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Abstract

Seismic imaging is one of the most effective methods for estimating the Earth’s physi-
cal parameters from seismic data. Based on the assumption of scale separation, several
imaging methods split the velocity model into a smooth background model controlling
the kinematics of wave propagation and a reflectivity model characterizing the rapid
changes of the model parameters. The goal of Migration techniques is to determine the
reflectivity in a given background model. Among different migration algorithms, reverse
time migration (RTM) has become the method of choice for seismic imaging in complex
geologic structures. By definition, RTM is the adjoint of the linearized Born modeling
operator and suffers from various migration artifacts. Recent developments proposed an
asymptotic inversion in the context of RTM. They determine a direct method to invert
the Born modeling operator, providing quantitative results within a single iteration. The
direct inverse, also known as pseudoinverse Born operator, automatically compensates
for uneven illuminations and geometrical spreading, removing in practice migration arti-
facts. This operator is expressed in the concept of the extended model domain, such that
the dimensions for the model and data spaces fit. There are several possibilities for the
extension. The additional parameter used in this work is the horizontal subsurface off-
set, providing panels called Common Image Gathers (CIGs), as a function of depth and
of the subsurface-offset. The application of the pseudoinverse Born operator is based on
constant-density acoustic media, which is a limiting factor for practical applications.

In this thesis, I first extend the applicability of linearized direct inverse from constant-
density acoustic to variable-density acoustic and elastic media. These extensions con-
sist of three main steps: application of the pseudoinverse Born operator, transforming
the subsurface-offset domain CIG to the angle-domain CIG using a Radon transform,
and physical decomposition. The last part (“Physical decomposition”) is based on a
weighted least-squares (WLS) objective function and by definition is either a bivariate
(variable-density acoustic) or trivariate (variable-density elastic) curve fitting problem.
The proposed method not only provides more robust results, but also offers the flexibility
to include constraints in the objective function in order to suppress migration artifacts.
Only the first step contains wave-equation terms. I analyze how the approach can ef-
fectively deal with complex models, in particular in presence of inaccurate background
models and Gaussian noisy data. In the concept of the multi-parameter imaging, the
main limitation is the non-uniqueness of the inversion results.

To tackle the ill-posedness of the inverse problem, I propose to add independently `1-
norm constraints to each inverted parameter as regularization terms in the WLS method.
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I illustrate that regularization is essential especially in the presence of sparse acquisi-
tion geometry. Furthermore, I utilize the pseudoinverse Born operator to accelerate the
convergence rate of multi-parameter least-squares RTM (LSRTM). Using 2D synthetic
models, I illustrate that the proposed preconditioning scheme not only largely reduces
the required number of iterations but also significantly increases the quality of the in-
verted images even in presence of strong parameter cross-talk and inaccurate migration
background models.

Finally, I investigate the importance of accounting for density variations in linearized
direct waveform inversion using a marine real dataset from the Eastern Nankai Trough,
offshore Japan. I demonstrate that the variable-density direct inversion generates sub-
surface images with higher resolution but also a better reconstruction of the field data
than does the constant-density approach.

The main contributions of this work are: (1) extending the linearized direct wave-
form inversion beyond constant-density acoustics; (2) implementing sparsity-promoting
regularization techniques for a more robust scheme; (3) preconditioning multi-parameter
LSRTM using linearized direct inverse; (4) validating the results and investigating the
effect of density variations using a real dataset. The next step would be to study the
impact of these developments on the background model estimation.
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Résumé

L’imagerie sismique est l’une des méthodes les plus effectives pour estimer les paramètres
physiques de la Terre à partir de données sismiques. Sous l’approximation d’une sépa-
ration d’échelle, plusieurs méthodes d’imagerie séparent le modèle de vitesse entre un
modèle lisse de référence qui contrôle la cinématique de propagation des ondes, et un
modèle de réflectivité qui caractérise les changements rapides des paramètres élastiques.
L’objectif des techniques de migration est de déterminer la réflectivité pour un modèle
lisse de référence donné. Parmi différents algorithmes de migration, la « Reverse Time
Migration » (RTM en anglais) est devenue la méthode de choix pour l’imagerie sismique
des structures géologiques complexes. Par définition, la RTM est l’adjoint de l’opérateur
de modélisation linéarisée de Born et souffre d’un certain nombre d’artefacts. Des
développements récents proposent un inverse de l’opérateur de modélisation ; il donne
des résultats quantitatifs en une seule itération. L’inverse direct, aussi connu sous le nom
d’opérateur pseudoinverse de Born, compense automatiquement pour l’illumination non
homogène et pour l’amplitude géométrique. En pratique, il attenue fortement les arte-
facts de migration. Cet opérateur est développé dans le concept de « modèles étendus
», pour lesquels les dimensions des tailles des modèles et des données sont les mêmes.
Plusieurs possibilités existent pour les extensions. Le paramètre additionnel utilisé ici
dans ce travail est le « subsurface offset » horizontal, qui permet de créer des pan-
neaux « Common Image Gathers » (CIGs), comme une fonction de la profondeur et du
paramètre d’extension. L’application de l’opérateur pseudoinverse suppose un milieu à
densité constante, ce qui est un facteur limitant pour les applications pratiques.

Dans cette thèse, j’étends d’abord l’applicabilité de l’inverse direct linéarisé depuis
les milieux acoustiques à densité constante vers les milieux acoustiques à densité vari-
able et vers les milieux élastiques. Trois étapes sont proposées pour ces extensions :
application de l’opérateur pseudoinverse, transformation des CIGs du domaine « subsur-
face offset » en CIGs en angle par une transformée de Radon, et décomposition physique
des paramètres. La dernière partie (« décomposition physique ») est basée une fonction
objective pondérée au sens des moindres carrés (WLS, « Weighted Least-Squares » en
anglais) qui revient à estimer deux ou trois classes de paramètres (cas densité variable
et élastique). La méthode proposée non seulement apporte des résultats plus robustes,
mais aussi offre la flexibilité d’inclure des contraintes dans la fonction objective pour
supprimer les artefacts de migration. Seule la première étape contient des termes liés
au calcul de la propagation des ondes. J’analyse comment cette approche peut effec-
tivement fonctionner dans les modèles complexes, en particulier pour des milieux de
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référence non parfaits et en présence de bruit Gaussien. Dans le contexte de l’imagerie
multi-paramètre, la principale limitation est la non-unicité de la solution.

Pour prendre en compte ce problème mal posé, je propose d’ajouter des contraintes
`1, indépendamment sur chacun des paramètres à inverser comme un terme de régu-
larisation dans la méthode WLS. J’illustre que cette régularisation est essentielle, tout
particulièrement pour des géométries d’acquisition creuses. De plus, j’utilise le pseu-
doinverse pour accélérer la convergence de la LSRTM multi-paramètre (« Least-Squares
RTM »). Au travers de modèles synthétiques 2D, j’illustre que le schéma de précondi-
tionement non seulement réduit le nombre d’itérations nécessaires mais aussi augmente
de manière significative la qualité des images inversées, même en présence de « cross-
talks » entre les paramètres ou encore pour des vitesses de références imparfaites.

Enfin, j’étudie l’importance de prendre en compte les variations de densité sur un
jeu de données réelles marines du Japon (« Eastern Nankai Trough »). Je montre que
l’inverse direct à densité variable apporte des images du sous-sol avec une meilleure
résolution mais aussi une plus grande fidélité aux données que peut le faire une approche
avec une densité purement constante.

Les principales contributions de ce travail sont : (1) l’extension de l’imagerie linéarisée
directe au-delà du cas à densité constante ; (2) l’implémentation de techniques de régu-
larisation avec la promotion de la sparsité, pour des schémas plus robustes ; (3) le pré-
conditionement de la LSRTM multi-paramètre avec l’inverse direct ; (4) la validation
sur données réelles et l’étude des effets de variations de densité. L’étape suivante sera
de comprendre l’impact de ces développements sur l’estimation du modèle de vitesse de
référence.
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2 Chapter 1. Introduction

Résumé

L’imagerie sismique est très utilisée pour caractériser les structures géologiques du sous-
sol à partir de l’analyse des sismogrammes, et potentiellement pour mieux connaitre les
ressources de la Terre. Les images sont des représentations du sous-sol, par exemple
au travers de la vitesse, densité ou des paramètres visco-élastiques. Dans le contexte de
l’exploration pétrolière, une caractérisation précise de la subsurface est importante pour
interpréter la géologie, déterminer la position des puits de forage. Dans ce chapitre, je
résume les principaux éléments de l’imagerie sismique et de la résolution du problème
inverse. Les deuxièmes et troisièmes parties de ce chapitre donnent un aperçu général
des méthodes non-linéaires et linéaires d’imagerie sismique. Finalement, je conclus
avec les principales limites actuelles et les questions ouvertes en imagerie sismique,
comme sources de motivation pour ce travail. Je présente l’organisation globale du doc-
ument, avec les principales contributions de chaque chapitre. Ici, j’introduis quelques
notations et quelques équations. Les détails techniques sont présentés au Chapitre 2.
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Seismic imaging is widely utilized to characterize the Earth’s geological structures
in the subsurface from the analysis of observed seismograms, and thus to expose pos-
sible resource-bearing formations. The images are well-defined representations of the
Earth’s interior, for instance, velocity, density, or viscoelastic parameters. In oil and gas
exploration, a precise subsurface model is essential for subsequently interpreting the
geology, determining the drilling location, and accurately positioning the wells.

In this chapter, I first summarize the key steps in seismic imaging and the resolution
of the inverse problem. The second and third parts of this chapter is an overview of
the seismic non-linear and linear imaging methods. Finally, I conclude with the current
limitations and open questions in seismic imaging, motivation for my research, and the
organization of the thesis. In this chapter, I only introduce a few notations and equations.
More technical details are presented in Chapter 2.

1.1 Seismic imaging
Seismic imaging is a procedure for estimating the Earth’s physical parameters from
seismic data. These physical parameters can be represented by the spatial distribution
of, e.g., P-wave velocity, S-wave velocity, density, porosity, or anisotropic parameters
(Schuster, 2011). In general, seismic imaging consists of three main elements: (1)
data acquisition through seismic surveys, (2) forward problem and (3) inverse problem
(Tarantola, 2005).

In the following, I briefly review the main theoretical aspects of the seismic surveys,
forward and inverse problems. The reader is referred to Sheriff and Geldart (1995);
Yilmaz (2001); Schuster (2017) for a detailed introduction to seismic imaging.

1.1.1 Seismic surveys
“Seismic survey is a program for mapping geologic structure by observation of seismic
waves, especially by creating seismic waves with artificial sources and observing the ar-
rival time of the waves reflected from acoustic-impedance contrasts or refracted through
high velocity members” (Sheriff, 2002). Investigated subsurface geologic structures
which contain oil and gas reservoirs are found beneath land and sea environments. Thus
the seismic data can be acquired either in land or sea. Although they share the same
goal, being imaging the subsurface, the two contexts require unique technology and
terminology.

In the land acquisition (Figure 1.1a, right), the sources are either dynamites or seis-
mic vibrators. The later is a truck-mounted or buggy-mounted device that is capable
of injecting low-frequency vibrations into the Earth. In the marine acquisition (Fig-
ure 1.1a, left), the sources are either air guns or water guns, with the air gun being by
far the most common. In both environments, sources and receivers are arranged along
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coinciding lines. The main difference, as far as geometry is concerned, is that in marine
acquisition an end-on geometry (source is deployed at one end of the receiver line) is
used; whereas in land data acquisition a split-spread geometry (source is deployed in the
center of the receiver lines) is also possible (Sheriff and Geldart, 1995). In both envi-
ronments, borehole seismic acquisition, called Vertical Seismic Profiling (VSP), is also
possible, with sources at the surface and receivers within a well (Figure 1.1b) (Hardage,
1985; Gilpatrick and Fouquet, 1989). Compared to surface seismic acquisitions, VSP
provides locally higher resolution images of the subsurface which is used for signal cal-
ibration with surface seismic data. In general, different types of VSP exist, depending
on the well configuration, the numbers, positions and types of the sources and receivers
(Figure 1.1b) (Blackburn et al., 2007). Seabed acquisition (also referred as ocean bottom
acquisition) is also a rapidly growing area of the seismic acquisition. In ocean bottom
acquisition, receivers can be either ocean bottom cables (OBC) or ocean bottom nodes
(OBN). Compared to conventional streamer acquisition on the water surface, ocean bot-
tom has lots of benefits, for instance, recording 3C or 4C elastic wavefield and providing
wider azimuth (Beaudoin and Ross, 2007).

Whatever the acquisition design, the recorded Earth’s response to the triggered source
in the acquisition is called seismogram (also known as common-shot gather or simply
shot gather).

In the context of seismic imaging, waves can be classified into two main types: (1)
body waves, which travel through the Earth’s interior, (2) surface waves, which travel
only along the surface of the Earth. In seismic exploration, these two types of waves
are automatically recorded, but surface waves are commonly considered as noise for
subsequent imaging steps. The body waves can also be split into two main groups: (1) P-
wave (also known as primary/compressional wave) which oscillates along the direction
of wave propagation, (2) S-wave (also known as secondary wave/shear wave) which
oscillates perpendicularly to the direction of wave propagation.

When body waves propagate through the Earth they are categorized according to
their propagation path, as:

• Transmitted waves – Waves that travel between the source and receivers without
being reflected;

– Direct waves: For a homogeneous velocity in the superficial part of the
model, direct waves travel across the shallow part of the Earth from the
source to the receivers following a straight wave path;

– Diving waves (also known as turning waves): Assuming a positive verti-
cal velocity gradient in the shallow part of the model, diving waves travel
through the Earth and naturally bend back to the surface fallowing a curved
wave path. These waves only have a limited penetrating depth, especially for
short offsets, and may arrive at the receivers earlier than the direct waves;
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Zero-offset VSP Offset VSP Deviated-well VSPWalkaway VSP Crosswell VSP

Land acquisition Marine acquisition
a)

b)

Figure 1.1: Acquisition geometries for different types of seismic surveys. a) Land (left)
and marine (right) acquisitions (from Danish Energy Agency), and b) VSP acquisition
(from Blackburn et al. (2007)).

• Refracted waves – Similar to diving waves, but in a model with interfaces, when
the waves strike an interface with higher velocity, part of wavefronts propagating
tangent to the interface serve as secondary sources and trigger plane waves that
propagate to the surface. They may arrive at the receivers with shorter time than
the direct waves at far offsets;

• Scattered waves – Waves that are generated due to discontinuities of the Earth;

– Reflected waves: When the waves strike an interface with impedance con-
trast, part of their energy is reflected backwards to the surface. For a single
reflection, these waves are categorized as first-order scattered waves;

– Diffracted waves: When the waves strike a sharp edge (particle, object or
obstacle), the edge acts as a secondary source (Huygens’ principle) and gen-
erates diffracted waves. Multi-scattering exists, depending on the number of
times the wavefield is diffracted.

– Multiples: These waves are high-order reflected/diffracted waves that are
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bounced back and forth for several times between the surface and interfaces
before being recorded. They are caused by strong reflectors (i.e. the sea
surface or the water bottom) and commonly recognized as unwanted events
and hence removed during processing even if they provide potentially higher
resolution.

1.1.2 Forward problem
Once the data are acquired, one of the key elements in almost every aspect of exploration
seismology is the modeling of seismic data. Fundamentally, it provides a means of
understanding the characteristics of observed seismic data. In addition, modeling is the
core of many seismic data-processing and imaging/inversion algorithms (section 1.1.3).

Mathematically, the propagation of the waves through the Earth is formulated as
a partial differential equation (PDE) called wave equation, which simulates the wave
propagation giving a set of model parameters. The general viscoelastic anisotropic wave
equation involves density, attenuation of P and S waves and the 21 elastic coefficients
of the stiffness tensor relating the stress tensor to the strain tensor. Note that all these
quantities are spatially varying. Due to the high computational cost of simulating the
viscoelastic anisotropic wave propagation, it is usually simplified by reducing the pa-
rameters to be considered in the propagation. But the more fundamental reason is that
one cannot independently estimate all these parameters.

I briefly review the numerical methods for solving the wave equation (Virieux et al.,
2011). The most popular ones are finite-difference method (FDM) (Kelly et al., 1976;
Virieux, 1986; Levander, 1988; Operto et al., 2007), and finite-element method (FEM)
(Smith, 1975). Moczo et al. (2010) compared the two methods and concluded that the
accuracy of the two methods are comparable with dense samplings. The main advantage
of FEM over FDM is its flexibility in meshing to deal with the boundary conditions and
irregular structures. In a 3D complex model, the construction of a suitable mesh can be
complicated. Virieux et al. (2011) have reviewed FDM and FEM from the point of view
of efficiency and complexity, and indicated that FDM is widely used due to its simplicity
to implement and the relatively lower computational cost.

The methods such as FDM and FEM are based on direct numerical solutions to the
wave equation. The modeling can also rely on ray theory, i.e., a high-frequency approx-
imation of the wave equation (Červenỳ et al., 1977). The ray theory decomposes the
Green’s function, a specific solution of wave equation, into three elements: (1) travel-
times, (2) amplitudes and (3) source signature. Therefore, new equations are required
to be solved: the Eikonal equation for traveltimes (Vidale, 1988; Podvin and Lecomte,
1991) and the transport equation for amplitudes along the calculated rays (Babich and
Buldyrev, 1989). An ideal modeling approach should consist of generating complete
synthetic seismograms, including all types of waves (section 1.1.1). “Wave-equation-
based modeling” (i.e. without high-frequency approximation) provides complete seis-
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mograms, but in a “black-box” manner. The ray-based modeling not only rapidly and
accurately provides synthetic seismograms for user-selected waves, but also additional
information such as traveltime, amplitude and polarization (Lecomte et al., 2015). How-
ever, finite-frequency aspects are not taken into account.

This thesis only focuses on wave-equation-based modeling methods (in particular
FDM) and does not consider ray-based modeling methods, except for analyzing the
wave-equation operators.

1.1.3 Inverse Problem

The inverse problem in exploration geophysics can be defined as fitting the observed
data (dobs) to synthetic data (d) by adjusting the model parameters (m). The synthetic
data is obtained by

d = G(m), (1.1)

where G denotes the forward modeling operator relating d to m (section 1.1.2). There
are several types of observed seismic data, i.e. traveltimes, or more generally phase
information, and waveform information (Schuster, 2017).

Objective function

The inverse problem consists of defining a scalar objective function, also called cost
function. The goal of the objective function is to evaluate the accuracy of model pa-
rameters used for modeling. It is designed such that the optimal model is a global min-
imizer/maximizer of the function. The most common choice for objective function is
measuring the differences between observed and reconstructed data in the least-squares
sense assuming an additive white noise (Tarantola, 1984).

In practice, seismic inverse problem is an ill-posed problem, meaning that an infinite
number of models approximatively matches the data (Tarantola, 2005). This is also re-
ferred as nonuniqueness of the inverse problem. Ill-posedness may result from various
reasons. In a typical seismic survey, the sources and receivers are located only over a
small portion of the zone of interest, leading to insufficient illumination of the subsur-
face. In addition, in the framework of multi-parameter reconstruction, different com-
binations of parameters may lead to the same seismic response, such that they cannot
be retrieved by only analyzing the observed data (Operto et al., 2013). Preconditioning
or regularization techniques may alleviate the nonuniqueness of the ill-posed inverse
problem and steer the solution to one with preferred characteristics, such as sparsity
promoting norms, smooth and/or blocky models (Menke, 1984; Tarantola, 2005; Scales
et al., 1990; Asnaashari et al., 2013). A way to guide the inversion is to separate the
model parameters into different spatial components as discussed in the next section.
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Scale separation

The separation of scales between the velocity wavenumbers, which are responsible for
the kinematics and dynamics aspects, was first noticed by Claerbout (1985) and Jannane
et al. (1989) as

• The smooth slowly varying (small-wavenumber) components of the model, also
called background model or macro model, governing the kinematics (traveltimes)
of wave propagation (Figure 1.2, middle);

• The singularities (large wavenumbers) of the model, also called reflectivity, gov-
erning the dynamics (amplitudes) of wave propagation (Figure 1.2, left).
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Figure 1.2: Illustration of the scale separation for the Marmousi model. The full velocity
model (left) is decomposed into a background model (middle) and a reflectivity model
(right).

In general, the seismic imaging workflow, based on the scale separation, can be
subdivided into two distinguished tasks (Wapenaar, 1996): (1) building the background
model, a highly non-linear problem, followed by (2) the reconstruction of reflectivity,
usually a linear problem. The first task is carried out by methods so called tomographic
methods, and the second one by migration methods (Mora, 1989). The quality of the
migration depends on the quality of the background model provided by the tomographic
methods. Note that both tomography (in a broad sense) and migration can be imple-
mented with a wave-equation-based approach or with an asymptotic approach. The
alternative is to recover the full model (Figure 1.2, left) without scale separation. This
method is known as Full Waveform Inversion (section 1.2).

Under the concept of scale separation, Claerbout (1985) demonstrated that the mod-
els retrieved from seismic data lack intermediate wavenumbers (black curve in Fig-
ure 1.3). However, nowadays this gap is significantly filled due to improvements from
the acquisition and processing sides: designing wide-azimuth long-offset acquisition ge-
ometries, using high-quality broadband data, and applying more advanced high-resolution
imaging methods (red and blue curves in Figure 1.3) (Nichols, 2012; Lambaré et al.,
2014).
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Figure 1.3: In black the famous sketch by Claerbout (1985) summarizing the spatial
frequencies that can be resolved from seismic data. Nowadays the mid frequency gap
(2-10 Hz) is filled by the improved resolution brought by advanced tomography methods
(red curve) and development of high-quality broadband data (blue curve) (from Lambaré
et al. (2014)).

Optimization

Mathematically, optimization is an iterative process seeking the minimization/maximization
of a objective function. There is no universal optimization algorithm but rather a collec-
tion of algorithms, each of which is tailored to a specific type of optimization problem.
The responsibility of choosing appropriate algorithm for a particular application often
falls on the user. This choice is an important one, as it may determine whether the
problem is solved rapidly or slowly and, indeed, whether the solution is found at all,
with related uncertainties or not (Nocedal and Wright, 2006). In seismic imaging, the
objective function is typically a nonlinear function of the model parameters. The main
difficulty with such scheme is that the objective function is not necessarily convex and
often plagued by many local minima. In general, there are two classes of optimization
methods: global optimization and local optimization (Gill et al., 1981). The global op-
timization methods evaluates the all candidate solutions within the whole model space
to obtain the optimal solution (Sen and Stoffa, 2013). The methods from this class such
as Monte Carlo methods (Jin and Madariaga, 1994; Cordua et al., 2012; Stuart et al.,
2019), simulated annealing (Mosegaard and Vestergaard, 1991; Dariu et al., 2003; Tran
and Hiltunen, 2012; Datta et al., 2019) and genetic algorithms (Gallagher et al., 1991;
Boschetti et al., 1996; Mazzotti et al., 2016; Luu et al., 2017) have been investigated
in geophysical inverse problems. Although robust in practice, the main bottleneck of
this class is its expensive computational cost, as it requires numerous assessment of the
objective function. Applications are mostly related to ray-based approaches, although
some tentatives have been tested in the context of full waveform inversion (Mazzotti
et al., 2016; Datta et al., 2019).

The second class of methods is local optimization methods, also referred as gradient-
based methods (Nocedal and Wright, 2006). Contrary to the first class, this class requires
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an initial starting model. The local optimization methods iteratively searches for mod-
els along the downward direction of the objective function, and usually stops at the
first minimum encountered, hopefully the global minimum. The gradient of the ob-
jective function with respect to model parameters, which can be efficiently calculated
by using the adjoint-state technique (Plessix, 2006b), determines an approximation of
the ideal direction of the model update (Newton update) at each iteration. The advan-
tage of these schemes compared to the global optimization methods is that they have
much less computational cost, which makes them more applicable in practice. However
unlike the global optimization methods, they are susceptible to be trapped in a local
minimum. Examples from this class investigated in geophysical inverse problems are
steepest-descent method (Lines and Treitel, 1984; Tarantola, 1984), conjugate-gradient
method (Mora, 1987; Crase et al., 1990; Rodi and Mackie, 2001; Hu et al., 2011), quasi-
Newton methods (Brossier et al., 2009; Ma and Hale, 2012; Wu et al., 2015) and Newton
methods (Pratt et al., 1998; Akcelik, 2003; Métivier et al., 2013). The convergence rate
for the Newtonian methods is generally faster than the gradient-based methods, but at
the expense of regularization and evaluating the impact of the Hessian matrix (second-
order derivative of the objective function) at each iteration which is computationally
expensive (both computing time and memory consumption). An alternative to Newton
methods are quasi-Newton methods, which build up an approximation of the Hessian
or its inverse from previous gradients. Implementing an efficient and correct version
of this method, such as the BFGS algorithm (named after Broyden, Fletcher, Goldfarb
and Shanno), exceeds a few lines of code (Byrd et al., 1995). The reader is referred to
Nocedal and Wright (2006) for an extensive review of optimization methods.

Before concluding this section, I would like to discuss the multi-parameter inversion,
an important aspect in this thesis.

Multi-parameter

In the concept of seismic modeling and inversion, the most basic assumption about
Earth’s subsurface is to consider an isotropic acoustic medium, parametrized by the P-
wave velocity. The main advantage of this simplification is the affordable computational
burden, as well as a relatively less ill-posed inverse problem.

From the point of view of seismic interpretation, P-wave velocity models can pro-
vide useful information for geological interpretation. But for detecting the hydrocarbon
potential of a reservoir, more realistic physical properties of the subsurface, and in par-
ticular elastic properties, are required:

Density, which is closely related to the porosity, is one of these physical proper-
ties. The importance of introducing a density or a pseudodensity term (an addi-
tional term for a better data fit) in seismic imaging has been frequently highlighted
(Plessix et al., 2013; Chen and Sacchi, 2018).
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Impedance, the product of velocity with density, mostly affects through its con-
trast the amplitude of reflected seismic waves (especially for short offsets). Tra-
ditionally this parameter is a preferred choice for the reflectivity reconstruction
(Mora, 1987; Forgues and Lambaré, 1997; Brossier et al., 2015; Zhou et al., 2015).
But contrary to widely accepted ideas, Prieux et al. (2013) showed that using P-
wave velocity and density allows us to take advantage of the isotropic radiation
pattern for P-wave velocity and hence its broadband reconstruction. Then to ab-
sorb the small coupling effect between P-wave velocity and density, we can form
impedance a posteriori.

Seismic attenuation, the term to characterize the seismic energy loss through
the subsurface media, is another physical property of the Earth. This parameter
can provide useful information for reservoir characterization, such as the physi-
cal state, the degree of saturation and lithology (Aki and Richards, 1980; Wang,
2008).

S-wave velocity contains different rock information than the P-wave velocity. The
interpretation of P-wave velocity alone has been unable to detect the gas reservoirs
because the P-wave velocities of both the gas and the surrounding shale are very
similar (Ensley, 1984). On the other hand, S-wave velocity in combination with
P-wave velocity provides additional information about lithology and pore fluid of
the subsurface assisting in detection of possible gas reservoirs (Shi et al., 2007;
Brossier et al., 2009).

Seismic anisotropy, the term to describe the directional dependency of the seis-
mic velocity, affected by fracturing and strength behavior of the subsurface rocks.
Accounting for anisotropy in seismic imaging can improve reservoir detection in
oil and gas exploration (Pratt and Shipp, 1999; Operto et al., 2009; Prieux et al.,
2011).

We cannot retrieve all the Earth’s elastic parameters from seismic data. The inverse
problem is an ill-posed problem. Including more parameters into inversion increases
the ill-posedness of the inverse problem, since more degree of freedom are considered
(Virieux and Operto, 2009). The effect of different parameter classes are coupled, mean-
ing that they have a similar impact on seismic data. This issue, known as cross-talk or
trade-off between parameters, can be analyzed by plotting radiation patterns (Figure 1.4)
(Forgues and Lambaré, 1997; Operto et al., 2013). As pointed out before, this is indeed
due to the insufficient illumination of the subsurface caused by limited acquisition at
the surface. The possible solution is to consider a hierarchical approach where we first
invert the most dominant parameters and estimate the remaining in a sequential manner
(Tarantola, 1986; Brossier et al., 2009; He et al., 2018).
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Figure 1.4: Examples of radiation patterns as a function of diffraction angle for different
parametrization in an acoustic media.

I have provided an overview of the main elements for seismic imaging. In the next
two sections, I briefly explain why full waveform inversion is the reference imaging
tool, but also that it may be complicated to obtain meaningful results. I also review the
linearized version, which is indeed the core of this thesis. The objective is to have all the
elements to understand the validity of the questions raised in this thesis (section 1.4).

1.2 Full-waveform inversion

I review the main principles as well as the practical aspects for successful applications.

1.2.1 Principles

During the eighties, Full-waveform inversion (FWI) was introduced by Tarantola (1984)
and Lailly (1983) as a non-linear inverse problem. FWI is an iterative approach which
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exploits all types of waves by minimizing the weighted least-squares differences be-
tween the observed (dobs) and reconstructed data d(m) as (Chavent, 1974; Lailly, 1983;
Tarantola, 1984)

JFWI(m) =
1

2

∥∥d(m)− dobs
∥∥2
, (1.2)

where J is the objective function and m denotes the model parameters. Exploiting all
types of waves such as direct waves, diving waves, refractions, reflections and multiples,
provides information of the full wavefield: kinematics (phase and traveltimes) and dy-
namics (amplitudes). In other words, there is no need to decompose the model in term
of kinematics and dynamic effects (scale separation, section 1.1.3).

Resolution

The resolution of FWI can be analyzed by defining the scattering wavenumber k as
(Miller et al., 1987; Devaney, 1982)

k =
2f

v0

cos
(θ

2

)
n, (1.3)

where f is the frequency, θ denotes the diffraction angle and n is the unit vector normal-
izing vector k (Figure 1.5). Several key conclusions can be derived from equation 1.3
(Virieux and Operto, 2009):

(1) Small diffraction angle induces large wavenumber (i.e. short wavelength), whereas
large diffraction angle obtains small wavenumber (i.e. long wavelength);

(2) The low-frequency content in the data resolves small wavenumbers, whereas high-
frequency content resolves large wavenumbers.

In this context, large diffraction angles (which correspond to far-offset data and thus
transmitted waves) and low-frequencies recover small wavenumbers (i.e. the large-scale
structure of the velocity model, tomographic mode). On the other hand, small diffraction
angles (which correspond to short-offset data) and high-frequencies recover the large
wavenumbers (i.e. the singularities of the velocity model, migration mode).

(3) The maximum resolution of half the wavelength can be obtained by using the
maximum frequency and recording normal-incidence reflections (θ = 0◦).

In practice, due to the limited acquisitions, the deeper part of the subsurface is investi-
gated mainly by reflected waves with limited diffraction angles.
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Figure 1.5: Wavenumber illumination. One source-receiver pair (s, r), one scattering
point x, and one frequency in the data provide one wavenumber in the image space
(equation 1.3).

Implementation

The first implementation of FWI was in the time domain (Lailly, 1983; Tarantola, 1984).
Later in nineties, it was formulated in the frequency domain (Pratt and Worthington,
1990; Pratt, 1999). In theory, if a dense series of discrete frequencies is chosen from fre-
quency spectrum, the two implementations lead to the same results. The two approaches
are indeed equivalent if all frequencies are inverted simultaneously (Pratt et al., 1998).
But the transposition in the frequency domain led to the recognition of the key role
played by frequencies to avoid local minima (see section 1.2.2). Strategies have been
proposed to select the frequencies (Sirgue and Pratt, 2004; Sirgue, 2006). In case of
sparse selection of the frequencies, the frequency-domain FWI is preferred as it circum-
vents the computational burden of the time-domain FWI; whereas for dense selection
of frequencies, the time-domain implementation is preferred as it brings the flexibility
to select one type of arrival by time-windowing (Shipp and Singh, 2002; Virieux and
Operto, 2009; Chauris, 2019). In 3D, the time-domain remains the preferred choice
(Chauris, 2019).
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1.2.2 Applicability and practical aspects
Model parameterization

In the case of multi-parameter inversion, FWI becomes highly non-linear as different
classes of parameters have different influences on the data (Virieux and Operto, 2009).
Although the combination of different parameter classes is theoretically equivalent, the
choice of the parameters is not neutral. In other words, if they are not adequately chosen,
the numerical algorithms in the inversion can be inefficient (Tarantola, 1986). For exam-
ple, the kinematics of the model (corresponding to long wavelengths/small wavenum-
bers) are governed by P- and S-wave velocities, whereas the dynamics of the model
(corresponding to short wavelengths/large wavenumbers) are governed by P- and S-
wave impedances and density. These effects are coupled as a function of the diffraction
angle (θ) (Forgues and Lambaré, 1997). As indicated in section 1.1.3, the influence (also
referred as trade-off) of different parameter classes can be studied by either plotting ra-
diation patterns and sensitivity kernels, or analyzing the eigenvalues and eigenvectors
of the Hessian (Forgues and Lambaré, 1997; Ribodetti and Virieux, 2000; Prieux et al.,
2013; Operto et al., 2013; Bharadwaj et al., 2018).

Avoiding cycle skipping

The nonconvex nature of FWI objective function is one of the main obstacles for the
successful implementation of FWI. This is due to the comparison between oscillating
signals, and complexified by the non-linear relationship between the model and data in
the FWI objective function (Gauthier et al., 1986). An important manifestation of this
nonconvexity is cycle skipping, which occurs as incorrect phases match, for example
when the model is not accurate enough to estimate the observed traveltimes with an
error less than half of the dominant period (Bunks et al., 1995; Virieux and Operto,
2009). The effect of this issue is illustrated in Figure 1.6.

Mitigating cycle-skipping has been remaining one of the primary challenges for a
successful FWI implementation and has been tackled in several ways. These can be
categorized into three main classes. The first class is based on multiscale techniques, in
which the velocity model is built over multiple inversion runs by staging over frequen-
cies in a frequency continuation strategy (Bunks et al., 1995; Sirgue and Pratt, 2004;
Brossier et al., 2009). Since lower frequencies provides wider half cycle, the inversion
starts from the lowest oscillating frequency in the observed data and then it is increased
sequentially. This will indeed provide wider basis of attraction in FWI objective func-
tion. A rule of thumb is that the longest wavelength associated to the lowest frequency
covers the deepest depth of interest.

The second class of algorithm consists of reformulation of FWI objective function
creating a much broader convex region around the global minimum than that of standard
FWI. Table 1.1 presents a non exhaustive examples of this class.
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Figure 1.6: Illustration of cycle skipping effect. Local optimization converges towards
the global minimum for the reconstructed data with a smaller time shift error (first and
second rows), whereas it converges towards a local minimum for a larger time shift error
(third row). The black arrows denote the descent directions.

The third category of methods are based on explicit scale separation, enforced in the
formulization through an alternating optimization scheme. Two famous methods from
this category are Reflection Waveform Inversion (RWI) originally referred to as Migra-
tion Based Traveltime Tomography (MBTT) (Chavent et al., 1994; Xu et al., 2012b;
Brossier et al., 2015) and Migration Velocity Analysis (MVA) (Al-Yahya, 1989; Sava
et al., 2005; Symes, 2008b). Both methods use reflection data and take the form of two
nested optimization problems:

• In the inner loop, a reflectivity model is determined by minimizing the data misfit
given a fixed background velocity model. This problem is linear or quasi-linear
(section 1.3);

• In the outer loop, given the reflectivity model obtained in the inner loop, the
background velocity model is determined by minimizing a new (data- or image-
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Table 1.1: Non exhaustive examples of methods that mitigate cycle-skipping by modi-
fying/reformulating the FWI objective function.

Method Description
Optimal-transport-
distance-based
FWI

Minimizes a new objective function based on optimal
transport distance using proximal splitting techniques
(Métivier et al., 2016a,b; Messud et al., 2021)

Laplace- and
Laplace Fourier-
domain FWI

The damped wavefields are included to constrain the ob-
jective function (Shin and Min, 2006; Kim et al., 2013)

Crosscorrelation-
and deconvolution-
based FWI

Phase shifts are imparted into the reconstructed traces
(Van Leeuwen and Mulder, 2010; Luo and Sava, 2011;
Zhang et al., 2018)

Adaptive waveform
inversion

Analogous to deconvolution-based FWI, but uses Wiener
filters to match the observed and reconstructed data
(Van Leeuwen and Mulder, 2010; Luo and Sava, 2011)

Extended FWI

Enlarges parameter search space by penalizing FWI ob-
jective function with a least-squares norm of the wave-
equation error (van Leeuwen and Herrmann, 2013, 2015;
Biondi and Almomin, 2014; Wang et al., 2016a; Huang
et al., 2018a,b; Aghamiry et al., 2020a)

domain) objective function which evaluates the quality of the data fit or focusing.
This problem is non-linear. But there are reasonable proofs that the objective
function is convex (Symes, 2008b).

Although RWI and MVA are similar in spirit, they differ partly in the inner and outer
loop:

• In the inner loop, RWI minimizes the data misfit at zero- or short-offsets, whereas
MVA minimizes the data misfit at all offsets;

• In the outer loop, RWI minimizes the same objective function as the inner loop
(data domain) but at far offsets, whereas MVA minimizes a new objective function
defined in the model domain, using a focusing or coherency criterion.

The main principle in MVA (also known as image-domain method) is that the seismic
data are redundant: for example, a migrated image can be obtained per each shot position
(Al-Yahya, 1989). The image-domain objective function is evaluated on panels called
Common Image Gathers (CIGs) representing a section of the reflectivity volume as a
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function of depth and of an extra parameter representing the redundancy of seismic data
(Symes, 2008b). This scheme will be more detailed in the following sections.

In this thesis, I will concentrate on the linearized full-waveform inversion (migration
part), now presented.

1.3 Linearized full-waveform inversion
Seismic migration by definition, being based on scale separation, is a technique for
imaging the subsurface structure from observed seismic data. As explained later, the
straightforward implementation only provides qualitative (structural) results. This is
insufficient for oil and gas exploration which also needs amplitude information (quanti-
tative information) to reconstruct the model parameters, here mainly the contrasts. In the
eighties, Lailly (1983) and Tarantola (1984) recognized that migration could be formu-
lated as an inverse problem. In this section, I first briefly review the qualitative migration
methods, and then continue with quantitative aspects as a linearized waveform inversion
problem. In this thesis, I mainly develop the wave-equation-based migration scheme.
However, I will also briefly review ray-based migration methods since they played an
essential role not only in the historical development of migration algorithms, but also
more recently in the development of wave-equation-based operators (ten Kroode, 2012;
Hou and Symes, 2015, 2017; Chauris and Cocher, 2017).

1.3.1 Migration: history
Under the Born approximation, the primary refection data (δd) linearly depend on the
reflectivity model (δm) (Born, 1926; Beydoun and Tarantola, 1988; Symes, 1995):

δd = Fδm, (1.4)

where F denotes the linearized forward modeling operator, i.e., Born modeling operator.
Standard migration operator can be regarded as the adjoint of the linearized forward
modeling operator as:

δm = F T δdobs, (1.5)

where T denotes the transpose (adjoint) operator, and δdobs is the observed primary
reflections.

The earliest form of migration techniques was based on ray theory (Gardner et al.,
1974a; French, 1975; Schneider, 1978; Keho and Beydoun, 1988). In ray theory, an
asymptotic approximation of the exact solution of the wave equation is obtained by
searching for a solution in the form of a ray series (Červenỳ et al., 1977). The major
drawback of such theory is the high frequency assumption, which leads to incorrect
estimation of the amplitudes in the vicinity of caustic points and complex structures
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of the subsurface. Later, wave-equation-based migration techniques have been pro-
posed by using finite-difference solution of the wave equation, instead of approximating
it by ray tracing. Depending on the definition of lateral variations of velocity, wave-
equation-based migration can be further classified into one-way wave-equation migra-
tion (OWEM) (Claerbout, 1971, 1985), also known as wavefield extrapolation migration
(WEM), and two-way wave-equation migration, also known as reverse time migration
(RTM) (Baysal et al., 1983; McMechan, 1983; Biondi and Shan, 2002).

Among different migration algorithms, RTM has become the method of choice for
seismic imaging in complex geologic structures (Baysal et al., 1983; Mulder and Plessix,
2004). The imaging principle at the core of the RTM is that the reflectors exist where
the source and receiver wavefields coincide in time and space (Claerbout, 1971). This
concept is also known as Imaging Condition. The most common imaging condition
is the zero-lag crosscorrelation between the forward- and backward-propagated wave-
fields. Therefore, suppose that we have estimated the source wavelet of the observed
data, a standard RTM algorithm can be summarized into three steps:

• Forward propagation of the source wavelet from the source position to obtain the
source wavefield (Figure 1.7, left);

• Back propagation of the data residuals from the receiver positions to compute the
receiver wavefield (Figure 1.7, middle);

• Application of the imaging condition to the source and receiver wavefields to ob-
tain an image of the subsurface (Figure 1.7, right);

This algorithm is performed over all seismic sources in the acquisition, by stacking all
contributions to increase the signal to noise ratio. Instead of summing over images,
one may asses the consistency between the estimated images. This is indeed the basic
principle of MVA mentioned in section 1.2.2.

Conventionally, RTM can be formulated as the adjoint of the linearized forward
modeling operator, i.e., adjoint Born modeling operator. The adjoint operator (equa-
tion 1.5) can only correctly calculate kinematics (phase), and does not preserve ampli-
tudes: if one performs a new modeling from the RTM results, the shots are not correctly
reconstructed in terms of dynamics. In practice, the seismic data are also subject to
significant aliasing, noise, irregular source and receiver sampling and finite recording
aperture: the final migrated images suffer from artifacts and low-resolution (Mulder
and Plessix, 2004). In other words, the migrated images obtained by application of the
adjoint operator, are not the solutions minimizing the objective function for linearized
waveform inversion.
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Figure 1.7: A standard RTM computation animation. Forward propagation of the source
wavelet (left panels), back propagation of the observed data (middle panels) and appli-
cation of imaging condition (right panels).

1.3.2 True-amplitude migration: an iterative scheme

To remove the acquisition footprint and to improve the quality of seismic imaging, least-
squares migration (LSM) has been proposed to seek a quantitative inverted image, which
generates the simulated data best matching the amplitudes of the observed data (LeBras
and Clayton, 1988; Nemeth et al., 1999). Since the beginning of the nineties, LSM
has been implemented using ray-based migration (Lambaré et al., 1992; Nemeth et al.,
1999; Duquet et al., 2000; Fomel et al., 2008), OWEM (Kühl and Sacchi, 2003; Clapp
et al., 2005; Zhu et al., 2018) and RTM (Dai et al., 2012; Zhang et al., 2015b; Xue
et al., 2016). Assuming a fixed estimate of the background model (m0), LSM objective
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function consists of determining the model perturbation (δm) which best reconstructs
the observed primary reflection (δdobs):

JMig(δm) =
1

2

∥∥δd− δdobs∥∥2
, (1.6)

where δd = Fδm represents the synthetic reflection data estimated by Born modeling
from δm. The optimal solution is obtained when the gradient ∂JMig(δm)/∂δm is equal
to zero, such that (Lailly, 1983; Tarantola, 1984):

δmtrue = (F TF )−1δm. (1.7)

Here, F TF is the Hessian matrix. Since the Born operator is not unitary, the Hessian
matrix is not equal to the Identity matrix. Therefore, the migrated δm is considered as
a Hessian-blurred version of the true-amplitude image δmtrue (Schuster, 1993; Nemeth
et al., 1999; Chavent and Plessix, 1999).

Sensitivity to background velocity model

LSM is formulated based on the assumption that an accurate background model velocity
model is available to correctly predict the traveltime (kinematics) of the observed data.
The amplitude differences between the observed and modeled data are then matched
through an iterative inversion process. The quality and accuracy of migration images
depends greatly on the accuracy of the background velocity model, such that errors in
this background model can lead to an incoherent, defocused migrated images.

To partially reduce the sensitivity of LSM to background velocity model, Luo and
Hale (2014) proposed a simple modification to the objective function, to minimize it
after correcting for nonzero traveltime shifts between the reconstructed and observed
data using dynamic warping. An alternative option is to implement LSM in the extended
domain (Symes, 2008b; Li and Chauris, 2018). The most recent conventional choice for
the extension is the subsurface offset (Rickett and Sava, 2002; Hou and Symes, 2018),
introduced as an offset between the sunken sources and receivers by Claerbout (1985).
The other alternatives for extension can be time shifts (Sava and Fomel, 2006; Yang
and Sava, 2011) and scattering angle (Rickett and Sava, 2002; Sava and Fomel, 2003).
This extension potentially decouples the data fitting in LSM from the choice of the
background velocity model, and provides the key principle of MVA methods: even in
an incorrect background velocity model, no information is lost during migration of the
data. This implies that the data can be reconstructed in the same background velocity
model using the migrated volume and that the quality of the background velocity model
can be investigated equivalently in the data and image domains (Symes, 2008b; Chauris
et al., 2017).
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Multi-parameter LSM

Recent advances in high-performance computing had promoted LSM to extend from
pure-acoustic approximation to more realistic approximation of the Earth, such as variable-
density acoustic (Yang et al., 2016a), anisotropic acoustic (Duveneck et al., 2008; Zhang
et al., 2011; Duveneck and Bakker, 2011), viscoacoustic (Dutta and Schuster, 2014; Dai
et al., 2015), Elastic (Stanton and Sacchi, 2017; Feng and Schuster, 2017; Chen and Sac-
chi, 2018), anisotropic elastic (Rocha and Sava, 2018; Yang et al., 2019b) and viscoelas-
tic (Guo and McMechan, 2018; Hu et al., 2019). Although the acoustic approximation
can be questioned in the framework of LSM due to the unreliable amplitudes in the
modeling engine, one advantage of acoustic LSM is dealing with less computationally
expensive forward modeling than in other cases. Moreover, pure-acoustic LSM is better
posed than multi-parameter LSM, thus it does not suffer from cross-talk artifacts as only
the dominant parameter P-wave velocity is involved in the inversion. This feature is the
same as FWI (Virieux and Operto, 2009).

Cost-effective LSM

The major drawback of LSM is its computational cost as it should be solved iteratively.
Each iteration of LSM requires an application of forward modeling (also known as dem-
igration) and adjoint (migration) modeling operators. During time, different techniques
have been proposed to possibly accelerate the convergence rate of LSM, such as multi-
source approach with either random-phase encoding or plane-wave encoding (Dai et al.,
2012; Dai and Schuster, 2013; Xue et al., 2016), and scaling the linear system with
proper pre-conditioners such as the approximate inverse normal operator, also known as
Hessian operator (Shin et al., 2001; Rickett, 2003; Herrmann et al., 2009; Huang et al.,
2016). In this thesis, I further investigate this latter aspect.

1.3.3 An alternative to iterative scheme: direct inversion

An interesting alternative to the iterative scheme is the direct inversion, which can be
achieved by replacing migration, the adjoint of the Born modeling operator, by its pseu-
doinverse formula (inverse under some conditions detailed below). This formula makes
the Hessian matrix close to a Dirac distribution leading to a better conditioned problem.
It was initially proposed for ray-based migration (Beylkin, 1985; Bleistein, 1987; Lam-
baré et al., 1992), and later for WEM (Zhang et al., 2003, 2007) and more recently for
RTM (ten Kroode, 2012; Hou and Symes, 2015, 2017; Duprat and Baina, 2016; Chauris
and Cocher, 2017; Li and Chauris, 2018).

It historically started with the asymptotic approximation (ray-based formulation) via
the generalized Radon transform, i.e., not summing over linear or parabolic curves,
but along isochrones (Beylkin, 1985). Migration/inversion formulas, also known as
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true-amplitude prestack depth migration (PSDM), have been proposed either based on
ray+Born or ray+Kirchhoff linearized approximations to consider quantitative proper-
ties of reflection coefficients (Bleistein, 1987; de Hoop and Bleistein, 1997). In both
approaches, the model was split into a unknown reflector/diffractor component and the
supposed known background component where the ray tracing was performed. But,
they differed by the description of the perturbation components of the model, in which
in terms of velocity and density perturbations for ray+Born approach, or in terms of
specular reflectivity, for the ray+Kirchhoff approach (Lambaré et al., 2003; Operto et al.,
2003).

The methods based on RTM are the recommended approaches as they solve the full
wave equation and are able to handle more properly steep dipping angles and complex
velocity models. As for the ray-based approaches, the pseudoinverse formula for RTM
is expressed in the concept of extended model domain, such that the dimensions for
model and data spaces are equivalent. This extension is either surface-oriented (i.e. shot
position) (Duprat and Baina, 2016; Li and Chauris, 2018) or subsurface-oriented (i.e.
subsurface offset) (ten Kroode, 2012; Hou and Symes, 2015, 2017; Chauris and Cocher,
2017). Quantitative results can be obtained only within a single iteration. Note that the
one proposed by ten Kroode (2012) is based on Kirchhoff modeling. This thesis mainly
focuses on the pseudoinverse formula proposed by Chauris and Cocher (2017), which is
based on subsurface extension.

It appears that the direct inversion is very similar to the standard migration scheme,
with only additional weights in the imaging operator (Hou and Symes, 2015, 2017;
Chauris and Cocher, 2017). Although the derivations are performed under the high-
frequency approximation, the final formulas do not contain any ray quantities but only
time and spatial derivatives, which keeps the implementation simple and explicit. In
Chapter 2, more details will be provided. It is remarkable that such inversion formulas
exist. These direct approaches can also be used as a pre-conditioner to accelerate LSM
(Hou and Symes, 2016a; Chauris and Cocher, 2018). Another interesting application
is to replace LSM with direct inverse in the inner loop of MVA, to achieve so called
inversion velocity analysis (IVA) (Hou and Symes, 2016c; Chauris and Cocher, 2017;
Li and Chauris, 2018). The effectiveness of direct inverse as a preconditioner has also
been investigated for FWI (Métivier et al., 2015; Hou and Symes, 2016b). The possible
technology transfer from IVA to RWI has not been investigated yet.

Although the pseudoinverse formula minimizes the objective function even in the
presence of incorrect background velocity model, the estimated CIGs are sensitive to the
background velocity: energy is focused at zero subsurface-offset for the correct velocity
model and spreads over non-zero offsets otherwise. We illustrate this with a numerical
result (Figure 1.8) extracted from Chapter 3. This is indeed the concept of subsurface-
oriented MVA/IVA objective function, which penalizes the defocused energy in the CIG
(Figure 1.8c) to update the background velocity model.
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Figure 1.8: Constant density acoustic media. a) Observed data for a single layer Earth
model and the corresponding CIG inverted via pseudoinverse Born modeling operator
with b) correct and c) incorrect background model (high velocity).

Limitations

The derivative of pseudoinverse Born operator is based on some important hypotheses
in which some of them impose limitations in practice. These limitations consists of (ten
Kroode, 2012; Hou and Symes, 2015, 2017; Chauris and Cocher, 2017):

• Assumption of infinite dense source/receiver acquisition geometry;

• Absence of turning waves;

• Absence of grazing rays (horizontal tangent direction for the rays connecting a
source/receiver location to a subsurface location);

• Assumption of constant-density acoustic media.

In this work, I will mainly address the last issue related to constant-density assumption.

1.4 Motivation, strategy and thesis organization
In the previous sections, I have first reviewed different aspects of seismic imaging: seis-
mic data, scale separation, modeling and inversion. Then, I have detailed the seismic
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imaging methods. This thesis mainly focuses on the wave-equation-based methods in
the context of linearized inversion. There are two major closely related objectives cur-
rently under development: (1) the estimation of multi-parameters beyond the constant
density acoustic case; (2) derivation of efficient pre-conditioners for a fast LSRTM. In
section 1.3.3, I reviewed the direct inversion as an alternative to iterative scheme. The
limitations of pseudoinverse Born operator are also reviewed. The consequence of vio-
lation of these limitations has not been fully understood yet. For example:

Q1 : How does the pseudoinverse operator behave when the input data are not dense
at the surface (typically only a few sparse shot gathers)?

Q2 : Is the approach always valid in complex media as the theory seems to indicate?

In reality, density of the Earth is not homogeneous. Although a smooth density
model does not affect the kinematics, it modifies the amplitude of the seismic waves,
which may lead to complex amplitude variations with offset/angle (AVO/AVA) yielding
the question:

Q3 : How does the density and/or elasticity variations affect the final migrated re-
sult obtained by direct inverse? How to develop a direct inverse for the multi-
parameter case?

We illustrate this issue with a numerical result (Figure 1.9) extracted from Farshad and
Chauris (2020b). We compare the CIGs (ξ) obtained by application of the pseudoin-
verse operator using the correct background models (both velocity and density). As
expected, in the case of constant density, the energy is focused around zero subsurface
offset (Figure 1.9c); whereas it is defocused in case of variable density even in presence
of correct background models (Figure 1.9f). The quality of the focusing is measured by
energy of the (h/hmax)ξ for each CIG (Figure 1.9d-h), where h denotes the subsurface
offset. The message illustrated in Figure 1.9 is the following: energy is expected to be
focused around h = 0 for the correct background velocity model. This is not the case in
the presence of density variations that would be interpreted as an incorrect background
velocity model.

We notice that the same observation was made by Zhou (2020), who proposed the
guidelines for the parameters to be used in MVA/IVA. We extracted an image from Zhou
(2020) (chapter 5), about the application of the IVA on real data set (Figure 1.10). As
Zhou (2020) mentioned in the discussion part, some of the inconsistent events in the
CIGs (indicated by dashed ellipses in Figure 1.10b) probably correspond to the impact
of the density perturbations.

As discussed in section 1.1.3, adding more parameters into the inversion increases
the ill-posedness of the inverse problem (Virieux and Operto, 2009). Ill-posedness is an-
other significant pathology of multi-parameter pseudoinverse Born operator. Overcom-
ing this issue requires robust and versatile regularized optimization approaches, which
rises another question:
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Figure 1.10: Twenty iterations results of IVA for a maximum frequency equal to 10 Hz.
a) background velocity model, b) extracted CIGs from x = 7, 13, 19, 25, 30 km, c)
perturbation velocity model and d) full velocity model equal to the sum of (a) and (c).
Dashed ellipses in (b) indicate the defocused energy may be related to density effects
(from Zhou (2020)).

Q4 : How to incorporate regularization terms in the multi-parameter direct inverse
case?

Our objectives of the thesis are mainly answering the mentioned question. They can
be summarized as: (1) investigating the limitations of pseudoinverse operator, (2) ex-
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tending the approach beyond pure-acoustic approximation to achieve an efficient multi-
parameter imaging tool, (3) incorporating regularization terms to suppress various mi-
gration artifacts (i.e. including the ones correspond to parameters cross-talk, sparse shot
acquisition geometry, noisy data and complex structures), (4) utilizing multi-parameter
pseudoinverse operator as a preconditioner for LSRTM and (5) validating our approach
on a real dataset.

1.4.1 Thesis organization
The thesis consists of 5 main parts as follows (Figure 1.11):

• Part I – Background (Chapters 1 and 2),

• Part II – Direct methods – Beyond constant-density acoustics (Chapters 3 and 4),

• Part III – Iterative methods (Chapters 5 and 6),

• Part IV – Real data application (Chapter 7),

• Part V – Conclusions and Perspectives (Chapter 8).

These parts are broken down into chapters, summarized as follows:

• In Chapter 2, I review the essential ingredients in MVA and different quantita-
tive imaging schemes. Further, I review the recent advances, in particular the
introduction of direct inverses for a more robust approach. Then I analyze the
implementation and practical issues. Finally, I give a brief overview of real data
applications, before discussing different perspectives and challenges. This study
has been submitted to Geophysics.

• In Chapter 3, I extend the applicability of direct inverse from constant-density to
variable-density acoustic media. I propose a weighted least-squares method as a
generalization of the previously proposed “two-trace method”. Using synthetic
examples, I compare and discuss these approaches. This study has been published
in Geophysics.

• In Chapter 4, I extend the applicability of direct inverse from acoustic to elastic
media. I restrict the extension to marine environment, with the recording of pres-
sure waves at the receiver positions. Through synthetic numerical experiments,
I first demonstrate the consequences of acoustic approximation on elastic data.
Then I illustrate that our method can simultaneously invert for elastic parameters
in the presence of complex uncorrelated structures, inaccurate background mod-
els, and Gaussian noisy data. This study has been published in Geophysics.
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• In Chapter 5, I show how to implement sparsity-promoting regularization terms
in variable-density direct inverse. The fast iterative shrinkage-thresholding algo-
rithm is used to carry out the optimization problem. Through synthetic numerical
experiments, I investigate the robustness of my method against different migra-
tion artifacts including the parameter crosstalk, interfaces with abrupt truncations,
sparse shot acquisition geometry, noisy data, and high-contrast complex struc-
tures. This study has been published in Geophysics.

• In Chapter 6, I show how to leverage the variable-density direct inverse as a pre-
conditioner to accelerate the convergence rate of LSRTM. I numerically assess
the capability of the proposed method in mitigating parameter cross-talk while
accelerating the convergence rate. Furthermore, I analyze the shape of the multi-
parameter Hessian matrix without and with preconditioner. This study has been
published in Computational Geosciences.

In Chapter 7, I apply the variable-density direct inversion scheme to the 2D marine
Nankai trough real dataset. I present the preprocessing steps and the advantages of
including density parameter in the imaging process. This study has been published
in Geophysical Journal International.

In Chapter 8, I summarize the main conclusions and propose issues inviting future
research.

The interaction between the thesis chapters is illustrated in Figure 1.11. Chapters 2,
3, 4, 5, 6 and 7 of this thesis have been published/submitted in different journals, mean-
ing that each chapter is self-contained and can be read in isolation.

1.4.2 Contributions

Starting from an existing finite-difference acoustic forward/adjoint propagation code in
Fortran, I have built an interface connecting Python and Fortran languages. This pro-
vided a balance between computational efficiency (Fortran) and implementation time
and effort (Python). I have extended the constant-density pseudoinverse Born opera-
tor to account for density variations from the theoretical and numerical points of view.
Then I have developed P-SV elastic forward, adjoint and pseudoinverse modeling op-
erators. In both acoustic and elastic cases, the modeling engine for the solution of the
2-D wave equation is staggered-grid finite-difference with flexible accuracy in time and
space implemented with perfectly matched layers (PML) absorbing boundary conditions
(Bérenger, 1994). The implementation of adjoint operators has been verified with the
dot-product test (Claerbout, 2014) and gradient derived with the adjoint-state method
(Plessix, 2006b) have been compared with finite-difference computations. My main
contributions are
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• extending the pseudoinverse Born operator from constant-density acoustic to variable-
density acoustic and variable-density elastic media, as detailed in Part II through
Chapters 3 and 4,

• implementing sparsity-promoting regularization terms to suppress various migra-
tion artifacts, as detailed in Part III through Chapter 5,

• utilizing pseudoinverse Born operator as a preconditioner in LSRTM, as detailed
in Part III through Chapter 6,

• validating the results and investigating the effect of density variations using a real
dataset, as detailed in Part IV through Chapter 7.

As explained in this thesis, an important contribution is to introduce a scheme to han-
dle density and regularization, with almost no additional CPU/memory costs: that part
indeed does not imply the resolution of direct/adjoint wave equation resolution (more
details in Part II and III).

Part of the results has been presented/accepted in
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Résumé

Ce chapitre comprend l’article intitulé « Seismic automatic wave-equation Migration
Velocity Analysis – an overview », soumis pour publication à la revue Geophyics. Il
contient quelques nouvelles notions extraites des résultats des travaux présentés dans les
chapitres 3,4, 5 et 6.
Les techniques d’Analyse de Vitesse par Migration (MVA en anglais) ont pour but de
déterminer les structures du sous-sol en deux étapes. Dans un premier temps, l’objectif
est d’obtenir une image de la subsurface (partie migration). Dans un second temps, il
s’agit d’analyser la qualité de cette image pour mettre à jour le macro-modèle (partie
tomographie). Un avantage majeur de cette approche est que la fonction objective asso-
ciée est en principe convexe et que l’optimisation entièrement automatique. Cependant,
il existe une grande différence entre les propriétés théoriques et les aspects pratiques :
seules peu d’applications automatiques sur données réelles ont été publiées et l’Analyse
de Vitesse par Migration n’est pas une routine standard dans l’industrie. Nous donnons
un aperçu de trois grands aspects pour expliquer le fossé entre théorie et pratique. (1)
Nous revisitons le principe de focalisation qui dit que la focalisation est obtenue pour le
vrai macro-modèle. Ce n’est pas vrai en général, si par exemple la compensation pour
l’illumination irrégulière du sous-sol n’est pas corrigée lors de la phase d’imagerie. Les
propriétés de convexité sont associées à des méthodes qui sont très sensibles aux bruits
cohérents. (2) Pour les applications standards, la physique la plus simple est employée
(cas acoustique à densité constante), avec l’hypothèse de diffraction simple : c’est un
second facteur limitant. (3) Nous discutons aussi des aspects d’implémentation, avec
actuellement des besoins prohibitifs pour les applications 3D réalistes. Dans chaque
cas, nous proposons des solutions. Nous donnons des arguments comme quoi les appli-
cations 3D ne sont possibles que si les stratégies les plus efficaces sont combinées dans
une seule approche. Les travaux futurs incluent des pré-traitements spécifiques sur les
panneaux de focalisation pour traiter le bruit cohérence et la décimation du nombre de
points de tir. Plus de recherche est aussi nécessaire pour considérer le champ d’onde
complet.
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Seismic image-domain wave-equation-based methods – an overview
Hervé Chauris and Milad Farshad

Geophysics, 2021, submitted

2.1 Abstract
Migration Velocity Analysis techniques aim at determining the structure of the subsur-
face in a two-step process. It consists of first obtaining an image of the subsurface
(migration part) and then analyzing its quality to update the macro-model (tomographic
part). As a major advantage, the associated objective function is expected to be convex
and the optimization process be fully automatic. A large discrepancy exists between
the attractive theoretical properties and the practical applications: only few automated
real data applications have been yet published and Migration Velocity Analysis is not a
routine processing within the industry.
We review here three main aspects to explain such a gap between the theory and the
practice. (1) We revisit the focusing principle claiming that the focusing is obtained
for the correct macro-model. This is not true in general if for example the compensa-
tion for uneven illumination is not properly taken into account during the derivation of
the image. The expected convex properties are associated with methods that are most
sensitive to coherent noise. (2) For the standard applications, the simplest physics is
considered (constant-density acoustic wave equation), with the assumption of a single
scattering approximation: this is a second major limiting factor. (3) We also discuss
the implementation aspects, with currently an excessive computational requirement for
realistic 3D applications. In each case, we propose some remedies. We argue that 3D
applications will only be possible if the most advanced and efficient strategies are com-
bined within a single approach. Future work includes some specific preprocessing steps
on the focusing panels to handle coherent noise and shot decimation. More research is
also needed for considering the complete wavefield.

2.2 Introduction
Migration Velocity Analysis (MVA) family is a two-step technique to image the sub-
surface: in a given macro-model, seismic images are first derived from different subsets
of the input data. The optimal result is then obtained when these images are consis-
tent (Symes, 2008b). Despite the fact that such approaches are limited to the use of
reflected waves, the MVA principle is simple and attractive as an automatic subsurface
imaging tool. For some specific objective functions, the formulation is expected to have
a convex shape, meaning that the minimum obtained with a gradient-based approach is
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the global minimum (Gockenbach and Symes, 1995; Symes, 1998a, 2008b; Stolk and
Symes, 2003; Sun and Schuster, 2001); the method fully exploits the data redundancy
for dense acquisition systems; individual reflectors are more easily interpretable in the
image domain than in the original data domain; the migration part is an efficient stack-
ing tool to enhance the signal to noise ratio; finally, MVA approaches do not necessarily
need a picking step. But currently, no fully automated wave-equation-based MVA ap-
proaches really exist at an industrial scale, at it is the case for Reverse Time Migration
(RTM) or Full Waveform Inversion (FWI) (Etgen et al., 2009; Virieux and Operto, 2009;
Fichtner, 2010). In this introduction, we first give a general MVA history in brief. We
then discuss a few 3D real data MVA applications published in the literature, as a moti-
vation for this work. The next section (“MVA principle”) provides more technical details
on the automatic wave-equation-based MVA approaches mainly considered here.

The first general MVA approaches were defined in the ’70s (Gardner et al., 1974a;
Sattlegger, 1975). We may underline four main alternatives: ray-based versus wave-
equation-based imaging schemes, picking versus semblance, different kinds of focusing
panels and from simple to more complex velocity models. Initially, ray-based meth-
ods were developed for the velocity model building from the analysis of reflected data
(Woodward et al., 2008). Later, the wave-equation approaches were introduced for
which the sensitivity kernels are frequency dependent (Woodward, 1992). The his-
torical approaches include a picking phase of the reflected events to characterize the
quality of the residual move-out, (among others Al-Yahya (1989); Liu and Bleistein
(1995); Liu (1997); Lafond and Levander (1993); Eckhardt (1994); Wang et al. (1995);
Audebert et al. (1997); Meng et al. (1999b,a)). Then fully automatic schemes were de-
veloped, through semblance analysis or more generally focusing principles. The third
aspect is the precise definition of the focusing panels, also known as Common Image
Gathers (CIGs). They are a function of an extension parameter, with several choices,
from shot or surface offset coordinate (surface binning), to angle, time-lag, or subsur-
face distance (survey sinking) (Clapp and Biondi, 2000; Biondi and Symes, 2004; Sava
and Biondi, 2004; Symes, 2008b, 2009). Finally, the applications ran from 1D acoustic
(Symes, 1993; Gockenbach and Symes, 1995; Symes, 1998b; Li and Symes, 2007) to
3D anisotropic visco-elastic models, from one-way (Shen and Calandra, 2005; Albertin
et al., 2006) to two-way wave equation approaches (Kern and Symes, 1994). All these
notions will be detailed in the next section, with a particular attention to the picking-free
wave-equation-based approaches.

We now provide an overview of some 3D real data applications published in the lit-
erature. We indicate the main aspects that let the approach feasible, without entering to
much in the technical details but to underline some of the compromises for a successful
application. One can first note that only a few wave-equation-based MVA approaches
have been published with real data applications, here mainly 2D applications (Chauris
and Noble, 2001; Mulder and ten Kroode, 2002; Alkhalifah, 2005; Shen and Symes,
2008; Weibull and Arntsen, 2013, 2014; Mulder, 2014; Li et al., 2014; Lameloise et al.,
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2015; Zhang et al., 2015a; Diaz and Sava, 2017; Li et al., 2019; Zhou, 2020), including
passive data (Shabelansky et al., 2015; Witten and Shragge, 2017). The 3D real data
applications are even less frequent. Guerra and Biondi (2011) discussed a North Sea
example in the presence of salt. As a trade-off, they assumed a sparse reflector distribu-
tion with the use of a generalization of the exploding reflector technique. Yang and Sava
(2013) presented some results on another North Sea OBC data set, with a total of 250
receiver gathers, used for reciprocity reasons as shot gathers during the processing in
practice. For efficiency reasons, Yang and Sava (2013) rely on a 1D extension (time-lag
extension, defined in the next section), instead of a 2D extension that would theoreti-
cally be needed here. The second important ingredient for the 3D application was to
select sparse zones where the focusing is evaluated, reducing the computational cost
and memory requirements. On a Gulf of Mexico marine data set in a salt context, Tang
and Biondi (2013) used a target-oriented MVA approach, assuming the macro-model to
be known outside of the zone of interest. Li et al. (2016) presented a 3D application
in the same geological context. The interesting aspect is the VTI anisotropy. Once the
migrated images have been obtained, only one third of the total number of shots are used
to update the macro-model. Moreover, they used a specific focusing criteria (the stack
power maximization approach detailed in the next section) that requires a relatively cor-
rect initial macro-model. Finally, Shen et al. (2018) performed MVA on a 3D North Sea
data set, with the evaluation of velocity and attenuation fields in the context of shallow
subsurface gas chimneys. The one-way wave-equation was used to limit the CPU cost,
reducing the maximum possible dips to be imaged.

This short review, without being exhaustive nor without yet entering into the details,
has indicated that only rare 3D automatic MVA real data applications at an large scale
are presented. In each case, a compromise was required between quality and computa-
tional costs (Fei et al., 2009). The main objective in this paper is to better understand if
the fundamental reasons are related to theoretical or practical issues. The article is orga-
nized as follows: we first review the MVA principles (wave propagation, imaging prin-
ciple, focusing panels and quality criteria), concentrating on the wave-equation-based
picking-free schemes. In the next three sections, we then discuss the current limitations
and possible remedies along three axis: (1) assumed focusing principle for the correct
macro model, (2) limited physics and (3) implementation aspects. In all cases, we start
with known issues and propose some existing or to be further developed elements for
addressing them. We conclude by discussing a plan for the future developments, from
simple modifications to more complex investigations.

2.3 MVA principle
This section provides the main MVA elements. In particular, it introduces the notion
of “extended domain” to analyze the quality of the focusing panels. The limitations are
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analyzed in the three next sections. MVA is a two-step process (Symes, 2008b, 2009;
Sava and Biondi, 2004). In the first stage, the input data, consisting of only reflected
waves, is migrated to obtain partial images. For a given spatial position at the surface,
CIGs are created. The quality of the focusing panels is then analyzed to evaluate the
consistency between the partial images (Algorithm 1).

Algorithm 1: MVA algorithm

1 Outer loop: for each tomographic iteration do
2 Inner loop: for each reflectivity update do
3 Construct (iteratively) the partial images

4 Evaluate the quality of the focusing
5 Update the macro-model

For the inner loop, the reference or macro-velocity model is fixed. Migrated images
are obtained by combining source and receiver wavefields through an imaging condition
(Gardner et al., 1974a; Yilmaz, 2001). We refer to Etgen et al. (2009) for a review on
the migration part. In this article, we mainly concentrate on full-wave propagation with
two-way operators, including Reverse-Time Migration and its variants (Baysal et al.,
1983; McMechan, 1983; Whitmore, 1983). For each shot, the incident wavefield and
the backward receiver wavefield should be computed. Claerbout (1971) proposes two
imaging condition: the cross-correlation and the deconvolution one. The impact of the
imaging condition is analyzed in the “Focusing principle” section.

For a possible evaluation of the quality of the macro-model used for migration, it
is essential to design a reversible mapping between the data and image domains: the
application of these operators between the two domains should preserve the information
contained in the signal (Symes, 2008b). In practice, it means that the dimensions of
the data and image spaces should be the same. For example in 3D, the data domain is
described by five variables (sx, sy, rx, ry, t) (the two source and receiver positions, the
time axis), where the standard model space by only three x = (x, y, z). The extended
model space depends on (x, y, z, e), where e is an extended parameter. Several possibil-
ities have been proposed (Sava and Vasconcelos, 2011). The binning-based approaches
include common shot and offset schemes. [1] Common shot migration (e = (sx, sy)
in 3D) is the original strategy (Kern and Symes, 1994; Huang, 2016). It is directly
compatible with the acquisition design and the traditional shot-oriented wave-equation-
based implementation. [2] Common offset migration (e = (sx− rx, sy − ry)) is another
surface-oriented approach (Deregowski, 1990). It does not suffer from edge effects but
is not efficient for wave-equation-based approaches, at least for a limited number of sur-
face offset H values. The other strategies (survey-sinking) are subsurface-oriented. In
particular, [3] common angle migration (e = (θ, ϕ)) refers to the two imaging angles
in the depth domain in 3D (Xu et al., 2001; Rickett and Sava, 2002; Sava and Fomel,
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2003; Biondi and Symes, 2004; Stolk and Symes, 2004). A more recent alternative is the
subsurface offset (or space lag) e = h, different from the surface offset H . The imaging
condition considers two different positions x − h and x + h, where h = (hx, hy) usu-
ally in 3D. Finally, Sava and Fomel (2006); Yang and Sava (2011) also proposed a time
shift extension τ , with a 1D extension. The recommended choices are discussed in the
“Focusing principle” section.

Let ξ(x, e) be the migrated image at a position x and for a given extension e. It
depends on the observed reflected data in a linear way but in a non-linear way on the
macro-model. A CIG panel is defined for a fixed (x, y) position and varying (z, e)
values. As pointed out by Montel and Lambaré (2019); Montel and Lambaré (2019), the
shape of the events in the CIGs depend on the way the panels are built. For an intuitive
understanding, we compare from the high frequency asymptotic point of view the shape
of events for different homogeneous macro-models, corresponding to under-estimated,
correct and over-estimated velocities (Figure 2.1). We investigate the surface (H) and
subsurface (h) 2D cases. Suppose one would pick three locally coherent events with a
typical hyperbolic shape in the data domain (Figure 2.1, left). They are characterized by
a (s, r, t) position as well as two slopes along the source and receiver positions (Billette
and Lambaré, 1998; Lambaré, 2008). We only represent here the receiver and time axis.
In the extended domain, migration is a mapping from the data to the image domains
(Chauris et al., 2002a). In both H and h cases, the migrated depths increase with the
mean velocity values. The surface offset corresponds to the case where the upward curve
becomes horizontal for the correct velocity model and downward for an over-estimated
value (Figure 2.1, middle). The behavior is different for the subsurface offset case, with
a focusing of energy around h = 0 in the optimal case (Figure 2.1, right).

Figure 2.1: Schematic illustration of the migration of three locally coherent events
picked in the data domain (left), with a common surface offset (middle) and subsur-
face offset (right) schemes. The red, blue and green colors correspond to under-, correct
and over-estimated velocity values.

The same behavior is observed when the modeling and adjoint operators are com-
puted with a wave-equation-based approach. We consider a model consisting of three
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interfaces embedded in a homogeneous model. For the subsurface offset case, we test 11
values between 1500 to 2500 m/s (Figure 2.2). The optimal focusing is obtained for the
correct value (2000 m/s). A more detailed analysis of the shape, including the amplitude
aspect, can be found in Mulder (2014); Montel and Lambaré (2019).
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Figure 2.2: Shape of events in CIGs for the subsurface case and for homogeneous veloc-
ity values between 1500 to 2500 m/s, every 100 m/s The local horizontal axis for each
panel refers to the subsurface offset, from -100 to +100 m/s.

The annihilator is an operator An acting on to the extended migrated result ξ(x, e)
such that the norm of Anξ is minimum for the correct macro-model. For the surface
parameters in 2D and the shot s or surface offset H cases, An simply reads ∂/∂s and
∂/∂H: the optimal model is obtained when events are horizontal within the focusing
panel (Figure 2.1, middle). The same expression also applies to the image angle ∂/∂θ.
For the other subsurface parameters (subsurface offset h and time delay τ ), the objective
is to focus energy around e = 0. This leads to a different formulation, namely a simple
multiplication by An = h or An = τ . Despite different expressions, there is a clear
connection: by considering An = ih instead of An = h, leading to the same norm
‖Anξ‖, a multiplication by ih can also be seen as a derivative with respect to kh in the
Fourier domain, where kh would be the dual variable of h (Biondi et al., 2019).

Based on the annihilator, the MVA outer loop objective function reads (Symes,
2008b)

JMVA =
1

2

∥∥Anξ
∥∥2∥∥ξ∥∥2 . (2.1)

Some formulations do not necessarily include the denominator term. The reason for
the normalization is to decouple the focusing effects from the energy aspects (Chauris
et al., 2002a): the modification of the macro-model has also an influence on the energy
of the migrated section due to the geometrical spreading terms in the Green’s function
and to the fact that some events for large velocity values may be localized beyond the
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maximum target depth. The normalization provides a more symmetric objective func-
tion with respect to the optimal model.

The standard adjoint state technique applies for the derivation of the tomographic
gradient, that is the gradient of the JMVA objective function with respect to the macro
model m0 (Plessix, 2006a; Plessix et al., 2000; Weibull and Arntsen, 2013; Chauris
and Cocher, 2017). This model is also known as background model. We refer to Ap-
pendix 2.10 for a more detailed derivation. As the image (or reflectivity section) ξ is ob-
tained as the cross-correlation between the incident wavefield and the back-propagated
wavefield, it contains two Green’s functions that each depends on the macro-model,
leading to two main terms in the tomographic gradient. In the expressions presented
in Appendix 2.10, we recognize the need for solving two additional wavefields that are
later correlated with the source and receiver wavefields. The final quantities are pro-
portional to ATn Anξ. In practice, this is a second derivative in 2D for the surface offset
−∂2/∂2H or a multiplication by h2 for the subsurface offset case.

Ray quantities are useful to interpret the gradient (Figure 2.3). Let consider a po-
sition y in the subsurface and a given subsurface offset h. The first contribution of
the gradient in x connects y + h to x and x to the receiver position. The contribution
is specular (i.e. adds in a high frequency asymptotic sense) only if x belongs to the
ray joining y + h to the receiver position, meaning that the update in a smooth macro-
model is located above the reflector y. The same holds for the second contribution to
the gradient on the source side (Symes, 1998b).

Figure 2.3: Interpretation of the tomographic gradient: a non-zero contribution is ob-
tained when there is a y position such that A2

n(h)ξ(y − h,y) 6= 0 and when there is
another x position along the ray joining y + h and a receiver position r, here possibly
r0. The same holds for the source side. The second condition implies that in a smooth
macro-model, the tomographic update is only above the reflector (left) and not below
(right).

Here is a complementary view to explain how MVA is able to create long wave-
lengths from the analysis of short wavelengths contained in ξ. We consider a single
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source and two receivers (Figure 2.4). The interface in ξ (dashed-dotted line) is ob-
tained as the correlation between the source (red solid lines) and the receiver wavefields
(blue solid lines) (Figure 2.4, top). For the first part of the macro-model gradient, the
source incident wavefield excites the interface that acts as a secondary source, generat-
ing the red dashed lines (here one up-going and another down-going wave). This new
wavefield is correlated with the original receiver wavefield (blue solid lines) (Figure 2.4,
middle). Compared to the construction of the interface where the wavefields intercept
along the interface, here the correlation is non-zero above the interface and zero below,
leading to long-wavelength updates (gray zone). The same effect is obtained for the
second part of the gradient, where now the receiver wavefields excite a secondary wave
(dashed blue line), correlated with the incident source field (solid red line) for the part
above the reflector.

We now have the main structural elements to analyze in the next sections three as-
pects currently limiting the practical MVA applications at a large scale and related to
focusing principle, simple physics and computational requirements.

2.4 Focusing principle
We first discuss the assumption that the best focusing is obtained for the correct macro-
model. We then comment on the choice of the objective function concerning convexity
and robustness arguments. Finally, we discuss the shape of the macro-model veloc-
ity update in a gradient-based optimization approach. In each case, we propose some
remedies.

2.4.1 Relationships between velocity errors and focusing
Even in the correct macro-model, the optimal focusing is not necessarily obtained in
practice. The first reason is the presence of triplications, possibly existing even in a
smooth model (Červený, 2001). For surface-oriented CIGs, significant part of the energy
may travel along multiple paths between source, receiver and the scattered image point
(Nolan and Symes, 1997; Brandsberg-Dahl et al., 2003; Stolk and Symes, 2004). The
proposed solution is to consider the survey-sinking approaches, such as the subsurface
offset extension for which such artifacts are not present, under the condition that there
is no diving waves (i.e. turning energy from the source that reaches the receiver without
being reflected, Stolk and Symes (2004) and de Hoop and Stolk (2006)).

The second issue is linked to the dip limitation: even with two-way wave-equation
operators, the annihilator of the standard subsurface Differential Semblance Optimiza-
tion (DSO) approach is a multiplication by

√
h2
x + h2

y in 3D, where (hx, hy) are the
space lags in the horizontal plane. In that case, vertical dips are not properly han-
dled. The first possibility would be to introduce an extra dimension hz, leading to
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Figure 2.4: Gradient principle for the MVA case: the interface is created as a correlation
between the source (solid red lines) and the receiver (solid blue lines) wavefields (top).
The macro-model gradient is obtained as the sum of two contributions (see the text for
details), leading to a large-scale perturbation above the interface (middle and bottom,
gray zone).
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√
h2
x + h2

y + h2
z or to combine with the time-lag τ as

√
h2
x + h2

y + (τv)2, where v is the
typical macro-velocity value at the considered spatial location (Díaz and Sava, 2015;
Biondi and Symes, 2004; Shan and Biondi, 2005; Sava and Fomel, 2006). For both
solutions, the implementation becomes too prohibitive in 3D (see the section on “Imple-
mentation aspects”).

The third issue is related to an incomplete acquisition geometry (Mulder, 2014).
For a dense but truncated acquisition, the migrated image suffers from edge effects,
whose size is controlled by half the maximum surface offset H . For the macro-model
gradient, the imprint of the acquisition is amplified, and the 1D invariance expected in
a purely 1D model would only be observed within a zone reduced by a distance H on
both sides. Along the same line, the user parameters play an important role (Mulder,
2014). Zhou et al. (2020b) demonstrated that the parameters such as the maximum
surface offset available or the maximum selected subsurface offset can lead up to a
change in the sign of the macro-model update. In the first case (limited surface offsets),
there is not enough data to obtain focused energy within the CIGs: residual migration
smiles are visible, pushing towards artificial lower velocity models. For the second case
(limited subsurface values), energy is truncated in the CIGs, also leading to modified
macro-model updates. Following the analysis by Mulder (2014), the authors provide
guidelines for an optimal choice, based on the analysis in a homogeneous models with
embedded horizontal reflectors. The same rules apply to more complex models such as
the Marmousi case (Versteeg and Grau, 1991; Zhou et al., 2020b).

More generally, even for regular acquisition geometries, wave propagation in a non-
homogeneous model leads to some uneven illumination of the subsurface. Before ad-
dressing this aspect, we point out the last reason leading to apparent defocusing events
related to an incorrect physics: for a purely constant-density acoustic imaging tool, it
has been observed that CIGs associated with variable-density observed data, leading to
amplitude variations along offset, are not focused for the correct velocity macro-model
(Dafni and Symes, 2018; Farshad and Chauris, 2020b). This issue will be addressed in
the section “Extension to a more complex physics”.

We now detail the part on the illumination part. Uneven illumination of the sub-
surface leads to defocusing effects indistinguishable from those due to velocity errors
(Yang et al., 2013; Yang and Sava, 2015). The general solution is to consider the Hessian
associated with the inner loop (construction of the image or migration part) to deblur the
standard adjoint image. The first possibility consists of successfully applying a modeling
operator F followed by its adjoint F t to the image m0, leading to m1 = F tFm0. This
was for example applied to one-way operators for a true-amplitude migration scheme by
Kiyashchenko et al. (2007). One recognizes the migration Hessian operator F tF . The
same approach is used to study the effect of the Point Spread Functions (PSFs) (Lecomte
and Gelius, 1998; Wapenaar and van der Neut, 2010). Then an optimalB operator is de-
termined, typically by minimizing ||Bm1−m0||2 and applied to the m0 image (Guitton,
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2017). The B operator is an approximation of the inverse of the Hessian. Valenciano
et al. (2006); Tang and Biondi (2011) proposed a target-oriented approach combined
with a phase-encoding strategy for a more affordable computational scheme.

A more general approach is to further apply the forward F and adjoint F t opera-
tors, leading to the least-squares iterative migration (LSM) result (Nemeth et al., 1999;
Clément et al., 2001; Hicks and Pratt, 2001; Rickett, 2003; Guitton, 2004; Clapp et al.,
2005; Yang et al., 2013; Fletcher et al., 2015). Once the image part is defined, the outer
loop updates the macro-model. The gradient with respect to the macro-model can be ob-
tained with the adjoint state method (Plessix, 2006b), either after stopping the iterative
process after a given number of iterations or by assuming the convergence of the inner
loop (Cocher et al., 2017). The first approach requires storing all intermediate steps and
can be achieved with an automatic differentiation code, whereas the latter is easier to
implement. More fundamentally, instabilities have been observed on the MVA gradient
(Liu et al., 2014; Huang, 2016; Cocher et al., 2017). The reason is that the optimal image
in the inner loop never completely achieved. Then the tomographic gradient contains an
additional term involving a second-order derivative of the modeling operator, leading to
unstable tomographic scheme (Huang, 2016). A more intuitive explanation is related
to existence of the null space: little energy at far subsurface offset h could appear to
slightly decrease the data fit. However, it has a large impact on the adjoint source in
the MVA scheme because of the multiplication by h2, leading to strong distortion in the
macro-model gradient. Different regularizations have been proposed (Liu et al., 2014;
Huang, 2016). The most promising one is to modify the definition of the tomographic
objective function, while preserving the preconditioned iterative migration part (Cocher
et al., 2017).

As an alternative to the iterative migration and the intrinsic unstable tomographic
gradient, the direct inverse strategy (Virieux et al., 2016) was recently proposed (ten
Kroode, 2012; Hou and Symes, 2015, 2017; Chauris and Cocher, 2017). By direct in-
verse or approximate or asymptotic inverse or also pseudo-inverse, we mean an operator
that provides an approximate inverse of the inner-loop modeling operator within a single
iteration.

A long history on quantitative imaging started with approximate inverse in the high
frequency asymptotic context (Beylkin, 1985; Bleistein, 1987; Schleicher et al., 1993;
Lambaré et al., 1992; Jin et al., 1992; Chavent and Plessix, 1999; Thierry et al., 1999;
Operto et al., 2000; Lambaré et al., 2003). The standard adjoint operator (migration
scheme) was modified such that the Hessian of the data fit objective function becomes
close to the identity operator. It consists mainly of introducing additional weights in
the formulation. Then the same approach was developed for one-way operators (Plessix
and Mulder, 2004; Zhang et al., 2005, 2007; Joncour et al., 2011) and more recently
for two-way operators (ten Kroode, 2012; Hou and Symes, 2015; Qin et al., 2015; Qin
and Lambaré, 2016; Hou and Symes, 2017; Chauris and Cocher, 2017). In both cases,
the inverse should be understood as an approximate inverse as it is only an inverse in
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the high frequency asymptotic sense, even if the final formulation does not contain ray
quantities.

Let define F † be the approximate inverse. It means that for any data d, we expect
d ' F F †d. In the first step, the application of the (right) approximate inverse creates a
reflectivity model F †d. The data modeled in it should be the same as the original data.
We now detail the different formulations relying on the two-way wave-equation opera-
tors (ten Kroode, 2012; Hou and Symes, 2015, 2017; Chauris and Cocher, 2017). They
all propose an inverse formula for the Born or Kirchhoff modeling approaches in the
extended domain. The main aspects shared by the different strategies are the following:
(1) the inverse is defined in a high frequency asymptotic sense; (2) the final formulation
only contain wave-equation terms (typically vertical spatial derivatives and time deriva-
tives) and no ray-based terms (such as travel times or slopes); (3) their expression is very
similar to the one for the adjoint.

The main ingredients for the derivation are the following. (1) Replace the Green’s
functions G0 by their asymptotic expression and apply the stationary phase approxi-
mation to consider specular contributions; (2) compute the determinant related to the
change of variables, here in 2D, from the data domain (s, r, ω) to the dual wave number
domain (kx, kz, kh) associated with (x, z, h); (3) acknowledge the fact that the geomet-
rical spreading amplitudes terms A in the Green’s function cancel out by some terms in
the determinant, more precisely that

A2(s,x) =
1

8π

v0(s)

cos βs

∣∣∣∣∂θs∂sx

∣∣∣∣ , (2.2)

where βs is the emerging angle at the source position, θs the angle at the image point and
v0(s) the velocity at the source position (Zhang et al., 2005; ten Kroode, 2012; Hou and
Symes, 2015); (4) apply additional time and spatial derivatives to remove remaining ray
quantities. The final result is multiplied by a term that only depends on the macro-model
v0. Typically, the cos θs term is removed by using

∂szG0(s,x, ω) ' iω

v0(s)
cos βsG0(s,x, ω). (2.3)

where ∂sz refers to the partial derivative with respect to the vertical component of the
source position. More details on the approximate inverse, including a summary of four
different schemes, are provided in the Appendix 2.11 section. The main limitation of
the high frequency asymptotic inverse is the assumption of an infinite dense acquisition
system. However, Hou and Symes (2016b); Chauris and Cocher (2018); Farshad and
Chauris (2021a) indicated how to use the approximate inverse as a preconditioner. The
simplest strategy is to rely on a weighted linear conjugate gradient, with modified norms
in the data and model spaces (Hou and Symes, 2016a).

The substitution of F T by F † has a clear impact, not only on the migration results
(Hou and Symes, 2016b) but also on the MVA result (Lameloise et al., 2015; Chauris and
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Cocher, 2017; Hou and Symes, 2018). This leads to the definition of Inverse Velocity
Analysis (IVA, Hou and Symes (2018)), where the adjoint or the standard image is
replaced by the inverse. We provide a simple example in the case of the subsurface
offset. The migrated image ξ is first obtained through the application of the adjoint, here
in a model with under-estimated velocities (Figure 2.5). The focusing panel displays a
main downward event, consistent with the expected shape (Figure 2.1), but also events
with opposite curvatures. These are related to the maximum offset and truncations in
the input data. In practice, they can be attenuated by tapering the input data, but here
we want to stress that the limitation of the MVA approach. The main reason is that
the adjoint source is obtained by multiplication by h2, enhancing noisy data at large
subsurface offset values. This leads to an objective function with a minimum shifted
towards lower values here, as a compromise between the focusing of the real event
and the focusing of the artifacts, always with positive curvature (Figure 2.5b). As a
consequence, the macro-model gradient exhibits strong oscillations above the interface
(Figure 2.5c). A pure tomographic update would be a homogeneous zone, similar to the
gray zone (Figure 2.4).
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Figure 2.5: The a) reflectivity section, associated b) CIG for x = 2000 m and c) to-
mographic gradient, for an underestimated velocity model and a single interface, from
Chauris and Cocher (2017).

With the introduction of the approximate inverse in the inner loop, the reflectivity
selection is more focused around the expected depth (Figure 2.6a). This is due to the
deconvolution (introduction of the inverse of the seismic wavelet) but also to the com-
pensation for amplitudes. The migration smiles are largely attenuated, especially in the
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CIGs (Figure 2.6b). As illustrated in Chauris and Cocher (2017), the tomographic gra-
dient is much more homogeneous above the interface (Figure 2.6c) and the shape of the
objective function is more symmetric with respect to the optimal value. The important
aspect is that the minimum is now at its correct position.
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Figure 2.6: Same as for Figure 2.5, but for the inverse case. In addition, the tomographic
gradients are displayed for c) β = 0 and d) β = −3/2 , from Chauris and Cocher (2017).

We conclude from this section that illumination should be properly compensated
during the construction of an image (inner-loop). Uneven illumination would other-
wise be related to an incorrect macro-model. The iterative LSM scheme is clearly more
expensive and leads to fundamental unstable macro-model updates (Liu et al., 2014;
Huang, 2016; Cocher et al., 2017). The use of the approximate inverse within the iter-
ative scheme speeds up the convergence but does not remove the instabilities (Hou and
Symes, 2016a; Chauris and Cocher, 2018; Farshad and Chauris, 2021a), except in one
solution proposed by Cocher et al. (2017). The second option is simply the application
of the approximate inverse without any iteration. The third interesting possibility is the
matching filter (Guitton, 2017) that requires the additional application of the forward
and adjoint operators, which is not the case for the IVA approach. In the future, it would
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be interesting to compare the three approaches on the same data set.

2.4.2 Expected convex shape

Still in this section on the “Focusing principle", we now consider the shape of differ-
ent objective functions. Convexity is an important property to ensure that a gradient-
based approach – the only tractable solution – leads to the correct solution. So far, we
have mainly concentrated on the Differential Semblance Optimization (DSO) approach
to estimate the quality of the focusing. The reason is simple: Stolk and Symes (2003)
demonstrated that among all possible objective functions, the differential semblance one
is the only one that ensures a smooth behavior associated to a smooth perturbation in
the macro-model, at least in a high-frequency perspective. In other words, all stationary
points are global minima, at least on some simplified velocity models as demonstrated
by Symes (1998a). As explained in Appendix 2.12, the subsurface offset DSO approach
is the equivalent of the time-domain slope tomography (Billette and Lambaré, 1998).
The residual move-out shape depends on the choice of the extension (Montel and Lam-
baré, 2019). The total travel time and the two slope components are automatically fitted
through the migration part. The correct macro-model is obtained when the two rays start
from the same physical position.

On the other side, the DSO approach is sensitive to noise, especially coherent noise,
enhanced by a multiplication by h or by the application of the derivative ∂H . The re-
placement of the adjoint by the approximate inverse leads to a more robust scheme, but
coherence noise may harm the quality of the tomographic update (Chauris et al., 2002b;
Mulder and ten Kroode, 2002). The recommendation is to analyze the adjoint source
and possibly propose some intermediate processing steps as the filtering of events with
unexpected structures in the CIGs. This is indeed case-dependent and more research is
needed for a more robust approach.

The DSO approach is thus delicate: on one side, this is the recommended strategy
to ensure a convex objective function; on the other side, it is very sensitive to coherent
noise. As a consequence, alternatives have been proposed. The most common ones
are based on the maximization of the semblance (stack power) (Chavent and Jacewitz,
1995; Zhang and Shan, 2013; Plessix et al., 2000; Soubaras and Gratacos, 2007). As it
may suffer from for cycle-skipping issues (Chauris and Noble, 2001), Zhang and Shan
(2013) proposed an intermediate partial stack power approach. Symes and Carazzone
(1991) explained how to combine the DSO approach with the image power. We may also
cite the correlation approach (Van Leeuwen and Mulder, 2010) or more recently the one
developed by Tang et al. (2020) and developed in the next section, with arguments on
the shape of the macro-model gradient.
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2.4.3 Gradient artifacts

Vyas and Tang (2010); Fei and Williamson (2010); Li et al. (2017) illustrated that the
DSO tomographic gradient contains strong “artifacts”, especially in the case of discon-
tinuous interfaces (Figure 2.7). Instead of an expected smooth macro-model gradient,
oscillations are present. They are not really artifacts in the sense that the gradient is prop-
erly derived and implemented. Different strategies have been proposed to remove them.
Fei and Williamson (2010) proposed to add a π/2 phase rotation during the imaging
condition, but the modified gradient is not a gradient of an objective function anymore
(Shen and Symes, 2015). One may note that the reflector still has an imprint (negative
red values, Figure 2.6c) on the macro-model update that cannot be removed by smooth-
ing the gradient. Chauris and Cocher (2017) proposed to introduce an additional term
inside the definition of the objective function, i.e. a multiplication by mα

0

JαMVA =
1

2

∥∥mα
0 hξ

∥∥2
. (2.4)

The standard approach, without normalization, reads α = 0. For the other cases,
the gradient consists of two terms: the classical one multiplied by m2α

0 and another one
that is a local contribution. Using a 1D model, Chauris and Cocher (2017) proved that
α = −3/2 is an optimal choice. The same value is also used in 2D leading to attenuate
the oscillations on the final macro-model gradients (Figure 2.6d).

For discontinuous reflectivity sections, the same effects are observed. The recom-
mendation is to smooth the final gradient over the expected wavelength (Figure 2.8).
At least two alternatives exist. Recently, Tang et al. (2020) proposed to use an Optimal
Transport function (OT, Métivier et al., 2016c; Yang and Engquist, 2018), instead of the
`2-norm least-squares approach. This can be easily understood in the Full Waveform
Inversion context to move masses and avoid local minima. The IVA objective function
is a priori convex and the need for OT is less intuitive. However, Tang et al. (2020)
showed that the macro-model gradient does not contain the imprint of the reflectivity.
More research is needed to better understand why and to establish a link between this
approach and the one promoted by Chauris and Cocher (2017), leading to similar nu-
merical results (Figure 2.6).

Finally, another approach to attenuate the imprint of the reflectors in the macro-
model update would be to introduce the tomographic Hessian but this still remains
to be demonstrated. One could also think at introducing a picking stage in a Resid-
ual moveout-based MVA, leading to smooth macro-model updates (Zhang and Biondi,
2013). Picking is a non linear process, useful to remove unwanted events. Then MVA
consists of optimizing the moveout parameters as in Al-Yahya (1989). One may ques-
tion what happens in complex zone with low illumination and without clear coherency.

We have reviewed that illumination is an important factor during the construction
of the image, leading to distorted tomographic gradient. We have identified three most
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Figure 2.7: “Gradient artifacts”, with the standard MVA approach in the case of dis-
continuous reflectors, from Fei and Williamson (2010). The horizontal and vertical axis
refer to the z and x coordinates.
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Figure 2.8: Discontinuous multilayer case, with the migration (a, c, and e) and pseudoin-
verse (b, d, and f) approaches, for reflectivity section (a and b); macro-model update (c
and d); and the same update after Gaussian smoothing over the expected wavelength (e
and f), from Chauris and Cocher (2017).



2.5. Extensions to a more complex physics 51

promising approaches (Optimal Transport, multiplication by mα
0 and intermediate pick-

ing step) to be compared in a future work. We now discuss how MVA could extend
beyond its conventional frame.

2.5 Extensions to a more complex physics
The two main aspects addressed in the section are the assumptions about the physics of
wave propagation and the Born approximation.

2.5.1 Beyond the constant-density acoustic case
In a large majority of the MVA publications, the underlying assumption is a constant-
density acoustic wave equation. The first reason is certainly related to the computational
aspects (see the section on “Implementation aspects”) and the number of wavefields to
be considered for the forward but adjoint terms, both during the construction of the
image but also for the gradient derivation. A simple example shown by Farshad and
Chauris (2020b) indicates that amplitude variations along the reflector due to density
contrasts leads to apparently defocused energy in the CIGs even for the correct macro-
model (Figure 2.9). This aspect is essential for the applications on real data.
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1Figure 2.9: A two layered Earth model a) without density variations and the correspond-
ing b) shot gather, inverted c) ξ and d)(h/hmax)ξ. (e,f,g,h) Same as (a,b,c,d) but with
density variations in the model, from Farshad and Chauris (2020b).

The first extension is straightforward: for a more complex physics, simply replace
the Green’s functions by their proper expressions. For example, Feng (2018) proposed
an elastic PP-PS MVA scheme with applications on real data. Li et al. (2016) explained
how to implement an anisotropic MVA (VTI and TTI cases) with some rock physics con-
straints as a regularization term. Shen et al. (2018) formulated a combined velocity and
attenuation (MVA and MQA) analysis: the quality factor Q indeed has an impact of the
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focusing of the migrated images and potentially may be estimated in the image domain.
Regularization plays an essential role for a possible decoupling between parameters (Li
et al., 2016).

As discussed in the previous section, a proper compensation for illumination is
needed for a meaningful macro-model update. The iterative LSM approach being out
of scope for computational and instability reasons, the Hessian-related matching filter
and the direct inverse remain the two main possibilities. In the first case, the forward
and adjoint operators should be once more applied. In the second case, an approximate
inverse should be developed beyond the constant-density case.

We discuss here the extension to variable density and elasticity for a fixed macro-
model. The first step was derived by Zhang et al. (2014b), showing that the opening
angle θ at the image point is needed for the variable-density case. This is related to the
radiation patterns. Qin and Lambaré (2016) proposed to obtain the angle through ray
tracing. More recently, Dafni and Symes (2018) introduced a two-step process. In the
first phase, ξ(x,h) is computed as for the constant-density case. Then, a Radon trans-
form is applied to obtain angle-domain CIGR(x, θ). By selecting two different angles,
the physical perturbations (i.e. without extension) are retrieved by projecting the Radon
transform into δIp(x) and δρ(x), the perturbed impedance and density sections. For
a more robust approach, Farshad and Chauris (2020a) proposed to consider all traces
within the angle-domain CIGs. This approach, based on a weighted least-squares ob-
jective function, is a generalization of the work of Zhang et al. (2014b) and Dafni and
Symes (2018). For each spatial position x, the reconstruction of the physical parameters
is obtained by solving a 2 × 2 linear system in 2D. Later, Farshad and Chauris (2021c)
improved the quality of the inversion by incorporating sparsity-promoting `1-norm regu-
larization using a shrinkage-thresholding algorithm. In all cases, a proper inverse means
that the modeling from the physical parameters should lead to the original data.

The main interest of the method proposed by Farshad and Chauris (2020a) is that
the imaging process is split into three parts, summarized in Algorithm 2. Only the first
part (“approximate inverse ”) contains wave-equation terms. It is thus the most expen-
sive part by far. The Radon transform is only applied once. The last part (“Physical
decomposition”) is a bivariate curve fitting problem in which additional constraints can
be introduced, typically sparsity constraints (Farshad and Chauris, 2021c). This phase is
extremely fast and different iterative optimization can be tested. The sparsity-promoted
approach with `1-norm constraint on each reconstructed physical parameter is for exam-
ple essential in the case of sparse acquisition (Figure 2.10). In both cases, the data fit
is correct (Figure 2.11), but only when constraints are added, the model parameters are
well recovered (Figure 2.10).

The same strategy (application of approximate inverse Born operator, Radon trans-
form and physical decomposition) holds for the extension to elasticity (Farshad and
Chauris, 2021b). In this case, by enlarging the applicability from acoustic (two pa-
rameters) to elastic medium (three parameters), the final step “Physical decomposition”
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Figure 2.10: Comparison between the inverted parameters corresponding to sparse shots
(sourse spacing is 432 m) for Marmousi2 model. Inverted a) inverse Bulk modulus and
b) density parameters without regularization and inverted c) inverse Bulk modulus and
d) density parameters with `1-norm regularization, from Farshad and Chauris (2021c).
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Algorithm 2: Weighted Least-Squares approach for variable-density pseudoin-
verse Born inversion.
1 Pseudoinverse: for each s position do
2 construct ξinv(x,h)

3 Radon transform: for each surface position do
4 constructR(x, θ)

5 Physical decomposition: for each x position do
6 construct δIp(x), δρ(x) (+ sparsity constraints)

(Algorithm 2) becomes a trivariate curve-fitting problem. As for the variable-density
case, the most computationally expensive step is the elastic approximate inverse Born
operator constructing ξ(x,h). The conclusions derived for elastic inversion are consis-
tent with the ones known for FWI: impedances are better reconstructed than the density
(Köhn et al., 2012), and larger surface offsets provides better resolution (Farshad and
Chauris, 2021b). One still needs to couple this recent approximate inverse within the
tomographic loop. The derivation of the macro-model gradient should incorporate the
new elements of the approximate inverse.

2.5.2 Beyond the single scattering approximation

The second aspect for a more complex physics is related to the tentatives to go beyond
the Born approximation (single scattering). There are at least three possibilities: (1)
introduction of transmitted waves, (2) introduction of multiples and (3) towards a fully
non-linear modeling.

2.5.2.1 MVA with transmitted waves

In parallel and independently, Shen (2013) and Lameloise et al. (2013) proposed a way
to incorporate transmitted waves within the MVA context. Let remind that MVA ap-
proaches are based on scale separation between the macro-model and the model pertur-
bation associated to reflected waves. Instead of back-projecting the reflected wavefield,
the full wavefield is used. The image is then formed as the cross-correlation between
the source and the modified receiver wavefields. The new reflectivity image differs from
the classical one associated with reflectors for which events are localized at a particular
depth. Here, transmitted waves are mapped in the image domain from the surface to
the maximum penetration depths (Shen, 2013; Lameloise et al., 2013; Lameloise and
Chauris, 2016; Zhou, 2020). A subsurface offset h is introduced during the imaging
condition. Within CIGs, it appears that the energy is sensitive to the quality of the
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macro-model used for migration (Figure 2.12). This offers, as for the classical way, to
update the macro-model, with the same JMVA objective function.
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Figure 2.12: Extension beyond reflected waves: CIG for reflected waves (a, b, and c),
body waves traveling along the surface (d, e, and f) and transmitted waves (g, h, and
i), for an under (a, d, and g), exact (b, e, and h) and over-estimated (c, f, and i) macro-
model, from Lameloise and Chauris (2016).

Such an approach was demonstrated on surface data (Shen, 2013) and cross-well
data configuration (Figure 2.13, Lameloise and Chauris, 2016). The total field is dom-
inated by transmitted waves. In the initial model, most of the energy in the CIGs is
shifted towards positive h, meaning that the velocity values are under-estimated. After
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optimization, energy focused around h = 0.
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Figure 2.13: MVA cross-well configuration with the full wavefield. a) CIG in the initial
homogeneous model, b) CIG in the final model, c) exact velocity model and d) inverted
model. In the final model, energy is localized around h = 0, from Lameloise and
Chauris (2016).

The recommendation is to first consider the full wavefield or the transmitted field
and to later introduce the reflected part. There is a priori no need for splitting the data
into transmitted and reflections. However, for a more stable reflection MVA approach,
one would rely on the IVA approach. Such weights would be small for the transmission
part, as they contain a term in cos θ, with θ close to π/2 (Zhou, 2020).

2.5.2.2 In the presence of multiples

Multiples are considered as coherent noise for the traditional MVA approaches as they
are not modeled under the first-order Born approximation. At least a few approaches
have been proposed in the MVA context to incorporate them (Mulder and van Leeuwen,
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2008; Staal and Verschuur, 2012; Cocher et al., 2018; Soubaras and Gratacos, 2018).
The main element is to consider a modeling tool able to generate them. Then, the re-
flectivity section is defined as the one minimizing the inner-loop objective function. The
standard JMVA is used, once the imprint of the multiples is removed on the reflectivity
section.

Multiples may also offer a more robust MVA scheme as the illumination provided by
surface multiples is different from the one by the reflections. For example, multiples help
for subsalt imaging (Liu et al., 2011). For 3D marine acquisition, the coarse sampling in
the cross-line direction can be compensated by multiples (Long et al., 2013). However,
this has not been really yet demonstrated in the MVA context. The reason behind this
is that the derivation of the reflectivity section to remove the imprint of the multiples
is obtained through an iterative process, intending to fit the data (Brown and Guitton,
2005; Verschuur and Berkhout, 2011; Wong et al., 2014; Zhang et al., 2014a; Tu and
Herrmann, 2015). As for the primary case, events with little energy are created at large
subsurface offsets for an optimal fit. As a consequence, such events are enhanced in
the MVA adjoint source due to the multiplication by h2, but they do not necessarily
correspond to real events. This leads to local minima and instabilities in the velocity
updates (Cocher et al., 2018). For the future, an interesting research possibility is the
Marchenko approach encountering for all internal multiple reflections (Wapenaar et al.,
2014; Singh et al., 2015). The Marchenko imaging condition does not generate cross-
talk while being sensitive to the macro-model needed for the estimation of the direct
arrival. One may ask if the fundamental instabilities highlighted by Huang (2016) will
also be present in the iterative Marchenko approach.

2.5.2.3 Fully non-linear modeling

Finally we discuss a non-linear data fitting method to construct the image before eval-
uating the quality of the focusing (Symes, 2008b). MVA can be seen as a waveform
inversion approach: at the convergence, there is a good fit to the data (fitting approach)
in a physical model if the optimal focusing is obtained (no need for extension). The
standard MVA combines a linear process (migration part) with a non-linear update (to-
mographic part). First ideas have been proposed by Symes (2008b) for a fully non-linear
imaging approach. Let determine an extended model m and data d

J [m] =
1

2

∥∥Anm
∥∥2
, (2.5)

S(d) =
{
m :

∥∥F (m)− d
∥∥2 ≤

∥∥d∥∥2}
, (2.6)

where S(d) are the admissible possibly extended models m for which there is a good
data fit. The minimization of the first objective function ensures that m is a physical
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model. It is currently only tractable in layered models and there is a need for parameter-
izing the feasible models, probably along the same line as the one proposed by Chavent
et al. (1994); Plessix et al. (1995); Clément et al. (2001) for the Migration-Based Travel
Time Tomography approach.

2.6 Implementation aspects
The last section on the limitations of MVA is devoted to the numerical aspects. We first
analyze the number of wavefields to be computed for the tomographic gradient. We
then discuss different strategies to reduce the computational cost, from a target-oriented
MVA to sparse CIGs and finally to a frequency / subsurface-offset continuation.

Number of wavefields
The FWI gradient is obtained as the correlation between the source forward wavefield
with the receiver residual wavefield (Virieux and Operto, 2009; Fichtner, 2010). For the
MVA approach, the first step consists of computing the reflectivity. This is the same
process as the first iteration in FWI (Lailly, 1983; Tarantola, 1984). Here is a summary
of the algorithm, with details in Appendix 2.10.

Algorithm 3: MVA gradient derivation – approach 1

1 Set ξ = 0
2 Reflectivity section: for each shot position do
3 compute S0 and R0

4 add the S0 ⊗R0 to ξ

5 Set the gradient to 0
6 MVA gradient: for each shot position do
7 computed µs and µr
8 add the µs ⊗ S0 + µr ⊗R0 to the gradient

The first approach (Algorithm 3) is a direct translation of the adjoint state gradient
derivation. For the reflectivity section, 2 wavefields S0 and R0 are needed. They are
used in combination with ξ as a new source term to obtain µr and µs, respectively. The
tomographic update has two contributions from the correlations µs ⊗ S0 and µr ⊗ R0.
The practical implementation is slightly different (Algorithm 4): in the second phase, the
quantities S0 andR0 are not available, even if they were computed during the first phase,
except if there are stored on disk. It means that they should be once more computed (line
7 in Algorithm 4). The reason is that ξ should have the contribution of all shots before
starting the MVA gradient evaluation. As a summary, FWI requires 2 wavefields (S0 and
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Algorithm 4: MVA gradient derivation – approach 2

1 Set ξ = 0
2 Reflectivity section: for each shot position do
3 compute S0 and R0

4 add the S0 ⊗R0 to ξ

5 Set the gradient to 0
6 MVA gradient: for each shot position do
7 compute S0 and R0

8 compute µs and µr
9 add the µs ⊗ S0 + µr ⊗R0 to the gradient

R0), while MVA requires 4 (S0, R0, µs and µr), knowing that S0 and R0 are computed
twice: the MVA cost is thus three times more expensive than the FWI cost. We do not
even consider the cost for the extended image condition.

Among the different survey-sinking extensions to handle the triplicated wavefields,
the common angle gathers are more expensive than the subsurface offset case. The sub-
surface extension needs to correlate the forward wavefield with the backward wavefield
at different spatial positions. For efficiency reasons, these space-lags are usually a in-
teger multiple of the original spatial grid. Subsurface offsets appears to have an easier
implementation than the common angle case, either computed as a slant stack of the
subsurface-offset gathers (Prucha et al., 1999; Rickett and Sava, 2002; Sava and Fomel,
2003) or obtained directly after decomposing the wavefield into different directions (Xu
et al., 2011; Dickens and Winbow, 2011; Zhang, 2014; Wang et al., 2016b). Still, the
subsurface offset case remains very expensive in practice.

A number of strategies have been defined to reduce the total computational and mem-
ory costs (Duveneck, 2013; van Leeuwen et al., 2015; Yang and Sava, 2015). We split
the advanced computational strategies into three main classes: limiting the number of
input shots at each iteration, developing a target-oriented MVA including sparse CIGs,
and finally exploring a frequency / subsurface offset continuation approach.

2.6.1 Reducing the number of shots

2.6.1.1 Plane wave CIGs

A first possibility to reduce the total computational cost is to rely on the plane wave
CIGs instead of the more conventional shot-based approach (Duquet and Lailly, 2006;
Liu et al., 2006). This is interesting when the number of required plane waves is smaller
than the number of shots: there is a balance between efficiency and spatial aliasing in
CIGs when the number of plane waves is insufficient (Guo and Schuster, 2017; Feng,
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2018).

2.6.1.2 Random shot selection

Another strategy widely used in the FWI context is to randomly select shot gathers dur-
ing the iterative process (Romero et al., 2000; Krebs et al., 2009; Ben-Hadj-Ali et al.,
2011; Schuster et al., 2011; Castellanos et al., 2014). The same approach does not di-
rectly apply in the MVA context for the following reason (Li et al., 2016): once an
extended image has been obtained, it is possible to select some random shots, relying
on non-linear tomographic iterations to compensate for the decimated tomographic gra-
dient. However, as pointed out by Li et al. (2016), the same approach is not applicable
within the inner loop, i.e. during the construction of the extended image. In that case,
the cross-talks in the images lead to unusable tomographic gradient. As a consequence,
the shot decimation could only divide the total computational cost by a factor two (large
decimation on the tomographic gradient but dense shots for the construction of the ex-
tended image, Algorithm 3). For Algorithm 4, the largest factor would be three (large
decimation for the second phase where S0, R0, µs and µr would be computed at sparse
shot locations). For more efficient schemes with a decimation also during the image con-
struction, more research is needed, for example to design a proper processing task such
that the incomplete ξ section still leads to an interesting tomographic gradient update.

2.6.1.3 Exploding reflector technique

Along the same line, Guerra and Biondi (2011) proposed to use the prestack exploding
reflector technique to limit the computational cost. However, cross-talks are generated
from different reflectors during the modeling phase, imposing in practice non realistic
sparsity assumptions.

The first strategies have been developed to reduce the size of the input data, in prac-
tice the number of shots. Now, we consider alternatives to limit the image size, while
delivering a stable tomographic update.

2.6.2 Target-oriented MVA
The two main strategies consist of reducing the zone of interest and of constructing
focusing panels at sparse locations.

2.6.2.1 Targeted area

Tang and Biondi (2011, 2013); Zhang and Biondi (2013) have explored a target-oriented
MVA version. The main important assumption is that the macro-model is known outside
of the target zone. Then, new seismic data are computed at the border of that zone with a
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redatuming technique. This is performed only once. The standard MVA technique then
applies, with the advantage that the propagation time is largely reduced for the different
wavefields. The imaging condition is also limited to the target zone.

2.6.2.2 From dense CIGs to CIPs

Alternatively, CIGs can be computed at some sparse locations (Yang and Sava, 2015).
The reason is that the tomographic MVA part aims at determining the macro-model,
usually a smooth model. A rule of thumb is that the distance between two successive
CIGs should be twice smaller that the typical horizontal wavelength characterizing the
macro-model (Li and Chauris, 2018).

An even more advanced strategy is to consider Common Image Points (CIPs) instead
of Common Image Gathers (Sava and Vasconcelos, 2009; Diaz and Sava, 2017). The
extended image is only computed at some sparse locations in depth determined from
the image characteristics (Cullison and Sava, 2011; Yang and Sava, 2015). As the total
computational cost and memory requirements are significantly reduced, especially in
3D, this offers the possibility to consider multi-lag extensions, combining subsurface
and time-lag aspects.

Both approaches (sparse CIGs and CIPs) largely reduce the memory needed to store
the focusing panels / points and the computational cost associated with the imaging
condition, but the different wavefields still need to be computed over the entire zone of
interest, even if only sparse locations are later selected within that zone.

Frequency / subsurface offset continuation
Finally, an interesting multi-scale approach was proposed by Fu and Symes (2017).
During the first tomographic iterations, the resolution does not need to be very fine and
low-frequency data may be used, with a coarse sampling of the spatial grid and along
the extension axis, while considering a large maximum 2D extension emax for a possible
incorrect macro-model. Progressively, the frequency content is increased, with a wave
propagation on a finer grid, while emax is reduced as images become more focused. The
criterion is to preserve the data match in the time domain at each iteration. Fu and
Symes (2017) successfully evaluated this approach in the case of the subsurface offset
extension.

2.7 Discussion
We have discussed the important practical aspect that focusing is not necessarily ob-
tained for the correct macro-model. This is essentially the case when the illumination of
the subsurface is not properly compensated during the imaging part (inner-loop), before



62 Chapter 2. Review of constant-density direct methods

evaluating the tomographic gradient. The recent introduction of the approximate inverse
has two advantages over the iterative least-squares migration: a faster approach and a
more stable tomographic update. More research is still needed to determine a good com-
promise between the convexity of the objective function and its robustness. We discuss
here three main aspects to be further developed in the future, in particular the resolution
provided by the MVA approaches, the tomographic Hessian and the extension to multi-
parameter imaging. We suggest a number of possibilities to be developed, mainly as
intermediate processing tasks.

2.7.1 Resolution
The analysis of resolution is well known in the FWI context (Virieux and Operto, 2009;
Alkhalifah and Plessix, 2014). There is a need in the future to perform a similar analysis
for MVA approaches. In the Inversion Velocity Analysis context, the inverted model
perturbation ξ has meaningful amplitudes and is a model perturbation δm to be added
to the reference model as m = m0 + δm (Li and Chauris, 2018; Zhou et al., 2020b). We
retrieve the famous “inversion” as a combination of “migration” and “tomography” by
Mora (1989). We give here an illustration on the Marmousi model. The inverted model
after IVA iterations (Figure 2.14a) can be summed with the associated model perturba-
tion (Figure 2.14b), leading to the final model (Figure 2.14c), in which the events in
CIGs are focused (Figure 2.14d). Probably higher resolution could be obtained with a
focus on diffractions as in Sava et al. (2005) or with the multiples as in FWI: more re-
search could couple the Marchenko imaging scheme (Wapenaar et al., 2014) to Velocity
Analysis as in Diaz et al. (2016).

The role of frequencies has never been studied as far as we know. More pre-
cisely, high enough frequencies are required to focus events, but the quality of the low-
frequency part does not seem to be a determinant aspect. More research is needed to
determine the optimal balance between the central processed data frequency and the
maximal distance between CIGs or CIPs. Along the same line, specific processing
steps should be developed to reduce the number of shots used to construct the image
(inner-loop), while preserving the quality of the macro-model update (outer loop). Anti-
aliasing filters should be derived in the extended domain (Abma et al., 1999).

With the use of wave-equation-based operators, there is no guarantee that the macro-
model remains smooth during the tomographic update. This is however the implicit as-
sumption during the construction of the MVA two-loop process. More research should
be conducted to better determine the impact of non-smooth reference model in the anal-
ysis of the focusing.

Finally, for the robustness of the scheme with respect to coherent noise, two strate-
gies could be combined: in both cases, the objective would be to attenuate the impact
of the coherent noise, either in the data domain before migration or in the depth domain
after migration but before the tomographic update.
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2.7.2 Tomographic Hessian

The use of Newton approaches has been applied in the context of FWI (Pratt et al., 1998;
Plessix and Mulder, 2004; Valenciano et al., 2006; Almomin and Biondi, 2013; Tang,
2009) and to a much less extent to MVA (Soubaras and Gratacos, 2017). The introduc-
tion of the second-order derivatives of the objective function can be obtained indirectly
in a quasi-Newton approach (Byrd et al., 1995) or explicitly through, for example, the
Truncated Newton approach (Métivier et al., 2013).

As indicated before, the inner loop objective function has a Hessian close to the
identity in the case the approximate inverse is used. But it does not mean that the outer
loop behaves the same way. Formally, it is possible to derive a second-order adjoint
system for the tomographic part. In practice, the number of additional wavefields to
be computed would become eight: with the same notations as for Algorithms 3 and 4,
two wavefields S0 and R0 are needed for the reflectivity, two more for the tomographic
gradient (µs and µr), and four more for the tomographic Hessian (λS , λR, λµs and λµr),
as adjoint variables for the definition of S0, R0, µs and µr. Eight wavefields in total
are the correct number if they can be stored on disk. Otherwise and because of the
intermediate summations over sources, the total number would be 2 + 4 + 8 = 14,
respectively (S0, R0), then (S0, R0, µs, µr) and finally (S0, R0, µs, µr, λs, λr, λµsλµr).
In the FWI case, the equivalent number would be 1 + 2 + 4 = 7 (one for the objective
function, two for the gradient, and four for the Hessian), but it reduces to four only
because it is possible to compute the contribution of a given shot to the gradient and to
the Hessian independently of other shots: this is not the case for MVA.

2.7.3 Multi-parameter imaging

Multi-parameter imaging beyond the constant-density acoustic case is an essential as-
pect for real data applications. This has been largely developed in the FWI case (Prieux
et al., 2013; Virieux and Operto, 2009). In the MVA context, we indicated in the recent
advances section the extension of the direct inverse to variable density and elasticity. But
there is still a need to incorporate these schemes within the tomographic loop (Weibull
and Arntsen, 2014; Wang et al., 2019).

The possible cross-talk between parameters also leads to the estimation of the uncer-
tainties, possibly within a Bayesian approach (Jin and Madariaga, 1993, 1994; Docherty
et al., 1997; Jin and Beydoun, 2000). Another possible extension is the time-lapse MVA
context, in the case where the macro-model is changing over time (Shragge and Lumley,
2013).
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2.8 Conclusions

Migration Velocity Analysis aims at determining the optimal subsurface model param-
eters by splitting the model into two parts: the extended image and the macro-model.
During iterations, the initially large extension for an easy data fit, is progressively re-
duced to the physical domain at the convergence for the optimal macro-model. The the-
oretical recommended approach (subsurface-offset extension to handle triplicated wave-
fields, coupled to the Differential Semblance Optimization for a convex objective func-
tion) is also the one that is very sensitive to coherence noise. We have analyzed three
main aspects (assumed optimal focusing for the correct macro-model, simple physics
assumptions and implementation issues), currently strongly limiting the applications at
an industrial scale. We have also reviewed some remedies (introduction of the approx-
imate inverse as the reference image, more robust ways of evaluating the quality of the
focusing at some sparse locations). As far as we know, no existing code with published
results contains all these aspects. More research is needed for more suited preprocessing
steps applied to the focusing panels before evaluating its quality to deliver more robust
schemes with respect to limited acquisitions, coherent noise and shot decimation. In a
longer term, incorporating the full wavefield within the analysis is essential.
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2.10 Appendix I: Gradient derivation

The objective of the first appendix is to explain how to compute the gradient of the MVA
objective function with respect to the macro-modelm0. We rely on the adjoint state tech-
nique (Plessix, 2006a). This consists of enlarging the original objective function with
the constraints indicating how the reflectivity is constructed. We refer to Weibull and
Arntsen (2013); Chauris and Cocher (2017); Li and Chauris (2018) for more details. For
simplicity here, we consider the case α = 0 (equation 2.4). Finally, we also give some
elements for the IVA case when the optimal reflectivity section is obtained iteratively.
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With the standard adjoint and inverse schemes
Let JMVA be the extended objective function defined as

JMVA =
1

2

∥∥∥Anξ
∥∥∥2

− < λ, ξ −Di

∫
dsdωS∗0(s,x− h, ω)R0(s,x + h, ω) >x,h

− < µs(s,x, ω),L0S0 − Ss(s,x, ω) >s,x,ω

− < µr(s,x, ω),L∗0R0 −Rs(s,x, ω) >s,x,ω, (2.7)

with

Ss(s,x, ω) = Ki(ω)Ω†(ω)DsG0(s,x, ω) (2.8)

Rs(s,x, ω) = Ki(ω)Ω†(ω)

∫
drDdd(s, r, ω)DrG0(r,x, ω) (2.9)

or equivalently

L0Ss(s,x, ω) = Ki(ω)Ω†(ω)Dsδ(x− s) (2.10)

L∗0Rs(s,x, ω) = Ki(ω)Ω†(ω)

∫
drDdd(s, r, ω)Drδ(x− r) (2.11)

The L0 and δ are the wave propagation operator and Dirac distribution, respectively.
The ∗ denotes the adjoint and ω the angular frequency. The details of the different
quantities (Ki, Ds, Dr, Dd) are provided in Appendix 2.11. They are essentially time
and spatial derivatives to obtain the standard image and the approximate inverse image.
In the formulation, the adjoint state variables λ, µs and µs are defined such that the state
variables ξ, S0 and R0 satisfy the state equations. The macro-model m0 (squared of
the slowness) is contained in the L0 operator and for a constant-density acoustic wave-
equation, we have ∂L0/∂m0 = (iω)2. The final gradient thus reads

∂JMVA

∂m0

= − < µs, (iω)2S0 >s,ω − < µr, (iω)2R0) >s,ω (2.12)

The gradient depends on the adjoint variables µs and µr. The derivative of the ob-
jective function with respect to ξ leads to the adjoint source

λ = AtnAnξ. (2.13)

The derivative with respect to S0 and R0 yields
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L∗0µs(s,x, ω) =

∫
dxhDiλ(x + h,h)R∗0(s,x + 2h, ω) (2.14)

L0µr(s,x, ω) =

∫
dxhDiλ(x− h,h)R∗0(s,x− 2h, ω) (2.15)

With an iterative scheme

When the migrated section is obtained through an iterative process before evaluating
the quality of the focusing, two approaches exist for deriving the tomographic gradient.
In the first case, the adjoint method is applied iteratively to all the intermediate steps.
In the second case, one supposes the data fit convergence. This is the recommended
approach as it simplifies the derivation of the adjoint. We refer to Cocher (2017) for more
details and a comparison between the two strategies. It is also possible to introduce the
approximate inverse as a preconditioner to accelerate the least-squares migration (Hou
and Symes, 2016b).

2.11 Appendix II: Approximate inverse
We provide the detailed expressions for different approximate inverses. We use the
same notations to compare the four final expressions, both for the modeling, adjoint
and inverse parts. In other words, we rewrite some original equations provided by the
different authors. For the approximate inverse, we consider here the case where the
macro-model is locally invariant for simpler expressions. The modeling reads

F [ξ](s, r, ω) = Km(ω)Ω(ω)

∫
dxdhG0(s,x− h, ω)

Dmξ(x,h)G0(s,x + h, ω), (2.16)

F T [d](x,h) = DT
m(x)

∫
dsdrdωKT

m(ω)Ω∗(ω)

G∗0(s,x− h, ω)d(s, r, ω)G∗0(s,x + h, ω), (2.17)

F †[d](x,h) = Di(x)

∫
dsdrdωKi(ω)Ω†(ω)

DsG
∗
0(s,x− h, ω)Ddd(s, r, ω)DrG

∗
0(s,x + h, ω), (2.18)

where ∗ is the complex conjugate and † the inverse. For the modeling part, Km =
−(iω)2 and Dm = 1. The other quantities are defined in Table 2.1. The inverted source
is obtained as Ω† = Ω∗/‖Ω‖2. Note that both the adjoint (equation 2.17) and the inverse
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Figure 2.14: Final macro-model in m/s (a), model perturbation in s2/m2 (b) and total
model in m/s (c), as well as the CIGs (d) for the Marmousi case, from Zhou et al.
(2020b)

Table 2.1: Review of the approximate inverse operator expressions for different ap-
proaches (Chauris and Cocher, 2018).

Strategy A B C D

Ref.
ten Kroode

(2012)
Hou and Symes

(2015)
Hou and Symes

(2017)
Chauris and Cocher

(2017)

Modeling Kirchhoff Born Born Born

Dim. 3D 2D 2D 2D

Di −32/π/v2
0 8v2

0

√
∇2
x,z∇2

h,z −16v2
0∂z −16v2

0∂z

Ki (iω) 1/(iω)2 1/(iω) 1/(iω)

Ds ∂sz 1 1 ∂sz

Dd 1 ∂sz∂rz ∂sz∂rz 1

Dr ∂rz 1 1 ∂rz
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operators (equation 2.18) have very similar expressions. This is an essential aspect for
the implementation.

In the A–strategy, the modeling is different as initially based on the Kirchhoff in-
tegral (ten Kroode, 2012) instead of the Born modeling (strategies B to D). To remove
the dependency over the scattering angle at the image point arising in the Kirchhoff rep-
resentation, the author considers the linear relationship between ξ and the data. Only
this approach is 3D (all others are 2D). In the D–strategy, the model perturbation was
originally expressed in terms of squared slowness perturbation. Here, the expressions
are converted to velocity perturbation for consistency. In approaches A, C, and D, the
product of all columns (Table 2.1) are the same, except that in A, with an additional
factor π coming from the 3D formulation. Note that the expression in Di for the B–
approach can be evaluated in the 2D Fourier domain by applying successive multiplica-
tions by

√
k2
z + k2

x and
√
k2
z + k2

h in the proper domains. As analyzed in Chauris and
Cocher (2018), the ratio between Di in B and Di in C and D is approximately equal
to 2ω/(v0kz) for limited surface offset data. It means that a vertical derivative in z in
the image domain is replaced by a time derivative in the data domain. The factor 2/v0

could be understood as the time to depth conversion in a simple case. Note that from a
practical point of view, Guitton et al. (2007) proposed to add this vertical derivative to
remove some migration artifacts. Later, Weibull and Arntsen (2013); Wang et al. (2019)
introduced the same term in the MVA context: this can be seen as the first step towards
Inversion Velocity Analysis (IVA).

The derivatives with respect to the vertical position of the source and receiver in Ds,
Dd and Dr are either applied to the Green’s function computed in v0 (strategies A and
D) or to the data (strategies B and C) for which the authors supposed that the velocity
model is exact in the near-surface. The vertical derivatives can be computed with dipole
sources, through the (ω − k) relationship (equation 31 in ten Kroode (2012)) or using
free surface multiples (Hou and Symes, 2015).

We conclude from this analysis that approaches A, C and D are almost identical.
Hou and Symes (2017) compared B (more time-consuming because of the Di factor)
and C on the Marmousi model and concluded that the main differences come from non-
reflecting waves such as diving waves for which the formalism is not designed.

Triplicated wavefields are properly handled in the subsurface extended domain (Stolk
and Symes, 2004). Only ten Kroode (2012) really addresses this issue in the inversion
formalism. Numerical examples tend to confirm the conclusion (Hou and Symes, 2015).
However, diving waves and grazing waves (i.e. arriving with a tangent direction at the
surface) cannot be reconstructed from the inversion formula. A simple way is to analyze
theDi, Ds andDr for example in the D–approach: in a high frequency asymptotic sense
and for h = 0, the application of ∂z to the two Green’s functions acts as a multiplica-
tion by cos θ cos γ, where θ and γ are the half opening and dip angles. Similarly, the
application of ∂sz includes a multiplication by cos βs, where βs is the emerging angle at
the source. The cosine values (associated with the half opening angle) are small for div-
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ing and grazing rays, preventing from a stable mapping between the data and extended
image domains.

The Di term is more complicated in theory and one should consider the velocity v0

at x− h and x + h (equation 51 in ten Kroode (2012) for A; equation A–34 in Hou
and Symes (2015) for B; equation A–7 in Hou and Symes (2017) for C; equation 7 in
Chauris and Cocher (2017) for D).

Di =
1

2

(
v0(x− h)

v0(x + h)
+ 1

)
∂z +

1

2

(
v0(x− h)

v0(x + h)
− 1

)
∂hz (2.19)

For the currently published implementations, theDi expressions from Table 2.1 have
been used. There is in principle a need from computing the derivative with respect to
the vertical hz variable for hz = 0. Alali et al. (2020) were able to implement the
full expression for the Di value, but it did not result in significant modifications on the
numerical investigations.

2.12 Appendix III: Equivalences between data and im-
age domains

In this third Appendix, we analyze the possible equivalences between data-domain and
image-domain strategies (Chauris et al., 2017). Data-domain approaches are typically
travel time tomography (Bishop et al., 1985), slope tomography (Billette and Lam-
baré, 1998; Alerini et al., 2007; Lambaré, 2008), or for wave-equation-based methods
Migration-Based Travel Time (MBTT, Plessix et al. (1995); Clément et al. (2001)) and
the equivalent approaches Reflection Waveform Inversion (RWI, Hicks and Pratt, 2001;
Brossier et al., 2015; Zhou et al., 2015). We refer to Yao et al. (2020) for a review on
RWI.

The important point is the notion of kinematic invariants, already introduced in Fig-
ure 2.1 (Chauris et al., 2002a; Guillaume et al., 2008; Tavakoli et al., 2017; Sambolian
et al., 2021) (Figure 2.15). We provide here more quantitative results. A locally coher-
ent event in the data domain is in 2D characterized by the source and receiver position, a
two-way travel time, and two slopes (Billette and Lambaré, 1998). In the image domain,
the equivalent is a (x, z) position and two dips, along the x and surface-offset directions.
Chauris et al. (2002a); Guillaume et al. (2008) have explained how to alternate between
the two domains.

We first provide a summary of the results, for different schemes, including subsur-
face offset, here a new aspect (Table 2.2). Montel and Lambaré (2019) indicated that
the residual move-out depends on the choice of the extension. We then add more details
for quantitative expressions in the angle and subsurface offset extensions (second part
of this Appendix). In all cases, the source and receiver positions, as well as the total
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Table 2.2: Kinematic invariants. The fitted quantity is zero by construction of the mi-
gration scheme. The mid-point slope pm and subsurface-offset slope pH are defined as
pm = ps + pr and pH = ps − pr, respectively. The weights αs and αr are specified in
the text. For the subsurface offset case, the fit to the two slopes are always satisfied, but
possibly from different subsurface locations.

Migration scheme Fitted quantity Data residual

shot pr − p∗r = 0 ps − p∗s
receiver ps − p∗s = 0 pr − p∗r

surface offset pm − p∗m = 0 pH − p∗h
angle αs(ps − p∗s)+ αs(ps − p∗s)−

αr(pr − p∗r) = 0 αr(pr − p∗r)
subsurface offset ps − p∗s = 0 unique image point x

pr − p∗r = 0

travel time are automatically fitted. For the common shot migration scheme, a summa-
tion is performed over all receivers: this ensures that the derivative of the travel time
with respect to the receiver position pr fits the slope in the data p∗r . On the source side,
the source slope ps may differ from the observed data source slope p∗s. Chauris et al.
(2002a) show that the data residual is proportional to the moveout residual in the CIGs
defined along the source axis ∂z/∂s. The similar expression holds for the common re-
ceiver case. For the offset case, the mid-point slope pm = ps + pr is satisfied, while the
fit on the surface-offset slope pH = ps − pr depends on the macro-model. For the angle
and subsurface-offset cases, similar but more complex relationships exist. In practice,
the weights in front of the ps and pr terms are not constant and depend on ray quantities
(Table 2.2). Finally, for the subsurface offset and only in this case, the two slopes are fit-
ted at the source and receiver sides, but the associated rays may start from two different
positions, shifted by 2h (Table 2.2).

Based on these results, Chauris et al. (2017) among others proposed a wave-equation
approach formulated in the data domain. The new objective function reads 1/2||FAnξinv||2:
the Born modeling operator is applied to the reflectivity section multiplied by the annihi-
lator. The first results indicate less imprint of the reflectivity on the tomographic gradient
(Chauris et al., 2017). Diaz and Sava (2017) propose to alternate between the image-
and data-domains.

We now detail the derivations (Table 2.2). We extend the approach by Chauris et al.
(2002a) from the shot and offset cases to the angle and subsurface cases. The derivations
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are performed in 2D.

Common angle migration

Let consider a single locally event in the observed data, characterized by the source and
receiver positions (s, r), a travel time t(s, r) and two observed slopes (∂t/∂s, ∂t/∂r) =
(p∗s, p

∗
r) along the source and receiver axis, respectively. In the image domain, it is

associated to a reflection event at position (x, z), with a dip γ and an opening angle θ,
or by two angles (θs, θr) = (γ + θ, γ − θ) defined at the scatter position and pointing
towards the source and receiver positions. The ray-based travel times are denoted by τs
and τr.

By definition, the total travel time should fit the observed time

τs(x, z, θs) + τr(x, z, θr) = t(s(x, z, θs), r(x, z, θr)) (2.20)

As there is an integration over all dip angles γ for a fixed scattering angle θ, the
derivation of equation 2.20 with respect to γ and for a fixed θ yields

∂τs
∂θs

+
∂τr
∂θr

=
∂s

∂θs

∂t

∂s
+
∂r

∂θr

∂t

∂r
(2.21)

By definition of the horizontal components of the slopes at the surface (ps, pr), we
finally have

αsps + αrpr = αsp
∗
s + αrp

∗
r, (2.22)

with αs = ∂r/∂θs and αr = ∂r/∂θr. To evaluate the residual slope in the CIG, one
needs to differentiate equation 2.20 for a fixed x position (i.e. value specifying the CIG
location). The expression can by simplified using equation 2.22, leading to

∂z

∂θ
=
αs(p

∗
s − ps)− αr(p∗r − pr)

∂τs
∂z

+ ∂τr
∂z
− ∂τs

∂θs
− ∂τr

∂θr

(2.23)

The numerator also equals 2αs(p
∗
s − ps) = −2αr(p

∗
r − pr). The denominator acts as

a weight in the objective function (Table 2.2).

Subsurface migration

We process along the same line for the subsurface case. Here, the travel time conditions
reads

τ(s, x− h, z) + τ(r, x+ h, z) = t(s, r), (2.24)
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where τ is the travel time between (x, z) and s or r. Equation 2.24 should be valid for
any source and receiver positions, yielding

∂τ

∂s
=

∂t

∂s
, (2.25)

∂τ

∂r
=

∂t

∂r
. (2.26)

We differentiate equation 2.24 with respect to (s, z, h) for a fixed x value and as
before simplify the expression, leading to

∂z

∂h
=

∂τ
∂x

(s, x− h, z)− ∂τ
∂x

(r, x+ h, z)
∂τ
∂z

(s, x− h, z) + ∂τ
∂z

(r, x+ h, z)
, (2.27)

=

sin θs
v(x−h,z) − sin θr

v(x+h,z)

cos θs
v(x−h,z) + cos θr

v(x+h,z)

. (2.28)

In the case of a laterally invariant velocity model v, the derivative simply reads

∂z

∂h
= tan θ. (2.29)

Here, the observed slopes (p∗s, p
∗
r) are automatically fitted, but possibly for rays start-

ing from different positions (x− h, z) and (x + h, z). A physical condition is obtained
for h = 0.
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Figure 2.15: Kinematic invariants for a common shot migration in possibly two different
macro-models, adapted from Chauris et al. (2002a).
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Résumé

Ce chapitre comprend l’article intitulé « From constant- to variable-density inverse ex-
tended Born modeling », publié dans la revue Geophysics (Farshad and Chauris, 2020a).
Pour une imagerie quantitative, la migration itérative (« iterative least-squares reserve
time migration » en anglais) est l’approche préconisée. L’existence d’un inverse de
l’opérateur de modélisation réduirait considérablement le nombre d’itérations néces-
saires. Dans le contexte du modèle étendu, un tel pseudoinverse existe et est construit
comme une version pondérée de l’opérateur adjoint. Il prend en compte la déconvolu-
tion, le facteur d’amplitude géométrique et l’illumination irrégulière. L’application du
pseudoinverse suppose un milieu acoustique à densité constante, ce qui est une forte
limitation pour les applications pratiques. Afin de considérer des perturbations de den-
sité, nous proposons et investissons deux approches. La première est une généralisation
d’une étude récente qui propose de retrouver les perturbations acoustiques à partir de la
réponse (qui dépend de l’angle d’imagerie) de l’opérateur de modélisation. Cette nou-
velle version est basée sur une fonction objective au sens des moindres carrés. La méth-
ode non seulement apporte des résultats plus robustes, mais elle offre aussi la possibilité
d’inclure des contraintes pour réduire les couplages entre paramètres. Nous proposons
aussi une seconde approche avec une expansion de Taylor qui ne demande pas de trans-
formée de Radon. Les exemples numériques sur les modèles simples et sur Marmousi2,
avec des champs de vitesse corrects et incorrects, montre l’efficacité de la première
méthode. L’approche de Taylor contient beaucoup trop d’artefacts pour être applicable
en pratique.
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From constant- to variable–density inverse extended Born modeling
Milad Farshad and Hervé Chauris

Geophysics, 2020, 85(4), pages S217–S232
doi: 10.1190/geo2019-0489.1

3.1 Abstract
For quantitative seismic imaging, iterative least-squares reverse time migration is the
recommended approach. The existence of an inverse of the forward modeling opera-
tor would considerably reduce the number of required iterations. In the context of the
extended model, such a pseudo-inverse does exist and is built as a weighted version of
the adjoint that accounts for the deconvolution, geometrical spreading and uneven il-
lumination. The application of the pseudoinverse Born modeling is based on constant
density acoustic media, which is a limiting factor for practical applications. To con-
sider density perturbations, we propose and investigate two approaches. The first one
is a generalization of a recent study proposing to recover acoustic perturbations from
the angle-dependent response of the pseudoinverse Born modeling operator. This new
version is based on weighted least-squares objective function. The method not only
provides more robust results, but also offers the flexibility to include constraints in the
objective function in order to reduce the parameters cross-talk. We also propose an alter-
native approach based on Taylor expansion that does not require any Radon transform.
Numerical examples based on a simple and the Marmousi2 models using correct and in-
correct background models for the variable density pseudoinverse Born modeling, verify
the effectiveness of the weighted least-squares method when compared with the other
two approaches. The Taylor expansion approach appears to contain too many artifacts
for a successful applicability.

3.2 Introduction
Least-squares reverse time migration (LSRTM) has been proposed to overcome the
shortcomings of standard reverse time migration (RTM) due to the imperfections of
the seismic data resulting from significant aliasing, noise, irregular source and receiver
sampling and finite recording aperture (Baysal et al., 1983; Nemeth et al., 1999; Dai
et al., 2011; Zeng et al., 2014; Zhang and Schuster, 2014; Zhang et al., 2015b). In par-
allel, a time/space shift extended imaging condition has been proposed to potentially
decouple the data fitting in LSRTM from the choice of the velocity model (Sava and
Fomel, 2006; Symes, 2008b; Yang et al., 2019a). Mathematically speaking, LSRTM is
trying to iteratively provide a better approximation to the inverse of the forward Born

https://doi.org/10.1190/geo2019-0489.1
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modeling operator as required in theory, rather than applying the adjoint of the Born
modeling operator to the seismic data as done in RTM. Two aspects are currently under
development: the estimation of multiparameters beyond the constant density acoustic
case and of efficient preconditioners for a fast LSRTM.

With the deployment of multi-component seismic data, there has been an increas-
ing interest in extending LSRTM to multiparameter imaging in both acoustic and elastic
media to provide a better description of wave propagation. Typically, density and attenu-
ation are additional parameters included in the inversion framework (Dutta and Schuster,
2014; Yang et al., 2016b; Sun et al., 2018).

The main drawback of LSRTM is that it should be solved iteratively. Since each
iteration requires the application of modeling (demigration) and adjoint (migration) op-
erators, the computational expense of LSRTM can be considerable. Several strategies
such as multi-source approach with random or linear-phase encoding (Dai et al., 2012;
Xue et al., 2016) have been proposed to increase the efficiency of LSRTM.

In the context of subsurface offset extended RTM, recently, different explicit pseu-
doinverse expressions for the Kirchhoff modeling operator (ten Kroode, 2012) and for
the Born modeling operators (Hou and Symes, 2015, 2017; Chauris and Cocher, 2017)
have been proposed. The pseudoinverse operator is an alternative to the adjoint operator
and provides quantitative properties within a single iteration. Although the derivations
are performed under the high-frequency approximation (ray-theory), the final formulas
do not contain any ray quantities but only time and spatial derivatives. It appears that the
technique is very similar to the standard migration scheme, with only additional weights
in the imaging operator (Hou and Symes, 2015, 2017; Chauris and Cocher, 2017). These
new operators are explicit and simple in terms of implementation. They can also be used
as pre-conditioners (a way to speed up the resolution of the inverse problem) for exam-
ple for the full waveform inversion and migration velocity analysis (Chauris and Cocher,
2017; Hou and Symes, 2018; Li and Chauris, 2018). The theory of pseudoinverse Born
modeling is established based on the constant-density acoustic wave equation. However
in reality, the density of the Earth is inhomogeneous. Moreover, the amplitude of re-
flected seismic waves is mostly affected by acoustic impedance contrasts, the product of
velocity with density. Therefore, if the P-wave velocity is the only variable parameter
in the pseudoinverse Born modeling operator while density varies in reality, the inverted
parameter will not be correctly estimated.

Very recently, Dafni and Symes (2018) extended the method proposed by Hou and
Symes (2017) to variable density acoustic media. Their method consisted of two steps:
application of pseudoinverse Born operator (Hou and Symes, 2017), and inversion of
two parameters using two traces from the angle-dependent response of the result ob-
tained from the first step. We refer to their method as the “two-trace” approach in this
paper. Originally, this idea was proposed by Zhang et al. (2014b) in the context of
marine acquisition. They delineate the impedance and velocity perturbations from near-
angle and far-angle traces of angle-dependent response of amplitude-preserving RTM,
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respectively (Zhang et al., 2014b). Compared to constant density acoustic, variable den-
sity inverse RTM provides a better description of the wave propagation and generates
more accurate images. Moreover, the resulting models can further be used to study AVO
effects that play an important role in lithology analysis and fluid discrimination.

In this paper, we propose a generalization of the two-trace method proposed by Dafni
and Symes (2018) (least-squares method) as well as an alternative approach (Taylor ex-
pansion). We show that the final results obtained via the two-trace method slightly de-
pends on the choice of angles for inversion. The least-squares method is based on the use
of all traces in the angle domain, while the Taylor approach is based on the Taylor ex-
pansion of the Radon transform around zero angle. We discuss this method with respect
to the dependency on the maximum surface offset and on artifacts in image domain. For
all approaches, the starting point (first step) is a pseudoinverse Born operator either pro-
posed by Hou and Symes (2015), Hou and Symes (2017) or Chauris and Cocher (2017).
Here, in order to have a fair comparison between the two-trace approaches and the pro-
posed extensions, we use the pseudoinverse operator proposed by Chauris and Cocher
(2017) as the first step. We parameterize the subsurface via the inverse of the bulk mod-
ulus and density and invert these parameters from the angle-dependent response of the
pseudoinverse Born modeling operator. We compare the three approaches by evaluating
the data misfit and inverted parameters reconstruction. We also analyze the sensitivity
of the methods to incorrect background models, which is not addressed in Dafni and
Symes (2018). In all these approaches, the key factor determining an accurate match
in image and shot domains is the pseudoinverse modeling of constant density acoustic
media; their extension is easy to variable density acoustic media. The work should be
understood as follows: the derivation of a proper preconditioner in the variable density
acoustic case should enlarge the applicability of LSRTM, by reducing the number of
required iterations.

The paper is organized as follows: we first review the preliminaries required for the
extension to variable density, namely the variable density acoustic Born modeling, the
adjoint and the pseudoinverse constant density Born modeling, as well as the Radon
transform. Then, we explain how to extend the constant density pseudoinverse Born
operator to variable density acoustic media. We present synthetic examples to compare
and discuss the three approaches. Then, we apply the preferred method on the variable
density Marmousi2 model. Finally, we discuss the prospects for further development of
the pseudoinverse Born modeling.

3.3 Preliminaries
We give here a brief review of the concepts and formulas of the variable density acoustic
wave equation, the adjoint and the pseudoinverse operators for the Born modeling, and
the Radon transform.
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3.3.1 Variable density acoustic Born modeling
The acoustic Earth model is parameterized with two parameters (at each point), involv-
ing P-wave velocity, Vp, and density, ρ, or their combinations, for instance, P-wave
impedance, Ip = ρVp, or inverse of bulk modulus, β = 1

ρV 2
p

. Each model parameter,
for example m, can be considered as the sum of the background model m0, controlling
the kinematics of the wave propagation, and the model perturbation δm, creating new
types of waves and reflections, where both depends on the spatial coordinates x = (x, z)
(Symes, 2008b). By definition,

m(x) = m0(x) + δm(x), (3.1)

and, under the Born approximation, we suppose that δm(x) � m0(x). The definition
of the perturbation model (δm) can be extended to depend on more degrees of freedom.
The most recent conventional choice for the extension is the subsurface offset (h), intro-
duced as an offset between the sunken sources and receivers by Claerbout (1985). Here,
we only consider the horizontal subsurface extension as h = (h, 0) for the 2-D case.
By using this approach, the dimension of the model space becomes the same as the data
space (Table 3.1) allowing to compensate for errors in the background model (Sava and
Fomel, 2006; Symes, 2008b). The mathematical expression between physical m(x) and
extended domains m(x,h) can be simply defined as

m(x,h) = m(x)δ(h),

m(x) =

∫
dh m(x,h). (3.2)

Equation 3.2 is only valid when the background model is correct. For well-focused
noise-free data, extracting the image at h = 0 m could be reasonably accurate. However,
it is more robust to sum over the h-axis. In other words, one might expect the estimated
physical image so obtained to be less sensitive to incoherent or numerical noise (Hou
and Symes, 2015).

Table 3.1: Dimension of the data and model domains. s and r are the source and receiver
coordinates; t is the time; x , y and z are the spatial coordinates; and h is the subsurface
offset.

Dimension Data domain Physical model domain Extended model domain

1D t z z

2D (s, r, t) (x, z) (x, z, h)

3D (sx, sy, rx, ry, t) (x, y, z) (x, y, z, hx, hy)
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We also denote the source and receiver positions as s and r, respectively. We pa-
rameterize the subsurface via the inverse of the bulk modulus and density. The solution
of the 2-D acoustic scattered wavefield under the Born approximation can be expressed
by introducing the reference Green’s function G0 in a given background model m0. An
integral operator expression for the extended Born modeling operator B (Symes, 2008b)
can be written as an integral over all scatter positions:

d(s, r, ω) = B[m0]δm(s, r, ω) = Ω(ω)

∫
dx F(β,ρ)(x,h, ω; s, r)δm(β,ρ)(x,h), (3.3)

where ω is the angular frequency, Ω(ω) is the source spectrum, F(β,ρ) is the extended
modeling vector given as (Symes, 2008b):

F(β,ρ)(x,h, ω; s, r) =


−(iω)2G0(s,x− h, ω)G0(x + h, r, ω)

1
ρ20
∇G0(s,x− h, ω) · ∇G0(x + h, r, ω)


T

, (3.4)

δm(β,ρ) is the model vector given as:

δm(β,ρ)(x,h) =


δβ(x,h)

δρ(x,h)

 , (3.5)

and T denotes the transpose operator. The composition B[m0]δm denotes computed
data d in (m0, δm). Since different parameter classes have different physical units and
nature, they can have different influence on the data. Note that the influence of one pa-
rameter on the data depends on the other parameters involved in the subsurface parame-
terization. Generally, this is referred to as parameter cross-talk, meaning that parameters
are more or less coupled (Virieux and Operto, 2009). The diffraction or radiation pattern
can give some insight into influence of the parameterization in the data as a function of
the diffraction angle (Operto et al., 2013). The analytical expression for the diffraction
pattern can be derived in the framework of the Ray+Born approximation (Forgues and
Lambaré, 1997). Thus, under the high-frequency approximation, the modeling vector
F(β,ρ) (equation 3.4) can be rewritten as:

F(β,ρ)(x,h, ω; s, r) =


−(iω)2G0(s,x− h, ω)G0(x + h, r, ω)

β0(iω)2

ρ0
G0(s,x− h, ω)G0(x + h, r, ω) cos(2γ)


T

(3.6)
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= (iω)2G0(s,x− h, ω)G0(x + h, r, ω)
[
−1 β0

ρ0
cos(2γ)

]
,

where γ denotes the diffraction angle. Figure 3.1 shows the graphic representation of
diffraction pattern for m(β,ρ) as a function of the diffraction angle. As expected from
equation 3.6, the amplitude of scattered wavefield by β perturbation in the (β, ρ) param-
eterization shows an isotropic pattern (red line in Figure 3.1), while the amplitude by
ρ perturbation shows an increasingly decreasing pattern from the small γ to the wider
ones (blue line in Figure 3.1).

0◦

45◦

90◦

135◦

180◦

225◦

270◦

315◦

γ =

β ρ

Figure 3.1: The analytical diffraction pattern for an acoustic medium parameterized by
(β, ρ).

Equation 3.6 provides a linear relationship between the data and the (δβ, δρ) per-
turbations. In the next section, we review the pseudoinverse operator providing optimal
δβ(x,h) from observed data in the case when δρ = 0. Then we introduce the Radon
transform to handle angle γ appearing in equation 3.6 when δρ 6= 0.

3.3.2 Pseudoinverse Born modeling

RTM is one of the most powerful seismic imaging methods in complex geology. The
classical form of the RTM operator can be expressed as the correlation between the
forward and back-propagation of source and receiver wavefields, respectively (Taran-
tola, 1984). By considering constant density acoustic media (δρ = 0), for a specific
background model (β0), migration is introduced by minimizing the misfit between the
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observed (dobs) and computed data (d(ξ)) at each shot position as:

J0(ξ) =
1

2

∥∥d(ξ)− dobs
∥∥2
, (3.7)

where ξ = δβ is the extended reflectivity and ‖ . ‖2 denotes the `2-norm. The operator of
the migration for determining ξ can be defined by deriving the gradient of equation 3.7
with respect to ξ as (∂J0/∂ξ)|ξ=0 (Lailly, 1983; Tarantola, 1984), yielding

ξ = BT (dobs)(x,h) (3.8)

= −
∫

ds dr dω (iω)2Ω∗(ω)G∗0(s,x− h, ω)dobs(s, r, ω)G∗0(x + h, r, ω),

where ∗ denotes the complex conjugate. RTM (equation 3.8) is the adjoint of the Born
modeling operator (BT ), whereas inversion (B†) is its asymptotic inverse. Here, for pseu-
doinverse Born modeling, we considered the method proposed by Chauris and Cocher
(2017) which is close to the one presented in Hou and Symes (2017). Both derivations
determine an pseudoinverse B† of the extended Born modeling operator B such that
B†B ≈ I , where I is the identity operator. However, Hou and Symes (2017) directly
apply the stationary phase approximation on B†B, whereas Chauris and Cocher (2017)
use a linearization of the phase of B†B, leading to different final formulations for B†
even if both formulations are valid in an asymptotic sense (Chauris and Cocher, 2018).
Following the work by Chauris and Cocher (2017), the pseudoinverse formula for the
extended Born modeling operator in a constant density acoustic media can be written
as:

ξ = B†(dobs)(x,h) (3.9)

' 32
β0

ρ3
0

∂z

∫
ds dr dω

Ω†(ω)

(iω)
∂szG

∗
0(s,x− h, ω)dobs(s, r, ω)∂rzG

∗
0(x + h, r, ω),

where Ω† = Ω∗

‖Ω‖2 is the inverse of the seismic source. In terms of implementation,
equation 3.9 is close to the standard migration algorithm (equation 3.8), with three main
modifications: (1) applying vertical derivative with respect to source and receiver posi-
tions to the Green’s functions; (2) using the inverse version of the source wavelet instead
of adjoint version; (3) applying a first-order integration in time before cross-correlation
instead of a second-order derivative and finally a vertical derivative to the result of the
cross-correlation. These modifications result in applying the following weights, respec-
tively: (1) cosines of take-off angles at the sources and receivers positions; (2) decon-
volution of the source wavelet; (3) cosines of the half-opening angle at the image point.
A larger weight is given to small scattering angles and short surface offsets (Chauris
and Cocher, 2017). In constant density acoustic media, if the investigated background
model is correct, the energy focuses around the zero-subsurface offset. Otherwise, the
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extended domain allows to compensate for errors in the background velocity model by
defocusing the energy in the extended reflectivity. Even in this case, it is still possible
to reconstruct the observed data from the extended reflectivity (Symes, 2008b). For ex-
ample, Figure 3.2a shows the observed data for a single layer Earth model in a constant
density acoustic media. The corresponding common-image gather (CIG) for correct
(v = 2400 m/s) and incorrect (v = 2700 m/s) background models are also shown in
Figure 3.2b and 3.2c, respectively. It is worth noting that the high (low) velocity results
in upward (downward) curvature in CIG domain, as shown in Figure 3.2c. To evaluate
the effect of the extended domain, we first reconstruct the shot for the correct and in-
correct background models in the extended domain (Figure 3.3a and 3.3b). The phase
and amplitude are correctly retrieved for both cases. Then, we reconstruct the data for
an incorrect background model in the physical domain by simply summing CIG over
all h values (see equation 3.2, Figure 3.3c). Careful examination of the extracted traces
indicates that the phase is not well retrieved (Figure 3.3c).

In variable density acoustic media, the energy of the incident wave is partitioned
at each boundary based on the contrasts in velocity and density properties across the
boundary. The important aspect to note is that reflection amplitude for each boundary
depends on the angle of incidence. This phenomenon is well known as amplitude varia-
tion with angle (AVA) (Chopra and Castagna, 2005). An example of observed data for a
single layer Earth model in a variable density acoustic media and its reflection coefficient
as a function of angle for the interface is shown Figure 3.4a and 3.4b, respectively. The
velocity and density pairs for above and below the interface are (2500 m/s, 1950 kg/m3)
and (2320 m/s, 2200 kg/m3), respectively. In such media, using equation 3.9 for invert-
ing reflectivity will defocus the energy in extended domain to compensate the effect of
AVA, even with correct background model, as can be seen in Figure 3.4c. Although it
may still reconstruct the observed data, there would be no physical sense of velocity or
density perturbation since the energy is defocused (Figure 3.4c).

As we showed in equation 3.6, the combination of the ray theory and the Born ap-
proximation provides quantitative estimations of the multiparameter inversion. It means
that the inverted ξ(x,h) in the extended domain (equation 3.9), can be decomposed into
two physical parameters (δβ(x), δρ(x)) based on the diffraction pattern of the specific
parameterization. The equation for this relation can be written as:

ξβ(x,h) ∼= δβ(x)δ(h)− β0

ρ0

cos(2γ)δρ(x)δ(h), (3.10)

where δ() is the Dirac delta function. In the case δρ(x) = 0, the δβ(x) can be recon-
structed from ξβ(x,h) by simply summing over all h values (δβ(x) =

∫
dh ξβ(x,h)).

For variable density, based on the fact that inversion of δρ(x) in equation 3.10 is angle-
dependent, a transformation of subsurface offset to scattering angle is required (Dafni
and Symes, 2018). In the next section, we review how to transform the extended offset
domain CIG to angle domain CIG via the Radon transform.
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Figure 3.2: Constant density acoustic media. a) Observed data for a single layer Earth
model and the corresponding CIG inverted via pseudoinverse Born modeling operator
(equation 3.9) with b) correct and c) incorrect background model (high velocity).
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Figure 3.3: Left: reconstructed shots with a) correct velocity extended domain, b) in-
correct velocity extended domain and c) incorrect velocity physical domain. The RMS
error between synthetic and observed data is written on each panel. right: extracted
traces for near and far offsets. Shots are plotted in the same scale.
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Figure 3.4: Variable density acoustic media. a) Observed data for a single layer Earth
model and the corresponding b) AVA for the interface, and c) CIG inverted via pseu-
doinverse Born modeling operator (equation 3.9) with correct background model.

3.3.3 Angle domain CIGs

Angle gathers are the main ingredient of the AVO/AVA analysis which can give us re-
liable estimates of the Earth parameters, such as P-wave velocity (Vp), S-wave velocity
(Vs), density (ρ), or different combinations of them. These parameters can further be
used to provide information about reservoir parameters, namely, lithology, porosity and
fluid content (Castagna and Smith, 1994; Chopra and Castagna, 2005). Angle gath-
ers can be obtained using wave-equation techniques either based on wavefield methods
(de Bruin et al., 1990; Sava and Fomel, 2003; Biondi and Symes, 2004; Sava and Vlad,
2011; Sava and Alkhalifah, 2013; Dafni and Symes, 2016) or ray methods (Brandsberg-
Dahl et al., 2003). The fact that the wavefield methods can accurately image complex
geologic structures comparing to ray-based methods makes wavefield methods superior
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to ray methods. The wavefield methods can be applied either for shot-profile migra-
tion, shot-geophone migration, or prestack images after migration. Since in the first
two methods the angle gathers are evaluated from wavefields prior to imaging, they are
referred as “data-space methods”. The angle gathers obtained from these methods are
a function of offset ray parameter. Sava and Fomel (2003) showed that angle gathers
can also be obtained from migrated images with a process which is completely detached
from migration. The main advantages of their method are that the angle gathers are
produced as a function of the reflection angle, which is not the case in data-space meth-
ods, and also with much less computational cost compared to data-space methods. This
process is based on performing the Radon transform (slant stack integral) on extended
CIGs. The Radon transform formula can be written in 2D as:

Rξ(x, z, γ) =

∫
dh ξ(x, z + h tan γ, h), (3.11)

where tan γ is the trajectory of integration. Figure 3.5 illustrates the integration path for
different point positions in a CIG panel. Note that it is commonly assumed that the RTM
and the ray-based angle (γ in equation 3.6 and 3.11) are the same. Montel and Lambaré
(2011) showed that this is not necessarily the case for incorrect background models.
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Figure 3.5: a) a CIG with three nonzero points and b) its Radon transform showing the
path of integration for different points.

We now have the ingredients to take into account variable density, i.e. to determine
(δβ(x), δρ(x)) from ξβ(x,h) (equation 3.10). As the inversion formula is derived in
data domain (equation 3.7), we do not expect a unique solution, but the reconstructed
data from (δβ(x), δρ(x)) should match the observed data. In other word, we may have
different combinations of δβ(x) and δρ(x), leading to approximately the same data fit.
Note that ξβ(x,h) is defined in the extended domain, whereas (δβ(x), δρ(x)) are defined
in the physical domain.
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3.4 Variable density pseudoinverse modeling
Here, we first review the two-trace method proposed by Dafni and Symes (2018). Then,
we derive two new schemes for variable density pseudoinverse Born modeling. The first
one is based on the generalization of the two-trace method, referred to as weighted least-
squares (WLS), and the second one is based on the Taylor expansion of the Radon trans-
form around γ = 0◦. As detailed below, the latter does not require any forward/inverse
Radon transform, with a straightforward implementation. We explain its derivation and
discuss its applicability.

3.4.1 Two-trace method
Recently, a multiparameter inversion method for bulk modulus and density perturbation
was proposed by Dafni and Symes (2018) based on the analysis of two traces within the
Radon domain. They used a similar formula as equation 3.10, to invert the perturba-
tions from the angle-dependent response of the pseudoinverse. By applying the Radon
transform on ξ (equation 3.10):

Rξ(x, γ) = δβ(x)− β0

ρ0

cos(2γ)δρ(x), (3.12)

they propose to choose two traces in angle domain, as:

a(x) = Rξ(x, 0) = δβ(x)− β0

ρ0

δρ(x), (3.13)

b(x) = Rξ(x, γ
′) = δβ(x)− β0

ρ0

cos(2γ′)δρ(x), (3.14)

and then calculate δβ and δρ by a system of two linear equations as:

δρ(x) =
ρ0

β0

b(x)− a(x)

1− cos(2γ′)
,

δβ(x) =
b(x)− cos(2γ′)a(x)

1− cos(2γ′)
. (3.15)

We note that inversion results for this method is angle dependent, meaning that the
results might slightly change by choosing different value for γ′.

3.4.2 Weighted least-squares (WLS) method
In this paper, to get more robust results, we generalize the above approach to consider
all traces in the Radon domain. Thus, we consider the whole AVA response rather
than simple expansions in terms of two traces. The objective function for any given
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x = (x, z) for optimal δβ(x) and δρ(x) can be defined as the least-squares differences
between the computed and observedRξ over the all angles as:

Jδβ,δρ =
1

2

∥∥∥∥(δβ(x)− β0

ρ0

cos(2γ)δρ(x))−Rξ(x, γ)

∥∥∥∥2

W

, (3.16)

where W (x, γ) is a weighting mask defined as:

W (x, γ) =

1, if |γ| ≤ α tan−1(xmax
z

)

0, otherwise
. (3.17)

We define this mask based on the acquisition geometry to remove the artifacts in the an-
gle domain at large angles. Thus, for each depth, we only consider the angles that would
indeed be recorded. This is strictly valid for homogeneous models. In equation 3.17, α
is a value close to 1, which is essential to avoid the artifacts due to the finite sampling
of the offset axis. In practice, there is no need to have a very precise definition of α. We
indeed choose this parameter to guarantee that we mainly include the specular events
in the angle-domain CIG. Figure 3.6 shows the weighting mask for xmax = 2250 m,
α = 0.85 and α = 1. Outside of these boundaries, the angle domain only contains
the artifacts corresponding to the artifacts in the CIG domain at large subsurface offset
values.
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Figure 3.6: Weighting mask W (x, γ). The red and blue dashed lines defines the W for
α = 1 and α = 0.85, respectively.

To derive the optimal δβ(x) and δρ(x), we compute the gradient of the objective
function J (equation 3.16) with respect to the model parameters δβ(x) and δρ(x) as:

∂J

∂δβ
=

∫
dγW (x, γ)

(
δβ(x)− β0

ρ0

cos(2γ)δρ(x)−Rξ(x, γ)
)

= 0, (3.18)
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∂J

∂δρ
= −

∫
dγW (x, γ)

β0

ρ0

cos(2γ)
(
δβ(x)− β0

ρ0

cos(2γ)δρ(x)−Rξ(x, γ)
)

= 0.

Equation 3.18 can hence be written in a matrix formulation as:
∫

dγW (x, γ) −
∫

dγW (x, γ)β0
ρ0

cos(2γ)

−
∫

dγW (x, γ)β0
ρ0

cos(2γ)
∫

dγW (x, γ)(β0
ρ0

)2 cos2(2γ)



δβ(x)

δρ(x)

 =


∫

dγW (x, γ)Rξ(x, γ)

−
∫

dγW (x, γ)β0
ρ0

cos(2γ)Rξ(x, γ)

 . (3.19)

Solving for equation 3.19 leads to the determination of an optimal δβ(x) and δρ(x) in
physical domain.

The key ingredient of the two-trace and the WLS methods is the Radon transform
(equation 3.12-3.16). We now propose an alternative approach avoiding the application
of the Radon transform.

3.4.3 Taylor expansion
Here, we propose an alternative approach based on Taylor expansion along the angle γ
of the Radon transform around γ = 0◦. The Taylor series provides a sum of the terms
which will approximate the function. Thus, the Taylor expansion of the Radon transform
(equation 3.11) evaluated around γ = 0◦ can be written as:

Rξ(x, γ) ' Rξ(x, 0) + γ
∂Rξ

∂γ

∣∣∣∣
γ=0

+
1

2
γ2∂

2Rξ

∂γ2

∣∣∣∣
γ=0

, (3.20)

where the first term is

Rξ(x, 0) =

∫
dh ξ(x, z, h), (3.21)

the second term is

∂Rξ

∂γ

∣∣∣∣
γ=0

=

∫
dhh

∂ξ

∂z
(x, z, h), (3.22)

and the third term is

∂2Rξ

∂γ2

∣∣∣∣
γ=0

=

∫
dhh2∂

2ξ

∂z2
(x, z, h). (3.23)
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The first-order Taylor expansion of the cos(2γ) evaluated around γ = 0◦ can be written
as

cos(2γ) ' 1− 2γ2. (3.24)

Note that the second term in equation 3.20 consists of the integration of the vertical
derivative of ξ(x, z, h) multiplied with h including negative and positive values. This
leads the second term to be negligible compared to the first and third terms (equa-
tion 3.21 and 3.23, respectively). Substituting equation 3.20 and 3.24 into equation 3.15
gives:

δρ(x) ' ρ0

4β0

∂2Rξ

∂γ2

∣∣∣∣
γ=0

=
ρ0

4β0

∫
dhh2∂

2ξ

∂z2
(x, z, h),

δβ(x) ' Rξ(x, 0) +
1

4

∂2Rξ

∂γ2

∣∣∣∣
γ=0

=

∫
dh
[
ξ(x, z, h) +

h2

4

∂2ξ

∂z2
(x, z, h)

]
.(3.25)

The advantage of this formulation is that it does not require any application of the Radon
transform. As can be seen, the δρ(x) only depends on second order derivative of the
ξ(x, z, h) weighted with h2. This makes it sensitive to the artifacts in CIG domain at
large subsurface offset values. Moreover, the Taylor expansion of the Radon transform
is applied around γ = 0◦ meaning it only works for short-offset acquisitions. However,
in seismic imaging we prefer long-offset acquisitions to be able to reconstruct the large
and intermediate wavelengths of wavefield.

3.5 Numerical experiments
We present several numerical examples from simulated data to compare the performance
of the different methods in term of accuracy, i.e., the ability for data reconstruction.
For the first example, we used the same model used by Dafni and Symes (2018). We
analyze the results for correct and incorrect background models for this example. In the
second example, we test the application of the proposed method on a variable density
Marmousi2 dataset.

3.5.1 Simple model
This model consists of four horizontal interfaces, which each of them showing different
type of AVA signature. The exact β and ρmodels are shown in Figure 3.7a and 3.7b. The
reflection coefficient corresponding to each event is also shown in Figure 3.7c: a strong
AVA effect is expected for the first and second interfaces. The sign of the amplitude
for the first event changes with angle from negative to positive and it vanishes around
γ = 20◦. For the second event, the amplitude starts from zero at γ = 0◦ and decreases
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with angle. The model is discretized on a 189×189 grid with 16 m spacing in vertical and
horizontal directions. The source wavelet for the simulation is a Ricker signal centered at
4.6 Hz (maximum frequency is 11.5 Hz). Each shot is recorded on 189 channels for 3.0 s
with a 3.5 ms time interval. By considering correct background models (Figure 3.8a and
3.8b), the inverted ξ and its Radon transform are shown in Figure 3.8c-d. As expected,
even by considering correct background models and inversion method, the energy in
the CIG domain is defocused due to AVO/AVA effects (mainly the shallowest event).
As illustrated in Figure 3.5, energy at different lags in the offset-domain CIGs leads to
different integral paths in the angle domain CIGs. This leads to have more amplitude
distortions at higher angles in angle domain CIGs.
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Figure 3.7: Exact a) β , b) ρ and c) reflection coefficient as a function of angle for each
interface corresponding to model 1.

First, we apply the extended Born modeling operator on the inverted physical models
to re-simulate the data. The observed and computed shots, and the extracted traces
for near/far offsets for each shot are calculated (Figure 3.9). The colorbar scale for
reconstructed data is the same as the one for the observed data. There is an accurate
match between observed and computed shots both in terms of phase and amplitudes.
The Root Mean Squared Error (RMSE) between observed and reconstructed shots via
each method is also written on each panel showing the superiority of the WLS method.
As can be seen in the extracted traces, there is a mismatch for the Taylor-expansion
method, especially in the shallow part of the data containing larger angle information.
This indeed is caused by the approximation of the Radon transform around γ = 0◦.
It is interesting to compare the observed and reconstructed data based on short-offset
acquisition where the Taylor expansion should be more applicable. Therefore, we apply
the modeling operator on the same model but considering a short-offset acquisition only
(Figure 3.10). There is indeed better match in both shallow and deep parts. Note that
the RMSE between the observed and reconstructed shots in the short-offset acquisition
is 3 times less than the long-offset acquisition for the Taylor expansion method.

To further verify the effectiveness of the different methods, we compare the inverted
parameters. First, we invert the β and ρ perturbations via the two-trace method for dif-
ferent angles (Figure 3.11). As expected, the quality of the inverted parameters may
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Born modeling. Inverted c) ξ and its d) Rξ at position x = 1500 m corresponding to
Figure 3.7. The green and black dashed lines in (d) corresponds to the limit for acquired
angles and the used ones in inversion, respectively.
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Figure 3.9: Left: observed and reconstructed shots obtained via different methods corre-
sponding to correct background models, right: extracted traces. The RMS error between
synthetic and observed data is written on each panel. Shots are plotted in the same scale.
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method corresponding to short-offset acquisition, right: extracted traces. Shots are plot-
ted in the same scale.

depend on the angle chosen in equation 3.15. To better discriminate between different
angles, the RMSE between true and inverted parameters is calculated for each angle
(Figure 3.12a). The gray dashed line shows the maximum available angle for the last
interface. The error bound for the WLS method is also added to Figure 3.12 for compar-
ison. It is seen that the error bound of both parameters for the WLS method is lower than
the two-trace method in most of the angles. Moreover, the error for the two-trace method
is lower for the mid-range angles comparing to low/high-range angles. We also compare
the RMSE in the shot domain for different angles of the two-trace and the WLS methods
in Figure 3.12b. As can be seen, the error bound in the shot domain for the WLS method
is also lower than the two-trace method in most of the angles. The error bound of the
Taylor expansion is not included since it is much more larger than the other methods. We
also compare the inversion results for β and ρ via the two-trace method (γ′ = 25◦) and
the other two methods (Figure 3.13). Although both two-trace and WLS methods ob-
tained a good match between inverted and true values, we note that the WLS method has
slightly fewer oscillations in both inverted β and ρ parameters. In contrast, the Taylor
expansion inverts the parameters with a numerous oscillations. This is consistent with
the fact that weighting the second derivative of ξ in equation 3.23 with h2, makes the
method really sensitive to the artifacts in the CIG panel. As expected from parameters
cross-talk in the radiation pattern of Figure 3.1, for the fourth event there is a leakage
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between the two inverted parameters, meaning that the inversion is not unique. In other
words, by adding another parameter like density into account, the ill-posedness of the
inverse problem is increased since more degrees of freedom are considered. Because
the migrated image mainly comes from the analysis of the reflected waves, and also
to reduce the leakage between two parameters, we propose to calculate the impedance
perturbation (δIp) by non-linear re-parameterization of the inverted δβ/β0 and δρ/ρ0 as
(Bharadwaj et al., 2018)

δIp
Ip0

=

√√√√ δρ
ρ0

+ 1
δβ
β0

+ 1
− 1, (3.26)

for different methods (Figure 3.13). The alternative could be to use the linear relation-
ship between impedance, velocity and density perturbations. It is seen that the amplitude
of the impedance perturbation is much more better estimated compared to other param-
eters, meaning that the coupling effect between δβ and δρ is compensated.

Although the system of equation 3.25 for the Taylor expansion is well driven, the fact
that it is highly sensitive to the maximum surface offset and artifacts in the CIG domain,
makes it inapplicable in sense of seismic application. Consequently, we continue the
numerical experiments using the two-trace and the WLS methods.
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Figure 3.11: Inversion results via two-trace method for different angles.
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angles via two-trace method comparing to WLS method. The gray dashed line in (a)
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3.5.1.1 Sensitivity to background models

We now investigate the sensitivity of the methods to background models. We use the
same observed data as before, but with constant velocity (Vp0 = 2400 m/s) and density
(ρo = 2100 kg/m3) models for inversion. The calculated CIG and its Radon transform
are shown in Figure 3.14. As expected, an upward curvature is observed because of
the too-high velocity for each event. As the CIG contains migration smiles rather than
focused points, the integration of Radon transform in CIG domain will not produce the
flattened AVA response. We check the quality of the inversion by comparing computed
data and observed data (Figure 3.15). The colorbar scale for reconstructed data is the
same as the one for the observed data. Note that the reconstructed data is modeled
via physical inverted parameters in an incorrect model of constant velocity and density.
The largest misfit is related to the first event at large offsets. The extracted traces for
two-trace method show more misfit comparing to the WLS method in both near and far
offsets, specially for the first event. The RMSE between observed and reconstructed
shot via each method is also written on each panel showing the superiority of the WLS
method. The fact that the remodeled data after inversion nicely matched the observed
data in terms of phases and amplitudes, demonstrates that the multiparameter inversion
indeed provides an inverse, even in an incorrect model and modeling in physical domain.
Furthermore, this provides evidence that our method can be coupled to velocity analysis.
More research, beyond the scope of this paper, is required to investigate the coupling
effects of multiparameter inversion to velocity analysis. We also compare the true and
the inverted parameters obtained via different methods (Figure 3.16). As expected, there
is a shift in every inverted parameter related to using high-velocity background model.
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Figure 3.13: Comparison of inversion results for β, ρ and Ip obtained via a) two-trace, b)
WLS and c) Taylor expansion corresponding to Figure 3.8. The solid black and dashed
red lines correspond to the true and inverted values, respectively.
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Figure 3.7. The green and black dashed lines in (b) corresponds to the limit for acquired
angles and the used ones in inversion, respectively.



3.5. Numerical experiments 101

−1500 −1000 −500 0 500 1000 1500
Surface offset (m)

0.0

0.8

1.6

2.4

T
im

e
(s

)

Observed

0.0

0.8

1.6

2.4

T
im

e
(s

)

Two-trace

RMSE=1.41e-08

x=500 x=1250

True Reconstructed

0.0

0.8

1.6

2.4

T
im

e
(s

)

WLS

RMSE=8.91e-09

Figure 3.15: Left: observed and reconstructed shots obtained via different methods
corresponding to incorrect background models, right: extracted traces. Shots are plotted
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Figure 3.16: Comparison of inversion results for β, ρ and Ip obtained via a) two-trace
and b) WLS corresponding to Figure 3.14. The solid black and dashed red lines corre-
spond to the true and inverted values, respectively.

3.5.2 Marmousi2 model
We now consider a more realistic application on the modified Marmousi2 model as a
benchmark test. The original Marmousi2 has 17 km width and 3.5 km depth. To reduce
the computational cost, we extract the middle part of the Marmousi2 including 10.5 km
width and 2.5 km depth, and also to better image the deeper part, we replace the water
layer with a higher density layer as in Yang et al. (2016a) and Chen and Sacchi (2018).
The exact modified models of velocity (m/s) and density (kg/m3) of Marmousi2 are
shown in Figure 3.17. The model is discretized on a 214 × 875 grid with 12 m spacing
in z and x directions. The synthetic data correspond to a fixed acquisition geometry
(stationary-receivers) with a source spacing of 36 m and receiver spacing of 12 m. We
use an explosive source, represented by a Ricker wavelet centered at 4.76 Hz (maximum
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frequency is 11.9 Hz). The recording time is 3.7 s, with a time interval of 1.32 ms.
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Figure 3.17: The exact a) velocity and b) density corresponding to the Marmousi2
model.

Here, we investigate the inversion for incorrect and correct background models.
For our incorrect background models, we use a laterally-homogeneous velocity/density-
gradient models (Figure 3.18a and 3.18b), and for our correct background models, we
smooth the true velocity/density models with a 2D Gaussian filter of 60 m length in both
direction (Figure 3.18c and 3.18d). The inverted ξ obtained via pseudoinverse operator
for the incorrect and correct background models for a shot in the middle (xs = 5.2 km) is
shown in Figure 3.19a and 3.19c, and their angle-domain responses via the Radon trans-
form are also shown in Figure 3.19b and 3.19d, respectively. The green and black lines
in these figures show the application of the mask for α = 1 and α = 0.4 (Figure 3.18b),
and α = 0.7 (Figure 3.18d). First, we compare the data fit in the shot domain for the
observed shot at position 5.2 km (Figure 3.20). The reconstructed shots are produced
by applying the Born modeling on the physical inverted parameters obtained via WLS
method in the incorrect background models (Figure 3.20b) as well as the correct back-
ground models (Figure 3.20c). The colorbar scale for reconstructed data is the same as
the one for the observed data. To evaluate the reliability, the extracted traces for differ-
ent offsets are also shown in Figure 3.20. It is seen that the shot corresponding to the
incorrect background models has a correct phase and a satisfactory amplitude match,
especially for the short offsets and shallow part. Looking at the incorrect velocity model
(Figure 3.18a) implies that almost in all depths and locations higher velocities are con-
sidered as an incorrect model comparing to the correct velocity model (Figure 3.18c).
Similar to the results in Figure 3.16, this leads to a shift and defocusing in the inverted
parameters. Therefore, the error in the deeper part is related to the limited acquisition.
For the correct background models, once more, there is an almost perfect match of the
phase and amplitude validating the application of a pseudoinverse Born operator. Obvi-
ously, we would also expect small differences because of the geologic complexity of the
model, which can be reduced further by LSM iterations.

We also compare the results of inverted physical parameters. The exact perturba-
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Figure 3.18: The initial incorrect background a) velocity and b) density model and the
initial correct background c) velocity and d) density model.

tion models and the inverted perturbation models for incorrect and correct background
models are respectively shown in the first, second and third row of Figure 3.21. As
mentioned before, it is evident that there is a shift in the inverted parameters for the
incorrect background models (Figure 3.21d, 3.21e and 3.21f). The extracted traces at
different positions for further comparison between the exact and inverted parameters in
correct background models are shown in Figure 3.22. Although the phase information is
accurately preserved, the amplitudes of the δβ and δρ have small differences and show
a small leakage between two parameters. Nevertheless, the amplitudes of the δIp is well
recovered, as seen in the previous test.

These different numerical tests prove that the inversion formulas developed for the
2D variable density acoustic media are indeed inverse instead of adjoint: almost perfect
fit to the observed data even in incorrect background models. Moreover, through numer-
ical experiments, the WLS method showed better and more robust results compared to
the two-trace method, in both the image and shot domains. More interestingly, the re-
sults for impedance perturbation obtained by combination of other inverted parameters,
is in better accordance with the true perturbations and mitigates the ill-posedness of the
inverse problem.
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Figure 3.19: Inverted a) ξ and its b) Rξ corresponding to incorrect background model
and inverted c) ξ and its d) Rξ corresponding to correct background model at position
x = 5.2 km. The green and black dashed lines in (b) and (d) corresponds to the limit for
acquired angles and the used ones in inversion, respectively.

3.6 Discussion

We proposed two new approaches to reconstruct the density perturbations by general-
ization of the two-trace method as well as the Taylor expansion of the Radon transform.
The latter was able to reconstruct the observed data only for short-offset acquisitions.
This is too limiting in practice, as seismic imaging requires handling long-offset data.
Consequently, the proposed method in this paper is the WLS method, which achieved
better results for both correct and incorrect background models. An interesting property
of such a generalization is that it gives us the necessary flexibility to add the regulariza-
tion term to the objective function (equation 3.16), leading to a constrained optimization
problem. The objective is to mitigate the ill-posedness resulting from parameters cross-
talk based on the radiation pattern (Figure 3.1) or to add a priori information.

Recently, Qin and Lambaré (2016) proposed an approach to jointly invert the veloc-
ity and density in preserved-amplitude Full Waveform Inversion (FWI). The strategies
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Figure 3.20: Shot gathers of a) observed data and reconstructed data for the shot at
position 5.2 km with b) incorrect background models and c) correct background models.
The extracted traces at different offsets are shown in left of each shot. Shots are plotted
in the same scale.

developed here have two main differences with the one proposed by Qin and Lambaré
(2016). First, our inversion is based on the extended domain (subsurface offset), which is
not the case in Qin and Lambaré (2016). Second and more importantly, we calculate the
diffraction angle (γ) either with the Radon transform or the Taylor expansion, whereas
they calculate it by applying a tomographic ray tracing approach. In practice, they apply
an iterative process to possibly reduce the approximation errors introduced in the esti-
mation of the angles, which is not necessarily consistent with the wave equation-based
approach.

We investigate the effect of the choice of the parameterization in the inversion. We
decompose the estimated ξβ from the simple model (Figure 3.8) to two different pa-
rameters based on the corresponding diffraction patterns (Table 3.2) in equations 3.16
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Figure 3.21: The exact perturbation model for a) β, b) ρ and c) Ip, and the inverted
perturbation model for d) β, e) ρ and f) Ip corresponding to incorrect background models
and g) β, h) ρ and i) Ip corresponding to correct background models. The dashed line
corresponds to extracted traces.

and 3.19 (Figure 3.23). The third parameter in each subplot of Figure 3.23 is inferred
from the combination of the first two parameters. The good agreement between the re-
sults of different parameterizations suggests that the choice of parameterization does not
change the final results in our work. The conclusion differs in the case of FWI. In non-
linear imaging approaches such as FWI, the choice of parameterization is not neutral,
meaning that the final results depend on parameterization class (Tarantola, 1984; Prieux
et al., 2013); whereas migration, a linear operator by definition, does not suffer from this
aspect.

Table 3.2: The different diffraction patterns for different parameterization classes.

Parameterization First parameter Second parameter

(β, ρ) −1 cos(2γ)

(Ip, ρ) 2 −2 sin2(γ)

(Vp, ρ) 2 2 cos2(γ)

(Vp, Ip) 2 sin2(γ) 2 cos2(γ)

In the case of an incorrect background model, a mismatch of data fit in the shallow
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Figure 3.22: The extracted traces from perturbation models (Figure 3.21) for a) 2.2 km,
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part was observed for the simple model (especially for the first event), whereas it was
observed in the deeper part for the Marmousi2 model. The reasons for these observa-
tions are different. In the case of the simple model, the incorrect background models
are constant velocity/density models which are very different from the correct back-
ground models, leading to extremely defocused energy in the inverted ξ (Figure 3.14a).
Meanwhile, the incorrect background models for Marmousi2 are laterally homogeneous
velocity/density-gradient models that are closer to the correct background models. This
is also noticeable by comparing the defocused energy of ξ for different models (Fig-
ure 3.14a and 3.19c). Accordingly, the shallow part in Marmousi2 will have better data
fit as the incorrect background model is close to correct one, which is not the case in
simple model. To analyze the effect of the subsurface offset for the mismatch of the data
fit in the deeper part of the Marmousi2, we run an additional test by doubling this pa-
rameter (Figure 3.24). We note that the mismatch in the deeper part of the reconstructed
shot (Figure 3.24c) is more or less the same as before (Figure 3.20b), meaning that this
error is not caused by truncation effects in the CIG domain. As already mentioned in the
numerical experiments, using higher background velocity model leads to a downward
shift in the inverted reflectivity (Figures 3.16 and 3.21). Thus, if the recording depth is
not enough to image the reflectivity, a mismatch in the deeper part of the reconstructed
shot would indeed be expected, which is the case for the Marmousi2.

In term of implementation, the variable density pseudoinverse Born modeling con-
sists of two operators: the pseudoinverse Born modeling and the forward Radon trans-
form operators. The Radon transform has a long history of applications in seismic
processing, for instance, velocity analysis (Thorson and Claerbout, 1985), multiple at-
tenuation (Hampson, 1986), NMO-free stacking (Gholami, 2017) and AVO-preserved
processing (Farshad et al., 2018; Gholami and Farshad, 2019b). Based on the path of
integration in the Radon transform, many effective methods for rapid evaluation of the
traditional Radon transform have been proposed (Hu et al., 2013; Nikitin et al., 2017;
Gholami and Sacchi, 2017; Gholami and Zand, 2017; Gholami and Farshad, 2019a).
Here, since the size of each slice in the CIG domain is constant, it is possible to explic-
itly construct the matrix for the Radon transformation. The application of this matrix for
the Radon transformation has a computational complexity of O(NxNzNhNγ), whereas
wave-equation based operators have computational complexity ofO(NxNzNsNt), given
that the numbers of samples for z, h, x, γ, t and sources are Nz, Nh, Nx, Nγ , Nt and Ns.
Note that in the extended domain Nh cross-correlations should be also performed. Sev-
eral techniques such as computing the CIG only at specific image points (Yang and Sava,
2015) or computing the CIG with only a random choice of traces (van Leeuwen et al.,
2015) have been proposed to reduce the computational burden of cross-correlations, but
not for the propagation. As in practice Ns ×Nt is much larger than Nh ×Nγ , the main
computational burden of the variable density pseudoinverse Born modeling is due to
the modeling operators and it remains of the same order as that of the constant density.
It is also worth noticing that there is no need to apply the inverse of the Radon trans-
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Figure 3.24: Inverted a) ξ and its b) Rξ corresponding to incorrect background model
and 480 m extension of subsurface offset. c) Reconstructed data for the shot at position
5.2 km with incorrect background models. The extracted traces at different offsets are
shown in left on the shot gather. The green and black dashed lines in (b) corresponds to
the limit for acquired angles and the used ones in inversion, respectively.
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form here. Otherwise, the cost would be different as the minimization should be solved
iteratively.

3.7 Conclusions
In this paper, we have proposed an efficient weighted least-squares approach to extend
the constant density pseudoinverse Born modeling to variable density acoustic media.
This is a generalization of the two-trace method. It is here based on the whole AVA re-
sponse in the angle domain. We have also proposed another approach based on the Tay-
lor expansion of the Radon transform, which does not require application of the Radon
transform. Numerical experiments proves that the latter is not applicable for quantitative
seismic imaging because of the noise enhancement at large subsurface offsets, whereas
the weighted least-squares method is very promising and provides robust results when
compared with the other approaches. We conclude that such a generalization also pro-
vides the flexibility to include more constraints in the inversion. Future work will consist
of including regularization terms in the least-squares objective function, coupling mul-
tiparameter inversion to velocity analysis, and also extending the pseudoinverse Born
modeling operator beyond the acoustic case.
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Résumé

Ce chapitre comprend l’article intitulé « From acoustic to elastic inverse extended constant-
to variable-density inverse extended Born modeling », publié dans la revue Geophysics
(Farshad and Chauris, 2021b).
La migration élastique itérative (« elastic least-squares reverse time migration » en
anglais) est la technique la plus avancée pour obtenir des images quantitatives du sous-
sol. Les applications demandent beaucoup d’itérations (alternances modélisation / mi-
gration). Pour accélérer la convergence, plusieurs pseudoinverses ont été proposés : ils
apportent une image quantitative en une seule itération, pour un coup similaire à celui de
la « reverse time migration ». Cependant, ces approches supposent un cadre acoustique,
ce qui conduit à des prédictions d’amplitudes inexactes et à oublier les effets des ondes
S. Pour résoudre ce problème, nous étendons le pseudoinverse du cadre acoustique au
cadre élastique pour prendre en compte les amplitudes élastiques des réflexions PP et
pour estimer la densité et les impédances P et S. Nous restreignons l’extension au cadre
marin, avec l’enregistrement de la pression à la surface. Dans un premier temps, nous
remplaçons les fonctions de Green acoustiques par leur version élastique, sans modifier
la structure originale du pseudoinverse. Ensuite, nous appliquons une transformée de
Radon pour avoir une réponse qui dépend de l’angle. Enfin, nous inversons au sens des
moindres carrés les paramètres physiques. Au travers d’expériences numériques, nous
illustrons les conséquences de l’approximation acoustique sur des données élastiques,
qui conduisent à des inversions biaisées et à l’apparition de réflexions artificielles. Nous
démontrons que notre méthode peut inverser simultanément les paramètres élastiques en
présence de structures décorrélées, d’un mauvais macro-modèle et de bruit Gaussian.
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From acoustic to elastic inverse extended Born modeling: a first insight in the
marine environment

Milad Farshad and Hervé Chauris
Geophysics, 2021, doi: 10.1190/geo2020-0916.1

4.1 Abstract

Elastic least-squares reverse time migration is the state-of-the-art linear imaging tech-
nique to retrieve high-resolution quantitative subsurface images. A successful applica-
tion requires many migration/modeling cycles. To accelerate the convergence rate, var-
ious pseudoinverse Born operators have been proposed, providing quantitative results
within a single iteration, while having roughly the same computational cost as reverse
time migration. However, these are based on the acoustic approximation, leading to
possible inaccurate amplitude predictions as well as the ignorance of S-wave effects. To
solve this problem, we extend the pseudoinverse Born operator from acoustic to elastic
media to account for the elastic amplitudes of PP reflections and provide an estimate of
physical density, P- and S-wave impedance models. We restrict the extension to marine
environment, with the recording of pressure waves at the receiver positions. Firstly, we
replace the acoustic Green’s functions by their elastic version, without modifying the
structure of the original pseudoinverse Born operator. We then apply a Radon transform
to the results of the first step to calculate the angle-dependent response. Finally, we si-
multaneously invert for the physical parameters using a weighted least-squares method.
Through numerical experiments, we first illustrate the consequences of acoustic approx-
imation on elastic data, leading to inaccurate parameter inversion as well as to artificial
reflector inclusion. Then we demonstrate that our method can simultaneously invert for
elastic parameters in the presence of complex uncorrelated structures, inaccurate back-
ground models, and Gaussian noisy data.

4.2 Introduction

Reverse time migration (RTM) is the most popular imaging method for pre-stack depth
migration as it has outstanding imaging capabilities such as accounting for extreme lat-
eral velocity variations without any dip limitations, and the ability to consider the full
wavefield (Baysal et al., 1983). By definition, RTM operator is the adjoint of the for-
ward Born modeling operator, accounting only for the kinematics (traveltimes) but not
the dynamics (amplitudes). In practice, the migrated image using RTM operator may
be deteriorated by different factors such as low-frequency noise, band limitation of the

https://doi.org/10.1190/geo2020-0916.1
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source wavelet, limited recording aperture, and aliasing due to under-sampled acquisi-
tion geometry (Nemeth et al., 1999; Mulder and Plessix, 2004).

To mitigate these problems, least-squares reverse time migration (LSRTM), also
known as linearized seismic inversion, was proposed (Nemeth et al., 1999; Dai et al.,
2012). LSRTM differs from RTM by its iterative data fitting nature. LSRTM is formu-
lated based on the assumption that an accurate initial velocity model is available. To par-
tially decouple the data fitting in LSRTM from the choice of the velocity model, an off-
set/time lag extended imaging condition has been proposed (Symes, 2008b; Yang et al.,
2019a). Most LSRTM algorithms are based on pure acoustic approximation (constant-
density). With the development of multi-component data, LSRTM has been extended to
multiparameter imaging problems accounting for more parameter classes, e.g., density
(Zhang et al., 2014b; Yang et al., 2016a), anisotropy (Qu et al., 2017), attenuation (Dutta
and Schuster, 2014), elasticity (Chen and Sacchi, 2017; Feng and Schuster, 2017; Sun
et al., 2018). Compared to acoustic LSRTM, the elastic version estimates more accu-
rate subsurface images as it better honors the wave equation. Moreover, interpreting
S-wave impedance along with P-wave impedance and density can intensively help in
lithology/fluid discrimination and hydrocarbon detection (Caldwell, 1999; Russell et al.,
2003). However, several key challenges remain. For instance, simultaneous inversion
of two or more subsurface parameters leads to parameter crosstalk (Virieux and Operto,
2009; Operto et al., 2013; Prieux et al., 2013; Sun et al., 2018). As density is the most
difficult parameter to be estimated, most elastic LSRTM methods are built on a constant
or known density model. Although density does not play the same key role as P- and
S-wave velocities, its contribution to seismic wave amplitudes cannot be ignored (Prieux
et al., 2013; Sun et al., 2018; Chen and Sacchi, 2019).

The main drawback of LSRTM, either acoustic or elastic, is its expensive computa-
tional cost classically proportional to the number of sources and to the number of iter-
ations. In recent years, researchers have worked on either reducing the computational
cost per iteration or accelerating the convergence rate of LSRTM; for instance, by con-
ditioning the linear system using approximate Hessian (Shin et al., 2001; Rickett, 2003;
Symes, 2008a; Herrmann et al., 2009; Chen and Sacchi, 2017). In addition, many stud-
ies recast RTM in the general framework of linearized seismic inverse problem theory.
This led to asymptotic approximations of the inverse operator allowing one to obtain
quantitative results in a single iteration (ten Kroode, 2012; Hou and Symes, 2015, 2017;
Chauris and Cocher, 2017). Assuming a purely acoustic medium, the pseudoinverse
Born operators are built by simple modifications of the subsurface-offset extended RTM
operator. Although the derivations are performed under the high-frequency approxima-
tion assuming the absence of multiple raypaths, the final formulas do not contain any
ray-related computations and appear to be accurate even in the presence of caustics (ten
Kroode, 2012; Hou and Symes, 2015; Chauris and Cocher, 2017). The effectiveness of
pseudoinverse Born operator as a preconditioner has also been investigated for LSRTM
(Hou and Symes, 2016a; Chauris and Cocher, 2018), migration velocity analysis (MVA)
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(Chauris and Cocher, 2017; Cocher et al., 2018; Li and Chauris, 2018), and full wave-
form inversion (FWI) (Hou and Symes, 2016b), all assuming constant-density acoustic
media.

Recently, Dafni and Symes (2018) and Farshad and Chauris (2020a) proposed two
approaches to extend the applicability of these pseudoinverse Born operators to variable
density acoustics. The former inverted two parameters by choosing two traces from the
angle-dependent response of the pseudoinverse Born operator, and solving a system of
two linear equations (Dafni and Symes, 2018; Zhang et al., 2014b). The latter proposed
a generalization of the former by considering all traces in the angle domain using an effi-
cient weighted least-squares (WLS) approach. In both approaches, the Radon transform
is used to estimate the scattering angle. Later, Farshad and Chauris (2020c) incorpo-
rated sparsity-promoting regularization into WLS-based pseudoinverse Born inversion,
which was effective in suppressing migration artifacts and crosstalk noise caused by
sparse compressed acquisition. However, in the case where elastic effects are not neg-
ligible, these pseudoinverse Born operators may fail in recovering accurate subsurface
models with the choice of acoustic instead of elastic physics. Considering an acous-
tic imaging technique to migrate elastic data sets, the estimated image may suffer from
incorrect amplitudes and artificial reflectors associated to S-waves even in marine data
sets (Barnes and Charara, 2009; He and Plessix, 2017; Ren et al., 2017; Mora and Wu,
2018; Solano et al., 2020b).

In this article, we extend the applicability of pseudoinverse Born operator from
acoustic to elastic media. The proposed method simultaneously inverts for density, P-
and S-wave impedance perturbations. The algorithm consists of three main steps: first
application of the elastic pseudoinverse Born operator to obtain subsurface-offset com-
mon image gathers, then the Radon transform to convert the subsurface offset to the
imaging angle, and finally simultaneously estimation of the elastic parameters from the
angle-dependent response using the WLS strategy. In this study we consider marine
towed-streamer data, i.e., sources and receivers deployed within the water layer. In this
context, we only consider the PP-PP and PS-SP wave modes in the inversion process.
The new proposed elastic pseudoinverse Born operator is evaluated here within a sin-
gle iteration, which is a step towards accelerating the convergence rate of the elastic
LSRTM.

The rest of this paper is organized as follows. In the “Methodology” section, we
first review the theory of elastic Born modeling and its adjoint. Then we present the
methodology of the proposed elastic pseudoinverse Born inversion. In the “Numerical
experiments” section, we first analyze the impact of ignoring S-wave impedance using a
simple model. Hereafter, we use two examples “dipping layer model” and “Marmousi2
model” to validate the effectiveness and accuracy of this new method in the presence
of parameter crosstalk, inaccurate migration background models, noise, and complex
structures. We discuss the applications, in particular the role of the parameterization
under the linear imaging assumption.
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4.3 Methodology

4.3.1 Elastic Born modeling
We consider an elastic Earth model parameterized with 3 parameters at each point,
namely βp = 1/ρ(V 2

p − V 2
s ), βs = 1/ρV 2

s and ρ, where ρ, Vp and Vs denote den-
sity, P- and S-wave velocities, respectively. Assuming an isotropic Earth, a first-order
hyperbolic elastodynamic system for 2-D P − SV waves in the frequency domain can
be described by the following differential system (Brossier et al., 2008):

−iωρVx =
∂(T1 + T2)

∂x
+
∂T3

∂z
+ ρFx,

−iωρVz =
∂T3

∂x
+
∂(T1 − T2)

∂z
+ ρFz,

−iωβpT1 =
∂Vx
∂x

+
∂Vz
∂z
− iωβpT 0

1 ,

−iωβsT2 =
∂Vx
∂x
− ∂Vz

∂z
− iωβsT 0

2 ,

−iωβsT3 =
∂Vz
∂x

+
∂Vx
∂z
− iωβsT 0

3 , (4.1)

where T = (T1, T2, T3) = [(σxx + σzz)/2, (σxx − σzz)/2, σxz], and ω is the angular
frequency. Source terms are either applied stress vectors (T 0

1 , T 0
3 , T 0

3 ) or point forces
(Fx, Fz) as introduced in system of equations 4.1. This pseudo-conservative formulation
is convenient for seismic imaging techniques as all the physical parameters are on the
left-hand side. This system of equations can be written in a matrix form as follows

(−iω)

(
ρI 0

0 B

)
u−

(
0 D

C 0

)
u = f , (4.2)

where

u =

(
v

t

)
, v =

(
Vx

Vz

)
, f =

(
fF

fT

)
, fF =

(
ρFx

ρFz

)
,

B =

βp 0 0

0 βs 0

0 0 βs

 , t =

T1

T2

T3

 , (4.3)

fT =

−iωβpT
0
1

−iωβsT 0
2

−iωβsT 0
3

 , C =


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∂
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− ∂
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∂
∂z

∂
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∂
∂z

∂
∂x
− ∂
∂z

∂
∂z

∂
∂x


∗

,
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with I and ∗ denoting the identity matrix and transpose operator, respectively. Note that
the dependence on spatial coordinates x = (x, z) and angular frequency ω of variables
are dropped to make the notations compact but it is clear that t = t(x, ω), ρ = ρ(x),
etc. Under the Born approximation, the model parameters are split into a smooth part
(e.g. ρ0) and a singular or perturbation part (e.g. δρ):

ρ = ρ0 + δρ,

βp = βp0 + δβp, (4.4)
βs = βs0 + δβs.

The same decomposition holds for the wavefield

u = u0 + δu. (4.5)

Substituting equations 4.4 and 4.5 into equation 4.2, subtracting equation 4.2, and drop-
ping higher order terms leads to the Born approximation

(−iω)

(
ρ0I 0

0 B0

)
δu−

(
0 D

C 0

)
δu = (iω)

(
δρI 0

0 δB

)
u0, (4.6)

where δu is the scattered wavefield and u0 denotes the incident wavefield. The data
δd is obtained by sampling the scattered wavefield δu. By defining δm as the vector
of perturbed model parameters, the scattered wavefield δu associated to δm can be
expressed in terms of the causal Green’s function in a given background model. The
standard elastic Born modeling operator L can be expressed in abstract form as (Symes,
2008b):

δd = Lδm. (4.7)

The Born operator L can be generalized by introducing an extra dimension in the per-
turbation model, which could be a time and/or horizontal/vertical space shift (Sava and
Fomel, 2006; Symes, 2008b). Here we consider extension by non-physical horizon-
tal subsurface offset h = (h, 0), which is essentially the offset between the sunken
source and sunken receiver in the concept of survey-sinking imaging condition (Claer-
bout, 1985; Symes, 2008b). The extended Born modeling operator computes the traces
for offset h by using the extended δm(x,h). The extension is essential for the deriva-
tion of the inverse Born operator, as the model size should precisely match the data
size (Beylkin, 1985; ten Kroode, 2012; Chauris and Cocher, 2017). Hereafter, we re-
fer to L and δm as extended Born modeling operator and extended model parameters,
respectively.

4.3.2 Reverse time migration
By definition, reverse time migration is the adjoint of the Born modeling operator. An
extended migration image δm(x,h) can be estimated by applying the adjoint of the
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extended forward Born modeling operator to the observed data (Tarantola, 1984; Claer-
bout, 1992):

δmmig = L∗δd. (4.8)

Although the adjoint operator L∗ deals with kinematics accurately, it cannot retrieve the
amplitudes of the model perturbations correctly. In this case, the migrated image using
adjoint can be considered as a blurred version of the subsurface model perturbations
(Nemeth et al., 1999):

δmmig = Hδm, (4.9)

where H = L∗L denotes the Hessian matrix. In terms of computational cost and mem-
ory requirements, explicit probing of the structure of the inverse Hessian matrix is pro-
hibitively expensive. Traditionally, the effect of Hessian is taken into account using an
iterative approach, namely LSRTM (Nemeth et al., 1999; Dai et al., 2012). However,
this approach is also computationally expensive as the cost of one iteration of LSRTM is
nearly twice that of RTM, which further increases linearly with the number of iterations.

In the acoustic context, an interesting cost-effective alternative is to replace the ad-
joint RTM operator with its pseudoinverse expression. Remarkably, the pseudoinverse
Born operator only consists of additional weights in RTM operator with relatively low
implementation costs (ten Kroode, 2012; Hou and Symes, 2015; Chauris and Cocher,
2017). We investigate here the extension to elasticity.

4.3.3 Elastic pseudoinverse Born operator

Originally, the wave-equation-based pseudoinverse Born operator was introduced for
pure acoustic media (ten Kroode, 2012; Hou and Symes, 2015; Chauris and Cocher,
2017). Later, Dafni and Symes (2018) and Farshad and Chauris (2020a) extended these
pseudoinverse Born operators to variable-density acoustics. Their main motivation was:
the effect of density variations is observed as defocused energy in estimated common im-
age gathers (CIGs) even in presence of correct background models (Farshad and Chau-
ris, 2020a,b). The pseudoinverse Born operator indeed compensates for the amplitude
variation with offset (AVO) effects in the data domain by smearing the energy in the CIG
domain. The extension from constant- to variable-density acoustic pseudoinverse Born
operator was obtained by first incorporating density in the reference Green’s functions,
then getting the imaging angle through the Radon transform, and finally decomposing
into physical velocity and density perturbations. We follow here the same strategy to
extend the applicability of the acoustic pseudoinverse Born operator to elastic media.
We split our method into three main steps as follows.
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Step 1: Elastic Born inversion

We start by following the work of Chauris and Cocher (2017) and Farshad and Chau-
ris (2020a). The pseudoinverse Born operator L† considering constant-density and
constant-S-wave velocity elastic media can be written as

δm = L†(δdobs)(x,h)

' 32
βp0
ρ3

0

∂z

∫
dxs dxr dω

Ω†(ω)

(iω)
∂szG

∗
0(xs,x− h, ω)δdobs(xs,xr, ω)∂rzG

∗
0(x + h,xr, ω),

(4.10)
where δm(x,h) is the extended reflectivity, ∗ denotes the complex conjugate and Ω† is
the inverse of the seismic wavelet. The derivation of equation 4.10 is performed un-
der the high-frequency approximation such that the reconstructed data drec = LL†dobs
equals dobs. The vertical derivatives with respect to source and receiver positions to the
Green’s functions have dynamic effects: their combination with the Beylkin determi-
nant (Jacobian of transformation between subsurface parameters and acquisition surface
coordinates) arising in linear phase approximation of the normal operator L∗L cancel
the geometrical spreading present in the propagating fields. This formula is valid even
in the presence of incorrect background models and strictly in the absence of turning
waves. It is derived assuming infinite acquisition geometries and the absence of multi-
ple raypaths, though in practice it can resolve subsurface models accurately within the
migration aperture even in the presence of caustics (ten Kroode, 2012; Hou and Symes,
2015; Chauris and Cocher, 2017).

The terms G∗0(xs,x−h, ω) and G∗0(x+h,xr, ω) are the elastic Green’s functions in
the background models βp0 , βs0 and ρ0, from the source position xs to imaging point x−
h and from imaging point x + h to the receiver position xr, respectively. Equation 4.10
is not exactly the same as the one proposed by Hou and Symes (2015), Chauris and
Cocher (2017), and Farshad and Chauris (2020a). The first difference is in the definition
of βp, here being 1/ρ(V 2

p − V 2
s ), providing the flexibility to include Vs0 in the inversion

process. The second and more important aspect is that the Green’s functions here are
calculated using the elastic Born modeling engine (equation 4.6) to accurately simulate
the kinematics and amplitudes of the P- and S-waves.

As mentioned, the pseudoinverse Born operator was originally proposed for pure
acoustic media. The progressing wave approximation (Courant and Hilbert, 1962) was
based on acoustic Green’s function (Hou and Symes, 2015). Here, in order to not vio-
late this assumption, we consider streamer dataset, limiting the observed data δdobs to the
pressure wavefield T1 (equation 4.1). In practice, we solve the system of 6 equations in
elastic wave propagation to simulate δu =

[
δVx δVz δT1 δT2 δT3

]∗
(equation 4.6)

but the observed data are only in the δT1 component (pressure wavefield in a marine en-
vironment). Acoustic inversion has been favored mainly for their lower computational
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cost, particularly in the case of marine towed-streamer data where the waves must con-
vert to pressure wavefield in the water layer and elastic effects in the recorded data are
generally assumed to be small. However, researchers have demonstrated that in presence
of sharp-contrast interfaces, such as boundaries between sediments and salt or carbon-
ates, seismic data is affected by significant mode conversions between P- and S-waves.
In this case, elastic inversion is highly recommended as it gives results that are more
reliable images of the subsurface (Thiel et al., 2019; Marjanović et al., 2019; Dickens
et al., 2020; Solano et al., 2020a).

Step 2: Transforming the subsurface offset to scattering angle

The inverted δm(x,h) in the extended domain (equation 4.10) can be decomposed into
three physical parameters based on the diffraction pattern of the specific parameteriza-
tion (Zhang et al., 2014b; Dafni and Symes, 2018; Farshad and Chauris, 2020a). Here, as
the concept is seismic migration resolving only the short-wavelength part of the model
(perturbations), we choose density (ρ), P-wave (Ip) and S-wave impedances (Is) for sub-
surface parameterization (Tarantola, 1986). However, we have the flexibility to easily
change the parameterization class, as explained in the “Discussion” section. By consid-
ering the physical model parameters δp(x) as

δp(x) =
[
ζIp(x) ζIs(x) ζρ(x)

]∗
, (4.11)

where ζa = δa/a0, and the corresponding diffraction pattern for P-P wave mode (Fig-
ure 4.1) (Forgues and Lambaré, 1997) as

D(θ) =
[
2 −4C0 sin2(2θ) 2C0 sin2(2θ)− 2 sin2(θ)

]
, (4.12)

where C0 = (Vs0/Vp0)
2, the decomposing relationship between extended and physical

parameters becomes

δm

βp0
(x,h) ∼= D(θ)δp(x)δ(h), (4.13)

where δ() is the Dirac delta function and θ denotes the scattering angle. The right
side of equation 4.13 is obtained under the ray + Born approximation (Forgues and
Lambaré, 1997; Farshad and Chauris, 2020a). The terms related to θ (equation 4.12) are
not simple multiplications but act as pseudo-differential operators (Dafni and Symes,
2018). Since the left side equation 4.13 is subsurface-offset dependent, and the right
side angle-dependent, a conversion of subsurface offset h = (h, 0) to scattering angle θ
is required. This conversion can be done by implementing the Radon transform (slant-
stack integral) on extended δm (Sava and Fomel, 2003). The application of 2D Radon
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transform on the left side of equation 4.13 yields

Rδm(x, z, θ) =
1

βp0

∫
dh δm(x, z + h tan θ, h), (4.14)

whereRδm(x, θ) denotes the corresponding angle-domain CIG (Radon transform). Note
that the algorithm only requires the application of the forward Radon transform.
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Figure 4.1: P- to P-wave elastic amplitude diffraction pattern.

Step 3: Weighted least-squares method

Following the work of Farshad and Chauris (2020a), we now define a weighted least-
squares (WLS) objective function to simultaneously invert for different parameters as

JζIp ,ζIs ,ζρ = (4.15)
1

2

∥∥∥(2ζIp(x)− 4C0 sin2(2θ)ζIs(x) + 2(C0 sin2(2θ)− sin2(θ))ζρ(x)
)
−Rδm(x, θ)

∥∥∥2

W
,

where W (x, θ) is a weighting mask defined as:

W (x, θ) =

1, if |θ| ≤ α tan−1(xmax
z

)

0, otherwise
, (4.16)
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where xmax denotes the maximum surface offset. The role of this weighting mask,
controlled by parameter α, is to mainly include specular energy and remove artifacts
at large angles due to finite sampling of the surface offset (Sava and Fomel, 2003). In
practice, this is a conservative approach that does not require a precise selection of this
parameter and can be chosen visually or based on a homogeneous model assumption.

The optimal ζIp , ζIs and ζρ can be obtained by computing the gradient of the objec-
tive function J (equation 4.15) with respect to the model parameters (see Appendix 4.8
for more details). Abstractly, the elastic WLS method can be written in matrix and
functional form:

AW{M}δp = A{Φ}, (4.17)

where

M = (4.18) 4 −8C0 sin
2(2θ) 4(C0 sin

2(2θ)− sin2(θ))

−8C0 sin
2(2θ) 16C 2

0 sin4(2θ) −8(C 2
0 sin4(2θ)− C0 sin

2(2θ) sin2(θ))

4(C0 sin
2(2θ)− sin2(θ)) −8(C 2

0 sin4(2θ)− C0 sin
2(2θ) sin2(θ)) 4(C0 sin

2(2θ)− sin2(θ))2

 ,

Φ =

 2Rδm(x, θ)

−4C0 sin2(2θ)Rδm(x, θ)

2(C0 sin2(2θ)− sin2(θ))Rδm(x, θ)

 , (4.19)

and AW is an integral operator with kernel W acting on input f as:

AW{f} =

∫
dθW (x, θ)f(x, θ). (4.20)

By definition, the elastic WLS method (equation 4.17) leads to a separable trivariate
curve-fitting problem, meaning that the optimization can be applied for each spatial
coordinate separately. Note that the elastic WLS is obtained by a simple modification of
the acoustic WLS, with three unknowns instead of two (Farshad and Chauris, 2020a).
We also recall the acoustic WLS method for parameter class (ζIp ,ζρ) in Appendix 4.9, to
compare the results of acoustic and elastic Born inversion in presence of S-wave velocity
effect in the first numerical experiment.
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4.4 Numerical experiments
In this section, we assess the viability of the elastic pseudoinverse Born inversion through
carefully designed numerical experiments. For all examples, the modeling engine for the
solution of the 2-D elastic wave equation (equations 4.2 and 4.6) is staggered-grid finite-
difference with eighth-order accuracy in space and second-order accuracy in time imple-
mented with perfectly matched layers (PML) absorbing boundary conditions (Virieux,
1986). For all numerical experiments, we consider a fixed acquisition geometry (sta-
tionary receivers), and Ricker wavelet as the source signature emitting only P-waves
(marine environment). The details regarding each model discretization and their acqui-
sition geometry (e.g. maximum frequency, source/receiver spacing, etc) are outlined in
Table 4.1. To get more insight into the resolution of the inverted images, we calculate
the normalized correlation coefficient (NCC) defined as

NCC(%) =

∑
x ζtrue(x)ζinv(x)√∑

x ζ
2
true(x)

√∑
x ζ

2
inv(x)

× 100, (4.21)

where ζtrue and ζinv are the true and inverted model parameters, respectively. The NCC
score is normalized between 0 and 100; the higher the score, the higher the correlation
is. We also evaluate the quality of the reconstructed data by calculating the root-mean-
squared (rms) error defined as

rms error =

√√√√ K∑
i=1

(κi − κ̃i)2

K
, (4.22)

where κ and κ̃ are the observed and resimulated data.
We start with a simple model to first investigate the effect of S-waves in both acoustic

and elastic Born inversion results. Then, a dipping layer model with uncorrelated struc-
ture is analyzed to verify the effectiveness of the proposed method using correct and
incorrect background models. Finally, the Marmousi2 model is used as a benchmark
of complex geology. We also assess the sensitivity of the proposed method to random
noise using the Marmousi2 model.

4.4.1 Simple model
We start with a simple model containing uncorrelated impedance-density horizontal
structures (Figure 4.2). This example is used to compare the performance of acous-
tic and elastic WLS-based pseudoinverse Born inversion in both image (true-amplitude
parameter inversion) and data domains (data reconstruction). Note that the second inter-
face in the P-wave impedance model, the third interface in the S-wave impedance model,
and both second and third interfaces in the density model are missing in the other mod-
els. The true reflectivity models are obtained by smoothing the exact models with a 2D
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Table 4.1: Main parameter configuration for different numerical experiments.

Simple
model

Dipping layer
model

Marmousi2
model

Model grids (nx × nz) 351× 145 540× 194 575× 175

Grid intervals (m) 20 17.5 17.5

Source intervals (m) 60 52.5 52.5

Receiver intervals (m) 20 17.5 17.5

Number of sources 117 180 192

Number of receivers per source 351 540 575

Time sampling rate (ms) 5.5 4 2

Max. recording time (s) 4.4 6.1 5.6

Wavelet max. freq. (Hz) 14 20 20

Gaussian filter of 120 m length in both directions and then subtracting them from the
exact models (Figure 4.3).

Assuming an acoustic approximation, P- to S-converted waves are not modeled,
meaning that the amplitude of the P-waves is also inaccurate. We illustrate this in
Figure 4.4, by comparing elastic and variable-density acoustic wave propagation for
this model. We note the main differences are in AVO of the reflected P-waves (shown
by red arrows in Figure 4.4) and converted P-S-P waves generated in elastic propaga-
tion (shown by yellow arrows in Figure 4.4). From now, we only consider the elastic
observed data. The details regarding the modeling engines for each Figure for this ex-
periment are outlined in Table 4.2. We apply acoustic and elastic pseudoinverse Born
operator on the elastic observed data. The estimated CIGs and their angle-domain re-
sponses are shown in Figure 4.5. Note that the specular events in both elastic and
acoustic subsurface-offset and angle-domain CIGs have the same shapes but different
amplitudes (Figures 4.5e and 4.5f).

Before comparing the inverted parameters, we first check the quality of inversion
by comparing the observed and reconstructed data in the middle position xs = 3.5 km
(Figure 4.6). There is an accurate match between the observed and reconstructed shots
concerning amplitudes and phase for both elastic and acoustic inversion. For the acous-
tic case, this is indeed expected since whatever the input, the inversion scheme (we
mean acoustic pseudoinverse Born operator followed by acoustic modeling) accurately
reconstructs the observed data (Chauris and Cocher, 2017). However, the quality of the
estimated parameters depends on the consistency between the assumed physics in the
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Figure 4.2: Simple model experiment: exact a) P-impedance, b) S-impedance and c)
density models.

Table 4.2: Modeling engine for each Figure corresponding to simple model experiment.

Figure number

4.4a 4.4b 4.5a-b 4.5c-d 4.6a 4.6b 4.7a-c 4.7d-e

Input obs. data elastic acoustic elastic elastic elastic elastic elastic elastic

Imaging scheme – – elastic acoustic – – elastic acoustic

Reconst. data – – – – elastic acoustic – –

inversion scheme and observed data. In the case of the elastic inversion, the data recon-
struction ability is a new result as it implies that the elastic pseudoinverse Born operator
is indeed valid. We now compare the inverted parameters (Figure 4.7). The estimated
parameters using elastic WLS show a precise correlation to the true models, albeit small
oscillations at the second and third reflector positions (z = 1.3 and z = 1.8 km) are
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Figure 4.3: Simple model experiment: true perturbation models of a) P-impedance, b)
S-impedance and c) density.

observed in the estimated density model (Figure 4.7b). The NCC scores written on each
panel also confirm the superiority of the elastic inversion. The inverted parameters us-
ing acoustic WLS contain artificial reflectors especially for the second and third reflector
positions of the density model (Figure 4.7e). We extract a vertical log from each panel to
further quantitatively compare the inversion results (Figure 4.8). Although both methods
provide good P-wave impedance reconstruction, the acoustic WLS compensates for S-
wave effects by adjusting amplitudes and including artificial reflectors in the estimated
density model. This behavior is indeed due to the limitation of the acoustic inversion
trying to match the P-S mode converted energy and AVO effects (Barnes and Charara,
2009; Mora and Wu, 2018). Note that the amplitudes of the S-wave impedance are also
accurately retrieved using the elastic WLS method (Figure 4.8).

We conclude from this experiment that the inconsistency between modeling and in-
verse, we mean utilizing acoustic inversion using elastic data, leads to not only artificial
reflectors but also to incorrect amplitudes in the estimated images. In the next two nu-
merical experiments, we only investigate the performance of the elastic pseudoinverse



4.4. Numerical experiments 129

−3 −2 −1 0 1 2 3
Surface offset (km)

0

1

2

3

4

T
im

e
(s

)

a)

P-S-P

P-S-P

AVO

AVO P-S-P

−3 −2 −1 0 1 2 3
Surface offset (km)

0

1

2

3

4

b)

AVO

AVO

Figure 4.4: Elastic and acoustic shot-domain comparisons for the simple model exper-
iment: a) elastic observed shot versus b) acoustic observed shot. The yellow arrows
indicate the main differences between the elastic and acoustic simulations (AVO effects
or converted waves).

Born operator using a more complex dipping layer and the Marmousi2 models. We also
discuss in more details which parameters are better inverted.
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Figure 4.5: Simple model experiment using the elastic observed data: a) inverted δm
using elastic pseudoinverse Born operator and b) its Radon transform, c) inverted δm
using acoustic pseudoinverse Born operator and d) its Radon transform. The difference
between (a,c) and (b,d) are shown in (e) and (f), respectively. The blue and red lines in
(b,d,f) correspond to the theoretical limit for acquired angles and the practical ones used
in inversion, respectively.
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Figure 4.6: Elastic and acoustic reconstructed shot comparisons for the simple model
experiment: a) elastic reconstructed shot versus b) acoustic reconstructed shot. Traces
are extracted from two positions (indicated as black dashed line in (a)) for surface offset
c) 0 and 3 km. Shots are plotted at the same scale as the observed shot (Figure 4.4a).
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model experiment: inverted a) ζIp , b) ζρ and c) ζIs using elastic WLS, d) ζIp and e)
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4.4.2 Dipping layer model
We consider a more realistic dipping layer model (Figure 4.9) to investigate the sensi-
tivity of the elastic pseudoinverse Born operator to uncorrelated structures and to the
accuracy of the background models. The main targets in this model are gas- and water-
charged sand channels (indicated by arrows in Figure 4.9c). By uncorrelated, me mean
that these channels are easy to see from the P-wave impedance and density models, but
not from the S-wave impedance model. Fluid-property discrimination is indeed possible
by analyzing all three elastic parameters (Russell et al., 2003).
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Figure 4.9: Dipping layer model experiment: exact models of a) P-impedance, b) S-
impedance and c) density, and background models of d) P-impedance, e) S-impedance
and f) density. A and B in (c) indicate gas-charged sand channel and water-wet sand
channels, respectively.

In the first test, we consider accurate background models obtained by 2D Gaussian
smoothing of the exact models over 7 grid points (Figure 4.9d-f). We start with steps
1 and 2 in our algorithm, estimating subsurface-offset and angle-domain CIGs (Fig-
ure 4.10). We first compare the data (elastic) reconstruction for a shot located at 4.7 km
(Figure 4.11). The reconstructed shot is plotted with the same colorbar scale as the
observed shot. The near- and far- offset extracted traces illustrate an accurate match in
terms of amplitudes and traveltimes (Figure 4.11c). Finally, we compare the inverted pa-
rameters inferred from the elastic WLS method (Figure 4.12). Note the colorbar scales
for the inverted panels are the same as the exact ones for amplitude consistency. At
first glance, we observe that our method produces clear subsurface images, with P-wave
impedance as the best-reconstructed parameter. Both gas- and water-charged channels
are easily detectable. However, some artifacts around the gas-charged sand channel are
observed in the S-wave impedance image, which is indeed caused by parameter crosstalk
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(yellow arrow in Figure 4.12e). For a more detailed comparison, we extract two vertical
logs at the gas- and water- charged sand channels locations (indicated by dashed lines
in Figure 4.12a-c) and add them to the background models (Figure 4.13). The elastic
WLS method indeed managed to accurately reconstruct all parameters. It is interesting
to note that the crosstalk artifact in S-wave impedance at the location of the gas channel
(Figure 4.13a) is observed as small oscillations with an acceptable level. Once more, the
density is the less constrained parameter.
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Figure 4.10: Dipping layer model experiment. a) Inverted δm and b) its Radon trans-
form. The blue and red lines in (b) correspond to the limit for acquired angles and the
used ones in inversion, respectively.

4.4.2.1 Sensitivity analysis to background models

In real data applications, the errors in migration background models are unavoidable
(Yang et al., 2019a). Thus in the second test on the dipping layer model, we study
the sensitivity of our proposed method to the reference macro-model. To increase the
reliability of the results, we perform the elastic inversion for background models with
different error values up to 8% obtained by scaling the accurate background models with
a factor between 0.92 and 1.00. In each test, the error is included only in either Vp0, Vs0
or ρ0 (background model), while the other two models are assumed to be accurate. The
evaluation of data misfit and NCC values for image reconstruction with respect to the
errors in each background model are shown in Figure 4.14. The data reconstruction in-
dicates a very stable behavior for all inaccurate background models (Figure 4.14a). The
NCC curves for each reconstructed image show a large drop by increasing error in the P-
wave velocity background model (Figure 4.14a), whereas these curves are rather stable
for different error values in the S-wave velocity (Figure 4.14c) and density background
models (Figure 4.14d).

To further analyze the results, we display the subsurface-offset- and angle-domain
CIGs corresponding to 8% error in the P-wave velocity background model (Figure 4.15).
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Figure 4.11: The a) observed and b) reconstructed shots for the dipping layer model
experiment. Shots are plotted in the same scale. Traces are extracted from two positions
(indicated as black dashed lines in (a)) for surface offset c) 0 and 3.8 km. The solid
black and dashed red lines correspond to the true and reconstructed values, respectively.
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Figure 4.12: Exact and inverted image-domain comparisons for the dipping layer model
experiment: exact a) ζIp , b) ζIs and c) ζρ, and inverted d) ζIp , e) ζIs and f) ζρ. The dashed
lines in (a,b,c) indicate the position of the extracted traces. Inverted models are plotted
in the same scale as the exact models.
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Figure 4.14: Evaluation of a) data misfit with respect to error in different background
models, and NCC in image domain with respect to error in b) P-wave velocity back-
ground model, c) S-wave velocity background model and d) density background model
corresponding to dipping layer model.

Note the downward (upward) curvature of the events in the subsurface offset- (angle-)
domain CIG due to the too-low velocity background model. We now analyze the in-
verted parameters estimated via the elastic WLS method (Figure 4.16). Although crude
background models were used, the inverted models are fairly well reconstructed in terms
of structure. However, the quality of the S-wave impedance reconstruction is slightly
lower, with more parameter crosstalks observed on the S-wave impedance model. Care-
ful examination indicates an upward shift in the inverted parameters consistent with too
low background velocity models. Therefore the drop in the NCC values for an inac-
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curate P-wave velocity model is inaccurate is expected as the kinematics are mainly
governed by the P-wave velocity model.
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Figure 4.15: Same as Figure 4.10, but for inaccurate P-wave velocity background model
(8% error): a) inverted δm and b) its Radon transform.

By noting the ability in reconstructing the observed data even in the presence of
inaccurate background models, we conclude here that the proposed elastic inversion
scheme can be coupled to the inner loop of MVA to accelerate the convergence rate
(Chauris and Cocher, 2017). Updating the background models in the context of elastic
imaging is beyond the scope of this paper.
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Figure 4.16: Same as Figure 4.12, but for inaccurate P-wave velocity background model
(8% error): inverted a) ζIp , b) ζIs and c) ζρ. Inverted model are plotted in the same scale
as the exact models.
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4.4.3 Marmousi2 model
To further assess the robustness of our method in the presence of random noise, we
conduct two experiments on a portion of Marmousi2 model (Martin et al., 2006). This
model is representative of a realistic complex structure with spatially uncorrelated elas-
tic parameters, i.e., the density, P- and S-wave impedance models have independent
structure and are not scaled versions of each other (Figure 4.17a-c). The model also
contains a potential hydrocarbon reservoir (indicated as gas sand on Figure 4.17). As
for the previous examples, the background models are obtained by performing 2D Gaus-
sian smoothing of 125 m length on the exact models in both directions (Figure 4.17d-f).
It is also worth noticing that gas sand is not detectable in the background models.

0 2 4 6 8 10
Position (km)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
ep

th
(k

m
)

a)

Ip [kg/s.m2]
×1e6

Gas sand

2.8 4.8 6.8 8.8 10.8

0 2 4 6 8 10
Position (km)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

b)

Gas sand

Is [kg/s.m2]
×1e55 19 33 47 61

0 2 4 6 8 10
Position (km)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

c)

Gas sand

ρ [kg/m3]
×1e31.65 1.85 2.05 2.25 2.45

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
ep

th
(k

m
)

d) 0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

e) 0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

f)

Figure 4.17: Marmousi2 model experiment: exact models of a) P-impedance, b) S-
impedance and c) density, and background models of d) P-impedance, e) S-impedance
and f) density.

In the first experiment, we consider noise-free observed data (Figure 4.18a). Similar
to the previous numerical experiments, we first examine the data reconstruction (Fig-
ure 4.18b). Once more, the extracted traces confirm that the reconstructed shot from
inverted models predicts data very close to the observed shot (Figure 4.18c). The under-
estimation and difference in data reconstruction, especially at large offsets and complex
models, could result from the energy out of the asymptotic framework and finite acqui-
sition geometry (ten Kroode, 2012; Hou and Symes, 2017). The quality of the fitting
can be also affected by the stabilizing parameter ε in source wavelet inversion using
Ω† = Ω∗/(‖Ω‖2 + ε) in the frequency domain. The same amplitude behavior was
also observed by Hou and Symes (2015) and Chauris and Cocher (2017). The image-
domain comparison between true and inverted parameters via the elastic WLS method
is shown in Figure 4.19. As for the two first examples, the NCC scores corresponding to
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each parameter (written on each panel of Figure 4.19) rank P-wave impedance, S-wave
impedance and density from best-inverted parameter to worst, respectively. To assess
the quantitative nature of inversion, we extract two vertical logs (indicated by dashed
lines in Figure 4.19a-c) and sum them with the background models. The position of the
gas sand is indicated by the green arrow in Figure 4.20b. As can be seen, P- and S-wave
impedances are nicely reconstructed while density has a more oscillatory nature, being
in line with the NCC scores (Figure 4.20).Chauris2017from
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Figure 4.18: The a) observed and b) reconstructed shots for the Marmousi2 model ex-
periment. Shots are plotted in the same scale. Traces are extracted at two positions
(indicated as black dashed lines in (a)) for surface offset c) 0.5 and 4.5 km. The solid
black and dashed red lines correspond to the true and reconstructed values, respectively.

To further analyze the resolution of the inverted images, we carry out an eigenvalue
(λ) decomposition of the 3 × 3 matrix M (equation 4.18). The first (λ1), second (λ2),
and third (λ3) eigenvalues are mainly related to ζIp , ζIs , and ζρ. We calculate the radio
between 2nd and 1st (λ2/λ1), and 3rd and 1st eigenvalues (λ3/λ1) (Figure 4.21). The
structure of the resolution depends on the structure of the background and the reflectivity
models. As illustrated, a higher resolution is expected in the shallow part of the models
(higher λ2/λ1 ratio in the shallow part). Moreover, λ3/λ1 has a considerable lower ratio
compared to λ2/λ1, confirming the fact that density is more difficult to reconstruct even
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in the shallow part of the model. It is worth to mention that the same resolution analysis
using eigenvalues has been investigated for interparameter trade-off quantification in
FWI (Plessix and Cao, 2011; Pan et al., 2018).
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Figure 4.19: Exact and inverted image-domain comparisons for the Marmousi2 model
experiment: exact a) ζIp , b) ζIs and c) ζρ, and inverted d) ζIp , e) ζIs and f) ζρ. The dashed
lines in (a,b,c) indicate the position of the extracted traces. Inverted models are plotted
in the same scale as the exact models.
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Figure 4.20: Vertical logs from inverted Marmousi2 model (Figure 4.19) for a) 3.4 km
and b) 6.1 km. The green arrow in (b) indicates the position of the gas sand.
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Figure 4.21: Radio of a) 2nd/1st and b) 3rd/1st eigenvalues of the matrix M at each
spatial coordinate corresponding to the Marmousi2 model.

4.4.3.1 Sensitivity analysis to white noise

The existence of noise in field data is inevitable. Therefore, in the second experiment
on Marmousi2, we assess the robustness of our method to Gaussian noise effect by
performing three inversion tests using different noise levels. The Gaussian noise not
only can degrade the quality of the RTM images (Ren et al., 2017) but also can have a
different effects on different subsurface parameters in least-squares imaging (Brossier
et al., 2010). In order to produce noisy observed data, we first generate Gaussian noise
gathers with a signal-to-noise ratio (SNR) of -1, -5, and -10 dB, and then filter them at
the maximum frequency of the applied wavelet before adding to the previously observed
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data (Figure 4.22a-c). In addition, we mute the noise before the first arrivals. The
negative sign in SNR indicates that the noise power is greater than the signal power.
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Figure 4.22: The Marmousi2 noisy observed shot with a) SNR -1 dB, b) SNR -5 dB
and c) SNR -10 dB, and the reconstructed shots corresponding to noisy data with d)
SNR -1 dB, e) SNR -5 dB and f) SNR -10 dB. Shots are plotted in the same scale as the
noiseless observed shot (Figure 4.18a).

The comparisons of the reconstructed shots show that the synthetic data modeled
from the inverted parameters are almost the same as the original data (Figure 4.22e-f).
For details, we extract one trace (x = 0.5 km) from each panel of Figure 4.22 to further
demonstrate the accuracy of phase and amplitudes (Figure 4.23). It is interesting that
although the pseudoinverse Born operator is derived such that drec ≈ LL†dobs, it can
nicely discriminate between the signal and the noise within a single iteration, even in
the case that the signal is buried in the noise (Figure 4.23). The important aspect is that
the noise is not coherent from a trace to another. The recovered three elastic parameters
corresponding to different noise levels are shown in Figure 4.24. The effect of noise is
observed as unwanted dots and small oscillations on inverted panels. Comparing NCC
scores reveals that the degradation in quality is rather small. To get more insight into the
effect of noise on the inverted images, we calculate localized NCC values for each model
within a window of 0.5 km length in both directions (Figure 4.25). Although a detailed
look reveals small degradation in quality by increasing noise, the localized NCC images
are almost identical to each other. We once more verify that the worst-reconstructed
parameter is the density.
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Figure 4.24: The inverted image-domain comparisons for the Marmousi2 model using
noisy data: inverted (a,d,g) ζIp , (b,e,h) ζIs and (c,f,i) ζρ using noisy data with (a,b,c)
SNR -1 dB, (d,e,f) SNR -5 dB and (g,h,i) SNR -10 dB.
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Figure 4.25: The localized NCC values corresponding to Figure 4.24: for (a,d,g) ζIp ,
(b,e,h) ζIs and (c,f,i) ζρ using noisy data with (a,b,c) SNR -1 dB, (d,e,f) SNR -5 dB and
(g,h,i) SNR -10 dB.
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4.5 Discussion
We have extended the acoustic pseudoinverse Born operator to elastic media. The elastic
and acoustic pseudoinverse Born operators are similar in structure. The main differences
are elastic versus acoustic Green’s functions in the extended pseudoinverse formula, and
then different decomposition in the WLS method (three parameters versus two param-
eters). The main limitation is the assumption of marine towed-streamer data. The ex-
tension to land data (non zero Vs in the shallow part of the model) remains a research
topic for future study. It would include the analysis of multi-component data, whereas
here only the T1 component is used and related to the pressure wavefield in the marine
environment. The wavefields would have to be separated in advance and associated with
different radiation patterns.

Another possible way to estimate the quantitative elastic parameters is based on
AVO/AVA inversion schemes which also requires measuring the reflectivity as a func-
tion of incident angle (Chopra and Castagna, 2005). These schemes, based on Zoeppritz
equations or their approximations, impose some limitations. They assume a convo-
lutional Earth model which not applicable to seismic data at large offsets. They are
only valid for the plane-wave propagation with relatively small angles of incidence in
isotropic layered media with no geometrical-spreading term, no scattering/transmission
loss, no mode converted wave, no multiples, no effect of thin layering and they are not
always applicable to structurally complex models (Mosher et al., 1996; Mallick, 2001).
These assumptions, however, are not met in practical applications and require sophisti-
cated data processing steps. The proposed method in this article not only does not have
any limitation on the maximum offset/angle but also better estimates model parameters
using a larger maximum offset/angle. It uses the numerical solutions to the elastic wave
equation to construct the offset-/angle-domain CIGs and compensates for the effect of
wavelet, geometrical spreading, and uneven illumination, thus it can be categorized as a
true-amplitude migration/inversion technique.

The elastic pseudoinverse Born inversion proposed here is a new step toward acceler-
ating the convergence rate of other multi-parameter imaging methods such as LSRTM,
MVA, FWI, and reflection waveform inversion (RWI). The application as a precon-
ditioner for LSRTM is straightforward as it is defined for this case (Hou and Symes,
2016a), whereas it requires more investigation for MVA, FWI, and RWI. The main dif-
ference between MVA and FWI/RWI lies in the definition of the objective function,
being image-domain driven for MVA and data-domain driven for FWI/RWI. In case of
acoustic FWI, several authors showed that the pseudoinverse Born operator can indeed
provide higher resolution subsurface images, but cannot necessarily mitigate the well-
known cycle-skipping issue (Métivier et al., 2015; Hou and Symes, 2016b). The concept
of MVA/RWI, though, is rather different, being a nested optimization procedure with up-
dating the true-amplitude reflectivity in the inner loop (migration mode) and updating
the background model in the outer loop (tomographic mode) (Xu et al., 2012a). One im-



152 Chapter 4. Extension to variable-density elastic media

portant aspect observed here is that the proposed multi-parameter pseudoinverse Born
inversion can reconstruct the data even using inaccurate background models. Therefore,
this provides evidence that our method can be coupled to the inner loop of MVA and
possibly RWI. The curvature of an event in the angle-domain CIG is indeed the bridge
between migration and velocity updates in MVA (Biondi and Symes, 2004).

In the concept of multi-parameter imaging, a key problem that comes to the fore is
the parameter cross-talk. In general, seismic imaging methods are formulated as least-
squares inverse problems and solved by optimization algorithms (Virieux and Operto,
2009). In this case, the least-squares iterations fully resolve the Hessian matrix and re-
move the cross-talks artifacts (Chen and Sacchi, 2017; Feng and Schuster, 2017). The
reader will have noticed that there is an amplitude leakage between the estimated images
by the pseudoinverse Born operator (Figures 4.12 and 4.19) which means further least-
squares iterations are required. The most important further step is implementing the
proposed method as a preconditioner either by defining as an operator within the Pre-
conditioned Conjugate Gradient algorithm or as weighted norms within the weighted
Conjugate Gradient algorithm (Hou and Symes, 2016a). More research, beyond the
scope of this paper, is required to investigate the role of the pseudoinverse Born operator
as a preconditioner in reducing parameter cross-talks.

We now discuss the choice of the parametrization. Generally, impedance-density
class is considered in the least-squares inversion of seismic reflection data (Tarantola,
1986). The other possible parameterization classes are Lamé parameters or velocities.
In the case of variable-density acoustic Born inversion, Farshad and Chauris (2020a)
concluded that P-wave impedance is the best-reconstructed parameter. In the context
of elasticity, the conclusions derived here are consistent with the ones known for FWI:
impedances are better reconstructed than the density (Köhn et al., 2012; Ren et al.,
2017), and larger surface offsets provides better resolution. This can be also noticed
from the radiation pattern (Figure 4.1): the density only radiates energy at very large an-
gles, which means that in the reflection data, there is only a little information from den-
sity. In this sense, the density does not influence the estimated impedance models, and
the imaging result for density is less constrained and reliable. The most computationally
expensive step of the proposed method is the elastic pseudoinverse Born operator calcu-
lating δm(x,h) (equation 4.10). The computational cost of the second and third steps,
namely the Radon transform (equation 4.14) and the WLS method (equation 4.17), is
negligible as it is detached from the imaging step that contains wave-equation based
operators. It is also worth mentioning that the choice of parametrization is only im-
portant in the third step decomposing the extended reflectivity δm(x,h) to three elastic
parameters. Thus the algorithm has the flexibility to easily exploit the other parame-
terization classes. In case of variable-density acoustics, Farshad and Chauris (2020a)
investigated the choice of parameterization in WLS method. By using non-linear re-
parameterization, they demonstrated that there is a good agreement between different
parameter classes suggesting that the choice of parameterization does not change the fi-
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nal results in this scheme. The conclusion differs in the case of FWI (nonlinear imaging
approach) (Virieux and Operto, 2009), and maybe in the linearized waveform inversion
methods that invert for parameters through the wavefields and imaging condition (Sun
et al., 2018). The reason is that we consider here a linear imaging process in the deriva-
tion of the extended images.

Finally, we discuss the impact of regularization. Incorporating a priori information
about the medium to be imaged, such as well logs or statistical characteristics, can in-
deed alleviate the risk of overfitting (Asnaashari et al., 2013). Since the WLS objective
function is set up as an inverse problem, it has the flexibility to easily incorporate reg-
ularization terms. It is important to note that this step does not involve the expensive
computation of wavefields, but only the resolution of 3 × 3 matrix systems for each
image point. Recently, Farshad and Chauris (2020c) implemented sparsity-promoting
regularization terms in the acoustic WLS objective function. The regularization can
indeed further suppress migration artifacts caused by parameters cross-talk, noise, and
incomplete data.

4.6 Conclusion

We have developed an elastic pseudoinverse Born inversion approach that can simulta-
neously retrieve P- and S-wave impedances and density to a less extend. Quantitative
results were obtained within a single iteration. Numerical experiments proved that the
proposed method is very promising and provides robust results in terms of data recon-
struction and quantitative parameter estimation even in presence of uncorrelated struc-
tures, inaccurate migration background models, and noisy data. The new pseudoinverse
Born operator can be used as a preconditioner. Therefore, it offers the possibility of
enlarging the applicability of iterative imaging methods by enhancing the convergence
rate. Future work will explore coupling multi-parameter Born inversion to other iter-
ative imaging techniques such as least-squares migration, migration velocity analysis,
and full/reflection waveform inversion as well as investigating the possibility to extend
the pseudoinverse Born operator to anisotropic media.
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4.8 Appendix I: Gradient derivation for elastic WLS method
In this appendix, we detail the derivation of the gradient of the elastic WLS objective
function (equation 4.15) with respect to the model parameters as

∂J

∂ζIp
=

∫
dθ 2W (x, θ)

(
2ζIp(x)

−4C0 sin2(2θ)ζIs(x) (4.23)

+2(C0 sin2(2θ)− sin2(θ))ζρ(x)−Rδm(x, θ)
)
,

∂J

∂ζIs
=

∫
−dθ 4W (x, θ)C0 sin2(2θ)

(
2ζIp(x)

−4C0 sin2(2θ)ζIs(x) (4.24)

+2(C0 sin2(2θ)− sin2(θ))ζρ(x)−Rδm(x, θ)
)
,

and
∂J

∂ζρ
=

∫
dθ 2W (x, θ)(C0 sin2(2θ)− sin2(θ))

(
2ζIp(x)

−4C0 sin2(2θ)ζIs(x) (4.25)

+2(C0 sin2(2θ)− sin2(θ))ζρ(x)−Rδm(x, θ)
)
.

Subsequently, the optimal ζIp , ζIs and ζρ parameters are obtained where the gradients in
equations 4.23, 4.24 and 4.25 vanish.

4.9 Appendix II: Acoustic WLS method
Here we review the main steps of the WLS-based variable-density acoustic pseudoin-
verse Born inversion proposed by Farshad and Chauris (2020a). The strategy is the same
as the elastic case described in this article. The first step is the application of the pseu-
doinverse Born operator. It is clear that in the acoustic case, the Green’s functions in
equation 4.10 are calculated using an acoustic Born modeling engine, i.e. Vs = 0 and
βp = 1/ρV 2

p . We consider (Ip, ρ) parameterization, so the diffraction pattern becomes

D(θ) =
[
2 −2 sin2(θ)

]
. (4.26)

The second step, namely the Radon transform (equation 4.14), remains the same in both
acoustic and elastic case. Finally, the acoustic WLS objective function can be defined as

JζIp ,ζρ =
1

2

∥∥∥(2ζIp(x)− 2 sin2(θ)ζρ(x)
)
−Rδm(x, θ)

∥∥∥2

W
. (4.27)



4.9. Appendix II: Acoustic WLS method 155

In a similar way, the optimal ζIp and ζρ can be obtained by setting the gradient ∂J/∂(ζIp , ζρ) =
0 (Farshad and Chauris, 2020a). Subsequently, the matrices M and Φ corresponding to
equation 4.17 reduces to

M =

[
4 −4 sin2(θ)

−4 sin2(θ) 4 sin4(θ)

]
, (4.28)

and

Φ =

[
2Rδm(x, θ)

−2 sin2(θ)Rδm(x, θ)

]
. (4.29)

Accordingly, this is a separable bivariate curve-fitting problem, implying an only dimen-
sional difference between acoustic (2× 2) and elastic (3× 3) WLS methods.
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Résumé

Ce chapitre comprend l’article intitulé « Sparsity-promoting multiparameter pseudoin-
verse Born inversion in acoustic media », publié dans la revue Geophysics (Farshad and
Chauris, 2021c).
La migration itérative (« least-squares reverse-time migration » en anglais) est la méth-
ode de choix pour l’imagerie sismique quantitative. Le plus gros inconvénient est que
l’approche demande beaucoup de cycles de migration/modélisation. La convergence de
la migration itérative peut être accélérée avec un préconditioner adapté. Dans le contexte
du domaine étendu et d’un milieu acoustique à densité variable, le pseudoinverse est le
préconditioner recommandé. Il permet d’obtenir des résultats quantitatifs en une seule
itération. Cette méthode fonctionne en deux étapes : application du pseudoinverse puis
inversion des deux paramètres après transformée de Radon et résolution d’un petit prob-
lème inverse. Comme attendu, des artefacts se produisent à cause de l’acquisition lim-
itée. Nous présentons une inversion vitesse – densité, avec des contraintes `1 sur chacun
des paramètres pour supprimer les artefacts. L’algorithme de « shrinkage-thresholding »
est utilisé. Dans une approche classique, les contraintes `1 affecteraient tout le processus
d’imagerie. Ici, comme l’imagerie est séparée en deux étapes, seulement la partie avec
la transformée de Radon est modifiée ; elle n’implique pas de calculs coûteux de champ
d’onde. Au travers d’expériences numériques, nous vérifions la robustesse de l’approche
vis-à-vis de différents artefacts comme les couplages entre les paramètres, les interfaces
tronquées, les géométries d’acquisition avec peu de points de tir, les données bruitées et
les forts contrastes de vitesse.
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Sparsity-promoting multiparameter pseudoinverse Born inversion in acoustic
media

Milad Farshad and Hervé Chauris
Geophysics, 2021, 86(3), pages S205–S220

doi: 10.1190/geo2020-0527.1

5.1 Abstract

Least-squares reverse-time migration has become the method of choice for quantitative
seismic imaging. The main drawback of such scheme is that it requires many migra-
tion/modeling cycles. The convergence of least-squares reverse-time migration can be
accelerated by using a suitable preconditioner. In the context of extended domain in a
variable density acoustic media, the pseudoinverse Born operator is the recommended
preconditioner, providing quantitative results within a single iteration. This method con-
sists of two steps: application of the pseudoinverse Born operator, and inversion of
two parameters using an efficient weighted least-squares approach based on the Radon
transform. As expected, cross-talk artifacts are generated in the second step due to lim-
ited acquisition. We present a variable density pseudoinverse Born operator constrained
with the `1-norm for each model parameter to suppress the artifacts. The fast itera-
tive shrinkage-thresholding algorithm is used to carry out the optimization problem.
In classical iterative least-squares migration, the `1-norm constraints would affect the
whole imaging process. As the imaging method is split into two steps, only the Radon
transform part is modified, where no wave-based operators are involved. Through nu-
merical experiments, we verify the robustness of the proposed method against different
migration artifacts including the parameter cross-talk, interfaces with abrupt truncations,
sparse shot acquisition geometry, noisy data and high contrast complex structures.

5.2 Introduction

Seismic migration algorithms seek to provide a subsurface image that accurately char-
acterizes the Earth structure with reliable physical properties. Typically, a standard mi-
gration operator defined as the adjoint of the forward modeling operator, i.e. the adjoint
Born modeling operator, only accounts for the kinematic but not the dynamic effects.
In practice, various factors such as noise, aliasing, limited recording aperture, narrow
frequency bandwidth and under-sampled acquisition geometry, contribute to the non-
quantitative nature of the adjoint operator, resulting in low-resolution images containing
artifacts (Baysal et al., 1983; Nemeth et al., 1999).

https://doi.org/10.1190/geo2020-0527.1


160 Chapter 5. Sparsity-promoting regularization

To partially remedy these problems, least-squares migration (LSM), also known as
linearized seismic inversion, was proposed: migration is reformulated as a linear inverse
problem with the objective to minimize the differences between the simulated and the
observed data (Nemeth et al., 1999). LSM has been applied either using ray-based
Kirchhoff migration (Nemeth et al., 1999; Duquet et al., 2000), one-way wave-equation
migration (Kühl and Sacchi, 2003; Wang and Sacchi, 2007), or two-way wave-equation
migration also known as reverse-time migration (RTM) (Dai et al., 2012; Zeng et al.,
2014; Zhang and Schuster, 2014; Zhang et al., 2015b). Note that the quality of the final
image obtained via LSM also depends on the initial velocity model (Symes, 2008b).

The most significant drawback of LSM is its computational cost as it is solved itera-
tively. Thus, for a fixed number of shots, LSM is 2N times (modeling and adjoint) more
expensive than the conventional migration, whereN is the number of iterations required
for LSM. Different techniques have been developed to possibly accelerate the conver-
gence rate of LSM, such as multi-source approach with either random-phase encoding
or plane-wave encoding (Liu et al., 2006; Dai et al., 2012; Xue et al., 2016), and scaling
the linear system with proper preconditioners such as the approximate inverse normal
operator, also known as Hessian operator (Shin et al., 2001; Rickett, 2003; Herrmann
et al., 2009; Huang et al., 2016).

Recently, in the context of extended-domain methods, different pseudoinverse op-
erators have been proposed via asymptotic analysis providing quantitative estimations
within a single iteration (ten Kroode, 2012; Hou and Symes, 2015, 2017; Chauris and
Cocher, 2017). Although these operators are obtained under high-frequency approxi-
mation, they do not contain any ray quantities in their final formula (Hou and Symes,
2015, 2017; Chauris and Cocher, 2017). The pseudoinverse formulas are strictly valid in
the absence of turning waves, and they are derived assuming infinite acquisition geome-
tries. In practice, the latter is not really restrictive as they provide accurate results within
the migration aperture, whereas including turning waves would require introducing of
vertical subsurface offsets (Biondi and Shan, 2002; Biondi and Symes, 2004). For that
reason, these pseudoinverse operators are often used as a preconditioner to accelerate
the convergence rate (Hou and Symes, 2016a; Li and Chauris, 2018). In practice, the
other more important limitation is the restriction to constant-density acoustic media.

In the oil and gas industry, density as well as velocity play an important role in
seismic interpretation steps. Very recently, two approaches have been proposed by
Dafni and Symes (2018) and Farshad and Chauris (2020a) to extend the applicability
of the pseudoinverse Born operator to variable density acoustic media. The first step
consists in applying the same pseudoinverse Born operator as the one for the constant-
density acoustic case. In the second phase, the Radon transform is applied to map the
imaging angle. The work of Dafni and Symes (2018) shares the same idea as Zhang
et al. (2014b), who proposed to invert the acoustic parameters by using two traces (two-
trace method) from the angle-domain common-image gathers (CIGs) estimated either
by LSRTM or by application of the pseudoinverse Born operator. Farshad and Chauris
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(2020a) show that the selection of the two traces is important, and proposed a gener-
alization by taking into account all traces in the angle-domain CIGs using an efficient
weighted least-squares (WLS) approach. This generalization not only yielded more
robust results compared to the two-trace method, but also provided the flexibility to
include more constraints through the formulation as an inverse problem (Farshad and
Chauris, 2020a). As expected, the multi-parameter inversion suffers from cross-talk ar-
tifacts (Virieux and Operto, 2009; Operto et al., 2013; Prieux et al., 2013). To mitigate
this problem, some a priori information about the model can be included in the inversion
process as a regularization term (Gholami and Siahkoohi, 2010; Asnaashari et al., 2013).

In recent years many regularization techniques such as `0-norm (Gholami and Far-
shad, 2019b), `1-norm (Herrmann and Li, 2012; Wu et al., 2016), Tikhonov (Tikhonov
et al., 2013; Asnaashari et al., 2013), total-variation (Guitton, 2012; Aghamiry et al.,
2019a; Zand et al., 2020), hybrid Tikhonov and total-variation (Gholami and Hosseini,
2013; Lin and Lianjie, 2015; Aghamiry et al., 2018, 2019b; Ren and Li, 2020), and
shaping regularization (Fomel, 2007; Xue et al., 2016; Yao et al., 2019) have been
successfully applied in many areas of signal processing and seismic imaging. These
regularization terms enforce some a priori assumptions about the shape and statistical
characteristics of the subsurface. For example, a subsurface that as expected to contain
smoothly varying components (e.g. background model), is characterized by a normal
prior and therefore smooth regularization techniques are employed. On the other hand,
a subsurface that is expected to contain sparse structure (e.g. reflectivity model), is char-
acterized by a long-tail prior thus requiring sparse regularization techniques (Polson and
Sokolov, 2019).

In this paper, we propose to include the `1-norm to each model parameter as the
regularization terms in the second phase of the WLS-based pseudoinverse Born oper-
ator, namely within the Radon transform step. The objective is to stabilize the inverse
problem. More precisely, the role of regularization terms is to mitigate noise and arti-
facts in the images to finally obtain sparsity-promoted images even in presence of highly
decimated data (Herrmann and Li, 2012; Wu et al., 2016; Aghamiry et al., 2019b). We
assess the robustness of the proposed method against various migration artifacts associ-
ated to parameter cross-talk, abrupt truncation of interfaces, random noise, sparse shot
acquisition and complex structures with possibly large contrasts. This work should be
understood as a new step for the applicability of multi-parameter LSRTM. By appli-
cability, we mean the derivation of proper preconditioners and the possibility to get
quantitative LSRTM results within a few iterations only.

The outline of this paper is as follows. First, we review the extended domain Born
modeling in a constant density acoustic Earth, its corresponding pseudoinverse, and the
extension to variable density media. Next, we add sparsity constraints to the variable
density pseudoinverse Born operator. Then, we further demonstrate the effectiveness
of the multi-parameter inversion with or without sparsity constraints on a discontinuous
interfaces, Marmousi2 and 2004 BP models (Billette and Brandsberg-Dahl, 2004).
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5.3 Theory
In the following, we first briefly review the concepts and formulas of the forward/pseudoinverse
Born operators in a constant density acoustic media. Then, we review the extension of
the pseudoinverse operator to a variable density acoustic media using the WLS method.
Finally, we combine the regularization terms with WLS objective function. The two
most important aspects are: (1) the total imaging process is split into two parts where
only the first part contains the wavefield simulations; and (2) the second part is also set
up as an inverse problem, providing the possibility to introduce constraints.

5.3.1 Forward Born modeling
The basic element of the linearized seismic imaging technique is the Born approxima-
tion. Under this approximation, the exact modelm(x) in 2D at position x = (x, z) is the
sum of a background model m0(x) and a perturbation model δm(x) as (Symes, 2008b):

m(x) = m0(x) + δm(x), (5.1)

where m0 controls the kinematics of the wave propagation while δm generates the
diffracted/reflected waves. Here, we consider a 2D constant density acoustic Earth
model parameterized with m = β as the inverse of the Bulk modulus β = 1/ρv2,
where v and ρ denote the velocity and density at spatial position x, respectively. Under
the Born approximation, the recorded data wavefield d(xs,xr, ω) at the receiver position
xr = (xr, zr) from a source positioned at xs = (xs, zs) can be expressed in an integral
form as:

d(xs,xr, ω) = L[m0,δm](xs,xr, ω)

= −(iω)2Ω(ω)

∫
dxG0(xs,x, ω)δm(x)G0(x,xr, ω), (5.2)

where ω is the angular frequency, L is the Born modeling operator, Ω is the source
spectrum, and G0 is the reference Green’s function derived in a given smooth model
m0. The imaging condition can be generalized by introducing a redundancy parameter,
which could be a time and/or space shift (Sava and Fomel, 2006; Symes, 2008b). Here,
we consider a horizontal shift referred to as subsurface offset h = (h, 0). This extension
allows to handle the errors in the background models by matching the image dimension
(x, z, h) as same as the data dimension (s, r, t) (Symes, 2008b). In this case, the forward
Born modeling operator in the extended domain can be written as (Symes, 2008b):

d(xs,xr, ω) = L[m0,δm](xs,xr, ω) (5.3)

= −(iω)2Ω(ω)

∫
dx dhG0(xs,x− h, ω)δm(x,h)G0(x + h,xr, ω).
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The difference between classic (equation 5.2) and extended Born modeling (equation 5.3)
is the extra loop over h. In this case, the physical model δm(x) is extended to a non-
physical model δm(x,h) where the receiver and source Green’s functions are evaluated
at (x + h) and (x− h) positions, respectively. In the next section, we review how to
derive a pseudoinverse formula for equation 5.3.

5.3.2 Pseudoinverse Born operator
The classic migration operator in a specific background model m0 is formulated as
(Claerbout, 1992):

δmmig = LTdobs, (5.4)

where δmmig is the migrated image, dobs is the observed data, and T denotes the trans-
pose operator, leading LT to be the adjoint of the Born operator. The adjoint Born
operator accounts for the traveltime of the observed data, but not for the amplitude. The
true amplitude image of the subsurface (δm) can be iteratively estimated by minimizing
a misfit function:

J0(δm) =
1

2

∥∥d(δm)− dobs
∥∥

2
, (5.5)

where ‖.‖p denotes the `p-norm. The optimal solution is obtained when the gradient
∂J0(δm)/∂δm is equal to zero, such that (Lailly, 1983; Tarantola, 1984):

δm = (LTL)−1δmmig. (5.6)

Here, LTL is the Hessian matrix. Since the Born operator is not unitary, the Hessian
matrix is not equal to the Identity matrix. Therefore, the migrated δmmig is considered
as a Hessian-blurred version of the optimal δm (Schuster, 1993; Nemeth et al., 1999;
Chavent and Plessix, 1999). The two possibilities to obtain the true amplitude image
δm are: (1) iteratively minimizing equation 5.5, i.e., least-squares migration (LeBras
and Clayton, 1988; Nemeth et al., 1999), (2) replacing the adjoint (LT ) by its pseudoin-
verse (L† = (LTL)−1LT ) and directly applying it to dobs. The latter achieves quantita-
tive properties within a single iteration (ten Kroode, 2012; Hou and Symes, 2015, 2017;
Chauris and Cocher, 2017). The derivation of the pseudoinverse is performed such that
the application of the LL† on any data, accurately reconstructs the data, even in an in-
correct background model. Here, we follow the work by Chauris and Cocher (2017),
proposing the pseudoinverse extended Born operator in a constant density acoustic me-
dia as:

δm = L†(dobs)(x,h) (5.7)
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' 32
β0

ρ3
0

∂z

∫
dxs dxr dω

Ω†(ω)

(iω)
∂szG

∗
0(xs,x− h, ω)dobs(xs,xr, ω)∂rzG

∗
0(x + h,xr, ω),

where ∗ denotes the complex conjugate and Ω† is the inverse of the seismic wavelet. This
formula is an asymptotic inverse and is only valid in the extended domain for constant
density acoustic media.

In a more realistic acoustic medium, the density variations cannot be ignored. In
such a case, the velocity variations govern the amplitude and kinematics of the reflec-
tions, whereas the density variations are mainly related to amplitude of the reflections
(Virieux and Operto, 2009). Farshad and Chauris (2020a) showed that if the data (dobs)
contain density variations, the application of equation 5.7 results in energy distortion
in the CIGs, even if the investigated background models are correct (see Farshad and
Chauris, 2020a, their Figure 4). In the next section, we describe how equation 5.7 can
be extended to variable density acoustic media.

5.3.3 Extension to variable density

In the case of variable density, the inverted reflectivity model δm(x, h) from equation 5.7
can be decomposed into two different parameters such that (Dafni and Symes, 2018):

δm

β0

(x, h) ∼= Dβ
δβ

β0

(x)δ(h) +Dρ
δρ

ρ0

(x)δ(h), (5.8)

where δ() is the Dirac delta distribution, Dβ = 1 and Dρ = − cos(2θ) denote the
diffraction patterns of β and ρ (Figure 5.1), respectively (Forgues, 1996). Note that δβ
and δρ are physical parameters (they only depend on x, and not h), while δm is said
to be extended. In equation 5.8, the Dρ = − cos 2θ term is not a simple multiplication
but acts as a pseudo-differential operator (Dafni and Symes, 2018). The parameter class
(β, ρ) in equation 5.8 can be replaced by any acoustic parameter, i.e. P-wave velocity Vp
or P-wave impedance Ip, by choosing the corresponding proper diffraction pattern D.
The only remaining ingredient to decompose δm into δβ and δρ is the estimation of θ.
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Figure 5.1: The diffraction pattern for (β − ρ) parameterization.

Qin and Lambaré (2016) proposed to estimate θ by using an iterative tomographic
ray tracing approach. Farshad and Chauris (2020a) proposed an efficient least-squares
approach as a generalization of the method proposed by Dafni and Symes (2018), by
extending the pseudoinverse Born operator from constant- to variable-density acoustic
media. This method, referred to as WLS, is based on two steps. In the first step, we
apply the Radon transform, which results in transforming the offset-domain to the angle-
domain CIGsRδm(x, θ) such that (Sava and Fomel, 2003)

Rδm(x, θ) =
1

β0

∫
dh δm(x, z + h tan θ, h), (5.9)

where θ is the diffraction angle. This gives the angle θ needed to split the inverted
δm into two different parameters (equation 5.8). We refer to ten Kroode (2012) for a
detailed discussion regarding the relationship between the angle θ at the imaging point
(ray-based quantity) and in the Radon transform. In the last step, we minimize a cost
function defined as the least-squares differences between the observed and the computed
angle-domain response. The WLS method solves the following optimization problem
(Farshad and Chauris, 2020a):

min
δβ,δρ

(
1

2

∥∥∥∥Rδm(x, θ)−
(δβ
β0

(x)− δρ

ρ0

(x) cos(2θ)
)∥∥∥∥2

W

)
, (5.10)
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where W (x, θ) is a weighting mask defined as:

W (x, θ) =

1, if |θ| ≤ α tan−1(xmax
z

)

0, otherwise
, (5.11)

and xmax denotes the maximum surface offset. Based on the value of α, the objective of
this weighting mask is to remove the artifacts in the angle domain which are due to the
limited acquisition geometry (Sava and Fomel, 2003; Farshad and Chauris, 2020a). This
definition is strictly valid for homogeneous models. A short discussion on the choice of
this parameter is provided below. By definition, the WLS method (equation 5.10) is
a separable bivariate curve fitting problem: the optimization can be applied for each
spatial coordinate separately. It should be noted that the estimated δβ(x) and δρ(x)
are non-extended physical parameters, whereas δm(x, h) and Rδm(x, θ) are said to be
extended by non-physical parameters h and θ. For simplicity, the solution in a least-
squares sense can be written as Gδu = R, where

G =


∫

dθW (x, θ) −
∫

dθW (x, θ) cos(2θ)

−
∫

dθW (x, θ) cos(2θ)
∫

dθW (x, θ) cos2(2θ)

 , (5.12)

δu =

 δββ0 (x)

δρ
ρ0

(x)

 , (5.13)

and

R =


∫

dθW (x, θ)Rδm(x, θ)

−
∫

dθW (x, θ) cos(2θ)Rδm(x, θ)

 . (5.14)

It is well known that adding more parameters into the inversion increases the ill-
posedness of the inverse problem (Virieux and Operto, 2009). Consequently, a leakage
between inverted parameters is expected, which results in non-physically meaningful
subsurface images (Dafni and Symes, 2018; Farshad and Chauris, 2020a). Moreover,
incomplete illumination, aliasing artifacts, undersampled or noisy data can also lead to
subsurface images that are degraded in quality due to overfitting of the noise. There-
fore, it is essential to incorporate some regularization terms into the inversion process
allowing more accurate representations of the subsurface reflectivity model. Since the
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reflectivity model is sparse (Wu et al., 2016; Zhang et al., 2017), we propose to add
independently `1-norm constraints to each inverted parameter as regularization terms
in the WLS method (equation 5.10). Since the `1-norm regularization penalizes small
coefficients more severely than large ones, it will enforce sparse subsurface images.
Therefore, the constrained optimization problem becomes

min
δβ,δρ

(
1

2

∥∥∥∥Rδm(x, θ)−
(δβ
β0

(x)−δρ
ρ0

(x) cos(2θ)
)∥∥∥∥2

W

+λ1

∥∥∥∥δββ0

(x)

∥∥∥∥
1

+λ2

∥∥∥∥δρρ0

(x)

∥∥∥∥
1

)
,(5.15)

where λ1, λ2 > 0 are the trade-off parameters governing the balance between the data
misfit and regularization terms. We provide some guidelines regarding how to tune these
trade-off parameters below. We refer to our method as the regularized WLS (RWLS)
method, which is a sparsity-promoting separable bivariate curve fitting problem. The
RWLS method has an interesting interpretation: among the two parameters δβ(x) and
δρ(x), the optimization selects the one that has stronger effect in predicting the data
and thus this can reduce the cross-talk artifacts. In order to carry out the optimiza-
tion problem described in equation 5.15, we use a popular sparse solver based on the
soft thresholding method called fast iterative shrinkage-thresholding algorithm (FISTA;
Beck and Teboulle, 2009), which is the generalized version of ISTA (Daubechies et al.,
2004). Note that the only step in the RWLS method that contains wavefield propaga-
tion is the application of the pseudoinverse Born operator, which is only applied once
to obtain δm (equation 5.7). The other steps include single application of the Radon
transform (equation 5.9), and the iterative FISTA.

The proposed RWLS method is summarized in Algorithm 5, where γ is the appro-
priate step size for the iterative scheme. For each spatial position in the physical domain,
G and R are precomputed 2 × 2 matrices. The stopping criterion in this algorithm is
defined by the maximum number of iterations. The FISTA algorithm mainly consists of
three steps: (1) calculation of the gradient direction (line 9 in Algorithm 5), (2) appli-
cation of soft-threshold (shrinkage) operator (lines 10 and 11 in Algorithm 5), which is
basically equivalent to shifting δβ and δρ towards zero with λ1 and λ2 units, (3) updating
δuk+1 using a specific linear combination of the previous two δuk and δuk−1 (lines 12
and 13 in Algorithm 5). Notice that the last step generates a momentum that accelerates
the convergence rate. This is indeed the difference between ISTA and FISTA.

5.4 Numerical experiments

In this section we assess the performance of the `1-regularized pseudoinverse Born op-
erator through different numerical experiments. For all these examples, the modeling
engine for the solution of the 2-D acoustic wave equation is the finite-difference method
implemented with perfectly matched layers (PMLs) absorbing boundary conditions. In
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Algorithm 5: RWLS-based psuedoinverse Born operator by FISTA

1 Input: dobs, λ1, λ2

2 Initialization
3 δm = L†(dobs)
4 R← calculateRδm

5 δu1 = δu0 = 0
6 t1 = 1
7 γ ≥ (maximum eigenvalue of GTG)

8 for k = 1 to maximum iteration do
9 δuk = δuk − 1

γ
GT (Gδuk −R)

10
δβ
β0

= δβ/β0
|δβ/β0| max( δβ

β0
− λ1, 0)

11
δρ
ρ0

= δρ/ρ0
|δρ/ρ0| max( δρ

ρ0
− λ2, 0)

12 tk+1 = 1+
√

1+4tk2

2

13 δuk+1 = δuk +
(
tk−1
tk+1

)
(δuk − δuk−1)

all numerical examples, we apply a smooth taper on a few shallow samples of the in-
verted δm to attenuate the undesirable numerical imprint of the source positions.

We start with a model containing discontinuous interfaces. This example is used to
assess the effectiveness of the RWLS method in reducing the amplitude leakage due to
the parameter cross-talk addressed by Dafni and Symes (2018) and Farshad and Chau-
ris (2020a), and also spurious oscillations related to the truncated interfaces (Fei and
Williamson, 2010; Shen and Symes, 2015; Chauris and Cocher, 2017). Then, the Mar-
mousi2 model is used as a benchmark of complex geology. To check the effectiveness
of the method with decimated acquisition geometries, the inversion is performed with
dense and decimated shots. Finally, the 2004 BP salt model is investigated to assess
the sensitivity of the RWLS method to random noise, and its potential to image high
contrast complex structures.

5.4.1 Discontinuous interfaces

The first example is inspired by Shen and Symes (2015) and Chauris and Cocher (2017):
it consists of four interfaces with a limited lateral extension in the velocity model (Fig-
ure 5.2a), and only one truncated interface in the density model (Figure 5.2b). The model
is discretized into 170 (vertical direction) by 301 (horizontal direction) grid points with
a 16 m grid interval. A Ricker wavelet centered at 4.84 Hz (maximum frequency is
12.1 Hz) is used as a source, and the sources are excited at the surface from 0 to 4.8 km
with a 37.5 m interval. The receivers for each shot are positioned at every grid position
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and record for 2.6 s with a 3.8 ms time interval.

We start by applying the pseudoinverse extended Born operator (equation 5.7) and
the Radon transform (Figure 5.3). Unwanted oscillations around the reflector positions
are visible in both the subsurface offset- and angle-domain CIGs, due to the abrupt
truncation of the interfaces. The true perturbation models (Figure 5.4a and 5.4b) are
compared to the inverted parameters estimated via the WLS (Figure 5.4c and 5.4d) and
the RWLS methods (Figure 5.4e and 5.4f). We note two types of artifacts in the results
obtained via the WLS method: an amplitude leakage due to the parameter cross-talk,
and oscillations around the edges of the interfaces due to the abrupt truncation (yel-
low ellipses in Figure 5.4c). In contrast, the regularization terms in the RWLS method
lead to more robust and sparse results compared to the WLS method. Traces at differ-
ent positions are extracted for a closer examination (Figure 5.5). The artifacts and the
oscillations are efficiently removed with the RWLS method.
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Figure 5.2: The exact a) Vp (m/s) and b) ρ (kg/m3) models corresponding to discontinu-
ous interfaces.
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Figure 5.3: The a) offset-domain CIG (δm) and b) its angle-domain response corre-
sponding to Figure 5.2. The green and black dashed lines define the W for α = 1.0 and
α = 0.6, respectively.
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Figure 5.4: Comparison between the inverted parameters for discontinuous interfaces.
Exact a) δβ/β0 and b) δρ/ρ0. Inverted c) δβ/β0 and d) δρ/ρ0 via the WLS method, and
inverted e) δβ/β0 and f) δρ/ρ0 via the RWLS method. The green dashed lines in (a)
indicate the positions of the extracted traces. The truncation artifacts are circled by the
yellow ellipses in (c).
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Figure 5.5: Comparison between the extracted traces from Figure 5.4 at a) x = 1.4 km,
b) x = 2.4 km and c) x = 2.9 km.

5.4.2 The Marmousi2 model
As a benchmark for a structurally complex model, we use the Marmousi2 model com-
posed of 214 (vertical direction) by 875 (horizontal direction) discretization points with
a 12 m grid interval. To reduce the computational cost, only the middle part of the Mar-
mousi2 model is used (Figure 5.6a and 5.6b). The perturbation model is obtained by
subtracting the background model, obtained by applying a 60 m long 2D Gaussian filter
on the exact model in both directions, from the exact model (Figure 5.6c and 5.6d). The
wavelet for our simulation is a Ricker wavelet centered at 4.76 Hz (maximum frequency
is 11.9 Hz). The recording time is 3.7 s with a 1.32 ms time interval.

5.4.2.1 Dense shots

In this first experiment, we use 292 shots located at the surface and evenly distributed,
with a source interval of 36 m and a fixed receiver grid. We perform the WLS and
RWLS methods to invert the perturbations. The number of iterations of FISTA for the
RWLS method is set to 100. We first compare the observed data (Figure 5.7a) with the
reconstructed data estimated with the WLS (Figure 5.7b) and the RWLS methods (Fig-
ure 5.7c). Two traces at two different offsets are extracted from each panel (Figure 5.7d).
To assess the accuracy of our inversion schemes, the root-mean-square error (RMSE) is
measured as

RMSE(κ) =

√√√√ K∑
i=1

(κi − κ̃i)2

K
, (5.16)

where κ and κ̃ are the observed and estimated data. We find that the RWLS method
yields a RMSE around 25% lower than the WLS method.
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Figure 5.6: The exact a) Vp (m/s), b) ρ (kg/m3), c) δβ/β0 and d) δρ/ρ0 models corre-
sponding to the Marmousi2 model.
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structed data for the shot at position 5.2 km via the b) WLS and c) RWLS methods. The
dashed lines in (a) correspond to the d) extracted traces. Shots are plotted at the same
scale.
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Next, we compare the true perturbation models (Figure 5.6c and 5.6d) with the es-
timated ones (Figure 5.8). Note the scale discrepancy between the exact (Figure 5.6)
and inverted (Figure 5.8) parameters, which reveals an underestimation in δβ and an
overestimation in δρ. The WLS models include low-frequency oscillations and energy
distortions, especially for density (Figure 5.8b). This apparent higher resolution in Fig-
ure 5.8b may be misinterpreted as thin layers. The regularization clearly attenuates these
artifacts (Figure 5.8d). In order to get more insight into the quality of these images, we
calculate the normalized correlation coefficient (NCC) percentage as

NCC(%) =

∑
xmtrue(x)mest(x)√∑

xm
2
true(x)

√∑
xm

2
est(x)

× 100, (5.17)

where mtrue and mest are the true and estimated models, respectively. The NCC scoring
is easy to understand: the higher the value, the higher the correlation (maximum value
is 100%). The NCC values corresponding to each method are written on each panel of
Figure 5.8, showing the superiority of the RWLS method. To evaluate the qualitative
reliability of the final images, we extract two traces at different positions (x = 4.5
and 7 km) from each panel of Figure 5.8, and sum them with the background models
(Figure 5.9). The RMSE values between true and inverted traces are also calculated and
written on each panel (Figure 5.9). Clearly, the RWLS method provides more accurate
models.

5.4.2.2 Decimated shots

In this second experiment, we use 25 shots evenly spaced every 432 m. Note that the shot
numbers are 12 times fewer than the previous experiment. The total computational cost
is reduced by the same factor, as the wave-based operator (equation 5.7) dominates the
computational burden. The number of FISTA iterations is set to be the same as with the
first experiment (100 iterations). The reconstructed shots by using the inverted param-
eters are shown in Figure 5.10. Similar to the previous experiment, the RWLS method
yields a lower error for the data reconstruction. In the image domain, the effect of the
decimated shots are clearly visible on the inverted perturbations with the WLS method
as discontinuous reflectors and distorted energy (Figure 5.11a and 5.11b). Contrary to
the previous experiment, the structure of the Marmousi2 model is not visible, especially
in the deep and central parts of β and ρ. However, the RWLS method in spite of the dec-
imated shots obtains a reasonable level of accuracy and correlation, while reducing the
artifacts (Figure 5.11c and 5.11d). The profiles extracted at x = 4.5 and 7 km confirm
the quantitative reliability of the RWLS method (Figure 5.12). We further examine the
performance of these methods by comparing wavenumber spectra (Figure 5.13). The
color scales used for the panels corresponding to the WLS and RWLS methods are the
same as the one used for the true models. The repetitive vertical lines in the wavenumber
components obtained by the WLS method (indicated by red arrows in Figure 5.13b and
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Figure 5.8: Comparison between the inverted parameters corresponding to dense shots
(292 shots) for Marmousi2 model. Inverted a) δβ/β0 and b) δρ/ρ0 vis the WLS method,
c) δβ/β0 and d) δρ/ρ0 via the RWLS method. The dashed lines in (a) correspond to the
extracted traces.

0 1 2

δβ + β0 (m.s2/kg)

0.0

0.5

1.0

1.5

2.0

2.5

D
ep

th
(k

m
)

a)

×10−10

RMSE=8.00e-12

RMSE=7.75e-12

True WLS RWLS

2000 2500

δρ + ρ0 (kg/m3)

0.0

0.5

1.0

1.5

2.0

2.5

RMSE=9.04e+1

RMSE=6.82e+1

0 1 2

δβ + β0 (m.s2/kg)

0.0

0.5

1.0

1.5

2.0

2.5

D
ep

th
(k

m
)

b)

×10−10

RMSE=8.01e-12

RMSE=7.82e-12

2000 2500

δρ + ρ0 (kg/m3)

0.0

0.5

1.0

1.5

2.0

2.5

RMSE=1.20e+2

RMSE=5.97e+1

Figure 5.9: Comparison between the extracted inverted parameters corresponding to
dense shots (292 shots) for Marmousi2 model. Inverted δβ + β0 and δρ + ρ0 for a)
x = 4.5 km and b) x = 7.0 km.



176 Chapter 5. Sparsity-promoting regularization

5.13e) correspond to strong aliasing artifacts, and are associated to the decimated shots
(Figure 5.11a and 5.11b). Additional artifacts (indicated by green box in Figure 5.13e)
contaminate the spectrum obtained by the WLS method. On the contrary, the RWLS
method significantly mitigates these problems, and provides wavenumber components
closer to the true models (Figure 5.13c and 5.13f).
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Figure 5.10: Same as for Figure 5.7, but for the decimated shots experiment. The recon-
structed data for the shot at position 5.2 km via the a) WLS and b) RWLS methods. The
dashed lines in (a) correspond to the extracted traces at surface offset c) 0.0 km and d)
2.5 km. Shots are plotted at the same scale as the observed shot (Figure 5.7a).

To increase the reliability of the results, this last experiment is performed for differ-
ent source intervals, and the RMSE and NCC values are calculated in the data and image
domains, respectively. As can be seen from the RMSE and NCC curves in Figure 5.14,
the RWLS method always performs better than the WLS method. The data reconstruc-
tion shows a very stable behavior for the RWLS method, whereas an abrupt change for
the WLS method is observed when the source spacing is above 360 m (gray dashed line
in Figure 5.14b). This distance is about the propagated mean wavelength (330 m) in
the shallow part of the model. The same behavior can be also observed for the NCC
in the image domain (Figure 5.14a), which is quite stable for the RWLS method, or
follows a decreasing trend with the WLS method. We draw the same dashed line as in
Figure 5.14a. However, the change in the decreasing trend is not as pronounced as the
one in the data domain. For this specific example, we first recommend to not go beyond
a source spacing of around 330 m using the WLS method. But in all cases, we recom-
mend to include the regularization: it achieves better results in both the image and data
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Figure 5.11: Same as for Figure 5.8, but for the decimated shots experiment. Inverted a)
δβ/β0 and b) δρ/ρ0 via the WLS method, c) δβ/β0 and d) δρ/ρ0 via the RWLS method.
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Figure 5.12: Same as for Figure 5.9, but for the decimated shots experiment. Inverted
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Figure 5.13: The Marmousi2 decimated shots experiment. Wavenumber spectra of
δβ/β0 corresponding to a) true, b) WLS and c) RWLS, and δρ/ρ0 corresponding to
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(d). The box and arrows highlight the observed artifacts.
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domains, and it can potentially deal with a source distance that is larger than the one
allowed with the WLS method.
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Figure 5.14: Evaluation of a) NCC in image domain and b) RMSE in data domain with
respect to the source spacing corresponding to Marmousi2 model. The gray dashed line
in (b) indicates the abrupt change in behavior of the WLS method, and the one in (a) is
deduced from the one in (b).

5.4.3 2004 BP salt model
In this section, we assess the robustness of the proposed method against random noise
and with models with high contrasts. As a benchmark, we consider the 2004 BP salt
model (Billette and Brandsberg-Dahl, 2004). The left part of this model is representa-
tive of the geology found in the Gulf of Mexico. This model consists of a simple velocity
background model with a complex salt body. The density model is constructed by scal-
ing the reflectivity model obtained from real data stacks (Billette and Brandsberg-Dahl,
2004). We notice that the velocity and density/reflectivity models are highly uncorre-
lated as the density model has more complex trends compared to the ones found in the
velocity model. Laboratory measurements show that in general, changes in the density
across an interface create changes in velocity (Gardner et al., 1974b; Garia et al., 2019).
Thus, we modify the exact velocity model based on the density model while the char-
acteristics of the salt is preserved (Figure 5.15a and 5.15b). We infer the structure of
the velocity model from density model by using Gardner’s law (Gardner et al., 1974b).
Consequently, the modified velocity model consists of a complex velocity background
with a complex salt body which follows the density, hence the reflectivity trend. The
inverse problem is ill-posed as an additional degree of freedom (density) is taken into
account (Virieux and Operto, 2009).
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The model is discretized on a 308 × 787 grid with a 12 m spacing in vertical and
horizontal directions. A Ricker wavelet centered at 4.96 Hz (maximum frequency is
12.4 Hz) is used as a source. The shots are evenly spaced at a 36 m interval with a fixed
receiver grid. The true background models, obtained by application of a 60 m long 2D
Gaussian window on the true models, are used for the pseudoinverse Born operator. The
true perturbation models are obtained by taking the difference between the original and
the true background models (Figure 5.15c and 5.15d).
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Figure 5.15: The exact a) Vp (m/s), b) ρ (kg/m3), c) δβ/β0 and d) δρ/ρ0 corresponding
to the modified 2004 BP salt model.

To assess the resilience of the proposed method to noise, we generate Gaussian ran-
dom noise with a predefined signal-to-noise (SNR) value. Then, we filter this noise
at the maximum frequency of the applied wavelet. The SNR value in decibels (dB) is
defined as

SNR = 10 log10

(
Psignal
Pnoise

)
, (5.18)

where P is the average power. Here, we add noise with a SNR of−8 dB to the observed
data. The negative sign indicates that the noise power is greater than the signal power.
We mute the noise before the main event. This is not necessarily easy at far offsets. We
first compare the data reconstruction in the middle (xs = 4.7 km) using the noiseless
and noisy observed data (Figure 5.16a and 5.16d). The shots are reconstructed using the
inverted models obtained via the WLS and RWLS methods corresponding to the noise-
less (Figure 5.16b and 5.16c) and noisy data (Figure 5.16e and 5.16f). The number of
FISTA iterations is still set to 100 for the RWLS method. The results from the noiseless
and noisy data are quite similar in the data domain. For a quantitative evaluation, RMSE
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between the observed and reconstructed data is written on each panel. In addition, the
central trace from each panel is extracted and NCC is also calculated for each method
(Figure 5.17). These values show the superiority of the RWLS method in both noiseless
and noisy cases.
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Figure 5.16: The 2004 BP salt model. The a) observed and constructed data via the b)
WLS and c) RWLS methods corresponding to the noiseless data. (d), (e), (f) same as
(a), (b), (c) corresponding to the noisy data (SNR = −8 dB). The dashed line in (a)
corresponds to the extracted trace in Figure 5.17. Shots are plotted at the same scale.

Now, we compare the inverted parameters estimated with the WLS and RWLS meth-
ods corresponding to the noiseless (Figure 5.18) and noisy data (Figure 5.19). Similar
to the Marmousi2 experiment, we notice an underestimation in δβ and an overestima-
tion in δρ. Clearly, the RWLS method provides images closer to the true solutions in
both cases. Comparing the δβ/β0 images corresponding to the noiseless and noisy cases
(Figure 5.18a and 5.19a) using the WLS method reveals that the data noise leads to en-
ergy distortion, blurred boundaries of the salt and unclear structures beneath the salt;
whereas the image obtained via the RWLS method is nearly the same as the one in the
noiseless case (Figure 5.18c and 5.19c). These parts are marked by yellow dashed boxes
in Figure 5.19a and 5.19c. It is also observed that the WLS method fails to achieve rea-
sonable density images (Figure 5.18b and 5.19b). We extract two traces at different
positions (x = 3.8 and 7 km) from each panel of Figure 5.18 and 5.19, and sum them
with the background models to qualitatively evaluate the final images (Figure 5.20). The
RMSE values between true and inverted traces are also calculated and written on each
panel (Figure 5.20). The results further confirm that the RWLS method provides more
reliable models, with a significant jump of density quality compared to the case where
regularization is not used. It is also interesting to compare histograms of the model pa-
rameters estimated by the WLS and RWLS methods for the noisy data (Figure 5.21). In
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Figure 5.17: The 2004 BP salt model. The zero-offset traces from shots in Figure 5.16
for the a) noiseless and b) noisy data. The NCC values corresponding to each trace are
written on the panels.

the context of full-waveform inversion, Aghamiry et al. (2020b) plot these probability
densities to assess the ability of hybrid Tikhonov and total variation regularizations in
reconstructing the model parameters. The probability densities corresponding to the true
models illustrate that the true models are sparse (Figure 5.21a and 5.21b). The proba-
bility densities corresponding to the WLS method (Figure 5.21c and 5.21d) illustrate
long-tailed prior, which further support the choice of the `1-norm regularization for this
problem (Polson and Sokolov, 2019). The probability densities corresponding to the
RWLS method (Figure 5.21e and 5.21f) are similar to the true models and decay faster
than the ones of WLS. The latter is indeed consistent with the fact that the `1-norm
regularization forces the model parameters to be sparse.

To evaluate the reliability of the results, this experiment is performed for different
SNR values, and the RMSE and NCC values are calculated in data and image domains,
respectively. Again, the RWLS method outperforms the WLS method in both image
(Figure 5.22a) and data domains (Figure 5.22b). As expected, the NCC corresponding
to each parameter in the image domain shows a decreasing trend (Figure 5.22a), whereas
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Figure 5.18: The inverted parameters corresponding to the noiseless 2004 BP salt model.
Inverted a) δβ/β0 and b) δρ/ρ0 via the WLS method, and inverted c) δβ/β0 and d) δρ/ρ0

via the RWLS method. The dashed lines in (a) correspond to the extracted traces.
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Figure 5.19: The inverted parameters corresponding to the noisy 2004 BP salt model.
Inverted a) δβ/β0 and b) δρ/ρ0 via the WLS method, and inverted c) δβ/β0 and d) δρ/ρ0

via the RWLS method. The yellow dashed boxes indicate the salt boundary.
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Figure 5.20: The final inverted parameters corresponding to the (a,b) noiseless and (c,d)
noisy 2004 BP salt model. Inverted δβ + β0 and δρ + ρ0 for (a,c) x = 3.8 km and (b,d)
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Figure 5.21: Comparison between the histogram of the true model components and the
inverted ones (Figure 5.19). a) δβ/β0 and b) δρ/ρ0 corresponding to the true models, c)
δβ/β0 and d) δρ/ρ0 inverted via the WLS method, e) δβ/β0 and f) δρ/ρ0 inverted via
the RWLS method. The red lines indicate the probability density functions fitted to the
histograms.

the RMSE in the data domain shows a increasing trend (Figure 5.22b). Although these
trends have a higher absolute slope values for the WLS method, no abrupt change in the
behavior of the RWLS method is observed.
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Figure 5.22: Evaluation of a) NCC in image domain and b) RMSE in data domain with
respect to noise corresponding to 2004 BP salt model.

5.5 Discussion

We have implemented a `1-regularization in the weighted least-squares (WLS) method
recently introduced by Farshad and Chauris (2020a) to extend the constant density pseu-
doinverse Born operator to variable density acoustic media. To solve the new con-
strained optimization problem, we have used FISTA as an appropriate sparse solver
(Beck and Teboulle, 2009).

We first discuss the choice of parameter α for the weighting mask (equation 5.11).
As mentioned before, the good of this mask is to remove artifacts in the angle domain
(Farshad and Chauris, 2020a). For the Marmousi2 and the 2004 BP salt models, the W
is applied with α = 0.48. The application of this mask for these two models at different
positions is investigated (Figure 5.23). In practice, there is no need for a precise selection
of α. We choose this parameter visually, to guarantee that we are on the safe side of the
angle-domain CIG which does not contain strong artifacts related to the finite sampling
(Figure 5.23). This is indeed a conservative approach. Otherwise the risk would be
including non-useful (artifacts) information. A possible alternative is choosing this value
manually for each CIG position.

With decimated shots, the application of the WLS method and the pseudoinverse
Born operator produced artifacts and gave a blurred image of the subsurface. In con-
trary, adding the regularization term efficiently reduced the acquisition footprint and
produced a high-resolution image of the subsurface. Another alternative is to use the
LSM method (Nemeth et al., 1999), which requires the application of the adjoint and
forward modeling operators at each iteration of the LSM. Although the method is ro-
bust, it has a higher computational burden compared to the RWLS method. This comes
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Figure 5.23: The angle-domain CIGs positioned at a) 2.6 km, b) 5.2 km and c) 7.8 km
corresponding to the Marmousi2 model, and at d) 2.6 km, e) 5.2 km and f) 7.8 km
corresponding to the 2004 BP salt model. The green and black dashed lines define the
W for α = 1 and α = 0.48, respectively.

from the fact that the RWLS method is completely decoupled from the wave-equation
based operators, including a single application of the pseudoinverse operator (δm(x,h)),
a single application of the Radon transform (Rδm(x, γ)), and iterative FISTA. Thus, the
RWLS method can be considered as a postprocessing step after imaging, leading to a
more computationally efficient scheme. To get a better insight on the efficiency, we
compare the run-time for the dense shots experiment of the Marmousi2 example using
20 processors. The run-times for the pseudoinverse Born operator, the WLS and RWLS
methods are 5898, 4 and 43 s, respectively. Note that in this example, the computational
costs of the WLS and RWLS methods are < 1.0% of the cost of the pseudoinverse Born
operator. Therefore, the RWLS method provides high-resolution images requiring less
computational complexity than LSM.

Finally, we discuss the choice of λ1 and λ2 coefficients. First, these are only needed
in the final inexpensive FISTA part. In practice, we estimate λ1 and λ2 by balancing
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between the sparsity of the coefficients and the data fitting. This requires a parameter
tuning step to find the suitable λ. We plot in Figure 5.24 the Pareto curves, here in 2D,
between the coefficients λ1, λ2 and the corresponding cost function J (equation 5.15)
for the Marmousi2 model. This method is known as L-hypersurface, the generaliza-
tion of L-curve method (Belge et al., 1998). This curve exhibits a typical “L” shape
with distinctive turning points. The optimal regularization parameter λ corresponds to
the corner of the “L”, recognized as the turning points (shown by circle in Figure 5.24)
(Belge et al., 2002; Brezinski et al., 2003). The cost function reaches the minimum
value when λ1 and λ2 are relatively small (i.e. around λ1 = λ2 = 10−5 for this exam-
ple). Referring to equation 5.15, it is clear that for λ1 = λ2 = 0, the RWLS method
reduces to the WLS method. In this case, the regularization terms will not affect the
output. By defining higher values (i.e. around 1 for this example), the solution will be
completely sparse, containing only important information in the data. We note that the
L-hypersurface in this example has two plateaus. A pure 1D analysis for a fixed λ1 (λ2)
would have led to possibly another choice for λ2 (λ1). As discussed before, the compu-
tational cost of the RWLS method is negligible. This gives the flexibility to easily draw
the L-hypersurface for parameter tuning in the corresponding example. This is a signif-
icant advantage over the common regularization techniques applied in seismic imaging
methods such as LSM (Anagaw and Sacchi, 2012; Dutta et al., 2017; Ren and Li, 2020)
and full-waveform inversion (Askan and Bielak, 2008; Aghamiry et al., 2018, 2019a).
This step can be carried out either by trial and error, generalized cross-validation (Craven
and Wahba, 1978), or χ2 methods (Tarantola, 2005), which are indeed computationally
expensive and cumbersome for large-scale inverse problems.

5.6 Conclusion

In this paper, to improve the quality of the inverted parameters by the weighted least-
squares approach for variable density pseudoinverse Born operator, we proposed to in-
clude regularization terms. We considered the `1-norm of each parameter as the regular-
ization terms. Through numerical experiments, we have demonstrated that the proposed
method can effectively suppress artifacts caused by parameter cross-talk, abrupt trun-
cation of interfaces, incomplete data, noisy data and large contrast complex geology.
Therefore, it can provide better data reconstruction and higher subsurface images. Fu-
ture work will explore the use of the multi-parameter pseudoinverse Born operator as a
suitable preconditioner within the frame work of least-squares migration, and extension
of pseudoinverse Born operator beyond the acoustic approximation.
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Résumé

Ce chapitre comprend l’article intitulé « Accelerating the multi-parameter least-squares
reverse time migration using an appropriate preconditioner », publié dans la revue Com-
putational Geosciences (Farshad and Chauris, 2021a).
La migration itérative (« least-squares reverse-time migration » en anglais) est con-
nue pour être la technique d’imagerie linéaire recommandée pour les structures com-
plexes du sous-sol. Dans le cas d’un milieu acoustique à densité constante, les itérations
ont le potentiel pour compenser pour les artefacts causés par les fréquences finies des
sources sismiques, l’acquisition limitée, l’illumination irrégulière et le couplage entre
les paramètres. Le principal inconvénient de l’approche itérative est le coût numérique
élevé avec le calcul des opérateurs de migration et de modélisation à chaque itération.
Pour accélérer la convergence, nous proposons d’utiliser le pseudoinverse à densité vari-
able comme préconditioner. Notre schéma d’imagerie comprend deux étapes. Nous
construisons dans un premier temps une image étendue avec les amplitudes préservées,
par une approche de Gradient Conjugué, avec et sans préconditioner. Ensuite, après ap-
plication d’une transformée de Radon 2D, nous estimons simultanément les paramètres
physiques avec une approche aux moindres carrés. La seconde étape ne comprend pas
de terme de propagation des ondes. Au travers d’expériences numériques, nous mon-
trons que le schéma proposé non seulement réduit le nombre d’itérations requises pour
converger, mais aussi augmente de manière significative la qualité des images inversées,
même en présence de couplages forts entre les paramètres et de macro-modèles inex-
acts. C’est confirmé par l’analyse du Hessian multi-paramètre obtenu pour un modèle
de taille limité.
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Accelerating the multi-parameter least-squares reverse time migration using an
appropriate preconditioner

Milad Farshad and Hervé Chauris
Computational Geosciences, 2021, doi: 10.1007/s10596-021-10089-4

6.1 Abstract

Least-squares reverse time migration has proven to be the state-of-the-art for linear
imaging technique of complex subsurface structures. Assuming a variable-density acous-
tic medium, least-squares iterations have the potential to compensate for the artifacts
caused by finite frequency of the seismic source, limited acquisition aperture, uneven
illumination and parameter cross-talk. The main drawback of such an iterative imaging
scheme is the substantial computational expense induced by additional modeling/adjoint
steps at each iteration. To accelerate the convergence rate, we propose to leverage the
variable-density pseudoinverse extended Born operator as a preconditioner. Our imag-
ing scheme consists of two main steps. We first construct a true-amplitude extended
image through Conjugate Gradient iterations with/without preconditioning. Then, by
applying a 2D Radon transform, we simultaneously estimate the physical parameters
from the angle-domain response using a weighted least-squares method. The second
step does not involve wave propagation terms. Through numerical experiments, we
show that the proposed preconditioning scheme not only largely reduces the required
number of iterations to achieve a given data misfit but also significantly increases the
quality of the inverted images even in presence of strong parameter cross-talk and inac-
curate migration background models. This is further confirmed by analyzing the shape
of the multi-parameter Hessian obtained on a model with limited size.

6.2 Introduction

In exploration geophysics, seismic experiments are commonly conducted for subsurface
imaging and hydrocarbon detection. In a usual seismic acquisition, an active source and
an array of receivers are positioned at the surface (Sheriff and Geldart, 1995). As an
example, we construct a simple model with three layers (Figure 6.1a) and the corre-
sponding seismic data collected from receivers (Figure 6.1b). The seismic data contains
many traces recording the pressure field for the same shot, as a function of time and
the distance from the source (also referred to as surface offset). Generally, the reflected
seismic events demonstrate a hyperbolic shape with possible amplitude variations along
this hyperbola due to velocity and density variations (Sheriff and Geldart, 1995).

https://doi.org/10.1007/s10596-021-10089-4
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Figure 6.1: a) Typical surface 2D acquisition setting. The star and the triangles indicate
the seismic source and the receiver positions, respectively. The lines emerged from the
source represent the ray path of the primary reflections to illustrate the wave propagation.
b) The reflected wavefield recorded by the receivers.

Under the weak-scattering assumption, the model parameters m can be decomposed
as (Symes, 1995)

m = m0 + δm, (6.1)

where m0 denotes the background model controlling the kinematics of the wave propa-
gation (long wavelengths), and δm is the reflectivity model creating the diffracted/reflected
waves (short wavelengths). Migration is a linear imaging method that reconstructs the
reflectivity model δm in a given background model m0. Among different linear imag-
ing algorithms, reverse time migration (RTM) has become the preferred approach for
seismic imaging in complex geologic structures (Baysal et al., 1983). Classically, RTM
can be formulated as the adjoint of the linearized forward modeling operator, i.e., ad-
joint Born operator. Such scheme can only produce qualitative structural images, but no
proper amplitude information. In practice, the quality of the migrated image using RTM
operator may be considerably degraded by several causes such as noise, band limitation
of the source wavelet, limited recording aperture, and aliasing due to coarsely spaced ac-
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quisition geometry (Nemeth et al., 1999; Etgen et al., 2009; Mulder and Plessix, 2004;
Chauris, 2019).

Least-squares reverse time migration (LSRTM), also known as linearized seismic
inversion, can be adapted to suppress migration artifacts via iterative methods (Lailly,
1983; Nemeth et al., 1999; Zeng et al., 2014). Although LSRTM provides superior
results compared to RTM, it is computationally extensive and relies on many itera-
tions involving migrations and modeling operators. Despite the evolution of computer
technologies, reducing the overall computational LSRTM cost is an important aspect.
Moreover, in the context of multi-component seismology, extension to multi-parameter
imaging is an active area of research. This article presents an approach for significantly
accelerating the convergence rate of multi-parameter LSRTM.

The necessity for realistic wave propagation phenomena has prompted researchers
to extend pure acoustic LSRTM to account for parameter classes other than the P-wave
velocity, such as density (Yang et al., 2016a; Chen and Sacchi, 2019), attenuation (Dutta
and Schuster, 2014; Sun et al., 2016; Guo and McMechan, 2018), S-wave velocity (Ren
et al., 2017; Chen and Sacchi, 2019), and anisotropy (Qu et al., 2017). Among different
subsurface parameters, density is one of the key elements for rock property analysis and
lithologic interpretation. However, estimating a good quality density image is a very
challenging task (Tarantola, 1986; Köhn et al., 2012). In the concept of multi-parameter
imaging, an issue that comes to the fore is the parameter cross-talk (for example im-
print of density on the velocity section). In practice, the diffraction patterns of different
parameters overlap within certain illumination angles, which makes multi-parameter
imaging a highly ill-posed problem especially with limited surface acquisition (Virieux
and Operto, 2009).

The second topic related to the computational burden, can be satisfied either by
lowering the computational cost per iteration or by accelerating the convergence rate
of LSRTM. Concerning the first kind, researchers proposed to reduce the cost either
by blending shot gathers using random-phase/plane-wave encoding methods (Romero
et al., 2000; Liu et al., 2006; Schuster et al., 2011), constraining the estimated image
by regularization techniques (Lin and Lianjie, 2015; Xue et al., 2016), or compressed
sensing and stochastic optimization (van Leeuwen et al., 2011; Herrmann and Li, 2012;
Zand et al., 2020). The second kind of techniques is based on scaling the linear system
by the inverse of the Hessian matrix. In practice, constructing and then calculating
the inverse of the Hessian matrix demands extensive computations. Thus the Hessian is
usually approximated by only its diagonal components, possibly surrounded by a limited
number of off-diagonals (Shin et al., 2001; Rickett, 2003; Symes, 2008a; Herrmann
et al., 2009; Chen and Sacchi, 2017). The method proposed in this article incorporates
the Hessian information in the context of multi-parameter imaging.

In recent years, several pseudoinverse Born operators, often referred to as true-
amplitude migration, have been developed by simple modifications of the extended
RTM operator (ten Kroode, 2012; Hou and Symes, 2015, 2017; Chauris and Cocher,
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2017). By extended, we mean that the modeling and adjoint operators define a mapping
between the data and image domains. These pseudoinverse operators asymptotically
are inverse of the Hessian but without any ray quantities in the final formulation. The
application of these operators as a preconditioner has been studied for LSRTM (Hou
and Symes, 2016a; Chauris and Cocher, 2018), migration velocity analysis (Chauris
and Cocher, 2017; Cocher et al., 2018; Li and Chauris, 2018), and the non-linear Full
waveform inversion (FWI) (Hou and Symes, 2016b). This framework was originally
developed for constant-density acoustic media, and recently has been extended to ac-
count for density variations (Dafni and Symes, 2018; Farshad and Chauris, 2020a,c).
However, Dafni and Symes (2018) and Farshad and Chauris (2020a) also illustrated that
the variable-density pseudoinverse Born operator, being only an approximate inverse,
suffers from parameter cross-talks. Implementing variable-density pseudoinverse Born
operator as a preconditioner for LSRTM has not been exploited yet (Hou and Symes,
2016a).

In this article, we implement the pseudoinverse Born operator proposed by Farshad
and Chauris (2020a) for preconditioning the variable-density LSRTM algorithm. The
main motivation of this combination (pseudoinverse Born + LSRTM) is to highly ac-
celerate the convergence rate while reducing the parameter cross-talks. The total imag-
ing process implemented here (with/without preconditioner) consists of two main steps.
First, we perform iterative migration: from the observed data, we obtain “true-amplitude
extended images”. Then, we estimate two physical acoustic parameters (impedance and
density perturbations) from the angle-dependent response of the extended image us-
ing an efficient weighted least-squares (WLS) approach. The second step, namely the
WLS method, is a generalization of the work of Zhang et al. (2014b) in the sense that
parameters are inverted using all traces in the angle-domain rather than two traces. Us-
ing a small-sized model, we illustrate the multi-parameter Hessian matrix without and
with preconditioner. Furthermore, we numerically assess the capability of the proposed
method in mitigating parameter cross-talk while accelerating the convergence rate.

The rest of the paper is organized as follows. First, we review the theory of multi-
parameter RTM and the solution of LSRTM with the Conjugate Gradient (CG) method
through Sections 6.3 and 6.4. Next, we explain how to implement the pseudoinverse
Born operator as a preconditioner using the preconditioned Conjugate Gradient (PCG)
method. In Section 6.6, we present three numerical examples to verify the effectiveness
of the proposed method in the presence of parameter cross-talk, inaccurate migration
background models, and complex structures. Finally, we discuss the structure of the
multi-parameter Hessian to further analyze the numerical experiments.
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6.3 Reverse time migration
The 2D acoustic Earth model can be parameterized in terms of two parameters on each
spatial coordinate x = (x, z), involving P-wave velocity (Vp) and density (ρ) or their
combination, namely P-wave impedance (Ip = ρVp) or inverse of the bulk modulus
(β = 1/ρV 2

p ). Under the Born approximation, the model parameters are split into a
smooth part (background model, e.g. β0) and a singular part (perturbation model, e.g.
δβ). The forward Born modeling operator L can be expressed as

d(s, r, ω) = L(δβ, δρ)(s, r, ω) (6.2)

= Ω(ω)

∫
dx

 −(iω)2G0(s,x, ω)δβ(x)G0(x, r, ω)

ρ−2
0 ∇G0(s,x, ω)δρ(x) · ∇G0(x, r, ω)

 ,
where ω is the angular frequency, Ω(ω) is the source signature, and d denotes the single-
scattered reflection data. The terms G0(s,x, ω) and G0(x, r, ω) are the variable-density
acoustic Green’s functions in the background models, from the source position s =
(xs, zs) to imaging point x, and from x to the receiver position r = (xr, zr).

A standard migrated image δmmig(x) (same unit as δβ: m.s2/kg) can be estimated
by applying RTM operator, i.e. adjoint Born operator, to the observed data (Baysal et al.,
1983):

δmmig = LTdobs, (6.3)

where T denotes the adjoint operator.
We generalize the forward/adjoint Born operator by introducing a redundancy pa-

rameter, involving nonphysical subsurface offset or time-lag extension (Sava and Fomel,
2006; Symes, 2008b). Here we consider extension by horizontal subsurface offset
h = (h, 0), defined as sunken sources and receivers in Claerbout’s survey-sinking con-
cept (Figure 6.2) (Claerbout, 1985). This is indeed essential in the derivation of the
pseudoinverse Born operator to have the same data and model dimensions (Beylkin,
1985; ten Kroode, 2012). Moreover, such modification offers the flexibility to easily
extend RTM operator to variable-density acoustic medium. Accordingly, the extended
migration image is formulated as

δmmig = LT (dobs)(x,h) (6.4)

= −
∫

ds dr dω (iω)2Ω∗(ω)G∗0(s,x− h, ω)dobs(s, r, ω)G∗0(x + h, r, ω),

where ∗ denotes the complex conjugate. For each couple (x,h), δmmig is a scalar
quantity (result of wavefield cross-correlation). In equation 6.4, the acoustic Green’s
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functions in background models β0 and ρ0 are evaluated from the source position s to
imaging point x− h and from imaging point x + h to the receiver position r.

x

z

δm

s r

x

x+ hx− h

1

Figure 6.2: Sketch of the subsurface offset extension. The red and blue arrows indicate
the interaction between the source and receiver wavefields for the non-extended and
extended modeling operators, respectively (Claerbout, 1985).

Under the ray+Born approximation, the extended image can be simultaneously de-
composed into two physical parameters based on the diffraction patterns (Zhang et al.,
2014b; Dafni and Symes, 2018; Farshad and Chauris, 2020a). Since the aim of RTM is
to resolve only the short-wavelength part of the model, we choose impedance (Ip) and
density (ρ) for parameterization (Tarantola, 1986). The decomposing relationship reads

δmmig

β0

(x, h) ∼= DIpζIp(x)δ(h) +Dρζρ(x)δ(h), (6.5)

where ζ is the relative model perturbation defined as

ζa =
δa

a0

. (6.6)

In equation 6.5, δ() denotes the Dirac delta function, θ is the scattering angle,DIp = −2
and Dρ = 2 sin2(θ) are the radiation patterns of Ip and ρ, respectively (Forgues, 1996).
Note that the left side of equation 6.5 is h-dependent, whereas the right side θ-dependent
(due to Dρ). Thus a conversion of subsurface offset h to scattering angle θ is required.
This can be efficiently obtained by the application of the 2D linear Radon transform
(slant-stack integral) on the extended δmmig as (Sava and Fomel, 2003)

ψ = R(δmmig)(x, θ) =

∫
dh δmmig(x, z + h tan θ, h), (6.7)
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where ψ(x, θ) denotes the angle-domain response of the extended reflectivity integrated
along the h tan θ direction.

Recently, Farshad and Chauris (2020a) proposed an efficient approach, namely WLS,
to retrieve optimal physical parameters from ψ(x, θ) by defining a new objective func-
tion reading as

JWLS(ζIp , ζρ) =
1

2

∥∥∥2
(
− ζIp(x) + ζρ(x) sin2(θ)

)
− ψ(x, θ)

∥∥∥2

W
. (6.8)

The term W (x, θ) is a weighted space defined as

W (x, θ) =

1, if |θ| ≤ α tan−1(xmax
z

)

0, otherwise
, (6.9)

where xmax is the maximum surface offset, and α < 1 is a scaling parameter to suppress
the artifacts at large angles in ψ(x, θ) which are due to the limited acquisition geom-
etry. The reader is referred to Farshad and Chauris (2020a) and Farshad and Chauris
(2021c) for a more detailed discussion regarding W (x, θ) and the choice of parame-
ter α. The optimal physical perturbation models can be obtained by setting the gra-
dient of equation 6.8 equal to zero. Abstractly, for the model parameters defined as

δu =
[
ζIp(x) ζρ(x)

]T
, the WLS method can be written in a matrix form as Gδu = R,

where

G =

 4
∫

dθW (x, θ) −4
∫

dθW (x, θ) sin2(θ)

−4
∫

dθW (x, θ) sin2(θ) 4
∫

dθW (x, θ) sin4(θ)

 , (6.10)

and

R =

 −2
∫

dθW (x, θ)ψ(x, θ)

2
∫

dθW (x, θ) sin2(θ)ψ(x, θ)

 . (6.11)

Since δmmig is obtained by RTM operator (simply adjoint), the estimated δu suffers
from various undesirable artifacts, amplitude errors as well as parameters cross-talk due
to non-linearity of the multi-parameter inverse problem (Nemeth et al., 1999; Virieux
and Operto, 2009). For high-quality subsurface images with accurate amplitudes, δmmig

should be replaced by true-amplitude δm obtained by the inverse operator. We now
review how to derive it through an iterative process.
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6.4 Least-squares reverse time migration
LSRTM aims to solve true-amplitude δm by minimizing a least-squares objective func-
tion

J(δm) =
1

2

∥∥Lδm− dobs∥∥2

2
. (6.12)

The optimal solution for equation 6.12 satisfies ∂J(δm)/∂δm = 0, leading to the nor-
mal equation (Tarantola, 1984)

(LTL)δm = δmmig, (6.13)

where LTL is the Hessian operator, the second-order partial derivatives of the objec-
tive function (equation 6.12) with respect to the model parameters. The optimal model
δm can be recovered from δmmig by removing the effect of the Hessian matrix (Schus-
ter, 1993). The construction of the Hessian matrix in an explicit way is prohibitively
expensive. Traditionally, the effect of Hessian matrix is removed by iteratively mini-
mizing J (equation 6.12) (Nemeth et al., 1999). To carry out the least-squares problem
(equation 6.13), we use the standard Conjugate Gradient (CG) algorithm (Nocedal and
Wright, 2006). The CG method has the highest convergence rate among the other first-
order iterative approaches such as gradient decent, singular-value or QR-decomposition.
The algorithm of CG-LSRTM is summarized in Algorithm 6. In the first iteration
(i = 0), the update direction (p0, line 10 in Algorithm 6) is the steepest descent di-
rection, i.e. gradient direction (−r0, lines 4 and 5 in Algorithm 6), along the minimizer
κ (line 9 in Algorithm 6). In the next iterations, each direction pi+1 (line 13 in Algo-
rithm 6) is chosen to be a linear combination of the current gradient direction ri+1 and
the previous direction pi, where the parameter ηi+1 (line 12 in Algorithm 6) satisfies the
conjugacy between pi+1 and pi. Note that the operators L and LT (line 8 in Algorithm 6)
are applied in two successive paths (first L and then LT ).

The main drawback of CG-LSRTM is a slow convergence rate due to the ill-conditioned
normal operator LTL. In this article, we tackle this issue by introducing pseudoinverse
Born operator as a preconditioner to accelerate the convergence rate of CG-LSRTM.

6.5 Preconditioning with pseudoinverse Born operator
Originally, the wave-equation-based pseudoinverse Born operators were introduced for
pure acoustic media (Hou and Symes, 2015; Chauris and Cocher, 2017). Recently and
in parallel, Dafni and Symes (2018) and Farshad and Chauris (2020a) enlarged the appli-
cability of these pseudoinverse Born operators to variable-density acoustics. Following
the works of Chauris and Cocher (2017) and Farshad and Chauris (2020a), the pseu-
doinverse Born operator L† reads as

δminv = L†(dobs)(x,h) (6.14)
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Algorithm 6: LSRTM by CG algorithm

1 Input: dobs
2 Initialization
3 δm0 ← 0
4 r0 ← LT (Lδm0 − dobs) = −LTdobs
5 p0 ← −r0

6 i ← 0

7 CG: while stopping criteria not satisfied do
8 qi ← LTLpi
9 κi ← 〈ri, ri〉/〈pi, qi〉

10 δmi+1 ← δmi + κipi
11 ri+1 ← ri + κiqi
12 ηi+1 ← 〈ri+1, ri+1〉/〈ri, ri〉
13 pi+1 ← −ri+1 + ηi+1pi
14 i ← i+ 1

15 Physical decomposition: for each x position do
16 ψ ← R(δm)
17 for each depth position do
18 Construct G, R
19 δu ← G−1R

' 32
β0

ρ3
0

∂z

∫
ds dr dω

Ω†(ω)

(iω)
∂szG

∗
0(s,x− h, ω)dobs(s, r, ω)∂rzG

∗
0(x + h, r, ω),

where † denotes the pseudoinverse operator. Comparing to the adjoint (equation 6.4),
the main differences in the inversion formula are: (1) applying a normalization factor
32β0/ρ

3
0 and a vertical derivative at the image points, (2) replacing the adjoint source

wavelet with its inverse version, (3) applying a first-order integration in time instead of
a second-order derivative in imaging condition, and (4) applying vertical derivatives with
respect to source and receiver positions to the Green’s functions. These modifications
have dynamic effects: larger weights to short offsets and small dips (Chauris and Cocher,
2017).

To incorporate L† as a preconditioner in LSRTM, we perform a change of variable
in equation 6.12 from δm to δm̃ as (Nocedal and Wright, 2006)

δm = L†δm̃, (6.15)

and thus the objective function defined by equation 6.12 transforms to

J̃(δm̃) =
1

2

∥∥LL†δm̃− dobs∥∥2

2
= J(δm). (6.16)
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We consequently end up with the modified normal equation

L†T (LTL)L†δm̃ = L†TLTdobs, (6.17)

where L†T (adjoint of the pseudoinverse Born operator) is defined as (Cocher, 2017)

L†T (δm)(s, r, ω) ' (6.18)

−32
Ω†

∗
(ω)

(iω)

∫
dx dh ∂szG0(s,x− h, ω)

β0

ρ3
0

∂zδm(x,h)∂rzG0(x + h, r, ω).

Comparing L† and L recalls that the pseudoinverse Born operator is a weighted version
of RTM operator. We notice the same weights in L†T . Therefore, this can also be inter-
preted as a weighted forward Born modeling operator that emphasizes small scattering
angles and short surface offsets.

It was demonstrated that the pseudoinverse L† satisfies L†L ≈ I in an asymptotic
sense (ten Kroode, 2012; Hou and Symes, 2015, 2017; Chauris and Cocher, 2017). Sub-
sequently, the left-side of equation 6.17 interestingly cancel out each other as:

L†T (LTL)L† = (LL†)T (LL†) ≈ I, (6.19)

implying that the convergence rate of equation 6.17 is expected to be faster than the one
corresponding to equation 6.13. In practice, it is not necessary to change the variable via
equation 6.15 explicitly, but rather defining L†L†T as a preconditioner. The algorithm
is summarized in Algorithm 7. The main difference between the CG and PCG methods
is in the application of the preconditioner (lines 5 and 13 in Algorithm 7). Thus the
application of WLS method remains the same for both CG and PCG methods.

6.6 Numerical experiments
In this section, we compare the performance of LSRTM with CG and PCG methods
using three examples. We start with a simple model containing sparse layers to first in-
vestigate the role of preconditioner in attenuating parameter cross-talks. Then, a dipping
layer model with dense structure is analyzed to verify the effectiveness of the proposed
method using correct and incorrect background models. Finally, we use the Marmousi2
model as a benchmark of complex geology.

To generate synthetic data, we perform a time-domain staggered-grid finite-difference
modeling scheme with eighth-order accuracy in space and second-order accuracy in time
(Virieux, 1986) implemented with perfectly matched layers (PML) absorbing boundary
conditions (Bérenger, 1994) . We consider a fixed acquisition geometry, i.e. station-
ary receivers, and a Ricker wavelet as the source wavelet for all numerical experiments.
Table 6.1 outlines the model discretization and acquisition geometry configurations for
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Algorithm 7: Preconditioned LSRTM by CG algorithm

1 Input: dobs
2 Initialization
3 δm0 ← 0
4 r0 ← LT (Lδm0 − dobs) = −LTdobs
5 y0 ← L†L†T r0

6 p0 ← −y0

7 i ← 0

8 PCG: while stopping criteria not satisfied do
9 qi ← LTLpi

10 κi ← 〈ri, yi〉/〈pi, qi〉
11 δmi+1 ← δmi + κipi
12 ri+1 ← ri + κiqi

13 yi+1 ← L†L†T ri+1

14 ηi+1 ← 〈ri+1, yi+1〉/〈ri, yi〉
15 pi+1 ← −yi+1 + ηi+1pi
16 i ← i+ 1

17 Physical decomposition: for each x position do
18 ψ ← R(δm)
19 for each depth position do
20 Construct G, R
21 δu ← G−1R

each example. The stopping criterion for the CG method is a predefined number of itera-
tions, whereas, for the PCG method, the number of iterations is determined such that the
optimization achieves approximately the same data misfit as the CG method. Table 6.2
details the number of iterations and the final computational time (in hours) for each nu-
merical example demonstrating that CG-LSRTM requires at least twice more iterations
(thus computational time) than its preconditioned version. To evaluate the quality of the
inverted images, we calculate the normalized correlation coefficient (NCC) between the
true and inverted model parameters.

6.6.1 Simple model
We start with a simple model containing four layers in the impedance model and three
layers in the density model (Figure 6.3a, b). The background models are obtained by
smoothing the exact models with a 2D Gaussian filter of 60 m length along the two
dimensions (Figure 6.3c, d).
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Figure 6.3: Simple model experiment: the exact a) P-impedance and b) density models,
and background c) P-impedance and d) density models.
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Table 6.1: Main parameter configuration for the different numerical experiments.

Simple
model

Dipping layer
model

Marmousi2
model

Model grids (nx × nz) 501× 231 677× 272 558× 199

Grid intervals (m) 10 12.5 17.5

Source intervals (m) 30 50 52.5

Receiver intervals (m) 10 12.5 17.5

Number of sources 167 170 186

Number of receivers 501 677 558

Time sampling rate (ms) 2.1 2.8 2

Max. recording time (s) 2.9 5.2 6

Wavelet max. freq. (Hz) 30 20 20

Table 6.2: Comparison of the number of iterations and total computational time (in
hours) for CG- and PCG-LSRTM.

CG-LSRTM PCG-LSRTM
Numerical exp. Iter. num. Total time Iter. num. Total time

Simple model 60 73.5 15 28.8

Dipping layer 40 63.1 15 37.0

Marmousi2 40 93.8 20 73.6

We first compare the inverted parameters for CG (60 iterations) and PCG (15 itera-
tions) (Figure 6.4). The main structure is recovered. The density image obtained with
CG-LSRTM exhibits cross-talk artifacts for the second reflector (Figure 6.4d), whereas
these artifacts are efficiently reduced in the PCG-LSRTM image (Figure 6.4f). The NCC
values written on each panel also confirm the superiority of the PCG-LSRTM. To get
more insight into the evaluation of the inversion through iterations, we display the in-
verted impedance (Figure 6.5) and density (Figure 6.6) images for 1, 15 and 30 iterations
of CG-LSRTM, and 1, 5, and 10 iterations of PCG-LSRTM. Despite being in the early
iterations, the NCC values exhibit a significant jump in quality for the PCG-LSRTM
approach. This is more noticeable in the density images, as the preconditioner manages
to mitigate the parameter cross-talk from the first iteration (Figure 6.6d). But to fully
resolve the subsurface and remove the imprint of the impedance on the density model
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(Figure 6.6f), more PCG iterations are required which indeed further supports our moti-
vation to implement pseudoinverse Born operator in an iterative fashion (PCG-LSRTM).
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Figure 6.4: Relative model perturbation ζ (equation 6.6) for the exact a) impedance ζIp
and b) density ζρ, and inverted c) ζIp and d) ζρ after 60 iterations of CG-LSRTM, inverted
e) ζIp and f) ζρ after 15 iterations of PCG-LSRTM. Each inverted model is plotted with
the same scale as for the exact model.

To quantitatively compare the ability of CG- and PCG-LSRTM to preserve the am-
plitude variations with angle (AVA) behavior in the observed wavefield, we compare the
amplitude of the angle-domain CIGs extracted for the first two interfaces with the com-
puted reflection coefficient using the Zoeppritz equations (Figure 6.7). Clearly, the AVA
responses estimated by both methods closely follow the ones predicted by the Zoep-
pritz equations, particularly at near angles (up to 35◦). At far angles (above 35◦), the
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Figure 6.5: Comparison of inverted impedance perturbation ζIp images after a) 1, b) 15
and c) 30 iterations of CG-LSRTM, d) 1, e) 5 and f) 10 iterations of PCG-LSRTM.
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Figure 6.6: Same as Figure 6.5, but for the density model. Inverted density perturbation
ζρ images after a) 1, b) 15 and c) 30 iterations of CG-LSRTM, d) 1, e) 5 and f) 10
iterations of PCG-LSRTM.
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AVA response estimated by CG-LSRTM starts to diverge from the theoretical Zoeppritz
response, whereas PCG-LSRTM manages to improve the measured AVA behavior by
better matching the Zoeppritz response. This further emphasizes the impact of the pre-
conditioner in constructing true-amplitude subsurface images as the WLS method is the
same for both methods. Finally, we plot the convergence history for relative data misfit
(Figure 6.8a) and image reconstruction (Figure 6.8b, c), both exhibiting a remarkable
acceleration of PCG- over CG-LSRTM.
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Figure 6.7: Comparison of AVA response for the first two layers of Figure 6.4 after 60
iterations of CG-LSRTM and 15 iterations of PCG-LSRTM.
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6.6.2 Dipping layer model

Our second experiment is based on a dipping layer model consisting of dense structures
(Figure 6.9a, b). The main target in this model is a gas-charged sand channel (indi-
cated by black arrow in Figure 6.9a, b), with local velocity and density perturbations. In
the first test, we consider accurate background models built by applying a 2D Gaussian
filter (125 m long in both directions) to the exact models (Figure 6.9c, d). The resul-
tant inverted images after 40 CG-LSRTM iterations and 15 PCG-LSRTM iterations are
illustrated in Figure 6.10. As for the previous case, this figure clearly shows that the
preconditioning is effective in reducing artifacts and providing more accurate subsur-
face images. As a quantitative quality control, we extract vertical profiles across the
gas-charged sand channel and add them to the background models (Figure 6.11). We
also calculate the root-mean-square errors (RMSE) between the true and inverted pa-
rameters (written on Figure 6.11). Clearly, PCG-LSRTM manages to better reconstruct
the anomaly than CG-LSRTM.
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Figure 6.9: Dipping layer model experiment: exact models of a) P-impedance and b)
density, and background models of c) P-impedance and d) density. The black arrows
indicate the position of the gas-charged sand channel.
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Figure 6.10: The exact model perturbations a) ζIp and b) ζρ, and inverted c) ζIp and d)
ζρ via 40 iterations of CG-LSRTM, inverted e) ζIp and f) ζρ via 15 iterations of PCG-
LSRTM. Each inverted model is plotted with the same scale as for the exact model. The
dashed line in (a) indicates the position of the extracted trace.
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Figure 6.11: Dipping layer model experiment: extracted vertical profiles at x = 3.75 km
from inverted P-impedance (left) and density (right) models. The black arrow indicates
the gas-charged sand channel.
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Figure 6.12 illustrates the relative data misfit and the NCC convergence curves as
a function of iteration. Clearly, the proposed PCG-LSRTM has a substantially faster
convergence rate in terms of data and image reconstruction.
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Figure 6.12: Dipping layer model experiment: evaluation of a) relative data misfit, and
b) normalized correlation coefficients of P-impedance and density models with respect
to the iteration number.

6.6.2.1 Sensitivity to background models error

In field data applications, inaccuracies in the migration background models are in-
evitable (Yang et al., 2019a). Assuming an erroneous velocity model, the effectiveness
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of the pseudoinverse Born operator as a preconditioner has already been investigated for
constant-density acoustic medium (Hou and Symes, 2016a). Here, we evaluate the ro-
bustness of proposed PCG-LSRTM in the presence of inaccurate impedance and density
background models.

The incorrect background models are built by highly smoothing the exact models
with a 2D Gaussian filter (375 m long, Figure 6.13). To get an insight in the quality of
the background models, we first compare the subsurface offset- and angle-domain CIGs
estimated by PCG-LSRTM (Figure 6.14) with the one obtained in our previous test (ac-
curate background models). For the case of accurate background models, as expected,
the specular energies are focused around the zero offset on the subsurface offset-domain
CIG (Figure 6.14a), and produce flat events on the angle-domain CIG (Figure 6.14b).
In the case of inaccurate background models, these energies exhibit a downward cur-
vature in the subsurface offset-domain CIG (Figure 6.14c) and an upward curvature in
the angle-domain CIG (Figure 6.14d), implying that the background velocity model is
lower than the exact one. This is the principle for migration velocity analysis (Symes,
2008b). Same as the previous test, we compare the inverted images after 40 CG-LSRTM
iterations and 15 PCG-LSRTM iterations (Figure 6.15). Although the errors in the back-
ground models degrade the quality of the inversion (lower NCC), again PCG-LSRTM
outperforms CG-LSRTM in both the inverted P-impedance and density images. The
convergence history plots (Figure 6.16) also illustrate the effectiveness of our precondi-
tioner in presence of erroneous background models.
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Figure 6.13: Dipping layer model experiment: inaccurate migration background models
for a) P-impedance and b) density.
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Figure 6.14: Dipping model experiment: the estimated (a,c) subsurface offset-domain
CIG and (b,d) its angle-domain CIG after 15 iterations of PCG-LSRTM assuming (a,b)
accurate and (c,d) inaccurate background models. The blue and red lines in the angle-
domain CIGs correspond to the theoretical limit for acquired angles (α = 1, equa-
tion 6.9) and the practical ones used in inversion (α = 0.85), respectively.
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Figure 6.15: Same as Figure 6.10, but for inaccurate background models: inverted a)
ζIp and b) ζρ via 40 iterations of CG-LSRTM, inverted c) ζIp and d) ζρ via 15 iterations
of PCG-LSRTM. Each inverted model is plotted with the same scale as for the exact
model.
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Figure 6.16: Same as Figure 6.12, but for inaccurate background models: evaluation
of a) relative data misfit, and b) normalized correlation coefficients of P-impedance and
density models with respect to the iteration number.
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6.6.3 Marmousi2 model

In our last numerical experiment, we consider a more realistic model Marmousi2 as a
benchmark for migration/inversion methods (Martin et al., 2006). To reduce the compu-
tational cost, we conduct our test only on the central target of this model (Figure 6.17).
The background models are derived from smoothing the exact models using a 175 m
long 2D Gaussian kernel (Figure 6.17c, d).
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Figure 6.17: The Marmousi2 experiment: exact models of a) P-impedance and b) den-
sity, and background models of c) P-impedance and d) density.

We first compare the angle-domain CIGs estimated by the application of the Radon
transform (Figure 6.18). We highlight the main differences with arrows in Figure 6.18
showing that the angle gathers associated with PCG-LSRTM illustrate better correlation
compared to the ones for CG-LSRTM. We now compare inverted images with 40 CG-
LSRTM iterations and 20 PCG-LSRTM iterations (Figure 6.19). The color scales used
for the inverted images are the same as the one used for the true models. Clearly, the
quality of the inverted images is remarkably improved with preconditioning compared
with the ones obtained without preconditioning. To get more insight into the areas of the
discrepancies between the true and inverted models, we calculate localized NCC values
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within a 0.4 km long 2D window (Figure 6.20). At first glance, we notice that the in-
verted P-impedance models have a higher correlation compared to the inverted density
models. A detailed look reveals that PCG-LSRTM achieves better correlation in most
of both the P-impedance and density models (Figure 6.20c, d). To further evaluate the
quality of the inverted parameters, we compare 2D wavenumber spectra (Figure 6.21).
The spectra obtained with CG-LSRTM clearly present a gap in both the low- and high
wavenumbers (Figure 6.21b, e). On the other hand, the preconditioner tends to fill these
gaps by broadening the frequency band (Figure 6.21c, f). As a final evaluation of the
inversion performance of both methods, we plot the convergence curves demonstrating
a faster convergence rate for PCG-LSRTM in both the data and image domains (Fig-
ure 6.22).
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Figure 6.18: The Marmousi2 experiment: a) true angle-domain CIGs and the ones built
by application of the Radon transform using inverted model via b) 40 CG-LSRTM it-
erations and c) 20 PCG-LSRTM iterations. The two successive vertical lines (from left
to right) indicate angles of range 0 to 60 degrees. The arrows highlight the main differ-
ences.
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Figure 6.19: The exact model perturbations a) ζIp and b) ζρ, and inverted c) ζIp and d) ζρ
via 40 CG-LSRTM iterations, inverted e) ζIp and f) ζρ via 20 PCG-LSRTM iterations.
The arrows highlight the main differences.
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Figure 6.20: The localized NCC values corresponding to Figure 6.19: for (a,c) ζIp and
(b,d) ζρ via (a,b) CG-LSRTM and (c,d) PCG-LSRTM.



224 Chapter 6. Preconditioning least-squres reverse time migration

−16 −8 0 8 16

−16

−8

0

8

16

V
er

ti
ca

l
w

av
en

u
m

b
er

(1
/k

m
)

True

(a)

−16 −8 0 8 16

−16

−8

0

8

16 (b)

CG-LSRTM

−16 −8 0 8 16

−16

−8

0

8

16 (c)

PCG-LSRTM

Im
p

e
n

d
a
n

ce

−16 −8 0 8 16

Horizontal wavenumber (1/km)

−16

−8

0

8

16

V
er

ti
ca

l
w

av
en

u
m

b
er

(1
/k

m
) (d)

−16 −8 0 8 16

Horizontal wavenumber (1/km)

−16

−8

0

8

16 (e)

−16 −8 0 8 16

Horizontal wavenumber (1/km)

−16

−8

0

8

16 (f)

D
e
n

si
ty

Figure 6.21: The Marmousi2 experiment: wavenumber spectra of impedance corre-
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to d) true, e) CG-LSRTM and f) PCG-LSRTM. All panels are plotted with the same
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Figure 6.22: The Marmousi2 experiment: evaluation of a) relative data misfit, and b)
normalized correlation coefficients of P-impedance and density models with respect to
the iteration number.
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6.7 Discussion
We have proposed a method to accelerate the convergence rate of LSRTM while mitigat-
ing cross-talk artifacts. We have used the pseudoinverse Born operator to precondition-
ing the variable-density LSRTM. The WLS method is remained the same for CG- and
PCG-LSRTM. In this section, we discuss several interesting aspects of this subject that
merit additional investigation, including the structure of the multi-parameter Hessian
and possible ways to reduce the computational cost.

In the concept of constant-density acoustics, Biondi et al. (2019) demonstrated that
the extended image space is able to preserve the elastic behavior of the primary reflec-
tions even when these events are acoustically migrated using LSRTM. They illustrated
that the AVA response of the extended LSRTM estimated through the Radon transform
nicely matches the theoretical Zoeppritz response up to a scaling factor. Therefore, our
proposed method in this article not only extends the applicability of Biondi et al. (2019)
from constant- to variable-density acoustics but also accelerates its convergence rate and
provides physical subsurface parameters.

An interesting link can be made from the WLS method to AVO inversion meth-
ods utilizing surface offsets. The latter, based on Zoeppritz equations or their approx-
imations, impose some limitations. Assuming a convolutional isotropic layered Earth
model, they are only valid for relatively small angles of incidence ignoring geometri-
cal spreading, scattering/transmission loss, wave mode conversion, multiples and thin
layering effect (Mallick, 2001). Moreover, they only hold for relatively small elastic-
property contrasts across an interface for the plane-wave propagation. These assump-
tions, though, are not met in realistic applications and need sophisticated data process-
ing steps, particularly for structurally complex models (Gholami et al., 2018). The WLS
method, on the other hand, not only does not have any restriction on the maximum
offset/angle but also better estimates model parameters utilizing a larger maximum off-
set/angle. In this case, combination of LSRTM and WLS methods can be categorized
as a true-amplitude migration/inversion scheme providing quantitative subsurface pa-
rameters. Note that the accuracy of the quantitative parameter estimation for both WLS
and AVO inversion methods depends on the quality of the background models (long
wavelengths). More research is needed to effectively compare these methods.

As noted through all numerical experiments, a significant difference in image qual-
ity (NCC) was observed between CG- and PCG-LSRTM approaches at each iteration.
A careful reader will have noticed that although the final data misfits for both methods
might be approximately equal, the quality of the inverted parameters via PCG-LSRTM
are much higher than the ones estimated by CG-LSRTM. The problem is formulated as a
least-squares misfit in the data domain (equation 6.12). The preconditioner also plays a
role on the reconstructed model side. The pseudoinverse Born operator in PCG-LSRTM
accounts for the finite frequency nature of the source wavelet, geometric spreading, un-
even illumination, and at least to some extend, parameter cross-talks. The CG-LSRTM
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compensates for these points through CG iterations. Consequently, any incorrect pro-
jection of migration artifacts onto the estimated images, especially the ones related to
parameter cross-talk, will include features that will be very difficult to mitigate at later
iterations (Virieux et al., 2017). Although reducing data misfit in later CG iterations is
very small, these are essential to further improve the updated model for small details.

In the concept of multi-parameter imaging, the Hessian is a blockwise matrix (Op-
erto et al., 2013). For variable-density acoustic case, it has two diagonal blocks and two
off-diagonal blocks. Each block is a (nznx × nznx) square matrix where nz and nx de-
note the number of the grids in the vertical and horizontal directions, respectively. These
blocks have a banded nature due to finite frequency effects. The diagonal elements of
the diagonal blocks mainly account for geometric spreading and illumination compen-
sation. The off-diagonal blocks have mathematical capability to reduce the parameter
cross-talks (Métivier et al., 2014; Jun et al., 2015; Hagen et al., 2018). The full Hessian
matrix can be expressed as

H =

HIp,Ip HIp,ρ

Hρ,Ip Hρ,ρ

 , (6.20)

where Hi,j describes the effect of perturbation in the parameter type i on the parameter
type j. Here, we prefer to calling H approximate Hessian, since the way we construct it
for multi-parameter imaging proposed in this article does not lead to the classical Hes-
sian. This is because the construction of Hi,j requires the application of two processes:
first extended image obtained with LTL, and then WLS method (see Appendix 6.9 for
more details). In practice, although the Hessian matrix H is computationally intractable,
we construct this approximate Hessian explicitly for a relatively small-sized homoge-
neous model (nz = nx = 47) using LTL (without preconditioner) and (L†L†T )(LTL)
(with preconditioner) to get more insight on the effects of this preconditioning (Fig-
ure 6.23). For each grid point, we perturb one parameter by 0.05% while keeping the
other one constant. This is known as the point spread function technique. A 30 Hz
(maximum frequency) Ricker wavelet is used for modeling. The receivers are deployed
on each grid point along the top surface of the model.

As expected, the Hessian without preconditioner is a band diagonal matrix due to
finite-frequency effects, and the amplitude on the diagonal elements decreases due to
the geometrical spreading (Figure 6.23a). On the other hand, the Hessian with precon-
ditioner manages to reduce the effect of the wavelet and compensates for the geometrical
spreading (Figure 6.23b). To further confirm this, we plot three elements of the diago-
nal subblocks of the Hessian matrices in the distance-depth domain (Figure 6.24). As
illustrated, the specular energy is focused and the migration smiles are suppressed by us-
ing the preconditioner (Figure 6.24c, d). We also notice that the density reconstruction
contains more oscillations. To investigate the parameter cross-talk, we normalize each
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submatrix by its maximum value (Table 6.3). Comparing the true perturbation with
the normalized value (Table 6.3) reveals that the preconditioner approximately holds
equation 6.19 and can mitigate the cross-talk artifacts. We further analyze this by calcu-
lating the ratio HIp,Ip/HIp,ρ and Hρ,ρ/Hρ,Ip (Table 6.3). To reduce the parameter cross-
talks, these ratios should diverge to infinity. The ratio values in Table 6.3 show that the
Hessian with preconditioner is approximately 10 times better scaled than the one with-
out preconditioner, and thus can better reduce the parameter cross-talks. This element,
mitigating parameter cross-talks, was not present in the original definition of the pseu-
doinverse Born operator. In the context of FWI, researches have also shown promising
performance on mitigating parameter cross-talks by incorporating the multi-parameter
Hessian (Operto et al., 2013; Métivier et al., 2014; Jun et al., 2015).
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Figure 6.23: The multi-parameter approximated Hessian: a) without preconditioner and
b) with preconditioner. The yellow boxes delineate a close-up structure of the Hessian.

Table 6.3: Maximum value of each block of the Hessian matrix.

True model Without precon. With precon.
Param. Imp. Den. Ratio Imp. Den. Ratio Imp. Den. Ratio

Imp. 2.0e+3 0 ∞ 6.1e+17 2.5e+14 2.4e+3 1.7e+3 6.0e−2 2.8e+4

Den. 0 1.0e+0 ∞ 6.0e+16 3.0e+13 5.0e-4 1.6e+2 6.5e−1 4.0e-3

We now discuss how to reduce the computational cost. In terms of implementa-
tion, the high computational burden of L†L†T is an unattractive aspect of the proposed
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Figure 6.24: One element of the (a,c) impedance-impedance and (b,d) density-density
block matrix of the Hessian in distance-depth domain corresponding to (a,b) without
preconditioner and (c,d) with preconditioner. The first, second, and third rows corre-
spond to the shallow, middle and deep part of the model, respectively. The yellow
dashed circles denote the position of the perturbation.
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preconditioning scheme. In the constant-density acoustic case, the pseudoinverse Born
operators are constructed either by stationary phase approximation (Hou and Symes,
2015) or linearization of the phase of the normal operator (Chauris and Cocher, 2017).
The former describes the pseudoinverse Born operator as a combination of the adjoint
operator LT with two weighting norms defined in the data and model spaces. Although
the final formulas of both approaches are almost identical (Chauris and Cocher, 2018),
expressing the pseudoinverse with such weighted norms has the flexibility of easy cou-
pling to the standard CG iterations as weighted inner products (Hou and Symes, 2016a).
For the reader’s convenience, we include this scheme in Appendix 6.10. The other
possible way to reduce the computational burden is to adopt a random subsurface-offset
sampling procedure to construct the subsurface offset-domain CIGs (van Leeuwen et al.,
2015).

6.8 Conclusion
We have implemented the pseudoinverse Born operator as a preconditioner for variable-
density least-squares reverse time migration. The pseudoinverse operator asymptotically
accounts for multiparameter Hessian, explaining limited bandwidth effects, geometrical
spreading, poor illumination, and parameter cross-talks. Although the proposed precon-
ditioning scheme has higher computational burden in each Conjugate Gradient iteration,
numerical experiments clearly prove the efficiency of the proposed algorithm even in
presence of parameter cross-talk and inaccurate background models: for almost equal
data misfit, standard least-squares reverse time migration requires at least twice more
iterations than the preconditioned version, while the quality of the images obtained with
the former is much lower than the one with the latter. Future work will explore coupling
multi-parameter pseudoinverse Born operator to other iterative imaging techniques such
as migration velocity analysis and full waveform inversion.

6.9 Appendix I: Derivation of Hessian
The exact definition of the normal equation reads as (Pratt et al., 1998)

∫
dx0

[
HIp,Ip(x,x0) HIp,ρ(x,x0)

Hρ,Ip(x,x0) Hρ,ρ(x,x0)

][
ζIp(x0)

ζρ(x0)

]
=

[
ζmigIp

(x)

ζmigρ (x)

]
, (6.21)

where the diagonal blocks of the Hessian matrix are

HIp,Ip(x,x0) =
∂2J(ζIp , ζρ)

∂ζIp(x)∂ζIp(x0)
, Hρ,ρ(x,x0) =

∂2J(ζIp , ζρ)

∂ζρ(x)∂ζρ(x0)
, (6.22)
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and the non-diagonal blocks are

HIp,ρ(x,x0) =
∂2J(ζIp , ζρ)

∂ζIp(x)∂ζρ(x0)
, Hρ,Ip(x,x0) =

∂2J(ζIp , ζρ)

∂ζρ(x)∂ζIp(x0)
. (6.23)

Following the Schwarz’s theorem, the Hessian is a symmetric matrix. The approaches
described in this article cannot provide the structure of the exact Hessian in equa-
tions 6.22 and 6.23 as it consists of a two-step approach (see Algorithms 6 and 7:
Conjugate Gradient followed by weighted least-squares projection). To represent the
Hessian at each grid point, we first generate the response to a point scatterer either in ζIp
or ζρ (application of L). Then, we migrate the resulting data to generate a subsurface
offset-domain CIG (application of LT ), and finally apply the WLS method to estimate
the corresponding point spread function in terms of ζIp and ζρ. The preconditioner is
this scheme can be applied to the subsurface offset-domain CIG (application of L†L†T )
before the WLS step. Consequently, these approaches do not follow the Schwarz’s the-
orem, and thus cannot provide exactly a symmetric Hessian matrix, but rather approxi-
mately the Hessian.

6.10 Appendix II: Alternative approach
Hou and Symes (2015) expressed the pseudoinverse Born formula as a modification of
RTM operator using two weighting operators in model and data spaces as

L†Hou = WmodelLTWdata, (6.24)

where

Wmodel = 32
β0

ρ3
0

∂z, Wdata = It(It∂sz)(It∂rz), (6.25)

and It denotes the causal indefinite time integration. Note that the weights in equa-
tions 6.14 and 6.25 are exactly the same. We refer to Chauris and Cocher (2018) for a
more detailed comparison.

To accelerate the convergence rate of the extended LSRTM in a constant-density
acoustic medium, Hou and Symes (2016a) reformulated the CG algorithm by replacing
Euclidean norms with new weighted norms in data (D) and model (M ) spaces using
Wmodel and Wdata as

〈δm1, δm2〉M = 〈δm1,Wmodelδm2〉, (6.26)
〈δd1, δd2〉D = 〈δd1,Wdataδd2〉. (6.27)

The algorithm of weighted CG (WCG) for variable-density LSRTM is summarized in
Algorithm 8. In terms of implementation, as the application of these weight operators
are relatively cheap (steps 8, 9, and 12 in Algorithm 8), the computational cost of the
WCG algorithm is negligibly higher than the standard CG (Algorithm 6).
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Algorithm 8: LSRTM by WCG algorithm

1 Input: dobs
2 Initialization
3 δm0 ← 0

4 r0 ← L†Hou(Lδm0 − dobs) = −L†Houdobs
5 p0 ← −r0

6 i ← 0

7 WCG: while stopping criteria not satisfied do
8 qi ← L†HouLpi
9 κi ← 〈ri, ri〉M /〈Lpi,Lpi〉D

10 δmi+1 ← δmi + κipi
11 ri+1 ← ri + κiqi
12 ηi+1 ← 〈ri+1, ri+1〉M /〈ri, ri〉M
13 pi+1 ← −ri+1 + ηi+1pi
14 i ← i+ 1

15 Physical decomposition: for each x position do
16 ψ ← R(δm)
17 for each depth position do
18 Construct G, R
19 δu ← G−1R
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Résumé

Ce chapitre comprend l’article intitulé « The importance of including density in multi-
parameter asymptotic linearized direct waveform inversion: a case study from the East-
ern Nankai Trough », publié dans la revue Geophysical Journal International (Farshad
et al., 2021).
La migration élastique itérative (« elastic least-squares reverse time migration » en
anglais) est la technique linéarisée la plus avancée pour obtenir des images quantitatives
du sous-sol. Le principal inconvénient d’une telle approche itérative est le coût signifi-
catif associé au calcul des opérateurs de modélisation et d’adjoint au cours des itérations.
Dans le contexte du domaine étendu, une alternative intéressante est l’approche directe
au sens asymptotique qui permet d’avoir des résultats quantitatifs en une seule itération.
Cette approche a d’abord été proposée pour les milieux acoustiques à densité constante,
puis récemment étendue au cas de densité variable. Cette dernière comprend deux étapes
supplémentaires : construction d’une réponse qui dépend de l’angle d’imagerie, puis ré-
solution d’un petit système linéaire pour l’estimation des paramètres physiques. Pour
examiner l’importance de prendre en compte les variations de densité, nous comparons
les techniques d’inversion sans et avec densité variable sur un jeu de données réelles
3D (Eastern Nankai Trough, Japon). Les résultats d’inversion confirment l’efficacité de
l’approche pour estimer de manière quantitative les paramètres en une seule itération.
Le cas de la densité variable donne des images du sous-sol qui (1) ont une meilleure
résolution, et (2) reconstruisent mieux les données, même si ici les données ne contien-
nent pas assez de grands offsets pour un découplage entre perturbations de vitesse et de
densité.
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The importance of including density in multi-parameter asymptotic linearized
direct waveform inversion: a case study from the Eastern Nankai Trough

Milad Farshad, Hervé Chauris and Mark Noble
Geophysical Journal International, 2021, doi: 10.1093/gji/ggab405

7.1 Abstract
Iterative least-squares reverse time migration (LSRTM) is the state-of-the-art linearized
waveform inversion method to obtain quantitative subsurface parameters. The main
drawback of such an iterative imaging scheme is the significant computational expense
of many modeling/adjoint cycles through iterations. In the context of the extended do-
main, an interesting alternative to LSRTM is the asymptotic linearized direct wave-
form inversion, providing quantitative results with only a single iteration. This approach
was first proposed for constant-density acoustics and recently extended to the variable-
density case. The former is based on the application of the asymptotic inverse Born
operator, whereas the latter has two more extra steps: building an angle-dependent
response of the asymptotic inverse Born operator and then solving a weighted least-
squares approach for simultaneous inversion of two acoustic parameters. To examine
the importance of accounting for density variations, we compare constant- and variable-
density linearized direct waveform inversion techniques applied to a marine real dataset
from the Eastern Nankai Trough, offshore Japan. The inversion results confirm the effi-
ciency of the asymptotic linearized direct waveform inversion in estimating quantitative
parameters within a single iteration. The variable-density direct inversion yields subsur-
face images that (1) exhibits a superior resolution and (2) better reconstructs the field
data than does the constant-density approach, even if the dataset does not contain large
enough surface offset to fully decompose velocity and density perturbations.

7.2 Introduction
Full-waveform inversion (FWI) is an advanced nonlinear imaging method that provides
an accurate subsurface model by nonlinear minimization of the difference between the
observed and the synthetic data (Tarantola, 1984; Virieux and Operto, 2009). Under the
weak-scattering assumption, the subsurface model can be decomposed into two compo-
nents: the background model controlling the kinematics of the wave propagation and
the reflectivity model generating the refracted and reflected waves. Reverse time mi-
gration (RTM) is the state-of-the-art linear imaging method to estimate a reflectivity
model in a given background model (Baysal et al., 1983). A standard RTM operator
is formulated as the adjoint of the linearized forward modeling operator, i.e., adjoint

https://doi.org/10.1093/gji/ggab405
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Born operator. Such operator can only produce qualitative structural images (kinemat-
ics) without any quantitative amplitude information (dynamics). In practice, the quality
of the migrated image may be significantly deteriorated by various causes such as noise,
narrow frequency bandwidth, limited acquisition aperture and irregular source-receiver
distributions (Baysal et al., 1983; Nemeth et al., 1999).

Least-squares reverse time migration (LSRTM), also known as linearized waveform
inversion, overcomes the shortcomings of RTM and retrieves high-resolution quantita-
tive reflectivity images (Nemeth et al., 1999; Dai et al., 2011; Chen and Sacchi, 2017).
LSRTM is posed as an optimization problem, with the objective to derive a reflectivity
model that minimizes the misfit between the observed and reconstructed reflection data.
A successful application of LSRTM requires a kinematically accurate background ve-
locity model. Generally, iterative methods are deployed to carry out the optimization
problem. As each iteration requires the computation of two (forward and adjoint) nu-
merical simulations of the seismic wave equation per shot, the computational expense of
LSRTM can be a significant bottleneck. Thus in recent years, either reducing the com-
putational cost per iteration or accelerating the convergence rate of LSRTM has been a
matter of development (Romero et al., 2000; Shin et al., 2001; Herrmann and Li, 2012;
Lin and Lianjie, 2015; Zand et al., 2020).

An interesting alternative to iterative migration scheme is the direct inversion, which
can be achieved by replacing the adjoint migration operator, with its pseudoinverse ver-
sion. The direct inverse was initially proposed for ray-based migration (Beylkin, 1985;
Bleistein, 1987), and recently developed for RTM (ten Kroode, 2012; Hou and Symes,
2015, 2017; Chauris and Cocher, 2017), enabling one to get quantitative results in a sin-
gle iteration. It accounts for the finite frequency nature of the source wavelet, geometric
spreading and uneven illumination. The pseudoinverse formulas are derived assuming
infinite acquisition geometries and are only valid in the absence of turning waves (ten
Kroode, 2012). In practice, the former is not a limiting factor as they produce accurate
results within the migration aperture, whereas including turning waves would require
adding vertical subsurface offsets (Biondi and Shan, 2002). Originally, the theory of
asymptotic linearized direct waveform inversion, also known as pseudoinverse Born
inversion, was established for pure acoustic media. Through synthetic numerical ex-
periments, these pseudoinverse Born operators have illustrated very promising results
in terms of quantitative imaging within a single iteration, and also accelerating the con-
vergence rate of LSRTM (Hou and Symes, 2016a), Migration velocity analysis (MVA)
(Chauris and Cocher, 2017), and FWI (Hou and Symes, 2016b) by acting as a proper
preconditioner. Once again, all were limited to constant-density acoustics.

The importance taking into account density in the inversion process has been fre-
quently highlighted in the concepts of LSRTM (Yang et al., 2016a; Sun et al., 2018;
Chen and Sacchi, 2019) and FWI (Przebindowska et al., 2012; Guitton, 2014; Qin and
Lambaré, 2016). Although density does not affect the kinematics of wave propagation,
its impact on the amplitudes of the seismic reflection data is inevitable. Lately, Dafni
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and Symes (2018) and Farshad and Chauris (2020a) extended the applicability of pseu-
doinverse Born operators to variable-density acoustics. Farshad and Chauris (2020a) il-
lustrated that the density variations in the observed data result in defocused energy in the
common-image gather (CIG), which can be misinterpreted as an incorrect background
velocity model. The same observation was made by Zhou et al. (2020a), who proposed
the guidelines for the user parameters to be used in constant-density acoustic MVA. The
effectiveness of the pseudoinverse Born operator either in single- or multi-parameter in-
version has not been examined when dealing with real datasets. The main contribution
of this article is twofold. Firstly, we validate the performance of pseudoinverse Born in-
version with a case study devoted to the imaging of the Eastern Nankai Trough, offshore
Japan. In this region many seismic surveys have been acquired in order to characterize
methane hydrates where density can play an important role (Fujii et al., 2015). Thus
secondly, we investigate the importance of considering density variation in quantitative
parameter estimation. In this study, impedance is the main investigated parameter. We
discuss if density is only an additional parameter for a better data fit or if it may have a
physical interpretation.

The rest of this paper is organized as follows. We start with a brief introduction of the
study area, survey description, and the presentation of the seismic data. After that, we
describe our integrated processing workflow followed by a review of multi-parameter
pseudoinverse Born inversion. Finally, we present the results corresponding to constant
and variable-density acoustics.

7.3 Geological background, survey description and seis-
mic data

7.3.1 Geological background
In the Nankai Trough, extending about 700 km from the Suruga Trough to the northern
end of the KyushuPalau ridge, bottom simulating reflectors (BSRs) are widely observed
on the seismic reflection data (Ashi et al., 2002; Nouzé et al., 2004). A BSR, occurring
in the upper few hundred meters of marine sediments, is a strong reflection with reverse
polarity with respect to the seafloor reflection and is generally interpreted to mark the
base of the gas hydrate stability zone (Hyndman and Spence, 1992). The phase reversal
of BSR is due to the distinct impedance contrast between gas hydrates above and gas-
saturated sediments below. The impedance contrast across the BSR is mainly caused by
a sharp decrease in P- and S-wave velocity while density remains almost constant (Ojha
and Sain, 2007; Fujii et al., 2015). A continuous BSR is usually used to get a first-order
indication of the possible existence of gas hydrate, attaining great interest during the last
decades. Gas hydrates not only contain one of the major energy resources, but also may
have a significant impact on the climate and environment (Ojha and Sain, 2009).
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7.3.2 Survey description and Seismic data

This seismic data was acquired during the SFJ cruise on N/O Nadir in the framework
of the French-Japanese program in the year 2000 (Figure 7.1) (Nouzé et al., 2004).
The dataset consists of 390 shot points with a shot spacing of 25 m, the minimum and
maximum offsets are 225 and 1462.5 m, respectively with a receiver spacing of 12.5 m.
The source was composed of an array of mini G-I guns, with a total volume of 151 inch3

at a 2 m depth, the streamer was towed at a 15 m immersion. The recording length is
4 s, with a sampling interval of 1 ms. Figure 7.2 shows a shot gather recorded on a
towed-streamer geometry. The main events are highlighted in this image.

Figure 7.1: Location map of the studied area. The red line indicates the investigated
seismic line in this study (Nouzé et al., 2004).

7.4 Processing
As a first step, we mute the direct arrivals and events after 1.6 s to remove first order
multiples. Thus, the observed data in our processing and imaging steps mainly contains
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Figure 7.2: An example of observed common-shot gather.

reflected waves. We then sort the data as common-mid-point gathers (CMPs) to conduct
the velocity analysis. In the next steps, we only consider the part of the model with
full-fold CMPs (Figure 7.3). In a typical scenario, one obtains a velocity model us-
ing a classical semblance-based velocity analysis followed by a tedious manual velocity
picking step. The manual picking of peak values in the velocity panels is not only a
time-consuming process but also challenging in some cases as the peak values may ex-
tensively vary in both horizontal and vertical directions (Neidell and Taner, 1971; Claer-
bout and Green, 2010). In the following processing steps, we first focus on building a
reliable velocity-stack section using sparse inversion and automatic velocity picking al-
gorithms. We then proceed by constructing a stacked section, data filtering, and wavelet
estimation.
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Figure 7.3: The CMP fold coverage.

7.4.1 Velocity-stack inversion
For simple geological structures, seismic reflection data in the CMP domain mainly
show hyperbolic shapes (Thorson and Claerbout, 1985). Hyperbolic Radon transform
(HRT) is a common and powerful tool in seismic data processing that permits to model
seismic reflections via a superposition of hyperbolas as (Trad et al., 2003)

d(t, x) =

∫∫
dτdp m(τ, p)δ(τ −

√
t2 − p2x2). (7.1)

For a given mid-point position in CMP domain, d(t, x) denotes the seismic reflection
data as a function of time t and offset x, m(τ, p) is the Radon plane as a function of
intercept time τ and slowness p, and δ denotes the Dirac delta function. Accordingly,
adjoint HRT reads

m(τ, p) =

∫∫
dtdx d(t, x)δ(t−

√
τ 2 + p2x2). (7.2)

The conventional velocity analysis method utilizes equation (7.2) within a time win-
dow to measure the coherency of trace signal. Semblance, the most common coherence
measure, has a poor resolution velocity spectrum which affects the velocity-picking pro-
cedure (Neidell and Taner, 1971). To increase the resolution of the velocity spectrum,
HRT is often formulated as an inverse problem with possible sparsity constraints (Thor-
son and Claerbout, 1985). Here, we perform a high-resolution (sparse) solution to the
following optimization problem

arg min
m

(1

2

∥∥d−Rm
∥∥2

2
+ λ
∥∥m∥∥

1

)
, (7.3)
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where d and m denote the data and model vectors, R is the forward HRT operator, ‖‖p
denotes the `p norm, and λ is the fixed trade-off parameter balancing between data fit
and sparseness of the model. In practice, we estimate λ by plotting the L-curve between
the first and second terms in equation 7.3 (Farshad and Chauris, 2021c). We perform
a fast iterative shrinkage-thresholding algorithm (FISTA) to carry out the optimization
problem (Beck and Teboulle, 2009). Although some efficient methods for rapid applica-
tion of HRT have been proposed (Nikitin et al., 2017; Gholami and Farshad, 2019a), we
explicitly construct the matrix R as the size of each CMP gather is relatively small here.
Figure 7.4 shows three different CMP gathers and their corresponding sparse Radon
planes generated by 800 iterations of FISTA with a total runtime of 10 sec (per CMP).
In the following, we describe how to perform automatic velocity picking through the
high-resolution Radon planes.
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Figure 7.4: Velocity-stack inversion: (a,c,e) CMP gathers and (b,d,f) their corresponding
absolute values of sparse Radon transform plane. The red dashed curves in (b,d,f) show
the slowness model calculated by equation (7.4).

7.4.2 Automatic velocity picking

After the velocity-stack inversion, we conduct an automatic velocity picking process by
using the sparse Radon coefficients. Claerbout and Green (2010) proposed to estimated
the root-mean squared (RMS) or stacking velocity model Vrms(τ) at each CMP location
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by a weighted average of all slowness ranges as

V −1
rms(τ) =

∑
p p
∣∣m(τ, p)

∣∣∑
p

∣∣m(τ, p)
∣∣ (7.4)

where the absolute value of the Radon coefficients m(τ, p) serve as the weighting func-
tion. To stabilize the velocity picking and increase the accuracy, we consider the Radon
coefficients with a threshold above 10% of the maximum absolute value at each CMP
position (Gholami, 2017). The red dashed lines in Figures 7.4b, d and f show the picked
slowness via equation (7.4). Note that the slowness value in the shallow part of the
model is set to the water slowness (0.673 s/km = 1.485 km/s, the area above the blue
dash-dotted dashed line in Figure 7.5a). The area in white in Figure 7.5a represents the
points that are larger than the penalty (10% of the maximum absolute value of m(τ, p)
for a given CMP position) and thus are used in equation (7.4). A detailed look at the
later times of the CMP gathers plus their Radon planes (Figure 7.4) reveal that no clear
reflections are available at the deeper part of the model (approximately after 1.4 s), and
the recorded data at that times are mainly artifacts which are indeed due to the free-gas
in the area. Thus we also mute the picked velocity values in this region (the area below
the red dashed line in Figure 7.5a). The velocity values in black areas in Figure 7.5a are
estimated by interpolating/extrapolating from the neighboring available samples (Fig-
ure 7.5b).

7.4.3 Normal-moveout-free stacking
The traditional workflow to construct a stacked section involves Normal MoveOut (NMO)
correction. This process results in undesirable frequency distortion called NMO stretch-
ing, particularly for shallow events and at large offsets, (Sheriff and Geldart, 1995). To
construct a NMO-free stacked section, we project the Radon coefficients m(τ, p) to the
time axis τ (Figure 7.6) (Gholami, 2017). In other words, as the Radon coefficients
m(τ, p) are obtained by stacking the reflectors along their true slowness value and then
putting the obtained energy in the corresponding τ0 (equation 7.2), the final NMO-free
stacked trace at each CMP location can be obtained by simply summing m(τ, p) along
the p-axis. The sparseness of the Radon coefficients at each CMP position has a signifi-
cant impact on the quality of the constructed stacked section. As m(τ, p) is very sparse,
the quality of the resultant stacked section is remarkably high. The two reflectors show-
ing the characteristic properties of BSRs are highlighted by arrows in Figure 7.6. By
analyzing the temperature and pressure conditions at the seafloor, Foucher et al. (2002)
showed that the upper BSR most likely corresponds to the present-day base of methane
hydrate stability zone whereas the lower BSR, namely double BSR (DBSR), is a residual
BSR. In other words, they suggested that the base of the hydrate stability zone migrated
due to tectonic uplift or sea bottom warming (Nouzé et al., 2004). The attenuated reflec-
tion amplitude and energy distortion in the left part (before 2.6 km) and also the lower
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Figure 7.5: a) The area shown in white are those points whose velocity value was calcu-
lated. b) RMS velocity model.

part (below 1.4 s) of the stacked section could be caused by the free gas existing in the
area.

7.4.4 Interval-velocity building and time to depth conversion

To get an initial velocity model (background model) for our imaging step, we construct
the interval velocity vint using the Dix formula (Dix, 1952). To stabilize the inversion,
we smooth out the oscillations in the RMS velocity model before the Dix conversion.
By assuming that the lateral velocity variations are negligible and reflectors are mainly
horizontal (Figure 7.5), we perform a time to depth conversion using vertical rays (Fig-
ure 7.7). The interval velocity model reveals that the layers above the BSR exhibit a
higher velocity (1750-1810 m/s) compared to the marine sediments (1650-1700 m/s),
which can be associated with gas hydrate presence. On the other hand, the layers below
the BSR show a low velocity (1550-1600 m/s) and can be related to free gas presence
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Figure 7.6: The normal-moveout-free stacked section.

(Hyndman and Spence, 1992). We will further investigate the quality of the inverted
velocity model through the imaging step.
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Figure 7.7: The interval velocity section obtained with Dix formula.

7.4.5 Data filtering and wavelet estimation
Generally, the computational cost of the wave-equation-based imaging methods is ex-
pensive at high frequencies, and it increases cubically (in a 2D model) with increasing
frequency. The frequency spectrum of the recorded data ranges from 2 to 220 Hz (Fig-
ure 7.8). The 50 Hz notches in the recorded frequency spectrum are related to the ghost
wavefields (Amundsen et al., 2013). To reduce the computational cost and also mitigate
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the receivers notches, we apply a zero-phase sine-squared filter to pass a band of fre-
quencies from 2 Hz to 45 Hz (Figure 7.9). To estimate the seismic wavelet, we extract
two traces from water-bottom reflection at near and far offsets of three different shots
positioned at 3.4, 5.6 and 8.1 km (Figure 7.10). The extracted traces from different
shot positions and different offsets are highly correlated, and illustrate that the Ricker
wavelet can represent a decent estimation of the seismic wavelet (Figure 7.10). The al-
ternative would be using linear least-squares waveform inversion of the direct waves in
the frequency domain to estimate the seismic wavelet (Pratt, 1999).
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Figure 7.8: The a) frequency spectrum of the original shot illustrated in Figure 7.2, and
b) one extracted trace at the location illustrated by dashed line in (a).

7.5 Review of multi-parameter pseudoinverse Born in-
version

Under the Born approximation, the model parameters (e.g. a) on each spatial coordinate
x = (x, z), are split into a smooth part (background model, e.g. a0) and a singular part
(perturbation model, e.g. δa). The pseudoinverse formula for RTM is expressed in the
concept of the extended model domain, such that the dimensions for model and data
spaces are equivalent (ten Kroode, 2012; Hou and Symes, 2015; Chauris and Cocher,
2017). The extended domain is defined by introducing a redundancy parameter, in-
volving nonphysical subsurface offset or time-lag extension (Sava and Fomel, 2006;
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Figure 7.9: The a) shot gather and b) its spectrum after low-pass filtering with cut fre-
quency of 45 Hz.

Symes, 2008b). Here we consider the psuedoinverse Born operator extended by hori-
zontal subsurface offset h = (h, 0), defined as sunken sources and receivers in Claer-
bout’s survey-sinking concept (Claerbout, 1985; Chauris and Cocher, 2017; Farshad and
Chauris, 2020a). The variable-density pseudoinverse Born inversion can be summarized
in three main steps as follows (Farshad and Chauris, 2020a).

7.5.1 Application of pseudoinverse Born operator
Following the work of Farshad and Chauris (2020a), the pseudoinverse Born operator
L† in smoothly varying background models β0 and ρ0 can be written as

ξ = L†(dobs)(x,h) (7.5)

' 32
β0

ρ3
0

∂z

∫
dxs dxr dω

Ω†(ω)

(iω)
∂szG

∗
0(xs,x− h, ω)dobs(xs,xr, ω)∂rzG

∗
0(x + h,xr, ω),
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Figure 7.10: The extracted traces around the water bottom reflection from the filtered
shot (Figure 7.9) for offsets a) 225 m and b) 1175 m. The solid, dashed and dot-dashed
lines correspond to the shots positioned at 3.4 km, 5.6 km and 8.1 km, respectively.

where ∗ is the complex conjugate, ω denotes the angular frequency, and Ω† is the inverse
of the seismic source. The extended reflectivity ξ(x,h) has the same unit as the inverse
of the bulk modulus β = 1/ρV 2, where ρ denotes the density model. The Green’s func-
tions G0(xs,x− h, ω) and G0(x + h,xr, ω) are evaluated in the background models β0

and ρ0, from the source position xs to imaging point x−h and from imaging point x+h
to the receiver position xr, respectively. The derivation of equation (7.5) is performed
under the high-frequency approximation such that LL†dobs ≈ dobs. It accounts for ge-
ometrical spreading, source signature inversion, and uneven illumination. Although the
derivation is performed under the asymptotic approximation of the Green’s functions,
the final formula does not contain any ray quantity and it tends to be valid even in pres-
ence of triplicated wavefields (ten Kroode, 2012; Hou and Symes, 2015; Chauris and
Cocher, 2017).

7.5.2 Transforming the subsurface offset to the diffraction angle

The extended image ξ can be decomposed into various parameters such that each pa-
rameter is determined in the physical domain (non-extended) (Dafni and Symes, 2018;
Farshad and Chauris, 2020a). Here, since the pseudoinverse Born inversion is a linear
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imaging method resolving only the short-wavelength part of the model (reflectivity), we
parameterize the subsurface by P-wave impedance Ip and density ρ (Tarantola, 1986).
The decomposing relationship reads as

ξ

β0

(x,h) ∼= 2
δIp
Ip0

(x)δ(h)− 2 sin2(θ)
δρ

ρ0

(x)δ(h), (7.6)

where θ denotes the diffraction angle, and the weights 2 and −2 sin2(θ) in front of δIp
and δρ are the diffraction patterns (Figure 7.11) obtained under the ray+Born approxima-
tion (Forgues and Lambaré, 1997). Using this parameterization, the wavefield scattered
by δIp has an isotropic pattern (solid blue line in Figure 7.11), whereas δρ generates
scattering at wide-to-intermediate θ only (dashed red line in Figure 7.11). Here, as the
maximum offset of the investigated dataset is limited, impedance is the main sought
parameter. In the case of constant-density acoustics (δρ(x) = 0), the impedance per-
turbation δIp(x) can be reconstructed from the extended parameter ξ(x,h) by simply
summing over all subsurface offset values as

δIp(x) =
Ip0
2β0

∫
dh ξ(x,h). (7.7)

In the case of variable-density acoustics (δρ(x) 6= 0), the subsurface offset h on the
left side of equation (7.6) should be transformed to the diffraction angle by utilizing a
2D Radon transform (slant-stack integral) defined as (Sava and Fomel, 2003)

ψ(x, z, θ) =
1

β0

∫
dh ξ(x, z + h tan θ, h), (7.8)

where ψ(x, θ) denotes the corresponding angle-domain CIG. Note that equation (7.8)
is similar to equation (7.1) in spirit: both are slant-stack integrals but with different
integration paths. Note that the algorithm does not require the application of the adjoint
of the Radon transform (equation 7.8).
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Figure 7.11: The analytical diffraction pattern for a variable-density acoustic medium
parameterized by impedance and density.

7.5.3 Solving a weighted least-squares objective function
To obtain optimal δIp(x) and δρ(x) parameters, Farshad and Chauris (2020a) proposed
to define a weighted linear least-squares problem as

min
δIp,δρ

(1

2

∥∥∥2
(δIp
Ip0

(x)− δρ

ρ0

(x) sin2(θ)
)
− ψ(x, θ)

∥∥∥2

W

)
(7.9)

where the weighted space defined as

W (x, θ) =

1, if |θ| ≤ α tan−1(xmax
z

)

0, otherwise
. (7.10)

Assuming a homogeneous Earth model, the weighted space W (x, θ) is designed based
on acquisition geometry (using depth z and maximum surface offset xmax) to only con-
sider specular energy in the inversion process (Farshad and Chauris, 2020a). In this
definition, parameter α ensures that the angle-domain does not contain strong artifacts
related to the finite sampling (Farshad and Chauris, 2021c). The optimal δIp and δρ can
be obtained by solving the WLS problem (equation 7.9) with respect to the model pa-
rameters (see Appendix 7.10 for more details). The WLS problem also has the flexibility
to include the regularization terms (Farshad and Chauris, 2021c).

The main differences between the constant- and variable-density pseudoinverse Born
inversion are in the application of the Radon transform (equation 7.8) and solving the
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WLS method, as they are not required in the constant-density case. By assuming δρ = 0,
the physical reflectivity is estimated by simply summing ξ(x,h) along the subsurface
offset h using equation (7.7). In the next section, we evaluate the effect of neglecting
density variations in pseudoinverse Born inversion by mainly analyzing the data fit and
impedance reconstruction.
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7.6 Results and validation
In this section, we first discuss how to build impedance and density background mod-
els for our imaging scheme. We then assess the performance of constant-density and
variable-density pseudoinverse Born inversions in terms of reconstructing common-
shot/common-offset sections and estimating subsurface parameters. Regarding data re-
construction, the two key factors that dictates the quality of the inversion are the ampli-
tude and the phase of the reconstructed data. To evaluate the amplitude and also impact
of the phase, we calculate the root-mean-squared (RMS) error defined as

RMS error =

√√√√ K∑
i=1

(κi − κ̃i)2

K
, (7.11)

where κ and κ̃ are the observed and resimulated data, and to get more insight into the
quality of the phase we calculate the normalized correlation coefficient (NCC) defined
as

NCC(%) =

∑
x κ(x)κ̃(x)√∑

x κ
2(x)

√∑
x κ̃

2(x)
× 100. (7.12)

The higher the NCC score, the higher the correlation is (the highest score is 100% = 1).
To construct the density model below the water bottom (sediments), we use an em-

pirical relationship (Ojha and Sain, 2014)

ρ = 1.3813V 0.5083
p . (7.13)

The background models are built by applying a 50 m long 2D Gaussian filer in both di-
rections (Figure 7.12). We start by performing the pseudoinverse Born operator and the
Radon transform. This step is the same for both constant- and variable-density acoustic
Born inversion. The estimated CIGs and their angle-domain responses for three different
positions are shown in Figure 7.13. The focused energy around zero subsurface offset
(Figure 7.13a) and nearly flat events in the angle-domain CIGs (Figure 7.13b) prove that
our initial velocity model is kinematically accurate. Note that the events in the offset-
domain CIGs are mainly concentrated in one side of the subsurface offset (Figure 7.13a)
as the acquisition geometry is end-on spread.

Before comparing the inverted parameters, we first perform the Born modeling op-
erator on the inverted physical parameters to resimulate the data (Figure 7.14). The
dashed yellow boxes in Figure 7.14 denote some examples of discrepancy between the
AVO responses. The RMS and NCC values written on each panel show the superiority
of the variable-density inversion. The extracted traces at near and far offsets also illus-
trate that the variable-density inversion accurately retrieves the phase and amplitudes
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Figure 7.12: The a) impedance and b) density background models.

of the observed data (Figure 7.15). To further analyze the AVO responses, we con-
struct two common-offset sections for 287.5 and 756.25 m (Figure 7.16). The NCC and
RMS values written on each panel show that the variable-density case reconstructed the
common-offset gathers with smaller error and higher correlation. The residual wave-
field for each common-offset gather clearly shows that the variable-density approach
allows for a better amplitude fit of the reflections (Figure 7.17). The remaining ampli-
tude/phase mismatch in the variable-density case could be due to inaccuracies in the
migration background models or energy beyond the acoustic assumption (Figures 7.17c
and d). To get more insight into the areas of the discrepancies, we calculate localized
NCC values for each reconstructed common-offset section within a window of 11 grid
points in both directions (Figure 7.18). In the case of constant-density case, most of
the uncorrelated energies are observed around the sea bottom reflector (Figure 7.18a)
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Figure 7.13: The extracted a) subsurface-offset domain and b) angle-domain CIG. The
position of each CIG is written on each panel.

and in the sediments at the left part of the model in which free gas might be trapped
(Figure 7.18b). This is indeed due to ignoring the density variations that cause AVO
effects in these areas. On the other hand, the variable-density inversion manages to
construct highly correlated common-offset sections in the most parts of the subsurface
(Figures 7.18c and d).

We now compare the inverted physical parameters (Figure 7.19). In both constant-
and variable-density cases, the sharp drop in P-impedance at the BSR is in good agree-
ment with the expected physics due to the hydrated sediments above and gas-saturated
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Figure 7.14: The (a,d,g) observed and (b,c,e,f,h,i) reconstructed data assuming (b,e,h)
constant-density and (c,f,i) variable-density acoustics for the shots positioned at (a,b,c)
3.1 km, (d,e,f) 5.6 km and (g,h,i) 8.1 km. The NCC and RMS values are written on
each panel. The dashed yellow boxes denote the areas with main differences in AVO
responses at each shot position.

sediments below the BSR (Ojha and Sain, 2007; Fujii et al., 2015). However, the P-
impedance image obtained with constant-density pseudoinverse Born inversion contains
some high-frequency noise and artifacts particularly in the sediments containing free
gas (below 1.1 km). To further compare, we plot the magnified views of the yellow
boxes in Figure 7.19 (Figure 7.20). We also detect the main structures in this portion
of the subsurface. It is visible that the constant-density impedance model contains ar-
tifacts (dotted green lines in Figure 7.20c), and distinguishing the reflectors is rather
challenging due to the phase rotation (Figure 7.20a). The latter leads to uncertainty in
the selection and interpretation of the fault dip direction (Figure 7.20c). On the other
hand, the variable-density impedance model provides more continuously imaged reflec-
tors providing a structurally precise correlation with the stacked section (Figures 7.20b
and d).
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Figure 7.15: The extracted traces from the observed and reconstructed shots (Fig-
ure 7.14) at (a,b,c) 225 m and (d,e,f) 1180 m for shots positioned at (a,d) 3.1 km, (b,e)
5.6 km and (c,f) 8.1 km. The RMS values between the observed and reconstructed traces
are written on each panel.

We now analyze the estimated density model (Figure 7.19c). In contrast with the
inverted impedance model, the density along the BSR is either constant (dashed yellow
arrows in Figure 7.19c) or slightly decreased (solid red arrow in Figure 7.19c). The for-
mer is consistent with the nature of BSR: the density of gas-hydrates-bearing sediments
and free-gas saturated sediments across the BSR remains almost the same as that of the
background density (Ojha and Sain, 2007). The small oscillation and drop in density
across the BSR can be an imprint of the impedance model due to parameter cross-talks.
Further LS iteration might require to fully remove the parameter cross-talks (Virieux
and Operto, 2009). We conclude here that although the estimated density model might
contain some uncertainty at some level, neglecting it in the inversion process may lead
to artifacts in the estimated impedance images, and thus in data reconstruction.
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Figure 7.16: The common-offset sections comparison: (a,b) the observed common-
offset sections versus the reconstructed ones assuming (c,d) constant-density and (e,f)
variable-density acoustics for offset (a,c,e) 287.5 m and (b,d,f) 756.25 m. The NCC and
RMS values are written on each panel.
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Figure 7.17: The residual common-offset sections comparison: the difference between
the observed and reconstructed common-offset sections (Figure 7.16) assuming (a,b)
constant-density and (c,d) variable-density acoustics for offset (a,c) 287.5 m and (c,d)
756.25 m.
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Figure 7.18: The localized NCC values corresponding to Figure 7.16: NCC panels
for reconstructed common-offset sections assuming (a,b) constant-density and (c,d)
variable-density acoustics for offset (a,c) 287.5 m and (c,d) 756.25 m.
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Figure 7.19: The inverted a) δIp assuming constant-density acoustics, and b) δIp and c)
δρ assuming variable-density acoustics. The dashed yellow boxes point to the areas for
the magnified views.
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Figure 7.20: Magnified views of the inverted impedance models corresponding to a)
constant-density and b) variable-density acoustics, and the main structures detected
overlaid on the impedance section for c) constant-density and d) variable-density acous-
tics.
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Figure 7.21: The eigenvalue/eigenvector decomposition of the matrix M versus depth:
a) 1st eigenvalue, b) 2nd eigenvalue, c) 1st eigenvector and d) 2nd eigenvector.
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7.7 Discussion
We have investigated the importance of including density variation in the asymptotic lin-
earized direct waveform inversion using a real data. The pseudoinverse Born operator
derived in such that the application of LL† on any data, accurately resimulates the data
even in presence of incorrect background models (Hou and Symes, 2015; Chauris and
Cocher, 2017). The extended domain h is a key component here, as it captures the effect
of incorrect background models. The specular energy is expected to be focused around
h = 0 for correct background models, though, this is not the case in the presence of den-
sity variations. The extended domain indeed also accounts for the inconsistency between
the physics of the observed data and the one assumed in the modeling/inversion operator
Farshad and Chauris (2020a). In other words, performing the Born modeling operator
L in correct background models on the inverted physical model ξ(x) =

∫
dh ξ(x,h)

can reconstruct the data only if the density variations in the data are negligible. Other-
wise, it is required to decompose the extended ξ(x,h) in terms of two physical acoustic
parameters and then perform the modeling operator.

In the concept of multi-parameter imaging, a problem that comes to the fore is the
parameter cross-talk, resulting from the trade-off effects between different parameters
(for example imprint of density on the impedance section or vice versa). In practice,
the similarity of the diffraction patterns of different parameters for certain illumination
angles is responsible for parameter cross-talk. This makes multi-parameter imaging
a highly ill-posed problem especially with a limited surface acquisition (Virieux and
Operto, 2009). To mitigate parameter cross-talk artifact one can either implement pseu-
doinverse Born operator as a preconditioner in LSRTM and let LS iteration remove the
artifacts (Chen and Sacchi, 2019), or implement regularization techniques within the
WLS method to reduce the ill-posedness of the inverse problem (Farshad and Chauris,
2021c).

The inverted impedance δIp and density δρ parameters using asymptotic direct wave-
form inversion are true-amplitude up to a scaling factor. This scaling is related to the ac-
curacy of the wavelet estimation/inversion. In presence of an accurate seismic wavelet,
the inverted parameters can be related to rock physics (Farshad and Chauris, 2020a,
2021c). Unfortunately, there is no well data to confirm the inverted values. The radia-
tion pattern (Figure 7.11) shows that the density parameter only radiates energy at very
large angles. The investigated dataset here does not contain large enough surface offset,
meaning that the estimated density model might contain some uncertainty. To get more
insight into the resolution of the inverted parameters, we carry out an eigenvalue and
eigenvector decomposition of the 2 × 2 matrix M (equation 7.16, Figure 7.21). The
components of eigenvectors, known as direction cosine, associated with the eigenvalue
define the relative significance of the model parameter (Plessix and Cao, 2011). The
first (Figure 7.21c) and second (Figure 7.21d) eigenvectors are mainly related to the
impedance and density parameters, respectively. The first eigenvalue (Figure 7.21a) is
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much larger than the second eigenvalue (Figure 7.21b). Therefore, the most reliable
information in the inversion process is related to the impedance model (higher eigenval-
ues with larger weight in the eigenvector). As illustrated, a higher resolution is expected
in the shallow part of the models (lower eigenvalues in the shallow part, Figures 7.21a
and b). Note that the depth of interest in this dataset approximately starts from 0.6 km.
In this case, one can refer to the inverted density as a pseudo-density model, used as a
proxy to increase the degree of freedom in the inversion process and soak up some of
the artifacts in the impedance model (Borisov et al., 2014; Operto and Miniussi, 2018).

7.8 Conclusion
In this study, we have demonstrated an application of variable-density asymptotic lin-
earized direct waveform inversion to a case study from the Eastern Nankai Trough. The
multi-parameter pseudoinverse Born operator can estimate high-resolution physical im-
ages with better continuity which accurately resimulates the field data. The analysis
illustrated that neglecting the density parameter may produce artifacts in the image do-
main leading to false AVO response in the data domain. Future studies will explore the
applicability of multi-parameter asymptotic linearized direct waveform inversion as a
suitable preconditioner for other iterative imaging techniques such as migration velocity
analysis and full-waveform inversion.
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7.10 Appendix: Gradient derivation for WLS
We explain here how to compute the gradient of the WLS problem (equation 7.9) with
respect to the model parameters as

∂JWLS

∂δIp/Ip0
= 2

∫
dθW (x, θ)

(δIp
Ip0

(x)− δρ

ρ0

(x) sin2(θ)− ψ(x, θ)
)
, (7.14)

and

∂JWLS

∂δρ/ρ0

= −2

∫
dθW (x, θ) sin2(θ)

(δIp
Ip0

(x)− δρ

ρ0

(x) sin2(θ)− ψ(x, θ)
)
. (7.15)
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Subsequently, the optimal physical parameters are estimated where the gradients in
equation (7.14) and (7.15) are equal to zero. Abstractly, the WLS method in matrix
and functional form reads as Mδu = Φ where

M =

[
2
∫

dθW (x, θ) −2
∫

dθW (x, θ) sin2(θ)

−2
∫

dθW (x, θ) sin2(θ) 2
∫

dθW (x, θ) sin4(θ)

]
, (7.16)

δu =

 δIpIp0 (x)

δρ
ρ0

(x)

 , (7.17)

and

Φ =

[
2
∫

dθW (x, θ)ψ(x, θ)

−2
∫

dθW (x, θ) sin2(θ)ψ(x, θ)

]
. (7.18)

By definition, the WLS method leads to a separable bivariate curve-fitting problem,
meaning that the optimization can be applied for each spatial coordinate separately. Note
that the matrix M in this article is required to be calculated only once, as the acquisition
configuration (maximum offset) is constant.
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Résumé

Dans cette thèse, j’ai développé un schéma d’inversion direct pour la résolution du prob-
lème d’imagerie sismique linéarisé. L’inverse direct fait référence au pseudoinverse. Il
permet d’avoir des résultats quantitatifs en une seule itération. La formulation originale
pour l’inverse direct a été proposée pour des milieux acoustiques à densité constante.
Une description plus réaliste de la subsurface demande une densité variable et la prise
en compte des effets élastiques.
Je me suis principalement intéressé à quatre problématiques : (1) pour prendre en
compte une physique plus élaborée, j’ai étendu l’inverse direct aux cas de densité vari-
able et élastiques ; (2) pour supprimer les artefacts de migration et améliorer la qualité
de l’inversion, j’ai incorporé une régularisation `1 pour l’inverse direct à densité variable
; (3) pour accélérer la convergence de la migration itérative, j’ai implémenté l’inverse
direct en tant que préconditioner ; et finalement (4) pour valider les résultats, j’ai ap-
pliqué l’inverse directe à densité variable sur un jeu de données réelles (Eastern Nankai
Trough).
Le principal intérêt du schéma d’imagerie est que le processus d’imagerie est séparé en
deux parties : imagerie + décomposition en paramètres physiques. Seulement la pre-
mière partie demande de calculer les champs d’onde. C’est donc la partie la plus coû-
teuse de loin. La seconde partie est un problème de décomposition, avec la possibilité
d’introduire des contraintes. Comme perspectives, je propose de développer l’approche
directe pour les milieux anisotropes, de regarder les données multi-composantes, de cou-
pler l’inverse direct avec l’Analyse de Vitesse par Migration ou avec l’approche RWI («
Reflection Waveform Inversion ») et enfin de voir comment l’approche peut être appli-
cable en 3D.
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8.1 Conclusion

In this thesis, I have investigated a direct inversion scheme for the resolution of the seis-
mic linear inverse problem. The direct inverse also referred to as pseudoinverse Born in-
version, provides quantitative results within a single iteration. The original formulation
for the direct inverse was proposed assuming a constant-density acoustic wave-equation
approximation. A more realistic description of the subsurface introduces density and
elastic effects. These parameters have a significant impact on the reflection amplitudes
and should be taken into account.

In this thesis, I have mainly investigated these four issues: (1) to account for better
physics, I have extended the direct inversion method to variable-density acoustic and
variable-density elastic media; (2) to suppress migration artifacts and improve the qual-
ity of the inversion, I have incorporated `1-norm regularization to the variable-density
direct inverse; (3) to accelerate the convergence rate of iterative migration, I have im-
plemented direct inverse as a preconditioner; and finally (4) to validate the results, I
have applied the variable-density direct inverse to a marine real dataset from the Eastern
Nankai Trough.

The main interest in my developed true-amplitude imaging scheme is that the imag-
ing process is split into two main parts: Imaging + Physical decomposition. Only the
first part contains wave-equation terms. It is thus the most computationally expensive
part by far. The second part (“Physical decomposition”) is a multivariate curve fitting
problem in which additional constraints can be introduced.

8.1.1 Beyond constant density

Extension to variable-density acoustic

In Chapter 3, I have shown that the density variations distort the energy in the CIGs,
which would be misinterpreted as an incorrect background model. Thus I have ex-
tended the applicability of the pseudoinverse Born operator from constant-density acous-
tic to variable-density acoustic media. This extension consists of three main steps. The
first step is the application of the same pseudoinverse Born operator as the one for the
constant-density acoustic case. In the second phase, the Radon transform is applied to
map the imaging angle. The work of Dafni and Symes (2018) shares the same idea as
Zhang et al. (2014b), who propose to invert the acoustic parameters by using two traces
(two-trace method) from the angle-domain CIGs estimated either by LSRTM or by ap-
plication of the pseudoinverse Born operator. I have illustrated that the selection of the
two traces is important and proposed a generalization by taking into account all traces
in angle-domain CIGs using an efficient weighted least-squares (WLS) approach. This
generalization not only yielded more robust results compared to the two-trace method,
but it also provided the flexibility to include more constraints through the formulation
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as an inverse problem. By investigating the computational complexity of the variable-
density pseudoinverse Born inversion, I have highlighted that the main computational
burden of the proposed method is due to the modeling operators and it remains of the
same order as that of the constant density. The main limitation is the non-uniqueness
of the inversion results: by adding another parameter such as density into account, the
ill-posedness of the inverse problem is increased because more degrees of freedom are
considered. In that case, regularization techniques are expected (section 8.1.2).

Extension to variable-density elastic

In Chapter 4, using the same strategy as described in Chapter 3, I have extended the
applicability of the pseudoinverse Born operator from acoustic to elastic media. The
elastic and acoustic pseudoinverse Born operators have similar structures. The main
differences are elastic versus acoustic Green’s functions in the pseudoinverse formula,
and then different decomposition in the WLS method (three parameters versus two pa-
rameters). Using numerical experiments, I proved that the proposed method is very
promising and provides robust results in terms of data reconstruction and quantitative
parameter estimation even in presence of uncorrelated structures, inaccurate migration
background models, and noisy data. The main limitation is the assumption of marine
towed-streamer data. Through numerical examples, I ranked P-wave impedance, S-wave
impedance and density from best-inverted parameter to worst. Analyzing eigenvalue de-
composition also confirmed the fact that density is more difficult to reconstruct even in
the shallow part of the model.

8.1.2 Iterative approaches

Sparsity-promoting regularization

In Chapter 5, to tackle the ill-posedness of the inverse problem discussed in Chapter 3,
I have proposed to add independently `1-norm constraints to each inverted parameter
as regularization terms in the WLS method. To carry out the optimization problem, I
have used a popular sparse solver based on the soft thresholding method called the fast
iterative shrinkage-thresholding algorithm (FISTA). Through numerical experiments, I
have demonstrated that the proposed method can effectively suppress artifacts caused
by parameter crosstalk, abrupt truncation of interfaces, incomplete data, noisy data, and
large contrast complex geology. Furthermore, I discussed that the computational costs
of the WLS and RWLS methods are below 1.0% of the cost of the pseudoinverse Born
operator. Therefore, the RWLS method delivers high-resolution images requiring less
computational complexity than least-squares migration.
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Preconditioning least-squares reverse time migration

In Chapter 6, I have implemented the variable-density pseudoinverse Born operator
(Chapter 3) for preconditioning LSRTM algorithm. Through numerical experiments, I
have showed that the proposed preconditioning scheme not only largely reduces the re-
quired number of iterations to achieve a given data misfit but also significantly increases
the quality of the inverted images even in presence of strong parameter cross-talk and
inaccurate migration background models. Using a small-sized model, I have further an-
alyzed the shape of the multi-parameter Hessian with and without preconditioner: the
preconditioner not only manages to reduce the effect of the wavelet and compensate for
geometrical spreading but also mitigates the parameter cross-talks.

Discussion

One would wonder what are the pros and cons of preconditioned LSRTM over regular-
ized pseudoinverse Born operator. The computational cost of preconditioned LSRTM
is much more expensive than the regularized pseudoinverse Born operator: the former
requires eight wavefield propagations per iteration (2 forward + 2 adjoint of forward + 2
direct inverse + 2 adjoint of direct inverse = 8) whereas the latter requires only two wave-
field propagations in total. In the case of an ideal acquired seismic data (dense source
and receivers with limited noise level), preconditioned LSRTM provides more reliable
results with a resolution close to the seismic wavelength by fitting seismic observed data.
But sometimes seismic surveys perform only a sparse recording of the wavefields at the
source/receiver positions and so the inverse problem has a huge null space, meaning
that there are a lot of models that can fit the recorded data. The regularized pseudoin-
verse Born operator can tackle this ill-posed problem by injecting prior information via
regularization to drive the inversion toward a good model everywhere. Thus my sugges-
tion would be to first start the imaging process with the regularized pseudoinverse Born
operator and then further improve the results using iterative LSRTM. An interesting al-
ternative would be introducing the regularization techniques within the preconditioned
LSRTM. To do this, I would suggest employing Bregmanized operator splitting method
(Zhang et al., 2010) to solve this nonlinearly constrained minimization problem (Zand
and Siahkoohi, 2021).

8.1.3 A case study from the Eastern Nankai Trough

In Chapter 7, I have investigated the importance of accounting for density variations
in pseudoinverse Born inversion using a marine real dataset from the Eastern Nankai
Trough, offshore Japan. The inversion results demonstrates that the variable-density
pseudoinverse Born operator yields subsurface images that exhibits a superior resolution
(less artifacts and more continuously imaged reflectors) and better reconstructs the field
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data than does the constant-density approach. The analysis illustrated that neglecting
the density parameter may produce artifacts in the image domain leading to incorrect
AVO response in the data domain.

Unfortunately, there was no well data to confirm the inverted values. By analyzing
eigenvalue and eigenvector decomposition, I illustrated that the limited offset in this
dataset might cause some uncertainty in the inversion of density parameter. In this case,
one can refer to the inverted density as a pseudo-density model, used as a proxy to in-
crease the degree of freedom in the inversion process and recover a “cleaner” impedance
model. The second limitation is that the non-linear effects (multiples) are not taken into
account in the inversion process.

8.2 Perspectives

8.2.1 Extension to anisotropic media
The knowledge of the wave equation is of fundamental importance for a satisfying
understanding of the wave propagation phenomena. Wave propagation in anisotropic
media continues being studied by many authors (Duveneck et al., 2008; Qu et al.,
2017; He et al., 2019). Assuming an acoustic anisotropy, specifically, a transversely
isotropic medium with a vertical symmetry direction (VTI), Figure 8.1 illustrates that
the anisotropic parameters can have a significant impact on AVO and thus on the focus-
ing of events in CIGs. The CIGs in Figure 8.1 are obtained by applying an isotropic
pseudoinverse Born operator on isotropic (Figure 8.1a) and anisotropic (Figure 8.1c)
observed data.

The kinematics of P-wave in VTI media is controlled by the vertical velocity VP0 and
Thomsen parameters ε and δ (Thomsen, 1986). The parameter ε is representative of the
ratio between the vertical and horizontal P-wave velocity, while δ reflects sub-vertical
anisotropy:

ε =
c11 − c33

2c33

, (8.1)

δ =
(c13 + c44)2 − (c33 − c44)2

2c33(c33 − c44)
(8.2)

The anisotropic acoustic wave equation reads (Prieux, 2012)

−iωρVx =
∂T1

∂x
+
∂T2

∂x
,

−iωρVz =
∂T1

∂z
− ∂T2

∂z
,

−iωT1 =
c11 + c13

2

∂Vx
∂x

+
c13 + c33

2

∂Vz
∂z
− iωT 0

1 ,
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Figure 8.1: The a) observed shot assuming isotropic acoustic medium and its b) inverted
CIG, and c) observed shot assuming VTI anisotropic acoustic medium and its d) inverted
CIG. The inverted CIGs are obtained with isotropic pseudoinverse Born operator.

−iωT2 =
c11 − c13

2

∂Vx
∂x

+
c13 − c33

2

∂Vz
∂z
− iωT 0

2 , (8.3)

In anisotropic acoustic approximation, unlike the acoustic isotropic case, T2 is different
from 0, except if the midpoint is elliptical (δ = ε). By linearizing around smooth back-
ground models and dropping higher order terms, the Born approximation can be written
as

−iω(ρ0 + δρ)(V 0
x + δVx) =

∂(T1
0 + δT1)

∂x
+
∂(T2

0 + δT2)

∂x
,

−iω(ρ0 + δρ)(V 0
z + δVz) =

∂(T1
0 + δT1)

∂z
− ∂(T2

0 + δT2)

∂z
,

−iω(T1
0 + δT1) =

c0
11 + δc11 + c0

13 + δc13

2

∂(V 0
x + δVx)

∂x
+

c0
13 + δc13 + c0

33 + δc33

2

∂(V 0
z + δVz)

∂z
,

−iω(T2
0 + δT2) =

c0
11 + δc11 − c0

13 − δc13

2

∂(V 0
x + δVx)

∂x
+
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c0
13 + δc13 − c0

33 − δc33

2

∂(V 0
z + δVz)

∂z
, (8.4)

and

−iωρ0δVx =
δT1

∂x
+
δT2

∂x
+ iωδρV 0

x ,

−iωρ0δVz =
∂δT1
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+ iωδρV 0
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33
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∂z

+

δc11 + δc13

2

∂V 0
x
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+
δc13 − δc33
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∂V 0
z

∂z
. (8.5)

The terms in red color in system of equations 8.5 denote the secondary sources that
generate the scattered field. Assuming weak anisotropy, I have linearized around an
isotropic smooth background (i.e., δ0 = 0, ε0 = 0), and I have extended the appli-
cability of pseudoinverse Born operator to acoustic VTI medium. Thus I have only
considered anisotropic effects on the reflectivity side (dynamics) while the background
velocity model remains isotropic. Figure 8.2 illustrates a numerical experiment on the
Hess VTI model. The RTM image (Figure 8.2d) contains strong low-frequency ar-
tifacts due to the large contrasts in the velocity model. Laplacian filter or the other
high-pass filters are often used to remove the artifacts (Guitton et al., 2007). These
low-frequency artifacts on the other hand are effectively reduced in the images obtained
with isotropic/anisotropic pseudoinverse Born operators (Figure 8.2e and 8.2f). Com-
paring to RTM and isotropic pseudoinverse Born operator, the anisotropic pseudoinverse
Born operator provides cleaner subsurface image with less parameter cross-talk artifacts
(highlighted by arrows in Figure 8.2). It would be interesting to further investigate this
extension without the weak anisotropic assumption and anisotropy not related to the
reflectivity but also incorporated in the background model.

8.2.2 Extension to multi-component seismic data
In this thesis, all of the implementations are restricted to pressure wavefield (mono-
component data). Over the past several years, significant advances have been made in
the acquisition, processing, and analysis/interpretation of multi-component seismic data
resulting in renewed enthusiasm for use of this technology. In this thesis, I have il-
lustrated that the extended model contains the effects of different parameter variations
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Figure 8.2: The Hess VTI model experiment: exact a) δVp, b) δVh and c) δVn, and
inverted δVp image using d) RTM, e) isotropic pseudoinverse Born operator and f)
anisotropic pseudoinverse Born operator. The yellow arrow in (e) and (f) denote the
parameter cross-talk.

(velocity and density perturbations). Furthermore, performing the Born modeling opera-
tor on either non-physical extended model or physical models (after decomposition) can
reconstruct the observed data. In the case of multi-component seismic data, an extended
image can be obtained for each component of seismic data. It is still an open question
whether these extended model spaces carry useful and manageable information for lin-
ear imaging scheme. The inclusion of different components of seismic data in a unified
framework in the direct inversion process needs further investigations.

8.2.3 Coupling multi-parameter direct inverse with migration ve-
locity analysis

One important feature observed through Chapters 3 and 4 is that the density variations or
elastic effects distort the energy in the subsurface-offset domain CIGs, even in presence
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of accurate background model. The key aspect is that the proposed multi-parameter
pseudoinverse Born inversion can reconstruct the data even using inaccurate background
models. Therefore, this provides evidence that these methods can be introduced in the
inner loop of MVA. The curvature of an event in the angle-domain CIG is indeed the
bridge between migration and velocity updates in MVA (Biondi and Symes, 2004).

8.2.4 Coupling multi-parameter direct inverse with reflection wave-
form inversion

Reflection waveform inversion (RWI) is a nested optimization procedure (Chavent et al.,
1994; Xu et al., 2012b; Yao et al., 2020). In the inner loop, given the current background
velocity, the reflectivity is iteratively updated to minimize the data misfit at zero-/short-
offsets. In the outer loop, the best reflectivity derived in the inner loop is used to evaluate
the misfit at larger offsets and to update the background velocity model. The inner loop
of RWI is recognized as LSRTM, providing a true-amplitude reflectivity section. This
makes RWI highly computationally expensive as iterative LSRTM has to be applied
for each outer iteration. In the case of single-parameter inversion, there is a dimen-
sional difference between LSRTM in the inner loop of RWI (physical domain) and the
pseudoinverse Born operator (extended domain). But the multi-parameter direct inverse
proposed in this thesis provides physical results (non-extended domain) and can play a
key role as a preconditioner to enlarge the applicability of RWI (Algorithm 9). More re-
search is required to investigate the role of density/impedance in updating the reflectivity
(inner loop) and velocity in updating the background model (outer loop).

Algorithm 9: RWI with pseudoinverse Born operator

1 Outer loop: for each tomographic iteration do
2 Inner loop: for each reflectivity update do
3 Pseudoinverse Born operator
4 Radon transform
5 Physical decomposition

6 Evaluate the data misfit
7 Update the background model

8.2.5 Extension to 3D
In 3D, the observed data has five dimensions (sx, sy, rx, ry, t). Thus the extension of
direct inverse from 2D to 3D requires two extra model space parameters, for example,
vertical and horizontal subsurface offsets. New weights in 3D direct inverse should
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be defined with a strategy similar to the 2D case: their combination with the Beylkin
determinant (Jacobian of transformation between subsurface parameters and acquisition
surface coordinates) arising in linear phase approximation of the normal operator should
cancel the geometrical spreading present in the propagating fields. The main difficulty
in 3D extension is its computational cost: 3D wavefield propagation, storing 3D images,
and cross-correlation in imaging condition for each couple (hx, hy). New strategies
such as computing the CIGs only at specific image points (Yang and Sava, 2015) or
computing the CIGs with randomly sampled space shifts (Yang et al., 2020) should be
further investigated for a more affordable 3D extension.
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RÉSUMÉ
L’imagerie sismique est l’une des méthodes les plus pertinentes pour l’estimation des paramètres physiques (vitesse,

densité, ...) depuis l’acquisition de données en surface. Avec l’hypothèse de séparation d’échelles, plusieurs méthodes

d’imagerie décomposent le modèle de vitesse entre un macro-modèle lisse et un modèle de réflectivité. Le but des

techniques de migration est de déterminer la réflectivité dans un macro-modèle donné. Parmi différentes solutions, la

Reverse Time Migration (RTM) est devenue la méthode de choix pour les milieux complexes. Par définition, RTM est

l’adjoint de l’opérateur de Born et souffre de différents artéfacts de migration. Des développements récents ont permis

d’analyser la RTM avec une approche asymptotique. Ils ont conduit à une méthode directe pour inverser l’opérateur de

modélisation, et apporter une solution quantitative en une seule itération. L’inverse direct suppose un milieu acoustique à

densité constante, ce qui représente une limite forte pour les applications pratiques.

Dans cette thèse, j’ai d’abord étendu l’applicabilité de l’inverse direct depuis une densité constante à une densité variable

et vers les milieux élastiques. Dans le cadre de l’imagerie multi-paramètres, la principale limitation est la non unicité de la

solution. Pour cela, je propose d’ajouter des contraintes avec une norme `1 sur chacune des classes de paramètres. De

plus, je propose d’utiliser l’inverse direct pour accélérer la convergence de la RTM multi-paramètres. Les méthodologies

sont développées et analysées sur des données synthétiques 2D et sur un cas réel marin.
MOTS CLÉS

imagerie sismique, reverse time migration, multi-paramètre, inversion, régularisation

ABSTRACT
Seismic imaging is one of the most effective methods for estimating the Earth’s physical parameters from seismic data.

Based on the assumption of scale separation, several imaging methods split the velocity model into a smooth background

model and a reflectivity model. The goal of Migration techniques is to determine the reflectivity in a given background

model. Among different migration algorithms, reverse time migration (RTM) has become the method of choice in complex

geologic structures. By definition, RTM is the adjoint of the linearized Born modeling operator and suffers from various

migration artifacts. Recent developments recast the asymptotic inversion in the context of RTM. They determine a direct

method to invert the Born modeling operator, providing quantitative results within a single iteration. The direct inverse is

based on constant-density acoustic media, which is a limiting factor for practical applications.

In this thesis, I first extend the applicability of direct inverse from constant-density acoustic to variable-acoustic acoustic

and elastic media. In the concept of the multi-parameter imaging, the main limitation is the non-uniqueness of the inversion

results. To tackle the ill-posedness of the inverse problem, I propose to add independently `1-norm constraints to each

inverted parameter as regularization terms. Furthermore, I utilize the direct inverse to accelerate the convergence rate

of multi-parameter least-squares RTM. The methodologies are developed and analyzed on 2D synthetic datasets and a

marine real dataset.
KEYWORDS

seismic imaging, reverse time migration, multi-parameter, inversion, regularization
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