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ABSTRACT

Nanostructured materials obtained notably through severe plastic deformation (SPD), alternatively
called bulk ultrafine grained materials (UFG), are an emerging class of advanced materials that bring
new possibilities in terms of functional and structural properties by combining high strength and
ductility. The combination of ultrafine grain size and high dislocation densities permits to improve
paradoxically both the strength and the ductility in metals, in contrast with conventional forming
methods such as rolling or drawing. Materials obtained by intense plastic deformation processing
thus appear very attractive for advanced structural applications. Simulation of SPD process is quite
challenging as it involves excessive plastic deformation and nonlinearity due to contact conditions.
Many studies have been done on modelling the intensive plastic deformation during SPD processes.
However, an important aspect of these processes, namely, damage is generally neglected. Many physical
and phenomenological damage models have been developed but none have been implemented in a severe
case such of SPD processes. In this thesis, we try to implement recent microstructural models based
on dislocation density evolution in SPD processes and by implementing damage evolution laws during
the simulation of these processes. A computational framework will be developed in order to predict
the evolution of microstructure and damage during SPD. This permits to improve the understanding
of strength-ductility trade-off in SPD and optimize the processing conditions in order to minimize the

damage and enhance the properties of the processed material.
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RESUME

Les matériaux nanostructurés obtenus notamment par déformation plastique sévere (SPD), éga-
lement appelés matériaux a grains ultrafins, constituent une classe émergente de matériaux avancés
qui offrent de nouvelles possibilités en termes de propriétés fonctionnelles et structurelles en com-
binant résistance et ductilité élevées. La combinaison d’une taille de grain ultrafine et de densités
de dislocations élevées permet d’améliorer paradoxalement & la fois la résistance et la ductilité des
métaux, contrairement aux méthodes de formage conventionnelles telles que le laminage ou I’étirage.
Les matériaux obtenus par un processus de déformation plastique sévere semblent donc tres intéres-
sants pour les applications structurelles avancées. La simulation du processus SPD est assez difficile
car cela implique des déformations plastiques importantes et des non-linéarités liées aux conditions
de contact. De nombreuses études ont été réalisées sur la modélisation des processus SPD. Néan-
moins, I’endommagement, qui un aspect important dans ces procédés, est généralement non pris en
compte. De nombreux modeles d’endommagement physiques et phénoménologiques ont été dévelop-
pés mais aucun n’a été implémenté dans un cas sévere tel que les processus SPD. Dans cette these,
nous essayons d’implémenter des modeles microstructuraux récents basés sur I’évolution de densités
de dislocations dans les processus SPD et en implémentant des lois d’évolution de ’endommagement
pendant la simulation de ces processus. Un cadre de calcul sera développé afin de prédire I’évolution
de la microstructure et de '’endommagement pendant les procédés SPD. Cela permet d’améliorer la
compréhension du compromis résistance-ductilité dans les procédés SPD et d’optimiser les conditions

de traitement afin de minimiser 'endommagement et d’améliorer les propriétés du matériau traité.
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INTRODUCTION

The need for enhanced materials is an important axis of research in the industry. “Better” materials
mean lighter structures that are more resistant to failure in a variety of environments. Moreover, the
use of advanced lightweight materials can lead to important decrease in fuel consumption and has
an impact to carbon emission reduction. Additionally, improving the functionality and life span of
materials and facilitation of their recycling, would further help conserve the nature by decreasing waste

and manufacturing energy.

Scientists have always challenged themselves to improve the properties of materials, or come up
with new materials that have advantageous properties. Since the industrial revolution, metals and
alloys were greatly used in the industry. Researchers have continuously tried to develop advanced
alloys for various applications. In order to achieve this goal, enriched knowledge of the fundamentals
of metallurgy and material microstructure is needed. Scientific advances in material science and
engineering and development of advanced microscopic methods have opened new horizons to the
understanding of the microstructure of materials and the mechanisms that control their deformation.
Many phenomenological and physical theories enable us to predict the behavior of materials under
different conditions. All these advances have helped accelerate development of new materials and
optimisation of industrial processes, leading to cutting edge applications that were not possible without
these new properties. From lightweight strong implants that are compatible with human body to parts
used in space rockets that withstand great pressure and high temperature, all are made of advanced

metals that are possible due to advances in our understanding of their microstructure and behaviour.

Metals are in everlasting contradiction in terms of ductility and strength. Ductility enables a
material to deform and take the desired shape without occurrence of failure. Reasonably, ductile
materials tend to be less strong and once used in an structure, they won’t have the necessary strength

and resistance to avoid deformation and this would lead to the failure depending on the application.
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This trade-off between strength and ductility has been an issue with material development research

since forever!

To oppose this trade-off (have more ductility and more strength at the same time), researchers
developed many different approaches which generally concern modification of the microstructure of the
metals. In pure metals and alloys, these approaches include: cold working, solution and precipitation
hardening, transformation hardening, etc. These approaches aim at increasing the strength of the

material but usually lead to a decrease in ductility.

Lately, new approaches have been introduced to further oppose the strength-ductility trade-off.
Advanced understanding of microstructural mechanism has led to the manufacturing of materials
with much better properties. Two examples of these materials are Transformation Induced Plasticity
(TRIP) and Twinning Induced Plasticity (TWIP) steels that have very interesting properties in terms
of both ductility and strength. Another important advancement in material properties that is also the
topic of this project, is the manufacturing of nanostructured materials. These materials have incredible
properties that lead to numerous applications in transport, aeronautics, energy and bio-mechanical
sectors. The ultrafine grain structure present in these materials has led to very high strength without

much sacrificing the ductility.

Currently two approaches exist in fabrication of these nanostructured materials. The first one
is the so-called bottom-top approach, in which polycrystals are assembled using for instance atom
deposition or inter gas condensation; this leads to very small samples usually containing too much
porosity. The second approach is a top-down approach in which severe plastic deformation (SPD) is
applied to bulk coarse grained materials, leading to important grain refinement without changing the
initial configuration. Hence the possibility to repeat each pass several times allows achieving more
grain refinement. Several SPD processes exist and each concern a particular sample shape. Recently,
new SPD processes have been developed that produces nanostructured sheet metals with interesting

properties that can be used in automobile and aeronautic sectors.

Despite the development of numerous SPD techniques, these processes however, have not yet been
commercialised and exist only at a laboratory scale. More investigations should yet be made in order
to increase the size of processed samples and the speed of productions, in order to industrialize the SPD
processes. One important challenge for achieving this goal is the optimisation of the SPD processes.

Recent advances in computational mechanics has led to vast application of mechanical simulations in
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research. Consequently, nowadays process optimisation techniques are performed in the framework of
numerical simulation in order to reduce material and equipment costs. Optimisation of these processes

requires several components:

e A modelling of the material behavior based on the physical mechanics at the microscale is

necessary to predict the overall mechanical properties.

e A computational framework that could perform simulation of SPD processes and permits the

prediction of material properties and possible degradation of materials.

Firstly, advanced material constitutive laws should be developed and implemented in order to evaluate
the material behavior during SPD processes. Indeed, since several passes of a SPD process could lead
to plastic strain of order 10, a proper simulation of this behavior would require implementing a suitable
material model. Secondly, it has been observed that damage and degradation could happen during
SPD processes. Indeed in order to optimise the material properties, a maximum number of SPD
passes should be performed without damaging the material. As a result, a relevant simulation of these

processes should also take into account degradation of the material during each pass.

Last but not least, research has shown that the materials obtained by SPD processes exhibit
excellent strength and superplasticity. Interestingly, in some cases, increasing the number of passes of
SPD leads to an increase in both ductility and strength. These properties are in direct contradiction to
the previously mentioned strength ductility trade-off. As a material’s performance is tied to hardening
and softening mechanisms in the microstructure, a proper modelling of these mechanisms could lead to
a better understanding of this strength ductility paradox. As a result, a combination of hardening and
softening behaviors tied to grain refinement, dislocation density evolution and damage, could enhance

the understanding of nanostructured materials obtained by SPD.

The present thesis aims to tackle the issue of the simulation of SPD and analyse the evolution of
microstructure as well as ductile damage in these processes, in order to improve the understanding of
the material behavior, and create a framework for optimisation of these processes by reducing damage

and fracture. This thesis is organized in four chapters:

e In Chapter 1, a bibliography review is presented. This chapter summarizes the basics of (i) severe

plastic deformation processing, (ii) dislocation-based plasticity model for grain refinement and
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(iii) ductile damage modelling.

e In Chapter 2, shear ductile damage is investigated in deep-drawing using a micromechanical
model including void shape effects. This “conventional plastic deformation process” is first stud-
ied in order to assess the ability of the local approach of ductile failure to predict crack initiation

in a case of moderate plastic strains.

e In Chapter 3, a case of severe plastic deformation processing, using repetitive corrugation and
straightening (RCS), is considered. The evolution of damage and the residual stress distribution

are analyzed in two aluminum alloys, for only one pass of the process.

e Finally, several passes of RCS are investigated in Chapter 4. A micromechanical model including
ductile damage evolution and dislocation-based hardening modelling is developed. Using this
model, numerical tensile tests are performed after the simulation of the RCS process is order to

model the strength-ductility modifications induced by the process.



Chapter 1

Bibliography

1.1 Resumé en francais

Dans ce chapitre, une revue des travaux qui abordent les sujets traités dans cette thése est présentée.
Un bref historique des sujets qui motivent ce projet est donné pour mieux définir les objectifs et la
nouveauté de ce projet, notamment en termes de modélisation du comportement des matériauz. Ce

chapitre est organisé de la fagon suivante :

Dans la Section 1.3, le traitement par déformation plastique sévére (SPD) est présenté ainsi que
certaines applications pertinentes pour ce travail. L’accent est mis sur un processus appelé “corru-
gation et aplatissement répétitifs” (RCS) qui sera considéré dans cette thése. Dans la Section 1.4,
des travaux récents portant sur la modélisation de l’écrouissage basée sur l’évolution de densités de
dislocations sont introduits. En particulier, un modéle phénoménologique d’écrouissage basé sur une
structure cellulaire de dislocations sera présenté et sera utilisé dans les simulations de cette thése afin
de définir le comportement des matériaur pendant la SPD. Dans la Section 1.5, nous détaillerons lec
mécanismes d’endommagement ductile présents lors de déformations plastiques. De plus, dans cette
section, une bréve revue des différents modéles d’endommagement ductile sera donnée et un modéle
micromécanique basé sur les effets de forme des vides qui est adapté aux processus étudiés dans cette

theése est présenté.

1.1.1 Mise en ceuvre des matériaux par déformation plastique sévere

Les matériaux nanostructurés traités par déformation plastique sévére (SPD) présentent un intérét

considérable pour les applications structurelles en raison de leurs propriétés mécaniques améliorées,
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notamment une résistance élevée, une bonne ductilité, une grande ténacité et une superplasticité a des
tauzx de déformation élevés et a basse température, contrairement aux matériaux a gros grains qui sont

intrinséquement limités par le compromis résistance-ductilité.

Le traitement par déformation plastique sévére (SPD) correspond a diverses procédures expérimen-
tales de mise en forme des métauxr qui ont €té développées pour induire une déformation intense et un
affinement des grains. Au cours du procédé SPD, le matériau est soumis a une importante déforma-
tion plastique sans que sa géométrie initiale ne soit beaucoup modifiée, ce qui permet de lui appliquer
plusieurs passes. Malgré les lacunes actuelles en termes d’industrialisation des procédés SPD dues a la
petite taille des échantillons, cette méthode est prometteuse pour produire des matériaux nanostructu-
rés pour des applications structurelles. Les procédés SPD les plus courants sont 'ECAP [61], le HTP
[18], UVARB [56] et le RCS [54]. Voir Figure 1.1 pour une représentation schématique de ces procédés.

Dans cette theése, nous nous concentrons sur le procédé RCS car c’est un procédé de mise en forme
tres prometteur pour la production de toles nanostructurées a grande échelle dans un cadre continu et
discontinu [54]. Au cours du processus RCS, la piéce est déformée par une matrice ondulée a motifs
multiples de forme particuliére ; ensuite, une matrice plate déforme le matériau pour lui redonner
sa forme initiale. Chaque passe du procédé RCS conduit a une déformation plastique importante.
De nombreuses études sur laluminium pur [100, 109], les alliages d’aluminium [17, 29, 35, 49, 82],
cuivre [117] et alliages de magnésium [93] ont montré une augmentation significative de la résistance
mecanique du matériau aprés chaque passage du processus. Cette tendance se poursuit généralement
jusqu’a ce que le matériau se dégrade par différents mécanismes d’endommagement qui sont liés a la

croissance des vides a lintérieur du matériau [44].

L’étude des matériauz traités par SPD est généralement complétée par des simulations numériques
du processus. Dans le cas du SPD, ces études numériques permettent (i) de représenter des champs
mécaniques qui ne sont pas facilement accessibles par des mesures expérimentales, telles que les dis-
tributions 3D des contraintes [49, 93, 100], (ii) d’étudier Ueffet des paramétres du procédé tels que
la forme des outils [93, 100], et (iii) de fournir des lignes directrices pour optimiser le procédé. Une
des lacunes actuelles dans la simulation numérique du RCS est l'absence de mécanismes physiques
dans la modélisation des matériaux. En particulier, un couplage entre I’évolution de I’endommagement
ductile et les lois de durcissement avancées basées sur les mécanismes physiques de la déformation est

nécessaire pour simuler avec précision les changements microstructurauz pendant les procédés SPD.



1.1. RESUME EN FRANCAIS

1.1.2 Modélisation du durcissement basée sur I’évolution de la densité des dislocations

1l est généralement admis dans les matériaux traités par SPD que les dislocations sont le principal
mécanisme qui contribue au durcissement. Au cours des procédés SPD, la déformation élevée s’accom-
pagne d’une création et d’un déplacement important de dislocations. Les observations expérimentales
montrent que les métaux traités par SPD présentent des zones hétérogenes avec des densités de disloca-
tions trés élevées et trés faibles ; les dislocations forment des structures cellulaires qui sont composées
de parois et d’intérieurs de cellules. Dans cette hypothése, les parois cellulaires correspondent auzx zones
a hautes densités de dislocations et lintérieur des cellules correpond aux zones de plus faibles densi-
tés de dislocations. En conséquence, il est admis que les prcédes SPD conduisent a la création d’une

structure composite a deux phases” dans les métauzx [86, 99)].

1l est intéressant de noter que l'accumulation de dislocations dans les parois cellulaires entraine
une forte désorientation des parois cellulaires qui augmente avec la déformation plastique induite
[32]. L’augmentation de la désorientation transforme les parois cellulaires en joint de sous-grains
et finalement en joint de grains individuels [65]. Ce mécanisme explique l’importante capacité de

affinement des grains par SPD et la formation de grains ultrafins [46, 121].

Plusieurs tentatives ont été faites pour prédire ’écrouissage sur la base des mécanismes de pro-
duction et d’annihilation des dislocations. La premiére tentative la plus célébre celle du modéle a un
paramétre développé par Mecking and Kocks [81]. A partir des observations expérimentales de la struc-
ture des dislocations dans les métaux, un modéle a deux parameétres a été proposé par Mughrabi [86]
sur la base de la description des densités de dislocations dans les parois et les intérieurs des cellules.
Dans ce modeéle, la structure cellulaire des dislocations est supposée créer un composite de zones a

faible et a forte densité de dislocation.

Estrin et al. [33] a étendu U'approche de Mughrabi [86] en dérivant des équations constitutives qui
rendent compte de l’évolution des dislocations dans les parois et lintérieur des cellules. Ce modeéle
est basé sur l’hypothése composite de microstructure utilisant deux phases distinctes. Ce modéle a été
utilisé avec succes dans plusieurs applications de SPD et de procédés d’usinage et les résultats prédits
correspondent tres bien aur mesures expérimentales et il permet de tenir compte approrimativement

du affinement de la taille des grains. [5, 63, 80].
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1.1.3 Endommagement ductile

La rupture ductile des métaux est généralement due a la nucléation, a la croissance et a la coales-
cence successives de micro-vides [13, 15, 97]. La Figure 1.11 montre schématiquement les différentes

étapes de ’évolution des dommages dans les métau.

Si la rupture ductile est généralement pilotée par la triaxialité, des travaux récents ont montré que
la rupture ductile peut également survenir en présence de cisaillement [7, 27, 28, 39, 45, 51, 103].
Dans ces cas, la croissance des vides est limitée et 'adoucissement macroscopique est attribué aux
changements de forme et d’orientation des vides, notamment [’aplatissement des vides soumis au

cisaillement.

La modélisation la plus avancée de la rupture ductile est basée sur l’approche locale, en adoptant
une démarche micromécanique. Les modeles dévelopés dans ce contexte sont basés sur une description
locale des mécanismes physiques de la rupture ductile, en suivant principalement les travaur précur-
seurs de Gurson [47]. Ce modéle est composé d’un critére de plasticité macroscopique et d’une régle

d’écoulement qui tient compte de la présence de vides par la porosité.

Dans ’ensemble, cette classe de modéles fournit de bonnes prédictions lorsque la triaxialité est
élevée et dans ce cas, I'endommagement est principalement di a la croissance des vides. Cependant, le
modele de Gurson sous-estime 'apparition de l’endommagement en présence de cisaillement. Dans ce
travail, une approche alternative pour la simulation de 'endommagement sous chargements complezes
(lors de procédés d’emboutissage par exemple) sera considérée, basée sur une description micromé-
canique de l’effet de la croissance des vides, de la rotation et de l’élongation des vides. En effet, il
a été démontré récemment que la rupture ductile sous des charges dominées par le cisaillement est
essentiellement due a des changements importants de la forme des vides [84, 91]. Par conséquent, nous
nous concentrerons principalement sur le modéle de Madou-Leblond incorporant des effets de forme
des vides [73-76], dans lequel les demi-azes et l'orientation des vides peuvent évoluer, afin de simuler

la rupture ductile en cisaillement.

1.2 Introduction

In this chapter, a review of the works that address the topics pursued in this thesis is presented.

A Dbrief history of the subjects that motivate this project is given to better define the objectives



1.3. PROCESSING BY SEVERE PLASTIC DEFORMATION

and novelty of this project, especially in terms of modelling of of material behavior. This chapter is

organized as follows:

In the Section 1.3, processing by severe plastic deformation (SPD) is introduced along with some
applications that are relevant to this work. At first, a history of SPD processes is given and differ-
ent processes are introduced. The emphasis is placed on a process called repetitive corrugation and
straightening (RCS) which will be considered in this thesis. Moreover, a summary of the experimental
characterisation techniques and numerical simulations relevant for SPD processing is presented to il-
lustrate the properties of the final materials obtained by RCS. In Section 1.4, first, a brief description
of microstructural evolution during plastic deformation of metals and different stages of strain harden-
ing is presented. Next, the latest investigations in the literature for modelling of the hardening based
on dislocation density evolution is introduced. Later, a phenomenological model based on cellular
structure of dislocations will be presented that will be used in the simulations of this thesis in order
to define the hardening behavior of materials during SPD. In Section 1.5, analytical and experimental
investigations that have been developed in the literature to understand the underlying mechanisms
of ductile damage and predict its evolution will be discussed. Also in this section, a brief review of
different ductile damage models is given and a micromechanical model based on void shape effects

that is suitable for the processes studied in this thesis is presented.

1.3 Processing by severe plastic deformation

1.3.1 Introduction

Nanostructured materials processed by severe plastic deformation (SPD) are of considerable inter-
est in structural applications because of their improved mechanical properties including high strength,
good ductility, high toughness, and superplasticity at high strain rates and low temperatures, in con-

trast with coarse-grained materials which are limited by the strength-ductility trade-off [2, 127].

Processing by severe plastic deformation (SPD) refers to various experimental procedures of metal
forming that have been developed to induce intense straining and grain refinement. During SPD
process, the material is subjected to significant plastic deformation without much change in its ini-
tial geometry and thus allowing several passes to be applied on it. Despite current shortcomings in

industrialization of the SPD processes due to small size of samples, this is a promising way of pro-
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ducing nanostructured materials for structural applications [55]. The most common SPD processes
are equal channel angular pressing (ECAP) [61], high torsion pressing (HTP) [18], accumulative roll
bonding (ARB) [56] and repetitive corrugation and straightening (RCS)! [54]. Each of these processes
requires a specific workpiece; ECAP concerns rectangular or cylindrical bars, HTP deals with flat disk
specimen while ARB and RCS are suitable for producing sheet metals. See Figure 1.1 for schematic

representation of these processes.

Pressure |

Die

Sample _exity

()

Figure 1.1: Examples of processing by SPD: (a) Equal channel angular pressing (ECAP), (b) High
torsion pressing (HTP) and (c) Repetitive corrugation and straightening (RCS).

Processing by SPD leads to significant evolution of microstructure. The evolution starts with
apparition of cellular structure of dislocation and high dislocation density walls are formed (see Figure
1.2 for images taken by transmission electron microscope (TEM) of dislocation cell structure). As
plastic deformation increases, cell walls become subgrain boundaries and later during severe plastic

deformation, high-angle grain boundaries.

'RCS encompasses several processing techniques including Constrained Groove Pressing (CGP) [108] and Constrained
Studded Pressing (CSP) [117].

10
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Axis of the bar

Figure 1.2: (a) 3D TEM image of the structure of dislocations after severe torsion of copper sample
[124] and (b) TEM image of highly pure Al showing dislocation cell structure and some cell walls are
shown by red arrows [22].

Figure 1.3 schematically represents this evolution which leads to grain refinement. In Figure 1.4,
maps of local crystal structure and orientation of the initial and processed microstructure of high
purity aluminium by electron backscatter diffraction (EBSD) technique is shown. After 8 passes of
ECAP, the initially coarse grains are refined to submicron dimensions. This huge grain refinement
leads to very particular properties in materials processed by SPD. For example in Figure 1.5a, the
stress-strain curves of SUS 316L samples extracted from the bulk material processed by several passes
of ECAP is presented. According to this figure, increasing the number of passes has led to very
important enhancement of material strength. Similar enhancement is observed in Figure 1.5b, where

Wohler curve of a material processed by ECAP shows improvement of fatigue limit.

1.3.2 Repetitive Corrugation and Straightening

In this thesis, we focus on RCS because it is a very promising metal forming process for production
of large-scale nanostructured sheet metals in a continuous and discontinuous setting [54]. During RCS
process, the workpiece is deformed by a multi-pattern corrugation die of particular shape; then, a
straightening die deforms the material to almost its initial shape. Each pass of RCS leads to important
plastic deformation and the heterogeneity and severity of the deformation are a function of the shape of
the patterns in the multi-pattern corrugation die (an example of a multi-pattern corrugation die is given

in Figure 1.6). Numerous studies on pure aluminum [100, 109], aluminum alloys [17, 29, 35, 49, 82],

11



1.3. PROCESSING BY SEVERE PLASTIC DEFORMATION

Minor Moderate Severe
Undeformed deformation deformation deformation

Dislocation cell (DC) Sub-grain boundary (SGB)
Dense dislocation wall (DDW) Grain boundary (GB)

(a)

Figure 1.3: Schematic of grain refinement and cellular microstrucutre at high strains [70].

Unprocessed

Figure 1.4: Grain refinement by ECAP. (a) As-received microstructure and (b) after 8 passes of ECAP
[55].

copper [117] and magnesium alloys [93] have shown a significant increase in material yield and ultimate
strength after each pass of the process. This trend usually continues until the material degrades by
different damage mechanisms which are related, in metal forming, to void growth inside the material
or microcracks on the surface [44]. Dynamic recovery can also impede grain refinement after certain
amount of deformation [115]. The heterogeneity in grain refinement may be resolved by defining
several processing routes by rotating the workpiece by 90 degrees or turning it upside down after each

pass [35].

In practice, discontinuous RCS process used in laboratory development stage is composed of two
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Figure 1.5: Material properties after processing by SPD. (a) Stress strain curves after 0-4 passes of
ECAP and (b) Wohler curve for unprocessed and processed by ECAP [34].

corrugation dies, represented in Figure 1.6, and two straightening dies which deform a sheet metal
blank sequentially. First, the corrugation dies deform the blank sheet to a corrugated shape whose
morphology is governed by the shape of the die. Then, the straightening dies deform the corrugated
sheet to straight blank sheet (the steps of the RCS process are represented in Figure 1.7 for two
patterns). This two-step process (corrugation then strengthening) is called a full RCS pass. Inter-
estingly, since the specimen keeps its initial configuration at the end of a full pass, it is possible to
repeat this process several times in order to reach higher plastic strain, which ultimately would lead
to grain refinement. This process thus belongs to both forming processing and SPD-like processing.
An important feature of the process is the presence of a large number of corrugation patterns, which

are spatially repeated in order to produce plastic strains in a large domain.

(b)

Figure 1.6: Description of the corrugation dies in discontinuous RCS processing. (a) 2D representation
of the two dies acting on the sheet metal blank and (b) 3D representation of the lower die.
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(b)
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()

Figure 1.7: Description of one pass in RCS processing for two patterns. (a) Before corrugation, (b)
At the end of corrugation, (c) Before straightening and (d) At the end of straightening.

1.3.3 Numerical modelling of RCS

The study of materials processed by SPD is generally supplemented by numerical simulations of the
process. In the case of RCS, these numerical studies permit to (i) access mechanical variables that are
not easily accessible by experimental measurements, such as 3D distributions of stress [49, 93, 100], (ii)
study the effect of the process parameters such as the die shape [93, 100], and (iii) provide guidelines
to optimize the process. In these studies, several experimental measurements and observations such as
XRD, microhardness, SEM, TEM, EBSD and tensile test are generally used to validate the numerical
simulations. Predictive simulations of RCS is thus of interest in order to facilitate the development of
this process in industrial conditions which requires an optimization of the processing conditions. This
optimization concerns notably the material behavior after processing such as strength, ductility and

fracture properties.

A current lack in the numerical simulation of RCS is the absence of a “physical” description of
the local mechanisms in the material modelling. In particular, a coupling between ductile damage
evolution and advanced hardening laws based on the underlying mechanisms is necessary in order to

simulate accurately the microstructural changes during SPD.
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1.4 Modelling of hardening based on dislocation density evolution

It is generally accepted in materials processed by SPD that dislocations are the main mechanism
that contributes to hardening mainly due to relatively low temperature during the process and high
plastic deformation, particularly in the case of metals with FCC structure that have more slip planes
[122]. During SPD, high strain is accompanied with massive nucleation and movement of dislocations.
Experimental observations show that metals processed by SPD have heterogeneous areas with very
high and very low densities of dislocation; dislocation distribution is in the form of a cellular structure
that is composed of cell walls and interiors. In this assumption, cell walls correspond to the areas with
high dislocation density and inside these walls, cell interiors have relatively lower dislocation density.
Accordingly, it is admitted that SPD leads to creation of a “2-phase composite structure” in metals

86, 99].

Interestingly, accumulation of dislocations in cell walls leads to high misorientation of the cell
walls that increases with the induced plastic deformation [32]. The increase in misorientation turns
cell walls into subgrain boundaries and eventually, grain boundaries [65]. This mechanism explains

the important capability of grain refinement by SPD and the formation of ultrafine grains [46, 121].

1.4.1 Stages of strain hardening

1.4.1.1 Moderate plastic deformation

During work hardening of metals, several stages can be distinguished. In a single crystal, plasticity
starts with single-slip of dislocations which corresponds to stage I work hardening. This is not however
the case for polycrystals as many slip activities in several grains happen at the same time [90]. As a
result, this is stage II which is the dominating mechanism at the start of hardening in polycrystals and
it is characterised by the occurrence of multi-slip. According to Figure 1.8, this stage is characterized
by high hardening rate due to activation of secondary slip systems, and the appearance of forest

dislocations. In this case, generally the stress-strain curve increases linearly with plastic strain.

As the dislocation density increases with plastic deformation, the “distance” between neighboring
dislocations decreases and a mechanism of annihilation of dislocations on different slip planes happens.
This temperature and strain rate dependent phenomenon is called dynamic recovery and corresponds

to stage III hardening [101]. It is also responsible for softening in the stress-strain curve that happens
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T HI

u , IV

Figure 1.8: Example of a shear stress v.s. shear strain curve showing stages of work hardening in a
single crystal. It should be noted that for polycrystals, stage I is almost negligible [90].

after the stage II hardening, and strain hardening rate starts to decrease (see Figure 1.8). Furthermore,

due to dynamic recovery in stage III, the rate of dislocation density production also reduces.

Experimental evidence shows that the increase in dislocation density leads to creation of “hard”
and “soft” zones inside the grains, representative of a cellular structure composed of cell walls (see
Figure 1.2). These hard and soft zones are characterized by large and small density of dislocations.
With an increase of the strain, cell walls start to shrink. The increase in total dislocation density and
at the same time the shrinkage of cell walls is more dominant in stage II and slows down in stage 111

[33].
1.4.1.2 Severe plastic deformation

When high strains are reached, the decrease in strain hardening rate reaches a saturation level at
a relatively small value which is the characteristic of stage IV hardening (see Figure 1.9b). This stage
is marked by smaller dislocation density production rate and the end of cell wall shrinkage. Finally,
the saturation of strain hardening ends in stage V with an gradual decrease in strain hardening rate

to zero. Additionally, in this stage, the dislocation density growth rate disappears [132].

1.4.2 Strain hardening models based on dislocation density

Several attempts have been done to predict the strain hardening based on dislocation mecha-

nisms. These models consider the mechanism of production and annihilation of dislocations. The
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Figure 1.9: Hardening behavior of polycrystal Cu during torsion (+) and straight rolling (A) at room
temperature. (a) Shear stress 7 vs shear strain v and (b) Hardening rate § = d7/dvy vs shear stress T
[132].

most recognized first attempt was a simple one-parameter model developed by Mecking and Kocks
[81]. This phenomenological model provides the evolution of average dislocation density as an ordinary

differential equation with respect to plastic strain and is given in the following way:

dp

g = kv = kap. (1.1)

Here p is the average dislocation density, € is the equivalent strain, and k; and ks are constant
parameters for production and annihilation of dislocations. Also in this equation M is Taylor’s factor
for polycrystals. This equation was very successful for prediction of strain hardening in polycrystals
in stages II and III [6, 31]. However due to the complex structure of dislocations in stages IV and V,
it fails to provide accurate predictions for strain hardening at high strains. Based on the experimental
observations of dislocation structure in metals, a two-parameter model was proposed by Mughrabi
[86] based on the description of dislocation densities in cell walls and cell interiors. In this model, the
cellular structure of dislocations is assumed to create a composite of low and high dislocation density
zones. This model makes it possible to capture the stages IV and V of strain hardening for high
strains [90]. Using a continuum mechanics framework based on dislocation cell patterns, Estrin et al.
[33] extended Mughrabi [86]’s approach by deriving constitutive equations that account for evolution
of dislocations in cell walls and interior. This model is again based on the composite assumption of
microstructure using two distinct phases. Hence, as a rule of mixture, the overall resolved shear stress

in the material is given by a contribution from the resolved shear stress in the two phases (7, for cell
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walls and 7; for cell interior) according to the following relation:
T" = Uy Ty, + 0Ty (1.2)

In this equation, v,, is the volume fraction of cell walls and v; = 1 — v, is the volume fraction of cell
interior. Based on experimental observations, the authors propose a phenomenological equation that
corresponds to the shrinkage of cell walls during the deformation of microstructure in high strains.
This model has been successfully used in several applications of SPD and machining processes and
the predicted results are in very good match with experimental measurements and it permits to
approximately account for grain size refinement [5, 63, 80, 133]. A brief presentation of the most

important equations of this model is presented hereafter.

1.4.3 Dislocation density based composite model for strain hardening during SPD

As just explained, Estrin et al. [33]’s model is suitable for prediction of strain hardening in high
strains as in SPD where hardening stages IV and V are considered. In this model the composite
microstructure is evolved by a contribution of cell walls and cell interior dislocations according to Eq.

1.2. Hardening in each phase is then governed by the evolution dislocation density.

d

Y

(a)

Figure 1.10: A schematic of cellular structure of dislocations composed of cell walls (dashed part) and
cell interiors.

Accordingly, the resolved shear stress in each phase is given by
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His

= aGby/p (%) (1.3)
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N
7 = aGb/p; (%> . (1.4)
Yo

In these equations +;, and ] are the resolved shear strain rates in walls and interiors and 7 is the
reference strain rate. a ~ 0.25 is a constant parameter and material parameters G and b are shear
modulus and Burgers vector respectively. Also, m is a hardening exponent controlling the strain rate

and temperature dependency of hardening.

The evolution of dislocation densities in this model is accounted by three different factors: gen-
eration, annihilation and migration of dislocation from cell interiors to cell walls. The evolution of

dislocation densities in the cell interior is described by the following equation

. 2P, . 4 (7)””.
.:a* w —_ * ¢ 7]{ 71 - ’L" 1.5
Pi Sb\/grﬂu ﬁ bd\/’LTZ 0 ;Y() YiP ( )

The first term in this equation is the contribution of Frank-Read sources in the generation of dislo-

cations in the cell interior, where a* is the “fraction” of effective Frank-Read sources. The second
term corresponds to the “loss” of a fraction 8* of dislocations in the cell interior due to migration of
dislocation into cell walls. Here the parameter d is the cell size which is inversely proportional to the
square root of total dislocation density. The third term of this equation is the contribution of dynamic
recovery process in cell interior due to annihilation of dislocations, particularly by cross-slip which is
an important mechanism in stage III hardening. In this equation n is the rate sensitivity exponent of

dynamic recovery which is inversely proportional to the temperature.

For the evolution of dislocation density in cell walls, a similar equation is proposed in the model

. N L Vin/Pw . (fyw)l/n.
w = 4 i + 2 i k - wPw- 1.6
P P bdery b \/?jvwb’y 0 Yo Tul (1)

In this equation, the first term is the contribution from the dislocations migrated from cell interior to
the cell walls. The second term describes the dislocations generated by activated Frank-Read sources
from the dislocations migrated to cell walls and the third term is also dislocation density loss due to

dynamic recovery.
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The total dislocation density in the material is given by the dislocation densities in both cell walls

and cell interior as

Pt = VyPuw + Vipi, (1.7)

where we recall that v, is the volume fraction of cell walls and v; is the volume fraction of cell
interiors. The increase in dislocation density, the evolution of the cellular structure and the increase
in misorientation in cell walls will eventually lead to grain refinement during SPD processes. Using
Holt’s equation, the average cell size (which corresponds to the average grain size) is given by the

following relation

d=—, (1.8)

where K is a parameter assumed to be constant in this model (it could be slightly dependant on
resolved shear strain [53, 65]). Lastly, motivated by experimental observation on metals, the volume
fraction of cell walls is assumed to decrease with evolution of resolved shear strain according to the

following empirical expression

AT
U = Vinf + (Vo — Ving)exp ( F’Z > . (1.9)

In this equation, v;,; and vy are max and saturation values of volume fraction of walls, 7" is the
overall resolved shear strain of the dislocation cell and the parameter I',. controls the shrinkage rate.
For more details about formulation of this model, see Estrin et al. [33]. Recently, there have been
some modifications in the governing equations of the model which are reported in the literature. These
modification try to take into account different mechanisms in order to improve the predictions of the
model such as, misorientation angle effect [32], geometrically necessary dislocation density [121], back

pressure influence [80] and 3D extension of cellular model [123].

1.5 Ductile damage

1.5.1 Introduction

The ductile failure of metals is generally due to the successive nucleation, growth and coalescence

of micro-voids [13, 15, 97]. It is now commonly accepted that void nucleation can occur either by
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decohesion at second-phase particles—matrix interface or by particle cracking. Once voids are nucle-
ated, plastic flow will promote the growth of these voids, which is accelerated by the stress triaxiality.
Important void growth is usually followed by void coalescence which can take place in a variety of
modes, the most dominant one being coalescence by internal necking [11]. Figure 1.11 schematically

shows different stages of evolution of damage in metals.

(c) (d)

Figure 1.11: Different mechanisms of ductile damage. (a) As-recieved material, (b) Nucleation from
inclusions or precipitates, (¢) Growth of the microvoids and (d) Coalescence.

Several experimental methods permit to observe the presence and evolution of damage in materi-
als. For instance, tomography /laminography method by synchrotron radiation is used in- and ex-situ

to follow evolution of porosity during experimental tests [112, 116] (see Figure 1.12). Also advanced
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acoustic emission methods can give access to global degradation of material [25, 78]. Moreover, ob-
servations by scanning electron microscope (SEM) are frequently used to observe fracture surfaces or
particle cracking in the microstructure [25, 64]. For instance, the presence of dimples in the fracture
surface permits to characterize ductile damage [97]. The shape and orientation of the dimples are of

particular interest as they can be a indicator of ductile damage by tensile necking or by shear.

Figure 1.12: X-ray microtomography observation of damage evolution. In this figure, porosity is shown
in black and precipitates in white. (a) As-received and (b) After deformation [116].

Indeed, recent experimental works have shown that ductile failure can also occur under combined
tension and shear, and notably with shear-dominated loadings [7, 27, 28, 39, 45, 51, 103]. In such
cases, void growth is limited and the macroscopic softening is attributed to changes of the void shape

and orientation, notably the flattening of voids subjected to shear.

In the context of metal forming, Kotkunde et al. [64] performed deep drawing experiments on
titanium alloy under different process conditions. They distinguished two types of failure in their
experiments: either by formation of shear cracks or by tensile necking (also observed by Gorji and
Mohr [44]). SEM observations of crack surface in shear crack case showed the presence of elongated
uni-directional dimples, where equi-axed shallow dimples were observed in the case of tensile failure
(Figure 1.13). Similar deduction was also made by Torki and Benzerga [118] for shear and tension
dominated loadings. These results show the importance of void shapes in understanding the underlying

mechanisms of damage in plastic deformation processing.
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Figure 1.13: SEM fractugraphy images of cracks formed during deep drawing experiment on Ti-6Al-4V
alloy. (a) Shallow equiaxed dimples as evidence of ductile tensile failure located on the bottom part
of the cup (neck region) and (b) Unidirectional elongated dimples as evidence of ductile shear failure
located at the upper area of the wall [64].

1.5.2 Modelling of ductile damage

The modelling of ductile damage is based on either uncoupled fracture criteria, such as the Hos-
ford—Coulomb fracture model (see e.g. [44, 87, 135]), or coupled damage models. In the first approach,
the damage parameter does not affect the material behavior, whereas in the second approach damage
is coupled with elastic and/or plastic properties [114]. In the coupled damage approach, which is
generally referred to as the local approach of fracture, the modelling of ductile failure is essentially
based on a detailed description of the local rupture process zone [16]. Within this framework, two

main approaches permit to describe ductile damage evolution.

1.5.2.1 Models based on continuum damage mechanics

Continuum damage mechanics (CDM) models are based on a thermodynamical framework fol-
lowing Lemaitre [71)’s pioneering work. In this approach, damage is taken into account through a
phenomenological internal damage state variable (which can be scalar or tensorial), which affects both
the elastic behavior and the plastic flow. This class of models is referred to as phenomenological as
their development is essentially based on macroscopic considerations. The evolution of the damage
variable is driven by the elastic energy release rate, in which the effect of triaxiality is accounted for.

The thermodynamical consistency of CDM models together with their numerous extensions (such as
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damage anisotropy, plastic compressibility, kinematic hardening, strain rate effects, etc.) make this

approach attractive, from a numerical point of view, for the simulation of ductile damage [20, 106].

In terms of numerical simulation of damage evolution during sheet metal forming, most of the works
have considered continuum damage mechanics (see e.g. [4, 105-107, 110, 113, 134]). The advantages
of this class of thermodynamically-consistent models are that they can easily account for initial and
induced anisotropies, cyclic effects, mixed hardening, through the use of advanced yield functions
and plastic potentials. However, due to the intrinsic phenomenological nature of this approach, it
is not guaranteed that the calibration of a set of parameters for a given loading path would lead to
accurate predictions for other types of loading, since the damage parameter is not based on a physical

mechanism.
1.5.2.2 Models based on micromechanics

Micromechanical type models are based on a local description of the physical mechanisms of ductile
failure, following mainly Gurson [47]’s seminal work?. Gurson’s model is based on the limit-analysis
of a hollow sphere (with a rigid-plastic matrix) subjected to conditions of homogeneous boundary
strain rate. This model is composed of a macroscopic yield criterion and flow rule which accounts
for the presence of voids through the porosity. It is supplemented by an evolution equation for the
porosity, which acts as a damage parameter in this model (although it can decrease in compression).
Accordingly, the Gurson yield criterion, later modified by Tvergaard and Needleman [120] to take into

account the nucleation and coalescence of microvoids, is given as follows

P = Z%’+2qf* cosh F’;;”] —1—(qf")?, (1.10)
where 0., and o0, are the macroscopic equivalent and the mean stresses respectively, ¢ is the yield
stress of the matrix and ¢ is the “Tvergaard parameter” which is a heuristic modification to improve
the comparison with micromechanical simulations. Additionally, f*, a fictitious porosity parameter

taking into account the rapid softening due to coalescence of voids, is given by

fc+5[f_fc] if f>f07

2Tt must be noted that Gurson’s model is also thermodynamically consistent as it belongs to the class of generalized
standard materials if the porosity is discretized with a time-explicit scheme [30].

o { f it f<fe 111)

24



1.5. DUCTILE DAMAGE

where f is the volume fraction of the voids and f. and § > 1 are parameters. According to the
normality condition, the plastic strain rate tensor DP can be calculated from the yield function by the

following relation:

(1.12)

L 00
D? =\_—(o,0,f) , A >0 if @(o,f,0)=0,

0D [ =0 if ®c,f5)<0
Jdo

with A being the plastic multiplier. The rate of growth of the void volume fraction is obtained from

the trace of the plastic strain rate by considering the incompressibbility of the matrix

fq= (10— f)txe(DP). (1.13)

Gurson assumed that the plastic dissipation energy in the hollowed cell is equal to the plastic
dissipation energy in some fictitious “equivalent material” with the same volume fraction of porosity

f. As a result, the hardening of the material is described by:
o:DP = (1- f)oe. (1.14)

In this equation, the yield stress & is a non-linear function of the equivalent strain £. Additionally, the

strain-controlled model of nucleation rate of microvoids is given by

. IN 1/g—en\?| .
f“_sN\/ﬂeXp [—2< i~ )]xe (1.15)

with f,, eny and sy being the model parameters [24]. Finally, the rate of the total void volume fraction

f is calculated by including the contributions from both void growth and void nucleation:
f=Fg+Tn (1.16)

Since GTN model is limited to the description of void growth in isotropic solids, numerous ex-
tensions have permitted to account for more realistic situations including plastic anisotropy [12], void
shape effects [73], kinematic hardening [85], coalescence [14], shear damage [88], etc. This approach has
met, in both its original and improved forms, considerable success in the reproduction of experimental

tests of failure of ductile materials [15, 97].

Nonetheless, only a few works have considered micromechanical Gurson-type models to predict

failure during sheet metal forming processes [19, 59, 125, 131]. Overall, this class of models provides
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good predictions when the triaxiality is high since in that case damage is mainly driven by void growth.
However Gurson’s model underestimates damage occurrence in presence of shear, and in that case it
requires refinements to account for damage in shear, such as the incorporation of ‘shear damage’
as done by Ying et al. [131] in the simulation of punch tests, using Nahshon and Hutchinson [88]’s
phenomenological modification of Gurson’s model. However, Nahshon and Hutchinson [88]’s model
predicts an increase of the porosity in pure shear which is in contradiction with micromechanical cell
calculations [84]. Therefore, the accurate simulation of sheet metal forming using a micromechanical

model which incorporates void growth and shear effects remains a challenge.

1.5.3 Ductile damage based on Gurson’s model including void shape effects

In this work, an alternative approach for the simulation of damage under complex strain paths
during sheet metal forming will be considered, based on a micromechanical description of the effect
of void growth together with void rotation and elongation. Indeed, it has been shown recently that
ductile failure under shear-dominated loadings is essentially due to important changes of the shape of
the voids [84, 91]. Therefore, we will mainly focus on the Madou-Leblond model of plastic porous solids
incorporating void shape effects [73-76], in which the voids’ semi-axes and orientation can evolve, in
order to simulate shear-dominated failure involved in forming processes. This model has permitted
to reproduce micromechanical cell calculations in shear-dominated loadings as well as experiments on

butterfly specimens with shear [83, 84] using a heuristic coalescence modelling.

1.5.4 The Madou-Leblond model for ductile materials

We briefly recall the main equations defining the Madou-Leblond model along with its extension
by Morin et al. [84]. The reader is referred to Madou and Leblond [73, 74, 75] and Madou et al. [76]

for a detailed description of all model developments.

1.5.4.1 Primitive form of the model

The Madou-Leblond model (which will be denoted by ML hereafter) which is an extension of
Gurson’s model including void shape effects, permitting to describe the evolution of cavities during
shear-dominated loading supposedly responsible for shear damage. In this model, the elementary cell

Q) is ellipsoidal and contains a confocal ellipsoidal cavity w of semi-axes a > b > ¢ oriented along the
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(local) unit vectors e, ey, e,. The cavity surface is characterized by the quadratic form P defined by

Plu) = (u.e;)Q N (u.ey)? N (we:)? (1.17)

a b2 c?

The matrix P = (P;;) of the quadratic form P is expressed in the fixed frame (e;, ez, e3) of the
observer and permits to describe the orientation and semi-axes ratios of the ellipsoidal cavity; indeed
its diagonalization provides the semi-axes and the local unit vectors e, e,, e, defining the orientation.
Another important parameter in this model is the porosity f which is defined as

vol(w)

/= vol(Q)

(1.18)

The matrix is supposed to be rigid-perfectly plastic and obeys a von Mises criterion with a yield
stress 0g. A mixed analytical-numerical limit-analysis has been performed on this elementary ellip-

soidal cell and led to the macroscopic yield criterion

®(o, P, f,00) = Q;g) +2(14g)(f + g) cosh {ﬁi:)] —(149%-(f+g)?<o. (1.19)

In equation (1.19):

e Q(o) is a quadratic form of the components of the Cauchy stress tensor o defined by
Qo)=0:Q: 0, (1.20)

where Q(P, f) is a fourth-order tensor which is related to classical Willis’s bound for non-linear

composites (see [74]);
e L(0o) is a linear form of the diagonal components of o in the basis (e, e,, e.) defined by
L(o)=kH : 0, (1.21)
where k(P, f) is a scalar and H(P, f) a second-order tensor of unit trace;

e g(P, f)is the so-called ‘second’ porosity. It is related to the volume fraction of a fictitious prolate
spheroidal void obtained by rotating the completely flat ellipsoid confocal to the ellipsoidal cavity
w about its major axis. This parameter is null in the case of prolate voids, non-zero in the case of
oblate voids, and reduces to the classical ‘crack density’ of Budiansky in the case of penny-shape
cracks. It naturally arises in the limit-analysis procedure of the ellipsoidal void and permits to

account for the effect of a penny-crack (having a null porosity) on the yield surface [74].
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The details and expressions of all model parameters are given in Madou and Leblond [73, 74].

The macroscopic yield criterion is then complemented by a macroscopic flow rule which is classically
deduced from the normality property (since the normality of the flow rule is preserved during up-
scaling):

: : 2 H: o= i
P =4[220 L 2 (1) (fg) /-eHsmh(” ")] , A{ 0 if ®(o, P, f,00) <0y 59y

0'(2) oo oy ZO if <I>(U>P7f700)207

where DP is the Eulerian plastic strain rate and A the plastic multiplier.

The evolution equation of the porosity, corresponding to void growth, is deduced from the incom-

pressibility of the matrix

fq = (1= f)tr(DP). (1.23)
Finally, the evolution equation of the matrix P (characterizing the shape and orientation of the

ellipsoidal voids) is given by
P=_-P(D'+Q%) - (D'+Q)T.P (1.24)

where DV and QY are respectively the strain-rate and rotation-rate tensors of the cavity. These rates
are given by:

{ D* =L: D~ (1.25)

QY =Q+R:DP,
where € is the rotation-rate tensor of the material (antisymmetric part of the velocity gradient).
The tensors L(P, f) and R(P, f) are fourth-order ‘localization tensors’, as the tensor LL relates the
(local) void strain-rate DV to the macroscopic strain-rate D, and the tensor R relates the (local) void
rotation-rate 2V to the macroscopic rotate-rate £2. They are based on plastic corrections of the elastic
formula provided by Ponte Castaneda and Zaidman [98] in the elastic case, determined by numerical

analyses. The details and expressions of these tensors can be found in Madou et al. [76].
1.5.4.2 Extensions of the model

The primitive ML model has been completed by Morin et al. [83, 84] using several (heuristic)
extensions that allow the model to be applicable for practical materials and situations. This includes
notably Tvergaard’s parameter, coalescence modelling, strain hardening, nucleation and bounds on

the semi-axes.
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1.5. DUCTILE DAMAGE

First the “T'vergaard parameter” has been in both the yield criterion (1.19) and the flow rule (1.22),
in order to account for more realistic shapes of the elementary cell [119]. In the ML model, this is done
by replacing the term (f + g) by q(f + g), where ¢ is a (heuristic) coefficient which is usually slightly
larger than unity. Furthermore, it has been shown in Gologanu [40] that this parameter should depend

on the void shape. Thus, following Gologanu [40] and Morin et al. [84], this parameter is given by

S 2afc 132
2 _ 2 ¢t = 1+(qph—1)[1/2}
prol obl b c + (CL/C)
q=(1-k)¢"" + k¢, k= 22 (1.26)
1+ (a/c)?]’

where ¢P! is Tvergaard [119]’s original value of g for spherical voids, and ¢P™' and ¢°"' those of

Gologanu [40] for prolate and oblate voids.

Since ductile tearing is ultimately due to void coalescence, a simple (phenomenological) model of
coalescence is generally considered. This consists in replacing the porosity f by some larger fictitious
one f*, once some ‘critical value’ f. has been reached. Since in the ML model the relevant parameter
in the criterion (leading to softening) is no longer f but f + g, Tvergaard and Needleman [120]’s

modification applies to f + g:

«_ ) [ty if f+g<(f+g)
+9) _{ (f+get+ol(f+9) = (f+9)] i f+g>(f+9g) (1.27)

where (f + g)c and § > 1 are parameters. This model is heuristic and has permitted to capture the
onset of coalescence in the cases of (i) unit-cell calculations in shear [84] and (ii) a butterfly specimen

subjected to shear-dominated loadings [83].

The ML model is based on limit-analysis which assumes that the matrix is rigid-perfectly plastic,
excluding by essence strain hardening effects. However it can be accounted for approximately by
following Gurson [47]’s approximate approach®. The (constant) yield limit o in the criterion (1.19)

is replaced by some ‘average yield stress’ & given by:
o =o(g), (1.28)

where o(¢) is the function providing the yield limit as a function of the local accumulated plastic strain

g, and € represents some ‘average equivalent strain’ in the sound matrix. The evolution of € is then

3Tt could also be possible to use Morin et al. [85]’s explicit approach based on sequential limit-analysis.
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1.5. DUCTILE DAMAGE

deduced by assuming that the plastic dissipation on the ML model
o: D?P (1.29)

is equal to the plastic dissipation in some fictitious porous ‘equivalent’ material which has the same

porosity f. In this equivalent material, the plastic dissipation is thus taken as

(1 - f)ae. (1.30)
The evolution equation of € is then given by
. o: D?P
E=——7—. 1.31
i-fps 3y

Finally, void nucleation can be accounted for by considering the strain-controlled model of Chu
and Needleman [24]. The nucleation rate is given by

o fN 1 E€—EN 2 -
fn_ SN\/%exp [_2< SN ) ] X g, (132)

where fy, ey and sy are respectively the volume fraction, average nucleation strain and standard

deviation. The evolution equation of the porosity thus reads
F=Fe+ I (1.33)
1.5.4.3 Scalar damage parameter characterizing failure

In the model ML, softening is due to both the porosity and void shape effects (through the second
porosity). A damage parameter d, tied to both f and g, characterizing the progressive degradation of

the material will be defined for post-treatment.

If we assume that the material is entirely failed (o = 0), we can obtain from the yield criterion
(1.19):
201+ 9)(f+9)" =1+ 9’ = P(f+9)? ==L +g—a(f +9)")° =0 (1.34)
It follows that ¢(f + g)* = 1+ g. The damage parameter d can thus be defined by

_q(f+9)
d_—T:;ﬂ (1.35)

the values d = 0 and d = 1 corresponding to absence of damage and total damage, respectively. This
parameter, which does not play any role in the constitutive equations, permits the evaluation, as a

post-treatment of the results, of the location and importance of damage in a structure.
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1.6 Conclusion

This chapter presented a review of the literature on the three subjects that will be analysed in
this thesis. More particularly, a review of applications of SPD processes and the characterization of
processed materials was given, with a focus on the RCS process which is mainly used in this thesis.
This was pursued by a review of the microsturactural analysis performed on the materials deformed
up to very high strains and the approaches taken in order to model the material behavior during SPD
by considering the evolution of dislocation density. Finally, a brief review of ductile damage analysis
and the analytical models developed for predicting the evolution of damage was discussed and some
micromechanical models based on growth and evolution of voids were presented. This literature review
establishes a foundation for the numerical framework and analytical model that are developed in this

thesis.
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Chapter 2

Analysis of shear damage: A case of
conventional plastic deformation process

2.1 Resumé en francais

Dans ce chapitre nous analyserons ’évolution de l’endommagement par cisaillement en emboutis-
sage qui est considéré comme un processus de déformation plastique conventionnel. Un modéle numé-
rique dans le code de calculs par éléments finis ABAQUS est développé pour effectuer des simulations
en utilisant le modéle Madou and Leblond [74] (ML) qui inclut les effets de forme des vides. Les résul-
tats expérimentaur issus des travaux de Gorji and Mohr [44] sur un procédé d’emboutissage profond
ont été choisis comme référence pour nos simulations. Ces résultats ont été choisis principalement
parce qu’ils abordent deux cas différents conduisant a des fissures, soit de cisaillement soit de striction
selon la triaxialité des contraintes. Cette démarche est intéressante car elle permet d’étudier le poten-
tiel du modéle ML notamment a faible triaxialité de contrainte. Ce chapitre est organisé de la facon

sutvante :

Dans un premier temps, nous présenterons brievement la procédure expérimentale introduite dans
le travail de Gorji and Mohr [44]. Ensuite, le cadre numérique dans ABAQUS est présenté ainsi qu’une
breve explication de 'application numérique du modele ML dans ABAQUS en wutilisant une routine
UMAT. Une identification des parameétres des matériaur basée sur des essais de traction numériques
et expérimentaur sera présentée. Les paramétres identifiés seront ensuite utilisés pour effectuer des
simulations numériques d’emboutissage en utilisant les modéles d’endommagement ML et GTN, et les

résultats seront discutés et comparés.
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2.1. RESUME EN FRANCAIS

2.1.1 Procédure expérimentale

Nous considérons les expériences d’emboutissage réalisées par Gorji and Mohr [44] (voir également
Gorji et al. [43] et Pack et al. [94]). Le type de rupture est illustré o la Figure 2.3 pour diverses
conditions de traitement. Trois comportements différents ont été observés, en fonction des conditions

expérimentales :

e Pas de rupture, qui se produit pour de petits flans.
e Fissure de striction, qui est le type de rupture le plus typique dans la pratique. (voir Figure 2.2).

o Fissure de cisaillement, qui peut se produire au niveau du profil de la matrice, lorsque le matériau

se déplace sur le coin de la matrice (voir Figure 2.2).

Dans ces expériences, le matériau considéré est un alliage d’aluminium 6016-T4 largement utilisé
dans les applications automobiles en raison de sa ductilité et de sa capacité de durcissement par

vieillissement.
2.1.2 Modele numérique

Un modeéle 3D par éléments finis du procédé d’emboutissage profond a été réalisé a l'aide du code
commercial ABAQUS/Standard. En raison de la symétrie du procédé, seul le 1/8° de l’échantillon
est considéré (voir Figure 2.4). Par ailleurs, le modéle ML a été implémenté numériquement dans le
code d’éléments finis Abaqus par une procédure UMAT (voir Morin et al. [84] et Leblond [66]) avec

plusieurs modifications ad-hoc :
e Eviter les effets de contact entre les demi-azes ellipsoidau.
e Eviter que la matrice P soit mal-définie en fizant un rapport maximal pour les demi-axes.

e Supprimer les éléments en cas d’adoucissement rapide pour éviter tout probleme de convergence

nuUmMErique.
2.1.3 Identification des parametres du modele

Afin de mettre en ceuvre le modéle ML et d’effectuer des simulations numériques des essais ex-

périmentaur présentés dans la Section 2.3, nous avons besoin (i) d’un ensemble de paramétres qui

34



2.1. RESUME EN FRANCAIS

régissent le modele d’évolution des dommages et (ii) de calibrer les parametres du modéle.

Nous supposons que le comportement de l’alliage d’aluminium 6016-T) est isotrope et que I’écrouis-

sage du matériau suit une loi de Swift-Voce dont les paramétres sont fournis dans le Tableau 2.2.

Pour effectuer la calibration, un modéle FEM représentant l’essai de traction expérimental a été
utilisé et différents jeux de paramétres ont été comsidérés pour simuler l’essai de traction. Pour la
calibration des paramétres liés a ’endommagement, la porosité initiale et les parametres de nucléation
ont été calibrés par Thuillier et al. [116] et nous avons adopté leurs résultats sur le méme matériau
pour calibrer les paramétres de notre modéle. Les parameétres de coalescence sont calibrés en ajustant
les prédictions du modéle avec I’évolution de la fraction volumique des vides fournie par Thuillier et al.
[116]. Un résumé de tous les paramétres de l’endommagement est donné dans le Tableau 2.3. Dans la
Figure 2.5, la comparaison entre les courbes de contrainte-déformation expérimentales et numériques
est présentée et les résultats montrent une bonne correspondance entre la simulation et [’expérience

avant et apres le striction.

2.1.4 Résultats

Selon la Figure 2.3, pour une force de maintien du flan donnée, le type de défaillance dépend
de la taille du flan carré. Par conséquent, dans un premier temps, nous effectuons des simulations

numériques pour étudier l'effet de la taille du flan.

En résumé, le modele ML permet de reproduire des ‘fissures de striction’ pour les grands flans et
des ‘fissures de cisaillement’ pour les petits flancs. L’évolution des paramétres internes du modele ML
a permis de mettre en évidence l'importance des effets de la forme des vides sur la rupture finale.
Lorsque la triazialité est faible, la porosité diminue mais les rapports entre les demi-axes des vides
augmentent ce qui conduit a un certain adoucissement : en effet, dans ce modéle, l'adoucissement peut
étre induit par des effets de forme des vides a travers la seconde porosité. Enfin, la comparaison avec le
GTN montre sa difficulté o simuler avec précision la rupture car il surestime généralement la ductilité

en ne tenant pas compte des effets de forme des vides, en particulier o faible triazialité.

Ces résultats sont particulierement encourageants pour la simulation de [’évolution de ’endom-
magement lors des procédés de mise en forme tels que la déformation plastique sévere dans laquelle

l’échantillon subit une importante déformation en cisaillement.
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2.2 Introduction

In this chapter, we will analyse the evolution of shear damage in deep drawing which is considered
as a conventional plastic deformation process. A numerical framework in ABAQUS finite element
software is developed to perform simulations using the Madou and Leblond [74] (ML) model which
includes void shape effects and was previously introduced in Chapter 1. Experimental results from
the work of Gorji and Mohr [44] on a deep drawing process have been chosen as the reference for our
simulations. These results have been chosen mainly because they address two different cases leading
to shear and necking cracks depending on the stress triaxiality. This is an interesting process as it
permits investigating ML model’s potential notably at low stress triaxiality. This chapter is organized

as follows:

As a first step, we will briefly present the experimental procedure introduced in the work of Gorji
and Mohr [44]. Then, the numerical framework in ABAQUS is presented along with a brief explanation
of the numerical application of ML. model in ABAQUS using a UMAT subroutine. An identification
of material parameters based on numerical and experimental tensile tests will be presented. The
parameters identified will then be used to perform numerical simulations on the deep drawing numerical

set-up using both ML and GTN damage models and the results are discussed and compared.

2.3 Experimental procedure

We consider the deep drawing experiments performed by Gorji and Mohr [44] (see also Gorji et al.
[43] and Pack et al. [94]). The deep drawing experiments have permitted to characterize the out-
of-plane shear fracture. The schematic of the experimental set-up is represented in Figure 2.1: it is
composed of a cylindrical punch with a 75 mm diameter and 5 mm edge radius and a 77 mm diameter
die with 3 mm edge radius. The metal blank has a square shape (of size L x L) and a thickness of 1

mm. A double-sided greased blank is drawn at a speed of 1 mm/s until rupture occurs.

Three different behaviors have been observed, depending on the blank’s layout and blank holder

force:

e No failure, which happens for small layouts.
e Bottom crack, which is the most typical type of failure in practice. A crack occurs on the side
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77 mm

75 mm

punch

5 mm

blank holder
tomf T i E metal blank

L

Figure 2.1: Set-up of the deep drawing experiments.

wall, near the punch-side of the workpiece (see Figure 2.2).

e Shear crack, which may occur at the die profile, when the material is traveling over the corner

of the die (see Figure 2.2).

bottom crack shear crack

Figure 2.2: Location of cracks observed experimentally in deep drawing experiments (after [43]). In
the case of a blank-holder force of 200 kN, a shear crack appears for a blank size L between 133 mm
and 150 mm while a bottom crack occurs for a blank size L above 150 mm.

It has been observed by Gorji et al. [43] that bottom cracks appear for large metal blanks while shear
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2.3. EXPERIMENTAL PROCEDURE

cracks appear for small metal blanks. For a blank-holder force of 200 kN, shear cracks occur for a
blank size L between 133 mm and 150 mm while bottom cracks occur for a blank size L above 150
mm. The type of failure is shown in Figure 2.3 for various processing conditions. In the case of the
shear crack, it has been observed by Gorji et al. [43] that the fracture surface is slanted. This confirms
that this failure mode is due to a shear-dominated loading because slant cracks are generally related

to shear band localization [13].

160

155 Bottom crack
150
145
=) Shear crack
g uof 1
~
135 1
130 4
No failure
125
120

50 100 150 200 250

Blankholder force [kN]

Figure 2.3: Type of failure observed during deep drawing depending on the processing conditions [41].

In these experiments, the material considered is an aluminum alloy 6016-T4 which is a heat treat-
able Al-Mg—Si alloy widely used in automotive applications due to its good formability and age-

hardening capacity. Its chemical composition is given in Table 2.1 [116].

Table 2.1: Chemical composition of the Al-6016-T4 alloy.

Element Mg Si Ti Fe Cr Others (Cu, Zn) Al
wt% 0.25-0.6 1.0-1.5 max 0.15 max 0.5 max 0.1 max 0.2 balance
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2.4 Numerical model

2.4.1 Deep drawing FEM model in ABAQUS

A 3D finite element model of the deep drawing process has been made using the commercial code
ABAQUS/Standard. Due to the symmetry of the process, only 1/8" of the specimen is considered (see
Figure 2.4). The sheet metal is modelled as a 3D deformable part and the mesh is composed of 29575
elements and 36276 nodes; we use selectively subintegrated 8-node trilinear brick (C3D8 elements in
ABAQUS) which are suitable for quasi-incompressible plasticity as they permit to overcome volumetric
locking. The mesh contains 6 elements in the sheet thickness. The punch, blank-holder and die are
modeled as rigid 3D shells and are meshed with 2266, 1978 and 2380 R3D4 elements respectively.
Contact conditions are considered between the sheet and the rigid parts: the friction is accounted for
by a Coulomb friction model in which the frictional force is related to the normal pressure applied
on the surface. A value of 0.015 for the friction coefficient was used in the simulations as the blank

during the experimental process was completely greased on both sides.

Figure 2.4: Mesh considered for the deep drawing simulations. Half of the experimental model is
shown as transparent parts and only 1/8" of the model is meshed. For illustrative purposes, the
distributions of the mechanical quantities will be represented on the whole specimen using symmetry.
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2.4.2 Numerical implementation of ML model

The ML model has been implemented numerically in the finite element code Abaqus through a
UMAT procedure (see Morin et al. [84] and Leblond [66]). Several ad-hoc modifications have been

added to the previous constitutive equations to avoid numerical issues:

e Contact effects. Since the ellipsoidal shape can evolve during straining, the semi-axes a, b and
c can decrease. In order to avoid negative values after their evolution, contact conditions have
been incorporated heuristically. Minimum (positive) values apmin, bmin and cpin are prescribed.
Then, if at some stage of the calculation the value of a semi-axis, say ¢, becomes smaller than
its minimal value ¢y, it is replaced by cpin. In turns the porosity is adjusted to match the new

value (updated) of the semi-axis.

e Mazimal ratio a/c. As in the previous case, several numerical issues may occur when the ratio
a/c is too large, because in that case the matrix P is ill-defined which leads to numerical
problems in the calculation of the eigenvalues. Then, if at some stage of the calculation the ratio
a/c becomes larger than a limiting value (a/¢)max, it is replaced by (a/¢)max. (As before, the

porosity is adjusted to match the new value (updated) of the semi-axis).

e FElement deletion. In practice, softening can become abrupt when the damage parameter reaches
high values, typically when d > 0.3. In absence of void shape effects (i.e. ¢ = 0) and using
q = 1.5, this value would correspond to f* = 0.2 so damage is already very important. Therefore,
it is of interest to ‘delete’ elements that can be considered as (almost) totally damaged. Indeed
in practice when such high values are reached, fracture occurs almost instantaneously. Thus,
when the damage parameter d becomes larger than a critical value, dp, the stress is imposed to

become nil, that is & = 0, which corresponds to element deletion.

e Void growth porosity. In order to unravel the effect each damage mechanisms upon the failure, we
will also consider as post-treatments, the ‘nucleated porosity’ f, and the ‘void growth porosity’

fe which are defined from their respective rates (1.32) and (1.23) by

t . t,
fo= /0 Fa(r)dr;  fo= /O Fo(r)dr = f = fo— fo. (2.1)
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It is interesting to note that in the case of void collapse (if DP < 0), the so-called ‘void growth

porosity’ f, can be negative but it must verify

ng_fD_fn (2'2)

since the total porosity f cannot be negative.

2.4.3 Comments

The ML model contains numerous parameters which in fact depend solely on a small set of initial

parameters:

e Initial volume fraction: fo;
e Initial void shape and orientation of the cavity: Pp;
e Coalescence parameters: (f + g). and 6;

e Nucleation parameters: €y, sy and fn.

Once these parameters are known, the yield criterion is fully determined. The porosity f is then
evolved using equation (1.33), and the quadratic form is evolved using equation (1.24). If we assume
that the voids are initially spherical (which is the case in most practical situations), the matrix Py is
a multiple of the identify matrix, and the remaining parameters to calibrate (fo, (f + ¢)¢, 9, €N, SN
and fx) correspond to the same parameters that are initially required for GTN model. Therefore, if
voids are initially spherical, the calibration of ML can be done exactly as for GTN model, and void

shape effects are an emergent feature of the model.

2.5 Model parameter identification

In order to implement the ML model and perform numerical simulations of the experimental tests
presented in Section 2.3, we need (i) a set of parameters that govern the damage evolution model and
(ii) the hardening behavior of AA6016-T4. In this section, we detail the procedure of identification of

these parameters.
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2.5.1 Material hardening behavior

First, since 6016-T4 aluminum alloy exhibits a very small anisotropy [21, 42, 94|, we assume that
its behavior is isotropic and the hardening behavior of the material is assumed to follow a Swift-Voce

law:
o(e) =wA(Ep+eg)" +(1—w) (ko +Q (1 — e*’BEP)) , (2.3)
where the parameters w, A, n, €g, ko, @ and S have been calibrated by Gorji and Mohr [44] and are

provided in Table 2.2. In equation (2.3), €, is the accumulated plastic strain.

Table 2.2: Swift-Voce hardening law parameters for the AA6016-T4.[44]

Material w A [MPa] n £0 ko [MPa] @ [MPa] g
AA6016-T4 | 0.739  286.15 0.229 0.0161 160.1 464.5 9.89

2.5.2 Identification of damage parameters

In order to perform the calibration, a FEM model representing the experimental tensile test was
used and different sets of parameters have been considered to simulate the tensile test. These sets
were based on possible ranges of parameters found in the literature, notably for AA6016-T4. The set
that showed the closest similitude with the experimental stress-strain curve was chosen (by a least
square method). In a second step, fine-tuning of this set of parameters was performed in a try and

error way to identify the possible values.

The most difficult part concerns the calibration of the parameters related to damage (initial poros-
ity, initial shape of voids, nucleation parameters and coalescence parameters). For the same aluminium
alloy AA6016-T4, the initial porosity and nucleation parameters have been calibrated by Thuillier et al.
[116] using X-ray micro-tomography during interrupted tensile tests. Thus, we have adopted their re-
sults on the same material to calibrate the parameters of our model. In several test samples, the initial
volume fraction was found to vary in-between 4.64 x 10~ and 5.98 x 10~%; therefore we have considered
the value fo = 5 x 104, Furthermore, in the initial state, voids can be considered as spherical so that
the initial matrix Py is a multiple of the identity matrix; we thus consider that (Fp);; = d;; (where d;;
is Kronecker symbol). A value ¢ = 1.5 was classically considered for the Tvergaard parameter. Then,
the experimental evolution of the void volume fraction as a function of the strain (in a tensile test)

has permitted to calibrate the nucleation parameters (see Thuillier et al. [116]): fy = 0.018, ey = 0.9
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and sy = 0.4. The coalescence parameters are calibrated by fitting the model’s predictions with the
evolution of void volume fraction provided by Thuillier et al. [116]: this leads to (f + ¢). = 0.002 and
d = 6. Finally, a value dp = 0.3 was chosen for the element deletion (in order to avoid numerical

instabilities during total fracture). A summary of all the damage parameters is given in Table 2.3.

Table 2.3: Parameters for the model ML in the case of the AA6016-T4.

q fo (f+9)c 0 v en sn dr ()i
AA6016 | 1.5 0.0005 0.002 6 0018 09 04 0.3 O

It must be noted that the critical value (f + g). that has been calibrated seems small, although
it is in the range of actual values from the literature for GTN model [10]. Furthermore, it has been
shown by Springmann and Kuna [111] that, in the case of GTN model, several sets of parameters
(fo, fc) can lead to nearly similar predictions of a tensile test. They notably show that an increase of
fo of one order of magnitude requires that f. is also increased by one order of magnitude. Therefore,
since we considered a very small value for the initial porosity fo = 5 x 1074, it is not surprising that
the critical value is ‘small’. Nonetheless, the ratio (f + g)./fo (which is equal to 4) and the value of
0 are in agreement with previous numerical studies of shear-dominated fracture using the model ML

83, 84].

In Figure 2.5, the comparison between the experimental and numerical stress-strain curves is
presented. Here we have compared the stress-strain curves calculated by FEM implementation of
ML and GTN models in a tensile test with experimental results. Damage parameters can effect the
behavior of the material after necking and the rate of softening. This corresponds to the rate of
coalescence and growth of voids in the necking area as the triaxiality increases after necking. The

results show good match between simulation and experiment before and after necking.

2.6 Results
2.6.1 Blank size effect

According to Figure 2.3, for a given blank-holder force, the type of failure depends on the size of
the square blank. Therefore, as a first step we perform numerical simulations of damage to study the

blank size effect.

Process conditions The deep-drawing process will be considered for a blank-holder force F' = 200
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Figure 2.5: Experimental and numerical stress-strain curves by ML and GTN models of the aluminum
alloy 6016-T4 used in the deep drawing experiments.

kN. For this force, it was observed experimentally that the cracking model depends on the blank size.
Hence, several blank sizes, ranging from 130 mm to 152 mm, will be considered in the numerical
simulations to study the cracking mode. We will then present detailed results in only two cases which
lead to different damage mechanisms. We consider (i) a large blank size L = 152 mm for which a

bottom crack occurs and (ii) a small blank size L = 140 mm, for which a shear crack occurs.

Quantities investigated Several quantities will be studied in order to investigate the damage occur-
rence during deep drawing: (i) the distribution of the damage parameter d and the porosity f in the
whole specimen at several snapshots and (ii) the evolution of several internal parameters (f, fu, fq, 9

d, and semi-axes ratios) and the triaxiality (7") in the element that fails first.

2.6.1.1 Bottom crack case

We begin with the simulation of a bottom crack during deep drawing with a blank-holder force
F = 200 kN. For this force, bottom cracks are simulated numerically for blank sizes roughly higher

than 145 mm, which is in agreement with the experimental observations (see Fig. 2.3).

In the case L = 152 mm which is considered hereafter, the numerical simulation ends at a dis-

placement of about 20 mm, due to a numerical instability: the very final stage of the fracture process
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becomes unstable and the final softening is brutal, the slope of the force-displacement curve becoming
vertical. Hence, the bottom crack simulated numerically occurs for a punch displacement which is in

agreement with the experimental value (of about 20.5 mm).

The distribution of the damage parameter d is represented for several punch displacements (16
mm, 18 mm and 20 mm which corresponds to final step of the calculation) and is compared to the
fractured specimen in Figure 2.6. The location of the crack at the bottom of the specimen (through
the damage parameter d) is globally well reproduced by the ML model during the simulation, by

comparison to the photograph of the quasi-fractured specimen (Figure 2.6).

(c) (d)

Figure 2.6: Location of the bottom crack during deep drawing with a blank size L = 152 mm. (a)
Distribution of the damage parameter d for a punch displacement of 16 mm, (b) Distribution of the
damage parameter d for a punch displacement of 18 mm, (c) Distribution of the damage parameter
d for a punch displacement of 20 mm (final step of the simulation) and (d) Photograph of the quasi-
fractured specimen (after Gorji and Mohr [44]).

In addition, the distribution of the porosity f is represented in Figures 2.7 for two punch displace-
ments (16 mm and 20 mm). The distribution of the porosity is very similar to that of the damage
parameter in terms of pattern. However, the maximal value of the porosity reaches 0.02 while it was
roughly 0.2 for the damage parameter (for a punch displacements of 20 mm). Therefore, according to
the definition of the damage parameter d (see equation (1.35)), the difference between the values of
d and f can be attributed by two factors, void shape effects (through the second porosity g) and/or
coalescence (through the term (f + g)*).
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(a) (b)

Figure 2.7: Distribution of the porosity f in the simulation of a bottom crack during deep drawing
with a blank size L = 152 mm. (a) Punch displacement of 16 mm and (b) Punch displacement of 20
mm.

In order to investigate the role of each mechanism in the final failure, the evolution of the total
porosity f, second porosity g, nucleated porosity f,, (defined by equation (2.1)), void growth porosity
fe (defined by equation (2.1)), stress triaxiality 7" and semi-axis ratios a/c and b/c are represented
(versus the punch displacement) in Figure 2.8 in the element that fails first. Prior to the coalescence
occurrence (for a punch displacement before 13 mm), it is interesting to note that both fs, fi and g
increase, with similar rates. Therefore, it can be considered that the onset of coalescence is equitably
triggered by void growth, void nucleation and void shape effects. The importance of void growth
and nucleation on ductile failure during deep drawing with large blanks is actually expected as it was
shown in previous works that Gurson’s model (for spherical voids) permits to reproduce the location
of bottom cracks (see e.g. [60]). However, it is still interesting to note that in this case, the triaxiality
in this element is roughly constant before localization with a value T ~ 0.6: this corresponds to a
bi-axial stress state. This is confirmed by the evolution of the semi-axis a/c and b/c, as the major and
middle axes are almost the same during the evolution so that the cavity is close to an oblate spheroidal
void. The maximal value for the semi-axes ratio is of about a/c ~ 1.7 which can be considered as

moderate void shape effects.

It is important to note that, after coalescence, the evolution of the internal parameters should
be interpreted carefully [84]. Indeed, once coalescence begins, the quantity (f + g) is replaced by
(f + g)* (using the heuristic model of [120]) in the criterion and the plastic flow rule. Hence, the
criterion and plastic flow are modified, which in turns increases (notably) the void growth rate. This
explains that the porosity f starts increasing rapidly. Interestingly, the second porosity g also increases
rapidly, although void shape effects seem to decrease as the ratios a/c and b/c decrease after a punch

displacement of 15 mm.
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Figure 2.8: Evolution of internal parameters in the element that fails first in the simulation of bottom
crack during deep drawing (with a blank size L = 152 mm). (a) Damage parameter d, total porosity
f, second porosity g, nucleated void f, and porosity due to void growth fs, (b) Stress triaxiality T’
and (c) Semi-axes a/c and b/c. The onset of coalescence is represented by a dotted vertical line.

2.6.1.2 Shear crack case

We continue with the simulation of a shear crack (still with a blank-holder force F' = 200 kN). For

this blank-holder force, shear cracks always occur for a blank size roughly between 130 mm and 145
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mm, which is in agreement with the experimental observations (see Fig. 2.3).

In the case L = 140 mm which is considered hereafter, the numerical simulation ends at a dis-
placement of about 28.8 mm, due to a numerical instability: indeed, as in the case of a bottom crack,
the very final stage of the fracture process becomes unstable. Therefore, the shear crack simulated
numerically occurs for a punch displacement which is in agreement with the experimental value (of
about 27.4 mm). In both cases (numerically and experimentally), the punch displacement leading to

the shear crack is higher than that leading to the bottom crack.

The distribution of the damage parameter d is represented for several punch displacements (20 mm,
25 mm and 28.8 mm just at the final step) and is compared to a photograph of the quasi-fractured
specimen in Figure 2.9. The location of the crack is well reproduced by the ML model during the
simulation, by comparison with the photograph of the quasi-fractured specimen. Interestingly this
location differs from that usually observed for large blanks (bottom crack). Indeed, in the shear crack
case the crack initiates at the top of the sheet instead of the bottom. Furthermore, it is remarkable
to note that the initiation of the experimental crack, namely in the region of the sheet corner, is also
reproduced by the numerical simulation, emphasizing that the numerical calculation is able to predict

the experimental cracking behavior.

As in the case of the bottom crack, the distribution of the porosity, which is represented in Figure
2.10 for several punch displacements (20 mm and 28.8 mm), is very similar to that of the damage
parameter, but their maximal values are very different (the porosity reaches 0.03 while the damage
parameter reaches 0.3). Again, this difference is due to a coupling between void shape effects and

coalescence.

The evolution of the total porosity f, second porosity g, nucleated porosity fy,, void growth porosity
fe, triaxiality 7" and semi-axes ratios a/c and b/c are represented (versus the punch displacement)
in Figure 2.11 in the element that fails first. Before the coalescence occurrence (i.e. for a punch
displacement before 18 mm), it is interesting to note that the ‘partial porosity’ due to void growth
(fy) decreases while the ‘partial porosity’ due to nucleation f, as well as the second porosity g increase,
with similar proportions. Therefore, in the case of a shear crack, the model predicts no void growth
of initial voids but a small void closure. The increase of the quantity (f + ¢) is thus solely due to void
shape (through ¢) and void nucleation (through f,). If void nucleation would have been disregarded,

the total porosity f would have decreased; in such case, the threshold (f + g). can be attained only
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(c) (d)

Figure 2.9: Location of the shear crack during deep drawing with a blank size L = 140 mm. (a)
Distribution of the damage parameter d for a punch displacement of 20 mm, (b) Distribution of the
damage parameter d for a punch displacement of 25 mm, (c) Distribution of the damage parameter d
for a punch displacement of 28.8 mm (final step of the simulation) and (d) Photograph of the quasi-
fractured specimen (after [44]).

(a) (b)

Figure 2.10: Distribution of the porosity f in the simulation of a shear crack during deep drawing
with a blank size L = 140 mm. (a) Punch displacement of 20 mm and (b) Punch displacement of 28.8
mim.

with an increase of g which corresponds to void shape effects. Here, in the present case, the threshold
(f 4+ g). is attained due to an increase of both g and f,, but the rate of g is higher than the rate of f,,
emphasizing that void shape effects are dominant in this problem and void nucleation plays a minor
role. It is worth noting that the stress triaxiality is of about T' ~ 0 before coalescence, confirming that

the local stress state is pure shear (which explains the decrease of the porosity f, due to the sole void
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closure mechanism). In that case, important void shape effects are observed, as the void semi-axes
ratios reach respectively a/c ~ 4.25 and b/c ~ 2.25: the cavity has become a general ellipsoidal void
with three very different axes a > b > ¢. The predictions of the model are in agreement with the

findings of [44] who postulated that the damage mechanism in that case was due to shearing.
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Figure 2.11: Evolution of internal parameters in the element that fails first in the simulation of a shear
crack during deep drawing with a blank size L = 140 mm. (a) Damage parameter d, total porosity
f, second porosity g, porosity due to nucleation fy,o and porosity due to void growth ferowtn, (b)
Stress triaxiality T and (c) Semi-axes a/c and b/c. The onset of coalescence is represented by a dotted
vertical line.
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Again, it should be also noted that after coalescence the evolution of the internal parameter should
be interpreted even more carefully than in the bottom crack case [84]. Indeed after coalescence, when
the quantity (f + g) is replaced by (f + g)*, artificial void growth can be observed even during pure

shear. This is due to the heuristic model of coalescence of [120], as shown previously by [84].

2.6.2 Comparison with GTN model

The predictions of the ML model are now compared to that of GTN model (without void shape

effects), in order to assess the importance of void shape effects on shear-dominated ductile fracture.

First, the set of parameters calibrated for the ML model (see Table 2.3) was found to slightly
underestimate ductility during the tensile test. Therefore, an appropriate calibration for GTN model
parameters has been performed in order to reproduce accurately the tensile test (see Table 2.4 for the

set of parameters and Figure 2.5 for calibration result.).

Table 2.4: Parameters for the GTN model in the case of the AA6016-T4.

q fo fe 0 [N exn sy dF
AA6016 | 1.5 0.0005 0.002 4 0.018 09 04 0.3

The force-displacement curves of the punch obtained using GTN model are compared to that
obtained with the ML model in Figure 2.12, for the two cases considered (L = 140 mm and L = 152

mm). Before the total failure, the overall behavior is quite similar irrespective of the model used.

In the case of a large blank size (L = 152 mm), failure occurs for a displacement of about 23.7
mm using GTN model. (Note that failure occured for a displacement of about 20 mm using the
ML model). The distribution of the porosity, for GTN model, is represented in Figure 2.13. For
a punch displacement of 20 mm, the damage parameter is not localized yet at the bottom of the
specimen but it localizes for a displacement of 23.7 mm. Therefore, GTN model is, as expected, able
to predict the bottom crack (as the triaxiality is positive) but it slightly overestimates the ductility as

the displacement at failure is higher than that observed experimentally (20.5 mm).

In the case of a small blank size (L = 140 mm), there is no failure (at least for the displacements
considered) using GTN model while failure was predicted using the ML model for a punch displacement
of about 28.8 mm. The distribution of the porosity, for Gurson’s model, is represented in Figure 2.14

for two displacements of the punch (28.8 and 35 mm). Using GTN model, the damage parameter
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Figure 2.12: Comparison of the punch force-displacement curves using ML and GTN for the two blank
sizes considered (L = 140 mm and L = 152 mm).

(a) (b)

Figure 2.13: Distribution of the porosity using the GTN model in the simulation of deep drawing with
a blank size L = 152 mm. (a) Punch displacement of 20 mm and (b) Punch displacement of 23.7 mm.

is not localized in contrast with the ML model which predicts a localization of damage leading to a
macroscopic crack. Thus in that case, GTN model is not able to predict the shear crack; this was
expected as this model does not predict softening in shear because there is no increase of the porosity

(which is the damage parameter in this model) in pure shear.
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(a) (b)

Figure 2.14: Distribution of the porosity using the GTN model in the simulation of deep drawing with
a blank size L = 140 mm. (a) Punch displacement of 28.8 mm and (b) Punch displacement of 35 mm.

2.6.3 Discussion

The ML model has permitted to reproduce several macroscopic features observed in forming pro-
cesses involving complex loading paths with local shear-dominated states. Those results, together
with those previously obtained on shear-dominated buterfly specimens [83] and on micromechanical
cell calculations [84], confirm the capabilities of the ML model to predict ductile failure at low stress
triaxialities in presence of intense shear. Therefore, this model can be considered as an alternative to
uncoupled models for the simulation of forming processes because it can predict crack propagation.
Indeed, even though uncoupled models are interesting to provide the strain-to-failure [44], this class
of models cannot predict crack propagation since they do not take into account the loading history of
the damage variables. Furthermore, the ML. model can also be considered as a viable micromechani-
cal alternative to Nahshon and Hutchinson [88]’s modification of Gurson’s model for the simulation of
forming processes. Indeed, even though Nahshon and Hutchinson [88]’s model was successfully applied
to the prediction of punch tests [131], this model is based on a heuristic modification of the evolution
equation of the porosity, which is not identical to the true volume fraction of the voids, but can be
interpreted as a heuristic damage parameter. Consequently, a notable advantage of the ML model is
that softening in shear is not due to an artificial increase of the porosity as it is the direct consequence

of void shape effects (with possible void closure).

Finally, the evolution of semi-axes in Figures 2.11 and 2.8 has given us some ideas about the
average shape of the voids in the fracture area. In the shear crack case, it was observed that the ratio

of major to minor semi-axes of the ellipsoidal void reached a very high value, demonstrating elongated
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voids in the fracture zone. Additionally, for the bottom crack case, major and moderate semi-axes
experience moderate and quite similar increase that corresponds to a oblate spheroidal void shape.
These results are consistent with SEM observations of the dimples in the fracture surface presented in
Chapter 1 which were obtained from deep drawing experiments on titanium alloy. These experimental
observations further confirm the capability of ML model to help access to physical aspects of damage

evolution during ductile fracture.

2.7 Conclusion

In this chapter ductile failure in a conventional forming processing was investigated. Experimental
results of deep drawing on aluminum alloys have shown that ductile failure in forming processes can
be the consequence of shear-dominated loadings. Interestingly, several modes of cracking are observed
depending on the blank size and blank-holder force. In order to simulate those experiments, the
Madou-Leblond model, which is an extension of GTN model incorporating void shape effects, has
been considered. This model permits to reproduce ‘bottom cracks’ for large blanks and ‘shear cracks’
for small blanks. The evolution of the internal parameters of the ML model has permitted to highlight
the importance of void shape effects upon the final failure. When the triaxiality is low, the porosity
decreases but the ratios between the void’s semi-axes increase which leads to some softening: indeed
in this model, softening can be induced by void shape effects through the second porosity. Finally,
comparison with the GTN model shows its difficulty to simulate accurately failure because it generally

overestimates ductility since it disregards void shape effects; particularly during low stress triaxiality.

These results are particularly encouraging for the simulation of damage evolution if processes such

as severe plastic deformation in which the specimen undergo important shear deformation.
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Chapter 3

Analysis of residual stress and shear
damage in RCS: A case of severe plastic
deformation process

3.1 Resumé en francais

Dans ce chapitre, nous étudierons [’évolution de l’endommagement au cours de l’opération de cor-
rugation et d’aplatissement répétitifs (RCS), un procédé SPD adapté a l’obtention de téles nanostruc-
turées présenté dans le Chapitre 1. Dans un premier temps, nous ne considérerons qu’une seule passe
du procédé. De plus, deur matériauzr seront considérés dans nos études : (i) un alliage d’aluminium
ductile et (ii) un alliage plus fragile (mais néanmoins ductile). Ceci permettra finalement d’évaluer la
simulation numérique dans deux cas distincts, avec et sans endommagement. Enfin, les simulations
expérimentales et numériques illustreront l'influence de la ductilité du matériau sur la performance du

processus RCS.

Dans le cas d’un matériau ductile (non endommagé), nous utilisons la méthode de diffraction des
rayons X pour mesurer les contraintes résiduelles aprés une passe du processus RCS. Ceci nous aidera
a évaluer la validité des simulations numériques. Dans le cas d’un matériau plus fragile, I’évolution de

l’endommagement est étudiée a l'aide du modéle ML. Ce chapitre est organisé comme suit :

Dans la Section 3.3, la procédure expérimentale utilisée pour réaliser l’essai RCS et les matériaux
utilisés dans le processus RCS sont présentés. De plus, la méthode de diffraction des rayons X et la
procédure de reconstruction des contraintes résiduelles sont présentées dans cette section. Ensuite, des

simulations numériques sont effectuées pour évaluer I’évolution de l’endommagement et des propriétés
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des matériaux pendant et apreés le processus RCS pour deux cas distincts d’alliages d’aluminium ductiles
et fragiles dans les Sections 3.4 et 3.5 respectivement. Ce chapitre se termine par quelques remarques

finales dans la Section 3.6.
3.1.1 Procédure expérimentale

Le processus RCS se compose de deux étapes :

1. Une téle plate initiale est corruguée a l’aide de deux matrices de corrugation, qui induisent une
importante déformation par cisaillement au sein de la tole. A la fin de cette étape, ’échantillon

n’est plus une téle plate car sa forme est corruguée.

2. Ensuite, l’éprouvette corruguée est aplatie a l'aide de deux matrices plate. Ala fin de cette étape,

le spécimen est a nouveau une téle plate (voir Figure 3.1).

Ces deuz €tapes correspondent a une passe. Comme a la fin d’une passe I’échantillon est plat, I’origina-
lité de ce procédé est qu’il est possible de répéter ces passes afin d’augmenter la déformation plastique,
ce qui conduirait ¢ un affinement du grain [35]. Dans ce chapitre, une seule passe de RCS est consi-
dérée, ce qui est un premier pas vers la simulation compléte de RCS multi-passes avec accumulation

d’endommagement d’une passe a l’autre.

La RCS a été réalisée en utilisant un matériau ductile (AA6061-T6) et un matériau fragile (AA
7075-T6). Dans le cas de lalliage d’aluminium fragile, une fissure en forme de croiz est observée
pendant ’étape de corrugation dans les motifs proches du centre (voir Figure 3.2). Dans le cas de
Ualliage d’aluminium ductile, une seule passe est considérée, c’est-a-dire une corrugation d’une toéle

plate initiale suivie d’un aplatissement et les fissures n’apparaissent pas (voir Figure 3.3).

Afin d’effectuer des mesures de DRX, utiles pour valider le modéle numérique, tout d’abord, un
motif de la surface de l’échantillon a été électropoli afin d’éliminer les effets de friction de surface.
Ensuite, la distribution des contraintes résiduelles est évaluée par des mesures de diffraction des rayons
X en utilisant la méthode “psi-tilt”. Les valeurs de contraintes résiduelles fournies par la DRX sont
une convolution des contraintes résiduelles dans la zone irradiée dont la taille dépend du collimateur.
Lorsque la longueur caractéristique du gradient de contrainte est inférieure a la zone irradiée, de forts
effets de moyenne sont observés. Afin de déterminer les effets importants du gradient dans la distri-

bution des contraintes résiduelles, une méthode de déconvolution a été développée pour reconstruire la
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distribution locale des contraintes résiduelles a partir des mesures moyennes. Les détails de la méthode

sont donnés en Annexe B.

3.1.2 Résultats

Dans le cas d’un alliage d’aluminium ductile, nous avons utilisé une méthode de diffraction des
rayons X pour valider les résultats obtenus par les simulations. Aprés avoir utilisé la méthode de décon-
volution sur les données expérimentales moyennées, les champs de contraintes résiduelles reconstruits
ont montré des améliorations importantes de I’évaluation de [’hétérogénéité et ont fourni de meilleures

comparaisons avec les résultats des simulations.

Dans le cas d’un alliage d’aluminium fragile, une fracture a été observée pendant l’étape de cor-
rugation du processus RCS. La simulation utilisant le modele ML a €té capable de reproduire avec
précision ’endroit et la forme de la rupture. Dans la zone endommagée, une contribution importante
des effets de forme des vides a été observée en plus de la croissance et de la nucléation des vides. La
comparaison entre le modeéle ML et le modéle GTN a montré un certain retard dans ’apparition de
la fissure dans le modéele GTN en raison de la présence d’effets de forme des vides dans le cas d’un

matériau fragile et pour des valeurs élevées de déplacement de la matrice corruguée.

Enfin, bien que le modéle GTN ne permette pas de prédire la fissuration induite par le procédé, il a
cependant montré qu’il peut étre adapté pour décrire I’évolution de [’endommagement lors du procédé
RCS avant la rupture finale. En effet pour de faibles déplacements de corrugation, la triazialité est
assez importante (les effets de cisaillements ne se produisent qu’a la fin du procédé). Avec de plus petits

déplacements de la matrice corruguée, cette condition est remplie et le modéle GTN est applicable pour

la RCS.

Ces résultats constituent une premiére étape vers la prédiction du comportement mécanique des
toles produites par RCS; la prochaine étape est de considérer la modélisation des effets d’affinement
du grain qui se produisent lorsque RCS est répété afin de simuler les modifications de ductilité et de

résistance induites par le procédé.

o7



3.2. INTRODUCTION

3.2 Introduction

In this chapter, we will investigate the evolution of damage during repetitive corrugation and
straightening (RCS), a SPD process suitable for obtaining nanostructred sheet metals introduced in
Chapter 1. In this process, important non-linear effects (such as large deformation and heavy contact
conditions) are induced on the material. Hence, we will first consider only one pass of the process.
Furthermore, two materials will be considered in our investigations : (i) a ductile aluminum alloy and
(ii) a brittle one. This will ultimately permit to asses the numerical simulation in two distinct cases,
with and without damage. Finally, experimental and numerical simulations will illustrate the influence

of material ductility on performance of the RCS process and evolution of damage.

In the case of the ductile (non-damaged) material, we use X-ray diffraction method to measure the
residual stresses after one pass of RCS process. This will help of us asses the validity of numerical simu-
lations. Additionally, as the resolution of diffraction measurement is limited by laboratory equipment,
a deconvolution procedure is developed to better exploit the experimental data. The measurements

obtained from XRD method will be compared with the results obtained by numerical simulations.

In the case of “brittle” material, the damage evolution is investigated using ML model. This chapter

is organized as follows :

In Section 3.3, the experimental procedure employed to perform RCS and the materials used in
RCS process are introduced. Additionally, X-ray diffraction method and the deconvolution procedure
on experimental results are presented in this section. Next, numerical simulations are performed to
evaluate the evolution of damage and material properties during and after the RCS process for two
distinct cases of ductile and brittle aluminium alloys in sections 3.4 and 3.5 respectively. This chapter

is terminated by some concluding remarks in Section 3.6.

3.3 Experimental procedure
3.3.1 Description of RCS experimental set-up
This RCS process consists of two steps:

1. An initial flat sheet is corrugated using two corrugation dies, which induce important shear

deformation within the sheet. At the end of this step, the specimen is no longer a sheet as its
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shape is corrugated.

2. Then, the corrugated specimen is straightened using two flat straightening dies. At the end of

this step, the specimen is again a flat sheet (see Figure 3.1).

These two steps correspond to a pass. Since at the end of a pass the specimen is flat, the originality
of this process is that it is possible to repeat these passes in order to increase the plastic deformation,
which would lead to grain refinement [35]. In this chapter, only one pass of RCS is considered which
is a first step towards the full simulation of multi-pass RCS with accumulating damage from one
pass to another. The die profile is based on two perpendicular sinusoidal functions of period 16 mm
(see Elizalde et al. [29]) which is suitable for a sheet thickness of about 1 mm (see Figure 3.1), and
is composed of 7 x 7 elementary patterns. The size of the sheet is 120 mm x 120 mm x 1 mm.

Furthermore, the experiments of RCS have been performed without any lubrication.

RCS Step 1: Corrugation RCS Step 2: Straightening

Specimen W

Corrugation die w

Figure 3.1: Set-up of the RCS experiments.

Tensile tests and RCS process were performed at a deformation speed of 0.5 and 2 mm/min

respectively, using an Instron 5500R (10 kN) and an Instron 8802 (25 kN) universal testing machines.

As explained in the introduction of this chapter, the RCS was performed using a ductile (AA6061-
T6) and a brittle (AA 7075-T6) material. In the case of the brittle aluminium alloy, a ‘cross crack’
is observed during the corrugation step in the patterns close to the center (see Figure 3.2). In the
case of the ductile aluminum alloy, one pass is considered, that is a corrugation of an initial flat sheet

followed by a straightening and cracks did not appear (see Figure 3.3).
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Figure 3.2: Location of cracks observed experimental in repetitive corrugation and straightening ex-
periments (during the first corrugation step of a brittle aluminum alloy (AA7075-T6)).

Specimen after corrugation Specimen after straightening Grid considered for X-ray measurements

Figure 3.3: Description of the specimen processed by a one pass RCS using a ductile aluminium alloy
(AAG6061-T6).
3.3.2 Material characterization
3.3.2.1 Ductile Aluminum alloy (AA6061-T6)

First, we consider a precipitation-hardened aluminum alloy 6061-T6. A solid solution heat treat-
ment at 803 K for two hours was applied, then the sample was water-quenched, followed by an aging

treatment at 453 K for 18 h [29]. The chemical composition of the Al-6061-T6 alloy is given in Table
3.1.
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Table 3.1: Composition of the Al-6061-T6 alloy.

Element  Si Fe Cu Mn Mg Cr Zn Ti Al
wt% 0.77 024 0.16 0.03 1.03 0.07 0.03 0.02 balance

3.3.2.2 Brittle Aluminum alloy (AA7075-T6)

Next, experiments of repetitive corrugation and straightening have been performed on an aluminum
alloy 7075-T6 which is widely used in civil aircraft for its excellent characteristics of specific strength
and specific stiffness. Its chemical composition is given in Table 3.2. This Al-7075 alloy was subjected
to four-stage heat treatment (T6): heating up to 535°C for 2 hours, water tempering, heating up to

175°C for 18 hours, and air cooling down to room temperature.

Table 3.2: Chemical composition of the Al-7075-T6 alloy.

Element  Si Fe Cu Mn Mg Cr Zn Ti Al
wt% 0.23 0.31 1.65 0.22 236 0.24 5.72 0.10 balance

3.3.3 XRD measurements

In the case of AA6061-T6, residual stresses are determined in order to asses the numerical simula-
tions of RCS without damage. The residual stress distribution is evaluated on a central pattern located
at the bottom surface of a one pass corrugated and straightened specimen (see Figure 3.3), by X-ray
diffraction measurements using the psi tilt method and an in-situ diffractometer type X-RAYBOT
(manufactured by MRX France). The pattern was electropolished in order to remove surface friction
effects using electrolytic polishing machine Struers LectroPol-5 to dissolve a very thin layer from the

surface.

Since important gradient effects on the surface are expected in residual stress distribution, a
deconvolution method has been developed to reconstruct local distribution of residual stress form the
average measurements. Indeed the values of residual stress provided by XRD is a convolution of the
residual stresses in the irradiated area whose size depends on the collimator. When the characteristic

length of the stress gradient is smaller than the irradiated area, strong averaging effects are observed.

The idea is to solve an inverse problem from the knowledge of the collimator sizes inducing the

averaging. The details of the method are given in Appendix B.
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The XRD measurements were first performed along a single line on the center of the pattern (the
line x2 = 0 in Figure 3.3) with a spatial step 0.32 mm (i.e. 51 points for the reconstructed field). We
used two collimators, a smaller one with an irradiated area of diameter 2.5 mm, and a larger one with
an irradiated area of size 4.5 mm. The full stress tensor is determined using 13 angles ¥ and 2 angles

® in order to determine full residual stress tensor (by assuming o33 = 012 = 0).

Next for obtaining a map of distribution of the residual stress, The XRD measurements were
performed with a spatial step 0.32 mm so the grid is composed of 51 x 51 points (i.e. 2601 points
for the reconstructed field). We again used the two collimators which permits to provide two average
datasets requiring a total of 2906 measurement points. Due to the large number of measurement points
required, the XRD measures have been performed using ® = ¥ = 0°: this permits the determination
of the strain £33 which is related to the bi-axial stress o), = 011 + 092 at the surface (see Appendix C).
In addition, the full stress tensor on several points was determined to find the average of the free-stress

interatomic lattice spacing dg.

It should be noted that the full stress tensor could have been determined for all grid points on the
surface but it would have increased by (at least) a factor 25 the experimental time, which was already

very important using ® = W = 0°. The X-ray diffraction conditions are given in Table 3.3.

Table 3.3: Experimental conditions of X-ray diffraction.

Cr-Ka radiation  Voltage Current XRD planes Angle 26 U angles
0.2290 nm 20 KV 1 mA (311) 139° 1 angle (0°) or
13 angles in [—37.27°, 39.23°]

3.4 Results I: A case of ductile material

In this section, the results of the simulation of RCS process using a ductile aluminium alloy

AA6061-T6 is presented with a focus on deconvolution procedure.

Experimental observations show that in the case of ductile aluminium alloy, cracks are not formed
after one pass of corrugation and straightening. Next, the deconvolution procedure is applied to
the residual stress measurements obtained by XRD process according to the procedure explained in
Section 3.3.3. Finally, the numerical model is implemented in ABAQUS and the experimental results

are compared with numerical ones.

62



3.4. RESULTS I: A CASE OF DUCTILE MATERIAL

3.4.1 Experimental determination of residual stress

Measurement along a single line In the first step, XRD measurements were performed on a single
line. Small and large collimator sizes were used with 41 and 37 measurement points respectively. For
each measurements points 13 psi and 2 phi angles were selected and 26 measurements were performed
to obtain 011 and o922 by neglecting the shear (due to symmetrical nature of the process along the
measurement line) and out of plane stresses (due plane-stress condition). Figure 3.4a shows the
distribution of measured residual stress along the measurement line using the two collimators. The
experimental data have been post-treated in order to enforce symmetry of the die geometry. The
collimator size has a great influence in the stress results as it effects the inflection point and stress
level (e.g. 100 MPa near the center). The gradient of the measured stress associated with the large
collimator are smaller than that associated with the small collimator, which confirms that a strong
averaging effect is induced by the measure. Figure 3.4a also shows the stress profile reconstructed
from the XRD measurements by the deconvolution method. The reconstructed profile is considerably
different from the measured dataset and high stress gradients and inflection points are predicted in

contrast with the average datasets.
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Figure 3.4: (a) Average experimental datasets from XRD measurement and reconstruction of the
residual stress og2 by deconvolution method and (b) Spatial distribution of the residual stress o22 on
the line 9 = 0 obtained from the numerical simulations.

2D mapping results The two experimental average datasets determined by XRD are shown in
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Figures 3.5a and 3.5b. They consist of 41 x 41 measurement points for the small collimator and
37 x 37 measurements points for the large collimator. Since the die geometry is symmetric with
respect to the xq-axis, zs-axis and the 45°-axes, the experimental data have been post-treated in
order to enforce these symmetries, which allows the reduction of the experimental uncertainties. The
effect of the collimator size is quite notable in terms of distribution and stress levels. For the small
collimator, the stress oy, is in the interval [—180, —13] MPa and for the large collimator, the stress oj
is in the interval [—147, —44] MPa. Therefore, the stress gradients associated with the large collimator
are smaller than that associated with the small collimator, which confirms that a notable averaging

effect is induced by the measure.
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Figure 3.5: Distribution of the residual stress o, = o011 + 022 (in MPa) determined experimentally
by XRD. (a) Experimental results with a small collimator and (b) Experimental results with a large
collimator.

The residual stress distribution reconstructed using 2D deconvolution method is represented in
Figure 3.6a. The reconstructed distribution is considerably different from the average datasets collected
experimentally. Very high stress gradients are predicted and some ‘star’ shape in the area deformed
by the corrugated die are notably observed. In terms of stress levels, the stress oy, is in the interval
[—415,195] MPa. It is thus interesting to note that, in several areas, tensile stresses are observed on

the reconstructed stress field while only compressive stresses were observed on the average datasets.
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Figure 3.6: Results of reconstructed residual stress distribution oj, = 011 + 0922 (in MPa) from experi-
mental XRD measurements: (a) Reconstructed field and (b) Reference solution from simulation (for
comparison).

3.4.2 Numerical results

Numerical model We consider the two steps of the first pass of the process, consisting of one
corrugation followed by a straightening, following the conditions given in Ezequiel et al. [35]. The die

profile is identical to the experimental geometry so the size of an elementary pattern is 16 x 16 x 1

mm (see Elizalde et al. [29]).

We consider only one elementary pattern subjected to “symmetric-periodic” boundary conditions.
The choice comes from a preliminary work presented in Appendix A, on model reduction by comparing
the numerical results of a single pattern and a multi-pattern model in order to find the best boundary
conditions for the single-pattern model. As shown in Appendix A, the multi-pattern RCS process can
be simulated using a single pattern with appropriate boundary conditions, which is representative of
the central patterns (see Figure 3.3). Furthermore, due to the symmetry of the process within one
pattern, only 1/4" of the pattern is meshed and symmetric boundary conditions are applied in the
middle of the model; a sketch of the mesh and the applied boundary conditions are represented in
Figure 3.8. The corrugation dies and straightening plates are rigid and the sheet is deformable. The
mesh is composed of 11,664 linear R3D8 elements for each straightening plate, 13,568 R3D8 elements
for each corrugation die and 256,000 C3D8R elements for the sheet. The size of an element in the
sheet is 0.1 x 0.1 x 0.1 mm.

In terms of material modelling we consider the case of a precipitation-hardened aluminum alloy
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Figure 3.7: (a) The boundary conditions applied to the 1/4'" sheet metal model. SP corresponds to
“Symmetric-Periodic” and S corresponds to “Symmetric” (see Appendix A). (b) The mesh considered
in the simulations. Half of the experimental model is shown as transparent parts and only 1/4" of
the model is meshed. The sheet is shown in yellow, the corrugation dies in red and the straightening
dies in blue.

6061-T6 whose behavior follows a power-law isotropic hardening; the yield stress oy is given by
oy = (o0 + hp"), (3.1)

where og is the initial yield stress, A the hardening modulus, n the hardening exponent and p the
accumulated plastic strain. The material constants are given in Table 3.4. The contact between the
dies and the test sample is supposed to follow a Coulomb model. The value p = 0.25 is chosen for the

friction coefficient, which is typical for the aluminum-steel pair [35].

Table 3.4: Material parameters for the 6061-T6 aluminum alloy used for RCS simulation.

Material E (GPa) v o9 (MPa) h(MPa) n
AA 6061-T6 69 0.33 160 170 0.3

Numerical results along a single line  In Figure 3.4b the distribution of stress from the numerical
simulations is presented. By comparing Figure 3.4a and Figure 3.4b we can see that the reconstructed
stress profile as well as the average datasets are very similar to the local stress simulated numerically

in similar conditions. In particular, the shape of the profile of the local stress corresponds qualitatively
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to that simulated numerically, with the same exact location of inflection points. In the next step, we
will try to validate the numerical results by comparing them with XRD measurements on the surface

of the specimen instead of a single line.

Surface distribution results Figure 3.6b shows the simulated results of the distribution of residual
stress oy, after one pass of RCS process. Strong heterogeneity was observed after each step of RCS
processes, particularly after the straightening step. Interestingly, the distribution of the reconstructed
stress field has similar features with that calculated numerically in Figure 3.6b, although they do not
coincide exactly. In the numerical simulation, the intervals of values for the stresses are [—321,173]
MPa for the reference distribution, [—168,9] MPa for the calculated small colimator average dataset
and [—125, —58] MPa for the large colimator average dataset. Very similar trends are observed between
the experimental and numerical results in terms of distribution and magnitude of the local stress
distributions as well as the average datasets, so it can be expected that the reconstructed experimental
stress mapping is closer to the ‘real’ distribution than the average datasets. Hence, it can be reasonably
assumed that the ‘real’ residual stress distribution is (i) significantly more heterogeneous than what
we measured with the small and large collimators and (ii) has significant higher compressive stresses

and important tensile stress.

3.4.3 Discussion

The local stress field reconstructed using the datasets collected from X-ray diffraction measure-
ments with two collimators is very different than the two experimental datasets, which confirms that
X-ray diffraction measurements induce strong averaging effects due to the presence of high surface
stress gradients. In particular, in the 2D case, high tensile stresses of about 195 MPa are observed
on the reconstructed field, while the maximum values obtained experimentally are -13 MPa using
the small collimator and -43 MPa using the large collimator. Moreover, since the distribution of
experimental stress field reconstructed resembles that calculated numerically in similar processing
conditions, it can be assumed that the 2D deconvolution method proposed in this paper has captured
the essential features of the stress distribution. For the 2D problem, the raw XRD measurements only
provide compressive stresses, which seems unrealistic as tensile stresses were also predicted numer-
ically. The comparison between numerical and experimental results is quite satisfactory even for a

quantity (residual stress) which is very sensitive to small modification of the process parameters.
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It should be noted that some small differences are still observed between the distribution of the
numerical stress distribution and the experimental reconstructed one. Indeed, the numerical simulation
of RCS has been performed with values of parameters that are difficult to measure experimentally, such
as the friction coefficient and the applied forces of straightening plates. It should also be mentioned
that the method presented in Appendix C for measuring 33 from one single diffraction angle is very
sensitive to geometrical effects and surface topology; hence some discrepancies in the experimental
results were expected. On the other hand, better results were obtained compared with simulations,

by applying the deconvolution method on the full-stress tensor measurement along the line.

It can be concluded that the single-pattern numerical model developed permits to reproduce quite
accurately the mechanical fields of the RCS process. Therefore this numerical model can be used in a

more complex situation, including damage for instance.

3.5 Results II: A case of brittle aluminium alloy

In this section, the simulation of RCS process using a brittle aluminium alloy (AA7075) is presented.
Experimental RCS using this alloy has led to fracture during the corrugation step. In this part, we

closely analyze the evolution of damage using the ML model.

3.5.1 Numerical model

A 3D finite element model of the repetitive corrugation and straightening processing has been made
using the commercial code ABAQUS/Standard. As in the previous case, following the approach intro-
duced in Appendix A, the simulation of multi-pattern RCS can be performed on a single elementary
pattern subjected to symmetric boundary conditions on its lateral edges (see Figure 3.8). Further-

8th of the pattern is meshed

more, due to the symmetry of the process within one pattern, only 1/
and symmetric boundary conditions are applied in the middle of the model; a sketch of the mesh is
represented in Figure 3.9. It should be mentioned that since in this case (damaged brittle aluminium
alloy), XRD measurements are not performed, we do not need to create the same numerical model as

the case of undamaged ductile material. In the former case, fully structured mesh was created for the

1/4*" model for facilitating the deconvolution procedure.

The sheet metal is modelled as a 3D deformable part and the mesh is composed of 20288 elements
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and 23823 nodes; we use selectively subintegrated 8-node trilinear brick (C3D8 elements in ABAQUS)
which are suitable for quasi-incompressible plasticity. The mesh contains 10 elements in the sheet
thickness. The corrugation and straightening dies are modeled as rigid 3D shells and are meshed with
1039 and 958 R3D4 elements respectively. Contact conditions are considered between the sheet and
the rigid parts using a Coulomb friction model, with a value of 0.25 for the friction coefficient (see
[35]). It should be noted that, as explained in Section 3.3, failure occurs during the corrugation step

for this material, so the straightening step is not reached in the simulations.

symmetric BC

Multi-pattern RCS Single pattern Geometry considered in the
RCS g simulations

symmetric BC —3»

AN

symmetric BC

Figure 3.8: Geometry considered in the simulations of RCS.

3.5.2 Parameter Identification

Recent experimental works have shown that aluminum alloys 7075 exhibit a moderate anisotropy
[95]; therefore as a first approximation we assume that its behavior is isotropic and the hardening

behavior follows a Swift law:

o(e) = A(go +&)" (3.2)

where the parameters A and gy have been calibrated using a tensile test (see also [130] for a similar

calibration) and are provided in Table 3.5.

Table 3.5: Swift hardening law parameters for the AA7075-T6.

Material | A [MPa] n €0
AAT7075-T6 | 673.85  0.1529 0.0075

Then, one needs to calibrate the parameters related to damage. Accordingly, several simulations
of the tensile test were performed in order to find the set of parameters that reproduces at best the

experimental tensile test. The calibrated set of parameters is given in Table 3.6. In this case, the ratio
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Figure 3.9: Mesh considered in the simulations of RCS. Half of the experimental model is shown as
transparent parts and only 1/8'" of the model is meshed. The sheet is shown in yellow, the corrugation
dies in red and the straightening dies in blue.

(f + 9)c/ fo (equal to 4) and the value of ¢ are in agreement with the results obtained in [84].

Table 3.6: Parameters for the model ML in the case of the AA7075-T6.

q fo (f+9)c 0 fn en sy drp (Po)ij
AA7075 | 1.5 0.0005 0.005 4 0.01 06 0.2 0.3 5ij

The experimental stress-strain curve of the aluminum alloy 7075-T6 is compared to the predictions
of the model (using the calibrated parameters) in Figure 3.10. Overall, a good agreement is observed

between the experimental stress-strain curves and the numerical ones produced with both ML and

GTN models.

3.5.3 Numerical results

The numerical simulation ends at a die displacement of about 3.3 mm, due to a numerical instability
(the slope of the force-displacement curve becomes vertical). The crack simulated numerically thus

occurs for a die displacement which is in agreement with the experimental value (of about 3.2 mm).
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0 0.05 0.1 0.15
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Figure 3.10: Experimental and numerical stress-strain curves of the aluminum alloy 7075-T6 used in
the corrugation experiments.

Then, the distribution of the damage parameter d is represented for several displacements of the
corrugation die (2.8 mm, 3 mm and 3.3 mm which is the end of the simulation), and is compared
to the fractured specimen in Figure 3.11. Overall, the location of the crack and its ‘cross’ shape are
well reproduced by the ML model during the simulation of RCS, by comparison with the photograph
of the quasi-fractured specimen (taken on a pattern far from the boundaries). In the simulation, the
damage parameter becomes localized with very high values (higher than 0.2) for a displacement of

about 3.3 mm which is in agreement with the experimental values.

In addition, the distribution of the porosity is represented in Figure 3.12 for two displacements of
the corrugation die (3 mm and 3.3 mm). It is localized in the same regions as the damage parameter
but its maximal value is of about 0.02, which is ten times lower than the damage parameter. As in the
case of deep drawing, from the definition of the damage parameter, this difference can be attributed

by two factors, void shape effects and/or coalescence.

Then, the evolution of the total porosity f, second porosity g, nucleated porosity fy, void growth
porosity f,, stress triaxiality 7' and semi-axes ratios a/c and b/c are represented (versus the punch
displacement) in Figure 3.13 in the element that fails first, in order to understand the effect of each
mechanism on the failure. Before that coalescence occurs (for a corrugation die displacement lower than

2.7 mm), the porosity due to void growth (f;) decreases while the porosity due to void nucleation ( fy)

71



3.5. RESULTS II: A CASE OF BRITTLE ALUMINIUM ALLOY

Figure 3.11: Location of the ‘cross-shaped’ crack in the RCS process. (a) Distribution of the damage
parameter d for a die displacement of 2.8 mm, (b) Distribution of the damage parameter d for a die
displacement of 3 mm, (c) Distribution of the damage parameter d for a die displacement of 3.3 mm
(final step of the simulation) and (d) Photograph of the cross-shaped crack (on one motif) of the
quasi-fractured multi-motif specimen (after a displacement of 3.2 mm).

increases; before a die displacement of 2 mm, the total porosity is almost constant and then it slightly
increases due to void nucleation. The second porosity (g), related to void shape effects, increases with
a rate similar to the total porosity. Therefore, in the case of RCS, the ML model predicts no void
growth, and the increase of the quantity (f + ¢) is mainly due to void shape effects (through ¢) and
void nucleation (through f,). The stress triaxiality 7" is negative before coalescence which explains
void closure. As shown in Figure 3.13c, important void shape effects are associated with the increase
of the second porosity; before coalescence, the maximal values for the semi axes are of about a/c ~ 3
and b/c ~ 2. The initial spherical void thus becomes a general ellipsoidal cavity. It must be noted that
the element which fails first is located under the upper side of the pointy edge of the corrugation die;

hence during the beginning of the process (before 1.5 mm of die displacement) it is slightly deformed.
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0.015

(a)

Figure 3.12: Distribution of the porosity f in the simulation of RCS process. (a) Die displacement of
3 mm and (b) Die displacement of 3.3 mm.

This explains why the internal parameters do not evolve much before a displacement of 1.5 mm.

3.5.4 Comparison with GTN model

The simulation of the RCS process is now investigated using GTN model without void shape
effects. In that case, the same set of parameters (see Table 3.6) was used because it was found to

reproduce accurately the tensile test using the GTN model.

The force-displacement curves of the corrugation die using GTN model are compared to that ob-
tained with ML model and to the experimental results, in Figure 3.14. Overall, the force-displacement
curve is very similar using both GTN and ML models before the occurrence of softening. The fracture
happens for a displacement of about 3.7 mm using the GTN model but in this case the numerical

instability is not associated with a macroscopic softening on the force-displacement curve.

The distribution of the porosity is represented in Figure 3.15 for two values of the corrugation
die displacement (3.3 mm and 3.8 mm). At a displacement of 3.3 mm (for which failure is observed
experimentally) the distribution of the porosity follows the ‘cross-shape’ but it is not localized enough
to trigger macroscopic softening. Then, at a displacement of about 3.8 mm (for which the simulation
stops due to numerical instability), the distribution of the porosity in that case is similar to the shape of
the crack in the experiments. The maximum level of the porosity is about 0.055 which approximately

corresponds to f* ~ 0.3.

Therefore, given that the displacement leading to failure is overestimated, it cannot be concluded
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Figure 3.13: Evolution of internal parameters in the integration point that fails first in the simulation of
RCS process. (a) Damage parameter d, total porosity f, second porosity g, porosity due to nucleation
foucl and porosity due to void growth fgrowth, (b) Stress triaxiality 7" and (c) Semi-axes a/c and b/c.

that failure is quantitatively predicted using GTN model for brittle materials and for high corrugation
displacement. Nonetheless, the GTN model can be considered as sufficient to describe approximately
the evolution of damage during RCS, before the total failure. Indeed, in contrast to the case of shear

cracks during deep drawing in which the crack was located it areas at very low stress triaxiality (with
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Die force F

Figure 3.14: Comparison of the die force-displacement curves using ML and GTN in the case of RCS.

Figure 3.15: Distribution of the porosity using the GTN model in the simulation of the RCS process.
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(a) Die displacement of 3.3 mm and (b) Die displacement of 3.8 mm.

almost no void growth), the triaxiality is high during the most part of the simulation of RCS (see
Figure 3.16). The triaxiality becomes small only at the very end of the process due to important
shear. Therefore, the GTN model can be considered as relevant for RCS to describe void growth

during the process, but it will general overestimate failure during the process when shear-dominated
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loadings occur.
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Figure 3.16: Distribution of damage and triaxiality at front and back side of the RCS specimen before
fracture showing the contribution of high triaxiality stress condition on evolution of damage. (a)
Damage parameter d at back side, (b) Damage parameter d at front side, (c¢) Triaxiality T at back
side and (d) Triaxiality T" at front side.
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3.6 Conclusion

In this chapter, simulations of one pass of RCS process, which is a SPD process that could be used
to produce nanostructured sheet metals, was performed. We considered two distinct cases of ductile
(AA6061-T6) and brittle (AA7075-T6) aluminum alloys. In the first case, no fracture was observed and

we used a X-ray diffraction method to validate the results obtained by simulations. The experimental
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results using different collimators showed strong averaging effects. In order to handle these effects, a
deconvolution method on averaged experimental data was performed and the reconstructed residual
stress fields showed very important improvements in the evaluation of heterogeneity and provided

better comparisons with the simulation results.

In the case of brittle aluminum alloy, fracture was observed during the corrugation step of the
RCS process. Simulation using ML model were able to reproduce accurately the occurrence and shape
of the failure. In the damaged zone, important contribution of void shape effects was observed in
addition to growth and nucleation of voids. The comparison of ML and GTN model showed some
delay in the occurrence of crack in GTN model due to presence of high void-shape effects in the case

of brittle material and for high values of corrugation die displacement.

Finally, GTN model was found to be able to capture the evolution of damage during most of the
RCS process. However this model cannot capture accurately the occurrence of failure in RCS because
of the presence of shear-dominated loadings when the corrugation displacement is important. When
the corrugation die displacement is moderate, the GTN model is admissible to capture the evolution

of damage.

These results constitute a first step towards the prediction of the mechanical behavior of sheets
produced by RCS; the next step is to consider the modelling of grain refinement effects that occur
when RCS is repeated in order to ultimately simulate the emergent strength and ductility of processed

sheets.
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Chapter 4

Development of an extended Gurson-type
model including hardening based on
dislocation density evolution: Application
to multi-pass severe plastic deformation

4.1 Resumé en francais

Dans le Chapitre 3, nous avons analysé la premiere passe du processus RCS et il a été observé que
pour des déplacements modérés de corrugation, les effets de la forme des vides peuvent étre négligés et
que le modéle GTN semble étre approprié pour décrire ’évolution de l’endommagement. Dans ce cha-
pitre, nous allons poursuivre le développement et considérer deux passes du processus RCS. La seconde
passe induira une déformation plastique supplémentaire, ce qui nécessite de considérer un modeéle de
durcissement avancé, adapté aux matériaux traités par SPD. Par conséquent, un modéle de Gurson
étendu, incluant une description de ’évolution des densités de dislocations et de la structure cellulaire
des dislocations, comme origine du durcissement, sera développé et implémenté dans ABAQUS sous

la forme d’une routine (UMAT). Ce chapitre est organisé de la fagon suivante :

Tout d’abord, les procédures expérimentales réalisées pour le processus RCS a deuzr passes somt
présentées dans le cas d’un échantillon de cuivre pur. Ensuite, un modéle de Gurson étendu incluant
Uévolution de densités de dislocations est développé et implémenté numériquement. Ses paramétres
sont calibrés en utilisant un essai de traction sur un cuivre pur. La premiére application du modéle

concerne l’étude de laffinement du grain dans un exemple de chargement proportionnel axisymétrique,
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qui permet d’étudier Daffinement mazimal du grain en fonction de la triazialité et de la porosité initiale.
Enfin, le modéle est appliqué a la prédiction de la résistance et de la ductilité d’une éprouvette traitée

par RCS apres deur passes.

4.1.1 Procédures expérimentales

Le matériau utilisé dans ce chapitre est un cuivre pur ¢ 99,9%. Il a été choisi parce que (i) il a
une ductilité élevée et (ii) il a été largement utilisé dans plusieurs processus SPD [32, 128, 133] ce qui

en fait un bon candidat pour étudier ’évolution du couple résistance-ductilité.

Le procédé RCS est appliqué a ’échantillon de cuivre de maniére similaire a la procédure pré-
sentée dans le Chapitre 8. Nous rappelons qu’une passe correspond o une corrugation suivie d’um
aplatissement. Pour la premiére passe, des matrices de corrugation et d’aplatissement sont utilisées
sur l’échantillon de tole initial. Pour la deuxiéeme passe, l’échantillon est déplacé d’une distance égale
a la moitié de la période de corrugation (8 mm) dans les directions x— et y—, comme le montre la
Figure 4.1. Cela permet d’augmenter ’homogénéité de I’état mécaniques (qui est trés hétérogéne apres

la premiére passe).

Avant le processus RCS et apreés la passe 2, des tests de traction sont effectués afin d’étudier ’effet

du processus sur le compromis résistance-ductilité.

4.1.2 Un modeéle de Gurson étendu incluant I’évolution de la densité des dislocations

Afin d’évaluer Ueffet du durcissement, de laffinement du grain et de l’endommagement ductile
pendant la SPD, une extension du modéle d’endommagement micromécanique de Gurson [47] est
proposée, basée sur l’évolution des structures cellulaires des dislocations dans la matrice entourant le
vide. Ce modéle de durcissement sera adapté du modéle composite développé par Estrin et al. [33] et

décrit dans la Section 1.4 du Chapitre 1.

Suivant ’approche de Gurson, le durcissement est considéré en supposant que la dissipation plas-
tique dans le volume élémentaire représentatif est égale a la dissipation plastique dans un “matériau
équivalent” fictif ayant la méme fraction volumique de porosité (o : DP = (1 — f)5&), et la limite
d’élasticité o est une fonction non linéaire de la déformation équivalente €, qui sera décrite par un

modéle basé sur la densité de dislocation.

80



4.1. RESUME EN FRANCAIS

Afin de prendre en compte les déformations plastiques sévéres (et leurs conséquences sur l'affine-
ment du grain), un modéle de durcissement basé sur les dislocations et le travail d’Estrin et al. [33)],
est considéré. L’avantage de cette modélisation est qu’elle peut rendre compte de toutes les étapes du

durcissement.

Dans ce modéle, la contrainte de cisaillement résolue équivalente T dépend de la contrainte de
cisaillement résolue dans chaque phase (désignée par T, dans les parois et 1; a lintérieur de la cel-
lule) en utilisant une loi des mélanges (T = vyTyw + v;7;). En utilisant le facteur de Taylor M, la
limite d’élasticité o utilisée dans le modéle de Gurson peut étre exprimée en termes de contrainte de

cisaillement résolue critique équivalente.

Dans Uhypothéese de chargements quasi-statiques, I’équation d’évolution des densités de dislocation

pw €t p; peut alors étre écrite en fonction de la déformation équivalente € (voir Eq. 4.11).

Pour limplémentation numérique du modéle, nous nous concentrons sur l’étape locale de la solution
élastoplastique qui consiste a projeter le prédicteur de contrainte élastique sur la surface d’écoulement
(voir la Section 4.4.3, pour plus de détails sur l’implémentation numérique du modéle). L’algorithme
a donc été implémenté dans le code éléments finis Abaqus en utilisant une procédure UMAT. Cette
implémentation consiste en la définition (i) des paramétres d’entrée (Props) (voir le Tableau 4.2), (ii)
des variables d’état qui sont sauvegardées a chaque pas de temps (Statev) (voir le Tableau 4.1) et (iii)
de la résolution numérique (méthode de Newton pour le multiplicateur plastique et du point fize pour

l’écrouissage).

4.1.3 Résultats

Le modeéle a d’abord été appliqué a étude de Uaffinement du grain dans un exemple de charge-
ment proportionnel azrisymétrique, en s’interessant en particulier a ’affinement maximal du grain en
fonction de la triaxialité et de la porosité initiale. Les résultats ont montré que laffinement mazximal
possible des grains est directement influencé par ’état initial du matériau (fraction volumique de vide

initiale) et les conditions de chargement (triazialité de la contrainte).

Enfin, le modéle a été appliqué a la prédiction de la résistance et de la ductilité d’une éprouvette

traitée par RCS aprés deuz passes. Ce calcul de structures nous a permis d’avoir accés a [’évolution
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des paramétres internes apres chaque passe. Nous avons pu comparer [’hétérogénéité et I’évolution des
parametres microstructurauz et également suivre I’évolution et la localisation de l’endommagement au
cours du processus. Le modéle permet de capturer qualitativement ’évolution de la résistance et de la
ductilité. Il est intéressant de noter que l’augmentation du nombre de passes permet d’homogénéiser
la distribution de la taille des grains (ce qui est approprié pour augmenter la résistance), mais que
la porosité est en revanche trés localisée dans certaines petites zones, ce qui est supposé diminuer la

ductilité car cela favorise la localisation des déformations.

Le modele développé peut étre utilisé comme une alternative aux modeéles de durcissement de type
Voce ou Swift dans Uapproche de Gurson, car il est valable pour les importantes déformation habituel-
lement rencontrées pendant la SPD. De plus, il peut étre utilisé pour suivre localement I’évolution de
la microstructure. Ce modele constitue un premier pas vers une prédiction quantitative du compromis
résistance-ductilité car il est encore limité a des niveaux de triazialité modérés et la modélisation de

la coalescence est heuristique.

4.2 Introduction

In Chapter 3 we analyzed the first pass of the RCS process and it was observed that for moderate
corrugation displacements void shape effects can be neglected and the GTN model appeared to be
suitable to describe damage evolution. In this chapter we will pursue the development of the numerical
framework and consider two passes of the RCS process. The second pass will induce further plastic
deformation which requires to consider an advanced hardening modelling that is suitable for materi-
als processed by SPD. Hence, an extended Gurson’s model, including a description of the evolution
of dislocation densities and cellular structure of dislocations, will be developed and implemented in

ABAQUS using user material (UMAT) Fortran subroutine.

This chapter is organized as follows:

First, the experimental procedures performed for two pass RCS process are presented in the case
of a pure copper sample. Then, an extended Gurson model including dislocation density evolution is
developed and implemented numerically. Its parameters are calibrated using a tensile test of a pure

copper. The first application of the model concerns the study of grain refinement in an axisymmet-
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ric proportional loading example, which permits to investigate the maximum grain refinement as a
function of the triaxiality and initial porosity. Finally the model is applied to the prediction of the

strength and ductility of a specimen processed by RCS after two passes.

4.3 Experimental procedures
4.3.1 Material composition

The material used in this chapter is a 99.9% pure copper. It was chosen because (i) it has a high
ductility and (ii) it has been widely used in several SPD processes [32, 123, 133] which makes it a good
candidate to investigate the strength-ductility evolution. A 61 x 30 cm cold rolled plate of 0.8 mm
thickness was initially cut to a 12 x 12 cm size. An annealing heat treatment is applied to enhance
the ductility and remove residual stress as well as grain distortions due to the previous rolling process.

The samples were kept in 550°C temperature for three hours before cooling to room temperature.

4.3.2 RCS multi-pass set-up

The RCS process is applied to the copper specimen similar to the procedure presented in Chapter
3. We recall that a pass corresponds to a corrugation followed by a straightening. For the first pass,
corrugation and straightening dies are used on the initial sheet metal sample. For the second pass, the
specimen is moved by a distance of half the corrugation period (8 mm) in the z— and y— directions,
as shown in Figure 4.1. This permits to increase the homogeneity of the mechanical fields (which are
very heterogeneous after the first pass). The process is performed using Instron 8802 servo-hydraulic
machine with 250 kN maximum load capacity. Additionally, a very thin layer of Teflon has been placed

between the sheet metal and the dies in order to reduce the friction.

4.3.3 Tensile test specimen and procedure

Before the RCS process and after pass 2, tensile tests are performed in order to investigate the
effect of the process on the strength-ductility trade-off. The tensile specimen were cut according to

ASTM E8M standard with a gauge dimension of 37 x 7 mm (see Figure 4.2).

Then the tensile tests were performed at deformation speed of 0.5 mm/min (which is equivalent to

about 107° m/s) using an Instron 1125 universal testing machine with 100 kN loading capacity. Very
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die impact zone (1P)

(a) Pass 1 (b) Pass 2

Figure 4.1: Shifting of the corrugation die patterns along the sheet metal specimen after 15 pass. (a)
The part of sheet metal shown in the image will undergo corrugation in pass 1 and four patterns will
be formed. (b) The corrugation die is shifted half a pattern down and half a pattern to the right.
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Figure 4.2: Dimension of the tensile test specimen.

slow deformation rates are used to perform quasi-static experiments and avoid strain rate effects. A
GbH1-12MA Instron extensometer was also used to measure the strain. The experimental stress-strain
curves obtained before RCS and after 2 passes are reproduced in Figure 4.3. It should be noted that
the stress-strain curves after only one pass are not included because of a lack of repeatability due to

a high heterogeneity of the local fields.

4.4 An extended Gurson model including dislocation density evolution

In this section, an extended Gurson model including dislocation density evolution is developed. As

mentioned in Chapter 1 Section 1.4, conventional hardening laws, such as Voce or Swift laws that were
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Figure 4.3: Comparison between experimental stress-strain curves of pure copper obtained from tensile
test on a specimen cut from the initial state and after 2 passes of RCS. The stress-strain curve after

1 pass is not included due to the lack of repeatability of the results when the tensile specimen is cut
from different parts of the processed sheet metal.

used in Chapters 2 and 3, are not suitable for severe plastic deformations when the material undergoes
very high strains with important changes in the microstructure. Hence, in order to asses the effect of
hardening, grain refinement, and ductile damage, a extension of Gurson [47]’s micromechanical damage
model is proposed based on the evolution of dislocation cell structures in the matrix surrounding the

void. This model of hardening will be adapted from the composite model developed by Estrin et al.
[33] (described in Section 1.4 of Chapter 1).

4.4.1 GTN model

We consider the GTN model for spherical voids. Contrary to the approach adopted in Chapters 2
and 3, here we will neglect void shape effects as a first approximation and voids are assumed to remain
spherical during the damage evolution. Hence the model developed will not be suitable for low stress

triaxality conditions. Nonetheless, it should be noted that, as shown in Chapter 3, void shape effects
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have only a small effect in the simulation of RCS for moderate corrugation die displacements.

First, the yield criterion in GTN model is recalled:
2

o 3o
®(0,5, f) = =2 + 2qf cosh (m> —1—(gf)*<o. (4.1)

o 20
In this equation o, is the macroscopic equivalent von Mises stress, o, is the macroscopic mean stress,
o is the average yield of some fictitious equivalent material (whose evolution equation will be given

hereafter), f is the volume fraction of porosity, and ¢ is Tvergaard’s parameter.

The macroscopic flow rule, deduced from the normality property reads

0D { =0 if ®(o,f,0) <0 (4.2)

, 100
D _)\60(0’07f) ;A >0 if ®(o,f,0)=0,

where DP is the Eulerian plastic strain rate and X is the plastic multiplier.

Void nucleation is described by the strain-controlled term of Chu and Needleman [24]’s heuristic

model. The total nucleation rate is given by

y fN 1 (5 — &N ) 2 -
on = e —— X €, 4.3
fnucleatlon SN\/% Xp ) SN ( )

where fn, ey and sy respectively represent the volume fraction, average nucleation strain and stan-

dard deviation of the nucleating voids.

Void coalescence is classically accounted for by using Tvergaard and Needleman [120]’s classical
modification of Gurson [47]’s model, which consists in replacing the porosity f by some larger fictitious

one f*, once some ‘critical value’ f. has been reached:

! _{fc+5(f—fc) if f> f, (4.4)

where f. and § > 1 are material parameters.

Finally, following Gurson’s approach, the hardening is considered by assuming that the plastic
dissipation in the RVE is equal to the plastic dissipation in some fictitious “equivalent material” with

the same volume fraction of porosity f:
o:DP = (1- f)oe. (4.5)
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In this equation, the yield stress ¢ is a non-linear function of the equivalent strain &, which will now

be described by a dislocation density based model.

4.4.2 Dislocation-based model of hardening

In order to account for severe plastic deformation (and their consequences upon grain refinement),
a dislocation-based model of hardening, based on the pioneering work of Estrin et al. [33], is consid-
ered. The advantage of this modelling is that it can account for all hardening stages. This approach
is based on a description of the dislocation substructures as a composite model, made of cell interiors
and walls, in which the dislocation densities have different evolution equations. The model of Estrin
et al. [33], initially developed in a 2D case, has been extended to 3D loadings by Téth et al. [123],
through some appropriate modifications of the dislocation density evolution laws. It is important to
note that, in this approach, strain rate effects are important notably in the description of dynamic
recovery process by dislocation cross-slip. Nonetheless, since Gurson’s model has been developed using
limit-analysis theory, it is restricted by essence to rate-independent materials. As a consequence, we

will use a rate-independent version of Estrin et al. [33]’s model (see e.g. Lapovok et al. [65]).

Following Estrin et al. [33]’s approach, a “composite microstructure”, made of cells and walls is
considered to describe the microstructure. In this model, the overall resolved shear stress 7 depends
on the resolved shear stress in each phase (denoted by 7, in the walls and 7; in the cell interior) using
a rule of mixture:

T = UyTw + Vi Ty, (46)

where v,, and v; = 1 — v,, are respectively the volume fraction of walls and cell interiors. Using the
Taylor factor M, the yield stress ¢ used in Gurson’s model can be express in terms of the equivalent

critical resolved shear stress 7:

o=T1M. (4.7)

In the limit of quasi-static loadings, the resolved shear stresses in each phase are given by

Tw = aMb\/ Pw
{ T = aﬂb\//Tia (4.8)

87



4.4. AN EXTENDED GURSON MODEL INCLUDING DISLOCATION DENSITY
EVOLUTION

where p,, and p; are the dislocation densities in the walls and cell interiors, respectively. In equation
(4.8), b is the magnitude of the dislocation Burgers vector, « is a constant (typically around 0.25) and
w is the shear modulus. Then, we make the classical assumption that the resolved shear strain rates

for the cell walls ¥, and cell interiors ¥, are equal to some equivalent resolved shear strain +
Y = Vi = V- (4.9)

In addition, the equivalent resolved shear strain 4 can be related to the plastic strain rate £, using
again the Taylor factor M:
- _ 7
€= —. 4.10
» (4.10)
Under the assumption of quasi-static loadings, the evolution equation of the dislocation densities p,

and p; can then be written as

2/3
6 . 3 i\ Pw KX
P = | Y —i—ﬁ*\[v P — kopw | Me
bduvy, Vb
) (4.11)
pi = a*@— 68 — kopi | ME.
VEL

In equation (4.11), o is constant related to the fraction of operative Franck-Read sources, 5* is a
constant related to the fraction of dislocations moving from cell interiors to walls and finally kg is a

constant related to dislocation annihilation.

Motivated by experimental observation on metals, the volume fraction of cell walls is assumed to
decrease with the evolution of the resolved shear strain according to the following phenomenological

expression

3

Uy = Ving + (Vo — Viny)exp (_F) , (4.12)

where vy is the initial volume fraction of cell walls (before plastic deformation) and v;, is the mini-
mal value (reached after large plastic strains). In equation (4.12), I' is a parameter that controls the

“shrinkage” rate of the dislocation cells.

Finally, the total dislocation density in the material can be deduced from the dislocation densities

in both cell walls and cell interior as

P = VwpPw + Vipi- (4.13)
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Therefore, an increase of the dislocation density would lead to a decrease of the average grain size

which can be estimated using Holt’s equation:

d=— (4.14)

where K is a constant.

4.4.3 Numerical implementation of the model

The numerical implementation of the model is now presented and in particular we focus on the
local step of the elastoplastic solution which consists in projecting the elastic stress predictor on the

yield surface.

Following Enakoutsa et al. [30], Gurson [47]’s model fits into the class of “generalized standard”
materials [50] under some hypotheses: the existence and uniqueness of the solution of the projection
problem are ensured [30], provided that (i) the evolution equations of € (the total strain) and  (the
hardening parameter) are discretized in time with an implicit-scheme; (ii) the additional terms due to
the objective time-derivative of ¥ (in the hypoelasticity law) are discretized in time with an explicit-
scheme; (iii) the value of the porosity f used in the criterion and the flow rule is taken at the preceding

time-step. The equations of the local problem read

e=¢e%+¢P Decomposition of the total strain
o = (3] + 2uK) : e° Isotropic elasticity law
®(o, f,0)<0 Plasticity criterion
. 0D
EP = A—(o,f,0) (4.15)
. oo Fl 1 q . diti
A > 0 ow rule and consistency conditions
\o(o, f,5) = 0
G =0 puw,pi),(1— f)JGE=0:é€P, Strain hardening law

where @ = 0(E, pw, pi) is the hardening function depending on the dislocation densities of the compos-
ite microstructure, € is the elastic strain tensor, P the plastic strain tensor. The fourth-order tensors

J and K are respectively the spherical projection tensor and the deviatoric projection tensor, and
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and p are respectively the bulk and shear moduli.

The local projection problem thus consists in finding the mechanical state Sp+1 = {€n+1, 52 115

On+1, Ent+1} at time ¢, 11 resulting from a given, known strain increment Ae,, (resulting from a global

elastoplastic iteration) and knowing the previous mechanical state S,, = {e,, €b, oy, ,} at time t,.

The yield criterion and the flow rule are thus discretized using an implicit scheme with respect to &P

and , while an explicit scheme is considered for f. The discretized equations of the local projection

problem are given by

On+1

(I)(Un+la fnaEnJrl)

p
Aeb

AN,

A)‘nq)(o-n-Fl: fna ETL-‘rl)

En—&-l

(1 — fn)ﬁn_HAgn

oS — (3k] + 2uK) : AeP

IA

0
0P
= A)\naf(o'n+17 fnaEnJrl)
N o (4.16)
=0
= O'(gn + Agn)
= 0'”+1 . AE,,PL,

where afll_?_sl =X, + (3rJ + 2uK) : Ae, is the elastic predictor, that is the stress tensor at time ;41

resulting from the strain increment Ae,, fictitiously considered as purely elastic.

The algorithm consists essentially in finding 7,11 and Ae? 41 and the treatment of hardening is

done classically using a fixed point method, as explained in the following steps:

1. Initialization of the yield stress using the previous value. Assume that

so one has

Pwn+l = Pwn
Pin+1 = Pin
En
Vwntl = Vinf + (UO - Uinf>exp _? (417)
Vint1 = 1—vpnt1
d K
n+1

\/'Uw,n—l—lpw,n—l—l + Vi n+1Pin+1

Optl =0p = aﬂbM(’Uu},nJrl\/pw,nJrl + Ui,nJrl\/pi,nJrl)- (418)

2. Compute e}, | and 6,41 with this value 7,4 using Newton-Raphson method. This step will

not be detailed here since it is classical for GTN model (see e.g. the algorithms of Enakoutsa

et al. [30] or Dorhmi et al. [26]).
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On+1 @ Aed

3. Deduce the increment of equivalent accumulated plastic strain Ag,, = ————.
(1= fn)on+1

4. Compute the increment of dislocation densities

6(v; 2/3 V3v; v/
pr’n+1 — | ( Z,nJrl) + 5* i,n+14/Pw,n+1 . kopw,m_l MAgn
bdn+1vw,n+1 Uw,n+1b
y . (4.19)
P 6 _
Api,nJrl = |« wntl 3 kOpi,n+1 MAzE,.
VBb bdygv)

5. Update the values of the dislocation densities, volume fraction of cell walls and average cell size

Pwn+1 = Pwn + pr,n
Pintl = Pin+Apin

En + AZ,
Vw1 = Vinf + (Vo — Ving)exp T T (4.20)
Vint1 =1 —Vynt1
dn+1

\/Uw,n+1pw,n+l + Vi n+1Pin+1

6. Deduce a refined estimate of 7, 1:

Ontl =0n = aﬂbM<Uw,n+1\/Pw,n+1 + Ui,n+1\/Pi,n+1)' (421)

and follow the procedure (step 2 to 6) until the method converges and @,,41 reaches a stationary

value.

4.4.4 Description of the UMAT

The algorithm has then been implemented in the finite element code Abaqus using a UMAT proce-
dure. This implementation consists in the definition of (i) input parameters (Props), (ii) state variables
that are saved at each times step (Statev) and (iii) the numerical resolution (Newton method for the
plastic multiplier and fixed point for hardening). Furthermore, an ad-hoc modification has been added
to the previous constitutive equations to avoid numerical issues. Indeed, in ductile fracture problems,
softening can become brutal when the damage parameter (here corresponding to qf*) reaches high
values, typically when ¢ f* > 0.3. Therefore, it is of interest to “delete” elements that can be considered
as (almost) totally damaged, because in such case fracture occurs almost instantaneously. Thus, when

the damage parameter ¢f* becomes larger than a critical value, denoted by fr, the stress is imposed
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to become nil, that is & = 0, corresponding to element deletion.

The internal parameters that are stored (in addition to the stress tensor), either for the calculations

and post-treatments, are provided in Table 4.1.

Table 4.1: State Variables (STATEV) used in this UMAT.

STATEV | Parameter | Variable name
1 f FV
2 Ep EPSB
3 Pw RHOW
4 Di RHOI
5 UV VW
6 d DSIZE

A summary of the input parameters that are required for this model is provided in Table 4.2.
They consists of 2 elastic constants, 11 constants for the hardening behavior and 8 parameters for the

ductile damage behavior.

4.4.5 Calibration of the model parameters for pure copper

The model parameters have been calibrated for the pure copper considered in the experiments of
Section 4.3. First, the elastic constants for the pure copper are classically taken as E = 120 GPa and

v = 0.358.

Then, the parameters related to the hardening composite model are calibrated by adjusting the
parameters found in the literature [46, 65], which are generally calibrated using TEM for initial dis-
location densities (p,, and p;), EBSD for volume fraction of cell walls and interiors (v,, and v;) and
discrete dislocation dynamics simulations for dislocation production, migration and annihilation con-
stants (a* and * and ko), in order to reproduce the experimental stress-strain curve of the tensile
test for the pure copper (see Figure 4.3). The set of parameters related to hardening is provided in

Table 4.3.

92



4.4. AN EXTENDED GURSON MODEL INCLUDING DISLOCATION DENSITY
EVOLUTION

Table 4.2: Input property parameters (PROPS) used in the UMAT developed.

Props number | Parameter \ Variable name
Elastic Constants
1 E E
2 v NU
Dislocation Density-based hardening law parameters
3 o RHOWO
4 oY RHOIO
5 Q@ ALPHA
6 b BURGERS
7 M MTAYLOR
8 a* ASTAR
9 5* BSTAR
10 ko KO
11 Vinf VINF
12 Vo VO
13 r GAMMA
14 K K
GTN ductile damage parameters
15 fo KO
16 q VINF
17 fe FC
18 4] DLT
19 In FN
20 EN EPSN
21 SN SN
22 fr FF
pwo M2 pio [(m™?] « b [m] M o 5* ko vipy vo I K

4x 1014 2x10M 025 256x10710 3.06 0.065 0.012 4.3 0.06 0.2 3.2 500

Table 4.3: Values of parameters for dislocation density based hardening law for pure copper.[123]

Finally, the next step is the calibration of the GTN damage parameters, fo, fe, 0, fn, sy and ey
This can be done through microtomography observations using synchrotron diffraction experiments
or by using macroscopic results such as a tensile test. Here the parameters have been calibrated
using the macroscopic tensile test for simplicity. It must be noted that the set of parameters cali-
brated is generally not unique as different sets of parameters of Gurson’s model could lead to the same

softening and fracture behavior [111]. The set of parameters related to damage is provided in Table 4.4
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foo a fo 0 fn en SN
0.001 1 0.01 & 0.01 0.3 0.2

Table 4.4: Values of parameters for damage in the case of pure copper.

The model predictions (using the calibrated parameters) are compared to the experimental results

in Figure 4.4. Overall the numerical stress-strain curve is in very good agreement with the experimental

curve.
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Figure 4.4: Comparison of numerical and experimental stress-strain curves for copper.

4.5 Numerical study of grain refinement in an axisymmetric proportional
loading example

In this section, we investigate the response of an elementary volume predicted by the model for an
axisymmetric proportional loading with major axial stress, under conditions of fixed stress triaxiality.
This case of homogeneous loading will be of interest to investigate the influence of the initial porosity

and loading conditions on the achievable grain refinement before failure.
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4.5.1 Description of the simulations

We consider an elementary volume (i.e. a material point) subjected to a macroscopic loading state

under conditions of fixed stress triaxiality 7' = 0y, /0¢q. The non-zero components of the stress tensor

are:
1
011 =022 =0m — ggeq
) (4.22)
033 = Om + gaeq.

In terms of model parameter, we will consider, for the hardening behavior, the calibrated values of
the pure copper given in Table 4.4. For the parameters of the GTN model, we will consider fictitious
values for the porosity (in order to study its influence) and no nucleation will be considered: the values
fo =10.005; 0.001; 0.0002] and f. = 0.01 will be considered. In addition, several values for the stress
triaxialitiy will be considered: T' = [1/3; 1/2; 2/3 ;3/4; 1; 3/2].

The objective of these simulations is to investigate the influence of the porosity fy and the loading
conditions (through the value of the imposed stress triaxiality 7') on grain refinement. In particular,
we will study the evolution of the grain size d (as a function of the strain), and notably the value of d
when coalescence is reached: this value would correspond to the minimal grain size achievable before

failure.
4.5.2 Results

First, the evolution of the normalized macroscopic stress o¢q/do (where 7 is the initial yield stress
calculated using the values of Table 4.3) and normalized porosity f/fo are represented in Figures 4.5,
4.6 and 4.7 respectively for the cases fo = 0.0002, fo = 0.001 and f, = 0.005. In each case, the
influence of the stress triaxiality is investigated. As expected for the GTN model (irrespective of the
hardening law), the critical f. is reached more rapidly for (i) an important stress triaxiality 7" (because
the porosity growth rate increases when the stress triaxiality 7" increases) and (ii) a high initial volume

fraction fy.

In addition, the evolution of several internal parameters is shown in Figure 4.8 in the case T'=1/3
and fy = 0.0002 for illustrative purposes. First, the evolution of the normalized dislocation densities

in cell walls py,/pwo and cell interiors p;/p;o are shown Figure 4.8a. The increase of the dislocation
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Figure 4.5: Numerical results for the extended GTN model applied to an elementary volume for
f = 0.0002. Evolution of (a) Normalized equivalent stress o.q/79 and (b) Normalized void volume
fraction f/fp. The onset of coalescence is shown by the symbol +.
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Figure 4.6: Numerical results for the extended GTN model applied to an elementary volume for
f = 0.001. Evolution of (a) Normalized equivalent stress o.,/0¢ and (b) Normalized void volume
fraction f/fp. The onset of coalescence is shown by the symbol +.

density in the walls is very important in comparison to the increase of the dislocation in the cell

interiors. However, it has only a moderate effect on the evolution of the total dislocation density p/po
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Figure 4.7: Numerical results for the extended GTN model applied to an elementary volume for
f = 0.005. Evolution of (a) Normalized equivalent stress o.,/0¢ and (b) Normalized void volume
fraction f/fp. The onset of coalescence is shown by the symbol +.

because the volume fraction of cell walls v,, (i) is initially lower than that of cell interiors v; and (ii)
it decreases rapidly as shown in Figure 4.8b. The average cell size d is represented in Figure 4.8c: it
decreases from the value dy ~ 32 pm to approximately 6 ym (at ., ~ 4): therefore in that case a

“grain refinement” with a ratio dy/d ~ 6 is achieved.

ini
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Figure 4.8: Evolution of some internal variables using the developed model for ' = 1/3 and fy =
0.0001. (a) Normalized dislocation densities in cell walls p,,, cell interiors p. and total dislocation
density pr, (b) Volume fraction of cell walls v,, and (c) Average cell size parameter d.

Finally, the maximal ratio of cell refinement dy/d before the coalescence occurrence, is represented

97



4.5. NUMERICAL STUDY OF GRAIN REFINEMENT IN AN AXISYMMETRIC
PROPORTIONAL LOADING EXAMPLE

in Figure 4.9 for all the values of fy and T considered. As expected, grain refinement is promoted
by a decrease of the triaxiality and the initial volume fraction fy; it should be noted that the values
considered for the triaxiality has been restricted to T' > 1/3 because the GTN model is not suitable at
low stress triaxiality. Nonetheless, the trend observed is expected to continue when 7' reaches zero to
negative values but threshold for dy/d is also expected to exist. According to these results, important
grain refinement can be achieved at low stress triaxiality levels and with materials having low levels of
initial impurities. In the context of SPD processes, in which the final aim is to provide important grain
refinement, these results show that grain refinement is generally influenced by (i) the initial conditions
of the material in term of damage and (ii) the loading conditions applied to the material during the

process.
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ol —o— fo=0.005 ]
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Figure 4.9: The maximum grain refinement dy/d,,;, achieved as a function of triaxiality 7" and initial
void volume fraction fj.
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4.6 Numerical prediction of strength and ductility after Repetitive Corru-
gation and Straightening processing

The aim of this section is to predict numerically the stress-strain curve of a specimen processed
by RCS, which corresponds to the determination of the strength and ductility after severe plastic

deformation.

4.6.1 Description of the numerical model

The numerical model used for investigating the strength-ductility trade-off is composed of a two-

steps RCS procedure followed by a tensile test:

e The simulation of RCS is composed of one deformable sheet metal blank, four corrugation and
four straightening dies. The first pass of the model is performed using the same numerical model
than used in Chapter 3 Section 3.4. However, we did not use the 1/8" symmetric configuration
because one plane of symmetry is lost during the second pass. Therefore we considered a model
of 1/4™ of a pattern. In order to perform the second pass, the corrugation dies are moved half
a pattern (8mm) in both the z- and y-directions. The boundary conditions for the first and

second pass are shown in Figure 4.10.

e After the very last step of the second pass, a tensile test is performed: this is done by applying
a displacement on the surface of the blank in the z+ direction while maintaining the double
symmetry conditions on surfaces with normal vectors = and z~. It should be noted that this
procedure permits only to perform an approximate tensile test, as necking cannot take place. In
order to assess its relevance, the same procedure will also be used before processing (i.e. at 0

pass) and compared to the tensile test performed numerically in Section 4.4.

Unlike the aluminum sheet metals used in Chapter 3, the thickness of copper samples are 0.8 mm.
A mesh size of 0.1 mm has been used for the deformable sheet metal and 0.15 mm for the rigid dies. A
constant mesh size has been taken to be equal in all cases of RCS and tensile test simulations in order
to get comparable results and avoid any mesh dependency from one simulation to another. Also the
coefficient of friction is taken equal to 0.05 which represents low friction (due to Teflon) copper-steel

contact.
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Figure 4.10: The boundary condition applied to the reduced model (1/4"" model) in (a) pass 1 and

(b) pass 2. SP corresponds to “Symmetric-Periodic” and S corresponds to “Symmetric” (see Appendix
A)

Several quantities will be studied in order to investigate the evolution of damage and dislocation

structure as a function of the number of RCS passes:

1. The distribution of internal variables of the model will be studied after 1 and 2 passes. In
particular we will consider variables related to (i) hardening such as total dislocation density
pr and average cell size d and (ii) damage void volume fraction f. This allows us to better
understand the phenomenon governing the change in strength and ductility happening during

RCS.

2. The macroscopic stress-strain response before and after the process will be studied. This will
show the increase in the strength and the evolution of the ductility happened after each pass.
It should be noted that the results for the first pass will not be presented because of a lack of

representativity in the experimental results due to a very high heterogeneity of the local fields.

4.6.2 Results

The distribution of the total dislocation density p; is represented in Figure 4.11 after pass 1 and
pass 2. After the first pass, the dislocation p; increases by a factor of 10 from an initial value of
2.4 x 10" m~2 to 2.4x 10" m~2 at the most deformed area. It is very heterogeneous with a minimum

value of 2.7 x 10'* m~2 (in the areas far from the corrugation pattern) and a maximum value of
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2.4x10" m~2. Its average value, which can be computed as its volume average, is of about 9x10'*

m~2. After the second pass, the distribution of p; is more homogeneous, with a minimum value of

6.8 x 10 m~2 and a maximum value of 2.7x10'> m~2. Its average value is of about 1.5x10'® m~2.
Therefore, both the maximum and average of the total dislocation density increase with the number

of passes. Furthermore, the homogeneity of the distribution also increases with the number of passes.
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Figure 4.11: Distribution of total dislocation density p; after (a) Pass 1 and (b) Pass 2.

Figure 4.12 illustrates the distribution of average cell (grain) size parameter d after pass 1 and pass
2. The results show that in the first pass, moderate grain refinement by a factor of 3 has been achieved
in the heavily deformed heterogeneous cross shaped spots. The minimum and maximum grain sizes
are respectively of about 10 and 32 pm, and the average grain size is 18 ym. After the second pass,
the minimum cell size does not change much (from 10 to about 9 pm) but the homogeneity of the
refinement increases. Indeed in that case, the minimum and maximum grain sizes are respectively of
about 19 and 9 um, and the average grain size is 13 pm. This is due to the particularity of the second

pass as it shifts the cross shaped zone.

Then, in order to follow the evolution of damage during the process, Figure 4.13 shows the distribu-
tion of void volume fraction parameter f after pass 1 and pass 2. After the first pass, the distribution
of the porosity is very heterogeneous and f reaches a maximum value of 0.007 in a very localized area

in the cross-shaped zone at the back side of the sheet metal. After the second pass, the maximum
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() (b)
Figure 4.12: Distribution of average cell size d after (a) Pass 1 and (b) Pass 2.

value is shifted to the position of the new cross and reaches a value of 0.009 but mostly on the front
side. It is also heterogeneous with maximum values localized in very small areas separated by less
damaged areas. It should be noted that the evolution of void volume fraction is generally due to the
corrugation step: in our cases, the value of f in corrugation steps of pass 1 and pass 2 has reached
0.01 and 0.03 (and then it decreases during straightening). Overall, the void volume fraction increases

moderately during a full pass but it becomes very heterogeneous.

Finally, the stress-strain curves before and after processing, respectively denoted by OP and 2P,
are represented in Figure 4.14 and compared to the experimental results. It must be noted that before
processing (OP), two numerical stress-strain curves are represented: one is obtained from a numerical
tensile test using the specimen represented in Figure 4.2 (this curve corresponds to the result of Figure
4.4) and the other one is obtained from the unprocessed plate. Overall, a good agreement is observed
between the experimental and numerical results, that is an increase of the yield strength and a decrease
of the ductility as the number of passes increases. Before processing some differences are observed
between the two numerical results, because necking in the tensile test performed on the unprocessed
plate is delayed: ductility is therefore slightly overestimated. After pass 2, the numerical model is able
to capture the trend of the hardening (which “saturates”) but its level is slightly overestimated. In the
numerical tensile test after pass 2, failure occurs at a strain of about 0.12 which is slightly lower than
the experimental value (0.17). These results shows that the model is able to qualitatively capture the

strength-ductility evolution of material during RCS.
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Figure 4.13: Distribution of the void volume fraction f after (a) Pass 1 (back face), (b) Pass 2 (back
face), (c) Pass 1 (front face) and (d) Pass 2 (front face).

4.7 Discussion

The model developed in this chapter allows a description of several microstructural changes that
occur during plastic deformation such as the evolution of the dislocation density, grain size and void
volume fraction. The model has been used to simulate a multi-pass SPD process and overall it has
been successful in predicting the strength-ductility trade-off after plastic deformation. The results
obtained are thus promising in the investigation of the strength-ductility dilemma. Several comments

are in order:

e The numerical tensile test performed after the second pass of RCS may not be fully representative
of the experimental tensile test because it is performed on the full plate while the specimen for
the experimental tensile test has been performed using a standard geometry; necking is thus

absent from the numerical simulation. It should also be noted that the experimental results can
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Figure 4.14: Comparison between numerical and experimental stress-strain curves of copper at initial
state and after 1 and 2 passes of RCS.

be different if the specimen is cut in another location of the processed specimen: the location and
the pattern chosen to cut the specimen can influence the stress-strain curve. For instance, the
RCS experimental geometry is composed of a 7x 7 corrugation die pattern, so a specimen cut from
a pattern that is not inside the stabilized zone (see Appendix A) would not provide representative
results. Furthermore it was observed that after one pass, there is a lack of representativity of

the experimental stress-strain curves because the process is very heterogeneous after one pass.

The porosity increases in corrugation step and decreases in straightening due to high compression.
However the increase is not completely reversible because the “nucleated porosity” continues
increasing at each pass. Consequently, the void volume fraction evolution has an irreversible
cyclic characteristic and the highest value is always achieved at the corrugation step, as shown
in Figure 4.15. Fracture can even eventually happen during corrugation. This behavior can

explain how damage will modify ductility; indeed this continuous increase of the porosity due to

nucleation will decrease the overall ductility.

The geometry considered for the corrugation dies lead to mix of heterogeneity (heavily deformed

cross shaped areas) and homogeneity (shifted crosses at each pass). This would lead to creation of
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Figure 4.15: Evolution of maximum void volume fraction with different steps of RCS. C1, S1, C2 and
S2 are corrugation and straightening steps of pass 1 and pass 2 respectively.

a composite material microstructure which could be interesting for increasing the yield strength
(in heavily deformed areas). Nonetheless, the presence of localized area with high levels of
porosity decreases the ductility even if the average porosity does not increase much: indeed
these areas will promote strain localization and therefore ductility will decrease. A modification
of the die geometry would be necessary to delete these very localized areas in order to enhance

the ductility.

Grain refinement and dislocation density have a rapid increase in the first pass and then tend
to saturate at higher passes (see Figures 4.12 and 4.11). This is a characteristic of the behavior

of microstructure in metals. This was also observed in Figure 4.8a and 4.8d.

The model developed in this work was based on the GTN model (for spherical voids) because
of the relatively high triaxiality during RCS processing with low levels of corrugations. This
model is only valid as long as we avoid inducing shear deformation by applying high values of
corrugation die displacement. It should be mentioned however that as we saw in Chapter 3,
there are still some void shape effects that neglecting them could delay the onset of fracture to
some extent. The extension of the ML model using the dislocation-based density model would
permit to consider shear-dominated loadings. However since coalescence under shear is complex,

the prediction of the ductility would still be difficult as the only available model of coalescence
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is heuristic.

e The GTN model is derived using limit-analysis which excludes by essence rate-dependent behav-
iors. Since in practice the hardening model of Estrin et al. [33] is rate-dependent (to describe
dynamic recovery notably), it could be interesting to consider a rate-dependent extension of

Gurson’s model, as done by Leblond et al. [67] (see also Flandi and Leblond [37]).

4.8 Conclusion

In this chapter two pass RCS process was analyzed in the case of a pure copper sample. An extended
Gurson model including dislocation density evolution was developed and implemented numerically, in
order to take into account the cellular microstructure of materials processed by SPD. The model has
been first applied to the study of grain refinement in an axisymmetric proportional loading example,
allowing the investigation of the maximum grain refinement as a function of the triaxiality and initial
porosity. Finally the model was applied to the prediction of the strength and ductility of a specimen

processed by RCS after two passes. The main results can be resumed as follows:

e In the case of axisymmetric proportional loading, the results showed the influence of some pa-
rameters including initial void volume fraction and stress triaxiality on the hardening behavior of
the material. The maximum grain refinement possible is directly influenced by material degrada-
tion (initial void volume fraction) and loading condition (stress triaxiality): decreasing the stress

triaxiality and the initial porosity permits to achieve more grain refinement before coalescence.

e The structural simulation of two-pass RCS with the new model enabled us to have access to the
evolution of internal parameters after each pass. We were able to compare the heterogeneity and
evolution of microstructural parameters and also follow the evolution and localization of damage
during the process. The model permits to capture the strength-ductility evolution. Interestingly,
the increase in passes permits to homogenize the distribution of grain size (which is suitable to
increase strength), but the porosity in the other hand is very localized in some small areas which

is assumed to decrease ductility as it will promote strain localization.

The model developed can be used as an alternative to Voce or Swift type hardening models in Gurson’s

approach as it is valid for high strain deformations usually experienced during SPD. Furthermore it
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can be used to follow locally the evolution of the microstructure (and therefore can be compared to
experimental data such as EBSD maps). This model constitutes a first step toward a quantitative
prediction of the strength-ductility trade-off because it is still restricted to moderate triaxiality levels
and the modelling of coalescence is heuristic. Further developments of this approach should include
(i) void shape effects that are important at low stress triaxiality and (ii) a micromechanical modelling

of coalescence in order to capture precisely strain localization as a measure of ductility.
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Chapter 5

Conclusion

5.1 General conclusion

The aim of this thesis was to investigate the strength and ductility of materials processed by severe
plastic deformation, using numerical simulation. Special attention has been given to the evolution of
damage during the deformation, as it can greatly influence the ductility and plays an important role
in a possible optimization of the process. The focus of this thesis was particularly the application of

SPD on sheet metals. In this context, three different cases were particularly investigated:

1. A conventional plastic deformation process, namely deep drawing, intentionally chosen due to
moderately high plastic deformation in addition to low stress triaxiality, which requires a spacial

treatment for the numerical modelling of damage evolution.

2. A case of SPD of sheet metals, called repetitive corrugation and straightening was considered. In
a first attempt for numerical simulations, only one pass of RCS was analyzed and the evolution

of damage was investigated.

3. Finally, by going one step further and as a first step toward the simulation of multi-pass SPD, a
case of RCS with two passes was analyzed. This required the developement of a new model of

material hardening which takes into account both damage and microstructural evolution.

The simulation of deep drawing process presented in Chapter 2, was made for two distinct process
conditions, leading to “bottom” and “shear” cracks. In order to evaluate the damage in shear stress and

low triaxiality, we considered an extended Gurson model called Madou-Leblond model, which includes
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void shape effects. Numerical simulations based on experimental investigations found in the literature
were performed and the results were consistent with the experiments: The crack locations and punch
displacement to fracture for both bottom crack and shear crack conditions were predicted. In addition,
the local evolution of damage showed important void shape effects, particularly around the location
of the shear crack case where low triaxiality condition was dominating. The same simulations were
performed with GTN model which does not take into account the void shape effects; for the case of
shear crack, it was unable to predict the fracture and for the bottom crack, the fracture was predicted
with some delays. This investigation proved the capacity of the ML model for structural calculation

with low stress triaxiality.

The numerical simulation of RCS, as an example of multi-pattern SPD process was investigated
in Chapter 3. In this chapter, two distinct cases of “ductile” and “brittle” (high and low ductility
material) aluminium alloys were investigated. For performing the simulation of multi-pattern RCS, a
reduced model based on a single pattern was developed, representing patterns located in the stabilized
zone of the multi-pattern. The experimental results for one pass RCS process on “ductile” aluminium
alloy did not lead to any fracture. Therefore in that case, a numerical simulation of one pass RCS was
performed without damage evolution. In order to validate the numerical model, the residual stress
obtained from the simulation was compared with the residual stress measured using X-ray diffraction
method. Averaging effects caused by finite size of the XRD iradiated area were handled by developing
a deconvolution method on the experimental measurements: the local and average stresses were linked
by a linear relationship which permits to reconstruct the local fields. The quality of the results were
enhanced by using two different colimator sizes and overlapping XRD measurement. The reconstructed
residual stress obtained by deconvolution procedure were satisfactory with respect to the numerical

results.

The experimental results with “brittle” aluminum alloy showed fracture during corrugation step.
The ML model was used to simulate the process and the numerical simulation was able to predict
the location and onset of fracture. Simulation with GTN model was also able to predict the fracture
but with some delays. The results on one pass RCS indicates that GTN model could be appropriate
for simulation of RCS process for ductile material provided that the triaxiality during this process
remains quite high in the specimen which usually is the case, when the corrugation dies are stopped

before complete squeezing of the sheet metal (before inducing shear deformation).
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Finally, as a first step to simulate multi-pass SPD, two passes of RCS were studied in Chapter 4.
In order to simulate the intense deformation happening during SPD (particularly at higher passes), a
model based on cellular structure of dislocation densities was developed. Additionally, based on the
results on ductile aluminium alloy previously obtained, this model was coupled with GTN model in
order to investigate the evolution of damage during RCS. This model was assessed numerically under
different initial conditions: numerical simulations in an axi-symmetrical loading have permitted to
study the influence of initial void density and imposed triaxiality on the maximum grain refinement
before coalescence. Finally, finite element analysis was performed using this model for simulation
of two pass RCS on pure copper. Hence, the model was implemented in ABAQUS using a UMAT
subroutine. The results permit to study the distribution of internal variables related to microstructure
and evolution of damage in the first and second pass. The results showed that after the first pass, the
maximum dislocation density and grain refinement have an abrupt evolution but the maximum values
remain almost the same after the second pass; however, the homogeneity of the distribution of these
variables in greatly increased. A numerical tensile test was performed after the RCS processing and

it permits to qualitatively reproduce the strength and ductility of the experimental results.

5.2 Prospective

During this thesis, a numerical analysis of SPD process has been performed. Numerical models
for deep drawing and RCS in one and two passes, along with several material hardening and damage
models have been developed. These numerical framework and material models have been developed
in order to improve our understanding of the evolution of the mechanical behavior of material during
SPD and eventually, optimise process parameters to enhance the strength-ductility response of the

processed materials. In this framework, several paths for continuation of this work can been envisaged:

e Several assumptions have been made in this work in order to simplify the material behavior.
In the case of deep drawing, it was assumed that the material is isotropic and that the voids
were initially spherical. In reality, most of the sheet metals have some degrees of anisotropy. By
implementing an anisotropic hardening law in ML model, we will be able to consider anisotropic
materials in the simulations. Also, by performing experimental analysis such as microtomogra-

phy, we could account for the initial void shape distribution in the material.
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e Eventually more passes of RCS process can be modeled to investigate higher levels of deformation

and continue investigating the strength-ductility trade-off.

e In Chapter 4, we coupled GTN model with dislocation density model. The next step is to extend
the ML model with dislocation density based hardening. This would permit us to consider SPD
with more shear dominated loading. Another interesting process would be ECAP process. This
process undergoes very high plastic deformation under low triaxiality thus using the ML model

would be suitable in this case.

e The numerical models investigated in this thesis could be enriched by experimental investiga-
tions. This would let us better identify the model parameters and validate the numerical results
such as, EBSD for grain and cell size distribution, microtomography for void growth and nucle-
ation and SEM for fracture characterisation. Additionally, using XRD method on the processed
experiments and comparing the results with the numerical ones could give us insight on the
microsturucture change during the process. The peak width obtained by XRD after processing
to remove instrumental broadening can give information about the crystal size and dislocation
density. These features could be compared with the results obtained bythe model developed
(based on dislocation densities) in order to calibrate the parameters and validate the numerical

model.
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Appendix A

Reduced-single pattern RCS model

A.1 Motivation

The numerical simulations of RCS are demanding in terms of computational capacities because of
the non-linearities involved (large strains, contact conditions, damage, etc.), the size of the specimens
processed and the large set of processing conditions (die shape, friction, loading conditions, number
of passes, etc). In particular, since in practice possible industrial RCS corrugation die can contain
thousands of elementary patterns, an important difficulty in the simulation of RCS is the large number
of patterns which necessitates a large number of elements. The development of an efficient numerical
model for RCS processing is thus appealing in order to reduce the computational time and facilitate

the optimization of the process.

The reduction of calculation cost can be achieved using several techniques. Among those tech-
niques, model-order reduction in mechanical engineering usually refers to various numerical strate-
gies that have been introduced to circumvent challenging scenarios in numerical simulations includ-
ing process control, parametric modeling, inverse identification, and process or shape optimization
[1, 23, 62, 104]. Those methods are very efficient in problems involving small strains but their ex-
tension to finite deformation remains scarce [92]. Furthermore, they are generally based on a modal
decomposition of the solution which is determined globally and thus does not take into account the geo-
metrical specificities of the structure (such as the repetition of a pattern). Hence, in several non-linear
processes involving geometrical features, alternative strategies closely related to the process consid-
ered are generally employed: e.g. in single point incremental sheet forming a refinement-derefinement

technique was used to reduce computational time [48], in orthogonal cutting process a model based on
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A.2. NUMERICAL MODELLING OF MULTI-PATTERN RCS

a reduction of the geometry was proposed to simulate the process [8] and in shot peening processing
a model based on two shots was proposed to model random shot peening [129]. In the case of RCS,
an important feature is the repetition of the corrugation die pattern, therefore the development of a
reduced geometrical model, based on a single pattern, is interesting to improve the computational cost

of the process.

A.2 Numerical modelling of multi-pattern RCS

A numerical model for the multi-pattern RCS process is developed in order to provide a reference
solution which will be useful to assess the reduced model. Several non-linearities involved in the
process such as large plastic strains and contact conditions between the sheet and the dies will be
studied. In this work we will assume that the out-of-plane direction is long enough so 2D plane-strain

conditions are applicable for the process.

Although the shape of the corrugation die highly affects the distribution of deformation during
RCS process [55], the aim of this work is not to compare several corrugation shapes, so the most
simple shape will be considered. The geometrical model considered, represented in Figure A.1, is thus
composed of several corrugation patterns of circular shape (with 6 mm radius) and the width of one
pattern is taken as L = 20 mm. In the following of the paper, we refer to each corrugation die pattern
and the part of the workpiece directly deformed by it, as one pattern of the process (as in Figure 1.7).

The workpiece thickness is taken as 1 mm.

Since this RCS processing is usually performed in quasi-static conditions, an elastic-plastic model
without strain rate effects is considered for the sheet. Moreover, an isotropic behavior is considered in
this work. Thus, the material model is supposed to follow a J2 isotropic plasticity model with isotropic

hardening. The yield stress o, follows a power-law of the form

where o0, is the flow stress and p is the accumulated plastic strain. For the simulations, an aluminum
alloy AA5083 is chosen because of its good ductility and formability which makes this alloy a suitable
candidate for severe plastic deformation [35]. The following values, obtained from the stress-strain

curve in a tensile test, are thus considered for the material parameters:

o9 = 160 MPa, h = 180 MPa and n = 0.35.
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Figure A.1: Finite element model of multi-pattern RCS (with 16 patterns for illustrative purposes)
with an enlarged view on one pattern with dimensions. Reference line OP and reference point P
labeled on the figure will be used for the study of the mechanical and geometrical fields.

Moreover, the corrugation and straightening dies made from high strength steel can be modeled

as rigid wires (in the two dimensional model).

The friction between the dies and the sheet is accounted for by a Coulomb friction model in which
the frictional force is related to the normal pressure applied on the surface. According to literature, the
friction coefficient f between aluminum (sample) and steel (die) depends on the amount and type of
lubrication used, and its calibration is not an easy task. Thus, in this paper, we will use several values

for the friction coefficient in order to study different lubrication conditions: f = [0.1, 0.25, 0.5, 0.75].

For the full multi-pattern model, a corrugation die consisting of 50 patterns was used. Since
both lateral edges of the sheet are free (see Figure A.1), the model has a plane of symmetry in its
middle. It can thus be modelled by using only half of the patterns (here 25 patterns) with a symmetric
boundary condition imposed on the left edge of the workpiece (blocking its movement in x;-direction)
and a free boundary condition on its right edge. The numerical simulation has been performed with

the finite element code Abaqus/Standard. In practice, four (implicit) steps are considered: (S1)
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corrugation, (S1R) redistribution of stress after corrugation (unloading), (S2) straightening and (S2R)
redistribution of stress after straightening (unloading). The workpiece is meshed with 50000 4-node
reduced-integration plane-strain elements (CAPER Abaqus elements) of square shape with an element
size of about 0.1 mm; a mesh sensitivity analysis has been performed and this mesh was found to
provide converged results. Finally, a loading force of 10 kN is used in the model, which is representative
of experimental conditions. In the following, this model (with 50 patterns) will be termed as the full

multi-pattern model.
A.2.1 Preliminary stabilization analysis of mechanical fields

Due to the repetition of the elementary pattern, the mechanical fields are expected to stabilize in

the patterns far from the free boundary.

First, as an illustrative example, a calculation is performed for a friction coefficient f = 0.25 and
the distribution of the longitudinal stress o1 is represented in Figure A.2 in several patterns at the
last step of the simulation (after the final stress redistribution). Interestingly, the stress distribution
in the first patterns (on the left) is the same and is different from that near the free boundary. Those
results seem to indicate the existence of a stabilized section in the middle of the specimen (left side of

the figure) and away from the free edge (right side of the figure).

=———o 0« free BC

1
axis of symmetry

Figure A.2: Distribution of the longitudinal stress o11 at the end of the simulation of the full multi-
pattern model (with 2 x 25 patterns).

Quantitative distributions of the equivalent plastic strain (PEEQ) and von Mises equivalent stress
(0¢q) are then provided on the upper line of the specimen! (defined in Figure A.1) of several patterns
(still at the last step of the process), in Figures A.3 and A.4, respectively. Interestingly, the distribution
of the equivalent plastic strain appears to be the same from pattern M7 to M7, which confirms that a
stabilization of the mechanical fields occurs far from the free boundary. A similar behavior is observed

for the equivalent stress although there is a slight difference between the stress distributions from

!Only the right half of each pattern are investigated due to the fact that the stress and strain values in each pattern
are almost symmetric because of the the symmetric form of corrugation die patterns.
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pattern M; to My7 which is not surprising as the residual stresses are very sensitive to small variations

of the equivalent plastic strain.

.35

Distance from the center (mm)

Figure A.3: Distribution of the equivalent plastic strain (PEEQ) on the upper line (line OP in Figure
A.1) of the specimen for several patterns at the last step of the process.

Away from the introduced stabilized section, the strain and stress patterns change abruptly. As a
result, it will not be possible to develop a representative model in the transient section (in this case
from pattern Mjg to Mas). On the other hand, it appears possible to develop a reduced model to
reproduce the mechanical behavior in the patterns of the stabilized section of the process (in this case

from pattern M; to Mi7) and this is the objective of this paper.

A.2.2 Influence of the friction coefficient on the stabilization of the mechanical fields

In forming processes, the friction coefficient between the specimen and the dies has a great influence
on the deformation and the mechanical fields [68]. It is thus of interest to investigate its influence on
the stabilization behavior. In particular, we study the stabilization behavior of the residual stress field
(since residual stresses are prominent in structural integrity of sheets) and the plastic strain field (as

it is related to the mechanism of grain refinement induced by severe plastic deformation).

131



A.2. NUMERICAL MODELLING OF MULTI-PATTERN RCS
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Figure A.4: Distribution of the von Mises equivalent stress (0oq) on the upper line (line OP in Figure
A.1) of the specimen for several patterns at the last step of the process.

First, a normalized stabilization criterion for stress (denoted by A!) is introduced to study this
variation. This criterion is taken as a volume average of the difference between the von Mises equivalent

stress in pattern M; and that in pattern M; taken on the initial (reference) configuration:

i ot — i,
o M
(o2,

, (A.2)

where (-)q, is the spatial average over the initial (non-deformed) configuration (denoted by ) given
by

1

(f) = vol(2%) Jou fdQ. (A.3)

This criterion permits to take into consideration the spatial fluctuation of the von Mises stress within
a pattern. Since each pattern may have slight differences in term of their geometry, the average is

computed on the initial configuration which is the same for all patterns.

Similarly, a normalized stabilization criterion for plastic strain can be also introduced (denoted by
A1), as a the average of the difference between the accumulated plastic strain in pattern M; and that

in pattern M; taken again on the initial (reference) configuration:

] My _ M
Al — <|peq peq ’>QO7 (A4)

M
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where pe, is the local accumulated plastic strain (PEEQ in Abaqus). Both criteria will be used to

quantify the stabilization of the mechanical fields within the full multi-pattern model.

The stress stabilization criterion Af is represented in Figure A.5 at the end of the simulation
(after stress redistribution), for different values of friction coefficient. This permits to highlight the
occurrence of the stabilization of the mechanical fields, which depends on the friction coefficient. We
define the minimum (approximate) number of patterns required to achieve stabilization, denoted by
N, and characterizing the transient section, as the total number of patterns for which A’ is higher
than a tolerance value which is taken as 3%. Interestingly, this number Ny increases when the friction
coefficient f decreases. This behavior can be qualitatively explained by the fact that small values of
the friction coefficient allows a larger amplitude in the longitudinal displacement and consequently,
it ‘takes’ more patterns to achieve stabilization, while an important value of the friction coefficient

‘locks’ the sheet so a large number of patterns are constrained with the same kinematic conditions.

Figure A.5: Stabilization criteria for residual stress calculated after the redistribution (unloading) step
as a function of different friction coefficient in the full multi-pattern model.

For completeness, the number of patterns required to achieve stabilization Ny (i.e. the length of
the transient section) is represented in Figure A.6 for both stress (A?) and strain (A?) criteria, as a

function of the friction coefficient at the end of each step (S1, SIR, S2 and S2R). It should be noted
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that since the accumulated plastic strain does not evolve during unloading, the criteria A’ is only

represented at the steps S1 and S2.

0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

Figure A.6: Minimum number of patterns required to achieve stabilization N, for several friction
coefficients. (a) Results obtained using the von Mises stress criterion A’ and (b) Results obtained
using the plastic strain criterion Al.

From Figure A.6a it can be seen that in both steps S1 (corrugation) and S2 (straightening),
the number of patterns to stabilization using the criterion A’ is smaller before stress redistribution
compared to after stress redistribution. It means that after stress redistribution, the stabilized section
becomes smaller. Also by comparing steps S1 and S2, it is observed that the stabilization zone is
always larger during the corrugation stage. It can be explained by the fact that stress distribution

during pressing is more sensitive than bending.

The criterion based on the plastic strain (Al) leads to a similar result, which is that the transient
section is again smaller in corrugation compared to straightening. Moreover, it is interesting to note
that the number of patterns required to achieve stabilization is generally lower using the plastic strain
criterion A! in comparison with the stress criterion A! after stress redistribution: this is actually

expected since small variations in plastic strain can lead to important variations in residual stresses.

A.2.3 Kinematic of the patterns

Finally, we study the kinematic of the edges of each pattern of the full multi-pattern model in the

x1-direction. This can guide the development of appropriate boundary conditions that would apply
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to the reduced model.

First, we study qualitatively the border region for several patterns in both the stabilized and
transient sections, in Figure A.7. Overall, the edges of the stabilized patterns in the full multi-pattern

model remain straight and vertical.

(a) (b) (c) (d)

Figure A.7: The border region for several patterns in stabilized and non-stabilized sections showing
the straight vertical boundaries for patterns closer to the center of the workpiece in the case f = 0.25.
(a) Pattern 1, (b) Pattern 14, (c) Pattern 19 and (d) Pattern 21.

Then we study the displacement of each edge by considering the (accumulated) horizontal dis-
placement of the point P; located at the top-right corner of the pattern M; (see Figure A.1), denoted
by u;(P;) and represented in Figure A.8a. In the stabilized region, this accumulated displacement is
linear, which emphasizes that the relative stretching of each pattern is constant when stabilization
occurs. In addition, the macroscopic stretching of each pattern, related to the quantity

uy (P) —wi(Pi-1)
L )

(A.5)

is represented in Figure A.8b. Interestingly, this quantity reaches very small values in the stabilized

region, and is almost constant for a given friction coefficient.

A.3 reduced single-pattern model

The analysis of full multi-pattern model has shown that there exists a stabilization behavior in the
workpiece and the mechanical fields in each pattern inside the stabilization zone are asymptotically the
same. Furthermore, the minimum number of patterns required to reach stabilization can be important
which implies that a full-order model with a large number of patterns is usually necessary to provide

accurate results in the stabilized patterns.
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Figure A.8: Study of the displacement field in the full-order model for different values of the friction.
(a) Longitudinal displacement u; of the point P; and (b) Macroscopic stretching of each pattern
showing very small values near the center of the sheet.

Based on these observations and the necessity to reduce the computation time, we explore the
possibilities to develop a reduced model based on a single pattern describing the behavior of the
stabilization region, termed as reduced single-pattern model (see Figure A.9). To this end, appropriate
boundary conditions should be applied to this single pattern so that the model would be able to
reproduce both strain and stress distributions of the full multi-pattern model in the stabilized section.
In this section, different approximate boundary conditions applied to a single pattern are introduced
and the distributions of the mechanical fields are compared with the reference solution of the full

multi-pattern (stabilized) model

A.3.1 Description of the approximate boundary conditions considered

Similar to the full multi-pattern model, the reduced single-pattern model is composed of four steps:
(S1) corrugation, (SI1R) stress redistribution after corrugation, (S2) straightening and (S2R) stress
redistribution after straightening. The particularity of the reduced single-pattern model is that the
free boundary condition no longer applies and appropriate boundary conditions must be considered, in
order to mimic the kinematics of the stabilized patterns of the multi-pattern model. This choice will

be crucial because it will considerably affect the distribution of mechanical fields during the process.

Based on the results of Section A.2.3, several boundary conditions may thus be proposed to mimic

the kinematic of the patterns in the stabilized section:
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REDUCED SINGLE-PATTERN MODEL

imposed BC imposed BC

Figure A.9: Finite element model for the reduced single-pattern RCS. Several imposed BC at the
vertical edges of the workpiece are investigated in order to reproduce at best the stabilized patterns
of the full multi-pattern model: symmetric BC, symmetric-free BC and symmetric-periodic BC.

e Symmetric boundary conditions (model BC-S). Since the stretching of the stabilized patterns

is almost negligible (see Figure A.8), it can be assumed that the lateral edges of the pattern
remain fixed in the x;-direction so that the imposed boundary condition is w;(z; £ L/2) = 0.

This condition is imposed for the 4 steps of the process (S1, SIR, S2 and S2R).

Symmetric-Free boundary conditions (model BC-SF'). Although the stretching of the stabilized
patterns is almost negligible, it can have consequences upon the residual stress. Thus it is pro-
posed to keep the previous symmetric boundary conditions but to split the stress redistribution
steps (SIR and S2R) in two new steps SIR-A and S1R-B, S2R-A and S2R-B. The boundary
conditions of the first part of the stress redistribution steps (SIR-A and S2R-A) will be sym-
metric as before but that of the second part (SIR-B and S2R-B) will be free. This should allow

more stress redistribution within the pattern.

Symmetric-Periodic boundary conditions (model BC-SP). The previous symmetric-free boundary
conditions do not constrain the shape of the pattern edge. However, as shown in Figure A.7,
the edges of the stabilized patterns in the full-order model remain straight and vertical. Thus,
the second part of the stress redistribution steps in the symmetric-free boundary conditions is
modified to enforce the edges to remain straight and vertical, which is termed as periodic. In
practice, this is achieved by creating a free reference point and restricting the displacement wu;

of all the edge nodes to this reference point, using an equation interaction in Abaqus.
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A summary of the three cases considered is given in Table A.1. Each case defines an approximate
reduced model, whose relevance will be studied by comparison with the results of the full multi-pattern

model.

Table A.1: Summary of the boundary conditions considered in the reduced-order model.

Corrugation Straightening
S1 S1R-A S1R-B S2 S2R-A S2R-B
BC-S Symmetric | Symmetric - Symmetric | Symmetric -
BC-SF | Symmetric | Symmetric Free Symmetric | Symmetric Free
BC-SP | Symmetric | Symmetric | Periodic | Symmetric | Symmetric | Periodic

A.3.2 Comparison of the boundary conditions

Preliminary comparisons between the three reduced single-pattern models (BC-S, BC-SF and BC-
SP) and the stabilized patterns of the full multi-pattern model are performed in the case f = 0.25.

First, the distribution of the longitudinal stress 011 is represented in Figure A.10 at the end of step
S2 (before stress redistribution), for the full multi-pattern and the reduced single-pattern models. In
that case the three boundary conditions considered for the reduced single-pattern model (BC-S, BC-
SF and BC-SP) give very similar results. This behavior is expected since before stress redistribution
the stress is unrelaxed so the stress level is mainly related to the loading and the present boundary
conditions which are the same at this step in the three cases considered; the only differences that occur
between them are related to the stress redistribution step in step S1R which is treated differently. But
since the level of residual stresses after corrugation is moderate, those residual stresses have only a

little contribution to the stress level at step S2.

The distribution of the longitudinal stress o7 is then represented in Figure A.11 at the end of step
S2R (after stress redistribution), for the full multi-pattern and the reduced single-pattern models. This
shows that symmetric boundary conditions (BC-S), which was suitable before stress redistribution,
fail to correctly represent the stress redistribution behavior of the material (Figure A.11b). From
this figure, it seems that the stress in the specimen is not ‘redistributed enough’ as the stress level
is still influenced by the loading step and in general there is more compressive stress in comparison
with the reference full multi-pattern solution. The symmetric-free stress redistribution model (BC-SF)

improves the distribution of the von Mises stress (Figure A.l1lc), but there are still some locations,
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Figure A.10: Distribution of the longitudinal stress 011 at the end of step S2 (before stress redistri-
bution). (a) full multi-pattern model (extracted from pattern M), (b) Reduced single-pattern model
BC-S (symmetric boundary conditions), (c¢) Reduced single-pattern model BC-SF (symmetric-free
boundary conditions) and (d) Reduced single-pattern BC-SP (symmetric-periodic boundary condi-
tions).

notably near the edges, where the stress is not very well represented by the reduced single-pattern
model. Finally, the symmetric-periodic model (BC-SP) improves significantly the predictions as it

provides the more accurate distribution of stress (Figure A.11d).
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Figure A.11: Distribution of the longitudinal stress o1; at the end of step S2R (after stress redistri-
bution). (a) full multi-pattern model (extracted from pattern M), (b) Reduced single-pattern model
BC-S (symmetric boundary conditions), (c¢) Reduced single-pattern model BC-SF (symmetric-free
boundary conditions) and (d) Reduced single-pattern BC-SP (symmetric-periodic boundary condi-
tions).

A.3.3 Assessment of the reduced single-pattern model

To further analyze the reduced single-pattern model and to quantify its ability to reproduce the
full multi-pattern model, normalized local difference criteria between a pattern in the stabilized section

of the full multi-pattern model and the reduced single-pattern model, defined from the equivalent von
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Mises stress (denoted by AFM) or the accumulated plastic strain (denoted by AFM), are introduced:

rr 0B —0E o, g (P — pEM D, .
o = FM ’ e = i . (A.6)
(0l ), (pEM )

RM

In equation (A.6), o,

and pqu are respectively the equivalent von Mises stress and accumulated
plastic strain in the reduced single-pattern model, while af;M and pqu are respectively the equivalent
von Mises stress and accumulated plastic strain in the first pattern (M;) of the full multi-pattern
model. As explained in Section A.2.2, the volume average (given by equation (A.3)) is taken on the
initial configuration in order to avoid the fluctuations due to geometrical changes. These two criteria

will permit to assess quantitatively the influence of the boundary conditions considered in the three

reduced models.

Several simulations are performed for the three sets of boundary conditions introduced previously
(BC-S, BC-SF and BC-SP) using four different friction coefficients. The stress-based criterion AZM
is provided in Figure A.12 at the end of steps S1R (relaxed after corrugation) and S2R (relaxed after
straightening). Irrespective of the boundary condition considered, the criterion A®M increases after
S2R, which is expected since the modelling errors accumulate from step S1R to S2R. In both steps,
the criterion AZM is lower using BC-SF and BC-SP in comparison with BC-S, which implies that
the stress redistribution brought by an extra sub-step improves significantly the results. A maximal
error of 26% was found with the symmetric boundary conditions (BC-S), 12.5% with the symmetric-
free boundary conditions (BC-SF), and finally 7% with the symmetric-periodic boundary conditions
(BC-SP). Furthermore, the lowest values for the criterion AZM are always achieved by the symmetric-
periodic model (for all values of the friction coefficient) emphasizing that these approximate boundary
conditions are the most suitable to reproduce the distribution of residual stresses obtained in the
full multi-pattern model. At the end of the process, the relative error using the symmetric-periodic
boundary conditions is always below 7%.

In addition, the results obtained from the strain-based criterion A®M are provided in Figure
A.13. For this criterion, the three boundary conditions give almost the same predictions since the
accumulated plastic strain is not modified during stress redistribution. Again the error is higher after
step S2. The comparison between the stress-based and strain-based criteria shows that the equivalent

RM
Ae

plastic strain is always more stable as is lower than AZM  which is expected because residual

stresses are more sensitive than plastic strain.
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Figure A.12: Assessment of the reduced single-pattern model using the stress-based normalized cri-
terion AZM . (a) At the end of step SIR (relaxed after corrugation) and (b) At the end of step S2R
(relaxed after straightening).
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Figure A.13: Assessment of the reduced single-pattern model using the strain-based normalized crite-
rion AFM as a function of the friction coefficient for both S1 and S2 steps.

A.4 Stability analysis of RCS in 2 direction model

Assessment of the distribution of stress and strain field in RCS process showed the presence of
stabilization with respect to the motifs of corrugation die. Moreover, It was established that the
stabilization behavior is a function of the friction coefficient. In the case examined in this work, a case
of RCS process with repetition of motifs of corrugation die in one direction was analysed. However,

other types of RCS process with different motif shapes also exist in literature. Particularly, RCS
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Figure A.14: Distribution of (a) accumulated plastic strain PEEQ and (b) residual stress o,.s after
1 pass of RCS process using multi-pattern model.

process with 3D motifs repeated in 2-directions are used in experiments (see Figure 3.1). In this
thesis, we have used this type of RCS process; hence, it is necessary verify the stabilization behavior

for RCS process with motifs repited in 2 directions.

Consequently, first the 7x7 multi-motif numerical model of RCS according to the experimental
procedure performed in this thesis was created. This model is similar with the one explained in
chapter 3 but instead of only one motif, 49 motifs (7 rows and 7 columns) were considered. Use was
made of the symmetrical nature of the RCS process and only 1/8 of the whole model was created.
The 3D model was meshed with C3D8R elements and a mesh size of 0.2mm was applied. Friction
coefficient f = 0.25 was used in the simulations, which is representative of a not lubricated steel-
aluminum contact and the same value was also used for RCS simulations in chapter 3. Using 24 Intel
Xeon Gold 5220R (2,2GHz) CPUs, the simulations took 16 hours. A distribution of accumulated
plastic strain pe, and von Mises equivalent stress o, at the end of simulations is given in Figure A.14.
Interestingly, we can see the appearance of stabilization zones in both cases, similar to the case of

RCS in 1 direction.

Next, the reduced single-pattern numerical of RCS in 2 direction was created to see if the results
are consistent with the motifs in the stabilized zone of the multi-pattern model. This numerical

model is the same as the one explained in section 3.5 of chapter 3 but the mesh size is similar with
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Figure A.15: Distribution of residual stress o,.s after 1 pass of RCS process. The simulation results
belong to (a) The central pattern of the multi-pattern model and (b) the reduced single-pattern model
(the values are in M Pa).

the multi-motif model. According to results of the reduced single-pattern for RCS in 1 direction,
symmetric-periodic boundary conditions were applied to this model. The results obtained from the
simulation of single-pattern RCS is prestend in Figures A.15 and A.16. In Figure A.15, the distribution
of stress in single-pattern model is compared to the motif in the center of multi-pattern model at
the end of calculation. Similarly in Figure A.16, the distribution of accumulated plastic strain is
compared between the single- and multi-pattern models. The results show great similarity between
the two models and shows that the reduced single-pattern model with symmetric-periodic boundary
conditions was successfully able to reproduce the results of the stabilized patterns of multi-pattern

model.

Furthermore, only using 12 CPUs, the simulation took about 7 minutes to finish (compared with 16
hours for multi-pattern model). These results show that the calculation time was hugely reduced using
the reduced single-pattern model in 2 direction RCS (about 140 times). This proves the importance

of model reduction in simulation of multi-pattern processing.
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Figure A.16: Distribution of accumulated plastic strain PEFEQ after 1 pass of RCS process. The
simulation results belong to (a) The central pattern of the multi-pattern model and (b) the reduced
single-pattern model.
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Appendix B

Deconvolution of X-ray diffraction
measurements

B.1 Introduction

The durability of structural components is considerably influenced by residual stresses. The un-
derstanding of residual stresses and their determination are thus necessary during the design and
manufacturing of products [126, 128], as undesirable tensile residual stresses can decrease fatigue life
and corrosion resistance [89]. The origin of residual stresses is the presence of an incompatible strain
field, which can be due to heterogeneous plastic deformation or phase transition. Compressive resid-
ual stresses can thus be introduced on purposes to improve durability, using for instance shot peening
[77] or laser shock peening [96]. Uncontrolled residual stresses can be introduced unintentionally in
most manufacturing processes based on plastic deformation or heat treament, such as in machining
[9], welding [69], severe plastic deformation [35] and additive manufacturing [36], among other. The
assessment of residual stress distributions is thus of paramount importance for the durability and

reliability of engineering components.

X-ray diffraction (XRD) is a high accuracy and non-destructive method to measure residual stresses
in crystalline materials [102]. It is based on the measurement of the shift of the Bragg angle which
allows the calculation of the change in interatomic lattice spacing, leading to an estimation of the strain
in a small volume under the specimen surface; crystalline planes are thus used as strain gauges [72].
Residual stresses can then be deduced from the elastic theory provided that the X-ray elastic constants

are known. In metallic alloys, this method allows measurements in outer layers due to the important
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B.1. INTRODUCTION

absorption of X-ray. Hence, it is generally used to determine (destructively) stress gradients in depth
with a very good precision using successive polishing. Alternatively, multi-reflection grazing-incidence

techniques allow the determination of depth-dependent stress profiles non-destructively [3, 79].

Nonetheless, an important drawback of X-ray diffraction is the inherent averaging effects of the
method which can lead to inaccurate measurement results in the presence of high surface stress gradi-
ents [52, 57, 58, 82]. Indeed, X-ray diffraction measurements provide the average lattice strain within
the irradiated area, whose size depends on the collimator. Therefore, when the characteristic length
of the surface strain gradient is smaller than the irradiated area, the corresponding stresses obtained
from XRD is an average of the local heterogeneous stresses. The averaging effect can be decreased by
using a small irradiated area, but since the diffracting volume has to contain a sufficient number of
crystallites to be statistically representative, it cannot be reduced below some critical value in typical
engineering materials containing micron-sized crystallites. Consequently, important averaging effects

on the residual stresses measured by XRD are expected in the presence of high lateral stress gradients.

Recently, Morin et al. [82] proposed a method to reconstruct spatially the local residual stress field
using several X-ray diffraction measurements performed on a regular grid (e.g. using an automatic
robot) and with the use of two collimator sizes (inducing two different irradiated areas). Since the
average stress obtained from XRD corresponds to the convolution of the local stress, a linear relation-
ship between the point-wise values of the (unknown) local stress field and that of the average stress
determined experimentally can be constructed. The inversion of this linear system leads to the so-
called deconvolution of the residual stress field. The use of a fine measurement grid together with two
datasets for the averages make the linear system overdetermined which improves the reconstruction.
Their method has been successfully applied to the reconstruction of line stress profiles in a specimen

processed by repetitive corrugation and straightening.

The method developed by Morin et al. [82] was based on several hypotheses, the most restrictive
one being that the lateral stress-gradient are supposed to occur in only one direction. Hence, this
method restricted by essence to the reconstruction of stress line profiles. Next, a modification of this
method is proposed for 2D reconstruction heterogeneous residual stress mapping obtained by X-ray

diffraction.
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B.2. AVERAGING EFFECTS OF X-RAY DIFFRACTION MEASUREMENTS

B.2 Averaging effects of X-ray diffraction measurements

The components of the stress tensor that are obtained from XRD measurements result from a
convolution of the local stress tensor components over the irradiated area'. This area is generally of
circular or rectangle shape in practical laboratory facilities. In the following, we will make several
assumptions which will allow the derivation of a deconvolution method that can be used for practical
applications: (i) the irradiated area is square-shaped and (ii) the averaging over the irradiated area is

uniform (penumbra effects are disregarded).

Therefore, X-ray diffraction is assumed to consist in the (homogeneous) convolution of the local
stress over the irradiated square-shape area, which corresponds to a 2D moving average. Let us
consider one component of the stress tensor, or a linear combination of several components (since the
convolution applies to each component separately), which is denoted by o(z,y) for convenience, where
x and y denotes the spatial coordinates. If the size of irradiated area is denoted by 2a x 2a, the moving

average %%(x,y) of the stress o is then given by the formula

a 1 z+a ryt+a
Y4 x,y) = @/x_a /y_a o(x1, r2)dzidrs. (B.1)

The problem we are addressing is the reconstruction of the local stress field o(z,y) in a 2D domain

from the knowledge of its average X%(z,y).

B.3 Principles of 2D residual stress mapping reconstruction

The 2D domain considered is a square domain of size [0, L] x [0, L]. The determination of residual
stress mapping requires the measurement of the moving average ¥ (x,y) on a regular grid (see Figure
B.1); the domain [0,L] x [0, L] is discretized onto a uniform grid with spatial scale Az = Ay =
L/(N —1), where the total number of points is NV x N. We use the following notation: z; = (i —1)Axz,
yj = (j — 1Az, 05 = o(x;,y;), withi=1,..., N and j =1,...,N. We denote by o the N x N matrix

that contains the values o;;.

For simplicity, we assume that the half-width of the irradiated zone is of the form

a = koAx, (B.2)

!The effect of in-depth gradients is often negligible in XRD measurements due to the absorption of X-ray in metallic
alloys.
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B.3. PRINCIPLES OF 2D RESIDUAL STRESS MAPPING RECONSTRUCTION

Domain of definition of X%(z,y)

- L

<

Figure B.1: Description of the geometry considered for 2D XRD mapping with a square irradiated
area.

where k, is a positive integer. From the definition of the moving average ¥*(z,y), it is readily seen
that it is only defined in the domain [a, L — a] X [a, L — a]. Therefore, on the discretized grid, it reads

¥f = X4, y;) with i = kg +1,..., N — kq. The matrix 3 which contains these values is thus of size

(N = 2k,) x (N — 2k,).

Then, the integral defined by equation (B.1) is approximately calculated using a trapezoidal rule:

1
[C—
Zj - 16]’{:2 (O-ifkayjfku + O-ifkayj‘l'ku + Ui‘i‘ka,j*ku + Ui+ka,j+ku)
a

1 ( idka—1 Jtka—1

+@ Z (O1j—ka + OLj+ka) + Z (Cikaym + O'i—i-ka,m))
a

l=i—ka-+1 m=j—kq+1
] itka=l  jtka—1

tE 2 2 om (B.3)

@ |=i—kq+1 m=j—kq+1

In order to establish a linear relation between 3% and o, we introduce a vector representation of

these matrices, respectively denoted by 3% and & and defined as

3(171)N+j = 0Oij, Vi = 1, ...,N and j = 1, ...,N, (B4)

Nk =5 Vi=1,.,N—2k and j=1,. N2k, (B.5)
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Using this vector representation, the linear relation between 3¢ and o, defined by equation (B.3),
reads

3¢=R" & (B.6)

where R® is a matrix of size (N — 2k,)? x N? which can be constructed from equation (B.3). For
illustrative purposes, the non-zero components of the line number (i —1)(N —k,) +j of R%, associated

with the calculation of the average X7;, are given by

1
T2 if l=(xky—1)(N—ky) +jtk,
1 § ol mN + j £k,
R 1) (N—ka)+iil = 8k, 2 (itke—1)(N—ky)+n (B.7)
1
T if l=mN-+n
0 otherwise,
where m and n take the values
m=1i—kqe+1,...,i+ks—1, n=j—kys+1,...5+k,—1. (B.8)

The linear system defined by equation (B.6) is underdetermined because there are fewer equations
((N — 2k,4)?) than unknowns (N?); the rank of R® is necessarily lower than N2. Therefore, only an
approximate solution of the system can be found, for instance by minimizing the residual sum-of-

square. In that case the solution of the minimization problem leads to
&=RY".2 (B.9)
where (R%)7 is the classical Moore-Penrose right pseudoinverse matrix of R® defined as

R =R (R*- RYT) . (B.10)
B.4 Improvements of the method

As explained in [82], the reconstructed stress field & provided by equation (B.9) is expected to be
inaccurate due to the underdetermined nature of the system as well as the presence of experimental
noise on X% In order to improve the prediction of the residual stress field, it is proposed to (i)
construct a smooth estimate 3% and (ii) use several sets of measurements with different collimators

(inducing different diffraction areas).
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B.4. IMPROVEMENTS OF THE METHOD

First, the smooth estimate 3% is constructed using the robust spline-based smoother developed by
Garcia [38], based on the minimization of a functionnal that balances the fidelity to the data, through
the residual sum-of-squares (RSS), and the smoothness of the estimate through a penalty term (that
depends on the second derivative of the function). The advantage of this approach is that the smooth
estimate is unique using the classical method of generalized cross-validation (GCV) which provides

the best smoothing parameter avoiding over- or under-smoothing.

Then, several sets of measurements using different collimators are considered. This permits to
increase the number of equations involved in the linear system and ultimately this will improve the
accuracy of the reconstructed residual stress field. For illustrative purposes, we consider two sets of
measures associated with two collimators but the extension to an arbitrary number of sets (n > 2)
is straightforward. The irradiated areas have respectively a width denoted by 2a; = 2kiAxz and

2a9 = 2ksAx, and the associated moving averages X% (z,y) of the stress o are then given by the

formula
1 T+a; y+a;
20 (2,y) = 72/ / o (1, e2)derdes, i =[1,2)]. (B.11)
4ai z—a; Jy—a;
After smoothing, this leads to the linear relations
< al ~ a2
=R".0, ¥ =R%.0, (B.12)

where the matrices R® and R are constructed using (B.7). We denote by 3 the vector (of length
= ai

= a2
(N — 2kay)? + (N — 2k,,)?) which concatenates the vectors ¥ and ¥ , and by R the matrix (of
size [(N — 2kq,)? + (N — 2kq,)?] x N?) which concatenates the matrices R* and R%2:

~al

> R
2 = §a2 b} R = lRa2‘| . (B13)

Using equations (B.12) and (B.13), the linear system constructed from the two sets of measurements
simply reads

S=R-5. (B.14)

Two cases need to be distinguished to find the solution &:

e If the system is underdetermined (i.e. the rank of R is lower than N?), the approximate solution
is given, as in Section B.3, by

c=R".X, (B.15)
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where R is the classical Moore-Penrose right pseudoinverse matrix of R defined as
-1
R*=R" (RR") . (B.16)

e If the system is overdetermined (i.e. the rank of R is equal to N?), the approximate solution is

given by

~

oc=R". X, (B.17)

where R™ is the classical Moore-Penrose left pseudoinverse matrix of R defined as
-1
R* = (R'R) R”. (B.18)

In practice the pseudo-inverse R is calculated numerically using efficient algorithms based on using
its singular-value decomposition (SVD). In both cases (underdetermined or overdetermined system),

the method will provide a unique reconstructed stress field from several sets of measurements.

153



B.4. IMPROVEMENTS OF THE METHOD

154



Appendix C

Principles of XRD measurements for a fast
mapping of the bi-axial surface stress

The principles of XRD measurements is to determine the interatomic spacing d of a family of
diffracting planes using Bragg’s law. If we denote by dy the free-stress interatomic lattice spacing, the
strain is given by

dey — d,
v = %7 (Cl)

where ® and ¥ are the angles associated with the X-ray direction. In the case of an isotropic elastic

material, it is straightforward to note that

1
S ;V (UHCOSQ((I)) + 012Sin(2q>) + O'QQSin2<¢)) - 033) sinz(\I/)
L 1+v v (o0 + +oss)
5 03— plontontos
1+v . .
+ 7 (o13c08(P) + o938in(P)) sin(2W). (C.2)

In the particular case ® = 0° and ¥ = 0°, we have eg—go w—oo = €33, and therefore it is readily seen

from equation (C.2) that

14 g
€33 = Ep=0°,0=0° = & (011 + 022) + % (C.3)

Since the XRD measurements are performed on the surface of normal e3, the normal stress o33 is null.

Using equations (C.1) and (C.3), the bi-axial stress oy, finally reads

E de—go w=po — d
On =011+ 02=""7 =0 ’\pd_oo 2, (C4)
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Consequently the determination of the interatomic spacing de—go w—go allows a fast mapping of the
bi-axial stress oy, since only one X-ray direction is required (with ® = ¥ = 0°). In practice, the free-
stress interatomic lattice spacing dy is also required; it is determined in several points of the specimen

(by calculating the full stress tensor using for instance 13 angles V).
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\ Arts Numerical simulation of damage in HESAM ,
et Métiers | panostructured materials obtained by severe | UNIVERSITE
plastic deformation

Résumé : Les matériaux nanostructurés obtenus notamment par déformation plastique sévére (SPD)
constituent une classe émergente de matériaux avancés qui offrent de nouvelles possibilités en termes
de propriétés fonctionnelles et structurelles en combinant résistance et ductilité élevées. La simulation
du processus SPD est assez difficile car cela implique des déformations plastiques importantes et des
non-linéarités liées aux conditions de contact. En plus, de nombreux modeles d’endommagement
physiques et phénoménologiques ont été développés mais aucun n’a été implémenté dans un cas sévere
tel que les processus SPD. Dans cette thése, nous essayons d’implémenter des modeles microstructuraux
récents basés sur I’évolution de densités de dislocations dans les processus SPD et en implémentant des
lois d’évolution de ’endommagement pendant la simulation de ces processus. Un cadre de calcul sera
développé afin de prédire ’évolution de la microstructure et de ’endommagement pendant les procédés
SPD. Cela permet d’améliorer la compréhension du compromis résistance-ductilité dans les procédés
SPD et d’optimiser les conditions de traitement afin de minimiser ’endommagement et d’améliorer les
propriétés du matériau traité.

Mots clés : Déformation plastique sévere, Endommagement ductile, Modélisation numérique,
Densité des dislocations

Abstract : Nanostructured materials obtained notably through severe plastic deformation (SPD) are an
emerging class of advanced materials that bring new possibilities in terms of functional and structural
properties by combining high strength and ductility. Simulation of SPD process is quite challenging as
it involves excessive plastic deformation and nonlinearity due to contact conditions. Additionally, many
physical and phenomenological damage models have been developed but none have been implemented
in a severe case such of SPD processes. In this thesis, we try to implement recent microstructural
models based on dislocation density evolution in SPD processes and by implementing damage evolution
laws during the simulation of these processes. A computational framework will be developed in order
to predict the evolution of microstructure and damage during SPD. This permits to improve the
understanding of strength-ductility trade-off in SPD and optimize the processing conditions in order to
minimize the damage and enhance the properties of the processed material.

Keywords : Severe Plastic Deformation, Ductile damage, Numerical Modeling, Dislocation den-
sity




