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Chapter 1

Introduction

“En général, nous sommes moins
conscients de ce que nos esprits
font le mieux.”

Marvin Minsky

En 1967, l’écrivain américain John M. Culkin a déclaré : “Nous façonnons nos
outils, et ceux-ci, à leur tour, nous façonnent.” En 2019, 52 ans plus tard, cela ne
pourrait pas être plus vrai. Nous vivons actuellement une révolution technologique
où la technologie progresse à un rythme exponentiel. Il n’a jamais été aussi rapide,
ni facile, de créer de nouveaux outils et de les mettre entre les mains des util-
isateurs. Ces nouveaux outils technologiques remodèlent les canaux d’information
et les connexions humaines, tout en remodelant les emplois, les loisirs et, par
conséquent, le sens de l’être humain. Un flot de nouveaux gadgets, smartphones,
montres intelligentes, applications, chatbots et autres déferle sur les consomma-
teurs tous les jours. Cette vague de nouveaux outils exige à terme une adaptation
des utilisateurs, une lutte constante pour s’adapter afin de ne pas devenir obsolète
et conserver sa place dans la société. Jamais autant de nouveaux outils ont été
créés à une telle vitesse ; jamais auparavant la vie humaine n’a changé aussi rapi-
dement.

La majeure partie de ce développement technologique révolutionnaire est aveuglée
par l’objectif d’être plus précis, plus rapide et plus efficace. Il y a un certain nom-
bre de raisons qui rendent ces mesures dignes d’être poursuivies. Pourtant, les
développeurs ont tendance à oublier de mettre le facteur humain dans la fonction
de perte qu’ils ciblent. Quelle que soit la résilience des êtres humains, capables de
s’adapter à des environnements difficiles et d’apprendre à gérer des interfaces com-
plexes, il existe des limitations intrinsèques qui sont tout simplement inévitables,
des limitations telles comme la vitesse de traitement du cerveau humain, l’énergie
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20 CHAPTER 1. INTRODUCTION

de l’attention disponible, les habitudes de sommeil, la capacité de mémoire, la
vitesse d’apprentissage et bien d’autres. Celles-ci peuvent être considérées comme
les limitations matérielles du cerveau.

Les technologies destinées aux humains doivent être conçues autour de l’homme,
ce qui signifie qu’il faut tenir compte du fonctionnement de l’esprit humain lors de
la conception d’un nouvel outil, tout en tenant compte des limitations humaines.
C’est un moyen d’assurer de meilleures adaptation et acceptation humaines à une
nouvelle technologie, un moyen de lisser la courbe d’apprentissage et, finalement,
de rendre ces outils plus efficaces. Dans son livre “Sum: Forty Tales from the Af-
terlives” de 2009, le neuroscientifique américain David Eagleman écrit, à propos
d’une race fictive en proie à des questions comme “pourquoi sommes-nous ici ?” ou
“quel est le but de l’existence ?”, qu’ils ont décidé d’investir pendant des généra-
tions dans le développement d’une machine de calcul intensif dédiée à trouver des
réponses. Cependant, le projet a lamentablement échoué, car la machine résultante
était bien trop avancée pour interagir avec ces êtres. Lorsque vous développez une
machine plus complexe et intelligente que vous, votre capacité à comprendre la ma-
chine commence à diminuer. La technologie la plus avancée peut être sous-utilisée
si l’utilisateur ne parvient pas à interagir correctement avec elle, car “un outil est
aussi bon que l’est son utilisateur”, comme on le dit souvent.

Les limitations de l’esprit humain représentent le point de rupture au-delà
duquel les technologies ne peuvent plus se déployer. Il n’est pas souhaitable de
concevoir des interfaces qui clignotent le maximum d’informations pouvant être
affichées sur un écran à la vitesse la plus élevée possible. De fait, ce ne sont pas
des paramètres visés lors du développement d’un nouvel outil. Instinctivement,
les concepteurs, étant eux-mêmes des humains, savent qu’il existe des limites cog-
nitives à la quantité d’informations pouvant être traitées par les utilisateurs. La
plupart des bonnes interfaces restent simples ; une quantité minimaliste de bou-
tons et d’options affichés aide les utilisateurs à concentrer leur attention et à dé-
cider quelle commande ils doivent utiliser. Cependant, l’affichage de la quantité
minimale d’informations n’est pas toujours souhaitable non plus. Par exemple, la
quantité “minimale” d’informations est subjective. Selon la maîtrise de l’utilisateur
sur le sujet concernant les données affichées, il ou elle peut avoir plus ou moins
de facilité à réfléchir sur différentes quantités de données. Par exemple, le jeu de
Go consiste en deux joueurs posant des pierres blanches et noires sur un plateau.
Le tablier de Go traditionnel a une grille de 19 × 19, et à chaque intersection
une pierre peut être placée. Puisqu’il y a 3 états possibles pour chaque intersec-
tion (vide, noir ou blanc), le nombre de configurations possibles du tablier est
3361 ≈ 1, 7 × 10172 (pas toutes les configurations ne sont possibles en raison des
règles du jeu ; John Tromp a déterminé qu’il existe environ 2, 08 × 10170 config-
urations légales [2]). Cette quantité incroyable de configurations possibles est une
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des raisons pour lesquelles les machines ont eu du mal à battre les joueurs de Go
jusqu’à que l’AlphaGo de Google apparaisse en 2016. Cependant, les joueurs de
Go avancés peuvent jouer une variante du jeu à une seule couleur, où les joueurs
utilisent des pierres de la même couleur, ce qui signifie que les joueurs doivent se
rappeler quelle pierre est laquelle en se souvenant de la progression du jeu dans son
ensemble. Cet exploit impressionnant peut sembler impossible pour un débutant,
mais il ne fait que montrer comment le niveau de maîtrise affecte la perception
d’informations complexes.

Trouver le bon équilibre entre la complexité d’une interface et la façon dont
l’utilisateur perçoit cette complexité peut être la clé pour étendre les performances
humaines et technologiques au maximum. Cela nécessite une adaptation continue
des canaux de communication entre homme et machine. En intégrant des inter-
faces avec une connaissance approfondie du fonctionnement de l’esprit humain, la
technologie pourrait compenser les limitations humaines, faciliter l’apprentissage
et accroître l’accessibilité. Cependant, non seulement en servant de béquille pour
l’esprit, mais en adaptant régulièrement les systèmes tout en tenant compte de
l’apprentissage humain, une nouvelle technologie, une fois assimilée, pourrait avancer
en permanence les performances humaines en compensant les limitations là où elles
apparaissent, mais en stimulant les domaines où l’utilisateur est déjà compétent.
Cela signifie que les interfaces des outils doivent être façonnées par le fonction-
nement de l’esprit. La conception de nouveaux outils et de leurs interfaces doit être
centrée autour de ces limitations et avec une connaissance approfondie de la façon
dont nous “travaillons”, en tant qu’êtres humains. Cela pourrait être un facteur
clé dans cette ère fondée sur les données, permettant aux nouvelles technologies de
nous changer, non pas en allant contre les utilisateurs mais en les guidant.

1.1 Objectif
Le but de ce travail est d’explorer les façons possibles d’adapter les systèmes infor-
matiques à la façon dont les humains traitent l’information. Ce travail s’intéresse
particulièrement à l’adaptation des interfaces utilisateurs (UI) aux limites de la
mémoire de travail humaine (WM, pour “Working Memory”). La WM est la partie
de la cognition humaine responsable du stockage et du traitement des informations
verbales et visuelles. Il a été reconnu comme un goulot d’étranglement majeur de
la capacité humaine de traitement de l’information. Par conséquent, en termes
plus précis, l’objectif de cette thèse est de réfléchir aux possibilités de rendre les
systèmes informatiques “conscients” et capables de compenser les limitations de la
WM des utilisateurs.

On peut alors définir quatre étapes afin d’effectuer une adaptation appropriée
(fondée sur la méthodologie de [3]):
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1. déduire la limitation de capacité de l’utilisateur ;

2. identifier l’impact potentiel sur la performance ;

3. sélectionner une stratégie compensatoire ;

4. appliquer cette stratégie dans le contexte actuel.

Ces étapes, spécialement les étapes 1 et 2, sont les principaux défis abordés
dans ce travail. Étant donné que les limitations cognitives ne sont pas facilement
mesurables (autrement qu’en effectuant des tests spécifiques et très contraints), il
faut être capable de déduire ces limitations à partir de l’interaction de l’utilisateur
avec le système. L’évaluation de l’état de l’utilisateur (qu’il soit cognitif, physique,
propre à la personnalité ou affectif) est l’une des fonctionnalités essentielles qui
doivent être traitées par des systèmes efficaces de modélisation et d’adaptation de
l’utilisateur [3].

Dans ce contexte, l’adaptation nécessite que le système ait une connaissance
inhérente de la façon dont une capacité limitée influe sur les performances et com-
ment une action pourrait compenser une telle limitation. Pour ce faire, un sys-
tème doit aller au-delà des connaissances d’observation liant certains paramètres
en entrée aux résultats observés que les techniques traditionnelles d’apprentissage
automatique (ML ou ‘Machine Learning”) peuvent fournir. Les technologies super-
visées fondées sur le ML manquent de flexibilité, et elles sont limitées par la quan-
tité de données de l’ensemble d’apprentissage. Logiquement, fournir au système
une image complète de tous les différents scénarios possibles qu’il pourrait rencon-
trer compenserait cette rigidité. Cependant, cela nécessiterait une énorme quantité
de données. L’utilisation d’un modèle fondé sur la compréhension de l’utilisateur
permet d’aller au-delà des données collectées précédemment et de traiter des cas
non encore rencontrés.

Un tel système a besoin d’un modèle des processus causaux sous-jacents im-
pliqués dans la façon dont les limites de capacité affectent la performance. D’une
manière générale, les modèles, de divers niveaux d’abstraction, représentent des
simplifications d’un système qui servent d’explication limitée à certains des nom-
breux mécanismes qui le composent et qui fonctionnent ensemble. Les modèles
peuvent différer en termes de complexité et de fiabilité, mais ils représentent la
compréhension que l’on a d’un phénomène; elle peut prendre la forme d’une théorie
ou, dans certains cas, d’une loi. Le fait d’avoir un modèle causal de l’impact des
limitations de capacité sur les performances permet de prédire comment la capacité
présumée affecte les performances ainsi que de sélectionner des mesures compen-
satoires adéquates.

L’objectif principal de ce travail est donc d’explorer des méthodes efficaces pour
intégrer un système informatique avec un modèle de WM humaine afin de permettre
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l’adaptation de l’interface utilisateur aux limitations de la WM des utilisateurs.

1.2 Contributions
Ce travail comprend cinq contributions majeures:

• Memory Adaptation Through Cognitive Handling Simulation (MATCHS),
un nouveau cadre pour la modélisation dynamique, le suivi et l’adaptation des
tâches, dont les performances dépendent de la WM, aux limitations perçues
de la WM;

• An Uscented Hound for Working Memory (AUHWM), une extension de
MATCHS, accroissant ses capacités afin de permettre la modélisation en
temps réel et le suivi des performances de la WM humaine, qui utilise un
modèle déterministe de mémoire de travail et un filtrage de Kalman non
linéaire ;

• une évaluation expérimentale de la capacité de MATCHS et AUHWM à
suivre la capacité WM, en utilisant les données collectées à partir du jeu
de mémoire visuelle Match2s que nous avons conçu et implémenté ;

• un nouveau cadre fondé sur AUHWM pour l’adaptation automatique des
tâches de l’interface utilisateur, en utilisant les paramètres WM suivis comme
estimations pour les performances futures, et son évaluation ;

• des idées et indications novatrices pour le développement futur des technolo-
gies fondées sur AUHWM.

1.3 Organisation
Ce manuscrit est organisé en 9 chapitres, le chapitre 2 servant d’introduction
générale aux principales préoccupations de ce manuscrit.

Le chapitre 3 présente dans sa première section les principes fondamentaux de
la WM humaine et de la théorie de la charge cognitive, servant de base au lecteur
non familier avec ces concepts ainsi qu’un survol des principales notions abordées
dans le reste du document. Dans une deuxième section, ce chapitre décrit les
avantages qu’apporte l’adaptation des systèmes informatiques aux limitations de
WM, présentant la principale motivation derrière ce travail.

La première section du chapitre 4 présente un aperçu général des différentes
méthodes trouvées dans la littérature pour adapter les systèmes informatiques aux
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limitations cognitives. La deuxième partie du chapitre 4 est consacrée à la présen-
tation, en profondeur, de deux modèles de calcul de WM qui permettent de simuler
l’évolution des informations stockées dans la WM.

Le chapitre 5 présente et décrit MATCHS, qui est notre premier cadre pour
la modélisation de la capacité de la WM des utilisateurs ainsi que la stratégie
d’adaptation correspondante. Plus loin dans le même chapitre, le lecteur est in-
troduit à notre jeu de mémoire visuelle Match2s, qui est utilisé pour la validation
expérimentale de MATCHS, et plus tard également pour AUHWM. Le chapitre se
termine par la présentation des résultats obtenus et une discussion sur les perfor-
mances et les limites du cadre.

Dans le chapitre 6, le lecteur est introduit à AUHWM, une extension des idées
de base de MATCHS permettant de modéliser la capacité de la WM de l’utilisateur
en temps réel. AUHWM est un cadre pour le suivi de la capacité cognitive de
l’utilisateur et utilise un processus de filtrage de Kalman non linéaire comme l’un
de ses principaux composants. Étant donné que ce type de filtrage peut ne pas être
familier à tous les lecteurs, ce chapitre présente également la base théorique du
filtre de Kalman. Le chapitre se termine par une validation expérimentale et une
discussion sur les performances de modélisation AUHWM en utilisant les données
collectées avec le jeu Match 2s.

Le chapitre 7 va au-delà des capacités de modélisation d’AUHWM et présente
un cadre qui, en utilisant AUHWM, est capable d’adapter une interface utilisateur
donnée à la capacité cognitive suivie d’un utilisateur. Ce chapitre présente le cadre
au lecteur et discute de ses performances en utilisant, encore une fois, les données
Match 2s.

Le chapitre 8 est consacré aux conclusions, recommandations et perspectives
pour les travaux actuels et futurs.

1.4 Publications
Les travaux discutés dans cette thèse ont donné lieu aux publications suivantes:

• Sguerra, B., Jouvelot, P., and Benveniste, S. Oblivion Tracking: Towards
a Probabilistic Working Memory Model for the Adaptation of Systems to
Alzheimer Patients. 25th User Modeling, Adaptation and Personnalization
Conference Adjunct, Bratislava, Jul. 2017 [4] ;

• Sguerra, B., Benamara, A., Benveniste, S., and Jouvelot, P. Adaptive Human-
Computer Interfaces to Working Memory Limitations Using MATCHS. IEEE
International Conference on Systems, Man, and Cybernetics (SMC) , Miyazaki,
Oct. 2018 [5] ;



1.4. PUBLICATIONS 25

• Sguerra, B., and Jouvelot, P. “An Unscented Hound for Working Mem-
ory” and the Cognitive Adaptation of User Interfaces. ACM User Mod-
eling, Adaptation and Personnalization Conference (UMAP), Larnaca, Jun.
2019 [6].
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Chapter 2

Introduction

“In general, we’re least aware of
what our minds do best.”

Marvin Minsky

In 1967, the American writer John M. Culkin said “We shape our tools and,
thereafter, our tools shape us.” In 2019, 52 years later, this couldn’t be more
true. We are currently living a technological revolution where technology advances
at an exponential pace. It has never been faster, or easier, to come up with
new tools and to put them in the hands of users. These new technological tools
are reshaping information channels and human connections, while reshaping jobs,
leisure, and consequently the meaning of being human altogether. An overflow
of new gadgets, smartphones, smartwatches, applications, chatbots and others,
washes over consumers on a daily basis. This tide of new tools eventually calls
forth for human adaptation, for a constant struggle to adapt in order not to become
obsolete and maintain a place in society. Since never before have so many new
tools been created at such a speed; never before has human life changed so quickly.

Most of this revolutionary technological development is blindsided by the goal
of being more precise, faster and more efficient. There are a number of reasons that
make these metrics worth of being pursued. Still, developers tend to forget to put
the human factor in the targeted loss function. However resilient human beings are,
being able to adapt to harsh environments and to learn how to deal with complex
interfaces, there are intrinsic limitations that are simply unavoidable, limitations
such as the human brain speed of processing, available attentional energy, sleep
patterns, memory capacity, learning speed and many others. These can be seen
as the brain’s hardware limitations.

Technologies intended for humans should be designed around humans, which
means that one has to consider the functioning of the human mind when designing
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a new tool, therefore considering and accounting for human limitations. This is a
way of ensuring humans can better adapt to and accept a new piece of technology,
a way of smoothing out the learning curve and ultimately rendering tools more
efficient. In his 2009 book “Sum: Forty Tales from the Afterlives”, the American
neuroscientist David Eagleman writes about a fictional race being plagued by
questions such as “why are we here?” or “what is the purpose of existence?” to
the point where they decided to invest for generations in the development of a
supercomputing machine devoted to finding such answers. However, the project
failed miserably, for the resulting machine was way too advanced to interact with
these beings. When developing a machine more complex and intelligent than you,
your ability to understand the machine starts to slip away. The most advanced
piece of technology can be underused if the user fails to properly interact with it,
for “a tool is only as good as its user”, as is often said.

The human mind limitations stand for the breaking point at which technolo-
gies are unable to stretch humanity any further. Designing interfaces that flash
the maximum amount of information that can be fit on a screen at the highest
speed possible is not desirable. And in fact, these are not metrics pursued when
developing a new tool. Instinctively, designers, being humans themselves, know
that there are cognitive limitations to the amount of information that can be pro-
cessed by users. Most good interfaces keep it simple; a minimalistic amount of
buttons and options displayed helps users focus attention and decide which com-
mand they ought to use. However, displaying the minimum amount of information
is also not always desirable. For instance, the “minimum” amount of information
is subjective. Depending on the user’s mastery over the subject concerning the
displayed data, he or she can have an easier or harder time pondering over differ-
ent amounts of data. For example, the game of Go consists of two players putting
white and black stones on a board. The standard Go board has a 19×19 grid, and
at every intersection a stone can be placed. Since there are 3 possible states for
every intersection (empty, black or white), the number of possible configurations
of the board is 3361 ≈ 1.7 × 10172 (not every configuration is possible due to the
rules of the game; John Tromp determined that there are about 2.08× 10170 legal
configurations [2]). This incredible amount of possible configurations is one of
the reasons machines had a hard time beating Go players until Google’s AlphaGo
showed up in 2016. However, advanced Go players can play a variant of the game
called one-color Go, where players use stones of the same color, meaning that the
players have to remember which stone is which by remembering the progression of
the game as a whole. This impressive feat can appear impossible for a beginner,
but it just goes to show how the level of mastery affects the perception of complex
information.

Finding the right balance between how demanding and complex a interface is



2.1. GOAL 29

and how the user perceives such complexity may be the key to extend human and
technology performance to the limit. This call for the continuous adaptation of
the communication channels between humans and machines. By integrating inter-
faces with a deep knowledge of how the human mind functions, technology could
compensate human limitations, facilitating learning and increasing accessibility.
However, not only serving as a crutch for the mind, but by a steady adaptation of
systems while accounting for human learning, a new technology, once assimilated,
could continuously push human performance by compensating limitations where
they appear, yet challenging areas where the user shows proficiency. This means
that our tools interfaces should be shaped by the function of the mind. Designing
of new tools and their interfaces ought to be centered around these limits and with
a deep knowledge of how we “work”, as human beings. This could be a key factor
in this data-driven era, enabling new technologies to change us, however, not by
crashing against users but by guiding them.

2.1 Goal
The goal of this work is to explore the possible ways of adapting computer systems
to the way humans process information. It is specially concerned with the adap-
tation of user interfaces (UI) to the limits of the human Working Memory (WM).
WM is the part of human cognition responsible for the storing and processing of
verbal and visual information. It has been recognized as a major bottleneck in
human processing capability. Therefore, in more precise terms, the goal of this
thesis is to ponder over the possibilities of rendering computer systems aware and
capable of compensating users’ WM limitations.

One can then define four steps in order to perform the appropriate adaptation
(based on the methodology of [3]):

1. infer the user’s capacity limitation;

2. identify the potential impact on performance;

3. select a compensatory strategy;

4. implement this strategy in the terms of the current context.

These steps, specially steps 1 and 2, are the main challenges addressed in this work.
Since cognitive limitations are not easily measurable (other than by performing
specific and very constrained tests), one needs to be able to infer these limitations
from the user’s interaction with a system. The assessment of the user’s state
(whether cognitive, physical, personality-specific or affective) is one of the core
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functionalities that must be addressed by effective user modeling and adaptation
systems [3].

In this context, adaptation requires the system to have inherent knowledge of
how a limited capacity impacts performance, and how an action could compensate
such a limitation. In order to do so, a system needs to go beyond the observational
knowledge linking some inputted parameters to the observed output that tradi-
tional Machine-Learning (ML) techniques might provide. Supervised ML-based
technologies lack flexibility, they are limited by the amount of data in the training
set. Logically, providing the system with a comprehensive picture of all the pos-
sible different scenarios it might encounter, would compensate for this rigidness.
However it would call for a huge amount of data. The use of a model based on
understanding allows one to go beyond previous collected data and deal with cases
not yet encountered.

Such a system needs a model of the underlying causal processes involved in the
limited capacities impacting performance. Models, of various levels of abstraction,
stand for simplifications of a system that serve as a limited explanation of some of
the many mechanisms it is composed of and that work together. Models can differ
in level of complexity and reliability, yet they represent the understanding one has
about a phenomenon; it can come in the form of a theory or, in some cases, a law.
Having a causal model of how capacity limitations impact performance allows the
prediction of how the inferred capacity affects performance as well as the selection
of adequate compensatory measures.

The main objective of this work is, therefore, to explore efficient methods to
embed a computer system with a model of human WM in order to enable UI
adaptation to users’ WM limitations.

2.2 Contributions
This work includes five major contributions:

• Memory Adaptation Through Cognitive Handling Simulation (MATCHS), a
new framework for the dynamic modeling, tracking and adaption of tasks,
whose performance are WM-dependent, to the perceived WM limitations;

• An Unscented Hound for Working Memory (AUHWM), an extension of
MATCHS, expanding its capabilities so that to enable real-time modeling
and tracking human WM performance, which uses deterministic model of
working memory and Unscented Kalman filtering;

• an experimental evaluation of MATCHS’ and AUHWM’s ability to track
WM capacity, using data collected from the visual memory game Match2s
that we designed and implemented;
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• a new AUHWM-based framework for automatic UI task adaptation, using
tracked WM parameters as estimates for future performance, and its evalu-
ation;

• ideas and indications for the future development of AUHWM-based tech-
nologies

2.3 Organization
This manuscript is organized in 9 chapters, with Chapter 2 serving as a general
introduction to the main concerns of this manuscript.

Chapter 3 presents in its first section the fundamentals of human WM and
Cognitive Load Theory, serving as a basis for the reader not familiar with these
concepts as well as a highlight of the main notions covered in the rest of the docu-
ment. In a second section, Chapter 3 describes the main interests behind making
computer systems aware to WM limitations, introducing the main motivation be-
hind this work.

The first section of Chapter 4 presents a general survey of the different methods
found in the literature for adapting computer systems to cognitive limitations.
The second part of Chapter 4 is concerned with the presentation, in depth, of
two computational models of WM that allow one to simulate the evolution of the
information stored in WM.

Chapter 5 introduces and describe MATCHS, which is our first framework
for the modeling of users’ WM capacity as well as the corresponding adaptation
strategy. Later in the same chapter, the reader is introduced to our visual WM
game Match2s; which is used for the experimental validation of MATCHS, and
later on also for AUHWM. The chapter ends with the presentation of the obtained
results and a discussion about the framework performance and limitations.

In Chapter 6, the reader is introduced to AUHWM, an extension of MATCHS
core ideas allowing one to model the user’s WM capacity in real time. AUHWM is
a framework for tracking the user’s cognitive capacity and employs an Unscented
Kalman Filtering process as one of its core components. Since this type of filtering
may not be familiar to all readers, this chapter also presents the theoretical basis
of the Kalman Filter. The chapter ends with an experimental validation and a
discussion about AUHWM modeling performance using the data collected with
the game Match2s.

Chapter 7 goes beyond AUHWM modeling capabilities and present a frame-
work that, by taking advantage of AUHWM, is capable of adapting a given UI to
a user’s tracked cognitive capacity. This chapter introduces the framework to the
reader and discusses its performance using, again, the Match2s data.
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Lastly, Chapter 8 is dedicated to the conclusions, recommendations and per-
spectives for current and future work.

2.4 Published Work
The work discussed in this thesis resulted in the following publications:

• Sguerra, B., Jouvelot, P., and Benveniste, S. Oblivion Tracking: Towards
a Probabilistic Working Memory Model for the Adaptation of Systems to
Alzheimer Patients. 25th User Modeling, Adaptation and Personnalization
Conference Adjunct, Bratislava, Jul. 2017 [4];

• Sguerra, B., Benamara, A., Benveniste, S., and Jouvelot, P. Adaptive Human-
Computer Interfaces to Working Memory Limitations Using MATCHS. IEEE
International Conference on Systems, Man, and Cybernetics (SMC) , Miyazaki,
Oct. 2018 [5];

• Sguerra, B., and Jouvelot, P. “An Unscented Hound for Working Mem-
ory” and the Cognitive Adaptation of User Interfaces. ACM User Mod-
eling, Adaptation and Personnalization Conference (UMAP), Larnaca, Jun.
2019 [6].



Chapter 3

Motivation

Ce chapitre sert de base au lecteur non initié, fournissant les principes fondamen-
taux de la mémoire de travail (WM) humaine ainsi que la théorie de la charge
cognitive associée. La section 3.1 présente la vue théorique de la WM, soulignant
également certains des éléments clés qui font de la WM un goulot d’étranglement
dans la capacité humaine de traitement d’information. La section 3.2 s’intéresse
à la présentation de la théorie de la charge cognitive, qui introduit ce concept de
charge cognitive et la manière dont elle est liée à la WM et à ses limites. Le chapitre
se termine dans la section 3.3, qui présente trois domaines de systèmes automa-
tisés qui pourraient bénéficier d’une prise de conscience immédiate des ressources
WM de l’utilisateur, servant ainsi de motivation à ce travail.

This chapter serves as a basis for the non-initiated reader, providing the funda-
mentals of human Working Memory (WM) as well as the related Cognitive Load
Theory. Section 3.1 presents the theoretical view of WM, also highlighting some
of the key elements that make WM a bottleneck in human processing capacity.
Section 3.2 is concerned with presenting Cognitive Load Theory, which elaborates
upon the concept of cognitive load and how it is linked to WM and its limits. The
chapter ends in Section 3.3, which presents three areas of automatized systems
that could profit from ready awareness to user’s WM resources, therefore serving
as the motivation of this work.

3.1 Working Memory
When considering human cognitive limitations, WM is very frequently highlighted.
Cognitive psychology theorizes WM as the underlying mechanism responsible for
the maintenance of task-related information during the performance of cognitive
tasks [7]. At the most fundamental level, WM has been considered the most
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significant achievement of human mental evolution [7]. Moreover, WM limitations
have been recognized, since the onset of cognitive research [8], as a major bottleneck
in human information processing.

WM is the part of the human cognition responsible for conscious short-term
storage and recall of information. It is essential to all of us to successfully perform
complex cognitive functions, from having conversations, driving in heavy traffic,
cooking, calculating change, reading to general problem solving. Acquisition of new
information, such as a list-learning task, is also an example of a complex cognitive
activity that requires the resources of WM [9]. Consequently, WM deficits have
been linked to children with learning complications [10] and difficulties in language
acquisition [11] and many other disorders and disabilities.

The term “working memory” was chosen to emphasize the functional role of the
system, rather than simply its storage capacity (however, in the body of research
concerned with WM, there is not always a clear distinction between WM and
short-term memory [7]).

There are a number of metaphors that try to explain WM, such as the “box”
metaphor, the “workspace” or “blackboard” metaphor, the “mental energy” or
“resources” metaphor, and the “juggling” metaphor [7]. If we view human memory
as a huge and dark cavernous library, WM would be the reading light on the
desk. It is the workplace were information is pondered; it is where information is
considered in the mind.

The body of research in cognitive psychology and neuroscience regarding WM
modeling is vast, including for instance works by Atkinson and Shiffrin [12], Badde-
ley [13], Just and Carpenter [14] and Anderson [15], among others. This WM liter-
ature introduces many, and somewhat conflicting, proposals regarding the nature
of WM, its functioning and its role in the accomplishment of tasks [7]. The most
widely accepted model of human WM was proposed by Baddeley and Hitch [13],
outlined below.

3.1.1 The Homunculus
Baddley and Hitch’s first proposed model is a multi-component model (see 3.1)
that includes two slave information-holding systems: the phonological loop, for
verbal information, and the visuospatial sketchpad, for visual and spatial infor-
mation. A third component, called Central Executive, is described as the most
complex part of the WM. All three of these model’s components have limited
capacity, although the nature of such limitations differ.

• Phonological loop The phonological loop is assumed capable of storing
speech-based and possibly purely acoustic information in a temporary store.
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Figure 3.1: Original Baddley and Hitch’s WM model.

It comprises not only the phonological storage system, but also a rehearsal
mechanism.

• Visual sketchpad The visual sketchpad performs a similar function as the
phonological loop, however for both visual and spatial information storage.

• Central executive The central executive acts as an attentional controller
that (1) processes information, (2) focuses, switches and divides attention
and (3) links with long-term memory (LTM). Baddeley describes this com-
ponent as virtually a homunculus, a “little man in the head, capable of
doing all the clever things that were outside the competence of the two
subsystems”[16].

In this initial model, Baddley and Hitch concentrated on the two first sub-
systems since they offer a more trackable challenge, leaving the precise nature of
the central executive unspecified. Later on, Baddley proposed a revised version
of this model [17] and introduces an additional subsystem, the Episodic Buffer.
This subsystem is a more general integrated storage system that provides addi-
tional memory to manage. It is a buffer that holds episodes, or “chunks”, of
multidimensional code [16]. Baddley suggests the buffer’s capacity to be limited
to 4 chunks, agreeing there with Cowan [18]. This system forms an interface be-
tween the three working memory subsystems and long-term memory. It serves
as a binding mechanism that allows perceptual information and information from
other subsystems and from long-term memory to be integrated into a limited
number of episodes [19] (hence the “multidimensional code”). Another signifi-
cant difference in this model is the addition of a connection between a series of
“fluid” systems, which require only temporary activation, and long-term memory,
representing more permanent crystallized skills and knowledge.
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Figure 3.2: Updated Baddley and Hitch’s WM model.

3.1.2 Capacity
The capacity of WM is known to be extremely limited and is one of the strongest
factors that impact individual differences in cognitive abilities [20], as WM capacity
measures can be (and have been) used to predict performance in a series of complex
daily cognitive tasks.

There are a number of models of WM capacity. Cowan [18] describes WM as
having a limited number of slots (or chunks) where information is stored and, if
there is more information than available slots, it will be lost. At first Miller [21] es-
timated the human capacity as being about 7 ± 2 items at a time, while Cowan [18]
estimated that value to be about 4 items. This apparent contradiction could be
explained by the nature of the information. When simple information is presented,
the limits of WM could go up to around seven items activated in the same time;
however, when presented with complex information, the limit tends to be much
lower. Therefore one can theorize that WM limitation is closely related to the
notion of limited mental resources. Such limited resources would be a commodity
that could be distributed between information in order to attain fixation.

There are mostly two classes of WM: item-based and resource-based mod-
els [20].

• Item-based models ignore the complex structure of items and their respective
parameters and treat each one as a “unit of memory”. In this class, the same
amount of memory space is allocated to every item, and partial storage does
not occur.

• Resource-based models consider the number of properties, called resources
or features, of an item. In fact, properties such as the number of parameters
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are primary to such models. Complex items may take on more memory space
than simple items, and partial storage may occur.

.
Following an item-based approach, Pashler [22] suggested a probabilistic way

to estimate a person’s WM capacity. In an experiment where n items are presented
to the subject, if the person’s WM capacity k is such that k ≥ n, then the person
will remember all the items, and the probability D that one item remains stored
into the WM is 1. However, if k < n, Pashler assumes a uniform distribution,
and D = k

n
. As a whole, the subject stores an item in his WM with probability

D = min( k
n
, 1). This is the most common method of estimating working memory

capacity and the basis of tests that experimentally assess users’ memory span (the
number of information one can store in their WM) such as the Corsi test [23],
sequence learning tests and many others.

Of course, the behavior of WM varies along various factors. Besides capacity,
time is obviously an important factor; the data present in the WM storage ar-
eas [24] can be recovered during a finite amount of time with little loss in either
quantity or quality [25]. But, after this time, the probability that an item remains
in memory declines.

3.1.3 Attention
Another key ingredient is attention [26]. One definition of attention is the selecting
of a stimulus in detriment of others [27]. In Baddley and Hitch’s initial model, the
central executive, the most complex of its components, was responsible for man-
aging and allocating attention between the two slave systems. Therefore, it should
not be surprising that the concepts of attention and WM are widely acknowledged
as being related [27]. For instance, in Anderson’s ACT-R theory [28], attention is
seen as a limited resource that “activates” information in declarative memory; this
activated information can be seen as an abstraction of WM (the reader is invited
to read Section 4.2.1 for a detailed discussion). This close relationship between
these two concepts means that attention and WM are known to interact during
manipulation and encoding of information, often overlapping each other [27]. If
one were to sustain the meaning of attention as the selection of some stimuli in
detriment of others, this filtering view of attention clearly separates the concepts
of WM and attention. However, if one is to consider the existence of attentional re-
sources, such as in ACT-R, then the division between these two concepts becomes
rather blurry [7].

It is not the goal of this work to debate if attention and WM are the same
construct or not. What is important here is, for the reader, to be aware that
attention is a key factor that can affect WM. Fluctuations in attention can easily
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influence WM performance; for instance, if one directs the subject’s attention
away from the stimuli at the time of their presentation, one clearly observes the
impact of such an action on the WM capacity [18]. Therefore, attention could be
seen as a key factor in determining the success of encoding information. However,
some theories sustain that attention actually plays a role in the post-processing
of the perceived stimuli [27]. Although the role of attention during encoding of
information may vary, it can be argued that it serves as the gateway for information
storage in WM.

3.1.4 Motivation
Motivation is a well known and documented influential factor in WM performance
outcome. For instance, in [29], motivation was found to be the biggest cause of
daily intrapersonal WM performance variation in a study performed throughout
100 days. Pochon et al. in [30] used fMRI techniques to study the brain activation
areas while subjects performed WM tasks with different levels of complexity and
monetary reward. They found a correlation between the increase in monetary
reward and an increased activation in the brain areas related to WM. Making
motivation another key factor regulating WM performance.

3.2 Cognitive Load
Cognitive Load Theory (CLT) [31] is concerned with how mental resources are
allocated to (or focused on) different tasks. CLT posits that a person has a finite
amount of available cognitive resources, and that different tasks demand different
cognitive loads in order to be accomplished. Cognitive load is then considered as
a metrics used in the modeling and prediction of human cognition-related perfor-
mance on different sets of intellectual tasks [32].

3.2.1 Cognitive Load Theory
Back in the early 90’s, Sweller used advances in cognitive sciences to explain dif-
ferences in students’ performance on tasks linked to learning and problem solving.
Students whose mental resources were burdened with external activities such as
problem-solving tasks had less attention to focus on tasks important to learning,
such as schema acquisition. The cognitive load of handling information refer-
ring to the problem-solving part of the task, such as the relationship between
problem-solving operators, could be so demanding that it resulted in little cog-
nitive resources left for learning. This could explain why students could perform
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well when solving different problems and yet remain oblivious to the problem’s
essential structure [31].

CLT was also used to derive techniques for designing how instructions ought
to be presented to students, by considering the limited human processing capac-
ity [33]. This can be attained by considering two kinds of observed cognitive loads:
extraneous and intrinsic. Extraneous loads are under complete control of the in-
structors, as they relate to how information is presented and what are the activities
students are required to do. Intrinsic load refers to the structure and complexity
of new information. In order to adapt instructions to the intrinsic load of a given
knowledge, one ought to consider each student’s level of mastery when presenting
new information. The more familiar a student is with the subject, the easier it is
for the student to encode new information related to already acquired knowledge.
For example, someone who is proficient in English has little trouble learning a new
sentence. However, the same task, when presented to someone who is learning how
to read and has to focus on each individual letter at a time, becomes dramatically
more difficult.

The notion of cognitive load is closely related to that of WM. CLT is based on
several assumptions, one of which is the existence of a limited-processing capacity
in human cognition, which closely relates to the limitations of WM. The total
cognitive load (extraneous plus intrinsic) of a given task is applied on the storing
subsystems that compose WM. If the total cognitive charge corresponds to the
student’s WM capacity, then the student will find herself under a high cognitive
load or even information overload. The difference between a user’s WM capacity
and the cognitive load of a given task equals the amount of attentional resources
that can (we say “can”, for those resources are not necessarily used, since learning
involves effort and thus depends on the student’s motivation) be used for learn-
ing [34], defining a third and last form of cognitive load, the germane or effective
cognitive load [35]. This load, unlike the others, enhance learning, as it corre-
sponds to the cognitive resources left that are devoted to schema acquisition and
automation.

3.2.2 Assessing Cognitive Load
In most of the CLT literature, cognitive load is regarded as a theoretical construct
describing an internal processing of information that cannot be observed. How-
ever, if one is to use CLT to drive the design of some instructional material (be
it computational or not), one has to assess some measure of the imposed cogni-
tive load. In [34], the various presented methods for assessing cognitive load are
classified along two dimensions: objectivity and causal relation. The first dimen-
sion, objectivity, refers to the method of measurement being based on objective
observations such as actual performance or physiological data, or being based on
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subjective self-reported data, such as questionnaires. The second dimension, causal
relation, corresponds to the link (direct or indirect) between the observation and
the attribute of interest. For instance, questionnaires about self-reported difficulty
during a task are subjective in the first dimension and direct in the causal rela-
tion dimension, for difficulty is directed related to the imposed cognitive charge.
Measuring task performance outcome is a indirect-objective method; indeed, while
performance is objective, measure-wise, it is an indirect implication of the cogni-
tive load, since performance deterioration can be related to a less than optimal
task-related learning process that implies a high cognitive load.

The dual-task paradigm is a direct-objective method for assessing cognitive
load. The dual-task paradigm was primarily employed in WM research, aimed at
examining Baddley’s central executive system [36]. Recall that Baddley’s central
executive is responsible for attentional control, focusing and switching attention
during the performance of a task. The central executive is thought to have limited
capacity, therefore, when performing two tasks in close sequence, the performance
of the second task is impacted by the load imposed by the first one, at least as long
as both tasks require the same type of mental resources. The dual-task paradigm,
therefore, consists of a subject performing two tasks in sequence. The variable load
applied by an initial task results in more or less available resources for consecutive
tasks and, in consequence, different performances arise.

Brünken et al. [34] present the dual-task paradigm as a interesting way of
assessing cognitive load during Multimedia Learning. In Multimedia Learning,
the extraneous load imposed by the way information is displayed can be measured
by having the learners performing secondary tasks; their difference in performance
should reflect how taxing the extraneous load was. They show the effectiveness
of using secondary tasks, such as a visual-monitoring task, to assess the total
cognitive load, as the effects of cognitive overload degrading performance were
found in every single participant of their experiments.

3.3 Making Computer Systems Aware of WM
Limitations

In the previous sections, the concepts of WM and cognitive load were presented.
It should be clear by now that WM limitations represent a major bottleneck for
human information processing. Therefore, taking WM limitations in consideration
when designing user interfaces (UI) should be nothing less than logical. UIs are
the communication channel through which humans and machines communicate.
They are everywhere: ATMs, airports, fast food chains, museums, etc. Whenever
information is being conveyed through some automated channel, an user interface
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Figure 3.3: Screenshot [1] of Ansys, a software for engineering simulation, showing
the great amount of possible commands an user has to consider when modeling a
mechanical structure.

arises. The next three subsections highlight the interest, regarding three different
areas, to provide computer systems with awareness to the user’s WM limitations
and the ability to adapt their UIs to compensate such limitations.

3.3.1 Tutoring Systems
Virtually any new software a user wants to be proficient on has a learning curve.
Figure 3.3 depicts a screenshot from the Ansys software for engineering simulation.
Any novice learner should feel threatened by the amount of windows and command
options, which (in some cases) may cause discouragement. A software such as
Ansys, which enables the user to perform diverse numeric calculations and model
the effects of heat and strength in complex mechanical models by the pressing
of a single button, is a technological marvel. Humans have come a long way in
developing these software packages in order to serve as tools for building faster and
more reliable technologies, and this is a grand accomplishment. However, all these
options and commands create an extraneous cognitive information overcharge that
can and should be dealt with.

Paper and pencil are tools very much needed to compensate WM limitations.
We teach children to add numbers through columnar addition, by writing down
carry-overs. Having a symbolic representation on the paper in front of learners
removes some of the load in WM. Young children need to consider each number
individually when performing addition, meaning the intrinsic load of storing a
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double-digit number in WM is pretty elevated. As the level of mastery over num-
ber manipulation increases, most adults are able to solve simple additions without
external aid. There is no reason why computer systems shouldn’t also consider this
bottleneck of information. Moreover, making UI sensitive to cognitive loads, both
extraneous and intrinsic, would personalize the learning rate in these environments
by adjusting the degree of complexity to both the user’s individual WM limita-
tions and level of mastery, resulting in more resources dedicated for the germane
cognitive load and therefore, a smoother learning curve.

For instance, a framework capable of assessing a user’s cognitive load when deal-
ing with a computer application could be used to perform scaffolding in intelligent
tutoring systems [37] and adapt the way information is conveyed. Instructional
scaffolding are a series of technical method where support is given to students
when dealing with new concepts, relieving some of the corresponding cognitive
burden. The user’s performance, being measured by reaction time or accuracy,
could serve as an indirect measure of the cognitive load imposed by the system,
but also of the user’s mastery of the knowledge being tutored. Following CLT, a
new user whose performance is significantly better than the average might be fa-
miliar with the concepts being introduced or have a high WM capacity. Therefore,
the tutoring system could increase the complexity of the information presented.
Conversely, a novice learner, who is struggling with the different concepts, would
be presented with a simpler interface, problems or even external support, ensuring
the learner has enough available cognitive resources left for the germane load re-
lated to learning. Consequently, complex applications such as Photoshop or CAD
software, which are known to be complex for novice users, could be personalized
by increasing the complexity and amount of information presented according to
the user’s competence and/or cognitive capacity.

3.3.2 Assistive Technologies
Not only in tutoring systems are limitations in WM a key factor. There is evidence
that WM is particularly impaired in people suffering from Alzheimer’s disease
(AD) [38], with the progression of the disease resulting in a smaller WM capacity.
AD is the most common form of dementia, accounting for 50% to 70% of cases (it is
estimated that, by 2050, there will be over 100 million people living with AD [39]).
Dementiae are chronic neurodegenerative diseases that usually start slowly and
worsen with time. They may cause problems with language, disorientation, mood
swings, loss of motivation and behavioral issues. As a patient’s condition declines,
managing common daily tasks becomes increasingly difficult. In the beginning,
only the more complex Instrumental Activities of Daily Living (IADL) [40], such
as cooking, managing household finances and shopping, are affected. Then, as
the disease progresses, core Activities of Daily Living [41] (ADL), such as washing
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hands or toileting, are impaired too, placing an even greater burden on caregivers,
subjecting them to eventual physical and mental disorders [39].

Due to this dire scenario, Assistive Technologies for dementia represent a very
important and rapidly developing field of research: assistive devices can facilitate
independent living for patients and reduce caregiver burden, enhancing quality of
life for both and helping to restrain care costs that are threatening economies,
especially in the most developed countries.

Since AD is a progressive disease in which the symptoms usually worsen over
time, a system designed for patient care must be able to adapt to the user’s
current state. For instance, as the disease progresses, patients may have trouble
communicating or even understanding lengthy requests [42]. Therefore, caregivers
are required to speak slower or use short sentences with simple words. However,
if one designs an assistive system that communicates through verbal cues, a one-
for-all solution that uses only slow and short sentences might be seen as boring
and unattractive to patients with higher cognitive capabilities. Depending on the
progress of the disease, some patients may also need some extra time to process
uttered questions before answering a request [42]. Therefore, if an assistive system
does not consider the patient-dependent response time and keeps asking the same
query over and over again, assuming that the person just did not understand, then
any kind of useful interaction with the patient becomes impossible.

Making assistive device technologies sensitive to the patient’s cognitive capaci-
ties may be a way to render these systems more receptive for people suffering from
dementia. Being able to automatically adapt a cognitively demanding task to the
available WM capacity is a way to help ensure its accomplishment. Moreover,
adjusting UIs to the user’s cognitive capacities could be a way to render computer
interfaces more accessible to the elderly population suffering from dementia-like
diseases. This would facilitate IADLs for patients with up to moderate dementia,
restoring some of the patient’s capability to live independently as well as relieving
the burden of caregivers.

Most importantly here, a system providing this kind of automatic adaptation
could be integrated in various assistive technologies to autonomously and con-
tinuously tailor the user interfaces of assistive devices, representing a significant
contribution in the area of assistive technologies as it has the potential to be of
great benefit to individuals suffering from memory deficits. It could also provide
data corresponding to the user’s evolving cognitive capacities. Beyond its clear
relevance in the design of simpler user interfaces for computer-assisted daily-life
activities, such information could be also used by caregivers as signals suggesting
the possibly setting-in of a neurodegenerative disease.
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3.3.3 Systems Sensitive to WM Limitations
One could consider any system where information is to be considered and decisions
are to be made to be sensitive to cognitive limitations, as human available cognitive
resources might fluctuate even during the time span of a single interaction with a
system. In particular, WM becomes specially impaired in stressful situations [43].
Stress and anxiety have been proven to influence performance in processing speed,
to reduce WM capacity and selective attention [44] and to be responsible for the
deterioration of the quality of decision making. During stressful situations, where
individuals are asked to make high-stakes decisions, WM is a crucial element.

There are numerous cases where, in stressful situations, human error was re-
sponsible for major accidents. One well-known and documented example is the
1988 railway accident at Gare de Lyon in Paris. What is considered the worst
railway accident of the Paris region is due to human factor errors. A train conduc-
tor, coming from the French city of Melun, was under pressure to arrive in time
at his destination. Due to the stressful situation, the conductor made a series of
mistakes that resulted on his train hitting another one that was waiting for depar-
ture at Gare de Lyon in Paris, killing 56 people and injuring 57. The stress of the
situation made the conductor oblivious to his knowledge of how to stop the train,
for instance by forgetting and ignoring the electric brakes.

Another well-known accident is the Air France Flight 447 from Rio de Janeiro
to Paris [45]. What started with a trivial aviation problem – frozen Pitot tubes
failing to give the proper speed of the aircraft – resulted in 228 people dying. The
conversation between the pilots recovered from the airplane’s black box shows the
series of mistakes and overlooks they made, resulting in the fatal crash. In his book
“Smarter Faster Better: The Secrets of Being Productive in Life and Business”,
Charles Duhigg uses the Air France Flight 447 as an example to discuss what is
called cognitive funneling and the importance of mental models. Cognitive fun-
neling, or attentional funneling, stands for a state where attention is focused on
one stimulus for more than the optimal time, neglecting other sources of infor-
mation [46]. The pilots of Flight 447, due to the stress of the situation, focused
on what source of information was right in front of them, and where incapable of
taking a step back to analyze the situation as a whole.

Accidents such as the ones described above could be prevented by accessing
the stress levels of the conductors and simplifying the user interface. The cockpit
of the Airbus A330 of Flight 447 was incredibly sophisticated; it had very few
screens in order to prevent distractions. However, even in such a minimalist con-
text, attention funneling reduced the pilots capacities for reasoning and processing
information to the point where they stood oblivious to what was happening even
as the waves of the Atlantic Ocean were rapidly approaching the cockpit window.

Stressful situations and high-stakes decisions are made everyday, not only by
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airplane pilots and train conductors, but also by a multitude of drivers. In these
situations, an intelligent system, capable of assessing the pilot’s stress level or
inferring his available cognitive capacity, could add some flexibility to the pilot’s
actions, eventually taking control over if the pilot is deemed incapable of making
reliable decisions (in panic situations, for example). Moreover, knowing how taxing
in cognitive capacity a task is would allow the system’s UI, in stressful situations,
to be simplified, providing the user with only the absolute necessary information
to the task at hand. One could think of simplifying the verbal instructions given
by GPS systems or selecting which information to display.
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Chapter 4

Adaptation and Modeling

Ce chapitre est consacré, dans une première partie (Section 4.1), à une étude des
différentes méthodes d’évaluation de la charge de travail cognitive et d’adaptation
des systèmes informatiques à celle-ci. La deuxième partie concerne la modélisation
informatique de la WM humaine, les sections 4.2.1 et 4.2.2 présentant, en pro-
fondeur, deux modèles informatiques différents, à base mathématique, de la WM
humaine.

This chapter is dedicated in a first part (Section 4.1) to a survey of the different
methods for assessing cognitive workload and adapting computer systems to it.
The second part is concerned with the computational modeling of human WM,
with Sections 4.2.1 and 4.2.2 presenting, in depth, two different computational
models, with a mathematical basis, of human WM.

4.1 Adapting HCI to Cognitive Limitations
A great body of research is concerned with the development of computer systems
around human cognitive limitations. Designing computer interfaces around user
models gained much attention since the late 70’s due to the greater diffusion of
computer systems [47]. The area of human-centered design technologies has a
multitude of different goals, yet they are based on the same principles: designing
technologies while considering the way the human mind functions and its limi-
tations. Among the different solutions encountered, most of them are based on
theoretical models, i.e., technologies employing models of (or part of) the human
behavior used to drive the functioning of the system. However with the recent
“AI renaissance” [48] and its sister discipline of ML, more and more data-based
adaptation technologies are being developed by academics and companies around
the world.

47
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Different goals justify the inclusion of human models in computational systems.
One could consider, for instance, studies such as [49], which cover the optimiza-
tion of human learning, the focus of many researchers and companies that have
developed adaptive educational methods for tutoring systems. Corbett and Ander-
son describe in [49] a Bayesian approach to infer student learning called Bayesian
Knowledge tracing (BKT); this is still one of the most popular approaches to
access and predict student performance. BKT is based on Anderson’s cognitive
architecture ACT-R [28] (more on ACT-R later in this chapter) concerning skill-
knowledge acquisition and has sprung different solutions for tutoring systems, such
as [50] where a dynamic Bayesian network is employed to improve BKT’s student
model by adding a layer of skill topology, or [51], where once again a cognitive
tutor based on Anderson’s ACT-R and BKT is used to help students employ self-
explanation as a metacognitive strategy for learning.

BKT methods develop models of student learning in order to personalize tutor-
ing systems. Students are presented the material for skill acquisition hierarchically
and have their proficiency assessed through performance measurements on prob-
lems. The work developed in this document, however, is concerned with more
general methods of adapting interfaces and tasks to cognitive limitations, without
prior total modeling of the task itself.

Closer to our problematic is the adaptation of computer systems to hu-
man limited cognitive resources. This research area is mainly focused on CLT
and assessing rather than adapting to cognitive load, as the literature about
how systems can react to the assessed cognitive load is by far scarcier than the
literature on methods for inferring it [52].

However, in order to adapt, one first needs to infer the user’s capacity or the
cognitive load a task imposes (the reader is invited to recall the order of the four
steps for adaptation, in Section 2.1). Excluding self-reported questionnaires (which
are not a great solution for real-time assessments), there are two main classes of
objective methods for measuring cognitive load: (1) sensor- or (2) performance-
based methods [34].

4.1.1 Sensor-based Cognitive Load Assessment
Cognitive load can be measured through diverse physiological sensors, enabling
a system to track cognitive mental workload in real time [52]. These include
sensors such as eye trackers [53], which monitor eye movements and also pupil
diatation. Pupillary response has long been known to be a reflection of mental
effort [54]; pupil dilatation, therefore, can serve as an assessment of brain activity
and measure cognitive load [55, 56]. Blink rate can also be employed to infer
cognitive workload, as it has been shown to be “one of the most effective measures
of mental workload” [57]. Following the classification on objectivity and causal
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relationship [34], these are indirect methods, for the measured attributes of interest
only reflect the cognitive workload on users.

Brain Computer Interfaces (BCI) are tools that provide the brain with other
communication channels than the normal ones, i.e., peripheral nerves and mus-
cles [58]. As the name implies, BCIs are ways for computers to assess brain ac-
tivity, be in the form of the brain’s electrical signals (Electroencephalography,
or EEG) [59, 60, 61] or changes in blood oxygenation (Functional Near-Infrared
Spectroscopy or fNRI) [62] (this work does not concern itself with invasive or semi-
invasive BCIs). Many BCIs are relatively cheap, easy to use and can serve as a
reliable method for direct assessment of cognitive load.

In the following paragraphs, we present different studies where the assessment
of cognitive load was performed through physiological sensors with the ultimate
goal of adapting computer systems, and discuss their relationship with our ap-
proach. For example, concerned with changes in available cognitive resources,
Tsiakas et al. [60] describe a system that monitors the user’s concentration and
adapts the task complexity in order to increase engagement and compliance. This
is a preliminary work dedicated to data collection and analysis to identify relevant
cues for the long-term goal of providing personalized training sessions. Tsiakas
et al. employ the commercially available Muse EEG-based headband1 to measure
brain activity and infer concentration. They employed an assistive robot to give
subjects feedback during the execution of a sequence-learning task (a WM task
that evaluates the subjects’ capacity of recalling a list of numbers, words or oth-
ers) and built a dataset referring to the brain waves obtained through the EEG as
well as data related to the task difficulty. Using the collected data they trained a
Random Forest to predict user performance. The results show that the selected
features are capable (in some measure) to predict user performance. They argue
that training the random forest with data corresponding to a single user or a clus-
ter of users could increase the classifier accuracy. This is a limitation that plagues
ML solutions, and that we want to avoid: the lack of flexibility, which restricts
the good performance to data patterns similar to the ones present in the training
set. In a follow-up study, Tsiakas et al. describe in [63] the design of a data-driven
Socially Assistive Robot system for personalized robot-assisted training. In this
work, interactive reinforcement learning is used to adapt the robot’s behavior to
users’ performance. Data corresponding to EEG signals, performance and engage-
ment is collected and analyzed in order to find clusters. These clusters of users
are then used to create simulation models and learn user-specific policies through
reinforcement learning, an approach that still suffer from the limitation mentioned
above.

Liu et al. in [57] propose a “cognitive pilot-aircraft interface” in order to enable

1https://choosemuse.com
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single-pilot operations. As has been stressed before, pilots are susceptible to a lot
of stress and cognitive load during flights, and this surcharge can result in errors or
even fatal accidents. This scenario is aggravated during solo flights, where a pilot
has to deal by herself with the many problems and decisions she encounters. In
order to compensate for this augmented cognitive load, the proposed interface is
capable of adapting itself, by taking over some demanding tasks for instance. The
proposed architecture contain 3 main modules: Sensing, Estimation and Reconfig-
uration. The Sensing module collects data from dedicated sensors such as heart,
respiratory and blink rates, pupil dilatation, EEG signals and others, as well as
data of the environmental and operational conditions of the flight. The Estima-
tion module classifies the collected data into cognitive load states as well as gives
estimations of the cognitive demand of the current mission-task. Finally, the third
module, Reconfiguration, takes input from the two previous modules and manages
task distribution between the pilot and the automatized system, adapts the UI by
regulating the amount of displayed information and gives out alerts. The proposed
adaptation system is equiped with parameterized mathematical models for esti-
mating the cognitive state and performance given the sensor data and two decision
tables that select the level of automation to compensate overcharged states. The
values of the parameters of the mathematical models come from the literature.
The study presents initial simulations that show the viability of the proposition.
Overall, the system is quite complex, making it difficult to be used without much
adaptation in other applications. In our work, we are interested in providing a
more general approach to the automatic modeling and personalization of inter-
faces, without the tedious process of parameter optimization or of modeling of
each task individually. Nonetheless the work presented by Liu et al. is promising
and the goal a very important one.

Still focused on the mental workload of pilots, the authors in [62] show that,
by using Functional Near-Infrared (fNIR) spectroscopy, it is possible to assess
the cognitive charge of a task as well as the perceived expertise of the subject.
fNIR is a relativity new brain computer interface, where a number of infrared
sensors detect changes in the blood oxygenation, giving researchers a picture of
cerebral hemodynamic response. The study proposes two experiments, one where
subjects are presented to various WM loads and a second one, where subjects
control an unmanned air vehicle through a simulator. The reported results show
that fNRI can be used to sense cognitive workloads and expertise. This study
posits that expertise can be seen as an indirect measure of mental workload, for, as
the authors themselves put it, “expertise tends to be associated with overall lower
brain activity relative to novices”. Compared to our approach, this work addresses
the assessment of a personalized mental workload rather the adaptation of tasks;
however, the motivation behind it is to ultimately develop learning environments
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able to personalize the training regiment to cognitive charge.
Authors in [64] describe their concept of an architecture for the automatic adap-

tation of the interface of a ground control station in order to reduce the cognitive
load on humans commanding and operating multiple drones, or Unmanned Aerial
Vehicles (UAV), at once. In situations where a single pilot is in control of multiple
remote-controlled UAVs, the proposed “Cognitive Human-Machine Interfaces and
Interactions” (or CHMI2) framework intends to reduce the workload by switching
the level of automation or by defining the level of detail presented in displayed in-
formation, as well as emitting alerts. This again is a preliminary work. A sensing
module is responsible for collecting data regarding the user’s physiological condi-
tion, i.e., cardiovascular (heart rate and pressure), eye (gaze, blink, pupillometry),
brain signals (EEG and fNIR) and the pilot’s control inputs (mouse positions and
clicks) as well as external data (environmental and mission conditions). This data
is then processed through ML algorithms in a classification module in order to es-
timate the pilot’s cognitive state and the current task cognitive workload demand.
Finally the pilot and mission states are inputted into the adaptation module re-
sponsible for selecting compensating measures. The presented framework is very
similar to the one of Liu et al., described in [57] and discussed above.

Physiological measures are a reliable way that has long been used for inferring
cognitive load. In situations such as the ones discussed above (especially in con-
texts where human error can have fatal consequences), monitoring different bodily
responses might be a way of assuring that the user is not under too high a cogni-
tive load and that his/her current capacity for considering information and taking
adequate actions is nominal. However, if one’s goal is to develop general adaptive
methods that can be embedded in many different applications, the use of brain
sensing devices isn’t optimal. Strapping a number of sensors to users every time
they interact with the system is obviously not practical, as it is time consuming,
has somewhat invasive impacts and augments the solution’s cost. This work will
therefore focus on the assessment of WM capacity through non-physiological data.

4.1.2 Performance-based Cognitive Load Assessment
Performance-based methods use the user’s performance to infer his/her cognitive
load. This method is divided in two classes: primary task measurement, which
considers the performance in the current task, and methods employing the dual-
task paradigm [35]. In the context of measuring cognitive load, performance is
typically inferred through measures of reaction time, accuracy, and error rate.
However, it can also include memory retrieval time and correctness, time esti-
mation, rate of physical activity and speech, among others [65]. This family of
methods are non-invasive and arguably can be adapted to any computer applica-
tion. The rest of this section focuses on relevant studies that infer cognitive load
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from performance-based data.
Fan et al. [66], for instance, used data related to the performance of a secondary

task (using the dual-task paradigm) as an observable signal to learn a hidden
Markov model (HMM). This HMM correlates the observed signal to hidden states
corresponding to different levels of cognitive load, ranging from “negligible” to
“overwhelmed”. The learned HMM uses data referring to the user’s reaction time,
accuracy and error signal in order to infer the hidden cognitive load state, therefore
providing non-obtrusive measurements of cognitive load. Once the user’s cognitive
load is known, the proposed model is used to adapt the collaboration between
humans and software agents. This study posits that human-agent collaboration
can be improved by providing the agents with cognitive models of how humans
function. For instance, by sensing an overload in its human peer, a virtual agent
could try to compensate by taking over tasks that are consuming heavy cognitive
resources, therefore, allowing the human to focus her attention on tasks where her
role is indispensable. However, say a new user whose cognitive style or available
resources have not yet been seen in the data collected to learn the HMM, then
the agent won’t be able to correctly assess the human cognitive load and will
malfunction. The motivation behind the paper is excellent. The goal of cognitive
models embedded in agents might be of great importance, yet the proposition of
using data-based HMM carry the same limitations as other ML techniques, thus
motivating our new approach.

Long Short-Term Memory (LSTM) networks are used in [67] to learn differ-
ent patterns of sequential behavioural data in order to classify dynamically user’s
behaviour into either (1) under cognitive load or (2) not. The approach is based
on data collected from users playing a memory game with or without a secondary
task introducing extra cognitive load. Rather than using the performance of the
secondary task to assess cognitive workload, the proposition here is to use the
sequential data to differentiate both classes. To increase the size of the dataset, a
theoretical memory model based on ACT-R [28] was used to generate additional
data. The model’s parameters were set so that the generated data closely resemble
the collected one. The results show Long Short-Term Memory networks outper-
form a baseline Linear Discriminant Analysis model in predicting the two classes.
As above, this work still carries the limitations of being purely based on data,
as the authors themselves acknowledge: “the model is still in-progress and these
results can be further improved by tuning the hyper-parameters and generating
more training data”.

Based on the fact that more and more users are interacting with interfaces
through vocal instructions and that studies have revealed the influence of cognitive
load (and to a lesser degree, time pressure) on speech patterns, researchers in [68]
performed an experiment where users had to utter vocal inputs to a system as if
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navigating through an airport. The study had users interact with the system under
two conditions, while simulating the navigation using a computer interface (which
introduces a supplementary cognitive charge) and under time pressure. A selection
of six features such as the number of syllables and collected pauses were extracted
from the data in order to learn a dynamic Bayesian network for recognizing the
effects of time and cognitive load on speech. The results show that the Bayesian
network was sensible enough to recognize users under time pressure with good
accuracy; however, it did not perform as well when evaluating the condition of
the navigating task. The researchers attribute the lack of performance in the
navigation task to the fact that it wasn’t highly cognitively challenging enough.
This work posits that, through the assessment of situation-dependent resource
limitations, a system can adapt itself by regulating the way it communicates, for
instance by switching to a less demanding style of communication, an approach
we directly tackle in our work.

Still concerned with changes in available cognitive resources, Jameson et al. [69]
propose an architecture employing a dynamic Bayesian network of a system capa-
ble of assessing and adapting itself to a user’s changing resources availability (here
resources stand for time and WM). Jameson et al. discuss the fact that humans
who deal on a daily basis with people suffering from temporary resource con-
straints, for instance firefighters answering emergency calls, take these restrictions
into account by adapting their interaction by selectively minimizing or simplifying
what they say. Here too, WM is viewed as a limited capacity the user has in order
to perform a task, the system handling situations when the user’s whole capacity
isn’t available (say the user is agitated or performing more than one task at a
time). Though no experimental validation is presented, the work highlights the
importance of rendering systems aware of resource limitations, and is thus another
motivation for our work.

Finally, note that measurements of secondary task performance are sensitive to
resources limitations and serve as a reliable technique for assessing them. However,
they have rarely been applied in research on CLT [35] for the secondary task can
interfere with the primary task, thus limiting the practical impact of this technique.

4.1.3 Adaptation
Most of the work discussed above, although interested in the development of cogni-
tive load-sensitive applications, is concerned with the assessment of the load rather
than the corresponding compensation part of the task. Feight et al. lay out four
main different mechanisms for adapting system to the user’s cognitive needs [70]
(three of which can be devised from the previously discussed research):

• modification of interaction;
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• modification of task allocation;

• modification of content;

• modification of task scheduling.

“Modification of interaction” relates to simplifying (or complexifying) the commu-
nication method, as seen in [57, 68], for instance by changing the interface lay-
out. “Modification of task allocation” means dividing tasks between human and
machine; when the human agent becomes overwhelmed, the system compensates
his/her cognitive charge by taking over tasks that are less critical; this method is
used in [57, 64, 66]. “Modification of content” is the dynamic adaptation of the
quantity of presented information, seen in [57, 64]. Finally, “modification of func-
tion allocation” stands for the dynamic changes of task scheduling, task priority
and duration. Our approach mostly follows the first and third items discussed
here.

The authors in [52] present the main challenges and approaches for adapting
systems to the perceived mental workload. This work discusses the evaluation
of a series of different approaches for adapting workload, mostly based on the
modification of function allocation method. Overall the study shows that systems
capable of assessing cognitive workload and responding to it result in improvements
in user experience, thus providing strong motivation for the general goal of our
work. The reader is invited to refer to this article for a more detailed discussion
on the evaluation of cognitive adaptive systems.

4.1.4 Discussion
The studies above highlight the importance of assessing cognitive load and adapt-
ing interfaces to users’ cognitive states. In this section, we put into perspective
their main findings with respect to our goals and approach.

The authors in [52] discuss the limitations of the adaptation techniques found
in such literature They point out, for instance, that one aspect disregarded by most
studies is the change of adaptation quality over time, as most studies only perform
a small number of sessions per subject for data collection. Also, they notice that
most EEG-based research concentrates on single-user-dependent systems, limiting
applications to contexts where a “learning period” is necessary for the system to
obtain baseline values for the adaptation features.

Moreover, most of the presented systems (as the approaches discussed in [52])
are data-based ML techniques. In general, researchers perform experiments em-
ploying the dual-task paradigm and collect data from a series of sensors such as
EEGs and other physiological devices. Later they employ some ML technique
for learning a model correlating these measures to cognitive load. This approach
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seems efficient; yet it carries some limitations. For example, the neural network
learned in [67] might work poorly when presented to a different population, as
would the HMM in [66] and the user models of [67]. Deep learning and ML tools
work effectively when the data used for learning is comprehensive enough to create
a representation of the use case, as they try to fit a function capable of performing
meaningful association. This can be problematic when the system is used with dif-
ferent populations that are not represented in the data, say people with cognitive
deficits.

If the training database does not represent the full set of possible situations the
system can encounter, then the system may have to deal with situations very much
different from the ones it was trained on, meaning that it cannot be trusted [71].
Trustworthiness is however a key factor, widely recognized as crucial for the ac-
ceptance of “intelligent” systems in various domains [72]. Being able to explain a
system’s choice of action is crucial for building trust, in particular when dealing
with assistive technologies, where the user has to trust the system’s decision for
it to be effective. This is, for now, critically lacking when dealing with black-box
classifiers such as neural networks. And even if adjacent explainable ML models
are developed to explain the system’s reasoning, they cannot be 100% faithful to
the original model, for, as Rudin puts it, “if the explanation was completely faith-
ful to what the original model computes, the explanation would equal the original
model, and one would not need the original model in the first place” [71].

In this work, we are interested in flexibility, as it shall focus on systems that can
be used with users not yet previously seen. Another key factor we shall consider is
interpretability, as we intend to be able to explain to the user why some changes in
the UI are being made. Being able to explain the system choices might help users
accept and trust the intelligent system. Given these considerations, the approach
we intend to take requires well-understood and interpretable components that
connect adaptation to the user’s perceived cognitive load or capacity. This means
one needs an interpretable model of how humans store and deal with presented
information, i.e. a model of human WM, a subject we address in the next section.

4.2 Computational Models of WM
In this section, two computational models of WM are discussed; they both will
be used in the sequel of this work. These models allow us to leave Badlley’s
non-computational homunculus behind, and either model user’s differences, sim-
ulate WM evolutionary dynamics or both. The first model corresponds to WM
in the context of Anderson’s cognitive architecture, ACT-R, and is described in
Section 4.2.1. Section 4.2.2 presents Suchow’s Markov Decision Process-approach
for WM’s dynamics simulation.
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4.2.1 WM in ACT-R
Anderson’s ACT-R [28] is a cognitive architecture and also a unified theory of
cognition. The goal of ACT-R is to serve as an explanatory structure of the brain
in order to achieve the function of the mind (by “function of the mind”, Anderson
means the human cognition in all of its complexity). This fixed architecture can
be used to model all cognitive tasks. By modeling a given task in the ACT-
R architecture, one obtains a simulation programs that can be used to generate
theoretical predictions of the task outcome.

The ACT-R architecture contains eight modules divided in three categories:
perceptual, motor and central. The two perceptual modules, Visual and Aural,
are responsible for detecting important information in the context of the task. The
motor (or response) modules, Manual and Vocal, perform appropriate actions, and
the other four modules, Procedural, Declarative, Goal and Imaginal, are the central
modules responsible for the coordination of thoughts and actions.

In the context of WM, the most interesting module is the declarative one. It
serves as a window to the past where learned information or facts can be accessed,
in the same way the perceptual modules can perceive the current environment. The
declarative module stores the learned knowledge so that it is readily accessible in
order to accomplish a given task.

The procedural module also comes into play when the given task can be divided
into smaller sub-tasks. The procedural module is the collection of learned skills. It
consists of a set of production rules and actions to be performed in order to achieve
a given goal. In ACT-R, the “current goal” (find the sum of 7 and 3, for example)
will drive the selection of production rules stored in the procedural module. The
actions represent accesses to different modules, as is the retrieval of information
in the declarative memory.

Symbolic and subsymbolic components in ACT-R

ACT-R is a hybrid system with two levels of abstraction: symbolic and subsym-
bolic. The symbolic level is an abstract representation of how the brain stores
knowledge. The subsymbolic level is an abstraction of the mechanisms involved
in the process of making information available, or how the knowledge encoded in
the symbolic representations is to be accessed. Symbolic structures have subsym-
bolic quantities associated with them, which drive how fast or where knowledge
activation will occur.

As said above, the procedure module stores production rules of actions and
accesses in order to achieve a given goal. These rules represent how information is
to be moved throughout different modules. At the symbolic level, the rules have
the form
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Figure 4.1: Symbolic representation of the declarative knowledge “7 + 3 = 10”
with the associated subsymbolic quantities.

IF <condition>, THEN <action>.

The condition specifies a pattern, or the circumstances of the task at hand, and
the action the different accesses of information. For instance, if the presented task
is to solve the equation 10 − x = 3, a possible action is to request access to the
information referring to the difference between 10 and 3 in the declarative module.

At a subsymbolic level, every rule has an utility value associated to it. When
different production rules might correspond to the presented circumstances, the
rule with the highest utility value is chosen. The goal acts as a filter in selecting
which production rule is selected and then propagates attentional activation to
different modules in order to achieve the accomplishment of a given task (see
below).

Declarative module

The declarative module gives the system access to its past. Inside ACT-R’s declar-
ative module, at the symbolic level, facts are represented as networks of intercon-
nected nodes. These graphs correspond to encoded knowledge and are also called
“chunks”. For example, the fact that 7+3 = 10 would be represented as the graph
shown in Figure 4.1. The central node, labeled “addition facti” connected to the
elements 7, 3 and 10 represents the memory that “7 + 3 = 10”. Figure 4.1 also
depicts the subsymbolic values associated with that memory. Chunks in declara-
tive memory have activation values associated with them that drive the speed and
success of their activation. Every time a new node is created (or information is
learned), that node is given some initial activation. In ACT-R, activation is seen
as a currency and is the main factor for processing and learning in declarative
memory, as the node’s activation drives its accessibility. After a chunk is created,
its activation decreases over time; however, when its information is reaccessed, it
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Figure 4.2: Evolution of the base-level activation for a node created at time t = 0
and accessed twice, at time t = 10 and t = 70. Each access increases the node’s
base-level activation, and is linked to learning.

is “refreshed”, meaning that its base-level activation gains a boost. The i-th chunk
has a subsymbolic base-level activation Bi, which is given by:

Bi = ln
( n∑
k=1

t−dk

)
,

where n corresponds to the number of activations that chunk had and time tk
to the time passed since the k-th access to that memory. The decay parameter
d defines the speed of base-level activation decay; in the ACT-R community, a
value of 0.5 has surfaced through many applications as the default value for this
parameter [28]. Multiple activations to an information result in an augmentation
of the base-level activation, which is related to learning. Figure 4.2 depicts the
evolution of the base-level activation of a memory that was created at time t1 = 0
and then accessed twice, at time t2 = 10 and t3 = 70. One can see that every
access corresponds to a boost in the activation level.

The elements connected to a node influence its activation value. The addition
fact node is represented in Figure 4.1 as being linked to three elements, the first
and second addends, 7 and 3, and the sum 10, through weighted connections. The
associated weights connecting element j to node i are noted Sji and indicate the
strength of the relationship between them. The closer two facts are, the higher
the associated weight value. The total activation value Ai for chunk i is given by:
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Ai = Bi +
∑
j∈C
WjSji, (4.1)

where C is the current context and Wj is the attentional weight given to the j-th
element in the context. This means that a chunk receives some added activation
from the context elements according to how close those elements are to the chunk
(Sji).

In Bayesian terms, Bi corresponds to the prior, i.e., the base-level activation
equals to how often an information is used. The termWjSji refers to the likelihood
ratio of element j being part of the context, given that chunk i is being required.
And Ai refers to the posterior odds that chunk i is needed in the given context.
Therefore, Eqn. 4.1 can also be written as:

log(posterior(i|C)) = log(prior(i)) +
∑
j∈C

log(likelihood(j|i)).

Attentional source activation

Eqn. 4.1 shows that the activation of some information in declarative memory is
influenced by the elements connected to it. The closer the elements are to the
knowledge node, the higher the value of Sji and consequently the stronger their
influence over the activation. The Sji value is given by:

Sji = ln
(
P (i|j)
P (i)

)
;

it reflects how likely node i becomes when element j is present in the context.
However, Ai also depends on Wj, the attentional weight given to element j. When
a task is presented, the Goal module is responsible for allotting source activation
to the elements present in the task context; the element source activation is given
by:

Wj = W
n
, (4.2)

where n is the number of presented elements related to the task and W is the
total amount of attention focused in the current goal. The W parameter reflects
individual differences in memory retrieval performance; it is a key factor for WM
(as we will see later) and relates to the amount of attention being focused on
the task. When complex tasks are presented, where lots of elements (high n) are
necessary for consideration, then the source activation spreading from the Goal
module is increased, resulting in a worse retrieval performance.
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Figure 4.3: Example of the probability of recall over activation values. The pa-
rameters τ and s where set to -1 and 0.4 respectively. When the activation value
is higher than τ , the probability of recall is higher than 0.5.

The activation value is translated into a retrieval probability through the fol-
lowing equation:

P = 1
1 + e−(Ai−τ)/s , (4.3)

where τ is the activation threshold below which the odds of the information been
retrieved are low. Note that the retrieval is not a binary process; s is a parameter
relative to the smoothness of the probability of activation. The parameter s serves
to smooth the evolution of the probability of recall over the activation value; if s
is very small, then the probability of recall becomes a step function. Figure 4.3
depicts an example of probability of recall versus activation.

WM in the context of ACT-R

In terms of the ACT-R architecture, WM can be seen either as the subset of the
declarative memory being activated during the accomplishment of a given task
or the propagation of the source activation from the goal node [73]. Following
both visions, WM is not seen as a special buffer for information storage, but is
defined as the attentional mechanism that selects which information to activate
in the context of a given task. In ACT-R, the task goal represents a person’s
focus of attention, which is then distributed by propagating activation values.
Therefore WM limitations in ACT-R can be seen as the amount of attentional
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Figure 4.4: Symbolic representation of a memory span task with the corresponding
subsymbolic values represented.

source activation W that is distributed from the goal node. Linking W to the
number of information nodes that can be activated at the same time, this defines
the WM limit, capacity-wise. The other WM limitation comes from the time
during which an information is retrievable. After a chunk is created, the base-level
activation decays over time, resulting in a degradation of the recall probability.

A simple memory span task, where a person has to remember k digits at a
time, could be represented in the ACT-R architecture as shown in Figure 4.4.
Note that here, only the task of remembering the digits is being modeled, and it
is considered that all the information is presented at the same time. In the case
where the position of each digit is also requested, then a goal node corresponding
to the position has to be added, and the procedural module will be responsible for
allocating the attentional activation between the modules (which corresponds to a
decrease in the attentional activation available to the single task of remembering
the digits). It is also possible to model the mechanism responsible for rehearsal,
i.e., the conscious effort of maintaining particular digits in memory, using ACT-R
with different and specific production rules.

The Goal node spreads the attentional activation alloted to the current task
Wc between the different chunks {i}ki=1 representing the encoded memory of each
of the k digits. The strength of association Sci can be set by default to reflect
the “fan” of an element, i.e., the number of connections with different nodes that
element has. The more connected an element is, the less activation it propagates;
in this case, one can set Sci = 1/k. The attentional sourceWc will then be divided
equally between the memory nodes. Table 4.1 sums up the parameters one needs
to set in order to simulate the model described here and obtain recall curves.

Once the parameters are set, one can use the equations described above and
obtain recall curves representing the evolution of digit retrieval probability as
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Table 4.1: WM Simulation parameters for ACT-R WM model.

W Total amount of source activation
k Number of information items in WM
τ Activation threshold
d Decay parameter
T Total simulation time
s Smoothness of the probability of activation

depicted in Figure 4.5. This formulation can serve therefore as a simulator of
information decay in WM.

4.2.2 Quantic WM Model
J.W. Suchow proposes in [74, 75] a probabilistic model of the dynamics of human
WM. In such a model, the evolutionary dynamics of the information stored in
the WM is considered a Moran process [76], a stochastic formalism often used to
describe the dynamics of finite populations in biology. In a Moran process, at
each instant where the state of the population may change, an individual, chosen
at random, dies and another is chosen for reproduction, ensuring a constant yet
varying population.

Suchow models the evolutionary dynamics of information in WM as the evo-
lution of a finite population of “memory quanta”. When information is presented,
a number of quanta is allotted to each information item stored in the WM: the
more quanta assigned to an information there is, the better encoded it is, and
therefore the easier it is to be retrieved. Although the authors in [75] are non-
committal about what these quanta represent (they could take a number of forms,
such as clusters of neurons in the prefrontal cortex, cycles in time-based refreshing
processes or other elements), they make it clear that this is a limited commodity
the availability of which affects WM performance. Logically, the total number of
quanta is positively correlated to the cognitive capacity of an individual; the more
available quanta there are, the better the quality and stability of memory.

Following the rules of Moran processes, at each time step, a random quantum
assigned to an information “dies” while the so-called WM “maintenance mecha-
nism” selects another quantum to “reproduce”. The quantum chosen for repro-
duction can be related to the same information as the dead one, thus ensuring the
persistence in memory of this information. If, however, the quantum selected for
reproduction isn’t one allotted to the degraded information, but to a different one,
the latter is then reinforced in detriment of the former. This dynamics results in
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Figure 4.5: Recall curves depicting the decay of encoded digits in WM over time
for different number of presented information. The other parameters of Table 4.1
were set toW = 1, τ = −1, d = −0.5 and s = 0.2. These parameters could also be
set to values according to some optimal fitting in order to obtain recall curves that
more closely resemble the behavior of a specific person or group of people (note, in
particular, that the unit of time is not fixed here). As the cognitive charge (k) goes
up, the degradation of the encoded information accelerates, due to the decrease of
the base activation values.
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Figure 4.6: Example of execution of a particular maintenance policy for 10 quanta,
3 items and a stability threshold L = 2. The circles correspond to the quanta
population. The colors orange, green and purple indicate to which information
item each quantum is allotted, while a gray-colored circle corresponds to a quantum
that is not alloted to any information item. A quantum with a “+” sign is being
selected by the maintenance mechanism for reproduction, while a quantum with
a white circle inside is the random quantum that degrades. At the end of the
execution of the maintenance policy, only the orange information item remains in
memory.

a competition for quanta, i.e., for fixation in memory. This model also employs
a stability threshold L: any information associated to less than L quanta is con-
sidered forgotten and cannot be restored via reproduction. Figure 4.6 depicts an
example of the evolutionary dynamics of a population of quanta, following the
procedure described above.

MDP formulation

Suchow’s WM dynamics is modeled as a Markov decision process (MDP). A MDP
is used to model decision making in partially stochastic environments, more pre-
cisely on Markov processes. The later are characterized by the fact that the future
state evolution is only dependent of the present state, which means that the pro-
cess is independent of the events that occurred in the past [77]. Formally, a MDP
is defined by a state space S, a set of actions A, a probabilistic transition function
τ : S × A × S → [0, 1] that characterizes the probability distribution over the
possible next states s′ given the present state s and a selected action a and finally,
a reward (or cost) function ρ : S ×A→ R that yields the immediate consequence
the agent taking an action in a given state gets (in some extended MDP models,
the reward also depends on s′). The goal when using a MDP is to find the optimal
policy Π∗ : S → A that maps a given state s to the optimal action a the agent
should take in order to maximize (or minimize) its accumulated reward (or cost).
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In Suchow’s model, the WM maintenance mechanism acts as the MDP agent.
S is the set defined as:

S = {[n1, . . . , nk] /
∑k
i=1 ni = Q},

and stands for all of the possible allocations of Q quanta into k information bins.
Each action aj from A represents the selection of a quantum from a specific memory
bin, here the j-th, for reproduction. Following Moran’s principle, at each system
iteration, one quantum decays (i.e., dies) from a bin, say the i-th, randomly se-
lected with probability ni/Q, while the maintenance mechanism chooses a specific
action, say aj, to have one of the quanta of bin j reproduced; so, if the system is
at state s = [n1, n2, . . . , nk] and the agent selects action a1, the probability of the
agent landing in state s′ = [n1 + 1, n2 − 1, . . . , nk] is given by τ(s, a1, s

′) = n2/Q,
which is the probability that one quantum from the second bin was selected to
decay.

Regarding the reward function ρ, the behavior of the maintenance mechanism
handling the information stored in the WM might vary along the user’s goal;
information items can be remembered or forgotten intentionally. Thus ρ is clearly
task-dependent.

Optimal maintenance policy

As stated before, the space state is all the possible allocations of quanta into
information bins. For example, if one has 10 quanta and 4 bins, it makes for 286
possible states; however 40 quanta and 8 items result in 62,891,499 possible states.
This increasingly larger space state demands for a generalized policy that can be
applied to any configuration. The authors in [74] did so by analyzing the optimal
policy obtained in simpler cases in order to propose a generalization. They suggest
that the optimal policy of the previously defined MDP can be approximated by a
simple strategy known as Luce’s choice axiom [78]. This axiom states that when
faced with a choice, the decision maker will mostly base his/her decision on the
perceived values of the various options at the time of choice, in a "greedy" fashion.
Therefore the probability P (a) of selecting action a from a set of alternatives A is
given by

P (a) = v(a)σ∑
x∈A v(x)σ ,

where v(x) stands for the strength of the signal generated by action x, and σ is the
sensibility of the decision maker2. By varying the value of σ for a fixed definition
of v, Suchow shows that one obtains different macroscopic behaviors for the WM

2Care must be taken to avoid divisions by zero; we don’t address these details here.
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Table 4.2: MDP simulation parameters for Suchow’s WM model.

Q Number of quanta in WM
k Number of information items in WM
L Stability threshold [number of quanta]
δt Time step between actions [ms]
T Total simulation time [ms]
σ Sensibility of the decision maker

maintenance mechanism, adapted to different tasks, and draws attention to five
specific values of sensibility: 0, 1,−1,+∞ and −∞.

Choosing σ = 0 leads to an unconditional policy, i.e., action choice is inde-
pendent of the current state and insensitive to the perceived signals. If σ = 1,
the policy will give preference to actions that have the highest perceived value,
while the opposite occurs when σ = −1. Finally, when σ = +∞, the maintenance
mechanism will always choose the action that has the strongest perceived signal,
while when σ = −∞, the weakest one will be selected.

Stochastic simulation of WM dynamics

Keeping track of users’ WM capacity to model information recall and oblivion
relies on the simulation of the MDP defined above; this requires the setting of
six parameters, given in Table 4.2, and the definition of the strength function v.
One also needs to specify an initial state s0 = [n1, . . . , nk] representing the default
distribution of quanta between information items.

As said before, WM management is task-dependent. The setting of the initial
state s0 and the definition of the signal generated by the possible actions v and
the sensibility parameter σ, which characterize the Luce choice axiom underlying
the MDP policy, depend thus on the task.

Once the initial state and the simulation parameters are set, one can perform
various stochastic simulations of memory degradation, using the optimal policy
specified above. For one simulation, at each δt, until T is reached, the decision
maker, following its policy, will specify which action to perform, i.e., choose which
bin will be maintained or see its number of quanta increased (remember that at
the very least, the decision maker can only maintain an information in memory,
because it has no control on which information is going to be randomly degraded).
The ratio of the number of bins with more than L quanta over k is the recall prob-
ability of the WM, i.e., the probability of memory retention (or the complement of
memory loss). Such a simulation thus yields a recall curve r(t), with time t vary-
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Figure 4.7: Recall probability r(t) for different numbers, k, of items. s0 was set
by distributing the Q quanta in the k bins homogeneously; if Q is too small to
fill each bin with at least L quanta, the maximum number of bins are filled with
L quanta, and the remaining ones are distributed randomly across bins. Also, we
define v(ai) = ni, i.e., the strength of information fixation in bin bi, while setting
σ = 1. The other parameters were set as Q = 60, L = 7, δt = 10 and T =1,000.
One can see that when more items are presented, less quanta are available, and
therefore the oblivion of information is occurs faster.

ing from 0 to T , by increments of δt. Given the stochastic nature of the model,
a large number of simulations is necessary to average the recall curve. Figure 4.7
presents the average recall curves of 100 simulations for different values of k, given
a specific configuration of the parameters of Table 4.2.
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Chapter 5

Memory Adaptation Through
Cognitive Handling Simulation

Memory Adaptation Through Cognitive Handling Simulation, ou MATCHS, est un
nouveau cadre formel capable d’adapter les tâches lorsque la performance de leur
bonne exécution dépend des capacités cognitives des utilisateurs. Dans le contexte
de cette thèse, il présente une première tentative pour effectuer l’adaptation HCI
aux limitations de la WM d’une personne.

Le cadre MATCHS repose sur les mêmes hypothèses que la théorie de la charge
cognitive (voir la section 3.2), c’est-à-dire que, si une personne ayant une capacité
cognitive plus élevée est capable de stocker et de travailler avec plus d’informations,
alors cette personne présentera une performance plus élevée dans les tâches qui
dépendent de la WM. Notre cadre s’inspire également du modèle de dynamique de
WM de Suchow (section 4.2.2) et de l’idée de quanta de mémoire. En principe, si
ces quanta représentent la capacité cognitive de l’utilisateur et si les performances
sur une tâche les reflètent, l’augmentation et la diminution d’une estimation du
nombre de quanta de l’utilisateur en fonction des performances observées devraient
être un moyen d’adapter en continu la capacité de WM estimée de l’utilisateur, per-
mettant à un système de s’adapter à l’augmentation de l’expertise ou à la dégra-
dation continue des capacités cognitives, dans des cas tels que les maladies neu-
rodégénératives, par exemple.

Les sections suivantes sont organisées comme suit. La section 5.1 décrit le
cadre en détail. La section 5.2 présente un cas d’utilisation développé pour tester
MATCHS. La section 5.2.1 présente une tâche sous la forme d’un jeu, utilisé à des
fins de validation. La section 5.2.2 discute de la sélection de certains paramètres
de MATCHS en fonction de la tâche choisie. Les performances de MATCHS sont
d’abord discutées dans la section 5.2.3, en décrivant les résultats obtenus lors de
l’utilisation de MATCHS avec des joueurs simulés, et, plus tard, la section 5.2.4
donne un compte rendu détaillé d’une campagne de test avec des joueurs réels et
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présente les résultats obtenus lors du coup d’envoi de MATCHS. Enfin, la section
5.3 discute des performances de modélisation et d’adaptation de MATCHS.

Memory Adaptation Through Cognitive Handling Simulation, or MATCHS, is
a new framework capable of adapting tasks when the performance of their proper
completion depends on the users’ cognitive capacities. In the context of this thesis,
it presents a first attempt to perform HCI adaptation to a person’s WM limitations.

The MATCHS framework is build upon the same assumptions as Cognitive
Load Theory (refer to Section 3.2), i.e., that if a person with higher cognitive
capacity is able to store, and work with, more information, then that person will
present a higher performance in tasks that are WM-dependent. Our framework
also gets some of its inspiration from Suchow’s model of WM dynamics (Sec-
tion 4.2.2) and the idea of memory quanta. In principle, if these quanta represent
the user’s cognitive capacity and if performance on a task reflects them, then in-
crementing and decreasing an estimation of the user’s number of quanta according
to the observed performance should be a way of continuously tailor the user’s es-
timated WM capacity, allowing a system to adapt to increases in expertise, or the
continuous decay of cognitive capacity, in cases such as neurodegenerative diseases,
for instance.

The next sections are organized as follows. Section 5.1 describes the framework
in detail. Section 5.2 presents a use-case developed to test MATCHS. Section 5.2.1
introduces a simple game-like task, used for validation purposes. Section 5.2.2 dis-
cusses the selection of some of MATCHS’ parameters according to the selected
task. MATCHS’ performance is discussed first in Section 5.2.3, by describing
the results obtained when using MATCHS with simulated players, and later, Sec-
tion 5.2.4 gives a detailed account of one test campaign with actual players and
presents the results obtained when lighting MATCHS up. Finally, Section 5.3
discusses MATCHS modeling and adaptation performance.

5.1 Presentation
MATCHS has a modular architecture with 4 main modules, one of which corre-
sponds to Suchow’s model of WM (described in Section 4.2.2) and works here as a
simulator for WM dynamics. MATCHS consists of a closed-loop control system ca-
pable of tracking the user’s estimated cognitive capacity by adjusting it according
to the his/her performance. In the field of control theory, traditional techniques
are employed to manipulate the input of complex dynamic systems in order to
correct or limit the deviation of a measured value from a desired one [79]. This
is typically done by measuring the value of the controlled variable and applying
a control signal in order to ensure that a certain specification is verified, usually
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Figure 5.1: MATCHS control loop (see also Table 5.1 )

defined in terms of a reference level or reference trajectory that the controlled
system’s output should track as closely as possible [80].

MATCHS is a closed-loop control system where the controlled variable is the
user’s WM performance. In control systems, the error value is fed to the controller
so as to reduce the error and bring the output of the system to a desired value. In
MATCHS, instead of having the error signal driving actuators or valve openings,
it drives the estimation of parameters. These parameters are used to construct
a model of the user’s WM dynamics. The estimated WM capacity is then used
to drive the UI adaptation. The user’s measured performance when presented
with the adapted task serves as a sensor of the difference between the expected
performance, derived from the user model, and the measured one. The error
signal then will determine how much to change the user model over the subsequent
iterations of the task at hand.

5.1.1 MATCHS main loop
Figure 5.1 presents the main components of the MATCHS framework, while Ta-
ble 5.1 lists all the relevant parameters. This framework is able to adapt a given
task (represented by the Task block in Figure 5.1) to an estimation of the cognitive
capacity of users. MATCHS is able to simulate the user’s WM performance by
employing Suchow’s MDP together with the estimated user parameters, obtain-
ing recall curves that reflect how information will degrade over time. Therefore,
MATCHS can adapt the task by deciding how much information to present, or for
how long the user will have to retain that information. The adaptation here corre-
sponds to the modification-of-content method for adaptation of UIs [70], meaning
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Table 5.1: MATCHS parameters

αs Desired accuracy
αm User’s accuracy
e Error value
dQ Change in quanta value
dδt Change in δt value
Q User’s quanta estimation
δt User’s time step between policy iterations estimation
k Number of presented items
tr Retention time

MPS Memory Parameter Space
WMS Working Memory Simulator

the framework decides the amount of information to present in order to adapt to
the user’s characteristics.

The main element of the MATCHS framework is the Memory Parameter Space
(MPS). In the MPS block, an approximation of the user’s WM parameters Q and
δt, which are some of the WM parameters from Table 4.2 that characterize the
WM dynamics, is stored. The MPS is described in detail in Section 5.1.2. The
main goal of the MATCHS Controller is thus, depending on the difference between
the actual user’s performance in a defined Task (αm), and the target accuracy (αs),
measured by the error e, with

e = αs − αm,

to update its estimation of his/her WM parameters by incrementing (or decre-
menting) them by dQ and dδt. More refined estimations of the user’s WM, as s/he
interacts with the Task, will ensue:

Q = Q′ + dQ,

δt = δ′t + dδt,

where Q′ and δ′t are the prior estimations. Note that initial estimations for Q and
δt are needed to start the system.

In order to employ a MATCHS-equipped system, one needs to specify one key
application-dependent parameter: a target accuracy αs ∈ [0, 1]. The parameter αs
is the maximum percentage of information that can be forgotten while ensuring
the accomplishment of the task. For instance, in applications where the person
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has to retain at least 80% of the information presented when solving a problem, αs
is set to 0.2, while, in applications where all the presented information is strictly
necessary, αs is set to 0.

MATCHS’ current estimation of the user’s WM parameters are fed into a Work-
ing Memory Simulator (WMS), described in Section 5.1.3. The outputted retention
time tr, a measure of how long the user can retain information before forgetting
100× αs % of it, can then be used to adapt, in an application-dependent manner,
the Task interface. The user interface can also be adapted by modifying k, e.g.,
by presenting more (or less) information if the user error rate is too high.

The adapted Task must provide, when completed, an estimate of the user’s
performance αm, i.e., the measured proportion of forgotten information. The er-
ror signal e that drives the Controller indicates how far the outputted simulated
oblivion behavior is from the user’s actual one.

5.1.2 Memory Parameter Space (MPS)

The core element of MATCHS is the Memory Parameter Space (MPS); it repre-
sents the domain of the parameters that characterize users’ WM behaviors. There
are two clear categories of simulation parameters from Table 4.2: task-dependent
and user-dependent. The number of presented items (k) and total simulation time
(T ) are task-dependent parameters, as they characterize the external task that is
presented to the user. However, the number of quanta (Q) and the time step be-
tween actions (δt) are user-dependent parameters, since they depend on the user’s
capacity and define the evolutionary dynamics of the degradation of the stored
information.

However, the stability threshold (L) and the sensibility of the decision maker
(σ) fall in a gray area, for they are neither completely task- nor user-dependent.
The stability threshold can be interpreted as the complexity of the stored informa-
tion: considering a resource-based approach to WM, complex information should
be harder to encode. Therefore, for a fixed capacity, if L is larger, more resources
(in this case, quanta) are needed to encode each item, resulting in overall less infor-
mation stored in WM. However, as discussed before, the complexity of information
is subjective, as performance in WM tends to increase with practice [81, 82]. This
means that the L parameter might change over time. The σ parameter depends
on the task, as discussed in Section 4.2.2, but also on the user’s strategy, as not
always the user will employ the optimal one.

MATCHS’ MPS is therefore defined as a 2D space with dimensions Q, the
number of available quanta, and δt, the time interval (in ms) between policy iter-
ations, which are the user-dependent parameters. Here we posit that adaptation
of a task can be performed (at some level) by tracking these two parameters.
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Figure 5.2: Recall curve r(t). The initial state s0 is set with a homogeneous
repartition of quanta between each item and once again, we define the strength
function as v(ai) = ni. The other parameters are set to Q = 112, k = 8, δt = 13
ms, T = 17 s, L = 7 and σ = 1.

5.1.3 Working Memory Simulator (WMS)

The Working Memory Simulator (WMS) uses the MDP described in Section 4.2.2,
together with a decision maker’s policy, to simulate the evolution of someone’s WM
as described in Section 4.2.2. The user-dependent (Q and δt) and task-dependent
(k and T ) parameters are variable according to the user’s performance; however,
the other parameters have to be set accordingly. The selection of the parameters
stability threshold (L) and the sensibility of the decision maker (σ) are not purely
task-dependent, yet here they are set according to the chosen task. This design
choice is based on the hypothesis that the “user-dependency” part of these two
parameters can be compensated, if needed, through Q. For instance, having a
less than optimal strategy will result in an apparent lower cognitive capacity, as
would having less proficiency with the kind of information being manipulated
(higher value for L). Some of these choices will be discussed in the experimental
validation section below.

Once all parameters are set, WMS provides a simulation capability for the
WM dynamics. Given its stochastic nature, each simulation is different; therefore
a somewhat large number of simulations (here heuristically set to 60) is necessary
to obtain a reliable average the recall curve. An example of a typical recall curve
r(t) is shown in Figure 5.2; this curve provides the probability that a memory item
is in the WM at a given time.
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Figure 5.3: Detail of the relation between αs and tr in the recall curve, in the case
where αs = 0.4 and therefore tr = 6, 000 ms.

WMS uses the parameter αs (desired accuracy) to provide, as output, the
corresponding retention time tr, i.e., the value of t corresponding to (1 − αs) on
the r(t) curve for the number of presented items k:

tr = r−1(1− αs).

If, for instance, αs is set to 0.4 (40 % of the information allowed to be forgotten),
then the WMS will, for the previously set value of k, search the corresponding
recall curve r(t) for the time t = tr that ensures r(t) = 1 − αs = 0.6 (i.e., 60 %
of retained information, i.e., 40% of forgotten information). If the recall curve is
the one depicted in Figure 5.2, then tr will be set to about 6,000 ms, as shown in
Figure 5.3. If αs is instead set to 0.6, then tr will be around 13,000 ms, as depicted
in Figure 5.4.

However, the desired accuracy may not be reachable with the current param-
eters. In this case, if the minimum attainable recall probability r(tmax) (after a
maximum time tmax, which depends upong the task context) is above 1−αs, then
WMS will increase the previous value of k by one and perform additional simu-
lations. Increasing k will result in a recall curve that degrades faster, as shown
in Figure 4.7; therefore, WMS will keep increasing k until the desired accuracy
is attainable withing the maximum time. Similarly, if the maximum reachable
accuracy is below 1 − αs, then WMS will decrease the number of items by one
unit and perform simulations, until the desired accuracy is reached and a proper
value for tr can be found. If none of these task modifications succeed, the user is
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Figure 5.4: Detail of the relation between αs and tr in the recall curve, when
αs = 0.6 and tr = 13, 000 ms

deemed unable to complete the task at hand, calling for external intervention.

5.2 Experimental Validation
In this section is discussed the experimental validation of the MATCHS frame-
work for the adaptation of HCI to user’s WM limitations. To validate MATCHS,
the game called Match2s (for “match match”) was developed, largely based on
the study described in [83]. It is a visual game where the player’s score is WM-
dependent. An initial validation step consisted of a virtual player called Player
2 whose memory dynamics is a direct implementation of Suchow’s WM model.
Player 2 was used to validate some design choices and analyze in detail the evolu-
tion of some of MATCHS’ parameters, before testing MATCHS with human users.
We then tested the final version of the game with a cohort of 20 players. Those
experiments are described below.

5.2.1 Match2s
Match2s consists of eight yellow squares with a “?” sign positioned in a circular
fixed order around a white “+” sign, as shown in Figure 5.5. The maximum
number of squares (8) was chosen, since we saw that the limits of WM, for simple
information, is said to be around 7 ± 2. Since we didn’t want the players to be
cognitively charged by having to look for the visual cues, we always displayed
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Figure 5.5: Match2s eight yellow boxes are disposed in a fixed order around a circle
with a white “+” sign in the middle for fixation. The fixed disposition allows the
players to focus on the task of remembering information without having to search
for the visual cues.

the squares in a circle around a fixed point, which somewhat corresponds to the
standard oval human field of view. Since the position of the squares are fixed, the
player doesn’t have to search for the visual cues, as she knows where the colors are
going to pop up. However, since not all the 8 boxes are always going to present a
visual cue, there’s still some searching to be done, as, if less than eight colors are
to be cued, the presented colors are disposed in a random order around the circle.

Each turn of Match2s consists on having N of the eight “?” randomly colored
boxes displayed during 500 ms, as depicted in Figure 5.6, after which the colored
squares are hidden in yellow boxes. The choice of using visual information as
the foundation of Match2s was made so that we can present all the information
at the same time. Suchow’s MDP formulation for WM maintenance does not
specify how the available quanta are divided between information at an initial
time. If we were to work with verbal cues, for instance, the presented information
would have to be presented in an 1D array sequence; therefore, we would need to
investigate the proper time-wise way to initially distribute the quanta to form a
state zero. Moreover, information presented in a sequence would be susceptible
to the serial positioning effect [84], with higher primacy and recency probabilities
of being remembered. This would require additional work to extend, and then
validate, Suchow’s model, something we avoid with our visual design.

The presented N colors are a random combination of the eight possible colors
without doubles. The colors chosen at first where the eight basic colors (red,
orange, yellow, green, blue, purple, brown and black); however after some testing
with users, we decided to include white and pink instead of orange and purple,
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Figure 5.6: Colored cues presented to the player. Here N = 7, so only 7 colors are
cued; therefore one box remains faded in gray, to signal that it’s not being used.

Figure 5.7: Example of a Match2s game turn

as some players were mixing those colors with some of the others. We tested the
eight colors with some users before collecting data, and they all seemed comfortable
identifying these colors.

After the presentation phase, the colors remain hidden during a variable waiting
time twait, after which a colored box pops up asking the player to click on the “?”
box that, s/he thinks, hides the square of the same color. Figure 5.7 depicts the
succession of phases of a typical Match2s’ turn. It is worth noticing that in the
presented turn, only 7 colors are presented; therefore one of the eight squares is
left unchanged and colored gray to signal that it is not activated.

Match2s was developed1 to test MATCHS. The parameters of the game, the
number of colors and the hiding time (N and twait) are the task-dependent pa-

1Match2s was coded in python v2.7, with PySide v1.2.4 providing the python binding for the
GUI toolkit Qt.
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rameters of Suchow’s model, as described at the beginning of Section 5.1.2. The
goal of Match2s is to “force” a specific score on the players. Recalling the recall
curves of Figure 4.7 and knowing how much information is presented to the player,
one can, by increasing twait, make the player forget a bigger portion of the pre-
sented information. Also by increasing the number of colored squares cued, the
degradation of information is accelerated. By varying these two parameters, one
can control the oblivion dynamics of the player’s WM and, in consequence, the
player’s performance, if, that is, the user-dependent parameters are known. This
feature can be useful, for instance, in a video game situation, if one wishes to put
the player in a state of “flow”[85], where the difficulty of the game matches the
player’s capacity, immersing her in a state of focus and enjoyment.

5.2.2 Task-Dependent Parameter Setting
Match2s was used as the Task block of Figure 5.1 to test the MATCHS frame-
work. MATCHS will thus perform the adaptation of Match2s’ parameters, i.e.,
the number N of presented squares and the wait time twait, according to the user’s
perceived cognitive capacity. This means that, when coupled to MATCHS, N = k
and tr = twait.

As said before, we shall consider here the parameters stability threshold (L) and
sensibility of the decision maker (σ) as being solely task-dependent, and therefore,
they need to be set according to the task, as is the setting of the initial state s0. In
tasks such as Match2s, players score higher if they are able to retain the maximum
number of information items for the longest period of time possible. One can then
assume that, on average, players will try to remember as much information as
they possibly can, without giving particular preference to a particular stimulus.
Recalling from Section 4.2.2 that each state of the MDP formulation corresponds to
a partition of all the quanta between k bins bi, s0 is then defined as the distribution
of the Q quanta in the k bins homogeneously; if Q is too small to fill each bin
with at least L quanta, the maximum number of bins are filled with L quanta,
and the remaining ones are distributed randomly across bins. Also, we define
v(ai) = ni, i.e., the strength of information fixation in bin bi, while setting σ = 1.
The probability of choosing action ai that reinforces bin bi becomes:

P (ai) = ni∑k
j=1 nj

,

and, therefore, P (ai) will increase proportionally to ni, i.e., with the number of
quanta in bi. This ensures that our memory maintenance system chooses to main-
tain the memories that are already better fixated. Eventually, as more and more
memory bins degrade, fewer memory bins will remain alive, resulting in a compe-
tition for maintenance, and consequently, oblivion.
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The αs parameter that drives the controller has to be set and will correspond to
Match2s difficulty, as MATCHS tries to force the user to perform with the specified
accuracy (1−αs). Note though that, since the Match2s gameplay offers the player
the possibility of simply guessing where the queried color is hidden among the
N squares, this case must be taken into account in the WMS when assessing the
WM capacity. In order to do so, a retrieval curve R(t), denoting the probability
of finding, at time t, the correct hidden square, is used by the WMS in lieu of the
recall r(t):

R(t) = 1− r(t)
N

+ r(t).

In order to make Match2s’s gameplay more dynamic and prevent player bore-
dom, Match2s is configured to limit the adaptable twait to a maximum value tmax,
set at 7 s, thus avoiding situations where good players have to wait tens of seconds
before a query is issued. Thus, as soon as tr is larger than tmax, the WMS will
increase k by one, resulting in a more difficult game with more squares. A differ-
ent value for k implies a new retrieval curve and, consequently (to maintain αs),
a new, and smaller, value for tr and, thus, twait. Similarly, a minimum time tmin,
set at 200 ms, is also defined, so that, when tr < tmin, the system will decrease k
by one unit.

Since a single Match2s turn does not provide enough data to deduce a mean-
ingful value for αm, a batch process is used. All the query results collected in the
last d turns (we use d = 20, heuristically, assuming αm at 0 when the game starts)
are used to compute an experimental

αm = nf
d
,

where nf is the number of failed queries. The controller and WMS processes are
thus executed once at the end of each batch.

All that is left to be specified are the stability threshold L and the Controller.
Following [75], we set L to 7. For simplicity reasons, the Controller was set as
a simple proportional gain G that regulates how the estimated parameters move
around the Q dimension of the MPS. In practice, that means that δt is fixed and
dQ = Ge. Once again, δt was set to 10, in accord with [75]. This choice is discussed
and validated in the next section, where we report on the first test of MATCHS,
with simulated players.

5.2.3 Player Two
In order to test the MATCHS framework as well as to validate some of our de-
sign choices, we implemented “virtual players” called Player Two. These players
correspond to simulators of humans assumed to have a WM exactly like Suchow’s
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Figure 5.8: Evolution of the quanta estimation and error value during Player Two
iterations.

WM model, or our WMS, albeit with fixed values Qp, δtp and Lp for, respectively,
the number of quanta, the time step between actions and the stability threshold.
At each turn of Match2s, Player Two is supposed to behave according to a recall
curve r(t) generated using Qp, δtp and Lp, together with the number of presented
items k = N .

When Match2s presents a query at time twait to Player Two, it can, just like a
real player, try to guess where the queried color is hidden. To simulate this, Player
Two will compute the retrieval probability R(twait) and infer, based on this value
and using a properly set random function, whether the queried square is supposed
to be found or not.

Figure 5.8 shows the performance of Player Two “playing” Match2s for 20
system iterations, using G = 0.25, Qp = 70, δtp = 11 ms and Lp = 7. The initial
guess of MATCHS’s WPS was set to Q = 40, and the desired accuracy, to αs = 0.2.
In the top curve, the evolution of the estimated number of quanta Q is depicted
with the continuous line, while Qp is represented by the constant dashed line. The
bottom curve shows the evolution of the error value e. One can see that after
10 system iterations, the error value is already stable near 0 and also that the
estimated Q converged to Qp. This illustrates how the error value drives changes
in the quanta estimation, and also how these estimations result in adapted task
parameters that, when presented to Player Two, makes the user accuracy converge
to the desired one.

Player Two was also used to test some of the design choices previously made.
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Figure 5.9: Left: Qp = 70, δtp = 20, Lp = 7; Right: Qp = 70, δtp = 10, Lp = 3.
These two curves show that even if MATCHS is set with parameters that don’t
correspond to the user’s, by adjusting Q, the framework is able to find the task
parameters necessary for making the error value converge to zero.

One can observe that, even when Player Two has values for δt and L different
from MATCHS’s WMS ones, by simply adjusting Q, WMS is able to obtain a
retrieval curve quite similar to Player Two’s curve. Figure 5.9 shows the evolution
of Q (in red, as the top curve) and e (also in red, as the bottom curve) when
MATCHS interacts with a Player Two set with different configuration parameters.
Here MATCHS’s WPS was also set initially with Q = 40.

Figure 5.9 shows that a higher value of δtp can be compensated by a larger Q;
since δtp > δt, Player Two’s memory tends to degrade slower, therefore presenting
the behavior of a person with high cognitive capacity. The same thing happens
when Lp < L; a smaller Lp results in a better encoding of information, therefore
inducing a behavior similar to having a higher cognitive capacity.

After testing different configurations, the Controller’s gain was set heuristically
to G = 0.3.

5.2.4 Results
We recruited 20 participants (9 females), ranging in age between 18 and 40 (25.47
± 4.92), to play Match2s, all with (or at least pursuing) a higher education and
without cognitive impairment. We started each Match2s game by presenting 7
squares at once and setting αs = 0.3. Afterwards, WMS will, at the beginning of
every new batch, search for the parameters k and tr in order for the user to recall
70% of the presented information, which corresponds to a quite complex cognitive
task.

Each participant played 125 turns of Match2s. The first 5 turns consisted of
a training phase where the game’s concepts were explained and the players could
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Figure 5.10: Evolution of the error value (in blue) for four of Match2s’ 20 players.

familiarize themselves with the game. During the next 120 turns, MATCHS was
applied (WPS was set initially to Q = 68), controlling the presented information
according to the player’s performance. The error e was computed at the end of each
batch of 20 turns. The collected data can be accessed at http://cri.ensmp.fr/
auhwm/. The following figures summarize the main findings regarding MATCHS
and its application to Match2s (see next section for a detailed discussion of these
data).

Figure 5.10 shows the evolution of the error value e for four of the 20 Match2s
players (in blue, with a red line on 0 for reference).

Figure 5.11 depicts the evolution of the quanta estimations for the same four
players of Figure 5.10. Here the initial quanta estimation is presented (iteration
0), which is the same for all the players.

Figure 5.12 presents the evolution of the number of quanta for each of the 20
players, over the 6 batches.

Figure 5.13 depicts the distribution of the estimated number of quanta for
every player at each iteration (without the initial quanta estimation, which was

http://cri.ensmp.fr/auhwm/
http://cri.ensmp.fr/auhwm/
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Figure 5.11: Evolution of the quanta estimations for the four players of Figure 5.10.
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Figure 5.12: Evolution of the estimated quanta values for all the 20 players.



86 CHAPTER 5. THE MATCHS FRAMEWORK

Figure 5.13: Distribution of the estimated quanta values for all the 20 players over
the 6 system iterations.

the same for everyone). The median is the white dot; the thicker bar shows the
interquartile range, while the thin bar shows the rest of the distribution. Around
each line there is also depicted the probability density of the data in blue. The
advantage of the used violin plot over the box plot is that it provides information
on how the population is distributed in the form of the probability distribution.

The evolution of the mean absolute error value for the population of the 20
players is shown in Figure 5.14.

5.3 Discussion
As shown in Figure 5.10, every player presented a different performance and pro-
gression over the 120 turns, as illustrated by the different evolutions of the error
values. Therefore, the evolution of the task’s adaptation was different for every
player. However, in the same figure, one can observe a common trend, namely
that the error value gets closer to zero during the first system iterations (except
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Figure 5.14: Distribution of the absolute error value for all the 20 players while
playing Match2s, across iterations.
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for player 2, an issue we address below). In the later iterations, some overshooting
of the error value is observable, where the error signal exceeds zero. This is a
common occurrence in the step response of control systems, which indicates that
the settling time has not yet been reached. At first, the larger the absolute error
value is, the more significant are the changes of the estimated user parameters
inside the MPS, resulting in more visible differences in the presented task param-
eters. As the error value gets closer to zero, the changes in the task parameters
are less evident, resulting in a more refined adapted task. The overshooting of
the error value corresponds to a higher observed WM performance, or αs > αm,
which signifies that the player forgot less information than intended, meaning that
the task was overly simplified. The positive error value will then result in a more
complex task, which is likely to result in a larger αm.

When compared to the other 3 players mentioned in Figure 5.10, player 2
had a higher cognitive capacity as is seen in the evolution of this player’s quanta
estimations (Figure 5.11). This player’s initial error is considerably small, meaning
that the initial quanta estimation (Q = 68) was not too far from the player’s final
one (when compared to the other presented players), which implies that the task
parameters of the first batch weren’t too far from the ones needed for the player
to perform with αs = 0.3. Therefore, player 2’s error value was small from the
beginning, and its evolution corresponds to an oscillation around 0, as does the
others player’s error value after the first iterations.

As stressed in Section 3.1.2, WM’s capacity is one one of the strongest factors
impacting individual differences in cognitive abilities, therefore it is only natural
that the players performed differently when playing Match2s. The evolution of the
estimated quanta values of every player shown in Figure 5.12 illustrates this fact,
as does the augmented spread of the quanta distribution depicted in Figure 5.13.
At first, all players started with the same estimated quanta value (68) at iteration
0; later as the players interacted more with the game, MATCHS refined the esti-
mations of the quanta numbers. In consequence, the task could be personalized
for each player in accord with his/her characteristics.

Opposed to the behavior of the quanta distribution for all the players, the
distribution of the error values, in Figure 5.14, seems to concentrate over the
batches. To analyze this behavior, a linear least squares regression was applied
over the data corresponding to the absolute error value of all 20 players. The
obtained result is shown in Figure 5.15, together with the evolution of the mean
absolute error value (in blue). The linear regression strongly suggests that the slope
is negative (null hypothesis that the slope is zero and p-value = 3.11× 10−11), i.e.,
the error value diminishes over time. This shows that the MATCHS framework
is capable of adapting (at some level) the user interface by regulating the number
of presented information items as well as the retention time to the user’s WM
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Figure 5.15: Evolution of the mean absolute error, for all players of Match2s, across
iterations.

capacity.
However, although the mean absolute error regularly diminishes as the number

of MATCHS iterations increases, at the very last one, it slightly augments. This
might be an overshoot of the error curve, meaning that 6 iterations are not enough
for the error value to reach its settle time. Another possible explanation is that
the players were able to familiarize themselves enough with the gameplay to come
up with different strategies. A common player remark was: “I was getting better
by the last batch”, which reflects MATCHS’ adaptation, but, in some measure,
also the user’s adaptation to the game. Of course a better score will result in a
harder task to be accomplished next, forcing the player score back down again.

The MATCHS framework is based upon one hypothesis that might contribute
to its less than optimal performance. It is assumed that all variations in the
user’s performance are due to differences in cognitive capacity i.e., differences in
quanta population, which means that changes in attention, motivation or fatigue,
which are known to be key elements capable of modulating WM performance (as
discussed in Section 3), are not taken into account. Therefore, changes of these
time-dependent factors lead to frequent updates of the estimated MPS parame-
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ters. This can be particularly noticeable when the user interacts with the system
in a somewhat intermittent manner, yielding local fluctuations of attention or mo-
tivation that have a large impact on the user’s estimated capacity. For instance,
in the case where a local fluctuation in the player’s attention level results in a
poor performance, MATCHS will consider that it corresponds to a decrease in the
user’s cognitive capacity, and new parameter estimations are made. The user’s
newly estimated parameters may however result in an ill-adapted task. Still con-
sidering the example of a poor performance due to an attention fluctuation, the
worse performance will produce a simpler task, which, when presented to the user
will (likely) result in a higher performance and so on. Therefore a simple local
fluctuation in attention will result in the system being destabilized for a while
before the estimations settle again.

MATCHS is a simple framework based upon complex core elements. Its mod-
ular architecture allows it to be easily improved, for instance by using estimations
of attention or/and motivation to regulate the amount of quanta that enter WMS.
Therefore, local fluctuations in such factors would not lead to changes in the user’s
MPS-estimated parameters, creating a more precise long- and short-term adapta-
tion mechanism. We return to this issue later in this work.

MATCHS’ modular architecture also allows other, possibly more precise, WM
models to be used; as long as a WM model provides a probability of information
retention over time, it can be used in MATCHS. The Controller that drives the
adaptation could also be replaced by a more refined one. The results presented
in this chapter were obtained through a simple proportional gain that made use
of the error value to drive the evolution of the estimated quanta. A (possibly
ML-derived) more complex control function could be used to also regulate other
WM-performance-dependent parameters such as δt, resulting in more refined user
model.

Going beyond toy use cases such as Match2s, MATCHS could be used to assess
the user’s capacity for holding information as long as some estimation of how much
information was forgotten is provided. As seen in Section 4.1.2, performance on
tasks can be used to infer cognitive capacity and cognitive load. Therefore, in
cases such as tutoring systems, the error rate or completion time of exercises could
serve as an indication of the user’s WM capacity. MATCHS could then use this
measured performance to adjust the presentation of exercises and the extraneous
cognitive load, regulating αs in a way that the student is not overcharged and
has enough available resources left the germane load of learning. However, a big
drawback of MATCHS for such as use case, as well as others, is that this framework
needs to perform numerous series of simulations in order to obtain the key WM-
specific recall curves, which are thus time- and resource-costly components. This
issue is addressed in the next chapter.



Chapter 6

An Unscented Hound for
Working Memory

“It is sheer folly to take unwilling
hounds to the chase.”

Titus Maccius Plautus

An Unscented Hound for Working Memory (AUHWM, prononcé “om”) est
une extension naturelle du cadre MATCHS. Alors que, dans MATCHS, les quanta
estimés, ou les ressources cognitives, d’un utilisateur ont été trouvés de manière
incrémentielle par le contrôleur entraîné par le signal d’erreur, AUHWM utilise
un filtre de Kalman non-linéaire (UKF) pour le suivi en temps réel de la capacité
de l’utilisateur.

AUHWM est capable de suivre dynamiquement les capacités cognitives de la
WM d’un utilisateur sur des intervalles de temps à court et à long terme. Au con-
traire des approches typiques de Machine Learning telles que [67, 66, 67], où les
modèles de charge cognitive sont dérivés des données, une application fondée sur
AUHWM peut être utilisée avec différentes populations, non rencontrées aupara-
vant, sans passer par le processus fastidieux de collecte de données d’entraînement
personnalisées. Il le fait parce que AUHWM est fondé sur un modèle bien com-
pris et validé de la WM (par exemple, les modèles présentés dans la section 4.2).
De plus, en ayant une compréhension claire de ce que représentent les paramètres
de modélisation d’AUHWM, des explications de haut niveau des choix du système
peuvent être fournies.

AUHWM consiste en un filtre de Kalman non-linéaire couplé à un modèle déter-
ministe de la dynamique de dégradation de la WM humaine. Il est capable de
modéliser la dynamique de la WM d’une personne en suivant des paramètres de
personnalisation. Cependant, le but principal de AUHWM est de fournir une adap-
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tation de tâches pour les applications qui dépendent de la WM.
Les sections suivantes sont organisées comme suit. Les sections 6.1 et 6.2

présentent au lecteur une revue du filtre de Kalman et du fitre de Kalman étendu.
La section 6.3 présente le filtre de Kalman “unscented” (inodore, car neutre) pour
les estimations non linéaires. La section 6.4 décrit le cadre de AUHWM pour la
modélisation des capacités cognitives, et la section 6.5 discute de la validation des
capacités de modélisation d’AUHWM.

An Unscented Hound for Working Memory (AUHWM, pronounced “om”) is a
natural extension of the MATCHS framework. While in MATCHS, the estimated
quanta, or the cognitive resources, of an user were found incrementally by the
controller driven by the error signal, AUHWM employs an Unscented Kalman
Filter (UKF) to track the user’s capacity in real time.

AUHWM is able to dynamically track a user’s WM cognitive capabilities over
both short- and long-term time intervals. Unlikely typical ML approaches such as
[67, 66, 67], where models of cognitive load are derived from data, an AUHWM-
based application can be used with different populations, not previously seen,
without going through the burdensome process of collecting personalized training
data. It does so because AUHWM is based on a well-understood and validated
model of WM (for instance, the presented models of Section 4.2). Moreover, by
having a clear understanding of what AUHWM’s modeling parameters stand for,
high-level explanations of the system choices can be provided.

AUHWM consists of an Unscented Kalman Filter coupled with a deterministic
model of human WM degradation dynamics. It is able to model a person’s WM
dynamics by tracking personalization parameters. However, the main purpose of
AUHWM is to provide task adaptation for applications that are WM-dependent.

The next sections are organized as follows. Sections 6.1 and 6.2 present the
reader with a review of the Kalman Filter and the Extended Kalman filter tech-
niques. Section 6.3 introduces the Unscented Kalman filter for non-linear estima-
tions. Section 6.4 describes AUHWM’s framework for modeling cognitive capaci-
ties, and Section 6.5 discusses the validation of AUHWM’s modeling capabilities.

6.1 Kalman Filter
The Kalman Filter (KF) is an ubiquitous technique for tracking or data-prediction
tasks. The KF is useful when compared to other ML techniques because it doesn’t
require any data or training to be implemented and is a very fast algorithm. The
goal of the KF is to derive the best estimates for a discrete-time linear system
whose evolution is subject to process noise (or random disturbances). It does so
by propagating previous estimations in the form of Gaussian Random Variables
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(GRV) through a transition function, generating new estimations, collecting data
from sensors and finally updating the system’s state belief with the new data [86].

The goal of a KF is provide an estimate x̂ of an unknown state vector x. At first,
before measurements arrive from the sensors, one needs to make a first estimation
of the system’s initial GRV state x0, with known mean µ0 and covariance P0. Since
no more information is available at this point, the optimal state estimation is given
by (x̂0, P0), with:

x̂0 = µ0 = E[x0],

and the covariance by

P0 = E[(x0 − x̂0)(x0 − x̂0)T ].

The initial state is thus a GRV where the covariance represents the estimated belief
of the estimation.

One also needs to model the systems dynamics by defining a transition function
F and an observation function H, assumed in this overview to be independent
of time. Both functions have the form of linear vector functions. F describes
the linear evolution of the system state, and H defines the relationship between
the observation values from the sensors and the system actual state; both linear
transforms can be seen as matrices. The transition function models the state
evolution as follows:

xt = Fxt−1 + wt, (6.1)

where xt is the current unobserved state vector, xt−1 is the previous state and wt is
a random vector representing the process noise (or the uncertainties in the model);
wt is zero-mean and temporally uncorrelated (white noise), i.e., E[wt] = 0. We
call Wt the process noise covariance matrix at time t, defined as:

Wt = E[wtwTt ].

The observation function H models the relationship between the states and the
measurements:

yt = Hxt + vt, (6.2)

where yt is the only observed value from the actual state xt, and vt is the ran-
dom vector of the measurement noise, also zero-mean and temporally uncorre-
lated (E[vt] = 0). The observation function covariance matrix is then called Vt
and defined as:

Vt = E[vtvTt ].
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There are two main steps involved in the KF: the model prediction step and the
data assimilation step. The model prediction step involves propagating the pre-
vious state estimation through the transition function, obtaining a forecast of the
state evolution. The data assimilation step uses the information obtained through
the sensors to update the forecast state, obtaining the best state estimation pos-
sible.

6.1.1 Model Forecast Step
During the model forecast step, the only available information is the previous
mean and covariance of the state estimation at time t − 1. Therefore, using the
transition function, one can make some crude estimation of the possible next state
x̂t|t−1. The mean of the forecasted state is obtained by:

x̂t|t−1 = Fx̂t−1,

while the covariance of the forecasted state is given by:

Pt|t−1 = FPt−1F
T +Wt.

Note the addition to the transformation of the previous state’s covariance Pt−1
of the process noise covariance Wt, corresponding to an increase in the model’s
uncertainty given by the less-than-optimal modeling of the transition function.

6.1.2 Data Assimilation Step
The data assimilation step is an a posteriori step that uses the information obtained
from the sensors to update the forecasted state estimation in order to obtain the
optimal estimation x̂t at current time t. The mean and covariance of the corrected
estimation are given by

x̂t = x̂t|t−1 +Kt(yt −Hx̂t|t−1)

and

Pt = (I −KtH)Pt|t−1,

where Kt is the so-called Kalman gain, given by

Kt = Pt|t−1H
T (HPt|t−1H

T + Vt)−1.
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Note that the evolution of the covariance does not depend on the actual measure-
ments yt.

When making predictions during the model forecast step, uncertainty is added
through the covariance of the transition functionWt, meaning that the Kalman fil-
ter "looses" information because of the uncertainties in the model. However, when
a new measurement arrives, this new information is added to the forecast. The
added information is weighted by the Kalman gain; intuitively, the Kalman gain
is the ratio between the confidence of the forecasted prediction and the confidence
of the observed value [87].

When Kt is large, more importance is given to the measured signal, meaning
that more information is being added by the sensors. Traditionally, one initializes
the state covariance matrix P0 with large diagonal values, meaning that at first
we are not sure about the actual state and that Kt is pretty much dominated by
Pt|t−1, so that Kt is giving less importance to V .

Therefore, every time a measurement from the sensor arrives, the state uncer-
tainty is proportionally reduced by KtH, resulting in a smaller state covariance.
With a smaller Pt|t−1, Kt becomes more and more dominated by Vt, that is the
uncertainty of the sensors. The Kalman gain reflects then how seriously we should
take each measurement into account when updating the predictions.

In the KF formulation, where the estimations are linear Gaussian, when start-
ing with a initial state as a GRV, the filtering process will always produce a GRV,
for a linear transformation of a multivariate normal random variable has also a
multivariate normal distribution [86]. However, the traditional KF only works for
systems with linear dynamics. In order to work with non-linear dynamics, which
will be needed given our modeling of the WM dynamics, the KF needs to be
modified or extended.

6.2 Extended Kalman Filter
The Extended Kalman Filter (EKF) is a version of the KF that deals with non-
linear system dynamics through local linearizations [88]. The EKF employs first-
order local linearizations of F and H in the region of xt = µt of the non-linear
system; this is why the EKF is also called a first-order filter. Subsequently, us-
ing the traditional linear KF equations, the state distribution, approximated by
a GRV, can be propagated analytically through the first-order approximations,
obtaining the next estimated distribution.

The EKF assumes the transition and observation models are smooth and well-
behaved, meaning that the linear model validity depends on how non-linear the
model functions are around the current mean [86]. If F and H are smooth, they
can be expanded in Taylor series, and the state distribution GRVs can be prop-
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agated through the first-order linearizations analytically. However, there are two
drawbacks to the EKF: first, the linearizations can introduce large errors in the
true posterior mean and covariance of the GRV [89]; second, the derivation of the
Jacobian matrices, needed for the Taylor series expansion, are non trivial in most
applications, leading to difficult implementations [90].

6.3 Unscented Kalman Filter
The Unscented Kalman Filter (UKF) is an alternative to the EKF; it is an estima-
tion tool mostly used in non-linear dynamic systems or in probabilistic parameter
estimation [89]. Instead of using local linearizations as the EKF does, the UKF
works by applying the Unscented Transformation (UT) in order to deal with the
non-linear dynamics.

6.3.1 Unscented Transformation
The UT is a method for predicting statistics of random variables undergoing non-
linear transformations. It is based on the principle that it is easier to approximate
a probability distribution than a non-linear function [90]. The UT relies upon care-
fully selected “sigma points”, i.e., chosen sample points from the prior distribution
that captures its characteristics such as the distributions’ first two moments (the
mean and covariance). These points are then individually propagated through
the non-linear transformation, and the transformed set is used to approximate the
posterior distribution.

Assume given a random variable x, described by its mean x̂ and covariance Px,
with dimension L, and some non-linear function y = g(x). To approximate the
statistics of y, we define a set of 2L+ 1 weighted points S = {(Wi, X i)}2L

i=0, where
X i are the sigma points and Wi are the corresponding weights. The sigma points
X i are defined as follows:

X0 = x̂;

Xi = x̂+ (
√

(L+ λ)Px)i, i = 1, . . . , L;

Xi = x̂− (
√

(L+ λ)Px)i−L, i = L+ 1, . . . , 2L.
(6.3)

where λ is a scaling parameter given by λ = α(L + κ) − L, α corresponds to the
spread of the sigma points, κ is a secondary scaling parameter and (

√
(L+ λ)Px)i

is the i-th row of the matrix square root. The corresponding weights for the sigma
vectors, also coming in pairs Wi = (W (m)

i ,W
(c)
i ), are defined as:
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W
(m)
0 = λ

(L+ λ) ;

W
(c)
0 = λ

(L+ λ) + (1− α2 + β);

W
(m)
i = W

(c)
i = 1

2(L+ λ) , i = 1, . . . , 2L.

(6.4)

where β is used to incorporate prior knowledge of x’s distribution. For Gaussian
distributions, the optimal value is β = 2 [91]. With these sigma points, one can
then obtain the transformed points Yi by having Xi go through the non-linear
transformation:

Yi =
2L∑
i=0

g(Xi).

The mean ŷ of the posterior distribution is then approximated as:

ŷ ≈
2L∑
i=0

W
(m)
i Yi, (6.5)

and the covariance Py as:

Py ≈
2L∑
i=0

W
(c)
i [Yi − ŷ][Yi − ŷ]T . (6.6)

For Gaussian inputs, UT is accurate to the third order (in Taylor series expan-
sion). For non-Gaussian distributions, the approximated distributions are accurate
to the second order; the accuracy of the higher orders will depend on the param-
eters α and β [89]. Although there are some similarities between the UT and a
Monte Carlo method, the UT does not rely upon random sampling, as here only
2L+ 1 deterministically chosen points are required.

6.3.2 UT-based Filtering
The UKF works pretty much as the linear KF described in Section 6.1 does. As
in the linear KF, one needs to model the system (a non-linear one) by defining the
transition function F , similarly to the one in Eqn. 6.1, and the observation function
H, as in Eqn. 6.2 . Also, there is the need of an initial state x0. However, where
in the linear KF the estimated state had the form of a GRV defined only by its
mean and covariance (x̂t, Pt), in the UKF, the random variable (RV) is defined as
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the concatenation of the state estimation and noise variables xat = [xTt wTt vTt ]T .
Therefore, the initial state estimation x̂a0 is defined as x̂a0 = [x̂T0 0 0]T , where x̂0
is the mean of the initial state x̂0 = E[x0]. The covariance of the new augmented
RV, P a

0 , is given by:

P a
0 = E[(xa0 − x̂a0)(xa0 − x̂a0)T ] =

P0 0 0
0 W 0
0 0 V

 ,
where P0 is the covariance of the initial state x0, W is the process noise covariance
and V is the observation function covariance.

Following the linear KF approach, the UKF also has a model forecast step, but
instead of having the mean and covariance of the GRV going through the transition
function, here sigma points are selected from the previously estimated augmented
RV xat−1, seen as a sigma matrix X a

t−1 = [(X x
t−1)T (Xw

t−1)T (X v
t−1)T ]T . These

sigma points are calculated following Eqn. 6.3, and they are the ones propagated
through the transition model F as follows:

X x
t|t−1 = F (X x

t−1,Xw
t−1).

Note the term Xw
t−1, corresponding to the process noise. The mean x̂t|t−1 and

covariance Pt|t−1 of the predicted state can then be approximated using Eqn. 6.5
and Eqn. 6.6 respectively:

x̂t|t−1 ≈
2L∑
i=0

W
(m)
i (X x

t|t−1)i,

where we use (X x
t|t−1)i to refer to the i-th propagated sigma point, and

Pt|t−1 ≈
2L∑
i=0

W
(c)
i [(X x

t|t−1)i − x̂t|t−1][(X x
t|t−1)i − x̂t|t−1]T .

The observation function H is then used to transform the forecasted sigma
points X x

t|t−1 into Yt|t−1, which are the projections of the forecasted sigma points
into the sensor’s plane:

Yt|t−1 = H(X x
t|t−1,X v

t−1).

where, once again, note the term X v
t−1, related to the observation covariance V .

Eqn. 6.5 is used again to approximate the forecasted measurement:

ŷt|t−1 ≈
2L∑
i=0

W
(m)
i (Yt|t−1)i.
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Finally, using now the actual observation value yt from the sensors, the cor-
rected predicted state mean is updated as done in the linear KF:

x̂t = x̂t|t−1 +Kt(yt − ŷt|t−1),
and the corrected covariance Pt is given by:

Pt = Pt|t−1 −KtPytytK
T
t

where K is the Kalman gain, here given by:

Kt = PxtytP
−1
ytyt ,

where Pytyt and Pxtyt are helper matrices given by:

Pytyt =
2L∑
i=0

W
(c)
i [(Yt|t−1)i − ŷt|t−1][(Yt|t−1)i − ŷt|t−1]T ;

Pxtyt =
2L∑
i=0

W
(c)
i [(Xt|t−1)i − x̂t|t−1][(Yt|t−1)i − ŷt|t−1]T .

This completes our short presentation of the UKF, which will be the corner-
stone of AUHWM, given its ability to handle the non-linear nature of the WM
models. The interested reader is invited to look at the seminal papers (e.g., [89])
for more information, but what has been presented here is enough to understand
AUHWM.

6.4 An Unscented Hound for Working Memory
AUHWM is our proposed framework capable of tracking in real time a single
parameter corresponding to the user’s cognitive capacity. AUHWM employs, at
its core, the model of a WM dynamics. Concerning the quantic WM model, as
seen in Section 5.2.3, there is a strong link between the parameter Q, i.e., the
number of quanta, and the other parameters of the model. Also in the ACT-R’s
context (Section 4.2.1), the W parameter, which stands for the total amount of
source activation, is a key factor when modeling individual differences in memory
retrieval performance. This means that, in both models, a single parameter, qt, can
serve as an estimation of a person’s WM capacity. The parameter qt corresponds
to an individual’s cognitive capacity at time t; it could stand for either Suchow’s
Q or ACT-R’s W , both parameters driving the evolution of WM degradation.

When a person is performing a WM-dependent task, her performance is a noisy
observation of that person’s cognitive capacity. Therefore by employing a UKF for
parameter tracking, one can obtain estimations of the user’s WM capacity given
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noisy observations of WM-dependent performance. Yet, when used for parameter
estimation, the UKF requires some slight modeling modifications from what we
described above, for state estimation. The estimated state x̂t becomes the esti-
mated parameter q̂t to be tracked, modeled as a GRV. Therefore the transition
function F for our UKF that defines the evolution of the tracked parameter qt is
thus set as:

qt = qt−1 + wt.

In the absence of a more informed time-dependent modeling of users’ cognitive
capacities, the process noise here correlates to the fluctuations of a person’s avail-
able cognitive capacity that are bound to happen during the day, given factors
such as motivation, attention or fatigue, so that the amount of information that
can be stored might increase or decrease. Moreover, a more constant and long-
term degradation might also happen, with the onset of neurodegenerative diseases.
All those fluctuations on the available cognitive resources are thus driven by the
process noise Wt.

The observation function then becomes:

yt = H(qt, zt) + vt, (6.7)

where once again vt is the measurement noise; therefore, it is assumed that yt is a
noisy observation of the parameter qt, given an application-specific input zt. The
application-dependent input zt correspond to the task parameters at time t (these
will vary according to the user’s performance; these changes are linked to the UI
adaptation goal that is the main focus of this work). The observation function,
therefore, should be able, given the estimated capacity q̂t and the parameterization
of the task zt, to return an estimation of the performance, ŷt.

Both WMmodels used here are task-dependent, meaning that some parameters
are to be set according to the task (ACT-R’s formulation, however, requires the
whole symbolic model of the task). From here on, for simplicity reasons we shall
consider memory tasks to be purely WM-dependent, as is Match2s, which in an
ACT-R’s context, can be modeled as shown in Figure 4.4. Therefore, yt stands
for the probability of recall, and using the notation previously introduced for the
models presented in Section 4.2, the input zt corresponds to the task-dependent
parameters, i.e., the tuple (kt, Tt). These parameters are present in both models
and are not user-dependent as they relate to the task. For our application, the
non-linear observation function H(qt, zt), providing an indirect assessment of qt,
is thus the user’s recall probability, at time Tt, given an amount of information kt
and available resources qt; this recall probability is denoted rqt,kt(Tt) below.

The recall probability rqt,kt(Tt) is derived from the employed WM model.
Eqn. 4.3, derived from ACT-R, can be directly used here. However, as described
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in Section 5.1.3, given the stochastic nature of Suchow’s MDP, a number of simu-
lations are required in order to obtain recall probabilities. Unfortunately, running
stochastic simulations is very time consuming; this is not acceptable for our goal
of tracking, in real time, the user’s cognitive capacity. The selected approach to
bypass this problem is described in next section.

6.4.1 Deterministic Simulation of Suchow’s WM
To bypass the expensive simulations necessary for the MDP-based quantic model,
we propose to implement an approximation of our adaptation of Suchow’s model
using a gradient-boosting (GB) [92] approach for regression.

Gradient Boosting

Boosting techniques are concerned with ensemble formation through a constructive
approach, where new models are added sequentially to the ensemble in order to
optimize response accuracy. GB is a ML technique that continuously add, in a
sequence, new weak models that maximize correlation with the negative gradient
of the loss function [93]. The added models can be chosen from different families
of models such as trees, splines and others. The main difference between boosting
methods and other ML techniques is that the optimization here is made in the
function space.

The goal of supervised learning algorithms is to find an estimation f̂ of a
function that maps a possibly multi-dimensional input parameter x to its output
y = f(x) by minimizing a loss function Ψ(y, f̂), given the data {xi, yi}Ni=1. The
GB function estimate f̂ is given by:

f̂ =
M∑
i=0

f̂i(x),

where M is the number of iterations used to provide the expected approximation,
f̂0 is an initial model and {f̂i}Mi=1 are the added incremental models, also called
“boosts”. These models, or “base learners”, are parameterized by θ and are noted
h(x, θ). The t-th boost is given by:

f̂t(x)← f̂t−1(x) + ρth(x, θt),
where ρt is a step size. At step t, the parameter θt is selected by choosing the
parametrization of a predefined base learner h(x, θ) that produces the increment
most parallel to the negative gradient −gt of the loss function:

θt = arg min
θ

N∑
i=1

(−gt(xi)− h(xi, θ))2, (6.8)
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where the gradient gt is given by:

gt(x) = Ey

[
∂Ψ(y, z)
∂z

]
z=f̂t−1(x)

.

The parametrization is chosen according to the steepest-descent strategy. This
is done instead of simply trying to find θt that minimizes the loss function

Ψ(y, f̂t−1(x) + ρth(x, θt))

over the data, because doing so can potentially be very hard [92], and Eqn. 6.8
becomes nothing more than a least-squares function minimization.

Then the last parameter, ρt, is found by minimizing the loss function according
to the added boost:

ρt = arg min
ρ

N∑
i=1

Ψ(yi, f̂t−1(xi) + ρth(xi, θt)).

A GB model of WM dynamics

In order to approximate Suchow’s MDP by a GB model for regression, uniform
distributions representing each of the key parameters Q, k and T were created.
The parameters L and δt of Table 4.2 were set in the same fashion as MATCHS’
WMS (Section 5.2.2); however σ was set either to 1 and -1 in order to compare
two different strategies. If σ = 1, then the optimal policy (Section 4.2.2) will give
preference to information that were better encoded; however, if σ = −1, then the
decision maker will try to maintain the memories with less quanta, meaning that
more information will remain in WM for longer. These are two possible strategies
a user can employ in games such as Match2s.

With the other parameters set, the recall probability rQt,kt(Tt) has its behavior
dictated by the parameters from the distributions. Instead of having the limits
of the uniform distributions representing k and T being defined by the possible
configurations of the game Match2s (Section 5.2), they were set to broader limits.
The maximum number of presented information, k, is set to 10, corresponding to
a very challenging cognitive task, and the maximum limit for T is set to 2, 500
ms. The distribution corresponding to Q has a minimum value of 1 and a max-
imum value of approximately twice the highest final estimated quanta found on
MATCHS’ results. Thus, using the Python package PyMC3 [94] for probabilis-
tic machine learning and Bayesian statistical modeling, we sampled the following
distributions:
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Q ∼ U(0, 120),
k ∼ U(1, 10),
T ∼ U(0, 2500).

Using limits for the task parameters that are wider than the ones found in Match2s’
possible configurations, together with a wider population of quanta, means that
the simulated data corresponds to a broader range of applications as well as user
profiles.

From these distributions were sampled N = 2 × 106 possible combinations of
the parameters {Qi, ki, Ti}Ni=1. These combinations were then used to generate
simulation data, using the same principle as the one described in Section 5.1.3,
producing two datasets (one for each value of σ) {Qi, ki, Ti, ri}Ni=1, where ri is the
recall probability outputted by the WMS, and .

Two GB models for regression were learned over the formed datasets, through
the GradientBoostingRegressor class in sklearn [95], using the default configu-
ration. The resulting gradient-boosting model is an approximate function f̂ that
maps Q, k and T to an approximation f̂(Q, k, T ) of the recall probability rQ,k(T ).
The accuracy of the model is given by the coefficient of determination R2. On
average, using a 10-fold cross-validation, when σ = 1, R2 = 0.92± 0.00 and when
σ = −1, R2 = 0.93 ± 0.00. Since a perfect fit would have yielded a R2 equal
to one, we see that, through this approach, it appears possible to retrieve user-
and task-dependent recall performance with good accuracy, without having to go
through the large number of expensive stochastic simulations that were used for
MATCHS.

Figure 6.1 depicts an example of the evolution of the recall probability over
time T obtained using the learned GB models. The left curve depicts the obtained
evolution of the retention of k = 5 information items presented when Q = 50
quanta are available, with the GB model parameterized with σ = 1, while the
right one shows the result obtained with the GB model with σ = −1. One can
observe that when σ = −1, the policy tends to retain information for a longer
period of time, as the negative value ensures that the maintenance mechanism will
focus on the least stable information in order to try to keep it in memory as long
as possible.
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Figure 6.1: Recall probability over time outputted by two learned Gradient Boost-
ing models. Both curves were obtained with the input parameters Q = 50 and
k = 5; however the left one was learned on the data obtained with σ = 1 and the
right one with σ = −1 .

6.4.2 Definition of AUHWM
AUHWM is, at its core, the combination of the UKF1 and a deterministic model
of WM dynamics, as defined by the modeling described at the start of Section 6.4.
In this work, one may use the GB approximation of the MDP-based quantic model
as the observation model H, Eqn. 6.7 thus becoming:

yt = f̂(qt, kt, Tt) + vt,

where yt is the recall probability observed when the user performs a task param-
eterized by kt and Tt. The presence of vt refers to the fact that the observed
probability of recall is a noisy observation of the user’s cognitive capacity.

As remarked before, if using an ACT-R-based model instead, one requires a
whole symbolic modeling of the task. Remembering that we are interested in
Match2s-like applications, then the model depicted in Figure 4.4, and used to
generate the recall curves in Figure 4.5, can be employed here. In consequence,
the recall probability is thus given by Eqn. 4.3. Therefore, Eqn. 6.7 becomes

yt = 1
1 + e−(At−τ)/s + vt,

where one considers there is no difference between the various stored informa-
tion items, all the information sharing the same recall probability. At, the total

1The UKF for the estimation of available cognitive resources over time is implemented using
the pykalman library for Python [96].
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activation at time t of one information item, is given by Eqn. 4.1:

At = Bt + qtS,

where qt is the tracked parameter representing here the total available source
activation. The strength of association S is defined as S = 1/kt and the base-level
activation is given by Bt = ln(T−dt ). The two addends of At reflect the division of
resources between, respectively, the degradation of each memory after time Tt and
the presented information. In this modeling, the parameters τ , s and d were set
heuristically to 1, 0.4 and 0.5 respectively.

To summarize, we have introduced here three deterministic models of WM
degradation dynamics:

• a GB-based one, with σ = 1;

• a second GB-based one, with σ = −1;

• and an ACT-R-based one.

The rest of this chapter is dedicated to the experimental analysis of these
various WM models and the evaluation of AUHWM.

6.5 AUHWM Modeling Capabilities
In this Section, we discuss AUHWM modeling performance. In a first time, we
shall focus on the framework’s performance when employing the GB approximation
of the MDP-based quantic model with σ = −1, as the discussion stands pretty
much the same independently of which model is embedded in AUHWM. Then,
AUHWM’s performance when coupled with the other WM models will be used for
comparison and discussion.

6.5.1 GB-based AUHWM Performance
In a first validation step, AUHWM’s modeling capability was tested on the data
collected using the game Match2s . Remember that during MATCHS’ experimental
evaluation, every participant played the game for 125 turns, in sequence; the first 5
were used for familiarization with the game’s mechanics. For the next 120 turns, for
every batch of 20 turns, the number of presented colors kt as well as the hiding time
Tt changed according to the player’s performance (the time t stands thus here for
the batch number). The player’s actual recall probability yt for each batch is then
observationally computed as n/20, where n is the number of successful answers for
the queried colors. Overall, this resulted in a dataset of six (120/20) data points
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Figure 6.2: Tracked quanta-number values for a typical Match2s player: both
estimations were obtained with process noise variance W = 5, the left estimations
being obtained with observation noise variance V = 0.001 and the right one with
V = 0.1. Note the initial estimation q0 isn’t depicted.

{(kt, Tt), yt}6
t=1 for each of the players, which are used to provide an estimate of

the WM capacity qt for each player. Unfortunately, due to technical reasons, the
data corresponding to 2 of the 20 players could not be used in this experimental
validation.

The UKF requires an initial estimation q0 (that here represents the number of
quanta of Suchow’s model) and an initial state covariance matrix P0 (in AUHWM’s
case, since the tracked parameter has only one dimension, q0 and P0 become re-
spectively the mean and variance of the estimated GRV). The results discussed
below were obtained after setting, using an educated guess, q0 to 40 and P0 to
1,000.

One also needs to define the process and observation variances matrices, W
and V respectively (again, since the tracked variable has only one dimension, W
and V become single values). The process variance defines how much uncertainty
is added at each iteration, and the observation variance corresponds to how noisy
the observations are. AUHWM’s outputted estimations will then depend on the
definition of these two values.

Figure 6.2 depicts the means and standard deviation bars of UKF-predicted
states qt, as tracked by AUHWM, for one typical Match2s player. These estima-
tions were made with a fixed process noise variance (W = 5) and two different
values for the observation noise variance (V = 0.001 for the left curve, and V = 0.1
on the right).

As expected, a less precise sensor (the model with the highest observation
noise variance) results in a slower diminution of the initial system’s uncertainty
P0. This happens because the Kalman gain is smaller, giving less importance to
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Table 6.1: Task parameters used to obtain the recall probabilities in Figure 6.3 .

batch k T
1 7 575
2 7 230
3 5 460
4 5 600
5 4 725
6 4 630

Figure 6.3: Actual vs. estimated recall curves generated by the GB model, using
the quanta estimations of Figure 6.2 (left with low V , right with higher V ).

the observations value yt when coming up with the estimation q̂t.
Once equipped with the estimations for each batch {q̂t}6

t=1 provided by AUHWM,
the GB model can be used together with the corresponding task parameters
{kt, Tt}6

t=1 to estimate the recall probabilities each user should present in each
batch, remembering that the GB recall probability is given by f̂(qt, kt, Tt). Fig-
ure 6.3 depicts (dashed line, in red) the evolution of the recall probability the player
of Figure 6.2 actually obtained when presented with the 6 different combinations
of kt and Tt in the game as well as the estimated recall probability f̂(qt, kt, Tt)
(continuous line, in blue) given by the GB model2. The 6 task parameters are
shown in Table 6.1.

2Throughout this work, the recall probabilities are depicted with dashed lines connecting the
recall probability of each batch, although connecting the probabilities does not make sense be-
cause there is no probability referring to, for instance batch “1.5”; the presence of the connecting
lines facilitates comparing the results, though.
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Having a smaller observation noise variance correspond to having a more precise
sensor. In AUHWM’s case, it means that the GB model provides a very good
indication of the user’s cognitive capacity. As seen in Figure 6.3, the estimations
made with the smaller V more closely resemble the actual player recall probability.

The goal of modeling users with AUHWM is to obtain estimations of the user’s
cognitive capacity at any time. Since no information is available corresponding to
the attention level, or any other factor that might influence a person’s performance
in a WM-dependent task, having a very small observation variance will result in
estimations that “overfit” the observed player’s performance, meaning that these
modulation factors will be encoded in the estimations of the cognitive resources.

AUHWM’s parameters W and V were then set to 5 and 0.001 respectively.
The obtained cognitive capacity estimations for the first 4 players are depicted in
Figure 6.4. Due to natural individual differences in WM capacity, each player’s
performance over the batches was different. Therefore, since here qt is tracking
very closely the observed performance, the sets of estimations are different from
one another. One can observe that the small value of the observation noise vari-
ance results in having the estimation’s uncertainty drop after the two first system
iterations, indicating the fast convergence induced by the Kalman gain.

Using these estimations, we can derive the estimated recall probability using
the GB model, the true (red dashed lines) and the estimated recall probabili-
ties of the same 4 players are shown in Figure 6.5 (the whole collection of all
player’s estimations and estimated recall probabilities can be accessed at http:
//cri.ensmp.fr/auhwm/). It is clear that after the first two batches, AUHWM’s
estimations are closer to the true recall values.

To provide a global assessment of AUHWM ability to tract the users’ cognitive
capacity, Figure 6.6 shows the evolution of the root-mean-square error (RMSE)
between the true and estimated recall probabilities of all the 18 players per batch.
The last three batch estimations present a mean RMSE error of approximately
4% (the last three estimations were chosen to assure the convergence brought by
the Kalman gain), therefore showing that after the initial batches, AUHWM is
correctly assessing the number of quanta (when using the GB model based on
Suchow’s formulation) that corresponds to the player performance. This suggests
that AUHWM is tracking reliably the players’ cognitive capacity, thus providing
additional support for its validity.

6.5.2 Comparison with other WM models
Last section discussed AUHWM’s performance when embedded with the GB ap-
proximation of Suchow’s model when the sensibility of the decision maker σ was
set to −1. When embedding AUHWM with the ACT-R-based WM model, one
obtains a very similar modeling behavior as the one presented in the previous

http://cri.ensmp.fr/auhwm/
http://cri.ensmp.fr/auhwm/
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player 1 player 2

player 3 player 4

Figure 6.4: The means and standard deviation bars of AUHWM-predicted states
q̂t of 4 of the 18 Match2s players when employing the GB-based WM model with
σ = −1.
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player 1 player 2

player 3 player 4

Figure 6.5: True recall probabilities (in red) and AUHWM-estimated performance
(in blue, using the estimated quanta of Figure 6.4) of 4 of the 18 players.
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Figure 6.6: Evolution of the RMSE for the recall probability of all the 18 Match2s
players, per batch.

section.
With this embedding, AUHWM was initialized with q0 = 1 and P0 = 25,

remembering here that when using the ACT-R’s model, qt stands for the total
available resources at time t (W from Table 4.13). In order to add, at every it-
eration, the same proportional amount of uncertainty as with the GB-model, we
found the factor of proportionality P0/W = 0.005 (for the GB-embedded param-
eterization), therefore setting W = 0.125. The observation noise variance value
stayed the same: V = 0.001.

When employing the data of the players depicted in Figure 6.4, one obtains the
estimations shown in Figure 6.7. Although the values are different, the presented
estimations follow almost the same pattern as the one obtained employing the GB
model. Then, using these estimations with Eqn. 4.1 and Eqn. 4.3, one can obtain
the information recall probability, shown in Figure 6.8. Once again AUHWM is
correctly tracking qt in order to obtain the right recall probability.

Another similar behavior is found when embedding AUHWM with the GB
model with σ = 1 and initializing it with the same values of process and observation
noise variances as in the last section. AUHWM continuously finds the estimated
state that, when propagated through the observation model, results in a close
approximation of the recall probability. The obtained estimations using the data of
the four players and the recall curves obtained from these estimations are presented

3This variable should not to be confused with the process noise variance, noted W.
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player 1 player 2

player 3 player 4

Figure 6.7: Means and standard deviation bars of AUHWM-predicted states q̂t of
4 of the 18 Match2s players, when AUHWM is embedded with the ACT-R-based
WM model.
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player 1 player 2

player 3 player 4

Figure 6.8: True recall probabilities (in red) and AUHWM-estimated performance
(in blue) using the source activation estimations of Figure 6.7 of 4 of the 18 players
(ACT-R model embedded).
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Table 6.2: Mean RMSE of the last three batches for AUHWM embedded with the
three WM models.

GB-based, with σ = 1 0.05
GB-based, with σ = −1 0.04

ACT-R-based 0.06

in Figure 6.9 and Figure 6.10 respectively.
The evolution of the RMSE with all these three WM models, representing the

difference between the true and estimated recall probabilities of all 18 players per
batch, is shown in Figure 6.11. One can see that overall, after the first two batches,
when employing the GB-based model with σ = −1, the RMSE is marginally
smaller. The mean value for the RMSE during the last three batches for all models
is shown in Table 6.2.

The cognitive capacity estimations and the corresponding estimated recall
curve for all the players when embedding AUHWM with the three different WM
models can be accessed at http://cri.ensmp.fr/auhwm/.

6.6 Discussion
This chapter presented AUHWM, a framework that, by employing the Unscented
Kalman filter together with a well-specified model of WM dynamics, is capable of
tracking the user’s cognitive capacity. The experimental evidence presented in the
last section suggests that AUHWM enables the real-time tracking of a person’s
cognitive capacity when observing his/her performance on a task.

The results obtained when employing three different models show that AUHWM’s
performance does not depend on the WM model used, as it is able to make es-
timations of the cognitive capacity (either quanta or source activation) necessary
for, given the task parameters, mimicking the observed performance.

Although during this chapter we have been referring to the tracked parameter
qt as the estimation of a person’s cognitive capacity, one can also regard it as a
direct assessment of cognitive load. The data used for validation in Section 6.5
was WM-based, meaning that the player’s performance is a noisy observation
of her capacity. However, when considering the dual task paradigm, if another
task is added, resulting in more cognitive charges being applied to the user, then
the tracked parameter qt will reflect the decay of available resources. Therefore,
AUHWM can be used for the quantitative determination of the load a given task
induces on someone’s abilities.

http://cri.ensmp.fr/auhwm/
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player 1 player 2

player 3 player 4

Figure 6.9: Means and standard deviation bars of AUHWM-predicted states q̂t of
4 of the 18 Match2s players, when AUHWM is embedded with the GB-based WM
model with σ = 1.
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player 1 player 2

player 3 player 4

Figure 6.10: True recall probabilities (in red) and AUHWM-estimated performance
(in blue, using the estimated data of Figure 6.9) of 4 of the 18 players. (GB-based
model with σ = 1)
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Figure 6.11: Evolution of the RMSE for the recall probability of all the 18 Match2s
players, per batch, when employing the 3 different models of WM.
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Another direct application of AUHWM’s modeling capabilities is the assess-
ment of a user’s cognitive decay over time. This can be used for determining a
person’s cognitive profile as days go by, allowing intelligent systems to consider
the user’s capacity when adapting task scheduling (which is one of the four mech-
anisms for adaptation [70]). Applications of such profiles could also be found in
the domain of health, for the analysis of demented patients, for instance.

However, as mentioned in the beginning of this chapter, AUHWM’s estimations
are mostly intended to be used in adapting task-specific UIs to users’ cognitive
limitations in real time. In this chapter, the modeling task is done a posteriori;
AUHWM finds the user capacity after interaction was performed, corresponding
to the first step for adaptation defined in Section 2.1. However, if one is interested
in adaptation, one has to identify the impact the assessed cognitive capacity has
on performance, as well as being able to select a compensatory strategy (step 2
for adaptation). This is where the advantage of embedding our framework with
well-specified and validated WM models stands out. The embedded model is
supposed to provide the adaptation framework with information necessary to be
able to deal with unseen data, allowing it to make predictions on performance
a priori, i.e., before the interaction has taken place. Next chapter will discuss a
AUHWM-based framework for real-time UI adaptation and evaluate it.



Chapter 7

UI Adaptation using AUHWM

Le chapitre précédent a présenté notre cadre de modélisation et de suivi de la WM,
AUHWM, et a discuté de ses capacités. Cependant, comme indiqué précédemment,
le principal objectif de AUHWM est d’adapter les interfaces utilisateur aux limita-
tions cognitives. La prise en compte des limitations cognitives à long et/ou court
terme lors de l’adaptation des interfaces utilisateur est un moyen d’augmenter les
chances qu’une tâche donnée soit exécutée correctement. De plus, même si la tâche
a été effectuée sans surcharge cognitive, permettre à l’utilisateur de la réaliser tout
en considérant toutes les informations présentées peut entraîner moins d’erreurs
humaines.

En se rappelant les quatre étapes principales de l’adaptation vues précédemment,
à savoir

1. constater la limitation de capacité de l’utilisateur,

2. identifier l’impact potentiel sur la performance,

3. sélectionner une stratégie compensatoire et

4. appliquer cette stratégie dans le contexte actuel,

nous voyons que le chapitre précédent concernait la première étape, fournissant la
preuve que AUHWM est capable d’inférer les limites de la capacité cognitive de
l’utilisateur à partir des interactions. Ce nouveau chapitre se concentrera donc
sur la façon dont ces limitations peuvent être utilisées pour les étapes 2 et 3.

The last chapter introduced our framework for WM modeling and tracking,
AUHWM, and discussed its capabilities. However, as said before, the main ulti-
mate goal of AUHWM is to adapt user interfaces to cognitive limitations. Consid-
ering long- and/or short- term cognitive limitations when adapting UIs is a way to
increase the chances that a given task is going to be performed. In addition, even if

119
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the task was performed without cognitive overload, enabling the user to complete
it while considering all the presented information may result in less human errors.

Remembering the four main steps for adaptation seen before, namely

1. the detection of a user’s capacity limitation,

2. the identification of its potential impact on performance,

3. the selection of a compensatory strategy,

4. and the implementation of this strategy in the terms of the current context,

we see that the last chapter was concerned with the first step, providing evidence
that AUHWM is capable of inferring the limits of the user’s cognitive capacity
through interaction. This new chapter, thus, will focus on how these limitations
can be used for steps 2 and 3.

AUHWM consists on a tracking algorithm (UKF) coupled to any deterministic
modeling of human WM, as the Kalman observation function H. The embed-
ded model defines the link between capacity qt, task parameter zt and a noisy
observation of performance yt as, recalling Eqn. 6.7:

yt = H(qt, zt) + vt.

An AUHWM-based system is able to extract information from the model, ob-
taining a numerical measure of cognitive capacity from the task parameters and
observed performance. However, having a causal model of WM allows a system
to go beyond simple tracking. Provided with the tracked cognitive capacity, the
model, serving as a link between the three parameters, can, in addition, be used
to predict performance, given the task parameters (adaptation step 2). Moreover,
this information can be used to find the specific task parameters necessary for
attaining a specific performance (step 3). Next section will present the reader a
framework capable of doing so.

7.1 An AUHWM-based Framework for Cogni-
tive UI Adaptation

Figure 7.1 depicts a possible AUHWM-based framework capable of adapting an
UI in real time to the user’s perceived cognitive capacity. There are some clear
similarities between the framework depicted above and the MATCHS’ one of Fig-
ure 5.1.1. Much as in MATCHS, a task-specific parameter πs must be set by the
task manager; this parameter corresponds to the desired performance one wants
the user to have when performing the adapted task. However, while in MATCHS
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Figure 7.1: AUHWM-based UI adaptation of a task to users’ cognitive capabilities
(see Table 7.1 for a description of the parameters used).

Table 7.1: Adaptation parameters

πs Desired accuracy
πm Measured accuracy
zt Task parameters
qt Estimated capacity

the αs parameter corresponded to the allowed amount of information to be forgot-
ten, here, when concerning purely WM-dependent tasks, πs corresponds to how
much information has to be remembered: πs = (1− αs). For instance, in contexts
such as Match2s, πs corresponds to the probability of recall; if set to 1, one wishes
the user to get a perfect score in Match2s; if set to 0.5, the user global performance
would show 50% successful answers, on average.

At a given time step t, the Adaptive Optimizer (see Figure 7.1) is responsible
for finding the task parameters zt that will ensure that, on average, the user will
perform with performance πs, given the previous estimation qt−1. The Adaptive
Optimizer finds a proper zt by employing the embedded WMmodel. Supplied with
the previous estimation, the model provides the flexibility to estimate performance
even in the presence of previously unseen user’s cognitive characteristics. The task
parameter could be found, for instance, by searching the task-parameter space for
the combination of values that, when propagated through the WM model would
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result in the desired performance (or its closest approximation). Once again, in
the context of Match2s, zt would correspond to (kt, Tt), that is, the number of
information items presented as well as the duration of time during which the
player has to hold this information in his/her WM. These optimized parameters
are therefore the ones that ensure the constraint H(qt−1, zt) = πs. Once given
zt, the task is adapted accordingly and presents its possibly updated UI to the
user. The user’s measured performance πm is then used by AUHWM to estimate
the next state qt, corresponding to the updated assessment of the user’s cognitive
capacity.

Moving beyond the context of Match2s-like games, zt could correspond to the
period of time before the UI refreshes a previously presented information, ensuring
the user will be able to perform a task without forgetting more than (1 − πs) of
the information content. In the context of decision-making processes, the UI could
make sure that the user is solving a problem while considering all the essential
information. For assistive technologies, zt could stand for the number of presented
information items; this would enable patients suffering from Alzheimer’s disease,
or other cognitive deficits, to interact with the adapted UI autonomously, without
the help of family or caregivers, restoring some of their lost autonomy.

7.2 Performance Prediction
In order to validate the framework described in the last section, we applied it on
the same data used to validate MATCHS and AUHWM’s modeling capability. In
order to do so, instead of having the Adaptive Optimizer find the optimal task
parameters zt that would result in the performance πs, we assume that Tt and kt,
i.e., the hiding time and number of squares presented at batch t, are already the
optimal parameters. Therefore, if AUHWM works correctly in assessing the user’s
cognitive capacity, the user’s measured performance πm must be equal to what
should have been πs. This corresponds to having a perfect Adaptive Optimizer
that, even when presented with faulty estimations, finds the optimal task parame-
ters. Consequently, the previously estimation output by AUHWM, qt−1, together
with the corresponding task parameters Tt and kt, when ran through our model,
should result in πm. In practice, this means running the same test as the one of
Section 6.5, but while “looking ahead”, that is, using the state qt−1 to predict the
recall probability of the next batch, t, by using the embedded model H(qt−1, zt).

Figure 7.2 shows the histogram representing the configuration of task parame-
ters for all the 18 players, corresponding to the data used here. These parameters
where regulated by MATCHS, which means that they variated accordingly to the
player’s performance. Note that all the players started with more or less the same
configuration (k = 7 and T ≈ 500ms).
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Figure 7.2: Configurations of the parameters in the data collected with the memory
game Match2s.
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Figure 7.3: Actual vs. estimated recall curves generated by the GBmodel, using the
last estimations qt−1 to predict the player performance at batch t. The estimations
used here are the ones of the same player as in Figure 6.2

In a first validation step, we will focus on the framework’s performance when
employing the GB model with σ = −1, for, once again, the discussion holds up
independently of the embedded model. AUHWM was initialized with an initial
state q0 ∼ N (40, 32), and ran to obtain the players’ cognitive capacity estimates
according to the measured performance πm. However, parameterizing AUHWM
with the same values for the process and observation noise variances as the values
used in Section 6.5 results in a less than optimal prediction performance. Figure 7.3
depicts the predicted estimated recall probabilities using the quanta estimations
depicted in Figure 6.2 (left estimations) given by {H(qt−1, zt)}6

t=1, which means
that the first estimation is made with the initial quanta guess q0.

One can see that the estimations get closer to the true value. However, they
do not follow the true value as closely as when modeling the user (left curve of
Figure 6.3). The performance deterioration becomes clear when we compare the
evolution of the RMSE of all the players per batch obtained in the two contexts,
modeling and prediction as shown in Figure 7.4. While, when AUHWM was
used for modeling the user’s cognitive capacity, the last three batch estimations
presented a mean RMSE error of approximately 4% (Figure 6.6), when predicting
performance, the last three batch estimations present a mean RMSE of 15%.

This degradation is due to the fact that there are a number of factors that re-
sult in performance variation other than cognitive capacity. For instance, from one
batch to the next, some players lost motivation, due to the task being repetitive,
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Figure 7.4: Comparison of the evolution of the recall probability RMSE for the 18
Match2s players, per batch t, between modeling and “looking ahead” (prediction
based on qt−1).

and therefore became less attentive. Moreover, some players started developing
better strategies, or became used to Match2s, resulting in better scores and there-
fore apparent higher cognitive capacities. And since here the UKF is tracking
very closely the observed performance (V = 0.001), these local fluctuations result
in local changes on the estimated cognitive capacity, meaning that AUHWM’s
estimations end up encoding these modulating parameters. And since these fac-
tors fluctuate from batch to batch, using the previous estimation to predict next
batch’s performance worsens the system’s accuracy. Therefore, the parameteri-
zation of AUHWM using the previous batch configuration, which “overfit” the
observed player’s performance, is not optimal when the objective is to predict
next batch’s performance.

7.3 AUHWM Prediction Optimization
As seen before, the close tracking of a player’s performance results in a less than
optimal behavior. With a better parameter fit, the UKF could be expected to filter
out the player’s performance fluctuations, obtaining smoother quanta estimations
that would, on average, result in better predictions.

In order to find AUHWM’s optimal parameterization (as before, we focus first
on the GB-based WM model with σ = −1), a technique similar to the “minimizing
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the residual prediction error” method described in [97] was employed. However,
the method in [97] requires a “highly accurate instrument for measuring either all
or a subset of the variables in the state xt” to compute the prediction error. We,
on the other hand, do not have the luxury of an instrument that would give us a
precise measure of the user’s cognitive capacitye, which means we cannot proceed
as in [97] to try to minimize the error between the actual states and the estimated
ones. Still, we do have a model that links the cognitive capacity and the recall
probability. Therefore, the solution employed was to search the full parameter
space for the combination of process and observation noise variances (W , V ) that
minimizes the RMSE between the predicted and true recall probabilities in the
last three batches:

(W,V ) = arg min
W,V

1
N

N∑
p=1

( 1
|B|

∑
t∈B

[yp,t −H(qp,t−1, (kp,t, Tp,t))]2)1/2, (7.1)

where N is the number of players, and B the set of batches selected for this opti-
mization phase (in our case, the last three batches). H is the (W,V )-parameterized
UKF’s observation function, linked to the WM model considered. Here only the
last three batches are being considered. Note that we do not require that AUHWM
gives accurate estimates of its uncertainty, since Pt is not being taken in consider-
ation.

A first uniform discretization of the parameter space W × V was made. The
dimension referring to the process noise variance was quantized in 10 intervals,
between 1 and 50, and the dimension corresponding to V was quantized also in
10 intervals between 0.001 and 0.5, therefore creating a parameter space of 100
combinations of values of W and V . Intuitively, the process noise corresponds to
the uncertainty being added on the plane of cognitive capacity estimations. Since
this section is concerned with the quantic model (as we are embedding AUHWM
with the GB model), then the process noise adds uncertainty in the dimension of
numbers of quanta.

In order to illustrate the model’s sensitivity to the tracked parameter, Figure 7.5
depicts the recall gain for a set task parameter z when q quanta are added to
different base values qbase; this gain is defined as H(qbase + q, z) − H(qbase, z).
Logically, the smaller the added quanta, the less significant the increase in recall
probability. Therefore, a variance of 1 signifies that not much uncertainty is being
added from one step to another, since the GB model is pretty much insensible to
variations of one quantum. However, a process noise as large as 50 quanta means
that AUHWM is highly uncertain about how the user’s capacity might evolve from
one batch to the next, since a difference of 50 quanta is very expressive in terms
of the GB model’s output.



7.3. AUHWM PREDICTION OPTIMIZATION 127

Figure 7.5: Evolution of the gainH(qbase+q, z)−H(qbase, z) in recall when q quanta
are added to different base values qbase (30, 40 and 50). The task parameters
z = (k, T ) was set to k = 6 and T = 1500.

On the other hand, the role of the observation noise variance V is related
to the observation’s plane sensor. Since the observations correspond to recall
probabilities, when V = 0.001, AUHWM is pretty certain the amount of available
quanta will result in the observed recall probability yt, while V = 0.5 corresponds
to a quite faulty sensor, since the total range of observed values is [0, 1].

Each one of the 100 combinations of W and V was used to configure AUHWM
and to track the WM capacity of the 18 players, resulting in 6 quanta estimations
(one for every batch) for each of the 18 players, similar to the estimation curves
shown in Figure 6.2. The estimated quanta were used, together with the corre-
sponding batch parameters kt and Tt, to predict estimated recall probability curves
with the WMmodelH(qt−1, (kt, Tt)). Then the RMSE between the predicted recall
probabilities and the true values of the last three batches was computed.

Figure 7.6 depicts the mean RMSE of recall probabilites obtained for the differ-
ent combinations ofW and V for all the players. Once the value of the observation
noise variance exceeds 0.223, the rooted mean square error becomes constant for a
given fixed process noise covariance value. Zooming in the region with the smallest
RMSE value, the space was uniformly discretized once again in ten values between
1 and 6.4 for W and 0.001 and 0.056 for V . The obtained RMSE values are
depicted in Figure 7.7

The minimum RMSE is found whenW was set to 1 and V to 0.025. With such
a parameterization, AUHWM obtains the estimations depicted in Figure 7.8 for
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Figure 7.6: Mean RMSE between the actual recall probabilities of the players and
AUHWM’s predicted recall probabilities, obtained with different configurations of
process and observation noise variances.
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Figure 7.7: Detail of the mean RMSE between the true recall probabilities of the
players and AUHWM’s predicted ones.
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Figure 7.8: Tracked Q values for a typical Match2s players.The left estimations
were obtained with process and observation noise variances W = 5 and V =
0.001 respectively, while the right estimates were obtained with the optimized
parameterization W = 1 and V = 0.025. Note that the right estimations are
less precise (wider standard deviation bars) as they do not “overfit” the observed
performance as before, due to the higher value for V .

the player of Figure 6.2. When comparing to the estimations made with W = 5
and V = 0.001 (left of figure), it is clear that, in the “minimum” configuration,
the outputted estimations vary less from batch to batch. This is due to the higher
observation noise variance, meaning that the UKF is giving less importance to
the measurements yt. Therefore, AUHWM is no longer “overfitting” the observed
performance. This results in a smoother evolution of the estimated quanta number
qt; therefore when trying to predict next batch performance, AUHWM will employ
an estimation not too far from the general cognitive capacity the player has been
displaying up to now, ignoring local fluctuations.

Also one can see that the estimations are less precise than before, as Pt doesn’t
converge as fast. However, note that Eqn. 7.1 measures the quality of the state
qt estimates outputted by the UKF, and is not concerned with providing precise
estimations regarding uncertainty.

Note also that if one were to intersect all the estimations intervals on the right
curve, one would obtain a non null intersection. This intersection could possibly
correspond to the user’s true “base capacity”, ignoring fluctuations in performance,
which is something that cannot be done on the left curve.

The predicted recall curves for our previous four players among the 18 are
presented in Figure 7.9. When compared to the results obtained using AUHWM
for modeling the user’s WM capacities (Figure 6.5), the performance difference
becomes clear. Although Match2s batch-based approach is aimed to filter out local
fluctuations of performance, the WM-modulating factors still have their impact by
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Table 7.2: Mean RMSE of the prediction of the last three batches for AUHWM
embedded with the three WM models.

Model W V RMSE
GB-based with σ = 1 1 0.001 0.13
GB-based with σ = −1 1 0.025 0.13

ACT-R-based 3.4 0.026 0.23

restricting AUHWM’s predicting capability.
The RMSE per batch then becomes as shown in Figure 7.10. The parameter

search resulted in an accuracy increase of roughly 2% for the three last batches,
meaning that a mean error of 13% is the limit of AUHWM prediction capability
when embedded with the GB-based model with σ = −1.

7.4 Comparison with Other WM Embeddings
Employing the same procedure as described above for finding the best fit, the
optimal parameterization for AUHWM embedded with the other two models was
found. The best values for process and observation noise variance, W and V
respectively, for each model is shown in Table 7.2, together with the mean RMSE
for the last three batches. The comparison of the evolution of the RMSE per model
of WM is shown in Figure 7.11.

All data concerning the results obtained here, the cognitive capacity esti-
mations and the corresponding predicted recall curve, for all the players when
embedding AUHWM with the three different WM models, can be accessed at
http://cri.ensmp.fr/auhwm/.

7.5 Discussion
This chapter presented the reader with a framework employing AUHWM to per-
form UI adaptation. The reader was also presented with validation of the frame-
work’s capability to predict user’s performance given previous interactions. We
do not discuss in this work the implementation of the Adaptive Optimizer block
(Figure 7.1) as the validation here corresponds to a case where a hypothetical per-
fect Adaptive Optimizer is provided, meaning that the performance is exclusively
dependent on AUHWM’s capacity of inferring cognitive capacity.

The results presented in the last section show that the obtained performance

http://cri.ensmp.fr/auhwm/
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player 1 player 2

player 3 player 4

Figure 7.9: Predicted recall probabilities of 4 of the 18 players obtained using
the GB model together with AUHWM-outputted estimations when parameterized
with W = 1 and V = 0.025.
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Figure 7.10: Evolution of the RMSE for the 18 players with the optimized param-
eters (AUHWM embedded with GB-based WM with σ = −1 model).

when employing the two GB-models show no apparent significant differences. How-
ever, when employing the ACT-R-based model, performance becomes considerably
worst, as seen in Figure 7.10 . Note that, if the player’s reaction time was taken
into account (which means that Tt would be hiding time + reaction time, compre-
hending all the time information was stored) and the the optimization procedure
above was performed, then the mean RMSE when employing the ACT-R-based
model for the last three batches would decrease by 10%, while for the other models
it would stay around the same. Therefore, one can hypothesize that the ACT-R
model is more sensible to time than the other two and that a bigger reaction time
would result in more memory degradation. Reaction time wasn’t taken into ac-
count here because when selecting the task parameters, the Adaptive Optimizer
has no control over it, moreover we posit that once the player was asked to click
on the cued color, if the information is present in WM, he/she will perform it
correctly.

However, it is clear that there is a degradation of AUHWM’s performance when
employing the previous estimations for predicting the future user’s behavior, when
compared to modeling a posteriori (last chapter). This degradation does not come
as a surprise. The modeling results presented in the last chapter shows that in
order to “overfit” the recall probabilities, the tracked estimations qt have to closely
follow the observed performance yt. If performance were purely WM-dependent,
and assuming that the user does not has some form of neurodegenerative disease,
then the capacity estimations would be “smoother”, which is not the case. This
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Figure 7.11: Mean RMSE for the prediction of the six batches for AUHWM when
embedded with the three WM models.
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means that a single parameter, qt, isn’t enough to perfectly reflect the user’s WM
behavior. As said before, there is no provided information about attention, motiva-
tion, or other modulating factors that affect WM performance; therefore, all these
factors are encoded in the estimations. The most a AUHWM-based system can
do to predict WM performance without being provided with information on these
modulating factors is to increase the observation noise variance in order to smooth
out the capacity estimations, making predictions around the mean behavior a user
is presenting.

However, even without additional information, AUHWM’s estimations can
serve to predict recall probabilities with a fairly good accuracy (13% RMSE),
even when dealing with users who were never seen before. This is possible be-
cause of the embedded models of WM degradation, meaning that AUHWM can
deal with different populations that are not represented in the data, say people
with cognitive deficits, for instance, resulting in valuable operational flexibility
and adaptability. Our approach uses an online filtering technique able to adapt
smoothly to the specific capabilities of any user, even in the presence of scarce
data.

Moreover, given the UKF’s capability of improving its estimations through
sensor fusion, AUHWM could clearly be enhanced by employing other sensors.
For instance, since BCIs such as EEGs can furnish estimations of attention, the
user’s schedule could be used to infer motivation throughout the day, or even
AUHWM could be coupled with theoretical models for learning. The information
coming from external sensors or added models would help modulate the estimations
according to the users’ concentration, tiredness and other key factors that drive
WM capacity, therefore improving further the assessment of cognitive capacity and
in consequence the automatic adaptation of UIs.

We believe that AUHWM-based frameworks capable of tracking cognitive lim-
itations can be of extreme importance when developing UIs that are aware of the
user’s reasoning and memorizing abilities. Knowing how taxing in cognitive ca-
pacity a task is, would allow it to be simplified when necessary. Therefore, when
in stressful situations, a UI could be simplified, providing the user with only the
necessary information to the task at hand, compensating cognitive funneling. Air-
craft interfaces in crisis situations are a clear application domain of our approach.
Assistive technologies would also profit from awareness of the user’s cognitive ca-
pacity, as it has the potential to be of great benefit to individuals suffering from
memory deficits. By adjusting a UI to the user’s cognitive capacities, it would ren-
der computer interfaces more accessible to the elderly population suffering from
dementia-linked diseases. Moreover, by regulating the degree of complexity of the
task interface, AUHWM can help immerse this population in a flow-like state,
rendering them able to accomplish tasks autonomously, improving self-esteem and



136 CHAPTER 7. UI ADAPTATION USING AUHWM

decreasing stress levels. AUHWM can provide as well data specific to the user’s
evolving cognitive capacities. Beyond its clear relevance in the design of simpler
UIs for computer-assisted daily-life activities, such information can be used by
caregivers as signals suggesting a possibly setting-in of neurodegenerative diseases.
It can also be used to track the gradual temporal decline of cognitive abilities as
the disease progresses.



Chapter 8

Conclusion

In this thesis we have reported our work on providing computational systems with
the awareness of user’s cognitive limitations, notably working memory (WM).
In this final chapter, we start by presenting this thesis’ main contributions in
Section 8.1. Then some general concluding remarks about the ideas developed
here are provided in Section 8.2. We close the chapter by discussing the prospects
on how this work can be used to develop future research, in Section 8.3.

8.1 Main Contributions
This work introduced two innovative frameworks for modeling user’s WM capacity
through interaction: MATCHS, which is an incremental batch-based approach for
WM modeling, and AUHWM, which tracks in real-time the user’s WM capacity. If
MATCHS by itself is capable of helping adapt (at some extent) UIs to the estimated
cognitive limitations, AUHWM however can be much more easily embedded in
other systems to perform UI adaptation. Thus, a possible AUHWM-based UI-
adaptation framework was also proposed in this work. To the best our knowledge,
no other control system embedded with WM models has ever been developed to
perform UI adaptation.

MATCHS
Memory Adaptation Through Cognitive Handling Simulation, or MATCHS, was
introduced in Chapter 5. It is the framework where our core ideas used in both
adaptation systems were first developed. MATCHS is dedicated to the adaptation
of the information presented to a user according to the characteristics of his/her
WM, thus helping to ensure the proper completion of a specific task.

MATCHS provides a numerical estimation for a user’s WM capacity through

137
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increments proportional to a batch-based assessment of the user’s performance, the
key idea being that this performance drives estimation inside the parameter space
of the user model. MATCHS is embedded with Suchow’s model of WM dynamics
and uses these estimations to simulate the degradation of the information stored
in the user’s working memory. Therefore, MATCHS is able to predict how much
information can be stored into the WM and for how long. This simulated memory
evolution can ultimately be used to adapt the user interface of systems, ensuring
the retention of the information necessary for a specific task.

MATCHS was experimentally tested with the data of 20 users, and its perfor-
mance was analyzed and discussed, providing strong confidence in the validity of
our approach.

AUHWM
An Unscented Hound for Working Memory, or AUHWM, was presented in Chap-
ter 6. It is a derivation from MATCHS core ideas where the use of the Unscented
Kalman Filter, coupled with a deterministic model of WM dynamics, allows one to
leave behind MATCHS’ incremental approach to modeling and make WM capacity
estimations in real time. AUHWM is thus able to dynamically track a user’s WM
cognitive capabilities over both short- and long-term time intervals.

AUHWM can be embedded with different models of WM that abstract, via a
single integer parameter, a user’s memory capacity. Its performance when tracking
cognitive profiles of 18 users was tested with three different models (two variants
of Suchow’s quantic WM model and the ACT-R model).

A proposed AUHM-based framework for automatic UI task adaptation was
also presented in Chapter 7. The framework employed the embedded WM model
together with AUHWM estimations of WM to go beyond “a posteriori” modeling
and start predicting user performance. In cases where performance is degraded to a
certain point due to WM limitations, calling for adaptation, the proposed solution
is also capable of finding the task parameterization required to compensate such
limitations, helping insure the proper completion of the task.

The validity of this framework was experimentally tested with data from 18
users, which showed that AUHWM was able to predict users’ performance with
an eventual 13% RMSE.

8.2 UI Adaptation to WM limitations
This thesis started with the quote “We shape our tools and, thereafter our tools
shape us” from the American writer John M. Culkin. Throughout this work we
were concerned with strategies for shaping our tools, which, in the context of this
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thesis, stands for shaping computational systems to the human mind’s way of
storing and processing information.

We focused our work on developing general tools that could be integrated within
different applications, providing interfaces with awareness to the user’s WM capac-
ity. Since WM is a bottleneck in human information-processing capacity, whenever
information is considered and processed, we posit that WM is an important com-
ponent to be taken into account. Wherever information is being diffused through
Intelligent Tutoring Systems, assistive technologies, airplane cockpit displays, or
even a multitude of daily-life applications where the limits of information process-
ing are not a key limiting factor, WM is a common (though external) component
to all of them, as it is part of the human mind functioning. Therefore, both
proposed frameworks for adaptation, MATCHS and AUHWM-based (Figure 5.1.1
and Figures 7.1 respectively), contain a “Task” block corresponding to any task
whose performance is directly dependent on WM capacity.

Although validation was concerned with the more tractable problem of adapt-
ing tasks whose performance is purely WM-based, we believe that both of these
frameworks can be employed with any given task. For instance, we believe that
MATCHS, with an appropriate setting of its parameters, can be applied to a wide
range of tasks where WM is solicited. Moreover, we posit it should be able to
adapt complex cognitive tasks to the user’s available cognitive capacity, as long
as a reliable estimation of the information to be retained is provided. AUHWM-
based frameworks could not only perform adaptation given estimations of forgotten
information as in MATCHS (remember that MATCHS’ α from Figure 5.1.1 corre-
sponds to the complement of AUHWM’s π in Figure 7.1), but the UKF observation
function could be enhanced with additional task models. By knowing how taxing
in cognitive capacity a task is, an AUHWM-based framework could be used to
infer user’s performance and, more importantly, perform adaptation by selecting
a compensatory action.

We were also interested in developing frameworks that are not restricted to
available data modeling a specific task, as one key point considered here was
flexibility. Adaptation systems that are purely ML-based can fail to provide proper
adaptation when dealing with previously unseen situations. This constrains the
system to use cases present in the training dataset, complexifyng the generalization
of these solutions. For example, a solution derived from data of one population
might not work correctly when faced with different users due to hidden variables
that weren’t taken in account; this can be a critical flaw when faced with scarce
data regarding a specific user group (for example, Alzheimer patients). Both
solutions developed here are based of theoretical models of WM. Building modeling
and adaptation mechanisms upon well-understood models allows one to go beyond
the simple association of input parameters and observed values. These models
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provide generalizations of human WM dynamics flexible enough to be employed
with users never seen before. Using AUHWM’s estimations, for instance, we were
able to predict user’s performance with an average RMSE of 13% after a couple of
interactions. These users didn’t have to perform extensive calibration steps before
the system could begin to assess their cognitive capacities. Match2s players, when
interacting with MATCHS for the first time, had the task parameters adapted to
their observed capacity, which is shown by the error value’s convergence towards
zero throughout the batches.

In the particular case of AUHWM, the coupling of well-understood theoreti-
cal models with tracking algorithms such as the Kalman filter is a combination
that shows great promise. On one side, there is a multitude of theoretical models
in cognitive sciences that can (to some measure) explain the underlying mech-
anism behind the human mind. One can then select and employ interpretable
models of how the mind deals with information, allowing the system decisions to
be explained to the user, which ultimately improves the system’s acceptance by
building trust. Here is a possible example employing AUHWM: when presenting
less information to the user by simplifying the interface, the adaptation framework
could, if requested, explain to the user that it perceived she is getting tired (or
less motivated), which called for simpler tasks.

However, there is an intrinsic fuzziness when dealing with human cognition,
and purely deterministic frameworks might fall short when faced with it. The
Kalman filter, on the other hand, able to filter out noisy observations and evaluate
the uncertainty of its estimates, is a technique that can evaluate uncertain and
noisy input data, therefore bypassing this fuzziness. Moreover, the Kalman filter
is a powerful sensor fusion algorithm, meaning that AUHWM-based applications
could be enhanced through the addition of external sensors. In applications where
the precise assessment of cognitive charge is crucial for preventing fatal errors (such
as the ones cited in Section 3.3.3) and where the use of physiological sensors does
not pose a practical problem, AUHWM can be enhanced with more information
about the user’s cognitive state, thus providing both monitoring data on how the
users capacity is evolving during the continuous interaction, as well as information
on how taxing WM an given application is. One can then think of AUHWM’s
modeling capability as an annotation tool for finding the implication of WM in a
given task.

8.3 Future Work
In this section we discuss the perspectives of how the ideas developed in this work
can be used to advance further towards the goal of providing cognitive capacity
awareness to computer systems.



8.3. FUTURE WORK 141

Future work should focus, at the fundamental level, on improving AUHWM
through the addition of models for attention, motivation, learning or other factors
that influence WM performance. The results presented here suffer from the fact
that a number of hidden factors modulate WM intrapersonal performance. The
results presented in Figure 6.7 show that in order to closely track the observed
performance, the tracked estimations are not smooth, which also is the cause of
the augmentation of the RMSE when predicting performance. This suggests that
performance fluctuations are not purely WM-based, capacity-wise, meaning that
WM cannot be tracked with a single unidimensional parameter. Future work
should, therefore, focus on the addition of sensors or models in order to account
for these modulating factors in the modeling equations of the UKF.

For instance, a quantitative estimate of a user’s attention to the task at hand
would clearly impact positively the assessment of the short-term evolution of her
cognitive retention capabilities, and hopefully lead to the removal of some of the
fluctuations in the tracking of users’ performance. A first approach to such an
estimation process could be via the use of dedicated sensors, e.g., brain computer
interfaces (BCI) such as the EEG-based headband Muse™, which can be used
to provide estimates on brain activity related to vigilance or attention in real
time. Even though this doesn’t constitute a workable solution in the long term for
obvious usability reasons, such a study could nonetheless provide ways to refine
AUHWM’s process of memory-capacity tracking , and spur further research into
finding more pragmatic ways to assess users’ attention. Other possible improve-
ments could come through motivation estimations. Since WM performance tends
to degrade with lack of motivation, such estimations could be used to decrease the
inputted qt in the observation function H as the user interacts with the UI in a
somewhat continuous fashion. Moreover, models of learning (that are very abun-
dant in literature, e.g. BKT) could be used to dynamically change the stability
threshold parameter L in Suchow’s model, or the base-level activation in ACT-R,
in the context of a given task.

In practice, this would result in a multivariate tracking of parameters corre-
sponding to WM capacity, attention, motivation and learning, creating a multi-
dimensional profile of the user’s current cognitive state. These parameters would
have each a different transition function to be defined, where some variated more
than the others during different periods of time. Such a system would also require
the definition of a more complex, multidimensional observation function, where all
the different dimensions of the user’s cognitive state are taken into account to infer
task performance. If such a model were developed, AUHWM could assess changes
in the modulating factors in real time by the use of other embedded models or
sensors; then, instead of having the estimates changing from iteration to iteration,
the smoother obtained estimations could be modulated by local changes in con-
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centration, fatigue and learning, increasing or decreasing performance accordingly.
This would result in a better identification of the user’s current cognitive profile’s
impact on performance as well as selection of adequate compensatory actions, de-
pending on the performance-degradation causes. Needless to say, the models used
in the UKF would probably be considerably more complex.

Future work should then be concerned with incremental improvements through
the addition of one extra tracked variable at a time. We are currently working on
including EEG data corresponding to vigilance and attention, with the goal of
filtering out attentional variations in order to obtain more precise predictions of
performance; however the results so far have been inconclusive.

Another track for possible continuations is the testing and adaptation of AUHWM
to more practical applications. As said before, this work was focused on the
tractable problem of adapting task interfaces whose performance was purely WM-
dependent. However, we believe that any task whose performance is somewhat
dependent on WM can be adapted to some extent by employing AUHWM. Future
work should then focus on applying AUHWM to more meaningful UI-adaptation
use cases than Match2s. For instance, a framework such as AUHWM could be
adapted to perform scaffolding in intelligent tutoring systems. Again, by adding
a theoretical transition model of learning and taking into account users’ accuracy
and reaction times into its observation model, AUHWM could be used to track
a second parameter corresponding to the user’s mastery of the knowledge being
tutored. Therefore, complex applications such as Ansys or CAD software, which
are daunting for novice users, could be personalized by varying the level of the UI’s
complexity and support the computer can offer according to the user’s mastery
and cognitive state.

8.4 Epilogue
Technologies aimed at humans should be designed around humans. This work tried
to shed some light on ways to give computer systems some “understanding” about
how human cognitive performance is affected by WM limitations. We believe this
is a crucial point in many different areas. For instance, embedding assistive tech-
nologies with AUHWM-like technologies would represent a significant contribution
in the area and would be of great benefit to individuals suffering from memory
deficits. The field of artificial intelligence will continue to develop, and more and
more humans will be faced with increasingly complex interfaces and intelligent
systems. We sincerely believe that it is our job, when developing these machines,
to embed them with a deep understanding of humans and of our limitations, so
both human and artificially intelligent systems can advance together. Still, much
light has yet to be shed on our mind’s function.



Chapter 9

Conclusion

Dans cette thèse, nous avons présenté nos travaux visant à fournir aux systèmes
informatiques une prise de conscience des limitations cognitives de l’utilisateur, no-
tamment la mémoire de travail (WM). Dans ce dernier chapitre, nous commençons
par présenter les principales contributions de cette thèse dans la section 9.1. En-
suite, quelques remarques générales de conclusion sur les idées développées ici sont
fournies dans la section 9.2. Nous terminons le chapitre en discutant des per-
spectives sur la façon dont ce travail peut être utilisé pour développer de futures
recherches, dans la section 9.3.

9.1 Contributions principales
Ce travail a introduit deux cadres innovants pour modéliser la capacité de WM
de l’utilisateur par l’interaction : MATCHS, qui est une approche par lots incré-
mentale pour la modélisation de la WM, et AUHWM, qui suit en temps réel la
capacité de WM de l’utilisateur. Si MATCHS par lui-même est capable d’aider à
adapter (dans une certaine mesure) les interfaces utilisateur aux limitations cogni-
tives estimées, AUHWM peut cependant être beaucoup plus facilement intégré dans
d’autres systèmes pour effectuer l’adaptation de l’interface utilisateur. Ainsi, un
cadre d’adaptation de l’interface utilisateur fondé sur AUHWM a également été
proposé dans ce travail. À notre connaissance, aucun autre système de contrôle
intégré aux modèles de WM n’a jamais été développé pour effectuer l’adaptation de
l’interface utilisateur.

MATCHS
“Memory Adaptation Through Cognitive Handling Simulation”, ou MATCHS, a
été introduit dans le chapitre 5. C’est le cadre dans lequel les idées fondamen-
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tales utilisées dans les deux systèmes d’adaptation ont d’abord été développées.
MATCHS est dédié à l’adaptation des informations présentées à un utilisateur
en fonction des caractéristiques de sa WM, contribuant ainsi à assurer la bonne
réalisation d’une tâche spécifique.

MATCHS fournit une estimation numérique de la capacité de la WM d’un util-
isateur par incréments proportionnels à une évaluation par lots de la performance
de l’utilisateur, l’idée clé étant que ces performances déterminent l’estimation à
l’intérieur de l’espace des paramètres du modèle de l’utilisateur. MATCHS con-
tient le modèle dynamique de la WM proposé par Suchow et utilise ces estimations
pour simuler la dégradation des informations stockées dans la mémoire de tra-
vail de l’utilisateur. Par conséquent, MATCHS est capable de prévoir la quantité
d’informations pouvant être stockées dans la WM et pendant combien de temps.
Cette évolution de la mémoire simulée peut à terme être utilisée pour adapter
l’interface utilisateur des systèmes, assurant ainsi la rétention des informations
nécessaires à une tâche spécifique.

MATCHS a été testé expérimentalement avec les données de 20 utilisateurs,
et ses performances ont été analysées et discutées, fournissant une forte confiance
dans la validité de notre approche.

AUHWM
“An Unscented Hound for Working Memory”, ou AUHWM, a été présenté dans le
chapitre 6. AUHWM est une dérivation des idées fondamentales de MATCHS où
l’utilisation d’un filtre de Kalman non linéaire (Unscented), couplée à un modèle
déterministe de la dynamique WM. AUHWM permet d’aller au-delà de l’approche
incrémentale de MATCHS pour la modélisation et de faire des estimations de ca-
pacité de WM en temps réel. AUHWM est ainsi capable de suivre dynamiquement
les capacités cognitives en WM d’un utilisateur sur des intervalles de temps à court
et à long terme.

AUHWM peut utiliser différents modèles de WM qui abstraient, via un seul
paramètre entier, la capacité de mémoire d’un utilisateur. Ses performances lors
du suivi des profils cognitifs de 18 utilisateurs ont été testées avec trois modèles
différents (deux variantes du modèle WM quantique et le modèle ACT-R).

Un cadre théorique fondé sur AUHM pour l’adaptation automatique des tâches
de l’interface utilisateur a également été présenté dans le chapitre 7. Le cadre a
utilisé le modèle WM intégré avec les estimations AUHWM de WM pour aller au-
delà de la modélisation “a posteriori” et commencer à prédire les performances des
utilisateurs. Dans les cas où les performances sont dégradées à un certain point en
raison de limitations de la WM, nécessitant une adaptation, la solution proposée
est également capable de trouver le paramétrage de tâche requis pour compenser
ces limitations, contribuant ainsi à assurer la bonne exécution de la tâche.
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La validité de ce cadre a été testée expérimentalement avec des données de 18
utilisateurs, ce qui a montré que AUHWM était capable de prédire les performances
des utilisateurs avec un RMSE de 13%.

9.2 Adaptation des UIs aux limitations de WM
Cette thèse a commencé par la citation “Nous façonnons nos outils et, par la
suite, nos outils nous façonnent” de l’écrivain américain John M. Culkin. Tout au
long de ce travail, nous nous sommes intéressés aux stratégies pour façonner nos
outils, qui, dans le contexte de cette thèse, représentent l’adaptation des systèmes
informatiques à la manière dont l’esprit humain stocke et traite les informations.

Nous avons concentré notre travail sur le développement d’outils généraux qui
pourraient être intégrés dans différentes applications, fournissant à des interfaces
une estimation de la capacité de la WM de l’utilisateur. Étant donné que la WM est
un goulot d’étranglement dans la capacité de traitement de l’information humaine,
chaque fois qu’une information est prise en compte et traitée, nous croyons que la
WM est un élément important à prendre en compte. Partout où des informations
sont diffusées via des systèmes de tutorat intelligents, des technologies d’assistance,
des écrans de poste de pilotage d’avion ou même une multitude d’applications de la
vie quotidienne où les limites du traitement de l’information ne sont pas un facteur
limitant clé, la WM est un composant commun (bien qu’externe) de ces systèmes,
car elle fait partie du fonctionnement de l’esprit humain. Par conséquent, les deux
cadres proposés pour l’adaptation, fondés sur MATCHS et AUHWM (Figure 5.1.1
et Figures 7.1 respectivement), contiennent un bloc “Task” correspondant à toute
tâche dont les performances dépendent directement de la capacité de WM.

Bien que la validation concernât le problème plus facile à appréhender de l’ada-
ptation de tâches dont les performances sont purement fondées sur la WM, nous
pensons que ces deux cadres peuvent être utilisés avec n’importe quelle tâche don-
née. Par exemple, nous pensons que MATCHS, avec un réglage approprié de ses
paramètres, peut être appliqué à un large éventail de tâches où la WM est sol-
licitée. De plus, nous supposons qu’il devrait être capable d’adapter des tâches
cognitives complexes à la capacité cognitive disponible de l’utilisateur, tant qu’une
estimation fiable des informations oubliées est fournie. Les systèmes fondés sur
AUHWM pourraient non seulement effectuer l’adaptation étant donné les esti-
mations d’informations oubliées comme dans MATCHS (rappelez-vous que l’α de
MATCHS de la figure 5.1.1 correspond au complément de π d’AUHWM dans la
figure 7.1), mais la fonction d’observation de l’UKF pourrait être améliorée avec
des modèles de tâches supplémentaires. En sachant à quel point la tâche est ex-
igeante en termes de capacité cognitive, un système fondé sur AUHWM pourrait
être utilisé pour déduire les performances de l’utilisateur et, plus important encore,
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effectuer l’adaptation en sélectionnant une action compensatoire.
Nous étions également intéressés à développer des cadres théoriques qui ne se

limitent pas aux données disponibles modélisant une tâche spécifique, car un point
clé considéré ici était la flexibilité. Les systèmes d’adaptation qui sont purement
fondés sur le ML peuvent ne pas fournir une adaptation appropriée lorsqu’ils font
face à des situations inédites. Cela contraint le système à utiliser les cas présents
dans le jeu de données d’apprentissage, complexifiant la généralisation de ces so-
lutions. Par exemple, une solution dérivée des données d’une population peut
ne pas fonctionner correctement face à différents utilisateurs en raison de vari-
ables cachées qui n’ont pas été prises en compte ; cela peut être un défaut critique
face à des données rares concernant un groupe d’utilisateurs spécifique (par ex-
emple, les patients Alzheimer). Les deux solutions développées ici sont fondées
sur des modèles théoriques de la WM. Construire des mécanismes de modélisa-
tion et d’adaptation sur des modèles bien compris permet d’aller au-delà de la
simple association des paramètres d’entrée et des valeurs observées. Ces mod-
èles fournissent des généralisations de la dynamique de la WM humaine suffisam-
ment flexibles pour être utilisées avec des utilisateurs jamais vus auparavant. En
utilisant les estimations d’AUHWM, par exemple, nous avons pu prédire les per-
formances de l’utilisateur avec un RMSE moyen de 13% après quelques interac-
tions. Ces utilisateurs n’ont pas eu à effectuer des étapes d’étalonnage approfondies
avant que le système puisse commencer à évaluer leurs capacités cognitives. Les
joueurs de Match2s, lors de leur première interaction avec MATCHS, utilisaient
les paramètres de tâche adaptés à leur capacité observée, ce qui est illustré par la
convergence de la valeur d’erreur vers zéro tout au long des lots.

Dans le cas particulier d’AUHWM, le couplage de modèles théoriques bien com-
pris avec des algorithmes de suivi tels que le filtre de Kalman est une combinaison
très prometteuse. D’un côté, il existe une multitude de modèles théoriques en sci-
ences cognitives qui peuvent (dans une certaine mesure) expliquer le mécanisme
sous-jacent derrière l’esprit humain. On peut ensuite sélectionner et utiliser des
modèles interprétables de la façon dont l’esprit traite les informations, permettant
aux décisions du système d’être expliquées à l’utilisateur, ce qui améliore finale-
ment l’acceptation du système en instaurant la confiance. Voici un exemple possible
utilisant AUHWM : lors de la présentation de moins d’informations à l’utilisateur
en simplifiant l’interface, le cadre d’adaptation pourrait, si demandé, expliquer à
l’utilisateur qu’il avait l’impression que l’utilisateur se fatiguait (ou avait moins de
motivation), ce qui nécessitait des tâches plus simples.

Cependant, il y a un flou intrinsèque lorsqu’il s’agit de la cognition humaine, et
les cadres purement déterministes peuvent échouer face à elle. Le filtre de Kalman,
d’autre part, capable de filtrer les observations bruitées et d’évaluer l’incertitude de
ses estimations, est une technique qui peut évaluer des données d’entrée incertaines
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et bruitées, contournant ainsi ce flou. De plus, le filtre de Kalman est un puissant
algorithme de fusion de capteurs, ce qui signifie que les applications fondées sur
AUHWM pourraient être améliorées grâce à l’ajout de capteurs externes. Dans les
applications où l’évaluation précise de la charge cognitive est cruciale pour prévenir
les erreurs fatales (telles que celles citées dans la section 3.3.3) et où l’utilisation
de capteurs physiologiques ne pose pas de problème pratique, AUHWM peut être
amélioré avec plus d’informations sur l’état cognitif de l’utilisateur, fournissant
ainsi à la fois des données de surveillance sur la façon dont la capacité des utilisa-
teurs évolue au cours de l’interaction continue, ainsi que des informations sur la
façon dont la WM est impactée par une application donnée. On peut alors penser à
la capacité de modélisation d’AUHWM comme un outil d’annotation pour trouver
l’implication de la WM dans une tâche donnée.

9.3 Travaux futurs
Dans cette section, nous discutons des perspectives sur la façon dont les idées
développées dans ce travail peuvent être utilisées pour progresser davantage vers
l’objectif de mieux prendre en compte les capacités cognitives par des systèmes
informatiques.

Les travaux futurs devraient se concentrer, au niveau fondamental, sur l’amélio-
ration d’AUHWM par l’ajout de modèles d’attention, de motivation, d’apprentissage
ou d’autres facteurs qui influencent les performances de la WM. Les résultats
présentés ici souffrent du fait qu’un certain nombre de facteurs cachés modulent les
performances intrapersonnelles de la WM. Les résultats présentés dans la figure 6.7
montrent que, pour suivre de près les performances observées, les estimations suiv-
ies ne sont pas lisses, ce qui est également la cause de l’augmentation du RMSE
lors de la prévision des performances. Cela suggère que les fluctuations de per-
formance ne sont pas uniquement liées à la WM ; en termes de capacité, ce qui
signifie que la WM ne peut pas être suivie avec un seul paramètre unidimension-
nel. Les travaux futurs devraient donc se concentrer sur l’ajout de capteurs ou de
modèles afin de tenir compte de ces facteurs de modulation dans les équations de
modélisation du filtre UKF.

Par exemple, une estimation quantitative de l’attention d’un utilisateur à la
tâche à accomplir aurait clairement un impact positif sur l’évaluation de l’évolution
à court terme de ses capacités de rétention cognitive et, espérons-le, entraînerait la
suppression de certaines des fluctuations du suivi de performance des utilisateurs.
Une première approche d’un tel processus d’estimation pourrait être via l’utilisation
de capteurs dédiés, par exemple, les interfaces cerveau-ordinateur (BCI) telles que
l’EEG Muse™, qui peut être utilisé pour fournir des estimations sur l’activité
cérébrale liée à la vigilance ou attention en temps réel. Même si cela ne constitue
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pas une solution viable à long terme pour des raisons évidentes d’utilisation, une
telle étude pourrait néanmoins fournir des moyens d’affiner le processus de suivi
de la capacité de la mémoire par AUHWM, et stimuler la recherche pour trou-
ver des moyens plus pragmatiques d’évaluer l’attention des utilisateurs. D’autres
améliorations possibles pourraient venir des estimations de la motivation. Étant
donné que les performances de WM ont tendance à se dégrader avec un manque
de motivation, de telles estimations pourraient être utilisées pour diminuer le qt
entré dans la fonction d’observation H lorsque l’utilisateur interagit avec l’UI de
manière peu continue. De plus, des modèles d’apprentissage (très abondants dans
la littérature, par exemple BKT) pourraient être utilisés pour modifier dynamique-
ment le paramètre de seuil de stabilité L dans le modèle de Suchow, ou l’activation
de base dans ACT-R, dans le contexte d’une donnée tâche.

En pratique, cela entraînerait un suivi multivarié des paramètres correspondant
à la capacité, à l’attention, à la motivation et à l’apprentissage de la WM, créant
un profil multidimensionnel de l’état cognitif actuel de l’utilisateur. Ces paramètres
auraient chacun une fonction de transition différente, à définir, certains variant
plus que d’autres au cours de différentes périodes. Un tel système nécessiterait
également la définition d’une fonction d’observation multidimensionnelle plus com-
plexe, où toutes les différentes dimensions de l’état cognitif de l’utilisateur sont
prises en compte pour déduire les performances de la tâche. Si un tel modèle était
développé, AUHWM pourrait évaluer les changements des facteurs de modulation
en temps réel en utilisant d’autres modèles ou capteurs intégrés; puis, au lieu de
faire basculer les estimations d’itération en itération, des estimations obtenues
plus lisses pourraient être modulées par des changements locaux de concentration,
de fatigue et d’apprentissage, augmentant ou diminuant les performances en con-
séquence. Il en résulterait une meilleure identification de l’impact du profil cognitif
actuel de l’utilisateur sur les performances ainsi qu’une sélection d’actions com-
pensatoires adéquates, en fonction des causes de dégradation des performances. Il
va sans dire que les modèles utilisés dans le filtrage UKF seraient probablement
beaucoup plus complexes.

Les travaux futurs devraient sans doute porter sur des améliorations progres-
sives grâce à l’ajout d’une variable de suivi supplémentaire à la fois. Nous travail-
lons actuellement sur l’inclusion de données EEG correspondant à la vigilance et
à l’attention, dans le but de filtrer les variations attentionnelles afin d’obtenir des
prédictions plus précises des performances ; cependant, les résultats n’ont jusqu’à
présent pas été concluants.

Une autre piste pour les suites possibles est le test et l’adaptation d’AUHWM à
des applications plus pratiques. Comme dit précédemment, ce travail s’est concen-
tré sur le problème traitable de l’adaptation des interfaces de tâches dont les per-
formances étaient purement dépendantes de la WM. Cependant, nous pensons que



9.4. ÉPILOGUE 149

toute tâche dont les performances dépendent quelque peu de la WM peut être adap-
tée dans une certaine mesure en utilisant AUHWM. Les travaux futurs devraient
alors se concentrer sur l’application d’AUHWM à des cas d’utilisation d’adaptation
de l’interface utilisateur plus significatifs que Match2s. Par exemple, un cadre
comme AUHWM pourrait être adapté pour effectuer des échafaudages (“scaffold-
ing”) dans des systèmes de tutorat intelligents. Encore une fois, en ajoutant un
modèle de transition théorique de l’apprentissage et en tenant compte de la pré-
cision et des temps de réaction des utilisateurs dans son modèle d’observation,
AUHWM pourrait être utilisé pour suivre un deuxième paramètre correspondant à
la maîtrise par l’utilisateur des connaissances enseignées. Par conséquent, des ap-
plications complexes telles que Ansys ou un logiciel de CAD, qui sont intimidantes
pour les utilisateurs novices, pourraient être personnalisées en variant le niveau
de complexité de l’interface utilisateur et le soutien que l’ordinateur peut offrir en
fonction de la maîtrise de l’utilisateur et de son état cognitif.

9.4 Épilogue
Les technologies destinées aux humains doivent être conçues autour de l’homme.
Ce travail a tenté de faire la lumière sur les moyens de donner aux systèmes infor-
matiques une certaine “compréhension” de la façon dont les performances cogni-
tives humaines sont affectées par les limitations de la WM. Nous pensons que c’est
un point crucial dans de nombreux domaines différents. Par exemple, l’intégration
de technologies d’assistance aux technologies de type AUHWM représenterait une
contribution importante dans le domaine et serait très bénéfique pour les person-
nes souffrant de déficits de mémoire. Le domaine de l’intelligence artificielle con-
tinuera de se développer et de plus en plus d’humains seront confrontés à des
interfaces et des systèmes intelligents de plus en plus complexes. Nous croyons
sincèrement qu’il est de notre devoir, lors du développement de ces machines, de
les intégrer à une compréhension profonde des humains et de nos limites, afin que
les systèmes humains et artificiellement intelligents puissent progresser ensemble.
Pourtant, nous sommes encore loin d’avoir fait toute la lumière sur le fonction-
nement de l’esprit humain.
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MOTS CLÉS

Adaptation de l'interface utilisateur, mémoire de travail, adaptation cognitive, filtre de Kalman.

RÉSUMÉ

La mémoire de travail est la partie de la cognition humaine responsable du stockage et du traitement de l'information

à court terme. Elle constitue également un goulot d'étranglement majeur dans le traitement de l'information. Dans ce

travail, nous présentons deux cadres d’adaptation cognitive des interfaces utilisateur liées à des tâches. Le premier,

appelé MATCHS (Memory Adaptation Through Cognitive Handling Simulations), est un système de contrôle en boucle

fermée capable de suivre la capacité cognitive estimée de l’utilisateur en l’ajustant en fonction de ses performances. Le

deuxième, AUHWM (An Unscented Hound for Working Memory), est développé sur les idées de MATCHS, en utilisant

un filtre de Kalman "Unscented" pour le suivi, en temps réel, de la capacité cognitive humaine. Nos testons et validons

les deux approches. Enfin, nous exposons les perspectives futures que les idées développées dans ce travail laissent

entrevoir pour fournir une évaluation et une adaptation meilleures et plus générales des capacités cognitives humaines.

ABSTRACT

Working Memory (WM) is the part of human cognition responsible for the shortterm storage and processing of information;

it is also a bottleneck in information processing. In this work, we develop strategies for providing computer systems with

awareness of the user’s WM limitations. We introduce two frameworks for the cognitive adaptation of taskrelated user

interfaces. The first one, MATCHS (Memory Adaptation Through Cognitive Handling Simulations), is a closedloop control

system capable of tracking the user’s estimated cognitive capacity by adjusting its value according to performance. The

second one, AUHWM (An Unscented Hound for Working Memory), is developed upon MATCHS's ideas, employing an

Unscented Kalman filter for the real time tracking of human cognitive capacity. We test and discuss the performance of

both frameworks. Lastly, we lay out prospects of how the ideas developed here can be extended to provide better and

more general assessment and adaptation to human cognitive capacities.

KEYWORDS

UI adaptation, Working Memory, Cognitive adaptation, Unscented Kalman filter.
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