
HAL Id: tel-03813520
https://pastel.hal.science/tel-03813520v1

Submitted on 13 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of pedestrian movements and gestures using an
on-board camera to predict their intentions

Joseph Gesnouin

To cite this version:
Joseph Gesnouin. Analysis of pedestrian movements and gestures using an on-board camera to pre-
dict their intentions. Robotics [cs.RO]. Université Paris sciences et lettres, 2022. English. �NNT :
2022UPSLM023�. �tel-03813520�

https://pastel.hal.science/tel-03813520v1
https://hal.archives-ouvertes.fr


Préparée à MINES ParisTech

Analysis of pedestrian movements and gestures using an
on-board camera to predict their intentions

Analyse des mouvements et gestes des piétons via caméra
embarquée pour la prédiction de leurs intentions

Soutenue par

Joseph Gesnouin
Le 27 septembre 2022

École doctorale no621

Ingénierie des Systèmes,
Matériaux, Mécanique, En-
ergétique

Spécialité

Informatique temps réel,
robotique et automatique.

Composition du jury :

Alexandre Alahi
Professeur assistant, EPFL Rapporteur

Catherine Achard
Professeure, Sorbonne Université Président du jury /

Rapporteur

Miguel Angel Sotelo
Professeur, University of Alcalá Examinateur

Fabien Moutarde
Professeur, Mines ParisTech Directeur de thèse

Steve Pechberti
Ingénieur de recherche, Vedecom Examinateur

Bogdan Stanciulescu
Maître de conférences, Mines ParisTech Examinateur







Abstract

The autonomous vehicle (AV) is a major challenge for the mobility of tomorrow. Progress is being made

every day to achieve it; however, many problems remain to be solved to achieve a safe outcome for the

most vulnerable road users (VRUs). One of the major challenges faced by AVs is the ability to efficiently

drive in urban environments. Such a task requires interactions between autonomous vehicles and VRUs

to resolve traffic ambiguities. In order to interact with VRUs, AVs must be able to understand their

intentions and predict their incoming actions.

In this dissertation, our work revolves around machine learning technology as a way to understand

and predict human behaviour from visual signals and more specifically pose kinematics. Our goal is to

propose an assistance system for the AV that is lightweight, scene-agnostic that could be easily imple-

mented in any embedded device with real-time constraints.

Firstly, in the gesture and action recognition domain, we study and introduce different representations

for pose kinematics, based on deep learning models as a way to efficiently leverage their spatial and

temporal components while staying in an euclidean grid-space. Secondly, in the autonomous driving

domain, we show that it is possible to link the posture, the walking attitude and the future behaviours

of the protagonists of a scene without using the contextual information of the scene (zebra crossing,

traffic light...). This allowed us to divide by a factor of 20 the inference time of existing approaches

for pedestrian intention prediction while keeping the same prediction robustness. Finally, we assess the

generalization capabilities of pedestrian crossing predictors and show that the classical train-test sets

evaluation for pedestrian crossing prediction, i.e., models being trained and tested on the same dataset,

is not sufficient to efficiently compare nor conclude anything about their applicability in a real-world

scenario. In order to make the research field more sustainable and representative of the real advances to

come, we propose new protocols and metrics based on uncertainty estimates under domain-shift.



Résumé en Français

Le véhicule autonome est un défi majeur pour la mobilité de demain. Des progrès sont réalisés chaque

jour pour y parvenir ; cependant, de nombreux problèmes restent à résoudre pour obtenir un résultat sûr

pour les usagers de la route les plus vulnérables. L’un des principaux défis auxquels sont confrontés les

véhicules autonomes est la capacité à conduire efficacement en milieu urbain. Une telle tâche nécessite

la gestion des interactions entre les véhicules et les usagers vulnérables de la route afin de résoudre les

ambiguïtés du trafic. Afin d’interagir avec ces usagers, les véhicules doivent être capables de comprendre

leurs intentions et de prédire leurs actions à venir.

Dans cette thèse, notre travail s’articule autour de la technologie d’apprentissage automatique comme

moyen de comprendre et de prédire le comportement humain à partir de signaux visuels et plus partic-

ulièrement de la cinématique de pose. Notre objectif est de proposer un système d’assistance au véhicule

qui soit léger, agnostique à la scène et qui puisse être facilement implémenté dans n’importe quel dis-

positif embarqué avec des contraintes temps réel.

Premièrement, dans le domaine de la reconnaissance de gestes et d’actions, nous étudions et intro-

duisons différentes représentations de la cinématique de pose, basées sur des modèles d’apprentissage

profond afin d’exploiter efficacement leurs composantes spatiales et temporelles tout en restant dans

un espace euclidien. Deuxièmement, dans le domaine de la conduite autonome, nous montrons qu’il

est possible de lier la posture, l’attitude de marche et les comportements futurs des protagonistes d’une

scène sans utiliser les informations contextuelles de la scène. Cela nous permet de diviser par un fac-

teur 20 le temps d’inférence des approches existantes pour la prédiction de l’intention des piétons tout

en gardant la même robustesse de prédiction. Finalement, nous évaluons la capacité de généralisation

des approches de prédiction d’intention de piétons et montrons que le mode d’évaluation classique des

approches pour la prédiction de traversée de piétons, n’est pas suffisante pour comparer ni conclure

efficacement sur leur applicabilité lors d’un scénario réel. Nous proposons de nouveaux protocoles et

de nouvelles mesures basés sur l’estimations d’incertitude afin de rendre le domaine de recherche plus

durable et plus représentatif des réelles avancées à venir.
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Chapter 1
Introduction

Il faudra toujours qu’il y ait de
mauvais écrivains, car ils
répondent au goût des âges non
développés, non mûris ; ceux-ci ont
leurs besoins aussi bien que les
plus mûrs.

Nietzsche - Humain, trop humain
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CHAPTER 1. INTRODUCTION

1.1 Context

The ultimate goal of the intelligent transportation research field should be to show that robots can co-

habit with humans and can efficiently share space. For instance, an unused electric scooter could share

the curb with dozens of pedestrians so that it can park in a place that does not obstruct the majority of

the pedestrian flow, a personal assistance robot could follow the elderly in crowded spaces such as shops

so that they do not have to carry their groceries, an autonomous vehicle could easily navigate throughout

the crowded streets of downtown centers of major cities while ensuring the flow of traffic... All of them

while respecting arbitrary safety and ethical rules such as keeping a safe distance from the other protago-

nists, respecting local driving laws and/or local social norms... To navigate in urban traffic environments

while remaining efficient, autonomous vehicles should be able to efficiently negotiate social interactions

with the other protagonists of the scene. Hence, the ability to interpret human intentions and actions is

necessary for the design of meaningful human-machine interactions since coordination between humans

and machines is only possible if both parties are aware of each other’s intentions or underlying motives.

Consider the following scenario: you are driving down the street and come upon a person standing on

the corner. How can you tell if this person is going to cross? By making a wise combination of commu-

nication, social norms, personal experience and law compliance. A driver’s role is to determine whether

another road user wants him to wait and let the road user cross or not based on the contextual cues and

communication he provides. Of all the existing ways to communicate with one’s surroundings, gesture is

one, if not the most natural and easy form of communication among human beings. For instance, a per-

son’s head direction frequently reflects where he intends to travel, whilst his body orientation frequently

indicates which direction he is presently going, a hand gesture could be considered an explicit form of

communication with the driver to signal gratitude or dissatisfaction, the same way that establishing eye

contact with the driver could be considered as an implicit form of communication to ensure that you have

been seen.

Understanding the intention of the protagonists of a scene from the driver’s perspective could there-

fore prove useful for the deployment of autonomous vehicles because:

• It would improve safety for the most vulnerable road users: knowing the intention of pedestrians

to cross the road before they actually set foot on the road would allow the vehicle to warn the

driver or automatically perform maneuvers. Therefore, preserving the pedestrians’ integrity in a

more efficient way than when triggered by an emergency stop once the pedestrians have moved on

to the road and become a direct obstacle for the vehicle would be safer for all actors.

• It would ensure the flow of traffic: 98% of autonomous vehicles accidents are due to an unexpected

stop of the ego-vehicle [Favarò et al., 2017]. As communication helps to disambiguate certain

traffic situations, failing to understand the most basic forms of communication between road users

can potentially slow down the flow of traffic.

• It would help identify unscrupulous actions such as stepping in front of the ego-vehicle to force it

to stop or change its route [Färber, 2016].
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1.2 Objectives

The initial objectives of this thesis are to explore deep learning approaches as a way to efficiently lever-

age spatial and temporal components of pedestrian poses kinematics and efficiently detect their intention

of crossing in urban traffic environments. In order to delimit the scope of this thesis while trying to

address theses broad objectives, we orient our research with several research directions:

Question 1 Inductive biases are the set of assumptions a learner uses to predict results given inputs

it has not yet encountered. When training deep learning architectures with little available data, should

we only rely on the very composition of layers to impose relational inductive biases on the learner?

Does enforcing certain constraints towards the data representation of designated hidden layers, sending

informative-representation ready data to the classification network help the performance of deep learn-

ing networks for action classification?

Question 2 Visual skeletal representations are known to be sufficient for both humans and machines

to describe and recognize biological motion, including human motion. Can pose kinematics be sufficient

to serve as the only input when modeling non-trivial and non-periodic tasks related to pedestrian inten-

tion prediction?

Question 3 Does recent progress on pedestrian intention prediction benchmarks continue to represent

meaningful generalization? What evaluation protocol and metrics should be used to go beyond accuracy

in order to evaluate a model for a high-risk application with a limited amount of training data?

First, to focus on the spatio-temporal aspect of poses kinematics, we choose to work on skeletal action

recognition in a controlled environment. At the time of the beginning of this thesis, the state-of-the-art

approaches for skeletal action recognition focused mainly on the sequential modeling part of the problem

while relying heavily on deep-learning networks to automatically build high-level representations of the

raw input. Since deep learning approaches depend heavily on the quantity and quality of data where

the performance scales up with the amount of training data, the given paradigm does not encourage the

community to study and improve the capabilities of deep networks with little available training data.

For that reason, we choose to design deep learning architectures that act on both spatial and temporal

components of the raw input and enforce the importance of engineering the data used, prior to blindly

relying on automatic features learning from training examples.

Second, the complexity of an action recognition algorithm is directly impacted by the number of per-

ception modalities it uses. Fusing multiple perceptive modalities into a single representation often lead to

a high complexity, a high training time and a consequent inference time due to the presence of multiple

networks extracting features for each modality (RGB, Optical Flow, Pose Dynamics...). Considering the

importance for crossing prediction algorithms to run efficiently for real-time usage while being robust

to a multitude of complexities and conditions, our goal is to propose a model using only one perception

modality for pedestrian intention prediction that reaches the performance of multi-modal approaches.

Third, while empirically measuring the overall progress of pedestrian intention prediction algorithms

over time tends to be more and more established due to the new publicly available benchmarks, know-
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ing how well existing predictors react to unseen data remains an unanswered question. We question

the legitimacy of the current evaluation protocols to adequately represent the applicability of evaluated

pedestrian prediction models for real-world scenarii.

1.3 Publications and communications

The main publications and communications of this thesis can be synthesized as follows:

Human Activity Recognition With Pose-driven Deep Learning Models

• Gesnouin, J.; Pechberti, S.; Bresson, G.; Stanciulescu, B.; Moutarde, F. Rethinking Robust Em-

bedding for Skeleton Human Action Recognition (GdR ISIS; Journée Action "Visage, geste, action

et comportement", janvier 2021)

Pedestrian Continuous Trajectory Forecasting

• Rozenberg, R., Gesnouin, J., Moutarde, F. (2021). Asymmetrical bi-rnn for pedestrian trajectory

encoding. Reconnaissance des Formes, Image, Apprentissage et Perception (RFIAP), juillet 2022.

– Rozenberg, R., Gesnouin, J., Moutarde, F. (2021, May). Asymmetrical Bi-RNNs (U-RNNs),

2nd place solution at the Trajnet++ Challenge for pedestrian trajectory forecasting. In Work-

shop on Long-term Human Motion Prediction, 2021 IEEE International Conference on Robotics

and Automation (ICRA).

– Rozenberg, R., Gesnouin, J., Moutarde, F. (2021, October). Asymmetrical Bi-RNNs, 3rd

place solution at the ICCV Trajnet++ Challenge. In ICCV 2021 Multi-Agent Interaction and

Relational Reasoning Workshop.

– Best presentation during the National Young Researcher’s Day in Robotics 2021.

Pedestrian Discrete Intention Prediction

• Gesnouin, J., Pechberti, S., Bresson, G., Stanciulescu, B., Moutarde, F. (2020). Predicting inten-

tions of pedestrians from 2d skeletal pose sequences with a representation-focused multi-branch

deep learning network. Algorithms, 13(12), 331.

• Gesnouin, J., Pechberti, S., Stanciulcscu, B., Moutarde, F. (2021, December). TrouSPI-Net:

Spatio-temporal attention on parallel atrous convolutions and U-GRUs for skeletal pedestrian

crossing prediction. In 2021 16th IEEE International Conference on Automatic Face and Ges-

ture Recognition (FG 2021) (pp. 01-07). IEEE.

Uncertainty and Domain Shift evaluation of Pedestrian Crossing Predictors

• Gesnouin, J., Pechberti, S., Stanciulescu, B., Moutarde, F. (2022). Assessing Cross-dataset Gen-

eralization of Pedestrian Crossing Predictors. 33rd IEEE Intelligent Vehicles Symposium.
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1.4 Outline

This thesis is laid out in five chapters:

Introduction We briefly described the context of this thesis, the problems it addresses, and the thesis’s

primary contributions.

Human Activity Recognition With Pose-driven Deep Learning Models In this chapter, we provide

historical notes on human actions understanding and an overview of modern computer vision modalities

for action recognition. We then introduce the different families and inductive biases of deep learning

architectures for skeletal sequences modeling. Existing approaches fall into four broad main categories:

recurrent neural networks, convolutional neural networks, attention-based associative memory neural

networks and graph-neural networks. Thereafter, we question the importance of representations, induc-

tive biases and their roles for skeletal action recognition. Firstly, we evaluate the importance of explicit

temporal modeling for gesture recognition: while gestures are temporal phenomena, many gestures and

actions might actually be inferred based on spatial poses only. We propose a fully-connected auto-

encoder, that does not benefit from any inductive bias and enforces the mapping from inputs to outputs

in the embedding via statistical regularizations. We show that the proposed approach reaches the per-

formances of classic sequence modeling architectures on action classification tasks with little available

data. Secondly, we investigate the importance of sending informative-representation ready data to a deep

learning architecture, prior to the learning of multiple layers of feature hierarchies that automatically

build high-level representations of the raw input. By normalizing the input data based on physical world

constraints of the body structure, we show that for action classification tasks with little data, networks

benefit from handcrafted features and could rely on fewer hidden layers to learn informative representa-

tions of data.

From Action Recognition to Pedestrian Intention Prediction In this chapter, we first provide an

overview of existing approaches for pedestrian action prediction. The majority of existing techniques

to pedestrian action prediction are trajectory-based, which means they depend on previously observed

pedestrian positions to anticipate pedestrian positions in the future. These methods are successful when

pedestrians have already crossed or are going to cross, i.e., these algorithms react to an action that has

already occurred rather than predicting it. We first propose an asymmetrical bidirectional recurrent neu-

ral network architecture called U-RNN to encode pedestrian trajectories and evaluate its relevance to

replace LSTMs for various trajectory-based models. Secondly, we address the problem of pedestrian

discrete intention prediction: instead of focusing on continuous trajectories describing the expected fu-

ture movement of the pedestrian and merely relying on scene dynamics to predict intentions, we define

the intentions of a pedestrian as a combination of his/her high-level discrete behaviors such as his/her

pose dynamics, head orientation... Finally, we show that it is possible to make the link between the

posture, the walking attitude and the future behaviours of the protagonists of a scene without using the

contextual information of the scene (pedestrian crossing, traffic light...). This allowed us to divide by a

factor of 20 the inference speed of existing approaches for pedestrian intention prediction while keeping

the same prediction robustness.
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CHAPTER 1. INTRODUCTION

Assessing the Generalization of Pedestrian Crossing Predictors this last chapter is deliberately more

exploratory. Pedestrian crossing prediction has been a topic of active research, resulting in many new

algorithmic solutions, While measuring the overall progress of those solutions over time tends to be

more and more established due to the new publicly available benchmark and standardized evaluation

procedures, knowing how well existing predictors react to unseen data remains an unanswered question.

This evaluation is imperative as serviceable crossing behavior predictors should be set to work in various

scenarios without compromising pedestrian safety due to misprediction. To this end, we conduct a study

based on direct cross-dataset evaluation. Our experiments show that current state-of-the-art pedestrian

behavior predictors generalize poorly in cross-dataset evaluation scenarios, regardless of their robustness

during a direct training-test set evaluation setting. In the light of what we observe, we argue that the

future of pedestrian crossing prediction, e.g. reliable and generalizable implementations, should not be

about tailoring models, trained with very little available data, and tested in a classical train-test scenario

with the will to infer anything about their behavior in real life. It should be about evaluating models in a

cross-dataset setting while considering their uncertainty estimates under domain shift.

Conclusion We summarize this thesis and identify potential future directions for our research.
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2.1 Historical Notes on Human Actions Understanding

The understanding of human gesture, both in the way it is performed and in the way it is interpreted,

has been a subject of interest in several disciplinary fields, such as science and art over the centuries.

Classical antiquity can be considered the birth period of the most important technical contributions to

the understanding of human movement [Klette and Tee, 2008]. Motion patterns of humans were usually

studied in close relation to motion patterns of animals and were typically observed in arts1. Most notably

in the case of sculpture, artists were seeking a very accurate depiction of motion through a single static

image.

Figure 2.1: Roman bronze reproduction of Myron’s Discobolus. The potential energy expressed in this
sculpture’s pose, expressing the moment of stasis just before the release, is an example of the advance-
ment of Classical antiquity sculpture to depic motion through a static pose.

Later on, during the Renaissance, Leonardo da Vinci’s sketchbooks contained studies about the hu-

man body and its movement. Da Vinci introduced the term kinematic trees, referring to kinematic chains

that model the underlying structure of the human body, and that allow human poses to be represented by

means of articulated models.

Figure 2.2: Drawing in Leonardo da Vinci’s sketchbooks (a man going upstairs, or up a ladder).

Renaissance artistic currents emphasized the comprehensive development of perspective as a tech-

nique for expressing situations in a single frame or picture. As a result, artists of the time were preoccu-
1“Why are man and birds bipeds, but fish footless; and why do man and bird, though both bipeds, have an opposite curvature
of the legs?", Aristotle - On the Parts of Animals
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pied with the portrayal of the three-dimensional environment, as well as its link to the right representation

of human position and motion. Projective geometry even became a mathematical theory, pioneered by

Girard Desargues at the beginning of the Baroque era. Later on, Giovanni Alfonso Borelli contributed to

human motion understanding with studies that applied Galilei’s mechanics to analyze motion for biolog-

ical purposes, which is considered as the birth of biomechanics.

Following the evolution of human gesture understanding, the most notable contributions after the

birth of biomechanics are then found during the 19th century, with the advances in terms of capturing

devices, and more specifically the chronophotography: a photographic technique that captures a number

of phases of movements as presented in Fig 2.3.

Figure 2.3: Chronophotography of a woman walking downstairs (Eadweard Muybridge, late 19th cen-
tury)

Etienne-Jules Marey, and Eadweard Muybridge are two pioneers in the use of chronophotography

for the study of movement. Marey invented a system that can be considered the first marker-based mo-

tion capture system. Muybridge developed a system to display the recorded series of images, pioneering

motion pictures this way. His technique was applied to movement studies for different categories of

activities (walking down stairs, boxing, sprinting...) and was very influential for the beginning of cin-

ematography at the end of the 19th century as well as for art. For instance, Marcel Duchamp, Picasso

and Francis Bacon were all influenced by Marey or Muybridge for their artistic development. During

the second half of the 19th century, Albert Londe, used chronophotography to study the movements of

patients during epileptic fits and became the first scientific medical chronophotographer [Londe, 1893].

During the 20th century, biomechanics became an independent discipline of science and research,

mainly in the context of sports. Finally, the technological evolution being the one we know, the prolifer-

ation of cheap cameras and processing power of modern computers during the last 50 years have paved

the way to the development of computer vision technologies to understand and describe human motions

11



CHAPTER 2. HUMAN ACTIVITY RECOGNITION WITH POSE-DRIVEN DEEP LEARNING
MODELS

in various domains2. The genesis of human motion computer analysis can probably be found in the work

of [Johansson, 1973, Johansson, 1976] and presented in Fig 2.4.

Figure 2.4: Outline contours of a walking and a running subject (A) and the corresponding dot configu-
rations (B). Picture credit [Johansson, 1973]

The idea behind Johansson experiment is that humans can recognize human body motion actions,

using the motion of the body’s joints positions only. The given representation is a high-level, sparse,

representation of the human body and should also be sufficient for the computer to understand the se-

mantics of a gesture without the context. The resulting configuration of joints being rather similar to the

one employed in modern marker-based motion capture systems or pose estimation models based on RGB

data, Johansson’s experiment is often considered as the beginning of human motion computer analysis.

Finally, with the progress and diversity in terms of data acquisition sensors, the modern representations

of motion in computer vision are not limited to the skeletal perception modality. In the following section,

we provide an overview of modern computer vision modalities for action recognition.

2.2 Overview of Modern Computer Vision Modalities for Action Recog-
nition

Humans’ actions can be represented using various visual modalities, namely, RGB, depth, infrared, point

cloud, or skeleton (see Figure 2.5). Actions can even be represented using non-visual modalities such as

audio [Gao et al., 2020], radars [Chen and Ye, 2019] or even wifi-signals [Li et al., 2019c]. Each modal-

2In the late 1990s, there has been a whole series of work on human modelling, including ISOs, which came with image synthesis
and animation in videos, and which also penetrated biomechanics and motion analysis: the H-anim project, which has become
a standard in the biomechanical modelling of humans, poses and behaviour.
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Figure 2.5: Action samples of different data modalities. Left to right: RGB, Skeleton, Depth, Infrared,
and Point Cloud.

ity has it pros and cons depending on the application scenario and encodes different sources of useful yet

different features of the scene. In this section, we provide an overview of existing perception modalities

for single-modality action recognition. It is of course possible to combine several of these perception

modalities to obtain a multi-modal representation of the scene, but this is at the expense of the inference

speed of the model and it highly depends on the quality of the fusion or co-learning algorithm.

2.2.1 RGB videos

The RGB modality refers to images or sequences of images captured by RGB cameras to replicate what

we, as humans see. It is the easiest perception modality to collect and it contains a lot of information

about the context of the given recorded scene. RGB-based deep learning models have the advantage of

using the most commonly used modality for action recognition. Therefore, one can benefit from huge

large-scale web videos to pre-train their models for better recognition performance [Karpathy et al., 2014,

Duan et al., 2020, Ghadiyaram et al., 2019]. However, due to heterogeneity in terms of backgrounds,

context, inherent differences of the performers (age, physique, ethnicity...), viewpoints, scaling, and

lighting conditions, action recognition from RGB data might be difficult to perform as there might be

huge intra-classes differences. Moreover, RGB videos being massive data volumes, modeling the spatio-

temporal components of human actions via videos has the disadvantage of leading to high computational

costs. Current research in this field focuses on designing different types of deep learning frameworks

to efficiently extract spatio-temporal features in a video: namely, Two-Stream 2D CNN-based methods,

RNN-based methods and 3D CNN-based methods.

Two-Stream 2D CNN-based methods, as shown in Fig 2.6, learn different types of information (e.g.,

spatial and temporal) from the input video features through separate networks and then perform late

fusion to obtain the performed action. Some works proposed to enhance the vanilla version of Two-

Stream [Simonyan and Zisserman, 2014] by using a third stream to add the motion saliency stream on

top of the appearance information and motion information streams [Zong et al., 2021], others proposed

to reduce the computational costs of the overall approach by either feeding low-resolution RGB frames

to speed up the computation [Karpathy et al., 2014] or either avoiding computing perfectly accurate op-

tical flow [Zhang et al., 2016, Piergiovanni and Ryoo, 2019]. Finally, some works tried to enhance the

long-term-dependency-modeling capacity of two-stream networks as this is their main drawback by sim-

ply dividing each action video into three segments and processed each segment with a two-stream net-

work. To produce the video-level prediction, each segment’s score is then fused with average pooling

[Wang et al., 2016a] or element-wise multiplication [Diba et al., 2017b].

Considering that Two-Stream approaches barely handle long-term dependencies, RNN-based models

aim to efficiently model the long-term temporal dynamics in video sequences. As shown in Fig 2.6,
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Figure 2.6: Illustration of RGB-based deep learning methods for action recognition: (a): two-stream
2D CNN-based methods, (b) RNN-based methods, (c) 3D CNN-based methods. Image adapted from
[Sun et al., 2020].

RNN-based models use convolutions as a feature extracting method for each frame in the sequence,

extracted features are then used as input for a LSTM layer to consider the temporal relationships of each

frame features. [Baccouche et al., 2011] introduced a two-steps scheme automatically learning spatio-

temporal features via 3D convolutions and uses them to classify the entire sequence by using recurrent

neural networks. Similarly, [Donahue et al., 2015] proposed a 2D convolutional neural network to extract

frame-level RGB features followed by LSTMs to generate the overall action label. Some works extended

the existing approaches by using GRUs [Shi et al., 2017, Dwibedi et al., 2018] or using Bi-directional

LSTM instead of regular LSTM in order to learn both the forward and backward temporal information

of an action [Ullah et al., 2017, He et al., 2021].

The last type of deep learning framework to model human motion in RGB camera streams consists

of scaling 2D convolutions to 3D convolutions, thus capturing simultaneously the spatial and tempo-

ral context information in videos [Ji et al., 2012]. Every flavor-of-the-month deep-learning architec-

ture for image classification got its 3 dimensional variant: DenseNet [Huang et al., 2017] got Temporal

3D CNN [Diba et al., 2017a], Resnet [He et al., 2016] got 3D ResNets[Hara et al., 2017], EfficientNet

[Tan and Le, 2019] got EfficientNet3D [Kopuklu et al., 2019]... Some works investigated the combina-

tion of 3D convolutions with two-stream designs [Carreira and Zisserman, 2017, Wang et al., 2017], thus

drastically increasing the complexity and computational burden of the proposed approaches. In the op-

posite direction, some works proposed to reduce the computational complexity and parameters size of

the given methods by factoring 3D convolutions [Qiu et al., 2017, Xie et al., 2018] or by inserting tem-

poral information over 2D Capsule Network with a zero computational cost instead of relying on 3D

Convolutions [Voillemin et al., 2021].

In conclusion, the RGB video modality is one of the most explored modality for action recognition,
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which makes it a modality of choice when dealing with tasks with not enough training data as one

can benefit from huge large-scale datasets to pre-train their architectures. It is the easiest modality to

collect and use as it provides a lot of information and context around the action. However, due to huge

intra-classes differences, it is highly sensitive to viewpoint, background and illumination conditions.

Last but not least, dealing with high data volume such as raw videos makes the architectures expensive

computationally which can be an issue when aiming at real-time scenarios.

2.2.2 Depth data

Depth maps are images in which the pixel values describe the distance between a given viewpoint and the

scene’s points. A depth camera is the sensor device that is used to create a depth image. The main advan-

tage of depth information is that it provides 3d structural information and geometric shape information of

the scene compared to raw RGB. However, it lacks colors and texture information which is problematic

as it has been shown that convolutional neural networks tend to classify images by texture rather than

by shape [Hermann et al., 2020]. Another drawback of the Depth data modality is that it has a limited

workable distance which constraints the usage of depth data in non-controlled, open environments. Due

to the lack of texture information, the depth modality is most of the time used in combination with its cor-

responding RGB stream as they are complementary in terms of provided information: e,g RGB+D. The

question now resides in the fusion algorithm strategy (early, intermediate, late... [Guerry et al., 2017])

used to efficiently combine RGB stream and depth data as presented in Fig 2.7.

Figure 2.7: An Architecture of decision level fusion of RGB stream and Depth modalities. Picture credit
[Gao et al., 2019]

Due to the availability of low-cost and reliable sensors during the last decade such as the Microsoft’s

Kinect [Zhang, 2012], there has been a rise in the domain of multi-modal RGB+D deep learning ap-

proaches for action classification [Imran and Kumar, 2016, Wang et al., 2018, Wang et al., 2020a].

However, most of the time, datasets with depth data are recorded in controlled environments: [Shahroudy et al., 2016,

De Smedt et al., 2017]. In the context of pedestrian intention prediction, at the beginning of the thesis,

there was not a single academic dataset containing depth data from stereo vision for urban traffic envi-

ronments. Therefore, we will not expand more on the fusion possibilities between depth, RGB and even

skeleton modalities. It would have been possible to use depth estimation algorithms from monocular vi-

sion such as P3Depth [Patil et al., 2022], AdaBins [Bhat et al., 2021] or TransDepth [Yang et al., 2021]

but it would be at the cost of a computationally expensive task.
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2.2.3 Infrared data

Infrared sensors do not need to rely on external ambient light, and thus are particularly suitable for

any tasks performed in dark environments, when the lightning conditions are not sufficient enough for

other perception modalities to be applicable such as during the night. However, infrared images may

suffer from low contrast and low signal-to-noise ratio, which makes it challenging to consider, for robust

human action recognition. Moreover, infrared cameras are sensitive to sunlight. Overall infrared cameras

should be considered as a specific use case sensor: when illuminations conditions are not good enough to

process efficiently what the camera sees. We will not expand much on the architectures used for gesture

recognition via infrared data. Firstly because they are very similar to those used in RGB streams: RNN-

based models [Kawashima et al., 2017, Imran and Raman, 2019] two-stream models [Mehta et al., 2021]

and 3D convolutions [Shah et al., 2018]. Secondly because throughout the thesis, we do not consider

nightly environments to be one interesting enough use case: the tasks of predicting pedestrian intentions

is complicated enough with good conditions, the point of adding a specific use case requiring a specific

sensor would not help much.

2.2.4 Point Clouds

A point cloud is a set of data points in space. The points may represent a 3D shape or object under

a spatial reference system. There are two main ways to obtain 3D point cloud data, using 3D sensors

such as LiDARs, or using image-based 3D reconstruction. As a 3D data modality, point cloud can

efficiently represent the latent geometric structure and distance information of object surfaces, which

provide additional cues for gesture recognition. Nevertheless, similarly to depth data, point clouds are

lacking color and texture information. Secondly, they are highly complex structures and processing all

the points within the point cloud sequence to leverage the spatio-temporal textures of a gesture is often

computationally expensive. One straightforward technique for extracting spatio-temporal information

from point cloud sequences is to transform point cloud sequences to 3D point clouds and use static

point cloud methods (e.g. PointNet++ [Qi et al., 2017] got its 3 dimensional variant 3DV-PointNet++

[Wang et al., 2020b]). However, by transforming point cloud sequences into a static 3D point cloud,

one might lose spatio-temporal information in the process. Some methods, attempted to extract dy-

namic features from point cloud sequences, either by disentangling space and time in point cloud se-

quences [Min et al., 2020, Fan et al., 2021], or by leveraging both time and space components conjointly

[Liu et al., 2019, Fan et al., 2022]. However, similarly to the depth modality, we will not expand much

more on the Point Clouds modality as it would not have been possible to use considering the current state

of academic datasets for pedestrian intention prediction.

2.2.5 Pose Kinematics

The detection and pose estimation of humans is the first and necessary step in pose-based action recog-

nition, of which posture analysis is an essential component. Nowadays, pose estimation approaches

are not limited to the use of motion capture systems or depth cameras. RGB data can be used to infer

2D body poses [Cao et al., 2017], 3D body poses [Martinez et al., 2017] and even track people in real-

time [Xiu et al., 2018]. This breakthrough has stimulated the skeletal modality interest since it proved
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Figure 2.8: Examples of poses. Picture credit [Babu, 2019]

to be sufficient to describe and understand the motion of a given action without any background con-

text. This has made pose-based action recognition preferred over other modalities on a huge amount of

real-time scenarios for human action recognition such as human-robot interaction [Mazhar et al., 2018,

Bujalance Martin and Moutarde, 2019], medical rehabilitative applications [Mousavi Hondori and Khademi, 2014,

Chang et al., 2011] and even sports analytics [Wang et al., 2019, Zecha et al., 2018].

Figure 2.9: Example of difficult cases for skeletonisation algorithms: clothing and brightness on the left,
occlusion and scale on the right.

However, the detection task is complicated by the variability of people’s appearance (clothing, pose,

etc.), as well as by occlusion phenomena, due to the crowd and the setting, or due to problems of scale

in the image. Approaches built on deep learning methods are far more promising in overcoming these

difficulties than are statistical approaches. Since [Toshev and Szegedy, 2014], most pose estimation ap-

proaches have universally adopted convolution networks as their main building block, largely replacing

statistical approaches. In the current state of research in 2D multi-person pose estimation, two types of

methods are deeply differentiated: Top-Down methods and Bottom-up methods, those two approaches

are detailed on Fig 2.10.

2.2.5.1 Bottom Up Approaches

Bottom up approaches are generally based on matching algorithms, graph theory, combinatorial opti-

mization or even greedy algorithms allowing to assign to each keypoint a unique person in the image

once all the keypoints have been obtained thanks to convolutive approaches.
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Figure 2.10: Top down: consists of adding a person detector in order to identify all the articulations
(keypoints) of each person and then estimate the pose according to them. Bottom up: consists of detect-
ing all the keypoints in the image (i.e the limbs of each person), then associating these keypoints with
their respective owners. Picture Credit [BeyondMinds, 2020]

For instance, [Pishchulin et al., 2015] propose to extract candidate keypoints thanks to classical ar-

chitectures such as Faster RCNN [Ren et al., 2015] or Dense CNN [Huang et al., 2017] and then solve

the problem of classification (e.g. elbow, knee, head...) and allocation of these keypoints thanks to

linear programming and a combinatorial simplex optimization algorithm. [Cao et al., 2017] propose an

approach that detects keypoints in the image using a two-branch convolutional architecture: one infer-

ring a set of 18 heatmaps, each representing a particular part of the human pose skeleton, and the other

branch inferring a set of 38 Part Affinity Fields representing the degree of association between the key-

points. Bipartite graphs are then generated based on these outputs and the Hungarian algorithm is used

to prune the graph and thus optimally assign each keypoint to a single person. [Newell et al., 2017]

propose an approach that teaches a network to simultaneously produce keypoint detections and assign-

ments thanks to two cost functions: one for detection and one for matching. [Insafutdinov et al., 2016]

propose a bottom up approach able to work on a sequence of images in a sequential way and are no

longer restricted to the frame by frame approach of the previous methods. After having detected the

keypoints of each frame, they are associated in the form of a spatio-temporal graph, the problem of

assigning keypoints to a person is then assimilated to a minimum cut problem in graph theory. Finally,

[Kreiss et al., 2019, Kreiss et al., 2021] propose a multi-person 2D human pose estimation that addresses

failure modes that are particularly prevalent in the transportation domain, i.e. crowded images in low res-

olution with partially occluded pedestrians that occupy a small portion of the image.

2.2.5.2 Top Down Approches

Unlike Bottom Up approaches which rely on the quality of their matching algorithm, Top Down methods

rely on the inference quality of their person detection model. Computationally speaking, these methods

increase significantly in execution time according to the number of people in the image but are gener-
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ally more robust. Mask R-CNN [He et al., 2017], initially a segmentation model, can be modified at the

output of the mask to obtain poses. The basic architecture first extracts features from an image using

convolutions. These features are used by a Region Proposal Network (RPN) to obtain candidate bound-

ing boxes for the presence of objects. By combining the information about the location of the person

thanks to the bounding boxes and the keypoints obtained from the mask, we obtain the skeleton of the

human pose for each person present in the image. [Iqbal and Gall, 2016] show that the multi-pose esti-

mation problem can be formulated as a set of association problems for each of the detected persons in the

image. Thus, for each detected person, one can generate a skeleton using a single-person pose estimator

inside the bounding box position of the given protagonist. Since this approach does not take into account

occlusion or truncation problems for each of the obtained bounding boxes, they reuse the linear program-

ming system of [Pishchulin et al., 2015] on each of the graphs inferred for each bounding box. Since the

size of the graphs is much smaller than in the Bottom Up approach, the speed of inference obtained

is globally better. [Papandreou et al., 2017] propose a top down approach, where keypoint estimation

is not performed by regression for each keypoint but by estimating heatmaps and a magnitude vector

allowing to best target the keypoint position in the heatmap. This approach allows to potentially obtain

several keypoints of the same class in the same bounding box and thus, to a certain extent, overcome the

occlusion problem for the estimation of poses in a 2D space. AlphaPose [Fang et al., 2016] propose an

approach to facilitate pose estimation when the obtained person detection bounding boxes are inaccurate.

Since pose estimation is performed on the boundig box obtained from a detection algorithm, errors in the

localization of these bounding boxes when using the detector can result in a non-optimal operation of the

pose extraction algorithm. The authors therefore propose the use of a Symmetric Spatial Transformer

Network (SSTN) to extract a quality area from an inaccurate bounding box. A pose estimator is then

used on this extracted region and the resulting coordinates are transformed to match the original space.

2.2.5.3 The question of dimension

One of the main limitations of a 2D approach is the ability to treat occlusions between pedestrians in a

2-dimensional space. Therefore, in order to improve pose detection, the question of adding a third dimen-

sion may arise. The methods for 3D pose estimation are much less mature than those for 2D pose estima-

tion. One of the main reasons to date would be the lack of available reliable datasets [Yang et al., 2018a].

However, some types of approaches can be discerned: estimating a 2D pose and reconstructing a 3D

pose, directly performing the regression of a 3D pose, or treating the 3D pose estimation problem jointly

or even iteratively with the regression of a 2D pose.

[Chen and Ramanan, 2016] propose, for example, an architecture passing through the estimation of

an intermediate pose in 2D and estimating the value of the pose depth using the k-nearest neighbors’

algorithm on a 3D pose database. [Martinez et al., 2017] show that translating points in a 2-dimensional

space into a 3-dimensional space is a task that can be solved with a simple multilayer perceptron (MLP).

Analogously, [Nie et al., 2017] predict the depth of human joints based on their 2D locations using re-

current approaches (Long short-term memory - LSTM).

On the other hand, [Li and Chan, 2014] propose a convolutional approach directly performing a re-

gression of the skeleton in 3 dimensions. [Sun et al., 2017] propose to base their regression on the joins

of the keypoints and not the keypoints of the skeleton. [Tekin et al., 2016] train an auto-encoder on
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skeletons with a sparse latent space of greater dimension than the input’s. Then they regress with a

convolutional neural network taking as input the image corresponding to the skeleton, the values of

the latent space for a given training instance and use the decoder part in order to retrieve the pose in

3D. [Mehta et al., 2018] propose a 3D pose regression method reusing the same bottom-up approach

as [Cao et al., 2017] to associate keypoints and define occlusion-robust pose-map (ORPM), allowing to

infer the whole-body pose even in case of strong partial occlusions by other persons or objects.

Finally, [Simo-Serra et al., 2013] propose to partition the 3D pose estimation problem by simulta-

neously estimating the 2D and 3D poses and then combining the results obtained. [Tome et al., 2017]

propose an iterative refinement method in which 3D inferences help refine and improve 2D estimates, and

then translate the prediction from 2-dimensional space into a 3-dimensional space. In [Rogez et al., 2019],

the estimation of 2D/3D human poses is performed jointly through a localization-classification-regression

(LCR-Net) architecture. The localization is performed thanks to an RPN, suggesting candidate poses at

different locations of the image, and a classifier evaluates the plausibility of the different pose propos-

als. Finally a regression refines the pose proposals in 2D and 3D. Similar work has been proposed

by [Benzine et al., 2019, Benzine et al., 2020] to efficiently extract conjointly 2D and 3D poses for a

possibly large number of people at low resolution. Therefore trying to scale up the current focus of

single-person pose estimation or estimation of 3D pose of few people at high resolution.

2.2.5.4 The issue of sequentiality

On the basis of the multi-person pose estimators described above, it is natural to seek to extend them

from the frame-by-frame approach and thus take into account the sequential information present in the

sequence.

Many of the approaches are based on the graph partitioning work of [Pishchulin et al., 2015] and

[Insafutdinov et al., 2016] for the frame by frame approach. The notable difference to take into account

sequentiality is to extend the graph of keypoints in space at each frame into a spatio-temporal graph.

However, current linear programming solvers take a long time to converge and real-time usage becomes

complicated or impossible considering the size of the graph for a video. A current line of research tends

to explore more efficient and scalable top-down solutions by first estimating the pose of several people

in each image and then linking them in terms of appearance similarity and temporal relationship. Thus,

[Xiu et al., 2018] propose PoseFlow, a sequential approach to AlphaPose [Fang et al., 2016] by maxi-

mizing the overall confidence of pose inference for a temporal sequence. First, a top-down estimation

of the poses for each image is performed. Pose Flows are constructed by associating poses that corre-

spond to the same person across frames through an estimate of the distance between poses. Using a

sliding window, the poses of each person in the frame are normalized to the previous and next positions

in the video. [Ning and Huang, 2019] propose a top-down approach where the matching of poses to a

person refers to a distance between two poses based on the optical flow. [Xiao et al., 2018] propose a

top-down approach in which the identification of a person over time is based on two complementary

pieces of information: spatial coherence and pose coherence. Tracking and identification are performed

using a geometric convolutional Siamese network to determine the degree of similarity between features

extracted from two poses. [Raaj et al., 2019] reuse the Part Affinity Field principle for static frames of

[Cao et al., 2017] in a sequential form thanks to a recurrent architecture where the network uses as input
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the heatmaps of the previous frames to estimate those of the current frame.

Overall, Top Down sequential methods based on pose matching should be prioritized because the

location of a person may vary according to a sudden change of camera angle, while his or her pose will

remain almost the same, in order to obtain a better tracking of the protagonist of the scene and not to

mix the skeletal kinematics of two people at different moments in the sequence but close in space, which

would render the second part of the approach: biased by using wrong data.

2.3 Poses, Actions and Trajectories

In our context of interpreting actions from estimated poses kinematics (see section 2.2.5), we define

here the different concepts derived from pose-based modeling, following the nomenclature proposed by

[Picard, 2011] and extended by [Barnachon, 2013]:

A gesture is described as a movement that conveys a purpose. Unlike a mechanical system, the

distinction comes from the conscious will of the human being who consciously produces the gesture.

An articulation/joint; 0, is a given =-dimensional point in a reference frame. With = ∈ [2;3], for

readability purposes we continue the specification of each concepts for = = 3.

0 =


G

H

I

 (2.1)

A pose, %, is the =-dimensional position of all the given articulations at a given time C. We define a

pose as the union of the positions of the articulations for a given timestamp C as:

%(C) =
⋃
0∈A

0(C) =
⋃
0∈A


G0 (C)
H0 (C)
I0 (C)

 (2.2)

Where %(C) is the given pose at time C, G0 (C), H0 (C), I0 (C) are respectively the coordinates on the

-,., / axis at time C, A is the set of articulations of interest and 0(C) the articulation at a time C. A pose

%(C) can also be defined under the form of a |A| ×=-shaped vector:

%(C) =


01(C)
02(C)
...

0 |A | (C)


=



G1(C)
H1(C)
I1(C)
...

G |A | (C)
H |A | (C)
I |A | (C)


(2.3)

An action, �, is a temporal sequence of poses sharing a common semantic, i.e. a movement convey-

ing a meaning. An action can therefore be defined as its corresponding, ordered, sequence of poses from
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C0 to C# where # is the finite number of poses in the sequence:

� =

C#⋃
C=C0

%(C) =


01 (C0) . . . 01 (C# )
02 (C0) . . . 02 (C# )
...

. . .
...

0 |A | (C0) . . . 0 |A | (C# )


=



G1 (C0) G1 (C1) . . . G1 (C# )
H1 (C0) H1 (C1) . . . H1 (C# )
I1 (C0) I1 (C1) . . . I1 (C# )
...

...
. . .

...

G |A | (C0) G |A | (C1) . . . G |A | (C# )
H |A | (C0) H |A | (C1) . . . H |A | (C# )
I |A | (C0)︸   ︷︷   ︸

Pose 1

I |A | (C1)︸   ︷︷   ︸
Pose 2

. . . I |A | (C# )︸    ︷︷    ︸
Pose #



(2.4)

Trajectories, the lines of the matrix representation of an action are the expression of the trajectories

of the articulations over time, on each axis of the =-dimensional world. The trajectories of an action,

carry more information about the action than a pose. This is the transposition of Johansson’s postulate

[Johansson, 1973]. It is therefore possible to see an action as a set of =-dimensional or one-dimensional

trajectories:

� =

C#⋃
C=C0

⋃
0∈A

0(C) =
⋃
C=C0

⋃
0∈A


G0 (C)
H0 (C)
I0 (C)

 (2.5)

with 0(C) the =-dimensional trajectory of the articulation 0 over time, G0 (C), H0 (C)0=3I0 (C) the one-

dimensional trajectory of the articulation 0 over time on the -,., / axis.

Figure 2.11: Trajectories of the joints of a walking skeleton. Picture credit [Olsen et al., 2018]

Action recognition is a classification problem. The goal is to assign a label to the temporal sequence

of poses, e.g, assuming a training set of actions and their respective labels: D = {(G8 , H8)}#8=1 composed

of # training samples. The goal is to learn a mapping function 5 that can correctly predict the label H of

the input action �.
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2.4 Overview of Skeletal Sequence Modeling with Deep Neural Networks

In the previous sections, we listed the different types of existing algorithms to obtain the skeleton of a

person based on a RGB stream. We then defined the concepts to move from pose extraction to the anal-

ysis of poses kinematics. In this section, we review a list of approaches based on "in-depth" learning of

action recognition on skeletal data. Those approaches for skeleton-based action recognition can be split

into four categories: recurrent-based architectures, convolutions-based architectures, attention-based ap-

proaches and graph-based approaches.

Whereas all those approaches were all designed to perform the same task: action recognition, their

very composition in terms of layers provides a different type of relational inductive bias: how do they

hierarchically process features? The performance of action recognition approaches not only results from

the training data but also from their sequence-focused design and their corresponding assumptions to-

wards the data. As shown in Table 2.1 the choice of a good neural network architecture and its corre-

sponding inductive biases is crucial to model sequences.

Component Entities Relations Rel. inductive bias Invariance

Fully connected Units All-to-all Weak -
Convolutional Grid elements Local Locality Spatial translation

Recurrent Timesteps Sequential Sequentiality Time translation
Graph network Nodes Edges Arbitrary Node, edge permutations

Table 2.1: Various relational inductive biases in standard deep learning components. An inductive bias
allows a learning algorithm to prioritize one solution (or interpretation) over another, independent of
the observed data.[Battaglia et al., 2018]

When training deep learning models, anything that imposes constraints on the learning trajectory

can be considered as an inductive bias. Any non-relational inductive biases used in deep learning in-

clude for instance: activation functions, regularization’s such as weight decay, dropout, batch and layer

normalization, data augmentation, optimizers...

Given all the possible combinations and effects of each non-component inductive bias that can only

be evaluated empirically, no trend is easily distinguishable in terms of identifying the best architecture to

model sequence for skeletal action recognition. However, each of those categories has its pros and cons

by design that we will explain in the following sections.

2.4.1 Fully Connected Neural Networks

According to the universal approximation theorem [Hornik, 1991], any bounded function can be approx-

imated as well as one wants with a shallow Neural Network containing only one hidden layer. As such,

one may even use a trivial feed-forward neural network such as a Multi-Layer Perceptron (MLP) to model

sequences, like any other type of data. However, the stronger the inductive bias, the better the training

sample efficiency. Considering that fully connected neural networks have weak relational inductive bias,

the design of those architectures do not emphasizes a minimal a priori assumptions about the data and

therefore would lead to a data-intensive training compared to approaches designed to consider the tem-

poral phenomena of action recognition. For instance, when modeling time series in real world scenarii,
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sequences are usually not stationary: the interpretation of a given feature might depend on earlier fea-

tures or the timestamp C they appeared at. Such assumptions about the data is not taken in consideration

with MLPs. Similarly, their general relation pattern (All-to-all) does not naturally benefit from regular-

ities, like periodicity, that may exist in time series data. Finally, fully connected layers require a fixed

number of inputs, whereas in real world scenarii, the same actions can be carried out under different

time windows sizes. Due to theses shortcomings, and limitations when compared to more complex neu-

ral network architectures to perform gesture recognition, vanilla multi-layer perceptrons are hardly ever

used on their own [Li et al., 2019b]. Nevertheless, it is worth noting that when fully connected neural

networks are coupled with attention mechanisms (see section 2.4.4), such as in the Transformer archi-

tecture [Vaswani et al., 2017], those models achieve similar / better performance in domains involving

sequential data processing than convolutional and recurrent neural networks. However, those approaches

are more data-intensive in regards to the amount of available training data compared to architectures

providing assumptions about the input data.3 For instance, for related sequential task such as Natural

Language Processing, Transformers perform extremely well on many tasks with enough training data

and computation [Devlin et al., 2018, Keskar et al., 2019], but several studies have shown that LSTMs

can perform better than Transformers on tasks requiring sensitivity to hierarchical structure, especially

with limited amount of training data [Tran et al., 2018, Dehghani et al., 2018].

2.4.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) combine feedforward neural networks with hidden states which one

can view as dynamic memories. This allows RNNs to exhibit temporal dynamic behavior4 where the

hidden state is used to process variable length sequence of inputs. In contrast to Fully Connected Net-

works, RNNs can process sequences of arbitrary length, which made them the reference approaches for

sequence modeling in speech recognition, digital signal processing, video processing and natural lan-

guage processing. Similarly, most deep-learning approaches for gesture recognition also use recurrent

cells such as LSTMs [Hochreiter and Schmidhuber, 1997] or GRUs [Cho et al., 2014]. For those ap-

proaches, the skeleton is represented in the form of a sequence and state neural networks are applied to

it. The difference between each approach resides in designing novel neural network architecture based

on RNNs, LSTMs or GRUs to achieve action recognition. For instance, [Du et al., 2015b] have classified

the time series skeletal data by hierarchically combining the predictions of several RNNs subnetworks.

Treating every body part of the skeleton sequence independently, then aggregating more body parts to-

gether until the final classification. [Shahroudy et al., 2016] propose a similar approach by using five

different part-aware Long Short Term Memory (LSTM) networks based on subsets of joints, to cap-

ture local information about the skeleton sequences. Instead of aggregating the networks such as in

[Du et al., 2015b], a fusion algorithm is used to merge them. [Shukla et al., 2017] propose a hierarchical

recurrent architecture roughly equivalent to [Du et al., 2015b] and [Shahroudy et al., 2016] but reduce

manually the number of joints at the input of the model, some of them being considered superfluous

and carrying little information. This reduction in the number of input joints then leads to a reduced

set of parameters and reduces the model inference time without degrading the quality of the classifier.

3Therefore unusable when learning classification using little data.
4explicit temporal modeling
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[Wang and Wang, 2017] has proposed a method based on two streams of RNNs, one to learn the spatial

dependencies in the kinematics of skeleton joints, the other one to learn the temporal dependencies of the

pose kinematics. These are then combined following a late fusion strategy with an end-to-end trainable

network. In order to achieve better performance for skeleton-based action recognition with RNNs, some

studies introduce new features for skeleton sequence instead of using the regular trajectories of the ar-

ticulations in the Cartesian coordinate system. For instance, [Liu et al., 2016] use a tree-structure-based

traversal method for better representation of human skeletons while introducing a gating mechanism

within LSTM cells to improve recognition robustness. From the articulations positional information,

[Zhang et al., 2017b] generate eight geometric indicators and evaluate them with a three-layer LSTM

network. [Zhang et al., 2017a] propose an adaptive recurrent network with a LSTM architecture, allow-

ing the network to adapt to the most appropriate end-to-end observational viewpoints in order to manage

large variations in the orientation of actions. [Avola et al., 2018] exploit the geometric characteristics

of the angles of the joints learned with a LSTM architecture. However, recurrent cells are relatively

slow and difficult to train due to the well-known gradient vanishing and exploding problems and hardly

manage to learn long-term dependencies [Li et al., 2018]. Moreover, studies using RNNs when dealing

with action recognition tasks have the issue of placing lesser emphasis on spatial features of the skeleton

sequence as they pay much more attention and place much more importance on the trajectories of each

articulation and therefore the sequential part of the problem. Therefore, recurrent architectures might fail

to capture the spectrum of actions that could be inferred based on spatial poses only.

2.4.3 Convolutional Neural Networks

Since recurrent cells are relatively slow and difficult to train and to use in real-time due to their lack of

parallelization, Convolutional Neural Networks (CNNs) have become an interesting solution given their

advantages in terms of parallel computing, and efficiency in learning characteristics and speed.

CNNs are a class of feedforward neural networks where the neural network uses a convolution oper-

ation in place of a matrix multiplication. CNNs tend to exhibit good performance on data with a grid-like

topology such as images and time series, as they respectively can be viewed as a field of vectors taking

values over an evenly spaced 1D grid (time) or 2D grid (spatial pixel grid). Initially designed for 2D grids

such as images, CNN can be applied over sequences, as their relational inductive bias will find temporal

regularities via their locality. The interpretation of a given feature might depend on earlier/future features

or the timestamp C they appeared at, which can be viewed as a "time" neighbor of the current timestamp.

When dealing with action recognition tasks with Convolutional Neural Networks, two kinds of solu-

tions arise: transforming the input data in a 2D-grid-like manner or a 1-D grid-like manner.

For instance, convolutions can be performed on skeletons kinematics represented as pseudo-images,

so that standard 2D convolutions can be applied, or any other spatio-temporal version of CNNs such as

3D convolutions. Since skeletal data are small elements, it is possible to organize a sequence of skeletal

features chronologically in an image that retains the original information of the skeletal kinematics as

illustrated in Figure 2.12.

The general idea of this type of approach is to structure the data in order to give them the expected

form (a sequence of images) and thus classify these images using standard computer vision methods.

Such motion formalism to represent skeletal sequences by compact image-like inputs was first proposed
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Figure 2.12: Organization of the 3D skeleton data structure into a three-channel image (RGB)

by [Elias et al., 2015], alongside with [Du et al., 2015a] where a special insistence has been given to

features representation and data normalization to improve instance indexing. Pulling in the same di-

rection, [Wang et al., 2016b] propose skeleton sequences that have been further encoded into the Hue

Saturation Value (HSV) space. To overcome the issue of the semantic continuity of pixels in the gener-

ated pseudo-images, [Li et al., 2017b] proposes a skeleton transformer layer before the CNN’s to learn

the optimal representation of pseudo-images for the network. [Li et al., 2017a] used the pairwise dis-

tances between joints encoded into RGB images, known as the Joint Distance Map as input features

to account for view invariance. [Ke et al., 2017] propose to transform a skeleton sequence into three

video clips, the CNN characteristics of the three clips are then merged into a single characteristics vec-

tor which is finally sent to a softmax function for classification. [Pham et al., 2018] propose to use

a residual network ([He et al., 2016]) with for input the transformed normalized skeleton in the RGB

space. [Cao et al., 2018] propose to classify the image obtained thanks to gated convolutions. Finally,

[Banerjee et al., 2020] has reduced the number of channels to one in grayscale instead of three in RGB.

Moving away from the image domain while keeping the notion of sequential modeling via convolutions,

other CNN-based approaches use them in 1D format: [Bai et al., 2018] show that convolution networks

can match or even surpass the performance of recurrent networks for typical sequential modeling tasks.

Therefore, [Devineau et al., 2018] propose an architecture based on parallel convolutions capable of cap-

turing features at different temporal resolutions. This results in a three-branch convolutional model that

takes as input the positions of skeletal joints at different speeds and the distances in pairs between joints.

[Weng et al., 2018] propose a deformable convolutional neural network with one-dimensional convolu-

tions capable of discovering combinations of information-carrying joints to avoid joints whose seman-

tics contribute little to the model. [Yang et al., 2019] propose a Double-feature Double-motion network

where skeletal kinematics are processed either in the Cartesian coordinate system under different time

shifts with 1D CNN or processed in a location-viewpoint invariant manner.
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2.4.4 Spatio-temporal Attention

Human perception focuses on the most relevant parts of an image in order to acquire information to

understand its semantics. For machine learning, this phenomenon is artificially recreated by a mech-

anism of attention: conceptually, attention can be interpreted in a broad sense as a vector of weights

of importance. In the context of action recognition, attention can be used to weight the importance

of certain moments of the action in order to classify it, or to weight the importance of certain skele-

tal joints. Nevertheless, it is not a deep learning component but rather a mechanism used to provide

pertinent features to the other components of a neural network. Most of the existing works combine

the attention mechanism with regular deep learning components for time series modeling. For instance,

[Fan et al., 2019] propose an attention mechanism for multiview fusion of skeletons preprocessed by

LSTMs cells. [Maghoumi and LaViola Jr, 2019] propose to stack GRUs with a global attention mech-

anism as well as two fully connected layers. [Song et al., 2017] propose a model based on LSTM and

RNN and combine spatial and temporal global attention: a network focuses on the discriminating articu-

lations of each frame, the other network weights the attention levels of the results for each instant in order

to focus on the important frames. [Fan et al., 2019] use action information from multiple viewpoints to

improve recognition performance and provide an attention mechanism for multi-view fusion of skeletons

sent to LSTMs. Similarly, it is also possible to use attention with convolutions. Thus, [Hou et al., 2018]

propose a convolutional network learning different levels of attention for each spatio-temporal feature

extracted by the convolution filters for each frame of the sequence.

2.4.5 Graph Neural Networks

The evolution over time of the skeleton of the human body can be considered in the form of a dynamic

graph. So far, research in deep-learning for action recognition on skeletal data has focused mainly on

Euclidean data. The non-Euclidean nature of data in graph format makes the use of basic operations,

such as convolution, difficult to perform. However, convolutions have by definition the ability to extract

local spatial features and could use the skeleton data structure in graph format for the classification of

human actions. Such ability fits perfectly to Graph-type data structures since they are, by definition,

locally connected structures: the set of neighbors of a node.

Figure 2.13: (left) Convolution on 2-D grid-like data. The number of neighboring nodes is a fixed
number determined by the filter size. (right) Generalized convolution operation on unstructured data.
The number of neighboring nodes, determined by edge connectivity may vary from node to node. Picture
credit [Wu et al., 2019b]
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To this extent, representing the skeleton in the form of a graph can have the advantage of not ex-

ploiting non-existent neighborhood links between joints, but preserving coherent spatial semantics for

the skeleton compared to approaches using Euclidean data structures such as RNNs or CNNs. Geomet-

ric Deep-Learning [Gori et al., 2005, Scarselli et al., 2008, Bronstein et al., 2017] refers to techniques

attempting to generalize deep structured neural networks to non-Euclidean domains such as graphs.

[Wu et al., 2019b] provide a state of the art on geometric deep-learning and propose a taxonomy to

differentiate geometric networks into four categories: recurrent, convolutional, auto-encoder and spatio-

temporal. Such formalism to represent the skeletal sequences in a non-euclidean data structure while

applying deep-learning to unstructured data was first proposed by [Li et al., 2018]. [Zhang et al., 2018]

propose to apply convolutions on the edges of a graph corresponding to skeletal bones in order to preserve

spatial semantics. Thereupon, architectures trying to combine both spatial and temporal graph convolu-

tions throughout one network were designed [Wu et al., 2019a]. Similarly, [Yan et al., 2018] extend the

spatial convolutions of graphs into spatio-temporal convolutions. They propose a convolutional spatio-

temporal approach including time-bound joints in the convolutional block in addition to spatially bound

joints. Self-attention mechanisms can be utilized to improve the modeling capacity of graph neural net-

works as well [Shi et al., 2019, Li et al., 2019a]. Finally, [Si et al., 2019] propose to cumulate attention

to a CNN-LSTM geometric network, capitalizing all the approaches presented previously in a single

network. While many skeleton-based action recognition methods adopt graph convolutional networks

to extract features on top of pose kinematics, the boost in model accuracy observed is hindered by po-

tential drawbacks such as computational complexity, resource consumption or interoperability. Current

research trends aim at reducing the computational complexity and ressource consumption of graph neural

networks for skeletal action recognition. For instance, [Ye et al., 2020] propose to combine both graph

neural networks and standard convolutions in an euclidean grid space to reduce the computational costs

of the overall approach. [Cheng et al., 2020] propose a new form of graph convolution that provides im-

provements in terms of computational complexity and memory consumption of graph neural networks by

reducing by nearly a factor of 10 both of those performance indicators compared to standard graph con-

volution. Nevertheless, when considering the model speed as one priority, the boost in model accuracy

compared to architectures using euclidean data structure is questionable. Specifically considering that

most of the standard deep-learning operations are already implemented in any deep learning frameworks

and also in any neural hardware solutions for embedded devices: the knowledge of the optimization of

euclidean data structure networks is conserved compared to approaches based on Graph Networks where

basic operations need to be redefined and one might lose speed efficiency in the process.

2.5 Representations, Inductive Biases and their roles during classification
with little data

2.5.1 Importance of Explicit Temporal Modeling

2.5.1.1 Introduction

We have seen in section 2.4 that existing skeletal action prediction models focus mainly on the sequen-

tial modeling part of the problem by modeling the trajectories of joints over time. Moreover, those
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approaches rely heavily on deep-learning networks and their inductive biases to learn informative rep-

resentations of those trajectories 5 by stacking layers, leading to more and more complex architectures

over the years. Since deep learning approaches depend heavily on the quantity and quality of data where

the performance of approaches scales up with the amount of training data, the current paradigm does

not encourage the community to study and improve the capabilities of deep networks for tasks with little

data available. In this work, we propose to go back to "It is all about embedding and standardization

in machine-learning": once one finds a way to standardize and represent data in a more adequate way,

any classifier might be able to obtain good results as long as the input data is informative. We start from

several assumptions:

• The primary role of the hidden layers is to realize a composition of non-linear transformations

in the hope of finding an embedding adapted to the data format that preserves a maximum of its

semantics from representation to output. Hence, one could for instance enforce the representation

of a specific designated hidden layer by combining classical statistical representation and learned

representation.

• By addressing the issue of data representation, we discover, not only the mapping from represen-

tation to output, but also the representation itself. Therefore, one avoids a "blind" learning of this

representation: by optimizing a precise network on a precise dataset and by testing a huge set of

hyper-parameters, one is assured of good results from representation to outputs. The more reliable

the data representation, the more trivial the architecture used for classification can be and the less

prone to over-fitting it becomes. Moreover, we can therefore potentially reduce the size of our

network and thus by definition reduce its inference time, which can be interesting in the context of

a real-time setting.

Based on previous works, showing that the addition of a non-supervised regularization during a clas-

sification problem with little data allows a better generalization of networks [Brigato and Iocchi, 2021].

We question if we can efficiently initialize a network similarly to unsupervised pre-training researches

[Ranzato et al., 2006, Hinton and Salakhutdinov, 2006, Hinton, 2007] and combine two different ideas:

• The idea that the choice of initial parameters can have a regularizing effect on the model (and

therefore improve optimization).

• The idea that learning about the input distribution can help with learning about the mapping from

inputs to outputs. We refer to this as representation learning and the classical method used for

such a task is the auto-encoder: a neural network that is trained to attempt to copy its input to its

output by learning a representation ℎ in a low-dimensional manifold of a learning example G and

approximately recovers G from ℎ through a transition function.

Hence we propose an auto-encoder as presented in Fig 2.14 with a separability constraint term that

focuses on two completely different pieces of information in the data:

• The inherent structure of the data captured in an unsupervised manner thanks to the reconstruction

capability of the auto-encoder and its abstraction ability. Some of the important and discriminating

information in the data set would then be retained in a low-dimensional manifold.
5We refer to the concept of gathering knowledge from experience without the need of human operators as semantics.
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Figure 2.14: Pipeline of the approach: (1) we train an auto-encoder to reconstruct a sequence representing
an action according to the evolution over time of the keypoints. We also add a constraint specific to the
separability of classes in the latent space. (2) We then extract the weights of the encoder part up to the
bottleneck represented in red and add a classifier, which transforms the encoder part into a pre-trained
network on the data for action classification.

• A first separability draft of classes thanks to Linear Discriminant Analysis projection of the in-

stances in the latent space to improve the maninfold’s representation.

The idea behind our approach is that it leads to a better encoder weights initialization if we combine

statistics and semantics as we enforce certain constraints towards the data representation of designated

hidden layer: the latent space.

To demonstrate that the question of data representation is almost as important as sequential mod-

eling for such task, and according to the universal approximation theorem [Hornik, 1991](any bounded

function can be approximated as well as one wants with a shallow Neural Network), we use the sim-

plest form of an autoencoder, a feed-forward neural network such as a Multi-Layer Perceptron (MLP) to

model sequences with no explicit temporal modeling.

2.5.1.2 Formalization

Formally, we define the problem as follows:

min
\1, \2

,
X−6\2 ( 5\1(X))

2 (2.6)

Equation (2.6) is the usual reconstruction function of an auto-encoder with X a data matrix, \1, \2 the

parameters of the encoder and decoder blocks and 5 (), 6() are respectively the transition functions such

that:
5\1 : X→F
6\2 : F → X

(2.7)

Where F is the feature space which can be regarded as a compressed representation of the input
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matrix X. We refer to F as the bottleneck or the latent space of the auto-encoder.

We then add a statistical supervised constraint specific to the separability of classes in the cost func-

tion: with S being the projection matrix of the instances in the latent space obtained with a linear dis-

criminant analysis (LDA) and _ a weighting parameter as presented in equation (2.8):

min
\1, \2,S

X−6\2

(
5\1 (X)

)2 +_
 5\1 (X) −S 5\1 (X)

2 (2.8)

The given formula is only applicable if 38<(F ) = " −1 with " being the number of classes in the

dataset. The training method is a simple iterative algorithm, optimizing an appropriate objective function.

This algorithm is based on two updating steps according to the scheme written in the pseudo-code below:

Algorithm 1: Auto-encoder with statistical separability constraint training algorithm
Input: data matrix X, ground truth labels y, weighting parameter _, loss threshold Y
Initialization of the encoder and decoder parameters \1 and \2;

while
X−6\2

(
5\1 (X)

)2 +_
 5\1 (X) −S 5\1 (X)

2
> Y do

Update \1 and \2 using the auto-encoder.;
Update S using Linear Discriminant Analysis on 5\1(X) data matrix and y.;

end
Result: \1, parameters of the encoder block

We choose the value of _ for the supervised separability constraint part empirically, by modifying its

value for different trainings and evaluate its gain for later stages. Once the training of the auto-encoder

has been performed, we recover the weights of the encoder part: \1 and add a linear classifier, such

as a softmax regression classifier right after the bottleneck. In order to use the encoder as a classifier,

we train the given modified network by minimizing the cross-entropy loss ℒ�� between the empirical

distribution defined by the training set and the probability distribution defined by the model being trained:

ℒ�� = − 1
#

#∑
8=1

"∑
<=1

1H8 ∈�<
log (?model (H8 ∈ �<)) (2.9)

Where # is the total number of instances, " is the cardinal of the set of classes {�1, . . . ,�<} ,1H8 ∈�<

is the value of the indicator function of the 8-th sequence belonging to the<-th class and ?model (H8 ∈ �<)
is the softmax probability that the 8-th sequence belongs to the class �<. The encoder 5\1(-) now learns

to provide a representation to the softmax regression classifier and has been pre-trained to do so. Since

supervised training of feedforward networks does not involve imposing any condition on the learned

intermediate representations, we expect our statistical regularization to make the classification task easier

without any explicit temporal modeling.

Architecture Details
In order to evaluate the quality of representation, we chose to take the easiest possible autoencoder

architecture: a feed-forward multilayer perceptron. Naturally, it is possible to perform the same work on
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convolutional or sequential autoencoders in order to capture the sequentiality of the action or to minimise

the size of the network and thus potentially improve the accuracy and the inference time. The architecture

consists of an encoder part and a decoder part. The decoder is symmetrical to the encoder part and is

defined as such:

• An input layer of dimension 2112 representing the flattened tensor of a complete gesture for 32

time steps, 22 keypoints and 3 dimensions or of dimension 960 for 32 time steps, 15 keypoints and

2 dimensions depending on the input format of the skeletal kinematics.

• 5 dense layers of feature extractions whose dimension decreases by a power of two for each layer

(512, 256, 128, 64, 32).

• A bottleneck of dimension " −1, with " being the cardinal of the set of classes for each dataset.

To address the vanishing gradient problem, each perceptron in the given auto-encoder network uses

the LeakyRelu [Maas, 2013] activation function.

Optimizer, Batching, Regularizations
The given auto-encoder is regularized with dropout [Srivastava et al., 2014] with ? = 0.1, !2 regu-

larization with _ = 10−1 and batch-normalization [Ioffe and Szegedy, 2015]. For both training phases,

we use Adam [Kingma and Ba, 2014], following the hyper-parameters recommendations of the authors.

Regarding the number of training epochs, we train the given network with an annealing learning rate that

drops from 10−3 to 10−8 and use early stopping: if the validation loss does not improve during the 50

last steps by more than 0.01%, we stop the training in order to prevent the network from over-fitting the

training data.

2.5.1.3 Experiments

Datasets
We select two skeleton-based action recognition datasets, SHREC dataset [De Smedt et al., 2017]

and JHMDB dataset [Jhuang et al., 2013] to evaluate our regularized autoencoder from different per-

spectives (see Table 2.2).

Figure 2.15: Example of a swipe left gesture extracted from SHREC dataset. Picture Credit
[De Smedt et al., 2017].
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Figure 2.16: Example of actions and scenes extracted from JHMDB. Picture Credit [Liu et al., 2018].

Table 2.2: Properties of the selected experimental datasets.

SHREC Dataset JHMDB Dataset
Number of samples 2800 928

Training/Testing Protocol
1 Training Set
1 Testing Set

3 Splits Training/
Testing Sets

Dimension of skeletons 3D 2D
Subject Hand Body

Number of actions 14 and 28 21

The SHREC dataset is composed of hand gesture sequences for supervised action classification such

as Grab, Tap, Expand, Pinch, Swipe... Each gesture falls into one of 14 categories and can be performed

with either only one finger or with the whole hand (hence the 14 or 28 classes depending on the number

of fingers used). It contains a total of 2800 examples, being performed by 28 different participants in

total. Each gesture might extend through time and is not limited by a specific temporal resolution. For

each sequence a depth image of the scene is provided at each time step, alongside with both a 2D and a

3D skeletal representation of the hand which is derived from RGB-D data in a controlled environment.

Although multiple perception modalities are available (i.e., RGB-D data and pose kinematics), only the

skeletal information is used during our experiments. Following the splits provided by the original paper

[De Smedt et al., 2017], The dataset is split into 1960 train sequences (70% of the dataset) and 840 test
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sequences (30% of the dataset).

The Joint-annotated Human Motion Data Base (JHMDB) is composed of 2D skeletons that are ob-

tained from RGB videos in non-controlled environments and therefore is more representative of more

general cases for real-world scenarii. JHMDB is composed of manually annotated body gesture se-

quences collected from various sources, such as movies, public databases such as Google, Youtube

videos... Each gesture sequence falls into one of 21 categories such as brushing hair, clapping, jumping,

golfing, catching... The dataset contains a total of 928 samples and the evaluation is done by cross-

validation (# = 3) according to the splits provided by [Yang et al., 2019].

Classification Metrics
For each model variation, we provide the model accuracy on the test set or the average accuracy of

the # splits during cross-validation.

Results and Discussion

Table 2.3: Performance of the given model for different encodings of the sequences on SHREC
[De Smedt et al., 2017], the architecture of the model remains unchanged.

Method Parameters Accuracy on SHREC 14 Accuracy on SHREC 28
LDA on features branch input - 33.0% 27.6%

LDA on Classic Encoder ( _ = 0) - 37.9% 42.8%
LDA on Regularized Encoder ( _ = 5) - 43.5% 35.6%

Encoder (He initialization) 1.2M 91.2% 85.2%
Classic auto-encoder ( _ = 0) - 91.5% 85.9%

Regularized auto-encoder ( _ =1) - 91.9% 87.6%
Regularized auto-encoder ( _ = 2.5) - 92.4% 86.9%
Regularized auto-encoder ( _ = 5) - 92.5% 87.1%

Regularized auto-encoder ( _ = 7.5) - 91.9% 86.4%
Regularized auto-encoder ( _ = 10) - 90.9% 85.2%

Table 2.4: Performance of the given model for different encodings of the sequences on JHMDB
[Jhuang et al., 2013], the architecture of the model remains unchanged.

Method Parameters Average accuracy of 3 splits
Chained Net [Zolfaghari et al., 2017] 17.50 M 56.8%

EHPI [Ludl et al., 2019] 1.22 M 65.5%
PoTion [Choutas et al., 2018] 4.87 M 67.9%
DD-Net [Yang et al., 2019] 1.82M 77.2%
Encoder (He initialization) 0.67M 65.2%

Classic auto-encoder ( _ = 0) - 66.4%
Regularized auto-encoder ( _ = 1) - 66.2%

Regularized auto-encoder ( _ = 2.5) - 68.3%
Regularized auto-encoder ( _ = 5) - 67.9%

Regularized auto-encoder ( _ = 7.5) - 66.5%

For this study, it was of interest to investigate if using the data 5\1 (X) projected into the latent

space provided more information compared to the initial input features - without fine-tuning the entire

approach and updating the weights of the encoder. Table 2.3 shows that, by using the same classifier
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on the projected data 5\1 (X) from a classical auto-encoder, a simple linear discriminant analysis finds

slightly more information in the data than when trained with the initial input features - . Moreover,

the latent space representation obtained by our regularized auto-encoder seems to be a little bit more

informative than a regular auto-encoder latent space representation. Afterward, from Tables 2.3 and 2.4

we evaluate the necessity of using a pre-trained encoder network for classification initialized with an

auto-encoder training. By comparing the results from the same network with He weights initialization

[He et al., 2015] prior to any auto-encoder training to the entire approach, we show that using an auto-

encoder to initialize the network’s weights helps to a certain extent the network’s accuracy. Finally, we

evaluate the correspondence between the value of _ for the supervised separability constraint part and its

prediction accuracy.

Figure 2.17: Confusion matrix obtained on SHREC 28 with a regularized auto-encoder (_ = 5).

In addition to the results presented in table 2.3, table 2.4 and table 2.5, the confusion matrix of the

best performing regularized encoder on SHREC 28 is available in Figure 2.17. The given confusion
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matrix shows that the proposed model is robust to each action class regardless of its complexity and

suggests the model can accommodate a wide range of skeleton-based action recognition scenarii while

being completely agnostic sequentially since the model is designed without any explicit biases towards

sequential data modeling.

From the qualitative plots in figure 2.18, we show that projecting the data to the latent space with

our regularized auto-encoder provides a more visible separation of the centroid of each class compared

to a vanilla auto-encoder. Here we have fixed the size of the latent space (� − 1 = 13 dimensions). By

mapping all the samples into the latent space, each of the � classes in the dataset would cluster in a

(� −1)-dimensional hyper-ellipsoid.

Figure 2.18: Visualization of the projection of the instances and their class centroids in the latent space
for SHREC dataset via T-Sne: left classic auto-encoder, right auto-encoder combined with Linear Dis-
criminant Analysis.

2.5.1.4 Conclusions and Perspectives

We have presented here an approach for skeleton action recognition with no sequential modeling at all

that focuses on the question of data representation: while gestures are temporal phenomena, many ges-

tures and actions might actually be inferred based on spatial poses only. To demonstrate that the question

of data representation is almost as important as sequential modeling for such task, we use the simplest

form of an autoencoder (a feedforward, non-recurrent neural network similar to single layer perceptrons

that participate in multilayer perceptrons) to reconstruct the actions. We add to the reconstruction cost

function of the autoencoder a statistical supervised regularization with a Linear Discriminant Analysis.

This allows to condition the projection of the instances in the latent space upon their class. We then

obtain, in addition to a reduced in size representation of the action, a first draft of the separability of the

classes in the latent space. We then extract the encoder part of the trained autoencoder and evaluate its

classification ability.

We tested our approach on two public databases: the SHREC database (3D Hand Gesture Recogni-

tion) and the JHMDB database (2D Body Action). On both databases, results match state of the art for

skeleton action recognition tasks while being the fastest approach proposed (according to [Yang et al., 2019],

up to 4 times faster than the fastest one). We therefore show that a trivial model focusing on the repre-
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Model Accuracy (14) Accuracy (28)

[Oreifej and Liu, 2013] 78.5 74
[Devanne et al., 2014] 79.6 62
[De Smedt et al., 2017] 82.9 71.9

[Ohn-Bar and Trivedi, 2013] 83.9 76.5
[Weng et al., 2018] 85.8 80.2

[De Smedt et al., 2016] (SoCJ + HoHD + HoWR) 88.2 81.9
[Caputo et al., 2018] 89.5 −

[Boulahia et al., 2017] 90.5 80.5
[Hou et al., 2018] (Res-TCN) 91.1 87.3

Non Pretrained - Encoder (He initialization) 91.2 85.2
[Devineau et al., 2018] (SkelNet) 91.3 84.4

[Chen et al., 2019] 91.3 86.6
Classic auto-encoder (_ = 0) 91.5 85.9

[Nguyen et al., 2019] 92.38 86.31
Regularized dense auto-encoder (_ = 5) 92.5 87.1

[Hou et al., 2018] (STA-Res-TCN) 93.6 90.7
[Maghoumi and LaViola Jr, 2019] 94.5 91.4

[Yang et al., 2019] 94.6 91.9
[Avola et al., 2018] 97.62 91.4

Table 2.5: Results on the SHREC dataset using the train/test split protocol

sentation of its data with statistical regularization can compete with more complex approaches such as

state neural networks or convolutional neural networks for skeleton action recognition.

As for future direction, since there is no explicit temporal modeling in the current approach, one

could update that approach to models where temporal modeling is explicitly taken in consideration to

improve performance. Secondly the training protocol of our approach has the disadvantage of operating

with two training phases: one could fruitfully explore the usage of a dynamic loss function where the

regularization effect decreases over time to make the approach easier to train. Finally, the proposed

approach is based on linear discriminant analysis, as we need to get the projection matrix ( from the

LDA in order to compute the regularized part of the cost function. One could try to explore the same

work with non-linear separability constraints instead of linear ones. However, switching from linear

discriminant analysis to quadratic is impossible because of how the homogeneity of variance/covariance

is not respected in quadratic discriminant analysis and we would not be able to project the samples.

Another research direction would therefore be the possibility to use contrastive learning as an alternative

to the LDA-term, which would remove the constraint on the bottleneck dimension.

2.5.2 Data-centric AI: the importance of the input data representation

2.5.2.1 Introduction

Many modern deep learning methods follow an "end-to-end" design philosophy that emphasizes minimal

a priori representational and computational assumptions, which explains why they tend to be so data-

intensive. When performing action recognition, neural networks are designed to extract temporal features

from gestures and then merge them hierarchically depending on their sequence-focused design in order

to perform the final classification. Intermediate representations of the gestures are entirely learned by the

model and its corresponding inductive biases, without any manual intervention. However, since model
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representations are based on the input data representation, finding an appropriate input representation is

crucial to leverage the full potential of the network. In this subsection, we evaluate how the original input

representation influences the final model accuracy.

The majority of data structure format of poses available through pose estimation approaches ignores

the physical dependency relationships between joints and adds false connections between body joints

that are not physically linked.

Figure 2.19: Data structure of the skeleton representation obtained with the OpenPose library
[Cao et al., 2017]

Figure 2.19, shows that keeping the skeleton obtained by classical pose estimation algorithms, with-

out resorting to a transformation could reduce the quality of classification results: some joint pairs,

although incrementally following each other in the data structure used, have no valid reason to be: for

example, the end of the left arm and the right shoulder (nodes 4 and 5) or the end of the right arm and the

left hip (nodes 7 and 8). A large majority of current works seem to neglect the importance of this spatial

representation and only focus on the temporal side: the trajectories of the joints, without questioning the

spatio-temporal data structure in input. Following the work of [Liu et al., 2016] and [Yang et al., 2018b],

we carried out a Depth-First Search (DFS) on a graph hub representing the skeleton, as it makes it pos-

sible to obtain a tree/graph structure exploiting only neighborhood links between existing joints without

using graph neural networks.

2.5.2.2 Formalization

Pose kinematics are defined as a vector:

s = (s1, s2, . . . , s<) ∈ R<×#×3 (2.10)

where < is the sequence duration, # is the count of key-points, and 3 is the dimension of each
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key-point. All sequences of skeletons can then be sampled in the form of a 3-dimensional (<,#, 3)-
shaped tensor representing a 2D image-like spatio-temporal continuous representation of the sequence

of poses. The horizontal axis of each pseudo-image represents the key-points axis while the vertical axis

represents the time axis. (G, H, I) dimensions of each key-point are then mapped to '�� channels. Such

representations allow us to extract spatio-temporal features using standard computer vision methods such

as convolution in 2D grid spaces.

Figure 2.20: Kernel of a 2D convolution sliding over the pseudo-image

As shown in Fig 2.20, the convolution window only focuses on features that are locally connected.

by reorganizing the 3-dimensional (<,#, 3)-shaped tensor format, one could benefit from the spatio-

temporal features extractions mechanisms of convolutions on pseudo-images in a Euclidean Grid-space

while leveraging the full potential of 2D convolutions on skeletal kinematics as the input data will take in

consideration the design of convolutions to respect the physical world constraints of the body structure

throughout the entire feature extraction process.

Algorithm 2: Explore
Input: graph G, node s
mark the node s;
print(s);
foreach node C son of B do

if C is not marked then
Explore(G,t);

else
end

To do so, we carry out a DFS (Algorithm 3) on each pose in order to obtain a representation that

respects the physical dependencies of the skeleton. Exploring a DFS from a B vertex works as follows.

The algorithm follows a path in the graph until it reaches a leaf or a previously visited vertex. The algo-

rithm then returns to the last vertex where it was possible to follow another path and continues exploring.

The exploration stops when all the vertices since B have been visited. Such transformation preserves

both spatial and temporal relationships by repeating the joints and re-indexing them while avoiding as
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Algorithm 3: Depth-First Search (DFS)
Input: graph G
foreach node B ∈ G do

if s is not marked then
explore(G,s);

else
end

many as possible redundancies, which are inevitable when one wishes to preserve the spatial structure.

As shown in the figure 2.21, the keypoints are organized to respect the spatio-temporal structure of the

action, in the context of a 2D convolution, the window will focus for example on three keypoints such as

the knee, the foot and the hip and their position for any moment of the sequence.

Figure 2.21: (a) Joints of the skeleton of a human body with the initial data structure (14 keypoints).
The visiting order of the nodes is incremental:0-1-2-3-...-13. (b) The skeleton is transformed into a
tree structure. (c) The tree can be unfolded into a chain whose order of visit of the nodes maintains
the physical relationship of the joints: 1-0-1-8-10-12-10-8-1-9-11-13-11-9-1-2-4-6-4-2-1-3-5-7-5-3 (26
keypoints).

2.5.2.3 Experiments

To investigate the added value of this input representation for skeletal action recognition, we compare

our results with or without shifted input to existing classification models for the same experimental

conditions for both 1D convolutions and 2D convolutions models. We recreated the experimental training

conditions of [Yang et al., 2019] as well as on their corresponding architecture presented in 2.22 for 1D

Convolutions and used a simple Lenet-5 [LeCun et al., 1998] for 2D convolutions whose architecture is

presented in 2.23.

Datasets

Similarly to our expriments considering the importance of explicit temporal modeling (see2.5.1), we

use the same skeleton-based action recognition datasets, SHREC [De Smedt et al., 2017] and JHMDB[Jhuang et al., 2013]

to evaluate the given data representation from different perspectives (see subsection 2.5.1.3).

Architecture Details
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Figure 2.22: The network architecture of DD-Net [Yang et al., 2019]. "2×CNN(3, 2*filters), /2” denotes
two 1D ConvNet layers (kernel size = 3, channels = 2*filters) and Maxpooling (strides = 2). Other
convolutive layers are defined in the same format. GAP denotes Global Average Pooling. FC denotes
Fully Connected Layers. We can change the model size by modifying the "filters" parameter.

Figure 2.23: The architecture of the LeNet network [LeCun et al., 1998], with the basic components of
a convolutional network: convolutions, pooling, fully connected layer and a softmax classifier.

• 1D convolutions: The experimental conditions do not differ from those of [Yang et al., 2019], the

corresponding architecture is presented in Figure 2.22

• 2D convolutions: In contrast to the original Lenet architecture [LeCun et al., 1998] presented in

Figure 2.23, we add dropout [Srivastava et al., 2014] with ? = 0.5 for each layer. After fea-

ture extraction from the convolutional layers, batch-normalization [Ioffe and Szegedy, 2015] is

added for each dense layer of the architecture. Training is performed with the Adam optimizer

[Kingma and Ba, 2014] following the recommendations of the paper and with a learning rate of

0.01. We automatically reduce the learning rate by half once stuck in a plateau after 5 epochs not

improving the loss.
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Results

Table 2.6: Results obtained via DFS normal-
ization on SHREC [De Smedt et al., 2017],
the architecture DD-NET [Yang et al., 2019]
remains unchanged.

Method Parameters 14 classes 28 classes
DD-NET (64 filters) 1.82M 94.6% 91.9%
DD-NET (32 filters) 0.50M 93.5% 90.4%
DD-NET (16 filters) 0.15M 91.8% 90.0%

DFS-DD-NET (64 filters) 1.84M 95.9% 92.4%
DFS-DD-NET (32 filters) 0.51M 94.7% 92.0%
DFS-DD-NET (16 filters) 0.16M 93.1% 90.5%

Table 2.7: Results obtained via to DFS nor-
malization on JHMDB [Jhuang et al., 2013],
the architecture DD-NET [Yang et al., 2019]
remains unchanged.

Method Parameters Results
Chained Net [Zolfaghari et al., 2017] 17.5M 56.8%

EHPI [Ludl et al., 2019] 1.22M 65.5%
POTION [Choutas et al., 2018] 4.87M 67.9%

DD-Net (filters 64) 1.82M 77.2%
DD-Net (filters 32) 0.5M 73.7%
DD-Net (filters 16) 0.15M 65.7%

DFS-DD-NET (filters 64) 1.81M 76.7%
DFS-DD-NET (filters 32) 0.5M 77.2%
DFS-DD-NET (filters 16) 0.15M 66.4%

Table 2.8: Results obtained with DFS normalization on SHREC [De Smedt et al., 2017] (3D hand skele-
tons) for a 2D convolutional network.

Method Kernel Size Parameters Accuracy 14 Accuracy 28
Lenet-5 [LeCun et al., 1998] 3x3 0.10M 90.9% 83.8%

Lenet-5 5x5 0.10M 91.9% 85.5%
Lenet-5 7x7 0.10M 92.3% 84.5%
Lenet-5 9x9 0.10M 90.9% 87.6%

DFS-Lenet-5 3x3 0.18M 90.9% 89.1%
DFS-Lenet-5 5x5 0.18M 92.9% 88.1%
DFS-Lenet-5 7x7 0.18M 93.4% 88.6%
DFS-Lenet-5 9x9 0.18M 91.5% 87.6%

Table 2.9: Results obtained with DFS normalization on JHMDB [Jhuang et al., 2013] (2D human body
skeletons) for a 2D convolutional network.

Method Kernel Size Parameters Accuracy
Lenet-5 [LeCun et al., 1998] 3x3 0.07M 65.1%

Lenet-5 5x5 - 67.7%
Lenet-5 7x7 - 69.7%
Lenet-5 9x9 - 69.4%

DFS-Lenet-5 3x3 0.13M 63.5%
DFS-Lenet-5 5x5 - 65.2%
DFS-Lenet-5 7x7 - 71.9%
DFS-Lenet-5 9x9 - 68.1%

For this study, it was of interest to investigate if using the reorganized data to respect the physical

constraints of the body structure while using convolutions would help to leverage the potential of deep

learning networks without modifying their initial structure or components. We note here an improvement

in accuracy for both datasets, for different input dimensions (2d and 3d body poses) and for different

convolution dimensions as shown in Tables 2.6 and 2.7 for 1D convolutions and Tables 2.8 and 2.9 for

2D convolutions. By choosing a complex model for the 1D convolution and a trivial model for the 2D

convolution, we hypothesize that this transformation can be beneficial whatever the level of complexity

of the model. However, this transformation significantly modifies the size of the network input and

42



CHAPTER 2. HUMAN ACTIVITY RECOGNITION WITH POSE-DRIVEN DEEP LEARNING
MODELS

consequently, the parameter size of the approaches will increase. This increase is only slightly visible on

DD-Net as there is no dense layer. For Lenet-5 the size of the model increases by a factor of two, due

to the fully connected part of the architecture. It is therefore advisable to avoid the use of dense layers

as much as possible for this approach or to work on networks of reduced size. The boost in performance

for such transformation seems to be more marked on SHREC than on JHMDB. One explanation is that

the level of abstraction and precision is not the same between these datasets. The number of keypoints

in SHREC is higher than in JHMDB and therefore the organization of the keypoints could provide more

information. Such transformation is therefore relevant as it only changes the size of the image input

and therefore does not change the network’s architecture, nor its inductive biases while becoming better

for the task it was designed for: action recognition. Finally, this transformation requires an a priori

knowledge of the organization of the input data structure (e,g: elbow: keypoint 1, head: keypoint 2, ...).

In the context of the thesis, this does not pose any specific constraints. However, it will be impossible to

perform this work on datasets where the pose data structure is not specified.

2.6 Summary

In this chapter, we have presented an overview of modern computer vision modalities for action recog-

nition. We specifically focus on the simple yet informative skeleton modality, as it has been proven to

be sufficient to describe and understand the motion of a given action without any background context.

Thereafter, we explore the different neural network architectures used for sequential modeling of pose

kinematics. Recurrent approaches have long been considered as the de facto approaches for obtaining

good performance on sequences with neural networks. However, this assumption has been radically

challenged by recent research in the field. Apart from their ability to match recurrent approaches for

sequence modeling, convolutions have the particularity of having local connections, which are effective

in reducing the number of parameters and thus accelerating convergence, a useful property when deal-

ing with small databases. Moreover, as the parameters of the convolution kernels are shared throughout

the convolution space, convolutions can handle both fixed length and variable length inputs in the same

way as recurrent networks, which makes them an approach of choice in tasks where the inference speed

remains important. Nevertheless, compared to the most promising approaches for skeletal action recogni-

tion, e,g graph neural networks, convolutions in an Euclidean grid space seem to neglect the importance

of the spatio-temporal input data structure. However, considering that gesture recognition algorithms

need to be reliable and fast enough to be computed in real-time on embedded devices, convolutions still

seem to have the high ground compared to graph neural networks. The knowledge of the optimization

of euclidean data structure networks is conserved compared to approaches where basic operations need

to be redefined and one might lose speed efficiency in the process. Finally, we question the importance

of representations, inductive biases and their roles in skeletal action recognition. Firstly, we evaluate the

importance of explicit temporal modeling for gesture recognition. We propose a fully-connected auto-

encoder, that does not benefit from any relational inductive bias and enforces the mapping from inputs to

outputs in the embedding via statistical regularizations. We show that the proposed approach reaches the

performances of classic sequence modeling architectures on action classification tasks with little avail-

able data. Secondly, we investigate the importance of sending informative-representation ready data to

a deep learning architecture in a 1D-2D grid space. By transforming the input data based on physical
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world constraints of the body structure prior to the learning of multiple layers of feature hierarchies that

automatically build high-level representations of the raw input, we show that finding an appropriate input

representation is crucial to leverage the full potential of a deep learning network for action recognition.
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3.1 Understanding intentions and their role in predicting trajectories

Consider the following scenario: you’re driving down the street and come upon a person standing on the

corner. How can you tell if they are going to cross? Even for human drivers, interpreting the intentions

and behaviors of other road users can be difficult and complex. A driver’s role is to determine whether

another road user wants you to wait and let them cross, if they are waiting for you to cross after you pass,

or if they are simply waiting for something else. Even then, what a person signals may not be the same as

what they end up doing. Pedestrian intention prediction is the corresponding area of research that seeks

to automatically determine the underlying motives of pedestrians and their incoming actions/positions.

The majority of existing techniques for pedestrian action prediction are trajectory-based [Alahi et al., 2016]

[Bhattacharyya et al., 2018, Kothari et al., 2021], which means they depend on previously observed pedes-

trian positions to anticipate pedestrian positions in the future. These methods are successful when pedes-

trians have already crossed or are going to cross, i.e., these algorithms react to an action that has already

begun rather than predicting it. For instance, past trajectories of a pedestrian might not always play a

role in its underlying objectives: when a pedestrian is waiting at the kerb, he may have no intention of

crossing the street at all, or he could have the intention to cross the street but could not manage to do

so because of the dynamics of the scene, or he could have the intention to cross the street and manage

to do so. One way to take into account this inability of trajectory-based approaches is to determine the

intention of the pedestrian before he/she even initiates his/her action. This would provide additional

information about the pedestrian’s intention that does not depend on the dynamics of the scene and his

past positions. Such discrete information could then be used by trajectory-based approaches to enhance

their forecasting performance, or more broadly, used by any vehicle planning module in crowded urban

traffic environments. In this chapter, we split the pedestrian intention prediction task as a combination of

high-level discrete behaviors as well as continuous trajectories describing the expected future movement

of the pedestrian:

Trajectory Forecasting, the goal is to predict the value of a sequence at a time index C? based on

previous values only, e.g, based on values whose temporal index C is such as C < C?. Trajectory-based

pedestrian action prediction modules aim at forecasting the future trajectories of all the pedestrians in a

scene based on their past trajectories. This corresponds to answering the open question "Where will the

pedestrian be?" This is therefore a regression problem.

Pedestrian Discrete Intention Prediction, while action recognition consists of using a complete se-

quence of poses to label an action (see section 2.3), intention prediction predicts from an incomplete

sequence to label an intention (i.e., before the pedestrian crosses). In the current state of academic data

sets, this is equivalent to answering the closed question: "Will the pedestrian cross the street?" This is

therefore a classification problem. The prediction can rely on multiple sources of information, including

visual features of the pedestrians and their surroundings, pedestrian kinematics, spatial positioning of the

pedestrian based on 2D bounding box locations, optical flow and ego-vehicle speed.

As part of our contributions presented in this chapter, we first detail the different types of existing ap-
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proaches for pedestrian trajectory forecasting, we then introduce an asymmetrical bidirectional recurrent

neural network architecture called U-RNN to encode pedestrian trajectories and evaluate its relevance to

replace LSTMs for various trajectory-based models. Secondly, instead of focusing on continuous trajec-

tories describing the expected future movement of the pedestrian and merely relying on past trajectories

to predict intentions, we address the problem of pedestrian discrete intention prediction. The complexity

of a pedestrian discrete intention prediction algorithm is directly impacted by the number of perception

modalities it uses. Fusing multiple perceptive modalities into a single representation often leads to a

high complexity, a high training time and a consequent inference time due to the presence of multiple

networks extracting features for each modality (RGB, Optical Flow, Pose Dynamics...). Considering the

importance of crossing prediction algorithms to run efficiently for real-time usage while being robust to

a multitude of complexities and conditions, our goal is to propose a model using only pose kinematics

for pedestrian intention prediction that reaches the performance of multi-modal approaches.

3.2 Trajectory-based pedestrian action prediction

Figure 3.1: Trajectory-based pedestrian action prediction: the task is to forecast the future trajectories
(dashed) of all the protagonists of the scene. Trajectory-based pedestrian action prediction involves a
combination of individual goals and social interactions with other agents: pedestrian X1 will deviate
from his primary trajectory to avoid a collision based on past trajectories of pedestrian X2. Picture credit
[Kothari et al., 2021]

Pedestrian trajectory prediction from past positions using social interactions has been steadily receiv-

ing attention by the research community, as it plays a crucial role in various applications leading to the

deployment of intelligent transport systems [Uber, 2020, Waymo, 2021]. Following the success of So-

cial LSTM [Alahi et al., 2016] in trajectory forecasting in crowded scenes, a variety of approaches has

been proposed that focused on efficiently leveraging social interactions from a scene [Ma et al., 2016,

Gupta et al., 2018, Bartoli et al., 2018, Pfeiffer et al., 2018, Vemula et al., 2018, Kothari et al., 2021]. In

this section, we elude the question of improving social interactions models, and focus on the encoding

of the trajectories of individual pedestrians by using U-RNNs (our asymmetrical Bi-RNNs) instead of

regular LSTMs. Using the recent Trajnet++ benchmark [Kothari et al., 2021] and with respect to vari-

ous available learning architectures that forecast pedestrians trajectories, we evaluate the effectiveness of

U-RNNs for efficient pedestrian trajectories encoding. We then provide insight into designing improved

motion encoders prior to the application of interaction modules for the task of pedestrian trajectory pre-
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diction.

3.2.1 Related Works

3.2.1.1 Encoder-Interaction-Decoder pipeline

The most common pipeline for pedestrian trajectory prediction consists of:

1. A sequence encoder for the past coordinates of each pedestrian independently. The encoder is usu-

ally a RNN, such as LSTMs [Alahi et al., 2016, Zhang et al., 2019, Zhao et al., 2019, Choi and Dariush, 2019,

Kothari et al., 2021], or GRUs [Hong et al., 2019, Rhinehart et al., 2019, Rhinehart et al., 2018].

2. An interaction module for taking into account the neighbors trajectories. The most common way

to take into account the effect of interactions between agents in their trajectories is to decode the

past positions while pooling on a spatial grid with either the neighbors’ positions, their relative

velocities [Kothari et al., 2021], or their RNN hidden states [Alahi et al., 2016] (see Fig 3.2).

3. A decoder that predicts future coordinates. A common approach is to use a RNN for decoding.

Some authors found that this can lead to error accumulation, and that a simple multi-layer percep-

tron (MLP) that predicts simultaneously all future positions performs better [Becker et al., 2019].

However, taking into account interactions between pedestrians requires to predict the coordinates

one step at a time, so RNNs are generally preferred.

Figure 3.2: Illustration of the grid-based interaction encoding modules for trajectory-based intention pre-
diction. (a) Occupancy pooling: each cell indicates the presence of a neighbour (b) directional pooling:
each cell contains the relative velocity of the neighbour with respect to the primary pedestrian. (c) Social
pooling: each cell contains the LSTM hidden-state of the neighbour. Picture credit [Kothari et al., 2021]

Most of past years’ research focused on improving the interaction module, with only limited new

methods since [Alahi et al., 2016], or on developing approaches that take inspiration from popular frame-

works such as Transformers [Giuliari et al., 2021] or contrastive learning [Liu et al., 2020b] in order to

deter the model from predicting colliding or too uncomfortable trajectories. However, little work has

been published on the influence of the encoder and thus on the importance of past coordinates, even if it

would be easily applicable to all models that use this pipeline.
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3.2.1.2 Alternative approaches.

Learning-free algorithms. The straight line at constant speed using the last known velocity is a reason-

able approximation for the problem at hand [Schöller et al., 2020], given that we only try to predict the

next few seconds. More complex learning-free methods can also be successfully applied, some generic,

such as the Kalman Filter, and some specific, such as Optimal Reciprocal Collision Avoidance (ORCA)

[van den Berg et al., 2011], which ensures that trajectories do not collide, which is not necessarily the

case with other methods, especially the straight line.

Other methods. Even though non-RNN methods cannot take advantage of the research on interac-

tion modules, alternative machine learning approaches have been developed. Convolutional Neural

Networks are faster than RNN-based methods due to parallelization, but the performances are signif-

icantly lower [Nikhil and Tran Morris, 2018]. Some authors have explored the popular Transformers

architecture, but the results are inferior to those of RNNs with state-of-the-art social interaction modules

[Giuliari et al., 2021]. Research has also been conducted on applying Inverse Reinforcement Learning

(IRL) to the pedestrian trajectory prediction problem [Fernando et al., 2019], even though retrieving the

pedestrian cost function requires much more computation than learning a predictor.

Figure 3.3: Sample from the Stanford Drone Dataset (which is not included in the Trajnet++ benchmark).
The environment would play an important role in order to predict trajectories that do not go on the lawn.

3.2.1.3 What information is relevant?

Scene context as an additional modality. The Trajnet++ dataset does not include the pedestrians’

environment, but some argue that it is sometimes necessary in order to predict trajectories correctly

[Becker et al., 2019]. Indeed, in situations such as the one in Fig. 3.3, it would be very difficult to predict

plausible trajectories since the environment would play an important role in order to predict trajectories

that do not go on the lawn. However, the environment’s additional information seems to make general-

ization more difficult [Schöller et al., 2020].

Neighbors past coordinates. Most methods make use of neighbors past and present positions. How-

ever, it seems that knowing even future neighbors positions is useless in terms of prediction error

[Schöller et al., 2020]. Indeed, global trajectories are not that much affected by interactions. Still, ne-
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glecting the influence of neighbors inevitably leads to collisions: relevant metrics for pedestrian trajec-

tory prediction take this into account in addition to purely spatial errors, in order to produce physically

feasible trajectories.

3.2.2 From Bi-RNNs to U-RNNs

U-RNN is a bidirectional recurrent neural network architecture that was informally introduced in [Ahmet, 2020]

under the form of U-GRUs for Knowledge Tracing. The objective of this work is to investigate whether

U-RNNs could replace regular RNNs or Bi-RNNs for trajectory encoding. Bi-RNNs [Schuster and Paliwal, 1997]

address a drawback of Recurrent Neural Networks (RNNs), which is that they cannot take the future into

account when they encode an input, which may be desirable for some cases. For example, in the case of

pedestrian trajectory prediction, one could expect that some movements are influenced by anticipation

of a potential obstacle [Xue et al., 2017, Yao et al., 2021]. Bi-RNNs produce two outputs, one that is

obtained by reading the input forward and one by reading the input backwards. Concatenation or some

other operation is then applied.

RNN

RNN

RNN

RNN

RNN

RNN

Forward 
pass

Backward 
pass

xt-1 xt xt+1

RNN

RNN

RNN

RNN
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Bi-RNN U-RNN

output

input

output

input xt-1 xt xt+1

Figure 3.4: Comparison between Bi-RNN and U-RNN architectures (blue: inputs - red: outputs - black:
hidden states - green: intermediate output). U-RNN can use the information from the future during the
forward pass, whereas the Bi-RNN only concatenates two naive readings in both directions.

However, an aspect of Bi-RNNs that could be undesirable is the architecture’s symmetry in both

time directions. Bi-RNNs are often used in natural language processing, where the order of the words

is almost exclusively determined by grammatical rules and not by temporal sequentiality. However, in

trajectory prediction, the data has a preferred direction in time: the forward direction. Another potential

drawback of Bi-RNNs is that their output is simply the concatenation of two naive readings of the input

in both directions. In consequence, Bi-RNNs never actually read an input by knowing what happens in

the future. Conversely, the idea behind U-RNN, illustrated in Fig. 3.4, is to first do a backward pass, and

then use during the forward pass information about the future. By using an asymmetrical Bi-RNN to

encode pedestrian trajectories, we accumulate information while knowing which part of the information

will be useful in the future as it should be relevant to do so if the forward direction is the preferred

direction of the data.

3.2.3 Methodology

We based our experiments on the Trajnet++ LSTM baseline [Kothari et al., 2021] with respect to a vari-

ety of interaction modules: directional, occupancy and social pooling (see Fig 3.2). All hyper-parameters
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except for the encoder remained unchanged. For clarification purposes, we further explain our method-

ology for the directional pooling case.

Input embedding: The input data consists of coordinates (GC )C ∈[[1,)>1B ]] for each pedestrian (with

(GC ) ∈ R2). In order to allow easier generalization, we use velocities (EC )C ∈[[1,)>1B−1]] instead with

EC = GC+1−GC . From the trajectory velocities (EC )C of a single pedestrian, we obtain the trajectory embed-

dings (4C )C ∈[[1,)>1B−1]] with 4C = 5 (EC ,,4) where 5 is a single-layer perceptron, and ,4 are learnable

weights that are shared among pedestrians.

U-RNN architecture: The backward and forward hidden states (ℎ1C )C ∈[[1,)>1B−1]] and (ℎ 5C )C ∈[[1,)>1B−1]]

are obtained according to these equations:

ℎ1C−1 = '##
(
ℎ1C , 4C ,,1

)
ℎ
5

C+1 = '##
(
ℎ
5
C ,

[
4C , ℎ

1
C

]
,, 5

) (3.1)

where,1 and, 5 are learnable weights that are shared among pedestrians, and [·, ·] denotes concatena-

tion. The last hidden state ℎ 5
)>1B

is then used as the encoding of the sequence.

Decoder: For decoding, we used a RNN and directional pooling, with a learnable�A83%>>;8=6 function

that involves average pooling and a linear embedding, all of which we do not detail here and was im-

plemented by [Kothari et al., 2021]. The predicted positions (>8C )C ∈[[1,)?A43 ]] of pedestrian 8 are obtained

according to these equations:
ℎ81 = ℎ

5 ,8

)>1B

48C = 5
(
E8C ,,4

)
� 8C = GridPooling

(
E−8C

)
ℎ8C+1 = '##

(
ℎ8C ,

[
48C , �

8
C

]
,,3

)
>8C = 6

(
ℎ8C ,,>DC

)
(3.2)

where (E8C )C , (48C )C , (� 8C )C , (ℎ8C )C are respectively the velocities, velocity embeddings, interaction em-

beddings and decoder hidden states for pedestrian 8, ,4, ,3 and ,>DC are learnable weights that are

shared among pedestrians (,4 being the same as for the encoder), E−8 denotes velocities of pedestrians

other than 8 and [·, ·] denotes concatenation.

3.2.4 Experiments

There are several datasets that are aimed at evaluating pedestrian motion prediction, with very diverse

characteristics [Rudenko et al., 2020]. We chose the Trajnet++ benchmark [Kothari et al., 2021], which

aggregates several common pedestrian trajectories datasets, emphasizes the importance of quantifying

the physical feasibility of a model prediction and only evaluates trajectories where there are interactions

between pedestrians.

Data. Trajnet++ data consists of trajectories that have been extracted from real-life videos and that

are under the form of spatial coordinates. The framerate is 2.5 frames per second. Fig. 3.5 illustrates
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Figure 3.5: Images from different datasets from which the Trajnet++ benchmark trajectories are ex-
tracted. Left: ETH-hotel dataset - Center: UCY-zara dataset - Right: UCY-students dataset.

sample images from videos from which the spatial coordinates were extracted. The datasets that are used

are:

• ETH [Pellegrini et al., 2010], itself subdivided into ETH-hotel and ETH-uni. ∼650 tracks extracted

from 25 min of video.

• UCY [Leal-Taixé et al., 2014], itself subdivided into UCY-zara and UCY-students. ∼700 tracks

extracted from 16 min of video.

• WildTrack [Chavdarova et al., 2018], ∼650 tracks extracted from an hour of video.

• L-CAS [Sun et al., 2018], ∼1100 tracks extracted from 49 min of video.

• CFF [Alahi et al., 2014], Large-scale dataset of ∼42 million trajectories extracted from real-world

train stations.

• In addition, synthetic data generated using ORCA [van den Berg et al., 2011] is also used.

Task. The goal is to predict the spatial coordinates of pedestrians in the near future (12 frames, i.e. 4.8

seconds), using only the near past (9 frames, i.e. 3.6 seconds). In each scene (set of different agents’

trajectories over a given duration), a primary pedestrian is designated for evaluation purposes.

Categories. The scenes in the data are subdivided into categories with respect to the primary pedes-

trian of the scene, as Fig. 3.6 illustrates. Type I and Type II denote respectively static primary pedestrian

trajectories and trajectories that are correctly predicted with an extended Kalman filter. Type III is the

benchmark’s type of interest, as it regroups all scenes where the primary pedestrian has interactions with

other agents. Type IV is used for the remaining scenes, where the primary pedestrian trajectory seems

unpredictable even when given the social environment. In addition to the four main types, Type III is

further subdivided into four categories that describe the main type of interaction that is occurring: Leader-

follower (the primary pedestrian follows someone else), Collision avoidance (the primary pedestrian had

to avoid someone else), Group (the primary pedestrian is part of a group) and Others.

Metrics. There are four main metrics. Two are spatial errors: Average Displacement Error (ADE) and
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Figure 3.6: Visualization of four high level defined trajectory categories and visualization of all Type III
interactions. Picture credit [Kothari et al., 2021].

Final Displacement Error (FDE), which are expressed in meters. The other two are collision errors: Pre-

diction Collision (Col-I) and Ground Truth Collision (Col-II), which are expressed in percentage. Col-I

is the fraction of collisions between the primary pedestrian’s predicted trajectory and the other pedestri-

ans predicted trajectories, and thus represents how physically realistic the predicted scene is, regardless

of reality. Col-II, on the other hand, is the fraction of collisions between the primary pedestrian predicted

trajectory and the other pedestrians real trajectories. Therefore, it represents how physically realistic the

predictions are individually.

Evaluation. According to the Trajnet++ benchmark, the performance is evaluated on ∼3000 scenes

from ETH and UCY datasets, as well as on ∼4000 synthetic scenes. The benchmark gives metrics for

each type and sub-type of scene. The score that is chosen in order to compare models on the public

leaderboard is FDE computed on Type III (Interacting) scenes from the real datasets (∼1700 scenes),

with Col-I as the secondary score (computed on the same data). Until the end of March 2021, the sec-

ondary score was FDE computed on Type III scenes from the synthetic dataset, but it was abandoned

because predicting synthetic trajectories had become a solved problem. On the contrary, while perfor-

mances seem to have reached a limit with respect to FDE (more than one meter on a 4.8 seconds horizon),

the current challenge is to be able to predict physically feasible scenes while keeping a good FDE.

3.2.4.1 Baselines

We used the following baselines for comparison purposes:

• Learning-free methods. We considered Kalman filter [Kalman, 1960], constant velocity [Schöller et al., 2020]

and ORCA [van den Berg et al., 2011].

• Vanilla LSTM. An architecture with a LSTM encoder, a LSTM decoder, and no interaction mod-

ule (each pedestrian is considered independently).
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• AMENet [Cheng et al., 2021], a conditional variational auto-encoder based on attentive dynamic

maps for interaction modeling, AIN [Zhu et al., 2020], an encoder-decoder pipeline focusing on

global spatio-temporal interactions and PecNet [Mangalam et al., 2020], a conditioned-on-goal

endpoint variational auto-encoder. We reference the scores that are on the public leaderboard for

AMENet and the ones referenced in [Kothari et al., 2021] for AIN and PecNet.

• Social NCE [Liu et al., 2020b], best submission on the public leaderboard, with respect to FDE.

It uses social pooling and contrastive learning. We reference the scores that are on the public

leaderboard.

Table 3.1: Results for several baselines and for the best submission on the Trajnet++ public leaderboard
(with respect to FDE).

Model ADE (m) FDE (m) Col-I (%) Col-II (%)
Kalman filter 0.87 1.69 0 19.5

Constant velocity [Schöller et al., 2020] 0.68 1.42 14.3 15.2
ORCA [van den Berg et al., 2011] 0.72 1.42 0 11.3

Vanilla LSTM 0.67 1.43 15.2 12.3
AMENet [Cheng et al., 2021] 0.62 1.30 14.1 16.9

AIN [Zhu et al., 2020] 0.62 1.24 10.7 17.1
PecNet [Mangalam et al., 2020] 0.57 1.18 15.0 14.3
Social NCE [Liu et al., 2020b] 0.53 1.14 5.3 11.3

Table 3.1 shows the results on the four metrics and helps understand the pros and cons of each

method. In terms of FDE, the Kalman filter is by far the worst of all, almost 30 cm behind constant ve-

locity (but Type III scenes, on which evaluation is performed, are by definition scenes where trajectories

cannot be correctly predicted using a Kalman filter). The constant velocity method is both extremely

simple and reasonably effective, but at the cost of high collision rates. ORCA allows to completely get

rid of collisions without sacrificing FDE. Vanilla LSTM is completely irrelevant, since it is worse even

than the constant velocity method, highlighting how the potential of RNNs can only be revealed by using

interaction encoders. Finally, the best submission on the leaderboard reaches a FDE that is 30 cm below

the constant velocity method, with a Col-I of only 5%; however, as we said, ADE and FDE are still

relatively high in absolute terms.

3.2.4.2 Implementation details

For training, we used ETH, UCY, WildTrack, L-CAS, and only part of CFF datasets, totalling ∼29000

scenes in the training set and ∼5000 scenes in the validation set. In the training procedure, we decrease

the learning rate when the validation loss reaches a plateau, and also apply early-stopping when the vali-

dation loss stops decreasing for several epochs. We also use rotation augmentation as a data augmentation

technique to regularize all the models1.

We did not code everything from scratch, but rather built on top of the numerous baselines that are

available with Trajnet++. Since out goal was not to beat the state-of-the-art but rather to allow meaningful

comparison between different motion encoders, comparisons of given approaches are relevant given the

same interaction module and hyper-parameter settings.
1Our implementation of the asymmetrical Bi-RNNs for the Trajnet++ benchmark is available at:
github.com/JosephGesnouin/Asymmetrical-Bi-RNNs-to-encode-pedestrian-trajectories.
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We tested the following architectures, denoted by their Encoder-Decoder structure. For each architec-

ture, RNN can be replaced by either GRU [Cho et al., 2014] or LSTM [Hochreiter and Schmidhuber, 1997]:

• RNN - RNN. A common baseline.

• Bi-RNN - RNN. We used concatenation in order to fuse the outputs of the Bi-RNN, since it worked

better than summation.

• U-RNN - RNN. The architecture described in Section 3.2.3.

• reversed U-RNN - RNN. The backward pass and forward pass are inverted in the U-RNN, in

order to investigate if there is indeed a preferred direction of U-RNNs according to the data.

We used default number of parameters that were similar to the baselines in [Kothari et al., 2021] and

did not change between different models. However, this led to LSTM models having higher total number

of parameters than their GRU counterparts, but it did not affect our conclusions. The order of magnitude

of the uncertainties on the metrics were ± 1 cm on ADE and FDE, ± 0.5% on Col-I and ± 1% Col-II.

3.2.4.3 Results

Table 3.2: Comparison of motion-encoding designs with respect to various interactions modules archi-
tectures on interacting trajectories of TrajNet++ real world dataset.

Model Interaction ADE (m) FDE (m) Col-I (%) Col-II (%)
(Encoder - Decoder) ± 0.01 m ± 0.01 m ± 0.5% ± 1%

Constant velocity [Schöller et al., 2020] None 0.68 1.42 14.3 15.2
None - GRU Dir. pooling [Kothari et al., 2021] 0.63 1.33 6.9 12.1

LSTM - LSTM Occ. pooling [Alahi et al., 2016] 0.58 1.23 11.5 13.9
U-LSTM - LSTM Occ. pooling 0.57 1.22 10.2 14.9

GRU - GRU Dir. pooling [Kothari et al., 2021] 0.58 1.24 6.5 12.4
Bi-GRU - GRU Dir. pooling 0.59 1.26 6.7 11.7
U-GRU - GRU Dir. pooling 0.58 1.25 6.5 11.7

reversed U-GRU - GRU Dir. pooling 0.58 1.25 6.5 11.0
LSTM - LSTM Dir. pooling 0.58 1.25 6.4 11.4

Bi-LSTM - LSTM Dir. pooling 0.59 1.28 6.2 11.9
U-LSTM - LSTM Dir. pooling 0.56 1.22 5.2 11.9

reversed U-LSTM - LSTM Dir. pooling 0.58 1.26 6.6 11.1
LSTM - LSTM Soc. pooling [Alahi et al., 2016] 0.55 1.18 6.9 12.7

U-LSTM - LSTM Soc. pooling 0.53 1.15 6.5 11.5
Social NCE [Liu et al., 2020b] Soc. pool. [Alahi et al., 2016] + contr. learning 0.53 1.14 5.3 11.3

In Table 3.2, we present the results that we obtained during our experiments. The first thing to notice

is that using a simple RNN decoder with directional pooling, even without an encoder, improved FDE

by 10 cm and cuts Col-I by half compared to the Constant velocity model or to Vanilla LSTM. Secondly,

adding a RNN encoder for past coordinates helped improving performance, which indicates that there is

indeed relevant information in past positions. This suggests that pedestrians engage in complex trajecto-

ries that may span on relatively long durations.

Note that the proposed asymmetrical architecture is independent of the chosen recurrent unit. We ob-

served in preliminary experiments that the encoder’s architecture did not seem to have any impact, with
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identical performances of GRU - GRU, Bi-GRU - GRU, U-GRU - GRU and reversed U-GRU - GRU

architectures. At first glance, one could conclude that the information contained in past coordinates may

be too redundant to allow to detect any difference between encoder architectures, as there would be no

further information to extract. Or that contrary to vehicles for example, pedestrian trajectories are too ir-

regular to make good use of past information. However, experiments with LSTMs gave different results.

LSTM - LSTM and Bi-LSTM - LSTM performed similarly as GRU architectures, but using a U-LSTM

encoder helped get significantly better ADE, FDE and Col-I for directional pooling, suggesting that there

was indeed unused information in past trajectories. Regarding Col-II, the best architectures seem to dif-

fer compared to the other metrics, but this appears to be non-significant given the small score differences

and the order of magnitude of the standard deviations.

The better performance of U-LSTM compared to U-GRU strongly indicates that the additional informa-

tion extracted by the U-RNN architecture came from long-term dependencies. Moreover, the hypothesis

we proposed, that the non-symmetrical architecture of U-RNN should better leverage information by

using the preferred direction of the data is supported by the absence of performance improvement when

using a reversed U-LSTM encoder.

Since it was clear that, for the directional pooling case, the proposed Asymmetrical Bi-RNNs motion

encoder performed better than regular LSTMs which are the de facto RNNs for trajectory encoding, we

experimented U-LSTMs with occupancy and social pooling. In both experiments, our sequence encoder

yielded significantly better results compared to regular LSTMs for every available metric (ADE,FDE,

Col I). This suggests that the proposed architecture is a viable alternative to LSTMs for trajectory encod-

ing.

3.2.5 Conclusion and Perspectives

We proposed a sequence encoder based on Asymmetrical Bi-RNNs to predict future pedestrians trajec-

tories using naturalistic pedestrian scenes data from the widely studied Trajnet++ dataset. Contrary to

many previous trajectory-based pedestrian action prediction approaches that proposed new interactions

modules, our work solely relies on proposing a new sequence encoder that could easily be applied to all

models that use the encoder-decoder pipeline for pedestrian trajectory forecasting, while taking advan-

tage of the research on interactions and multi-modal trajectory prediction. The proposed sequence en-

coder was shown to achieve better prediction accuracy than previous sequence encoders such as LSTMs

for a variety of existing approaches and interactions modules. This suggests that there is still room

for improvement in coordinates-only approaches, and indicates that interactions are not the only aspect

on which pedestrian trajectory prediction can progress. Although this work is highly preliminary, our

quantitative results could open many perspectives for future research. The success of Asymmetrical Bi-

LSTMs compared to Asymmetrical Bi-GRUs suggests that this boost may come from using information

with long-term dependencies, confirming that some pedestrians movements are influenced by long-term

anticipation. We believe that these results constitute a promising baseline to replace LSTMs for a variety

of approaches and could be used to significantly improve current trajectory prediction algorithms.
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3.3 Pedestrian Discrete Intention Prediction

We have seen in section 3.1 that trajectory-based methods are successful when pedestrians have already

crossed or are going to cross, i.e., these algorithms react to an action that has already begun rather than

predicting it. In this section, we formally define pedestrian discrete intention prediction.

Determining the pedestrians’ discrete intention is mandatory. From this information, their trajectory

can be further estimated to understand the pedestrians’ next actions or positions, which can greatly re-

duce the risk of accidents. For instance, knowing the intention of pedestrians to cross the road before

they actually set a foot on the road would allow the vehicle to warn the driver or automatically perform

maneuvers. Therefore, preserving the pedestrians’ integrity in a more efficient way than when triggered

by an emergency stop once the pedestrians have moved on to the road and become a direct obstacle for

the vehicle would be safer for all actors.

We first detail the factors that influence pedestrian behavior. We then provide a literature review of

the existing learning-based approaches for pedestrian discrete intention prediction. Lastly, we list the

available academic datasets for Pedestrian Discrete Intention Prediction.

3.3.1 Hit the road Jack: Human-factor perspectives on pedestrian behavior prediction

As the understanding of pedestrian behaviour could be used in the design of autonomous driving systems,

we detail the factors that influence pedestrian behavior into two groups, the ones that directly relate to

pedestrians and the environmental ones, as shown in Fig 3.7.

3.3.1.1 Pedestrian Factors

Demographics

• Gender is one of the most important factor influencing the way to cross [Moore, 1953, Heimstra et al., 1969,

Holland and Hill, 2007]. Women tend to cross with a lower speed compared to men [Ishaque and Noland, 2008],

tend to use zebra crossing more often [Moore, 1953], qualities such as caution [Heimstra et al., 1969,

Holland and Hill, 2007] and higher law compliance [Tom and Granié, 2011] are generally more

prevalent for women than for men when it comes to crossing. Similarly, the attention pattern

between men and women differs in what they look at just before crossing: men tend to look at

vehicles while women tend to look at traffic lights and other pedestrians [Tom and Granié, 2011].

This information is to be nuanced: the relative attention of a pedestrian is also impacted by speed,

law compliance, age and road structure [Geruschat et al., 2003]... (i.e.: Pedestrians who crossed

against the light looked at the cars, while others fixated on the traffic light.)

• Age is another factor influencing the way to cross. Old people walk slower and do not have a steady

velocity [Goldhammer et al., 2014]. They are more cautious which means that they pay more

attention to the traffic prior to crossing. On the other hand, younger pedestrians are less predictable

than their elders when it comes to knowing what they are going to do [Holland and Hill, 2007].

Walking state
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Figure 3.7: "Factors involved in pedestrian decision-making process at the time of crossing. The di-
agram is based on a meta-analysis of the past literature. The large circles refer to the major factors
and small circles connected with solid lines are sub-factors. The dashed lines show the interconnec-
tion between different factors and arrows show the direction of influence". Picture and legend credits
[Rasouli and Tsotsos, 2019].

• The capacity to assess speed and distance can have an impact on how pedestrians perceive their

surroundings and, as a result, how they react to them. Pedestrians, on average, judge vehicle

distance better than vehicle speed [Sun et al., 2015]. Walking pedestrians are less conservative

about crossing compared to standing ones, one reason for this would be that their speed influences

their sense of speed and distance estimation [Oudejans et al., 1996].

• Trajectory: pedestrians’ ability to estimate speed is also affected by their walking direction. When

pedestrians walk in the same direction as vehicles, they are more likely to make risky decisions

about whether or not to cross [Schmidt and Faerber, 2009].

• Pedestrian’s speed: pedestrian usually walk faster during crossing compared to when they walk on

the kerb [Tian et al., 2013]. Speed is also influenced by the density of people [DiPietro and King, 1970],

age [Goldhammer et al., 2014], time of the day and road structure [Willis et al., 2004].
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Characteristics

• Culture plays an important role in pedestrian behaviors as it establishes a set of social stan-

dards. Variations in social norms exist, obviously between different countries but also within

the same country [Björklund and Åberg, 2005]. For instance, each culture could assign differ-

ent levels of importance to traffic issues (e.g speeding and jaywalking between swedish and chi-

nese drivers [Lindgren et al., 2008]), could have a different gap acceptance times2 (e.g indians

cross on average between 2s to 8s whereas germans cross between 3s to 7s time to collision

[Schmidt and Faerber, 2009]) or could perceive and analyze a situation differently (e.g americans

judge traffic behavior based on pedestrian features, but indians place more emphasis on contextual

elements such as traffic circumstances, road structure... [Clay, 1995])

• Faith and religion seem to play a role in pedestrian behavior as well. [Rosenbloom et al., 2004]

show that ultra-orthodox pedestrians are three times more likely to break traffic laws.

• Law compliance (e.g crossing at red light, jaywalking) can be influenced by demographics but also

physical factors (e.g the location of a designated crosswalk. [Sisiopiku and Akin, 2003]).

3.3.1.2 Environmental Factors

Physical context

• The presence of traffic signals or zebra crossings has a significant impact on how drivers behave

[Moore, 1953], and as previously stated, impacts the degree of law compliance of pedestrians

[Sisiopiku and Akin, 2003]. Pedestrians tend to have different trajectory patterns at unsignalized

crossing (e.g cross diagonally [Tom and Granié, 2011], tend to walk faster [Lam et al., 1995]).

Pedestrians also tend to have different attention pattern (e.g pedestrians look at vehicles 69.5% of

the time at signalized and 86% of the time at unsignalized intersections [Tom and Granié, 2011]).

• Road structure and street width impact the level of risk affordance for both drivers and pedestri-

ans: while pedestrians pay more attention prior to crossing in wide streets [Oudejans et al., 1996],

drivers are also expected to change their behaviors depending on road structure, which inevitably

influences pedestrian’s expectations [Björklund and Åberg, 2005].

• Meteorological conditions influence pedestrians’ behavior. Bad weather directly impacts the speed

estimation capability of pedestrians which makes them less risk-averse than usual for crossing

[Sun et al., 2015]. Road conditions, such as wet roads caused by rain or icy road caused by snow,

can affect both drivers’ and pedestrians’ movements [Moore, 1953]. Illumination conditions (e.g

day or night) impact both drivers and pedestrians visual functions leading them to make riskier

decisions [Harrell, 1991].

Traffic context

• Traffic density affects both pedestrians and drivers [Schmidt and Faerber, 2009]. To put it in a

nutshell, the higher the density of traffic, the lower the chance of pedestrians to cross against the

signal [Ishaque and Noland, 2008].
2How much of a gap in traffic (usually in time) pedestrians deem safe to cross.
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• Vehicle characteristics such as vehicle size also play a role when it comes to crossing. Pedestrians

are more cautious when dealing with a larger vehicle [Das et al., 2005]. Pedestrians are also more

likely to underestimate the vehicle’s arrival time as the vehicle’s size grows [Caird and Hancock, 1994].

• Vehicle type (e.g motorcycle, vans, cars...) influence pedestrians waiting time before crossing.

Each gender is differently influenced by vehicle type when making a crossing decision [Caird and Hancock, 1994].

Dynamic factors

• Gap acceptance, or how much of a gap in traffic (usually in time) pedestrians deem safe to cross,

is one of the most important dynamic factors. The combination of vehicle speed and vehicle

distance from the pedestrian defines how far the vehicle is from the pedestrian [Das et al., 2005].

Pedestrians usually do not cross when the gap acceptance is below 3s and are very likely to cross

when it is higher than 7s [DiPietro and King, 1970]. As denoted previously, gap acceptance highly

depends on social factors, law compliance, street width...

• Waiting time impact on crossing behavior is subject to controversies. [Sun et al., 2003] argue that

the longer a pedestrian wait prior to his crossing, the more impatient he becomes and the lower

his gap acceptance becomes. On the other hand, [Wang et al., 2010] claim that changes in gap

acceptance are not explained by waiting time alone. Waiting time should therefore be studied in

conjunction with other factors such as pedestrian characteristics (gender, age, walking speed), road

structure, or location.

• Communication is considered as one of the main factors in resolving traffic ambiguities [Wilde, 1980].

To indicate that they will not concede to pedestrians their right to cross, cars maintain or increase

their speed. As a result, pedestrian intention to cross may differ depending on the driver’s behav-

ior. Conversely, when drivers stop their cars before they are legally required to, they signal their

intention to give pedestrians the opportunity to cross [Dey and Terken, 2017]. The presence of eye

contact amongst road users has been demonstrated to promote compliance with instructions and

laws. At crosswalks, for example, drivers who make eye contact with pedestrians are more likely

to give pedestrians the opportunity to cross [Guéguen et al., 2015].

3.3.2 Literature Review of State-of-the-Art

Being a sub-problem within action recognition, most of the existing approaches for pedestrian crossing

prediction, as defined in Fig 3.8, rely on the same modalities used for the latter3, including visual features

of the pedestrians and their surroundings, pedestrian kinematics, spatial positioning of the pedestrian

based on 2D bounding box locations, optical flow, semantic segmentation, and ego-vehicle speed.

Early works formulated the problem as a static image classification problem with either support vec-

tor machine [Köhler et al., 2012, Köhler et al., 2013] or 2D Convolutions [Rasouli et al., 2017b, Varytimidis et al., 2018],

using only the last frame in the observation sequence to predict binary crossing behaviors. More success-

ful approaches were designed to take into account temporal coherence in short-term motions of visual

features of the pedestrians by using ConvLSTMs [Shi et al., 2015, Gujjar and Vaughan, 2019], 3D Con-

volutions [Tran et al., 2014, Carreira and Zisserman, 2017, Chaabane et al., 2020], or Spatio-Temporal

3We refer the reader to chapter 2 for an extensive review of visual modalities and architectures available at hand.
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Figure 3.8: Pedestrian Intention Prediction: the objective is to predict if the pedestrian will start crossing
the street at some time C given the observation of length <. Figure adapted from [Kotseruba et al., 2021].

DenseNet [Saleh et al., 2019]. [Pop et al., 2019] propose to extract spatial information with convolutive

layers, then consider temporal dynamics with recurrent layers and propose a new metric for pedestrians

dynamics evaluation: the time to cross (TTC) prediction. Some works are based on state-of-the-art gen-

erative methods in deep learning, focusing on the future representation of the action, and then classifying

the action in its globality: [Gujjar and Vaughan, 2019] and [Chaabane et al., 2020] process the classifica-

tion of the crossing action by feeding the predicted frames of their future frame prediction auto-encoder

network into a classification network. However, those kinds of approaches have a major drawback:

since background context is included, they are noise sensitive. Moreover, predicting future frames of

a given scene can be time-consuming considering the type and the structure of the approach proposed

which can be a bit delicate in a real-time scenario. Approaches trying to minimize the inference time

of their models by avoiding the usage of RGB images were explored: [Achaji et al., 2021] proposes a

transformer using only spatial positioning of the pedestrian based on 2D bounding box locations. Cross-

ing prediction based on kinematics only was also explored with various available learning architectures

to monitor the temporal evolution of skeletal joints such as convolutions [Ranga et al., 2020], recurrent

cells [Marginean et al., 2019, Ghori et al., 2018] or graph-based models [Cadena et al., 2019].

More recently, approaches combining multiple sources of information emerged as shown in Fig 3.9.

By combining several of these perception modalities in order to obtain a multi-modal representation

of the scene, one obtain approaches that are often very discriminative and powerful for action predic-

tion. However, this is at the expense of the inference’s speed of the model and it highly depends on

the quality of the fusion or co-learning algorithm. Therefore, multi-modal approaches differ by the

way they merge the available sources, e.g. scenes, trajectories, poses and ego-vehicle speed, and the

learning architecture used to infer a crossing prediction, e.g. RNN-based models [Kotseruba et al., 2020,

Bhattacharyya et al., 2018, Yue-Hei Ng et al., 2015, Rasouli et al., 2019b, Kotseruba et al., 2021, Yang et al., 2022,

Ranga et al., 2020] or Transformer-based models [Lorenzo et al., 2021a, Lorenzo et al., 2021b].

3.3.3 Data sets for Pedestrian Intention Prediction

Dataset collection and annotation is a time and labor-intensive operation, however annotated datasets

are critical for deep learning breakthroughs. Deep learning depends heavily on the quantity and quality
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Figure 3.9: Example of a multi-modal approach for pedestrian crossing prediction, in the given case the
architecture is composed of five GRUs. Each of which processes a concatenation of features of different
modalities and the hidden states of the GRU in the previous level. The information is then fused into the
network gradually according to the complexity of the features. Picture credits [Rasouli et al., 2019b].

of data where the performance of approaches scales up with the amount of training data (e.g. image

classification keeps improving at least up-to billions of samples [Mahajan et al., 2018]). In contrast to

trajectory-based approaches, pedestrian discrete intention prediction is generally less mature. There are

fewer scientific contributions in this area of research because there is simply less properly annotated data

available and it does not really fits the current paradigm. This echoes our desire in chapter 2 to work on

deep learning with little available data. Nevertheless, several data sets for pedestrian crossing prediction

have been developed throughout the years, including:

• Daimler [Schneider and Gavrila, 2013], the smallest data set available with only 68 clips of scripted

actions in front of the ego-vehicle in a controlled environment with no occlusions. This one is con-

sidered trivial and was mainly used for pre-deep learning era (e.g. statistical approaches such as

SVMs).

• CASR [Fang and López, 2020], which stands for Cyclist Arm Signal Recognition. The second

smallest data set available with 229 arm signal actions of cyclists on videos of approximately 10

seconds each. This one is not exactly a pedestrian dataset, but focuses on vulnerable road users in

the broadest sense.

• JAAD [Rasouli et al., 2017b], the first realistic dataset from the ego-view that include annotations

for both the pedestrian and the video context. It includes pedestrian positionnal information via

bounding boxes, walking states (e.g., walking, crossing, looking), appearance (e.g., clothing, group

size), and demographics (e.g., age, group, gender). JAAD contains 346 clips of 5-10 seconds (30

Hz) each at daytime in the streets of downtown centers of North America and Eastern Europe. The
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number of pedestrians with behavioral annotations is 686 while the total number of pedestrians is

2786.

• PIE [Rasouli et al., 2019a], also obtained by a vehicle-mounted camera as it navigates through

crowded urban traffic environments: it contains 6 hours of continuous footage (30Hz) and provides

similar annotations for all pedestrians sufficiently close to the road regardless of their intent to

cross in front of the ego-vehicle and provides more diverse behaviors of pedestrians than JAAD.

Additionally, PIE proposes ground-truth ego-vehicle speed, gps coordinates, and heading direction

collected from the vehicle as well as relevant elements of infrastructure (traffic lights, signs and

zebra crossings). The number of pedestrians with behavior annotations is 1842 making PIE the

largest publicly available dataset for studying pedestrian behavior in traffic.

• TITAN [Malla et al., 2020], contains 700 clips ranging from 10 to 20 seconds (10 Hz) in highly

interactive urban driving scenarios in Tokyo, Japan. The dataset includes 50 labels including

vehicle states and actions, pedestrian age groups, and targeted pedestrian action attributes that are

organized hierarchically corresponding to atomic, simple/complex-contextual, transportive, and

communicative actions.

• STIP [Liu et al., 2020a], includes over 900 hours of driving scene videos of front, right, and left

cameras, while the vehicle was driving in dense areas of five cities in the United States. The

videos were annotated at 2fps with pedestrian bounding boxes and labels of crossing/not-crossing

the street.

Affected by a notorious lack of interest as the research area was in a shortage of annotated data com-

pared to its continuous trajectory-based version, the field of research has suffered for a long time from the

absence of common evaluation protocols and standardized benchmarks, making the task of comparing

performance between approaches complex if not impossible to achieve. Even if their reported perfor-

mance was evaluated on the same data-sets, they were reported under different experimental conditions

such as:

• observation length: ranging from a single frame to 10 seconds of observation at most.

• prediction horizon: ranging from one frame after the observation to a few seconds depending on

the approach.

• observation endpoint: sometimes stopping the observation before the event of crossing, sometimes

considering the entire event: leading to the term prediction no longer applying since the action is

already taking place.

• pedestrian selection and splits methods varying to ensure a balanced data-set in terms of crossing

/ not crossing distribution, leading to completely different splits based on the same data-sets and

hardly comparable.

• Modalities input: for instance pose kinematics could come from different pose estimation algo-

rithms, optical flow could be perfectly computed or estimated...
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The lack of a common evaluation criterion, of normalized modalities inputs, of a common obser-

vation frames selection method, and common prediction horizons made the task of comparing each ap-

proach’s robustness difficult if not impossible to realize during the first part of the thesis. After a while,

common evaluation protocols and modalities inputs for three datasets [Kotseruba et al., 2021] were pro-

posed to advance research on pedestrian action prediction further and obtain a fair comparison between

all the upcoming methods4.

In the following section, we introduce the two approaches we developed for pedestrian intention pre-

diction throughout the thesis. As the evaluation protocols [Kotseruba et al., 2021] were made avail-

able online only after the publication of the first contribution, we detail for each approach the initial

evaluation protocol used. We then compare both approaches with the standard evaluation procedures

[Kotseruba et al., 2021].

3.4 Inferring crossing behavior via pose kinematics only

The topic of pedestrian crossing prediction has attracted significant interest in computer vision and

robotics communities but remains a difficult research topic due to the great variation and complexity

of its input data. Although many approaches have been proposed which report interesting results on

pedestrian crossing prediction, most of the existing methods may suffer from a large model size and

slow inference speed by aggregating multiple forms of perception modalities extracted by additional

networks such as background context, optical flow, or pose estimation information [Piccoli et al., 2020,

Kotseruba et al., 2021, Yue-Hei Ng et al., 2015].

However, in such decisive applications, a desirable action prediction model should run efficiently for

real-time usage and should also be robust to a multitude of complexities and conditions. To alleviate

this issue, we propose two models using only one additional network to compute poses and disregard

the other perception modalities. Pose kinematics provide a compact and structured approach to represent

human pose information that would otherwise be encoded in pixels. These pose kinematics could pro-

vide enough information to efficiently infer someone’s activities and intentions, such as whether or not

they intend to cross the street. Based on section 3.3.1, we propose Table 3.3 listing the pedestrian and

environmental factors involved in pedestrian decision-making process in accordance with the perceptive

modality used. A person’s head direction, for example, frequently reflects where he intends to travel,

whilst his body orientation indicates which direction he is presently going (See Fig 3.10).

Our contributions are summarized in the following:

• We propose SPI-Net and TrouSPI-Net: two scene-agnostic, lightweight, multi-branch approaches

that rely on pose kinematics to predict crossing behaviors. The proposed approaches could be

applied following the application of any additional network to compute pedestrian body poses and

could be easily implemented in any embedded devices with real-time constraints since it only uses

standard deep-learning operations in an euclidean grid space. SPI-Net and TrouSPI-Net are both

4We are getting ahead of ourselves in this chapter by saying that there is still some work to be done on the benchmark and we
refer the curious reader to Chapter 4 for more information.
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robust to a multitude of complexities and conditions (e.g., weather, location) as it only relies on

pedestrians’ kinematics.

• We first represent a skeleton sequence as a 2D image-like spatio-temporal continuous representa-

tion as presented in section 2.5.2. For our second contribution, as the scale of pedestrians’ actions

patterns might extend through time and is not limited by a specific temporal resolution, we extract

spatio-temporal features by relying on parallel processing of 2D atrous convolutions enhanced

with self-attention for multiple dilation rates. This allows TrouSPI-Net to capture features for a

given pedestrian action pattern for multiple temporal resolutions.

• We secondly represent a skeleton sequence as its evolution of Euclidean pairwise distances of

skeletal joints over time and encode them either with a fully connected encoder architecture as

presented in section 2.5.1 for SPI-Net, either with U-GRUs, as presented in section 3.2: a non-

symmetrical bidirectional recurrent architecture designed to exploit the bidirectional temporal con-

text and long-term temporal information for challenging skeletal dynamics having similar patterns

but different outputs. In both contributions, this compensates for the inabilities of the first stream

in learning temporal patterns invariant to locations and viewpoints.

• Evaluations of both SPI-Net and TrouSPI-Net have been conducted with the freshly proposed com-

mon evaluation criteria [Kotseruba et al., 2021] on two standard benchmarks for pedestrian behav-

iors prediction: Joint Attention in Autonomous Driving (JAAD) [Rasouli et al., 2017b, Rasouli et al., 2017a]

and Pedestrian Intention and trajectory Estimation (PIE) [Rasouli et al., 2019a] public data-sets.

Architecture variations and branch ablations are also presented to provide insight into our pro-

posed multi-branch approach.

3.4.1 SPI-Net: a representation-focused multi-branch deep learning network

In this work, we propose to go back to "It is all about embedding and standardization in machine-

learning": once one finds a way to standardize and represent data more adequately, any classifier might

be able to obtain good results as long as the input data is informative. By normalizing the input data,

creating global-motion features and location-viewpoint invariant features or enforcing certain constraints

towards the data representation of designated hidden layers, we send informative-representation ready

data to the classification network. It allows us to rely on fewer hidden layers to learn informative rep-

resentations of data and therefore reduce the complexity of the network compared to other approaches.

Since we choose to rely on a reduced number of hidden layers, we can focus on the inference time of our

model, which is mandatory since we take the model speed as one of our priorities.

The network architecture of SPI-Net is shown in Figure 3.11. In the following section, we explain

our motivation for designing input features and network structures of SPI-Net. The network is divided

into two branches: one focuses on the evolution of Euclidean distances relative to certain identified key-

points over time, the other focuses on the evolution of the spatial representation of skeletal key-points

as a function of time in the Cartesian coordinate system. The first branch corresponds to the encoder

part of an auto-encoder initially trained to reconstruct an action according to the evolution over time of
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selected key-point distances. We add to the auto-encoder cost function a statistical supervised separabil-

ity constraint to perform better separation between instances according to their class in the latent space

(see section 2.5.1). In the second branch, a 2D convolutional network, we represent a skeleton sequence

as a pseudo-image. This allows us to extract spatio-temporal features using standard computer vision

deep-learning methods (see section 2.5.2). We then perform a late fusion on those two branches and

fine-tune the entire approach in order to evaluate the model’s performance.

Figure 3.11: The multi-branch architecture of SPI-Net: the left branch focuses on the evolution of Geo-
metric features relative to certain identified key-points over time. The second one focuses on the evolu-
tion of the spatial representation of skeletal key-points as a function of time in the Cartesian coordinate
system. CNN 2D Blocks denote one 2D ConvNet layer (kernel size= 3), an AveragePooling layer and a
Batchnormalization layer. Other Dense blocks are defined in the same format with a Batchnormalization
layer following each Dense layer.

3.4.1.1 Geometric Features Branch

For the Geometric Features branch, we use the simplest form of an auto-encoder presented in Fig 3.12:

a trivial feed-forward non-recurrent neural network to reconstruct an action according to the evolution

of the Euclidean distances of five given key-points over time: Torso, Left and Right Shoulders, Left and
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Figure 3.12: Pipeline of the approach for the Geometric branch: (1) we train an auto-encoder to recon-
struct a sequence representing an action according to the evolution over time of the distances (represented
by the red arrows) of selected keypoints (Torso, Left and Right Shoulders, Left and Right Knees). We
also add a constraint specific to the separability of classes in the latent space. (2) We then extract the
weights of the encoder part up to the bottleneck represented in red and add a classifier, which transforms
the encoder part into a pre-trained network on the data for action classification.

Right Knees. The given key-points were selected in order to extract specific information for the model

such as pedestrian’s orientation or pedestrian’s dynamics over time.

A considerable amount of literature has been published on modelling pedestrian’s attention to-

wards its environment as an input to infer its crossing intention [Rehder et al., 2014, Köhler et al., 2015,

Flohr et al., 2015, Schulz and Stiefelhagen, 2015, Dey and Terken, 2017, Rasouli et al., 2018] mainly by

focusing on specific key-points such as the head and more specifically its orientation. [Rasouli et al., 2018]

show that across all the possible forms of attention and communication a pedestrian could use, the most

notable one is to look in the direction of the approaching vehicle: for a collision incoming within the next

few seconds, pedestrians always tend to look at the vehicle before crossing [Rasouli et al., 2017a]. There-

fore, such head orientation input is not necessarily useful for the particular task of intention prediction

since it is almost always recurrent information and would be redundant as this information would also be

easily available in the Cartesian Coordinates features branch. In that regard, [Schulz and Stiefelhagen, 2015]

report that head detection is not particularly useful for the particular task of intention prediction. Similar

results were reported in [Rasouli et al., 2017b]: specifically focusing on the head for modelling pedes-

trian’s attention does not seem to bring better performance for the task of intention prediction. Key-points

such as elbows or wrists were considered as well in order to capture specific attention behaviors of pedes-

trians relying on hand gestures to communicate their intention of crossing to the driver. However, it has

been shown that pedestrians mainly use explicit communication such as hand gestures to signal gratitude

or dissatisfaction following the driver’s action [Dey and Terken, 2017]. Such a specific gesture happens

too late for our current intention prediction task as the pedestrian would be already either crossing or

not at that time. In fact, [Schneemann and Heinemann, 2016] discovered that evident attention indica-

tors used by humans for inferring crossing intentions such as the head orientation of pedestrians are not

always sufficient. Even more, they concluded that "a lack of information about the pedestrian’s posture
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and body movement results in a delayed detection of the pedestrians changing their crossing intention".

In conformity with this conclusion, we chose to capture different information for the Geometric features

branch. Instead of extracting pedestrian’s awareness features towards its environment, we try to capture

pedestrian’s orientation features and pedestrian’s dynamics features over time based on relative distances

of their key-points. Therefore the torso and shoulders key-points are preferred over the head, elbows

or wrists to model the pedestrian orientation towards his environment. Besides, knees key-points are

taken into consideration in order to determine if the given pedestrian is walking or standing in the scene

and therefore capture its dynamics. By selecting a lower amount of key-points than the ones available

in the complete body structure, we reduce the inference time of the Geometric features branch without

degrading its quality for classification.

To avoid redundancy in our distances matrix and to minimize the geometric branch input size, we use

the Joint Collection Distances (JCD shown in Fig 3.13) [Li et al., 2017b, Yang et al., 2019] feature to

represent our vector of distances over time.

Figure 3.13: The Cartesian coordinate feature is highly dependent on locations and viewpoints. When
body poses are rotated or shifted, the Cartesian coordinate feature can be significantly impacted
representation-wise. Meanwhile, the geometric feature (e.g., angles/distances), is location-viewpoint
invariant, and thereby stays the same. This compensates for the inabilities of the Cartesian coordi-
nate feature branch in learning temporal patterns invariant to locations and viewpoints. Picture credits
[Yang et al., 2019].

At frame : , the 2D Cartesian coordinates of joint = is represented as �:
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where
−−−→�:8 �:9  (8 ≠ 9) denotes the Euclidean distance between �:

8
and �:

9
. Calculating the Euclidean dis-

tances between a pair of collective joints gives us a symmetric matrix. To reduce the redundancy of

information, the JCD feature is then defined as the lower triangular matrix without the diagonal.

The JCD feature is then flattened to be a one dimensional vector as our geometric’s branch input of size

equals to ) ∗
(=1:4H?>8=CB

3

)
for each sequence. Where ) is the sequence duration, =1:4H?>8=CB is the count

of key-points, and 3 is the dimension of each key-point.

We add to the reconstruction cost function of the auto-encoder a statistical supervised constraint spe-

cific to the separability of classes with a Linear Discriminant Analysis. This allows to condition the

projection of the instances in the latent space upon their class. We then obtain, in addition to a reduced

representation of the action, a first draft of the separability of the classes in the latent space5. Finally,

we extract the encoder part of the trained auto-encoder and evaluate its classification ability as shown in

Figure 3.12.

3.4.1.2 Cartesian Features Branch

As the Geometric branch only takes as input relative Euclidean distances between key-points, the Ge-

ometric branch is location-viewpoint invariant. Hence, it does not contain any global spatial motion

information of the pedestrian. Solely using the Geometric feature branch is therefore unsubstantial as it

does not take any information about the spatial information of the pedestrian in the scene. To overcome

this issue, we develop a Cartesian Coordinates features branch that is made to retain such spatial infor-

mation. Moreover, the Geometric features branch treats no explicit sequential modelling at all, but only

treats the question of representation of an action in the embedding. Our Cartesian Coordinates features

branch is therefore designed to extract both spatial and temporal features: features that are not explicitly

learned in the Geometric branch.

Since we take the model inference speed as one of our priorities, we use a 2D-convolution-ready rep-

resentation format6 of the sequence to represent human pose sequences allowing us to extract spatio-

temporal features using standard computer-vision deep-learning methods. Human pose sequences are

converted to a 2D image-like spatio-temporal continuous representation based on a spatial joint reorder-

ing trick [Baradel et al., 2018, Liu et al., 2016] called Tree Structure Skeleton Image (TSSI) [Yang et al., 2018b].

Such representation preserves both spatial and temporal relationships by repeating the joints and re-

indexing them7. Since a sequence is represented with a 3-dimensional (),=1:4H?>8=CB, 3)-shaped tensor,

we can easily apply the TSSI normalization [Yang et al., 2018b] on the input and transform the original

sequences into a multi-channel redundant image of shape (300,25,2). A few sequences of pedestrian

actions in the TSSI-format are plotted with their ground truth intentions in Figure 3.14 for illustration.

We then classify these images using standard computer vision deep-learning methods while pre-

serving spatial and temporal relationships. Therefore, after the normalization of its input, the second

branch corresponds to any other image classifier based on convolutions and pooling blocks for features

extractions and fully-connected layers at later stages of the network. Similarly to the Geometric fea-

5We refer the reader to section 2.5.1 for a detailed explanation.
6We refer the reader to section 2.5.2 for a detailed explanation.
7TSSI is described in more details in Figure 2.21.
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Figure 3.14: 28 different ground-truth sequences represented in a 3-dimensional (300,25,2)-shaped ten-
sor after the TSSI normalization. The horizontal axis of each TSSI sequence is the keypoints axis. The
vertical axis of each TSSI sequence is the time axis. The G, H dimensions are mapped to RG(B) channels
for visualization. The axes are kept fixed and the aspect is adjusted so that the data fit in the axes. Ground
truth labels C or NC represent the Crossing or not Crossing future action of the pedestrian.

tures branch, we evaluate the capability of discrimination of that branch alone for the Pedestrian Discrete

Intention Prediction task and we then concatenate the two branches and evaluate the approach as its

whole.

3.4.1.3 Experimental Dataset

Predicting whether or not a pedestrian is going to cross is addressed by the JAAD data set [Rasouli et al., 2017a,

Rasouli et al., 2017b] which contains 346 videos. In each video, each pedestrian has its individual ID

and its actions performed over time as presented in Fig 3.15. To extract the human key-points, we apply

the Cascaded Pyramid Network (CPN [Chen et al., 2017]) algorithm to the ground truth spatial coordi-

nates and individual IDs of each pedestrian provided by the data set. All video frames are normalized

to 1280x1024 frame size. We then normalize each key-point (G, H) ∈ R2 individually, dividing each

coordinate by 1280 and 1024 as shown in equation (3.4):

G ′ =
G

Gmax
; H′ =

H

Hmax
(3.4)

Such normalization has two benefits: the first one is that data will be ready for neural networks whose

weights initialization [He et al., 2015] expects such normalized input (variance ≤ 1), while retaining the

spatial information of the pedestrian in the scene.

Subsequently, obtained pedestrian pose sequences are defined as: s = (s1, s2, . . . , s) ) ∈ R) × ×3 ,

where ) is the sequence duration,  is the count of key-points, and 3 is the dimension of each key-
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Figure 3.15: Behavioral Time line of a crossing pedestrian in the Joint Attention in Autonomous Driving
(JAAD) data set.

point. All sequences of skeletons are then sampled by a sliding window to keep a fixed size in form of a

3-dimensional (), , 3)-shaped tensor where ) = 300,  = 14, and 3 = 2. The majority of the extracted

sequences are smaller than the fixed ) size of the sliding window, therefore sequences with less than )

frames are padded with zeros. Finally, all processed data is introduced as a complete sequence to the

SPI-network.

3.4.1.4 Evaluation Setup

We use the same methodology, splits and evaluation protocol as [Gantier et al., 2019] for the crossing

prediction task on JAAD data set: to perform pedestrian crossing prediction, only crossing labels are

used, other labels such as drivers information or context are omitted. Every pedestrian with a crossing

marker along their timeline is taken as a positive sample, if not, it is taken as a negative sample. After-

wards, all positives samples are divided into two categories, the ones preceding the crossing stage and the

ones taking action during the crossing stage. Only the ones preceding the crossing stage are considered.

All frames with annotation are then taken from the starting time of the action to time =. They are then

sampled with a sliding window of frame size ) = 300. This procedure results in 927 crossing samples,

1855 non-crossing samples and 697 preceding the crossing samples. Only the remaining 697 prior to

crossing positive samples and the 1855 negative samples are used. To avoid redundancy and bias in the

data, only the last three steps of a single pedestrian sample are taken from the sliding window if the event

is longer than the fixed ) frames. It results in 322 positive and 182 negative samples being retained. All

samples are then divided into training and test sets. According to [Fang and López, 2018] splits, we use

the first 250 videos for training and the last 96 videos for testing. Since the number of positive examples

is greater than the number of negative examples, some positive examples are discarded to maintain a

balanced data set. The final data set consists of 240 examples equally distributed between crossing and

not crossing labels in the training data set and 124 examples equally distributed in the test data set.
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3.4.1.5 Implementation Details

As our SPI-Net implementation relies on multiple networks being trained independently and then con-

catenated for fine-tuning, we firstly here present our entire training setup to obtain SPI-Net:

• Training the Geometric features branch:

– Training the auto-encoder with a separability constraint term: We use a standard feed-

forward non-recurrent MLP whose dimensions are (3000) → (128) → (64) → (32) → (1) →
(32) → (64) → (128) → (3000). We use a value of fixed _ = 5 for the LDA constraint

term ponderation in the modified reconstruction cost function. To address the vanishing

gradient problem, each perceptron in the given auto-encoder network uses the LeakyRelu

[Maas, 2013] activation function. For regularization purposes, we use Dropout [Srivastava et al., 2014]

(? = 0.5) , !2 regularization with _ = 10−1 and batch normalization [Ioffe and Szegedy, 2015]

after each layer. We choose Adam (V1 = 0.9, V2 = 0.999) [Kingma and Ba, 2014] as the op-

timizer, with an annealing learning rate that drops from 10−3 to 10−8. In order to obtain a

good separability in the latent space with the LDA separability constraint, we choose to send

all the training examples at once for the auto-encoder training and select a batch size of 240.

– Training the Encoder part for classification: we recover the encoder part of the auto-

encoder, then train a classifier with weights initialized via the auto-encoder. We use the same

values of Adam optimizer for training. We however divide the training set into 30 batches of

size 8. We use ReduceLROnPlateau with a factor of 0.2 and patience of 10.

• Training the Cartesian features branch: The Cartesian features branch is composed of four

2D-convolutions blocks composed of 2D-convolutions layers (kernel size= 3G3). Similarly to the

auto-encoder, we use the LeakyRelu activation function, !2 regularization with _ = 10−4 and a

Dropout value of 0.5. Each convolution layer is then followed by a Batch Normalization layer

and an Average Pooling layer. The fully connected layers following the spatio-temporal features

extraction done by convolutions is then completely similar to any other Dense layer of the Geo-

metric feature branch for hyper-parameters tuning. We choose Adam (V1 = 0.9, V2 = 0.999) with a

learning rate that drops from 10−2 to 10−8 and ReduceLROnPlateau with a factor of 0.5, patience

of 5, cooldown of 5 and a batch size of 8.

• Concatenating the branches: We then remove the classification layer of each branch and con-

catenate those two networks deprived of their last layer into a single one. It allows us to keep

the previously learned weights of each network independently. We then add a classification layer

whose weights are initialized randomly after the concatenated layer of the obtained network. Fi-

nally, we fine-tune the entire network, from pre-trained weights to the randomly initialized clas-

sification layer. We obtain SPI-Net: a late fusion and fine-tuned version of the Geometric and

Cartesian features branches. As proposed in [Smith et al., 2017], we increase the batch size over

time during the training and therefore fine-tune the approach with two different trainings on the

same SPI-network with two different batch size. For the first training, we use Adam with a learn-

ing rate that drops from 94−3 to 54−8, ReduceLROnPlateau with a factor of 0.5, patience of 25
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and a batch size of 8. For the second one, we use Adam with a learning rate that drops from 94−8
to 54−18 and ReduceLROnPlateau with a factor of 0.5, patience of 25 and a batch size of 240.

3.4.1.6 Results

In ablation studies, we first explore how each branch contributes to the intention prediction performance.

We therefore explore how the LDA constraint for the Geometric branch or the spatial joint reordering

trick impact the intention prediction performance on JAAD. Therefore, both Geometric and Cartesian

branches results are presented in Table 3.4, Figure 3.16 and Table 3.5. The crossing prediction results of

the overall approach on JAAD data set are then presented in Table 3.6. Finally, more details about each

branch and SPI-Net are listed in their respective confusion matrices for the crossing or not crossing task

in JAAD data set in Table 3.7.

Table 3.4: Intention prediction accuracies of the Geometric branch alone, for different encodings of the
sequences of inter-keypoints distances.

Method Accuracy

LDA on Geometric features branch input 51.6%
LDA on the classic Encoder (_ = 0) 53.2%

LDA on the regularized Encoder (_ = 5) 54.0%
Encoder (He initialization [He et al., 2015]) 66.9%
Encoder with a classic auto-encoder (_ = 0) 68.5%

Encoder with a regularized auto-encoder (_ = 5) 69.4%

Figure 3.16: Intention prediction accuracy of the Geometric branch alone, as a function of its _ parameter.

Table 3.5: Ablation studies: classification accuracy of the Cartesian branch for pedestrian intention
prediction for the crossing or not crossing task in JAAD.

Method Accuracy
Cartesian feature branch without spatial joint reordering trick 83.1%

Cartesian feature branch with spatial joint reordering trick 88.7%

From Table 3.4, we figure that solely using the Geometric features branch alone cannot produce a

satisfactory performance for the crossing or not crossing task: since most of the prior to crossing actions
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are strongly correlated to global spatial motion of the pedestrian in the scene, the usage of only relative

Euclidean distances between key-points is missing necessary information such as spatial dynamics or se-

quential modeling. However, the Geometric features branch still seems to capture some information only

relative to the orientation and dynamics of the skeleton in the data without explicit temporal modeling

or global spatial information. Table 3.4 shows that, by using the same binary classifier on the projected

data in the bottleneck obtained from a classical auto-encoder, a simple LDA finds slightly more meaning

in the data than the initial Geometric features input. Moreover, the latent space representation obtained

by our regularized auto-encoder seems to be a little bit more informative than a regular auto-encoder

latent space representation. In Figure 3.16, we evaluate the correspondence between the value of _ for

the supervised separability constraint part and prediction accuracy. Afterward, we evaluate the necessity

of using a pre-trained encoder network for classification initialized with an auto-encoder training. By

comparing the results from the same network with He’s weights initialization [He et al., 2015] prior to

any auto-encoder training to the entire geometric branch approach, we show that using an auto-encoder

to initialize the network’s weights helps to a certain extent the network’s accuracy. From Table 3.5, we

can deduce that by taking into consideration both spatial and temporal features in the Cartesian coor-

dinate system, we obtain better results than by only considering relative distances of given key-points

of the pedestrian skeleton. We can also conclude that the usage of the Tree Structure Skeleton Image

(TSSI) [Yang et al., 2018b] normalization improves the results of the Cartesian branch for the given task

considerably. Such normalization is therefore relevant as it only changes the size of the image input

and therefore does not change the network’s architecture much while becoming better for the task it was

designed for. Finally, Table 3.6, shows that by merging and fine-tuning both Geometric and Cartesian

features branches into a single network, we can achieve better results for the crossing or not crossing task

than by considering each branch independently.

Table 3.6: Classification accuracies for pedestrian intention prediction for the crossing or not crossing
task in JAAD. CPN [Chen et al., 2017], Alphapose [Fang et al., 2016] and Openpose [Cao et al., 2017]
stand for the use of human pose estimation algorithms used by the skeleton-based features method. We
have also included the results reported in [Rasouli et al., 2017b, Varytimidis et al., 2018], where CNN
features are based on a non-fine-tuned AlexNet [Krizhevsky et al., 2012] and Context refers to features
of the environment, not of the pedestrian itself.

Method Accuracy
Alexnet + Context [Rasouli et al., 2017b] 63.0%
Alexnet + SVM [Varytimidis et al., 2018] 74.4%

Alphapose + LSTM [Marginean et al., 2019] 78.0%
Res-EnDec [Gujjar and Vaughan, 2019] 81.0%

ST-DenseNet [Saleh et al., 2019] 84.76%
auto-encoder + Prediction[Chaabane et al., 2020] 86.7%
Openpose + Keypoints [Fang and López, 2018] 88.0%

Alexnet + SVM + Context [Varytimidis et al., 2018] 89.4%
CPN + GCN [Gantier et al., 2019] 91.9%
CPN + Geometric branch (_ = 5) 69.4%

CPN + Cartesian branch 88.7%
CPN + SPI-Net (_ = 5) 94.4%
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Overall, although SPI-Net is not that complex in its architecture, Table 3.6 shows that it outper-

forms by more than 2.5% the previous state-of-the-art approach [Gantier et al., 2019] based on CPN

[Chen et al., 2017] for pedestrian discrete intention prediction task on the JAAD dataset. The confusion

matrices in Table 3.7 also shows that SPI-Net accuracy is similar on both action classes which demon-

strates its ability to adapt to intra-class variation for skeleton-based dynamics.

Table 3.7: Confusion matrix of the JAAD data set obtained by each branch of SPI-Net and SPI-Net on
JAAD for the crossing or not crossing task.

Geometric Branch Cartesian Branch SPI-Net
Ground Truth Crossing Not Crossing Crossing Not Crossing Crossing Not Crossing

Crossing 37 25 57 5 60 2
Not Crossing 16 46 9 53 5 57

3.4.1.7 Conclusion

In this work, we have introduced a new real-time representation-focused multi-branch deep-learning

skeleton-based approach for the task of discrete intention prediction of pedestrians in urban traffic envi-

ronments. We propose to go back to "It is all about embedding and standardization in machine-learning"

and put great emphasis on finding a way to standardize and represent data in a more adequate way for 2D

skeletal pose sequences based models. By normalizing the input data based on physical world constraints

of the body structure, creating features in different coordinate systems allowing to capture different as-

pects of the data or enforcing certain constraints towards the data representation of designated hidden

layers, we send informative-representation ready data to the classification network which allows us to

rely on less hidden layers to learn informative representations of data. Our approach has achieved re-

markable results: 94.4% accuracy i.e., 2.5% more than the current state of the art for the Crossing or Not

Crossing prediction task on JAAD data set while being completly invariant to context and road struc-

ture. Furthermore, since we choose to rely on a reduced number of hidden layers, we can focus on the

inference time of our model, which is mandatory since we take the model speed as one of our priorities:

SPI-Net speed can reach around one inference every 0.25 ms on one GPU (i.e., RTX 2080ti), or every

0.67 ms on one CPU (i.e., Intel Core i7 8700K), which makes it highly effective for the task of predicting

discrete intentions of pedestrians and directly applicable to embedded devices with real-time constraints.

3.4.2 TrouSPI-Net: Spatio-temporal attention on parallel atrous convolutions

As stated in section 3.3.3, the lack of a common evaluation criterion, of normalized input modalities,

of a common observation frames selection method, and common prediction horizons made the task of

comparing each approach’s robustness difficult if not impossible to realize. During the second part of

the thesis, common evaluation protocols and modalities inputs [Kotseruba et al., 2021] were proposed

to advance research on pedestrian action prediction further and obtain a fair comparison between all

the upcoming methods. In order to propose the first and only pose-only based approach on the bench-

mark at this day, we proposed a new model for pedestrian action prediction based on 2D body poses:

TrouSPI-Net, which is a largely modified and significantly improved version of the SPI-net architecture
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(see section 3.4.1).

First, we introduce parallel processing branches to allow the architecture to access different time resolu-

tions with atrous convolutions enhanced with self-attention mechanisms. Secondly, we apply U-GRUs

(see section 3.4) on the evolution of relative Euclidean body distances over time, which acts as a regu-

larizer of the first stream for both time and space. We then extend the U-GRUs approach as one baseline

method to consider long-term temporal coherence and process each sequence of context features such as

bounding box positions or ego-vehicle speed. The diagram of the model is shown in Figure 3.17 and the

implementation details follow below.

3.4.2.1 Methodology

Extracting spatio-temporal features via parallel atrous convolutions on pseudo-images Pedestrian

body poses sequences are defined as a vector:

s = (s1, s2, . . . , s<) ∈ R<×#×3 (3.5)

where < is the sequence duration, # is the count of key-points, and 3 is the dimension of each key-point.

All sequences of skeletons are then sampled in the form of a 3-dimensional (<,#, 3)-shaped tensor

representing a 2D image-like spatio-temporal continuous representation of the sequence of poses. The

horizontal axis of each pseudo-image represents the key-points axis while the vertical axis represents the

time axis. (G, H) dimensions of each key-point are then mapped to '� (�) channels.

By using a 2D-convolution-ready representation format, we extract multi-scale spatio-temporal features

using standard computer-vision methods such as atrous convolutions and enhance the feature extraction

modules by using Convolutional Block Attention Module (CBAM) [Woo et al., 2018] for self-attention

mechanisms in each branch. Since sequences are represented as pseudo-images, CBAM blocks act as

self-attention mechanisms for time and space conjointly. Each of the pseudo-images is directly fed to

three parallel branches. All three branches present a similar architecture designed for single-scale spatio-

temporal feature extraction. In each branch, the pseudo-image is passed to an atrous CBAM block,

illustrated in Figure 3.17, followed by a pooling layer. This process is repeated two more times. The

difference between the three atrous CBAM blocks resides in the value of the dilation rate fixed in each

branch. Having three different dilation rates for the spatio-temporal convolution layers allows the net-

work to directly work at different time resolutions while staying at the same spatial resolutions as shown

in Fig 3.18. Moreover, compared to using different kernel sizes for each convolution, working with

atrous convolution does not harm the model size. The outputs of the three branches extracting multi-

scale spatio-temporal features are then summed into a single vector for later stages.

Formally, let ℎ (;,V) (<,=) represent the input of the ;-th atrous CBAM block of the V branch,  (;,V) be
the number of feature maps,, (;,V)

:
(8, 9) the :-th convolution filter of the ;-th convolution in the V branch

with the length and the width of < and =, 1 (;,V)
:

the bias shared for the :-th filter map, (A (;,V)1 , A
(;,V)
2 ) the

dilation rates and f an activation function. The intermediate feature map � (<,=) obtained by atrous 2D
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Figure 3.18: Atrous convolutions applied to our pseudo-images: compared to regular convolutions, it
involves pixel skipping, so as to cover a larger area of the input in time while staying at the same spatial
resolution. This could prove useful for two use cases: (1) the scale of pedestrians’ actions patterns might
extend through time and is not limited by a specific temporal resolution, relying on atrous convolution
allows TrouSPI-Net to capture features for a given pedestrian action pattern for multiple temporal res-
olutions and could potentially improve generalization. (2) Pose estimation algorithms often reconstruct
temporally noisy poses when given in-the-wild video data, combining three different action extraction
feature protocols for three different time ranges could have a regularizing effect on the potential pose
noise obtained at a given timestamp.

convolutions of the ; +1-th CBAM block is calculated as:

� (<,=) = f ©«
 ∑
:=1

"∑
8=1

#∑
9=1
ℎ (;,V) (< + A1× 8, =+ A2× 9) ×, (8, 9) + 1

ª®¬ (3.6)

Where  =  (;,V) , (A1, A2) = (A (;,V)1 , A
(;,V)
2 ),, =,

(;,V)
:

and 1 = 1 (;,V)
:

. The ouput of the CBAM block

ℎ (;+1,V) (<,=) is then computed by sequentially inferring a 1D channel attention map Mc and a 2D spatial

attention map Ms following the original recommendations of the CBAM paper [Woo et al., 2018] and as

illustrated in Figure 3.17:

F′(<,=) = Mc(F(<,=)) ⊗F(<,=)
ℎ (;+1,V) (<,=) = Ms (F′(<,=)) ⊗F′(<,=)

(3.7)

where ⊗ denotes element-wise multiplication. Finally, the output ℎ (;+1,V) (<,=) serves as the input

of the batch normalization and pooling layer that directly follow the atrous CBAM block.

In our experiments, we have three branches: low resolution, medium resolution, high resolution branches
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A
(;,V)
1 ∈ [1;3], A (;,V)2 = 1, V ∈ [1;3], three atrous CBAM blocks and pooling layers in each branch:

; ∈ [1;3].  (;,V) = 64 feature maps for each layer. Each convolution uses 3x3 kernels and is followed by a

batch normalization layer. All the neurons use the LeakyRelu activation function: f(G) = <0G(0.2x,x),
with the exception of the Mc and Ms neurons which use the same hyper-parameters settings than the

original CBAM paper.

Modeling Location-viewpoint Invariant Features via U-GRUs To extract skeletal pose kinematic fea-

tures invariant to locations and viewpoint, we represent a pose sequence as its evolution of skeletal joints

relative Euclidean distances over time with the Joint Collection Distances (JCD) feature [Yang et al., 2019].

The JCD feature is then flattened to a vector of dimension < ∗
(#

2
)
. Euclidean distances features are then

processed with two U-GRUs blocks as illustrated in Figure 3.17. In contrast to SPI-Net, since we use

recurrent neural networks and not a fully connected approach anymore, we do not handpick the keypoints

of interest for the Euclidean distance matrix, we simply consider them all as it does not impact the speed

of the approach much.

Compared to regular Bidirectional GRUs, where the output layer can get information from past and

future states simultaneously but are most sensitive to the input values around time C, in U-GRUs, past

and future interact but in a limited way. U-GRUs allow the model to accumulate information while know-

ing which part of the information will be useful in the future and therefore exploit long-term temporal

patterns on invariant locations and viewpoint skeletal dynamics. This compensates for the inabilities of

the first pseudo-images stream to learn long-range temporal patterns and therefore acts as a regularizer

for time and space. Similarly, context features such as bounding box positions and ego-vehicle speed are

processed in parallel through the same U-GRUs architecture.

Combining all the features branches Following the successful application of temporal attention and

modality attention in multi-modal approaches for pedestrian action prediction, we finally apply the same

temporal attention and modality attention mechanisms used in PCPA [Kotseruba et al., 2021] to all our

features branches to fuse them effectively. Nonetheless, the nature of the inputs merged in TrouSPI-net is

entirely different compared to the initial multi-modal PCPA [Kotseruba et al., 2021] architecture. While

PCPA [Kotseruba et al., 2021] merges inputs such as sequences of RGB camera images processed by

3D convolution and poses processed via simple recurrent networks without spatio-temporal coherence of

body actions, TrouSPI-Net was designed to operate without needing additional RGB scene-context and

uses different body poses representations that were encoded to treat the spatial and the temporal infor-

mation of body action for different time resolutions. For each feature extracted by U-GRUs: we apply

temporal attention [Kotseruba et al., 2021] to weight the relative importance of frames in the observation

relative to the last seen frame. We then apply modality attention [Kotseruba et al., 2021] to the weighted

outputs of the U-GRUs features and the output of the pseudo-images stream. This fuses inputs from mul-

tiple modalities into a single representation by weighted summation of the information from individual

modalities. The output of the modality attention block is finally passed to a dense layer for prediction.
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3.4.2.2 Experiments

To evaluate the presented multi-branch approach and several variations of its architecture, we con-

ducted experiments on two large public data-sets for studying pedestrian behaviors in traffic: JAAD

[Rasouli et al., 2017b, Rasouli et al., 2017a] and PIE [Rasouli et al., 2019a]. JAAD contains 346 clips

and focuses on pedestrians intending to cross, PIE contains 6 hours of continuous footage and provides

annotations for all pedestrians sufficiently close to the road regardless of their intent to cross in front of

the ego-vehicle and provides more diverse behaviors of pedestrians.

Evaluation Setup We base our experiments on the newly proposed evaluation criteria [Kotseruba et al., 2021]

with common evaluation protocols, splits and normalized modalities inputs. As provided in the new

benchmark, observation data for each pedestrian is sampled so that the last frame of observation is be-

tween 1s and 2s before the crossing event. We report the results using regular classification metrics:

accuracy, AUC, precision, recall and �1-score given by �1 =
2× precision × recall

precision + recall .

In architecture variations and branch ablations studies, we explore how each TrouSPI-Net component

contributes to the pedestrian action prediction performance by removing one component while keeping

others unchanged. We also explore the performance of CBAM blocks in the pseudo-image stream by

comparing them to similar self-attention blocks designed for 2D convolutions: Squeeze and Excitation

method (SE blocks) [Hu et al., 2018]. Finally, we explore the impact of adding a second modality to

TrouSPI-Net by using 3D convolutions [Tran et al., 2014] on the local box feature available in the data-

set.

Implementation details We use U-GRUs with 64 hidden units for encoding all features, except the

pseudo-image. L2 regularization of 0.001 is added to the final dense layer and a dropout of 0.5 is

added after the attention block. The number of observation frames m is set to 16. Body poses extracted

by OpenPose [Cao et al., 2017] and proposed in the benchmark [Kotseruba et al., 2021] are sampled in

the form of a 3-dimensional (16,18,2)-shaped tensor for the pseudo-images stream and 2-dimensional

(16,153)-shaped tensor for the U-GRUs stream. The ego-vehicle speed feature is used only in the PIE

data-set and omitted in JAAD. To compensate for the significant class imbalance, we apply class weights

inversely proportional to the percentage of samples of each class in each data-set. We train the model

with Ranger Optimizer: a combination of Lookahead (: = 6, U = 0.5) [Zhang et al., 2019] and Radam

[Liu et al., 2019], binary cross-entropy loss and batch size set to 8. We train for 80 epochs with learning

rate set to 5.0e-05 for PIE and 5.0e-06 for JAAD.

Discussion The results of the final TrouSPI-Net model are presented in Table 3.8. Results are most im-

proved compared to State-of-the-Art on the PIE data-set, where accuracy is increased by 1%, AUC by 2%

and �1-score by 3% compared to PCPA [Kotseruba et al., 2021], a model with two perception modalities:

RGB images and poses. On JAAD, our model performs comparably if not better with state-of-the-art

across some metrics. This leads us to believe that approaches using only one additional network to com-

pute perception modalities can be competitive with approaches that combine multiple. A comparison

of �1-scores between our approach and the best-performing methods that exist at this day shows that

81



CHAPTER 3. FROM ACTION RECOGNITION TO PEDESTRIAN DISCRETE INTENTION
PREDICTION

Table
3.8:

E
valuation

results
for

baseline
and

state-of-the-artm
odels

and
their

variants
on

PIE
and

JA
A

D
data-sets.

D
ashed

lines
separate

differenttypes
of

architectures.
M

odalities
correspond

to
the

type
of

netw
orks

used
in

the
given

approach,M
odelParam

s
corresponds

to
the

size
of

the
netw

ork
com

piled
on

the
benchm

ark
[K

otseruba
etal.,2021]w

ith
A

dditionalC
osts

(O
pticalflow

,B
ody

Pose,R
G

B
features)already

extracted.

M
odelN

am
e

M
odelVariants

M
odelParam

s(A
dditionalC

osts)
%
��

�
�
�
�
1
4
ℎ
0
E
8>
A

�
�
�
�
0
;;

A
C

C
A

U
C

F1
P

R
A

C
C

A
U

C
F1

P
R

A
C

C
A

U
C

F1
P

R

Static
V

G
G

16
[Sim

onyan
and

Z
isserm

an,2014]
14.7M

0.71
0.60

0.41
0.49

0.36
0.59

0.52
0.71

0.63
0.82

0.82
0.75

0.55
0.49

0.63
R

esnet50
[H

e
etal.,2016]

23.6M
0.70

0.59
0.38

0.47
0.32

0.46
0.45

0.54
0.58

0.51
0.81

0.72
0.52

0.47
0.56

A
T

G
C

[R
asoulietal.,2017b]

A
lexN

et
58.3M

0.59
0.55

0.39
0.33

0.47
0.48

0.41
0.62

0.58
0.66

0.67
0.62

0.76
0.72

0.80

C
onvL

ST
M

[Shietal.,2015]
V

G
G

16
0.001M

(V
G

G
)

0.58
0.55

0.39
0.32

0.49
0.53

0.49
0.64

0.64
0.64

0.63
0.57

0.32
0.24

0.48
R

esN
et50

0.001M
(R

esnet)
0.54

0.46
0.26

0.23
0.29

0.59
0.55

0.69
0.68

0.70
0.63

0.58
0.33

0.25
0.49

SPI-N
et[G

esnouin
etal.,2020]

C
N

N
M

L
P

0.1M
(O

penPose)
0.66

0.54
0.30

0.35
0.27

0.58
0.55

0.66
0.67

0.65
0.81

0.72
0.52

0.48
0.58

SingleR
N

N
[K

otseruba
etal.,2020]

L
ST

M
1.4M

(2*V
G

G
,O

penPose)
0.83

0.77
0.67

0.70
0.64

0.58
0.54

0.67
0.67

0.68
0.65

0.59
0.34

0.26
0.49

G
R

U
1.0M

(2*V
G

G
,O

penPose)
0.81

0.75
0.64

0.67
0.61

0.51
0.48

0.61
0.63

0.59
0.78

0.75
0.54

0.44
0.70

M
ultiR

N
N

[B
hattacharyya

etal.,2018]
G

R
U

1.8M
(2*V

G
G

,O
penPose)

0.83
0.80

0.71
0.69

0.73
0.61

0.50
0.74

0.64
0.86

0.79
0.79

0.58
0.45

0.79
StackedR

N
N

[Y
ue-H

eiN
g

etal.,2015]
G

R
U

2.6M
(2*V

G
G

,O
penPose)

0.82
0.78

0.67
0.67

0.68
0.6

0.6
0.66

0.73
0.61

0.79
0.79

0.58
0.46

0.79
H

ierarchicalR
N

N
[Y

ong
D

u
etal.,2015]

G
R

U
3M

(2*V
G

G
,O

penPose)
0.82

0.77
0.67

0.68
0.66

0.53
0.5

0.63
0.64

0.61
0.80

0.79
0.59

0.47
0.79

SFR
N

N
[R

asoulietal.,2019b]
G

R
U

2.6M
(2*V

G
G

,O
penPose)

0.82
0.79

0.69
0.67

0.70
0.51

0.45
0.63

0.61
0.64

0.84
0.84

0.65
0.54

0.84
C

3D
[Tran

etal.,2014]
R

G
B

78M
0.77

0.67
0.52

0.63
0.44

0.61
0.51

0.75
0.63

0.91
0.84

0.81
0.65

0.57
0.75

I3D
[C

arreira
and

Z
isserm

an,2017]
R

G
B

12.3M
0.80

0.73
0.62

0.67
0.58

0.62
0.56

0.73
0.68

0.79
0.81

0.74
0.63

0.66
0.61

O
pticalflow

12.3M
(Flow

N
et2)

0.81
0.83

0.72
0.60

0.9
0.62

0.51
0.75

0.65
0.88

0.84
0.80

0.63
0.55

0.73
Tw

oStream
[Sim

onyan
and

Z
isserm

an,2014]
V

G
G

16
134.3M

(Flow
N

et2)
0.64

0.54
0.32

0.33
0.31

0.56
0.52

0.66
0.66

0.66
0.60

0.69
0.43

0.29
0.83

PC
PA

[K
otseruba

etal.,2021]
Tem

p.+m
od.attention

31.2M
(C

3D
,O

penPose)
0.87

0.86
0.77

-
-

0.58
0.5

0.71
-

-
0.85

0.86
0.68

-
-

TrouSPI-N
et(ours)

C
B

A
M

attention
block

1.5M
~

(O
penPose)

0.88
0.88

0.80
0.73

0.89
0.64

0.56
0.76

0.66
0.91

0.85
0.73

0.56
0.57

0.55
SE

attention
block

1.5M
(O

penPose)
0.88

0.87
0.80

0.77
0.84

0.64
0.55

0.76
0.65

0.91
0.82

0.77
0.58

0.49
0.70

82



CHAPTER 3. FROM ACTION RECOGNITION TO PEDESTRIAN DISCRETE INTENTION
PREDICTION

Table 3.9: Architecture variations and Ablation studies for TrouSPI-Net on PIE data-set.

Model Variants (Additional Costs) Params ACC AUC F1
TrouSPI-Net without euclidean distances 1.4M 0.87 0.85 0.78
TrouSPI-Net without parallel atrous branches 0.8M 0.86 0.80 0.72
TrouSPI-Net without Ego-Vehicle Speed 1.4M 0.85 0.84 0.76
TrouSPI-Net GRUs 1.3M 0.85 0.80 0.72
TrouSPI-Net BiGRUs 1.6M 0.86 0.82 0.75
TrouSPI-Net without attention Block 1.4M 0.87 0.85 0.78
TrouSPI-Net with SE attention Block 1.5M 0.88 0.87 0.80
TrouSPI-Net 1.5M 0.88 0.88 0.80
TrouSPI-Net with two modalities (C3D) 30.2M 0.88 0.87 0.80

our approach offers better �1-scores for two out of three benchmarks. It shows that TrouSPI-Net is more

balanced than other approaches for the task of pedestrian crossing prediction. Finally, results obtained by

TrouSPI-Net on ����0;; should be taken with a pinch of salt since the data-set considers all the visible

pedestrians who are far away from the road and are not crossing. Since pose estimation algorithms are

still struggling with scale to extract informative poses for people at the back of a scene, TrouSPI-Net

does not manage to extract discriminating features because of the low quality of the poses extracted and

relies mainly on other features to realize its inference. This explains its lower performance compared to

the two other benchmarks. However, it should not be considered an issue since those pedestrians are not

directly interacting with the vehicle in any way. If they were to become a danger in the future, they would

have to step closer to it, and therefore pose estimation algorithms should be able to extract informative

poses.

3.4.2.3 Architecture variations and branch ablations

Table 3.9 shows that removing the parallel atrous branches from the pseudo-image stream leads to a

degradation of the performance indicators (Acc, AUC, �1) on PIE data-set by respectively, 2%, 8%

and 8%. Similarly, removing the stream acting as a regularizer with relative distances degrades the

performance indicators by respectively 1%, 3% and 2%. Therefore, we can highlight the importance of

the three parallel branches to extract spatio-temporal features for different time scales and the importance

of the euclidean distances stream to act as a regularizer for the overall approach performance. Another

interesting fact to mention is the performance drop of respectively 3%,4%,4% when the ego vehicle

speed input is missing. This shows that of all the possible forms of communication by a pedestrian to

announce that he or she wants to cross, pose kinematics could easily be supplemented with additional

information such as vehicle/pedestrian communication forms provided by the ego-vehicle.

Secondly, we evaluate the importance of using a spatio-temporal attention module over the parallel

pseudo-images extraction module. We first disregard spatio-temporal attention completely in the given

pseudo-images stream and then replace CBAM blocks [Woo et al., 2018] with SE blocks [Hu et al., 2018].

Experimental results show that removing the attention-enhanced 2D atrous convolutions degrades the

performance indicators by respectively 1%, 3%, 2%, whereas replacing CBAM blocks [Woo et al., 2018]

by SE blocks [Hu et al., 2018] do not drastically impact TrouSPI-Net’s performance and even increases

it across some metrics according to Table 3.8. In conclusion, introducing a spatio-temporal attention
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module over the parallel features extraction module seems to improve our model performance. Future

studies could fruitfully explore this further by introducing a custom spatio-temporal attention module

specifically designed for the parallel pseudo-images extraction module.

Finally, we evaluate the importance of U-GRUs by replacing them with GRUs and Bidirectional

GRUs. Table 3.9 results show that both modified approaches lead to a degradation of the performance

indicators by respectively 3%, 8%, 8% and 2%, 6%, 5%. Therefore, we can highlight the importance of

U-GRUs to exploit the bidirectional temporal and long-term contexts compared to other state-of-the-art

approaches designed to capture sequential features. It also leads us to believe that an effective pedestrian

action prediction model should focus on both long-term dependencies and multi-scale short temporal

features to be effective.

3.4.2.4 TrouSPI-net’s comparison with other pose-only methods

By using the newly proposed evaluation procedures [Kotseruba et al., 2021] proposed by the authors of

JAAD and PIE which was designed to ensure a fair comparison between all the pedestrian prediction ap-

proaches, we could not compare TrouSPI-Net to previous approaches that were not evaluated on the given

benchmark including proposed pose-only based approaches [Fang and López, 2018, Ranga et al., 2020,

Marginean et al., 2019, Ghori et al., 2018, Cadena et al., 2019, Gesnouin et al., 2020]. Even if their re-

ported performance is evaluated on the same data-sets, they are reported under different experimental

conditions and definitions.

To provide a fair comparison between TrouSPI-Net and another pose-based approach, we used the

orginal implementation of SPI-Net and then extended it to evaluate it with the new benchmark in order

to ensure that TrouSPI-Net provided better performance for all the data-sets than its previous version

designed for short-term prediction (previously used for a prediction horizon of a single frame with an

observation length of 300 frames on JAAD). Experimental results shown in Table 3.8 show that TrouSPI-

Net always outperforms the extended SPI-Net [Gesnouin et al., 2020] by a large margin on PIE, and

outperforms the SPI-net approach on JAAD by 6%, 1%, 10% and 4%,1%,4%. Despite the limitations of

comparing TrouSPI-Net with only one existing pose-only method, our results demonstrate that TrouSPI-

Net is way more reliable than SPI-net for the three benchmarks. Therefore, it should be considered as the

first pose-only based approach proposed on the benchmark at this day and should become an interesting

baseline to easily compare to for future works using the new evaluation procedures.

3.4.2.5 Using a second perception modality with TrouSPI-Net

One of the main advantages of using a scene-agnostic model using such sparse perception modality

instead of aggregating multiple perception modalities is the smaller model size leading to an easier de-

ployment into embedded devices, as table 3.10 shows. Moreover, when combined with 3D convolutions

of cropped images including the pedestrians, TrouSPI-Net’s computational costs dramatically grows

without gaining any performance on PIE data-set as tables 3.9 and 3.10 show. This may be considered

a further validation of pose-based only networks for Pedestrian Action Prediction as lightweight models

designed for embedded devices with real-time constraints, which do not need additional context input to

work effectively. While this affirmation is established for pedestrians where pose estimation inferences

are possible and with limited occlusions, the question remains open for scenes with very high occlusions
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between pedestrians, occlusions between pedestrians and scene objects, or abnormal behaviors such as

crowd movement. For those cases, implementing a way to treat Static RGB images effectively as a

context feature might still prove important.

Table 3.10: Architecture comparison of floating-point operations per second (FLOPS) in millions, Cuda
Memory Usage (CMU) in Megabytes and Weights Memory Requirements (WMR) in Megabytes. RGB
features extracted by CNNs are taken into consideration during computations.

Model(Additional Costs) FLOPS (Mio.) CMU (MB) WMR (MB)

VGG16 [Simonyan and Zisserman, 2014] 29.4 72.1 56.1
Resnet50 [He et al., 2016] 47.0 47.0 90.0
ConvLSTM [Shi et al., 2015] (VGG) 29.5 93.5 56.2
SingleRNN [Kotseruba et al., 2020] (2 VGG) 65.3 145.3 60.0
MultiRNN [Bhattacharyya et al., 2018] (2 VGG) 71.6 146.0 63.0
StackedRNN [Yue-Hei Ng et al., 2015] (2 VGG) 76.3 146.8 66.0
SFRNN [Rasouli et al., 2019b] (2 VGG) 73.6 146.5 64.5
C3D [Tran et al., 2014] 156.0 182.6 297.5
I3D [Carreira and Zisserman, 2017] 24.6 334.1 46.9
PCPA [Kotseruba et al., 2021] (C3D) 220 320.2 414.9
SPI-net [Gesnouin et al., 2020] 0.3 2.5 0.3
TrouSPI-Net (ours) 3.0 6.8 5.4
TrouSPI-Net with two modalities (C3D) 216.7 322.6 412.9

3.4.2.6 The drawbacks of relying on additional networks to extract perception modalities

Although other models also apply additional networks to extract multiple perception modalities such

as pose, flow or background context and the proposed approach beats the state-of-the-art while being

smaller in comparison according to Table 3.8, its application also relies on one additional algorithm to

operate. If TrouSPI-Net was to be implemented outside of the JAAD and PIE benchmark, one would

have to add to TrouSPI-Net’s size the pose extraction model used to compute the pose information. In our

case, OpenPose [Cao et al., 2017] was used to compute the inputs available in [Kotseruba et al., 2021].

Therefore, the overall approach is ∼ 53.5M parameters. However, it leads to a practical methodology as

interchanging the additional approaches to extract poses does not jeopardize the TrouSPI-Net approach.

Contrary to image-based approaches, if improvements such as inference time or average precision by

key-points were made in the field of pose estimation, TrouSPI-Net could still be applicable without any

modification. Moreover, the proposed benchmark [Kotseruba et al., 2021] currently omits a major issue

for pedestrian intention prediction: temporal tracking of pedestrians to avoid mixing identities over time.

Such questions are rarely raised and approaches mainly rely on the ground-truth IDs of each pedestrian.

However, such concerns are mandatory to easily transpose the pedestrian action prediction approaches

into real-life scenarios without pedestrians’ ground-truth IDs. In TrouSPI-Net’s case, to ensure a bet-

ter tracking of the protagonists in the scene and avoid mixing the identities of two protagonists, one

could for example replace OpenPose [Cao et al., 2017] by pose estimation networks sequentially based

on pose matching for tracking [Xiu et al., 2018, Ning and Huang, 2019, Raaj et al., 2019]. Such a sub-

stitution would provide the TrouSPI-Net model every modality it needs to work in a non-controlled

environment with only one additional network: body poses, handcrafted body poses features, bounding

boxes positions of the pedestrians and their respective individual ID’s.
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3.4.2.7 Conclusion

We introduced a new lightweight multi-branch neural network to predict pedestrians’ actions using

only one additional network to extract perception modalities: 2D pedestrian body poses. The proposed

TrouSPI-Net model largely extends and improves the SPI-Net approach in several ways. First, we intro-

duce parallel processing branches to allow the architecture to access different time resolutions with atrous

convolutions enhanced with self-attention mechanisms. Secondly, we apply U-GRUs on the evolution of

relative Euclidean body distances over time, which acts as a regularizer of the first stream for both time

and space. We then extend the U-GRUs approach as one baseline method to consider long-term temporal

coherence and process each sequence of context features such as bounding box positions or ego-vehicle

speed with U-GRUs. Finally, following the newly proposed evaluation procedures and benchmarks for

JAAD and PIE (two challenging pedestrian action prediction data-sets), our experimental results show

that TrouSPI-Net achieved 76% F1 score on JAAD and 80% F1 score on PIE, therefore outperforming

current state-of-the-art. This shows that using only body poses can outperform approaches that combine

multiple networks to extract different perception modalities. Subsequently, our model inherits interesting

properties such as being completely invariant to any scene-background context, leading to a lightweight

approach focusing only on the pedestrian’s movement. Therefore, we believe that TrouSPI-Net could

be an interesting baseline to easily compare to for future works aiming at developing a pose-only based

model for pedestrian intention prediction and has the potential to improve many other human action

recognition or prediction tasks.8

3.5 Summary

In this chapter, we first provide an overview of existing approaches for pedestrian action prediction. The

majority of existing techniques for pedestrian action prediction are trajectory-based, which means they

depend on previously observed pedestrian positions to anticipate pedestrian positions in the future. These

methods are successful when pedestrians have already crossed or are going to cross, i.e., these algorithms

react to an action that has already begun rather than predicting it. We first propose an asymmetrical

bidirectional recurrent neural network architecture called U-RNN to encode pedestrian trajectories and

evaluate its relevance to replace LSTMs for various trajectory-based models. Our results show that there

is still room for improvement in coordinates-only approaches, and indicates that interactions are not the

only aspect on which pedestrian trajectory prediction can progress. Thereafter, we address the problem

of pedestrian discrete intention prediction: instead of focusing on continuous trajectories describing the

expected future movement of the pedestrian and merely relying on scene dynamics to predict intentions,

we define the intentions of a pedestrian as a combination of his/her high-level discrete behaviors such as

his/her pose dynamics or head orientation... We then make the connection between the research ques-

tions addressed for human action recognition in chapter 2 and pedestrian discrete intention prediction.

Considering the importance of crossing prediction algorithms to run efficiently for real-time usage while

being robust to a multitude of complexities and conditions, we propose SPI-Net and TrouSPI-Net: two

scene-agnostic, lightweight, multi-branch approaches that rely on pose kinematics to predict crossing be-

haviors. The proposed approaches could be applied following the application of any additional network

8We refer the reader to Appendix A
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to compute pedestrian body poses and could be easily implemented in any embedded devices with real-

time constraints and also in any neural hardware solution like Intel Movidius©, or FPGA since it only

uses standard deep-learning operations in an euclidean grid space. Finally, We show that it is possible to

make the link between the posture, the walking attitude and the future behaviours of the protagonists of

a scene without using the contextual information of the scene (pedestrian crossing, traffic light...). This

allowed us to divide by a factor of 20 the inference speed of existing approaches for pedestrian intention

prediction while keeping the same prediction robustness.
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4.1 Introduction

In a short novel entitled funes el memorioso, published in 1942, the argentine writer Jorge Luis Borges

tells the story of a young man with a memory so prodigious that he was incapable of ignoring the many

details invisible or insignificant to other humans. Far from being an advantage, his inability to ignore

the variations he observed had quickly proved to be a great handicap. It was simply unthinkable for him

to use the same term for different objects. Impossible to acknowledge that a dog seen in profile at a

particular moment could have the same name as the dog seen from the front a minute later. "To think is

to forget a difference, to generalize, to abstract. In the overly replete world of Funes, there were nothing

but details." Unable to forget, Funes was unable to think. On the opposite side of the spectrum of gener-

alization but still inspired by literature, popular for his apothegms and his taste for generalization at all

costs, Orwell. "Here are a couple of generalizations about England that would be accepted by almost

all observers. One is that the English are not gifted artistically. [...] the English are not intellectual.

They have a horror of abstract thought, they feel no need for any philosophy or systematic world-view."1

Between this Orwellian way of presenting, as a self-evident truth, a fact or a personal experience that

may have a general value, but which is not explained, supported or illustrated 23 and Funes’ incapacity

to generalize there should be a proper balance between both ways of thinking and abstracting.

In machine learning, generalization also plays an important role, we don’t just want a model to learn

to model the training data. We want it to generalize to data it has not seen yet. We want a model to ac-

knowledge what Funes could not: that a rotated dog still is the same dog and that is without seeing dogs

where none are present. In our research field, there is a convenient way of assessing such generalization

capacity: we assess the performance of a held-out test set, which consists of cases that the model has

not seen previously. Sampling bias is a kind of overfitting which is that in a real-world scenario, input

distributions are frequently shifted from the training distribution. The network could therefore exploit

accidental regularities available in both the training set and testing set but not available in a real-world

scenario. The network would then, without understanding the true regularities, accurately classify all the

training instances of a given class when evaluated via the dataset but would fail to work in real life. This

is why over the last two decades, the computer vision paradigm has shifted. From a pure algorithm-based

vision, we have given more and more interest to the data, until we arrived at a paradigm combining both:

"We started our search for a new approach with one key assumption: even the best algorithm would not

generalize well if the data it learned from did not reflect the real world. In concrete terms, that meant

that major advances in object recognition could occur only from access to a large quantity of diverse,

high-quality training data." [Fei-Fei and Krishna, 2022]. Even the best behavior prediction algorithm

would not generalize well if the data it learned from did not reflect the real world. Yet, the full complex-

ity of the real world cannot be encapsulated in the training data, no matter how big the dataset is.

In this chapter, we aim at showing that current evaluation protocols do not adequately represent the

applicability of existing pedestrian prediction models for real-world scenarios. Comparable studies have

1The Lion and the Unicorn: Socialism and the English Genius - Orwell 1941
2"All art is propaganda."
3"All revolutions are failures, but they are not the same failures."
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previously been conducted in computer vision, questioning whether recent progress on the ImageNet

[Russakovsky et al., 2015] benchmark continues to represent meaningful generalization [Beyer et al., 2020]

and identifying various sources of bias and noise [Stock and Cisse, 2018, Northcutt et al., 2021]. How-

ever, going beyond accuracy to evaluate a model for a high-risk application with a limited amount of

training data, such as pedestrian crossing prediction, has never been properly investigated.

4.2 The past, current and future state of pedestrian intention prediction
benchmarks?

4.2.1 Stone Age: prior to the release of the standardized evaluation procedures

As seen in section 3.3.2, pedestrian crossing prediction has been a topic of active research, resulting

in many new algorithmic solutions. However, due to differences in their evaluation criteria, comparing

them used to be a somewhat unsatisfactory practice to say the least, hardly possible to be perfectly hon-

est. Table 4.1 lists all the pedestrian action prediction models trained and evaluated on JAAD and PIE

datasets prior to the release of the standardized benchmarks and evaluation procedures. As previously

Table 4.1: Pedestrian action prediction models trained and evaluated on JAAD and PIE datasets prior to
the standardized benchmarks and evaluation procedures.

Model Dataset Observation endpoint Observation length (s) Prediction Horizon (s)
[Rasouli et al., 2017b] JAAD before event 0.3-0.5 next frame

[Fang and López, 2018] JAAD all frames 0.46 next frame
[Varytimidis et al., 2018] JAAD before event one frame next frame

[Cadena et al., 2019] JAAD before event 10 next frame
[Gujjar and Vaughan, 2019] JAAD all frames 0.533 0.533

[Neogi et al., 2020] JAAD before event - 1.33
[Pop et al., 2019] JAAD all frames 0.666 1.33

[Marginean et al., 2019] JAAD all frames 0.1 next frame
[Saleh et al., 2019] JAAD all frames 0.533 next frame

[Rasouli et al., 2019b] PIE before event 0.5 2
[Chaabane et al., 2020] JAAD all frames 0.533 0.533
[Kotseruba et al., 2020] PIE before event 0.5 0.3/0.5/1
[Gesnouin et al., 2020] JAAD before event 10 next frame

[Liu et al., 2020a] JAAD before event - 1/2/3
[Piccoli et al., 2020] JAAD before event 0.533 0.533
[Ranga et al., 2020] JAAD all frames 0.5/1 1

[Singh and Suddamalla, 2021] JAAD before event 0.533 next frame
[Liu et al., 2020a] JAAD before event 1 next frame

stated in section 3.3.2, back in those days, anyone with a new interesting approach could then propose

their evaluation protocols and therefore claim state-of-the-art without ensuring a proper comparison with

others. Approaches using the entire sequence including the crossing section would claim high prediction

accuracy whereas the term prediction would no longer apply since they inferred a behavior while the ac-

tion had already begun. About half of the proposed approaches used sequences up to the frame preceding

the crossing event for training and evaluation, while some had a prediction horizon up to three seconds

later... To put it in a nutshell, the foundations of the field were thus more or less built on a comparison

between apples and oranges. This particular research era where people started to get interested in discrete
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intent prediction on the JAAD dataset lasted two years. Within those two years, we identified no less

than 18 approaches that claimed state-of-the-art on JAAD which is roughly equivalent to a hot streak of

improvements of 0.75 SotA per month. During this thesis, we also contributed to this problem, the idea

is not to bite the hand that feeds you but to make the reader clearly understand the limitations that were

quickly encountered in the domain to effectively sort out what was a real advance and what was not.

4.2.2 Bronze Age: one benchmark to rule them all

Intending to resolve some of the inconsistencies pointed out above, a standardized benchmark [Kotseruba et al., 2021]

to evaluate pedestrian behavior prediction for three datasets was proposed to advance research further.

In sixteen months of existence, we identified 8 approaches claiming state-of-the-art as Table 4.2 shows.

This is roughly equivalent to 0.50 SotA per month. The validity of our metric to evaluate the speed of ad-

vances for the given research area is questionable. The fact is, having standardized evaluation protocols

seems to smooth out some communications and the amount of noisy results. In a way, we believe that

this brought a breath of fresh air to the field of pedestrian behavior prediction.

Table 4.2: List of all the pedestrian action prediction models trained and evaluated on the standardized
benchmarks

Model Name %�� ����14ℎ0E8>A ����0;;
ACC AUC F1 ACC AUC F1 ACC AUC F1

PCPA baseline [Kotseruba et al., 2021] 0.87 0.86 0.77 0.58 0.5 0.71 0.85 0.86 0.68
Capformer [Lorenzo et al., 2021a] - 0.85 0.79 - 0.55 0.74 - 0.70 0.51
Intformer [Lorenzo et al., 2021b] 0.89 0.92 0.81 0.59 0.54 0.69 0.86 0.78 0.62

TrouSPI-Net [Gesnouin et al., 2021] 0.88 0.88 0.80 0.64 0.56 0.76 0.85 0.73 0.56
TED [Achaji et al., 2021] 0.91 0.91 0.83 - - - - - -

BiPed[Rasouli et al., 2021] 0.91 0.90 0.85 - - - - - -
Mask PCPA [Yang et al., 2022] - - - 0.62 0.54 0.74 0.83 0.82 0.63

PedGraph+ [Cadena et al., 2022] 0.89 0.90 0.81 0.70 0.70 0.76 0.86 0.88 0.65

However, proposed approaches evaluated on the benchmarks [Kotseruba et al., 2021] constantly re-

port higher classification scores, giving the impression of clear improvements in pedestrian intention

prediction. Usually, a new algorithm is proposed and the implicit hypothesis towards the proposed con-

tribution is made such that it yields an improved performance over the existing state-of-the-art4. To

confirm such hypothesis, an empirical evaluation of the given contribution is realized in a direct train-

test sets evaluation and the quality of the model is evaluated by regular classification metrics: newly

proposed methods are then claimed as the new state-of-the-art as soon as they outperform previous ones

even by a small margin. However, as we saw in section 4.1, the ranking of the methods for a given

task is currently only as good as the quality of the data used for comparison purposes, and the results

obtained by one method on a given dataset do not always reflect its robustness in real-world applica-

tions. In addition, some approaches do not report their results on all three datasets of the standardized

evaluation procedures. Although this may be due to an oversight, a desire not to burden the paper with

numbers, it does not help in the comparison to the existing if the communications are only cherry-picked

on the datasets where a given approach shines. This perspective encourages us even more to look at the

4which is the PCPA baseline in most cases.
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field’s structural failings, not simply the personal shortcomings of individual models, papers, or research

groups.

4.2.3 Iron Age: identifying the generalization capabilities of our models?

We believe that there is still room for improvement to efficiently compare and rank the existing. For

instance, knowing how well existing predictors react to unseen data remains an unanswered question.

Nevertheless, this evaluation is imperative as serviceable crossing behavior predictors should be set to

work in various scenarios without compromising pedestrian safety due to misprediction.

Figure 4.1: Distribution of pedestrian bounding box height in pixel for %�� , ����14ℎ0E8>A and
����0;;.

In this chapter, we assess how pedestrian action prediction approaches react to small domain shifts

and evaluate their generalization capability outside a standard train-test evaluation protocol. We show

that all the current pedestrian behavior predictors show signs of over-fitting when evaluated during a

direct training-test sets evaluation setting on those standardized benchmarks. This problem leads to two

major drawbacks for the field:

• The training source being generally not dense in variety of scenarios nor in the number of ex-

amples, the results of state-of-the-art approaches on each dataset might just come from noise:

this noise effect should probably be further aggravated since the existing approaches are based on

deep learning, depending heavily on the quantity and quality of data where the performance of

approaches scales up with the amount of training data.

• It prevents pedestrian behavior predictors from scaling up to real-world applications, as they are

not applicable in various scenarios with small domain shifts.

The above examples recap the general motivation of this work, encouraging us to rethink the evalua-

tion methodology to rank current top-scoring behavior predictors from the perspective of uncertainty

evaluation to small domain shifts. We argue that:

• The only empirical evaluation of models in a direct train-test sets evaluation offered by the original

work introducing the method is not sufficient to effectively conclude anything about its applicabil-
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ity in a real-world scenario. The result is often statistically non-significant during a cross-dataset

evaluation scenario and leads to an ever-changing state-of-the-art.

• It would be more interesting to compare each method by evaluating how trustworthy are their

uncertainty estimates under different domain shifts.

Figure 4.2: Examples of crossing and non-crossing pedestrians from ���� and %�� datasets. The con-
ditions under which pedestrians act from one scenario to another can differ drastically concerning input
format and domain shift: pedestrian size, pedestrian positioning in the scene, illumination conditions,
occlusion...

To do so, we evaluate how pedestrian action prediction approaches react to small domain shifts by

interchanging the training set of dataset � by the training set of dataset � and test it on the testing

set of �. The given training routine is consistent across all experiments for all three datasets. This

is referred throughout the manuscript as cross-dataset evaluation [Hasan et al., 2021, Chen et al., 2020,

Guo et al., 2020]. By adopting cross-dataset evaluation, we test the generalization abilities of several

state-of-the-art pedestrian crossing predictors to distributional shift such as pedestrian size, as shown in

Fig 4.1, pedestrian positioning in the scene, illumination conditions or occlusion as shown in Fig 4.2.

4.3 Sutor, ne ultra crepidam, or the necessity of uncertainty

It is always disturbing to discover that we are always more foolish than we think ourselves to be. Em-

barrassing that a well-trained expert can make mistakes in any of his or her choices. Numerous studies

have documented this in every possible and unexpected use case. From the classic example in medicine

where the chance that a child will be recommended for tonsillectomy depends principally on the physi-

cian rather than on the child’s health [Bakwin, 1945]5 to economics where Kahneman and Tversky

were awarded the Nobel Prize to show that people were not as rational as economic models assume6

[Kahneman and Tversky, 2013]. This cognitive bias does not only affect professionals: when it comes to

5Diagnostic mistakes becoming more widely acknowledged as a public health problem, The Institute of Medicine claimed that
"most people will experience at least one diagnostic error in their lifetime" [Balogh et al., 2015]

6"Overconfident professionals sincerely believe they have expertise, act as experts and look like experts. You will have to
struggle to remind yourself that they may be in the grip of an illusion." Daniel Kahneman
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driving, most people think their skills are above average [Roy and Liersch, 2013]. The point is that we

should not take for granted the reliability and accuracy of any judge, no matter how expert and whether

it is human or algorithmic. In some circumstances it is necessary, in addition to giving an accurate state-

ment, to be able to quantify the certainty of the statement. This sometimes allows us to disambiguate

certain situations.

In real-world scenarios, quantifying uncertainty is crucial as the input distributions are frequently shifted

from the training distribution due to a number of causes such as sampling bias. Evaluating the gen-

eralization abilities of models by using cross-dataset evaluation and classification metrics only is not

sufficient. In high-risk applications such as pedestrian behavior prediction, the idea that a model’s pre-

dicted probabilities of outcomes reflect true probabilities of those outcomes is mandatory for high-level

decisions (i.e., vehicle planning module in crowded urban traffic environments). Expected Calibration

Error (ECE) and Maximum Calibration Error (MCE) are standard uncertainty7 metrics in this context

[Naeini et al., 2015, Guo et al., 2017, Heo et al., 2018, Ovadia et al., 2019]. Predictions are divided into

" interval bins according to a given binning strategy, we then calculate the accuracy of each bin to

estimate the predicted accuracy from finite data. Let �< denote the set of sample indices for which

prediction confidence is inside one interval bin. The accuracy of �< is defined as

acc (�<) =
1
|�< |

∑
8∈�<

1 ( Ĥ8 = H8) (4.1)

where Ĥ8 and H8 are respectively the predicted and true class labels for sample 8. The average confi-

dence within one interval bin �< is defined as:

conf (�<) =
1
|�< |

∑
8∈�<

?̂8 (4.2)

where ?̂8 is the model confidence for sample 8. Throughout our experiments, the maximum softmax

probability [Hendrycks and Gimpel, 2016] is used as the confidence score. We therefore compare each

model output pseudo-probabilities to its accuracy. We obtain the following metrics to rank methods

based on their calibration:

Expected Calibration Error (ECE): takes a weighted average of the absolute difference in accuracy

and confidence.

��� =

"∑
<=1

|�< |
=
|acc (�<) − conf (�<) | (4.3)

Maximum Calibration Error (MCE): measures the maximum discrepancy between accuracy and con-

fidence.

"�� = max
<
|acc (�<) − conf (�<) | (4.4)

7Because confidence is the additive inverse of uncertainty with regard to 1, the terms are often interchanged.
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Since the underlying binning approach has a significant impact on the accuracy and reliability of ECE

and MCE, we use an adaptive binning strategy [Ding et al., 2020] instead of a uniform partition8: the

number of samples in a bin is adaptive to the distribution of the samples in the confidence range.

4.4 Generalization Capabilities

4.4.1 Datasets and Implementation Details

For this evaluation, we use two large public naturalistic datasets for studying pedestrian behavior pre-

diction: ���� [Rasouli et al., 2017b] and %�� [Rasouli et al., 2019a]. These datasets are typically ob-

tained by a vehicle-mounted camera as it navigates through crowded urban traffic environments: ����

contains 346 clips and focuses on pedestrians intending to cross, %�� contains 6 hours of continuous

footage and provides annotations for all pedestrians sufficiently close to the road regardless of their in-

tent to cross in front of the ego-vehicle and provides more diverse behaviors of pedestrians. There are

significant differences between JAAD and PIE dataset in terms of sensors: 3 different cameras are used in

JAAD with narrow FOV while PIE continuous footage was recorded with with a single wide-angle lens

camera. The ���� dataset is split into ����14ℎ0E8>A and ����0;;. ����14ℎ0E8>A is biased towards

pedestrians attempting to cross the street (402 crossing out of 648) and the smallest dataset available.

����0;; adds all visible pedestrians in ����, regardless of their position in the scene and contains

more non-crossing pedestrians (490 crossing out of 2580). Similarly, %�� contains more non-crossing

pedestrians (512 crossing out of 1842). All three datasets are heavily skewed towards one class. To

compensate for such significant datasets shifts label-wise, we train all our models using class weights

inversely proportional to the percentage of samples for each class. Following the existing evaluation pro-

cedures [Kotseruba et al., 2021], we use the same data sampling method, the same splits and the same

inputs sets for our experiments9. However, we disregard the ego-vehicle speed input for all our models

as the sensor data used for the ego-vehicle speed is only available for %�� and could not be used for

cross-dataset evaluation purposes. The observation length for all models is fixed at 16 frames. In order

to combine different models trained on different data sets, the sample overlap is set to 0.8 for both %��

and ���� trainings. We report the results using standard binary classification metrics: AUC and F1

Score and standard confidence calibration metrics: adaptive ECE and MCE.

4.4.2 Baselines and state-of-the-art models

We select a subset of methods from the pedestrian crossing prediction literature, and more broadly, action

recognition literature for their prevalence, practical applicability and diversity in terms of architectures

and input modalities. These include:

• VGG16 [Simonyan and Zisserman, 2014] and Resnet50 [He et al., 2016] : two baseline static

models that use only the last frame in the observation sequence to predict the crossing behavior of

a pedestrian.

8https://github.com/yding5/AdaptiveBinning
9https://github.com/ykotseruba/PedestrianActionBenchmark
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• ConvLSTM [Shi et al., 2015]: A model using a stack of images as input, pre-process those images

with pre-trained CNN and apply ConvLSTM on those features.

• Convolutional-3D (C3D) [Tran et al., 2014] and Inflated-3D (I3D) [Carreira and Zisserman, 2017]:

two models pretrained on Sports1M [Karpathy et al., 2014] using a stack of images as input and

applying 3D convolutions to extract features.

• SPI-net [Gesnouin et al., 2020] and TrouSPI-net [Gesnouin et al., 2021]: two multi-modal mod-

els relying on pedestrians’ pose kinematics extracted by OpenPose [Cao et al., 2017], relative eu-

clidean distance of key-points and evolution of the pedestrian spatial positioning. Poses sequences

are converted into 2D image-like spatio-temporal representations and self-spatio-temporal atten-

tion is applied via CNN-based models for multiple time resolutions. Each remaining feature is

independently processed via either U-GRUs [Rozenberg et al., 2021] or feed forward neural net-

work and fused by either applying temporal and modality attention or sent to a fc layer to predict

crossing behaviors.

• SingleRNN [Kotseruba et al., 2020], Multi-stream RNN (MultiRNN) [Bhattacharyya et al., 2018]

and Stacked with multilevel Fusion RNN (SFRNN) [Rasouli et al., 2019b]: Three multi-modal

models relying on RGB Images extracted by VGG16 [Simonyan and Zisserman, 2014], pose kine-

matics extracted by OpenPose [Cao et al., 2017] and evolution of the pedestrian spatial position-

ing. Input features are either concatenated into a single vector and sent to a recurrent network fol-

lowed by a fc layer for crossing prediction, either processed independently by GRUs [Chung et al., 2014]

and the hidden state of GRUs are then concatenated and sent into a fc layer for crossing predic-

tion or either processed by GRUs [Chung et al., 2014] and fused gradually at different levels of

processing and complexity.

• Pedestrian Crossing Prediction with Attention (PCPA) [Kotseruba et al., 2021]: A multi-modal

model relying on RGB images extracted by C3D [Tran et al., 2014], pose kinematics extracted

by OpenPose [Cao et al., 2017] and evolution of the pedestrian spatial positioning. Non-images

features are independently encoded by GRUs [Chung et al., 2014] and each is fed to a temporal

attention block. 3D Convoluted features are flattened and fed into a fc layer. Modality attention is

then applied to all the branches to fuse them into a single representation by weighted summation

of the information from individual modalities.

4.5 New Evaluation Paradigm

4.5.1 Cross-dataset Evaluation Results

We present the coarse results of our cross-dataset evaluation in Fig 4.3. For readability purposes, the

corresponding critical difference diagram is reported on Fig 4.5 and the average distribution of perfor-

mance of the selected approaches is reported on Fig 4.4. The results of the average prediction given by

the three models trained on each training set for one given test set are reported in Table 4.3. As expected,

all methods, regardless of their architecture or input modalities, suffer a consequent performance drop
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Figure 4.4: Distribution of the performance of the eleven selected approaches when evaluated in a direct
train-test scenario and when evaluated in cross-dataset scenarios.

Figure 4.5: Critical Difference Diagram [Demšar, 2006]: first a Friedman test is performed to reject the
null hypothesis, we then proceed with a post-hoc analysis based on the Wilcoxon-Holm method. We
compare the robustness of classifiers over multiple training and testing sets shifts. We can see how each
method ranks on average. A thick horizontal line groups a set of classifiers that are not significantly
different (U = 0.1).

when trained on %�� and tested on ���� or vice versa. Fig 4.4 shows that however robust the indi-

vidual classifier is, there is a general trend for classifiers to decline when exposed to a different test set

than the expected one. This is consistent with all our experiments with the exception of ����14ℎ0E8>A .

����0;; being an extension to the set of samples with behavioral annotations, ����0;; "generalizes"

well on ����14ℎ0E8>A but unsurprisingly, the converse is far from true. Even when trained on a rel-

atively diverse dataset (%��) and inferred on a smaller one in comparison (����14ℎ0E8>A ), selected
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methods barely show signs of generalization. More alarming, some methods even under-performed a

random binary guess based on class distribution when exposed to a different testing set than the expected

one. While the task, standardized inputs and observation length are the same across all three datasets,

none of the tested models reaches a satisfactory level of generalization across any other testing set. When

it comes to comparing performance towards small domain-shift at the granular level of individuals meth-

ods, the critical difference diagram reported in Fig 4.5, shows that none of the selected methods arise

as a clear winner when it comes to cross-dataset ranking. More importantly, the obtained ranks of each

method when evaluated under cross-dataset evaluation are far from the ones we usually consider when

developing pedestrian crossing behavior predictors: some general methods such as I3D or C3D are on

par with multi-modal methods specifically designed to tackle the problem of pedestrian crossing predic-

tion. While part of this could be due to the removal of ego-vehicle data which is an important source of

information exploited by many multi-modal approaches, this still confirms the importance of rethinking

the evaluation methodology of our approaches. The ensembling provided in Table 4.3, is the closest

plausible approximation of the selected models’ robustness for real-world application as it integrates all

available conditions and training instances while removing the sampling biases of each specific train-

ing set. It shows that the only empirical evaluation of models in a direct train-test sets evaluation is

not sufficient to effectively conclude anything about its applicability in a real-world scenario. This also

demonstrates that the use of classification metrics alone is not representative of the overall capacity of

the models. For two given models which are equivalent with respect to classification metrics (AUC or

F1 score), their calibration (ECE and MCE) can differ drastically. This supports our argument that the

usage of uncertainty metrics should complement the metrics conventionally used in order to obtain a

comprehensive view of the robustness of existing approaches.

4.5.2 Role of pre-training in uncertainty calibration

Table 4.3 illustrates that generic baseline methods (i.e. VGG16, C3D, I3D) pre-trained on well diverse

and dense datasets further away from the target domain, benefit in terms of generalization and uncertainty

calibration as they are on par with the methods specifically designed to tackle the problem of pedestrian

crossing prediction, which was not the case in a simple train-test evaluation setting10.

To better isolate the effects of pre-training with larger datasets we consider two I3D [Carreira and Zisserman, 2017]

but trained with different configuration: the first one being randomly initialized and the second one be-

ing pre-trained on Sports1M [Karpathy et al., 2014]. We assess their performance on the same datasets

and report our findings in Fig 4.6. We show that pre-trained models significantly outperform randomly

initialized models across all three datasets in terms of calibration. As far as robustness aspects towards

small domain shifts are concerned, this may become an important factor to consider when designing

pedestrian crossing behavior approaches for real-world scenarios. The training source being generally

not dense in variety of conditions nor in the number of examples, the results provided on each dataset

might just come from noise on testing sets. Pre-training well-established models on diverse and dense

datasets further away from the target domain before fine-tunning to our target task might prove efficient

and mandatory for the next step of pedestrian crossing behavior prediction: generalization and vehicle

implementation.

10We refer the reader to section B for a detailed list of calibrations for each of the models.
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Figure 4.6: Reliability Diagrams between I3D [Carreira and Zisserman, 2017] randomly initialized
(left) and pre-trained on Sports1M [Karpathy et al., 2014](right) on %�� , ����0;; and ����14ℎ0E8>A
datasets. If the model is perfectly calibrated, then the diagram plots the identity function. Any devi-
ation from a perfect diagonal represents miscalibration: the model is either overconfident (orange) or
subconfident (green).

4.6 Improving Uncertainty Calibration

For the very same approach, there is a significant discrepancy between traditional train-test and cross-

dataset evaluation results. This calls into question the reliability of current methods in regard to their

capacity to generalize. In addition, we have shown that the standard classification metrics are not suf-

ficient to reliably evaluate an approach since the use of uncertainty metrics raises additional issues that

are not reflected otherwise. We are confident that the future breakthroughs in the area will not occur by

102



CHAPTER 4. ASSESSING THE GENERALIZATION OF PEDESTRIAN CROSSING
PREDICTORS

A
U

C
(↑

)
F1

(↑
)

E
C

E
(↓

)
M

C
E

(↓
)

M
et

ho
d

pi
e

be
h

al
l

pi
e

be
h

al
l

pi
e

be
h

al
l

pi
e

be
h

al
l

N
on

-p
re

tr
ai

ne
d

0.
55

(±
0.

04
)

0.
50

(±
0.

02
)

0.
69

(±
0.

05
)

0.
34

(±
0.

09
)

0.
65

(±
0.

08
)

0.
54

(±
0.

06
)

0.
20

5
(±

0.
06

2)
0.

18
4

(±
0.

08
9)

0.
11

1
(±

0.
06

9)
0.

29
0

(±
0.

03
9)

0.
33

8
(±

0.
19

1)
0.

16
2

(±
0.

07
5)

E
ns

-N
on

pr
et

ra
in

ed
0.

59
(±

0.
06

)
0.

58
(±

0.
05

)
0.

64
(±

0.
04

)
0.

37
(±

0.
10

)
0.

55
(±

0.
10

)
0.

39
(±

0.
05

)
0.

06
5

(±
0.

02
2)

0.
13

1
(±

0.
05

8)
0.

09
1

(±
0.

02
6)

0.
24

8
(±

0.
12

2)
0.

64
4

(±
0.

15
2)

0.
28

0
(±

0.
17

2)

D
et

er
m

in
is

tic
0.

72
(±

0.
01

)
0.

56
(±

0.
03

)
0.

76
(±

0.
03

)
0.

60
(±

0.
02

)
0.

74
(±

0.
02

)
0.

61
(±

0.
02

)
0.

02
6

(±
0.

00
7)

0.
14

3
(±

0.
02

0)
0.

05
4

(±
0.

01
0)

0.
06

3
(±

0.
00

7)
0.

23
9

(±
0.

03
0)

0.
11

8
(±

0.
02

0)

E
ns

-D
et

er
m

in
is

tic
0.

64
(±

0.
01

)
0.

62
(±

0.
01

)
0.

73
(±

0.
1)

0.
49

(±
0.

02
)

0.
70

(±
0.

01
)

0.
51

(±
0.

01
)

0.
05

3
(±

0.
00

3)
0.

08
0

(±
0.

00
1)

0.
09

7
(±

0.
01

6)
0.

12
0

(±
0.

01
3)

0.
13

8
(±

0.
02

4)
0.

17
2

(±
0.

02
2)

M
C

D
ro

po
ut

0.
73

(±
0.

01
)

0.
55

(±
0.

01
)

0.
78

(±
0.

01
)

0.
61

(±
0.

01
)

0.
67

(±
0.

01
)

0.
60

(±
0.

01
)

0.
06

4
(±

0.
00

3)
0.

06
3

(±
0.

00
5)

0.
04

0
(±

0.
00

2)
0.

10
6

(±
0.

00
4)

0.
13

4
(±

0.
01

2)
0.

05
9

(±
0.

00
9)

E
ns

-M
C

D
ro

po
ut

0.
61

(±
0.

01
)

0.
61

(±
0.

01
)

0.
73

(±
0.

01
)

0.
42

(±
0.

01
)

0.
49

(±
0.

02
)

0.
53

(±
0.

01
)

0.
05

3
(±

0.
00

2)
0.

05
3

(±
0.

00
3)

0.
12

9
(±

0.
00

2)
0.

09
6

(±
0.

00
5)

0.
12

0
(±

0.
01

3)
0.

18
1

(±
0.

00
7)

Te
m

pS
ca

lin
g

0.
70

(±
0.

02
)

0.
58

(±
0.

02
)

0.
76

(±
0.

01
)

0.
57

(±
0.

03
)

0.
72

(±
0.

01
)

0.
61

(±
0.

02
)

0.
02

0
(±

0.
00

5)
0.

07
0

(±
0.

02
0)

0.
03

7
(±

0.
08

)
0.

05
0

(±
0.

01
0)

0.
30

0
(±

0.
13

0)
0.

14
6

(±
0.

03
5)

E
ns

-T
em

pS
ca

lin
g

0.
61

(±
0.

01
)

0.
66

(±
0.

01
)

0.
75

(±
0.

01
)

0.
41

(±
0.

02
)

0.
69

(±
0.

01
)

0.
56

(±
0.

01
)

0.
05

8
(±

0.
00

4)
0.

05
4

(±
0.

00
8)

0.
14

2
(±

0.
01

5)
0.

12
7

(±
0.

01
2)

0.
23

7
(±

0.
06

8)
0.

21
5

(±
0.

01
6)

L
L

D
ro

po
ut

0.
71

(±
0.

01
)

0.
54

(±
0.

00
3)

0.
78

(±
0.

00
1)

0.
59

(±
0.

01
)

0.
74

(±
0.

00
1)

0.
62

(±
0.

00
3)

0.
02

0
(±

0.
00

3)
0.

15
5

(±
0.

00
3)

0.
06

1
(±

0.
00

1)
0.

06
3

(±
0.

01
2)

0.
24

7
(±

0.
01

)
0.

10
7

(±
0.

01
6)

E
ns

-L
L

D
ro

po
ut

0.
65

(±
0.

00
2)

0.
62

(±
0.

00
3)

0.
73

(±
0.

00
2)

0.
49

(±
0.

00
3)

0.
70

(±
0.

00
1)

0.
50

(±
0.

00
3)

0.
05

2
(±

0.
00

3)
0.

08
1

(±
0.

00
2)

0.
09

8
(±

0.
00

2)
0.

10
5

(±
0.

00
2)

0.
14

5
(±

0.
02

3)
0.

17
6

(±
0.

00
5)

L
L

SV
I

0.
74

(±
0.

01
)

0.
53

(±
0.

01
)

0.
77

(±
0.

00
3)

0.
62

(±
0.

01
)

0.
76

(±
0.

01
)

0.
57

(±
0.

00
4)

0.
02

1
(±

0.
00

2)
0.

16
2

(±
0.

00
4)

0.
02

6
(±

0.
00

3)
0.

05
9

(±
0.

00
9)

0.
21

4
(±

0.
00

6)
0.

05
4

(±
0.

00
9)

E
ns

-L
L

SV
I

0.
68

(±
0.

00
3)

0.
61

(±
0.

00
3)

0.
69

(±
0.

00
3)

0.
55

(±
0.

00
3)

0.
73

(±
0.

00
2)

0.
43

(±
0.

00
4)

0.
04

5
(±

0.
00

3)
0.

03
6

(±
0.

00
3)

0.
04

6
(±

0.
00

5)
0.

14
6

(±
0.

02
7)

0.
07

5
(±

0.
00

9)
0.

13
3

(±
0.

01
6)

Ta
bl

e
4.

4:
A

ve
ra

ge
Pe

de
st

ri
an

C
ro

ss
in

g
Pr

ed
ic

tio
n

pe
rf

or
m

an
ce

fo
r%
��

,�
�
�
�
1
4
ℎ
0
E
8>
A

an
d
�
�
�
�
0
;;

(5
ru

ns
).

D
as

he
d

lin
es

se
pa

ra
te

ea
ch

pr
ob

ab
ili

st
ic

de
ep

le
ar

ni
ng

ba
se

lin
e.

E
ac

h
ba

se
lin

e
is

te
st

ed
tw

ic
e:

fir
st

,i
n

a
cl

as
si

ca
lt

ra
in

-t
es

te
va

lu
at

io
n

pr
ot

oc
ol

an
d

th
en

te
st

ed
by

en
se

m
bl

in
g

al
lt

hr
ee

m
od

el
s

tr
ai

ne
d

on
ea

ch
tr

ai
ni

ng
se

tt
o

ev
al

ua
te

its
ro

bu
st

ne
ss

to
sm

al
ld

om
ai

n
sh

if
t.

W
e

hi
gh

lig
ht

th
e

hi
gh

es
ts

co
re

s
fo

re
ac

h
m

et
ri

c
an

d
fo

rb
ot

h
ev

al
ua

tio
n

pr
ot

oc
ol

s:
tr

ai
n-

te
st

or
en

se
m

bl
in

g.

103



CHAPTER 4. ASSESSING THE GENERALIZATION OF PEDESTRIAN CROSSING
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outperforming current state-of-the-art by a small margin on conventionally used evaluation protocols as

they currently fail to provide the big picture of pedestrian crossing behavior prediction.

As we encourage the community to change the direction in which we are taking the research field,

we investigate how additional baselines from the probabilistic deep learning literature improve the gen-

eralization ability of pedestrian behavior predictors towards small domain shifts. We believe that those

methods could prove useful for the next generation of predictors and present our results with the intention

that they will serve as a baseline for future work addressing our prescriptions.

4.6.1 Baselines from the probabilistic deep learning literature

Below, we present the selected methods from the probabilistic deep learning literature applied on top of

an I3D [Carreira and Zisserman, 2017] model:

• Non-pretrained and Deterministic: Maximum softmax probability [Hendrycks and Gimpel, 2016]

of # networks trained independently on each dataset using either random initialization or pre-

trained weights from Sports1M [Karpathy et al., 2014]. (We set # = 5 for each method below.)

• Monte-Carlo Dropout (MC Dropout): Dropout activated at test time as an approximate bayesian

inference in deep Gaussian processes [Gal and Ghahramani, 2016].

• Temperature Scaling11 (TempScaling): Post-hoc calibration of softmax probability by tempera-

ture scaling using a validation set [Guo et al., 2017].

• Last Layer Dropout (LL Dropout): Bayesian inference for the parameters of the last layer only:

Dropout activated at test time on the activations before the last layer.

• Last Layer Stochastic Variational Bayesian Inference (LL SVI): Mean field stochastic varia-

tional inference on the last layer using Flipout [Wen et al., 2018].

• Ensembling (Ens): Average prediction of three networks trained independently on each training

set using pre-trained weights [Lakshminarayanan et al., 2017]. Similarly to Table 4.3, we use

ensembling as a plausible approximation of one model’s robustness for real-world scenarios.

4.6.2 Discussion

We present the results obtained by probabilistic methods for both evaluation protocols: train-test and

ensembling in Table 4.4. This allows us to report the effect of dataset shift on accuracy and calibra-

tion for the probabilistic deep learning methods. Naturally, we would like to obtain a model, that is

well-calibrated on the training and testing distributions of each dataset and remains calibrated with en-

sembling. We observe that, similarly to the deterministic methods, the quality of predictions consistently

degrades with dataset shift regardless of the selected probabilistic method for both %�� and ����0;;.

However, overall robustness degrades more significantly for some methods. For instance, TempScal-

ing, e.g. post-hoc calibration of softmax probability, seems to be one of the best train-test probabilistic

methods in regards to expected calibration error (ECE) when evaluated in a standard train-test proce-

dure but falls behind when evaluated under dataset shift. In fact, when evaluated under dataset shift,
11https://github.com/gpleiss/temperature_scaling
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all the methods except Non-pretrained ones outperform TempScaling in regards to ECE. Similarly, we

report that better calibration and accuracy on each test set does not correlate12 with better calibration

under ensembling: the average ECE of the methods when evaluated with classical train-test scenario is

[0.166, 0.074, 0.056, 0.042, 0.079, 0.070] and the average ECE of the same methods under dataset shift

are [0.096, 0.077, 0.078, 0.085, 0.077, 0.042]. Interestingly, most of the selected probabilistic methods

perform better on average than the deterministic I3D under train-test evaluation protocols but fail to gen-

eralize when exposed to dataset shift. The exception to the rule is LL SVI, which looks very promising

in terms of generalization to small domain shifts. As our experiments required pre-trained weights from

I3D, we could not replace each convolutional layer with mean-field variational Flipout layers, we only

changed the last layer of the given model to obtain a variational bayesian inference for a quick baseline.

Nevertheless, we believe that this could be a future research to consider. We should explore the effects

of transferring initially learned features on large bases further away from the target task and explore how

probabilistic methods react to transfer-learning and domain-shift.

4.7 Summary

In this chapter, we show that the classical train-test sets evaluation for pedestrian crossing prediction,

i.e., models being trained and tested on the same dataset, is not sufficient to efficiently compare nor con-

clude anything about their applicability in a real-world scenario: the benchmarks being either too small

or too loose in variety of scenarios, it is easy for a given model to over-fit on a specific target dataset.

In order to evaluate the generalization capacity of the approaches, we conduct a study based on direct

cross-dataset evaluation for eleven methods representing the diversity of architectures and modalities

used for pedestrian crossing prediction. We found a huge lack of generalization and robustness for all

selected approaches. This led us to a ranking of existing approaches that is much more complex and

less absolute than the standard one. We secondly discuss the importance of quantifying a model’s un-

certainty. Although this is currently completely disregarded, it is common sense to use it in our field

of application. We discover two interesting properties: pre-training well-established models on diverse

and dense datasets further away from the target domain before fine-tuning to our target task improves

calibration and, two models with equivalent classification scores do not necessarily have equivalent cal-

ibration scores. This may prove interesting to consider when comparing their usefulness in real-world

scenarios with inputs distribution frequently shifted from the training distribution. Finally, we enforce

the importance of evaluating the robustness of pedestrian crossing behavior models by evaluating how

trustworthy are their uncertainty estimates under domain shifts with cross-dataset evaluation. We en-

courage the community to consider those new protocols and metrics in order to reach the end-goal of

pedestrian crossing behavior predictors: vehicle implementation.

12Pearson’s Correlation coefficient: 0.4203, p-value: 0.4067.
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Chapter 5
Conclusion

D’abord, la science n’est pas : elle
se fait. Le savant du jour n’est que
l’ignorant du lendemain.

Elisée Reclus
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CHAPTER 5. CONCLUSION

In this thesis, we explored deep learning approaches as a way to efficiently leverage spatial and

temporal components of pedestrian poses kinematics to efficiently detect their intention of crossing in

urban traffic environment.

5.1 Summary

This thesis aimed to answer the three research questions presented in section 1.2. In the following, we

detail what we have learned and try to provide response elements for each one of them.

Question 1 Inductive biases are the set of assumptions a learner uses to predict results given inputs

it has not yet encountered. When training deep learning architectures with little available data, should

we only rely on the very composition of layers to impose relational inductive biases on the learner?

Does enforcing certain constraints towards the data representation of designated hidden layers, sending

informative-representation ready data to the classification network help the performance of deep learn-

ing networks for action classification?

No, we should not only rely on the very composition of layers to impose relational inductive biases

on the learner when faced with problems with little available data. Many modern deep learning methods

follow an "end-to-end" design philosophy that emphasizes minimal a priori representational and com-

putational assumptions, which explains why they tend to be so data-intensive. However, we have seen

in chapter 2 that since anything that imposes constraints on the learning trajectory is considered as an

inductive bias, and given all the possible combinations that can only be evaluated empirically, no trend

is easily distinguishable in terms of identifying the best architecture to model sequence for skeletal ac-

tion recognition. Deep learning being a science that is constantly confronted to the risk of confirmation

bias, we questioned the importance of representations, inductive biases and their roles in skeletal action

recognition. Firstly, we evaluated the importance of explicit temporal modeling for gesture recognition.

We proposed a fully-connected autoencoder, that does not benefit from any relational inductive bias and

enforces the mapping from inputs to outputs in the embedding via statistical regularizations. We showed

that the proposed approach reaches the performances of classic sequence-focused architectures on ac-

tion classification tasks with little available data. Secondly, we investigated the importance of sending

informative-representation ready data to a deep learning architecture in a 1D-2D grid space. Neural

networks are designed to extract temporal features from gestures, and then merge them hierarchically

depending on their sequence-focused design in order to perform the final classification. Intermediate

representations of the gestures are entirely learned by the model and its corresponding inductive biases,

without any manual intervention. However, since model representations are based on the input data

representation, finding an appropriate input representation is crucial to leverage the full potential of the

network. By transforming the input data based on physical world constraints of the body structure prior

to the learning of multiple layers of feature hierarchies that automatically build high-level representations

of the raw input, we showed that finding an appropriate input representation is crucial to leverage the full

potential of a deep learning network for action recognition.
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Question 2 Visual skeletal representations are known to be sufficient for both humans and machines

to describe and recognize biological motion, including human motion. Can pose kinematics be sufficient

to serve as the only input when modeling non-trivial and non-periodic tasks related to pedestrian inten-

tion prediction?

Nuanced yes. Many approaches have been proposed that report interesting results on pedestrian cross-

ing prediction. However, most of them may suffer from a large model size and slow inference speed

by aggregating multiple forms of perception modalities extracted by additional networks such as back-

ground context, optical flow, or pose estimation information. In this manuscript, we specifically focused

on the simple yet informative skeleton modality, as it has been proven to be sufficient to describe and

understand the motion of a given action without any background context. We first list the pedestrian and

environmental factors involved in pedestrian decision-making process in accordance with the perceptive

modality selected. By only considering the kinematics of a pedestrian’s pose, we only capture certain fac-

tors impacting the decision to cross, mainly, attention of the pedestrian towards its environment, walking

pattern and certain forms of communication such as eye contact with the driver. We proposed SPI-Net

and TrouSPI-Net: two scene-agnostic, lightweight, multi-branch approaches that rely on pose kinematics

to predict crossing behaviors. Then, we showed that it is possible to make the link between the posture,

the walking attitude and the future behaviours of the protagonists of a scene without using the contextual

information of the scene (pedestrian crossing, traffic light...). Still, for a crossing prediction algorithm to

be as efficient as the approaches using multiple perception modalities, it is necessary to include additional

information to the pose kinematics itself. For instance, spatial positioning of the pedestrian based on 2D

bounding box locations can then be used to infer his trajectory and velocity, ego-vehicle speed allows

the model to incorporate an additional form of non-gestural communication between the pedestrian and

the driver. These two inputs are not strictly speaking visual perception modalities as they can be directly

derived from a pose estimation algorithm or retrieved directly by the vehicle data. Nevertheless, this is

what leads us to be cautious when answering our second research question.

Question 3 Does recent progress on pedestrian intention prediction benchmarks continue to represent

meaningful generalization? What evaluation protocol and metrics should be used to go beyond accuracy

in order to evaluate a model for a high-risk application with a limited amount of training data?

No, we showed that the classical train-test sets evaluation protocol for pedestrian crossing prediction,

i.e., models being trained and tested on the same dataset, is not sufficient to efficiently compare nor con-

clude anything about their applicability in a real-world scenario: the benchmarks being either too small

or too loose in variety of scenarios, it is easy for a given model to over-fit on a specific target dataset. The

classical performance metrics for classification being no longer sufficient to compare the existing meth-

ods with the new evaluation paradigm, we looked at a complementary category of metrics to compare

pedestrian intention prediction models and discussed the importance of quantifying a model’s uncer-

tainty. Although uncertainty is currently completely disregarded in the current state of the benchmark,

it is common sense to use it in our field of application. In order to build the foundation on which future

work should be based on, and, in addition to the eleven deterministic baselines evaluated under domain

shift to demonstrate that the current evaluation protocol will also reach its limits, we report the results
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of multiple baselines from the probabilistic deep learning literature, designed to tackle the problem of

improving model uncertainty. Given all of the above, we advise the community to change the direction in

which we are taking the research field: with so little existing data, non-existent generalization of models,

and inconclusive ranking of them, we need to agree to properly evaluate our approaches in order to min-

imize the noise of our productions and thus, make the research field more sustainable and representative

of the real advances to come.

5.2 Future Works

Our work can be extended in several directions. We suggest a few prospective ideas that possibly might

be relevant for future research:

Action Recognition with little available data

• The development of a sample-efficient "AI" for small-data problems that arise in many domains

related to human motion. From preserving the knowledge for future generations of expert gestures

in niche fields such as glassblowing, blacksmithing or stonemasonry, to tracking the posture of

an athlete for a specific sport such as fencing, boxing or gymnastics, we will need to efficiently

represent those expert gestures. We are mostly moving towards this industrial transfer learning

paradigm in which big foundation models that emphasize minimal a priori representational as-

sumptions are fine-tuned on downstream tasks. Academia should persist with orthogonal goals

and create new ways of representing gestures. This may involve, manually integrating domain

knowledge into the network, prior to the application of the network or inside the cost function of

the network.

Pedestrian Discrete Intention Prediction

• Temporal tracking of pedestrians: In the real world, there are usually more pedestrians on the

streets passing and occluding each other, which requires sophisticated mechanisms not only for

their detection but for their temporal tracking without mixing their identity over time. The literature

completely omits such issues and relies on the ground truth spatial coordinates and individual IDs

of each pedestrian provided by each dataset. To address a better follow-up of the protagonists in

the scene and to avoid mixing the dynamics of two protagonists due to a change of camera angle,

future research should focus on building an end-to-end framework based on unlabeled coordinates

of pedestrians, temporal tracking of pedestrians and any pose-based model for pedestrian intention

prediction. New research questions will then arise, it might be necessary to quantify the robustness

to tracking errors for each new contribution. That new robustness to tracking error metric may even

be the missing piece to having a more representative ranking of methods.

• Improving pose estimation methods: necessary step of an intention prediction model of which

the analysis of the posture is an essential component. One major drawback of our work is to rely

on off-the-shelf pose estimation algorithms without trying to improve the existing ones to make

them fit the application field. However, similarly to the OSI1 model, our approaches rely on inde-

1Open Systems Interconnection, enables interoperability between different products and software.
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pendent implementations of methods for each specific task. It leads to a practical methodology:

interchanging the pose estimation algorithms does not compromise the entire approach. Currently,

one of the main limitations of a 2D pose estimation is the ability to deal with pedestrian occlusions

in a two-dimensional space. Therefore, in order to improve the pose detection, the question of

adding a third dimension may arise. Currently, the methods for estimating 3D poses are much

less mature than those for 2D pose estimation. One of the main reasons, to this day, has been

the lack of reliable data sets available. However, our pipeline makes it easy to keep up with the

state-of-the-art in this field without completely disrupting the approach for intention prediction. If

major advances were made in the field of pose estimation, our approach might still be relevant.

A concrete example would be the release of cheap RBG-D cameras that can be easily deployed

on the ego-vehicle: the depth modality would then make it easier to estimate 3D poses and thus

potentially improve the robustness of our approaches without any architectural modifications.

The future of pedestrian crossing prediction benchmarks

• We need to properly deal with the fact that the world is not completely predictable: There

is no such thing as truly random but sometimes, we simply lack the information to make a sound

judgement: if you know the entire wave function of the universe in a cubic kilometer surrounding

the tosser and have a very powerful computer, coin flipping is almost completely deterministic. If

we combine all the available perception modalities, if we take into account the age, sex and religion

or any other human factor perspectives influencing pedestrians’ behaviors, will the prediction be

any less noisy? In this thesis, we came up with the idea of using uncertainty calibration to show

that sometimes, a judgement is not as enlightened as it seems, despite looking accurate at first

glance. If anyone was to continue my research, I would advise him/her not to put too much stress

on beating the current state-of-the-art with the current evaluation protocols. I would rather advise

him/her to answer these two questions which I believe are essential for the future of the research

field: "Given two models, one more accurate and the other better calibrated, which should a

practitioner choose?" and "Is there a way to ensure good system performance at integration-time?"
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Appendix A
Appendix

A Assessing TrouSPI-Net performance for skeletal action recognition datasets

Table A.1: Results obtained via TrouSPI-Net on SHREC [De Smedt et al., 2017]. We change the model
size by modifying the filters parameter for each convolution block.

Methods Parameters Accuracy on SHREC 14 Accuracy on SHREC 28

[Nunez et al., 2018](CNN+LSTM) 8-9 M 89.8% 86.3%
[Devineau et al., 2018] (Skelnet) 13.83 M 91.3% 84.4%

[Hou et al., 2018](STA-Res-TCN) 5-6 M 93.6% 90.7%
[Yang et al., 2019] (DD-Net) 1.82 M 94.6% 91.9%

[Min et al., 2020](PointLSTM) 1.2 M 95.9% 94.7%
[Avola et al., 2018] (LM controller) - 97.6% 91.4%

TrouSPI-net (filters=64) 2.2 M 96.3% 93.8%
TrouSPI-net (filters=32) 0.57 M 95.9% 92.6%
TrouSPI-net (filters=16) 0.15 M 95.6% 91.2%
TrouSPI-net (filters=8) 0.04 M 95.3% 90.4%

Table A.2: Results obtained via TrouSPI-Net on JHMDB [Jhuang et al., 2013]. We change the model
size by modifying the filters parameter for each convolution block.

Methods Parameters Accuracy on 3 splits of JHMDB

[Zolfaghari et al., 2017](Chained Net) 17.50 M 56.8%
[Ludl et al., 2019] (EHPI) 1.22 M 65.5%

[Choutas et al., 2018] (Potion) 4.87 M 67.9%
[Yang et al., 2019] (DD-Net (filters=64)) 1.82 M 77.2%
[Yang et al., 2019] (DD-Net (filters=16)) 0.15 M 65.7%

TrouSPI-net (filters=64) 2.2 M 74.5%
TrouSPI-net (filters=32) 0.56 M 72.4%
TrouSPI-net (filters=16) 0.14 M 71.8%
TrouSPI-net (filters=8) 0.04 M 72.2%
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Figure A.1: Confusion matrix obtained on SHREC 14 with TrouSPI-Net

Figure A.2: Confusion matrix obtained on SHREC 28 with TrouSPI-Net

B Additional reliability diagrams for eleven baselines on three dataset for
pedestrian discrete intention prediction
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Appendix B
Résumé en français

Introduction

Ce chapitre constitue l’introduction de la thèse. Nous décrivons brièvement le contexte de cette thèse,

les problèmes qu’elle aborde et les principales contributions de cette thèse.

Reconnaissance de l’activité humaine avec modèles d’apprentissage profond basés sur la cinéma-
tique de la posture humaine

Dans ce chapitre, nous présentons quelques repères historiques pour la compréhension des actions hu-

maines ainsi qu’un aperçu des modalités actuelles de vision par ordinateur pour la reconnaissance d’actions.

Nous décrivons ensuite les différentes familles d’apprentissage profond pour la modélisation de séquences

squelettiques ainsi que leurs biais inductifs respectifs. Les approches existantes se répartissent en qua-

tre grandes catégories: les réseaux neuronaux récurrents, les réseaux neuronaux convolutifs, les réseaux

neuronaux à mémoire associative basés sur l’attention et les réseaux de type graphes neuronaux. Par la

suite, nous nous interrogeons sur l’importance des représentations, des biais inductifs et de leurs rôles

pour la reconnaissance d’actions squelettiques. Tout d’abord, nous évaluons l’importance d’une modéli-

sation temporelle explicite pour la reconnaissance de gestes : alors que les gestes sont des phénomènes

temporels, de nombreux gestes et actions peuvent en réalité être déduits sur la base de poses spatiales

uniquement. Nous proposons un auto-encodeur, qui ne bénéficie d’aucun biais inductif et qui renforce

la correspondance entre les entrées et les sorties dans l’espace latent via des régularisations statistiques.

Nous montrons que l’approche proposée atteint les performances des architectures classiques de mod-

élisation de séquences sur des tâches de classification d’actions avec peu de données disponibles. Deux-

ièmement, nous étudions l’importance d’envoyer des données porteuses d’information à une architecture

d’apprentissage profond, et cela, avant l’apprentissage automatique de caractéristiques de haut niveau de

l’entrée brute. En normalisant les données d’entrée sur la base des contraintes du monde physique comme

la structure du corps humain, nous montrons que pour les tâches de classification d’actions avec peu de

données, les réseaux de neurones bénéficient de ces caractéristiques fabriquées à la main et pourraient

s’appuyer sur moins de couches cachées pour apprendre des représentations informatives des données.
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De la reconnaissance de l’activité humaine à la prédiction discrete d’intention des piétons

Dans ce chapitre, nous proposons d’abord un aperçu des approches existantes pour la prédiction d’action

des piétons dans un contexte urbain. La majorité des techniques existantes de prédiction d’action des

piétons sont basées sur la trajectoire, ce qui signifie qu’elles dépendent des positions des piétons ob-

servées précédemment afin d’anticiper les positions des mêmes piétons dans le futur. Ces méthodes sont

efficaces seulement lorsque les piétons ont déjà traversé ou sont sur le point de traverser, c’est-à-dire que

ces algorithmes réagissent à une action qui a déjà commencé plutôt que de la prédire. Nous proposons

d’abord une architecture de réseau neuronal récurrent bidirectionnel asymétrique appelée U-RNN pour

encoder les trajectoires des piétons et nous évaluons sa pertinence pour remplacer les LSTM pour une

variété d’approches et de modules d’interaction différents. Nous montrons alors qu’il y a encore de la

marge d’amélioration pour les approches basées sur les coordonnées et concluons que les interactions ne

sont pas le seul aspect sur lequel la prédiction de la trajectoire des piétons peut progresser. Nous abor-

dons ensuite le problème de la prédiction des intentions discrètes des piétons : au lieu de se concentrer

sur les trajectoires continues décrivant le mouvement futur attendu du piéton et de se fier uniquement à

la dynamique d’une scène pour prédire les intentions des protagonistes, nous définissons les intentions

d’un piéton comme une combinaison de ses comportements discrets de haut niveau tels que la dynamique

de sa pose, l’orientation de sa tête, etc. Nous montrons alors qu’il est possible de faire le lien entre la

posture, l’attitude de marche et les comportements futurs des protagonistes d’une scène sans utiliser les

informations contextuelles de celle-ci (passage piéton, feu de circulation...). Cela nous permet alors de

diviser par un facteur 20 la vitesse d’inférence des approches existantes pour la prédiction de l’intention

des piétons tout en gardant la même robustesse de prédiction.

Évaluation de la capacité de généralisation des algorithmes de prédiction discrete d’intention des
piétons

Ce dernier chapitre est délibérément plus exploratoire. La prédiction d’intention des piétons a fait l’objet

de recherches actives, ce qui a donné lieu à de nombreuses nouvelles solutions algorithmiques. Bien

que la mesure de la progression globale de ces solutions dans le temps tende à être de plus en plus

établie grâce aux nouveaux jeux de données accessibles au public et aux procédures d’évaluation stan-

dardisées, savoir à quel point les prédicteurs existants réagissent aux données non rencontrées reste une

question sans réponse. Cette évaluation est impérative, car nos algorithmes doivent pouvoir fonctionner

dans divers scénarios sans compromettre la sécurité des piétons en raison d’une mauvaise prédiction.

À cette fin, nous menons une étude basée sur l’évaluation croisée d’ensembles de données. Nos ex-

périences montrent que les approches actuellement considérées comme à la pointe pour la prédiction

d’intention des piétons généralisent mal lorsqu’elles sont évaluées lors de scénarios d’évaluation croisée,

et ce, indépendamment de leur robustesse dans un cadre d’évaluation dit classique avec un ensemble

d’apprentissage et de test. À la lumière de ce que nous observons, nous soutenons que l’avenir de notre

domaine de recherche, c’est à dire des implémentations fiables et généralisables, ne devrait pas consister

à adapter des modèles, entraînés avec très peu de données disponibles, et testés dans un scénario clas-

sique d’évaluation avec la volonté de déduire quoi que ce soit sur leur comportement dans la vie réelle. Il

s’agirait plutôt d’évaluer les modèles à venir dans un contexte d’évaluation croisée tout en tenant compte
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des estimations d’incertitude de ces modèles pour des cas peu connus.

Conclusion

Nous résumons cette thèse et identifions les orientations futures potentielles de notre recherche.
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MOTS CLÉS

Prédiction d’action basée sur le squelette, Apprentissage des représentations spatio-temporelles, estimation

de l’incertitude prédictive

RÉSUMÉ

Le véhicule autonome est un défi majeur pour la mobilité de demain. Des progrès sont réalisés chaque jour pour y
parvenir ; cependant, de nombreux problèmes restent à résoudre pour obtenir un résultat sûr pour les usagers de la
route les plus vulnérables. L’un des principaux défis auxquels sont confrontés les véhicules autonomes est la capacité
à conduire efficacement en milieu urbain. Une telle tâche nécessite la gestion des interactions entre les véhicules et
les usagers vulnérables de la route afin de résoudre les ambiguïtés du trafic. Afin d’interagir avec ces usagers, les
véhicules doivent être capables de comprendre leurs intentions et de prédire leurs actions à venir. Dans cette thèse,
notre travail s’articule autour de la technologie d’apprentissage automatique comme moyen de comprendre et de prédire
le comportement humain à partir de signaux visuels et plus particulièrement de la cinématique de pose. Notre objectif
est de proposer un système d’assistance au véhicule qui soit léger, agnostique à la scène et qui puisse être facilement
implémenté dans n’importe quel dispositif embarqué avec des contraintes temps réel. Premièrement, dans le domaine
de la reconnaissance de gestes et d’actions, nous étudions et introduisons différentes représentations de la cinématique
de pose, basées sur des modèles d’apprentissage profond afin d’exploiter efficacement leurs composantes spatiales et
temporelles tout en restant dans un espace euclidien. Deuxièmement, dans le domaine de la conduite autonome, nous
montrons qu’il est possible de lier la posture, l’attitude de marche et les comportements futurs des protagonistes d’une
scène sans utiliser les informations contextuelles de la scène. Cela nous permet de diviser par un facteur 20 le temps
d’inférence des approches existantes pour la prédiction de l’intention des piétons tout en gardant la même robustesse de
prédiction. Finalement, nous évaluons la capacité de généralisation des approches de prédiction d’intention de piétons
et montrons que le mode d’évaluation classique des approches pour la prédiction de traversée de piétons, n’est pas
suffisante pour comparer ni conclure efficacement sur leur applicabilité lors d’un scénario réel. Nous proposons de
nouveaux protocoles et de nouvelles mesures basés sur l’estimations d’incertitude afin de rendre le domaine de recherche
plus durable et plus représentatif des réelles avancées à venir.

ABSTRACT

The autonomous vehicle (AV) is a major challenge for the mobility of tomorrow. Progress is being made every day to
achieve it; however, many problems remain to be solved to achieve a safe outcome for the most vulnerable road users
(VRUs). One of the major challenge faced by AVs is the ability to efficiently drive in urban environments. Such a task
requires interactions between autonomous vehicles and VRUs to resolve traffic ambiguities. In order to interact with VRUs,
AVs must be able to understand their intentions and predict their incoming actions. In this dissertation, our work revolves
around machine learning technology as a way to understand and predict human behaviour from visual signals and more
specifically pose kinematics. Our goal is to propose an assistance system to the AV that is lightweight, scene-agnostic
that could be easily implemented in any embedded devices with real-time constraints. Firstly, in the gesture and action
recognition domain, we study and introduce different representations for pose kinematics, based on deep learning models
as a way to efficiently leverage their spatial and temporal components while staying in an euclidean grid-space. Secondly,
in the autonomous driving domain, we show that it is possible to link the posture, the walking attitude and the future
behaviours of the protagonists of a scene without using the contextual information of the scene (zebra crossing, traffic
light...). This allowed us to divide by a factor of 20 the inference speed of existing approaches for pedestrian intention
prediction while keeping the same prediction robustness. Finally, we assess the generalization capabilities of pedestrian
crossing predictors and show that the classical train-test sets evaluation for pedestrian crossing prediction, i.e., models
being trained and tested on the same dataset, is not sufficient to efficiently compare nor conclude anything about their
applicability in a real-world scenario. To make the research field more sustainable and representative of the real advances
to come. We propose new protocols and metrics based on uncertainty estimates under domain-shift in order to reach the
end-goal of pedestrian crossing behavior predictors: vehicle implementation.

KEYWORDS

Skeleton-based action prediction, Learning spatio-temporal representations, Predictive uncertainty estimation
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