        (2.2)
Where ( ) is the given pose at time , ( ), ( ), ( ) are respectively the coordinates on the , , axis at time , A is the set of articulations of interest and ( ) the articulation at a time . A pose ( ) can also be defined under the form of a |A| × -shaped vector:
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An action, , is a temporal sequence of poses sharing a common semantic, i.e. a movement conveying a meaning. An action can therefore be defined as its corresponding, ordered, sequence of poses from CHAPTER 2. HUMAN ACTIVITY RECOGNITION WITH POSE-DRIVEN DEEP LEARNING MODELS 0 to where is the finite number of poses in the sequence:
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Trajectories, the lines of the matrix representation of an action are the expression of the trajectories of the articulations over time, on each axis of the -dimensional world. The trajectories of an action, carry more information about the action than a pose. This is the transposition of Johansson's postulate [Johansson, 1973]. It is therefore possible to see an action as a set of -dimensional or one-dimensional trajectories: 
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Overview of Skeletal Sequence Modeling with Deep Neural Networks

In the previous sections, we listed the different types of existing algorithms to obtain the skeleton of a person based on a RGB stream. We then defined the concepts to move from pose extraction to the analysis of poses kinematics. In this section, we review a list of approaches based on "in-depth" learning of action recognition on skeletal data. Those approaches for skeleton-based action recognition can be split into four categories: recurrent-based architectures, convolutions-based architectures, attention-based approaches and graph-based approaches.

Whereas all those approaches were all designed to perform the same task: action recognition, their very composition in terms of layers provides a different type of relational inductive bias: how do they hierarchically process features? The performance of action recognition approaches not only results from the training data but also from their sequence-focused design and their corresponding assumptions towards the data. As shown in When training deep learning models, anything that imposes constraints on the learning trajectory can be considered as an inductive bias. Any non-relational inductive biases used in deep learning include for instance: activation functions, regularization's such as weight decay, dropout, batch and layer normalization, data augmentation, optimizers... Given all the possible combinations and effects of each non-component inductive bias that can only be evaluated empirically, no trend is easily distinguishable in terms of identifying the best architecture to model sequence for skeletal action recognition. However, each of those categories has its pros and cons by design that we will explain in the following sections.

Fully Connected Neural Networks

According to the universal approximation theorem [Hornik, 1991], any bounded function can be approximated as well as one wants with a shallow Neural Network containing only one hidden layer. As such, one may even use a trivial feed-forward neural network such as a Multi-Layer Perceptron (MLP) to model sequences, like any other type of data. However, the stronger the inductive bias, the better the training sample efficiency. Considering that fully connected neural networks have weak relational inductive bias, the design of those architectures do not emphasizes a minimal a priori assumptions about the data and therefore would lead to a data-intensive training compared to approaches designed to consider the temporal phenomena of action recognition. For instance, when modeling time series in real world scenarii, CHAPTER 2. HUMAN ACTIVITY RECOGNITION WITH POSE-DRIVEN DEEP LEARNING MODELS sequences are usually not stationary: the interpretation of a given feature might depend on earlier features or the timestamp they appeared at. Such assumptions about the data is not taken in consideration with MLPs. Similarly, their general relation pattern (All-to-all) does not naturally benefit from regularities, like periodicity, that may exist in time series data. Finally, fully connected layers require a fixed number of inputs, whereas in real world scenarii, the same actions can be carried out under different time windows sizes. Due to theses shortcomings, and limitations when compared to more complex neural network architectures to perform gesture recognition, vanilla multi-layer perceptrons are hardly ever used on their own [Li et al., 2019b]. Nevertheless, it is worth noting that when fully connected neural networks are coupled with attention mechanisms (see section 2.4.4), such as in the Transformer architecture [START_REF] Vaswani | Attention is all you need[END_REF], those models achieve similar / better performance in domains involving sequential data processing than convolutional and recurrent neural networks. However, those approaches are more data-intensive in regards to the amount of available training data compared to architectures providing assumptions about the input data. 3 For instance, for related sequential task such as Natural Language Processing, Transformers perform extremely well on many tasks with enough training data and computation [START_REF] Devlin | Bert: Pre-training of deep bidirectional transformers for language understanding[END_REF], Keskar et al., 2019], but several studies have shown that LSTMs can perform better than Transformers on tasks requiring sensitivity to hierarchical structure, especially with limited amount of training data [START_REF] Tran | The importance of being recurrent for modeling hierarchical structure[END_REF], Dehghani et al., 2018].

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) combine feedforward neural networks with hidden states which one can view as dynamic memories. This allows RNNs to exhibit temporal dynamic behavior 4 where the hidden state is used to process variable length sequence of inputs. In contrast to Fully Connected Networks, RNNs can process sequences of arbitrary length, which made them the reference approaches for sequence modeling in speech recognition, digital signal processing, video processing and natural language processing. Similarly, most deep-learning approaches for gesture recognition also use recurrent cells such as LSTMs [START_REF] Hochreiter | Long short-term memory[END_REF] or GRUs [Cho et al., 2014]. For those approaches, the skeleton is represented in the form of a sequence and state neural networks are applied to it. The difference between each approach resides in designing novel neural network architecture based on RNNs, LSTMs or GRUs to achieve action recognition. For instance, [START_REF] Du | Hierarchical recurrent neural network for skeleton based action recognition[END_REF] have classified the time series skeletal data by hierarchically combining the predictions of several RNNs subnetworks.

Treating every body part of the skeleton sequence independently, then aggregating more body parts together until the final classification. [START_REF] Shahroudy | Ntu rgb+ d: A large scale dataset for 3d human activity analysis[END_REF] propose a similar approach by using five different part-aware Long Short Term Memory (LSTM) networks based on subsets of joints, to capture local information about the skeleton sequences. Instead of aggregating the networks such as in [START_REF] Du | Hierarchical recurrent neural network for skeleton based action recognition[END_REF], a fusion algorithm is used to merge them. [START_REF] Shukla | Recurrent neural network based action recognition from 3d skeleton data[END_REF] propose a hierarchical recurrent architecture roughly equivalent to [START_REF] Du | Hierarchical recurrent neural network for skeleton based action recognition[END_REF] and [START_REF] Shahroudy | Ntu rgb+ d: A large scale dataset for 3d human activity analysis[END_REF] but reduce manually the number of joints at the input of the model, some of them being considered superfluous and carrying little information. This reduction in the number of input joints then leads to a reduced set of parameters and reduces the model inference time without degrading the quality of the classifier.
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[ Wang and Wang, 2017] has proposed a method based on two streams of RNNs, one to learn the spatial dependencies in the kinematics of skeleton joints, the other one to learn the temporal dependencies of the pose kinematics. These are then combined following a late fusion strategy with an end-to-end trainable network. In order to achieve better performance for skeleton-based action recognition with RNNs, some studies introduce new features for skeleton sequence instead of using the regular trajectories of the articulations in the Cartesian coordinate system. For instance, [START_REF] Liu | Spatio-temporal lstm with trust gates for 3d human action recognition[END_REF] use a tree-structure-based traversal method for better representation of human skeletons while introducing a gating mechanism within LSTM cells to improve recognition robustness. From the articulations positional information, [START_REF] Zhang | On geometric features for skeleton-based action recognition using multilayer lstm networks[END_REF] generate eight geometric indicators and evaluate them with a three-layer LSTM network. [Zhang et al., 2017a] propose an adaptive recurrent network with a LSTM architecture, allowing the network to adapt to the most appropriate end-to-end observational viewpoints in order to manage large variations in the orientation of actions. [Avola et al., 2018] exploit the geometric characteristics of the angles of the joints learned with a LSTM architecture. However, recurrent cells are relatively slow and difficult to train due to the well-known gradient vanishing and exploding problems and hardly manage to learn long-term dependencies [Li et al., 2018]. Moreover, studies using RNNs when dealing with action recognition tasks have the issue of placing lesser emphasis on spatial features of the skeleton sequence as they pay much more attention and place much more importance on the trajectories of each articulation and therefore the sequential part of the problem. Therefore, recurrent architectures might fail to capture the spectrum of actions that could be inferred based on spatial poses only.

Convolutional Neural Networks

Since recurrent cells are relatively slow and difficult to train and to use in real-time due to their lack of parallelization, Convolutional Neural Networks (CNNs) have become an interesting solution given their advantages in terms of parallel computing, and efficiency in learning characteristics and speed.

CNNs are a class of feedforward neural networks where the neural network uses a convolution operation in place of a matrix multiplication. CNNs tend to exhibit good performance on data with a grid-like topology such as images and time series, as they respectively can be viewed as a field of vectors taking values over an evenly spaced 1D grid (time) or 2D grid (spatial pixel grid). Initially designed for 2D grids such as images, CNN can be applied over sequences, as their relational inductive bias will find temporal regularities via their locality. The interpretation of a given feature might depend on earlier/future features or the timestamp they appeared at, which can be viewed as a "time" neighbor of the current timestamp.

When dealing with action recognition tasks with Convolutional Neural Networks, two kinds of solutions arise: transforming the input data in a 2D-grid-like manner or a 1-D grid-like manner.

For instance, convolutions can be performed on skeletons kinematics represented as pseudo-images, so that standard 2D convolutions can be applied, or any other spatio-temporal version of CNNs such as 3D convolutions. Since skeletal data are small elements, it is possible to organize a sequence of skeletal features chronologically in an image that retains the original information of the skeletal kinematics as illustrated in Figure 2.12.

The general idea of this type of approach is to structure the data in order to give them the expected form (a sequence of images) and thus classify these images using standard computer vision methods.

Such motion formalism to represent skeletal sequences by compact image-like inputs was first proposed by [START_REF] Elias | Motion images: An effective representation of motion capture data for similarity search[END_REF], alongside with [Du et al., 2015a] where a special insistence has been given to features representation and data normalization to improve instance indexing. Pulling in the same direction, [START_REF] Wang | Action recognition based on joint trajectory maps using convolutional neural networks[END_REF] propose skeleton sequences that have been further encoded into the Hue Saturation Value (HSV) space. To overcome the issue of the semantic continuity of pixels in the generated pseudo-images, [Li et al., 2017b] proposes a skeleton transformer layer before the CNN's to learn the optimal representation of pseudo-images for the network. [Li et al., 2017a] used the pairwise distances between joints encoded into RGB images, known as the Joint Distance Map as input features to account for view invariance. [START_REF] Ke | A new representation of skeleton sequences for 3d action recognition[END_REF] propose to transform a skeleton sequence into three video clips, the CNN characteristics of the three clips are then merged into a single characteristics vector which is finally sent to a softmax function for classification. [START_REF] Pham | Learning to recognise 3d human action from a new skeleton-based representation using deep convolutional neural networks[END_REF] propose to use a residual network ( [START_REF] He | Deep residual learning for image recognition[END_REF]) with for input the transformed normalized skeleton in the RGB space. [START_REF] Cao | Skeleton-based action recognition with gated convolutional neural networks[END_REF] propose to classify the image obtained thanks to gated convolutions. Finally, [Banerjee et al., 2020] has reduced the number of channels to one in grayscale instead of three in RGB.

Moving away from the image domain while keeping the notion of sequential modeling via convolutions, other CNN-based approaches use them in 1D format: [Bai et al., 2018] show that convolution networks can match or even surpass the performance of recurrent networks for typical sequential modeling tasks.

Therefore, [START_REF] Devineau | Deep learning for hand gesture recognition on skeletal data[END_REF] propose an architecture based on parallel convolutions capable of capturing features at different temporal resolutions. This results in a three-branch convolutional model that takes as input the positions of skeletal joints at different speeds and the distances in pairs between joints.

[ [START_REF] Weng | Deformable pose traversal convolution for 3d action and gesture recognition[END_REF] propose a deformable convolutional neural network with one-dimensional convolutions capable of discovering combinations of information-carrying joints to avoid joints whose semantics contribute little to the model. [Yang et al., 2019] propose a Double-feature Double-motion network where skeletal kinematics are processed either in the Cartesian coordinate system under different time shifts with 1D CNN or processed in a location-viewpoint invariant manner.
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Spatio-temporal Attention

Human perception focuses on the most relevant parts of an image in order to acquire information to understand its semantics. For machine learning, this phenomenon is artificially recreated by a mechanism of attention: conceptually, attention can be interpreted in a broad sense as a vector of weights of importance. In the context of action recognition, attention can be used to weight the importance of certain moments of the action in order to classify it, or to weight the importance of certain skeletal joints. Nevertheless, it is not a deep learning component but rather a mechanism used to provide pertinent features to the other components of a neural network. Most of the existing works combine the attention mechanism with regular deep learning components for time series modeling. For instance, [START_REF] Fan | Attention-based multiview reobservation fusion network for skeletal action recognition[END_REF] propose an attention mechanism for multiview fusion of skeletons preprocessed by LSTMs cells. [Maghoumi and LaViola Jr, 2019] propose to stack GRUs with a global attention mechanism as well as two fully connected layers. [START_REF] Song | An end-to-end spatiotemporal attention model for human action recognition from skeleton data[END_REF] propose a model based on LSTM and RNN and combine spatial and temporal global attention: a network focuses on the discriminating articulations of each frame, the other network weights the attention levels of the results for each instant in order to focus on the important frames. [START_REF] Fan | Attention-based multiview reobservation fusion network for skeletal action recognition[END_REF] use action information from multiple viewpoints to improve recognition performance and provide an attention mechanism for multi-view fusion of skeletons sent to LSTMs. Similarly, it is also possible to use attention with convolutions. Thus, [START_REF] Hou | Spatialtemporal attention res-tcn for skeleton-based dynamic hand gesture recognition[END_REF] propose a convolutional network learning different levels of attention for each spatio-temporal feature extracted by the convolution filters for each frame of the sequence.

Graph Neural Networks

The evolution over time of the skeleton of the human body can be considered in the form of a dynamic To this extent, representing the skeleton in the form of a graph can have the advantage of not exploiting non-existent neighborhood links between joints, but preserving coherent spatial semantics for the skeleton compared to approaches using Euclidean data structures such as RNNs or CNNs. Geometric Deep-Learning [Gori et al., 2005, Scarselli et al., 2008, Bronstein et al., 2017] refers to techniques attempting to generalize deep structured neural networks to non-Euclidean domains such as graphs.

[ [START_REF] Wu | A comprehensive survey on graph neural networks[END_REF] provide a state of the art on geometric deep-learning and propose a taxonomy to differentiate geometric networks into four categories: recurrent, convolutional, auto-encoder and spatiotemporal. Such formalism to represent the skeletal sequences in a non-euclidean data structure while applying deep-learning to unstructured data was first proposed by [Li et al., 2018]. [START_REF] Zhang | Graph Edge Convolutional Neural Networks for Skeleton Based Action Recognition[END_REF] propose to apply convolutions on the edges of a graph corresponding to skeletal bones in order to preserve spatial semantics. Thereupon, architectures trying to combine both spatial and temporal graph convolutions throughout one network were designed [Wu et al., 2019a]. Similarly, [START_REF] Yan | Spatial temporal graph convolutional networks for skeleton-based action recognition[END_REF] extend the spatial convolutions of graphs into spatio-temporal convolutions. They propose a convolutional spatiotemporal approach including time-bound joints in the convolutional block in addition to spatially bound joints. Self-attention mechanisms can be utilized to improve the modeling capacity of graph neural networks as well [START_REF] Shi | Two-stream adaptive graph convolutional networks for skeleton-based action recognition[END_REF], Li et al., 2019a]. Finally, [START_REF] Si | An attention enhanced graph convolutional lstm network for skeleton-based action recognition[END_REF] propose to cumulate attention to a CNN-LSTM geometric network, capitalizing all the approaches presented previously in a single network. While many skeleton-based action recognition methods adopt graph convolutional networks to extract features on top of pose kinematics, the boost in model accuracy observed is hindered by potential drawbacks such as computational complexity, resource consumption or interoperability. Current research trends aim at reducing the computational complexity and ressource consumption of graph neural networks for skeletal action recognition. For instance, [START_REF] Ye | Dynamic gcn: Contextenriched topology learning for skeleton-based action recognition[END_REF] propose to combine both graph neural networks and standard convolutions in an euclidean grid space to reduce the computational costs of the overall approach. [START_REF] Cheng | Skeletonbased action recognition with shift graph convolutional network[END_REF] propose a new form of graph convolution that provides improvements in terms of computational complexity and memory consumption of graph neural networks by reducing by nearly a factor of 10 both of those performance indicators compared to standard graph convolution. Nevertheless, when considering the model speed as one priority, the boost in model accuracy compared to architectures using euclidean data structure is questionable. Specifically considering that most of the standard deep-learning operations are already implemented in any deep learning frameworks and also in any neural hardware solutions for embedded devices: the knowledge of the optimization of euclidean data structure networks is conserved compared to approaches based on Graph Networks where basic operations need to be redefined and one might lose speed efficiency in the process. approaches rely heavily on deep-learning networks and their inductive biases to learn informative representations of those trajectories5 by stacking layers, leading to more and more complex architectures over the years. Since deep learning approaches depend heavily on the quantity and quality of data where the performance of approaches scales up with the amount of training data, the current paradigm does not encourage the community to study and improve the capabilities of deep networks for tasks with little data available. In this work, we propose to go back to "It is all about embedding and standardization in machine-learning": once one finds a way to standardize and represent data in a more adequate way, any classifier might be able to obtain good results as long as the input data is informative. We start from several assumptions:

• The primary role of the hidden layers is to realize a composition of non-linear transformations in the hope of finding an embedding adapted to the data format that preserves a maximum of its semantics from representation to output. Hence, one could for instance enforce the representation of a specific designated hidden layer by combining classical statistical representation and learned representation.

• By addressing the issue of data representation, we discover, not only the mapping from representation to output, but also the representation itself. Therefore, one avoids a "blind" learning of this representation: by optimizing a precise network on a precise dataset and by testing a huge set of hyper-parameters, one is assured of good results from representation to outputs. The more reliable the data representation, the more trivial the architecture used for classification can be and the less prone to over-fitting it becomes. Moreover, we can therefore potentially reduce the size of our network and thus by definition reduce its inference time, which can be interesting in the context of a real-time setting.

Based on previous works, showing that the addition of a non-supervised regularization during a classification problem with little data allows a better generalization of networks [START_REF] Brigato | A close look at deep learning with small data[END_REF].

We question if we can efficiently initialize a network similarly to unsupervised pre-training researches [START_REF] Ranzato | Efficient learning of sparse representations with an energy-based model[END_REF], Hinton and Salakhutdinov, 2006, Hinton, 2007] and combine two different ideas:

• The idea that the choice of initial parameters can have a regularizing effect on the model (and therefore improve optimization).

• The idea that learning about the input distribution can help with learning about the mapping from inputs to outputs. We refer to this as representation learning and the classical method used for such a task is the auto-encoder: a neural network that is trained to attempt to copy its input to its output by learning a representation ℎ in a low-dimensional manifold of a learning example and approximately recovers from ℎ through a transition function.

Hence we propose an auto-encoder as presented in Fig 2 .14 with a separability constraint term that focuses on two completely different pieces of information in the data:

• The inherent structure of the data captured in an unsupervised manner thanks to the reconstruction capability of the auto-encoder and its abstraction ability. Some of the important and discriminating information in the data set would then be retained in a low-dimensional manifold. (1) we train an auto-encoder to reconstruct a sequence representing an action according to the evolution over time of the keypoints. We also add a constraint specific to the separability of classes in the latent space. ( 2) We then extract the weights of the encoder part up to the bottleneck represented in red and add a classifier, which transforms the encoder part into a pre-trained network on the data for action classification.

• A first separability draft of classes thanks to Linear Discriminant Analysis projection of the instances in the latent space to improve the maninfold's representation.

The idea behind our approach is that it leads to a better encoder weights initialization if we combine statistics and semantics as we enforce certain constraints towards the data representation of designated hidden layer: the latent space.

To demonstrate that the question of data representation is almost as important as sequential modeling for such task, and according to the universal approximation theorem [Hornik, 1991](any bounded function can be approximated as well as one wants with a shallow Neural Network), we use the simplest form of an autoencoder, a feed-forward neural network such as a Multi-Layer Perceptron (MLP) to model sequences with no explicit temporal modeling.

Formalization

Formally, we define the problem as follows:

min 1 , 2 , X -2 ( 1 (X)) 2 (2.6) Equation (2.6
) is the usual reconstruction function of an auto-encoder with X a data matrix, 1 , 2 the parameters of the encoder and decoder blocks and (), () are respectively the transition functions such that:

1 : X → F 2 : F → X (2.7)
Where F is the feature space which can be regarded as a compressed representation of the input CHAPTER 2. HUMAN ACTIVITY RECOGNITION WITH POSE-DRIVEN DEEP LEARNING MODELS matrix X. We refer to F as the bottleneck or the latent space of the auto-encoder.

We then add a statistical supervised constraint specific to the separability of classes in the cost function: with S being the projection matrix of the instances in the latent space obtained with a linear discriminant analysis (LDA) and a weighting parameter as presented in equation (2.8):

min 1 , 2 ,S X -2 1 (X) 2 + 1 (X) -S 1 (X) 2 (2.8)
The given formula is only applicable if (F ) = -1 with being the number of classes in the dataset. The training method is a simple iterative algorithm, optimizing an appropriate objective function.

This algorithm is based on two updating steps according to the scheme written in the pseudo-code below:

Algorithm 1: Auto-encoder with statistical separability constraint training algorithm Input: data matrix X, ground truth labels y, weighting parameter , loss threshold Initialization of the encoder and decoder parameters 1 and 2 ; while X -2 1 (X)

2 + 1 (X) -S 1 (X) 2
> do Update 1 and 2 using the auto-encoder.; Update S using Linear Discriminant Analysis on 1 (X) data matrix and y.; end Result: 1 , parameters of the encoder block We choose the value of for the supervised separability constraint part empirically, by modifying its value for different trainings and evaluate its gain for later stages. Once the training of the auto-encoder has been performed, we recover the weights of the encoder part: 1 and add a linear classifier, such as a softmax regression classifier right after the bottleneck. In order to use the encoder as a classifier, we train the given modified network by minimizing the cross-entropy loss ℒ between the empirical distribution defined by the training set and the probability distribution defined by the model being trained:

ℒ = - 1 =1 =1 ∈ log ( model ( ∈ )) (2.9)
Where is the total number of instances, is the cardinal of the set of classes { 1 , . . . , } , ∈ is the value of the indicator function of the -th sequence belonging to the -th class and model ( ∈ )

is the softmax probability that the -th sequence belongs to the class . The encoder 1 ( ) now learns to provide a representation to the softmax regression classifier and has been pre-trained to do so. Since supervised training of feedforward networks does not involve imposing any condition on the learned intermediate representations, we expect our statistical regularization to make the classification task easier without any explicit temporal modeling.

Architecture Details

In order to evaluate the quality of representation, we chose to take the easiest possible autoencoder architecture: a feed-forward multilayer perceptron. Naturally, it is possible to perform the same work on CHAPTER 2. HUMAN ACTIVITY RECOGNITION WITH POSE-DRIVEN DEEP LEARNING MODELS convolutional or sequential autoencoders in order to capture the sequentiality of the action or to minimise the size of the network and thus potentially improve the accuracy and the inference time. The architecture consists of an encoder part and a decoder part. The decoder is symmetrical to the encoder part and is defined as such:

• An input layer of dimension 2112 representing the flattened tensor of a complete gesture for 32 time steps, 22 keypoints and 3 dimensions or of dimension 960 for 32 time steps, 15 keypoints and 2 dimensions depending on the input format of the skeletal kinematics.

• 5 dense layers of feature extractions whose dimension decreases by a power of two for each layer (512,256,128,64,32).

• A bottleneck of dimension -1, with being the cardinal of the set of classes for each dataset.

To address the vanishing gradient problem, each perceptron in the given auto-encoder network uses the LeakyRelu [Maas, 2013] activation function.

Optimizer, Batching, Regularizations

The given auto-encoder is regularized with dropout [START_REF] Srivastava | Dropout: A simple way to prevent neural networks from overfitting[END_REF]] with = 0.1, 2 regularization with = 10 -1 and batch-normalization [START_REF] Ioffe | Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[END_REF]. For both training phases, we use Adam [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF], following the hyper-parameters recommendations of the authors.

Regarding the number of training epochs, we train the given network with an annealing learning rate that drops from 10 -3 to 10 -8 and use early stopping: if the validation loss does not improve during the 50 last steps by more than 0.01%, we stop the training in order to prevent the network from over-fitting the training data.

Experiments Datasets

We select two skeleton-based action recognition datasets, SHREC dataset [De Smedt et al., 2017] and JHMDB dataset [START_REF] Jhuang | Towards understanding action recognition[END_REF] to evaluate our regularized autoencoder from different perspectives (see Table 2.2). The Joint-annotated Human Motion Data Base (JHMDB) is composed of 2D skeletons that are obtained from RGB videos in non-controlled environments and therefore is more representative of more general cases for real-world scenarii. JHMDB is composed of manually annotated body gesture sequences collected from various sources, such as movies, public databases such as Google, Youtube videos... Each gesture sequence falls into one of 21 categories such as brushing hair, clapping, jumping, golfing, catching... The dataset contains a total of 928 samples and the evaluation is done by crossvalidation ( = 3) according to the splits provided by [Yang et al., 2019].

Classification Metrics

For each model variation, we provide the model accuracy on the test set or the average accuracy of the splits during cross-validation. [START_REF] Jhuang | Towards understanding action recognition[END_REF], the architecture of the model remains unchanged.

Results and Discussion

Method Parameters Average accuracy of 3 splits

Chained Net [START_REF] Zolfaghari | Chained Multi-stream Networks Exploiting Pose, Motion, and Appearance for Action Classification and Detection[END_REF] 17.50 M 56.8% EHPI [START_REF] Ludl | Simple yet efficient real-time pose-based action recognition[END_REF] 1.22 M 65.5% PoTion [START_REF] Choutas | Potion: Pose motion representation for action recognition[END_REF] 4.87 M 67.9% DD-Net [Yang et al., 2019] 1.82M 77.2% Encoder (He initialization) 0.67M 65.2% Classic auto-encoder ( = 0) -66.4% Regularized auto-encoder ( = 1) -66.2% Regularized auto-encoder ( = 2.5) -68.3% Regularized auto-encoder ( = 5) -67.9% Regularized auto-encoder ( = 7.5) -66.5%

For this study, it was of interest to investigate if using the data 1 (X) projected into the latent space provided more information compared to the initial input features without fine-tuning the entire approach and updating the weights of the encoder. Table 2.3 shows that, by using the same classifier CHAPTER 2. HUMAN ACTIVITY RECOGNITION WITH POSE-DRIVEN DEEP LEARNING MODELS on the projected data 1 (X) from a classical auto-encoder, a simple linear discriminant analysis finds slightly more information in the data than when trained with the initial input features . Moreover, the latent space representation obtained by our regularized auto-encoder seems to be a little bit more informative than a regular auto-encoder latent space representation. Afterward, from Tables 2.3 and 2.4

we evaluate the necessity of using a pre-trained encoder network for classification initialized with an auto-encoder training. By comparing the results from the same network with He weights initialization [START_REF] He | Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification[END_REF] prior to any auto-encoder training to the entire approach, we show that using an autoencoder to initialize the network's weights helps to a certain extent the network's accuracy. Finally, we evaluate the correspondence between the value of for the supervised separability constraint part and its prediction accuracy.

Figure 2.17: Confusion matrix obtained on SHREC 28 with a regularized auto-encoder ( = 5).

In addition to the results presented in From the qualitative plots in figure 2.18, we show that projecting the data to the latent space with our regularized auto-encoder provides a more visible separation of the centroid of each class compared to a vanilla auto-encoder. Here we have fixed the size of the latent space ( -1 = 13 dimensions). By mapping all the samples into the latent space, each of the classes in the dataset would cluster in a ( -1)-dimensional hyper-ellipsoid. 

Conclusions and Perspectives

We have presented here an approach for skeleton action recognition with no sequential modeling at all that focuses on the question of data representation: while gestures are temporal phenomena, many gestures and actions might actually be inferred based on spatial poses only. To demonstrate that the question of data representation is almost as important as sequential modeling for such task, we use the simplest form of an autoencoder (a feedforward, non-recurrent neural network similar to single layer perceptrons that participate in multilayer perceptrons) to reconstruct the actions. We add to the reconstruction cost function of the autoencoder a statistical supervised regularization with a Linear Discriminant Analysis.

This allows to condition the projection of the instances in the latent space upon their class. We then obtain, in addition to a reduced in size representation of the action, a first draft of the separability of the classes in the latent space. We then extract the encoder part of the trained autoencoder and evaluate its classification ability.

We tested our approach on two public databases: the SHREC database (3D Hand Gesture Recognition) and the JHMDB database (2D Body Action). On both databases, results match state of the art for skeleton action recognition tasks while being the fastest approach proposed (according to [Yang et al., 2019],

up to 4 times faster than the fastest one). We therefore show that a trivial model focusing on the repre-CHAPTER 2. HUMAN ACTIVITY RECOGNITION WITH POSE-DRIVEN DEEP LEARNING MODELS Model Accuracy ( 14) Accuracy ( 28) [START_REF] Oreifej | Hon4d: Histogram of oriented 4d normals for activity recognition from depth sequences[END_REF] 78.5 74 [START_REF] Devanne | 3-d human action recognition by shape analysis of motion trajectories on riemannian manifold[END_REF] 79.6 62 [De [START_REF] Smedt | [END_REF] 82.9 71.9 [Ohn- Bar and Trivedi, 2013] 83.9 76.5 [START_REF] Weng | Deformable pose traversal convolution for 3d action and gesture recognition[END_REF] 85.8 80.2 [De Smedt et al., 2016] (SoCJ + HoHD + HoWR) 88.2 81.9 [START_REF] Caputo | Comparing 3d trajectories for simple mid-air gesture recognition[END_REF] 89.5 - [START_REF] Boulahia | Dynamic hand gesture recognition based on 3d pattern assembled trajectories[END_REF] 90.5 80.5 [START_REF] Hou | Spatialtemporal attention res-tcn for skeleton-based dynamic hand gesture recognition[END_REF] Table 2.5: Results on the SHREC dataset using the train/test split protocol sentation of its data with statistical regularization can compete with more complex approaches such as state neural networks or convolutional neural networks for skeleton action recognition.

As for future direction, since there is no explicit temporal modeling in the current approach, one could update that approach to models where temporal modeling is explicitly taken in consideration to improve performance. Secondly the training protocol of our approach has the disadvantage of operating with two training phases: one could fruitfully explore the usage of a dynamic loss function where the regularization effect decreases over time to make the approach easier to train. Finally, the proposed approach is based on linear discriminant analysis, as we need to get the projection matrix from the LDA in order to compute the regularized part of the cost function. One could try to explore the same work with non-linear separability constraints instead of linear ones. However, switching from linear discriminant analysis to quadratic is impossible because of how the homogeneity of variance/covariance is not respected in quadratic discriminant analysis and we would not be able to project the samples.

Another research direction would therefore be the possibility to use contrastive learning as an alternative to the LDA-term, which would remove the constraint on the bottleneck dimension. A large majority of current works seem to neglect the importance of this spatial representation and only focus on the temporal side: the trajectories of the joints, without questioning the spatio-temporal data structure in input. Following the work of [START_REF] Liu | Spatio-temporal lstm with trust gates for 3d human action recognition[END_REF] and [START_REF]Action Recognition with Spatio-Temporal Visual Attention on Skeleton Image Sequences[END_REF],

we carried out a Depth-First Search (DFS) on a graph hub representing the skeleton, as it makes it possible to obtain a tree/graph structure exploiting only neighborhood links between existing joints without using graph neural networks.

Formalization

Pose kinematics are defined as a vector:

s = (s 1 , s 2 , . . . , s ) ∈ R × × (2.10)
where is the sequence duration, is the count of key-points, and is the dimension of each To do so, we carry out a DFS (Algorithm 3) on each pose in order to obtain a representation that respects the physical dependencies of the skeleton. Exploring a DFS from a vertex works as follows.

The algorithm follows a path in the graph until it reaches a leaf or a previously visited vertex. The algorithm then returns to the last vertex where it was possible to follow another path and continues exploring.

The exploration stops when all the vertices since have been visited. Such transformation preserves both spatial and temporal relationships by repeating the joints and re-indexing them while avoiding as Input: graph G foreach node ∈ G do if s is not marked then explore(G,s); else end many as possible redundancies, which are inevitable when one wishes to preserve the spatial structure.

As shown in the figure 2.21, the keypoints are organized to respect the spatio-temporal structure of the action, in the context of a 2D convolution, the window will focus for example on three keypoints such as the knee, the foot and the hip and their position for any moment of the sequence. The skeleton is transformed into a tree structure. (c) The tree can be unfolded into a chain whose order of visit of the nodes maintains the physical relationship of the joints: 1-0-1-8-10-12-10-8-1-9-11-13-11-9-1-2-4-6-4-2-1-3-5-7-5-3 (26 keypoints).

Experiments

To investigate the added value of this input representation for skeletal action recognition, we compare our results with or without shifted input to existing classification models for the same experimental conditions for both 1D convolutions and 2D convolutions models. We recreated the experimental training conditions of [Yang et al., 2019] as well as on their corresponding architecture presented in 2.22 for 1D Convolutions and used a simple Lenet-5 [LeCun et al., 1998] for 2D convolutions whose architecture is presented in 2.23.

Datasets

Similarly to our expriments considering the importance of explicit temporal modeling (see2.5.1), we use the same skeleton-based action recognition datasets, SHREC [De Smedt et al., 2017] and JHMDB [START_REF] Jhuang | Towards understanding action recognition[END_REF] to evaluate the given data representation from different perspectives (see subsection 2.5.1.3). • 1D convolutions: The experimental conditions do not differ from those of [Yang et al., 2019], the corresponding architecture is presented in Figure 2.22 • 2D convolutions: In contrast to the original Lenet architecture [LeCun et al., 1998] presented in Figure 2.23, we add dropout [START_REF] Srivastava | Dropout: A simple way to prevent neural networks from overfitting[END_REF]] with = 0.5 for each layer. After feature extraction from the convolutional layers, batch-normalization [START_REF] Ioffe | Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[END_REF] is added for each dense layer of the architecture. Training is performed with the Adam optimizer [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF] following the recommendations of the paper and with a learning rate of 0.01. We automatically reduce the learning rate by half once stuck in a plateau after 5 epochs not improving the loss. [START_REF] Jhuang | Towards understanding action recognition[END_REF], the architecture DD-NET [Yang et al., 2019] remains unchanged.

Architecture Details

Method Parameters Results

Chained Net [START_REF] Zolfaghari | Chained Multi-stream Networks Exploiting Pose, Motion, and Appearance for Action Classification and Detection[END_REF] 17.5M 56.8% EHPI [START_REF] Ludl | Simple yet efficient real-time pose-based action recognition[END_REF] 1.22M 65.5% POTION [START_REF] Choutas | Potion: Pose motion representation for action recognition[END_REF] For this study, it was of interest to investigate if using the reorganized data to respect the physical constraints of the body structure while using convolutions would help to leverage the potential of deep learning networks without modifying their initial structure or components. We note here an improvement in accuracy for both datasets, for different input dimensions (2d and 3d body poses) and for different convolution dimensions as shown in Tables 2.6 and 2.7 for 1D convolutions and Tables 2.8 and 2.9 for 2D convolutions. By choosing a complex model for the 1D convolution and a trivial model for the 2D convolution, we hypothesize that this transformation can be beneficial whatever the level of complexity of the model. However, this transformation significantly modifies the size of the network input and CHAPTER 2. HUMAN ACTIVITY RECOGNITION WITH POSE-DRIVEN DEEP LEARNING MODELS consequently, the parameter size of the approaches will increase. This increase is only slightly visible on DD-Net as there is no dense layer. For Lenet-5 the size of the model increases by a factor of two, due to the fully connected part of the architecture. It is therefore advisable to avoid the use of dense layers as much as possible for this approach or to work on networks of reduced size. The boost in performance for such transformation seems to be more marked on SHREC than on JHMDB. One explanation is that the level of abstraction and precision is not the same between these datasets. The number of keypoints in SHREC is higher than in JHMDB and therefore the organization of the keypoints could provide more information. Such transformation is therefore relevant as it only changes the size of the image input and therefore does not change the network's architecture, nor its inductive biases while becoming better for the task it was designed for: action recognition. Finally, this transformation requires an a priori knowledge of the organization of the input data structure (e,g: elbow: keypoint 1, head: keypoint 2, ...).

In the context of the thesis, this does not pose any specific constraints. However, it will be impossible to perform this work on datasets where the pose data structure is not specified.

Summary

In this chapter, we have presented an overview of modern computer vision modalities for action recognition. We specifically focus on the simple yet informative skeleton modality, as it has been proven to be sufficient to describe and understand the motion of a given action without any background context.

Thereafter, we explore the different neural network architectures used for sequential modeling of pose kinematics. Recurrent approaches have long been considered as the de facto approaches for obtaining good performance on sequences with neural networks. However, this assumption has been radically

challenged by recent research in the field. Apart from their ability to match recurrent approaches for sequence modeling, convolutions have the particularity of having local connections, which are effective in reducing the number of parameters and thus accelerating convergence, a useful property when dealing with small databases. Moreover, as the parameters of the convolution kernels are shared throughout the convolution space, convolutions can handle both fixed length and variable length inputs in the same way as recurrent networks, which makes them an approach of choice in tasks where the inference speed remains important. Nevertheless, compared to the most promising approaches for skeletal action recognition, e,g graph neural networks, convolutions in an Euclidean grid space seem to neglect the importance of the spatio-temporal input data structure. However, considering that gesture recognition algorithms need to be reliable and fast enough to be computed in real-time on embedded devices, convolutions still seem to have the high ground compared to graph neural networks. The knowledge of the optimization of euclidean data structure networks is conserved compared to approaches where basic operations need to be redefined and one might lose speed efficiency in the process. Finally, we question the importance of representations, inductive biases and their roles in skeletal action recognition. Firstly, we evaluate the importance of explicit temporal modeling for gesture recognition. We propose a fully-connected autoencoder, that does not benefit from any relational inductive bias and enforces the mapping from inputs to outputs in the embedding via statistical regularizations. We show that the proposed approach reaches the performances of classic sequence modeling architectures on action classification tasks with little available data. Secondly, we investigate the importance of sending informative-representation ready data to a deep learning architecture in a 1D-2D grid space. By transforming the input data based on physical CHAPTER 2. HUMAN ACTIVITY RECOGNITION WITH POSE-DRIVEN DEEP LEARNING MODELS world constraints of the body structure prior to the learning of multiple layers of feature hierarchies that automatically build high-level representations of the raw input, we show that finding an appropriate input representation is crucial to leverage the full potential of a deep learning network for action recognition.

Chapter 3

From Action Recognition to Pedestrian Discrete Intention Prediction [ [START_REF] Bhattacharyya | Long-term on-board prediction of people in traffic scenes under uncertainty[END_REF], Kothari et al., 2021], which means they depend on previously observed pedestrian positions to anticipate pedestrian positions in the future. These methods are successful when pedestrians have already crossed or are going to cross, i.e., these algorithms react to an action that has already begun rather than predicting it. For instance, past trajectories of a pedestrian might not always play a role in its underlying objectives: when a pedestrian is waiting at the kerb, he may have no intention of crossing the street at all, or he could have the intention to cross the street but could not manage to do so because of the dynamics of the scene, or he could have the intention to cross the street and manage to do so. One way to take into account this inability of trajectory-based approaches is to determine the intention of the pedestrian before he/she even initiates his/her action. This would provide additional information about the pedestrian's intention that does not depend on the dynamics of the scene and his past positions. Such discrete information could then be used by trajectory-based approaches to enhance their forecasting performance, or more broadly, used by any vehicle planning module in crowded urban traffic environments. In this chapter, we split the pedestrian intention prediction task as a combination of high-level discrete behaviors as well as continuous trajectories describing the expected future movement of the pedestrian:

Trajectory Forecasting, the goal is to predict the value of a sequence at a time index based on previous values only, e.g, based on values whose temporal index is such as < . Trajectory-based pedestrian action prediction modules aim at forecasting the future trajectories of all the pedestrians in a scene based on their past trajectories. This corresponds to answering the open question "Where will the pedestrian be?" This is therefore a regression problem.

Pedestrian Discrete Intention Prediction, while action recognition consists of using a complete sequence of poses to label an action (see section 2.3), intention prediction predicts from an incomplete sequence to label an intention (i.e., before the pedestrian crosses). In the current state of academic data sets, this is equivalent to answering the closed question: "Will the pedestrian cross the street?" This is for pedestrian intention prediction that reaches the performance of multi-modal approaches. Pedestrian trajectory prediction from past positions using social interactions has been steadily receiving attention by the research community, as it plays a crucial role in various applications leading to the deployment of intelligent transport systems [START_REF] Uber | Uber atg safety report[END_REF][START_REF] Waymo | Waymo safety report[END_REF]. Following the success of Social LSTM [Alahi et al., 2016] in trajectory forecasting in crowded scenes, a variety of approaches has been proposed that focused on efficiently leveraging social interactions from a scene [START_REF] Ma | An artificial intelligence-based approach for simulating pedestrian movement[END_REF], Gupta et al., 2018, Bartoli et al., 2018, Pfeiffer et al., 2018, Vemula et al., 2018, Kothari et al., 2021]. In this section, we elude the question of improving social interactions models, and focus on the encoding of the trajectories of individual pedestrians by using U-RNNs (our asymmetrical Bi-RNNs) instead of regular LSTMs. Using the recent Trajnet++ benchmark [Kothari et al., 2021] and with respect to various available learning architectures that forecast pedestrians trajectories, we evaluate the effectiveness of U-RNNs for efficient pedestrian trajectories encoding. We then provide insight into designing improved motion encoders prior to the application of interaction modules for the task of pedestrian trajectory pre- The most common pipeline for pedestrian trajectory prediction consists of:

Trajectory-based pedestrian action prediction

1. A sequence encoder for the past coordinates of each pedestrian independently. The encoder is usually a RNN, such as LSTMs [Alahi et al., 2016, Zhang et al., 2019, Zhao et al., 2019, Choi and Dariush, 2019, Kothari et al., 2021], or GRUs [START_REF] Hong | Rules of the road: Predicting driving behavior with a convolutional model of semantic interactions[END_REF], Rhinehart et al., 2019, Rhinehart et al., 2018].

2. An interaction module for taking into account the neighbors trajectories. The most common way to take into account the effect of interactions between agents in their trajectories is to decode the past positions while pooling on a spatial grid with either the neighbors' positions, their relative velocities [Kothari et al., 2021], or their RNN hidden states [Alahi et al., 2016] (see Fig 3 .2).

3. A decoder that predicts future coordinates. A common approach is to use a RNN for decoding.

Some authors found that this can lead to error accumulation, and that a simple multi-layer perceptron (MLP) that predicts simultaneously all future positions performs better [Becker et al., 2019].

However, taking into account interactions between pedestrians requires to predict the coordinates one step at a time, so RNNs are generally preferred. et al., 2016], or on developing approaches that take inspiration from popular frameworks such as Transformers [Giuliari et al., 2021] or contrastive learning [START_REF] Liu | Social NCE: Contrastive Learning of Socially-aware Motion Representations[END_REF] in order to deter the model from predicting colliding or too uncomfortable trajectories. However, little work has been published on the influence of the encoder and thus on the importance of past coordinates, even if it would be easily applicable to all models that use this pipeline. Learning-free algorithms. The straight line at constant speed using the last known velocity is a reasonable approximation for the problem at hand [START_REF] Schöller | What the constant velocity model can teach us about pedestrian motion prediction[END_REF], given that we only try to predict the next few seconds. More complex learning-free methods can also be successfully applied, some generic, such as the Kalman Filter, and some specific, such as Optimal Reciprocal Collision Avoidance (ORCA)

[van den Berg et al., 2011], which ensures that trajectories do not collide, which is not necessarily the case with other methods, especially the straight line. The environment would play an important role in order to predict trajectories that do not go on the lawn.

What information is relevant?

Scene context as an additional modality. The Trajnet++ dataset does not include the pedestrians'

environment, but some argue that it is sometimes necessary in order to predict trajectories correctly [Becker et al., 2019]. Indeed, in situations such as the one in Fig. 3.3, it would be very difficult to predict plausible trajectories since the environment would play an important role in order to predict trajectories that do not go on the lawn. However, the environment's additional information seems to make generalization more difficult [START_REF] Schöller | What the constant velocity model can teach us about pedestrian motion prediction[END_REF].

Neighbors past coordinates. Most methods make use of neighbors past and present positions. However, it seems that knowing even future neighbors positions is useless in terms of prediction error [START_REF] Schöller | What the constant velocity model can teach us about pedestrian motion prediction[END_REF]. Indeed, global trajectories are not that much affected by interactions. Still, ne-
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glecting the influence of neighbors inevitably leads to collisions: relevant metrics for pedestrian trajectory prediction take this into account in addition to purely spatial errors, in order to produce physically feasible trajectories.

From Bi-RNNs to U-RNNs

U-RNN is a bidirectional recurrent neural network architecture that was informally introduced in [Ahmet, 2020] under the form of U-GRUs for Knowledge Tracing. The objective of this work is to investigate whether U-RNNs could replace regular RNNs or Bi-RNNs for trajectory encoding. Bi-RNNs [START_REF] Schuster | Bidirectional recurrent neural networks[END_REF] address a drawback of Recurrent Neural Networks (RNNs), which is that they cannot take the future into account when they encode an input, which may be desirable for some cases. For example, in the case of pedestrian trajectory prediction, one could expect that some movements are influenced by anticipation of a potential obstacle [START_REF] Xue | Bi-prediction: pedestrian trajectory prediction based on bidirectional lstm classification[END_REF], Yao et al., 2021]. Bi-RNNs produce two outputs, one that is obtained by reading the input forward and one by reading the input backwards. Concatenation or some other operation is then applied. However, an aspect of Bi-RNNs that could be undesirable is the architecture's symmetry in both time directions. Bi-RNNs are often used in natural language processing, where the order of the words is almost exclusively determined by grammatical rules and not by temporal sequentiality. However, in trajectory prediction, the data has a preferred direction in time: the forward direction. Another potential drawback of Bi-RNNs is that their output is simply the concatenation of two naive readings of the input in both directions. In consequence, Bi-RNNs never actually read an input by knowing what happens in the future. Conversely, the idea behind U-RNN, illustrated in Fig. 3.4, is to first do a backward pass, and then use during the forward pass information about the future. By using an asymmetrical Bi-RNN to encode pedestrian trajectories, we accumulate information while knowing which part of the information will be useful in the future as it should be relevant to do so if the forward direction is the preferred direction of the data.

Methodology

We Input embedding: The input data consists of coordinates ( ) ∈ [[1, ]] for each pedestrian (with ( ) ∈ R 2 ). In order to allow easier generalization, we use velocities ( ) ∈ [[1,

-1]] instead with = +1 -. From the trajectory velocities ( ) of a single pedestrian, we obtain the trajectory embed-

dings ( ) ∈ [[1, -1]] with = ( , )
where is a single-layer perceptron, and are learnable weights that are shared among pedestrians.

U-RNN architecture: The backward and forward hidden states

(ℎ ) ∈ [[1, -1]] and (ℎ ) ∈ [[1, -1]]
are obtained according to these equations:

ℎ -1 = ℎ , , ℎ +1 = ℎ , , ℎ , (3.1) 
where and are learnable weights that are shared among pedestrians, and [•, •] denotes concatenation. The last hidden state ℎ is then used as the encoding of the sequence.

Decoder: For decoding, we used a RNN and directional pooling, with a learnable function that involves average pooling and a linear embedding, all of which we do not detail here and was implemented by [Kothari et al., 2021]. The predicted positions ( ) ∈ [[1, ]] of pedestrian are obtained according to these equations:

ℎ 1 = ℎ , = , = GridPooling - ℎ +1 = ℎ , , , = ℎ , (3.2) 
where ( ) , ( ) , ( ) , (ℎ ) are respectively the velocities, velocity embeddings, interaction embeddings and decoder hidden states for pedestrian , , and are learnable weights that are shared among pedestrians ( being the same as for the encoder), -denotes velocities of pedestrians other than and [•, •] denotes concatenation.

Experiments

There are several datasets that are aimed at evaluating pedestrian motion prediction, with very diverse characteristics [START_REF] Rudenko | Human motion trajectory prediction: a survey[END_REF]. We chose the Trajnet++ benchmark [Kothari et al., 2021], which aggregates several common pedestrian trajectories datasets, emphasizes the importance of quantifying the physical feasibility of a model prediction and only evaluates trajectories where there are interactions between pedestrians.

Data. Trajnet++ data consists of trajectories that have been extracted from real-life videos and that are under the form of spatial coordinates. The framerate is 2.5 frames per second. sample images from videos from which the spatial coordinates were extracted. The datasets that are used are:

• ETH [START_REF] Pellegrini | Improving data association by joint modeling of pedestrian trajectories and groupings[END_REF], itself subdivided into ETH-hotel and ETH-uni. ∼650 tracks extracted from 25 min of video.

• UCY [Leal-Taixé et al., 2014], itself subdivided into UCY-zara and UCY-students. ∼700 tracks extracted from 16 min of video.

• WildTrack [START_REF] Chavdarova | Wildtrack: A multi-camera hd dataset for dense unscripted pedestrian detection[END_REF], ∼650 tracks extracted from an hour of video.

• L-CAS [START_REF] Sun | 3dof pedestrian trajectory prediction learned from long-term autonomous mobile robot deployment data[END_REF], ∼1100 tracks extracted from 49 min of video.

• CFF [Alahi et al., 2014], Large-scale dataset of ∼42 million trajectories extracted from real-world train stations.

• In addition, synthetic data generated using ORCA [van den Berg et al., 2011] is also used.

Task. The goal is to predict the spatial coordinates of pedestrians in the near future (12 frames, i.e. 4.8 seconds), using only the near past (9 frames, i.e. 3.6 seconds). In each scene (set of different agents' trajectories over a given duration), a primary pedestrian is designated for evaluation purposes.

Categories. The scenes in the data are subdivided into categories with respect to the primary pedestrian of the scene, as Fig. 3.6 illustrates. Type I and Type II denote respectively static primary pedestrian trajectories and trajectories that are correctly predicted with an extended Kalman filter. Type III is the benchmark's type of interest, as it regroups all scenes where the primary pedestrian has interactions with other agents. Type IV is used for the remaining scenes, where the primary pedestrian trajectory seems unpredictable even when given the social environment. In addition to the four main types, Type III is further subdivided into four categories that describe the main type of interaction that is occurring: Leaderfollower (the primary pedestrian follows someone else), Collision avoidance (the primary pedestrian had to avoid someone else), Group (the primary pedestrian is part of a group) and Others.

Metrics. There are four main metrics. Two are spatial errors: Average Displacement Error (ADE) and is the fraction of collisions between the primary pedestrian's predicted trajectory and the other pedestrians predicted trajectories, and thus represents how physically realistic the predicted scene is, regardless of reality. Col-II, on the other hand, is the fraction of collisions between the primary pedestrian predicted trajectory and the other pedestrians real trajectories. Therefore, it represents how physically realistic the predictions are individually.

Evaluation. According to the Trajnet++ benchmark, the performance is evaluated on ∼3000 scenes from ETH and UCY datasets, as well as on ∼4000 synthetic scenes. The benchmark gives metrics for each type and sub-type of scene. The score that is chosen in order to compare models on the public leaderboard is FDE computed on Type III (Interacting) scenes from the real datasets (∼1700 scenes), with Col-I as the secondary score (computed on the same data). Until the end of March 2021, the secondary score was FDE computed on Type III scenes from the synthetic dataset, but it was abandoned because predicting synthetic trajectories had become a solved problem. On the contrary, while performances seem to have reached a limit with respect to FDE (more than one meter on a 4.8 seconds horizon), the current challenge is to be able to predict physically feasible scenes while keeping a good FDE.

Baselines

We used the following baselines for comparison purposes:

• Learning-free methods. We considered Kalman filter [Kalman, 1960], constant velocity [START_REF] Schöller | What the constant velocity model can teach us about pedestrian motion prediction[END_REF] and ORCA [van den Berg et al., 2011].

• Vanilla LSTM. An architecture with a LSTM encoder, a LSTM decoder, and no interaction module (each pedestrian is considered independently).
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• AMENet [START_REF] Cheng | Amenet: Attentive maps encoder network for trajectory prediction[END_REF], a conditional variational auto-encoder based on attentive dynamic maps for interaction modeling, AIN [START_REF] Zhu | Robust trajectory forecasting for multiple intelligent agents in dynamic scene[END_REF], an encoder-decoder pipeline focusing on global spatio-temporal interactions and PecNet [START_REF] Mangalam | It is not the journey but the destination: Endpoint conditioned trajectory prediction[END_REF], a conditioned-on-goal endpoint variational auto-encoder. We reference the scores that are on the public leaderboard for AMENet and the ones referenced in [Kothari et al., 2021] for AIN and PecNet.

• Social NCE [START_REF] Liu | Social NCE: Contrastive Learning of Socially-aware Motion Representations[END_REF], best submission on the public leaderboard, with respect to FDE.

It uses social pooling and contrastive learning. We reference the scores that are on the public leaderboard. [START_REF] Cheng | Amenet: Attentive maps encoder network for trajectory prediction[END_REF] 0.62 1.30 14.1 16.9 AIN [START_REF] Zhu | Robust trajectory forecasting for multiple intelligent agents in dynamic scene[END_REF] 0.62 1.24 10.7 17.1 PecNet [START_REF] Mangalam | It is not the journey but the destination: Endpoint conditioned trajectory prediction[END_REF] 0.57 1.18 15.0 14.3 Social NCE [START_REF] Liu | Social NCE: Contrastive Learning of Socially-aware Motion Representations[END_REF] 0.53 1.14 5.3 11.3

Table 3.1 shows the results on the four metrics and helps understand the pros and cons of each method. In terms of FDE, the Kalman filter is by far the worst of all, almost 30 cm behind constant velocity (but Type III scenes, on which evaluation is performed, are by definition scenes where trajectories cannot be correctly predicted using a Kalman filter). The constant velocity method is both extremely simple and reasonably effective, but at the cost of high collision rates. ORCA allows to completely get rid of collisions without sacrificing FDE. Vanilla LSTM is completely irrelevant, since it is worse even than the constant velocity method, highlighting how the potential of RNNs can only be revealed by using interaction encoders. Finally, the best submission on the leaderboard reaches a FDE that is 30 cm below the constant velocity method, with a Col-I of only 5%; however, as we said, ADE and FDE are still relatively high in absolute terms.

Implementation details

For training, we used ETH, UCY, WildTrack, L-CAS, and only part of CFF datasets, totalling ∼29000 scenes in the training set and ∼5000 scenes in the validation set. In the training procedure, we decrease the learning rate when the validation loss reaches a plateau, and also apply early-stopping when the validation loss stops decreasing for several epochs. We also use rotation augmentation as a data augmentation technique to regularize all the models1 .

We did not code everything from scratch, but rather built on top of the numerous baselines that are available with Trajnet++. Since out goal was not to beat the state-of-the-art but rather to allow meaningful comparison between different motion encoders, comparisons of given approaches are relevant given the same interaction module and hyper-parameter settings.
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We tested the following architectures, denoted by their Encoder-Decoder structure. For each architecture, RNN can be replaced by either GRU [Cho et al., 2014] or LSTM [START_REF] Hochreiter | Long short-term memory[END_REF]]:

• RNN -RNN. A common baseline.

• Bi-RNN -RNN. We used concatenation in order to fuse the outputs of the Bi-RNN, since it worked better than summation.

• U-RNN -RNN. The architecture described in Section 3.2.3.

• reversed U-RNN -RNN. The backward pass and forward pass are inverted in the U-RNN, in order to investigate if there is indeed a preferred direction of U-RNNs according to the data.

We used default number of parameters that were similar to the baselines in [Kothari et al., 2021] and did not change between different models. However, this led to LSTM models having higher total number of parameters than their GRU counterparts, but it did not affect our conclusions. The order of magnitude of the uncertainties on the metrics were ± 1 cm on ADE and FDE, ± 0.5% on Col-I and ± 1% Col-II. In Table 3.2, we present the results that we obtained during our experiments. The first thing to notice is that using a simple RNN decoder with directional pooling, even without an encoder, improved FDE by 10 cm and cuts Col-I by half compared to the Constant velocity model or to Vanilla LSTM. Secondly, adding a RNN encoder for past coordinates helped improving performance, which indicates that there is indeed relevant information in past positions. This suggests that pedestrians engage in complex trajectories that may span on relatively long durations.

Results

Note that the proposed asymmetrical architecture is independent of the chosen recurrent unit. We observed in preliminary experiments that the encoder's architecture did not seem to have any impact, with CHAPTER 3. FROM ACTION RECOGNITION TO PEDESTRIAN DISCRETE INTENTION PREDICTION identical performances of GRU -GRU, Bi-GRU -GRU, U-GRU -GRU and reversed U-GRU -GRU architectures. At first glance, one could conclude that the information contained in past coordinates may be too redundant to allow to detect any difference between encoder architectures, as there would be no further information to extract. Or that contrary to vehicles for example, pedestrian trajectories are too irregular to make good use of past information. However, experiments with LSTMs gave different results.

LSTM -LSTM and Bi-LSTM -LSTM performed similarly as GRU architectures, but using a U-LSTM encoder helped get significantly better ADE, FDE and Col-I for directional pooling, suggesting that there was indeed unused information in past trajectories. Regarding Col-II, the best architectures seem to differ compared to the other metrics, but this appears to be non-significant given the small score differences and the order of magnitude of the standard deviations.

The better performance of U-LSTM compared to U-GRU strongly indicates that the additional information extracted by the U-RNN architecture came from long-term dependencies. Moreover, the hypothesis we proposed, that the non-symmetrical architecture of U-RNN should better leverage information by using the preferred direction of the data is supported by the absence of performance improvement when using a reversed U-LSTM encoder.

Since it was clear that, for the directional pooling case, the proposed Asymmetrical Bi-RNNs motion encoder performed better than regular LSTMs which are the de facto RNNs for trajectory encoding, we experimented U-LSTMs with occupancy and social pooling. In both experiments, our sequence encoder yielded significantly better results compared to regular LSTMs for every available metric (ADE,FDE, Col I). This suggests that the proposed architecture is a viable alternative to LSTMs for trajectory encoding.

Conclusion and Perspectives

We proposed a sequence encoder based on Asymmetrical Bi-RNNs to predict future pedestrians trajectories using naturalistic pedestrian scenes data from the widely studied Trajnet++ dataset. Contrary to many previous trajectory-based pedestrian action prediction approaches that proposed new interactions modules, our work solely relies on proposing a new sequence encoder that could easily be applied to all models that use the encoder-decoder pipeline for pedestrian trajectory forecasting, while taking advantage of the research on interactions and multi-modal trajectory prediction. The proposed sequence encoder was shown to achieve better prediction accuracy than previous sequence encoders such as LSTMs for a variety of existing approaches and interactions modules. This suggests that there is still room for improvement in coordinates-only approaches, and indicates that interactions are not the only aspect on which pedestrian trajectory prediction can progress. Although this work is highly preliminary, our

quantitative results could open many perspectives for future research. The success of Asymmetrical Bi-LSTMs compared to Asymmetrical Bi-GRUs suggests that this boost may come from using information with long-term dependencies, confirming that some pedestrians movements are influenced by long-term anticipation. We believe that these results constitute a promising baseline to replace LSTMs for a variety of approaches and could be used to significantly improve current trajectory prediction algorithms.
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Pedestrian Discrete Intention Prediction

We have seen in section 3.1 that trajectory-based methods are successful when pedestrians have already crossed or are going to cross, i.e., these algorithms react to an action that has already begun rather than predicting it. In this section, we formally define pedestrian discrete intention prediction.

Determining the pedestrians' discrete intention is mandatory. From this information, their trajectory can be further estimated to understand the pedestrians' next actions or positions, which can greatly reduce the risk of accidents. For instance, knowing the intention of pedestrians to cross the road before they actually set a foot on the road would allow the vehicle to warn the driver or automatically perform maneuvers. Therefore, preserving the pedestrians' integrity in a more efficient way than when triggered by an emergency stop once the pedestrians have moved on to the road and become a direct obstacle for the vehicle would be safer for all actors.

We first detail the factors that influence pedestrian behavior. We then provide a literature review of the existing learning-based approaches for pedestrian discrete intention prediction. Lastly, we list the available academic datasets for Pedestrian Discrete Intention Prediction.

Hit the road Jack: Human-factor perspectives on pedestrian behavior prediction

As the understanding of pedestrian behaviour could be used in the design of autonomous driving systems, we detail the factors that influence pedestrian behavior into two groups, the ones that directly relate to pedestrians and the environmental ones, as shown in Fig 3 .7.

Pedestrian Factors

Demographics

• Gender is one of the most important factor influencing the way to cross [Moore, 1953, Heimstra et al., 1969[START_REF] Holland | The effect of age, gender and driver status on pedestrians' intentions to cross the road in risky situations[END_REF]. Women tend to cross with a lower speed compared to men [START_REF] Ishaque | Behavioural issues in pedestrian speed choice and street crossing behaviour: a review[END_REF],

tend to use zebra crossing more often [Moore, 1953], qualities such as caution [Heimstra et al., 1969, Holland and[START_REF] Holland | The effect of age, gender and driver status on pedestrians' intentions to cross the road in risky situations[END_REF] and higher law compliance [START_REF] Tom | Gender differences in pedestrian rule compliance and visual search at signalized and unsignalized crossroads[END_REF] are generally more prevalent for women than for men when it comes to crossing. Similarly, the attention pattern between men and women differs in what they look at just before crossing: men tend to look at vehicles while women tend to look at traffic lights and other pedestrians [START_REF] Tom | Gender differences in pedestrian rule compliance and visual search at signalized and unsignalized crossroads[END_REF].

This information is to be nuanced: the relative attention of a pedestrian is also impacted by speed, law compliance, age and road structure [START_REF] Geruschat | Gaze behavior while crossing complex intersections[END_REF]... (i.e.: Pedestrians who crossed against the light looked at the cars, while others fixated on the traffic light.)

• Age is another factor influencing the way to cross. Old people walk slower and do not have a steady velocity [Goldhammer et al., 2014]. They are more cautious which means that they pay more attention to the traffic prior to crossing. On the other hand, younger pedestrians are less predictable than their elders when it comes to knowing what they are going to do [START_REF] Holland | The effect of age, gender and driver status on pedestrians' intentions to cross the road in risky situations[END_REF].

Walking state • The capacity to assess speed and distance can have an impact on how pedestrians perceive their surroundings and, as a result, how they react to them. Pedestrians, on average, judge vehicle distance better than vehicle speed [START_REF] Sun | The estimation of vehicle speed and stopping distance by pedestrians crossing streets in a naturalistic traffic environment[END_REF]. Walking pedestrians are less conservative about crossing compared to standing ones, one reason for this would be that their speed influences their sense of speed and distance estimation [START_REF] Oudejans | To cross or not to cross: The effect of locomotion on street-crossing behavior[END_REF].

• Trajectory: pedestrians' ability to estimate speed is also affected by their walking direction. When pedestrians walk in the same direction as vehicles, they are more likely to make risky decisions about whether or not to cross [START_REF] Schmidt | Pedestrians at the kerb-recognising the action intentions of humans[END_REF].

• Pedestrian's speed: pedestrian usually walk faster during crossing compared to when they walk on the kerb [START_REF] Tian | Pilot study on pedestrian step frequency in naturalistic driving environment[END_REF]. Speed is also influenced by the density of people [START_REF] Dipietro | Pedestrian gap-acceptance[END_REF],

age [Goldhammer et al., 2014], time of the day and road structure [START_REF] Willis | Human movement behaviour in urban spaces: Implications for the design and modelling of effective pedestrian environments[END_REF].
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Characteristics

• Culture plays an important role in pedestrian behaviors as it establishes a set of social standards. Variations in social norms exist, obviously between different countries but also within the same country [START_REF] Björklund | Driver behaviour in intersections: Formal and informal traffic rules[END_REF]. For instance, each culture could assign different levels of importance to traffic issues (e.g speeding and jaywalking between swedish and chinese drivers [START_REF] Lindgren | Requirements for the design of advanced driver assistance systems-the differences between swedish and chinese drivers[END_REF]), could have a different gap acceptance times2 (e.g indians cross on average between 2s to 8s whereas germans cross between 3s to 7s time to collision [START_REF] Schmidt | Pedestrians at the kerb-recognising the action intentions of humans[END_REF]) or could perceive and analyze a situation differently (e.g americans judge traffic behavior based on pedestrian features, but indians place more emphasis on contextual elements such as traffic circumstances, road structure... [Clay, 1995])

• Faith and religion seem to play a role in pedestrian behavior as well. [START_REF] Rosenbloom | For heaven's sake follow the rules: pedestrians' behavior in an ultra-orthodox and a non-orthodox city[END_REF] show that ultra-orthodox pedestrians are three times more likely to break traffic laws.

• Law compliance (e.g crossing at red light, jaywalking) can be influenced by demographics but also physical factors (e.g the location of a designated crosswalk. [START_REF] Sisiopiku | Pedestrian behaviors at and perceptions towards various pedestrian facilities: an examination based on observation and survey data[END_REF]).

Environmental Factors

Physical context

• The presence of traffic signals or zebra crossings has a significant impact on how drivers behave [Moore, 1953], and as previously stated, impacts the degree of law compliance of pedestrians [START_REF] Sisiopiku | Pedestrian behaviors at and perceptions towards various pedestrian facilities: an examination based on observation and survey data[END_REF]. Pedestrians tend to have different trajectory patterns at unsignalized crossing (e.g cross diagonally [START_REF] Tom | Gender differences in pedestrian rule compliance and visual search at signalized and unsignalized crossroads[END_REF], tend to walk faster [Lam et al., 1995]).

Pedestrians also tend to have different attention pattern (e.g pedestrians look at vehicles 69.5% of the time at signalized and 86% of the time at unsignalized intersections [START_REF] Tom | Gender differences in pedestrian rule compliance and visual search at signalized and unsignalized crossroads[END_REF]).

• Road structure and street width impact the level of risk affordance for both drivers and pedestrians: while pedestrians pay more attention prior to crossing in wide streets [START_REF] Oudejans | To cross or not to cross: The effect of locomotion on street-crossing behavior[END_REF],

drivers are also expected to change their behaviors depending on road structure, which inevitably influences pedestrian's expectations [START_REF] Björklund | Driver behaviour in intersections: Formal and informal traffic rules[END_REF].

• Meteorological conditions influence pedestrians' behavior. Bad weather directly impacts the speed estimation capability of pedestrians which makes them less risk-averse than usual for crossing [START_REF] Sun | The estimation of vehicle speed and stopping distance by pedestrians crossing streets in a naturalistic traffic environment[END_REF]. Road conditions, such as wet roads caused by rain or icy road caused by snow, can affect both drivers' and pedestrians' movements [Moore, 1953]. Illumination conditions (e.g day or night) impact both drivers and pedestrians visual functions leading them to make riskier decisions [Harrell, 1991].

Traffic context

• Traffic density affects both pedestrians and drivers [START_REF] Schmidt | Pedestrians at the kerb-recognising the action intentions of humans[END_REF]]. To put it in a nutshell, the higher the density of traffic, the lower the chance of pedestrians to cross against the signal [START_REF] Ishaque | Behavioural issues in pedestrian speed choice and street crossing behaviour: a review[END_REF].

CHAPTER 3. FROM ACTION RECOGNITION TO PEDESTRIAN DISCRETE INTENTION PREDICTION

• Vehicle characteristics such as vehicle size also play a role when it comes to crossing. Pedestrians are more cautious when dealing with a larger vehicle [START_REF] Das | Walk or wait? an empirical analysis of street crossing decisions[END_REF]. Pedestrians are also more likely to underestimate the vehicle's arrival time as the vehicle's size grows [START_REF] Caird | The perception of arrival time for different oncoming vehicles at an intersection[END_REF]].

• Vehicle type (e.g motorcycle, vans, cars...) influence pedestrians waiting time before crossing.

Each gender is differently influenced by vehicle type when making a crossing decision [START_REF] Caird | The perception of arrival time for different oncoming vehicles at an intersection[END_REF].

Dynamic factors

• Gap acceptance, or how much of a gap in traffic (usually in time) pedestrians deem safe to cross, is one of the most important dynamic factors. The combination of vehicle speed and vehicle distance from the pedestrian defines how far the vehicle is from the pedestrian [START_REF] Das | Walk or wait? an empirical analysis of street crossing decisions[END_REF].

Pedestrians usually do not cross when the gap acceptance is below 3s and are very likely to cross when it is higher than 7s [DiPietro and [START_REF] Dipietro | [END_REF]. As denoted previously, gap acceptance highly depends on social factors, law compliance, street width...

• Waiting time impact on crossing behavior is subject to controversies. [START_REF] Sun | Modeling of motorist-pedestrian interaction at uncontrolled mid-block crosswalks[END_REF] argue that the longer a pedestrian wait prior to his crossing, the more impatient he becomes and the lower his gap acceptance becomes. On the other hand, [START_REF] Wang | Study of pedestrians' gap acceptance behavior when they jaywalk outside crossing facilities[END_REF] claim that changes in gap acceptance are not explained by waiting time alone. Waiting time should therefore be studied in conjunction with other factors such as pedestrian characteristics (gender, age, walking speed), road structure, or location.

• Communication is considered as one of the main factors in resolving traffic ambiguities [Wilde, 1980].

To indicate that they will not concede to pedestrians their right to cross, cars maintain or increase their speed. As a result, pedestrian intention to cross may differ depending on the driver's behavior. Conversely, when drivers stop their cars before they are legally required to, they signal their intention to give pedestrians the opportunity to cross [START_REF] Dey | Pedestrian interaction with vehicles: roles of explicit and implicit communication[END_REF]. The presence of eye contact amongst road users has been demonstrated to promote compliance with instructions and laws. At crosswalks, for example, drivers who make eye contact with pedestrians are more likely to give pedestrians the opportunity to cross [Guéguen et al., 2015].

Literature Review of State-of-the-Art

Being a sub-problem within action recognition, most of the existing approaches for pedestrian crossing prediction, as defined in Fig 3 .8, rely on the same modalities used for the latter3 , including visual features of the pedestrians and their surroundings, pedestrian kinematics, spatial positioning of the pedestrian based on 2D bounding box locations, optical flow, semantic segmentation, and ego-vehicle speed.

Early works formulated the problem as a static image classification problem with either support vector machine [START_REF] Köhler | Early detection of the pedestrian's intention to cross the street[END_REF], Köhler et al., 2013] or 2D Convolutions [START_REF] Rasouli | Are they going to cross? a benchmark dataset and baseline for pedestrian crosswalk behavior[END_REF], Varytimidis et al., 2018],

using only the last frame in the observation sequence to predict binary crossing behaviors. More successful approaches were designed to take into account temporal coherence in short-term motions of visual features of the pedestrians by using ConvLSTMs [Shi et al., 2015, Gujjar andVaughan, 2019], 3D Convolutions [START_REF] Tran | Learning Spatiotemporal Features with 3D Convolutional Networks[END_REF], Carreira and Zisserman, 2017, Chaabane et al., 2020], or Spatio-Temporal DenseNet [START_REF] Saleh | Real-time intent prediction of pedestrians for autonomous ground vehicles via spatio-temporal densenet[END_REF]. [START_REF] Pop | Multi-task deep learning for pedestrian detection, action recognition and time to cross prediction[END_REF] propose to extract spatial information with convolutive layers, then consider temporal dynamics with recurrent layers and propose a new metric for pedestrians dynamics evaluation: the time to cross (TTC) prediction. Some works are based on state-of-the-art generative methods in deep learning, focusing on the future representation of the action, and then classifying the action in its globality: [Gujjar and Vaughan, 2019] and [START_REF] Chaabane | Looking ahead: Anticipating pedestrians crossing with future frames prediction[END_REF] process the classification of the crossing action by feeding the predicted frames of their future frame prediction auto-encoder network into a classification network. However, those kinds of approaches have a major drawback: since background context is included, they are noise sensitive. Moreover, predicting future frames of a given scene can be time-consuming considering the type and the structure of the approach proposed which can be a bit delicate in a real-time scenario. Approaches trying to minimize the inference time of their models by avoiding the usage of RGB images were explored: [Achaji et al., 2021] proposes a transformer using only spatial positioning of the pedestrian based on 2D bounding box locations. Crossing prediction based on kinematics only was also explored with various available learning architectures to monitor the temporal evolution of skeletal joints such as convolutions [START_REF] Ranga | Vrunet: Multi-task learning model for intent prediction of vulnerable road users[END_REF], recurrent cells [START_REF] Marginean | Understanding pedestrian behaviour with pose estimation and recurrent networks[END_REF], Ghori et al., 2018] or graph-based models [START_REF] Cadena | Pedestrian graph: Pedestrian crossing prediction based on 2d pose estimation and graph convolutional networks[END_REF].

More recently, approaches combining multiple sources of information emerged as shown in Fig 3 .9.

By combining several of these perception modalities in order to obtain a multi-modal representation of the scene, one obtain approaches that are often very discriminative and powerful for action prediction. However, this is at the expense of the inference's speed of the model and it highly depends on the quality of the fusion or co-learning algorithm. Therefore, multi-modal approaches differ by the way they merge the available sources, e.g. scenes, trajectories, poses and ego-vehicle speed, and the learning architecture used to infer a crossing prediction, e.g. RNN-based models [Kotseruba et al., 2020, Bhattacharyya et al., 2018, Yue-Hei Ng et al., 2015[START_REF] Rasouli | Pedestrian action anticipation using contextual feature fusion in stacked rnns[END_REF], Kotseruba et al., 2021, Yang et al., 2022, Ranga et al., 2020] or Transformer-based models [Lorenzo et al., 2021a[START_REF] Lorenzo | Intformer: Predicting pedestrian intention with the aid of the transformer architecture[END_REF]. .9: Example of a multi-modal approach for pedestrian crossing prediction, in the given case the architecture is composed of five GRUs. Each of which processes a concatenation of features of different modalities and the hidden states of the GRU in the previous level. The information is then fused into the network gradually according to the complexity of the features. Picture credits [START_REF] Rasouli | Pedestrian action anticipation using contextual feature fusion in stacked rnns[END_REF].

Data sets for Pedestrian Intention Prediction

of data where the performance of approaches scales up with the amount of training data (e.g. image classification keeps improving at least up-to billions of samples [START_REF] Mahajan | Exploring the limits of weakly supervised pretraining[END_REF]). In contrast to trajectory-based approaches, pedestrian discrete intention prediction is generally less mature. There are fewer scientific contributions in this area of research because there is simply less properly annotated data available and it does not really fits the current paradigm. This echoes our desire in chapter 2 to work on deep learning with little available data. Nevertheless, several data sets for pedestrian crossing prediction have been developed throughout the years, including:

• Daimler [START_REF] Schneider | Pedestrian path prediction with recursive bayesian filters: A comparative study[END_REF], the smallest data set available with only 68 clips of scripted actions in front of the ego-vehicle in a controlled environment with no occlusions. This one is considered trivial and was mainly used for pre-deep learning era (e.g. statistical approaches such as SVMs).

• CASR [START_REF] Fang | Intention recognition of pedestrians and cyclists by 2d pose estimation[END_REF], which stands for Cyclist Arm Signal Recognition. The second smallest data set available with 229 arm signal actions of cyclists on videos of approximately 10 seconds each. This one is not exactly a pedestrian dataset, but focuses on vulnerable road users in the broadest sense.

• JAAD [START_REF] Rasouli | Are they going to cross? a benchmark dataset and baseline for pedestrian crosswalk behavior[END_REF], the first realistic dataset from the ego-view that include annotations for both the pedestrian and the video context. • PIE [Rasouli et al., 2019a], also obtained by a vehicle-mounted camera as it navigates through crowded urban traffic environments: it contains 6 hours of continuous footage (30Hz) and provides similar annotations for all pedestrians sufficiently close to the road regardless of their intent to cross in front of the ego-vehicle and provides more diverse behaviors of pedestrians than JAAD.

Additionally, PIE proposes ground-truth ego-vehicle speed, gps coordinates, and heading direction collected from the vehicle as well as relevant elements of infrastructure (traffic lights, signs and zebra crossings). The number of pedestrians with behavior annotations is 1842 making PIE the largest publicly available dataset for studying pedestrian behavior in traffic.

• TITAN [START_REF] Malla | Titan: Future forecast using action priors[END_REF], contains 700 clips ranging from 10 to 20 seconds (10 Hz) in highly interactive urban driving scenarios in Tokyo, Japan. The dataset includes 50 labels including vehicle states and actions, pedestrian age groups, and targeted pedestrian action attributes that are organized hierarchically corresponding to atomic, simple/complex-contextual, transportive, and communicative actions.

• STIP [Liu et al., 2020a], includes over 900 hours of driving scene videos of front, right, and left cameras, while the vehicle was driving in dense areas of five cities in the United States. The videos were annotated at 2fps with pedestrian bounding boxes and labels of crossing/not-crossing the street.

Affected by a notorious lack of interest as the research area was in a shortage of annotated data compared to its continuous trajectory-based version, the field of research has suffered for a long time from the absence of common evaluation protocols and standardized benchmarks, making the task of comparing performance between approaches complex if not impossible to achieve. Even if their reported performance was evaluated on the same data-sets, they were reported under different experimental conditions such as:

• observation length: ranging from a single frame to 10 seconds of observation at most.

• prediction horizon: ranging from one frame after the observation to a few seconds depending on the approach.

• observation endpoint: sometimes stopping the observation before the event of crossing, sometimes considering the entire event: leading to the term prediction no longer applying since the action is already taking place.

• pedestrian selection and splits methods varying to ensure a balanced data-set in terms of crossing / not crossing distribution, leading to completely different splits based on the same data-sets and hardly comparable.

• Modalities input: for instance pose kinematics could come from different pose estimation algorithms, optical flow could be perfectly computed or estimated...
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The lack of a common evaluation criterion, of normalized modalities inputs, of a common observation frames selection method, and common prediction horizons made the task of comparing each approach's robustness difficult if not impossible to realize during the first part of the thesis. After a while, common evaluation protocols and modalities inputs for three datasets [Kotseruba et al., 2021] were proposed to advance research on pedestrian action prediction further and obtain a fair comparison between all the upcoming methods4 .

In the following section, we introduce the two approaches we developed for pedestrian intention prediction throughout the thesis. As the evaluation protocols [Kotseruba et al., 2021] were made available online only after the publication of the first contribution, we detail for each approach the initial evaluation protocol used. We then compare both approaches with the standard evaluation procedures [Kotseruba et al., 2021].

Inferring crossing behavior via pose kinematics only

The topic of pedestrian crossing prediction has attracted significant interest in computer vision and robotics communities but remains a difficult research topic due to the great variation and complexity of its input data. Although many approaches have been proposed which report interesting results on pedestrian crossing prediction, most of the existing methods may suffer from a large model size and slow inference speed by aggregating multiple forms of perception modalities extracted by additional networks such as background context, optical flow, or pose estimation information [START_REF] Piccoli | FuSSI-Net: Fusion of Spatio-temporal Skeletons for Intention Prediction Network[END_REF], Kotseruba et al., 2021, Yue-Hei Ng et al., 2015].

However, in such decisive applications, a desirable action prediction model should run efficiently for real-time usage and should also be robust to a multitude of complexities and conditions. To alleviate this issue, we propose two models using only one additional network to compute poses and disregard the other perception modalities. Pose kinematics provide a compact and structured approach to represent human pose information that would otherwise be encoded in pixels. These pose kinematics could provide enough information to efficiently infer someone's activities and intentions, such as whether or not they intend to cross the street. Based on section 3.3.1, we propose Table 3. 3.3: Pedestrian and Environmental Factors involved in pedestrian decision-making process in accordance with the perceptive modality used as defined in section 3.3.1. Figure 3.10: (A) Examples of attention towards their environment and communication demonstrated by pedestrians in urban traffic scenarios. The use of pose alone in these use cases would not be a problem since the orientation of the head, the dynamics of the arms would be sufficient to capture the semantics of the scene. (B) Scenarios with irrelevant actions with no particular semantics: eating, touching or cleaning face and looking at the phone. Pose alone might not be sufficient in most cases to identify relevant or irrelevant actions (C) In larger groups, leader-followers patterns are such that only a few pedestrians look, and the rest of the group follows. Since we are dealing with pedestrian discrete intention prediction at the level of granularity of a single pedestrian, not taking the environment into account could be a problem in this type of scenario as the pose would probably not prove sufficient.
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robust to a multitude of complexities and conditions (e.g., weather, location) as it only relies on pedestrians' kinematics.

• We first represent a skeleton sequence as a 2D image-like spatio-temporal continuous representation as presented in section 2.5.2. For our second contribution, as the scale of pedestrians' actions patterns might extend through time and is not limited by a specific temporal resolution, we extract spatio-temporal features by relying on parallel processing of 2D atrous convolutions enhanced with self-attention for multiple dilation rates. This allows TrouSPI-Net to capture features for a given pedestrian action pattern for multiple temporal resolutions.

• We secondly represent a skeleton sequence as its evolution of Euclidean pairwise distances of skeletal joints over time and encode them either with a fully connected encoder architecture as presented in section 2.5.1 for SPI-Net, either with U-GRUs, as presented in section 3.2: a nonsymmetrical bidirectional recurrent architecture designed to exploit the bidirectional temporal context and long-term temporal information for challenging skeletal dynamics having similar patterns but different outputs. In both contributions, this compensates for the inabilities of the first stream in learning temporal patterns invariant to locations and viewpoints.

• Evaluations of both SPI-Net and TrouSPI-Net have been conducted with the freshly proposed common evaluation criteria [Kotseruba et al., 2021] on two standard benchmarks for pedestrian behaviors prediction: Joint Attention in Autonomous Driving (JAAD) [START_REF] Rasouli | Are they going to cross? a benchmark dataset and baseline for pedestrian crosswalk behavior[END_REF], Rasouli et al., 2017a] and Pedestrian Intention and trajectory Estimation (PIE) [Rasouli et al., 2019a] public data-sets.

Architecture variations and branch ablations are also presented to provide insight into our proposed multi-branch approach.

SPI-Net: a representation-focused multi-branch deep learning network

In this work, we propose to go back to "It is all about embedding and standardization in machinelearning": once one finds a way to standardize and represent data more adequately, any classifier might be able to obtain good results as long as the input data is informative. By normalizing the input data, creating global-motion features and location-viewpoint invariant features or enforcing certain constraints towards the data representation of designated hidden layers, we send informative-representation ready data to the classification network. It allows us to rely on fewer hidden layers to learn informative representations of data and therefore reduce the complexity of the network compared to other approaches.

Since we choose to rely on a reduced number of hidden layers, we can focus on the inference time of our model, which is mandatory since we take the model speed as one of our priorities.

The network architecture of SPI-Net is shown in Figure 3.11. In the following section, we explain our motivation for designing input features and network structures of SPI-Net. The network is divided into two branches: one focuses on the evolution of Euclidean distances relative to certain identified keypoints over time, the other focuses on the evolution of the spatial representation of skeletal key-points as a function of time in the Cartesian coordinate system. The first branch corresponds to the encoder part of an auto-encoder initially trained to reconstruct an action according to the evolution over time of
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selected key-point distances. We add to the auto-encoder cost function a statistical supervised separability constraint to perform better separation between instances according to their class in the latent space (see section 2.5.1). In the second branch, a 2D convolutional network, we represent a skeleton sequence as a pseudo-image. This allows us to extract spatio-temporal features using standard computer vision deep-learning methods (see section 2.5.2). We then perform a late fusion on those two branches and fine-tune the entire approach in order to evaluate the model's performance. Right Knees. The given key-points were selected in order to extract specific information for the model such as pedestrian's orientation or pedestrian's dynamics over time.

A considerable amount of literature has been published on modelling pedestrian's attention towards its environment as an input to infer its crossing intention [START_REF] Rehder | Head detection and orientation estimation for pedestrian safety[END_REF], Köhler et al., 2015, Flohr et al., 2015, Schulz and Stiefelhagen, 2015, Dey and Terken, 2017, Rasouli et al., 2018] mainly by focusing on specific key-points such as the head and more specifically its orientation. [START_REF] Rasouli | Towards social autonomous vehicles: Understanding pedestrian-driver interactions[END_REF] show that across all the possible forms of attention and communication a pedestrian could use, the most notable one is to look in the direction of the approaching vehicle: for a collision incoming within the next few seconds, pedestrians always tend to look at the vehicle before crossing [Rasouli et al., 2017a]. Therefore, such head orientation input is not necessarily useful for the particular task of intention prediction since it is almost always recurrent information and would be redundant as this information would also be easily available in the Cartesian Coordinates features branch. In that regard, [START_REF] Schulz | Pedestrian intention recognition using latent-dynamic conditional random fields[END_REF] report that head detection is not particularly useful for the particular task of intention prediction. Similar results were reported in [START_REF] Rasouli | Are they going to cross? a benchmark dataset and baseline for pedestrian crosswalk behavior[END_REF]: specifically focusing on the head for modelling pedestrian's attention does not seem to bring better performance for the task of intention prediction. Key-points such as elbows or wrists were considered as well in order to capture specific attention behaviors of pedestrians relying on hand gestures to communicate their intention of crossing to the driver. However, it has been shown that pedestrians mainly use explicit communication such as hand gestures to signal gratitude or dissatisfaction following the driver's action [START_REF] Dey | Pedestrian interaction with vehicles: roles of explicit and implicit communication[END_REF]. Such a specific gesture happens too late for our current intention prediction task as the pedestrian would be already either crossing or not at that time. In fact, [START_REF] Schneemann | Context-based detection of pedestrian crossing intention for autonomous driving in urban environments[END_REF] discovered that evident attention indicators used by humans for inferring crossing intentions such as the head orientation of pedestrians are not always sufficient. Even more, they concluded that "a lack of information about the pedestrian's posture In conformity with this conclusion, we chose to capture different information for the Geometric features branch. Instead of extracting pedestrian's awareness features towards its environment, we try to capture pedestrian's orientation features and pedestrian's dynamics features over time based on relative distances of their key-points. Therefore the torso and shoulders key-points are preferred over the head, elbows or wrists to model the pedestrian orientation towards his environment. Besides, knees key-points are taken into consideration in order to determine if the given pedestrian is walking or standing in the scene and therefore capture its dynamics. By selecting a lower amount of key-points than the ones available in the complete body structure, we reduce the inference time of the Geometric features branch without degrading its quality for classification.

To avoid redundancy in our distances matrix and to minimize the geometric branch input size, we use the Joint Collection Distances (JCD shown in Fig 3 .13) [Li et al., 2017b, Yang et al., 2019] feature to represent our vector of distances over time.

Figure 3.13: The Cartesian coordinate feature is highly dependent on locations and viewpoints. When body poses are rotated or shifted, the Cartesian coordinate feature can be significantly impacted representation-wise. Meanwhile, the geometric feature (e.g., angles/distances), is location-viewpoint invariant, and thereby stays the same. This compensates for the inabilities of the Cartesian coordinate feature branch in learning temporal patterns invariant to locations and viewpoints. Picture credits [Yang et al., 2019].

At frame , the 2D Cartesian coordinates of joint is represented as = ( , ). Put all of joints together, we obtain a joint collection = 1 , 2 , . . . , . The formula for calculating the JCD feature of is then defined as:
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where ---→ ( ≠ ) denotes the Euclidean distance between and . Calculating the Euclidean distances between a pair of collective joints gives us a symmetric matrix. To reduce the redundancy of information, the JCD feature is then defined as the lower triangular matrix without the diagonal.

The JCD feature is then flattened to be a one dimensional vector as our geometric's branch input of size equals to * for each sequence. Where is the sequence duration, is the count of key-points, and is the dimension of each key-point.

We add to the reconstruction cost function of the auto-encoder a statistical supervised constraint specific to the separability of classes with a Linear Discriminant Analysis. This allows to condition the projection of the instances in the latent space upon their class. We then obtain, in addition to a reduced representation of the action, a first draft of the separability of the classes in the latent space5 . Finally, we extract the encoder part of the trained auto-encoder and evaluate its classification ability as shown in Figure 3.12.

Cartesian Features Branch

As the Geometric branch only takes as input relative Euclidean distances between key-points, the Geometric branch is location-viewpoint invariant. Hence, it does not contain any global spatial motion information of the pedestrian. Solely using the Geometric feature branch is therefore unsubstantial as it does not take any information about the spatial information of the pedestrian in the scene. To overcome this issue, we develop a Cartesian Coordinates features branch that is made to retain such spatial information. Moreover, the Geometric features branch treats no explicit sequential modelling at all, but only treats the question of representation of an action in the embedding. Our Cartesian Coordinates features branch is therefore designed to extract both spatial and temporal features: features that are not explicitly learned in the Geometric branch.

Since we take the model inference speed as one of our priorities, we use a 2D-convolution-ready representation format6 of the sequence to represent human pose sequences allowing us to extract spatiotemporal features using standard computer-vision deep-learning methods. Human pose sequences are converted to a 2D image-like spatio-temporal continuous representation based on a spatial joint reordering trick [Baradel et al., 2018, Liu et al., 2016] called Tree Structure Skeleton Image (TSSI) [START_REF]Action Recognition with Spatio-Temporal Visual Attention on Skeleton Image Sequences[END_REF].

Such representation preserves both spatial and temporal relationships by repeating the joints and reindexing them7 . Since a sequence is represented with a 3-dimensional ( , , )-shaped tensor, we can easily apply the TSSI normalization [START_REF]Action Recognition with Spatio-Temporal Visual Attention on Skeleton Image Sequences[END_REF] on the input and transform the original sequences into a multi-channel redundant image of shape (300, 25, 2). A few sequences of pedestrian actions in the TSSI-format are plotted with their ground truth intentions in Figure 3.14 for illustration.

We then classify these images using standard computer vision deep-learning methods while preserving spatial and temporal relationships. Therefore, after the normalization of its input, the second branch corresponds to any other image classifier based on convolutions and pooling blocks for features extractions and fully-connected layers at later stages of the network. Similarly to the Geometric fea-CHAPTER 3. FROM ACTION RECOGNITION TO PEDESTRIAN DISCRETE INTENTION PREDICTION

Implementation Details

As our SPI-Net implementation relies on multiple networks being trained independently and then concatenated for fine-tuning, we firstly here present our entire training setup to obtain SPI-Net:

• Training the Geometric features branch:

-Training the auto-encoder with a separability constraint term: We use a standard feedforward non-recurrent MLP whose dimensions are (3000) → ( 128) → ( 64) → (32) → (1) → (32) → ( 64) → ( 128) → (3000). We use a value of fixed = 5 for the LDA constraint term ponderation in the modified reconstruction cost function. To address the vanishing gradient problem, each perceptron in the given auto-encoder network uses the LeakyRelu [Maas, 2013] activation function. For regularization purposes, we use Dropout [START_REF] Srivastava | Dropout: A simple way to prevent neural networks from overfitting[END_REF] ( = 0.5) , 2 regularization with = 10 -1 and batch normalization [START_REF] Ioffe | Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[END_REF] after each layer. We choose Adam ( 1 = 0.9, 2 = 0.999) [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF] as the optimizer, with an annealing learning rate that drops from 10 -3 to 10 -8 . In order to obtain a good separability in the latent space with the LDA separability constraint, we choose to send all the training examples at once for the auto-encoder training and select a batch size of 240.

-Training the Encoder part for classification: we recover the encoder part of the autoencoder, then train a classifier with weights initialized via the auto-encoder. We use the same values of Adam optimizer for training. We however divide the training set into 30 batches of size 8. We use ReduceLROnPlateau with a factor of 0.2 and patience of 10.

• Training the Cartesian features branch: The Cartesian features branch is composed of four 2D-convolutions blocks composed of 2D-convolutions layers (kernel size= 3 3). Similarly to the auto-encoder, we use the LeakyRelu activation function, 2 regularization with = 10 -4 and a Dropout value of 0.5. Each convolution layer is then followed by a Batch Normalization layer and an Average Pooling layer. The fully connected layers following the spatio-temporal features extraction done by convolutions is then completely similar to any other Dense layer of the Geometric feature branch for hyper-parameters tuning. We choose Adam ( 1 = 0.9, 2 = 0.999) with a learning rate that drops from 10 -2 to 10 -8 and ReduceLROnPlateau with a factor of 0.5, patience of 5, cooldown of 5 and a batch size of 8.

• Concatenating the branches: We then remove the classification layer of each branch and concatenate those two networks deprived of their last layer into a single one. It allows us to keep the previously learned weights of each network independently. We then add a classification layer whose weights are initialized randomly after the concatenated layer of the obtained network. Finally, we fine-tune the entire network, from pre-trained weights to the randomly initialized classification layer. We obtain SPI-Net: a late fusion and fine-tuned version of the Geometric and Cartesian features branches. As proposed in [START_REF] Smith | Don't Decay the Learning Rate, Increase the Batch Size[END_REF], we increase the batch size over time during the training and therefore fine-tune the approach with two different trainings on the same SPI-network with two different batch size. For the first training, we use Adam with a learning rate that drops from 9 -3 to 5 -8, ReduceLROnPlateau with a factor of 0.5, patience of 25
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and a batch size of 8. For the second one, we use Adam with a learning rate that drops from 9 -8

to 5 -18 and ReduceLROnPlateau with a factor of 0.5, patience of 25 and a batch size of 240.

Results

In ablation studies, we first explore how each branch contributes to the intention prediction performance.

We therefore explore how the LDA constraint for the Geometric branch or the spatial joint reordering trick impact the intention prediction performance on JAAD. Therefore, both Geometric and Cartesian branches results are presented in Table 3.4, Figure 3.16 and Table 3.5. The crossing prediction results of the overall approach on JAAD data set are then presented in Table 3.6. Finally, more details about each branch and SPI-Net are listed in their respective confusion matrices for the crossing or not crossing task in JAAD data set in Table 3.7.

Table 3.4: Intention prediction accuracies of the Geometric branch alone, for different encodings of the sequences of inter-keypoints distances.

Method Accuracy

LDA on Geometric features branch input 51.6% LDA on the classic Encoder ( = 0) 53.2% LDA on the regularized Encoder ( = 5) 54.0% Encoder (He initialization [START_REF] He | Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification[END_REF]) 66.9% Encoder with a classic auto-encoder ( = 0) 68.5% Encoder with a regularized auto-encoder ( = 5) 69.4%

Figure 3.16: Intention prediction accuracy of the Geometric branch alone, as a function of its parameter.

Table 3.5: Ablation studies: classification accuracy of the Cartesian branch for pedestrian intention prediction for the crossing or not crossing task in JAAD.

Method Accuracy Cartesian feature branch without spatial joint reordering trick 83.1% Cartesian feature branch with spatial joint reordering trick 88.7%

From Table 3.4, we figure that solely using the Geometric features branch alone cannot produce a satisfactory performance for the crossing or not crossing task: since most of the prior to crossing actions CHAPTER 3. FROM ACTION RECOGNITION TO PEDESTRIAN DISCRETE INTENTION PREDICTION are strongly correlated to global spatial motion of the pedestrian in the scene, the usage of only relative Euclidean distances between key-points is missing necessary information such as spatial dynamics or sequential modeling. However, the Geometric features branch still seems to capture some information only relative to the orientation and dynamics of the skeleton in the data without explicit temporal modeling or global spatial information. Table 3.4 shows that, by using the same binary classifier on the projected data in the bottleneck obtained from a classical auto-encoder, a simple LDA finds slightly more meaning in the data than the initial Geometric features input. Moreover, the latent space representation obtained by our regularized auto-encoder seems to be a little bit more informative than a regular auto-encoder latent space representation. In Figure 3.16, we evaluate the correspondence between the value of for the supervised separability constraint part and prediction accuracy. Afterward, we evaluate the necessity of using a pre-trained encoder network for classification initialized with an auto-encoder training. By comparing the results from the same network with He's weights initialization [START_REF] He | Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification[END_REF] prior to any auto-encoder training to the entire geometric branch approach, we show that using an auto-encoder to initialize the network's weights helps to a certain extent the network's accuracy. From Table 3.5, we can deduce that by taking into consideration both spatial and temporal features in the Cartesian coordinate system, we obtain better results than by only considering relative distances of given key-points of the pedestrian skeleton. We can also conclude that the usage of the Tree Structure Skeleton Image (TSSI) [START_REF]Action Recognition with Spatio-Temporal Visual Attention on Skeleton Image Sequences[END_REF] normalization improves the results of the Cartesian branch for the given task considerably. Such normalization is therefore relevant as it only changes the size of the image input and therefore does not change the network's architecture much while becoming better for the task it was designed for. Finally, Table 3.6, shows that by merging and fine-tuning both Geometric and Cartesian features branches into a single network, we can achieve better results for the crossing or not crossing task than by considering each branch independently.

Table 3.6: Classification accuracies for pedestrian intention prediction for the crossing or not crossing task in JAAD. CPN [START_REF] Chen | Cascaded Pyramid Network for Multi-Person Pose Estimation[END_REF], Alphapose [START_REF] Fang | RMPE: Regional Multi-person Pose Estimation[END_REF] and Openpose [START_REF] Cao | Realtime multi-person 2d pose estimation using part affinity fields[END_REF] stand for the use of human pose estimation algorithms used by the skeleton-based features method. We have also included the results reported in [START_REF] Rasouli | Are they going to cross? a benchmark dataset and baseline for pedestrian crosswalk behavior[END_REF], Varytimidis et al., 2018], where CNN features are based on a non-fine-tuned AlexNet [Krizhevsky et al., 2012] and Context refers to features of the environment, not of the pedestrian itself.

Method Accuracy Alexnet + Context [START_REF] Rasouli | Are they going to cross? a benchmark dataset and baseline for pedestrian crosswalk behavior[END_REF] 63.0% Alexnet + SVM [START_REF] Varytimidis | Action and intention recognition of pedestrians in urban traffic[END_REF] 74.4% Alphapose + LSTM [START_REF] Marginean | Understanding pedestrian behaviour with pose estimation and recurrent networks[END_REF] 78.0% Res-EnDec [Gujjar and Vaughan, 2019] 81.0% ST-DenseNet [START_REF] Saleh | Real-time intent prediction of pedestrians for autonomous ground vehicles via spatio-temporal densenet[END_REF] 84.76% auto-encoder + Prediction [START_REF] Chaabane | Looking ahead: Anticipating pedestrians crossing with future frames prediction[END_REF] 86.7% Openpose + Keypoints [START_REF] Fang | Is the pedestrian going to cross? answering by 2d pose estimation[END_REF] 88.0% Alexnet + SVM + Context [START_REF] Varytimidis | Action and intention recognition of pedestrians in urban traffic[END_REF] 89.4% CPN + GCN [START_REF] Gantier | Pedestrian graph: Pedestrian crossing prediction based on 2d pose estimation and graph convolutional networks[END_REF] 91.9% CPN + Geometric branch ( = 5) 69.4% CPN + Cartesian branch 88.7% CPN + SPI-Net ( = 5) 94.4%

CHAPTER 3. FROM ACTION RECOGNITION TO PEDESTRIAN DISCRETE INTENTION PREDICTION

Overall, although SPI-Net is not that complex in its architecture, Table 3.6 shows that it outperforms by more than 2.5% the previous state-of-the-art approach [START_REF] Gantier | Pedestrian graph: Pedestrian crossing prediction based on 2d pose estimation and graph convolutional networks[END_REF] based on CPN [START_REF] Chen | Cascaded Pyramid Network for Multi-Person Pose Estimation[END_REF] for pedestrian discrete intention prediction task on the JAAD dataset. The confusion matrices in Table 3.7 also shows that SPI-Net accuracy is similar on both action classes which demonstrates its ability to adapt to intra-class variation for skeleton-based dynamics. 

Conclusion

In this work, we have introduced a new real-time representation-focused multi-branch deep-learning skeleton-based approach for the task of discrete intention prediction of pedestrians in urban traffic environments. We propose to go back to "It is all about embedding and standardization in machine-learning"

and put great emphasis on finding a way to standardize and represent data in a more adequate way for 2D skeletal pose sequences based models. By normalizing the input data based on physical world constraints of the body structure, creating features in different coordinate systems allowing to capture different aspects of the data or enforcing certain constraints towards the data representation of designated hidden layers, we send informative-representation ready data to the classification network which allows us to rely on less hidden layers to learn informative representations of data. Our approach has achieved remarkable results: 94.4% accuracy i.e., 2.5% more than the current state of the art for the Crossing or Not

Crossing prediction task on JAAD data set while being completly invariant to context and road structure. Furthermore, since we choose to rely on a reduced number of hidden layers, we can focus on the inference time of our model, which is mandatory since we take the model speed as one of our priorities: SPI-Net speed can reach around one inference every 0.25 ms on one GPU (i.e., RTX 2080ti), or every 0.67 ms on one CPU (i.e., Intel Core i7 8700K), which makes it highly effective for the task of predicting discrete intentions of pedestrians and directly applicable to embedded devices with real-time constraints.

TrouSPI-Net: Spatio-temporal attention on parallel atrous convolutions

As stated in section 3.3.3, the lack of a common evaluation criterion, of normalized input modalities, of a common observation frames selection method, and common prediction horizons made the task of comparing each approach's robustness difficult if not impossible to realize. During the second part of the thesis, common evaluation protocols and modalities inputs [Kotseruba et al., 2021] .17: The network architecture of TrouSPI-Net: Its inputs consist of a sequence of 2D body poses transformed into a pseudo-image, relative pairwise distances of skeletal joints, bounding boxes, and ego-vehicle speed. U-GRUs encode every feature except pseudo-images, and each is fed into a temporal attention block. Pseudo-images are processed by parallel atrous CBAM [START_REF] Woo | Cbam: Convolutional block attention module[END_REF] blocks with different dilation rates and then added into a single vector in order to make the size of the pseudo-images block equal to the size of the U-GRUs outputs. Modality attention is then applied to the outputs of each branch, and the weighted outputs are fed into the fully connected layer. U-GRU blocks: the first GRU layer does the reverse pass, we then concatenate its output with the input data and finally compute the second GRU layer's output with a forward pass. CBAM blocks: given an intermediate feature map extracted by atrous 2D convolutions, the module sequentially infers attention maps along two separate dimensions: channel and spatial.

CHAPTER 3. FROM ACTION RECOGNITION TO PEDESTRIAN DISCRETE INTENTION PREDICTION ( , ) 1 ∈ [1; 3], ( , ) 2 
= 1, ∈ [1; 3], three atrous CBAM blocks and pooling layers in each branch: ∈ [1; 3]. ( , ) = 64 feature maps for each layer. Each convolution uses 3x3 kernels and is followed by a batch normalization layer. All the neurons use the LeakyRelu activation function:

( ) = (0.2x, x),
with the exception of the M c and M s neurons which use the same hyper-parameters settings than the original CBAM paper.

Modeling Location-viewpoint Invariant Features via U-GRUs To extract skeletal pose kinematic features invariant to locations and viewpoint, we represent a pose sequence as its evolution of skeletal joints relative Euclidean distances over time with the Joint Collection Distances (JCD) feature [Yang et al., 2019].

The JCD feature is then flattened to a vector of dimension * 2 . Euclidean distances features are then processed with two U-GRUs blocks as illustrated in Figure 3.17. In contrast to SPI-Net, since we use recurrent neural networks and not a fully connected approach anymore, we do not handpick the keypoints of interest for the Euclidean distance matrix, we simply consider them all as it does not impact the speed of the approach much.

Compared to regular Bidirectional GRUs, where the output layer can get information from past and future states simultaneously but are most sensitive to the input values around time , in U-GRUs, past and future interact but in a limited way. U-GRUs allow the model to accumulate information while knowing which part of the information will be useful in the future and therefore exploit long-term temporal patterns on invariant locations and viewpoint skeletal dynamics. This compensates for the inabilities of the first pseudo-images stream to learn long-range temporal patterns and therefore acts as a regularizer for time and space. Similarly, context features such as bounding box positions and ego-vehicle speed are processed in parallel through the same U-GRUs architecture.

Combining all the features branches Following the successful application of temporal attention and modality attention in multi-modal approaches for pedestrian action prediction, we finally apply the same temporal attention and modality attention mechanisms used in PCPA [Kotseruba et al., 2021] 

Experiments

To evaluate the presented multi-branch approach and several variations of its architecture, we conducted experiments on two large public data-sets for studying pedestrian behaviors in traffic: JAAD [START_REF] Rasouli | Are they going to cross? a benchmark dataset and baseline for pedestrian crosswalk behavior[END_REF], Rasouli et al., 2017a] and PIE [Rasouli et al., 2019a]. JAAD contains 346 clips and focuses on pedestrians intending to cross, PIE contains 6 hours of continuous footage and provides annotations for all pedestrians sufficiently close to the road regardless of their intent to cross in front of the ego-vehicle and provides more diverse behaviors of pedestrians.

Evaluation Setup We base our experiments on the newly proposed evaluation criteria [Kotseruba et al., 2021] with common evaluation protocols, splits and normalized modalities inputs. As provided in the new benchmark, observation data for each pedestrian is sampled so that the last frame of observation is between 1s and 2s before the crossing event. We report the results using regular classification metrics: accuracy, AUC, precision, recall and 1 -score given by 1 = 2× precision × recall precision + recall .

In architecture variations and branch ablations studies, we explore how each TrouSPI-Net component contributes to the pedestrian action prediction performance by removing one component while keeping others unchanged. We also explore the performance of CBAM blocks in the pseudo-image stream by comparing them to similar self-attention blocks designed for 2D convolutions: Squeeze and Excitation method (SE blocks) [START_REF] Hu | Squeeze-and-excitation networks[END_REF]. Finally, we explore the impact of adding a second modality to TrouSPI-Net by using 3D convolutions [START_REF] Tran | Learning Spatiotemporal Features with 3D Convolutional Networks[END_REF] on the local box feature available in the dataset.

Implementation details We use U-GRUs with 64 hidden units for encoding all features, except the pseudo-image. L2 regularization of 0.001 is added to the final dense layer and a dropout of 0.5 is added after the attention block. The number of observation frames m is set to 16. Body poses extracted by OpenPose [START_REF] Cao | Realtime multi-person 2d pose estimation using part affinity fields[END_REF] and proposed in the benchmark [Kotseruba et al., 2021] are sampled in the form of a 3-dimensional (16,18,2)-shaped tensor for the pseudo-images stream and 2-dimensional (16,153)-shaped tensor for the U-GRUs stream. The ego-vehicle speed feature is used only in the PIE data-set and omitted in JAAD. To compensate for the significant class imbalance, we apply class weights inversely proportional to the percentage of samples of each class in each data-set. We train the model with Ranger Optimizer: a combination of Lookahead ( = 6, = 0.5) [Zhang et al., 2019] and Radam [Liu et al., 2019], binary cross-entropy loss and batch size set to 8. We train for 80 epochs with learning rate set to 5.0e-05 for PIE and 5.0e-06 for JAAD.

Discussion

The results of the final TrouSPI-Net model are presented in Table 3.8. Results are most improved compared to State-of-the-Art on the PIE data-set, where accuracy is increased by 1%, AUC by 2% and 1 -score by 3% compared to PCPA [Kotseruba et al., 2021], a model with two perception modalities:

RGB images and poses. On JAAD, our model performs comparably if not better with state-of-the-art across some metrics. This leads us to believe that approaches using only one additional network to compute perception modalities can be competitive with approaches that combine multiple. A comparison of 1 -scores between our approach and the best-performing methods that exist at this day shows that relies mainly on other features to realize its inference. This explains its lower performance compared to the two other benchmarks. However, it should not be considered an issue since those pedestrians are not directly interacting with the vehicle in any way. If they were to become a danger in the future, they would have to step closer to it, and therefore pose estimation algorithms should be able to extract informative poses.

Architecture variations and branch ablations

Table 3.9 shows that removing the parallel atrous branches from the pseudo-image stream leads to a degradation of the performance indicators (Acc, AUC, 1 ) on PIE data-set by respectively, 2%, 8% and 8%. Similarly, removing the stream acting as a regularizer with relative distances degrades the performance indicators by respectively 1%, 3% and 2%. Therefore, we can highlight the importance of the three parallel branches to extract spatio-temporal features for different time scales and the importance of the euclidean distances stream to act as a regularizer for the overall approach performance. Another interesting fact to mention is the performance drop of respectively 3%,4%,4% when the ego vehicle speed input is missing. This shows that of all the possible forms of communication by a pedestrian to announce that he or she wants to cross, pose kinematics could easily be supplemented with additional information such as vehicle/pedestrian communication forms provided by the ego-vehicle.

Secondly, we evaluate the importance of using a spatio-temporal attention module over the parallel pseudo-images extraction module. We first disregard spatio-temporal attention completely in the given pseudo-images stream and then replace CBAM blocks [START_REF] Woo | Cbam: Convolutional block attention module[END_REF] with SE blocks [START_REF] Hu | Squeeze-and-excitation networks[END_REF].

Experimental results show that removing the attention-enhanced 2D atrous convolutions degrades the performance indicators by respectively 1%, 3%, 2%, whereas replacing CBAM blocks [START_REF] Woo | Cbam: Convolutional block attention module[END_REF] by SE blocks [START_REF] Hu | Squeeze-and-excitation networks[END_REF] do not drastically impact TrouSPI-Net's performance and even increases it across some metrics according to Finally, we evaluate the importance of U-GRUs by replacing them with GRUs and Bidirectional GRUs. Table 3.9 results show that both modified approaches lead to a degradation of the performance indicators by respectively 3%, 8%, 8% and 2%, 6%, 5%. Therefore, we can highlight the importance of U-GRUs to exploit the bidirectional temporal and long-term contexts compared to other state-of-the-art approaches designed to capture sequential features. It also leads us to believe that an effective pedestrian action prediction model should focus on both long-term dependencies and multi-scale short temporal features to be effective.

TrouSPI-net's comparison with other pose-only methods

By using the newly proposed evaluation procedures [Kotseruba et al., 2021] proposed by the authors of JAAD and PIE which was designed to ensure a fair comparison between all the pedestrian prediction approaches, we could not compare TrouSPI-Net to previous approaches that were not evaluated on the given benchmark including proposed pose-only based approaches [START_REF] Fang | Is the pedestrian going to cross? answering by 2d pose estimation[END_REF], Ranga et al., 2020, Marginean et al., 2019, Ghori et al., 2018, Cadena et al., 2019, Gesnouin et al., 2020]. Even if their reported performance is evaluated on the same data-sets, they are reported under different experimental conditions and definitions.

To provide a fair comparison between TrouSPI-Net and another pose-based approach, we used the orginal implementation of SPI-Net and then extended it to evaluate it with the new benchmark in order to ensure that TrouSPI-Net provided better performance for all the data-sets than its previous version designed for short-term prediction (previously used for a prediction horizon of a single frame with an observation length of 300 frames on JAAD). Experimental results shown in Table 3.8 show that TrouSPI-Net always outperforms the extended SPI-Net [START_REF] Gesnouin | Predicting intentions of pedestrians from 2d skeletal pose sequences with a representationfocused multi-branch deep learning network[END_REF]] by a large margin on PIE, and outperforms the SPI-net approach on JAAD by 6%, 1%, 10% and 4%,1%,4%. Despite the limitations of comparing TrouSPI-Net with only one existing pose-only method, our results demonstrate that TrouSPI-Net is way more reliable than SPI-net for the three benchmarks. Therefore, it should be considered as the first pose-only based approach proposed on the benchmark at this day and should become an interesting baseline to easily compare to for future works using the new evaluation procedures.

Using a second perception modality with TrouSPI-Net

One of the main advantages of using a scene-agnostic model using such sparse perception modality instead of aggregating multiple perception modalities is the smaller model size leading to an easier deployment into embedded devices, as table 3.10 shows. Moreover, when combined with 3D convolutions of cropped images including the pedestrians, TrouSPI-Net's computational costs dramatically grows without gaining any performance on PIE data-set as tables 3.9 and 3.10 show. This may be considered [START_REF] He | Deep residual learning for image recognition[END_REF] 47.0 47.0 90.0 ConvLSTM [START_REF] Shi | Convolutional lstm network: A machine learning approach for precipitation nowcasting[END_REF] [START_REF] Rasouli | Pedestrian action anticipation using contextual feature fusion in stacked rnns[END_REF] (2 VGG) 73.6 146.5 64.5 C3D [START_REF] Tran | Learning Spatiotemporal Features with 3D Convolutional Networks[END_REF] 156.0 182.6 297.5 I3D [START_REF] Carreira | Quo vadis, action recognition? a new model and the kinetics dataset[END_REF] 24.6 334.1 46.9 PCPA [Kotseruba et al., 2021] (C3D) 220 320.2 414.9 SPI-net [START_REF] Gesnouin | Predicting intentions of pedestrians from 2d skeletal pose sequences with a representationfocused multi-branch deep learning network[END_REF] 0.3 2.5 0.3 TrouSPI-Net (ours) 3.0 6.8 5.4 TrouSPI-Net with two modalities (C3D) 216.7 322.6 412.9

3. 4.2.6 The drawbacks of relying on additional networks to extract perception modalities

Although other models also apply additional networks to extract multiple perception modalities such as pose, flow or background context and the proposed approach beats the state-of-the-art while being smaller in comparison according to Table 3.8, its application also relies on one additional algorithm to operate. If TrouSPI-Net was to be implemented outside of the JAAD and PIE benchmark, one would have to add to TrouSPI-Net's size the pose extraction model used to compute the pose information. In our case, OpenPose [START_REF] Cao | Realtime multi-person 2d pose estimation using part affinity fields[END_REF] was used to compute the inputs available in [Kotseruba et al., 2021].

Therefore, the overall approach is ∼ 53.5M parameters. However, it leads to a practical methodology as interchanging the additional approaches to extract poses does not jeopardize the TrouSPI-Net approach.

Contrary to image-based approaches, if improvements such as inference time or average precision by key-points were made in the field of pose estimation, TrouSPI-Net could still be applicable without any modification. Moreover, the proposed benchmark [Kotseruba et al., 2021] currently omits a major issue for pedestrian intention prediction: temporal tracking of pedestrians to avoid mixing identities over time.

Such questions are rarely raised and approaches mainly rely on the ground-truth IDs of each pedestrian.

However, such concerns are mandatory to easily transpose the pedestrian action prediction approaches into real-life scenarios without pedestrians' ground-truth IDs. In TrouSPI-Net's case, to ensure a better tracking of the protagonists in the scene and avoid mixing the identities of two protagonists, one could for example replace OpenPose [START_REF] Cao | Realtime multi-person 2d pose estimation using part affinity fields[END_REF] by pose estimation networks sequentially based on pose matching for tracking [START_REF] Xiu | Pose Flow: Efficient Online Pose Tracking[END_REF], Ning and Huang, 2019, Raaj et al., 2019]. Such a sub- 

Conclusion

We introduced a new lightweight multi-branch neural network to predict pedestrians' actions using only one additional network to extract perception modalities: 2D pedestrian body poses. The proposed TrouSPI-Net model largely extends and improves the SPI-Net approach in several ways. First, we introduce parallel processing branches to allow the architecture to access different time resolutions with atrous convolutions enhanced with self-attention mechanisms. Secondly, we apply U-GRUs on the evolution of relative Euclidean body distances over time, which acts as a regularizer of the first stream for both time and space. We then extend the U-GRUs approach as one baseline method to consider long-term temporal coherence and process each sequence of context features such as bounding box positions or ego-vehicle speed with U-GRUs. Finally, following the newly proposed evaluation procedures and benchmarks for JAAD and PIE (two challenging pedestrian action prediction data-sets), our experimental results show that TrouSPI-Net achieved 76% F1 score on JAAD and 80% F1 score on PIE, therefore outperforming current state-of-the-art. This shows that using only body poses can outperform approaches that combine multiple networks to extract different perception modalities. Subsequently, our model inherits interesting properties such as being completely invariant to any scene-background context, leading to a lightweight approach focusing only on the pedestrian's movement. Therefore, we believe that TrouSPI-Net could be an interesting baseline to easily compare to for future works aiming at developing a pose-only based model for pedestrian intention prediction and has the potential to improve many other human action recognition or prediction tasks.8 

Summary

In this chapter, we first provide an overview of existing approaches for pedestrian action prediction. The majority of existing techniques for pedestrian action prediction are trajectory-based, which means they depend on previously observed pedestrian positions to anticipate pedestrian positions in the future. These methods are successful when pedestrians have already crossed or are going to cross, i.e., these algorithms react to an action that has already begun rather than predicting it. We first propose an asymmetrical bidirectional recurrent neural network architecture called U-RNN to encode pedestrian trajectories and evaluate its relevance to replace LSTMs for various trajectory-based models. Our results show that there is still room for improvement in coordinates-only approaches, and indicates that interactions are not the only aspect on which pedestrian trajectory prediction can progress. Thereafter, we address the problem of pedestrian discrete intention prediction: instead of focusing on continuous trajectories describing the expected future movement of the pedestrian and merely relying on scene dynamics to predict intentions, we define the intentions of a pedestrian as a combination of his/her high-level discrete behaviors such as his/her pose dynamics or head orientation... We then make the connection between the research questions addressed for human action recognition in chapter 2 and pedestrian discrete intention prediction.

Considering the importance of crossing prediction algorithms to run efficiently for real-time usage while being robust to a multitude of complexities and conditions, we propose SPI-Net and TrouSPI-Net: two scene-agnostic, lightweight, multi-branch approaches that rely on pose kinematics to predict crossing behaviors. The proposed approaches could be applied following the application of any additional network CHAPTER 3. FROM ACTION RECOGNITION TO PEDESTRIAN DISCRETE INTENTION PREDICTION to compute pedestrian body poses and could be easily implemented in any embedded devices with realtime constraints and also in any neural hardware solution like Intel Movidius©, or FPGA since it only uses standard deep-learning operations in an euclidean grid space. Finally, We show that it is possible to make the link between the posture, the walking attitude and the future behaviours of the protagonists of a scene without using the contextual information of the scene (pedestrian crossing, traffic light...). This allowed us to divide by a factor of 20 the inference speed of existing approaches for pedestrian intention prediction while keeping the same prediction robustness.

CHAPTER 4. ASSESSING THE GENERALIZATION OF PEDESTRIAN CROSSING PREDICTORS

Introduction

In a short novel entitled funes el memorioso, published in 1942, the argentine writer Jorge Luis Borges tells the story of a young man with a memory so prodigious that he was incapable of ignoring the many details invisible or insignificant to other humans. Far from being an advantage, his inability to ignore the variations he observed had quickly proved to be a great handicap. It was simply unthinkable for him to use the same term for different objects. Impossible to acknowledge that a dog seen in profile at a particular moment could have the same name as the dog seen from the front a minute later. "To think is to forget a difference, to generalize, to abstract. In the overly replete world of Funes, there were nothing but details." Unable to forget, Funes was unable to think. On the opposite side of the spectrum of generalization but still inspired by literature, popular for his apothegms and his taste for generalization at all costs, Orwell. "Here are a couple of generalizations about England that would be accepted by almost all observers. One is that the English are not gifted artistically. [...] the English are not intellectual.

They have a horror of abstract thought, they feel no need for any philosophy or systematic world-view."

1
Between this Orwellian way of presenting, as a self-evident truth, a fact or a personal experience that may have a general value, but which is not explained, supported or illustrated 23 and Funes' incapacity to generalize there should be a proper balance between both ways of thinking and abstracting.

In machine learning, generalization also plays an important role, we don't just want a model to learn to model the training data. We want it to generalize to data it has not seen yet. We want a model to acknowledge what Funes could not: that a rotated dog still is the same dog and that is without seeing dogs where none are present. In our research field, there is a convenient way of assessing such generalization capacity: we assess the performance of a held-out test set, which consists of cases that the model has not seen previously. Sampling bias is a kind of overfitting which is that in a real-world scenario, input distributions are frequently shifted from the training distribution. The network could therefore exploit accidental regularities available in both the training set and testing set but not available in a real-world scenario. The network would then, without understanding the true regularities, accurately classify all the training instances of a given class when evaluated via the dataset but would fail to work in real life. This is why over the last two decades, the computer vision paradigm has shifted. From a pure algorithm-based vision, we have given more and more interest to the data, until we arrived at a paradigm combining both: "We started our search for a new approach with one key assumption: even the best algorithm would not generalize well if the data it learned from did not reflect the real world. In concrete terms, that meant that major advances in object recognition could occur only from access to a large quantity of diverse, high-quality training data." [START_REF] Fei-Fei | Searching for computer vision north stars[END_REF]. Even the best behavior prediction algorithm would not generalize well if the data it learned from did not reflect the real world. Yet, the full complexity of the real world cannot be encapsulated in the training data, no matter how big the dataset is.

In this chapter, we aim at showing that current evaluation protocols do not adequately represent the applicability of existing pedestrian prediction models for real-world scenarios. Comparable studies have CHAPTER 4. ASSESSING THE GENERALIZATION OF PEDESTRIAN CROSSING PREDICTORS previously been conducted in computer vision, questioning whether recent progress on the ImageNet [START_REF] Russakovsky | Imagenet large scale visual recognition challenge[END_REF] benchmark continues to represent meaningful generalization [Beyer et al., 2020] and identifying various sources of bias and noise [START_REF] Stock | Convnets and imagenet beyond accuracy: Understanding mistakes and uncovering biases[END_REF]Cisse, 2018, Northcutt et al., 2021]. However, going beyond accuracy to evaluate a model for a high-risk application with a limited amount of training data, such as pedestrian crossing prediction, has never been properly investigated.

4.2

The past, current and future state of pedestrian intention prediction benchmarks?

4.2.1 Stone Age: prior to the release of the standardized evaluation procedures

As seen in section 3.3.2, pedestrian crossing prediction has been a topic of active research, resulting in many new algorithmic solutions. However, due to differences in their evaluation criteria, comparing them used to be a somewhat unsatisfactory practice to say the least, hardly possible to be perfectly honest. Table 4.1 lists all the pedestrian action prediction models trained and evaluated on JAAD and PIE datasets prior to the release of the standardized benchmarks and evaluation procedures. As previously Table 4.1: Pedestrian action prediction models trained and evaluated on JAAD and PIE datasets prior to the standardized benchmarks and evaluation procedures.

Model Dataset Observation endpoint Observation length (s) Prediction Horizon (s) [START_REF] Rasouli | Are they going to cross? a benchmark dataset and baseline for pedestrian crosswalk behavior[END_REF]] JAAD before event 0.3-0.5 next frame [START_REF] Fang | Is the pedestrian going to cross? answering by 2d pose estimation[END_REF] JAAD all frames 0.46 next frame [START_REF] Varytimidis | Action and intention recognition of pedestrians in urban traffic[END_REF] JAAD before event one frame next frame [START_REF] Cadena | Pedestrian graph: Pedestrian crossing prediction based on 2d pose estimation and graph convolutional networks[END_REF] JAAD before event 10 next frame [Gujjar and Vaughan, 2019] JAAD all frames 0.533 0.533 [START_REF] Neogi | Context model for pedestrian intention prediction using factored latent-dynamic conditional random fields[END_REF] JAAD before event -1.33 [START_REF] Pop | Multi-task deep learning for pedestrian detection, action recognition and time to cross prediction[END_REF] JAAD all frames 0.666 1.33 [START_REF] Marginean | Understanding pedestrian behaviour with pose estimation and recurrent networks[END_REF] JAAD all frames 0.1 next frame [START_REF] Saleh | Real-time intent prediction of pedestrians for autonomous ground vehicles via spatio-temporal densenet[END_REF] JAAD all frames 0.533 next frame [START_REF] Rasouli | Pedestrian action anticipation using contextual feature fusion in stacked rnns[END_REF] PIE before event 0.5 2 [START_REF] Chaabane | Looking ahead: Anticipating pedestrians crossing with future frames prediction[END_REF] JAAD all frames 0.533 0.533 [Kotseruba et al., 2020] PIE before event 0.5 0.3/0.5/1 [START_REF] Gesnouin | Predicting intentions of pedestrians from 2d skeletal pose sequences with a representationfocused multi-branch deep learning network[END_REF] JAAD before event 10 next frame [Liu et al., 2020a] JAAD before event -1/2/3 [START_REF] Piccoli | FuSSI-Net: Fusion of Spatio-temporal Skeletons for Intention Prediction Network[END_REF] JAAD before event 0.533 0.533 [START_REF] Ranga | Vrunet: Multi-task learning model for intent prediction of vulnerable road users[END_REF] JAAD all frames 0.5/1 1 [START_REF] Singh | Multi-input fusion for practical pedestrian intention prediction[END_REF] JAAD before event 0.533 next frame [Liu et al., 2020a] JAAD before event 1 next frame stated in section 3.3.2, back in those days, anyone with a new interesting approach could then propose their evaluation protocols and therefore claim state-of-the-art without ensuring a proper comparison with others. Approaches using the entire sequence including the crossing section would claim high prediction accuracy whereas the term prediction would no longer apply since they inferred a behavior while the action had already begun. About half of the proposed approaches used sequences up to the frame preceding the crossing event for training and evaluation, while some had a prediction horizon up to three seconds later... To put it in a nutshell, the foundations of the field were thus more or less built on a comparison between apples and oranges. This particular research era where people started to get interested in discrete 

Iron Age: identifying the generalization capabilities of our models?

We believe that there is still room for improvement to efficiently compare and rank the existing. For instance, knowing how well existing predictors react to unseen data remains an unanswered question.

Nevertheless, this evaluation is imperative as serviceable crossing behavior predictors should be set to work in various scenarios without compromising pedestrian safety due to misprediction. In this chapter, we assess how pedestrian action prediction approaches react to small domain shifts and evaluate their generalization capability outside a standard train-test evaluation protocol. We show that all the current pedestrian behavior predictors show signs of over-fitting when evaluated during a direct training-test sets evaluation setting on those standardized benchmarks. This problem leads to two major drawbacks for the field:

• The training source being generally not dense in variety of scenarios nor in the number of examples, the results of state-of-the-art approaches on each dataset might just come from noise: this noise effect should probably be further aggravated since the existing approaches are based on deep learning, depending heavily on the quantity and quality of data where the performance of approaches scales up with the amount of training data.

• It prevents pedestrian behavior predictors from scaling up to real-world applications, as they are not applicable in various scenarios with small domain shifts.

The above examples recap the general motivation of this work, encouraging us to rethink the evaluation methodology to rank current top-scoring behavior predictors from the perspective of uncertainty evaluation to small domain shifts. We argue that:

• The only empirical evaluation of models in a direct train-test sets evaluation offered by the original work introducing the method is not sufficient to effectively conclude anything about its applicabil-CHAPTER 4. ASSESSING THE GENERALIZATION OF PEDESTRIAN CROSSING PREDICTORS ity in a real-world scenario. The result is often statistically non-significant during a cross-dataset evaluation scenario and leads to an ever-changing state-of-the-art.

• It would be more interesting to compare each method by evaluating how trustworthy are their uncertainty estimates under different domain shifts. is referred throughout the manuscript as cross-dataset evaluation [START_REF] Hasan | Generalizable pedestrian detection: The elephant in the room[END_REF], Chen et al., 2020, Guo et al., 2020]. By adopting cross-dataset evaluation, we test the generalization abilities of several state-of-the-art pedestrian crossing predictors to distributional shift such as pedestrian size, as shown in 

Sutor, ne ultra crepidam, or the necessity of uncertainty

It is always disturbing to discover that we are always more foolish than we think ourselves to be. Embarrassing that a well-trained expert can make mistakes in any of his or her choices. Numerous studies have documented this in every possible and unexpected use case. From the classic example in medicine where the chance that a child will be recommended for tonsillectomy depends principally on the physician rather than on the child's health [Bakwin, 1945] 5 to economics where Kahneman and Tversky were awarded the Nobel Prize to show that people were not as rational as economic models assume6 [START_REF] Kahneman | Prospect theory: An analysis of decision under risk[END_REF]. This cognitive bias does not only affect professionals: when it comes to CHAPTER 4. ASSESSING THE GENERALIZATION OF PEDESTRIAN CROSSING PREDICTORS driving, most people think their skills are above average [START_REF] Roy | I am a better driver than you think: Examining self-enhancement for driving ability[END_REF]. The point is that we should not take for granted the reliability and accuracy of any judge, no matter how expert and whether it is human or algorithmic. In some circumstances it is necessary, in addition to giving an accurate statement, to be able to quantify the certainty of the statement. This sometimes allows us to disambiguate certain situations.

In real-world scenarios, quantifying uncertainty is crucial as the input distributions are frequently shifted from the training distribution due to a number of causes such as sampling bias. Evaluating the generalization abilities of models by using cross-dataset evaluation and classification metrics only is not sufficient. In high-risk applications such as pedestrian behavior prediction, the idea that a model's predicted probabilities of outcomes reflect true probabilities of those outcomes is mandatory for high-level decisions (i.e., vehicle planning module in crowded urban traffic environments). Expected Calibration Error (ECE) and Maximum Calibration Error (MCE) are standard uncertainty7 metrics in this context [START_REF] Naeini | Obtaining well calibrated probabilities using bayesian binning[END_REF], Guo et al., 2017, Heo et al., 2018, Ovadia et al., 2019]. Predictions are divided into interval bins according to a given binning strategy, we then calculate the accuracy of each bin to estimate the predicted accuracy from finite data. Let denote the set of sample indices for which prediction confidence is inside one interval bin. The accuracy of is defined as

acc ( ) = 1 | | ∈ 1 ( ˆ = ) (4.1)
where ˆ and are respectively the predicted and true class labels for sample . The average confidence within one interval bin is defined as:

conf ( ) = 1 | | ∈ ˆ (4.2)
where ˆ is the model confidence for sample . Throughout our experiments, the maximum softmax probability [START_REF] Hendrycks | A baseline for detecting misclassified and out-of-distribution examples in neural networks[END_REF] is used as the confidence score. We therefore compare each model output pseudo-probabilities to its accuracy. We obtain the following metrics to rank methods based on their calibration:

Expected Calibration Error (ECE): takes a weighted average of the absolute difference in accuracy and confidence. Since the underlying binning approach has a significant impact on the accuracy and reliability of ECE and MCE, we use an adaptive binning strategy [START_REF] Ding | Revisiting the evaluation of uncertainty estimation and its application to explore model complexity-uncertainty trade-off[END_REF] instead of a uniform partition8 : the number of samples in a bin is adaptive to the distribution of the samples in the confidence range.

Generalization Capabilities

Datasets and Implementation Details

For this evaluation, we use two large public naturalistic datasets for studying pedestrian behavior prediction: [START_REF] Rasouli | Are they going to cross? a benchmark dataset and baseline for pedestrian crosswalk behavior[END_REF] and [Rasouli et al., 2019a]. These datasets are typically obtained by a vehicle-mounted camera as it navigates through crowded urban traffic environments:

contains 346 clips and focuses on pedestrians intending to cross, contains 6 hours of continuous footage and provides annotations for all pedestrians sufficiently close to the road regardless of their intent to cross in front of the ego-vehicle and provides more diverse behaviors of pedestrians. There are significant differences between JAAD and PIE dataset in terms of sensors: 3 different cameras are used in JAAD with narrow FOV while PIE continuous footage was recorded with with a single wide-angle lens camera. The dataset is split into ℎ and .

ℎ is biased towards pedestrians attempting to cross the street (402 crossing out of 648) and the smallest dataset available.

adds all visible pedestrians in , regardless of their position in the scene and contains more non-crossing pedestrians (490 crossing out of 2580). Similarly, contains more non-crossing pedestrians (512 crossing out of 1842). All three datasets are heavily skewed towards one class. To compensate for such significant datasets shifts label-wise, we train all our models using class weights inversely proportional to the percentage of samples for each class. Following the existing evaluation procedures [Kotseruba et al., 2021], we use the same data sampling method, the same splits and the same inputs sets for our experiments9 . However, we disregard the ego-vehicle speed input for all our models as the sensor data used for the ego-vehicle speed is only available for and could not be used for cross-dataset evaluation purposes. The observation length for all models is fixed at 16 frames. In order to combine different models trained on different data sets, the sample overlap is set to 0.8 for both and trainings. We report the results using standard binary classification metrics: AUC and F1 Score and standard confidence calibration metrics: adaptive ECE and MCE.

Baselines and state-of-the-art models

We select a subset of methods from the pedestrian crossing prediction literature, and more broadly, action recognition literature for their prevalence, practical applicability and diversity in terms of architectures and input modalities. These include:

• VGG16 [Simonyan and Zisserman, 2014] and Resnet50 [START_REF] He | Deep residual learning for image recognition[END_REF] : two baseline static models that use only the last frame in the observation sequence to predict the crossing behavior of a pedestrian.
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• ConvLSTM [START_REF] Shi | Convolutional lstm network: A machine learning approach for precipitation nowcasting[END_REF]: A model using a stack of images as input, pre-process those images with pre-trained CNN and apply ConvLSTM on those features.

• Convolutional-3D (C3D) [START_REF] Tran | Learning Spatiotemporal Features with 3D Convolutional Networks[END_REF] and Inflated-3D (I3D) [START_REF] Carreira | Quo vadis, action recognition? a new model and the kinetics dataset[END_REF]:

two models pretrained on Sports1M [START_REF] Karpathy | Large-scale video classification with convolutional neural networks[END_REF] using a stack of images as input and applying 3D convolutions to extract features.

• SPI-net [START_REF] Gesnouin | Predicting intentions of pedestrians from 2d skeletal pose sequences with a representationfocused multi-branch deep learning network[END_REF] and TrouSPI-net [START_REF] Rozenberg | Asymmetrical bi-rnn for pedestrian trajectory encoding[END_REF]: two multi-modal models relying on pedestrians' pose kinematics extracted by OpenPose [START_REF] Cao | Realtime multi-person 2d pose estimation using part affinity fields[END_REF], relative euclidean distance of key-points and evolution of the pedestrian spatial positioning. Poses sequences are converted into 2D image-like spatio-temporal representations and self-spatio-temporal attention is applied via CNN-based models for multiple time resolutions. Each remaining feature is independently processed via either U-GRUs [START_REF] Rozenberg | Asymmetrical bi-rnn for pedestrian trajectory encoding[END_REF] or feed forward neural network and fused by either applying temporal and modality attention or sent to a fc layer to predict crossing behaviors.

• SingleRNN [Kotseruba et al., 2020], Multi-stream RNN (MultiRNN) [START_REF] Bhattacharyya | Long-term on-board prediction of people in traffic scenes under uncertainty[END_REF] and Stacked with multilevel Fusion RNN (SFRNN) [START_REF] Rasouli | Pedestrian action anticipation using contextual feature fusion in stacked rnns[END_REF]: Three multi-modal models relying on RGB Images extracted by VGG16 [Simonyan and Zisserman, 2014], pose kinematics extracted by OpenPose [START_REF] Cao | Realtime multi-person 2d pose estimation using part affinity fields[END_REF] and evolution of the pedestrian spatial positioning. Input features are either concatenated into a single vector and sent to a recurrent network followed by a fc layer for crossing prediction, either processed independently by GRUs [START_REF] Chung | Empirical evaluation of gated recurrent neural networks on sequence modeling[END_REF] and the hidden state of GRUs are then concatenated and sent into a fc layer for crossing prediction or either processed by GRUs [START_REF] Chung | Empirical evaluation of gated recurrent neural networks on sequence modeling[END_REF] and fused gradually at different levels of processing and complexity.

• Pedestrian Crossing Prediction with Attention (PCPA) [Kotseruba et al., 2021]: A multi-modal model relying on RGB images extracted by C3D [START_REF] Tran | Learning Spatiotemporal Features with 3D Convolutional Networks[END_REF], pose kinematics extracted by OpenPose [START_REF] Cao | Realtime multi-person 2d pose estimation using part affinity fields[END_REF] and evolution of the pedestrian spatial positioning. Non-images features are independently encoded by GRUs [START_REF] Chung | Empirical evaluation of gated recurrent neural networks on sequence modeling[END_REF] and each is fed to a temporal attention block. 3D Convoluted features are flattened and fed into a fc layer. Modality attention is then applied to all the branches to fuse them into a single representation by weighted summation of the information from individual modalities.

New Evaluation Paradigm

Cross-dataset Evaluation Results

We present the coarse results of our cross-dataset evaluation in when trained on and tested on or vice versa. as a clear winner when it comes to cross-dataset ranking. More importantly, the obtained ranks of each method when evaluated under cross-dataset evaluation are far from the ones we usually consider when developing pedestrian crossing behavior predictors: some general methods such as I3D or C3D are on par with multi-modal methods specifically designed to tackle the problem of pedestrian crossing prediction. While part of this could be due to the removal of ego-vehicle data which is an important source of information exploited by many multi-modal approaches, this still confirms the importance of rethinking the evaluation methodology of our approaches. The ensembling provided in Table 4.3, is the closest plausible approximation of the selected models' robustness for real-world application as it integrates all available conditions and training instances while removing the sampling biases of each specific training set. It shows that the only empirical evaluation of models in a direct train-test sets evaluation is not sufficient to effectively conclude anything about its applicability in a real-world scenario. This also demonstrates that the use of classification metrics alone is not representative of the overall capacity of the models. For two given models which are equivalent with respect to classification metrics (AUC or F1 score), their calibration (ECE and MCE) can differ drastically. This supports our argument that the usage of uncertainty metrics should complement the metrics conventionally used in order to obtain a comprehensive view of the robustness of existing approaches.

Role of pre-training in uncertainty calibration

Table 4.3 illustrates that generic baseline methods (i.e. VGG16, C3D, I3D) pre-trained on well diverse and dense datasets further away from the target domain, benefit in terms of generalization and uncertainty calibration as they are on par with the methods specifically designed to tackle the problem of pedestrian crossing prediction, which was not the case in a simple train-test evaluation setting10 .

To better isolate the effects of pre-training with larger datasets we consider two I3D [START_REF] Carreira | Quo vadis, action recognition? a new model and the kinetics dataset[END_REF] but trained with different configuration: the first one being randomly initialized and the second one being pre-trained on Sports1M [START_REF] Karpathy | Large-scale video classification with convolutional neural networks[END_REF]. We assess their performance on the same datasets and report our findings in (5 runs). Dashed lines separate each probabilistic deep learning baseline. Each baseline is tested twice: first, in a classical train-test evaluation protocol and then tested by ensembling all three models trained on each training set to evaluate its robustness to small domain shift. We highlight the highest scores for each metric and for both evaluation protocols: train-test or ensembling.
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outperforming current state-of-the-art by a small margin on conventionally used evaluation protocols as they currently fail to provide the big picture of pedestrian crossing behavior prediction.

As we encourage the community to change the direction in which we are taking the research field, we investigate how additional baselines from the probabilistic deep learning literature improve the generalization ability of pedestrian behavior predictors towards small domain shifts. We believe that those methods could prove useful for the next generation of predictors and present our results with the intention that they will serve as a baseline for future work addressing our prescriptions.

Baselines from the probabilistic deep learning literature

Below, we present the selected methods from the probabilistic deep learning literature applied on top of an I3D [START_REF] Carreira | Quo vadis, action recognition? a new model and the kinetics dataset[END_REF] model:

• Non-pretrained and Deterministic: Maximum softmax probability [START_REF] Hendrycks | A baseline for detecting misclassified and out-of-distribution examples in neural networks[END_REF] of networks trained independently on each dataset using either random initialization or pretrained weights from Sports1M [START_REF] Karpathy | Large-scale video classification with convolutional neural networks[END_REF]. (We set = 5 for each method below.)

• Monte-Carlo Dropout (MC Dropout): Dropout activated at test time as an approximate bayesian inference in deep Gaussian processes [START_REF] Gal | Dropout as a bayesian approximation: Representing model uncertainty in deep learning[END_REF].

• Temperature Scaling11 (TempScaling): Post-hoc calibration of softmax probability by temperature scaling using a validation set [Guo et al., 2017].

• Last Layer Dropout (LL Dropout): Bayesian inference for the parameters of the last layer only:

Dropout activated at test time on the activations before the last layer.

• Last Layer Stochastic Variational Bayesian Inference (LL SVI): Mean field stochastic variational inference on the last layer using Flipout [START_REF] Wen | Flipout: Efficient pseudoindependent weight perturbations on mini-batches[END_REF].

• Ensembling (Ens): Average prediction of three networks trained independently on each training set using pre-trained weights [Lakshminarayanan et al., 2017]. Similarly to Table 4.3, we use ensembling as a plausible approximation of one model's robustness for real-world scenarios.

Discussion

We present the results obtained by probabilistic methods for both evaluation protocols: train-test and ensembling in Table 4.4. This allows us to report the effect of dataset shift on accuracy and calibration for the probabilistic deep learning methods. Naturally, we would like to obtain a model, that is well-calibrated on the training and testing distributions of each dataset and remains calibrated with ensembling. We observe that, similarly to the deterministic methods, the quality of predictions consistently degrades with dataset shift regardless of the selected probabilistic method for both and .

However, overall robustness degrades more significantly for some methods. For instance, TempScaling, e.g. post-hoc calibration of softmax probability, seems to be one of the best train-test probabilistic methods in regards to expected calibration error (ECE) when evaluated in a standard train-test procedure but falls behind when evaluated under dataset shift. In fact, when evaluated under dataset shift, CHAPTER 4. ASSESSING THE GENERALIZATION OF PEDESTRIAN CROSSING PREDICTORS all the methods except Non-pretrained ones outperform TempScaling in regards to ECE. Similarly, we report that better calibration and accuracy on each test set does not correlate12 with better calibration under ensembling: the average ECE of the methods when evaluated with classical train-test scenario is [0.166, 0.074, 0.056, 0.042, 0.079, 0.070] and the average ECE of the same methods under dataset shift are [0.096, 0.077, 0.078, 0.085, 0.077, 0.042]. Interestingly, most of the selected probabilistic methods perform better on average than the deterministic I3D under train-test evaluation protocols but fail to generalize when exposed to dataset shift. The exception to the rule is LL SVI, which looks very promising in terms of generalization to small domain shifts. As our experiments required pre-trained weights from I3D, we could not replace each convolutional layer with mean-field variational Flipout layers, we only changed the last layer of the given model to obtain a variational bayesian inference for a quick baseline.

Nevertheless, we believe that this could be a future research to consider. We should explore the effects of transferring initially learned features on large bases further away from the target task and explore how probabilistic methods react to transfer-learning and domain-shift.

Summary

In this chapter, we show that the classical train-test sets evaluation for pedestrian crossing prediction, i.e., models being trained and tested on the same dataset, is not sufficient to efficiently compare nor conclude anything about their applicability in a real-world scenario: the benchmarks being either too small or too loose in variety of scenarios, it is easy for a given model to over-fit on a specific target dataset.

In order to evaluate the generalization capacity of the approaches, we conduct a study based on direct cross-dataset evaluation for eleven methods representing the diversity of architectures and modalities used for pedestrian crossing prediction. We found a huge lack of generalization and robustness for all selected approaches. This led us to a ranking of existing approaches that is much more complex and less absolute than the standard one. We secondly discuss the importance of quantifying a model's uncertainty. Although this is currently completely disregarded, it is common sense to use it in our field of application. We discover two interesting properties: pre-training well-established models on diverse and dense datasets further away from the target domain before fine-tuning to our target task improves calibration and, two models with equivalent classification scores do not necessarily have equivalent calibration scores. This may prove interesting to consider when comparing their usefulness in real-world scenarios with inputs distribution frequently shifted from the training distribution. Finally, we enforce the importance of evaluating the robustness of pedestrian crossing behavior models by evaluating how trustworthy are their uncertainty estimates under domain shifts with cross-dataset evaluation. We encourage the community to consider those new protocols and metrics in order to reach the end-goal of pedestrian crossing behavior predictors: vehicle implementation. In this thesis, we explored deep learning approaches as a way to efficiently leverage spatial and temporal components of pedestrian poses kinematics to efficiently detect their intention of crossing in urban traffic environment.

Summary

This thesis aimed to answer the three research questions presented in section 1. No, we should not only rely on the very composition of layers to impose relational inductive biases on the learner when faced with problems with little available data. Many modern deep learning methods follow an "end-to-end" design philosophy that emphasizes minimal a priori representational and computational assumptions, which explains why they tend to be so data-intensive. However, we have seen in chapter 2 that since anything that imposes constraints on the learning trajectory is considered as an inductive bias, and given all the possible combinations that can only be evaluated empirically, no trend is easily distinguishable in terms of identifying the best architecture to model sequence for skeletal action recognition. Deep learning being a science that is constantly confronted to the risk of confirmation bias, we questioned the importance of representations, inductive biases and their roles in skeletal action recognition. Firstly, we evaluated the importance of explicit temporal modeling for gesture recognition.

We proposed a fully-connected autoencoder, that does not benefit from any relational inductive bias and enforces the mapping from inputs to outputs in the embedding via statistical regularizations. We showed that the proposed approach reaches the performances of classic sequence-focused architectures on action classification tasks with little available data. Secondly, we investigated the importance of sending Nuanced yes. Many approaches have been proposed that report interesting results on pedestrian crossing prediction. However, most of them may suffer from a large model size and slow inference speed by aggregating multiple forms of perception modalities extracted by additional networks such as background context, optical flow, or pose estimation information. In this manuscript, we specifically focused on the simple yet informative skeleton modality, as it has been proven to be sufficient to describe and understand the motion of a given action without any background context. We first list the pedestrian and environmental factors involved in pedestrian decision-making process in accordance with the perceptive modality selected. By only considering the kinematics of a pedestrian's pose, we only capture certain factors impacting the decision to cross, mainly, attention of the pedestrian towards its environment, walking pattern and certain forms of communication such as eye contact with the driver. We proposed SPI-Net and TrouSPI-Net: two scene-agnostic, lightweight, multi-branch approaches that rely on pose kinematics to predict crossing behaviors. Then, we showed that it is possible to make the link between the posture, the walking attitude and the future behaviours of the protagonists of a scene without using the contextual information of the scene (pedestrian crossing, traffic light...). Still, for a crossing prediction algorithm to be as efficient as the approaches using multiple perception modalities, it is necessary to include additional information to the pose kinematics itself. For instance, spatial positioning of the pedestrian based on 2D bounding box locations can then be used to infer his trajectory and velocity, ego-vehicle speed allows the model to incorporate an additional form of non-gestural communication between the pedestrian and the driver. These two inputs are not strictly speaking visual perception modalities as they can be directly derived from a pose estimation algorithm or retrieved directly by the vehicle data. Nevertheless, this is what leads us to be cautious when answering our second research question.

Question 3 Does recent progress on pedestrian intention prediction benchmarks continue to represent meaningful generalization? What evaluation protocol and metrics should be used to go beyond accuracy in order to evaluate a model for a high-risk application with a limited amount of training data?

No, we showed that the classical train-test sets evaluation protocol for pedestrian crossing prediction, i.e., models being trained and tested on the same dataset, is not sufficient to efficiently compare nor conclude anything about their applicability in a real-world scenario: the benchmarks being either too small or too loose in variety of scenarios, it is easy for a given model to over-fit on a specific target dataset. The classical performance metrics for classification being no longer sufficient to compare the existing methods with the new evaluation paradigm, we looked at a complementary category of metrics to compare pedestrian intention prediction models and discussed the importance of quantifying a model's uncertainty. Although uncertainty is currently completely disregarded in the current state of the benchmark, it is common sense to use it in our field of application. In order to build the foundation on which future work should be based on, and, in addition to the eleven deterministic baselines evaluated under domain shift to demonstrate that the current evaluation protocol will also reach its limits, we report the results CHAPTER 5. CONCLUSION of multiple baselines from the probabilistic deep learning literature, designed to tackle the problem of improving model uncertainty. Given all of the above, we advise the community to change the direction in which we are taking the research field: with so little existing data, non-existent generalization of models, and inconclusive ranking of them, we need to agree to properly evaluate our approaches in order to minimize the noise of our productions and thus, make the research field more sustainable and representative of the real advances to come.

Future Works

Our work can be extended in several directions. We suggest a few prospective ideas that possibly might be relevant for future research:

Action Recognition with little available data

• The development of a sample-efficient "AI" for small-data problems that arise in many domains related to human motion. From preserving the knowledge for future generations of expert gestures in niche fields such as glassblowing, blacksmithing or stonemasonry, to tracking the posture of an athlete for a specific sport such as fencing, boxing or gymnastics, we will need to efficiently represent those expert gestures. We are mostly moving towards this industrial transfer learning paradigm in which big foundation models that emphasize minimal a priori representational assumptions are fine-tuned on downstream tasks. Academia should persist with orthogonal goals and create new ways of representing gestures. This may involve, manually integrating domain knowledge into the network, prior to the application of the network or inside the cost function of the network.

Pedestrian Discrete Intention Prediction

• Temporal tracking of pedestrians: In the real world, there are usually more pedestrians on the streets passing and occluding each other, which requires sophisticated mechanisms not only for their detection but for their temporal tracking without mixing their identity over time. The literature completely omits such issues and relies on the ground truth spatial coordinates and individual IDs of each pedestrian provided by each dataset. To address a better follow-up of the protagonists in the scene and to avoid mixing the dynamics of two protagonists due to a change of camera angle, future research should focus on building an end-to-end framework based on unlabeled coordinates of pedestrians, temporal tracking of pedestrians and any pose-based model for pedestrian intention prediction. New research questions will then arise, it might be necessary to quantify the robustness to tracking errors for each new contribution. That new robustness to tracking error metric may even be the missing piece to having a more representative ranking of methods.

• Improving pose estimation methods: necessary step of an intention prediction model of which the analysis of the posture is an essential component. One major drawback of our work is to rely on off-the-shelf pose estimation algorithms without trying to improve the existing ones to make them fit the application field. However, similarly to the OSI 1 model, our approaches rely on inde-CHAPTER 5. CONCLUSION pendent implementations of methods for each specific task. It leads to a practical methodology:

interchanging the pose estimation algorithms does not compromise the entire approach. Currently, one of the main limitations of a 2D pose estimation is the ability to deal with pedestrian occlusions in a two-dimensional space. Therefore, in order to improve the pose detection, the question of adding a third dimension may arise. Currently, the methods for estimating 3D poses are much less mature than those for 2D pose estimation. One of the main reasons, to this day, has been the lack of reliable data sets available. However, our pipeline makes it easy to keep up with the state-of-the-art in this field without completely disrupting the approach for intention prediction. If major advances were made in the field of pose estimation, our approach might still be relevant.

A concrete example would be the release of cheap RBG-D cameras that can be easily deployed on the ego-vehicle: the depth modality would then make it easier to estimate 3D poses and thus potentially improve the robustness of our approaches without any architectural modifications.

The future of pedestrian crossing prediction benchmarks

• We need to properly deal with the fact that the world is not completely predictable: There is no such thing as truly random but sometimes, we simply lack the information to make a sound judgement: if you know the entire wave function of the universe in a cubic kilometer surrounding the tosser and have a very powerful computer, coin flipping is almost completely deterministic. If we combine all the available perception modalities, if we take into account the age, sex and religion or any other human factor perspectives influencing pedestrians' behaviors, will the prediction be any less noisy? In this thesis, we came up with the idea of using uncertainty calibration to show that sometimes, a judgement is not as enlightened as it seems, despite looking accurate at first glance. If anyone was to continue my research, I would advise him/her not to put too much stress on beating the current state-of-the-art with the current evaluation protocols. I would rather advise him/her to answer these two questions which I believe are essential for the future of the research field: "Given two models, one more accurate and the other better calibrated, which should a practitioner choose?" and "Is there a way to ensure good system performance at integration-time?" 
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ABSTRACT

The autonomous vehicle (AV) is a major challenge for the mobility of tomorrow. Progress is being made every day to achieve it; however, many problems remain to be solved to achieve a safe outcome for the most vulnerable road users (VRUs). One of the major challenge faced by AVs is the ability to efficiently drive in urban environments. Such a task requires interactions between autonomous vehicles and VRUs to resolve traffic ambiguities. In order to interact with VRUs, AVs must be able to understand their intentions and predict their incoming actions. In this dissertation, our work revolves around machine learning technology as a way to understand and predict human behaviour from visual signals and more specifically pose kinematics. Our goal is to propose an assistance system to the AV that is lightweight, scene-agnostic that could be easily implemented in any embedded devices with real-time constraints. Firstly, in the gesture and action recognition domain, we study and introduce different representations for pose kinematics, based on deep learning models as a way to efficiently leverage their spatial and temporal components while staying in an euclidean grid-space. Secondly, in the autonomous driving domain, we show that it is possible to link the posture, the walking attitude and the future behaviours of the protagonists of a scene without using the contextual information of the scene (zebra crossing, traffic light...). This allowed us to divide by a factor of 20 the inference speed of existing approaches for pedestrian intention prediction while keeping the same prediction robustness. Finally, we assess the generalization capabilities of pedestrian crossing predictors and show that the classical train-test sets evaluation for pedestrian crossing prediction, i.e., models being trained and tested on the same dataset, is not sufficient to efficiently compare nor conclude anything about their applicability in a real-world scenario. To make the research field more sustainable and representative of the real advances to come. We propose new protocols and metrics based on uncertainty estimates under domain-shift in order to reach the end-goal of pedestrian crossing behavior predictors: vehicle implementation.
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1Question 2

 2 Inductive biases are the set of assumptions a learner uses to predict results given inputs it has not yet encountered. When training deep learning architectures with little available data, should we only rely on the very composition of layers to impose relational inductive biases on the learner? Does enforcing certain constraints towards the data representation of designated hidden layers, sending informative-representation ready data to the classification network help the performance of deep learning networks for action classification? Visual skeletal representations are known to be sufficient for both humans and machines to describe and recognize biological motion, including human motion. Can pose kinematics be sufficient to serve as the only input when modeling non-trivial and non-periodic tasks related to pedestrian intention prediction? Question 3 Does recent progress on pedestrian intention prediction benchmarks continue to represent meaningful generalization? What evaluation protocol and metrics should be used to go beyond accuracy in order to evaluate a model for a high-risk application with a limited amount of training data? First, to focus on the spatio-temporal aspect of poses kinematics, we choose to work on skeletal action recognition in a controlled environment. At the time of the beginning of this thesis, the state-of-the-art approaches for skeletal action recognition focused mainly on the sequential modeling part of the problem while relying heavily on deep-learning networks to automatically build high-level representations of the raw input. Since deep learning approaches depend heavily on the quantity and quality of data where the performance scales up with the amount of training data, the given paradigm does not encourage the community to study and improve the capabilities of deep networks with little available training data. For that reason, we choose to design deep learning architectures that act on both spatial and temporal components of the raw input and enforce the importance of engineering the data used, prior to blindly relying on automatic features learning from training examples.

  studied in close relation to motion patterns of animals and were typically observed in arts 1 . Most notably in the case of sculpture, artists were seeking a very accurate depiction of motion through a single static image.

Figure 2 . 1 :

 21 Figure 2.1: Roman bronze reproduction of Myron's Discobolus. The potential energy expressed in this sculpture's pose, expressing the moment of stasis just before the release, is an example of the advancement of Classical antiquity sculpture to depic motion through a static pose.

Figure 2 . 2 :

 22 Figure 2.2: Drawing in Leonardo da Vinci's sketchbooks (a man going upstairs, or up a ladder).

Figure 2 . 3 :

 23 Figure 2.3: Chronophotography of a woman walking downstairs (Eadweard Muybridge, late 19th century)

CHAPTER 2 .

 2 Figure 2.5: Action samples of different data modalities. Left to right: RGB, Skeleton, Depth, Infrared, and Point Cloud.

  costs. Current research in this field focuses on designing different types of deep learning frameworks to efficiently extract spatio-temporal features in a video: namely, Two-Stream 2D CNN-based methods, RNN-based methods and 3D CNN-based methods. Two-Stream 2D CNN-based methods, as shown in Fig 2.6, learn different types of information (e.g., spatial and temporal) from the input video features through separate networks and then perform late fusion to obtain the performed action. Some works proposed to enhance the vanilla version of Two-

  Figure 2.6: Illustration of RGB-based deep learning methods for action recognition: (a): two-stream 2D CNN-based methods, (b) RNN-based methods, (c) 3D CNN-based methods. Image adapted from [Sun et al., 2020].

  workable distance which constraints the usage of depth data in non-controlled, open environments. Due to the lack of texture information, the depth modality is most of the time used in combination with its corresponding RGB stream as they are complementary in terms of provided information: e,g RGB+D. The question now resides in the fusion algorithm strategy (early, intermediate, late... [Guerry et al., 2017]) used to efficiently combine RGB stream and depth data as presented in Fig 2.7.

Figure 2 .

 2 Figure 2.7: An Architecture of decision level fusion of RGB stream and Depth modalities. Picture credit[START_REF] Gao | Rgb-d-based object recognition using multimodal convolutional neural networks: A survey[END_REF] 
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 2 Figure 2.8: Examples of poses. Picture credit[Babu, 2019] 

Figure 2 . 9 :

 29 Figure 2.9: Example of difficult cases for skeletonisation algorithms: clothing and brightness on the left, occlusion and scale on the right.

CHAPTER 2 .

 2 Figure2.10: Top down: consists of adding a person detector in order to identify all the articulations (keypoints) of each person and then estimate the pose according to them. Bottom up: consists of detecting all the keypoints in the image (i.e the limbs of each person), then associating these keypoints with their respective owners. Picture Credit[BeyondMinds, 2020] 

  2.5) with ( ) the -dimensional trajectory of the articulation over time, ( ), ( ) ( ) the onedimensional trajectory of the articulation over time on the , , axis.

Figure 2 .

 2 Figure 2.11: Trajectories of the joints of a walking skeleton. Picture credit[START_REF] Olsen | Simultaneous inference for misaligned multivariate functional data[END_REF] 
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 2 Figure 2.12: Organization of the 3D skeleton data structure into a three-channel image (RGB)

  graph. So far, research in deep-learning for action recognition on skeletal data has focused mainly on Euclidean data. The non-Euclidean nature of data in graph format makes the use of basic operations, such as convolution, difficult to perform. However, convolutions have by definition the ability to extract local spatial features and could use the skeleton data structure in graph format for the classification of human actions. Such ability fits perfectly to Graph-type data structures since they are, by definition, locally connected structures: the set of neighbors of a node.

Figure 2 .

 2 Figure 2.13: (left) Convolution on 2-D grid-like data. The number of neighboring nodes is a fixed number determined by the filter size. (right) Generalized convolution operation on unstructured data.The number of neighboring nodes, determined by edge connectivity may vary from node to node. Picture credit[START_REF] Wu | A comprehensive survey on graph neural networks[END_REF] 

  We have seen in section 2.4 that existing skeletal action prediction models focus mainly on the sequential modeling part of the problem by modeling the trajectories of joints over time. Moreover, those CHAPTER 2. HUMAN ACTIVITY RECOGNITION WITH POSE-DRIVEN DEEP LEARNING MODELS

CHAPTER 2 .

 2 Figure 2.14: Pipeline of the approach:(1) we train an auto-encoder to reconstruct a sequence representing an action according to the evolution over time of the keypoints. We also add a constraint specific to the separability of classes in the latent space. (2) We then extract the weights of the encoder part up to the bottleneck represented in red and add a classifier, which transforms the encoder part into a pre-trained network on the data for action classification.
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 2 Figure 2.15: Example of a swipe left gesture extracted from SHREC dataset. Picture Credit [De Smedt et al., 2017].
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 2 Figure 2.16: Example of actions and scenes extracted from JHMDB. Picture Credit [Liu et al., 2018].

Figure 2 .

 2 Figure 2.18: Visualization of the projection of the instances and their class centroids in the latent space for SHREC dataset via T-Sne: left classic auto-encoder, right auto-encoder combined with Linear Discriminant Analysis.

  2.5.2 Data-centric AI: the importance of the input data representation2.5.2.1 IntroductionMany modern deep learning methods follow an "end-to-end" design philosophy that emphasizes minimal a priori representational and computational assumptions, which explains why they tend to be so dataintensive. When performing action recognition, neural networks are designed to extract temporal features from gestures and then merge them hierarchically depending on their sequence-focused design in order to perform the final classification. Intermediate representations of the gestures are entirely learned by the model and its corresponding inductive biases, without any manual intervention. However, since model CHAPTER 2. HUMAN ACTIVITY RECOGNITION WITH POSE-DRIVEN DEEP LEARNING MODELS representations are based on the input data representation, finding an appropriate input representation is crucial to leverage the full potential of the network. In this subsection, we evaluate how the original input representation influences the final model accuracy.The majority of data structure format of poses available through pose estimation approaches ignores the physical dependency relationships between joints and adds false connections between body joints that are not physically linked.

Figure 2 .

 2 Figure 2.19: Data structure of the skeleton representation obtained with the OpenPose library[START_REF] Cao | Realtime multi-person 2d pose estimation using part affinity fields[END_REF] 

CHAPTER 2 .

 2 HUMAN ACTIVITY RECOGNITION WITH POSE-DRIVEN DEEP LEARNING MODELS key-point. All sequences of skeletons can then be sampled in the form of a 3-dimensional ( , , )shaped tensor representing a 2D image-like spatio-temporal continuous representation of the sequence of poses. The horizontal axis of each pseudo-image represents the key-points axis while the vertical axis represents the time axis. ( , , ) dimensions of each key-point are then mapped to channels. Such representations allow us to extract spatio-temporal features using standard computer vision methods such as convolution in 2D grid spaces.

Figure 2 .

 2 Figure 2.20: Kernel of a 2D convolution sliding over the pseudo-image
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 2 HUMAN ACTIVITY RECOGNITION WITH POSE-DRIVEN DEEP LEARNING MODELS Algorithm 3: Depth-First Search (DFS)

Figure 2 .

 2 Figure 2.21: (a) Joints of the skeleton of a human body with the initial data structure (14 keypoints). The visiting order of the nodes is incremental:0-1-2-3-...-13. (b) The skeleton is transformed into a tree structure. (c) The tree can be unfolded into a chain whose order of visit of the nodes maintains the physical relationship of the joints: 1-0-1-8-10-12-10-8-1-9-11-13-11-9-1-2-4-6-4-2-1-3-5-7-5-3 (26 keypoints).

CHAPTER 2 .

 2 Figure 2.22: The network architecture of DD-Net [Yang et al., 2019]. "2×CNN(3, 2*filters), /2" denotes two 1D ConvNet layers (kernel size = 3, channels = 2*filters) and Maxpooling (strides = 2). Other convolutive layers are defined in the same format. GAP denotes Global Average Pooling. FC denotes Fully Connected Layers. We can change the model size by modifying the "filters" parameter.

Figure 2 .

 2 Figure 2.23: The architecture of the LeNet network [LeCun et al., 1998], with the basic components of a convolutional network: convolutions, pooling, fully connected layer and a softmax classifier.
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  therefore a classification problem. The prediction can rely on multiple sources of information, including visual features of the pedestrians and their surroundings, pedestrian kinematics, spatial positioning of the pedestrian based on 2D bounding box locations, optical flow and ego-vehicle speed.As part of our contributions presented in this chapter, we first detail the different types of existing ap-CHAPTER 3. FROM ACTION RECOGNITION TO PEDESTRIAN DISCRETE INTENTION PREDICTIONproaches for pedestrian trajectory forecasting, we then introduce an asymmetrical bidirectional recurrent neural network architecture called U-RNN to encode pedestrian trajectories and evaluate its relevance to replace LSTMs for various trajectory-based models. Secondly, instead of focusing on continuous trajectories describing the expected future movement of the pedestrian and merely relying on past trajectories to predict intentions, we address the problem of pedestrian discrete intention prediction. The complexity of a pedestrian discrete intention prediction algorithm is directly impacted by the number of perception modalities it uses. Fusing multiple perceptive modalities into a single representation often leads to a high complexity, a high training time and a consequent inference time due to the presence of multiple networks extracting features for each modality (RGB, Optical Flow, Pose Dynamics...). Considering the importance of crossing prediction algorithms to run efficiently for real-time usage while being robust to a multitude of complexities and conditions, our goal is to propose a model using only pose kinematics

Figure 3

 3 Figure3.1: Trajectory-based pedestrian action prediction: the task is to forecast the future trajectories (dashed) of all the protagonists of the scene. Trajectory-based pedestrian action prediction involves a combination of individual goals and social interactions with other agents: pedestrian X1 will deviate from his primary trajectory to avoid a collision based on past trajectories of pedestrian X2. Picture credit[Kothari et al., 2021] 

Figure 3 . 2 :

 32 Figure 3.2: Illustration of the grid-based interaction encoding modules for trajectory-based intention prediction. (a) Occupancy pooling: each cell indicates the presence of a neighbour (b) directional pooling: each cell contains the relative velocity of the neighbour with respect to the primary pedestrian. (c) Social pooling: each cell contains the LSTM hidden-state of the neighbour. Picture credit [Kothari et al., 2021] 

  Other methods. Even though non-RNN methods cannot take advantage of the research on interaction modules, alternative machine learning approaches have been developed. Convolutional Neural Networks are faster than RNN-based methods due to parallelization, but the performances are significantly lower[Nikhil and Tran Morris, 2018]. Some authors have explored the popular Transformers architecture, but the results are inferior to those of RNNs with state-of-the-art social interaction modules[Giuliari et al., 2021]. Research has also been conducted on applying Inverse Reinforcement Learning (IRL) to the pedestrian trajectory prediction problem[START_REF] Fernando | Neighbourhood context embeddings in deep inverse reinforcement learning for predicting pedestrian motion over long time horizons[END_REF], even though retrieving the pedestrian cost function requires much more computation than learning a predictor.
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 33 Figure 3.3: Sample from the Stanford Drone Dataset (which is not included in the Trajnet++ benchmark).The environment would play an important role in order to predict trajectories that do not go on the lawn.

Figure 3 . 4 :

 34 Figure 3.4: Comparison between Bi-RNN and U-RNN architectures (blue: inputs -red: outputs -black: hidden states -green: intermediate output). U-RNN can use the information from the future during the forward pass, whereas the Bi-RNN only concatenates two naive readings in both directions.

  based our experiments on the Trajnet++ LSTM baseline [Kothari et al., 2021] with respect to a variety of interaction modules: directional, occupancy and social pooling (see Fig 3.2). All hyper-parameters CHAPTER 3. FROM ACTION RECOGNITION TO PEDESTRIAN DISCRETE INTENTION PREDICTION except for the encoder remained unchanged. For clarification purposes, we further explain our methodology for the directional pooling case.

  Figure 3.5: Images from different datasets from which the Trajnet++ benchmark trajectories are extracted. Left: ETH-hotel dataset -Center: UCY-zara dataset -Right: UCY-students dataset.

CHAPTER 3 .

 3 Figure 3.6: Visualization of four high level defined trajectory categories and visualization of all Type III interactions. Picture credit [Kothari et al., 2021].

CHAPTER 3 .

 3 Figure 3.7: "Factors involved in pedestrian decision-making process at the time of crossing. The diagram is based on a meta-analysis of the past literature. The large circles refer to the major factors and small circles connected with solid lines are sub-factors. The dashed lines show the interconnection between different factors and arrows show the direction of influence". Picture and legend credits [Rasouli and Tsotsos, 2019].
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 3 Figure 3.8: Pedestrian Intention Prediction: the objective is to predict if the pedestrian will start crossing the street at some time given the observation of length . Figure adapted from [Kotseruba et al., 2021].

  Figure3.9: Example of a multi-modal approach for pedestrian crossing prediction, in the given case the architecture is composed of five GRUs. Each of which processes a concatenation of features of different modalities and the hidden states of the GRU in the previous level. The information is then fused into the network gradually according to the complexity of the features. Picture credits[START_REF] Rasouli | Pedestrian action anticipation using contextual feature fusion in stacked rnns[END_REF].

  3 listing the pedestrian and environmental factors involved in pedestrian decision-making process in accordance with the perceptive modality used. A person's head direction, for example, frequently reflects where he intends to travel, whilst his body orientation indicates which direction he is presently going (See Fig 3.10). Our contributions are summarized in the following: • We propose SPI-Net and TrouSPI-Net: two scene-agnostic, lightweight, multi-branch approaches that rely on pose kinematics to predict crossing behaviors. The proposed approaches could be applied following the application of any additional network to compute pedestrian body poses and could be easily implemented in any embedded devices with real-time constraints since it only uses standard deep-learning operations in an euclidean grid space. SPI-Net and TrouSPI-Net are both CHAPTER 3. FROM ACTION RECOGNITION TO PEDESTRIAN DISCRETE INTENTION PREDICTION

Figure 3 .

 3 Figure 3.11: The multi-branch architecture of SPI-Net: the left branch focuses on the evolution of Geometric features relative to certain identified key-points over time. The second one focuses on the evolution of the spatial representation of skeletal key-points as a function of time in the Cartesian coordinate system. CNN 2D Blocks denote one 2D ConvNet layer (kernel size= 3), an AveragePooling layer and a Batchnormalization layer. Other Dense blocks are defined in the same format with a Batchnormalization layer following each Dense layer.
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 3 FROM ACTION RECOGNITION TO PEDESTRIAN DISCRETE INTENTION PREDICTIONand body movement results in a delayed detection of the pedestrians changing their crossing intention".

  Figure3.17: The network architecture of TrouSPI-Net: Its inputs consist of a sequence of 2D body poses transformed into a pseudo-image, relative pairwise distances of skeletal joints, bounding boxes, and ego-vehicle speed. U-GRUs encode every feature except pseudo-images, and each is fed into a temporal attention block. Pseudo-images are processed by parallel atrous CBAM[START_REF] Woo | Cbam: Convolutional block attention module[END_REF] blocks with different dilation rates and then added into a single vector in order to make the size of the pseudo-images block equal to the size of the U-GRUs outputs. Modality attention is then applied to the outputs of each branch, and the weighted outputs are fed into the fully connected layer. U-GRU blocks: the first GRU layer does the reverse pass, we then concatenate its output with the input data and finally compute the second GRU layer's output with a forward pass. CBAM blocks: given an intermediate feature map extracted by atrous 2D convolutions, the module sequentially infers attention maps along two separate dimensions: channel and spatial.

  to all our features branches to fuse them effectively. Nonetheless, the nature of the inputs merged in TrouSPI-net is entirely different compared to the initial multi-modal PCPA[Kotseruba et al., 2021] architecture. While PCPA[Kotseruba et al., 2021] merges inputs such as sequences of RGB camera images processed by 3D convolution and poses processed via simple recurrent networks without spatio-temporal coherence of body actions, TrouSPI-Net was designed to operate without needing additional RGB scene-context and uses different body poses representations that were encoded to treat the spatial and the temporal information of body action for different time resolutions. For each feature extracted by U-GRUs: we apply temporal attention[Kotseruba et al., 2021] to weight the relative importance of frames in the observation relative to the last seen frame. We then apply modality attention[Kotseruba et al., 2021] to the weighted outputs of the U-GRUs features and the output of the pseudo-images stream. This fuses inputs from multiple modalities into a single representation by weighted summation of the information from individual modalities. The output of the modality attention block is finally passed to a dense layer for prediction. CHAPTER 3. FROM ACTION RECOGNITION TO PEDESTRIAN DISCRETE INTENTION PREDICTION
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 3 FROM ACTION RECOGNITION TO PEDESTRIAN DISCRETE INTENTION PREDICTION Table 3.8: Evaluation results for baseline and state-of-the-art models and their variants on PIE and JAAD data-sets. Dashed lines separate different types of architectures. Modalities correspond to the type of networks used in the given approach, Model Params corresponds to the size of the network compiled on the benchmark [Kotseruba et al., 2021] with Additional Costs (Optical flow, Body Pose, RGB features) already extracted. 0.58 0.49 0.70 CHAPTER 3. FROM ACTION RECOGNITION TO PEDESTRIAN DISCRETE INTENTION PREDICTION

  stitution would provide the TrouSPI-Net model every modality it needs to work in a non-controlled environment with only one additional network: body poses, handcrafted body poses features, bounding boxes positions of the pedestrians and their respective individual ID's. CHAPTER 3. FROM ACTION RECOGNITION TO PEDESTRIAN DISCRETE INTENTION PREDICTION
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 4 ASSESSING THE GENERALIZATION OF PEDESTRIAN CROSSING PREDICTORSfield's structural failings, not simply the personal shortcomings of individual models, papers, or research groups.

Figure 4 . 1 :

 41 Figure 4.1: Distribution of pedestrian bounding box height in pixel for ,

Figure 4 . 2 :

 42 Figure 4.2: Examples of crossing and non-crossing pedestrians from and datasets. The conditions under which pedestrians act from one scenario to another can differ drastically concerning input format and domain shift: pedestrian size, pedestrian positioning in the scene, illumination conditions, occlusion...

Fig 4 .

 4 Fig 4.1, pedestrian positioning in the scene, illumination conditions or occlusion as shown in Fig 4.2.

  (MCE): measures the maximum discrepancy between accuracy and confidence. = max |acc ( )conf ( )| (4.4) CHAPTER 4. ASSESSING THE GENERALIZATION OF PEDESTRIAN CROSSING PREDICTORS

  Fig 4.3. For readability purposes, the corresponding critical difference diagram is reported on Fig 4.5 and the average distribution of performance of the selected approaches is reported on Fig 4.4. The results of the average prediction given by the three models trained on each training set for one given test set are reported in

Figure 4 . 4 :

 44 Figure 4.4: Distribution of the performance of the eleven selected approaches when evaluated in a direct train-test scenario and when evaluated in cross-dataset scenarios.

Figure 4 .

 4 Figure 4.5: Critical Difference Diagram[Demšar, 2006]: first a Friedman test is performed to reject the null hypothesis, we then proceed with a post-hoc analysis based on the Wilcoxon-Holm method. We compare the robustness of classifiers over multiple training and testing sets shifts. We can see how each method ranks on average. A thick horizontal line groups a set of classifiers that are not significantly different ( = 0.1).
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 44 shows that however robust the individual classifier is, there is a general trend for classifiers to decline when exposed to a different test set than the expected one. This is consistent with all our experiments with the exception of ℎ . being an extension to the set of samples with behavioral annotations, "generalizes" well on ℎ but unsurprisingly, the converse is far from true. Even when trained on a relatively diverse dataset ( ) and inferred on a smaller one in comparison ( ℎ ), selected CHAPTER 4. ASSESSING THE GENERALIZATION OF PEDESTRIAN CROSSING PREDICTORS methods barely show signs of generalization. More alarming, some methods even under-performed a random binary guess based on class distribution when exposed to a different testing set than the expected one. While the task, standardized inputs and observation length are the same across all three datasets, none of the tested models reaches a satisfactory level of generalization across any other testing set. When it comes to comparing performance towards small domain-shift at the granular level of individuals methods, the critical difference diagram reported in Fig 4.5, shows that none of the selected methods arise

  Fig 4.6. We show that pre-trained models significantly outperform randomly initialized models across all three datasets in terms of calibration. As far as robustness aspects towards small domain shifts are concerned, this may become an important factor to consider when designing pedestrian crossing behavior approaches for real-world scenarios. The training source being generally not dense in variety of conditions nor in the number of examples, the results provided on each dataset might just come from noise on testing sets. Pre-training well-established models on diverse and dense datasets further away from the target domain before fine-tunning to our target task might prove efficient and mandatory for the next step of pedestrian crossing behavior prediction: generalization and vehicle implementation.

  , la science n'est pas : elle se fait. Le savant du jour n'est que l'ignorant du lendemain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 CHAPTER 5. CONCLUSION

2 .

 2 In the following, we detail what we have learned and try to provide response elements for each one of them. Question 1 Inductive biases are the set of assumptions a learner uses to predict results given inputs it has not yet encountered. When training deep learning architectures with little available data, should we only rely on the very composition of layers to impose relational inductive biases on the learner? Does enforcing certain constraints towards the data representation of designated hidden layers, sending informative-representation ready data to the classification network help the performance of deep learning networks for action classification?

2

 2 informative-representation ready data to a deep learning architecture in a 1D-2D grid space. Neural networks are designed to extract temporal features from gestures, and then merge them hierarchically depending on their sequence-focused design in order to perform the final classification. Intermediate representations of the gestures are entirely learned by the model and its corresponding inductive biases, without any manual intervention. However, since model representations are based on the input data representation, finding an appropriate input representation is crucial to leverage the full potential of the network. By transforming the input data based on physical world constraints of the body structure prior to the learning of multiple layers of feature hierarchies that automatically build high-level representations of the raw input, we showed that finding an appropriate input representation is crucial to leverage the full potential of a deep learning network for action recognition.CHAPTER 5. CONCLUSION Question Visual skeletal representations are known to be sufficient for both humans and machines to describe and recognize biological motion, including human motion. Can pose kinematics be sufficient to serve as the only input when modeling non-trivial and non-periodic tasks related to pedestrian intention prediction?

Figure A. 1 :

 1 Figure A.1: Confusion matrix obtained on SHREC 14 with TrouSPI-Net

Figure A. 6 :((

 6 Figure A.6: Reliability Diagram of the Average prediction given by three individual models and their respective outputs for

  

  

  

  

  

  

  

  

  

  

  

  2.1 Various relational inductive biases in standard deep learning components. An inductive bias allows a learning algorithm to prioritize one solution (or interpretation) over another, independent of the observed data.[Battaglia et al., 2018] . . . . . . . . . . . . . .
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  nists, respecting local driving laws and/or local social norms... To navigate in urban traffic environments while remaining efficient, autonomous vehicles should be able to efficiently negotiate social interactions with the other protagonists of the scene. Hence, the ability to interpret human intentions and actions is necessary for the design of meaningful human-machine interactions since coordination between humans and machines is only possible if both parties are aware of each other's intentions or underlying motives.

Consider the following scenario: you are driving down the street and come upon a person standing on the corner. How can you tell if this person is going to cross? By making a wise combination of communication, social norms, personal experience and law compliance. A driver's role is to determine whether another road user wants him to wait and let the road user cross or not based on the contextual cues and communication he provides. Of all the existing ways to communicate with one's surroundings, gesture is one, if not the most natural and easy form of communication among human beings. For instance, a person's head direction frequently reflects where he intends to travel, whilst his body orientation frequently

  To this end, we conduct a study based on direct cross-dataset evaluation. Our experiments show that current state-of-the-art pedestrian behavior predictors generalize poorly in cross-dataset evaluation scenarios, regardless of their robustness during a direct training-test set evaluation setting. In the light of what we observe, we argue that the future of pedestrian crossing prediction, e.g. reliable and generalizable implementations, should not be about tailoring models, trained with very little available data, and tested in a classical train-test scenario with the will to infer anything about their behavior in real life. It should be about evaluating models in a cross-dataset setting while considering their uncertainty estimates under domain shift.ConclusionWe summarize this thesis and identify potential future directions for our research.
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CHAPTER 2. HUMAN ACTIVITY RECOGNITION WITH POSE-DRIVEN DEEP LEARNING MODELS

Table 2

 2 .1 the choice of a good neural network architecture and its corresponding inductive biases is crucial to model sequences.

	Component	Entities	Relations Rel. inductive bias	Invariance
	Fully connected	Units	All-to-all	Weak	-
	Convolutional Grid elements	Local	Locality	Spatial translation
	Recurrent	Timesteps	Sequential	Sequentiality	Time translation
	Graph network	Nodes	Edges	Arbitrary	Node, edge permutations

Table 2

 2 

.1: Various relational inductive biases in standard deep learning components. An inductive bias allows a learning algorithm to prioritize one solution (or interpretation) over another, independent of the observed data.

[Battaglia et al., 2018] 

Table 2 . 2
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	Number of samples	2800	928
	Training/Testing Protocol	1 Training Set 1 Testing Set	3 Splits Training/ Testing Sets
	Dimension of skeletons	3D	2D
	Subject	Hand	Body
	Number of actions	14 and 28	21
	The SHREC dataset is composed of hand gesture sequences for supervised action classification such
	as Grab, Tap, Expand, Pinch, Swipe... Each gesture falls into one of 14 categories and can be performed
	with either only one finger or with the whole hand (hence the 14 or 28 classes depending on the number
	of fingers used). It contains a total of 2800 examples, being performed by 28 different participants in
	total. Each gesture might extend through time and is not limited by a specific temporal resolution. For
	each sequence a depth image of the scene is provided at each time step, alongside with both a 2D and a

: Properties of the selected experimental datasets. SHREC Dataset JHMDB Dataset 3D skeletal representation of the hand which is derived from RGB-D data in a controlled environment. Although multiple perception modalities are available (i.e., RGB-D data and pose kinematics), only the skeletal information is used during our experiments. Following the splits provided by the original paper [De Smedt et al., 2017], The dataset is split into 1960 train sequences (70% of the dataset) and 840 test CHAPTER 2. HUMAN ACTIVITY RECOGNITION WITH POSE-DRIVEN DEEP LEARNING MODELS sequences (30% of the dataset).

Table 2 .

 2 3: Performance of the given model for different encodings of the sequences on SHREC[De Smedt et al., 2017], the architecture of the model remains unchanged.

	Method	Parameters Accuracy on SHREC 14 Accuracy on SHREC 28
	LDA on features branch input	-	33.0%	27.6%
	LDA on Classic Encoder ( = 0)	-	37.9%	42.8%
	LDA on Regularized Encoder ( = 5)	-	43.5%	35.6%
	Encoder (He initialization)	1.2M	91.2%	85.2%
	Classic auto-encoder ( = 0)	-	91.5%	85.9%
	Regularized auto-encoder ( =1)	-	91.9%	87.6%
	Regularized auto-encoder ( = 2.5)	-	92.4%	86.9%
	Regularized auto-encoder ( = 5)	-	92.5%	87.1%
	Regularized auto-encoder ( = 7.5)	-	91.9%	86.4%
	Regularized auto-encoder ( = 10)	-	90.9%	85.2%

Table 2 . 4
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: Performance of the given model for different encodings of the sequences on JHMDB

table 2

 2 CHAPTER 2. HUMAN ACTIVITY RECOGNITION WITH POSE-DRIVEN DEEP LEARNING MODELS matrix shows that the proposed model is robust to each action class regardless of its complexity and suggests the model can accommodate a wide range of skeleton-based action recognition scenarii while being completely agnostic sequentially since the model is designed without any explicit biases towards sequential data modeling.

.3, table 2.4 and table 2.5, the confusion matrix of the best performing regularized encoder on SHREC 28 is available in Figure

2

.17. The given confusion

Table 2 .

 2 2. HUMAN ACTIVITY RECOGNITION WITH POSE-DRIVEN DEEP LEARNING MODELSResults 6: Results obtained via DFS normalization on SHREC[De Smedt et al., 2017], the architecture DD-NET[Yang et al., 2019] remains unchanged.

	Method	Parameters 14 classes 28 classes
	DD-NET (64 filters)	1.82M	94.6%	91.9%
	DD-NET (32 filters)	0.50M	93.5%	90.4%
	DD-NET (16 filters)	0.15M	91.8%	90.0%
	DFS-DD-NET (64 filters)	1.84M	95.9%	92.4%
	DFS-DD-NET (32 filters)	0.51M	94.7%	92.0%
	DFS-DD-NET (16 filters)	0.16M	93.1%	90.5%

Table 2 .

 2 7: Results obtained via to DFS normalization on JHMDB

Table 2 .

 2 8: Results obtained with DFS normalization on SHREC [De Smedt et al., 2017] (3D hand skeletons) for a 2D convolutional network.

	Method	Kernel Size Parameters Accuracy 14 Accuracy 28
	Lenet-5 [LeCun et al., 1998]	3x3	0.10M	90.9%	83.8%
	Lenet-5	5x5	0.10M	91.9%	85.5%
	Lenet-5	7x7	0.10M	92.3%	84.5%
	Lenet-5	9x9	0.10M	90.9%	87.6%
	DFS-Lenet-5	3x3	0.18M	90.9%	89.1%
	DFS-Lenet-5	5x5	0.18M	92.9%	88.1%
	DFS-Lenet-5	7x7	0.18M	93.4%	88.6%
	DFS-Lenet-5	9x9	0.18M	91.5%	87.6%

Table 2 .
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	Method	Kernel Size Parameters Accuracy
	Lenet-5 [LeCun et al., 1998]	3x3	0.07M	65.1%
	Lenet-5	5x5	-	67.7%
	Lenet-5	7x7	-	69.7%
	Lenet-5	9x9	-	69.4%
	DFS-Lenet-5	3x3	0.13M	63.5%
	DFS-Lenet-5	5x5	-	65.2%
	DFS-Lenet-5	7x7	-	71.9%
	DFS-Lenet-5	9x9	-	68.1%

9: Results obtained with DFS normalization on JHMDB

[START_REF] Jhuang | Towards understanding action recognition[END_REF] 

(2D human body skeletons) for a 2D convolutional network.

Table 3 .

 3 1: Results for several baselines and for the best submission on the Trajnet++ public leaderboard (with respect to FDE).

	Model	ADE (m) FDE (m) Col-I (%) Col-II (%)
	Kalman filter	0.87	1.69	0	19.5
	Constant velocity [Schöller et al., 2020]	0.68	1.42	14.3	15.2
	ORCA [van den Berg et al., 2011]	0.72	1.42	0	11.3
	Vanilla LSTM	0.67	1.43	15.2	12.3
	AMENet				

Table 3 .

 3 

	Model	Interaction	ADE (m) FDE (m) Col-I (%) Col-II (%)
	(Encoder -Decoder)		± 0.01 m ± 0.01 m	± 0.5%	± 1%
	Constant velocity [Schöller et al., 2020]	None	0.68	1.42	14.3	15.2
	None -GRU	Dir. pooling [Kothari et al., 2021]	0.63	1.33	6.9	12.1
	LSTM -LSTM	Occ. pooling [Alahi et al., 2016]	0.58	1.23	11.5	13.9
	U-LSTM -LSTM	Occ. pooling	0.57	1.22	10.2	14.9
	GRU -GRU	Dir. pooling [Kothari et al., 2021]	0.58	1.24	6.5	12.4
	Bi-GRU -GRU	Dir. pooling	0.59	1.26	6.7	11.7
	U-GRU -GRU	Dir. pooling	0.58	1.25	6.5	11.7
	reversed U-GRU -GRU	Dir. pooling	0.58	1.25	6.5	11.0
	LSTM -LSTM	Dir. pooling	0.58	1.25	6.4	11.4
	Bi-LSTM -LSTM	Dir. pooling	0.59	1.28	6.2	11.9
	U-LSTM -LSTM	Dir. pooling	0.56	1.22	5.2	11.9
	reversed U-LSTM -LSTM	Dir. pooling	0.58	1.26	6.6	11.1
	LSTM -LSTM	Soc. pooling [Alahi et al., 2016]	0.55	1.18	6.9	12.7
	U-LSTM -LSTM	Soc. pooling	0.53	1.15	6.5	11.5
	Social NCE [Liu et al., 2020b]	Soc. pool. [Alahi et al., 2016] + contr. learning	0.53	1.14	5.3	11.3

2: Comparison of motion-encoding designs with respect to various interactions modules architectures on interacting trajectories of TrajNet++ real world dataset.

Table 3 .

 3 7: Confusion matrix of the JAAD data set obtained by each branch of SPI-Net and SPI-Net on JAAD for the crossing or not crossing task.

		Geometric Branch	Cartesian Branch	SPI-Net	
	Ground Truth Crossing Not Crossing Crossing Not Crossing Crossing Not Crossing
	Crossing	37	25	57	5	60	2
	Not Crossing	16	46	9	53	5	57

Table 3 .

 3 9: Architecture variations and Ablation studies for TrouSPI-Net on PIE data-set. -scores for two out of three benchmarks. It shows that TrouSPI-Net is more balanced than other approaches for the task of pedestrian crossing prediction. Finally, results obtained by TrouSPI-Net on should be taken with a pinch of salt since the data-set considers all the visible pedestrians who are far away from the road and are not crossing. Since pose estimation algorithms are still struggling with scale to extract informative poses for people at the back of a scene, TrouSPI-Net does not manage to extract discriminating features because of the low quality of the poses extracted and

	Model Variants (Additional Costs)	Params ACC AUC F1
	TrouSPI-Net without euclidean distances	1.4M	0.87 0.85 0.78
	TrouSPI-Net without parallel atrous branches	0.8M	0.86 0.80 0.72
	TrouSPI-Net without Ego-Vehicle Speed	1.4M	0.85 0.84 0.76
	TrouSPI-Net GRUs	1.3M	0.85 0.80 0.72
	TrouSPI-Net BiGRUs	1.6M	0.86 0.82 0.75
	TrouSPI-Net without attention Block	1.4M	0.87 0.85 0.78
	TrouSPI-Net with SE attention Block	1.5M	0.88 0.87 0.80
	TrouSPI-Net	1.5M	0.88 0.88 0.80
	TrouSPI-Net with two modalities (C3D)	30.2M	0.88 0.87 0.80
	our approach offers better 1		

  Table 3.8. In conclusion, introducing a spatio-temporal attention CHAPTER 3. FROM ACTION RECOGNITION TO PEDESTRIAN DISCRETE INTENTION PREDICTION module over the parallel features extraction module seems to improve our model performance. Future studies could fruitfully explore this further by introducing a custom spatio-temporal attention module specifically designed for the parallel pseudo-images extraction module.

  a further validation of pose-based only networks for Pedestrian Action Prediction as lightweight models designed for embedded devices with real-time constraints, which do not need additional context input to work effectively. While this affirmation is established for pedestrians where pose estimation inferences are possible and with limited occlusions, the question remains open for scenes with very high occlusions CHAPTER 3. FROM ACTION RECOGNITION TO PEDESTRIAN DISCRETE INTENTION PREDICTION between pedestrians, occlusions between pedestrians and scene objects, or abnormal behaviors such as crowd movement. For those cases, implementing a way to treat Static RGB images effectively as a context feature might still prove important.Table 3.10: Architecture comparison of floating-point operations per second (FLOPS) in millions, Cuda Memory Usage (CMU) in Megabytes and Weights Memory Requirements (WMR) in Megabytes. RGB features extracted by CNNs are taken into consideration during computations.

	Model(Additional Costs)	FLOPS (Mio.) CMU (MB) WMR (MB)
	VGG16 [Simonyan and Zisserman, 2014]	29.4	72.1	56.1
	Resnet50			

Table 4
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	CHAPTER 4. ASSESSING THE GENERALIZATION OF PEDESTRIAN CROSSING
	PREDICTORS

.3. As expected, all methods, regardless of their architecture or input modalities, suffer a consequent performance drop

Table 4 .

 4 3: Average prediction given by the three models trained on each training sets for one given test-set (Ensembling). In addition to classification metrics (we use arrows to indicate which direction is better), we compare models with predictive uncertainty metrics such as Expected Calibration Error (ECE) and Maximum Calibration Error (MCE). Dashed lines separate different types of architectures CHAPTER 4. ASSESSING THE GENERALIZATION OF PEDESTRIAN CROSSING PREDICTORS

Table 4 .
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	,
	4: Average Pedestrian Crossing Prediction performance for

ℎ and

  Prédiction d'action basée sur le squelette, Apprentissage des représentations spatio-temporelles, estimation de l'incertitude prédictive RÉSUMÉ Le véhicule autonome est un défi majeur pour la mobilité de demain. Des progrès sont réalisés chaque jour pour y parvenir ; cependant, de nombreux problèmes restent à résoudre pour obtenir un résultat sûr pour les usagers de la route les plus vulnérables. L'un des principaux défis auxquels sont confrontés les véhicules autonomes est la capacité à conduire efficacement en milieu urbain. Une telle tâche nécessite la gestion des interactions entre les véhicules et les usagers vulnérables de la route afin de résoudre les ambiguïtés du trafic. Afin d'interagir avec ces usagers, les véhicules doivent être capables de comprendre leurs intentions et de prédire leurs actions à venir. Dans cette thèse, notre travail s'articule autour de la technologie d'apprentissage automatique comme moyen de comprendre et de prédire le comportement humain à partir de signaux visuels et plus particulièrement de la cinématique de pose. Notre objectif est de proposer un système d'assistance au véhicule qui soit léger, agnostique à la scène et qui puisse être facilement implémenté dans n'importe quel dispositif embarqué avec des contraintes temps réel. Premièrement, dans le domaine de la reconnaissance de gestes et d'actions, nous étudions et introduisons différentes représentations de la cinématique de pose, basées sur des modèles d'apprentissage profond afin d'exploiter efficacement leurs composantes spatiales et temporelles tout en restant dans un espace euclidien. Deuxièmement, dans le domaine de la conduite autonome, nous montrons qu'il est possible de lier la posture, l'attitude de marche et les comportements futurs des protagonistes d'une scène sans utiliser les informations contextuelles de la scène. Cela nous permet de diviser par un facteur 20 le temps d'inférence des approches existantes pour la prédiction de l'intention des piétons tout en gardant la même robustesse de prédiction. Finalement, nous évaluons la capacité de généralisation des approches de prédiction d'intention de piétons et montrons que le mode d'évaluation classique des approches pour la prédiction de traversée de piétons, n'est pas suffisante pour comparer ni conclure efficacement sur leur applicabilité lors d'un scénario réel. Nous proposons de nouveaux protocoles et de nouvelles mesures basés sur l'estimations d'incertitude afin de rendre le domaine de recherche plus durable et plus représentatif des réelles avancées à venir.

"Why are man and birds bipeds, but fish footless; and why do man and bird, though both bipeds, have an opposite curvature of the legs?", Aristotle -On the Parts of Animals

In the late 1990s, there has been a whole series of work on human modelling, including ISOs, which came with image synthesis and animation in videos, and which also penetrated biomechanics and motion analysis: the H-anim project, which has become a standard in the biomechanical modelling of humans, poses and behaviour.

Therefore unusable when learning classification using little data.

explicit temporal modeling

We refer to the concept of gathering knowledge from experience without the need of human operators as semantics.

Our implementation of the asymmetrical Bi-RNNs for the Trajnet++ benchmark is available at: github.com/JosephGesnouin/Asymmetrical-Bi-RNNs-to-encode-pedestrian-trajectories.

How much of a gap in traffic (usually in time) pedestrians deem safe to cross.

We refer the reader to chapter 2 for an extensive review of visual modalities and architectures available at hand.

We are getting ahead of ourselves in this chapter by saying that there is still some work to be done on the benchmark and we refer the curious reader to Chapter 4 for more information.

We refer the reader to section 2.5.1 for a detailed explanation.

We refer the reader to section 2.5.2 for a detailed explanation.

TSSI is described in more details in Figure2.21.

We refer the reader to Appendix A

The Lion and the Unicorn: Socialism and the English Genius -Orwell 1941

"All art is propaganda."

"All revolutions are failures, but they are not the same failures."

which is the PCPA baseline in most cases.

Diagnostic mistakes becoming more widely acknowledged as a public health problem, The Institute of Medicine claimed that "most people will experience at least one diagnostic error in their lifetime"[Balogh et al., 2015] 

"Overconfident professionals sincerely believe they have expertise, act as experts and look like experts. You will have to struggle to remind yourself that they may be in the grip of an illusion." Daniel Kahneman

Because confidence is the additive inverse of uncertainty with regard to 1, the terms are often interchanged.

https://github.com/yding5/AdaptiveBinning

https://github.com/ykotseruba/PedestrianActionBenchmark

We refer the reader to section B for a detailed list of calibrations for each of the models.

https://github.com/gpleiss/temperature_scaling

Pearson's Correlation coefficient: 0.4203, p-value: 0.4067.

Open Systems Interconnection, enables interoperability between different products and software.
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LIST OF TABLES CHAPTER 3. FROM ACTION RECOGNITION TO PEDESTRIAN DISCRETE INTENTION PREDICTION Figure 3.14: 28 different ground-truth sequences represented in a 3-dimensional (300,25,2)-shaped tensor after the TSSI normalization. The horizontal axis of each TSSI sequence is the keypoints axis. The vertical axis of each TSSI sequence is the time axis. The , dimensions are mapped to RG(B) channels for visualization. The axes are kept fixed and the aspect is adjusted so that the data fit in the axes. Ground truth labels C or NC represent the Crossing or not Crossing future action of the pedestrian.

tures branch, we evaluate the capability of discrimination of that branch alone for the Pedestrian Discrete Intention Prediction task and we then concatenate the two branches and evaluate the approach as its whole.

Experimental Dataset

Predicting whether or not a pedestrian is going to cross is addressed by the JAAD data set [Rasouli et al., 2017a[START_REF] Rasouli | Are they going to cross? a benchmark dataset and baseline for pedestrian crosswalk behavior[END_REF] which contains 346 videos. In each video, each pedestrian has its individual ID and its actions performed over time as presented in Fig 3 .15. To extract the human key-points, we apply the Cascaded Pyramid Network (CPN [START_REF] Chen | Cascaded Pyramid Network for Multi-Person Pose Estimation[END_REF]) algorithm to the ground truth spatial coordinates and individual IDs of each pedestrian provided by the data set. All video frames are normalized to 1280x1024 frame size. We then normalize each key-point ( , ) ∈ R 2 individually, dividing each coordinate by 1280 and 1024 as shown in equation (3.4):

Such normalization has two benefits: the first one is that data will be ready for neural networks whose weights initialization [START_REF] He | Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification[END_REF] expects such normalized input (variance ≤ 1), while retaining the spatial information of the pedestrian in the scene.

Subsequently, obtained pedestrian pose sequences are defined as: s = (s 1 , s 2 , . . . , s ) ∈ R × × , where is the sequence duration, is the count of key-points, and is the dimension of each key- point. All sequences of skeletons are then sampled by a sliding window to keep a fixed size in form of a 3-dimensional ( , , )-shaped tensor where = 300, = 14, and = 2. The majority of the extracted sequences are smaller than the fixed size of the sliding window, therefore sequences with less than frames are padded with zeros. Finally, all processed data is introduced as a complete sequence to the SPI-network.

Evaluation Setup

We use the same methodology, splits and evaluation protocol as [START_REF] Gantier | Pedestrian graph: Pedestrian crossing prediction based on 2d pose estimation and graph convolutional networks[END_REF] for the crossing prediction task on JAAD data set: to perform pedestrian crossing prediction, only crossing labels are used, other labels such as drivers information or context are omitted. Every pedestrian with a crossing marker along their timeline is taken as a positive sample, if not, it is taken as a negative sample. Afterwards, all positives samples are divided into two categories, the ones preceding the crossing stage and the ones taking action during the crossing stage. Only the ones preceding the crossing stage are considered.

All frames with annotation are then taken from the starting time of the action to time . They are then sampled with a sliding window of frame size = 300. This procedure results in 927 crossing samples, First, we introduce parallel processing branches to allow the architecture to access different time resolutions with atrous convolutions enhanced with self-attention mechanisms. Secondly, we apply U-GRUs (see section 3.4) on the evolution of relative Euclidean body distances over time, which acts as a regularizer of the first stream for both time and space. We then extend the U-GRUs approach as one baseline method to consider long-term temporal coherence and process each sequence of context features such as bounding box positions or ego-vehicle speed. The diagram of the model is shown in Figure 3.17 and the implementation details follow below.

Methodology

Extracting spatio-temporal features via parallel atrous convolutions on pseudo-images Pedestrian body poses sequences are defined as a vector:

where is the sequence duration, is the count of key-points, and is the dimension of each key-point.

All sequences of skeletons are then sampled in the form of a 3-dimensional ( , , )-shaped tensor representing a 2D image-like spatio-temporal continuous representation of the sequence of poses. The horizontal axis of each pseudo-image represents the key-points axis while the vertical axis represents the time axis. ( , ) dimensions of each key-point are then mapped to ( ) channels.

By using a 2D-convolution-ready representation format, we extract multi-scale spatio-temporal features using standard computer-vision methods such as atrous convolutions and enhance the feature extraction modules by using Convolutional Block Attention Module (CBAM) [START_REF] Woo | Cbam: Convolutional block attention module[END_REF] for self-attention mechanisms in each branch. Since sequences are represented as pseudo-images, CBAM blocks act as self-attention mechanisms for time and space conjointly. Each of the pseudo-images is directly fed to three parallel branches. All three branches present a similar architecture designed for single-scale spatiotemporal feature extraction. In each branch, the pseudo-image is passed to an atrous CBAM block, illustrated in Figure 3.17, followed by a pooling layer. This process is repeated two more times. The Formally, let ℎ ( , ) ( , ) represent the input of the -th atrous CBAM block of the branch, ( , ) be the number of feature maps, ( , ) ( , ) the -th convolution filter of the -th convolution in the branch with the length and the width of and , ( , ) the bias shared for the -th filter map, ( convolutions of the + 1-th CBAM block is calculated as:

), = ( , ) and = ( , ) . The ouput of the CBAM block ℎ ( +1, ) ( , ) is then computed by sequentially inferring a 1D channel attention map M c and a 2D spatial attention map M s following the original recommendations of the CBAM paper [START_REF] Woo | Cbam: Convolutional block attention module[END_REF] and as illustrated in Figure 3.17:

where ⊗ denotes element-wise multiplication. Finally, the output ℎ ( +1, ) ( , ) serves as the input of the batch normalization and pooling layer that directly follow the atrous CBAM block.

In our experiments, we have three branches: low resolution, medium resolution, high resolution branches CHAPTER 4. ASSESSING THE GENERALIZATION OF PEDESTRIAN CROSSING PREDICTORS intent prediction on the JAAD dataset lasted two years. Within those two years, we identified no less than 18 approaches that claimed state-of-the-art on JAAD which is roughly equivalent to a hot streak of improvements of 0.75 SotA per month. During this thesis, we also contributed to this problem, the idea is not to bite the hand that feeds you but to make the reader clearly understand the limitations that were quickly encountered in the domain to effectively sort out what was a real advance and what was not.

Bronze Age: one benchmark to rule them all

Intending to resolve some of the inconsistencies pointed out above, a standardized benchmark [Kotseruba et al., 2021] to evaluate pedestrian behavior prediction for three datasets was proposed to advance research further.

In sixteen months of existence, we identified 8 approaches claiming state-of-the-art as Table 4.2 shows. This is roughly equivalent to 0.50 SotA per month. The validity of our metric to evaluate the speed of advances for the given research area is questionable. The fact is, having standardized evaluation protocols seems to smooth out some communications and the amount of noisy results. In a way, we believe that this brought a breath of fresh air to the field of pedestrian behavior prediction. However, proposed approaches evaluated on the benchmarks [Kotseruba et al., 2021] constantly report higher classification scores, giving the impression of clear improvements in pedestrian intention prediction. Usually, a new algorithm is proposed and the implicit hypothesis towards the proposed contribution is made such that it yields an improved performance over the existing state-of-the-art 4 . To confirm such hypothesis, an empirical evaluation of the given contribution is realized in a direct traintest sets evaluation and the quality of the model is evaluated by regular classification metrics: newly proposed methods are then claimed as the new state-of-the-art as soon as they outperform previous ones even by a small margin. However, as we saw in section 4.1, the ranking of the methods for a given task is currently only as good as the quality of the data used for comparison purposes, and the results obtained by one method on a given dataset do not always reflect its robustness in real-world applications. In addition, some approaches do not report their results on all three datasets of the standardized evaluation procedures. Although this may be due to an oversight, a desire not to burden the paper with numbers, it does not help in the comparison to the existing if the communications are only cherry-picked on the datasets where a given approach shines. This perspective encourages us even more to look at the 

Improving Uncertainty Calibration

For the very same approach, there is a significant discrepancy between traditional train-test and crossdataset evaluation results. This calls into question the reliability of current methods in regard to their capacity to generalize. In addition, we have shown that the standard classification metrics are not sufficient to reliably evaluate an approach since the use of uncertainty metrics raises additional issues that are not reflected otherwise. We are confident that the future breakthroughs in the area will not occur by

Appendix

A Assessing TrouSPI-Net performance for skeletal action recognition datasets 

Conclusion

Nous résumons cette thèse et identifions les orientations futures potentielles de notre recherche.

Appendix C

Bibliography [Achaji et al., 2021] Achaji, L., Moreau, J., Fouqueray, T., Aioun, F., and Charpillet, F. (2021).

Is attention to bounding boxes all you need for pedestrian action prediction? arXiv preprint arXiv:2107.08031.

[Ahmet, 2020] Ahmet, E. ( 2020). 6th place solution: Very custom gru. https://www.kaggle.com/ c/riiid-test-answer-prediction/discussion/209581.

[Alahi et al., 2016] Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., and Savarese, S. Sequential deep learning for human action recognition. In International workshop on human behavior understanding, pages 29-39. Springer.

[ Bai et al., 2018] Bai, S., Kolter, J. Z., and Koltun, V. ( 2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271.

[ Bakwin, 1945] APPENDIX C. BIBLIOGRAPHY [Li et al., 2018] Li, C., Cui, Z., Zheng, W., Xu, C., andYang, J. (2018). Spatio-Temporal Graph Convolution for Skeleton Based Action Recognition. arXiv e-prints, page arXiv:1802.09834.

[ Li et al., 2017a] Li, C., Hou, Y., Wang, P., andLi, W. (2017a). Joint distance maps based action recognition with convolutional neural networks. IEEE Signal Processing Letters, 24(5):624-628.

[ Li et al., 2017b] Li, C., Wang, P., Wang, S., Hou, Y., and Li, W. (2017b). Skeleton-based action recognition using lstm and cnn. In Springer.

[ Li et al., 2018] Li, S., Li, W., Cook, C., Zhu, C., and Gao, Y. (2018). Independently recurrent neural network (indrnn): Building a longer and deeper rnn. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 5457-5466.