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Chapter 1

Introduction (version française)

Au cours des dernières décennies, des ingénieurs, des physiciens et des mathématiciens ont
travaillé ensemble à la réalisation de dispositifs de calcul quantique opérationnels. [39, 102].
Ces dispositifs utilisent une méthode de stockage et de manipulation de l’information fonda-
mentalement différente de celle des ordinateurs classiques, car l’information est codée dans
l’état quantique du système lui-même. Le bit quantique, ou qubit, est l’unité indivisible de
l’information quantique, par analogie avec un bit classique. Cette information intrinsèque-
ment quantique, associée à la possibilité d’effectuer des opérations logiques appelées “portes
quantiques”, permettrait de créer une toute nouvelle famille d’algorithmes qui ne peuvent être
exécutés que sur des systèmes quantiques et qui surpassent largement la performance de tous
les algorithmes classiques connus pour certains problèmes [3, 56, 118]. De cette façon, le
matériel quantique opérationnel pourrait améliorer les systèmes de cryptage modernes [10],
rechercher une liste non triée quadratiquement plus vite [56] (étant donné un oracle quantique
fournissant les données), et peut-être plus important encore, simuler les systèmes mécaniques
quantiques eux-mêmes beaucoup plus rapidement [116]. L’obstacle majeur à la réalisation de
cet objectif est la fragilité des états de superposition complexes nécessaires pour effectuer les
calculs. En raison des interactions inévitables du dispositif quantique avec son environnement,
une partie de l’information codée dans son état quantique sera irrévocablement perdue. Ce
processus de décohérence [133] peut être décrit par un processus de bruit stochastique au sens
mathématique, et il est la source la plus importante d’erreurs physiques dans les dispositifs
quantiques. Puisque les informations quantiques doivent être protégées de la corruption afin
de bénéficier d’un avantage de l’informatique quantique, l’objectif principal d’un ordinateur
quantique est de réaliser un nombre souhaité de portes quantiques pendant la durée de vie
du système. Pour atteindre cet objectif dans un modèle de circuit pour le calcul quantique,
plusieurs aspects doivent être pris en compte, comme par exemple la réduction du bruit in-
trinsèque au matériel physique, les techniques de correction d’erreurs quantiques qui utilisent
un encodage redondant de l’information, et des implémentations physiques plus rapides des
portes quantiques.

Cette thèse s’inscrit dans le contexte général de la protection contre le bruit physique au
niveau du matériel et au niveau du contrôle, en se concentrant sur deux approches différentes et
complémentaires : Les codages bosoniques dans des états de chat de Schrodinger [92] utilisant
des circuits supraconducteurs d’une part, et le découplage dynamique (DD) [129] d’autre part.
Dans les deux contextes, nous réalisons une étude théorique des systèmes dynamiques pour
caractériser les performances et les régimes de fonctionnement possibles de l’approche. Une
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base de calcul composée d’état de chat est un schéma prometteur pour la correction d’erreur
quantique bosonique tolérante aux fautes [58, 103], avec un seuil d’erreur et une surcharge
matérielle favorables [59], et pour créer de tels états, l’on pilote des éléments non linéaires
à base de jonctions Josephson [55, 80]. Le DD est une méthode dynamique qui élimine les
interactions indésirables entre le système et son environnement en appliquant au système
cible que l’on souhaite protéger des opérations de contrôle cohérentes à variation rapide,
afin d’annuler efficacement son couplage Hamiltonien avec l’environnement. Le dénominateur
commun de ces deux approches contre le bruit, dont chacune sera présentée plus en détail
ci-après, est que l’on applique des signaux de pompe au système pour obtenir le régime de
fonctionnement souhaité. Les dispositifs quantiques étant par nature des systèmes ouverts,
ces domaines d’application impliquent la difficulté générale d’analyser des systèmes quantiques
ouverts pilotés. Un axe parallèle de cette thèse est de rechercher des méthodes d’analyse
améliorées pour cette classe de systèmes.

Le régime de fonctionnement souhaitable des systèmes quantiques ouverts pilotés ne peut
généralement être compris qu’en termes d’un modèle réduit, obtenu après avoir éliminé les de-
grés de liberté rapides de la description, afin de conserver une description efficace de l’évolution
du système à l’échelle de l’ intervalle de temps d’intérêt. Ces degrés de liberté rapides peuvent
impliquer la fréquence du pilotage, mais aussi la décroissance rapide des degrés de liberté
dissipatifs. Dans un premier temps, pour les systèmes sans perte (dits "high-Q"), les termes
de pilotage à oscillation rapide peuvent être éliminés par des méthodes de moyennisation, qui
sont particulièrement bien établies dans le cas Hamiltonien [15, 34, 88, 91, 125]. Cependant,
le domaine de validité des modèles réduits obtenus est souvent peu clair, et pour le cas des
oscillateurs anharmoniques quantiques pilotés employés dans les circuits supraconducteurs,
cette thèse établit une limite fondamentale à la réduction des modèles, en étudiant la dy-
namique chaotique des jonctions. En même temps, nous fournissons une recette pour choisir
les paramètres du circuit afin d’éviter ce comportement chaotique préjudiciable. Cette étude,
objet de la partie I, se situe donc dans le contexte des limitations d’excitation forte des ex-
périments actuels sur les circuits supraconducteurs. Le contexte de ce domaine de recherche
est à nouveau résumé au début de la partie I.

Afin d’ éliminer rapidement les degrés de liberté dissipatifs, les techniques d’élimination
adiabatique [5, 6, 66] fournissent une méthode de réduction systématique des modèles, en profi-
tant de cette séparation des échelles de temps dissipatives. Cette technique étant relativement
nouvelle, de nombreuses questions restent ouvertes par rapport aux échelles de temps qui peu-
vent être éliminées, et par rapport à quels degrés de liberté il faut éliminer afin d’ arriver à
un modèle réduit qui est physiquement interprétable, par exemple de forme Lindblad [51, 83].
Cette thèse apporte deux contributions à ce domaine, en fournissant une extension à la méth-
ode de pilotage périodique, et une extension aux degrés de liberté plus généraux à éliminer.
Ces deux extensions sont directement applicables dans le contexte de le DD, et ouvrent la pos-
sibilité d’appliquer la méthodologie de le DD d’une façon nouvelle : nous proposons de piloter
un sous-système de l’environnement de manière à le découpler du système cible, chaque fois
que le premier peut être facilement identifié et représente la principale source de bruit pour
la cible. Cette approche de découplage côté environnement présente l’avantage immédiat que
les actions imprécises ne détériorent pas directement le système cible. A notre connaissance,
cette stratégie n’a pas été envisagée avant, et nous l’avons étudiéee en détail pour le cas d’un
environnement de système à deux niveaux (TLS), obtenant ainsi des expressions explicites
pour les vitesses de décohérence induits du système cible. Ce travail fait l’objet de la partie II
de la thèse.
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Le reste de cette section est organisé comme suit. Tout d’abord - après un bref intermezzo
sur la correction d’erreur quantique basée sur les codes correcteurs - une introduction aux
codages bosoniques et au DD est fournie, comme complément à ces stratégies contre le bruit au
niveau physique. Ensuite, nous exposons le contexte des problèmes qui sont abordés dans cette
dissertation. Dans la Section 1.2, nous nous concentrons sur les circuits supraconducteurs et
le problème de la dynamique chaotique sous pilotage fort. Dans la Section 1.3, nous détaillons
les défis que pose une approche de découplage côté environnement. Enfin, nous résumons les
contributions de cette thèse dans la section 1.4, et le plan du manuscrit dans la section 1.5.

1.1 Contre le bruit

Les techniques de correction quantique des erreurs (CEQ) [44, 52, 123] consistent à coder
de manière redondante le même qubit d’information logique dans un système physique plus
grand. Ce système physique plus vaste peut être un réseau de qubits physiques bien connec-
tés. La redondance permet de mesurer plusieurs syndromes d’erreur différents, en mesurant
différents sous-systèmes physiques. Si les différents enregistrements de mesure donnent un
résultat contradictoire, nous savons qu’une erreur physique a dû se produire dans un sous-
système. Si les erreurs individuelles ne sont pas trop nombreuses, alors nous pouvons déduire
de l’enregistrement des mesures quelle erreur est la plus probable et nous pouvons la corriger.
Toutefois, dans le cas de nombreuses erreurs individuelles, le qubit logique peut être corrompu
de manière irréversible, ce qui entraîne une erreur logique. Dans l’hypothèse de bruit local et
non corrélé, il a été démontré que la probabilité qu’une erreur logique se produise peut être
rendue arbitrairement petite en augmentant le nombre de sous-systèmes matériels physiques
dans lesquels l’information est codée, à condition que la probabilité d’erreur physique de
chaque composant soit inférieure à un certain seuil de probabilité d’erreur, et à condition que
les erreurs produites par l’application de portes logiques imparfaites manipulant l’information
soient également inférieures à un seuil similaire. Cette propriété est appelée tolérance aux dé-
fauts [1, 72]. La redondance requise augmente avec la probabilité d’erreur logique souhaitée,
tandis qu’elle diminue en fonction de combien la probabilité d’erreur physique est inférieure au
seuil d’erreur physique. De cette manière, la caractéristique de tolérance aux erreurs permet
d’effectuer de manière fiable des calculs arbitrairement longs, à condition de disposer d’une
réserve matérielle suffisante pour y encoder les informations. La difficulté principale est que les
qubits peuvent subir un continuum d’erreurs quantiques, qui sont typiquement décomposées
par le codage en deux types fondamentaux : les erreurs de renversement de bit et les erreurs
de renversement de phase, respectivement. Le concept d’erreur de calcul par renversement de
phase est un concept inhérent à la mécanique quantique et ne s’applique pas aux ordinateurs
classiques. Puisque la CEQ doit corriger les deux types d’erreurs, le seuil d’erreur physique
des codes quantiques (s’il existe) peut être plutôt bas (pensez à 1%), et en plus de la sur-
charge matérielle peut être beaucoup plus défavorable que pour les codes classiques, rendant
de nombreux schémas CEQ irréalistes d’un point de vue pratique. La présente thèse explore
les méthodes de réduction des erreurs au niveau physique qui peuvent compléter, et faciliter
la tâche des approches de correction d’erreurs quantiques par code correcteur.

Une première approche qui vise à alléger ce problème de surcharge matérielle est ce qu’on
appelle les codes bosoniques, qui visent à établir une première protection de l’information
quantique au niveau physique, soit pour les deux types d’erreurs, comme pour les codes
GKP [21, 53], soit pour un seul type d’erreur, comme pour les codes chat de Schrödinger [92].
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Dans les deux cas, le dimensionnement de la surcharge matérielle nécessaire à la CEQ est
drastiquement réduite. Afin de réaliser cette protection au niveau physique, l’espace d’état de
dimension infinie d’un oscillateur harmonique quantique est utilisé, fournissant une redondance
naturelle pour le codage. Une classe importante de codes bosoniques, étudiée dans cette
thèse, est donnée par les états de chat de Schrödinger [78, 92], à savoir les superpositions
de deux amplitudes classiques cohérentes d’un champ bosonique. L’avantage des codes de
chat provient du fait qu’un qubit de chat bénéficie d’un biais de bruit : le taux d’erreur
de renversement de bit est plus petit que le taux d’erreur de renversement de phase par un
facteur qui varie exponentiellement avec la taille du chat, défini comme l’amplitude du champ
bosonique correspondant aux états cohérents susmentionnés. En utilisant ce biais de bruit,
un schéma de CEQ préservant le biais a été développé qui passe à l’échelle beaucoup plus
favorablement [58, 103] en termes de surcoût matériel que les schémas pour des codes plus
traditionnels composés de qubits physiques ordinaires. La manière dont les états du chat
sont stabilisés dépend de la plate-forme physique, mais implique généralement un couplage
de l’oscillateur harmonique à un élément non linéaire qui est également soumis à des signaux
d’excitation [80]. En effet, il a été démontré qu’il était impossible de créer de tels états non-
classiques en utilisant uniquement des systèmes linéaires, alors qu’il est connu que les états
quantiques des systèmes purement linéaires ne présentent aucun avantage par rapport à un
ordinateur classique [85]. En résumé, une base de calcul d’états de chats est un schéma très
prometteur pour la correction d’erreur quantique bosonique tolérante aux fautes, avec un seuil
d’erreur et une surcharge matérielle favorables, et pour créer de tels états, il faut forcer des
éléments non-linéairs.

Dans cette thèse nous étudions une deuxième approche pour atténuer directement au niveau
physique les erreurs: le Découplage Dynamique (DD) [129]. Il s’agit d’une méthode dynamique
qui filtre les interactions indésirables entre le système et l’environnement en appliquant des
opérations de contrôle cohérentes et à variation rapide au système cible que l’on souhaite
contrôler, afin d’annuler efficacement son couplage Hamiltonien avec l’environnement. La
validité de cette approche repose sur une séparation temporelle entre les impulsions de contrôle
appliquées et le taux de couplage avec l’environnement. En permettant des opérations de
contrôle arbitrairement fortes et arbitrairement rapides, le DD a la capacité de rendre le taux
de décohérence effectif du système cible arbitrairement petit, en supposant que les processus
de bruit qui doivent être découplés présentent une fréquence de coupure finie. En pratique,
les stratégies de DD doivent être envisagées dans le cadre d’hypothèses de contrôle réalistes,
en utilisant des ressources de contrôle finies. Un tel cadre a conduit à l’établissement de
schémas de DD qui utilisent ces ressources de manière optimale [76, 104]. Contrairement aux
codages bosoniques, les techniques de DD ont été essentiellement établies pour les systèmes
de basse dimensionnalité en agissant directement au niveau d’un seul qubit physique stockant
l’information, alors que les codages bosoniques exploitent intrinsèquement un espace d’états
à dimension infinie. Tout comme pour les codages bosoniques, les stratégies de DD peuvent
être combinées avec la correction quantique des erreurs [99, 127], et elles peuvent également
fournir une protection lors de l’exécution de portes logiques [68, 69].

Les deux sections suivantes présentent les contextes physiques spécifiques dans lesquels
nous proposons de poursuivre les codages bosoniques, resp. les DD, et les défis à surmonter.
Pour les codages bosoniques, il s’agira de la plate-forme matérielle quantique des circuits
supraconducteurs, où la non-linéarité sans perte fournie par la jonction Josephson est centrale.
En revanche, pour la stratégie de découplage dynamique, au lieu de nous limiter à une seule
plate-forme matérielle nous considérons une classe générale de systèmes quantiques ouverts,
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présentant des sous-systèmes et des séparations d’échelle de temps bien définis. Dans ce cadre,
nous proposons une nouvelle stratégie pour contrer le bruit, qui va de pair avec les techniques
de réduction de modèle que le cadre physique exige. Les contributions scientifiques résultant
de ces deux approches sont ensuite résumées dans la Section 1.4.

1.2 Circuits supraconducteurs pilotés

Une plateforme physique de premier plan pour la construction de dispositifs de calcul quan-
tique est celle des circuits supraconducteurs [97], car ils ont fait des progrès significatifs en
matière de préparation d’état et de fonctionnement de porte fiables, ainsi que de temps de
cohérence plus longs [14, 71]. Les circuits supraconducteurs sont des circuits électriques qui
sont refroidis jusqu’à quelques dizaines de mK et qui se couplent fortement aux photons micro-
ondes. A ces températures extrêmement basses, toutes les observables physiques obéissent aux
équations de mouvement de la mécanique quantique. Des éléments non linéaires sans perte
sont introduits dans les circuits, qui sont utilisés soit pour stocker et manipuler l’information
quantique elle-même dans deux de leurs niveaux d’énergie, soit pour servir de médiateur
aux interactions entre les résonateurs micro-ondes qui stockent l’information dans des modes
bosoniques. L’élément non linéaire par excellence est une jonction Josephson [64], constituée
de deux électrodes supraconductrices séparées par une barrière isolante. Il est possible de
créer différents types d’interactions entre les différents modes en les pilotant avec des champs
micro-ondes simples ou en modulant un paramètre du circuit. Cette ingénierie paramétrique
des interactions est un sujet clé de la recherche, et de nouveaux types d’interactions sont con-
tinuellement développés, que ce soit dans le but de créer une interaction ou une porte logique
plus exotique [29, 89], ou dans le but de stabiliser un état quantique désiré [79, 117]. De cette
façon, la stabilisation par réservoir des états quantiques chat de Schrödinger du rayonnement
micro-onde a été réalisée [80].

D’autre part, la thématique générale d’oscillateurs non linéaires pilotés entre dans le do-
maine des systèmes possiblement chaotiques, comme l’ont découvert les pionniers van der
Pol [124] et Duffing [33]. Ces phénomènes chaotiques ont été largement étudiés pour les circuits
Josephson dans le régime classique, notamment dans les années 80. Un grand accroissement
du bruit a été observé pour les amplificateurs paramétriques à base de Josephson [26, 122]. On
savait que ce phénomène n’était pas dû à des fluctuations thermiques, mais l’origine exacte
de cette augmentation soudaine du bruit restait incertaine. Ceci jusqu’à ce que Huberman,
Crutchfield et Packard l’ ont attribuée purement à une propriété des équations classiquesnon
linéaires complètes du mouvement : le chaos [62]. Le bruit était dû à une dynamique de jonc-
tion chaotique, mais néanmoins déterministe. Pour une jonction simple, qui est équivalente à
un simple pendule piloté, des voies de doublement de période vers le chaos ont été observées et
étudiées dans [32]. En effet, il est bien connu qu’un pendule piloté périodiquement peut avoir
un comportement chaotique. Pour un modèle de jonction shuntée piloté par un courant, [62]
et [107, 108] ont trouvé un comportement simple et périodique avec le pilotage, mais aussi un
comportement subharmonique compliqué, et des cascades de doublement de période dans un
régime chaotique lorsque l’amplitude du pilotage est augmentée.

La technologie de la jonction Josephson ayant évolué (elle est par exemple entrée dans
le régime quantique et dans la gamme de fréquences des micro-ondes), ces résultats ont ap-
paremment été mis de côté. Récemment aussi, dans le régime quantique, les limitations
expérimentales ont été attribuées à un comportement dynamique mal compris [81, 110]. Un
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effort pour résoudre ce problème consiste à développer des théories de perturbation raffinées,
obtenir des modèles réduits d’ordre supérieur de la dynamique plus précis [100, 101, 110]. Un
deuxième effort a été de modifier la conception du circuit afin de le rendre plus robuste par
rapport aux instabilités dynamiques. Notamment, l’ajout d’un shunt inductif au transmon
traditionnel [73] a rendu le circuit plus stable sous un pompage paramétrique fort [126]. Dans
la partie I, nous montrons comment ce transmon à shunt inductif peut être réglé pour être
résistant au comportement nuisible qui, par définition, ne peut être capturé par aucun modèle
réduit intégrable : le chaos classique. Ce régime chaotique peut être supprimé alors que le
dispositif conserve la capacité de confiner une classe d’états non classiques utiles pour la CEQ
bosonique, à savoir les états de chat de Schrödinger.

1.3 Approche de découplage activée sur l’environnement

L’idée du découplage dynamique quantique est de réduire le couplage effectif entre un système
cible et son environnement, en utilisant des actions de contrôle sur le système cible, adaptées
à une échelle de temps plus rapide que le couplage Hamiltonien avec l’environnement. La
validité de cette approche dépend crucialement de la manière dont cet environnement peut
être modélisé. En effet, pour un processus de décohérence purement markovien, correspondant
au cas d’un environnement sans mémoire, on ne peut s’attendre à pouvoir découpler la cible
en utilisant des actions de contrôle. Lorsqu’on modélise une grande partie pertinente de
l’environnement comme un seul (peut-être très grand) système Hamiltonien, il a été démontré
que le DD est valide dans des conditions très générales [129]. Dans ce cas, on peut prouver que
le couplage effectif peut être rendu arbitrairement petit dans la limite théorique de contrôles
arbitrairement forts et arbitrairement rapides. Ceci est typiquement prouvé en utilisant une
méthode d’analyse telle que l’expansion de Magnus [16, 88] ou une technique équivalente de
moyenne Hamiltonienne [35].

Plusieurs réalisations expérimentales pour le matériel quantique rencontrent une situa-
tion intermédiaire pour l’environnement pertinent. Ici, la cible est directement couplée à
un système de dimension finie, bien identifié, qui agit comme la principale source de déco-
hérence induite sur la cible. Ce sous-système environnemental est ensuite couplé à un bain
environnemental qui n’est pas directement couplé à la cible. Un exemple immédiat de tels
sous-systèmes environnementaux sont les défauts de système à deux niveaux (TLS) dans la
couche d’oxyde des jonctions Josephson supraconductrices, qui décohèrent typiquement par
des canaux de phonons et sont un mécanisme principal induisant la décohérence des qubits
supraconducteurs [84, 95].

En partant de cette observation, nous proposons d’appliquer la méthodologie DD de la
manière suivante : appliquer des actions sur l’environnement, de manière à réduire la déco-
hérence induite sur le système cible. Un avantage potentiel de l’application de ces actions
au sous-système environnement est une tolérance accrue par rapport aux actions imprécises.
En effet, les méthodes de DD qui agissent avec des impulsions de contrôle directement sur le
système cible doivent être particulièrement précises, et toute imprécision de contrôle détériore
directement l’information quantique stockée dans la cible.

Un deuxième avantage potentiel du découplage côté environnement est que les actions sont
compatibles avec toutes les portes logiques que l’on pourrait vouloir exécuter sur le système
cible. Bien que des schémas de DD qui assurent de la protection pendant l’exécution de portes
logiques aient été développés [70], ils présentent l’inconvénient d’augmenter les ressources,
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comme la complexité des signaux de contrôle. En contrepartie, on ne peut évidemment espérer
agir sur l’environnement que si celui-ci est bien identifié et de dimension raisonnablement
réduite.

Il y a deux points principaux sur lesquels la méthodologie DD doit être étendue pour
établir la performance de l’activation par l’environnement. Tout d’abord, comme les pilotages
de découplage sont appliquées sur un sous-système d’environnement avec pertes rapides, cela
nécessite de nouvelles méthodes d’analyse pour caractériser les performances de le DD de
cette approche, car les performances de le DD sont traditionnellement étudiées à l’aide de
techniques de calcul de moyenne dans un cadre purement Hamiltonien. La technique générale
de réduction de modèle pour éliminer les degrés de liberté dissipatifs tels que le sous-système
environnement avec perte est l’élimination adiabatique [5, 6, 66]. Un premier défi est d’étendre
cette technique au cas de pilotage périodique, car jusqu’à présent la technique n’avait été
développée que pour des systèmes stationnaires. Notre approche axée sur l’environnement
présente un deuxième défi. Alors que le fait d’agir sur l’environnement offre la sécurité de ne
pas détériorer l’état cible directement en cas d’imprécision du contrôle, nous ne pouvons pas
non plus nous attendre à contrôler un système d’environnement d’une manière bien calibrée.
Nous ne pouvons pas non plus espérer d’ avoir une connaissance précise de l’Hamiltonien de
l’environnement. La partie II de cette thèse détaille comment ces deux problèmes généraux
peuvent être résolus, fournissant une nouvelle stratégie pour contrer le bruit dans les dispositifs
quantiques pratiques.

1.4 Contributions

• Premièrement, nous fournissons une recette pour choisir les paramètres de circuit des
dispositifs supraconducteurs quantiques afin d’éviter un comportement chaotique préju-
diciable, tout en bénéficiant d’un régime fortement non linéaire du dispositif. Nous
illustrons ce potentiel fortement non linéaire en confinant de manière robuste une classe
d’états hautement non classiques, connus sous le nom d’états chats de Schrödinger. Ces
états chats ont des applications immédiates dans le domaine des codages bosoniques,
qui ont montré qu’ils permettaient une correction des erreurs quantiques efficace sur le
plan matériel. L’ensemble de ces résultats permet de préciser l’extension des régimes de
fonctionnement des circuits supraconducteurs.

• Une deuxième contribution réside dans la méthodologie générale développée pour anal-
yser l’avènement et l’effet de la dynamique chaotique dans le contexte de tels systèmes
quantiques "high-Q" pilotés périodiquement. Pour ce faire, nous établissons une con-
nexion entre l’application Poincaré classique et la décomposition de Floquet du système.
En utilisant des techniques analytiques sur le système classique, nous fournissons un
résultat bloquant la route principale vers le chaos du système pour des paramètres du
circuit bien choisis. De plus, nous caractérisons les différents régimes de fonctionnement
non linéaires une fois que le dispositif est dans le régime régulier, non chaotique, par des
techniques de réduction de modèle basées sur la théorie de la moyenne géométrique. A
notre connaissance, une telle analyse de moyenne n’a pas été réalisée précédemment en
tenant compte du potentiel cosinus de Josephson complet, et devrait fournir des résultats
plus précis vers le réglage des dispositifs pratiques.

Ce travail est en finalisation pour être soumis à Physical Review Letters.
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• Troisièmement, nous proposons une nouvelle stratégie pour contrer le bruit sur une
classe pratique de dispositifs quantiques cibles qui est intrinsèquement robuste et effi-
cace sur le plan matériel. La méthodologie DD existante fournit des techniques pour
découpler une cible d’un environnement en agissant sur le système cible avec des opéra-
tions de contrôle fortes et précises. Nous avons étendu cette méthode au cas où l’on
actionne le sous-système d’environnement lui-même pour le découpler de la cible. Les
performances d’une telle approche sont évaluées pour le cas d’un environnement à deux
niveaux (TLS), et analysées dans un cadre de théorie des systèmes, du modèle à la figure
de mérite principale, à savoir le taux de décohérence induit du système cible. Le type
de pilotage côté environnement pour lequel nous avons prouvé l’efficacité de l’approche
comprend des pilotages périodiques cohérents d’une part, et la limite du pilotage avec
du bruit pur d’autre part, où les actions ajoutées correspondent à des canaux de dissi-
pation ajoutés à l’environnement, établissant une nouvelle variante dissipative de le DD.
L’étude d’optimisation qui en résulte conduit à une conclusion physique générale qui
est d’une pertinence immédiate pour les scénarios expérimentaux typiques : peut-être
contre-intuitivement, isoler l’environnement des sources de bruit autant que possible
n’est souvent pas le meilleur plan d’action.

• Une dernière contribution réside dans les méthodes d’analyse développées pour cette
approche de découplage côté environnement, qui établissent une connexion entre le do-
maine de la réduction de modèle pour les systèmes quantiques ouverts dissipatifs et le
problème de contrôle du découplage dynamique. Nous avons développé une extension
de la méthode d’élimination adiabatique pour inclure le pilotage périodique, permettant
d’analyser les avantages du DD pour le premier type de pilotage côté environnement,
qui a été choisi pour être périodique. De plus, la méthode d’élimination adiabatique
a également été étendue à l’élimination des dégrés de liberté plus généraux, dans le
contexte de la variante dissipative du découplage dynamique.

Ces deux dernières contributions constituent des travaux [20] soumis au Journal du Franklin
institute.

1.5 Présentation du manuscrit

Dans la partie I de cette thèse, nous fournissons une recette pour obtenir un régime subhar-
monique robuste d’oscillateurs quantiques non linéaires pilotés, correspondant au confinement
d’un ensemble d’états de chat de Schrödinger.

• Dans le chapitre 3, nous commençons par présenter le modèle du transmon piloté péri-
odiquement et shunté par induction. Nous examinons comment ce système monomode
combine les trois éléments de base des circuits supraconducteurs, ce qui le rend pro-
totypique. Plus précisément, nous effectuons un changement de variables global qui
transforme le système en une forme normale qui sera utilisée tout au long de cette par-
tie. Cela permet d’identifier quatre paramètres principaux dont nous discutons briève-
ment les rôles. Il s’agit de deux paramètres de circuit effectifs appelés le paramètre de
régularité et le paramètre d’échelle quantique, ainsi que des versions renormalisées des
paramètres de pilotage. Une fois que cette forme normale du système est établie, dans
la Section 3.2, des éléments d’introduction sur les méthodes générales d’analyse des sys-
tèmes à pilotage périodique sont fournis. Pour les systèmes périodiques classiques, les
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concepts pertinents de la théorie des systèmes dynamiques sont introduits, notamment
la carte de Poincaré, ainsi que la notation qui sera utilisée dans les chapitres suivants de
cette partie. Du côté quantique, une introduction à la théorie de Floquet est donnée, y
compris son extension aux systèmes (quantiques ouverts) interagissant faiblement avec
un bain environnemental. Enfin, les méthodes numériques que nous avons utilisées pour
simuler le système sont résumées.

• Dans le chapitre 4, nous utilisons le langage de la théorie de Floquet pour établir un
régime subharmonique robuste et non chaotique du transmon piloté par induction et
shunté. Après une brève introduction sur les qubits cat, nous établissons une connexion
entre la carte de Poincaré du système classique d’une part, et les modes de Floquet du
système quantique d’autre part, en assimilant les solutions classiques sous-harmoniques
stables à l’existence d’un ensemble dégénéré de modes de Floquet de chat de Schrödinger.
En nous concentrant sur une classe de sous-harmoniques donnée, nous caractérisons les
signatures quantiques du chaos classique qui s’installe lorsque l’on augmente l’amplitude
de forçage. Nous observons un régime asymptotique hautement entropique pour le
système quantique dans ce cas chaotique. Ensuite, nous montrons comment choisir
les paramètres du circuit de manière à supprimer efficacement ce régime hautement
entropique, en abaissant le paramètre de régularité. Nous proposons une explication
théorique pour ceci en montrant que les voies possibles vers le chaos du système clas-
sique sont supprimés pour des petites valeurs du paramètre de régularité. Enfin, nous
montrons que dans le régime non chaotique, le paramètre de d’échelle quantique peut
être réglé indépendamment pour augmenter le taux de confinement de la variété invari-
ante sous-tendue par des chats de Schrödinger, fournissant un régime régulier fortement
non-linéaire.

• Dans le chapitre 5, nous nous concentrons sur la dépendance du système aux paramètres
de pilotage, afin de caractériser les conditions de résonance qui mènent à des solutions
sous-harmoniques stables du système classique, en utilisant un modèle moyenné du pre-
mier ordre. Après une brève introduction sur la théorie de la moyennisation géométrique,
nous obtenons un modèle réduit qui élimine la dépendance du temps. Nous discutons
des symétries globales du modèle résultant, ainsi que des cas limites, et fournissons un
compte rendu numérique d’une classe particulière de solutions sous-harmoniques prédites
par le modèle.

Dans la partie II, nous proposons une nouvelle approche pour contrer le bruit pour les
systèmes quantiques pratiques basée sur la méthodologie du découplage dynamique.

• Dans le chapitre 6 nous montrons comment le découplage dynamique côté environ-
nement peut être réalisé en pilotant continuellement l’environnement avec un seul pi-
lotage à fréquence unique. Après avoir passé en revue les travaux pertinents dans le
domaine des approches de DD à pilotage continu, nous introduisons un pilotage DD qui
présente une double séparation temporelle et qui atténue efficacement les imprécisions
de contrôle actuelles. Ensuite, nous étendons la technique de réduction de modèle de
l’élimination adiabatique au cas du pilotage périodique, afin d’obtenir des formules ex-
plicites pour la décohérence induite sur le système cible sous cet actionnement périodique
de l’environnement. Nous discutons l’efficacité du découplage en termes de dépendance
du taux de décohérence induit aux d’actionnement, et nous concluons en analysant la
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limite où la force des actions DD devient comparable à la fréquence du TLS, confirmant
à nouveau les avantages de le DD.

• Dans le chapitre 7, nous étendons la stratégie de découplage côté environnement à
la limite des pilotages désorganisés, en les considérant comme des canaux de dissipa-
tion supplémentaires sur l’environnement. Nous commençons par réviser les formules
d’élimination adiabatique d’ordre supérieur qui décrivent la décohérence induite sur la
cible. En cherchant à minimiser la décohérence induite sur la cible, nous mettons en év-
idence les caractéristiques générales du problème d’optimisation résultant pour les taux
de dissipation sur l’environnement. Une étude de cas pour le cas d’un environnement
TLS est fournie, y compris la limite d’un environnement partiellement décohérent, qui
ne perd qu’une partie de ses cohérences.

Les deux parties peuvent être lues indépendamment. Une conclusion dans la Partie III
donne un aperçu des questions ouvertes et des travaux futurs possibles.

14



Chapter 2

Introduction

Over the last few decades, engineers, physicists and mathematicians have been working to-
gether towards the realization of operational quantum computational devices [39, 102]. These
devices make use of a fundamentally different way of storing and manipulating information as
compared to conventional classical computers, as information is encoded in the quantum state
of the system itself. The quantum bit, or qubit, is the indivisible unit of quantum information,
in analogy with a classical bit. This inherently quantum-like information, together with the
ability to perform logical operations called quantum gates, would enable a whole new family
of algorithms that can only be run on quantum hardware, and that outperform any known
classical algorithm for certain problems [3, 56, 118]. In this way, operational quantum hard-
ware could improve on modern encryption systems [10], search an unsorted list quadratically
faster [56] (given a quantum oracle providing the data), and perhaps most importantly simu-
late quantum mechanical systems themselves much faster [116]. The major obstacle towards
achieving this goal is the fragility of the intricate superposition states required to perform the
computations. Due to inevitable interactions of the quantum device with its environment,
some of the information encoded in its quantum state will be irrevocably lost. This decoher-
ence process [133] can be described by a noise process in the mathematical sense, and it is
the most prominent source of physical errors in quantum devices. Since quantum information
must be protected from corruption to be able to benefit from a quantum computing advan-
tage, the main goal for a quantum computer is to perform a desired number of quantum gates
within the lifetime of the system. To achieve this goal within a circuit model for quantum
computation several aspects must be pursued, such as the reduction of intrinsic hardware
noise on the physical level, quantum error correction techniques which make use of redundant
encoding of information, and faster physical implementations of quantum gates.

This dissertation is set in the general context of countering physical noise on a hardware
and control level, focusing on two different and complementary applications: Schrödinger cat-
state bosonic encodings [92] using superconducting circuits on the one hand, and dynamical
decoupling (DD) [129] on the other hand. In both contexts, we perform a theoretical dynamical
systems study to characterize the performance and possible working regimes of the approach.
A cat state computational basis is a promising scheme for fault-tolerant bosonic quantum
error correction [58, 103], with a favorable error threshold and hardware overhead [59], and to
engineer such states one typically drives Josephson-junction-based nonlinear elements [55, 80].
DD is a dynamical method that filters out unwanted system-environment interactions by
applying coherent and fastly-varying control operations to the target system that we wish
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to protect, in order to effectively cancel its Hamiltonian coupling to the environment. The
common denominator of these two noise-countering approaches, each to be introduced more
in detail further on, is that one applies time-dependent Hamiltonian drives to the system
to obtain the desired operating regime. Since quantum devices are inherently open systems,
these application domains come with the general difficulty of analyzing driven open quantum
systems. A parallel axis of this dissertation is to pursue improved analysis methods for this
class of systems.

The desirable operating regime of driven open quantum systems can generally only be
understood in terms of a reduced model, obtained after eliminating fast degrees of freedom
from the description, to retain an effective description of the evolution of the system at the
timescale of interest. These fast degrees of freedom can entail the driving frequency, but also
the fast decay of dissipative degrees of freedom. As a first case, for very lossless (called high-
Q) systems, fastly-oscillating drive terms can be eliminated by averaging methods, which are
particularly well established in the Hamiltonian case [15, 34, 88, 91, 125]. The range of validity
of the obtained reduced models is often unclear however, and for the case of driven quantum
anharmonic oscillators employed in superconducting circuits, this dissertation establishes a
fundamental limit to model reduction, by studying chaotic junction dynamics. At the same
time, we provide a recipe for choosing the circuit parameters as to avoid this detrimental
chaotic behavior. This study, subject of Part I, is thus situated in the context of strong-
drive limitations of current superconducting circuits experiments. The context of this field of
research is again summarized at the beginning of Part I.

To eliminate fastly dissipative degrees of freedom, adiabatic elimination techniques [5, 6, 66]
provide a systematic model reduction method, leveraging this dissipative timescale separation.
This technique being relatively novel, many open questions remain about which timescales can
be eliminated, and the elimination of which degrees of freedom leads to a reduced model that
is physically interpretable, for example of Lindblad form [51, 83]. This dissertation makes two
contributions to this field, providing an extension of the method to periodic driving, and to a
new class of degrees of freedom to be eliminated. Both of these extensions are directly appli-
cable in the context of DD, and opened up the possibility for applying the DD methodology in
a novel way: we propose to drive an environment subsystem as to decouple it from the target
system, whenever the former can readily be identified and presents the main source of noise
for the target. This environment-side decoupling approach has the immediate advantage that
imprecise actions do not directly deteriorate the target system. This strategy had not been
considered to the best of our knowledge, and we benchmarked it for the case of a two-level
system (TLS) environment, obtaining explicit expressions for the induced decoherence rates
of the target system. This work is the subject of Part II of the dissertation.

The rest of this section is organized as follows. First an introducion to both bosonic encod-
ings and DD is provided, after a short intermezzo on code-based quantum error correction,
as a complement to these noise countering strategies at the physical level. Next we state
the context of the problems that are tackled in this dissertation In Section 2.2, we focus on
superconducting circuits and the problem of chaotic dynamics under strong drives. In Sec-
tion 2.3, we detail the challenges that come with an environment-side decoupling approach.
We finally summarize the contributions of this dissertation in Section 2.4, and the layout of
the manuscript in Section 2.5.
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2.1 Countering noise

Quantum error correction (QEC) [44, 52, 123] techniques consist of encoding the same qubit
of logical information in a larger physical system in a redundant manner. This larger physical
system can be a network of well-connected physical qubits. The redundancy allows for multiple
different error syndromes to be measured, by measuring different physical subsystems. If the
different measurement records yield a conflicting result, we know that a physical error must
have occurred in some subsystem. If not too many individual errors have occurred, then
we can infer from the measurement record which error is most likely to have occurred, and
we can correct for it. However, in the case of many individual errors the logical qubit may
be irreversibly corrupted, resulting in a logical error. Under the assumption of local and
uncorrelated noise, it was shown that the probability of a logical error occurring can be made
arbitrarily small by scaling up the number of physical hardware subsystems in which the
information is encoded, provided the physical error probability of each constituent be below a
certain error-probability threshold, and provided also the errors produced by the application
of imperfect logical gates manipulating the information be below a similar threshold. This
property is called fault-tolerance [1, 72]. The required redundancy scales up with the desired
logical error probability, while it scales down with how much the physical error probability
is below the physical error threshold. In this way the property of fault tolerance allows
for reliably performing arbitrarily long computations, as long as we have enough hardware
overhead to encode the information in. The main difficulty is that qubits can undergo a
continuum of quantum errors, which can be shown to be decomposable by the encoding into
two fundamental types: bit-flip errors and phase-flip errors respectively. The concept of a
phase-flip computational error is something inherently quantum mechanical, and does not
apply to classical computers. Since QEC has to correct for both types of errors, the physical
error threshold of quantum codes (if one exists) can be rather low (think 1%), and furthermore
the scaling of the hardware overhead can be much more unfavorable than for classical codes,
rendering many QEC schemes unfeasible from a hardware point of view. This dissertation
explores methods for reducing errors at the physical level that can complement, or even be
leveraged by quantum error correction approaches.

One approach that sets out to alleviate this hardware-overhead problem are so-called
bosonic encodings, which aim to establish a first protection of the quantum information at
the physical level, either for both types of errors, as in GKP-codes [21, 53], or just one type of
error, as in the case of Schrödinger cat codes [92]. In both cases, the scaling of the necessary
hardware overhead for QEC is drastically reduced. To achieve this protection at a physical
level, the infinite-dimensional state space of a quantum harmonic oscillator is utilized, pro-
viding a naturally-present redundancy for the encoding. One prominent such class of bosonic
codes that is studied in this dissertation are given by Schrödinger cat states [78, 92], namely
the superpositions of two coherent classical amplitudes of a bosonic field. The advantage of cat
codes stems from the fact that a cat qubit benefits from a noise bias: the bit-flip error rate is
smaller than the phase-flip error rate by a factor that scales exponentially with the size of the
cat, which is defined as the amplitude of the bosonic field corresponding to the aforementioned
coherent states. Using this noise-bias, a bias-preserving QEC-scheme has been developed that
scales much more favorably [58, 103] in terms of hardware overhead than schemes for more
traditional codes composed of regular physical qubits. The way in which the cat states are
stabilized depends on the physical platform, but typically involves a coupling of the harmonic
oscillator to some nonlinear element that is also driven [80]. Indeed, it has been shown im-
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possible to create such non-classical states using only linear systems, while it is known that
quantum states of purely linear systems provide no advantage over a classical computer [85].
In summary, a cat state computational basis is a very promising scheme for fault-tolerant
bosonic quantum error correction, with a favorable error threshold and hardware overhead,
and to engineer such states one typically drives a coupled nonlinearity.

A second approach for mitigating errors directly on the physical level studied in this thesis
is Dynamical Decoupling (DD) [129]. This is a dynamical method that filters out unwanted
system-environment interactions by applying coherent and fastly-varying control operations
to the target system that we wish to protect, in order to effectively cancel its Hamiltonian
coupling to the environment. The validity of this approach hinges on a timescale separation
between the applied control pulses and the coupling rate to the environment. When allowing
for arbitrarily strong and arbitrarily fast control operations, DD has the ability to render
the effective decoherence rate of the target system arbitrarily small, under the assumption
that the noise processes that are to be decoupled exhibit a finite cut-off frequency. In prac-
tice, DD strategies should be considered within realistic control assumptions, utilizing finite
control resources. Such a setting has led to the establishing of DD schemes that use these
resources in an optimal manner [76, 104]. In contrast to bosonic encodings, DD techniques
have essentially been established for low-dimensional systems by acting directly on the level
of a single physical qubit storing the information, whereas bosonic encodings inherently ex-
ploit an infinite-dimensional states space. Just as for bosonic encodings, DD strategies can be
combined with quantum error correction [99, 127], and they can also provide protection while
performing logic gates [68, 69].

The next two sections introduce the specific physical settings in which we set out to pursue
bosonic encodings, resp. DD, and which challenges are to be overcome. For bosonic encodings
this will be the quantum hardware platform of superconducting circuits, where the lossless
nonlinearity provided by the Josephson junction stands central. For the dynamical decoupling
strategy on the other hand, instead of limiting ourselves to one hardware platform we consider
a general class of open quantum systems, exhibiting well-defined subsystems and timescale
separations. Within this framework, we propose a new strategy for countering noise, that
goes hand-in-hand with the model reduction techniques the physical setting calls for. The
scientific contributions that resulted from pursuing both these approaches are subsequently
summarized in Section 2.4.

2.2 Driven superconducting circuits

A leading physical platform for building quantum computing devices is that of superconduct-
ing circuits [97], as these have made significant strides towards reliable state preparation and
gate operation, and longer coherence times [14, 71]. Superconducting circuits are electrical
circuits that are cooled down to a few tens of mK and couple strongly to microwave-photons.
At these extremely low temperatures, all physical observables obey quantum mechanical equa-
tions of motion. Lossless nonlinear elements are introduced in the circuits, which are used
either to store and manipulate the quantum information itself within their two lowest-lying
energy levels, or to mediate interactions between microwave resonators storing information in
bosonic modes. The go-to nonlinear element is a Josephson junction [64], consisting of two
superconducting electrodes separated by an insulating barrier. Different types of interactions
between different modes can be engineered by driving with simple microwave fields, or by
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parametrically modulating a circuit parameter. This parametric engineering of interactions is
a key topic of research, and new types of interactions are continuously being engineered; be it
for the purpose of a more exotic interaction or logical gate [29, 89], or for reservoir-engineering
purposes stabilizing a desired quantum state [79, 117]. In this way, the reservoir-engineered
stabilization of quantum Schrödinger cat states of microwave light was achieved [80].

On the other hand, the general combination of driven nonlinear oscillators enters into the
domain of possibly chaotic systems, as has been the pioneering discovery of van der Pol [124]
and Duffing [33]. These chaotic phenomena have been extensively studied for Josephson
circuits in the classical regime specifically during the 80’s. A large noise rise was observed for
Josephson-based parametric amplifiers [26, 122]. This phenomenon was known not to be due to
thermal fluctuations, but the exact origin of this sudden noise rise remained unclear. This until
Huberman, Crutchfield and Packard attributed it purely to a property of the full nonlinear
classical equations of motion: chaos [62]. The noise was due to chaotic, but nonetheless
deterministic junction dynamics. For a simple junction, which is equivalent to a simple driven
pendulum, period-doubling routes to chaos were observed and studied in [32]. Indeed, it is
well-known that a periodically kicked pendulum can behave chaotically. For a current-driven
shunted-junction model, [62] and [107, 108] found simple behavior periodic with the drive, but
also complicated subharmonic behavior, and period-doubling cascades into a chaotic regime
when the drive amplitude is increased.

Josephson junction technology having evolved, for example having entered the quantum
regime and the microwave frequency range, these results have seemingly been sidelined.
Also recently in the quantum regime, experimental limitations have been attributed to ill-
understood dynamical behavior [81, 110]. One effort to resolve this issue is by developing
refined perturbation theories, obtaining more accurate higher-order reduced models of the
dynamics [100, 101, 110]. A second effort has been to alter the circuit design as to render
it more robust with respect to dynamical instabilities. Notably the addition of an inductive
shunt to the traditional transmon [73] has been shown to render it more stable under strong
parametric driving [126]. In Part I, we show how this inductively-shunted transmon can be
tuned to be resistant against the detrimental behavior that can per definition not be captured
by any integrable reduced model: classical chaos. This chaotic regime can be suppressed while
the device retains the ability to confine a class of non-classical states useful for bosonic QEC,
namely Schrödinger cat states.

2.3 Environment-actuated decoupling approach

The idea of Quantum Dynamical Decoupling is to reduce the effective coupling between a
target system and its environment, by applying tailored control actions to the target system,
at a faster timescale than the Hamiltonian coupling to the environment. The validity of this
approach crucially depends on the way this environment can be modeled. Indeed, for a purely
Markovian decoherence process, corresponding to the case of a memoryless environment, one
cannot expect to be able to decouple the target using control actuations. When modeling a
large relevant part of the environment as one (possibly very large) Hamiltonian system, DD
has been shown to be valid under very general conditions [129]. In this case, one can prove
that the effective coupling can be made arbitrarily small in the theoretical limit of arbitrarily
strong and arbitrarily fast controls. This is typically proven using an analysis method such as
the Magnus expansion [16, 88] or an equivalent Hamiltonian averaging technique [35].
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Several experimental realizations for quantum hardware encounter an intermediate situa-
tion for the relevant environment. Here, the target is directly coupled to a finite-dimensional,
well-identified system that acts as the main source of induced decoherence on the target. This
environment subsystem is then coupled to an environmental bath that is not directly cou-
pled to the target. One immediate example of such environment subsystems are two-level
system (TLS) defects in the oxide layer of superconducting Josephson junctions, which typi-
cally decohere through phonon channels and are a main mechanism inducing decoherence of
superconducting qubits [84, 95].

Starting from this observation, we propose to apply the DD methodology in the following
way: applying actions on the environment side, such as to reduce induced decoherence on
the target system. One potential advantage of applying these actions to the environment
subsystem is an increased tolerance with respect to imprecise actions. Indeed, DD methods
that act with control pulses directly on the target system need to be particularly precise, and
any control imprecision directly deteriorates the quantum information stored in the target. A
second potential advantage of environment-side decoupling is that the actions commute with
any logical gates one might want to perform on the target system. Although DD schemes
have been developed that provide protection while performing logical gates [70], these come
with the drawback of increased resources, such as the complexity of the control signals. On
the downside, of course we can hope to act on the environment only if it is well identified and
of reasonably small dimension.

There are two main points in which the DD methodology is to be extended to establish the
performance of environment-side driving. Firstly, as the decoupling drives are being applied
on a lossy environment subsystem, this calls for novel analysis methods to characterize the
DD performance of this approach, as the performance of DD is traditionally studied using
averaging techniques in a purely Hamiltonian setting. The general model reduction tech-
nique to eliminate dissipative degrees of freedom such as the lossy environment subsystem is
adiabatic elimination [5, 6, 66]. A first challenge is to extend this technique to the case of
periodic driving, as so far the technique had only been developed for stationary systems. Our
environment-side approach comes with a second challenge. While acting on the environment
comes with the security of not deteriorating the target state directly in the case of control
imprecision, we also cannot expect to control an environment system in a well calibrated man-
ner. Neither can we expect to have accurate knowledge of the bare environment Hamiltonian.
Part II of this dissertation details how these two general problems can be resolved, providing
a novel strategy for countering noise in practical quantum devices.

2.4 Contributions

The general scope of this dissertation being two complementary approaches for countering
physical noise, with a common denominator of periodically-driven quantum systems, its con-
tributions can be summarized in four main points.

• First, we provide a recipe for choosing the circuit parameters of practical supercon-
ducting devices in order to avoid detrimental chaotic behavior under strong driving,
all the while benefiting from a strongly nonlinear regime of the device. We exemplify
this strongly nonlinear potential by robustly confining a class of highly non-classical
states, known as Schrödinger cat states. These cat states have immediate applications
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in the field of bosonic encodings, which have been shown to allow for hardware-efficient
quantum error correction.

• A second contribution lies in the general methodology that is developed to analyze the
advent and the effect of chaotic dynamics in the context of such periodically-driven high-
Q quantum systems. We do this by laying a connection between the classical Poincaré
map and the Floquet decomposition of the system. Using analytical techniques on the
classical system, we provide a result blocking the main route to chaos of the system
for well-chosen circuit parameters. Furthermore, we characterize the different nonlinear
operating regimes once the device is in the regular, non-chaotic regime, through model
reduction techniques based on geometric averaging theory. To our knowledge, such
an averaging analysis has not been performed accounting for the full Josephson cosine
potential, and should prove more accurate towards tuning practical devices.

This work is in preparation for submission to Physical Review Letters.

• Thirdly, we provide a novel and robust variation of DD for countering noise in a practical
class of target quantum devices. Existing DD methodology provides techniques for
decoupling a target from an environment by acting on the target system with strong and
precise control operations. We extended this method to the case where one drives an
identifiable environment subsystem to decouple it from the target. The performance of
such an approach is benchmarked for the case of a two-level-system (TLS) environment,
and analyzed in a system-theoretical setting from model to the main figure of merit,
namely the induced decoherence rate of the target system. The type of environment-
side driving for which we proved the effectiveness of the approach comprises coherent
periodic drives on the one hand, and the limit of driving with pure noise on the other
hand, where the decoupling actions correspond to added dissipation channels to the
environment, establishing a novel dissipative flavor of DD. The analysis of this dissipative
flavor of DD leads to an overall physical conclusion that is of immediate relevance for
typical experimental scenarios: maybe counterintuitively, isolating the environment from
noise sources as much as possible is often not the best course of action.

• A last contribution lies in the analysis methods developed for this environment-side
decoupling approach, which lay a connection between the field of model reduction for
dissipative open quantum systems and the system-theoretic control problem of dynam-
ical decoupling. We developed an extension of the method of adiabatic elimination
to include periodic driving, allowing to analyze the DD benefits for the first type of
environment-side driving, which was chosen to be periodic. Moreover, the adiabatic
elimination method was likewise extended to more general degrees of freedom to be
eliminated, in the context of the dissipative flavor of dynamical decoupling.

These last two contributions constitute work [20] submitted to the Journal of the Franklin
institute.

2.5 Layout of the manuscript

In Part I of this dissertation, we provide a recipe for obtaining a robust subharmonic regime
of driven quantum nonlinear oscillators, corresponding to the confinement of a manifold of
Schrödinger cat states.
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• In Chapter 3 we start by introducing the model of the periodically-driven inductively-
shunted transmon. We discuss how this single-mode system combines the three basic
circuit elements of superconducting circuits, making it ubiquitous. More specifically,
we perform a general change of variables that transforms the system into a normal
form that will be used throughout this part. This identifies four main parameters of
which we briefly discuss the roles. These comprise two effective circuit parameters called
the regularity parameter and the quantum scaling parameter, as well as renormalized
versions of the drive parameters. Once this normal form of the system is established, in
Section 3.2, introductory material on the general analysis methods of periodically-driven
systems is provided. For classical periodic systems, the relevant concepts from dynamical
systems theory are introduced, most notably the Poincaré map, as well as notation to be
used in the subsequent chapters of this part. On the quantum side, an introduction to
Floquet theory is given, including its extension to (open quantum) systems interacting
weakly with an environmental bath. Lastly, the numerical methods we used to simulate
the system are summarized.

• In Chapter 4 we use the language of Floquet theory to establish a robust, non-chaotic
subharmonic regime of the driven inductively-shunted transmon. After a short intro-
duction on cat qubits, we lay a connection between the Poincaré map of the classical
system on the one hand, and the Floquet modes of the quantum system on the other
hand, equating stable subharmonic classical solutions to the existence of a degenerate
set of Schrödinger-cat Floquet modes. Focusing on one class of subharmonics, we char-
acterize the quantum signatures of classical chaos occurring when ramping up the drive
strength. We observe a highly entropic asymptotic regime for the quantum system in
this chaotic case. Next, we show how to choose the circuit parameters as to effectively
suppress this high-entropic regime, by lowering the regularity parameter. We propose a
theoretical explanation for this by showing that the possible routes to chaos of the clas-
sical system are blocked for a small-enough regularity parameter. Finally, we show that
in the non-chaotic regime, the quantum scaling parameter can be tuned independently
to increase the confinement rate of the manifold of Schrödinger cat states, providing a
strongly nonlinear, regular regime.

• In Chapter 5 we focus on the dependence of the system on the drive parameters, in
order to characterize the resonance conditions that lead to stable subharmonic solutions
of the classical system, using a first-order averaged model. After a short introduction
on the theory of geometric averaging, we obtain a reduced model that eliminates the
dependence on time. We discuss global symmetries of the resulting model, as well as
limiting cases, and provide a numerical account of one particular class of subharmonic
solutions predicted by the model.

In Part II, we propose a novel noise-countering technique for practical quantum systems
based on the dynamical decoupling methodology.

• In Chapter 6 we show how environment-side dynamical decoupling can be achieved by
continuously driving the environment with only a single-frequency drive. After review-
ing the relevant work in the field of continuous-drive DD approaches, we introduce a DD
drive that exhibits a double timescale separation that effectively mitigates the present
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control imprecisions. Next, we extend the model reduction technique of adiabatic elim-
ination to the case of periodic driving, to obtain explicit formulas for the decoherence
induced on the target system under this periodic driving of the environment. We discuss
the effectiveness of the decoupling in terms of the dependence of the induced decoher-
ence rate on drive parameters, and conclude by analyzing the limit where the strength
of DD drives becomes comparable to the bare frequency of the TLS, again confirming
the DD benefits.

• In Chapter 7, we extend the environment-side decoupling strategy to the limit of com-
pletely disorganized drives, by considering them as added dissipation channels onto the
environment. We start by revising the leading-order adiabatic elimination formulas that
describe the induced decoherence on the target. Setting out to minimize the induced
decoherence on the target, we highlight general properties of the resulting optimization
problem for the dissipation rates on the environment. A case-study for the case of a
TLS environment is provided, including the limit of a partly decohering environment,
that only loses part of its coherences.

The two parts can be read independently. A conclusion in Part III gives an insight into
possible open questions and future work.
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Part I

Structurally-stable subharmonic
regime of a driven quantum Josephson

circuit
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This first part of the dissertation sets out to provide solutions for strong-drive limitations of
current superconducting-circuits experiments. Our contribution is to identify these limitations
as chaotic dynamics, and to provide a clear recipe of how to suppress this chaos for a ubiquitous
single-mode nonlinear device: the inductively-shunted transmon. To display the remaining
nonlinear potential of the device in the non-chaotic regime, we focus on the application of the
robust confinement of a manifold of Schrödinger cat states.

The language that will be used throughout this part has a strong classical component.
Indeed, we will perform as much analysis of the classical equations of motion of the inductively-
shunted transmon, as we will of their quantized version. The methods used to perform this
study likewise leverage dynamical systems theory techniques that have been developed for
general classical driven nonlinear oscillators specifically. Since chaotic dynamics is inherently
a classical concept, this is maybe not surprising. We will introduce the confinement of the cat
states in a classical language as well, however, which we consider a contribution in and of itself.
We will tie classes of subharmonic solutions of the classical system to a manifold of confined
cat states of the quantum system. The goal is to be able to establish such a subharmonic
regime in a robust way, and hence we speak of a robust subharmonic regime of driven quantum
nonlinear oscillators in the title of this part. Alongside this classical study, to quantify the
quantum signatures of classical chaos, we have opted for a numerical approach characterizing
the long-time behavior of the quantum system, based on Floquet-Markov theory.

We begin by introducing strong-drive limitations in various state-of-the-art superconducting-
circuits experiments, giving an overview of recent work on theoretical explanations, and of a
new circuit design to alleviate these very limitations. Next, in Chapter 3 the model of the
driven inductively-shunted transmon is introduced, as well as the theoretical methods that
are used to study this driven system throughout this part: Floquet theory for the quantum
system, and the Poincaré map for the classical system. Chapter 4 then provides the main
result. Guided by numerical Floquet simulations, we define the figures of merit for cat state
confinement, and exhaustively characterize the roles of two main circuit parameters. The reg-
ularity parameter can be lowered to a finite value to avoid chaotic regimes, and a second, the
quantum scaling parameter, can be augmented independently to obtain strong confinement
of the cat states in the non-chaotic regime. These numerical results focus on the dominant
subharmonic regime of the device, corresponding to three-component cat states confined by a
four-photon process. Lastly, in Chapter 5, we characterize the roles of the drive parameters
as to be able to select different classes of subharmonics for the classical system, linked to
corresponding classes of cat states.

Context

Superconducting circuits have proven to be a leading platform for quantum information
processing [13]. A variety of applications hinge on strong parametric interactions, such as
high-fidelity gates [27] and readout [105], tunable couplers [47], efficient reservoir engineer-
ing [80, 117], or bosonic encodings [55, 82]. For many of these applications, the desired system
behavior has been shown to break down when driving the system too strongly. Moreover, the
radical change in system response is discontinuous in the drive power, indicating a structural
instability of the system. These strong-drive limitations have been demonstrated experimen-
tally in the context of unwanted heating [110] or ionization [81] caused by strong-drive effects.
As a first effort, theoretical explanations have been pursued for readout [100, 110] and para-
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metric gates [101], focusing on terms in the parametric Hamiltonian that cannot be captured
by low-order rotating-wave approximations (RWA). While these refined perturbation theories
have been successful in explaining the unwanted behavior, either analytically or numerically,
they do not provide a recipe to retain structural stability under strong driving. As a second
effort, in [126], a new circuit design was proposed that behaves more stable, thanks to an
extra harmonic confining potential provided by adding an inductive shunt to the traditional
transmon.

In this part, we study the classical and quantum dynamics of the periodically-driven
inductively-shunted transmon as a function of circuit and drive parameters, and we explic-
itly identify chaotic dynamics as the cause of structural instability of the system. Recently,
limitations on performance caused by chaotic motion has been reported for a quasi-classical
detector model [77], and chaotic states for a large number of coupled transmons [73] have
been predicted to limit future architectures [12], showing a breakdown of many-body local-
ization. Therefore, laying a connection between classical chaos and superconducting-circuits
parametric engineering is a first important step towards alleviating strong-drive limitations.
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Chapter 3

Model and preliminaries

Ce chapitre introduit le modèle du transmon shunté d’une inductance, forcé de maière péri-
odique. Ce système représente un oscillateur non-linéaire omniprésent dans le domaine des
circuits supraconducteurs. Nous réalisons d’abord un changement de variables pour mettre le
systm̀e sous une forme normale, qui guidera les analyses à venir. Ce changement de vari-
ables permet d’identifier des nouveaux paramètres renormalisés du circuit, qui déterminent
chacun des propriétés complémentaires du système, que l’on discute brièvement, en anticipant
les résultats des chapitres à venir. Dans la Section 3.2, nous introduisons le baggage tech-
nique nécessaire pour analyser ce genre de système dynamique périodique. Du côté classique,
l’application de Poincaré permet de décrire toutes les propriétés dynamiques pertinentes, et du
côte quantique, ce rôle est joué par la théorie de Floquet, composée des modes de Floquet et leur
quasi-energies. Vu que la définition de l’application Poincaré ansi que de la décomposition de
Floquet nécessite la connaissance des solutions exactes du systèmes, nous expliquons comment
les trouver par des simulations numériques. Ces simulations numériques ont permi d’établir
la plupart des résultats dans le chapitre 4 à venir.

In this chapter, we introduce the model of the periodically-driven inductively-shunted trans-
mon, highlighting its character as a ubiquitous nonlinear oscillator central to quantum infor-
mation applications. Through an exact change of variables, the system is rewritten in a normal
form that allows for the definition of new effective circuit parameters that each govern distinct
and complementary system properties. A brief summary of this dependence on parameters is
given, anticipating some of the results of later chapters. In Section 3.2, we introduce the tech-
nical tools used to analyze the dynamical behavior of periodically driven systems. We start by
introducing the classical Poincaré map, which allows us to define all the relevant dynamical
behavior for the classical system. We proceed to introduce Floquet theory as the analogous
language to fully characterize the dynamical behavior of the quantum system, consisting of
the Floquet eigenmodes together with the Floquet quasi-energies. The definition of both the
Poincaré map and the Floquet decomposition requires the knowledge of exact solutions of the
system, and we detail what numerical methods were implemented to compute these quanti-
ties numerically. The majority of the results presented in Chapter 4 are obtained through
these numerical simulations. Of particular importance is the Floquet-Markov theory outlined
in Section 3.2.2, as we will mainly be interested in characterizing the long-time asymptotic
behavior of the quantum system in Chapter 4.
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3.1 Model description

In this chapter, we study the inductively-shunted transmon subjected to periodic driving.
While this nonlinear element is general enough to encompass a large class of superconducting
devices designed for quantum information processing, it is concrete enough to allow for a sys-
tematic study of its behavior when applying drives. Indeed, the number of circuit parameters
that have to be chosen at fabrication of the device amount to three. A schematic depiction of
the device is given in Figure 3.1.

Figure 3.1: Circuit diagram of a driven superconducting circuit comprising a Josephson junc-
tion (black cross) as nonlinear element, in parallel to a linear inductance and capacitance.
The circuit is capacitively driven by an AC voltage source Vd(t) and could be biased by an
external magnetic flux φext threading the superconducting loop. This circuit is dubbed the
inductively-shunted transmon.

The corresponding quantum Hamiltonian model derived from quantizing the circuit (see
e.g. [130]) reads

H(t) = 4EC

(
N− CgVd(t)

2e

)2

+
EL
2
ϕ2 − EJ cos

(
ϕ− 2π

φext
φ0

)
, (3.1)

where e is the electron charge, φ0 = ~/(2e) is the reduced magnetic flux quantum with ~ the
reduced Planck constant, EJ is the Josephson energy, EC = e2/2(C + Cg) is the charging
energy, and EL = (φ0/2π)2/L is the inductive energy.

The quantum observables N = Q/2e and ϕ = 2eφ/~ respectively describe the number of
Cooper pairs that have tunneled through the junction, and its conjugate, the reduced flux
operator. These observables correspond to dimensionless versions of the charge Q on the
capacitor and the magnetic flux φ through the inductor respectively. We will systematically
denote quantum observables in boldface throughout this part, whereas classical variables are
typeset normally. The two Hermitian operators satisfy the canonical commutation relations

[ϕ,N] = i, (3.2)

with i the imaginary unit, i2 = −1.
We consider a single-frequency drive

Vd(t) = V d cos(ωdt) (3.3)

with frequency ωd > 0 and amplitude V d > 0, applied through a capacitive coupling to an
AC-voltage source, as depicted in the circuit model of Figure 3.1. In this work, we consider
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the case of zero external magnetic flux:

φext = 0.

We will see that the methods developed in this dissertation can be extended towards other
flux bias points, however, and that many of the main results remain valid.

As a last point, present day nonlinear oscillators in superconducting circuits experiments
are becoming better and better isolated from the environment, but still present finite losses,
mediated through a coupling to their environment. We model this dissipation as a capacitive
coupling of the oscillator to a thermal bath [48]. The coupling Hamiltonian can be described
in terms of the different modes of the bath,

HSB =
∑
ω

~ωb[ω]†b[ω] + ~g[ω]N⊗ (b[ω] + b[ω]†). (3.4)

where b[ω] (resp. b†[ω]) is the annihilation (resp. creation) operator of the bosonic mode
with frequency ω, satisfying the commutations relations

[
b,b†

]
= 1, and g[ω] is a frequency-

dependent coupling rate. We will address how to capture the effect of (3.4) in the limit of
weak coupling (i.e. small g[ω]) in Section 3.2.2.

3.1.1 Change of variables to normal form

To obtain a form of our system that is amenable to both perturbation theory and numerical
simulations, we will carry out a change of variables with the aim of diagonalizing the unbounded
part of the Hamiltonian. As it happens, the unbounded part of (3.1) is a driven linear system,
and can be diagonalized exactly, yielding just a normalized Harmonic oscillator. Concretely,
we will rescale the variables (ϕ,N), rescale time, and displace the system to take the effect of
the drive into account. The Josephson cosine potential will then be transformed along with
the given change of variables.

Consider the rescaled variables

x =
ϕ√
2λ
, (3.5)

p =
√

2λN, (3.6)

with

λ =

(
2EC
EL

)1/4

.

Dropping a term proportional to the identity operator, we can write

H(t) =
√

8ECEL
x2 + p2

2
− EJ cos

(√
2λx

)
− 22/3EC

CgV̄d
eλ

cos(ωdt)p. (3.7)

Next we can eliminate one parameter by rescaling time by the system frequency
√

8ECEL:

τ :=
√

8ECELt.

The Hamiltonian then has to be rescaled with the same factor, yielding

H̃(τ) =
x2 + p2

2
− β

2λ2
cos
(√

2λx
)
−
√
EC
EL

CgV̄d
eλ

cos(νdτ)p, (3.8)
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with

β :=
EJ
EL

, (3.9a)

νd :=
ωd√

8ECEL
. (3.9b)

Finally, a part of the drive-effect can be taken into account by moving to a displaced frame.
Since we only consider the response of the unbounded, linear part of the system (putting
β = 0), an exact expression for the amplitude of this displacement is available:

x̃ = x− ξd√
2λ

sin(νdτ), (3.10a)

p̃ = p− ξd√
2λνd

cos(νdτ). (3.10b)

This yields the following final model:

˜̃H(τ) =
p2

2
+

x2

2
− β

2λ2
cos
(√

2λx + ξd sin(νdτ)
)
, (3.11)

where we have defined

ξd =
V dCg
e

√
2EC
EL

νd
1− ν2

d

. (3.12a)

With a slight abuse of notation, we drop the double tilde-notation ˜̃· in (3.11), and simply write
H(τ), the distinction with original HamiltonianH(t) in (3.1) being made by the time argument
τ , resp. t. It should be noted that (3.1) and (3.11) are exactly equivalent in describing the
system dynamics, as no approximations have been made in the change of variables.

In the next chapter it is shown that the four parameters (β, λ, νd, ξd) are well chosen, in
the sense that they individually govern different and complementary system properties.

3.1.1.1 Classical equations of motion

The change of variables we performed on the quantum observables were all canonical, pre-
serving the commutation relations [ϕ,N] = [x,p] = i. We can thus consider x,p as classical
variables of a corresponding classical model with Hamiltonian

H(τ) =
p2

2
+
x2

2
− β

2λ2
cos
(√

2λx+ ξd sin(νdτ)
)
, (3.13)

leading to classical equations of motion (EOM)

dx

dτ
=

∂H

∂p
(τ) = p, (3.14a)

dp

dτ
= −∂H

∂x
(τ) = −x− p

Q̃
− β√

2λ
sin
(√

2λx+ ξd sin(νdτ)
)
, (3.14b)

where we have accounted for a finite loss rate 1/Q̃. It is easily verified that when interpret-
ing (3.1) as a classical Hamiltonian system, and performing the analogous classical change
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of variables, one obtains exactly (3.13). In this work, the nonlinear oscillator is assumed to
present a very low loss rate, as superconducting devices are becoming increasingly lossless.
We will take Q̃ of the order of 105 typically.

It turns out that one can perform an additional, non-canonical rescaling of the quadratures
to eliminate λ from the EOM. By defining

xλ =
√

2λx, (3.15a)

pλ =
√

2λ p, (3.15b)

we obtain the EOM
dxλ
dτ

= pλ, (3.16a)

dpλ
dτ

= −xλ −
pλ

Q̃
− β sin(xλ + ξd sin(νdτ)). (3.16b)

This will be the standard form in which we analyze the classical system throughout this
part, as λ drops out, and one circuit parameter is eliminated in this way. It should be
remembered that the correct quantum-classical correspondence involves a rescaling with λ
however. Since λ only plays a role for the quantum version of the system, we call it the
quantum scaling parameter. Indeed, in Chapter 4 we will see that λ governs purely quantum
effects. Anticipating one more result of the next chapter, we call β the regularity parameter,
as for small enough values of β, the system is in a regular, non-chaotic regime.

3.2 Preliminaries on periodic systems

3.2.1 Periodic dynamical systems

In this section, we introduce the mathematical language needed to study the dynamics of
periodically-driven dissipative nonlinear oscillators on a classical level. We will consider os-
cillators with only one degree of freedom (i.e. two variables), since this is the case for the
inductively-shunted transmon introduced in Section 3.1, and all of the theory developed in
this section will be applied to this case in later chapters. We focus on the concepts that are
most relevant for the results obtained in the rest of this chapter. Of key importance for the
remainder of this part is the Poincaré map introduced in (3.23). This tool allows us to define
saddle-points and stable nodes (see Section 3.2.1.2), which will be a central concept through-
out the rest of this part. A general idea of the saddle-node and period-doubling bifurcation is
required to be able to follow Chapter 5 and Section 4.3 respectively. For a detailed discussion
of these bifurcations, we refer to chapter 3 of [57]. Chapter 1 of [57] was the main inspiration
for the content of this section. A less mathematically flavored but very physically insightful
introduction to the relevant concepts can be found in [120].

The state of the oscillator is described by a vector z ∈ R2, whose evolution over time
satisfies the set of ordinary differential equations

ż = f(z, t), z ∈ R2, t ∈ R, (3.17)

where ż := d
dtz stands for the ordinary time-derivative, and where f : R2×R→ R2 is a smooth

vector field that is periodic in time with period T > 0:

f(z, t+ T ) = f(z, t), ∀z ∈ R2. (3.18)
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The vector field f is often called non-autonomous, since it depends on time. The model (3.17)
is fully general, in that it can describe any periodically forced oscillation with one degree of
freedom.

We denote a particular solution (or trajectory) of (3.17) corresponding to an initial con-
dition z0 ∈ R2 at time t = 0 by z(t), with z(0) = z0. We also speak of z(t) as the solution
of (3.17) based at z0. Of particular interest for this work are periodic solutions for which

z(t+ nT ) = z(t), ∀t ∈ R, n ∈ N, n ≥ 1, (3.19)

as these solutions represent an integral part of the asymptotic behavior of the oscillator.
Indeed, a periodic solution is bound to repeat itself indefinitely. When n = 1, we call the
solution a harmonic, and when n ≥ 2, we speak of a subharmonic solution, as it contains
frequencies that are necessarily lower than that of the periodic driving modeled by f(·, t).

3.2.1.1 Flow and Poincaré map

Families of solutions can be considered by defining the flow Ψt corresponding to (3.17). By
definition, Ψt : R2 → R2, t ∈ R maps an arbitrary initial condition z0 to the solution based at
z0, evaluated at time t:

Ψt(z0) = z(t), with ż(s) = f(z(s), s), 0 ≤ s ≤ t, and z(0) = z0, (3.20)

An equivalent definition is to interpret Ψ as a function of (t, z) and directly impose

∂

∂t
Ψt(z0) = f(Ψt(z0), t), ∀t ∈ R, z0 ∈ R2. (3.21)

Remark that to define the flow, we require knowledge of the exact solution based at any point
z0. Hence, an explicit representation of the flow as a 2D map is almost never available for
realistic systems. Nevertheless, thinking of dynamical systems in a geometric way, in terms of
the flow that transforms subsets of phase space, can bring useful insight.

In the discussion so far, the choice of starting point t = 0 has been somewhat arbitrary, as
the system is T -periodic, and one can translate time by any multiple of the period T . Explicitly,
for every two trajectories z1(t) and z2(t) that share a point z1(t0) = z2(t0 + kT ), k ∈ Z at
some time t0, it follows that z1(t) = z2(t+kT ),∀t ∈ R. z1 and z2 are in fact one and the same
solution. This observation leads to the following (discrete) group property for the flow:

ΨnT = Ψ(n−1)T ◦ΨT = Ψ(n−2)T ◦Ψ2
T = · · · = Ψn

T . (3.22)

Here, the powers and open circle ◦ stand for the composition of maps, defined by Ψ2
T (z0) =

ΨT ◦ ΨT (z0) = ΨT (ΨT (z0)). We now define the Poincaré map as the flow corresponding to
one system period, mapping any initial condition to its solution a time T later:

P := ΨT . (3.23)

One additional possible interpretation is that given a continuous-time solution z(t) of (3.17),
powers of P allow us to sample the solution at multiples of the drive period:

Pk(z0) = z(kT ). (3.24)
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Once we have defined the Poincaré map, we can consider the discrete dynamical system

zk+1 = P(zk), k ∈ N, (3.25)

which can be studied in its own right. We call {zk|k ∈ N} the orbit of P based at z0. When
considering the discrete-time dynamical system (3.25), we can identify the powers Pk of the
Poincaré map as the flow of this discrete-time dynamical system. We say that P generates
the discrete flow. To simplify the terminology, we will refer to Pk simply as the flow, as the
context should make it clear whether we are talking about the continuous-time system, or its
discrete version (3.25).

The Poincaré map allows us to define all the relevant system behavior in the context of
this work. An immediate example is that subharmonic solutions z(t) of period nT correspond
to an n-periodic orbit (or simply n-orbit) {z∗k := z(kT )|k = 0, 1, . . . , n− 1} of P, with

P(z∗k) = z∗k+1, k = 0, 1, . . . , n− 2,

P(z∗n−1) = z∗0 .

This is easily verified given the relation (3.24). One last equivalent formulation is that to a
subharmonic of period nT are associated n fixed points z∗k of Pn, in the sense that

Pn(z∗k) = z∗k, k = 0, 1, . . . , n− 1. (3.27)

In summary, an nT -periodic subharmonic continuous-time solution corresponds to an n-orbit
of the corresponding Poincaré map P, which in turn corresponds to a set of n distinct fixed
points of Pn.

3.2.1.2 Local properties of the flow

For notational simplicity, we will focus on a fixed point of P in this section, instead of fixed
points of Pn for a general n ≥ 1. The discussion of this section is completely analogous for
n ≥ 2 however. Denote the fixed point of P by z∗. We can ask ourselves the question what
the dynamics in its immediate vicinity is like. Do neighboring points converge to z∗, are they
repelled by it, or do they remain at a bounded distance from it indefinitely? Such questions
are the subject of a stability analysis of the fixed point. We will first provide a rather informal
discussion of the possible cases that can be concluded from a local linearization analysis,
yielding a few distinct possibilities for the stability type of the fixed point.

Since an analysis based on a linearization is only approximately valid a priori, we next detail
in which cases a linearization analysis yields provably correct conclusions regarding the true,
exact flow around fixed points. This is the subject of so-called invariant manifold theorems,
providing the existence of one-dimensional manifolds that are invariant under the flow. This
allows us to locally reduce P to a one-dimensional map, by restricting it to the appropriate
one-dimensional invariant manifold.

One last question one could ask is through what mechanism fixed points can appear or
disappear, or change stability type, upon changing a system parameter µ. We define a bifur-
cation of a fixed point to be any process where fixed points are created or disappear, or any
process where a fixed point changes stability type, where µ is the corresponding bifurcation
parameter. Lastly we will briefly discuss the possible bifurcations that can take place for fixed
points of P upon changing the parameters of our system, concluding this subsection on local
properties of the flow.
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Stability type of fixed points through linearization

Consider an initial condition z∗ + ∆z0, with P(z∗) = z∗, and ∆z0 a small variation. We can
define variations ∆zk at later times kT such that

z∗ + ∆zk+1 = P(z∗ + ∆zk).

Letting the variations ∆z tend to zero, formally replacing it by the infinitesimal δz, we obtain

δzk+1 = ∇P(z∗) δzk. (3.28)

For small variations, we can thus study the linear system generated by the linearized Poincaré
map ∇P(z∗) to obtain the stability type of the fixed point z∗. When both the eigenvalues ζ, η
of ∇P(z∗) lie outside the unit circle (|ζ|, |η| > 1), we call z∗ a source, as neighboring points
diverge from it at an exponential rate. When both eigenvalues lie in the interior of the unit
circle, we speak of a sink, or a stable node, as neighboring orbits converge exponentially to
z∗. When |ζ| > 1, but |η| < 1, the fixed point corresponds to a saddle point, displaying one
unstable, and one stable direction. Indeed, considering the eigenvectors v, w ∈ R2 of ∇P(z∗),
we find one contracting direction since

(
∇P(z∗)k

)
v = ηkv, and one expanding direction, as

(∇P(z∗))kw = ζkw, with |ζ| > 1. The stable (resp. unstable) manifold theorem then states
that locally, there exists an exact corresponding manifold Ws (resp. Wu), locally tangent to
{z∗ + hv|h ∈ [−l, l]}, l > 0 (resp. {z∗ + hw|h ∈ [−l, l]}, l > 0) that remains invariant under the
application of P. More precisely, points in Ws are mapped to points in Ws, and the system
can be reduced to a one-dimensional map when restricted to Ws. This manifold is dubbed
the stable manifold, since for this one-dimensional (1D) flow, z∗ is exponentially stable.

Sinks, sources and saddles are three so-called hyberbolic fixed points, since a linearization
analysis allows us to classify their stability type. When one of the eigenvalues of ∇P(z∗) lies
exactly on the unit circle, a linearization analysis is inconclusive to characterize the flow in
the vicinity of z∗, and a higher-order normal form calculation should be pursued, involving
higher powers of the variations δz. When |η| = 1, but |ζ| 6= 1, we can still find one stable
(resp. unstable) direction corresponding to the eigenvector w if |ζ| < 1 (resp. |ζ| > 1). To
the eigenvector v corresponding to η is now associated an invariant manifold called the center
manifold. The 1D flow restricted to this center manifold is structurally-stable, but instead
corresponds to a bifurcation point. We will briefly classify the types of fixed points and the
types of bifurcations that can take place, for the specific case of the model introduced in (3.16).

3.2.1.3 Specifics for dissipative driven oscillators

Consider now the system introduced in (3.16), with a nonzero dissipation rate 1
Q̃
> 0. For the

state vector we have

z =

(
xλ
pλ

)
,

and we can readily identify the vector field as

f(z, τ) :=

(
pλ

−xλ − pλ
Q̃
− β sin(xλ + ξd sin(νdτ))

)
. (3.29)

For this case of a dissipative oscillator, it is easy to see that only stable nodes and saddle
points can occur as fixed points of Pn, whereas sources cannot occur. This is due to the
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area-contracting nature of the system. Indeed the local flow Ψ around a source could never
be area-contracting. For a mathematical proof we can use Lemma 3.1, providing an explicit
representation for the eigenvalues η± of ∇(Pn)(z∗0), with Pn(z∗0) = z∗0 . Through this lemma,
it is easy to see that at least one eigenvalue of ∇(Pn)(z∗0) must lie inside the unit circle, so the
fixed point z∗0 cannot correspond to a source. Another immediate consequence of Lemma 3.1 is
that the only possible local bifurcations of fixed points of Pn correspond to either a saddle-node
bifurcation, for which

η+ = 1 , for L = exp

(
πn

νdQ̃

)
in (3.31) ,

or a period-doubling bifurcation, or flip bifurcation, for which

η+ = −1 , for L = − exp

(
πn

νdQ̃

)
in (3.31) .

For a general introduction to these bifurcation mechanisms, we refer to chapter 3 of [57].

Lemma 3.1. Consider a fixed point z∗0 of Pn, n ∈ N, n ≥ 1, where P is the Poincaré map
associated to the vector field (3.29). The eigenvalues of ∇(Pn)(z∗0) can either be written as

η± = exp

(
− πn

νdQ̃

)
eiθ, θ ∈ [0, 2π), (3.30)

or as
η± = exp

(
− πn

νdQ̃

)
L±1, L ∈ R, |L| ≥ 1. (3.31)

.

Proof. The main idea of the proof is to exploit the fact that the system exhibits a constant
contraction rate given by

Tr(∇f) ≡ − 1

Q̃
,

as

∇f(z) =

(
0 1

−1− β cos(x+ ξd sin(νdτ)) − 1
Q̃

)
.

To work towards the final result, we perform a similar linearization of the flow Ψτ correspond-
ing to the continuous-time system (3.17) around the point z∗0 , and integrate the resulting
equation over n drive periods, yielding

∇Ψ 2nπ
νd

(z∗0) = ∇(Pn)(z∗0).

To conclude the proof, we only need an expression for the product of the eigenvalues of ∇(Pn)

(i.e. det(∇(Pn))), as one easily sees that η+η− = exp
(
− 2πn
νdQ̃

)
for both cases (3.30) and (3.31).

We now summarize the derivation.
By definition the flow satisfies

∂

∂τ
Ψτ (z) = f(Ψτ (z), τ), z ∈ R2 (3.32)
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We can linearize this equation around the continuous-time 2πn/νd-periodic solution Ψτ (z∗0) =
z(τ) = (x(τ), p(τ)), analogous to the reasoning on the discrete-time system given in (3.28):

∂

∂τ
∇Ψτ (z∗0) = ∇f(z(τ), τ)∇Ψτ (z∗0). (3.33)

This is now a linear time-dependent equation enabling the study of the system in the vicinity
of z(τ), and since z(τ) is 2πn/νd-periodic, the linear system (3.33) is of the same period. The
dissipative nature of the system can be exploited by considering det(∇Ψτ ), as this quantity
captures the local expansion of oriented surfaces around the given solution:

∂

∂τ
det(∇Ψτ (z∗0)) = Tr(∇f(z(τ), τ)) det(∇Ψτ (z∗0)), (3.34)

where we have used Jacobi’s formula. Now we can leverage the local contraction rate, by
substituting

Tr(∇f(z(τ))) ≡ − 1

Q̃
,

as

∇f(z(τ)) =

(
0 1

−1− β cos(x(τ) + ξd sin(νdτ)) − 1
Q̃

)
.

Integrating the resulting equation over a time 2πn/νd readily yields

det

(
∇Ψ 2nπ

νd

(z∗0)

)
= det(∇(Pn)(z∗0)) = exp

(
−2πn

νdQ̃

)
,

independently of the exact fixed point z∗0 . Since ∇(Pn) is a matrix with real entries (obtained
by integrating a system with real variables), its eigenvalues η± must either be real, or come
in complex conjugate pairs, with still

η+η− = exp

(
−2πn

νdQ̃

)
.

This concludes the proof.

3.2.1.4 Numerical scheme

In this work, phase portraits of the Poincaré map were simulated using time-domain simula-
tions, orbit per orbit for different chosen initial conditions. The system was simulated in a
form where the dissipation rate on the two variables is equal, after an extra change of variables
− see Section 4.3.1 later, the result of which is (4.28), anticipated here:

d

ds
x̃ = p̃− κx̃,

d

ds
p̃ = −x̃− κp̃− β̃ sin(x̃+ ξd sin(ν̃ds)).

We used a first-order integration scheme that is symplectic for κ = 0, defined as

x̃k+1 = x̃k + ds(p̃k+1 − κx̃k), (3.36a)

p̃k+1 = p̃k − ds
(
x̃k + κp̃k+1 + β̃ sin(x̃k + ξd sin(ν̃d k ds))

)
. (3.36b)
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Note that the updated value p̃k+1 must be used in the right hand side of (3.36a) for the scheme
to be symplectic for κ = 0. Since the unknown p̃k+1 only appears in linear terms, we can solve
for it, and the update rule can readily be written down explicitly:

p̃k+1 =
p̃k − ds

(
x̃k + β̃ sin(x̃k + ξd sin(ν̃d k ds))

)
1 + κds

, (3.37a)

x̃k+1 = x̃k + ds(p̃k+1 − κx̃k). (3.37b)

We chose ds = π
500ν̃d

for all numerical simulations shown in this work, which corresponds to
1000 samples per period of the drive.

3.2.2 Floquet theory and numerical simulations

In this section, we will review the basics of Floquet theory [40, 109], both for closed Hamil-
tonian systems, as for a weak coupling to a bath where the Born-Markov approximation is
valid. This Floquet formalism is used to perform the numerical simulations of this part of the
dissertation. The main goal is to describe the long-time asymptotic behavior of the system.

Consider a time-dependent HamiltonianH(t) that is time-periodic, with period T = 2π/ωd,
acting on Hilbert space H. The Floquet theorem states that there exists solutions of the
corresponding Schrödinger equation

d

dt
|ψ(t)〉 = − i

~
H(t) |ψ(t)〉 , (3.38)

of the form
|ψr(t)〉 = e−

i
~ εrt |φr(t)〉 , (3.39)

where the Floquet modes {|φr(t)〉} form an orthonormal basis of the Hilbert space H at any
time t, and are T -periodic:

|φr(t+ T )〉 = |φr(t)〉 , ∀t ∈ R, (3.40a)
〈φr(t)|φl(t)〉 = δrl, ∀t ∈ R. (3.40b)

Here, {εr} are called the Floquet quasi-energies. Clearly, εr is defined up to multiples of ~ωd as
the Floquet modes |φr(t)〉 can be multiplied by e−ikωdt. Without, loss of generality we choose
the quasi-energies εr to lie in the first Brillouin zone [−~ωd/2, ~ωd/2]. An equivalent viewpoint
is that the Floquet modes (resp. quasi-energies) are the eigenvectors (resp. eigenvalues) of the
generalized Hamiltonian

H(t)− i~ ∂
∂t
,

considered to act on the Hilbert space of square integrable T -periodic wave functions in H.
Since the Floquet modes at any time t form an orthonormal basis of the Hilbert space H, one
can obtain the solution of the Schrödinger equation corresponding to an arbitrary initial state
|ψ(0)〉 by decomposing it into the basis of Floquet modes:

|ψ(t)〉 =
∑
r

e−
i
~ εrt |φr(t)〉 〈φr(0)|ψ(0)〉 . (3.41)
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The Floquet modes can be numerically computed as the eigenstates of the unitary evolution
U(t) generated by (3.38). Indeed, we note that the solution of the following equation

d

dt
U(t) = − i

~
H(t)U(t), U(0) = I

with I representing the identity operator, is given by

U(t) =
∑
r

e−
i
~ εrt |φr(t)〉〈φr(0)| .

Therefore, one obtains the Floquet quasi-energies and the correct basis of Floquet modes at
time t = 0 by numerically diagonalizing U(T ). Next, we can again numerically integrate the
Schrödinger equation with initial conditions |φr(0)〉 to obtain the Floquet modes at any time
t ∈ [0, T [.

Floquet theory can be extended to describe the effect of a weak coupling to a thermal bath.
In particular, the asymptotic behavior of the system is described by an extension of Fermi’s
golden rule ([54], section 9). We will give a quick summary of this Floquet-Markov theory
here, and explain the numerical approach that we use in the manuscript. For concreteness,
recall that in (3.4) , we modeled the system coupled capacitively to a thermal bath through
the Hamiltonian

HSB =
∑
ω

~ωb[ω]†b[ω] + ~g[ω]N⊗ (b[ω] + b[ω]†), (3.42)

where b[ω] is the annihilation operator of the bosonic mode with frequency ω, and g[ω] is
a frequency-dependent coupling rate. Assuming the coupling rates g[ω] to be the slowest
timescale in the joint system, and assuming a non-resonance condition on the quasi-energies
(detailed here-under), one can apply the standard Floquet-Markov-Born approximation ([54],
section 9). This Floquet-Markov-Born approximation yields a Lindblad type master equation
for the system alone, that can easily be solved in the Floquet basis. When parameterizing the
density matrix of the system in terms of its components in the Floquet basis (corresponding
to the first Brillouin zone),

ρrl := 〈φr(t)|ρ(t)|φl(t)〉 , (3.43)

one obtains a set of decoupled rate equations for ρrl:

d

dt
ρrr(t) =

∑
l

Lrlρll(t)− Llrρrr(t), (3.44a)

d

dt
ρrl(t) = −1

2

∑
m

(Lmr + Lml)ρrl(t). (3.44b)

The transition rates Lrl are given by an extension of Fermi’s golden rule:

Lrl :=
∑
m

γr,l,m + nth(|∆rlm|)(γr,l,m + γl,r,−m). (3.45)

Here,

• ~∆rlm := εl − εr +m~ωd,
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• nth(ω) represents the average number of thermal photons in the bath mode at frequency
ω, given by the Bose-Einstein distribution at thermal equilibrium with bath temperature
Tbath:

nth =
1

exp
(

~ω
kBTbath

)
− 1

.

• The coefficients γrlm are in turn given by

γr,l,m := 2πΘ(∆rlm)J(∆rlm)|Prlm|2, (3.46)

where J(ω) is the spectral function of the coupling rate to the bath, defined in turns of
the g[ω] and to be evaluated mode by mode, and Θ is the Heaviside function.

• Lastly, the matrix elements Prlm are defined by

i 〈φr(t)|a− a†|φl(t)〉 =
∑
m

Prlme
imωdt. (3.47)

The above rate equation can be contrasted to Fermi’s golden rule for stationary systems
as follows. The transition frequency between two Floquet modes is now not simply given by
one unique difference in energy. Instead there are an infinite number of possible transition
frequencies, shifted by harmonics of the drive frequency ωd. This is consistent with the fact
that the Floquet modes themselves can contain any harmonic of the drive in principle. The
total transition rate between two Floquet modes r ↔ l induced by the coupling to the bath
is now the sum of the rates of these different possible transitions, obtained by evaluating the
bath spectral noise density at these different transition frequencies.

It is easy to see that the rate equations (3.44) ensure that the asymptotic density matrix
ρ∞(t) is diagonal in the Floquet basis, since ρrl → 0, r 6= l, and that the state converges to a
unique classical mixture over the Floquet modes,

ρ(t)→ ρ∞(t) =
∑
r

pr |φr(t)〉〈φr(t)| .

To compute the probability distribution {pr} corresponding to this mixture, it suffices to solve
the linear system of equations Rp = 0, with

Rrl := Lrl − δrl
∑
m

Lrm. (3.48)

The fact that the asymptotic density matrix is diagonal in the Floquet basis derives from a
secular approximation as part of the Floquet-Born-Markov approximation, where one neglects
time-dependent terms that oscillate at frequencies (εr − εl)/~ −mωd, whenever either r 6= l
or m 6= 0. We will see later on that indeed no (near-)degeneracies occur in the quasi-energy
spectrum typically, so this secular approximation is justified.

3.2.2.1 Assumptions in this work, and numerical implementation

In this work, we assume the limit of a cold bath, and hence assume Tbath = 0, so nth = 0. We
furthermore assume J(ω) = J to be constant. We observe that the maximal Brillouin-zone
difference that has to be chosen in (3.45) for the simulations to converge amounts tommax = 5.
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We use the Floquet toolbox of the QuTiP [63] open source package to compute the Flo-
quet decomposition, using a modified version of the subroutine calculating the rate matrix R
in (3.48). The number of Fock states that has to be used to simulate the system depends on
the type of asymptotic cycle ρ∞(τ) obtained. We will address this question in Section 4.2.

One numerical difficulty that occasionally presents itself lies in the numerical evaluation of
the eigenvector of the transition matrix R corresponding to the eigenvalue zero. Numerically
we see that R shows at least one eigenvalue that is 0 up to machine precision. For some
system parameters we encountered the possibility of the transition matrix R exhibiting two
very-nearly degenerate eigenvectors, both corresponding to eigenvalues very close to 0. At
this point the employed numerical diagonalization algorithm becomes unstable, and whether
the steady-state ρ∞ is uniquely defined cannot be concluded based on the numerics. Such
parameter values will be removed from the numerical data in the next chapter, as mentioned
there.
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Chapter 4

Robust Floquet cat-confinement

Dans le chapitre précédent, nous avons présenté l’application de Poincaré et la théorie de
Floquet comme les deux langages permettant de décrire le comportement à long terme de notre
système forcé. Dans ce chapitre, nous commençons par utiliser ces outils pour fournir une
définition physique concrète de l’objectif principal de cette partie: le confinement des états
chats de Schrödinger de manière robuste. Pour définir ce confinement des états chats, nous
établissons un parallèle fort entre des solutions sousharmoniques classiques et des modes de
Floquet sous forme de chats quantiques, d’un nombre de composants correspondant. En effet,
nous montrons qu’une même condition de résonance satisfaite par le forçage est responsable
à la fois des processus multi-photons qui confinent les états chats, ainsi que de l’existence des
solutions subharmoniques correspondantes. Dans la Section 4.2, les effets du chaos classique
sur le confinement des états chats sont étudiés. Pour cette étude, nous nous concentrons
sur une condition de résonance (3 : 1), correspondant à une variété de trois d’états chats
de Schrödinger à trois composants. Plutôt que de converger vers une variété protégé d’états
chats, le régime asymptotique est fortement entropique, et l’état quantique se disperse sur
une grande surface de l’espace des phases. Nous montrons que l’abaissement d’un paramètre
effectif du circuit (appelé paramètre de régularité) introduit dans le chapitre précédent supprime
complètement ce comportement chaotique. Nous présentons ensuite une explication théorique
en correspondance avec cette transition en fonction du paramètre de régularité, celle-ci basée
sur le blocage d’une route principale vers le chaos. Enfin, dans la Section 4.4, nous étudions
la protection de la variété d’états chats dans le régime non-chaotique, appelé régulier. Nous
montrons que l’augmentation du second paramètre effectif du circuit, appelé paramètre de
redimensionnement quantique, augmente lécart spectral de quasienergie entre les états chats
et leurs états de premi‘́ere excitation, sans jamais mener à des régimes chaotiques. Nous
concluons dans la Section 4.5 en ce concentrant sur les extensions possibles de la méthode
développée.

In the previous chapter we introduced both the Poincaré map and Floquet theory as the
two languages in which to describe the long-time asymptotic behavior of our driven system,
for the classical and the quantum version respectively. In this chapter, we first use these tools
to provide a concrete physical definition of the main goal of this part, namely the confinement
of Schrödinger cat states that are robust against perturbations. Our way of defining this
cat-state confinement draws a strong parallel between classical subharmonic solutions and
the different coherent-state components of the quantum cat states. In Section 4.2, we study
the breakdown of cat-state confinement due to classical chaotic dynamics. For this we focus
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on a (3 : 1)-resonance condition, corresponding to a manifold of 3-component Schrödinger
cat states. Rather than converging to a degenerate manifold of cat states, the asymptotic
regime is highly entropic, and the quantum state mixes over a large area in phase space. We
show that one effective circuit parameter (dubbed the regularity parameter) introduced in
the previous chapter can be lowered to eliminate the highly entropic regimes of the quantum
system. Next, we present a theoretical explanation in accordance with this phase transition
as a function of the regularity parameter β, based on the blocking of a main route to chaos for
the system. This suggests that for a small but finite value of β the chaotic behavior can be
suppressed altogether. Lastly, in Section 4.4, we show that in the non-chaotic regime, a second
effective circuit parameter dubbed the quantum scaling parameter can be tuned independently
to increase the spectral gap separating the cat state manifold from higher-excited states,
without ever running into chaotic behavior. We conclude in Section 4.5, focussing on possible
extensions of the developed method.

4.1 (n : m)-resonances and Schrödinger cat states

In this section, we will show that the inductively-shunted transmon introduced in Section 3.1
can be used to provide Hamiltonian confinement of a degenerate manifold of Schrödinger cat
states. On the one hand, this is a proof that the studied system is well-chosen, as it can exhibit
highly-nonclassical behavior. On the other hand, our definition of cat qubit confinement lays
a connection between the classical and quantum system that we believe to be novel. The
presentation serves to introduce the desired behavior of the system, expressed in terms of the
Floquet decomposition of the system, without considering the influence of system and drive
parameters on the behavior of the system. This dependence on parameters is the subject of
Sections 4.2,4.3 and 4.4.

We start with a general introduction on the benefits of cat codes. This is done using
examples of general idealized models that confine the manifold of cat states. Next, in Sec-
tion 4.1.2, we detail how a degenerate manifold of three-component cat states can be confined
by appropriately driving the inductively-shunted transmon. We define this cat state confine-
ment in terms of the Floquet decomposition, and more specifically in terms of the long-time
asymptotic behavior characterized by Floquet-Markov simulations. In Section 4.1.3, we dis-
cuss an observed connection between the phase portrait of the classical Poincaré map on the
one hand, and the degenerate manifold of cat states on the other hand. We conclude that the
confinement of general n-component cat states goes hand in hand with stable n-orbits of the
Poincaré map, and vice versa.

4.1.1 Confined cat qubits

Let α ∈ C be a given complex number, and denote by a the annihilation operator of a bosonic
mode,

[
a,a†

]
= 1. A coherent state |α〉 is the normalized quantum state parametrized by

α ∈ C such that
a |α〉 = α |α〉 ,

A coherent state can be considered the most “classical” a quantum state can be, as in a phase-
space picture, |α〉 adheres to a Gaussian distribution centered around the classical point (x, p)
with α = x+ip√

2
, with equal and minimal standard deviations ∆x, ∆p of the two quadratures
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given by the Heisenberg uncertainty principle:

∆x = ∆p =
1√
2
.

The corresponding Wigner quasiprobability distribution is represented in Figure 4.1(left).
Given this classical correspondence, for α = |α|eiθ ∈ C, we will call |α| the amplitude and θ
the classical phase of the state |α〉.

We can then define the normalized opposite-phase superpositions

∣∣Cα±〉 =
|α〉 ± |−α〉
N±

. (4.1)

These states go by the name of Schrödinger cat states, as they form the quantum superpo-
sition of two opposite classical phases θ and θ + π of the oscillator, which can be considered
macroscopic when |α| is large. The states |C±α 〉 are orthogonal, whereas |±α〉 are not. The
normalization constant N± amounts to

N± =
√

2(1± 〈−α|α〉) =

√
2
(

1± e−2|α|2
)
,

so for a large amplitude |α|, the two coherent states do become orthogonal for all practical
purposes. The basic idea behind the exact orthogonality of |C±α 〉 is a parity argument. To see
this, it is instructive to consider the representation of a coherent state in the basis of Fock
states |n〉, namely the eigenstates of the photon number operator a†a:

|α〉 = e−
|α|2

2

∑
n∈N

αn√
n!
|n〉 , with a†a |n〉 = n |n〉 . (4.2)

Indeed, in this way it can be verified that |C+
α 〉 involves only states with an even number of

photons, and similarly |C−α 〉 involves only states with an odd number of photons.
The cat states

∣∣Cα±〉 have been proposed as basis states of a quantum bit (or qubit), to be
used for universal quantum computation [78, 92]. The logical code space is spanned by the
computational basis states

|0L〉 :=

∣∣Cα+〉+
∣∣Cα−〉√

2
= |α〉+O

(
exp
(
−2|α|2

))
, (4.3)

|1L〉 :=

∣∣Cα+〉− ∣∣Cα−〉√
2

= |−α〉+O
(

exp
(
−2|α|2

))
, (4.4)

In terms of protection of information against errors, the merit of the proposed cat-qubit stems
from the fact that bit flips (errors mapping |0L〉 into |1L〉 and vice versa) are exponentially
suppressed in |α|2. Increasing |α|2 (also called the size of the cat, coinciding with the mean
photon number n̄ := 〈α|a†a|α〉) thus exponentially suppresses the occurrence of bit flips.
This fact is not trivial to see, but we can generally understand this bit-flip protection in two
steps. First, mechanisms must be put in place to confine the physical state to the manifold
of cat states. For now assume the state remains within the code space, as we elaborate on
these possible confinement mechanisms hereunder. If the state remains within the code space,
we can look at the matrix element | 〈α|E|−α〉|2 proportional to the rate of direct transitions
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Figure 4.1: Wigner representations of |α〉 , |−α〉 ,
∣∣Cα+〉 and ∣∣Cα−〉, for α = 2.5. The two coherent

states are well-separated in phase space, even for this moderate mean number of photons
n̄ = 6.25. One can see that the sign of the interference fringes is interchanged for the two cat
states. The larger the value of |α|, the closer the positive and negative interference fringes
alternate each other. This proximity may be another way to understand why larger cat states
become (linearly) more fragile to phase-flip errors.

between |α〉 and |−α〉 induced by an error operator E. One can show that this matrix element
is exponentially small in |α|2 for any error operator E that acts locally in phase space. This
is for example the case for displacement errors (E = a + a†), and in fact for most physically
relevant error mechanisms. For the case of displacement errors we can calculate:∣∣∣ 〈−α|a + a†|α〉

∣∣∣2 = |α− α∗|2 exp
(
−4|α|2

)
.

A physical intuition for this scaling is that the two coherent states become more and more
separated in phase space when |α| becomes large, and operators that act locally in phase
space can only couple them with exponentially small rates. Using the same reasoning, one can
show that the rate of phase-flips (errors mapping

∣∣Cα+〉 into
∣∣Cα−〉 and vice versa) is expected

to increase with |α|2. Indeed, still considering displacement errors, we obtain∣∣∣ 〈Cα∓∣∣a + a†
∣∣Cα±〉∣∣∣2 ' |α+ α∗|2,

when neglecting terms that are exponentially small in |α|2. Note that the resulting increase
in phase-flip rate is only linear in |α|2 however, and this remains true for error operators
that act locally in phase space. This noise-bias allows for more hardware efficient quantum
error correction, by ramping up |α|2 as to render bit-flip errors negligible, and subsequently
correcting only for the (linearly) increased phase-flip errors using quantum error correction
techniques. For this, the present noise-bias has to be preserved while performing a universal
set of logical gates [58, 103].
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As we mentioned the two-dimensional code space spanned by the cat states is embedded
in a larger, in fact infinite-dimensional Hilbert space. Hence, there is not only the danger of
logical errors occurring directly within the code space, but the physical state can also leak out
of the code space. Protection against this leakage can be provided in two different and com-
plementary ways, and state-of-the-art experiments have succeeded in confining a manifold of
cat states using either a dissipative stabilization mechanism [80, 82] or a Hamiltonian confine-
ment mechanism [55]. Recent theoretical work has shown that these two complementary ways
can also be combined [49], using well-chosen adaptations of the Hamiltonian providing the
confinement. The first approach [80, 82] stabilizes the computational manifold by engineering
a dissipative mechanism where pairs of oscillator photons are exchanged with single photons
of a strongly dissipative environment, typically composed of a second, low-Q oscillator. The
effective coupling Hamiltonian that has to be engineered is of the form

g2

(
a2 − α2

)
⊗ b† + g∗2

(
a†2 − α∗2

)
⊗ b, (4.5)

which takes place at a rate |g2|, and where the b mode is designed to be low-Q, and in
interaction with a cold bath. In summary, in the dissipative case, a quantum state that has
leaked outside the code space is actively made to reconverge to the code space, due to the
dissipative stabilization of the cat qubit manifold. The local reconvergence rate due to this
effective two-photon dissipation process is of the order [92]

κ2 ∼
|g2|2

κb
|α|2,

where κb stands for the photon loss rate of mode b.
As a second flavor of cat-qubit confinement [55], a Kerr-Hamiltonian of the following form

is engineered,
HKerr = K

(
a†2 − α∗2

)(
a2 − α2

)
,K > 0. (4.6)

The cat qubit code space thus coincides with the kernel of HKerr. For this Hamiltonian
cat-qubit confinement, once the state is perturbed out of the code space, there is no active
mechanism to bring it back. However, for a given strength of Hamiltonian perturbations,
one can determine how much the cat qubit manifold is perturbed as a whole by considering
the gap in the spectrum of HKerr. When applying sufficiently weak and sufficiently slowly-
varying Hamiltonian perturbations, typical results from perturbation theory [65] tell us that
the perturbed eigenspace will remain very close to that of the cat qubit manifold. For the
case of the Kerr Hamiltonian, this spectral gap is shown to scale as

4K|α|2

in the limit of large |α|. In the next subsection, we define an analogous spectral gap on the
quasi-energies of the driven system, capturing the analogous robustness of the cat subspace
as a whole to sufficiently weak and sufficiently slowly-varying Hamiltonians.

As a last point, the question remains how to engineer Hamiltonians that confine cat states,
such as (4.5) or (4.6), starting from the available superconducting circuit elements, preferably
with large g2 and K respectively in order to achieve strong cat confinement. The Josephson
junction plays the central role of the nonlinear element with which such nonlinear processes
are engineered. To engineer a given nonlinear process, one typically applies one or several
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microwave drives called pumps [55, 80]. For example, (4.5) can be seen a four-wave mix-
ing process mediated by the junction that is made resonant by applying a microwave pump
satisfying the frequency-matching condition [82]

2ωa = ωp + ωb,

where ωa is the frequency of the a-mode, ωb is the frequency of the b-mode, and ωp stands
for the frequency of the applied pump.

The engineering of such parametric interactions through basic first-order analysis meth-
ods (such as first-order rotating-wave approximation [132], and first-order adiabatic elimina-
tion [8]) is now state-of-the-art knowledge. Our contribution will be to show how these can be
kept robust in more extreme regimes corresponding to large driving amplitudes, and we will
perform this study for the benchmark system of the inductively-shunted transmon. We will do
this for the exact system, considering the full Josephson nonlinearity and true time-dependence
due to the driving. This creates a first difficulty to be overcome, namely characterizing the
correct resonance condition that selects the desired parametric interaction. In this chapter,
we adopt a numerical approach for this based on numerical Floquet-Markov simulations of the
driven quantum system, while in Chapter 5, such resonance conditions are characterized in the
limit where the oscillator can be considered to be classical. We there perform an approximate
analytical study. In the remainder of this section, we will focus on drive parameters for which
a given resonance condition is satisfied. The benefit of considering the full cosine potential
and the exact time-dependence through numerical Floquet-Markov simulations is that effects
are captured that go beyond approximate models such as rotating-wave approximations. We
identify these effects as chaotic dynamics in Section 4.2, and show how these can lead to the
breakdown of the desired parametric process if the circuit parameters are not well chosen.

4.1.2 Floquet-Markov signatures of cat confinement

In this section, we will show that the inductively-shunted transmon can be used to confine a
degenerate manifold of Schrödinger cat states. We focus on a fixed set of appropriately chosen
drive parameters, and we define the cat state confinement based on the Floquet decomposition.
We focus on the asymptotic regime of our system with Hamiltonian (recalled from (3.11))

H(τ) =
p2

2
+

x2

2
− β

2λ2
cos
(√

2λx + ξd sin(νdτ)
)
, (4.7)

and consider a weak dipolar coupling to an environmental bath, as modeled in (3.42). Recall
from Section 3.2.2 that numerical Floquet-Markov simulations then allow us to find the unique
infinite-time asymptotic state ρ∞(τ) as a probabilistic mixture over the Floquet modes |φr(τ)〉,

ρ∞(τ) =
∑
r

pr |φr(τ)〉〈φr(τ)| .

We recall that for these Floquet-Markov simulations we assume a zero-temperature bath, and
frequency-independent coupling rates to the different modes of the bath.

With well-chosen drive parameters (νd, ξd), we obtain the asymptotic regime displayed in
Figure 4.2. A joint account is given of the quasi-energies of the driven system (3.11), as well
as the occupation probabilities of the corresponding Floquet modes in ρ∞. In plot (a), one
can see that the probability vector pr only has considerable support on a triplet of dominant
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Figure 4.2: Numerical account of the infinite-time Floquet state ρ∞(τ), for β = 0.5, λ =
0.2, ξd = 0.75 and νd = 3.5. (a) The Floquet quasi-energies are plotted against their respective
occupation probabilities. The quasi-energy spectrum shows three branches that are separated
by νd/3, making εr mod νd/3 threefold degenerate to good approximation. The corresponding
occupation probabilities show the same trend, with 3 states being equally occupied in triplets.
ρ∞ mainly has support on one dominant triplet of modes |φαk 〉 only. This signature of resonance
is confirmed in the plots on the right. (b)Wigner representation of one of the three dominantly
occupied Floquet modes, at time τ = 0. The mode is seen to represent a three-component
Schrödinger cat state. The other two modes |φαk 〉 , k = 1, 2 in the triplet correspond to three-
component cat states with complementary interference pattern. (c) Wigner representation
of one of the three Floquet modes |ηαk 〉 with next-highest occupation probability, at time
τ = 0. The |ηαk 〉 show a close resemblance to the three analogous symmetric superpositions
of displaced Fock |1〉-states. These excited states are seen to be the most coupled to the cat
states, as they have the next-highest occupation probability. The quasienergy spectral gap
∆ε between the |φαk 〉 and the |ηαk 〉 amounts to 0.073.

Floquet modes, that each share the same occupation probability (' 1/3). We will denote
these dominant Floquet modes by |φαk 〉 , k = 0, 1, 2. We also observe that the quasienergies
ε[|φαk 〉] of |φαk 〉 are degenerate modulo νd/3 up to very good accuracy. This is a signature of
resonance in the driven system. A Wigner representation at time τ = 0 mod 2π/νd of one
of these dominant modes can be seen in plot (b), showing that within good approximation,
|φα0 〉 corresponds to the symmetric coherent superposition of three coherent states, namely
a Schrödinger cat state. The other two states |φαk 〉 , k = 1, 2 correspond to the two other
three-component cat states with the complementary interference pattern. Further numerical
simulations (not shown) indicate that the |φαk (τ)〉 represent cat states at any time τ , and
that, moreover, for the physical state |ψαk (τ)〉 = e−iε[|φαk 〉] |φαk (τ)〉 (recall (3.39) from Floquet
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theory) which is a solution of the Schrödinger equation with Hamiltonian (4.7) we can write,
up to an insignificant accumulated global phase:

|ψαk (τ)〉 '
∣∣∣Cαk (mod 3)(τ)

〉
:=

1

N (3)
k

2∑
l=0

e2i lk
3
π
∣∣∣αe−2i l

3
πe−i

νd
3
τ
〉
, α ∈ C, k = 0, 1, 2, (4.8)

where N (3)
k is an appropriate normalization constant. The |ψαk (τ)〉 are therefore approximately

given by the completely symmetric superposition of three coherent states, uniformly rotating
at angular frequency νd/3.

In Figure 4.2(a), we can see that the next-most occupied triplet |ηαk 〉 of Floquet modes is
populated with a probability that is a few orders of magnitude smaller (pr ∼ 10−3). These
correspond to the Floquet modes that are most coupled to |φαk (τ)〉 (defined by Fermi’s golden
rule (3.45) of Section 3.2.2), resulting in the next-highest occupation probability. These can
be considered to be excited states of the |φαk 〉, in this non-equilibrium driven system, and
we will denote them by |ηαk (τ)〉. Figure 4.2(a) shows that this process continues in three
separate branches that can still be labeled by k = 0, 1, 2, with every next-most coupled
state down the branch being ordered in decreasing occupation probability. We see that also
every excited triplet of states shares the same occupation probability, and furthermore, the
quasienergies of each triplet are likewise approximately degenerate modulo νd/3. They thus
form resonant triplets, just as the cat states |φαk (τ)〉, and this process continues until the
occupation probabilities become negligible (pr ∼ 10−6) for these system parameters.

We can get some basic intuition into this asymptotic, infinite-time regime, based on the
possible transition rates between Floquet modes induced by the coupling to the cold bath.
With such a dipolar coupling, we can expect the environment to be able to discern the different
possible cat states from one another. Moreover, the transition rates between |φαk 〉 , k = 0, 1, 2
are equal in all directions. For the case of two-component cat states (see (4.1)) for example,
the transition matrix element induced by single photon loss errors reads∣∣ 〈Cα∓∣∣a∣∣Cα±〉∣∣ ' |α|2,
up to terms that are exponentially small in |α|2, which indeed implies equal transition rates
in both directions. One can generalize this argument to three-component (and general multi-
component) cat states, and so the asymptotic state ρ∞(τ) within the degenerate cat manifold
essentially mixes equally over the 3 different cats:

ρ∞(τ) ' 1

3

3∑
k=1

|φαk (τ)〉〈φαk (τ)| ' 1

3

3∑
k=1

∣∣∣Cαk (mod 3)(τ)
〉〈
Cαk (mod 3)(τ)

∣∣∣ , (4.9)

which can be rewritten as

ρ∞(τ) ' 1

3

3∑
k=1

∣∣∣αe−2i l
3
πe−i

νd
3
τ
〉〈
αe−2i l

3
πe−i

νd
3
τ
∣∣∣ . (4.10)

Also for the higher-excited states we can attribute this triplet-structure of pr to the transition
rates being equal in all directions. The transition rates between the cats |φαk 〉 and next-excited
states |ηαk 〉 are highly unidirectional, for this specific bath model, with |ηαk 〉 transitioning into
|φαk 〉 at a much higher rate than vice versa, which explains the convergence of ρ∞ to a mixture of
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essentially only the |φαk 〉. For this non-equilibrium driven system, the |ηαk 〉 are still occupied to
some extent, even for the case of a bath at zero temperature. Up to this residual population
of excited states (0.1% for the case of Figure 4.2), which we will neglect in the following
argument, the coupling to the bath respects the cat code space, however.

Apart from characterizing the limit of infinite time, the obtained Floquet decomposition
also allows us to describe the transient behavior of the system, for which we can neglect the
weak coupling to the bath. Consider an initial state within the cat code space, and suppose
we want to apply logical operations on the cat qubit. A prominent approach is to apply an
extra drive that is resonant with the transitions between the |φαk 〉 (see e.g. Zeno gates for
two-component cats [49, 58]). For this one needs to drive at the frequency

νgate := ±νd
3
, (4.11)

or possibly shifted over a number of Brillouin zones, in which case νgate = ±νd
3 + lνd, l ∈ Z. If

this driving also induced transitions between the |φαk 〉 and other Floquet modes however, the
state is driven out of the logical code space. Transitions to the first-excited states |ηαk 〉 will be
the most prominent when driving with frequencies around approximately νgate, as their quasi-
energy difference to the cat states is the smallest modulo νd/3 (see Figure 4.2(a)), and hence
transitions between |ηαk 〉 and |φαk 〉 are the next-most resonant. To maximally benefit from
strong driving, which enables fast Hamiltonian gates, we want the quasi-energy gap between
the |ηαk 〉 and |φαk 〉 to be as large as possible, so the state remains within the logical code space.
Hence we define the quasienergy spectral gap as

∆ε := min
k,k′=1,...,3

min
l∈Z
|ε[|φαk 〉]− ε[|ηαk 〉] + lνd|, (4.12)

where ε[|φαk 〉] corresponds to the quasienergies of the cat states |φαk 〉, and ε[|ηαk 〉] stands for
the quasienergies of the first-excited states |ηαk 〉. This definition is directly analogous to the
spectral gap reported to provide protection during fast gates in the case of Kerr cats [55].
One of the main conclusions of this chapter is to identify the quantum scaling parameter λ
as the main parameter governing the magnitude of this spectral gap ∆ε, hence increasing
the confinement rate (and therefore the protection) of the cat qubit during such Hamiltonian
driving. We will study this in Section 4.4

4.1.3 Correspondence with classical subharmonics

As mentioned, this part of the dissertation sets out to understand the behavior of the quantum
system by also studying the equations of motion of the corresponding classical system. A first
connection between the quantum and classical system can be established in the context of
the desired behavior of Section 4.1.2, namely the confinement of Schrödinger cat states. We
establish this connection by numerically simulating the Poincaré map P associated to the
classical equations of motion, recalled here from (3.14)

dx

dτ
= p, (4.13a)

dp

dτ
= −x− p

Q̃
− β√

2λ
sin
(√

2λx+ ξd sin(νdτ)
)
. (4.13b)
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We recall from Section 3.2.1.1 that P samples continuous-time solutions of (4.13) at multiples
of the drive period, as

Pk(x0, p0) =

(
x

(
2kπ

νd

)
, p

(
2kπ

νd

))
,

with x(0) = x0, p(0) = p0.

Figure 4.3: Quantum-classical correspondence of the asymptotic regime for Q̃ = ∞, β =
0.5, νd = 3.5, ξd = 0.75 and λ = 0.2. (a) 6 orbits of the Poincaré map P are plotted over
300 iterations of P. Each different orbit is plotted in a different color. The red-shaded orbits
correspond to irrational flow on nested invariant tori [2, 45, 74, 94] encircling the nominal fixed
point of P (corresponding to a harmonic, 2π/νd-periodic continuous-time trajectory). The
green-shaded orbits are seen to encircle a 3-orbit of P with three different phases. The blue-
shaded orbits encircle both the nominal fixed point, as well as the 3-orbit of P corresponding
to this (3 : 1)-resonance. For a finite Q̃, the red orbits slowly spiral into the nominal fixed
point, which then corresponds to a stable node. A similar conclusion holds for the green
orbits and the 3-orbit of P. (b) Husimi Q-function of ρ∞ at time τ = 0 mod 2π/νd. Note the
uniform distribution of ρ∞ over the three cat states |φαk (0)〉 , k = 0, 1, 2, or equivalently over
three coherent states |αl〉 , l = 0, 1, 2. The locations of the 3 coherent states displayed in the
Husimi Q-function are seen to correspond to the classical phases of the 3-orbit of P up to very
good accuracy.

Figure 4.3 shows the phase portrait of P in the dissipationless case of Q̃ =∞ (a) alongside
the Husimi-Q function of the asymptotic state ρ∞ at times τ = 0 mod 2π/νd (b). The Husimi-
Q function will be the preferred representation for ρ∞, as the Wigner representation does not
show an interference pattern for ρ∞ in any case, and the Husimi-Q representation shows a
closer analogy to the classical system. Encircled by a family of quasiperiodic orbits 1 shown
in red in Figure 4.3(a), P admits a fixed point (x(h), p(h)),

P
(
x
(h)
1 , p

(h)
1

)
= (x

(h)
1 , p

(h)
1 ),

1These quasiperiodic orbits correspond to irrational flow on nested two-dimensional invariant tori [2, 74, 94]
of the suspended system (where τ is considered a dynamical variable with τ̇ = 1), enclosing the subharmonic
orbit.
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Figure 4.4: Schematic depiction of the observed quantum-classical correspondence in the con-
text of Schrödinger cat Floquet modes. (a) Illustration of the dynamics of the classical periodic
planar system (4.13) with two standard axes x, p and time τ considered as a third periodic
variable. A (3:1) subharmonic trajectory is shown in black, intersecting the surface of the
Poincaré section S in three points (red, blue and green). (b) Schematic depiction of the
equivalent quantum system given by the Hamiltonian (4.7). The periodically driven system is
characterized by the Floquet modes of the Hamiltonian. At the (3:1)-resonance, we observe
three Floquet modes |φαk (τ)〉 with quasi-energies degenerate modulo νd/3. The Floquet modes
superposition |φαk (τ)〉 can be mapped, qualitatively and quantitatively, to the three amplitudes
on (a), with Floquet choice τ = 0 mod 2π/νd corresponding to the choice of intersection time
for the Poincaré section S. Concerning the cat-confinement, assuming a zero-temperature flat
spectrum bath (see (3.42)), the |φαk (τ)〉 are dominantly populated in the asymptotic regime.
The three Floquet modes |ηαk (τ)〉 represent the most coupled excited states that are also
populated in this asymptotic regime. The gap ∆ε between the quasi-energies of |ηαk (τ)〉 and
|φαk (τ)〉 provides protection of the three-component Schrödinger cat state during fast Hamil-
tonian gates. Wigner functions associated to these Floquet modes are represented for k = 0
and at time τ ≡ 0 modulo 2π/νd.

corresponding to a 2π/νd-periodic harmonic solution (x(h)(τ), p(h)(τ)) of (4.13), with x(h)(0) =

x
(h)
1 , p(h)(0) = p

(h)
1 . Encircled by a family of quasiperiodic orbits shown in green, P admits a

3-orbit
{

(x
(3:1)
l , p

(3:1)
l ), l = 0, 1, 2

}
, corresponding to 3 fixed points (x

(3:1)
l , p

(3:1)
l ) of P3. The

corresponding 6π/νd-periodic solution (x3:1(τ), p(3:1)(τ)) completes one lap around the har-
monic solution (x(h), p(h)) during its period 6π/νd (not shown here). Hence the superscript
(n : m) = (3 : 1), since the subharmonic is of period n = 3 times the drive period, and
completes m = 1 lap around the harmonic solution during its period (see Definition 4.1).

Definition 4.1. Consider a harmonic, 2π/νd-periodic solution (x(h)(τ), p(h)(τ)) of (4.13). An
(n : m)-subharmonic is defined as a 2πn/νd-periodic solution (x(n:m)(τ), p(n:m)(τ)) of (4.13)
that completes m laps2 around the harmonic solution (x(h)(τ), p(h)(τ)) during its period
2nπ/νd.

Now let us again consider the Husimi-Q representation of the asymptotic quantum state
ρ∞ in Figure 4.3(b). Consistent with (4.10), ρ∞ predominantly has support on three coherent

2Note that two different solutions at the same time τ cannot cross, so this is well-defined.
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states |αl〉 , l = 0, 1, 2, and, moreover, we approximately have that

αl '
x

(3:1)
l + ip

(3:1)
l√

2
.

This general quantum-classical correspondence is depicted schematically in Figure 4.4. In Fig-
ure 4.4 (a), the subharmonic orbit is shown in a representation where the time τ is considered
a third dynamical variable, with τ̇ = 1. This lifts the classical equations of motion to an
autonomous dynamical system in 3D (so solutions are not allowed to cross), where τ should
be considered a periodic variable, such that the state space corresponds to that of a torus if we
consider a bounded domain for x and p. A (3 : 1)-subharmonic trajectory is shown in black.
The three fixed points of P3 correspond to the intersection points of the trajectory with the
Poincaré surface of section S, which is defined by τ = 0 mod 2π/νd. The corresponding Flo-
quet modes |φαk (τ)〉 are depicted schematically in Figure 4.4(b), and a Wigner representation
at time τ = 0 mod 2π/νd is included, showing that the |φαk (τ)〉 resemble cat states.

Comparing the Floquet-Markov simulations of the quantum system with the phase portrait
of the classical Poincaré map for different drive parameters (νd, ξd), this quantum-classical cor-
respondence is seen (simulations not shown here) to be valid for general (n : m)-subharmonics
and general multi-component Schrödinger cat states. This leads us to Observation 4.1, sum-
marizing the conclusions of this section.

Observation 4.1. Consider a pair of positive coprime integers (n,m) and define the parity
r := (n + m) mod 2, so either r = 0 or r = 1. The existence of an (n : m)-subharmonic
of (4.13) indicates the existence of (1 + r)n associated Floquet modes |φαk (τ)〉 of (4.7) that
correspond to (1 + r)n-component Schrödinger cat states. The corresponding quasi-energies
ε[|φαk 〉] are degenerate modulo m

n νd, due to a multi-photon process where (1+r)m drive photons
at frequency νd are converted into (1+r)n photons of the oscillator at frequency m

n νd, and vice
versa. Moreover, this manifold of cat states is spanned by states approximately of the form

|ψαk (τ)〉 '
∣∣∣Cαk(mod (1+r)n)

〉
(4.14)

=
1

N ((1+r)n)
k

(1+r)n−1∑
l=0

e
2i lk

(1+r)n
π
∣∣∣αe−2i lm

(1+r)n
π
e−i

m
n
νdτ
〉
, k = 0, . . . , (1 + r)n− 1.

This general correspondence motivates the study of classical (n : m)-subharmonics of the
classical system as to find the drive parameters that lead to the confinement of a manifold
of general multi-component cat states. Characterizing the set of (n : m)-subharmonics using
perturbative techniques will be the subject of Chapter 5. To understand the role of the
parity r = (m + n) mod 2 in Observation 4.1, we need to consider a global symmetry of the
system which is due to the parity of the Josephson cosine potential, and which is treated in
Section 4.1.4. Section 4.1.4 is not essential to follow the remainder of this chapter however.

4.1.4 Global symmetry from parity considerations

The system exhibits a global symmetry, linked with the parity of the Josephson cosine poten-
tial. We will discuss the consequences of this symmetry on the corresponding classical system,
and link back to the consequences for the quantum system at the end of this subsection. This
will allow us to explain the role of the parity r = (m+ n) mod 2 in Observation 4.1.
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Recalling the classical equations of motion (4.13) here,

dx

dτ
= p, (4.15a)

dp

dτ
= −x− p

Q̃
− β√

2λ
sin
(√

2λx+ ξd sin(νdτ)
)
, (4.15b)

one can see that the transformation 
x → −x,
p → −p,
τ → τ + π

νd
.

(4.16)

leaves (4.15) invariant, as all individual terms change sign. This symmetry implies that for
any given solution (x(τ), p(τ)) of (4.15), another exact solution of the system is given by
(−x(τ+ π

νd
),−p(τ+ π

νd
)). This observation has the consequence that when considering periodic

orbits of P, we can classify them into two distinct categories. Consider a harmonic solution
(x1(τ), p1(τ)) with the period of the drive, i.e. 2π

νd
-periodic. As a first case, we can have that

x1

(
τ +

π

νd

)
= −x1(τ), ∀τ ∈ R, (4.17a)

p1

(
τ +

π

νd

)
= −p1(τ), ∀τ ∈ R, (4.17b)

in which case we merely obtained a particular symmetry of the given solution. We will
call harmonic solutions for which (4.17) is valid symmetric harmonics. Note that (4.17) im-
mediately implies that the solution has the period of the drive, as x1(τ) = −x1(τ + π

νd
) =

(−1)2x1(τ+ 2π
νd

) = x1(τ+ 2π
νd

), and analogously for p1. As a second case, assume the orbit does
not exhibit the symmetry (4.17), in which case we can immediately identify a second, different
solution of the system. Both of the considered harmonics will then be called non-symmetric
harmonics.

The same reasoning can be applied to n-orbits of P, so considering a solution (xn(τ), pn(τ))
for which (xn(τ), pn(τ)) = (xn(τ + 2nπ

νd
), pn(τ + 2nπ

νd
)). Indeed, applying the symmetry (4.16)

n times, we have a derived symmetry of the system:
x → (−1)nx,

p → (−1)np,

τ → τ + nπ
νd
.

(4.18)

We can similarly classify the n-orbits by asking the question if

xn

(
τ +

nπ

νd

)
= (−1)nxn(τ), (4.19a)

pn

(
τ +

nπ

νd

)
= (−1)npn(τ), (4.19b)

holds or not. We can see that when n is even, this leads to a contradiction, as the period
of the solution would be given by πn

νd
, corresponding to an n/2-orbit of P. We can conclude
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that an n-orbit of P cannot exhibit the symmetry (4.18) when n is even. However, when n
is odd, the symmetry is well-defined. We then either have a so-dubbed symmetric n-orbit for
which (4.19) is satisfied, or we can identify a second, different n-orbit of P corresponding to
(−xn(τ + nπ

νd
),−pn(τ + nπ

νd
)).

The remaining question to be answered is which n-orbits of P adhere to the symme-
try (4.18), and which do not. In numerical simulations of the Poincaré map, we observe that
(not shown here) for the specific class of (n : m)-subharmonics defined in Definition 4.1, the
subharmonic adheres to the symmetry whenever n+m is even, whereas (n : m)-subharmonics
where m+n is odd are non-symmetric, and hence always come in pairs. While we do not have
a general proof of this fact, we can gain some intuition by anticipating some of the results
of Chapter 5. In Chapter 5, we show that for small enough values of β, for any pair of pos-
itive integers (m,n) that are coprime, there exists a prominent class of (n : m)-subharmonic
solutions of the form

x(n:m)(τ) ' R sin
(m
n
νdτ + θ

)
, (4.20a)

p(n:m)(τ) ' R cos
(m
n
νdτ + θ

)
, (4.20b)

for some distance R > 0 and angle θ ∈ [0, 2π) that depend intricately on β and the drive
parameters (νd, ξd). We can see that when n+m is even (so both m and n are odd, as they are
coprime), the solution (4.20) exhibits the symmetry (4.19), corresponding to a symmetric n-
orbit of P. When n+m amounts to an odd number, the solution in question is non-symmetric.
In this latter case, a second (n : m)-subharmonic resonance can readily be identified, by
applying (4.18) to the original solution. We see numerically that this discussion remains valid
for any (n : m)-subharmonic where n and m are coprime, whether they be approximately of
the form (4.20) or not.

An analogous discussion for the quantum system can be made. We can make use of the
following lemma to show that certain Floquet modes must necessarily come in pairs.

Lemma 4.2. Consider a Floquet mode |φ(τ)〉 of the quantum Hamiltonian H(τ) given in (4.7)
with corresponding quasienergy ε,(

H(τ)− i ∂
∂τ

)
|φ(τ)〉 = ε |φ(τ)〉 .

Then ∣∣∣φ̃(τ)
〉

:= eiπa
†a

∣∣∣∣φ(τ +
π

νd

)〉
is also a Floquet mode of H(τ), with the same quasienergy ε.

Proof. Recalling

H(τ) =
p2

2
+

x2

2
− β

2λ2
cos
(√

2λx + ξd sin(νdτ)
)
,

it is easy to see that H(τ) adheres to the symmetry

eiπa
†aH

(
τ +

π

νd

)
= H(τ)eiπa

†a.
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This readily implies that(
H(τ)− i ∂

∂τ

) ∣∣∣φ̃(τ)
〉

=

(
H(τ)− i ∂

∂τ

)
eiπa

†a

∣∣∣∣φ(τ +
π

νd

)〉
= eiπa

†a

(
H

(
τ +

π

νd

)
− i ∂

∂τ

) ∣∣∣∣φ(τ +
π

νd

)〉
= εeiπa

†a

∣∣∣∣φ(τ +
π

νd

)〉
= ε

∣∣∣φ̃(τ)
〉
.

Lemma 4.2 implies that the Floquet modes must either be symmetric, with

eiπa
†a

∣∣∣∣φ(τ +
π

νd

)〉
= |φ(τ)〉 , (4.21)

or they must necessarily come in pairs of two non-symmetric Floquet modes
(
|φ(τ)〉 ,

∣∣∣φ̃(τ)
〉)

with ∣∣∣φ̃(τ)
〉

:= eiπa
†a

∣∣∣∣φ(τ +
π

νd

)〉
.

The question is again which Floquet modes of the system are symmetric and which are not.
Using the approximate relation

|ψαk (τ)〉 '
∣∣∣Cαk(mod n)

〉
:=

1

N (n)
k

n−1∑
l=0

e2i lk
n
π
∣∣∣α0e

−2i lm
n
πe−i

m
n
νdτ
〉
, k = 0, . . . n− 1, (4.22)

with

α0 =
iRe−iθ√

2
,

a completely analogous discussion as for the classical system shows that for a given pair of
coprime integers (n,m), these correspond to symmetric Floquet modes only when m + n is
even (so both m and n are odd), and have to come in pairs when m+n is odd. This explains
why for m + n odd, Observation 4.1 shows a doubling of the number of cat-state Floquet
modes.

As a last point of this section, note that if we had considered a DC-biased Josephson
potential

β cos(λx+ φbias + ξd sin(νdτ)) , φbias 6= 0,

then the symmetry (4.16) would be broken, as the corresponding term in the vector field (last
term of (4.15b)) no longer exactly switches sign. Hence, if we had taken a different flux bias
point in Section 3.1, this discrete symmetry would not have been present, and the condition
that m+ n must be even would not be necessary in Observation 4.1.
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Figure 4.5: Floquet-Markov simulations of the weakly-dissipative quantum system governed
by Hamiltonians (3.11) and (3.42), identifying the asymptotic quantum state ρ∞ as a function
of drive parameters ξd and νd. We target a (3:1)-resonance, for a fixed value of the quantum
scaling parameter λ = 0.2 and two different values of the regularity parameter β = 0.5 (plots
(a),(c),(e)) and β = 1.5 (plots (b),(d),(f)). Plots (a) and (b) show the effective number of Flo-
quet modes Nocc over which the asymptotic periodic orbit is mixed (see (4.23)). We observe
black zones with essentially one Floquet mode (harmonic regime), purple zones with essen-
tially three Floquet modes ({|φαk 〉}k=1,2,3 of Figure 4.4(b), representing the (3:1)-subharmonic
regime), and yellow zones indicating a highly entropic ρ∞. The white points in plots (a,b)
indicate that the numerical simulations are inconclusive to determine ρ∞, see Remark 4.1 for
an explanation. The Husimi Q-functions shown in plots (c) and (d) correspond to the green
cross on the associated plot of Nocc. Plot (c) essentially corresponds to an equal mixture of
the degenerate Floquet modes {|φαk 〉}k=1,2,3. Plot (d) shows the wave-packet explosion [23]
characterizing a highly entropic asymptotic regime (note the different color map compared to
(c)). Plots (e) and (f) show phase portraits of the Poincaré map P of the associated classical
dynamics (3.14) in the limit of infinite Q̃. Each color corresponds to a different orbit of P. In
(e), we see a center close to the origin, associated to a harmonic solution, encircled by orbits in
shades in red corresponding to nested invariant tori [2, 74, 94] enclosing the harmonic center.
The orbits in green are seen to encircle three fixed points (centers) of P3 which appear as
three distinct phases of the corresponding 3-orbit of P. Finally, the blue orbits correspond to
nested invariant tori enclosing the harmonic and subharmonic orbits. In plot (f), the harmonic
and subharmonic solutions are still present but are enclosed by a vast chaotic region, densely
covered by a single orbit plotted in blue. This chaotically covered region resembles the region
covered by the wave-packet explosion in (d)
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4.2 Signatures of classical chaos in asymptotic quantum regime

In this section, we perform a numerical study of the quantum system to analyze the effect of
a first circuit parameter, namely the regularity parameter β := EJ/EL that was introduced
in Section 3.1.1. For this we focus on the asymptotic behavior of the system, captured by a
classical probability distribution over the different Floquet modes:

ρ∞(τ) =
∑
r

pr |φr(τ)〉〈φr(τ)| .

Both the Floquet modes |φr〉 and the occupation probabilities are calculated through the
numerical Floquet-Markov simulations introduced in Section 3.2.2, according to the model
introduced in Section 3.1, where the system is weakly coupled to a cold bath. We characterize
this asymptotic behavior by the von Neumann entropy S of ρ∞(τ),

S(ρ∞) := −Tr(ρ∞ ln(ρ∞)) = −
∑
r

pr ln(pr),

i.e. the standard entropy of the classical probability distribution over Floquet modes. The
effective number of occupied Floquet modes can subsequently be defined as

Nocc := exp(S(ρ∞)). (4.23)

A state that is the uniform mixture of Nocc Floquet modes leads to the same von Neumann
entropy as ρ∞.

We fix λ = 0.2 and study the asymptotic regime for various values of β, while varying the
drive parameters, focusing on the case of a (3 : 1)-resonance. Our findings are summarized
in Figure 4.5, where we focus on two possible values of β = 0.5, 1.5. Plots (a) and (b) of
Figure 4.5 show the effective number of modes Nocc as a function of the drive parameters.
Plot 4.5(a), for β = 0.5, features two zones: the black one, corresponding to a dominant
harmonic solution, and the purple one, corresponding to a dominant (3:1)-subharmonic solu-
tion. Indeed, a Husimi-Q function of ρ∞(0) for drive parameters chosen in this subharmonic
zone shows essentially a mixture of the three states |φαk (0)〉 , k = 0, 1, 2 (Figure 4.5(c)). In
plot 4.5(b), for β = 1.5, a high-entropy zone appears in yellow. In this zone the subharmonic
regime is essentially lost, and ρ∞(τ) spreads over a large portion of phase space, as seen in
plot 4.5(d). This spreading is called wave-packet explosion and is a quantum signature of
classical chaos in the weakly-dissipative regime [23]. Stronger dissipation (with respect to
the Lyapunov exponents of classical chaos) would instead induce wave-packet collapse along a
classical chaotic trajectory [23]. To investigate this classical dynamics, Figures 4.5(e,f) show
the Poincaré maps corresponding to (3.16), for the same parameter values β, νd, ξd and in the
limit of infinite Q̃. Each color represents an orbit associated to a different initial condition.
Close to the origin of plot (e), a fixed point indicates a harmonic solution of (3.16), surrounded
by closed orbits corresponding to invariant tori enclosing the harmonic center. Further from
the origin, orbits encircling three points of the same color indicate a 6π/νd-periodic solution
of (3.16), corresponding to three fixed points of P. For a large yet finite Q̃ (not shown), the
closed orbits become slowly winding spirals, indicating the asymptotic stability of the stable
nodes. In plot (f), for β = 1.5 these regular features reduce to very small zones, while a large
portion of phase space is covered by a single dense orbit, indicating a dominantly chaotic
regime. The densely covered region is very similar to the wave packet explosion of plot (d).
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Figure 4.6: Characterization of ρ∞ for the parameter values of Figure 4.5 (d) (β = 1.5, λ =
0.2, ξd = 1.75, νd = 3.5). (a) The Floquet quasi-energies are plotted against their respective
occupation probabilities in ρ∞. We observe a triplet of most occupied states whose quasiener-
gies are degenerate modulo νd/3, indicating a (3 : 1) resonance. The next-most occupied
Floquet modes are seen to all be occupied to similar extents, and together make up 93% of
the total population (mind the linear scaling for pr). (b) Wigner representation of the most
occupied Floquet mode, at time τ = 0. We still roughly observe a symmetric superposition
of three coherent states as in Figure 4.2, which however appear squeezed and distorted. (c)
Wigner representation of the fourth-most occupied Floquet mode, at time τ = 0. Instead
of a symmetric coherent superposition of displaced Fock-|1〉-states as in Figure 4.2, we ob-
serve a distorted state closer to a symmetric superposition of displaced Fock-|2〉-states. The
quasienergies of the next-occupied states densely fill up the first Brilluoin zone, showing the
absence of an energy gap wth respect to the cat state manifold.

Remark 4.1. The white points in plots 4.5(a,b) indicate where the numerical Floquet-Markov
simulations are inconclusive to determine the asymptotic behavior. We recall from Sec-
tion 3.2.2, that the probabilities pr are determined as the unique vector making up the kernel
of the matrix R describing the transition rates between Floquet modes (see (3.48)). For the
parameter values corresponding to the white points in plots 4.5(a,b), R exhibits two different
eigenvectors of probabilities (pA,r) and (pB,r) that correspond to very small eigenvalues:

R

pA,1pA,2
...

 ' R
pB,1pB,2

...

 ' 0.
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The kernel of R is then spanned by a probabilistic (convex) combination of situation A and
situation B. In other words there is no unique steady state ρ∞ for which to plot Nocc. For the
white points of plot (a), both the harmonic regime (displaced vacuum) as well as the (3 : 1)
subharmonic regime are eigenvectors in the kernel of R. The white points in plot (b) represent
a similar situation, but where both the (3 : 1) and a (5 : 1)-resonance appear to approximately
make up the kernel of R. In any case, the two situations A and B are always seen to correspond
to regular situations, where only a handful of states are occupied (in case of a resonance), or
where the system is in a pure state (displaced vacuum), and no chaotic regime is observed for
the white points in plots 4.5(a,b). We would also like to stress that the computation of the
Floquet modes that make up situation A and B have themselves fully converged in terms of
the truncation of the Hilbert space. For the physical long-time evolution of the system, we
can expect any distribution in the kernel of R to be long-lived, so both situations A and B
should be metastable.

To get a different view on how the cat-confinement is broken by the chaotic regime, we plot
the Floquet quasienergies εr against their respective occupation probabilities in Figure 4.6,
for the drive parameters of Figure 4.5(d). Comparing to the regular case of Figure 4.2, we can
see that a triplet of most-occupied Floquet modes can still be identified, vaguely resembling
Schrödinger cat states, which appear severely distorted however. Moreover, together these
three modes only make up 7% of the total population, as opposed to 99.6% in the regular case
of Figure 4.2. The remaining Floquet modes are all occupied with probabilities that are of
the same order of magnitude (∼ 1/200), and together make up 93% of the asymptotic state
ρ∞. Notably, the quasienergy spectral gap defined in (4.12) is ill-defined here, as no clear
exited state can be designated that is most coupled to the cat state triplet, and we can see
that quasi-energies corresponding to occupied Floquet modes seem to become dense.

Further Floquet-Markov simulations (not displayed here) show that for the range of drive
parameters displayed in Figure 4.5(a,b), no highly entropic points are observed for any β ≤ 0.5,
and the plots ofNocc looks essentially similar (except for an AC-Stark shift [115] of the resonant
drive frequencies that scales with β). Furthermore, also when varying λ (see the simulations
in Figure 4.9, in Section 4.4), no chaotic behavior is observed for β = 0.5. This suggests
the following general picture: for low enough values of β . 0.5, target subharmonics remain
robustly stable when varying the drive amplitude and accounting for the AC Stark shift [115].
For larger values of β & 0.5, ramping up the drive amplitude carries with it the danger of
inducing a highly entropic regime instead of the target resonance. In the next section we
propose a theoretical explanation compatible with these observations. Performing a system
theoretical analysis on the classical equations of motion, we study what can be concluded
using analytical tools, for small enough β.

4.3 Avoiding chaos in the classical system

In the previous section, numerical Floquet-Markov simulations indicated that when choosing
the regularity parameter β small enough, we can seemingly suppress high-entropy asymptotic
regimes for the periodically-driven dissipative nonlinear quantum system governed by 4.7. We
further argued that such high entropy regimes go hand in hand with large chaotic regions
in phase space for the corresponding classical system. In this section, we hence study the
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behavior of the classical system (3.16), recalled here:

dxλ
dτ

= pλ, (4.24a)

dpλ
dτ

= −xλ −
pλ

Q̃
− β sin(xλ + ξd sin(νdτ)). (4.24b)

The goal of this section is to prove that taking β small enough would prevent (4.24) from
displaying chaotic behavior. This would exclude the observed wave-packet explosion of Fig-
ure 4.5(d), and allow for a robust subharmonic regime of the system, corresponding to the
confinement of Schrödinger cat states.
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Figure 4.7: Schematic representation of the study on avoiding chaos in system (4.24). (a) For
β < f0(1/Q̃) given in (4.37), corresponding to dissipation dominating nonlinearity, the system
is contracting [86] and all solutions are attracted towards a single asymptotic limit cycle (green
region), regardless of the values of the drive parameters (ξd, νd). For β < f1(1/Q̃, τ̄) given
by (4.58), which admits arbitrarily low dissipation, a period-doubling bifurcation is excluded,
regardless of the values of the drive parameters (ξd, νd), for all solutions of period shorter than
τ̄ (blue region). This is useful, as the Gambaudo-Tresser conjecture (here Conjecture 4.6)
states that if a region of parameters featuring chaotic behavior exists (red region on plots (a)
and (c)), then a period-doubling cascade must exist at its boundary. (b) Having fixed β at a
low value, as indicated by the dotted line on plot (a), the green and blue regions as a function
of the remaining parameters (1/Q̃, ξd, νd) cover the whole parameter space. This excludes
the existence of a period-doubling cascade, and thus of chaotic behavior for any values of
(1/Q̃, ξd, νd), unless the cascade is initiated by a first period-doubling of a subharmonic of
period larger than τ̄ . This absence of chaos would correspond to the parameter values of
Figure 4.5(e), except now for a finite Q̃ < ∞. (c) Fixing β at a higher value, as indicated
by the dashed line on plot (a), there exists a parameter region (outside both green and blue
region) where a period-doubling cascade can be expected, such that regions featuring chaotic
behavior (red zone) can exist. Such chaotic behavior is indeed observed for parameter values
as in Figure 4.5(f), also with a finite Q̃ <∞.

The general approach to prove the absence of chaotic behavior for small β is illustrated in
Figure 4.7, and goes as follows.
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• When the dissipation rate 1/Q̃ dominates the regularity parameter β (green zone in
Figure 4.7), we can prove that the system is contracting, i.e. any two close solutions
converge towards each other, such that the asymptotic regime has to feature a single
limit cycle that is globally attractive. This is valid for any values of the drive parameters
(ξd, νd), see Section 4.3.2. Our goal is to extend the conclusion about the absence of
chaos, from strong dissipation 1/Q̃ to weak dissipation, while at the same time allowing
for additional subharmonic solutions.

• For appropriately fixed β, the remaining parameters (1/Q̃, ξd, νd) thus feature a region
where (4.24) converges to a single limit cycle, hence there is no chaos. If there ex-
ists another parameter region featuring chaotic behavior, then it has been conjectured
that the boundary to this region has to feature a period-doubling cascade – see the
Gambaudo-Tresser conjecture, here Conjecture 4.6 in Section 4.3.3.

• Thus, conversely, by excluding the possibility of period-doubling bifurcations in a pa-
rameter region overlapping with the green zone, we exclude the existence of a chaotic
regime within this parameter region. For the particular system (4.24), we prove that
period-doubling is indeed impossible, at least for solutions of period smaller than τ̄ ,
provided β is small enough compared to 1/τ̄ . This criterion allows arbitrarily weak
dissipation and any values for the drive parameters (blue zone in Figure 4.7). For this,
see Corollary 4.11 in Section 4.3.4.

• All these elements together thus indicate that for low enough β, even for extremely
small damping and for any values of drive parameters, the classical system should not
transition into a chaotic regime. The addition of two remaining points would make this
a rigorous result: (i) proving the Gambaudo-Tresser conjecture, which was recently done
under extra technical conditions in [31], and (ii), proving a bound similar to Corollary
4.11 but independent of the period of the solution.

To simplify the mathematical analysis, in Section 4.3.1 we first perform a last change of
variables on (4.24). We also derive the linearized dynamics around a trajectory of the system,
i.e. the differential equation governing how small deviations from this trajectory will evolve
over time.

4.3.1 Final change of variables and local linearization around a solution

The goal of our last change of variables is to obtain equal dissipation rates for both state
variables. For this, we replace p by a hyperbolically-rotated quadrature, defining

p̃ :=
p+ x

2Q̃√
1− 1

4Q̃2

, x̃ = x , (4.25)

and we rescale time as:

s :=

√
1− 1

4Q̃2
τ . (4.26)
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Defining the modified parameters

β̃ =
β

1− 1
4Q̃2

, (4.27a)

ν̃d =
νd√

1− 1
4Q̃2

, (4.27b)

κ =
1

2Q̃
√

1− 1
4Q̃2

, (4.27c)

we obtain the following model:

d

ds
x̃ = p̃− κx̃, (4.28a)

d

ds
p̃ = −x̃− κp̃− β̃ sin(x̃+ ξd sin(ν̃ds)). (4.28b)

We define the vector field f(x̃, p̃, s) such that

d

ds

(
x̃
p̃

)
= f(x̃, p̃, s) :=

(
p̃− κx̃

−x̃− κp̃− β̃ sin(x̃+ ξd sin(ν̃ds))

)
, (4.29)

and denote the flow corresponding to system (4.29) by Ψs : R2 → R2, s ∈ R, such that by
definition

∂

∂s
Ψs(x̃0, p̃0) = f(Ψs(x̃0, p̃0), s). (4.30)

The Poincaré map P, which propagates any initial condition over one period 2π/ν̃d, thus
corresponds to

P = Ψ 2π
ν̃d

.

We now turn to local linearization. Given any solution (x̃(b)(s), p̃(b)(s)) = Ψs(x̃
(b)
0 , p̃

(b)
0 ) of

the system (4.29), we can investigate how small variations (∆x̃0,∆p̃0) of the initial condition
evolve under the same dynamics,

Ψs(x̃
(b)
0 + ∆x̃, p̃

(b)
0 + ∆p̃) = (x̃(b)(s) + ∆x̃s, p̃

(b)(s) + ∆p̃s) .

At the limit of infinitesimal (∆x̃0,∆p̃0), the corresponding dynamics is given by the lineariza-
tion of the vector field around the solution, i.e.:

d

ds

(
∆x̃s
∆p̃s

)
= ∇zf(z, s)

∣∣
z=(x̃(b)(s),p̃(b)(s))

(
∆x̃s
∆p̃s

)
(4.31)

=

(
−κ 1

−1− β̃ cos
(
x̃(b)(s) + ξd sin(ν̃ds)

)
−κ

) (
∆x̃s
∆p̃s

)
.

Once a solution (x̃(b)(s), p̃(b)(s)) is known, the linear time-dependent equation (4.31) enables
the study of the system in that solution’s vicinity. We will denote the flow corresponding to
this linear system as Φs ∈ R2×2, thus satisfying(

∆x̃s
∆p̃s

)
= Φs

(
∆x̃0

∆p̃0

)
, (4.32)

64



with
d

ds
Φs =

(
−κ 1

−1− β̃ cos
(
x̃(b)(s) + ξd sin(ν̃ds)

)
−κ

)
Φs . (4.33)

By integrating over n drive periods, we obtain the local linearization of the n’th power of the
Poincaré map around the chosen initial condition:

∇(Pn)(x̃
(b)
0 , p̃

(b)
0 ) = Φ2nπ/ν̃d , n ∈ N. (4.34)

In particular, when (x̃(b)
0 , p̃

(b)
0 ) corresponds to a fixed point of Pn, we can obtain the flow of

the linearized system by applying a time-independent linear map:

∇
(
Pnk

)
(x̃

(b)
0 , p̃

(b)
0 ) =

(
∇(Pn)(x̃

(b)
0 , p̃

(b)
0 )
)k

= Φ2nkπ/ν̃d , k, n ∈ N. (4.35)

4.3.2 When 1
Q̃
dominates β: single asymptotic limit cycle

If any two close trajectories asymptotically converge towards each other, then by induction
the asymptotic regime of the system has to consist of a single trajectory. We here prove that
our system (4.29) satisfies the first property, known as contraction in the dynamical systems
theory [86], for 1/Q̃ sufficiently large compared to β̃, and for any values of the drive parameters
(ξd, ν̃d). We further prove that the asymptotic trajectory must be a regular 2π/ν̃d-periodic
limit cycle.

Contraction thus analyzes local variations between two close trajectories, and therefore it
studies the linearized vector field (4.31). In particular, contraction at a rate r > 0 holds if we
can prove that

d

ds

(
∆x̃2 + ∆p̃2

)
< −r (∆x̃2 + ∆p̃2) , (4.36)

for any values of x̃(b)(s) and s in (4.31).

Lemma 4.3. The system (4.29) is a contraction, i.e. it satisfies (4.36) for a fixed r > 0
independently of x̃(b)(s), p̃(b)(s) and s, for any values of the drive parameters, provided

β <

√
1− 1

4Q̃2

Q̃
. (4.37)

Proof. Writing out d
ds

(
∆x̃2 + ∆p̃2

)
gives a quadratic expression in (∆x̃,∆p̃), which satisfies

(4.36) provided

(κ− r)(∆x̃2 + ∆p̃2) + β̃ cos
(
x̃(b)(s) + ξd sin(ν̃ds)

)
∆x̃∆p̃ ≥ 0 .

This readily gives the bound β̃/2 < κ, which translates into (4.37).

Under condition (4.37), any trajectory of our system is thus attracted towards a single
asymptotic solution. We can further prove that this solution must be a 2π/ν̃d-periodic limit
cycle. We separate the statement into two steps, as the first one will be useful in other
contexts.
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Lemma 4.4. Any disk around the origin of radius larger than β̃/κ = 2βQ̃√
1− 1

4Q̃2

remains pos-

itively invariant under the evolution of the system (4.29), i.e. when starting on this disk the
trajectory moves into its interior and stays there for all times.

Proof. Writing out d
ds

(
x̃2 + p̃2

)
, we readily see that it is negative as soon as κ(x̃2 + p̃2) > β̃|p̃|,

which holds under the stated condition on the radius.

Lemma 4.5. For any values of the parameters, the system (4.29) always features a solution
that is a 2π/ν̃d-periodic trajectory.

Proof. The proof uses the Brouwer fixed-point theorem on the Poincaré map P. This theorem
states that any continuous function which maps a closed disk onto its interior must admit at
least one fix point inside this disk. The function P is continuous as resulting from integrating
a smooth vector field, and by Lemma 4.4 it maps any disk around the origin of radius larger
than β̃/κ onto its interior. Therefore P must always feature a fixed point, corresponding to a
2π/ν̃d-periodic trajectory of (4.29).

4.3.3 Linking chaos to period-doubling cascades

The system (4.29) is a dissipative, periodically-driven, planar, nonlinear system. For such
systems, it has been conjectured that the only possible route to chaos upon varying parameters
is through a period-doubling cascade starting from an initially-stable orbit. More precisely:

Conjecture 4.6. (Gambaudo, Tresser, [31, 46]) In the space of Ck orientation-preserving
embeddings of a planar disk, with k > 1, which are area-contracting, generically, maps which
belong to the boundary of positive topological entropy have a set of periodic orbits which, except
for a finite subset, is made of an infinite number of periodic orbits with periods m2k for a given
m and all k ∈ N.

The conditions of Conjecture 4.6 hold for our Poincaré map P associated to (4.29), as a
function of the parameters (1/Q̃, ξd, νd). Indeed:

• P is smooth for any parameter values, as resulting from the integration of a smooth
vector field.

• P embeds any disk of radius larger than β̃/κ into itself, as established by Lemma 4.4.
Thus, for any fixed β and any strictly positive interval 1

Q̃
∈ [ 1

Q̃max
, 1
Q̃min

] ⊂
(
0, 1

2

)
, there

exists a disk of sufficient radius for which the embedding holds for all parameter values.

• P is orientation-preserving and area-contracting for any (1/Q̃, ξd, νd) with 1/Q̃ > 0.
These are both local features to be checked uniformly in (x̃, p̃) on the linearized Poincaré
map ∇P(x̃, p̃). Orientation is preserved if det(∇P) > 0 and area is contracted if
|det(∇P)| < 1. From (4.33), we have

d

ds
det(Φs) = tr

(
−κ 1

−1− β̃ cos
(
x̃(b)(s) + ξd sin(ν̃ds)

)
−κ

)
det(Φs) = −2κ det(Φs)

and integrating from det(Φ0) = 1 up to s = 2π/ν̃d we readily obtain

det(∇P) = exp

(
−4πκ

ν̃d

)
∈ (0, 1) .
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Figure 4.8: Splitting of the parameter space for the two parts of our proof excluding period-
doubling bifurcation of a 2πn/ν̃d-periodic solution of (4.29).

Physically, these properties hold by virtue of P being generated by a weakly dissipative
system, that reduces to a Hamiltonian system for κ = 0.

We illustrate how this conjecture will be used in the context of our study, see Figure
4.7(b)-(c). For fixed β, consider an open set of values for the parameters (1/Q̃, ξd, νd), which
we will vary to define the set of maps. In particular, the values of 1/Q̃ should span an interval
ranging from the lowest damping expected, up to a value satisfying Lemma 4.3 in Section 4.3.2
(green zone on Fig.4.7(b)). Thanks to Lemma 4.3, the set of parameter values thus contains
settings (green zone) for which the system asymptotically converges to a single harmonic orbit.
According to Conjecture 4.6, if the set of parameter values also contains settings for which
the system features “positive topological entropy”, which is the technical definition of what we
have been calling “chaos” (red zone on Figure 4.7(c)), then somewhere between these two types
of settings there must be a boundary with a period-doubling cascade. In the next section, to
conclude our study, we will thus try to exclude the existence of a parameter region featuring
chaotic behavior, by establishing conditions that exclude its boundary, i.e. period-doubling
(blue zone on Fig.4.7(b)).

We note that the Gambaudo-Tresser conjecture has recently been proven under extra tech-
nical conditions in [31].

4.3.4 A bound on β to exclude period-doubling

From the previous sections, we have identified that the transition to a chaotic regime when
(ξ, νd, 1/Q̃) are varied, must involve the period-doubling bifurcation of periodic orbits of the
system. In this last section, we establish that taking β low enough excludes a period-doubling
bifurcation for any subharmonic solution of (4.24), at least if the period of this subharmonic
is lower than τ̄ , with the bound on β depending on τ̄ . The bound is uniformly valid for any
values of the drive amplitude ξd and for arbitrarily low dissipation 1/Q̃.

We thus consider as starting point a fixed maximal period of τ̄ . If we want to exclude the
period doubling of a given subharmonic solution of (4.24) of period 2πn/νd, we must assume
that 2πn/νd < τ̄ remains valid for any values of νd, bounded away from zero. We then want
to exclude that the considered solution undergoes a period-doubling bifurcation when varying
(νd, ξd, 1/Q̃) in the relevant parameter range. Our proof again works with the slightly changed
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coordinates (4.29) and slightly modified parameters (β̃, ν̃d), and it comprises two parts, see
Figure 4.8:

• In Section 4.3.4.1, we perform a local study close to the considered subharmonic, estab-
lishing a bound on β̃ under which the premises for a period-doubling bifurcation can be
excluded. This local study provides a conclusive bound only for some parameter region
(blue zone on Figure 4.8).

• In Section 4.3.4.2, for another parameter region (red on Fig.4.8), we perform a global
study in phase space, showing that for low enough β̃ the 2πn/ν̃d-periodic solution cannot
exist.

These two parameter regions are defined as bands with 1/ν̃d centered respectively around
integer and half-integer multiples of 1/n. (Recall that in (4.29) the natural frequency of the
harmonic oscillator for β̃ = 0 has been normalized to 1.) Making these two regions overlap
(Section 4.3.4.3), we exclude any period-doubling bifurcation of this solution within the full
parameter range.

4.3.4.1 Values of β̃ and ν̃d excluding period-doubling

Consider a fixed point (x̃∗, p̃∗) of the smooth map Pn, corresponding to the continuous-time
trajectory (x̃n(s), p̃n(s)) with (x̃n(0), p̃n(0)) = (x̃∗, p̃∗), for some fixed parameter values. When
varying parameters, the location and the stability of the fixed point must vary smoothly,
unless it undergoes a bifurcation. A good introduction to basic bifurcation theory can be
found in [57]. We are focusing on period-doubling bifurcations, where the initial solution be-
comes unstable while a stable periodic orbit of double the period appears in its vicinity. The
important property for our purposes is that at any point where (x̃n(s), p̃n(s)) undergoes a
period-doubling bifurcation, the linearized Poincaré map ∇(Pn)(x̃∗, p̃∗) must have an eigen-
value crossing −1 [57]. In order to exclude a period-doubling bifurcation, we thus set out to
bound the eigenvalues of ∇(Pn) away from −1. Due to the absence of an exact expression for
the subharmonic solution (x̃n(s), p̃n(s)), we approximate ∇(Pn)(x̃∗, p̃∗) by splitting the flow
Ψs up into a known part, based on the linear part of the system, and an unknown part that
we treat as a perturbation, proportional to β̃. We obtain the following result.

Lemma 4.7. Fix ν̃d > 0, and n ∈ N, n ≥ 1. Choose the m ∈ N which minimizes
∣∣1− m

n ν̃d
∣∣,

and define the detuning
δ := 1− m

n
ν̃d. (4.38)

for which thus |δ| ≤ ν̃d
2n . If

exp

(
β̃

4πn

ν̃d

)
− 1 < 2 cos

(
δ̄
πn

ν̃d

)
, with |δ| ≤

∣∣δ̄∣∣ ≤ ν̃d
2n
. (4.39)

then ∇(Pn)(x̃, p̃) obtained by integrating (4.33) cannot exhibit an eigenvalue −1 for any point
(x̃, p̃) ∈ R2. Therefore, under condition (4.39), a 2πn/ν̃d-periodic subharmonic cannot undergo
a period-doubling bifurcation.

Proof. The proof is organized as follows.
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• We first perform a change of variables that integrates out the time-independent part of
the linearized dynamics determining, which is also independent of β̃.

• We then bound the spectral norm 3 of the flow operator corresponding to this linearized
dynamics uniformly in the remaining parameters. This bounds the effect of the terms
proportional to β̃.

• From this, we next bound the spectral norm of the difference between the flow operator
at time s = 0 (which is the identity matrix) and the flow at any time s later.

• Finally, we use this proximity in spectral norm to deduce information about the eigen-
values of the original flow operator, in particular evaluating a parameter setting which
guarantees that the eigenvalues cannot reach −1.

• Change of variables: We start by moving to a rotating frame with frequency m
n ν̃d, such that(

u(s)
v(s)

)
:=

(
cos
(
m
n ν̃ds

)
− sin

(
m
n ν̃ds

)
sin
(
m
n ν̃ds

)
cos
(
m
n ν̃ds

))(x̃(s)
p̃(s)

)
. (4.40)

Note that for the flow Ψ
(n:m)
s corresponding to the variables (u, v) we still have Ψ

(n:m)
Tn

=
ΨTn = Pn, where we introduced the total period

Tn =
2πn

ν̃d
,

due to the periodicity of the change of variables, Applying the change of variables to (4.33),
we obtain the following evolution equation for ∇Ψ

(n:m)
s (u0, v0), the linearized flow around an

arbitrary solution (u(s), v(s)) with (u(0), v(0)) = (u0, v0):

∂

∂s
∇Ψ(n:m)

s (u0, v0) =

(
−κ
(

1 0
0 1

)
+ δ

(
0 1
−1 0

)
+ β̃ Γ(n:m)

s (u(s), v(s), ξd)

)
∇Ψ(n:m)

s (u0, v0),

(4.41)
where

Γ(n:m)
s (u(s), v(s), ξd) := cos(ζ(s))

sin
(
m
n ν̃ds

)
cos
(
m
n ν̃ds

)
sin2(mn ν̃ds)

− cos2(mn ν̃ds) − sin
(
m
n ν̃ds

)
cos
(
m
n ν̃ds

)
,

with ζ(s) = u(s) cos
(
m
n ν̃ds

)
+ v(s) sin

(
m
n ν̃ds

)
+ ξd sin(ν̃ds). We will drop the reference to the

particular solution (u0(s), v0(s)) for notational convenience.
To conclude the proof we must bound the eigenvalues of∇ΨTn = ∇Pn away from−1. Since

Ψ0 is the identity map,∇Ψ0 = 1, where 1 is the 2×2 identity matrix, with eigenvalues +1. Our
strategy is to show that the eigenvalues cannot move far away from 1 when integrating (4.41)
over a time Tn. We can already explicitly integrate the time-independent part, corresponding
to β = 0, by defining

X(s) = exp
((
κ1− δ

(
0 1
−1 0

))
s
)
∇Ψs ,

yielding
d

ds
X(s) = β̃Rδs Γ(n:m)

s (ξd)R−δs X(s), (4.42)

3The spectral norm of a square matrix A is defined as the largest singular value of A, which is the square
root of the largest eigenvalue of A†A.
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where Rδs is the rotation matrix

Rδs =

(
cos(δs) − sin(δs)
sin(δs) cos(δs)

)
.

• Bounding the norm of X: We can write (4.42) as an integral equation:

X(s) = X(0) + β̃

∫ s

0
Rδz Γ(n:m)

z (ξd)R−δzX(z) dz. (4.43)

Taking the spectral norm of both sides, applying the triangle inequality, pulling the norm
into the integral in the right hand side, and subsequently using the submultiplicativity of the
spectral norm, we obtain

‖X(s)‖ ≤ ‖X(0)‖+ β̃

∫ s

0
‖X(z)‖

∥∥∥Γ(n:m)
z (ξd)

∥∥∥dz. (4.44)

Since the entries of Γ
(n:m)
z are all smaller than 1 in absolute value, uniformly in z and ξd,

we have
∥∥∥Γ

(n:m)
s (ξd)

∥∥∥ ≤ 2. Plugging this into (4.44) and applying the simplest form of the
Grönwall Lemma (recalled as Lemma 4.8 below) then yields

‖X(s)‖ ≤ ‖X(0)‖e2β̃s = e2β̃s, (4.45)

since X(0) = 1.
• Tying X to the identity: Now, consider again Equation (4.43):

X(s)− 1 =

∫ s

0
β̃Rδz Γ(n:m)

z (ξd)R−δzX(z) dz. (4.46)

Analogously to the previous point, taking the spectral norm of both sides, subsequently pulling
the norm into the integral into the right hand side, using the submultiplicativity of the spectral
norm and the bound on ‖Γ‖, we obtain

‖X(s)− 1‖ ≤ 2β̃

∫ t

0
‖X(s)‖ ds. (4.47)

Plugging (4.45) in the right hand side and evaluating at s = Tn, we obtain

‖X(Tn)− 1‖ ≤ e2β̃Tn − 1. (4.48)

• Confining the eigenvalues of ∇ΨTn: We have thus bounded how X(Tn) departs from the
identity, from which there remains to deduce a bound on the eigenvalues of

∇ΨTn = e−κTnR−δTnX = e−κTnR−δTn + e−κTnR−δTn(X(Tn)− 1) .

The last expression indicates how we intend to view∇ΨTn , namely as the flow corresponding to
β = 0 plus a perturbation. The Bauer-Fike theorem (recalled as Theorem 4.9 below), bounds
how eigenvalues behave under such perturbations. In this theorem, we use p = ∞ for the
Schatten norm, which corresponds to the operator norm that we have used above. The norm
of the perturbation in the right-hand side of (4.52) is bounded by

∥∥e−κTnR−δTn(X(Tn)− 1)
∥∥ ≤
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e−κTn
(
e2β̃Tn − 1

)
, and since e−κTnR−δTn is diagonalized by a unitary, the condition number

equals 1. The Bauer-Fike theorem then says that for any eigenvalue µ of ∇ΨTn , there exists
an eigenvalue η of e−κTnR−δTn such that

|η − µ| ≤ e−κTn
(
e2β̃Tn − 1

)
. (4.49)

Of course we know that η = e(−κ±iδ)Tn .
The final argument is thus: if any eigenvalue µ is sufficiently close to some η = e(−κ±iδ)Tn ,

while all these η are sufficiently far from −1, then each µ can be bounded away from −1.
Explicitly, if ∣∣∣1 + e(−κ±iδ)Tn

∣∣∣ > e−κTn
(
e2β̃Tn − 1

)
, (4.50)

then

|µ+ 1| =
∣∣∣η − e(−κ±iδ)Tn + e(−κ±iδ)Tn + 1

∣∣∣ ≥ ∣∣∣1 + e(−κ±iδ)Tn
∣∣∣− ∣∣∣η − e(−κ±iδ)Tn

∣∣∣ > 0. (4.51)

Multiplying both sides of (4.50) by eκTn , one readily sees that κ = 0 is the most constraining
case, and working out the algebra for this case gives the stated criterion (4.39).

We here recall the two lemmas used in the proof of Lemma 4.7:

Lemma 4.8. (Grönwall, [28]) Consider the integral equation

h(t) ≤ c(t) +

∫ t

0
g(s)h(s) ds,

with the scalar functions g, h and c all non-negative on the interval [0, t], and c differentiable.
Then

h(t) ≤ c(0) exp

(∫ t

0
g(s) ds

)
+

∫ t

0

dc

dt
(t)

(
exp

(∫ t

s
g(τ) dτ

))
ds.

We have used this Grönwall Lemma with both g and c constant. In particular, the second
term on the right drops out.

Theorem 4.9. (Bauer-Fike, [9]) Suppose A ∈ Cn×n is a diagonalizable matrix, and V ∈ Cn×n

is the non-singular similarity transformation that brings A into its diagonal form Λ:

Λ = V −1AV.

Define the condition number

κp(V ) :=
‖V ‖p
‖V −1‖p

,

with ‖·‖p the p-Schatten norm. Let µ be an eigenvalue of A+B, B ∈ Cn×n. Then there exists
an eigenvalue η of A such that

|η − µ| ≤ κp(V )‖B‖p. (4.52)
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We used the Bauer-Fike Theorem with the operator norm (p = ∞) and with a matrix A
which is diagonalized by a unitary, such that κp(V ) = 1.

Lemma 4.7 is useful only for part of the parameter space, represented by the blue bands in
Fig. 4.8. Indeed, the criterion (4.39) requires β̃ = 0 as δ̄ tends towards its maximal value ν̃d

2n , so
part of the parameter values for δ are not covered by Lemma 4.7. Therefore, we next provide
in Section 4.3.4.2 another result to cover these largest values of δ̄ (red bands in Fig. 4.8) while
allowing for nonzero values for β̃. We will then combine both results in Section 4.3.4.3 to
obtain our overall conclusion.

4.3.4.2 Values of β̃ and ν̃d excluding an n-subharmonic

The rough idea can be sketched as follows. We consider a harmonic 2π/ν̃d-periodic solution
as a point of reference − we will show that such a solution must exist for any parameter
values. If the natural dynamics for β̃ = 0 corresponds to a trajectory where a half-integer
number of laps around the harmonic orbit are completed over a period 2nπ/ν̃d, then in case
of small β̃ > 0 it is unlikely for a trajectory which completes an integer number of laps around
the harmonic solution to exist anywhere. It then immediately follows that it is unlikely for
any trajectory to exist that can possibly close on itself to form a periodic orbit. The only
remaining trivial fixed point of Pn would be the unavoidable fixed point of P corresponding
to the harmonic solution.

Lemma 4.10. If the interval [(1−β̃) 1
ν̃d
, (1+β̃) 1

ν̃d
] contains no integer multiple of 1/n, then the

system (4.29) can feature no 2πn
ν̃d

-periodic solution other than a single 2π/ν̃d-periodic solution.

Proof. By Lemma 4.5 in Section 4.3.2, the system always features at least one 2π/ν̃d-periodic
solution. Let us denote it by (x∗1(s), p∗1(s)) and define the displaced variables

xd(s) = x̃(s)− x∗1(s) (4.53a)
pd(s) = p̃(s)− p∗1(s), (4.53b)

describing how other solutions behave compared to this solution. The corresponding equations
of motion are, without approximation,

d

ds
xd = pd − κxd, (4.54a)

d

ds
pd = −xd − κpd − 2β̃ sin

(xd
2

)
cos
(xd

2
+ x∗1(s) + ξd sin(ν̃ds)

)
. (4.54b)

In polar coordinates xd = R cos(θ), pd = R sin(θ), we obtain:

d

ds
R = −κR− sin(θ)2β̃ sin

(
R

2
cos(θ)

)
cos

(
R

2
cos(θ) + x∗1(s) + ξd sin(ν̃ds)

)
, (4.55)

d

ds
θ = −1− β̃ cos2(θ)

sin
(
R
2 cos(θ)

)
R
2 cos(θ)

cos

(
R

2
cos(θ) + x∗1(s) + ξd sin(ν̃ds)

)
. (4.56)

By definition, xd(s) = pd(s) = 0 (corresponding to R = 0) is a solution for any time s, and no
other trajectories ever cross the point R = 0. Recognizing the expression sin(pd/2)

pd/2
∈ [−1, 1] in
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(4.56), we can bound | d
dsθ + 1| ≤ β̃. A 2πn

ν̃d
-periodic solution has to make an integer number

of laps m around the (periodically displaced) origin. We thus need

θ(0)− θ
(

2πn

ν̃d

)
= 2πm ∈

[
2πn

ν̃d
(1− β̃),

2πn

ν̃d
(1 + β̃)

]
,

which is equivalent to the statement.

Using the notation of Lemma 4.7, this criterion excludes the existence of an (n:m)-subharmonic

for |δ(n:m)| > δ̄, provided
2πnβ̃

ν̃d
<

2πnδ̄

ν̃d
. (4.57)

4.3.4.3 Combining Lemma 4.7 and Lemma 4.10 into a uniform criterion on β

We now select δ̄ to have overlapping regions of 1/ν̃d, as explained in Figure 4.8.

Corollary 4.11. Consider a simply connected open set Sp of possible parameter values (1/Q̃, νd, ξd)
with νd ≥ νmin and Q̃ ≥ Qmin > 1/2. For some parameter setting in this set, consider a stable
subharmonic solution of (4.24) of period smaller than or equal to 2πn̄/νd, n̄ ∈ N, n̄ ≥ 2, and de-
note the largest period that this solution could possibly have when varying νd by τ̄ = 2πn̄/νmin.
If

β <
0.53

τ̄

√
1− 1

4Q2
min

, (4.58)

then this solution cannot undergo a period-doubling bifurcation when varying (1/Q̃, νd, ξd) in
Sp.

Proof. To cover the whole parameter space, we must match the value of δ̄ in both criteria,
(4.39) and (4.57). Choosing δ̄ smaller makes (4.39) easier to achieve, yet it confines 1/ν̃d
close to integer multiples of 1/n. Conversely, choosing δ̄ larger makes (4.57) easier to achieve,
while confining 1/ν̃d closer to half-integer multiples of 1/n. The best compromise is obtained
when both criteria yield the same bound on β̃. We thus equate the right hand sides of (4.39)
and (4.57), to numerically find the optimal value δ̄ ' 0.537 ν̃d

2πn for the boundary between red
and blue regions of Figure 4.8. Substituting this value in (4.57), working back to the original
variables using (4.27a), (4.27b) and imposing the condition for all parameter values then gives
the stated criterion (4.58).

Important remark: Corollary 4.11 speaks of a subharmonic in the strict sense, i.e. a 2nπ/ν̃d-
periodic solution with n ≥ 2. Indeed, when using Lemma 4.10 in the proof, we leave open
the possible behavior of a 2π/ν̃d-periodic solution. However, this poses no problem for our
intended use of Corollary 4.11 to exclude a period-doubling cascade. Indeed, with the strict
interpretation of Corollary 4.11, we thus leave open the possibility that a 2π/ν̃d-periodic so-
lution would undergo period-doubling, but the resulting subharmonic would then be covered
by Corollary 4.11 such that further period-doubling is necessarily excluded.

Under the condition of Corollary 4.11, we are thus always in a zone where the considered
subharmonic cannot undergo period-doubling, either because of Lemma 4.7 or because it
cannot exist in the first place (Lemma 4.10). In other words, starting from a subharmonic of
period 2πn/ν̃d we are necessarily in the blue zone of Fig. 4.8, and when moving towards the
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red zone of Fig. 4.8 this subharmonic must disappear in a saddle-node bifurcation without the
occurrence of period-doubling.

Note that this result is independent of the drive amplitude ξd and only requires an upper
bound on the dissipation rate 1/Q̃ that is trivial to meet in practice.

Finally, to apply the Gambaudo-Tresser Conjecture 4.6, the parameter set Sp of Corollary
4.11, with condition (4.58), should overlap with a zone where condition (4.37) of Lemma 4.3
holds (green zones on Fig. 4.7). Indeed, this would give rise to the conditions shown in
Figure 4.7(b): for some parameter region we know that there is a single harmonic limit cycle,
while for an overlapping region we know that there can be no period-doubling cascade (starting
below τ̄), and thus according to the conjecture there can be no transition into a chaotic regime.

Let us thus analyze how to combine both conditions (4.37) and (4.58). Condition (4.58)
holds for all Qmin ≥ Q if it holds for Q. Conversely, for Q̃ > 1/

√
2, the right hand side of

(4.37) is decreasing in Q̃, so (4.37) holds for all Q̃ ≤ Q̄ if it holds for Q̄. For the regions
satisfying (4.37) and (4.58) to overlap for a fixed β, we thus need Q < Q̄. By inspection, the
limit is obtained at 1/Q = 1/Q̄ = 0.53/τ̄ <

√
2. The associated constraint on β becomes:

β <
0.53

τ̄

√
1−

(
0.53

2τ̄

)2

. (4.59)

This concludes our analytical results in the context of preventing the classical system (4.24)
from behaving chaotically, by preventing the period-doubling cascades that are conjectured
to be a necessary precursor for chaotic behavior (Gambaudo-Tresser Conjecture 4.6) when
Q̃ < ∞. Since the bound (4.59) depends on the maximal period τ̄ of a given subharmonic
solution, our results are only partial in nature, but we believe the discussion of this section
provides theoretical indications that indeed for a finite small-enough value of β no period-
doubling cascades should occur. Note that our arguments are mainly based on the fact that
the Josephson potential and its first derivatives are uniformly bounded, so similar results
should hold in other systems with these properties.

4.4 Enhancement of the quasienergy spectral gap

While in Section 4.1 we showed how the periodically-driven inductively-shunted transmon
could be used for the confinement of Schrödinger cat states under appropriate resonance
conditions of the drive, the detrimental effect of possible chaotic behavior was identified in
Section 4.2. There we showed that we can tune the regularity parameter β to effectively
suppress this chaotic behavior. In this section, we focus on this non-chaotic case, and while
fixing the value of β to 0.5, we study the effect of a second parameter we call the quantum
scaling parameter

λ =

(
2EC
EL

)1/4

,

which was introduced in Section 3.1.1. We previously argued that this parameter governs key
properties of the quantum behavior of the system, as it can be entirely eliminated from the
classical dynamics.

We numerically study the role of λ in the context of the confinement of 3-component
Schrödinger cat states. For this we again focus on the Floquet decomposition of the driven
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system. We fix β = 0.5 and study the asymptotic regime for various values of λ, while varying
the drive parameters, focusing on the case of a (3 : 1)-resonance. We consider the quasienergy
spectral gap ∆ε between the manifold of cat states |φαk (τ)〉 and the next-excited Floquet
modes |ηαk (τ)〉, defined in (4.12), and schematically illustrated in Figure 4.4. We previously
argued that the magnitude of |∆ε| captures the robustness of the cat subspace as a whole to
sufficiently weak and sufficiently slowly-varying Hamiltonian perturbations.

Our findings are summarized on Figure 4.9. We investigate three different values λ =
0.2, 0.3, 0.4 and drive parameters ξd, νd leading to a constant mean photon number n̄ = 9
or 16 in the cat states |φαk 〉 (plots 4.9(a) and (b)). For these settings, Figures 4.9(c,d) show
the quasienergy gap ∆ε. For fixed n̄, increasing λ is seen to ramp up the quasi-energy gap.
Likewise, for fixed λ, increasing n̄ is seen to ramp up the quasi-energy gap. The fact that the
spectral gap increases also with the average number of photons could have been anticipated
from previous work. Indeed, for the Kerr cat encoding [55], this gap equals K|α|2 where K is
the quartic Kerr strength and |α|2 = n̄, the cat state’s average number of photons.

Figure 4.9: Behavior of the quantum system as a function of quantum scaling parameter λ
for fixed β = 0.5. Plots (a) and (b) are similar to plot 4.5(a) and show that the system does
not present a chaotic region for λ = 0.2, 0.3, 0.4. In the same plots, we represent the drive pa-
rameters leading to constant mean photon number n̄ = 9 or 16 in the asymptotic Schrödinger
cat states. Plots (c) and (d) show the quasi-energy spectral gap (∆ε in Figure 4.4(b)), cor-
responding to those drive parameters. For fixed n̄, increasing λ ramps up the quasienergy
gap.
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In conclusion, we demonstrated the quantum signature of the classical transition to chaos as
the breaking down of the confinement process and the appearance of a high-entropy asymptotic
behavior. In this section, we showed that with the regularity parameter β fixed to avoid such
transition, the quantum scaling parameter λ can be varied to control the quantum confinement
strength in the subharmonic regime. It is thus possible to benefit from a strong nonlinear effect
while maintaining the dynamics in a regular regime.

4.5 Conclusions

The work presented in this chapter is a natural continuation of work by the QUANTIC-team
of Inria Paris in collaboration with the team of Michel Devoret at Yale University, after the
inductively-shunted transmon was proposed as a novel circuit element that behaves more stable
under the strong drives that are needed for state-of-the-art superconducting circuits experi-
ments [126]. In [126], a resonator was driven in the strongly-dispersive regime and coupled to
inductively-shunted transmon. It was shown that the AC-Stark shift of the resonator remained
well-defined and varied smoothly with the effective number of photons in the resonator. This
was contrasted to the case of the traditional transmon when considered in the exact same
setting, where the AC-Stark shift of the resonator showed strong discontinuities. Moreover,
the asymptotic behavior remained much more pure for the inductively-shunted transmon than
for the regular transmon considered in the same setting. As a first axis of extension of [126],
we explicitly focused on the resonant behavior of the circuit in a single-mode setup, show-
ing its ability to mediate multi-photon processes, which has key applications in the field of
bosonic encodings. Indeed, we have studied the confinement of highly non-classical states,
namely Schrödinger cat states. It is within this concrete and topical application domain that
we obtained a deeper understanding of the structural instabilities reported to plague practical
nonlinear quantum devices. A first main contribution of this work was to explicitly ascribe
this unwanted behavior to the possibility of complex dynamical behavior of the corresponding
classical equations of motion: chaotic dynamics. This chaotic dynamics was studied wielding
the proper tools from classical dynamical systems theory, namely by considering the Poincaré
map. This excursion into classical dynamical systems furthermore allowed us to obtain a novel
and dual understanding of the mentioned multi-photon processes on a classical level.

Using a change of variables detailed in Section 3.1.1, we identified renormalized circuit pa-
rameters that each govern different and complementary system properties. The identification
of these parameters once again emphasizes the role of the inductively-shunted transmon as
a ubiquitous model for nonlinear oscillators to be used for quantum information processing
with superconducting circuits, as any device allows for a circuit model description composed
of these same three basic building blocks: an inductor, a capacitor, and a Josephson junction.
As an immediate contribution we exhaustively quantified the effect of the two effective circuit
parameters β and λ on regularity and anharmonicity respectively, on either a classical or quan-
tum level, and using either numerical or analytical tools. Besides these contributions which
are inherently circuit-related, the methods proposed in this chapter can readily be applied to
different systems, as analogous effective parameters can be identified for related families of
systems that contain an inductive shunt. We argue that the ability to perform perturbation
theory that is valid on a global level hinges on the presence of the inductive shunt, and this dis-
sertation explores one such perturbation theory for the classical system in Chapter 5, utilizing
the fact that the harmonic part of the system dominates the bounded nonlinearity. Applying
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such an averaging-type of perturbation theory on the quantum level [15, 34, 88, 91, 125] for
our specific system should be the subject of future work, explicitly identifying β as the per-
turbation parameter. These results are then to be contrasted with theoretical explanations of
the strong-drive problem [100, 110] in general, and especially to other state-of-the-art pertur-
bation techniques [101, 125] that identify different small parameters. This small parameter
has been chosen to be

√
8EC
EJ

in a transmon limit for example [101], rather than of β = EJ/EL
in our case.

Regarding a more explicit connection to classical chaotic dynamics representing structural
instabilities of the system, we presented a twofold argument why shunted junction models
should be less prone to any perceivable chaotic dynamics altogether, when choosing correct
circuit parameters. First, since the topology of phase space is that of a bounded disk, the
Gambaudo-Tresser conjecture predicts the occurrence of a period-doubling cascade at the
onset of chaos. Secondly, in Section 4.3, we argued that choosing β small enough should
exclude period-doubling bifurcations altogether. We were able to prove this for low-enough-
order subharmonic solutions, again utilizing the boundedness of the Josephson cosine potential
with respect to the harmonic part of the potential. Future work could look into improving
upon this result, obtaining a bound similar to (4.58) that scales more favorably with the
period τ̄ of the considered subharmonic solution. The analytical results of Section 4.3 are not
immediately applicable to models where an inductive shunt is absent, such as for the traditional
transmon [73]. Firstly, an equivalent regularity parameter cannot immediately be identified,
due to the absence of the inductive shunt (EL = 0 in (3.1)). Secondly, for the transmon,
the topology of phase space is equivalent to that of a cylinder, as the superconducting phase
becomes a periodic variable. The conditions of the Gambaudo-Tresser conjecture are then
not rigorously fulfilled, since one should be able to restrict the Poincaré map to an invariant
subset of phase space with the topology of a compact disk.
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Chapter 5

Classical study of subharmonic
working points

Dans la Section 4.1, nous avons établi une correspondance entre des sousharmoniques stables
de période 2πn

νd
, indice m ∈ N et parité r = m + n mod 2 d’une part, et le confinement

de (1 + r)n états chats de Schrödinger à (1 + r)n composants d’autre part. Les résultats de
la Section 4.2 nous ont donné une idée préliminaire sur comment choisir les paramètres du
forçage pour rendre un tel processus de confinement multi-photons résonnant, dans le cas où
n = 3,m = 1, et dans le cas non-chaotique de β ' 0.5. Dans ce chapitre, nous cherchons
à établir un modèle simplifié qui décrit la condition de résonance des paramètres du forçage
(νd, ξd) afin de créer des sous-harmoniques (n : m) stables. Cette analyse suit la méthode
générale de moyennisation géométrique. Nous appliquons cette technique perturbative dans
le cas non-chaotique de β . 0.5, en considérant β comme une perturbation. Cependant,
contrairement à la Section 4.3, nous saisisserons des effects O(β), et négligerons seulement
les effets d’ordre O

(
β2
)
en première instance. Le chapitre est présenté comme suit. Après

un bref résumé sur la théorie de moyennisation géométrique des systèmes périodiques, nous
obtenons une classe de modèles moyennisés au premier ordre qui élimine la dépendance en
temps, pour tout (n : m) fixé. Ensuite, nous analysons la structure des points d’équilibre de ce
modèle moyenisé et nous la comparons aux simulations numériques de type Floquet-Markov.
La résonance (3 : 1) sert à nouveau d’illustration, et la même méthodologie peut facilement
être appliquée à d’autres résonances.

In Section 4.1, we showed a clear correspondence between stable subharmonic solutions
of period 2πn

νd
, winding number m ∈ N and parity r = m + n mod 2 on the one hand, and

the confinement of (1 + r)n Schrödinger cat states with (1 + r)n components on the other
hand. The results outlined in Section 4.2 gave us a preliminary numerical account of how
the drive parameters should be chosen to render such a multi-photon confinement process
resonant for n = 3,m = 1, in the non-chaotic case of β ' 0.5. In this chapter, we set out to
obtain a simplified model that describes the resonance condition the drive parameters (νd, ξd)
need to satisfy in order to create stable (n : m)-subharmonics for the classical system. This
analysis is performed following the method of geometric averaging. We apply this perturbative
technique in the non-chaotic case of β . 0.5, treating β as a perturbation. However, in contrast
to Section 4.3, we will capture O(β) effects, and only neglect effects of O

(
β2
)
. The chapter is

outlined as follows. After a short summary of the theory of geometric averaging for periodic
systems, we obtain a class of first-order averaged models that eliminates the dependence on
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time, for any fixed (n : m). Next, we analyze the equilibrium point structure of this average
model and compare to the numerical Floquet-Markov simulations. The (3:1) resonance again
serves as an illustration of the general theory, and the same methodology can readily be applied
to other resonances.

5.1 Summary of averaging theory

We will summarize the method of geometric averaging (originally due to Krylov and Bogoli-
ubov [75]) using the notation of Section 3.2.1, in terms of a general T -periodic vector field
describing the dynamics of a two-dimensional state variable z ∈ R2. What is new, is that the
oscillations of the vector field as a function of time t are now assumed to be fast with respect
to the magnitude of the vector field itself. To capture this, we introduce a small positive
dimensionless variable ε� 1, and assume the following equations of motion for z,

ż = εf(z, t), z ∈ R2, t ∈ R, (5.1)

where f is now assumed of the same order as the frequency of its oscillations:

‖Tf‖ = O(1).

Another way to interpret this condition, is that the state of the system should not change
significantly on the timescale of the oscillations present in the vector field. To (5.1) we can
associate an autonomous averaged vector field, by neglecting its oscillations in time:

f̄(·) =
1

T

∫ T

0
f(·, t) dt.

Based on the average vector field, one defines the averaged system

˙̄z = εf̄(z̄), z̄ ∈ R2, (5.2)

whose solutions z̄(t) are meant to approximate those of the true system (5.1), for small values
of ε. More precisely, the flow of the averaged system over one system-period provides a
good approximation of the true Poincaré map of (5.1). Explicitly, and analogously to the
introductory material in 3.2.1, we define

Pε := ΨT , with
∂

∂t
Ψt(z0) = εf(Ψt(z0), t), ∀z0 ∈ R2, t ∈ R. (5.3a)

A standard version of the averaging theorem for periodic systems can be found in chapter 4
of [57]. We will summarize the main conclusions relevant to this work. One can establish the
following local correspondences between f̄ and Pε, for small enough ε.

(i) Consider a solution z̄(t) of (5.2) and a solution z(t) of (5.1), based at z̄0 and z0 respec-
tively. If |z̄0 − z0| = O(ε), then |z̄(t)− z(t)| = O(ε) on a timescale 0 < t < tmax = O

(
1
ε

)
.

(ii) Consider a hyperbolic equilibrium point z̄∗ of (5.2), namely

f̄(z̄∗) = 0, (5.4)

where the stability matrix A(z̄∗) := ∇f̄(z̄∗) only has eigenvalues with nonzero real parts.
Then there exists an ε0 > 0 such that for all 0 ≤ ε < ε0, Pε possesses a unique hyperbolic
fixed point z∗ of the same stability type as z̄∗, with z∗ = z̄∗ +O(ε).
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(iii) Consider a trajectory z̄s(t) in the stable manifold of the hyperbolic equilibrium point z̄∗

of f̄ , and let Pkε (zs,0) be an orbit in the stable manifold of the corresponding fixed point
z∗ of Pε (with still z∗ = z̄∗ +O(ε)). If |z̄s(0)− zs,0| = O(ε), then

∣∣z̄s(kT )− Pkε (zs,0)
∣∣ =

O(ε),∀k ∈ N. Similar results apply for unstable manifolds of hyperbolic fixed points (in
reversed time).

(iv) If for some system parameter µ = µ0, the averaged vector field f̄ (µ) of (5.2) undergoes
a saddle-node bifurcation, then for ε small enough, the Poincaré map P(µ)

ε of (5.1)
similarly undergoes a saddle-node bifurcation, for an ε-close parameter value µ0,ε.

Since in Section 4.1, the quantum-classical correspondence in the asymptotic regime was shown
to involve stable periodic orbits of the Poincaré map, we are interested in characterizing
these as a function of system parameters. The averaging theorem justifies characterizing the
equilibrium points of an averaged vector field instead, if we can identify the corresponding
small parameter ε. In the next section we will hence study the equilibrium points of the
average vector field in a well-chosen frame. Before moving on to the next section, a final
comment can be passed on to the interested reader.

Remark 5.1. While the above results tell us that local behavior of the averaged system carries
over to the true system, the same does not hold for global properties of the flow. One example
of such a global property is a homoclinic loop connecting a saddle-type equilibrium of f̄ to
itself. One can in general not expect such an exact identification of stable and unstable
manifolds to hold for the true system (5.1). Determining if the two manifolds still intersect
for small ε − and if so, if they intersect in a transversal manner − is a delicate matter, and
requires a careful analysis for many classes of systems [50, 61]. On the other hand, there do
exist results proving the topological equivalence of the phase portraits of P0 and Pε, under
conditions of Morse-Smale-type structural stability of P0 (see for example theorem 4.4 in [57]),
but this is beyond the scope of this work.

5.2 General properties of (n : m)-resonances

We recall the form of the classical system with symmetric dissipation rates in the two quadra-
tures, introduced in (4.28):

d

ds
x̃ = p̃− κx̃,

d

ds
p̃ = −x̃− κp̃− β̃ sin(x̃+ ξd sin(ν̃ds)).

Here, the frequency of oscillation is given by the normalized drive frequency ν̃d, and should be
considered of order 1. To write our system in the normal form (5.1), amenable to averaging,
we will move to a rotating frame with frequency m

n ν̃d, where m and n are two strictly positive
coprime integers:

x̃ = cos
(m
n
ν̃ds
)
u+ sin

(m
n
ν̃ds
)
v, (5.6a)

p̃ = cos
(m
n
ν̃ds
)
v − sin

(m
n
ν̃ds
)
u. (5.6b)
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Recalling the definition of the detuning from (4.38),

δ = 1− m

n
ν̃d, (5.7)

the resulting equations of motion are

u̇ = δu− κu+ β̃sin
(m
n
ν̃ds
)

sin
(
u cos

(m
n
ν̃ds
)

+ v sin
(m
n
ν̃ds
)

+ ξd sin(ν̃ds)
)
,

v̇ = −δu− κv − β̃cos
(m
n
ν̃ds
)

sin
(
u cos

(m
n
ν̃ds
)

+ v sin
(m
n
ν̃ds
)

+ ξd sin(ν̃ds)
)
,

where now δ can be considered small with respect to ν̃d. Note that we have changed the
periodicity of the system, as the smallest common period of all time-dependent terms amounts
to 2nπ/ν̃d. The equilibria found through an averaged model will thus correspond to 2nπ/ν̃d-
periodic subharmonic solutions a priori. The averaged model is defined as

˙̄u = δū− κū+ β̃
ν̃d

2nπ

∫ 2nπ
ν̃d

0
sin
(m
n
ν̃ds
)

sin
(
ū cos

(m
n
ν̃ds
)

+ v̄ sin
(m
n
ν̃ds
)

+ ξd sin(ν̃ds)
)

ds,

(5.9a)

˙̄v = −δū− κv̄ − β̃ ν̃d
2nπ

∫ 2nπ
ν̃d

0
cos
(m
n
ν̃ds
)

sin
(
ū cos

(m
n
ν̃ds
)

+ v̄ sin
(m
n
ν̃ds
)

+ ξd sin(ν̃ds)
)

ds.

(5.9b)

For the solutions of this model to correspond to the true system up to good accuracy, we a
priori need to assume that

κ
√
ū2 + v̄2 � νd

n
,

|δ|
√
ū2 + v̄2 � νd

n
,

β̃ � νd
n
.

The general correspondences between the averaged model and the true system summarized in
the previous section are asymptotic in nature however, so there are no clear a priori allowable
values for (κ, δ, β) (and corresponding regions in phase space) for which averaging is valid.
Explicit bounds on these values fall beyond the scope of this work. We will thus study the
averaged model (5.9) as is, knowing there exist some small-enough values for (κ, δ, β) for which
the obtained conclusions are valid for the true system. In Section 5.3 however, we compare
the predictions of this averaged model to exact numerical Floquet-Markov simulations.

Analogously to the discussion in Section 3.2.1.2 on the stability types of the Poincaré map,
we can define the stability type of an equilibrium point (u∗, v∗) in terms of the eigenvalues of
the stability matrix

A(ū∗, v̄∗) :=

(
∂ ˙̄u
∂u

∂ ˙̄u
∂v

∂ ˙̄v
∂u

∂ ˙̄v
∂v

)∣∣∣∣
ū=ū∗,v̄=v̄∗

. (5.10)

Explicitly, we obtain

A(ū∗, v̄∗) =

(
−κ δ
−δ −κ

)
(5.11)

+β̃
ν̃d

2nπ

∫ 2nπ
ν̃d

0 sin
(
m
n ν̃ds

)
cos
(
m
n ν̃ds

)
cos(ζ(s)) ds

∫ 2nπ
ν̃d

0 sin2(mn ν̃ds) cos(ζ(s)) ds

−
∫ 2nπ

ν̃d
0 cos2(mn ν̃ds) cos(ζ(s)) ds −

∫ 2nπ
ν̃d

0 sin
(
m
n ν̃ds

)
cos
(
m
n ν̃ds

)
cos(ζ(s)) ds

,
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with
ζ(s) = ū∗ cos

(m
n
ν̃ds
)

+ v̄∗ sin
(m
n
ν̃ds
)

+ ξd sin(ν̃ds).

If both eigenvalues of A have strictly negative real parts, (ū∗, v̄∗) corresponds to a stable node.
If A has one eigenvalue with strictly positive real part and a second with strictly negative real
part, we speak of a saddle point. If both eigenvalues of A have strictly positive real parts, the
equilibrium point corresponds to a source.

As was the case for the true Poincaré map (see Section 3.2.1.3), the dissipative nature
of (5.9) dictates that also for the averaged model, equilibrium points (ū∗, v̄∗) necessarily
correspond to either stable nodes or saddle points, and no sources are allowed. This is easy
to see by considering Tr(A) ≡ −2κ, so the eigenvalues of A must sum to −2κ. Furthermore,
since A only has real entries, its eigenvalues are either both real, or are a complex conjugate
pair. Then it easily follows that the eigenvalues η± of A can be written as

η± = −κ± χ,

where χ is either strictly positive or purely imaginary. Consequently, the only possible bifur-
cation mechanism is a saddle-node bifurcation where η+ = 0, for χ = κ. At this bifurcation
point, a saddle-node pair is either created or annihilated together (depending in which direc-
tion one changes the system parameters). Denoting the total number of nodes by Nn, and
the total number of saddle points by Ns, this implies that for any set of system parameters
(κ, δ, β, ξd), Nn−Ns remains constant. For system (5.9), we can prove that Nn−Ns ≡ 1. The
main idea behind the proof is a standard topological argument based on the Poincaré index
(see Proposition 1.8.4 of [57]) of a closed curve C encircling all the equilibria1. The index
theorem equates Nn−Ns to the number of turns made by the vector field when traversing the
curve C, and for our system this number of turns amounts to 1.

We now turn to finding the equilibrium points of (5.9). It is instructive to perform the
equilibrium point analysis in polar coordinates,

ū = R sin(θ), (5.12a)
v̄ = R cos(θ). (5.12b)

The equivalent vector field for (θ,R) becomes

θ̇ = δ + β̃
g(n:m)(θ,R, ξd)

R
, (5.13a)

Ṙ = −κR+ β̃h(n:m)(θ,R, ξd), (5.13b)

with

g(n:m)(θ,R, ξd) =

{ ∑∞
k=−∞ cos(knθ)J1+kn(R)J−km(ξd) , m+ n even,∑∞
k=−∞ cos(2knθ)J1+2kn(R)J−2km(ξd) , m+ n odd,

(5.14a)

h(n:m)(θ,R, ξd) =

{
−
∑∞

k=−∞ sin(knθ)J1+kn(R)J−km(ξd) , m+ n even,
−
∑∞

k=−∞ sin(2knθ)J1+2kn(R)J−2km(ξd) , m+ n odd,
(5.14b)

1We show in Section 5.2.2 that for κ > 0 all equilibria are necessarily situated in a bounded region of phase
space.
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where Jl is the l’th order Bessel function of the first kind. To make the notation more uniform,
we will introduce the parity

r := (m+ n) mod 2 =

{
0 , m+ n even,
1 , m+ n odd,

and drop the superscript (n:m) to make the notation less heavy, while it should be remembered
that g and h depend on the pair of coprime integers (m,n). In this way we can write

g(θ,R, ξd) =
∞∑

k=−∞
cos((1 + r)knθ)J1+(1+r)kn(R)J−(1+r)km(ξd), (5.15a)

h(θ,R, ξd) = −
∞∑

k=−∞
sin((1 + r)knθ)J1+(1+r)kn(R)J−(1+r)km(ξd). (5.15b)

As an immediate observation, for any value of κ, β and δ, if either n ≥ 2, or n = 1 and r = 1,
the origin R = 0 corresponds to an equilibrium point, since h(θ, 0, ξd) = 0, ∀θ, ξd. Since we
are interested in finding subharmonic solutions with n > 1, we can exclude the case n = 1,
r = 0 however, so we can always assume the origin to be an equilibrium point. Subsequently
excluding the origin, the remaining equilibria (θ∗, R∗) can be sought for by solving

δ = −β̃ g(θ∗, R∗, ξd)

R∗
, (5.16a)

κ = β̃
h(θ∗, R∗, ξd)

R∗
. (5.16b)

Thus excluding the origin, whenever we find a node (resp. saddle point) we know there must
exist a corresponding saddle point (resp. node). For this reason, we do not focus on the
stability type for now, and postpone this question to Section 5.3. The rest of this chapter is
outlined as follows. First, a set of global symmetries of the set of equilibria is discussed. Next,
in Section 5.2.2 we consider some insightful limiting cases, for which analytical conclusions
can be obtained. Section 5.3 then details a numerical approach for characterizing the set of
equilibria, for the case m = 1, n = 3.

5.2.1 Global symmetries

The averaged model (5.9) adheres to a global rotational symmetry, causing a degeneracy in
the set of equilibria.

(i) The averaged vector field is invariant under rotation by an angle 2π
n(1+r) , since h(θ +

2π
n(1+r) , ·, ·) = h(θ, ·, ·), and g(θ + 2π

n(1+r)) = g(θ, ·, ·). This means that for any trajectory
(θ(s), R(s)), another solution is obtained by considering (θ(s) + k 2π

n(1+r) , R(s)), k =

1, . . . , (1 + r)n− 1. In particular, any equilibrium (θ∗, R∗) is part of a group of (1 + r)n
equilibria of the same stability type.

(ii) In the Hamiltonian limit of κ = 0, Ṙ = 0 is automatically satisfied for

θ∗ =
kπ

n(1 + r)
, k = 0, . . . , (1 + r)n− 1, (5.17)
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readily identifying a subset of possible equilibria. Note that for any value of R∗, the
detuning can be chosen to satisfy (5.16a), so such equilibria must exist for

δ ∈
[
−β̃gsup,−β̃ginf

]
,

where

ginf := inf
θ∗∈

{
0, π
n(1+r)

}
,R>0

g(θ∗, R∗, ξd)

R
,

gsup := sup
θ∗∈

{
0, π
n(1+r)

}
,R>0

g(θ∗, R∗, ξd)

R

Since g is bounded, these limits are well-defined.

(iii) Still in the Hamiltonian case, an extra symmetry of (5.13) can be established:

θ → −θ, (5.18a)
s→ −s. (5.18b)

The system is therefore called reversible, due to this time-reversal symmetry. (5.18) has
no immediate extra consequences for any of the equilibria satisfying θ∗ = k π

n(1+r) , since
the set is invariant under θ → −θ. However, any equilibrium (θ∗, R∗) that is not of this
form must necessarily come with a second equilibrium (−θ∗, R∗) of the same stability
type. This symmetry is broken for κ > 0, but one can expect a certain approximate
symmetry to hold, as an infinitesimal amount of dissipation can only change the phase
portrait in a continuous manner.

5.2.2 Limiting behavior

There are two interesting limits to be considered in terms of the distance R to the origin.

• For R� 1, we can Taylor expand (5.13) to obtain up to leading order, for n > 1:

θ̇ = δ +
β̃

2
J0(ξd) +O(R), (5.19a)

Ṙ = −κR+O
(
R2
)
. (5.19b)

The origin of phase space is seen to be a stable node for κ > 0, and a center in the limit
of κ → 0. We call this equilibrium the nominal point. Close to the origin, the aver-
aged model describes an essentially linear system (harmonic oscillator). The Josephson
nonlinearity only shows itself in the fact that the frequency of this effective harmonic
oscillator depends on the drive amplitude ξd, which is not the case for the response of
a purely linear system. We call this drive-induced frequency shift the AC-Stark shift of
the oscillator:

∆AC :=
β̃

2
(J0(ξd)− 1). (5.20)

One important conclusion is that the AC-Stark shift shows oscillatory behavior with ξd,
and remains bounded indefinitely as a function of the drive amplitude ξd.
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• The opposite limit can also be taken. Consider a candidate equilibrium point (θ∗, R∗)
and let R∗ →∞. Since g is a bounded function of R, we obtain

θ̇ = δ +O
(

1

R∗

)
.

As R∗ → ∞, the value of |δ| that is allowed for an equilibrium point to occur tends to
zero. In terms of the original drive frequency this implies

ν̃d =
n

m
+O

(
1

R∗

)
.

The effect of the nonlinearity of the Josephson junction thus effectively disappears, and
we obtain a resonance condition based solely on the linear part of the system. We can
apply the same reasoning to the dissipation rate κ, as also h is bounded in R. For an
equilibrium point to occur at a distance R∗, we need

κ = O
(

1

R∗

)
.

• There is one more limit that allows for a simple analytical estimate, namely the limit
of weak driving: ξd � 1. In this case we can replace the Bessel functions by an ap-
propriate asymptotic expansion to obtain the leading-order contributions in (5.13). The
asymptotic expansion

Jl(ξd) ∼
ξld
2ll!

, l, ξd > 0 (5.21)

is valid for ξd → 0. We obtain the following leading-order equation:

θ̇ = δ + β̃
J1(R)

R
+O

(
ξ

(1+r)m
d

2(1+r)m((1 + r)m)!

)
, (5.22a)

Ṙ = −κR− (−1)mβ̃ sin((1 + r)nθ)
ξ

(1+r)m
d

2(1+r)m((1 + r)m)!

(
J(1+r)n+1(R) + (−1)rJ(1+r)n−1(R)

)
+O

(
ξ

2(1+r)m
d

22(1+r)m(2(1 + r)m)!

)
. (5.22b)

In this case, it is δ that first determines R∗ such that −δ/β̃ ' J1(R∗)/R∗ (though
possibly not uniquely), and the value of θ can then be chosen as to satisfy Ṙ = 0
in (5.22b). Note that this last equation always allows for a solution θ∗ as long as the
dissipation rate κ is small enough. In the limit of κ = 0, θ∗ = kπ

n(1+r) , k = 0, . . . , (1 +

r)n − 1 provides a class of solutions. However, for decreasing ξd, the averaged model
tells us that the oscillator must be increasingly high-Q to observe the corresponding
subharmonic resonance. Indeed, using the boundedness of J(1+r)n±1(R)/R for n > 1, it
easily follows from (5.22b) that

κ <
β̃ξ

(1+r)m
d

2(1+r)m−1((1 + r)m)!
+O

(
ξ

2(1+r)m
d

22(1+r)m(2(1 + r)m)!

)
must be satisfied for there to exist any equilibria. Note that odd-parity processes (r = 1)
are suppressed, in the sense that asymptotically, for small ξd, one needs a much higher-Q
system to observe them.
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The general equilibrium point structure of the averaged model is quite complicated, and
especially the sequence of bifurcations upon varying parameters is increasingly complicated.
In the next subsection, we adopt a numerical approach to characterize this equilibrium point
structure as a function of the drive parameters.

5.3 Numerical approach for (n : m) = (3:1)

Note that for any fixed equilibrium (θ∗, R∗), and any given drive amplitude ξd, one obtains the
corresponding values of (κ, δ) by forwardly computing them from (5.13). If on the other hand,
we want to fix the system parameters beforehand, and look for equilibrium points, one has to
resort to a numerical root-finding algorithm. To avoid having to use root-finding algorithms
in the two variables (θ,R) we make an observation. Note that the dissipation rate κ is fixed
at the fabrication of the device, whereas δ corresponds to a drive-detuning that is typically
adjusted online. This allows us to adopt the following strategy to find the equilibria of (5.13)
as a function of (β̃, κ, δ, ξd), using a reliable one-dimensional root-finding algorithm. First
fix the values of β̃, κ and the R∗-value of the sought-for equilibrium. Next, from (5.13b),
root-find possible θ∗-values that give rise to Ṙ = 0. For this we used a simple algorithm based
on sign changes of Ṙ as function of θ. If no such sign changes are found within 1000 uniform
samples for θ in the interval [0, 2π), we conclude that no equilibria exist for the given values of
(κ, δ,R∗). For every θ∗ that does give rise to Ṙ = 0, from (5.13a), we can forwardly compute
the (unique) value

δ = −β̃ g(θ∗, R∗, ξd)

R∗

such that also θ̇ = 0 and (θ∗, R∗) is indeed an equilibrium point. As a note aside, the point
R∗ = 0 should be omitted, as θ is ill-defined at the origin. From (5.19b), we know that the
origin is always an equilibrium point however, and corresponds to a stable node when κ > 0.

Afterwards, the stability type of the corresponding equilibrium can be determined by per-
forming a linearization analysis on (5.9). We recall that if the eigenvalues of

A(R∗ sin(θ∗), R∗ cos(θ∗)) =

(
∂ ˙̄u
∂u

∂ ˙̄u
∂v

∂ ˙̄v
∂u

∂ ˙̄v
∂v

)∣∣∣∣
ū=R∗ sin(θ∗),v̄=R∗ cos(θ∗)

. (5.23)

both have strictly negative real parts, then (θ∗, R∗) corresponds to a stable node. If one
of the eigenvalues has a strictly positive real part, then (θ∗, R∗) corresponds to a saddle
point. In practice, it suffices to compute the determinant of (5.23). An analytical formula
similar to (5.13), (5.14) can be derived for A(R∗ sin(θ∗), R∗ cos(θ∗)), and the expression is then
evaluated numerically in (θ∗, R∗).
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Figure 5.1: Numerical account of the bifurcation structure of the averaged model (5.13),(5.15)
when varying the detuning δ, for β̃ = 0.5, κ = 10−5, and ξd = 1.7. The possible equilibria
(θ∗, R∗) were determined by imposing Ṙ = 0 (see (5.16b)). Two projections are given for the
remaining relation δ = −β̃g(θ∗, R∗, ξd)/R

∗, relating the detuning δ to the polar coordinates
(θ∗, R∗) of the equilibrium point. (top): The possible equilibria satisfying Ṙ = 0 (see (5.16b))
are plotted, omitting the corresponding (uniquely defined) value of δ. Stable nodes are shown
in green, while saddle points are shown in red. One can clearly see the rotational symmetry
over an angle 2π

n(1+r) = 2π/3 of the equilibrium point structure, which was introduced in
Section 5.2.1. Equilibria close to the origin (R < 5 here) occur approximately at angles
θ = kπ/3, k = 0, . . . 5. (bottom): δ is plotted as a function of R∗, omitting the corresponding
value of θ∗. Correspondingly, every displayed point corresponds to a triplet of equilibria, at
the same distance R from the origin, and angles ±2π/3 apart. At local extremal points of δ,
a saddle-node bifurcation takes place, since three nodes and three saddles locally (dis)appear
at these extrema. The bifurcation mechanisms from situation (a) to (e) are discussed in the
text.
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5.3.1 Bifurcation structure

In Figure 5.1, an account is given of the equilibrium point structure of the averaged model
for m = 1, n = 3 (so an even-parity process, r = 0), as a function of the detuning δ, for fixed
values of κ = 10−5, β̃ = 0.5 and ξd = 1.7. Two projections of the relation

δ = −β̃ g(θ∗, R∗, ξd)

R∗

are given, linking the triplet (δ, θ∗, R∗). Stable nodes are shown in green, while saddle points
are shown in red. On the top plot, the value of δ is implicit. One can clearly see the
rotational symmetry over an angle 2π

n(1+r) = 2π/3 of the equilibrium point structure, which
was introduced in Section 5.2.1. On the bottom plot, the value of the angle θ∗ is implicit. At
local extrema of δ, a saddle-node bifurcation takes place, where three nodes and three saddles
locally (dis)appear at these extrema. Combining the bottom and top plots of Figure 5.1, we
can discuss the location of the equilibria and the bifurcations that take place, when increasing
δ gradually from point (a) to point (e).

• For the most negative values of δ, no equilibria are found for R > 0. The only equilibrium
resides in the origin (not shown), and the averaged model predicts the origin to be
globally attractive for any κ > 0. This is straightforward to prove due to the absence of
other equilibria.

• Upon increasing the value of δ, from point (a) to point (b), a threefold saddle-node
bifurcation (around R∗ ' 1) takes place, simultaneously creating three saddle-node
pairs at angles θ∗ ' 2kπ/3, k = 0, 1, 2. Upon further increasing the value of δ, the
stable nodes move radially outward to larger values of R∗, while the saddle points move
radially inward towards the origin.

• From point (b) to (d), the saddle points move through the origin, re-exiting at angles
θ∗ ' π/3+2kπ/3, k = 0, 1, 2 (note that in the origin θ∗ can undergo a discontinuity). In
situation (c), the three saddle points coalesce in the origin, creating a degenerate point
2. The value of δ for situation (c) exactly compensates the AC-Stark shift (see (5.20))
of the oscillator:

δ = − β̃
2
J0(ξd) ' −0.1.

• When further increasing δ, moving from situation (d) to situation (e), many differ-
ent saddle-node pairs are created and move towards other equilibria as a function of
the detuning δ, before subsequently recombining and annihilating in another saddle-
node bifurcation. Moreover, we see that equilibria are no longer restricted to the angles
θ ' kπ

3 , k = 0, . . . 5, as equilibria branch off and move in the angular direction in between
these radial axes. Beyond the numerical results displayed in Figure 5.1, we have no fur-
ther analytical insight in this complicated bifurcation structure. This process continues

2One can show that for κ = 0 this indeed corresponds to a degenerate bifurcation point where the 4
equilibria exactly coincide, due to the global rotational symmetry of the vector field. For small non-zero κ this
bifurcation must be regularized in saddle-node bifurcations very close to this degenerate point, providing an
unfolding of this degenerate point in codimension 2, similar in nature to the cusp catastrophe (see e.g. Section
7.1 of [57]). The exact nature of the unfolding of this bifurcation in terms of the two parameters (κ, δ) has not
been the study of this work however.
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when further increasing δ, until eventually all equilibria are annihilated, corresponding
to situation (e).

A schematic representation of the phase diagrams corresponding to the analogous situations
(a) to (e) for the dissipationless case of κ = 0 is given in Figure 5.2 (top).

The bifurcation structure for different values of ξd looks qualitatively similar. Specifically,
we observe that for values of ξd ∈ [0, 2.2], when driving to compensate the AC-Stark shifted
frequency of the oscillator (δ = −β̃J0(ξd)/2) there exists a unique triplet of stable nodes
(not shown here). The distance R∗ of these nodes to the origin moreover increases monoton-
ically from 0 to 3.3 with ξd going from 0 to 2.2, and for the corresponding angles we have
θ∗ ' 2kπ/3, k = 0, 1, 2. This is true independently of the value of β̃, for small enough dissipa-
tion rate κ. Driving the oscillator around its AC-Stark shifted frequency thus identifies one
favorable working regime in which the global symmetries of (5.17) approximately hold, and in
which the stable resonant nodes are unique. In the next section, we will indeed see that the
drive parameters giving rise to a confined manifold of Schrödinger cat states for the quantum
system generally follow the AC-Stark shift:

δ = − β̃
2
J0(ξd).

5.3.2 Comparison to Floquet-Markov simulations

In this section, we establish how the equilibrium point structure of the averaged classical
model (5.13),(5.15) can predict the asymptotic behavior of the quantum system, as calculated
by the numerical Floquet-Markov simulations outlined in Section 3.2.2. For this we consider
the dissipationless case of κ = 0, as the Floquet-Markov simulations are set in the limit of a
vanishing coupling rate to an environmental bath, and hence at a vanishing dissipation rate.
The value of β is chosen as to be in a regular regime, β = 0.5. We again consider the case
of the (3 : 1)-resonance as a guiding example, while the discussion can readily be applied to
other resonances.

The general correspondence that can be established between the classical and quantum
system was outlined in Section 4.1.3. For the case of the (3 : 1)-resonance, we saw that a
stable 3-orbit {(

x
(3:1)
l , p

(3:1)
l

)
|l = 0, 1, 2

}
of the Poincaré map P corresponds to a triplet of Floquet modes that are of the form of three-
component Schrödinger cat states, and whose quasienergies were shown to be degenerate
modulo νd/3, indicating a multi-photon process where three oscillator photons are converted
into one drive photon and vice versa. We recall that these Schrödinger cat states are given
by the superpositions of distinguishable states in phase space that closely resemble coherent
states |αl〉, l = 0, 1, 2. The amplitudes αl of these coherent states were seen to approximately
correspond (see e.g. Figure 4.3) to the three classical fixed points of P3,

αl '
x

(3:1)
l + ip

(3:1)
l√

2
, l = 0, 1, 2. (5.24)

In this chapter, we have described a prominent class of stable (3 : 1)-subharmonics corre-
sponding to stable nodes

(R∗ sin(θ∗ + 2lπ/3), R∗ cos(θ∗ + 2lπ/3)), l = 0, 1, 2
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Figure 5.2: Comparison between the Floquet-Markov signatures of the (3 : 1)-resonant cat
states, and the occurrence of (3 : 1)-fixed points of P3, as predicted by the averaged clas-
sical system (5.13), for β = 0.5, λ = 0.2, and κ = 0. (Bottom): The effective number of
Floquet modes Nocc occupied by ρ∞ at time τ = 0 mod 2π/νd is plotted in a color map
plot, as a function of drive parameters (exact numerical Floquet-Markov simulations). The
green lines delimit the region where the classical averaged model (5.9) predicts the existence
of stable equilibria, and is seen to delimit the quantum resonance region where Nocc ' 3 up
to very good accuracy. The AC-Stark-shifted drive frequency as predicted by the averaged
model (see (5.27)) is shown in blue. (Top): Schematic representation of the phase portraits
of the averaged system for 5 points indicated in the bottom plot. The center in the middle
corresponds to the origin of phase space. Moving from (a) to (e), the following bifurcation
mechanisms take place. First, a saddle-node bifurcation occurs where three nodes and three
saddles are created, represented in (b). The saddle-separatrices form (initially small) homo-
clinic loops. The corresponding saddle-points subsequently move radially inwards (typically
very fast as a function of νd), until they coalesce (and perfectly coincide, due to the discrete
rotational symmetry) in the origin. This is depicted in the degenerate situation (c), corre-
sponding to the drive frequency νd that compensates for the AC-Stark shift, indicated by the
blue line. At this point, the direction of rotation of the origin is reversed, and in (d) the three
saddle-points form heteroclinic loops. The bifurcation process from (d) to (e) involves (often
cascades of) saddle-node annihilations and creations (see Figure 5.1), when further lowering
the value of νd (corresponding to increasing δ, see (5.7)). This entails exchanges in pairing
between saddle-node triplets, before they eventually all cancel out, and only the center in the
origin remains. This situation is depicted in situation (e).
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of the first-order averaged model (5.9), which approximate solutions of the true system.
Working back to the lab frame, by undoing the rotating-frame transformation (5.6), we obtain
that the corresponding 3-orbit of the Poincaré map P corresponding to (5.5) is approximately
of the form

x̃
(3:1)
l ' R∗ sin(θ∗ + 2lπ/3), (5.25a)

p̃
(3:1)
l ' R∗ cos(θ∗ + 2lπ/3), (5.25b)

Recall from Section 3.1.1.1 that both quadratures x̃, p̃ were scaled by the quantum scaling
parameter (see (3.15)) λ to eliminate it from the classical equations of motion. The corre-
spondence (5.24) can then be worked out for the 3-orbit of the form (5.25), yielding

αl ' ie−i(
2πl
3

+θ∗)R
∗

2λ
, l = 0, 1, 2. (5.26)

With this correspondence in mind, we can now compare the classical averaged model to the
numerical Floquet-Markov simulations of the infinite-time behavior of the quantum system.
This is the subject of Figure 5.2(bottom). To characterize the asymptotic regime, as in
Chapter 4, we consider the effective number of Floquet modes Nocc occupied by the asymptotic
state ρ∞(τ), defined as

Nocc := exp(S(ρ∞)),

where S(ρ∞) is the von Neumann entropy of the state,

S(ρ∞) := −Tr(ρ∞ ln(ρ∞)).

Nocc is plotted as a function of the drive parameters (νd, ξd) in Figure 5.2 (bottom). From a
numerical point of view, we define the resonance region for the quantum system to be the set
of drive parameters (νd, ξd) for which

Nocc ' 3,

since when ρ∞ is given by a uniform mixture of 3 three-component Schrödinger cat states,
Nocc amounts to exactly 3. This quantum resonance region corresponds to the purple region
in Figure 5.2. The black region corresponds to an essentially pure state (displaced vacuum)
for ρ∞. For the drive parameters corresponding to the white points, the numerical simulations
are inconclusive to determine ρ∞ (see Remark 4.1).

Superimposed on the plot is the blue line, representing the drive parameters that exactly
compensate for the AC-Stark shift of the oscillator, given by

ν
(3:1)
d :=

3

1

(
1 +

β

2
J0(ξd)

)
. (5.27)

We can see that the general shape of the resonance region follows the oscillation of this
AC-Stark shifted resonance frequency. Plotted in green are the extremal values for the drive-
detuning for which the averaged model exhibits stable nodes. These necessarily coincide with
a saddle-node bifurcation of the average system, and analogously to the global extrema of the
analogous curves shown in Figure 5.1(bottom). We can see that the green lines delimit the
quantum resonance region (Nocc ' 3) up to very good approximation, and hence the averaged
classical model accurately predicts the drive parameters that lead to a resonant situation for
the quantum system. As a point of reference, the top of Figure 5.2 shows schematic diagrams
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of the corresponding phase-portrait of the classical averaged model (for κ = 0). Examples of
drive parameters that give rise to the respective phase portraits are indicated on the bottom
plot of Figure 5.2. The drive parameters are chosen such that the averaged model predicts
either a unique triplets of resonant equilibria (situations (b),(c),(d)), or that only the origin
remains as a center (situations (a) and (e)).

In conclusion, we can see that the general shape of the quantum resonance region in terms
of drive parameters is well-described by the classical averaged model of (5.9). Since (5.9)
corresponds to the lowest-order model of the perturbative method of averaging, and the value
of β chosen is quite large to be considered a perturbation (but small enough to be in the regular,
non-chaotic regime, β = 0.5) was not a priori given. A first limitation of any classical model
in predicting the quantum resonance region, is that the classical equations of motion (5.5) do
not show any dependence on the quantum scaling parameter λ, which has a clear quantum
effect studied in Section 4.4. We conclude with a few remarks on other limitations of classical
models in predicting the resonance region for the quantum system, leading to some expected
quantitative differences between the purple region and the green delimiting lines in Figure 5.2.

Remark 5.2. (Tunneling and far equilibria). A first aspect to be noted, is that the maximal
number of Floquet modes occupied by ρ∞ is seen to be Nocc,max ' 3. The possible Floquet
modes that are occupied correspond to either three 3-component cat states (purple region,
Nocc ' 3), or a single Floquet mode resembling a (dressed) vacuum state (black region,
Nocc ' 1) 3. Note that this is not what would be predicted by the classical averaged model in
the equivalent limit of vanishing dissipation rate, since many resonant stable nodes can co-exist
(see Figure 5.1(bottom)), and all have a non-vanishing basin of attraction. The reason for this
limitation of the quantum-classical correspondence in the asymptotic regime is the specific
dissipation model for the driven quantum system, consisting of a weak Hamiltonian coupling
to an environmental bath. Indeed, by the extension of Fermi’s golden rule to periodically-
driven systems outlined in Section 3.2.2, the driven quantum system can directly transition
between different Floquet modes, and is seen to converge to a mixture of Floquet modes that
correspond to only a handful of the possible classical locally-stable nodes. When comparing
the phase-space representation of ρ∞ to the phase portrait of the classical Poincaré map, as
in Figure 4.3, we observe (simulations not shown here) that the dominantly-occupied Floquet
modes in the resonant case always corresponds to the classical stable resonant nodes that are
closest to the origin, so in terms of the averaged model, have minimal values of R∗.

A possible explanation for this follows from an energetic argument, since coherent states
that are further out into phase space correspond to a larger average number of photons,

n̄ := |αl|2 '
R∗2

4λ2
,

and hence could be be less favorable thermodynamically since the environmental bath was
assumed to be at zero temperature. This fact should also find a quantitative explanation
through the application of semiclassical quantization methods based on the effective potential
landscape associated to the nested irrational tori of the Poincaré map [11, 18]. For the regular,
non-chaotic regime of periodically driven systems in a Floquet-Markov-limit similar to this

3The white points in Figure 5.2(bottom) indicate values for the drive parameters for which the numerical
Floquet Markov simulations are inclusive to determine ρ∞, since for these drive parameters, both a complete
mixture of the three cat states on the one hand, and the dressed vacuum state on the other hand appear to
be long-lived, and both span the kernel of the transition matrix R (see (3.48)) obtained from Fermi’s golden
rule outlined in Section 3.2.2. For a more detailed discussion, see Remark 4.1.
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work, a Boltzmann distribution with a winding-number-dependent effective temperature has
been shown to predict the distribution of Floquet modes [67]. Such an analysis falls beyond
the scope of this dissertation however. As a last point, note that far-away resonant stable
nodes might become relevant for the transient, finite-time behavior of the system. This is not
the subject of this work however.
Remark 5.3. (Basins of attraction). A second main difference between the classical averaged
model and the behavior of the quantum system lies in the fact that quantum states occupy
a finite minimal surface area in phase space given by the Heisenberg uncertainty principle.
In this way, classical stable nodes with a small basin of attraction 4 cannot be resolved by
the quantum system, as the quantum wave-packet is forced to spread outside of the basin
of attraction. Concretely, if the basin of attraction of a stable node is smaller than the
surface in phase space occupied by a quantum coherent state |αl〉, the correspondence of
Observation 4.1 should be expected to break down. Such small basins of attraction for the
classical system occur close to a saddle-node bifurcation point for example, and we cannot
expect the corresponding resonant stable nodes to give rise to a resonant quantum regime,
The same argument holds when the resonant nodes are sufficiently close to the origin, as the
quantum state spreads over multiple classical basins of attraction (not shown here). This
potentially explains the black region around ξd ∈ [0, 0.3], νd ∈ [3.67, 3.73], as νd is close to the
saddle-node bifurcations of the green curves, and moreover, for small values of ξd, the stable
nodes are created close to the origin (not shown here).
Remark 5.4. (Hilbert space truncation). Lastly, from (5.26), we can see that the average
number of photons of the coherent state |αl〉 is approximately given by

n̄ := |αl|2 '
R∗2

4λ
.

Depending on the value of the quantum scaling parameter λ, many of the equilibria represented
in Figure 5.1 thus correspond to a very high average number of photons in the oscillator.
Indeed for a “nominal” experimental value of λ = 0.2, and for a reference value of R = 3, the
corresponding mean number of photons amounts to

n̄ =
R2

4λ2
' 56.

Hence equilibria of the averaged model corresponding to very large R∗-values are not captured
by the numerical simulations, due to a finite truncation of the Hilbert space. Depending on
the value of λ, we might not be able to capture such far-out equilibria of the classical system,
as most of our simulations were performed using 300 Fock states. Therefore, the number of
Fock states was chosen as to capture the coherent states corresponding to the stable nodes of
the averaged model that are closest to the origin, for the smallest value of the quantum scaling
parameter λ considered, namely λ = 0.2. Such an analysis reveals that 150 Fock states should
suffice, and we see that the simulations have fully converged for 300 Fock states, for any purple
or black point in Figure 5.2(bottom). We recall that the white points in Figure 5.2(bottom)
are not due a truncation of Fock space. All the relevant individual Floquet modes have
fully converged with 300 Fock states, but the specific mixture of Floquet modes in ρ∞ is not
uniquely defined for these points (see Remark 4.1).

4While the classical averaged model was analyzed for κ = 0, we refer to the resulting centers as “nodes”
after all, since for any κ > 0, these correspond to stable nodes. Similarly, we refer to regions in phase space
delimited by saddle separatrices as “basins of attraction” of the nodes, since in the limit of κ → 0 but κ > 0,
the true basins of attraction of the corresponding stable nodes are delimited by these saddle-separatrices.
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5.4 Summary

In this chapter, we applied the method of geometric averaging to characterize a general set
of (n : m)-subharmonic resonances as a function of drive parameters, treating the regularity
parameter β as a perturbation. The averaged vector field was seen to split into two cases for the
parity r = (m+n) mod 2, where equilibria must come in sets of size (1 + r)n due to a global
rotational symmetry of the system, as was the case for the quantum multi-photon process
in Section 4.1.4. Considering the full Josephson cosine potential in the averaged model, the
boundedness of the cosine potential showed itself in the following way. The frequency range
for ν̃d in which resonant equilibria exist was shown to be bounded from both sides, and also
the AC-Stark shift of the oscillator was shown to be a bounded oscillating function of the drive
amplitude ξd. Next, we outlined a simple algorithm to numerically characterize the bifurcation
structure of equilibria as a function of drive parameters. These results were shown to be able
to predict the equivalent resonance region in (νd, ξd) of the quantum system, providing an
efficient and insightful way to select drive parameters that lead to a confined manifold of
Schrödinger cat states.

An immediate extension of these results should be pursuing higher-order averaged models
of increased accuracy, capturing terms of the order O

(
βk
)
, k ∈ N, k ≥ 2 in the averaged

vector field. While we have only obtained an explicit formula for the second-order average,
capturing terms of order β2, the global symmetries of Section 5.2.1 can be shown to persist up
to any order of averaging, both for the Krylov-Bogoliubov-type averaging approach [75] as for
Lie-group based averaging approaches for the Hamiltonian case [125]. This justifies pursuing
higher-order models while retaining the same physical interpretation of an analogous multi-
photon quantum process where (1 + r)n oscillator photons at frequency mνd/n are exchanged
with (1 + r)m drive photons at frequency νd.
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Part II

Dynamical decoupling of the close
environment
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In this part, we develop an approach for countering noise in practical quantum devices.
An elementary setting is considered where a target system carrying quantum information is
coupled to a small and identifiable environment subsystem that is the main source of noise
for the target. We use techniques and insights from the field of dynamical decoupling (DD)
to propose the following strategy: driving the environment subsystem as to decouple it from
the target.

Context and motivation

Several experimental realizations for quantum hardware encounter the situation where a target
system is directly coupled to a finite-dimensional environment subsystem whose decoherence
is identified as the main source of induced decoherence on the target. One example of such
environment systems are so-called two-level system (TLS) defects in the oxide layer of super-
conducting Josephson junctions, which typically decohere through phonon channels and are
a main mechanism inducing decoherence of superconducting qubits [84, 95]. Another such
identified environment would be spurious box modes that show some residual coupling to the
target modes in microwave resonators.

The idea of Dynamical Decoupling (DD, see [129] and a large set of follow-up works) is to
reduce the effective coupling between two quantum systems by using tailored control actions
at a faster timescale than the Hamiltonian coupling. Starting from this idea, we propose to
reduce induced decoherence on the target system by applying actions, in a very broad sense, on
the environment side. The potential advantages are that those actions need not be particularly
precise, and that they commute with any system operations one may want to perform. In
fact, in Chapter 7 we show how even adding dynamics as noisy as pure decoherence channels
on the environment can decrease the induced dissipation on the target system.

Environment-actuated decoupling also opens the door to refined contributions to analyzing
the decoherence induced on the target system. The timescale separation between the effective
inter-system coupling and all the dominant dynamics acting on the environment allows for
treating the induced decoherence experienced by the target in a perturbative manner, through
the method of adiabatic elimination [5, 6, 66, 106]. This mathematical approach remains fully
compatible with control actions applied to the environment over all ranges of magnitudes.
More so, since the goal is to reduce the effective coupling between the target system and
the environment, the validity of the adiabatic elimination approach actually increases. Using
an extension of the adiabatic elimination formalism (see Section. 6.3.1.2), supplemented with
Floquet-Markov-type [54] adjustment of the environment decoherence channels themselves
when accounting for ultra-strong driving (see Section 6.3.3), we calculate the induced deco-
herence rate on the target when applying coherent drives or further decoherence channels on
the environment, paving the way for an optimization of the setting.

No control actions whatsoever can hope to decouple from purely Markovian decoherence.
More concretely, in mathematical terms: adding Hamiltonian actions on a system does not
enable to reduce the effect of a purely Lindbladian dissipation channel on the same system. DD
has been considered to cancel spurious effects in two cases. In the first proposal [129], the goal
is directly formulated as reducing the coupling to a spurious finite-dimensional “environment”
system. The target and spurious environment are both modeled as Hamiltonian systems.
Control sequences are designed to make the effective Hamiltonian coupling vanish up to a
certain order, the successive orders typically being given by a Magnus expansion [16, 88] or
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an equivalent Hamiltonian averaging technique [35]. As a result of the DD controls, the state
of the target system undergoes a fast trajectory and its quantum information is preserved
in a so-called toggling frame which must be safely followed. In a second type of approach,
it is acknowledged that Lindbladian dissipation models are in fact often an approximation,
stemming from a direct interaction with a large bath. Identifying the environment with
this large bath in a Hamiltonian model and introducing the DD drives before making the
typical approximations (Born-Markov or secular approximations) that lead to a Lindbladian
model, one obtains that decoupling actions are able to counter low-frequency noise, thus
effectively modifying and reducing the Lindbladian decoherence channels on the target when
DD controls act faster than the cut-off frequency of the noise-spectrum of the bath [37, 41,
121]. The decoherence model in the present work can be seen as intermediate to these two
viewpoints, as it considers a target system coupled to a small effective environment, which itself
undergoes Lindbladian decoherence. The small environment thus captures memory effects in
the decoherence of the target. Since we will be driving this small environment, its Lindbladian
dissipation model will have to be revised when considering strong drives (see Section 6.3.3),
just as in the approach of [37, 41, 121]

Throughout most of this part, as a first approach, we will consider that the dominant noisy
environment, denoted as the “E” subsystem, consists of a two-level quantum system (TLS).
Such settings commonly appear in practice as spurious levels coupled to superconducting
devices [22, 95]. More general settings should feature qualitatively similar behavior and could
be studied in future work.

This part is organized as follows. In Section 6, we consider the environment subject to
periodic drives. While acting on the environment comes with the security of not deteriorating
the target state directly in the case of control imprecision, we also cannot expect to control
an environment system in a well-calibrated manner. Neither can we expect to have accurate
knowledge of the bare environment Hamiltonian. Using a simple model for both these uncer-
tainties, we show that for the case of a TLS environment, using sufficient time-scale separation
in the applied drive enables efficient DD despite control imprecisions. As a trade-off for re-
questing a strong time-scale separation, we consider a very simple control signal, consisting
of only one harmonic tone. The analysis is performed using a generalization of adiabatic
elimination adapted to periodically-driven systems, inspired by the basic Floquet property,
and which is novel to the best of our knowledge. This analysis method also differs from the
more standard DD analysis based on a Magnus expansion [88] in a purely Hamiltonian set-
ting. We obtain an explicit Lindblad model for the leading-order induced decoherence on the
target. The procedure, explained in Section 6.3.1.2, would allow in principle to obtain further
perturbative corrections in powers of the coupling strength.

Next we consider the limit of ultra-strong DD drives, which requires revising the Lindbla-
dian dissipation model of the TLS. In Section 6.3.3, we rederive a Lindbladian model for the
dissipation of the environment TLS, starting from a general model where the E-subsystem
is coupled to a large bath through a Hamiltonian coupling. The obtained Lindbladian will
explicitly account for the possibly ultra-strong drive on E, yielding a perturbative correction
to the dissipators obtained in the undriven case. We will see that this correction becomes
significant when the drive amplitude is non-negligible with respect to the bare frequency of
the TLS. For the derivation we follow the standard approach of the Born-Markov approxima-
tion [19], followed by a secular approximation, averaging out over rapidly oscillating terms.
Once this model for E is settled in the presence of strong driving, the decoherence that it
induces on the target system will again be calculated using the time-periodic extension of
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adiabatic elimination.
In Chapter 7, we consider the limit of extremely disorganized DD actions, adding decoher-

ence channels instead of Hamiltonians to the environment subsystem. Indeed, increasing the
decoherence strength on the environment also decreases its effective coupling with the target
system, and the scaling for induced dissipation on the target often turns out to be favorable
at higher environment decoherence. Using second-order adiabatic elimination formulas, we
analyze the resulting behavior in detail, providing some general results and characterizing the
optimal choice for typical settings with a TLS environment.

Model description

As a main setting throughout this part, we consider a general target system T undergoing
Hamiltonian dynamics, and whose main source of decoherence is an undesired Hamiltonian
interaction with an environment E which itself undergoes fast Lindbladian decoherence. We
describe both the Hamiltonian coupling as well as the applied controls and their possible
control imprecisions in a rotating frame w.r.t. the bare system frequencies of both T and E.
In this frame, the general evolution is described by the following master equation:

d
dtρ = −i[HT +HE +HTE , ρ] +

∑
k

κkDLk(ρ) . (II.1)

Here we have introduced the general Lindbladian dissipator

DX(ρ) = XρX† − 1

2

(
X†Xρ+ ρX†X

)
.

The Lk represent various decoherence channels of E, at respective rates κk. The Hamiltonians
HT , HE and HTE respectively act on T, on E, and couple T with E. Note that as this part
of the dissertation does not feature any classical physics, we omit the boldface notation for
quantum observables or other operators for notational convenience.

The objective is to protect quantum information stored in the target system T. Standard
DD works by applying well-designed sequences of control Hamiltonians HT . In this work we
rather assume HT = 0 and analyze how one can decrease the induced decoherence on T by
acting on the environment through HE on the one hand, or through addition or modification
of the κk on the other hand.

A prototypical example for E is a set of two-level-systems (TLSs), like defects in the oxide
layer of superconducting Josephson junctions [22, 38, 84, 95]. At the dominating order, we can
consider the contribution to the overall induced decoherence of each such TLS individually [43].
In a rotating frame of both the target system and TLS, we consider a general stationary
coupling

HTE = g(Tx ⊗ σx + Ty ⊗ σy + Tz ⊗ σz) . (II.2)

Here, g is a small coupling rate with the dimension of a frequency (using units where ~ = 1),
Tx, Ty and Tz are arbitrary Hermitian operators acting on the target system, and σx, σy, σz
are the Pauli operators on the TLS.

The TLSs themselves are thus assumed poorly protected and quickly dissipate according
to a Lindbladian model, as described in (II.1). When adding coherent drives in Chapter 6, we
typically assume the dominating dissipation channels

Lk ∈ {σ−, σ+} , (II.3)
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corresponding to loss and excitation in the σz-basis of E. When adding/tuning dissipation
channels in Chapter 7, the environment side is treated purely on the basis of a given set of
dissipation operators Lk whose rates κk may be adjustable in some range.

In this way we mainly consider the Lindbladian dissipation operators Lk as fixed, inde-
pendently of the mechanisms added to reduce the coupling between T and E. Since our goal
towards DD is to drive strongly, we also compute corrections to the dissipation on E for the
case where ultra-strong driving has an effect on the dissipation model itself. For this, in Sec-
tion 6.3.3, we rederive a modified Lindbladian starting from a model where E interacts with
a large bath.
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Chapter 6

Coherent decoupling with drives

Dans ce chapitre, nous appliquons des contrôles DD cohérents à un environnement décohérant
à deux niveaux, afin de découpler celui-ci d’un système cible général, et donc de réduire la déco-
hérence qu’il induit sur la cible. Ce chapitre est organisé comme suit. Nous commençons dans
la Section 6.1 par introduire la méthode de DD, y compris les travaux précédents concernant
les contrôles DD continus à force bornée en particulier, appliqués à travers HT . Ensuite, nous
transfèrons l’application des contrôles DD au côté environnement HE. Dans la Section 6.2,
nous proposons un signal de contrôle continu qui tient compte de l’imprécision inévitable du
contrôle lorsqu’on agit sur l’environnement. Dans Section 6.3, nous calculons ensuite un
modèle de Lindblad explicite pour la décohérence induite sur la cible lors de l’application des
contrôles DD. Ceci engendre une extension de l’approche d’élimination adiabatique aux cou-
plages périodiques dans le temps, qui fait l’objet de la Section 6.3.1.2. Nous analysons en-
suite les expressions obtenues, mettant en évidence l’efficacité d’appliquer des contrôles DD à
l’environnement. Pour rendre l’analyse complète, dans la Section 6.3.3, nous rediscutons les
canaux de dissipation sur l’environnement lorsque les contrôles HE deviennent significatifs par
rapport aux fréquences nues de celui-ci.

In this chapter, we pursue the strategy of applying coherent dynamical decoupling (DD)
drives to a decohering TLS-type environment, in order to decouple it from a general target
system, and thereby reduce the decoherence it induces on the target system. The chapter
is organized as follows. We start in Section 6.1 by recalling the concept of DD more ex-
plicitly, including previous work concerning continuous bounded-strength decoupling schemes
in particular, applied through HT . Next, we transpose the application of DD drives to the
environment-side HE . In Section 6.2 we propose a continuous DD control signal accounting
for inevitable control imprecision when acting on the environment. In section 6.3, we then
calculate an explicit Lindbladian model for the decoherence induced on the target when ap-
plying the DD controls. This involves an extension of the adiabatic elimination approach
to time-periodic couplings which is the subject of Section 6.3.1.2. We analyze the obtained
expressions, highlighting the efficiency of applying environment-side DD drives. For further
consistency, in Section 6.3.3, we re-discuss the dissipation channels on the environment when
the DD drives HE become significant compared to bare system frequencies.
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6.1 DD and related work

Established DD approaches consist in applying control pulses to the target system T that send
its state rapidly wandering around its Hilbert space. The explicit objective is for the average
effect over one wandering cycle of all relevant coupling operators to go to zero. The simplest
example is the case of a target qubit T with only one coupling term involving σz. In this case,
one can periodically apply π-pulses around the σx-axis of T, such that it effectively accumulates
phase around ±σz half of the time respectfully, thus canceling the coupling effect on average
if there is no other motion in the meantime. The shorter the period between subsequent
pulses, the better T is being decoupled from E. This is the well-known spin echo sequence
[60]. The generalization of this idea to general systems with arbitrary stationary couplings
was introduced in [129], and versions replacing the instantaneous pulses with bounded drives
in group-based decoupling schemes were established in [25, 70, 128, 131].

For the case of a target qubit T, a different type of bounded-drive DD scheme has been
devised, using the combination of a static field and a simple monochromatic drive [24, 36, 37].
In [37] the control Hamiltonian to decouple a single qubit takes the form

HT (t) =
ω

2
σz +

ω

4
(cos(ωt)σx + sin(ωt)σy). (6.1)

Under this drive, the qubit state is made to rotate around the σx-axis in a frame which
itself rotates around the σz-axis at double the frequency. Indeed, HT (t) has been designed to
generate the unitary evolution

UT (t) = e−i
ω
2
σzte−i

ω
4
σxt

of the target qubit in absence of any further dynamics. We can clearly see the composition
of two rotations around orthogonal axes of the Bloch sphere. The effectiveness of this DD
scheme can be analyzed in a frame that eliminates the DD controls, called the toggling frame.
Indeed, it is easy to verify that the first-order decoupling condition is satisfied [129]. This
means that any constant operator on T which could be present in the coupling Hamiltonian
averages out to 0 under this unitary evolution:

ω

2π

∫ 2π
ω

0
U †T (t)σaUT (t) dt = 0, for a ∈ {x, y, z} . (6.2)

When this first-order decoupling condition is satisfied, the effect of any coupling between
T and E can be made arbitrarily small by ramping up ω. This is proven by identifying the
average coupling as the first and leading order of a Magnus expansion of the effective dynamics
in powers of g

ω .
Such results are hence typically established by focusing on the Hamiltonian part of the

model, i.e. discarding the Lk in (II.1) and showing that the effective coupling between T and
E is canceled up to some order(s). In such a setting, the DD treats T and E in a symmetric way,
and one could in principle consider applying the DD drives to either system. The advantages of
acting on E rather than on T would be that (i) we minimize the danger of perturbing quantum
information with actuation imprecisions and (ii) we can keep applying DD drives irrespective
of the system operations on T. Indeed, standard DD acting on T requires specific adaptations
when T is also subject to actions manipulating the quantum information system, like logical
gates [70]. On the downside, of course, we can hope to act on E only if it is well identified and
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of reasonably small dimension, like for instance spurious TLSs [84, 95]. Furthermore, even if
such a subsystem is well identified, its parameters are surely not as well characterized as for
the target system, hence the control actions will unavoidably be imprecise. The situation is
not as symmetric between T and E when one explicitly considers E to be a strongly decohering
environment, i.e. when introducing the Lk in (II.1). We therefore provide an analysis that
explicitly considers the decoupling Hamiltonian and the decoherence operators together.

The remainder of this chapter is organized as follows, In Section 6.2, we introduce the
model for control imprecision of the DD drives, and propose how to mitigate this imprecision
by building an additional timescale separation into the DD drives. Next, since the fastest
timescale is given by the dynamics of E, we propose an analysis of the model (II.1) including the
decoherence channels Lk. In Section 6.3, using adiabatic elimination techniques, we eliminate
the fast subsystem E and directly compute the induced decoherence on T , rather than going
through the computation of effective couplings with Hamiltonian averaging techniques such as
the Magnus expansion. Lastly, the model with dissipation channels Lk acting on E has to be
rediscussed under ultra-strong DD driving, as this model ultimately stems from interaction of
E with further external degrees of freedom in a way that can also be affected by the driving. We
perform such a derivation in Section 6.3.3, and subsequently use the same adiabatic elimination
procedure to compute and discuss the induced decoherence rate of the target system.

6.2 Double-timescale DD proposal

The E subsystem, i.e. the spurious TLS, is not an accurately addressable subsystem. As such,
we will not assume to know the eigenfrequency ΩE of E exactly. To account for this, we split
up ΩE into its best-guess value Ω̄E and an uncertain constant deviation δΩE :

ΩE = Ω̄E + δΩE .

With this decomposition, the model (II.2) is defined in a rotating frame w.r.t. Ω̄E , and HE

features a residual unknown detuning:

HE(t) =
δΩE

2
σz +Hc(t).

Here, Hc(t) stands for the applied control Hamiltonian.
As a second point of control imperfection, we will not assume that a calibration is carried

out for the actual amplitude reaching E upon applying a signal in the lab. Hence, for the
definition of Hc, we introduce the same decomposition for the control parameters into best-
guess quantities and unknown deviations thereof. We propose to use a simple continuous
signal similar to (6.1), meant to cancel the general coupling (II.2):

Hc(t) :=
ω1

2
σz +

ω2

2
(cos(ω̄1t)σx + sin(ω̄1t)σy),

with

ω1 = ω̄1 + δω1, (6.3)
ω2 = ω̄2 + δω2. (6.4)
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Note that the drive frequency ω̄1 is well-known, whereas the amplitudes of the static field and
of the σx,y-drive are only roughly known, involving uncertainties δω1 and δω2 respectively.
Defining

∆ = δω1 + δΩE ,

the total Hamiltonian can be written as

HE(t) :=
∆ + ω̄1

2
σz +

ω2

2
(cos(ω̄1t)σx + sin(ω̄1t)σy). (6.5)

Although our actual analysis will consider the full model with decoherence channels, we
can already anticipate the implications of such control in a purely Hamiltonian setting.

The evolution of E under HE(t) alone can be understood by first moving to a rotating
frame w.r.t. ω̄1

2 σz, yielding a remaining constant Hamiltonian ∆
2 σz + ω2

2 σx. In this frame the
state will rotate at a speed

Λ :=
√

∆2 + ω2
2,

around the axis
σαx = cos(α)σx + sin(α)σz,

where we have defined
cos(α) =

ω2

Λ
, sin(α) =

∆

Λ
.

In the original frame, the associated propagator thus reads

UE(t) := e−iω̄1σzt/2e−iΛσαxt/2 . (6.6)

The E subsystem undergoes two composite rotations around axes in the Bloch sphere which
would be orthogonal in absence of the detuning ∆. We see that the presence of ∆ prevents
us from applying exact σx rotations, as would be required in a continuous-time analog of the
spin echo strategy. As the angle is determined by ∆/ω2, we should favor a large value of ω2.
Considering ∆ of possibly the same order as ω̄1, this would suggest to take ω2 � ω̄1 � g,
where the latter is the strength of the coupling Hamiltonian (II.2).

Next, applying the propagator associated to HE(t) to the coupling Hamiltonian (II.2),
it is easy to verify that U †E(t)σxUE(t) and U †E(t)σyUE(t) only involve terms oscillating at
frequencies ±ω̄1 and Λ± ω̄1, while

U †E(t)σzUE(t) = sin(α)σαx − cos(α)(eiΛtσα+ + e−iΛtσα−),

where σα± are raising and lowering operators with respect to the eigenstates of σαx. Having
Λ,Λ ± ω̄1,±ω̄1 � g, we can perform a rotating-wave approximation (RWA) and obtain the
non-zero average coupling

g sin(α)σαx = g
∆

ω2
σαx + gO

(
∆3

ω3
2

)
. (6.7)

We thus see that taking ω2 � ∆ in this formula indeed appears to reduce the effective coupling
between T and E. This the RWA has to be justified however. We mention that the leading
RWA-errors are of the order

g2

Λ
,

g2

Λ± ω̄1
,
g2

ω̄1
.
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In conclusion, based with this Hamiltonian model, one can expect that one possible strategy
is to ensure that ω2 � ω̄1 � g, while we can allow for the uncertain detuning ∆ to be of the
order of ω̄1 (∆ ∼ ω̄1), as long as we still have that ω2 � ∆. This general idea is subsequently
confirmed by analyzing the full model (II.1), including the dissipation channels Lk on E,
instead of only reasoning on the average coupling.

6.3 Analysis of decoherence on the target

In a rotating frame w.r.t. ω̄1
2 σz, and defining T± = Tx ± iTy, the joint evolution of the target

and TLS is described by the master equation

d
dtρ = κ−D1T⊗σ−(ρ) + κ+D1T⊗σ+(ρ) (6.8)

− iΛ
2

[1T ⊗ σαx, ρ]

− ig
[
Tz ⊗ σz + eiω̄1tT− ⊗ σ+ + e−iω̄1tT+ ⊗ σ−, ρ

]
,

where 1T stands for the identity operator on T. For now we assume drive-independent decoher-
ence channels Lk ∈ {σ−, σ+} on E. In the present section, we analyze the induced decoherence
on T, by obtaining explicit formulas for its reduced dynamics due to adiabatic elimination
of the environment E. For this we rely on a timescale separation as E dissipates with rates
κ± � g dominating the coupling Hamiltonian. The work of [6] explains how to obtain the
reduced dynamics of T as a power expansion in g/κ±, considering a stationary coupling Hamil-
tonian as a perturbation. In Section 6.3.1.2, we derive a general extension of this adiabatic
elimination approach for the case where the coupling Hamiltonian is time-periodic. The re-
lated formulas could be of independent interest to treat other cases where first performing a
lowest-order RWA and subsequently adiabatically eliminating the fastly decohering degrees of
freedom does not yield the correct leading-order induced decoherence.

6.3.1 Adiabatic elimination method

6.3.1.1 Summary of the formalism

Consider dynamics with the following timescale separation

ρ̇ = L0(ρ) + εL1(ρ). (6.9)

Here, ρ is a density operator acting on a Hilbert space H, L0 a stationary Lindbladian of order
1, and L1 an order-one Lindbladian providing a perturbation, since ε� 1 is a small positive
constant. We use the term “Lindbladian” in the broad sense, as we assume any Hamiltonian
parts of the dynamics to be included in L0 or L1. The starting point is that the fast dynamics
are degenerate, i.e. the linear superoperator L0, acting on the set of linear operators on H,
has a nontrivial kernel M0 associated to eigenvalue 0. Furthermore, this kernel is strongly
attractive, in other words all the non-zero eigenvalues of L0 have a strictly negative real part,
making up a gap in its spectrum.

The goal of adiabatic elimination, as described in [6], is then to obtain a reduced model
describing the perturbation of this degenerate kernel under the full Lindblad dynamics L0 +
εL1, for small ε. This reduced model involves an invariant space Mr — dubbed the slow
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or reduced subspace — of the same dimension as the kernel M0 of L0, and on which the
perturbation of 0-eigenvalues now implies some slow dynamics.

Both the invariant spaceMr and the associated slow dynamics Ls can be determined as a
power series in ε. For this we parameterize the reduced model by a variable ρs ∈ Ms ' Mr

undergoing the dynamics

ρ̇s(t) = Ls,ε(ρs(t)) =
∞∑
k=1

εkLs,k(ρs) , (6.10)

and we express how this variable is embedded in the full system, thus mapping the parame-
terization spaceMs to the actual invariant eigenspaceMr, via the linear map:

ρ(t) = Kε(ρs(t)) =

∞∑
k=0

εkKk(ρs(t)). (6.11)

Ideally, we want Ls,ε to have the typical Lindblad structure of positivity-preserving dynamics,
and Kε to be a Kraus map, such that density matrices inMs are mapped to density operators
in the total space. General expressions satisfying this structure have been obtained when
truncating the series after 2nd order [4–6, 43]. For the specific case of quantum non-demolition
photon-number measurements through a dispersive coupling to a driven ancilla-qubit, it was
shown in [111] that this positivity-preserving structure persists up to infinite order, namely∑∞

k=1 ε
kLs,k is explicitly of Lindblad form, and

∑∞
k=0 ε

kKk is explicitly given by a Kraus map.
Demanding that the equations (6.10),(6.11) be a solution of (6.9), the Ls,k and Kk can be

progressively identified by matching terms of equal order in ε. Explicitly, one obtains

L0(K0(ρs)) = 0,

K0(Ls,1(ρs)) = L0(K1(ρs)) + L1(K0(ρs)),

K0(Ls,2(ρs)) +K1(Ls,1(ρs)) = L0(K2(ρs)) + L1(K1(ρs)),

...

Since these equations should hold for any ρs ∈Ms, we write (with a slight abuse of notation,
since all operators are linear):

L0K0 = 0, (6.12a)
K0Ls,1 = L0K1 + L1K0, (6.12b)

K0Ls,2 +K1Ls,1 = L0K2 + L1K1, (6.12c)
...

where a product of superoperators denotes their composition.
The solution is not unique since we have a choice in the parameterization ofMr viaMs,

but it has been proved that solutions exist [6]. At each order, we can first solve for Ls,k by
projecting the corresponding equation with

R := lim
t→+∞

exp(L0 t)

onto the subspace corresponding to the zero eigenvalues of L0, i.e. the subspace whose per-
turbation we want to compute. Mathematically, this decouples the unknowns through RL0 =
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L0R = 0 and choosing RK0 = K0. This choice for K0 is natural since Ms is isomorphic to
M0. In a second step, one can project the equations with 1−R to determine Kk.

While this procedure is completely general, the context of this thesis mainly lies in a par-
ticular common setting, and we will apply this procedure to the case where L0 stabilizes one
subsystem of a composite quantum system towards a unique steady state, and L1 expresses
Hamiltonian coupling between this subsystem and another. The leading-order adiabatic elim-
ination results for this case have been explicitly computed in [6]. However, for some points in
Chapter 7 we have encountered situations where the set of steady states of L0 has a different
structure. In these cases we resort to the general procedure outlined in this section.

6.3.1.2 Time-periodic extension

This section aims to develop an extension of the approach of adiabatic elimination in systems
with strongly dissipative degrees of freedom, to the case where the perturbation displays a
periodic time-dependence with a frequency comparable in magnitude to the fast dissipation
rate. We consider dynamics with a similar timescale separation as before:

ρ̇ = L0(ρ) + εL1(ρ, t), (6.13)

where we impose the same assumptions on L0 as before, but now L1(t) is a periodic Lindbla-
dian perturbation of period 2π

ω . Furthermore, this perturbation should be rapidly oscillating:

ω � ‖εL1‖.

Thanks to Floquet theory, we can expectM0 to be perturbed into a slightly altered attractive
subspace which now moves periodically in time, and on which some slow dynamics is present.

We again parameterize the slow dynamics using a variable ρs living in a spaceMs isomor-
phic toM0, and propose

ρ(t) = Kε(ρs(t), t), (6.14a)
ρ̇s(t) = Ls,ε(ρs(t)) (6.14b)

as a solution staying in the “slow” invariant subspace of (6.13). Here, Kε(·, t) is a 2π
ω -periodic

map characterizing the embedding of the perturbed slow subspace in the total space and Ls,ε :
Ms →Ms is a stationary superoperator parameterizing the slow dynamics. Plugging (6.14)
into (6.13), we obtain an invariance equation:

∂Kε
∂t

(t) +Kε(t)Ls,ε = L0Kε(t) + εL1(t)Kε(t), (6.15)

where the domain of all terms is Ms. We again expand both the stationary superoperator
Ls,ε and the periodic map Kε(t) in powers of ε,

Kε(t) = K0(t) + εK1(t) + ε2K2(t) + · · · , (6.16)

Ls,ε = Ls,0 + εLs,1 + ε2Ls,2 + · · · . (6.17)

Collecting (6.15) into powers in ε yields the set of recursive equations

∂K0

∂t
(t) +K0(t)Ls,0 = L0K0(t), (6.18)

∂Kk
∂t

(t) +
k∑
j=0

Kj(t)Ls,k−j = L0Kk(t) + L1(t)Kk−1(t) , k ≥ 1. (6.19)
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We can choose Ls,0 = 0 and K0 time-independent and injective such that RK0 = K0, since
for ε = 0, the solutions in the slow subspace are stationary. For k = 1 we then obtain the
following equation, to be satisfied by Ls,1 and K1:

∂K1

∂t
(t) +K0Ls,1 = L0K1(t) + L1(t)K0 . (6.20)

We split this equation into four parts, by projecting either with R or 1−R on the one hand,
and by considering the time-average (̄·) versus the purely oscillating part of the equation that
averages out to zero (also called the ripple) (̃·) on the other hand. Since in this way it will be
clear which terms depend on time, we drop the t argument in what follows.

Applying R and the time-average to (6.20), we obtain

K0Ls,1 = RL̄1K0 . (6.21)

This equation determines Ls,1 uniquely, since K0 can be inverted on its image. The application
of R to the perturbation (its average part here) corresponds to the Zeno-effect that is well-
known for stationary systems.

Applying R to (6.20) and taking the ripple of the resulting equation, we get

RK̇1 = RL̃1K0, (6.22)

of which a solution can be obtained via taking the zero-average time primitive, denoted by
∂−1
t :

RK1 = R∂−1
t L̃1K0 +RḠ1. (6.23)

Note that ∂−1
t is uniquely defined such that ∂−1

t L̃1 = 0, hence the name zero-average primitive.
Here Ḡ1 is an integration constant, playing the role of a gauge choice. Equation (6.23) is
reminiscent of an averaging procedure, where oscillating terms are transformed away using a
coordinate change ε-close to identity (here K0 + εK1) and generated by the integral of the
oscillating terms; see [57] for a canonical treatment of this averaging procedure. This is not
surprising, since within the slow subspace, the effect of L0 reduces to zero, and we retain a
small oscillating perturbation, which is exactly the setting where averaging procedures work
well.

Applying 1−R to (6.20) and taking the average of the resulting equation, we get

0 = L0(1−R)K̄1 + (1−R)L̄1K0, (6.24)

which has the formal solution

(1−R)K̄1 = −L−1
0 (1−R)L̄1K0. (6.25)

Since L0 has a spectral gap, its restriction to the image of (1−R) can be rigorously inverted,
because it has no eigenvalue zero there. This pseudo-inverse of L0 is equally present in
stationary adiabatic elimination and it expresses how the stationary part of the perturbation
perturbs the slow subspace up to first order.

Lastly, applying 1−R to (6.20) and taking the ripple of the resulting equation, we get

(1−R)K̇1 = L0(1−R)K̃1 + (1−R)L̃1K0. (6.26)

110



To determine (1−R)K̃1 from this equation, we introduce a decomposition into Fourier modes.
We can write

(1−R)L̃1(t) =
∑

n∈Z,n6=0

eint(1−R)L̃1,n,

for some superoperators L̃1,n, since L̃1 has zero average. Decomposing in the same way the
tentative solution

(1−R)K̃1(t) =
∑

n∈Z,n6=0

eint(1−R)K1,n,

and plugging this into (6.26), we see that for every n 6= 0, we are looking for the stationary
superoperator (1−R)K1,n such that

(L0 − in)(1−R)K1,n = −(1−R)L̃1,nK0. (6.27)

This equation is the exact analog of (6.25) but for n 6= 0, capturing oscillating terms. Here
we can really see that, since the time-dependence of L1 is as fast as the dissipation L0, the
combined effect of the two has to be inverted to obtain the oscillating part of the correction
to the slow subspace. We thus need L0 − in to be invertible on the image of 1−R. Because
L0 restricted to the image of 1 −R only has eigenvalues with a strictly negative real part, a
shift in its spectrum by −in, n ∈ Z, can never move an eigenvalue to the origin, and hence
L0 − in can formally be inverted in the above equation. This can be done for every fixed n
separately, or if available, a diagonalization of L0 could allow us to define all inverses at once.

Equation (6.19) for k ≥ 2 can be treated in an analogous way, and the general higher-order
solution is

K0Ls,k = RĀk, (6.28a)

RKk = R∂−1
t

(
Ãk − B̃k

)
+RḠk, (6.28b)

(1−R)K̄k = −L−1
0 (1−R)

(
Āk − B̄k

)
, (6.28c)

(1−R)K̃k = −(L0 − ∂t)−1(1−R)
(
Ãk − B̃k

)
, (6.28d)

with

Ak = L1Kk−1,

Bk =

k−1∑
j=1

KjLs,k−j .

Here, RḠk is a general gauge choice that can be made at every order. All inverses are well-
defined for the same reasons as before, and it is easy to check that the above recursive relation
provides a solution, by plugging it into (6.19).

We will show that in the context of this chapter, K0 + εK1 can be written as a Kraus map
up to O(ε2) terms, choosing Ḡ1 = 0, so RK̃1 = R∂−1

t L̃1K0, and RK̄1 = 0. Furthermore, Ls,1
is a Hamiltonian on the target T, and Ls,2 is the sum of a Hamiltonian and a Lindbladian
on T. Thus the proposed perturbative series preserves the quantum structure of Lindbladian
reduced dynamics and completely positive trace preserving (CPTP) mappings up to second
order. In fact, one can prove that this remains the case for a general bipartite scenario.
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Theorem 6.1. Consider the model (6.13) where the Lindbladian L0 acts only on one sub-
system (F) of a bipartite quantum system, and exponentially stabilizes F towards a unique
steady state at a rate κ; and, L1(t) expresses a 2π

ω -periodic Hamiltonian coupling between the
F-subsystem and the second one (S). Assume ε‖L1‖ � κ and ε‖L1‖ � ω. When choosing
Ḡ1 = 0 in (6.23), Ls,1 takes the form of a Hamiltonian, Ls,2 is the sum of Hamiltonian and a
Lindbladian term, and K0 + εK1 can be written as a CPTP-map up to terms of order ε2.

Proof. Since L0 only acts on F, it trivially corresponds to a Lindbladian LF acting on F such
that L0 = identity ⊗ LF . The proof then consists of a straightforward adaptation of Lemma
4 and 5 in appendix A of [7] to a general pseudo-inverse (LF − in)−1, n ∈ Z instead of only
LF−1 considered in the original work.

6.3.2 Case of strong driving

In this section, we assume that the DD driving does not alter the dissipation model of the E
system. In Section 6.3.3, we consider such a correction, which arises when the DD drives are
what we will define as ultra-strong. We recall that in a rotating frame w.r.t. ω̄1

2 σz, the joint
evolution of the target and TLS is then described by the master equation

d
dtρ = κ−D1T⊗σ−(ρ) + κ+D1T⊗σ+(ρ) (6.29)

− iΛ
2

[1T ⊗ σαx, ρ]

− ig
[
Tz ⊗ σz + eiω̄1tT− ⊗ σ+ + e−iω̄1tT+ ⊗ σ−, ρ

]
.

In the previous section we have derived a general extension of the adiabatic elimination ap-
proach for the present case where the coupling Hamiltonian is time-periodic. Before explicitly
calculating the reduced model, we can make the general conclusions from this adiabatic elimi-
nation method more concrete for the bipartite case of H = HT ⊗HE . The fast dynamics acts
only on E, and quickly drives it to a unique steady state ρ̄E were it not for the T-E coupling,
which is considered the perturbation, since g � ω̄1,Λ, κ±. The small expansion parameter of
the perturbative series can be identified as

ε =
g

ω̄1
� 1,

with ω̄1 the frequency of the driving as in (6.5). We will calculate ρ̄E explicitly below, but it
is clear that the unperturbed slow subspaceM0 is given by the set of linear operators

XT ⊗ ρ̄E ,

where XT acts on HT . Hence, it is natural to chooseMs as the space of operators acting on
HT , and

K0(ρs) = ρs ⊗ ρ̄E .

In this way, Ls,ε is a superoperator corresponding to the target Hilbert space HT alone, and
the reduced model

ρ̇s = Ls,ε(ρs) (6.30)

can truly be seen as describing the induced decoherence on the target system. How the target
becomes entangled with the environment will be described by the map Kε up to first order in
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ε. Given that the map Kε(t) is periodic in time, with period 2π
ω̄1
, the hybridization of the two

systems changes periodically in time. This is one more reason for rightfully calling (6.30) a
reduced model for the induced decoherence on T, since we have eliminated both the coupling
to the TLS from the description, as well as a fast periodic micromotion given by Kε(·, t).

In line with standard adiabatic elimination for bipartite systems, a necessary condition for
the convergence of the series is g � κ− (where we assume κ− > κ+ from physical reasons).
The validity of the expansion thus depends on the two timescale separations ω̄1 � g and
κ− � g. However, we do not have to assume either ω̄1 or κ− to be larger than the other.
In other words, we do not have to perform standard adiabatic elimination with κ− before
averaging over ω̄1 or conversely.

Lastly we mention that a standard result for bipartite systems [6] with a stationary Hamil-
tonian coupling is that the induced decoherence will be of leading-order

g2

κ−
.

This will provide a good point of comparison for the reduced models to follow.
We will now apply this formalism, and provide a full derivation of the reduced model. Next,

we summarize the conclusions towards the DD benefits in Section 6.3.2.2.

6.3.2.1 Derivation of reduced model for strong driving

In the notation of Section 6.3.1.2, assuming g � ω̄1, κ−, we can thus define ε = g
ω̄1
,

L0 = −iΛ
2

[1T ⊗ σαx, ·] + κ−D1T⊗σ− + κ+D1T⊗σ+ ,

and

L1(t) = −iω̄1

[
Tz ⊗ σz + eiω̄1tT− ⊗ σ+ + e−iω̄1tT+ ⊗ σ−, ·

]
.

Order 0 computations

Since the E system represents a two-level system, involving just a few degrees of freedom, it is
straightforward to verify that the fast dynamics L0 drives the environment to a unique steady
state

ρ̄E =
1E + ξ∞σ+ + ξ∗∞σ− + z∞σz

2
, (6.31)

with

ξ∞ = −2Λ cos(α)
κ∆

κΣ

2Λ sin(α) + iκΣ

κ2
Σ + 2Λ2

(
1 + sin2(α)

) ,
z∞ = −κ∆

κΣ

4Λ2 sin2(α) + κ2
Σ

κ2
Σ + 2Λ2

(
1 + sin2(α)

) ,
where we have defined

κΣ := κ− + κ+,

κ∆ := κ− − κ+.
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As outlined in Section 6.2, we are mainly interested in the regime of strong driving where
ω2 � κΣ, corresponding to the double-timescale DD driving introduced there. Hence, we
here restrict ourselves to computing the leading order in 1

ω2
of all quantities in this section.

For this, cos(α) should be put equal to 1 since α goes to zero as ω2 → ∞ , and it should be
remembered that Λ sin(α) = ∆. Thus,

ξ∞ = −κ∆

κΣ

(iκΣ + 2∆)

ω2
+O

(
1

ω2
2

)
,

z∞ = −κ∆

κΣ

(
κ2

Σ + 2∆2
)

ω2
2

+O
(

1

ω3
2

)
.

The steady state therefore converges to the maximally mixed state in the limit of ω2 →∞.
For the projector R we have

R(XTE) = TrE(XTE)⊗ ρ̄E , ∀XTE.

Order ε computations

• Equation (6.21) yields the following expression for the first-order reduced dynamics:

εLs,1(ρs)⊗ ρ̄E = εR(L1(ρs ⊗ ρ̄E))

= −igTrE([Tz ⊗ σz, ρs ⊗ ρ̄E ])⊗ ρ̄E
= −igz∞[Tz, ρs]⊗ ρ̄E ,

readily giving
εLs,1(ρs) = −igz∞[Tz, ρs].

• Equation (6.23) in turn yields

εRK1(ρs) = εR∂−1
t L̃1K0(ρs)

= − g

ω̄1
TrE(

[
eiω̄1tT− ⊗ σ+ − e−iω̄1tT+ ⊗ σ−, ρs ⊗ ρ̄E

]
)⊗ ρ̄E

= − ig

2ω̄1

[
iξ∗∞e

iω̄1tT− − iξ∞e−iω̄1tT+, ρs
]
⊗ ρ̄E , (6.33)

where we have put the integration constant to zero as a gauge choice.

• Equation (6.25) yields a second part of K1:

εL0(1−R)K̄1(ρs) = −ε(1−R)L̄1K0(ρs)

= ig[Tz ⊗ σz, ρs ⊗ ρ̄E ]

− igTrE([Tz ⊗ σz, ρs ⊗ ρ̄E ])⊗ ρ̄E
= ig(Tzρs ⊗ σ̄zρ̄E − ρsTz ⊗ ρ̄E σ̄z),
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with σ̄z = σz −Tr(σzρ̄E)1E = σz − z∞1E . Note that taking the partial trace over E on
the right-hand side gives zero, since Tr(σ̄zρ̄E) = 0. Hence L0 can be inverted to obtain,
formally,

ε(1−R)K̄1(ρs) = ig
(
Tzρs ⊗ L−1

0 (σ̄zρ̄E)− ρsTz ⊗ L−1
0 (ρ̄E σ̄z)

)
. (6.34)

To carry out the inversion we use matrix representations in the Pauli basis. In the
standard Pauli basis (σx, σy, σz), we obtain the following matrix representation for L0:

[L0] =

 −κΣ
2 −Λ sin(α) 0

Λ sin(α) −κΣ
2 −Λ cos(α)

0 Λ cos(α) −κΣ

,
with det[L0] = −κΣ

4

(
κ2

Σ + 2Λ2(1 + sin2(α))
)
. For its inverse

[
L−1

0

]
we hence obtain

1

det[L0]


κ2

Σ
2 + Λ2 cos2 (α) −κΣΛ sin (α) Λ2 sin (2α)

2

κΣΛ sin (α)
κ2

Σ
2 −κΣΛ cos (α)

2
Λ2 sin (2α)

2
κΣΛ cos (α)

2
κ2

Σ
4 + Λ2 sin2 (α)

.
In turn, σ̄zρ̄E takes the following vector representation in the Pauli basis:

[σ̄zρ̄E ] =
1

2

−iy∞ − x∞z∞ix∞ − y∞z∞
1− z2

∞

.
Straightforward but elaborate calculations then give[
L−1

0 (σ̄zρ̄E)
]

=
1

8 det[LE ]
(6.35)−4κΣω2 (ix∞ − y∞z∞) sin (α)− 2ω2

2

(
z2
∞ − 1

)
sin (2α)− 2

(
κ2

Σ + 2ω2
2 cos2 (α)

)
(x∞z∞ + iy∞)

2κΣ

(
κΣ (ix∞ − y∞z∞) + ω2

(
z2
∞ − 1

)
cos (α)− 2ω2 (x∞z∞ + iy∞) sin (α)

)
2κΣω2 (ix∞ − y∞z∞) cos (α)− 2ω2

2 (x∞z∞ + iy∞) sin (2α) +
(
1− z2

∞
) (
κ2

Σ + 4ω2
2 sin2 (α)

)
.

Focusing on the leading-order in 1
ω2

yields the following:

[
L−1

0 (σ̄zρ̄E)
]

=


−∆+iκ∆
κΣω2

1
2ω2

∆(−∆+iκ∆)−κΣ(2iκ∆+κΣ)
4

κΣω
2
2

,
and further

ε(1−R)K̄1(ρs) =
g

Λ
(iTz ⊗ M̄z)(ρs ⊗ ρ̄E) +

g

Λ
(ρs ⊗ ρ̄E)

(
iTz ⊗ M̄z

)†
,

with

[
M̄z

]
=


−2∆
κΣ

1
−4∆2+4κ2

∆−κ
2
Σ

2κΣω2
κ∆(2∆−κΣ)

κΣω2

+ i


2κ∆
κΣ

0
4∆κ∆
κΣω2

− 2κ2
∆

κΣω2

.
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• For the last part of K1, consider (6.26):

ε(L0−∂t)(1−R)K̃1(ρs) = ig(1−R)
([
eiω̄1tT− ⊗ σ+ + e−iω̄1tT+ ⊗ σ−, ρs ⊗ ρ̄E

])
. (6.36)

Introducing

σ̄+ := σ+ − Tr(σ+ρ̄E)1E = σ+ −
ξ∗∞
2

1E ,

σ̄− := σ− − Tr(σ−ρ̄E)1E = σ− −
ξ∞
2

1E ,

we can write the right-hand side of (6.36) as

ig
[
eiω̄1tT− ⊗ σ̄+ + e−iω̄1tT+ ⊗ σ̄−, ρs ⊗ ρ̄E

]
= igeiω̄1tT−ρs⊗σ̄+ρ̄E+ige−iω̄1tT+ρs⊗σ̄−ρ̄E+h.c.

At this point we can split (1−R)K̃1 into two parts:

ε(1−R)K̃1(ρs) = igeiω̄1t(L0 − iω̄1)−1(T−ρs ⊗ σ̄+ρ̄E) + ige−iω̄1t(L0 + iω̄1)−1(T+ρs ⊗ σ̄−ρ̄E) + h.c.

= igeiω̄1tT−ρs ⊗ (L0 − iω̄1)−1(σ̄+ρ̄E) + ige−iω̄1tT+ρs ⊗ (L0 + iω̄1)−1(σ̄−ρ̄E) + h.c.
(6.37)

We obtain the following matrix representations:

[σ̄+ρ̄E ] =
1

8

 −2z∞ − (ξ∞ + ξ∗∞) ξ∗∞ + 2
i (−2z∞ − 1 (ξ∞ − ξ∗∞) ξ∗∞ + 2)

(2− 2z∞) ξ∗∞

,
and

det[L0 ∓ iω̄1]
[
(L0 ∓ iω̄1)−1

]
=

1

2

κ2
Σ + 3iκΣω̄1 + 2ω2

2 cos2 (α)− 2ω̄2
1 −2ω2 (κΣ + iω̄1) sin (α) ω2

2 sin (2α)
2ω2 (κΣ + iω̄1) sin (α) κ2

Σ + 3iκΣω̄1 − 2ω̄2
1 −ω2 (κΣ + 2iω̄1) cos (α)

ω2
2 sin (2α) ω2 (κΣ + 2iω̄1) cos (α)

κ2
Σ
2 + 2iκΣω̄1 + 2ω2

2 sin2 (α)− 2ω̄2
1

,
with

det[L0 ∓ iω̄1] = −
κ3

Σ

4
+
κΣω

2
2 cos2 (α)

2
− κΣω

2
2 + 2κΣω̄

2
1 ± i

(
5κ2

Σω̄1

4
− ω2

2ω̄1 + ω̄3
1

)
.

Elaborate calculations then show that

(L0 − iω̄1)−1(σ̄+ρ̄E) =
1

κΣ + iω̄1
M̄+ρ̄E , (6.38a)

(L0 + iω̄1)−1(σ̄−ρ̄E) =
1

κΣ − iω̄1
M̄−ρ̄E , (6.38b)
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with M̄± operators such that Tr
(
M̄±ρ̄E

)
= 0, and that, up to leading-order in 1

ω2
take

the form

[
M̄+

]
=

1

2


−1 +O

(
1
ω2

)
− (κΣ+2iω̄1)(4∆2κ∆+κΣ(2∆κ∆+2i∆κΣ−2∆ω̄1+2κ∆κΣ+2iκ∆ω̄1−κ2

Σ−3iκΣω̄1+2ω̄2
1))

2κΣω
2
2(iκΣ−2ω̄1)

+O
(

1
ω3

2

)
−∆+iκ∆−

iκΣ
2

+ω̄1

ω2
+O

(
1
ω2

2

)
κ∆
ω2

+O
(

1
ω2

2

)

,

[
M̄−

]
=

1

2


−1 +O

(
1
ω2

)
− (κΣ−2iω̄1)(4∆2κ∆+κΣ(2∆κ∆+2i∆κΣ+2∆ω̄1+2κ∆κΣ−2iκ∆ω̄1+κ2

Σ−3iκΣω̄1−2ω̄2
1))

2κΣω
2
2(iκΣ+2ω̄1)

+O
(

1
ω3

2

)
−∆+iκ∆+

iκΣ
2

+ω̄1

ω2
+O

(
1
ω2

2

)
κ∆
ω2

+O
(

1
ω2

2

)

.

Hence we can write
M̄+ = M̄− = −σx

2
+O

(
1

ω2

)
. (6.39)

Putting all this together, we can write

ε(1−R)K̃1(ρs) =

(
ig

κΣ + iω̄1
eiω̄1tT− ⊗ M̄+

)
(ρs ⊗ ρ̄E) + (ρs ⊗ ρ̄E)

(
ig

κΣ + iω̄1
eiω̄1tT− ⊗ M̄+

)†
+

(
ig

κΣ − iω̄1
e−iω̄1tT+ ⊗ M̄−

)
(ρs ⊗ ρ̄E) + (ρs ⊗ ρ̄E)

(
ig

κΣ − iω̄1
e−iω̄1tT+ ⊗ M̄−

)†
.

Order ε2 computations

For the second-order reduced dynamics, (6.28) for k = 2 gives

K0Ls,2(ρs) = Ls,2(ρs)⊗ ρ̄E
=RL1K1(ρs) = TrE(L1K1(ρs))⊗ ρ̄E ,

such that

Ls,2(ρs) = TrE(L̄1(1−R)K̄1(ρs)) + TrE

(
L̃1RK̃1(ρs)

)
+ TrE

(
L̃1(1−R)K̃1(ρs)

)
. (6.40)

It is straightforward to verify that

TrE(L̄1(1−R)K̄1(ρs)) =
ω̄2

1

ω2
Tr
(
σzM̄zρ̄E

)(
T 2
z ρs − TzρsTz

)
+
ω̄2

1

ω2
Tr
(
σzρ̄EM̄

†
z

)(
ρsT

2
z − TzρsTz

)
,

and using

Tr
(
σzM̄zρ̄E

)
= −

4∆2 + κ2
Σ

2κΣω2
+ i

κ∆ (2∆− κΣ)

κΣω2
,
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we obtain that

TrE(L̄1(1−R)K̄1(ρs)) = ω̄2
1

(
4∆2 + κ2

Σ

)
κΣω2

2

DTz(ρs)− iω̄2
1

κ∆ (−2∆ + κΣ)

κΣω2
2

[
T 2
z , ρs

]
.

For the second term in equation (6.40) we get

TrE

(
L̃1RK̃1(ρs)

)
= i

ξ∞
2
ω̄1 Tr(σ+ρ̄E)[T−, [T+, ρs]]− i

ξ∗∞
2
ω̄1 Tr(σ−ρ̄E)[T+, [T−, ρs]],

and using Tr(σ+ρ̄E) = ξ∗∞
2 we obtain that

TrE

(
L̃1RK̃1(ρs)

)
= −iξ

∗
∞ξ∞

4
ω̄1[[T+, T−], ρs].

For the third term in equation (6.40) we obtain

TrE

(
L̃1(1−R)K̃1(ρs)

)
= a+(T−T+ρs − T+ρsT−)− a∗−(T−ρsT+ − ρsT+T−)

+ a−(T+T−ρs − T−ρsT+)− a∗+(T+ρsT− − ρsT−T+),

with

a+ =
Tr
(
σ+M̄−ρ̄E

)
κΣ − iω̄1

ω̄2
1,

a− =
Tr
(
σ−M̄+ρ̄E

)
κΣ + iω̄1

ω̄2
1.

Retaining the leading-order terms in 1
ω2

for a+ and a−, we readily obtain

TrE

(
L̃1(1−R)K̃1(ρs)

)
=

κΣω̄
2
1

κ2
Σ + 4ω̄2

1

(
DT− +DT−

)
+ i

ω̄3
1

κ2
Σ + 4ω̄2

1

[[T+, T−], ρs].

Summary

Putting all of the calculations of this section together, we arrive at the following second-
order reduced model.
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For the slow dynamics we obtain an explicit Lindbladian model

Ls,ε(ρs) = −i
[
ωs,z,1Tz + ωs,z,2T

2
z + ωs,c[T+, T−], ρs

]
+ κs,zDTz(ρs) + κs,±

(
DT− +DT+

)
+O

(
gε2
)
, (6.41)

with, up to leading order in 1
ω2
,

ωs,z,1 = −
κ∆g

(
4∆2 + κ2

Σ

)
2κΣω2

2

, (6.42a)

ωs,z,2 =
κ∆g

2 (−2∆ + κΣ)

2κΣω2
2

, (6.42b)

ωs,c =
g2ω̄1

κ2
Σ + 4ω̄2

1

, (6.42c)

κs,z =
g2
(
4∆2 + κ2

Σ

)
κΣω2

2

, (6.42d)

κs,± =
κΣg

2

κ2
Σ + 4ω̄2

1

. (6.42e)

For the embedding of the slow subspace we obtain a completely positive map up to
second order terms:

Kε(ρs) = Kε(ρs ⊗ ρ̄E)K†ε +O(ε2), (6.43)

with, up to leading-order in 1
ω2

for every term,

Kε := 1− iκ∆

κΣ

g

ω2
Hs ⊗ 1E + i

g

ω2
Tz ⊗ σy − i

2g∆

κΣω2
Tz ⊗ σx

− i g√
κ2

Σ + 4ω̄2
1

Hs,± ⊗ σx − 2
κ∆

κΣ

g

ω2
Tz ⊗ σx, (6.44)

and we have defined

Hs = −κΣ + 2i∆

2ω̄1
eiω̄1tT− −

κΣ − 2i∆

2ω̄1
e−iω̄1tT+, (6.45a)

Hs,± =
(κΣ − 2iω̄1)eiω̄1tT− + (κΣ + 2iω̄1)e−iω̄1tT+√

κ2
Σ + 4ω̄2

1

. (6.45b)

Remark 6.1. We here reported the leading-order of all different terms in 1
ω2
, hence approxi-

mating the exact expression of K1 as defined in (6.33), (6.34) and (6.37) in the limit of large
ω2. When using the exact expressions, it is straightforward to show that Tr(K1(ρs)) = 0,
since (6.33), (6.35) and (6.38), are traceless expressions. We then obtain that TrE(Kε(ρs)) =
Tr(K0(ρs)) + εTr(K1(ρs)) + O(ε2) = Tr(ρs) + O(ε2), and thus up to order ε2, Kε is also
trace-preserving, and hence CPTP.
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6.3.2.2 Discussion of DD benefits

As a concrete result of this section, and in line with the double-timescale DD proposal detailed
in Section 6.2, we can focus on the limiting case of strong driving, where ω2 dominates the
other parameters, and we additionally only consider the induced decoherence channels.

Corollary 6.2. Define 1
Ωk2

to signify any dimensionless term consisting of the product of 1
ωk2

with any product of powers of the other rates ω̄1, κ± or ∆, excluding ω2. The decoherence rates
defined by (6.48) display the following asymptotic behavior for large ω2:

κs,z =
g2
(
4∆2 + κ2

Σ

)
κΣω2

2

(6.46a)

+
g2

ω2
O
(

1

Ω3
2

)
κs,± =

κΣg
2

κ2
Σ + 4ω̄2

1

(6.46b)

+
g2

ω2
O
(

1

Ω2

)
.

All these rates vanish in the limit ω̄1 → ∞, ω2 → ∞ where still ω̄1 � ω2, quantitatively
confirming the DD benefits. The general form of these expressions can be understood intu-
itively as follows. The expressions involve the sum κΣ = κ− + κ+ because the strongest drive
ω2σx constantly exchanges the roles of ground and excited states in E. This also explains
why κs,+ ' κs,−. The rates κs,± then take the standard Purcell-type expression resulting
from Jaynes-Cummings-type coupling under detuning ω̄1

2 . The main DD effect here is the
ω̄1-detuning reducing the effective coupling between T and E. The first term of κs,z in fact
has a similar form, where κ−, κ+ terms do not appear in the denominator because they are
dominated by ω2

2. This is no coincidence, since the Hamiltonian part is like the usual Jaynes-
Cummings coupling, up to exchanging the roles of σx and σz. Indeed, neglecting the detuning
∆, we are applying a constant drive along the σx direction (in the ω̄1 rotating frame), or-
thogonal to the coupling in the σz direction. Those two contributions would not be present
if we were only considering the average coupling as derived in (6.7). They thus express the
limitations, in presence of κ±, of the RWA performed in Section 6.2. The effect of the av-
erage coupling remaining in (6.7) is captured by the second term of κs,z. One can recognize
the standard induced decoherence formula of type “ g̃2/κ̃” where g̃ is replaced by the average
coupling g ∆

ω2
as derived in Section 6.2.

As a last comment, Hamiltonian contributions to the reduced model can by definition be
calibrated, so we do not set out to suppress them using the DD drives, as the terms do not
represent induced decoherence. Although this was not the explicit goal of our DD driving, we
can however see that the DD controls suppress also the Hamiltonian contributions (see the
expressions for ωs,z,1, ωs,z,2, ωs,c in (6.42)) asymptotically for large ω̄1 and ω2.

6.3.2.3 Optimization: cold TLS and reducing ω2

The general formulas (6.46) quantify how DD controls containing two drives with amplitudes
ω2 � ω̄1 reduce the decoherence induced on T under general conditions. They can guide
parameter choices in particular situations, as long as we assume large ω2.
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However, this does not mean that driving strongly in both ω̄1 and ω2 is always the best
choice. Indeed, in very particular settings, it may be even better to take some of the drives at
their minimal value. In other words, intermediate values of the drives would be the worst case.
Assume for instance the extreme situation of dispersive coupling to a zero-temperature bath,
i.e. Tx = Ty = κ+ = 0. Then, in absence of controls (in fact as long as ω2 = 0), the TLS is
attracted towards its ground state, and the resulting effect on T would be purely Hamiltonian.
This raises the question of how to choose ω2 to minimize the Tz-decoherence. We now answer
this question, as an illustration of how to use our framework for design choices.

The exact decoherence rates κs,z, κs,± (without considering the limiting case of large ω2 as
above) are defined by

κs,z = −2g2Re(Tr(σzXz)), (6.47a)

κs,± = −2g2Re(Tr(σ±X∓)), (6.47b)

where Xz and X∓ respectively satisfy the following matrix equations:

(σz − Tr(σzρ̄E))ρ̄E = − i
2

[ω2σx + ∆σz, Xz] (6.48a)

+ κ−Dσ−(Xz) + κ+Dσ+(Xz),

(σ∓ − Tr(σ∓ ρ̄E))ρ̄E = − i
2

[ω2σx + ∆σz, X∓] (6.48b)

±iω̄1X∓ + κ−Dσ−(X∓) + κ+Dσ+(X∓).

Here, ρ̄E is the unique steady state of the Lindbladian acting on E, given in (6.31), of which
we recall the definition here:

− i
2

[ω2σx + ∆σz, ρ̄E ] + κ−Dσ−(ρ̄E) + κ+Dσ+(ρ̄E) = 0.

Given the number of variables in play, expressions for the dissipation rates are algebraically
complicated and were computed with the help of a computer algebra system (SymPy [90]).
We obtain the following expression for κs,z:

κs,z =

8g2κ+κ−

(
4∆2 + (κ− + κ+)2

)(
16∆2ω2

2 +
(

4∆2 + (κ− + κ+)2
)2
)

(κ− + κ+)3
(

4∆2 + (κ− + κ+)2 + 2ω2
2

)3

+
8g2

(
4∆2 + (κ− + κ+)2

)
(κ− + κ+)2ω2

2

(
2κ2
− + 2κ2

+ + ω2
2

)
(κ− + κ+)3

(
4∆2 + (κ− + κ+)2 + 2ω2

2

)3 . (6.49)

One can indeed see that this reduces to (6.42d) for asymptotically large ω2. The bath temper-
ature is characterized by nth, the mean number of thermal photons, such that κ− = κ1(1+nth)
and κ+ = κ1nth. Straightforward algebraic manipulations of (6.49) allow for an optimization
study, which we summarize in the following result.

Theorem 6.3. The induced decoherence rate κs,z as defined in (6.49) shows the following
dependence on ω2:
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Figure 6.1: Dependence of κs,z as defined in (6.49) on ω2
κ1
, for various values of nth between 0

and 0.1 and at fixed ∆
κ1

= 2. The dashed black line indicates the local maximum in ω2 when
it is present. In the latter cases, induced decoherence κs,z is minimized either at ω2 = 0 or at
the largest achievable ω2, depending on its value.

• If nth <
√

3
3 −

1
2 ' 0.077 , then κs,z displays a single local maximum as a function of

ω2, for any values of ∆ and κ1. The optimal value of ω2 is either zero or the maximal
achievable one, depending on the experimentally achievable bound on the latter.

• If nth >
√

3
3 −

1
2 ' 0.077 and

∆2

κ2
1

<
(2nth+1)2

(
2
√

3(2nth+1)+
√

12n2
th+12nth−1

)
4
√

12n2
th+12nth−1

, (6.50)

then κs,z also displays a single local maximum as a function of ω2, with the same con-
clusions for its optimization.

• If nth >
√

3
3 −

1
2 ' 0.077 and (6.50) is not satisfied, then κs,z is monotonically decreasing

in ω2.

In the last case, in other words when ∆ is large, ramping up ω2 is always advantageous.
In the first two cases, the value of ω2 minimizing κs,z will depend on how its value at the
maximal achievable ω2 compares to its value at ω2 = 0, which reads:

κs,z(ω2 = 0) =
8g2nth (nth + 1)

κ1

(
8n3

th + 12n2
th + 6nth + 1

) . (6.51)

A numerical illustration of the dependence of κs,z on ω2 and nth is provided in Figure 6.1.
Note that Theorem 6.3 and Figure 6.1 have been established by analyzing a single algebraic

formula. Indeed, the adiabatic elimination method on the one hand yields explicit formulas for
the induced decoherence rates, preventing the need for solving differential equations for each
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parameter setting. On the other hand, our extended formalism as explained in Section 6.3.1.2
does not require to select between either the dissipation being the largest time-scale (stan-
dard adiabatic elimination), or drive frequencies ω̄1, ω2 being the largest timescale (domain of
averaging techniques like RWA). A single formula thus allows us to consistently cover the full
range of parameter values.

We can also look at the values of induced decoherence rates κs,± for ω2 = 0, yielding:

κs,− =
4κ−g

2

(κ− + κ+)2 + 4(ω̄1 + ∆)2 , (6.52a)

κs,+ =
4κ+g

2

(κ− + κ+)2 + 4(ω̄1 + ∆)2 . (6.52b)

As expected when taking ω2 = 0, the initial κ− and κ+ remain separated, such that κs,+
remains small for a cold bath. We can also note that ω2 was decoupling the effect of ∆σz, and
its absence reintroduces this detuning in addition to ω̄1 in (6.52). Regarding the DD effect, we
can see that also in the case of ω2 = 0, we rely on large ω̄1 to reduce the induced decoherence
channels κs,±. In absence of ω2 however, there may be a danger of being counterproductive
by hitting ω̄1 ≈ −∆, which renders the DD ineffective.

As a last point, we can obtain exact second-order expressions for the Hamiltonian terms in
Tz as well, again without the asymptotic limit of large ω2. The exact first-order slow dynamics
Ls,1 is given by the Hamiltonian ωs,z,1Tz, with

ωs,z,1 = −κ− − κ+

κ− + κ+

4∆2 + (κ− + κ+)2

4∆2 + (κ− + κ+)2 + 2ω2
2

.

Regarding the system parameters, we can see that this contribution is largest for a TLS
coupled to a cold bath, and disappears in the limit of a hot bath, where κ− = κ+. Since the
imperfect detuning ∆ appears, we cannot expect to have exact knowledge of ωs,z,1. However,
if ∆ can be assumed constant, then the term can be calibrated experimentally and corrected
for. Remark that such a Lamb-shift type Hamiltonian is present in the absence of driving as
well, and only the frequency is altered through the driving. Regarding the DD control, the
term goes as ∼ 1

ω2
2
for large ω2, and hence it is suppressed for strong driving, although this

was not explicitly part of our initial goal. For the first Hamiltonian term at second order, we
obtain

ωs,z,2 = − 16∆κ∆ω
2
2g

2

κΣ

(
4∆2 + κ2

Σ + 2ω2
2

)2 .
We obtain the same conclusion as for ωs,z,1, namely that ωs,z,2 is minimal for a hot bath, and
decreases as 1

ω2
2
under the DD controls. The full expressions for the remaining Hamiltonian

term − e.g. the exact expression for ωc − is more involved, and is not mentioned here.
The calculations in this section illustrate how our formulas could be used to optimize the DD

drive parameters. In Chapter 7, we will instead optimize the relative strengths of dissipation
rates in various situations, showing that the optimal parameter choice can similarly jump from
strongest possible to weakest possible dissipation on E, depending on the constraints on the
allowable values of the dissipation rates. For instance, expressions like (6.51) seem to indicate
that even in the absence of any drives, the lowest temperature (i.e. the lowest value of nth) is
not necessarily inducing the lowest κs,z. This specific example will be treated in Section 7.4.1.
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6.3.3 Case of ultra-strong driving

A Lindbladian dissipation model like equation (II.1) is an idealization meant to summarize
interactions of the TLS with further external degrees of freedom, e.g. a large bath involving
phonon modes. Therefore, when significantly modifying the system Hamiltonian, in other
words when we choose to add “ultra-strong” DD drives on the TLS, the dissipation model may
have to be revised, depending on the type of bath and noise spectrum behind its derivation.
One might be tempted to design DD drives to purposefully modify the Lindbladian itself [37,
41, 121]. However, in the context of the present work this is typically a secondary effect. This
section provides explicit formulas for such a bath reconsideration, in order to check to which
point our conclusions of Corollary 6.2 remain consistent.

We thus leave aside system T for a while and go back to the lab frame for the TLS system
E in order to reconsider its decoherence channels. We can safely neglect the coupling of E and
T at this stage, as it involves a weaker Hamiltonian, even further weakened by the DD drives,
and it would thus only appear at higher orders in any possible modification of the Lindbladian
dissipator of E. We model the TLS relaxation as stemming from an interaction of E with a
large bath B that can be assumed memoryless. For the sake of concreteness, the interaction
Hamiltonian is taken to be γσx ⊗R, such that

HEB =
ΩE

2
σz ⊗ 1B + H̃c(t)⊗ 1B + γσx ⊗R+ 1E ⊗HB . (6.53)

Here R is a Hermitian operator acting on the bath Hilbert space, γ is some small positive
coupling rate, HB is the bare bath Hamiltonian and H̃c(t) is the DD drive, expressed in the
lab frame. For this reason, (6.53) also includes the TLS bare frequency ΩE . As is common
practice, we can consider a bath of harmonic oscillators, for which the coupling along σx leads
to a Jaynes-Cummings-type interaction with the different modes; similar conclusions hold for
more general couplings and baths [19, 30, 48].

Moving to the rotating frame of both systems, and introducing the drive as in (6.5), we
obtain the total Hamiltonian

HE(t)⊗ 1B + γ(σ+e
iΩ̄Et + σ−e

−iΩ̄Et)⊗ R̃(t), (6.54)

with R̃(t) = eiHBtRe−iHBt. Performing the toggling frame transformation defined in (6.6)
yields

γẼ(t)⊗ R̃(t), (6.55)

with Ẽ(t) = ei(Ω̄E+ω̄1)tE+(t) + e−i(Ω̄E+ω̄1)tE−(t), where we have defined

E+(t) := ei
Λ
2
σαxσ+e

−iΛ
2
σαx

=
cos(α)

2
σαx + i

1 + sin(α)

2
eiΛtσα+

+ i
1− sin(α)

2
e−iΛtσα−, (6.56a)

E−(t) := E†+(t). (6.56b)

At this point we introduce the modified bare E-frequency Ω̃E = Ω̄E + ω̄1. In line with the
conclusions in Section 6.2, we will consider ω̄1 � ΩE , so Ω̃E ' ΩE .
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In the interaction frame of (6.55), the evolution equation of the joint density matrix ρEB
is thus

ρ̇EB(t) = −iγ
[
Ẽ(t)⊗ R̃(t), ρEB(t)

]
. (6.57)

We can write this as an integral equation,

ρEB(t) = ρEB(0)− iγ
∫ t

0

[
Ẽ(s)⊗ R̃(s), ρEB(s)

]
ds,

and reinjecting this into (6.57), we obtain

ρ̇EB(t) = −iγ
[
Ẽ(t)⊗ R̃(t), ρEB(0)

]
− γ2

∫ t

0

[
Ẽ(t)⊗ R̃(t),

[
Ẽ(s)⊗ R̃(s), ρEB(s)

]]
ds. (6.58)

Up until here, no approximations have been made, so (6.58) is exact. At this point we
follow the standard procedure of the Born-Markov approximation [19, 30, 48], assuming the
bath to be very large and unaffected by the weak coupling with the E system, such that it
remains in a steady state ρ̄B that is invariant under HB ([HB, ρ̄B] = 0). Without loss of
generality we can take Tr(R ρ̄B) = 0, since otherwise this would just lead to a modification of
the bare E-Hamiltonian. Lastly, we assume the correlation time of the bath to be the shortest
timescale present in the joint system. Taking the partial trace of both sides in (6.58) and
performing these approximations yields a Markovian equation for E:

ρ̇E(t)

γ2
=

∫ ∞
0

Tr
([[

Ẽ(t− s)⊗ R̃(t− s), ρE(t)⊗ ρ̄B
]
, Ẽ(t)⊗ R̃(t)

])
ds.

The right-hand side can be further worked out by defining the two-point correlation function
g(z) of the bath as

g(z) := Tr
(
R̃(t)R̃(t− z) ρ̄B

)
, z, t ∈ R,

yielding

ρ̇E(t)

γ2
=

∫ ∞
−∞

g(z)
([
Ẽ(t− z)ρE(t), Ẽ(t)

]
+
[
Ẽ(t), ρE(t)Ẽ(t+ z)

])
dz. (6.59)

Plugging in the expression of Ẽ(t) as in (6.56), terms oscillating at frequencies±2Ω̃E ,±2Λ, 2Ω̃E±
2Λ,−2Ω̃E±2Λ appear. Regarding oscillations as a function of z, we define the spectral density
of the bath G as

G(ν) :=

∫ ∞
−∞

eiνzg(z) dz,∀ν ∈ R . (6.60)

This still leaves the treatment of terms oscillating as a function of t. The bare TLS frequency
Ω̃E can always be assumed very large w.r.t. ρ̇E in (6.59), justifying averaging over terms
oscillating at frequencies ±Ω̃E . The RWA introduces an error of order κ2

Ω̄E
, where κ is the

typical dissipation rate obtained in the end. Since we assume the bare frequency of the TLS
to be much larger than the dissipation rate, we can neglect this term. Thus, concretely,
averaging (6.59) over t with only the frequencies ±2Ω̃E , yields

ρ̇E(t)

γ2
=

∫ ∞
−∞
g(z)eiΩ̃Ez

(
[E−(t−z)ρE , E+(t)] + [E−(t)ρE , E+(t+z)]

)
+

∫ ∞
−∞
g(z)e−iΩ̃Ez

(
[E+(t−z)ρE , E−(t)] + [E+(t), ρEE−(t+z)]

)
.
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A final approximation is needed to obtain a Lindbladian model. There are two possibilities
for this approximation, and for any value of ω2 at least one of them is valid in the context of
our DD protocol.

As a first possible condition, when the drive amplitude ω2 is dominated by the bare qubit
frequency ΩE , the noise spectral density G of the bath (defined in (6.60)) can typically be
considered flat in the ranges ±[ΩE−ω2, ΩE +ω2]. We thus shift the z dependency of E− and
E+ towards g(z) and assume G(Ω̃E ±Λ) ' G(Ω̃E) ' G(ΩE) when integrating over z. Finally,
moving back to the lab frame by undoing (6.6), the Jaynes-Cummings-type coupling assumed
in (6.53) then yields stationary dissipators in σ− and σ+, as assumed in the beginning of this
chapter:

ρ̇E(t) = κ−Dσ− + κ+Dσ+ , (6.61a)

with κ∓ ' 2γ2G(±ΩE). (6.61b)

As a second possible condition to obtain a Lindbladian model, the case of ultra-strong
driving precisely assumes that we can similarly average over frequencies ±Λ and, avoiding
parametric resonance, over the frequencies 2Ω̃E ± 2Λ and −2Ω̃E ± 2Λ. Again, this approxi-
mation remains valid if these frequencies are much larger than the obtained dissipation rate,
to be checked a posteriori. Performing this last secular approximation yields instead:

ρ̇E(t) = καxDσαx + κα−Dσα− + κα+Dσα+ , (6.62a)

with καx :=
γ2

2

(
G(Ω̃E) +G(−Ω̃E)

)
cos2(α), (6.62b)

κα− :=
γ2

2
G(Ω̃E + Λ)(1 + sin(α))2 +

γ2

2
G(−Ω̃E + Λ)(1− sin(α))2, (6.62c)

κα+ :=
γ2

2
G(−Ω̃E − Λ)(1 + sin(α))2 +

γ2

2
G(Ω̃E − Λ)(1− sin(α))2, (6.62d)

and where we recall that

cos(α) =
ω2

Λ
,

sin(α) =
∆

Λ
,

σαx = cos(α)σx + sin(α)σz,

and σα± are lowering and raising operators with respect to the eigenstates of σαx.
The choice between a model with fixed decoherence operators Lk ∈ {σ−, σ+}, or with

drive-corrected ones Lk ∈ {σαx, σα−, σα+}, depends on whether it is a better approximation
to consider G flat on the scale of ω2/ΩE , or to consider an RWA based on Λ� καx, κα−, κα+.
The former approach leads to an error of order κ Λ

ΩE
, whereas the latter leads to an error of order

κ2

Λ . The two approximations are compatible however and commute with one another when
both are justified, i.e. when κ±,α±,αx � Λ � Ω̃E . Indeed, first assuming a locally flat bath
spectrum to obtain (6.61), next transforming the σ− and σ+ dissipators to the rotating frame
w.r.t. Λ

2 σαx, and finally performing an RWA over frequencies ±Λ,2Ω̃E ± 2Λ and −2Ω̃E ± 2Λ
yields exactly the dissipators associated to (6.62) with ω1 and Λ ' ω2 put to zero in the bath
spectrum G. Note that it is consistent to effectively equate two dissipation channels κ+, κ−
together with a strong static drive Λ

2 σαx, to three dissipation channels κα−, κα+, καz in the
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rotating frame. Since the drive makes the state rotate, the average effect of the dissipation is
described by three dissipation channels in the rotating frame instead of two.

In summary, as long as the driving amplitude ω2 remains an order of magnitude smaller
than the bare frequency ΩE , we retrieve the original model of (6.29) and the final form for
the induced dissipation of the target system described in Corollary. 6.2. When ω2 becomes
too large (ultra-strong driving) and only the second type of approximation is justified, we
must revise the dissipation model. In the rest of this section, we derive formulas for the
induced decoherence on T under this revised dissipation model and just considering general,
non-vanishing rates καx,α−,α+.

Reflection

We can briefly comment on how to consider the dissipation rates (6.62) as a function of our
DD parameters.

• The effect of ω̄1
2 σz just adds up to Ω̄E , so for ω2 = 0 the bath noise spectrum G is probed

at altered frequencies ±(Ω̄E + ω̄1) to evaluate the excitation and loss rates.

• The stronger drive of amplitude ω2 introduces the periodic time-dependence in the TLS
Hamiltonian (6.5). According to the general Floquet-Markov theory [54], the eigenbasis
in which the TLS decoheres is then given by the Floquet Hamiltonian associated to E,
in a frame given by a periodic change of variables (often called the micromotion), and
Lindbladian dissipation rates are found by evaluating the bath noise spectrum at the
Floquet quasi-energies. In our case, the periodic change of variables just corresponds
to going to the rotating frame w.r.t. ω̄1

2 σz, where we obtain a constant Hamiltonian
Λ
2 σαx on E. This special situation implies that the Floquet decomposition trivializes
to the more standard rotating-frame and averaging approach, but with correspondingly
modified dissipation channels on E.

6.3.3.1 Derivation of reduced model for ultra-strong driving

Again in a rotating frame w.r.t. ω̄1
2 σz, the joint evolution of the target and TLS is thus

described by the master equation

d
dtρ = κα−D1T⊗σα−(ρ) + κα+D1T⊗σα+(ρ) + καxD1T⊗σαx(ρ)− iΛ

2
[1T ⊗ σαx, ρ] (6.63)

− ig
[
Tz ⊗ σz + eiω̄1tT− ⊗ σ+ + e−iω̄1tT+ ⊗ σ−, ρ

]
.

In the notation of Section 6.3.1.2, we can write ε = g
ω̄1
,

L0 = −iΛ
2

[1T ⊗ σαx, ·] + καxD1T⊗σαx + κα−D1T⊗σα− + κα+D1T⊗σα+ ,

and we have

L1(t) = −iω̄1

[
Tz ⊗ σz + eiω̄1tT− ⊗ σ+ + e−iω̄1tT+ ⊗ σ−, ·

]
.

Again the exact expressions of the reduced model are algebraically complicated and computed
with the help of a computer algebra system (SymPy). We here report a full derivation in the
limit where ω2 is the fastest timescale in the joint system.
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Order 0 computations

It is straightforward to verify that the fast dynamics L0 drives the environment to a unique
steady state

ρ̄E =
1E + xα,∞σαx

2
,

with

xα,∞ =
κα+ − κα−
κα+ + κα−

.

For the following it is instructive to define

καΣ := κα− + κα+,

κα∆ := κα− − κα+,

so xα,∞ = −κα∆
καΣ

. Remark that the steady-state is independent of the driving amplitude Λ.
For the projector R we have

R(XTE) = TrE(XTE)⊗ ρ̄E , ∀XTE.

Order ε computations

• Equation (6.21) yields the following expression for the first-order reduced dynamics:

εLs,1(ρs)⊗ ρ̄E = εR(L1(ρs ⊗ ρ̄E))

= −igTrE([Tz ⊗ σz, ρs ⊗ ρ̄E ])⊗ ρ̄E
= −igxα,∞ sin(α)[Tz, ρs]⊗ ρ̄E ,

readily giving
εLs,1(ρs) = −igxα,∞ sin(α)[Tz, ρs]. (6.64)

• Equation (6.23) in turn yields

εRK1(ρs) = εR∂−1
t L̃1K0(ρs)

= − g

ω̄1
TrE(

[
eiω̄1tT− ⊗ σ+ − e−iω̄1tT+ ⊗ σ−, ρs ⊗ ρ̄E

]
)⊗ ρ̄E

= −ixα,∞ cos(α)
g

2ω̄1

[
ieiω̄1tT− − ie−iω̄1tT+, ρs

]
⊗ ρ̄E ,

where we have put the integration constant to zero as a gauge choice.

• Equation (6.25) yields a second part of K1:

εL0(1−R)K̄1(ρs) = −ε(1−R)L̄1K0(ρs)

= ig[Tz ⊗ σz, ρs ⊗ ρ̄E ]− igTrE([Tz ⊗ σz, ρs ⊗ ρ̄E ])⊗ ρ̄E
= ig(Tzρs ⊗ σ̄zρ̄E − ρsTz ⊗ ρ̄E σ̄z),
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with σ̄z = σz−Tr(σzρ̄E)1E = σz−xα,∞ sin (α)1E . Remark that taking the partial trace
over E on the right-hand side gives zero, since Tr(σ̄zρ̄E) = 0. Hence L0 can be inverted
to obtain, formally,

ε(1−R)K̄1(ρs) = ig
(
Tzρs ⊗ L−1

0 (σ̄zρ̄E)− ρsTz ⊗ L−1
0 (ρ̄E σ̄z)

)
.

For this inversion we again use matrix representations in the Pauli basis.
In a rotated Pauli basis (cos(α)σz − sin(α)σx, σy, σαx), we obtain the following matrix
representation for L0:

[L0] =

−καΣ
2 − 2καx −Λ 0

Λ −καΣ
2 − 2καx 0

0 0 −καΣ

,
with

det[L0] = −
καΣ

(
4Λ2 + κ2

αΣ
+ 8καΣκαx + 16κ2

αx

)
4

.

For its inverse we obtain

[
L−1

0

]
=

1

det[L0]


καΣ(καΣ

+4καx)
2 −ΛκαΣ 0

ΛκαΣ

καΣ(καΣ
+4καx)

2 0

0 0 Λ2 +
κ2
αΣ
4 + 2καΣκαx + 4κ2

αx

.
In turn, σ̄zρ̄E takes the following vector representation in the Pauli basis:

[σ̄zρ̄E ] =


− iκα∆

cos (α)

2καΣ
cos (α)

2
(−κ2

α∆
+κ2

αΣ
) sin (α)

2κ2
αΣ

0

.

Straightforward calculations then give

[
L−1

0 (σ̄zρ̄E)
]

=


(2ΛκαΣ

+iκα∆(καΣ
+4καx)) cos (α)

καΣ(4Λ2+κ2
αΣ

+8καΣ
καx+16κ2

αx)
(2iΛκα∆

−καΣ(καΣ
+4καx)) cos (α)

καΣ(4Λ2+κ2
αΣ

+8καΣ
καx+16κ2

αx)
(κα∆

−καΣ)(κα∆
+καΣ) sin (α)

2κ3
αΣ

.

Focusing on the leading-order in 1
ω2

yields

[
L−1

0 (σ̄zρ̄E)
]

=
1

2ω2


1

iκα∆
καΣ

∆(κ2
α∆
−κ2

αΣ
)

κ3
αΣ

+O
(

1

ω2
2

)
,

and further
ε(1−R)K̄1(ρs) = i

g

ω2

[
Tz ⊗ M̄z, ρs ⊗ ρ̄E

]
,
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with

[
M̄z

]
=


1
0

− ∆
καΣ

−∆κα∆
κ2
αΣ

+O
(

1

ω2

)
.

• For the last part of K1, consider (6.26):

ε(L0−∂t)(1−R)K̃1(ρs) = ig(1−R)
([
eiω̄1tT− ⊗ σ+ + e−iω̄1tT+ ⊗ σ−, ρs ⊗ ρ̄E

])
. (6.65)

Introducing

σ̄+ := σ+ − Tr(σ+ρ̄E)1E = σ+ +
κα∆ cos (α)

2καΣ

1E ,

σ̄− := σ− − Tr(σ−ρ̄E)1E = σ− +
κα∆ cos (α)

2καΣ

1E ,

we can write the right-hand side of (6.65) as

ig
[
eiω̄1tT− ⊗ σ̄+ + e−iω̄1tT+ ⊗ σ̄−, ρs ⊗ ρ̄E

]
= igeiω̄1tT−ρs⊗σ̄+ρ̄E+ige−iω̄1tT+ρs⊗σ̄−ρ̄E+h.c.

At this point we can split (1−R)K̃1 up into two parts:

ε(1−R)K̃1(ρs) = igeiω̄1t(L0 − iω̄1)−1(T−ρs ⊗ σ̄+ρ̄E) + ige−iω̄1t(L0 + iω̄1)−1(T+ρs ⊗ σ̄−ρ̄E) + h.c.

= igeiω̄1tT−ρs ⊗ (L0 − iω̄1)−1(σ̄+ρ̄E) + ige−iω̄1tT+ρs ⊗ (L0 + iω̄1)−1(σ̄−ρ̄E) + h.c.

We obtain the following matrix representations:

[σ̄+ρ̄E ] =


i(κα∆

sin (α)+καΣ)
4καΣ

−κα∆
+καΣ

sin (α)

4καΣ

(−κ2
α∆

+κ2
αΣ

) cos (α)

4κ2
αΣ

,

[σ̄−ρ̄E ] =


i(κα∆

sin (α)−καΣ)
4καΣ

κα∆
−καΣ

sin (α)

4καΣ

(−κ2
α∆

+κ2
αΣ

) cos (α)

4κ2
αΣ

,
and

[
(L0 ∓ iω̄1)−1

]
=

−2καΣ
−8καx∓4iω̄1

4Λ2+κ2
αΣ

+8καΣ
καx±4iκαΣ

ω̄1+16κ2
αx±16iκαxω̄1−4ω̄2

1

4Λ
4Λ2+κ2

αΣ
+8καΣ

καx±4iκαΣ
ω̄1+16κ2

αx±16iκαxω̄1−4ω̄2
1

0

− 4Λ
4Λ2+κ2

αΣ
+8καΣ

καx±4iκαΣ
ω̄1+16κ2

αx±16iκαxω̄1−4ω̄2
1

−2καΣ
−8καx∓4iω̄1

4Λ2+κ2
αΣ

+8καΣ
καx±4iκαΣ

ω̄1+16κ2
αx±16iκαxω̄1−4ω̄2

1
0

0 0 1
−καΣ

∓iω̄1

.
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Again focusing on the leading-order in 1
ω2
, putting cos(α) to 1, and using Λ sin(α) = ∆,

we obtain

(L0 − iω̄1)−1(σ̄+ρ̄E) = −
(

1

2ω2
B† +

cos(α)

2(καΣ + iω̄1)

(
κα∆

καΣ

1E + σαx

))
ρ̄E ,

(L0 + iω̄1)−1(σ̄−ρ̄E) = −
(

1

2ω2
B +

cos(α)

2(καΣ − iω̄1)

(
κα∆

καΣ

1E + σαx

))
ρ̄E ,

with

[B] =


∆−

iκαΣ
2
−2iκαx−ω̄1

ω2
+O

(
1
ω2

2

)
−i+O

(
1
ω2

)
0
0

.
Putting all this together, we can write

ε(1−R)K̃1(ρs) = −i g
2Λ

[
eiω̄1tT− ⊗B† + e−iω̄1tT+ ⊗B, ρs ⊗ ρ̄E

]
− i g cos(α)

2
√
κ2

Σ + ω̄2
1

 κΣ − iω̄1√
κ2

Σ + ω̄2
1

eiω̄1tT− +
κΣ + iω̄1√
κ2

Σ + ω̄2
1

e−iω̄1tT+

⊗ (κα∆

καΣ

1E + σαx

)
, ρs ⊗ ρ̄E

.

Order ε2 computations

For the second-order reduced dynamics, (6.28) for k = 2 gives

K0Ls,2(ρs) = Ls,2(ρs)⊗ ρ̄E = RL1K1(ρs) = TrE(L1K1(ρs))⊗ ρ̄E

so

Ls,2(ρs) = TrE(L̄1(1−R)K̄1(ρs)) + TrE

(
L̃1RK̃1(ρs)

)
+ TrE

(
L̃1(1−R)K̃1(ρs)

)
. (6.66)

It is straightforward to verify that

TrE(L̄1(1−R)K̄1(ρs)) =
ω̄2

1

ω2
Tr
(
σzM̄zρ̄E

)(
T 2
z ρs − TzρsTz

)
+
ω̄2

1

ω2
Tr
(
σzρ̄EM̄z

)(
ρsT

2
z − TzρsTz

)
,

and using

Tr
(
σzM̄zρ̄E

)
=
iκα∆

καΣ

+

∆2

(
κ2
α∆
κ2
αΣ

− 1

)
καΣω2

− καΣ

2ω2
− 2καx

ω2
+O

(
1

ω2
2

)
,

we obtain that

TrE(L̄1(1−R)K̄1(ρs)) =

2

∆2

(
1− κ2

α∆
κ2
αΣ

)
καΣ

+ καΣ + 4καx

 ω̄2
1

ω2
2

DTz(ρs)−i
κα∆ω̄

2
1

καΣω2

[
T 2
z , ρs

]
+O

(
1

ω3
2

)
.
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For the second term in equation (6.66) we obtain

TrE

(
L̃1RK̃1(ρs)

)
= −i cos(α)

κα∆

2καΣ

ω̄1 Tr(σ+ρ̄E)[T−, [T+, ρs]]+i cos(α)
κα∆

2καΣ

ω̄1 Tr(σ−ρ̄E)[T+, [T−, ρs]],

and using Tr(σ+ρ̄E) = Tr(σ−ρ̄E) = −κα∆
cos (α)

2καΣ
we get

TrE

(
L̃1RK̃1(ρs)

)
= −i

(
κα∆

καΣ

)2 cos2(α)

4
ω̄1[[T+, T−], ρs].

For the third term in equation (6.66) we obtain

TrE

(
L̃1(1−R)K̃1(ρs)

)
=
ω̄2

1

2Λ

(
c+(T+ρsT− − T−T+ρs) + c∗−(T−ρsT+ − ρsT+T−)

)
+
ω̄2

1

2Λ

(
c−(T−ρsT+ − T+T−ρs) + c∗+(T+ρsT− − ρsT−T+)

)
+

d ω̄2
1

κ2
Σ + ω̄2

1

(κΣ + iω̄1)(T−ρsT+ − T−T+ρs + T+ρsT− − ρsT+T−)

+
d ω̄2

1

κ2
Σ + ω̄2

1

(κΣ − iω̄1)(T+ρsT− − T+T−ρs + T−ρsT+ − ρsT−T+),

with

c+ = Tr(σ+Bρ̄E),

c− = Tr
(
σ−B

†ρ̄E

)
,

d = Tr(σ+(1E + σαx)ρ̄E) = Tr(σ−(1E + σαx)ρ̄E) =
1

2

(
1−

κ2
α∆

κ2
αΣ

)
cos2(α).

Using

c+ = − iκα∆

2καΣ

+
4i∆ + καΣ + 4καx − 2iω̄1

4ω2
+O

(
1

ω2
2

)
,

c− = − iκα∆

2καΣ

+
−4i∆ + καΣ + 4καx + 2iω̄1

4ω2
+O

(
1

ω2
2

)
,

we readily obtain

TrE

(
L̃1(1−R)K̃1(ρs)

)
=

(
καΣd ω̄

2
1

κ2
αΣ

+ ω̄2
1

+
καΣ + 4καx

4ω2
2

ω̄2
1 +O

(
1

ω3
2

))(
DT−(ρs) +DT+(ρs)

)
+ i

(
ω̄3

1 d

2
(
κ2
αΣ

+ ω̄2
1

) +O
(

1

ω2
2

))
[[T+, T−], ρs]

+ i

(
ω̄2

1

4ω2

κα∆

καΣ

+O
(

1

ω3
2

))
[T+T− + T−T+, ρs].

Summary
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Putting all of the calculations of this section together, we obtain the following second-order
reduced model.

For the slow dynamics we obtain an explicit Lindbladian model. We summarize its
form while only keeeping the leading-order in 1/ω2:

Ls,ε(ρs) = −i
[
ωs,z,1Tz + ωs,z,2T

2
z + ωs,c[T+, T−] + ωs,a(T+T− + T−T+), ρs

]
+ κs,zDTz(ρs) + κs,±

(
DT− +DT+

)
+O

(
gε2
)

(6.67)

with

ωs,z,1 = −κα∆

καΣ

g∆

ω2
, (6.68a)

ωs,z,2 =
κα∆g

2

καΣω2
, (6.68b)

ωs,c =

(
κα∆

καΣ

)2 g2

4ω̄1
− 1

4

(
1−

κ2
α∆

κ2
αΣ

)
ω̄1g

2

κ2
αΣ

+ ω̄2
1

, (6.68c)

ωs,a = −κα∆

καΣ

g2

4ω2
, (6.68d)

κs,z =

∆2

(
1− κ2

α∆
κ2
αΣ

)
καΣω2

+
καΣ

2ω2
+

2καx
ω2

2g2

ω2
, (6.68e)

κs,± =
1

2

(
1−

κ2
α∆

κ2
αΣ

)
καΣg

2

κ2
αΣ

+ ω̄2
1

+
g2 (καΣ + 4καx)

4ω2
2

. (6.68f)

For the embedding of the slow subspace we obtain, up to second-order terms:

Kε(ρs) = e−iHε(ρs ⊗ ρ̄E)eiHε +O(ε2), (6.69)

with

Hε :=
κα∆

καΣ

g

2ω̄1
Hs ⊗ 1E +

g

2
√
κ2
αΣ

+ ω̄2
1

Hs,± ⊗ (1E + σα,x)− g

ω2
Tz ⊗ M̄z −

g

2ω2
Hs ⊗ σy.

(6.70)

Here we have defined

Hs = ie−iω̄1tT+ − ieiω̄1tT−, (6.71a)

Hs,± =
(καΣ − iω̄1)eiω̄1tT− + (καΣ + iω̄1)e−iω̄1tT+√

κ2
αΣ

+ ω̄2
1

, (6.71b)

M̄z = σαx −
∆

καΣ

(
κα∆

καΣ

1E + σαx

)
. (6.71c)

It is easy to verify that Hε is Hermitian, since Hs, Hs,± and M̄z are Hermitian, and hence
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Kε can be written as an entangling unitary up to O(ε2). In particular, Kε is therefore a CPTP
map up to O(ε2) terms.

6.3.3.2 Discussion

We can summarize the DD benefits as follows

Corollary 6.4. Consider the same notation 1
Ωk2

as in Thm. 6.2. The induced decoherence
rates associated to the model (6.63) display the following asymptotic behavior for large ω2:

κs,z =
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with καΣ = κα− + κα+ and κα∆ = κα− − κα+.

All these rates vanish in the limit ω̄1 � ω2; ω̄1, ω2 → ∞, quantitatively confirming the
DD benefits. These rates can be understood intuitively in a similar way as for (6.46). The

extra factor (1 − κ2
α∆
κ2
αΣ

= 1 − x2
α,∞) accounts for the generally nonzero average value xα,∞ of

σαx in the TLS steady state. A larger xα,∞ reduces the dissipative part at the expense of a
deterministic, Hamiltonian term (see Section 6.3.3.1). In κs,±, we have now kept a term of
order 1/ω2

2 because the dominating contribution of καx only appears at this order.
Taking into account the modified dissipation model for E therefore does affect induced

decoherence for T, with significant changes if κα− � κα+ such that κα∆ ' καΣ. However, with
a bath model at the origin of (6.62), this would only happen under very peculiar conditions.
The standard conclusions with a reasonably flat bath noise spectrum, and α� 1, are not too
different from (6.46). They quantitatively confirm the DD benefits under this model too.

As a last point, also the Hamiltonian terms in (6.68) are suppressed asymptotically for
large ω̄1 and ω2, although this was not explicitly part of our goal.

6.4 Summary

In this chapter, we have shown that one can apply coherent drives to an environment subsystem
as to decouple it from a target system. As environment subsystem, we here focused on
the benchmark case of a two-level system (TLS). The inevitable control imprecision that
comes with acting on the environment subsystem was mitigated by building an extra timescale
separation into the DD drives, while the DD drives can still be chosen to contain only two
frequencies in the lab frame, and are hence straightforward to implement. Given the strongly
dissipative nature of the TLS, the effectiveness of the DD driving was established by studying
the dependence of the leading-order induced decoherence rates, as computed by the method of
adiabatic elimination, as a function of the DD drive amplitudes. For this, in Section 6.3.1.2,
the adiabatic elimination approach was extended to systems with periodic driving, providing a
novel model reduction method that may be of independent interest. As a last consistency check
with both the lossy nature of the TLS on the one hand, and the possibly very strong driving
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amplitudes on the other hand, in Section 6.3.3, we rederived a corrected dissipation model
for the TLS that explicitly takes into account the driving. The novel adiabatic elimination
method of Section 6.3.1.2 was then applied to this case in Section 6.3.3.1, confirming the
effectiveness of the DD driving to suppress the induced decoherence on the target also in
this case. Addressing an environment subsystem with coherent drives thus provides a novel
strategy for countering noise, whenever such a prominent environment subsystem can readily
be identified as the main source of noise for the target device.

As a possible line of future work, one should set out to obtain an explicit convergence
radius of the time-periodic adiabatic elimination approach in the small parameter ε, and set
out to obtain explicit formulas for higher order terms in the reduced model for the specific
case of bipartite systems. Another line of future work is to tailor the design of coherent
DD drives for environment-side decoupling to existing quantum computing hardware where it
could subsequently be implemented. A concrete experimental platform could further identify
which specific classes of actions on the environment are the most viable, and a tailored driving
scheme can be developed. While this chapter considered actions on the environment side
to be coherent drives, the next chapter considers the limit of vanishing control precision,
where applying such noisy drives can be considered as adding pure dissipation channels to the
environment side.
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Chapter 7

Purely dissipative decoupling

Dans le chapitre précédent, nous avons montré que d’appliquer des drives imprécis sur l’environment
E peut diminuer la décohérence qu’il induit sur la cible T, par un mécanisme où l’environnement
et le système cible sont découplé de manière dynamique. Ce chapitre a pour but de pousser
cette idée plus loin: peut-on découpler les deux systèmes en forçant E avec un Hamiltonien
dont l’amplitude est du bruit pur, ou, autrement dit, peut-on obtenir DD (c’est-à-dire réduire la
décohérence induite) en rajoutant de la décohérence, sous la forme d’opérateurs de Lindblad, à
l’environnement. Cette question est converti en un problème de contrôle où des différents taux
de dissipation Markovienne de E sont considérés comme accordables dans une certaine gamme.
Les taux de décohérence induits sur le système cible sont ensuite analysés en utilisant l’approche
standard de l’élimination adiabatique pour des systèmes bipartites et stationnaires [6], dont les
formules pertinentes sont rappelées dans la Section 7.2. Ensuite, nous établissons certaines
propriétés des formules d’élimination adiabatique dans le contexte de la minimisation de la
décohérence induite. Le reste du chapitre traite les cas physiques les plus pertinents pour un
environnement à deux niveaux (TLS), pour un système cible général. Dans les sections 7.4.1
et 7.4.2, nous considérons que le TLS converge vers un état stable unique sous ses canaux de
dissipation, et nous considérons le cas d’un couplage dispersif et presque résonnant au système
cible respectivement. Pour le cas d’un couplage dispersif, le problème d’optimisation peut être
décrit en termes d’une température de bain effective déterminant la décohérence induite sur la
cible. Cette nouvelle étude confirme l’idée générale selon laquelle il est avantageux d’avoir soit
l’environnement dans un état pur, soit dans un état hautement entropique. Dans le cas d’un
couplage presque résonnant, il reste deux canaux de décohérence induite, et nous étudions si
l’augmentation d’un seul canal de dissipation hermitien sur l’environnement peut le découpler
de la cible arbitrairement bien. Ceci nous amène à une dernière situation considéré. Dans la
Section 7.4.3 nous considérons le cas où le TLS ne converge pas vers un état stable unique,
mais seulement une partie de ses cohérences subissent une décroissance rapide. Pour le cas
d’un couplage dispersif avec la cible, nous confirmons à nouveau l’idée qu’un état stationnaire
de l’environnement moyennement entropique correspond au scénario le plus défavorable pour
la cible.

In Chapter 6 we showed that the addition of imprecise drives on E can decrease the deco-
herence that it induces on the target system T, as environment and target system can be seen
to dynamically decouple. This chapter explores the question if we can push this idea one step
further by asking: can we decouple the two systems by driving E with a Hamiltonian whose
amplitude is pure noise. In other words, can we achieve dynamical decoupling (i.e. lower the
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induced decoherence by definition) by adding decoherence, in the form of entropy-increasing
Lindblad operators, to the environment? This question is translated into a control problem
where various rates of Markovian dissipation channels of E are considered tunable within a
given range. The induced decoherence rates on the target system are subsequently analyzed
using the standard adiabatic elimination approach for stationary bipartite systems [6], the
relevant formulas of which are given in Section 7.2. In Section 7.3 we establish general prop-
erties of the adiabatic elimination formulas in the context of the minimization of the induced
decoherence. The remainder of the chapter addresses the most relevant physical settings for
the case of a TLS environment, while the target system is kept fully general. In Sections 7.4.1
and 7.4.2 we assume the TLS to converge to a unique steady state under its dissipation chan-
nels, and we consider the case of a dispersive and almost-resonant coupling to the target system
respectively. For the case of dispersive coupling, the optimization problem can be described
in terms of one effective bath temperature determining the induced decoherence. This novel
study confirms the general idea that it is good practice to have either minimal mixing on the
environment, or rather maximal mixing. For the case of an almost-resonant coupling, two
induced decoherence channels remain, and we investigate if increasing one Hermitian dissipa-
tion channel on the environment can decouple it from the target arbitrarily well. This brings
us to a last setting considered. In Section 7.4.3 we consider the case where the TLS does not
converge to a unique steady-state, but only part of its coherences undergo fast decay. For the
case of a dispersive coupling to the target, we again confirm the idea that an intermediate
amount of mixing on the environment corresponds to the worst-case scenario for the target.

7.1 Idea and control setting

We can calculate what happens when driving a quantum system with a Hamiltonian H whose
amplitude is pure noise. For this, consider dWt to be the increment at time t of a Brownian
motion process, and denote the expectation value as E:

ρ(t+ dt) =E
(
e−iHdWtρ(t)eiHdWt

)
=ρ(t)− i[H, ρ(t)] E(dWt) +

(
Hρ(t)H − H2

2
ρ(t)− ρ(t)

H2

2

)
E(dW 2

t )

=ρ(t) +DH(ρ(t)) dt ,

This leads to a Lindblad-type decoherence with Hermitian decoherence channel H for the
state ρ. We can also consider adding non-Hermitian decoherence channels, such as the qubit
relaxation channel Dσ− . Since engineering a very strong such cooling on the environment is
known to be experimentally challenging, with active efforts to cool down quantum devices, a
more reasonable setting of this type could be to let E be subject to

LE = κ1(1 + nth)Dσ− + κ1nthDσ+ , (7.1)

with lower and upper bounds on κ1 and on nth. The question is then which parameter choice
minimizes the induced decoherence on T. We will see in Section 7.4.1 that under realistic
constraints on nth, a minimal value of nth is not always the best choice. More generally, we
can consider settings where the environment is subject to the dissipation

LE =
∑
k

κkDLk , (7.2)

138



with the rates κk of the decoherence channels jointly tunable within a given set. The way in
which these κk are tuned in practice can depend on the particular experiment. They might
result from (noisy) drives and secular approximations, or for models such as (7.1) they might
guide target values of κ1 and nth at the experiment design stage.

We will focus on a setting where the joint state of the system and environment are described
by a master equation of the form (II.1) with HT = 0, i.e.

d
dtρ = −i[HTE +HE , ρ] + LE , (7.3)

where nowHE is time-independent and fixed, and the Lindbladian LE takes the form (7.2) with
tunable κk associated to operators Lk acting on E only. Note that for notational convenience
we have dropped the identities in 1T ⊗HE , 1T ⊗Lk. With a slight abuse of notation, we will
also use the same notation LE when acting either on the E-state ρE alone, or on the total
state ρ, as LE acts as the identity on the target T in any case.

For a more general setting one may want to add a tunable HE as in Chapter 6, but
for a more efficient presentation we here chose to study both effects separately (see [43] for
examples on tuning both the κk and a time-independent driveHE). The question is again what
values of the κk minimize the induced decoherence on T. In the absence of time-dependent
drives, this induced decoherence can be computed directly with standard adiabatic elimination
formulas [6]. We will show that the DD principle carries through at this purely dissipative
level. Namely, selecting large values of κk, which strongly shake the environment, can lead to
much less induced decoherence than selecting the κk which make the environment as pure as
possible.

7.2 Adiabatic elimination formulas

The model (7.3) exhibits a clear timescale separation, where we assume that

‖LE‖ � ‖HTE‖.

Such a timescale separation can be leveraged to obtain a reduced model for the slowly-evolving
degrees of freedom, through the general method of adiabatic elimination [5, 6]. The general
purpose of adiabatic elimination is to eliminate all fast dissipative dynamics and only retain the
degrees of freedom which evolve slowly, and which are thus best protected from decoherence.
A standard setting is when a fast dissipating system (here E) is weakly coupled to another
system (here T). Under appropriate conditions, the coupling induces a weak hybridization of
the two subsystems, in which a subsystem close to T can be viewed as an autonomous system
of state ρs undergoing slow decoherence and slow Hamiltonian dynamics. Approximation
formulas have been developed to compute this hybridization and slow dynamics at various
orders [6].

We here recall this standard adiabatic elimination setting to keep this chapter self-contained,
and since this formulation is now standard in the literature, we report explicit formulas for
the leading-order induced decoherence for bipartite systems, that are explicitly in the form of
Lindbladian decoherence on the target system T. We focus on the formulas expressing the dis-
sipation on ρs, thus induced on T by its coupling to E, taking the viewpoint that a constant
hybridization and Hamiltonian can, by definition, be calibrated. The following procedure
gives the dominating terms of the dissipation, provided the environment E alone has a unique
steady state and the latter is strongly attractive compared to the coupling rate with T.
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• Denote by ρ̄E the unique steady state of the environment dynamics, thus takingHTE = 0
in (7.3).

• Writing HTE =
∑

k Tk ⊗ Ek, for each Ek compute Ẽkρ̄E = Ekρ̄E − Tr(Ekρ̄E)ρ̄E .

• For each k, solve for a traceless operator Qk in −i[HE , Qk] + LE(Qk) = −Ẽkρ̄E .

• Construct the matrix X with components Xk,j = Tr
(
QjE

†
k + EjQ

†
k

)
. This matrix

is positive semidefinite and the induced decoherence on T, at second order adiabatic
elimination, is given by

LT,induced =
∑
k

DLT,k , (7.4)

where LT,k =
∑

j Λj,kTj for any decomposition X = ΛΛ†.

In particular, the Lindbladian describing the induced decoherence at this order of approx-
imation involves jump operators LT,k that are simply linear combinations of the coupling
operators Tj in HTE . When there is only a single coupling term, HTE = T1 ⊗ E1, the
scalar X readily yields the induced decoherence rate on the target T associated to the
dissipation operator T1.

We will use the result of this procedure to analyze how the dissipation induced on a target
system can be reduced by varying the κk in (7.2). One should bear in mind that this is
only the dominating term, in an approximate formula which is valid when dissipation on the
environment is fast. Thus, conclusions encouraging us to consider minimal dissipation on the
environment should be taken with caution. However, we will often encounter the conclusion
that more dissipation in the environment is better for the target, and this regime is precisely
the one well covered by the adiabatic elimination conditions.

Moreover, when treating the example of a TLS environment in more detail, we will illustrate
how to adapt the adiabatic elimination procedure when the dynamics on E alone do not
strongly attract it to a unique steady state. For this scenario, a more general approach
formulated purely in terms of linear systems was introduced in Section 6.3.1.1. There, the
slow degrees of freedom were parametrized by a general subspace of operators isomorphic to
the kernel of the fast Lindbladian superoperator. One contribution of ours is to work out
this more general approach for typical cases of a TLS-type environment, and to interpret the
results. This will be the subject of Section 7.4.3.

7.3 Some general properties

Before proceeding with our running example of a TLS environment, we can give some general
results on induced decoherence as computed with the above procedure. These are very much
in line with the DD viewpoint that shaking the environment more should lead to less effect
on the target system.

Proposition 7.1. When HE is fixed and is either of the same order as HTE or smaller,
multiplying all the κk by α > 1 decreases the decoherence induced on the target system by a
factor α. The same conclusion holds for any HE if it can be multiplied by α > 1 together with
the κk.
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Proof. There are two ways to consider HE . Under the first condition, we consider it as part
of the perturbation, with a coupling H̃TE = HTE + 1T ⊗ HE . Under the second condition,
we consider it as part of the fast dynamics, and simply scale it together with all other Lind-
bladian contributions on the environment. In the adiabatic elimination procedure outlined
in Section 7.2, both cases will not change ρ̄E nor the Ẽk, yet the Qk will become α times
smaller. Thus the induced decoherence matrix X becomes α times smaller and so will the
rates deduced from it. Another viewpoint is to make a change of timescale re-establishing
the initial dissipation rate on the environment. In this new timescale, the coupling to the
target system is decreased by α. According to the 2nd order adiabatic elimination formulas,
the induced decoherence is quadratic in the coupling strength. Therefore, the lower coupling
more than compensates for the change of timescale.

Proposition 7.2. Consider HE = 0 and that all the decoherence channels Lk on the envi-
ronment are Hermitian and can be tuned individually. Then, as soon as adiabatic elimination
conditions are satisfied, the diagonal elements of the induced decoherence matrix X are all
minimized by taking the maximal value of κk for each Lk on the environment.

Proof. We say “as soon as” because if the conditions are satisfied for some set of parameters,
then they still hold when we increase the dissipation rates. We summarize the main ideas of
the proof, whose full version is available in [42]. First, note that the unique steady state ρ̄E
of the environment under Hermitian Lk must be proportional to the identity, irrespective of
the tuning choice. One can then formulate an optimization problem for each diagonal element
of X, expressing the computations of the adiabatic elimination procedure outlined above as
constraints with Lagrange multipliers. The necessary optimality conditions then ensure that
X can be minimal only at the extreme values of the κk. A local analysis shows that if X
depends on its value, then κk must be maximal to minimize the X-element.

Since we know that X is positive semidefinite, the implications of Proposition 7.2 on its
diagonal have similar consequences for the induced decoherence rates.

Finally, we can try to give criteria under which the induced decoherence on T can vanish
at the limit where some κk become very large. Note that this is the limit where adiabatic
elimination becomes increasingly more valid.

Proposition 7.3. Consider (7.3) and let

LE = La + 1
δLb ,

such that, for fixed La and Lb, the κk remain within their authorized domain as δ tends to 0.
In other words, Lb is the part of the dissipation on E whose rates can possibly tend to infinity.
If Lb has a unique steady state, then the decoherence induced on the target system vanishes as δ
tends to 0. Otherwise, the dynamics can first be reduced by non-standard, first-order quantum
adiabatic elimination of Lb, before studying the potentially remaining induced decoherence on
T.

Proof. Note that the general procedure described in Section 6.3.1.1 makes no distinction be-
tween T and E subsystems, and simply eliminates the fastest dynamics.
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First consider the case where Lb has a unique steady state. We can thus consider 1
δLb

as the fast dynamics to eliminate, with respect to the slower dynamics including La and
Hamiltonians HE and HTE . As 1/δ gets infinite, the first-order adiabatic elimination yields
finite contributions to the dynamics, while all higher-order terms become infinitesimal. One
easily checks from the general procedure that, in presence of La and HE possibly acting
on E (thus slow dynamics with respect to 1/δ), the specific first-order adiabatic elimination
formula outlined in Section 7.2 remains unchanged, i.e., the induced dynamics on T reduces
to a Hamiltonian, without any decoherence.

Next consider the case where Lb would not have a unique steady state. In other words, as
a superoperator, some of its eigenvalues would have 0 real part, while the other eigenvalues
have negative real parts of the order O(1/δ). From dynamical systems theory, we know that
we can eliminate all the latter. Mathematically, this requires a separation between fast and
slow dynamics not at the level of the Hilbert space, but rather at the level of operators
ρE . More precisely, among the linear operators Q on E, we will distinguish a subspace of
operators associated to fast decaying eigenvectors of Lb, and a complementary subspace SE
associated to non-decaying eigenvectors. The “slow dynamics” with respect to 1/δ, after
adiabatic elimination of Lb, would describe the evolution of operators of the form

ρs =
∑
k

ckQT,k ⊗QẼ,k ,

with QT,k any linear operators on the target system T, QẼ,k belonging to SE , and scalar
coefficients ck. The structure of such a subspace of operators can take various forms (see
the examples in the Section 7.4.3). Nevertheless, the procedure for iteratively computing
the reduced dynamics and the embedding of the true slow subspace at various orders follows
the same procedure, since this was formulated at the general level of superoperators in Sec-
tion 6.3.1.1. In particular, as for the case where Lb features a unique steady state, when 1/δ
becomes infinite, the first-order adiabatic elimination yields finite contributions to the slow
dynamics, while all higher-order terms become infinitesimal.

In order to give somewhat more substance to this second case, where Lb has no unique
steady state, we mention the following general possibilities. More explicit examples are worked
out in Section 7.4.3.

(i) In some cases, after adiabatic elimination of Lb, the reduced dynamics may no longer
involve a coupling between T and E. This means that there would be no induced deco-
herence on T when 1/δ becomes infinite.

In most cases, however, a part of the Hamiltonian coupling HTE will remain after elim-
inating Lb. In this case, we can pursue the analysis of induced decoherence by a second
round of adiabatic elimination, where we now consider part of the dynamics of La and
HE on the environment as the next-fastest timescale, while the interaction due to the
original HTE occurs at a yet slower timescale. Since this second time-scale separation
remains finite, the second round of adiabatic elimination will generally have to be pur-
sued at various orders, and obtaining a vanishing induced decoherence at all orders, as
requested in Proposition 7.3, would be exceptional. One can readily start by treating
the dominating order of dissipation.

(ii) Note that the “fast” dynamics implied by La and HE after first-order adiabatic elimina-
tion of Lb does not necessarily features a unique steady state, even if La + 1

δLb and HE
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together had a unique steady state on E for any finite δ. Indeed, when only scaling up
1
δLb, it is possible that some eigenvalues of

La + 1
δLb − i[HE , ·]

converge towards zero.

For instance, consider the case where E consists of two subsystems E1 and E2, with
no dissipation on E1 (we can take La = 0), while Lb has a unique steady state on E2,
and HE couples E1 with E2. In other words, E1 and E2 are in the standard form for
adiabatic elimination of the dissipative subsystem E2, coupled with a Hamiltonian to
E1, see Section 7.2. For any finite δ, the formulas of Section 7.2 for adiabatic elimination
of Lb predict induced decoherence at second order on E1, proportional to HEδ. Similarly
to our observations for T coupled to E, as the dissipation 1

δLb increases, the induced
decoherence E1 decreases. At the limit of infinitesimal δ, the induced decoherence also
vanishes and we no longer have a unique steady state on E1.

(iii) Cases such as the example of point (ii) seem to require particular substructures of the
environment dynamics. It is therefore rather common that after eliminating 1

δLb, the
remaining fast dynamics would still feature a unique steady state on E. In this case, the
general procedure of adiabatic elimination can be pursued to obtain a reduced model on
T alone.

If, furthermore, the dynamics after eliminating Lb takes the form of dissipation towards
a unique steady state on what remains of E, with weak Hamiltonian coupling to T, then
we can readily apply the second-order adiabatic elimination formulas of Section 7.2.
This enables to directly either conclude to the negative (there remains induced decoher-
ence even at second-order), or observe that at least the dominating order of dissipation
vanishes (thus according to second-order adiabatic elimination formulas with finite La).

(iv) To give a conclusive result, we must specify the setting even more. Like in point (iii),
assume that the dynamics obtained after eliminating Lb indeed still takes the form of
dissipation on E with a Hamiltonian coupling to T, while the dissipation on E leads to
a unique steady state ρ̄E . If ρ̄E is of full rank, then the induced decoherence cannot
vanish. If ρ̄E is of reduced rank, then the induced decoherence cannot vanish if the
Hamiltonian coupling acts inside the space supported by ρ̄E .

This can be proven as follows.

We consider the system obtained after first-order adiabatic elimination of Lb, according
to the procedure of Section 6.3.1.1, as being the new target-environment model, and
consider this to be the new starting situation, using the same notation. Without loss
of generality, we assume that the Ek have been redefined such that Tr(Ek ρ̄E) = 0, and
also that each Ek is Hermitian. We denote by LE the remaining Lindbladian dissipation
on this reduced environment. The proof ideas are similar to those for proving positivity
of X in the adiabatic elimination theory paper [6].

The goal is thus to investigate when the induced decoherence matrix X in Section 7.2
might vanish. Since X is nonnegative, we can focus on its diagonal. This means, we
want each diagonal element xk := Tr

(
Ek(Qk +Q†k)

)
= 0. Here Qk is the solution of

143



LE(Qk) = −Ekρ̄E . Using the integral formula for the inverse of a negative operator, we
can write Qk =

∫∞
0 exp[LEt](Ekρ̄E)dt and thus

xk = Tr

(
Ek

∫ ∞
0

exp[LEt](Ekρ̄E)dt

)
= Tr

(∫ ∞
0

exp[L∗Et](Ek)dt (Ekρ̄E)

)
= Tr(Mk (Ekρ̄E))

where L∗ denotes the dual superoperator of L, and Mk must satisfy L∗E(Mk) = −Ek.
Replacing Ek in this way in the expression of xk and using that LE(ρ̄E) = 0, we get
after a few computations:

xk =
∑
j

Tr
(

[Mk, Dj ] ρ̄E [Mk, Dj ]
†
)
,

with Dj the dissipation channel operators of LE .
Now, when ρ̄E has full rank, the only way to get xk = 0 is to have [Mk, Dj ] = 0 for
all Dj . But this would imply L∗E(Mk) = 0, contradicting how Mk must be computed.
When ρ̄E has reduced rank we apply the same argument to the block-diagonal part
corresponding to the support of ρ̄E .

Remark 7.1. The example mentioned in (ii) above motivates some of the assumptions in
Proposition 7.1 and Proposition 7.2. Indeed, considering this example for finite δ, we see that
by ramping up 1

δLb we effectively induce lower dissipation on E1. Thus if T was coupled
to E1, then its environment E1 would become less dissipative, while if T was coupled to E2

then its environment E2 would become more dissipative. The induced effect on T must be
inconclusive for determining what happens when ramping up only the dissipation channels in
Lb without further knowledge of subsystems, and this fact can be attributed to the presence
of a fixed HE 6= 0, hence playing an essential role here.

As a practical take-away message, we see that it is important to consider which parts of
E are directly coupled to T, and which parts are coupled indirectly. From a theoretical point
of view, it may be interesting to consider networks of subsystems and study how varying
parameters on each subsystem can affect the induced decoherence on a single target system
T.

7.4 Minimizing decoherence induced by a TLS environment

We now focus in more detail on the case of a TLS environment. We consider Hermitian
dissipation channels plus relaxation in a thermal environment:

LE = κxDσx + κyDσy + κzDσz (7.5)
+ κ−Dσ− + κ+Dσ+ .

We assume that κx, κy, κz are each tunable independently within a given interval e.g. [κx, κx ],
while κ− = κ1 (1 + nth), κ+ = κ1 nth, with typically independent bounds on the coupling
strength κ1 and temperature characteristic nth.
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We will first consider two typical couplings between E and T, almost-resonant and dispersive
respectively, while assuming that E always has a strongly attractive unique steady state. This
happens as soon as two of the κx, κy, κz assume significant nonzero values, or κ1 assumes a
significant nonzero value. When this is not the case, we can still apply adiabatic elimination
but on a modified state space splitting. We illustrate what this implies for induced decoherence
in a third example treated in Section 7.4.3. Note that for this example the induced decoherence
cannot be calculated using the formula (7.4), as E does not feature a unique steady state on
the fastest timescale. The formulas for the induced decoherence on the target will be derived
using the general approach outlined in Section 6.3.1.1.

7.4.1 Dispersive coupling

As a first case, we consider (7.5) in conjunction with the coupling Hamiltonian:

HTE = g Tz ⊗ σz .

This models the typical situation of dipolar coupling between the target system and a TLS
which is detuned far off-resonantly (dispersive coupling limit).

Following the adiabatic elimination procedure, we first compute the steady state of the fast
TLS relaxation alone:

ρ̄E =
1 + z̄σz

2
with z̄ = −κ1

(1+2nth)κ1+2(κx+κy) .

From the coupling operator σz in E, we then compute

σ̃zρ̄E = 1−z̄2

2 σz .

Next we must solve
LE(Q) = −σ̃zρ̄E ,

which fortunately reduces to a scalar equation for the coefficient of σz. Plugging the solution
into the formula for the dissipation matrix gives:

X = 1−z̄2

(1+2nth)κ1+2(κx+κy) = 4c+c−
(c++c−)3 ,

where

c− = (1 + nth)κ1 + κx + κy,

c+ = nthκ1 + κx + κy.

This is the induced decoherence rate acting on T with the operator Tz. We note that κz plays
no role here and we can make the following observations.

• One checks that, for any values of the other parameters, this induced decoherence rate
decreases when κ1 increases. Thus we should fix κ1 at its maximal bound. For κ1

dominating, the induced decoherence decreases as 1/κ1.

• Once the value of κ1 is fixed, we can write κx + κy = κ1nb such that the induced
decoherence becomes a function of neff = nth + nb only, namely

X =
4neff(neff+1)
(2neff+1)3 . (7.6)
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This function increases from X = 0 at neff = 0 towards a maximum at neff =
√

3−1
2 ≈

0.366, then slowly decreases to 0 as neff tends to infinity. Note that the adiabatic elimi-
nation approximation remains well valid near nth = 0, as long as κ1 itself is significantly
larger than the coupling Hamiltonian.

Thus, the minimal induced decoherence will be obtained either at the lower or at the
upper bound of neff, depending on their values. In other words, if a very low temper-
ature can be achieved to keep the TLS close to its ground state then this is favorable,
but otherwise it is better to make it as mixing as possible. The judge on “very low
temperature” is the formula (7.6).

• Comparing to Propositions: There is nothing significant to say regarding Proposition 7.1.

Proposition 7.2 applies rigorously when κ1 = 0. Taking κ1 very low, we would indeed
be in a regime where neff ≈ nb =

κx+κy
κ1

is large, and we have seen that as soon as

nb >
√

3−1
2 it is beneficial to increase nb, be it through κx or κy. On the contrary, if κ1

is the dominating dissipation, then increasing κx or κy is not necessarily beneficial, as
we may be in the regime neff <

√
3−1
2 . This supports the condition that all dissipation

operators must be Hermitian for Proposition 7.2 to apply.

Regarding Proposition 7.3, as soon as κ1 or two other dissipation channels can be in-
creased indefinitely, we are in the situation where Lb has a unique steady state, and the
induced decoherence goes to zero. There remains the case where only a single Hermitian
channel can be increased indefinitely.

– Taking this channel to be κz, the elimination of Lb yields a reduced state space of the
type pgρg⊗|g〉 〈g|+(1−pg)ρe⊗|e〉 〈e| with free parameters pg, ρg, ρe. The remaining
fast dynamics will stabilize the value pg = p̄g independently of the coupled target
system T. The case κx = κy = nth = 0, thus with κ1 stabilizing |g〉 〈g| as p̄g = 1,
would yield a rank-deficient ρ̄E for which induced decoherence completely vanishes,
even for finite κz. Otherwise, induced decoherence will always be finite.

– Taking the possibly infinitely strong channel to be κx (the case of κy is analogous),
the elimination of Lb yields a reduced space of similar form but with |+〉 , |−〉 re-
placing |g〉 , |e〉. At first-order adiabatic elimination of Lb, the dispersive coupling
Hamiltonian cancels and there only remains dissipation pushing p+ towards 1/2.
Hence, driving κx (or κy) towards infinity is sufficient to drive the induced deco-
herence on T towards 0. Since this stabilizes the most mixed environment state,
this might not have been the most intuitive guess. The choice of κy as possibly
infinitely strong dissipation rate can be treated entirely analogously.

7.4.2 Almost-resonant coupling (Jaynes-Cummings)

As a second case, we consider (7.5) with adjustable κk, in conjunction with the fixed Hamil-
tonian:

HE = ∆
2 1⊗ σz, (7.7)

HTE = 2g(T+ ⊗ σ− + T− ⊗ σ+) (7.8)
= g(Tx ⊗ σx + Ty ⊗ σy) ,
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where Tx = T− + T+ and Ty = −i(T− − T+).
In the adiabatic elimination formulas, the fast TLS dynamics now includes both HE = ∆

2 σz
and LE . Note that this remains valid when ∆ is not dominating g, because we only need fast
dissipation. However, when ∆ does take a large value, it enables to have a strongly attractive
unique TLS steady state even if only either κx or κy is nonzero. The steady state of the TLS
alone is

ρ̄E =
1 + z̄σz

2
, with z̄ = −κ1

(1+2nth)κ1+2(κx+κy) .

For the coupling operators σx and σy, we then compute

σ̃xρ̄E =
σx−iz̄σy

2 , σ̃yρ̄E =
σy+iz̄σx

2 .

The solution of
− i[HE , Qk] + LE(Qk) = −σ̃kρ̄E (7.9)

for k ∈ {x, y} is rather simple in Bloch coordinates, as the dynamics decouple the coefficients
of σx, σy from those of σz, 1. We can thus write Qk = qk,xσx + qk,yσy and the left-hand side
of (7.9) simply becomes

∆
2 (qk,xσy − qk,yσx)− 2(κy + κz + (1 + 2nth)κ1

4 )qk,yσy − 2(κx + κz + (1 + 2nth)κ1
4 )qk,xσx .

Equating the components in σx and σy gives the solutions, from which we construct the
dissipation matrix:

X =
1

∆2

4 + cxcy

(
cy iz̄

cy+cx
2

−iz̄ cy+cx
2 cx

)
, (7.10)

with
cx,y = κx,y + κz + (1+2nth)κ1

4 . (7.11)

The parameters now define not only the induced decoherence rate, but also the associated
decoherence operators (unitary combinations of Tx, Ty). Considering all decoherence operators
equally detrimental for the target system, we typically look at the spectrum of X. We can
make the following observations.

• ∆: increasing the detuning between E and T always decreases induced decoherence, and
the induced decoherence can tend to zero as ∆ becomes infinite.

• Reducing induced decoherence to zero at a finite value of ∆ requires to increase both
cx and cy to infinity — this will be impossible if only κx or κy can be made arbitrarily
large.

• cx, cy, sum of rates: The sum of induced decoherence rates (trace of X) as a function
of cx, cy shows a saddle point in cx = cy = ∆/2, where induced decoherence is maximal
as a function of cx + cy and minimal as a function of |cx − cy|. Which side gives the
minimum induced decoherence will thus depend on the available range of κk.

In particular, for ∆ = 0, induced decoherence will always decrease when we increase
κz, κ1, nth, κx, κy. Thus even if we have the option nth = 0 to attract the TLS towards a
pure state with only σ−, it is better to not do so and rather increase the TLS temperature
and other rates. This difference with respect to dispersive coupling of course stems from
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the fact that a ground state for E, although pure, has no particular advantage under
resonant coupling.

In particular, for large ∆, it appears better to choose low dissipation on the TLS. This
can be understood as keeping the TLS frequency well-defined, avoiding any leakage
towards the frequencies to which the target system is sensitive. However, one has to
be careful of the fact that the formulas are only valid if the dissipation on the TLS
remains significantly larger than its coupling to the target system. Otherwise, the correct
viewpoint would rather be to first take the dispersive coupling limit and only then analyze
the system, as in Section 7.4.1.

• cx, cy, individual rates: The difference between the two induced decoherence rates may
be interesting to track when thinking e.g. of the interest of having biased noise [92]. At
a fixed value of the sum, the difference increases when |cx − cy| gets larger (thus κx
increasing and κy decreasing), or when z̄2 gets larger (thus e.g. κ1 increasing and nth
decreasing).

In particular, for z̄ = 0, increasing only e.g. κx (and thus also cx) decreases one induced
decoherence rate as 1

cx+∆2/(4cy)
(thus to 0 as κx becomes infinite), but increases the

other rate as 1
cy+∆2/(4cx)

(or thus at best keeps it constant if ∆ = 0, with finite limit
1/cy as κx becomes infinite).

• Comparing to Propositions: The two regimes of Proposition 7.1 are clearly visible here.
The one where ∆ and all κk are scaled by α is trivial. The case where ∆ is fixed shows
two aspects: if ∆ is small, then Proposition 7.1 says that it is better to increase the
κk, as we see from the explicit formulae (7.10), (7.11) here. However, if ∆ is fixed and
large, then Proposition 7.1 does not apply and we see indeed with (7.10), (7.11) that
the situation is not as clear. In other words, the saddle at cx = cy = ∆/2 is precisely
consistent with the first case of Proposition 7.1.

Proposition 7.2 applies at least when ∆ = 0 (and κ1 = 0). It predicts that in this
setting, increasing any of κx or κy can only be beneficial. In the particular case z̄ = 0
mentioned in the previous item, we see how a nonzero ∆ moderates this conclusion.

Regarding Proposition 7.3, as for the dispersive coupling, the only nontrivial situation
is when only a single Hermitian channel can be increased indefinitely.

– Taking this channel to be κz, the elimination of Lb cancels the Hamiltonian cou-
pling. Thus, although convergence on E happens at a finite rate as we need La
to finally converge to ρ̄E , the induced decoherence on T goes to 0 as κz becomes
infinite.

– Taking this channel to be κx, the elimination of Lb yields a reduced state space of
the type

p+ρ+ ⊗ |+〉 〈+| + (1− p+)ρ− ⊗ |−〉 〈−| ,
with free parameters p+, ρ+, ρ−. The remaining fast dynamics stabilizes p+ = 1/2
independently of T, while the Hamiltonian coupling reduces to

−ig[Tx, ρ+]⊗ |+〉 〈+|+ ig[Tx, ρ−]⊗ |−〉 〈−| .

Since ρ̄E has full rank, the associated Tx-decoherence is bound to stay finite, even
when κx tends to infinity.
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7.4.3 Partly dissipative environment

We now address a setting where the fast dissipation of the TLS does not converge to a unique
steady state ρ̄E . A typical example would be (7.5) where only κz is large. If this were the
only dynamics on the environment E, then the dynamics of the target T would depend on
the environment’s initial state. The intermediate case which we discuss here assumes that we
also have the unavoidable κ−, κ+ dissipation, but with rates comparable to the coupling rate
g between E and T.

Since adiabatic elimination fundamentally works by splitting the fast and slow dynamics,
it should thus eliminate only the fast decay of E under κzDσz , i.e. the quickly vanishing co-
herences among the |e〉 and |g〉 states of E. The κ−, κ+ dissipation on E has to be considered
as a part of the slow dynamics, which are dynamics on both the target system as well as on
the populations of |e〉〈e| or |g〉〈g| of the environment E. To illustrate what this implies for
the target system, we again investigate the two typical cases for the Hamiltonian coupling
between T and E.

7.4.3.1 Dispersive coupling:

First consider the case of a dispersive coupling:

d
dtρ = κzDσz(ρ) + κ−Dσ−(ρ) + κ+Dσ+(ρ)− ig[Tz ⊗ σz, ρ] , (7.12)

where we recall that κz is assumed much larger than the other rates. The set of states
of the form ρ = ρg ⊗ |g〉〈g| + ρe ⊗ |e〉〈e|, corresponding to the set where Dσz(ρ) = 0, is
exactly invariant under (7.12). To consider only valid states ρ, the two slow variables ρg, ρe
must both be positive semidefinite, but only the sum of their traces must amount to one,
Tr(ρg) + Tr(ρe) = 1. The dynamics for the slow variables ρg and ρe are given by:

d
dtρg = κ−ρe − κ+ρg + ig[Tz, ρg],
d
dtρe = κ+ρg − κ−ρe − ig[Tz, ρe] .

The dynamics for the populations of the |g〉 and |e〉 states are subsequently given by.

d
dt Tr(ρg) = κ−Tr(ρe)− κ+ Tr(ρg), (7.13)
d
dt Tr(ρe) = κ+ Tr(ρg)− κ−Tr(ρe). (7.14)

In particular, the environment populations admit steady state values where Tr(ρg) = w and
Tr(ρe) = 1− w, with

w =
κ−

κ+ + κ−
.

Now consider an initial separable state between T and E with steady-state environment pop-
ulations, thus

ρ(0) = ρT (0)⊗ (w|g〉〈g|+ (1− w)|e〉〈e|).

In the eigenbasis of Tz, the diagonal elements of ρT (t) := TrE(ρ(t)) are stationary. However,
as ρg and ρe perform opposite rotations along the Hamiltonian Tz, the off-diagonal elements
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of ρT will undergo induced decay. More precisely, for each pair of eigenvalues λj , λk of Tz, the
corresponding off-diagonal elements will decay according to the eigenvalues

r± = −κ1(nth + 1
2)±

√
κ2

1(nth + 1
2)2 − L2 + iκ1L

with L = g(λj − λk), j 6= k .

(i) When L is small compared to κ1(nth + 1
2) = (κ− + κ+)/2, we would be in the regime

where adiabatic elimination of E still holds. The slowest eigenvalue is approximately
given by

r− ' i L
(2nth+1) −

L2

κ1(2nth+1)( 1− 1
(2nth+1)2 ) .

In the second term we thus recover the typical expression for the induced decoherence
rate in “ g̃2/κ” obtained by adiabatic elimination, with an additional factor accounting
for the fact that induced decoherence vanishes if the environment is exclusively in |g〉.
An optimization similar to the one in Section 7.4.1 applies, showing that the induced
decay rate obtains a maximum for some intermediate value of nth, and tends to zero for
both nth → 0 and nth →∞. On the other hand, a larger dissipation rate κ1 on E always
implies lower induced decoherence on T.

(ii) When L is large compared to κ1(nth + 1
2), the eigenvalues are approximately given by

r− ' κ− + iq and r+ ' κ+ − iq

for some real parameter q. Thus the induced decoherence rates on T are equal to the
ones of excitation and loss on E, irrespective of the value of L. Contrary to the previous
case, it is thus better to keep environment dissipation low.

These two cases in fact illustrate the transition from the situation where highest environment
dissipation is better (“surprising” conclusion of adiabatic elimination) to the case where lowest
dissipation is better (truly, i.e., not only according to the standard formula for adiabatic elimi-
nation of E, whose validity decreases). According to both these limiting cases, an intermediate
dissipation rate appears worst. Note that we are comparing the environment dissipation to
L = g(λj − λk), so in a single multi-level system the different cases can arise for different
off-diagonal elements. We were able to cover both limits (i) and (ii) by identifying an exact
invariant subspace of operators of (7.12).

7.4.3.2 Resonant coupling:

Consider the model

d
dtρ = κzDσz(ρ) + κ−Dσ−(ρ) + κ+Dσ+(ρ)− ig[Tx ⊗ σx + Ty ⊗ σy, ρ] , (7.15)

where again only κz is assumed to be larger than the other rates. This specific Hamiltonian
coupling does not allow for identifying the slow invariant subspace by simple inspection, so
we apply the general adiabatic elimination procedure as outlined in Section 6.3.1.1.

The fast dynamics happens at timescale κz, while the slow timescales correspond to κ−, κ+, g.
In the notation of Section 6.3.1.1, the fast dynamics corresponds to

L0 = Dσz ,
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and the projector R onto the kernel of L0 reads

R(ρ) = exp(+∞Dσz)(ρ) = |g〉〈g| ρ |g〉〈g|+ |e〉〈e| ρ |e〉〈e| .

We consider κ−/κz, κ+/κz and g/κz to all be of order ε, where ε� 1. This leads us to write,
still in the notation of Section 6.3.1.1,

εL1 = −ig[Tx ⊗ σx + Ty ⊗ σy, ·] + κ−Dσ− + κ+Dσ+ .

Following the general approach outlined in Section 6.3.1.1, we parameterize the slow dynamics
in a space isomorphic with the image of R, namely

ρs = (ρg, ρe),

where both ρg and ρe are positive semidefinite operators, with additionally Tr(ρg + ρe) = 1.
Indeed, the linear superoperator

K0(ρs) = ρg ⊗ |g〉〈g|+ ρe ⊗ |e〉〈e|

maps this reduced state onto the steady states of the fast dynamics Dσz . To obtain a reduced
model for the slow dynamics, the general equations to be solved (see (6.12)) go as follows,

L0(K0(ρs)) = 0, (7.16a)
K0(Ls,1(ρs)) = L0(K1(ρs)) + L1(K0(ρs)), (7.16b)

K0(Ls,2(ρs)) +K1(Ls,1(ρs)) = L0(K2(ρs)) + L1(K1(ρs)), (7.16c)

leading to the truncated reduced model

d

dt
ρs = εLs,1(ρs) + Ls,2(ρs), (7.17a)

ρ(t) = K0(ρs(t)) + εK1(ρs(t)). (7.17b)

K0 was chosen such that (7.16a) is readily satisfied. Applying R to (7.16b), using RK0 = K0,
and RL0 = 0, and finally splitting up

Ls,1 = (Lg,1,Le,1),

we obtain

εLg,1(ρs)⊗ |g〉〈g|+ εLe,1(ρs)⊗ |e〉〈e| = −igR([Tx ⊗ σx + Ty ⊗ σy, ρg ⊗ |g〉〈g|+ ρe ⊗ |e〉〈e|])
+R

((
κ−Dσ− + κ+Dσ+

)
(ρg ⊗ |g〉〈g|+ ρe ⊗ |e〉〈e|)

)
.

This can be worked out to yield

εLg,1(ρs) = κ−〈g|Dσ−(ρg ⊗ |g〉〈g|+ ρe ⊗ |e〉〈e|)|g〉
+ κ+〈g|Dσ+(ρg ⊗ |g〉〈g|+ ρe ⊗ |e〉〈e|)|g〉, (7.18a)

εLe,1(ρs) = κ−〈e|Dσ−(ρg ⊗ |g〉〈g|+ ρe ⊗ |e〉〈e|)|e〉,
+ κ+〈e|Dσ+(ρg ⊗ |g〉〈g|+ ρe ⊗ |e〉〈e|)|e〉, (7.18b)
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while the Hamiltonian term maps |g〉〈g| and |e〉〈e| onto the coherences |g〉〈e| and |e〉〈g|, which
get annihilated by R. Working out (7.18) one can show that the slow dynamics εLs,1 corre-
sponds to

d
dtρg = κ−ρe − κ+ρg , d

dtρe = κ+ρg − κ−ρe .

The coupling Hamiltonian thus vanishes and the state of T remains stationary in the sense
that at this order, we have d

dt(ρg + ρe) = 0. Next, we go back to (7.16b) without applying
R, and parameterize K1(ρs) =

∑
j,k∈{g,e}Kj,k(ρs) ⊗ |j〉〈k|. We observe that Ke,e ⊗ |e〉〈e|

and Kg,g ⊗ |g〉〈g| cancel under the application of L0 = κzDz, and therefore these are gauge
degrees of freedom associated to the non-uniqueness of the parameterization. We can choose
Ke,e = Kg,g = 0 for simplicity. The remaining equations impose

εKe,g(ρs) = −g i
2κz

(Txρg − ρeTx + iTyρg − iρeTy)

εKg,e(ρs) = −g i
2κz

(Txρe − ρgTx + iρgTy − iTyρe) .

This can be plugged into (7.16c), to which we again apply R in order to obtain Ls,2. In
the term L1(K1(ρs)), now only the Hamiltonian contribution remains as it can map terms of
the form |g〉〈e|, |e〉〈g| in K1(ρs) to terms in |e〉〈e|, |g〉〈g| which are conserved by R. Simple
algebraic computations then yield the combined dissipative dynamics

d
dt ρ̃s = εLs,1(ρ̃s) + g2

κz
D(Tx+iTy)⊗|e〉〈g|(ρ̃s) + g2

κz
D(Tx−iTy)⊗|g〉〈e|(ρ̃s) ,

with ρ̃s = K0(ρs) = ρg ⊗ |g〉〈g|+ ρe ⊗ |e〉〈e|. The second-order dissipation combines (|e〉, |g〉)-
population mixing on E with induced decoherence on T. To get an idea of the latter, we
can consider the (quite academic) special case where Tx = Ty and again obtain autonomous
dynamics for T, namely

d
dt(ρg + ρe) = 2g2

κz
DTx(ρg + ρe) .

Taking Tx = Ty implies that the target T only has one coupling term in Tx,y ⊗ (σx + σy) to
the environment E. Thus, unlike for the case of a dispersive coupling, the induced decoherence
(up to second order) appears to be independent of the values of κ−, κ+ as long as they remain
small compared to κz.

7.5 Conclusions

Protecting a target quantum system from decoherence is a major objective towards quantum
technology. Although quantum information loss on a target physical system is often expressed
via Markovian decoherence channels, it is generally acknowledged that this only approximates
more intricate dynamics of a larger system. Adding dynamics at the fast timescales of this
larger system may thus allow us to change the induced decoherence on target, and ideally
reduce it. This is essentially the idea behind 1/f noise countering methods, and spin echo or
quantum dynamical decoupling (DD) techniques, among others.

In the present chapter, we have expressed the not-entirely-Markovian dissipation on the
target system T as a Hamiltonian coupling to a low-dimensional environment subsystem E,
which itself undergoes Markovian dissipation modeled by a Lindbladian. This is in line with
initial DD settings [129], which focus on the Hamiltonian part of T and E.

The specificity of our proposal is to mitigate decoherence of the target system T by acting
on the intermediate environment E instead of on T. Such actions cannot be assumed as
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precise as on T, but they need not be. Indeed, we explicitly quantified how not only strong
and imprecise coherent drives (see Chapter 6), but also adding pure decoherence channels on
E (without introducing direct Markovian dissipation on T itself, see Chapter 7), effectively
reduces the decoherence induced on T. Maybe surprisingly, we observe how only particular
circumstances would favor a very pure environment as compared to a very mixing one.

The reduction of induced decoherence on T when increasing the decoherence on E should
not be too unfamiliar to researchers that are familiar with adiabatic elimination and the
“g2/κ” formula. In light of this chapter, this is interpreted as a DD effect, which can arise
both through coherent or incoherent driving, and which can be quantified precisely in both
cases.

Indeed, having all fast dynamics on subsystem E, we can go beyond Hamiltonian decoupling
arguments and develop an adiabatic elimination procedure yielding explicit formulas for the
decoherence of T induced by dissipation on E. The resulting formulas are valid in the limit of
strong dissipation on E, which is precisely the regime that is typically favored. They allow us
to explicitly examine trade-offs and dependencies on parameters, as we illustrated on various
typical settings when E is a two-level system.

The explicit formulas for the decoherence of the target developed in this chapter led to the
conclusion that a fastly mixing environment is generally favorable for the target, as this leads
to lower induced decoherence rates. This fact had not been studied previously in the context of
multiple decoherence channel on the intermediate environment E. In Sections 7.4.1 and 7.4.3.1,
we treated the only potential counterexample to this rule, which is the case of a dispersive
coupling to the target. Using an optimization study we quantified how the achievable lower
bounds on the temperature of the bath coupled to E allows to decide between keeping the
steady state of E either as pure as possible, or as entropic as possible. The fact that an
intermediate amount of mixing is the worst possible case for E was confirmed both in the
standard setting of adiabatic elimination, where E is assumed to relax to a unique steady state
on the fast timescale, but also in a novel setting where E is assumed to undergo only strong
dephasing, as in Section 7.4.3.1. This last setting allowed for explicitly describing the crossover
between the case where highest environment dissipation is favorable, which corresponds to the
counterintuitive conclusion of this work, to the case where lowest dissipation on E is favorable.

For the case of a resonant coupling between T and E, we explicitly showed that increasing
the dissipation rates of the environment is always beneficial, with typical dissipation channels
on E. A last contribution of this work was to show this in the novel setting where the only
dissipation channel on the fastest timescale is a dephasing channel (Section 7.4.3.2), again gen-
eralizing the adiabatic elimination methodology to eliminate more general degrees of freedom,
to obtain explicit formulas for the induced decoherence.
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Part III

Conclusions
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This dissertation considers the study of periodically-driven open quantum systems, focusing
on two main applications for countering physical noise in quantum devices: bosonic codes in
Part I, and an extension of quantum dynamical decoupling in Part II.

The first part of the dissertation set out to provide solutions for strong-drive limitations
of current superconducting circuits experiments. Our contribution was to identify that these
limitations are due to chaotic classical dynamics leading to wave-packet explosion of the quan-
tum state [23], and to provide a clear recipe of how to suppress this chaos for a ubiquitous
single-mode nonlinear device: the inductively-shunted transmon. For this, β = EJ/EL was
identified as the parameter governing the regularity of the operating regime. To display the re-
maining nonlinear potential of the device in the regular, non-chaotic regime, we demonstrated
its ability for robust confinement of a manifold of Schrödinger cat states. These cat states
have immediate applications in the field of bosonic encodings, which have been shown to allow
for hardware-efficient quantum error correction. We showed that λ = (2EC/EL)1/4 could be
increased independently to enhance the spectral gap separating the cat state manifold from
higher-excited states. These results were established using numerical Floquet-Markov simu-
lations, focusing on the long-time asymptotic behavior of the system. Besides these results
based on numerical simulations, we pursued the parallel path of studying the classical version
of the system using analytical methods. In Section 4.3 we provided a theoretical explanation
for the absence of chaos for small enough β in terms of the blocking of a main route to chaos
of the classical system, namely the avoidance of period-doubling cascades. Once in the non-
chaotic regime of small β, we characterized the bifurcation structure of (n : m)-subharmonics
as a function of drive parameters (νd, ξd) using a first-order averaged model in Chapter 5.

This work focused on the case of a nonlinear oscillator with a single degree of freedom and
periodic drives, for two main reasons. First, a single degree of freedom nonlinear oscillator
with periodic drives corresponds to the minimal number of dimensions required for chaotic
behavior to come into play. At the same time, nontrivial parametric processes can be activated
on a single-mode nonlinear oscillator, as exemplified by the manifold of cat states created by
an (n : m)-multi-photon process between oscillator and drive photons. As a last point, and
crucial to the methodology employed throughout this dissertation, periodic systems benefit
from specific theoretical tools developed for their analysis, namely the Poincaré map and the
Floquet decomposition for the classical and quantum system respectively.

The premise of working quantum computational devices is to faithfully combine physical
subsystems to perform complex operations on these interconnected systems. Superconducting
devices are composed of multiple modes, and are coupled through nonlinear elements that
require multiple drives, applied at different frequencies. Multiple drive tones are regularly
used for spectroscopy experiments [81] probing AC-Stark shifts [115], quantum limited am-
plification [87], and additional drives are typically utilized for readout [55]. Pertaining to cat
qubits in particular, reservoir engineering approaches considering a two-mode system [80, 82]
involving two drive tones provide a mechanism for confining cat states, different from the one
considered in this work. The main advantage of this approach is that they allow for allow active
stabilization of the code space, using a dissipative mechanism. The main direction for further
research related to Part I is to extend the developed methodology to multi-mode systems,
including multiple drives. As a first step, an analogous change of variables as in Section 3.1.1
should be performed to identify an effective circuit parameter that governs the regularity of
the operating regime for multi-mode systems. Such an analysis should be possible also for
the case of other inductively-shunted junction models, such as the Asymmetrically-Threaded
SQUID (ATS) [82]. Depending on the type of application, one or more effective circuit pa-
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rameters should be identified that enhance the rate of a parametric process, analogous to the
role of λ in this work.

As a second point of extension, the inclusion of drives at multiple frequencies calls for
new theoretical techniques fulfilling the analogous role of Floquet theory (resp. the Poincaré
map) in the case of periodic quantum (resp. classical) systems. On the quantum side, for
periodic systems the Floquet decomposition allowed for studying the relevant asymptotic
behavior in a way that is inaccessible via numerical time-domain simulations. An extension
of Floquet theory to quasiperiodic driving [17, 96] should be considered that is amenable
to a straightforward numerical implementation. On the classical side, averaging techniques
for quasiperiodic systems [119] should be utilized to find the correct operating points. One
theoretical reason for caution when applying these techniques, is the general problem of small
denominators. Indeed, focusing on two incommensurate driving frequencies ω2, ω2, where
ω1/ω2 is not a rational number, there are infinitely many points where a quasi-resonance
condition is met,

kω1 ' lω2 , k, l ∈ Z,

potentially causing the corresponding perturbation series to blow up. For a fixed Diophan-
tine condition [112] between ω1 and ω2, and in the Hamiltonian case, averaging techniques
are available that lead to a remainder term that is exponentially small in the perturbation
parameter [119]. Such perturbation series do not allow for sweeping the driving frequencies
in a continuous manner a priori, as one would inevitably cross rational resonance conditions.
This would thus pose extra technical challenges to be overcome for quasiperiodic driving.

As last point of possible future work pertaining to Part I, the present study could benefit
from a more quantitative quantum-classical correspondence in a “mildly” chaotic regime. In-
deed, we cannot expect very small chaotic regions in phase space to influence the behavior of
the quantum system, as a physical quantum state cannot resolve arbitrary small regions in
phase space. In the context of improving on the result of Section 4.3 to exclude chaotic behav-
ior for the classical system, this would allow us to relax the goal to only excluding sufficiently
large chaotic areas in phase space. While our result in Section 4.3 leveraged a finite nonzero
dissipation rate, a study of the measure of chaotic regions could be performed in the dissipa-
tionless case, on the Hamiltonian system. There exists an arsenal of theoretical techniques for
doing so in the field of KAM theory [2, 93, 94]. These techniques work by perturbing an in-
tegrable system away from integrability, characterized by a small perturbation parameter. Of
particular relevance are averaging techniques [98] showing that if chaotic regions exist, these
are typically exponentially small in the perturbation parameter [50, 61], provided the unper-
turbed (integrable) Hamiltonian system does not exhibit any homoclinic connections. We
believe that such results could be leveraged when considering β as the perturbation parameter
in our case.

In Part II of this dissertation, we proposed a novel, inherently robust strategy for countering
noise for a practical class of target quantum devices. We proposed to drive an environment
subsystem as to decouple it from the target system, whenever the former can readily be
identified and presents the main source of noise for the target. The performance of such an
approach was benchmarked for the case of a two-level-system (TLS) environment, and analyzed
using adiabatic elimination [5, 8] techniques to obtain the main figure of merit, namely the
induced decoherence rate of the target system. Having obtained explicit expressions for the
induced decoherence rate for the typical physical settings, we performed an optimization
study, revealing a general guideline: only very particular circumstances would favor a very
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pure environment as compared to a very mixing one.
As a possible line of future work, this environment-side decoupling approach could be

tailored to existing quantum computing hardware where it could subsequently be implemented.
The approaches of Chapters 6 and 7 consider two different limits of ways in which one can
expect to be able to drive an environment subsystem: coherent drives with considerable control
imprecision versus the limit of driving the environment with pure noise. It should be clear that
actions with an intermediate degree of control imprecision should benefit from the same DD
effect. A concrete experimental platform could further identify which specific classes of actions
on the environment are the most viable, and a tailored driving scheme can be developed.

A final point of future work is in the context of model reduction based on physical timescale
separations. In Section 6.3.1.2, we extended the adiabatic elimination method to the case of
periodic driving, while in Section 7.4.3 an extension was made to a double timescale separation,
where the environment subsystem shows a fast dissipative decay, and a slower one. In this
case, we have given examples where the two different timescale separations are used one after
the other to obtain a reduced model in two consecutive steps. The characterization of the
interplay between different such timescale separations has not been exhaustively explored in
the literature, and clear rules need to be established for when one can eliminate fast timescales
in a certain order, or if all have to be eliminated together. Such a study is key for checking
the validity of present day successive approximations. A concrete problem that has drawn our
attention is that of a rapidly oscillating Lindbladian system, where the driving is significantly
faster than the dissipation rate. It is an open question whether one can perform an averaging-
type perturbation method while preserving the structure of Markovian open quantum systems,
i.e. use a change of variables that preserves positivity of the quantum state, and obtain a
stationary Lindbladian model with positive dissipation rates. Previous work shows that such
a Floquet Lindbladian typically exists in the adiabatic limit of slowly varying drives, and
in the limit of fast driving [113, 114] for the exact system (corresponding to averaging up to
infinite order). The gauge choice of the averaging transformation that yields finite perturbative
expansions of Lindblad form has yet to be determined, if such a gauge choice exists in general.

We conclude that while we have made concrete contributions to the problem of strong-drive
limitations of current superconducting circuits experiments, and provided a novel strategy
for countering noise with a dynamical decoupling methodology, the work presented in this
dissertation could in turn serve as the basis for exploring open questions towards the analysis
of open quantum systems and novel model reduction methods.
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systémes dynamiques, chaos, théories des perturbations, circuits supraconducteurs, chats de Schrödinger,
théorie de Floquet, élimination adiabatique, découplage dynamique

RÉSUMÉ

Vu la fragilité de l’information quantique, elle nécessite une intervention active afin de supprimer les erreurs logiques
des ordinateur quantiques. Ceci a suscité le développement d’approches au niveau du hardware et contrôle, pour com-
plémenter ou même faciliter les méthodes de correction d’erreurs quantiques. L’analyse de la dynamique des sytèmes
quantiques contrôlés ou forcés se montre difficile pourtant, et caractériser leur points de fonctionnements s’avère sou-
vent impossible sans l’aide des modèles réduits de la dynamique suffisamment raffinés. Cette thèse s’intéresse à deux
approches de protection d’erreurs complémentaires, agissant uniquement au niveau du hardware.
La premiére approche a pour objectif le confinement d’un espace code composé d’états chats de Schrödinger d’un
oscillateur quantique non linéaire, en le forçant de manière périodique. On définit le confinement des états chats à l’aide
de la théorie de Floquet, et on characterise les différrents points de fonctionnement, ainsi que le comportement chaotique
qui se présente, en fonction des paramètres du circuit et le forçage, de manière exhaustive. Par la suite on montre
comment choisir les paramètres du circuit pour enlever le comportement chaotique dans son intégralité. L’oscillateur
quantique considéré étant omniprésent dans le domaine des circuits supraconducteur, ces résultats devraient éliminer
des limitations pertinentes des méthodes paramétriques de ce domaine le plus avancé des technologies quantiques.
La deuxième partie de cette thèse traite une approche nouvelle de protection d’erreurs des appareils quantiques concrets,
en les considérant comme systèmes quantiques ouverts de manière explicite. On considère un système cible, couplé a
un sous-système de son environnement bien défini, qui à la fois représente le mécanisme de relaxation principal pour
la cible. On applique la méthodologie du “dynamical decoupling” de la manière suivante: forcer le sous-système de
l’environnement afin de découpler la cible de celui-ci. Nous analysons cette nouvelle stratégie, du modèle à la figure
de mérite, sur l’exemple omniprésent d’un système à deux niveaux. Comme contribution en terme de modèles réduits,
une extension de la méthode d’élimination adiabatique à des systèmes périodiques et des sous-espaces d’états plus
généraux est présentée. Ceci permet de combiner des approximations différentes par séparation d’échelle de temps
(moyennisation, convergence rapide) sans devoir les hiérarchiser.

ABSTRACT

The vulnerability of quantum information to decoherence requires active intervention to prevent logical errors in a func-
tioning quantum computer. This has led to the development of approaches countering noise from a hardware or control
perspective that are complementary to, or facilitate code-based quantum error correction techniques. At the same time,
difficulties arise in analyzing the dynamical behavior of controlled or driven quantum systems, and the characterization of
their desired operating regimes requires reduced models of the dynamics at hand that are both refined and tractable. This
dissertation presents a theoretical study of two complementary approaches to protect quantum information on a concrete,
hardware-only level.
The first is the confinement of a computational manifold of Schrödinger cat states through the application of periodic
drives to a quantum nonlinear oscillator, ubiquitous in the field of superconducting circuits. We describe the confinement
of the cat states using the language of Floquet theory, and provide an exhaustive account of the different possible op-
erating regimes, as well as of possible chaotic behavior of such systems as a function of circuit and drive parameters.
Furthermore, we provide a practical recipe for the circuit parameters as to suppress the detrimental chaotic behavior,
alleviating some of the current limitations of parametric engineering in superconducting circuits.
In the second part, we develop a novel approach for countering noise in practical quantum devices, explicitly consider-
ing them as open quantum systems. An elementary setting is considered in which a target system carrying quantum
information is coupled to a small and identifiable environment subsystem that represents the main source of noise for the
target. We extend the methodology of dynamical decoupling to propose the following: drive the environment subsystem
such as to decouple it from the target. This strategy shows the main advantage that imprecisions of the driving do not
directly deteriorate the information encoded in the target system. We analyze this novel strategy from model to figure of
merit, on the benchmark example of a two-level system environment. The contribution towards model reduction consists
of an extension of the method of adiabatic elimination to periodic systems and more general state spaces. This allows for
combining different approximations based on timescale separations (such as averaging, and fast dissipative convergence)
without having to order the different fast timescales, hence treating them on an equal footing.

KEYWORDS

Schrödinger cat states, Floquet theory, dynamical systems, chaos, adiabatic elimination, perturbation theory,
superconducting circuits, dynamical decoupling
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