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Chapter 1

Introduction (version frangaise)

Au cours des derniéres décennies, des ingénieurs, des physiciens et des mathématiciens ont
travaillé ensemble & la réalisation de dispositifs de calcul quantique opérationnels. [39, 102].
Ces dispositifs utilisent une méthode de stockage et de manipulation de I'information fonda-
mentalement différente de celle des ordinateurs classiques, car I'information est codée dans
I’état quantique du systéme lui-méme. Le bit quantique, ou qubit, est I'unité indivisible de
I'information quantique, par analogie avec un bit classique. Cette information intrinséque-
ment quantique, associée a la possibilité d’effectuer des opérations logiques appelées “portes
quantiques”, permettrait de créer une toute nouvelle famille d’algorithmes qui ne peuvent étre
exécutés que sur des systémes quantiques et qui surpassent largement la performance de tous
les algorithmes classiques connus pour certains problémes [3, 56, 118]. De cette fagon, le
matériel quantique opérationnel pourrait améliorer les systémes de cryptage modernes [10],
rechercher une liste non triée quadratiquement plus vite [56] (étant donné un oracle quantique
fournissant les données), et peut-étre plus important encore, simuler les systémes mécaniques
quantiques eux-mémes beaucoup plus rapidement [116]. L’obstacle majeur a la réalisation de
cet objectif est la fragilité des états de superposition complexes nécessaires pour effectuer les
calculs. En raison des interactions inévitables du dispositif quantique avec son environnement,
une partie de 'information codée dans son état quantique sera irrévocablement perdue. Ce
processus de décohérence [133] peut étre décrit par un processus de bruit stochastique au sens
mathématique, et il est la source la plus importante d’erreurs physiques dans les dispositifs
quantiques. Puisque les informations quantiques doivent étre protégées de la corruption afin
de bénéficier d’un avantage de 'informatique quantique, ’objectif principal d’un ordinateur
quantique est de réaliser un nombre souhaité de portes quantiques pendant la durée de vie
du systéme. Pour atteindre cet objectif dans un modéle de circuit pour le calcul quantique,
plusieurs aspects doivent étre pris en compte, comme par exemple la réduction du bruit in-
trinséque au matériel physique, les techniques de correction d’erreurs quantiques qui utilisent
un encodage redondant de l'information, et des implémentations physiques plus rapides des
portes quantiques.

Cette thése s’inscrit dans le contexte général de la protection contre le bruit physique au
niveau du matériel et au niveau du contréle, en se concentrant sur deux approches différentes et
complémentaires : Les codages bosoniques dans des états de chat de Schrodinger [92] utilisant
des circuits supraconducteurs d’une part, et le découplage dynamique (DD) [129] d’autre part.
Dans les deux contextes, nous réalisons une étude théorique des systémes dynamiques pour
caractériser les performances et les régimes de fonctionnement possibles de ’approche. Une



base de calcul composée d’état de chat est un schéma prometteur pour la correction d’erreur
quantique bosonique tolérante aux fautes [58, 103|, avec un seuil d’erreur et une surcharge
matérielle favorables [59], et pour créer de tels états, 'on pilote des éléments non linéaires
a base de jonctions Josephson [55, 80]. Le DD est une méthode dynamique qui élimine les
interactions indésirables entre le systéme et son environnement en appliquant au systéme
cible que l'on souhaite protéger des opérations de contréle cohérentes a variation rapide,
afin d’annuler efficacement son couplage Hamiltonien avec 'environnement. Le dénominateur
commun de ces deux approches contre le bruit, dont chacune sera présentée plus en détail
ci-aprés, est que l'on applique des signaux de pompe au systéme pour obtenir le régime de
fonctionnement souhaité. Les dispositifs quantiques étant par nature des systémes ouverts,
ces domaines d’application impliquent la difficulté générale d’analyser des systémes quantiques
ouverts pilotés. Un axe paralléle de cette thése est de rechercher des méthodes d’analyse
améliorées pour cette classe de systémes.

Le régime de fonctionnement souhaitable des systémes quantiques ouverts pilotés ne peut
généralement étre compris qu’en termes d’un modéle réduit, obtenu aprés avoir éliminé les de-
grés de liberté rapides de la description, afin de conserver une description efficace de I’évolution
du systéme a ’échelle de I’ intervalle de temps d’intérét. Ces degrés de liberté rapides peuvent
impliquer la fréquence du pilotage, mais aussi la décroissance rapide des degrés de liberté
dissipatifs. Dans un premier temps, pour les systémes sans perte (dits "high-Q"), les termes
de pilotage a oscillation rapide peuvent étre éliminés par des méthodes de moyennisation, qui
sont particuliérement bien établies dans le cas Hamiltonien [15, 34, 88, 91, 125]. Cependant,
le domaine de validité des modéles réduits obtenus est souvent peu clair, et pour le cas des
oscillateurs anharmoniques quantiques pilotés employés dans les circuits supraconducteurs,
cette thése établit une limite fondamentale & la réduction des modéles, en étudiant la dy-
namique chaotique des jonctions. En méme temps, nous fournissons une recette pour choisir
les paramétres du circuit afin d’éviter ce comportement chaotique préjudiciable. Cette étude,
objet de la partie I, se situe donc dans le contexte des limitations d’excitation forte des ex-
périments actuels sur les circuits supraconducteurs. Le contexte de ce domaine de recherche
est & nouveau résumé au début de la partie I.

Afin d’ éliminer rapidement les degrés de liberté dissipatifs, les techniques d’élimination
adiabatique [5, 6, 66] fournissent une méthode de réduction systématique des modéles, en profi-
tant de cette séparation des échelles de temps dissipatives. Cette technique étant relativement
nouvelle, de nombreuses questions restent ouvertes par rapport aux échelles de temps qui peu-
vent étre éliminées, et par rapport a quels degrés de liberté il faut éliminer afin d’ arriver a
un modéle réduit qui est physiquement interprétable, par exemple de forme Lindblad [51, 83].
Cette thése apporte deux contributions a ce domaine, en fournissant une extension a la méth-
ode de pilotage périodique, et une extension aux degrés de liberté plus généraux a éliminer.
Ces deux extensions sont directement applicables dans le contexte de le DD, et ouvrent la pos-
sibilité d’appliquer la méthodologie de le DD d’une fagon nouvelle : nous proposons de piloter
un sous-systéme de ’environnement de maniére a le découpler du systéme cible, chaque fois
que le premier peut étre facilement identifié et représente la principale source de bruit pour
la cible. Cette approche de découplage c6té environnement présente ’avantage immédiat que
les actions imprécises ne détériorent pas directement le systéme cible. A notre connaissance,
cette stratégie n’a pas été envisagée avant, et nous ’avons étudiéee en détail pour le cas d’'un
environnement de systéme & deux niveaux (TLS), obtenant ainsi des expressions explicites
pour les vitesses de décohérence induits du systéme cible. Ce travail fait ’objet de la partie I1
de la these.



Le reste de cette section est organisé comme suit. Tout d’abord - aprés un bref intermezzo
sur la correction d’erreur quantique basée sur les codes correcteurs - une introduction aux
codages bosoniques et au DD est fournie, comme complément & ces stratégies contre le bruit au
niveau physique. Ensuite, nous exposons le contexte des problémes qui sont abordés dans cette
dissertation. Dans la Section 1.2, nous nous concentrons sur les circuits supraconducteurs et
le probléme de la dynamique chaotique sous pilotage fort. Dans la Section 1.3, nous détaillons
les défis que pose une approche de découplage co6té environnement. Enfin, nous résumons les
contributions de cette thése dans la section 1.4, et le plan du manuscrit dans la section 1.5.

1.1 Contre le bruit

Les techniques de correction quantique des erreurs (CEQ) [44, 52, 123] consistent & coder
de maniére redondante le méme qubit d’information logique dans un systéme physique plus
grand. Ce systéme physique plus vaste peut étre un réseau de qubits physiques bien connec-
tés. La redondance permet de mesurer plusieurs syndromes d’erreur différents, en mesurant
différents sous-systémes physiques. Si les différents enregistrements de mesure donnent un
résultat contradictoire, nous savons qu'une erreur physique a di se produire dans un sous-
systéme. Si les erreurs individuelles ne sont pas trop nombreuses, alors nous pouvons déduire
de I'enregistrement des mesures quelle erreur est la plus probable et nous pouvons la corriger.
Toutefois, dans le cas de nombreuses erreurs individuelles, le qubit logique peut étre corrompu
de maniére irréversible, ce qui entraine une erreur logique. Dans I'hypothése de bruit local et
non corrélé, il a été démontré que la probabilité qu’'une erreur logique se produise peut étre
rendue arbitrairement petite en augmentant le nombre de sous-systémes matériels physiques
dans lesquels l'information est codée, a condition que la probabilité d’erreur physique de
chaque composant soit inférieure & un certain seuil de probabilité d’erreur, et & condition que
les erreurs produites par 'application de portes logiques imparfaites manipulant I'information
soient également inférieures a un seuil similaire. Cette propriété est appelée tolérance aux dé-
fauts |1, 72]. La redondance requise augmente avec la probabilité d’erreur logique souhaitée,
tandis qu’elle diminue en fonction de combien la probabilité d’erreur physique est inférieure au
seuil d’erreur physique. De cette maniére, la caractéristique de tolérance aux erreurs permet
d’effectuer de maniére fiable des calculs arbitrairement longs, a condition de disposer d’une
réserve matérielle suffisante pour y encoder les informations. La difficulté principale est que les
qubits peuvent subir un continuum d’erreurs quantiques, qui sont typiquement décomposées
par le codage en deux types fondamentaux : les erreurs de renversement de bit et les erreurs
de renversement de phase, respectivement. Le concept d’erreur de calcul par renversement de
phase est un concept inhérent a la mécanique quantique et ne s’applique pas aux ordinateurs
classiques. Puisque la CEQ doit corriger les deux types d’erreurs, le seuil d’erreur physique
des codes quantiques (s'il existe) peut étre plutdt bas (pensez a 1%), et en plus de la sur-
charge matérielle peut étre beaucoup plus défavorable que pour les codes classiques, rendant
de nombreux schémas CEQ irréalistes d’un point de vue pratique. La présente thése explore
les méthodes de réduction des erreurs au niveau physique qui peuvent compléter, et faciliter
la tache des approches de correction d’erreurs quantiques par code correcteur.

Une premiére approche qui vise a alléger ce probléme de surcharge matérielle est ce qu’on
appelle les codes bosoniques, qui visent & établir une premiére protection de l'information
quantique au niveau physique, soit pour les deux types d’erreurs, comme pour les codes
GKP |21, 53], soit pour un seul type d’erreur, comme pour les codes chat de Schrédinger [92].
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Dans les deux cas, le dimensionnement de la surcharge matérielle nécessaire a la CEQ est
drastiquement réduite. Afin de réaliser cette protection au niveau physique, ’espace d’état de
dimension infinie d’un oscillateur harmonique quantique est utilisé, fournissant une redondance
naturelle pour le codage. Une classe importante de codes bosoniques, étudiée dans cette
these, est donnée par les états de chat de Schrodinger [78, 92|, & savoir les superpositions
de deux amplitudes classiques cohérentes d’'un champ bosonique. L’avantage des codes de
chat provient du fait qu'un qubit de chat bénéficie d’'un biais de bruit : le taux d’erreur
de renversement de bit est plus petit que le taux d’erreur de renversement de phase par un
facteur qui varie exponentiellement avec la taille du chat, défini comme ’amplitude du champ
bosonique correspondant aux états cohérents susmentionnés. En utilisant ce biais de bruit,
un schéma de CEQ préservant le biais a été développé qui passe a ’échelle beaucoup plus
favorablement [58, 103| en termes de surcott matériel que les schémas pour des codes plus
traditionnels composés de qubits physiques ordinaires. La maniére dont les états du chat
sont stabilisés dépend de la plate-forme physique, mais implique généralement un couplage
de Toscillateur harmonique & un élément non linéaire qui est également soumis a des signaux
d’excitation [80]. En effet, il a été démontré qu’il était impossible de créer de tels états non-
classiques en utilisant uniquement des systémes linéaires, alors qu’il est connu que les états
quantiques des systémes purement linéaires ne présentent aucun avantage par rapport a un
ordinateur classique [85]. En résumé, une base de calcul d’états de chats est un schéma trés
prometteur pour la correction d’erreur quantique bosonique tolérante aux fautes, avec un seuil
d’erreur et une surcharge matérielle favorables, et pour créer de tels états, il faut forcer des
éléments non-linéairs.

Dans cette thése nous étudions une deuxiéme approche pour atténuer directement au niveau
physique les erreurs: le Découplage Dynamique (DD) [129]. Il s’agit d’une méthode dynamique
qui filtre les interactions indésirables entre le systéme et ’environnement en appliquant des
opérations de controle cohérentes et a variation rapide au systéme cible que 'on souhaite
controler, afin d’annuler efficacement son couplage Hamiltonien avec ’environnement. La
validité de cette approche repose sur une séparation temporelle entre les impulsions de controle
appliquées et le taux de couplage avec I’environnement. En permettant des opérations de
controle arbitrairement fortes et arbitrairement rapides, le DD a la capacité de rendre le taux
de décohérence effectif du systéme cible arbitrairement petit, en supposant que les processus
de bruit qui doivent étre découplés présentent une fréquence de coupure finie. En pratique,
les stratégies de DD doivent étre envisagées dans le cadre d’hypothéses de contrble réalistes,
en utilisant des ressources de controle finies. Un tel cadre a conduit & 1’établissement de
schémas de DD qui utilisent ces ressources de maniére optimale [76, 104]. Contrairement aux
codages bosoniques, les techniques de DD ont été essentiellement établies pour les systémes
de basse dimensionnalité en agissant directement au niveau d’un seul qubit physique stockant
I'information, alors que les codages bosoniques exploitent intrinséquement un espace d’états
a dimension infinie. Tout comme pour les codages bosoniques, les stratégies de DD peuvent
étre combinées avec la correction quantique des erreurs |99, 127], et elles peuvent également
fournir une protection lors de I’exécution de portes logiques [68, 69].

Les deux sections suivantes présentent les contextes physiques spécifiques dans lesquels
nous proposons de poursuivre les codages bosoniques, resp. les DD, et les défis & surmonter.
Pour les codages bosoniques, il s’agira de la plate-forme matérielle quantique des circuits
supraconducteurs, ot la non-linéarité sans perte fournie par la jonction Josephson est centrale.
En revanche, pour la stratégie de découplage dynamique, au lieu de nous limiter & une seule
plate-forme matérielle nous considérons une classe générale de systémes quantiques ouverts,
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présentant des sous-systémes et des séparations d’échelle de temps bien définis. Dans ce cadre,
nous proposons une nouvelle stratégie pour contrer le bruit, qui va de pair avec les techniques
de réduction de modéle que le cadre physique exige. Les contributions scientifiques résultant
de ces deux approches sont ensuite résumées dans la Section 1.4.

1.2 Circuits supraconducteurs pilotés

Une plateforme physique de premier plan pour la construction de dispositifs de calcul quan-
tique est celle des circuits supraconducteurs [97], car ils ont fait des progrés significatifs en
matiére de préparation d’état et de fonctionnement de porte fiables, ainsi que de temps de
cohérence plus longs [14, 71]. Les circuits supraconducteurs sont des circuits électriques qui
sont refroidis jusqu’a quelques dizaines de mK et qui se couplent fortement aux photons micro-
ondes. A ces températures extrémement basses, toutes les observables physiques obéissent aux
équations de mouvement de la mécanique quantique. Des éléments non linéaires sans perte
sont introduits dans les circuits, qui sont utilisés soit pour stocker et manipuler I'information
quantique elle-méme dans deux de leurs niveaux d’énergie, soit pour servir de médiateur
aux interactions entre les résonateurs micro-ondes qui stockent I'information dans des modes
bosoniques. L’élément non linéaire par excellence est une jonction Josephson [64], constituée
de deux électrodes supraconductrices séparées par une barriére isolante. Il est possible de
créer différents types d’interactions entre les différents modes en les pilotant avec des champs
micro-ondes simples ou en modulant un parameétre du circuit. Cette ingénierie paramétrique
des interactions est un sujet clé de la recherche, et de nouveaux types d’interactions sont con-
tinuellement développés, que ce soit dans le but de créer une interaction ou une porte logique
plus exotique [29, 89|, ou dans le but de stabiliser un état quantique désiré [79, 117]. De cette
facgon, la stabilisation par réservoir des états quantiques chat de Schréodinger du rayonnement
micro-onde a été réalisée [80].

D’autre part, la thématique générale d’oscillateurs non linéaires pilotés entre dans le do-
maine des systémes possiblement chaotiques, comme 'ont découvert les pionniers van der
Pol [124] et Duffing [33|. Ces phénomeénes chaotiques ont été largement étudiés pour les circuits
Josephson dans le régime classique, notamment dans les années 80. Un grand accroissement
du bruit a été observé pour les amplificateurs paramétriques a base de Josephson [26, 122]. On
savait que ce phénoméne n’était pas dii & des fluctuations thermiques, mais l'origine exacte
de cette augmentation soudaine du bruit restait incertaine. Ceci jusqu’a ce que Huberman,
Crutchfield et Packard I’ ont attribuée purement a une propriété des équations classiguesnon
linéaires complétes du mouvement : le chaos [62]. Le bruit était da & une dynamique de jonc-
tion chaotique, mais néanmoins déterministe. Pour une jonction simple, qui est équivalente a
un simple pendule piloté, des voies de doublement de période vers le chaos ont été observées et
étudiées dans [32]. En effet, il est bien connu qu’'un pendule piloté périodiquement peut avoir
un comportement chaotique. Pour un modéle de jonction shuntée piloté par un courant, [62]
et [107, 108] ont trouvé un comportement simple et périodique avec le pilotage, mais aussi un
comportement subharmonique compliqué, et des cascades de doublement de période dans un
régime chaotique lorsque 'amplitude du pilotage est augmentée.

La technologie de la jonction Josephson ayant évolué (elle est par exemple entrée dans
le régime quantique et dans la gamme de fréquences des micro-ondes), ces résultats ont ap-
paremment été mis de co6té. Récemment aussi, dans le régime quantique, les limitations
expérimentales ont été attribuées & un comportement dynamique mal compris [81, 110]. Un
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effort pour résoudre ce probléme consiste & développer des théories de perturbation raffinées,
obtenir des modéles réduits d’ordre supérieur de la dynamique plus précis [100, 101, 110]. Un
deuxiéme effort a été de modifier la conception du circuit afin de le rendre plus robuste par
rapport aux instabilités dynamiques. Notamment, I’ajout d’un shunt inductif au transmon
traditionnel 73| a rendu le circuit plus stable sous un pompage paramétrique fort [126]. Dans
la partie I, nous montrons comment ce transmon & shunt inductif peut étre réglé pour étre
résistant au comportement nuisible qui, par définition, ne peut étre capturé par aucun modéle
réduit intégrable : le chaos classique. Ce régime chaotique peut étre supprimé alors que le
dispositif conserve la capacité de confiner une classe d’états non classiques utiles pour la CEQ
bosonique, & savoir les états de chat de Schrodinger.

1.3 Approche de découplage activée sur ’environnement

L’idée du découplage dynamique quantique est de réduire le couplage effectif entre un systéme
cible et son environnement, en utilisant des actions de contrdle sur le systéme cible, adaptées
a une échelle de temps plus rapide que le couplage Hamiltonien avec ’environnement. La
validité de cette approche dépend crucialement de la maniére dont cet environnement peut
étre modélisé. En effet, pour un processus de décohérence purement markovien, correspondant
au cas d’'un environnement sans mémoire, on ne peut s’attendre & pouvoir découpler la cible
en utilisant des actions de contréle. Lorsqu’on modélise une grande partie pertinente de
I'environnement comme un seul (peut-étre trés grand) systéme Hamiltonien, il a été démontré
que le DD est valide dans des conditions trés générales [129]. Dans ce cas, on peut prouver que
le couplage effectif peut étre rendu arbitrairement petit dans la limite théorique de controles
arbitrairement forts et arbitrairement rapides. Ceci est typiquement prouvé en utilisant une
méthode d’analyse telle que 'expansion de Magnus [16, 88] ou une technique équivalente de
moyenne Hamiltonienne [35].

Plusieurs réalisations expérimentales pour le matériel quantique rencontrent une situa-
tion intermédiaire pour l’environnement pertinent. Ici, la cible est directement couplée a
un systéme de dimension finie, bien identifié, qui agit comme la principale source de déco-
hérence induite sur la cible. Ce sous-systéme environnemental est ensuite couplé & un bain
environnemental qui n’est pas directement couplé a la cible. Un exemple immédiat de tels
sous-systémes environnementaux sont les défauts de systéme a deux niveaux (TLS) dans la
couche d’oxyde des jonctions Josephson supraconductrices, qui décohérent typiquement par
des canaux de phonons et sont un mécanisme principal induisant la décohérence des qubits
supraconducteurs (84, 95].

En partant de cette observation, nous proposons d’appliquer la méthodologie DD de la
maniére suivante : appliquer des actions sur [’environnement, de maniére a réduire la déco-
hérence induite sur le systéme cible. Un avantage potentiel de I'application de ces actions
au sous-systéme environnement est une tolérance accrue par rapport aux actions imprécises.
En effet, les méthodes de DD qui agissent avec des impulsions de contréle directement sur le
systéme cible doivent étre particulierement précises, et toute imprécision de controle détériore
directement l'information quantique stockée dans la cible.

Un deuxiéme avantage potentiel du découplage c6té environnement est que les actions sont
compatibles avec toutes les portes logiques que 'on pourrait vouloir exécuter sur le systéme
cible. Bien que des schémas de DD qui assurent de la protection pendant I’exécution de portes
logiques aient été développés [70], ils présentent l'inconvénient d’augmenter les ressources,
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comme la complexité des signaux de contréle. En contrepartie, on ne peut évidemment espérer
agir sur 'environnement que si celui-ci est bien identifié et de dimension raisonnablement
réduite.

Il y a deux points principaux sur lesquels la méthodologie DD doit étre étendue pour
établir la performance de I'activation par I’environnement. Tout d’abord, comme les pilotages
de découplage sont appliquées sur un sous-systéme d’environnement avec pertes rapides, cela
nécessite de nouvelles méthodes d’analyse pour caractériser les performances de le DD de
cette approche, car les performances de le DD sont traditionnellement étudiées a l'aide de
techniques de calcul de moyenne dans un cadre purement Hamiltonien. La technique générale
de réduction de modéle pour éliminer les degrés de liberté dissipatifs tels que le sous-systéme
environnement avec perte est ’élimination adiabatique |5, 6, 66]. Un premier défi est d’étendre
cette technique au cas de pilotage périodique, car jusqu’a présent la technique n’avait été
développée que pour des systémes stationnaires. Notre approche axée sur ’environnement
présente un deuxiéme défi. Alors que le fait d’agir sur I’environnement offre la sécurité de ne
pas détériorer 1’état cible directement en cas d’imprécision du contrdle, nous ne pouvons pas
non plus nous attendre a contréler un systéme d’environnement d’'une maniére bien calibrée.
Nous ne pouvons pas non plus espérer d’ avoir une connaissance précise de I’Hamiltonien de
I’environnement. La partie II de cette thése détaille comment ces deux problémes généraux
peuvent étre résolus, fournissant une nouvelle stratégie pour contrer le bruit dans les dispositifs
quantiques pratiques.

1.4 Contributions

e Premiérement, nous fournissons une recette pour choisir les paramétres de circuit des
dispositifs supraconducteurs quantiques afin d’éviter un comportement chaotique préju-
diciable, tout en bénéficiant d’un régime fortement non linéaire du dispositif. Nous
illustrons ce potentiel fortement non linéaire en confinant de maniére robuste une classe
d’états hautement non classiques, connus sous le nom d’états chats de Schrédinger. Ces
états chats ont des applications immédiates dans le domaine des codages bosoniques,
qui ont montré qu’ils permettaient une correction des erreurs quantiques efficace sur le
plan matériel. L’ensemble de ces résultats permet de préciser ’extension des régimes de
fonctionnement des circuits supraconducteurs.

e Une deuxiéme contribution réside dans la méthodologie générale développée pour anal-
yser 'avénement et l'effet de la dynamique chaotique dans le contexte de tels systémes
quantiques "high-Q" pilotés périodiquement. Pour ce faire, nous établissons une con-
nexion entre ’application Poincaré classique et la décomposition de Floquet du systéme.
En utilisant des techniques analytiques sur le systéme classique, nous fournissons un
résultat bloquant la route principale vers le chaos du systéme pour des paramétres du
circuit bien choisis. De plus, nous caractérisons les différents régimes de fonctionnement
non linéaires une fois que le dispositif est dans le régime régulier, non chaotique, par des
techniques de réduction de modéle basées sur la théorie de la moyenne géométrique. A
notre connaissance, une telle analyse de moyenne n’a pas été réalisée précédemment en
tenant compte du potentiel cosinus de Josephson complet, et devrait fournir des résultats
plus précis vers le réglage des dispositifs pratiques.

Ce travail est en finalisation pour étre soumis & Physical Review Letters.
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e Troisiémement, nous proposons une nouvelle stratégie pour contrer le bruit sur une
classe pratique de dispositifs quantiques cibles qui est intrinséquement robuste et effi-
cace sur le plan matériel. La méthodologie DD existante fournit des techniques pour
découpler une cible d’un environnement en agissant sur le systéme cible avec des opéra-
tions de controle fortes et précises. Nous avons étendu cette méthode au cas ol 1'on
actionne le sous-systéme d’environnement lui-méme pour le découpler de la cible. Les
performances d’une telle approche sont évaluées pour le cas d’un environnement & deux
niveaux (TLS), et analysées dans un cadre de théorie des systémes, du modéle a la figure
de mérite principale, & savoir le taux de décohérence induit du systéme cible. Le type
de pilotage cété environnement pour lequel nous avons prouvé lefficacité de 'approche
comprend des pilotages périodiques cohérents d’une part, et la limite du pilotage avec
du bruit pur d’autre part, ou les actions ajoutées correspondent a des canaux de dissi-
pation ajoutés & ’environnement, établissant une nouvelle variante dissipative de le DD.
L’étude d’optimisation qui en résulte conduit & une conclusion physique générale qui
est d’une pertinence immédiate pour les scénarios expérimentaux typiques : peut-étre
contre-intuitivement, isoler I’environnement des sources de bruit autant que possible
n’est souvent pas le meilleur plan d’action.

e Une derniére contribution réside dans les méthodes d’analyse développées pour cette
approche de découplage c6té environnement, qui établissent une connexion entre le do-
maine de la réduction de modéle pour les systémes quantiques ouverts dissipatifs et le
probléme de controle du découplage dynamique. Nous avons développé une extension
de la méthode d’élimination adiabatique pour inclure le pilotage périodique, permettant
d’analyser les avantages du DD pour le premier type de pilotage c6té environnement,
qui a été choisi pour étre périodique. De plus, la méthode d’élimination adiabatique
a également été étendue a l’élimination des dégrés de liberté plus généraux, dans le
contexte de la variante dissipative du découplage dynamique.

Ces deux derniéres contributions constituent des travaux [20] soumis au Journal du Franklin
institute.

1.5 Présentation du manuscrit

Dans la partie I de cette thése, nous fournissons une recette pour obtenir un régime subhar-
monique robuste d’oscillateurs quantiques non linéaires pilotés, correspondant au confinement
d’un ensemble d’états de chat de Schrédinger.

e Dans le chapitre 3, nous commencgons par présenter le modéle du transmon piloté péri-
odiquement et shunté par induction. Nous examinons comment ce systéme monomode
combine les trois éléments de base des circuits supraconducteurs, ce qui le rend pro-
totypique. Plus précisément, nous effectuons un changement de variables global qui
transforme le systéme en une forme normale qui sera utilisée tout au long de cette par-
tie. Cela permet d’identifier quatre paramétres principaux dont nous discutons briéve-
ment les roles. Il s’agit de deux paramétres de circuit effectifs appelés le parameétre de
régularité et le parameéetre d’échelle quantique, ainsi que des versions renormalisées des
paramétres de pilotage. Une fois que cette forme normale du systéme est établie, dans
la Section 3.2, des éléments d’introduction sur les méthodes générales d’analyse des sys-
témes & pilotage périodique sont fournis. Pour les systémes périodiques classiques, les
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concepts pertinents de la théorie des systémes dynamiques sont introduits, notamment
la carte de Poincaré, ainsi que la notation qui sera utilisée dans les chapitres suivants de
cette partie. Du c6té quantique, une introduction & la théorie de Floquet est donnée, y
compris son extension aux systémes (quantiques ouverts) interagissant faiblement avec
un bain environnemental. Enfin, les méthodes numériques que nous avons utilisées pour
simuler le systéme sont résumeées.

e Dans le chapitre 4, nous utilisons le langage de la théorie de Floquet pour établir un
régime subharmonique robuste et non chaotique du transmon piloté par induction et
shunté. Aprés une bréve introduction sur les qubits cat, nous établissons une connexion
entre la carte de Poincaré du systéme classique d’une part, et les modes de Floquet du
systéme quantique d’autre part, en assimilant les solutions classiques sous-harmoniques
stables a I’existence d’un ensemble dégénéré de modes de Floquet de chat de Schrédinger.
En nous concentrant sur une classe de sous-harmoniques donnée, nous caractérisons les
signatures quantiques du chaos classique qui s’installe lorsque ’on augmente 'amplitude
de forcage. Nous observons un régime asymptotique hautement entropique pour le
systéme quantique dans ce cas chaotique. Ensuite, nous montrons comment choisir
les paramétres du circuit de maniére & supprimer efficacement ce régime hautement
entropique, en abaissant le paramétre de régularité. Nous proposons une explication
théorique pour ceci en montrant que les voies possibles vers le chaos du systéme clas-
sique sont supprimés pour des petites valeurs du paramétre de régularité. Enfin, nous
montrons que dans le régime non chaotique, le paramétre de d’échelle quantique peut
étre réglé indépendamment pour augmenter le taux de confinement de la variété invari-
ante sous-tendue par des chats de Schrodinger, fournissant un régime régulier fortement
non-linéaire.

e Dans le chapitre 5, nous nous concentrons sur la dépendance du systéme aux parameétres
de pilotage, afin de caractériser les conditions de résonance qui ménent & des solutions
sous-harmoniques stables du systéme classique, en utilisant un modéle moyenné du pre-
mier ordre. Apreés une bréve introduction sur la théorie de la moyennisation géométrique,
nous obtenons un modéle réduit qui élimine la dépendance du temps. Nous discutons
des symétries globales du modéle résultant, ainsi que des cas limites, et fournissons un
compte rendu numérique d’une classe particuliére de solutions sous-harmoniques prédites
par le modéle.

Dans la partie II, nous proposons une nouvelle approche pour contrer le bruit pour les
systémes quantiques pratiques basée sur la méthodologie du découplage dynamique.

e Dans le chapitre 6 nous montrons comment le découplage dynamique c6té environ-
nement peut étre réalisé en pilotant continuellement ’environnement avec un seul pi-
lotage & fréquence unique. Aprés avoir passé en revue les travaux pertinents dans le
domaine des approches de DD a pilotage continu, nous introduisons un pilotage DD qui
présente une double séparation temporelle et qui atténue efficacement les imprécisions
de controéle actuelles. Ensuite, nous étendons la technique de réduction de modéle de
I’élimination adiabatique au cas du pilotage périodique, afin d’obtenir des formules ex-
plicites pour la décohérence induite sur le systéme cible sous cet actionnement périodique
de I'environnement. Nous discutons l'efficacité du découplage en termes de dépendance
du taux de décohérence induit aux d’actionnement, et nous concluons en analysant la
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limite ou la force des actions DD devient comparable & la fréquence du TLS, confirmant
a nouveau les avantages de le DD.

e Dans le chapitre 7, nous étendons la stratégie de découplage cdté environnement a
la limite des pilotages désorganisés, en les considérant comme des canaux de dissipa-
tion supplémentaires sur ’environnement. Nous commencgons par réviser les formules
d’élimination adiabatique d’ordre supérieur qui décrivent la décohérence induite sur la
cible. En cherchant & minimiser la décohérence induite sur la cible, nous mettons en év-
idence les caractéristiques générales du probléme d’optimisation résultant pour les taux
de dissipation sur ’environnement. Une étude de cas pour le cas d’'un environnement
TLS est fournie, y compris la limite d’un environnement partiellement décohérent, qui
ne perd qu’une partie de ses cohérences.

Les deux parties peuvent étre lues indépendamment. Une conclusion dans la Partie III
donne un apercgu des questions ouvertes et des travaux futurs possibles.
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Chapter 2

Introduction

Over the last few decades, engineers, physicists and mathematicians have been working to-
gether towards the realization of operational quantum computational devices [39, 102]. These
devices make use of a fundamentally different way of storing and manipulating information as
compared to conventional classical computers, as information is encoded in the quantum state
of the system itself. The quantum bit, or qubit, is the indivisible unit of quantum information,
in analogy with a classical bit. This inherently quantum-like information, together with the
ability to perform logical operations called quantum gates, would enable a whole new family
of algorithms that can only be run on quantum hardware, and that outperform any known
classical algorithm for certain problems |3, 56, 118|. In this way, operational quantum hard-
ware could improve on modern encryption systems [10], search an unsorted list quadratically
faster [56] (given a quantum oracle providing the data), and perhaps most importantly simu-
late quantum mechanical systems themselves much faster [116]. The major obstacle towards
achieving this goal is the fragility of the intricate superposition states required to perform the
computations. Due to inevitable interactions of the quantum device with its environment,
some of the information encoded in its quantum state will be irrevocably lost. This decoher-
ence process [133] can be described by a noise process in the mathematical sense, and it is
the most prominent source of physical errors in quantum devices. Since quantum information
must be protected from corruption to be able to benefit from a quantum computing advan-
tage, the main goal for a quantum computer is to perform a desired number of quantum gates
within the lifetime of the system. To achieve this goal within a circuit model for quantum
computation several aspects must be pursued, such as the reduction of intrinsic hardware
noise on the physical level, quantum error correction techniques which make use of redundant
encoding of information, and faster physical implementations of quantum gates.

This dissertation is set in the general context of countering physical noise on a hardware
and control level, focusing on two different and complementary applications: Schrédinger cat-
state bosonic encodings [92] using superconducting circuits on the one hand, and dynamical
decoupling (DD) [129] on the other hand. In both contexts, we perform a theoretical dynamical
systems study to characterize the performance and possible working regimes of the approach.
A cat state computational basis is a promising scheme for fault-tolerant bosonic quantum
error correction [58, 103|, with a favorable error threshold and hardware overhead [59], and to
engineer such states one typically drives Josephson-junction-based nonlinear elements [55, 80].
DD is a dynamical method that filters out unwanted system-environment interactions by
applying coherent and fastly-varying control operations to the target system that we wish
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to protect, in order to effectively cancel its Hamiltonian coupling to the environment. The
common denominator of these two noise-countering approaches, each to be introduced more
in detail further on, is that one applies time-dependent Hamiltonian drives to the system
to obtain the desired operating regime. Since quantum devices are inherently open systems,
these application domains come with the general difficulty of analyzing driven open quantum
systems. A parallel axis of this dissertation is to pursue improved analysis methods for this
class of systems.

The desirable operating regime of driven open quantum systems can generally only be
understood in terms of a reduced model, obtained after eliminating fast degrees of freedom
from the description, to retain an effective description of the evolution of the system at the
timescale of interest. These fast degrees of freedom can entail the driving frequency, but also
the fast decay of dissipative degrees of freedom. As a first case, for very lossless (called high-
Q) systems, fastly-oscillating drive terms can be eliminated by averaging methods, which are
particularly well established in the Hamiltonian case [15, 34, 88, 91, 125|. The range of validity
of the obtained reduced models is often unclear however, and for the case of driven quantum
anharmonic oscillators employed in superconducting circuits, this dissertation establishes a
fundamental limit to model reduction, by studying chaotic junction dynamics. At the same
time, we provide a recipe for choosing the circuit parameters as to avoid this detrimental
chaotic behavior. This study, subject of Part I, is thus situated in the context of strong-
drive limitations of current superconducting circuits experiments. The context of this field of
research is again summarized at the beginning of Part I.

To eliminate fastly dissipative degrees of freedom, adiabatic elimination techniques [5, 6, 66]
provide a systematic model reduction method, leveraging this dissipative timescale separation.
This technique being relatively novel, many open questions remain about which timescales can
be eliminated, and the elimination of which degrees of freedom leads to a reduced model that
is physically interpretable, for example of Lindblad form [51, 83]. This dissertation makes two
contributions to this field, providing an extension of the method to periodic driving, and to a
new class of degrees of freedom to be eliminated. Both of these extensions are directly appli-
cable in the context of DD, and opened up the possibility for applying the DD methodology in
a novel way: we propose to drive an environment subsystem as to decouple it from the target
system, whenever the former can readily be identified and presents the main source of noise
for the target. This environment-side decoupling approach has the immediate advantage that
imprecise actions do not directly deteriorate the target system. This strategy had not been
considered to the best of our knowledge, and we benchmarked it for the case of a two-level
system (TLS) environment, obtaining explicit expressions for the induced decoherence rates
of the target system. This work is the subject of Part II of the dissertation.

The rest of this section is organized as follows. First an introducion to both bosonic encod-
ings and DD is provided, after a short intermezzo on code-based quantum error correction,
as a complement to these noise countering strategies at the physical level. Next we state
the context of the problems that are tackled in this dissertation In Section 2.2, we focus on
superconducting circuits and the problem of chaotic dynamics under strong drives. In Sec-
tion 2.3, we detail the challenges that come with an environment-side decoupling approach.
We finally summarize the contributions of this dissertation in Section 2.4, and the layout of
the manuscript in Section 2.5.
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2.1 Countering noise

Quantum error correction (QEC) [44, 52, 123] techniques consist of encoding the same qubit
of logical information in a larger physical system in a redundant manner. This larger physical
system can be a network of well-connected physical qubits. The redundancy allows for multiple
different error syndromes to be measured, by measuring different physical subsystems. If the
different measurement records yield a conflicting result, we know that a physical error must
have occurred in some subsystem. If not too many individual errors have occurred, then
we can infer from the measurement record which error is most likely to have occurred, and
we can correct for it. However, in the case of many individual errors the logical qubit may
be irreversibly corrupted, resulting in a logical error. Under the assumption of local and
uncorrelated noise, it was shown that the probability of a logical error occurring can be made
arbitrarily small by scaling up the number of physical hardware subsystems in which the
information is encoded, provided the physical error probability of each constituent be below a
certain error-probability threshold, and provided also the errors produced by the application
of imperfect logical gates manipulating the information be below a similar threshold. This
property is called fault-tolerance |1, 72]. The required redundancy scales up with the desired
logical error probability, while it scales down with how much the physical error probability
is below the physical error threshold. In this way the property of fault tolerance allows
for reliably performing arbitrarily long computations, as long as we have enough hardware
overhead to encode the information in. The main difficulty is that qubits can undergo a
continuum of quantum errors, which can be shown to be decomposable by the encoding into
two fundamental types: bit-flip errors and phase-flip errors respectively. The concept of a
phase-flip computational error is something inherently quantum mechanical, and does not
apply to classical computers. Since QEC has to correct for both types of errors, the physical
error threshold of quantum codes (if one exists) can be rather low (think 1%), and furthermore
the scaling of the hardware overhead can be much more unfavorable than for classical codes,
rendering many QEC schemes unfeasible from a hardware point of view. This dissertation
explores methods for reducing errors at the physical level that can complement, or even be
leveraged by quantum error correction approaches.

One approach that sets out to alleviate this hardware-overhead problem are so-called
bosonic encodings, which aim to establish a first protection of the quantum information at
the physical level, either for both types of errors, as in GKP-codes [21, 53], or just one type of
error, as in the case of Schrodinger cat codes [92]. In both cases, the scaling of the necessary
hardware overhead for QEC is drastically reduced. To achieve this protection at a physical
level, the infinite-dimensional state space of a quantum harmonic oscillator is utilized, pro-
viding a naturally-present redundancy for the encoding. One prominent such class of bosonic
codes that is studied in this dissertation are given by Schrodinger cat states |78, 92|, namely
the superpositions of two coherent classical amplitudes of a bosonic field. The advantage of cat
codes stems from the fact that a cat qubit benefits from a noise bias: the bit-flip error rate is
smaller than the phase-flip error rate by a factor that scales exponentially with the size of the
cat, which is defined as the amplitude of the bosonic field corresponding to the aforementioned
coherent states. Using this noise-bias, a bias-preserving QEC-scheme has been developed that
scales much more favorably [58, 103] in terms of hardware overhead than schemes for more
traditional codes composed of regular physical qubits. The way in which the cat states are
stabilized depends on the physical platform, but typically involves a coupling of the harmonic
oscillator to some nonlinear element that is also driven [80]|. Indeed, it has been shown im-
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possible to create such non-classical states using only linear systems, while it is known that
quantum states of purely linear systems provide no advantage over a classical computer [85].
In summary, a cat state computational basis is a very promising scheme for fault-tolerant
bosonic quantum error correction, with a favorable error threshold and hardware overhead,
and to engineer such states one typically drives a coupled nonlinearity.

A second approach for mitigating errors directly on the physical level studied in this thesis
is Dynamical Decoupling (DD) [129]. This is a dynamical method that filters out unwanted
system-environment interactions by applying coherent and fastly-varying control operations
to the target system that we wish to protect, in order to effectively cancel its Hamiltonian
coupling to the environment. The validity of this approach hinges on a timescale separation
between the applied control pulses and the coupling rate to the environment. When allowing
for arbitrarily strong and arbitrarily fast control operations, DD has the ability to render
the effective decoherence rate of the target system arbitrarily small, under the assumption
that the noise processes that are to be decoupled exhibit a finite cut-off frequency. In prac-
tice, DD strategies should be considered within realistic control assumptions, utilizing finite
control resources. Such a setting has led to the establishing of DD schemes that use these
resources in an optimal manner |76, 104]. In contrast to bosonic encodings, DD techniques
have essentially been established for low-dimensional systems by acting directly on the level
of a single physical qubit storing the information, whereas bosonic encodings inherently ex-
ploit an infinite-dimensional states space. Just as for bosonic encodings, DD strategies can be
combined with quantum error correction [99, 127|, and they can also provide protection while
performing logic gates [68, 69].

The next two sections introduce the specific physical settings in which we set out to pursue
bosonic encodings, resp. DD, and which challenges are to be overcome. For bosonic encodings
this will be the quantum hardware platform of superconducting circuits, where the lossless
nonlinearity provided by the Josephson junction stands central. For the dynamical decoupling
strategy on the other hand, instead of limiting ourselves to one hardware platform we consider
a general class of open quantum systems, exhibiting well-defined subsystems and timescale
separations. Within this framework, we propose a new strategy for countering noise, that
goes hand-in-hand with the model reduction techniques the physical setting calls for. The
scientific contributions that resulted from pursuing both these approaches are subsequently
summarized in Section 2.4.

2.2 Driven superconducting circuits

A leading physical platform for building quantum computing devices is that of superconduct-
ing circuits [97], as these have made significant strides towards reliable state preparation and
gate operation, and longer coherence times [14, 71|. Superconducting circuits are electrical
circuits that are cooled down to a few tens of mK and couple strongly to microwave-photons.
At these extremely low temperatures, all physical observables obey quantum mechanical equa-
tions of motion. Lossless nonlinear elements are introduced in the circuits, which are used
either to store and manipulate the quantum information itself within their two lowest-lying
energy levels, or to mediate interactions between microwave resonators storing information in
bosonic modes. The go-to nonlinear element is a Josephson junction [64], consisting of two
superconducting electrodes separated by an insulating barrier. Different types of interactions
between different modes can be engineered by driving with simple microwave fields, or by
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parametrically modulating a circuit parameter. This parametric engineering of interactions is
a key topic of research, and new types of interactions are continuously being engineered; be it
for the purpose of a more exotic interaction or logical gate [29, 89, or for reservoir-engineering
purposes stabilizing a desired quantum state |79, 117|. In this way, the reservoir-engineered
stabilization of quantum Schrodinger cat states of microwave light was achieved [80].

On the other hand, the general combination of driven nonlinear oscillators enters into the
domain of possibly chaotic systems, as has been the pioneering discovery of van der Pol [124]
and Duffing [33]. These chaotic phenomena have been extensively studied for Josephson
circuits in the classical regime specifically during the 80’s. A large noise rise was observed for
Josephson-based parametric amplifiers [26, 122]. This phenomenon was known not to be due to
thermal fluctuations, but the exact origin of this sudden noise rise remained unclear. This until
Huberman, Crutchfield and Packard attributed it purely to a property of the full nonlinear
classical equations of motion: chaos [62]. The noise was due to chaotic, but nonetheless
deterministic junction dynamics. For a simple junction, which is equivalent to a simple driven
pendulum, period-doubling routes to chaos were observed and studied in [32]. Indeed, it is
well-known that a periodically kicked pendulum can behave chaotically. For a current-driven
shunted-junction model, [62] and [107, 108| found simple behavior periodic with the drive, but
also complicated subharmonic behavior, and period-doubling cascades into a chaotic regime
when the drive amplitude is increased.

Josephson junction technology having evolved, for example having entered the quantum
regime and the microwave frequency range, these results have seemingly been sidelined.
Also recently in the quantum regime, experimental limitations have been attributed to ill-
understood dynamical behavior [81, 110]. One effort to resolve this issue is by developing
refined perturbation theories, obtaining more accurate higher-order reduced models of the
dynamics [100, 101, 110]. A second effort has been to alter the circuit design as to render
it more robust with respect to dynamical instabilities. Notably the addition of an inductive
shunt to the traditional transmon [73] has been shown to render it more stable under strong
parametric driving [126]. In Part I, we show how this inductively-shunted transmon can be
tuned to be resistant against the detrimental behavior that can per definition not be captured
by any integrable reduced model: classical chaos. This chaotic regime can be suppressed while
the device retains the ability to confine a class of non-classical states useful for bosonic QEC,
namely Schrédinger cat states.

2.3 Environment-actuated decoupling approach

The idea of Quantum Dynamical Decoupling is to reduce the effective coupling between a
target system and its environment, by applying tailored control actions to the target system,
at a faster timescale than the Hamiltonian coupling to the environment. The validity of this
approach crucially depends on the way this environment can be modeled. Indeed, for a purely
Markovian decoherence process, corresponding to the case of a memoryless environment, one
cannot expect to be able to decouple the target using control actuations. When modeling a
large relevant part of the environment as one (possibly very large) Hamiltonian system, DD
has been shown to be valid under very general conditions [129]. In this case, one can prove
that the effective coupling can be made arbitrarily small in the theoretical limit of arbitrarily
strong and arbitrarily fast controls. This is typically proven using an analysis method such as
the Magnus expansion [16, 88| or an equivalent Hamiltonian averaging technique [35].
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Several experimental realizations for quantum hardware encounter an intermediate situa-
tion for the relevant environment. Here, the target is directly coupled to a finite-dimensional,
well-identified system that acts as the main source of induced decoherence on the target. This
environment subsystem is then coupled to an environmental bath that is not directly cou-
pled to the target. One immediate example of such environment subsystems are two-level
system (TLS) defects in the oxide layer of superconducting Josephson junctions, which typi-
cally decohere through phonon channels and are a main mechanism inducing decoherence of
superconducting qubits [84, 95].

Starting from this observation, we propose to apply the DD methodology in the following
way: applying actions on the environment side, such as to reduce induced decoherence on
the target system. One potential advantage of applying these actions to the environment
subsystem is an increased tolerance with respect to imprecise actions. Indeed, DD methods
that act with control pulses directly on the target system need to be particularly precise, and
any control imprecision directly deteriorates the quantum information stored in the target. A
second potential advantage of environment-side decoupling is that the actions commute with
any logical gates one might want to perform on the target system. Although DD schemes
have been developed that provide protection while performing logical gates [70], these come
with the drawback of increased resources, such as the complexity of the control signals. On
the downside, of course we can hope to act on the environment only if it is well identified and
of reasonably small dimension.

There are two main points in which the DD methodology is to be extended to establish the
performance of environment-side driving. Firstly, as the decoupling drives are being applied
on a lossy environment subsystem, this calls for novel analysis methods to characterize the
DD performance of this approach, as the performance of DD is traditionally studied using
averaging techniques in a purely Hamiltonian setting. The general model reduction tech-
nique to eliminate dissipative degrees of freedom such as the lossy environment subsystem is
adiabatic elimination |5, 6, 66]. A first challenge is to extend this technique to the case of
periodic driving, as so far the technique had only been developed for stationary systems. Our
environment-side approach comes with a second challenge. While acting on the environment
comes with the security of not deteriorating the target state directly in the case of control
imprecision, we also cannot expect to control an environment system in a well calibrated man-
ner. Neither can we expect to have accurate knowledge of the bare environment Hamiltonian.
Part II of this dissertation details how these two general problems can be resolved, providing
a novel strategy for countering noise in practical quantum devices.

2.4 Contributions

The general scope of this dissertation being two complementary approaches for countering
physical noise, with a common denominator of periodically-driven quantum systems, its con-
tributions can be summarized in four main points.

e First, we provide a recipe for choosing the circuit parameters of practical supercon-
ducting devices in order to avoid detrimental chaotic behavior under strong driving,
all the while benefiting from a strongly nonlinear regime of the device. We exemplify
this strongly nonlinear potential by robustly confining a class of highly non-classical
states, known as Schrodinger cat states. These cat states have immediate applications
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in the field of bosonic encodings, which have been shown to allow for hardware-efficient
quantum error correction.

e A second contribution lies in the general methodology that is developed to analyze the
advent and the effect of chaotic dynamics in the context of such periodically-driven high-
Q quantum systems. We do this by laying a connection between the classical Poincaré
map and the Floquet decomposition of the system. Using analytical techniques on the
classical system, we provide a result blocking the main route to chaos of the system
for well-chosen circuit parameters. Furthermore, we characterize the different nonlinear
operating regimes once the device is in the regular, non-chaotic regime, through model
reduction techniques based on geometric averaging theory. To our knowledge, such
an averaging analysis has not been performed accounting for the full Josephson cosine
potential, and should prove more accurate towards tuning practical devices.

This work is in preparation for submission to Physical Review Letters.

e Thirdly, we provide a novel and robust variation of DD for countering noise in a practical
class of target quantum devices. Existing DD methodology provides techniques for
decoupling a target from an environment by acting on the target system with strong and
precise control operations. We extended this method to the case where one drives an
identifiable environment subsystem to decouple it from the target. The performance of
such an approach is benchmarked for the case of a two-level-system (TLS) environment,
and analyzed in a system-theoretical setting from model to the main figure of merit,
namely the induced decoherence rate of the target system. The type of environment-
side driving for which we proved the effectiveness of the approach comprises coherent
periodic drives on the one hand, and the limit of driving with pure noise on the other
hand, where the decoupling actions correspond to added dissipation channels to the
environment, establishing a novel dissipative flavor of DD. The analysis of this dissipative
flavor of DD leads to an overall physical conclusion that is of immediate relevance for
typical experimental scenarios: maybe counterintuitively, isolating the environment from
noise sources as much as possible is often not the best course of action.

e A last contribution lies in the analysis methods developed for this environment-side
decoupling approach, which lay a connection between the field of model reduction for
dissipative open quantum systems and the system-theoretic control problem of dynam-
ical decoupling. We developed an extension of the method of adiabatic elimination
to include periodic driving, allowing to analyze the DD benefits for the first type of
environment-side driving, which was chosen to be periodic. Moreover, the adiabatic
elimination method was likewise extended to more general degrees of freedom to be
eliminated, in the context of the dissipative flavor of dynamical decoupling.

These last two contributions constitute work [20] submitted to the Journal of the Franklin
institute.

2.5 Layout of the manuscript

In Part I of this dissertation, we provide a recipe for obtaining a robust subharmonic regime
of driven quantum nonlinear oscillators, corresponding to the confinement of a manifold of
Schrédinger cat states.
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e In Chapter 3 we start by introducing the model of the periodically-driven inductively-
shunted transmon. We discuss how this single-mode system combines the three basic
circuit elements of superconducting circuits, making it ubiquitous. More specifically,
we perform a general change of variables that transforms the system into a normal
form that will be used throughout this part. This identifies four main parameters of
which we briefly discuss the roles. These comprise two effective circuit parameters called
the regularity parameter and the quantum scaling parameter, as well as renormalized
versions of the drive parameters. Once this normal form of the system is established, in
Section 3.2, introductory material on the general analysis methods of periodically-driven
systems is provided. For classical periodic systems, the relevant concepts from dynamical
systems theory are introduced, most notably the Poincaré map, as well as notation to be
used in the subsequent chapters of this part. On the quantum side, an introduction to
Floquet theory is given, including its extension to (open quantum) systems interacting
weakly with an environmental bath. Lastly, the numerical methods we used to simulate
the system are summarized.

e In Chapter 4 we use the language of Floquet theory to establish a robust, non-chaotic
subharmonic regime of the driven inductively-shunted transmon. After a short intro-
duction on cat qubits, we lay a connection between the Poincaré map of the classical
system on the one hand, and the Floquet modes of the quantum system on the other
hand, equating stable subharmonic classical solutions to the existence of a degenerate
set of Schrodinger-cat Floquet modes. Focusing on one class of subharmonics, we char-
acterize the quantum signatures of classical chaos occurring when ramping up the drive
strength. We observe a highly entropic asymptotic regime for the quantum system in
this chaotic case. Next, we show how to choose the circuit parameters as to effectively
suppress this high-entropic regime, by lowering the regularity parameter. We propose a
theoretical explanation for this by showing that the possible routes to chaos of the clas-
sical system are blocked for a small-enough regularity parameter. Finally, we show that
in the non-chaotic regime, the quantum scaling parameter can be tuned independently
to increase the confinement rate of the manifold of Schrédinger cat states, providing a
strongly nonlinear, regular regime.

e In Chapter 5 we focus on the dependence of the system on the drive parameters, in
order to characterize the resonance conditions that lead to stable subharmonic solutions
of the classical system, using a first-order averaged model. After a short introduction
on the theory of geometric averaging, we obtain a reduced model that eliminates the
dependence on time. We discuss global symmetries of the resulting model, as well as
limiting cases, and provide a numerical account of one particular class of subharmonic
solutions predicted by the model.

In Part II, we propose a novel noise-countering technique for practical quantum systems
based on the dynamical decoupling methodology.

e In Chapter 6 we show how environment-side dynamical decoupling can be achieved by
continuously driving the environment with only a single-frequency drive. After review-
ing the relevant work in the field of continuous-drive DD approaches, we introduce a DD
drive that exhibits a double timescale separation that effectively mitigates the present
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control imprecisions. Next, we extend the model reduction technique of adiabatic elim-
ination to the case of periodic driving, to obtain explicit formulas for the decoherence
induced on the target system under this periodic driving of the environment. We discuss
the effectiveness of the decoupling in terms of the dependence of the induced decoher-
ence rate on drive parameters, and conclude by analyzing the limit where the strength
of DD drives becomes comparable to the bare frequency of the TLS, again confirming
the DD benefits.

e In Chapter 7, we extend the environment-side decoupling strategy to the limit of com-
pletely disorganized drives, by considering them as added dissipation channels onto the
environment. We start by revising the leading-order adiabatic elimination formulas that
describe the induced decoherence on the target. Setting out to minimize the induced
decoherence on the target, we highlight general properties of the resulting optimization
problem for the dissipation rates on the environment. A case-study for the case of a
TLS environment is provided, including the limit of a partly decohering environment,
that only loses part of its coherences.

The two parts can be read independently. A conclusion in Part III gives an insight into
possible open questions and future work.
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Part 1

Structurally-stable subharmonic
regime of a driven quantum Josephson
circuit
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This first part of the dissertation sets out to provide solutions for strong-drive limitations of
current superconducting-circuits experiments. Our contribution is to identify these limitations
as chaotic dynamics, and to provide a clear recipe of how to suppress this chaos for a ubiquitous
single-mode nonlinear device: the inductively-shunted transmon. To display the remaining
nonlinear potential of the device in the non-chaotic regime, we focus on the application of the
robust confinement of a manifold of Schréodinger cat states.

The language that will be used throughout this part has a strong classical component.
Indeed, we will perform as much analysis of the classical equations of motion of the inductively-
shunted transmon, as we will of their quantized version. The methods used to perform this
study likewise leverage dynamical systems theory techniques that have been developed for
general classical driven nonlinear oscillators specifically. Since chaotic dynamics is inherently
a classical concept, this is maybe not surprising. We will introduce the confinement of the cat
states in a classical language as well, however, which we consider a contribution in and of itself.
We will tie classes of subharmonic solutions of the classical system to a manifold of confined
cat states of the quantum system. The goal is to be able to establish such a subharmonic
regime in a robust way, and hence we speak of a robust subharmonic regime of driven quantum
nonlinear oscillators in the title of this part. Alongside this classical study, to quantify the
quantum signatures of classical chaos, we have opted for a numerical approach characterizing
the long-time behavior of the quantum system, based on Floquet-Markov theory.

We begin by introducing strong-drive limitations in various state-of-the-art superconducting-
circuits experiments, giving an overview of recent work on theoretical explanations, and of a
new circuit design to alleviate these very limitations. Next, in Chapter 3 the model of the
driven inductively-shunted transmon is introduced, as well as the theoretical methods that
are used to study this driven system throughout this part: Floquet theory for the quantum
system, and the Poincaré map for the classical system. Chapter 4 then provides the main
result. Guided by numerical Floquet simulations, we define the figures of merit for cat state
confinement, and exhaustively characterize the roles of two main circuit parameters. The reg-
ularity parameter can be lowered to a finite value to avoid chaotic regimes, and a second, the
quantum scaling parameter, can be augmented independently to obtain strong confinement
of the cat states in the non-chaotic regime. These numerical results focus on the dominant
subharmonic regime of the device, corresponding to three-component cat states confined by a
four-photon process. Lastly, in Chapter 5, we characterize the roles of the drive parameters
as to be able to select different classes of subharmonics for the classical system, linked to
corresponding classes of cat states.

Context

Superconducting circuits have proven to be a leading platform for quantum information
processing [13]. A variety of applications hinge on strong parametric interactions, such as
high-fidelity gates [27] and readout [105], tunable couplers [47], efficient reservoir engineer-
ing [80, 117], or bosonic encodings [55, 82]. For many of these applications, the desired system
behavior has been shown to break down when driving the system too strongly. Moreover, the
radical change in system response is discontinuous in the drive power, indicating a structural
instability of the system. These strong-drive limitations have been demonstrated experimen-
tally in the context of unwanted heating [110] or ionization [81] caused by strong-drive effects.
As a first effort, theoretical explanations have been pursued for readout [100, 110] and para-
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metric gates [101], focusing on terms in the parametric Hamiltonian that cannot be captured
by low-order rotating-wave approximations (RWA). While these refined perturbation theories
have been successful in explaining the unwanted behavior, either analytically or numerically,
they do not provide a recipe to retain structural stability under strong driving. As a second
effort, in [126], a new circuit design was proposed that behaves more stable, thanks to an
extra harmonic confining potential provided by adding an inductive shunt to the traditional
transmon.

In this part, we study the classical and quantum dynamics of the periodically-driven
inductively-shunted transmon as a function of circuit and drive parameters, and we explic-
itly identify chaotic dynamics as the cause of structural instability of the system. Recently,
limitations on performance caused by chaotic motion has been reported for a quasi-classical
detector model 77|, and chaotic states for a large number of coupled transmons [73| have
been predicted to limit future architectures [12], showing a breakdown of many-body local-
ization. Therefore, laying a connection between classical chaos and superconducting-circuits
parametric engineering is a first important step towards alleviating strong-drive limitations.
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Chapter 3

Model and preliminaries

Ce chapitre introduit le modeéle du transmon shunté d’une inductance, forcé de maiére péri-
odique. Ce systéme représente un oscillateur non-linéaire ommniprésent dans le domaine des
circuits supraconducteurs. Nous réalisons d’abord un changement de variables pour mettre le
systmme sous une forme normale, qui guidera les analyses a venir. Ce changement de vari-
ables permet d’identifier des nouveaux parameétres renormalisés du circuit, qui déterminent
chacun des propriétés complémentaires du systéme, que l'on discute brievement, en anticipant
les résultats des chapitres a venir. Dans la Section 3.2, nous introduisons le baggage tech-
nique nécessaire pour analyser ce genre de systéme dynamique périodique. Du coté classique,
Uapplication de Poincaré permet de décrire toutes les propriétés dynamiques pertinentes, et du
cote quantique, ce role est jou€ par la théorie de Flogquet, composée des modes de Floquet et leur
quasi-energies. Vu que la définition de l’application Poincaré ansi que de la décomposition de
Floquet nécessite la connaissance des solutions exactes du systémes, nous expliquons comment
les trouver par des simulations numériques. Ces simulations numériques ont permi d’établir
la plupart des résultats dans le chapitre 4 a venir.

In this chapter, we introduce the model of the periodically-driven inductively-shunted trans-
mon, highlighting its character as a ubiquitous nonlinear oscillator central to quantum infor-
mation applications. Through an exact change of variables, the system is rewritten in a normal
form that allows for the definition of new effective circuit parameters that each govern distinct
and complementary system properties. A brief summary of this dependence on parameters is
given, anticipating some of the results of later chapters. In Section 3.2, we introduce the tech-
nical tools used to analyze the dynamical behavior of periodically driven systems. We start by
introducing the classical Poincaré map, which allows us to define all the relevant dynamical
behavior for the classical system. We proceed to introduce Floquet theory as the analogous
language to fully characterize the dynamical behavior of the quantum system, consisting of
the Floquet eigenmodes together with the Floquet quasi-energies. The definition of both the
Poincaré map and the Floquet decomposition requires the knowledge of exact solutions of the
system, and we detail what numerical methods were implemented to compute these quanti-
ties numerically. The majority of the results presented in Chapter 4 are obtained through
these numerical simulations. Of particular importance is the Floquet-Markov theory outlined
in Section 3.2.2, as we will mainly be interested in characterizing the long-time asymptotic
behavior of the quantum system in Chapter 4.
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3.1 Model description

In this chapter, we study the inductively-shunted transmon subjected to periodic driving.
While this nonlinear element is general enough to encompass a large class of superconducting
devices designed for quantum information processing, it is concrete enough to allow for a sys-
tematic study of its behavior when applying drives. Indeed, the number of circuit parameters
that have to be chosen at fabrication of the device amount to three. A schematic depiction of
the device is given in Figure 3.1.
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Figure 3.1: Circuit diagram of a driven superconducting circuit comprising a Josephson junc-
tion (black cross) as nonlinear element, in parallel to a linear inductance and capacitance.
The circuit is capacitively driven by an AC voltage source Vy(t) and could be biased by an
external magnetic flux ¢eyt threading the superconducting loop. This circuit is dubbed the
inductively-shunted transmon.

The corresponding quantum Hamiltonian model derived from quantizing the circuit (see
e.g. [130]) reads

2
H(t) = 4E¢ (N Cng(t)) + ch EJcos<<p27r¢eXt>, (3.1)
2e 2 gbo
where e is the electron charge, ¢g = hi/(2¢) is the reduced magnetic flux quantum with 7 the
reduced Planck constant, Ej is the Josephson energy, Ec = €%/2(C + Cy) is the charging
energy, and Ef, = (¢o/2m)?/L is the inductive energy.

The quantum observables N = Q/2e and ¢ = 2e¢/h respectively describe the number of
Cooper pairs that have tunneled through the junction, and its conjugate, the reduced flux
operator. These observables correspond to dimensionless versions of the charge Q on the
capacitor and the magnetic flux ¢ through the inductor respectively. We will systematically
denote quantum observables in boldface throughout this part, whereas classical variables are
typeset normally. The two Hermitian operators satisfy the canonical commutation relations

[, N] =1, (3.2)

with i the imaginary unit, i = —1.
We consider a single-frequency drive

Va(t) = V g cos(wat) (3.3)

with frequency wg > 0 and amplitude V4 > 0, applied through a capacitive coupling to an
AC-voltage source, as depicted in the circuit model of Figure 3.1. In this work, we consider
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the case of zero external magnetic flux:

d)ext =0.

We will see that the methods developed in this dissertation can be extended towards other
flux bias points, however, and that many of the main results remain valid.

As a last point, present day nonlinear oscillators in superconducting circuits experiments
are becoming better and better isolated from the environment, but still present finite losses,
mediated through a coupling to their environment. We model this dissipation as a capacitive
coupling of the oscillator to a thermal bath [48]. The coupling Hamiltonian can be described
in terms of the different modes of the bath,

Hsp = Y hwblw]'blw] + hglw]N @ (blw] + blw]"). (3.4)

where blw] (resp. bf[w]) is the annihilation (resp. creation) operator of the bosonic mode
with frequency w, satisfying the commutations relations [b, bT] =1, and g[w] is a frequency-
dependent coupling rate. We will address how to capture the effect of (3.4) in the limit of
weak coupling (i.e. small g[w]) in Section 3.2.2.

3.1.1 Change of variables to normal form

To obtain a form of our system that is amenable to both perturbation theory and numerical
simulations, we will carry out a change of variables with the aim of diagonalizing the unbounded
part of the Hamiltonian. As it happens, the unbounded part of (3.1) is a driven linear system,
and can be diagonalized exactly, yielding just a normalized Harmonic oscillator. Concretely,
we will rescale the variables (¢, IN), rescale time, and displace the system to take the effect of
the drive into account. The Josephson cosine potential will then be transformed along with
the given change of variables.
Consider the rescaled variables

ey 3.5
NGA) (3.5)
p = V2AN, (3.6)
with
2E, 1/4
- < EL ) ‘
Dropping a term proportional to the identity operator, we can write
2 2 C ‘7
H(t) = \/8ECELX ;p — Ejcos (\@)\x) — 22/3E097)\d cos(wqt)p. (3.7)
e

Next we can eliminate one parameter by rescaling time by the system frequency /8FE¢oFEp:

T :=+/8EcELt.

The Hamiltonian then has to be rescaled with the same factor, yielding

2 2 I/

- E

H(r) = x+tp” B cos (\@)\x) — \/Ecegfd cos(vaT)p, (3.8)
L

2 2)2
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with

(3.9a)

wq
Vg = —————. 3.9b
‘T BECEL (3.9b)
Finally, a part of the drive-effect can be taken into account by moving to a displaced frame.
Since we only consider the response of the unbounded, linear part of the system (putting
B =0), an exact expression for the amplitude of this displacement is available:

X=X—

\/gg)\ sin(vgT), (3.10a)

P=p-— ﬁiiyd cos(vgT). (3.10b)
This yields the following final model:
fI(T) = p—2 + £2 _B cos (\/§>\x + &4 sin(VdT)), (3.11)
2 2 2)\2

where we have defined

Vng 2EC Vq
= \/ . 3.12
gd (& EL 1— 1/3 ( a>

With a slight abuse of notation, we drop the double tilde-notation Tin (3.11), and simply write
H(7), the distinction with original Hamiltonian H(¢) in (3.1) being made by the time argument
T, resp. t. It should be noted that (3.1) and (3.11) are exactly equivalent in describing the
system dynamics, as no approximations have been made in the change of variables.

In the next chapter it is shown that the four parameters (3, A, v4,&4) are well chosen, in
the sense that they individually govern different and complementary system properties.

3.1.1.1 Classical equations of motion

The change of variables we performed on the quantum observables were all canonical, pre-

serving the commutation relations [, N| = [x, p] = i. We can thus consider x, p as classical
variables of a corresponding classical model with Hamiltonian
2 2
H(r) = % + % - 2’% cos <\/§)\£C + &4 sin(yd7)>, (3.13)

leading to classical equations of motion (EOM)

d OH
d;: - ETp(T) —p, (3.14a)
g—f = —C{;IZ(T) =—xr— g — \g)\ sin<\/§)\x + &4 sin(yd7)>, (3.14b)

where we have accounted for a finite loss rate 1/ Q. It is easily verified that when interpret-
ing (3.1) as a classical Hamiltonian system, and performing the analogous classical change
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of variables, one obtains exactly (3.13). In this work, the nonlinear oscillator is assumed to
present a very low loss rate, as superconducting devices are becoming increasingly lossless.
We will take Q of the order of 105 typically.

It turns out that one can perform an additional, non-canonical rescaling of the quadratures
to eliminate A from the EOM. By defining

zy = V2, (3.15a)
Py = V2Xp, (3.15b)
we obtain the EOM
dx)\
a- 3.16
% =T 13 — Bsin(zx + &g sin(var)). (3.16b)

This will be the standard form in which we analyze the classical system throughout this
part, as A drops out, and one circuit parameter is eliminated in this way. It should be
remembered that the correct quantum-classical correspondence involves a rescaling with A
however. Since A only plays a role for the quantum version of the system, we call it the
quantum scaling parameter. Indeed, in Chapter 4 we will see that A governs purely quantum
effects. Anticipating one more result of the next chapter, we call 8 the regularity parameter,
as for small enough values of 3, the system is in a regular, non-chaotic regime.

3.2 Preliminaries on periodic systems

3.2.1 Periodic dynamical systems

In this section, we introduce the mathematical language needed to study the dynamics of
periodically-driven dissipative nonlinear oscillators on a classical level. We will consider os-
cillators with only one degree of freedom (i.e. two variables), since this is the case for the
inductively-shunted transmon introduced in Section 3.1, and all of the theory developed in
this section will be applied to this case in later chapters. We focus on the concepts that are
most relevant for the results obtained in the rest of this chapter. Of key importance for the
remainder of this part is the Poincaré map introduced in (3.23). This tool allows us to define
saddle-points and stable nodes (see Section 3.2.1.2), which will be a central concept through-
out the rest of this part. A general idea of the saddle-node and period-doubling bifurcation is
required to be able to follow Chapter 5 and Section 4.3 respectively. For a detailed discussion
of these bifurcations, we refer to chapter 3 of [57]. Chapter 1 of [57] was the main inspiration
for the content of this section. A less mathematically flavored but very physically insightful
introduction to the relevant concepts can be found in [120].

The state of the oscillator is described by a vector z € R2, whose evolution over time
satisfies the set of ordinary differential equations

= f(z,t), z€R*tER, (3.17)

d

where Z := gz stands for the ordinary time-derivative, and where f : R? xR — R? is a smooth

vector field that is periodic in time with period 7" > 0:
f(z,t+T) = f(z,t), VzeR (3.18)
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The vector field f is often called non-autonomous, since it depends on time. The model (3.17)
is fully general, in that it can describe any periodically forced oscillation with one degree of
freedom.

We denote a particular solution (or trajectory) of (3.17) corresponding to an initial con-
dition zg € R? at time t = 0 by z(t), with 2(0) = z9. We also speak of z(¢) as the solution
of (3.17) based at zy. Of particular interest for this work are periodic solutions for which

z2(t+nT) = z(t),vt e Ryn € N,n > 1, (3.19)

as these solutions represent an integral part of the asymptotic behavior of the oscillator.
Indeed, a periodic solution is bound to repeat itself indefinitely. When n = 1, we call the
solution a harmonic, and when n > 2, we speak of a subharmonic solution, as it contains
frequencies that are necessarily lower than that of the periodic driving modeled by f(-, ).

3.2.1.1 Flow and Poincaré map

Families of solutions can be considered by defining the flow W, corresponding to (3.17). By
definition, ¥; : R — R?,t € R maps an arbitrary initial condition 2 to the solution based at
20, evaluated at time t:

Uy (z0) = 2(t), with  2(s) = f(2(s),s), 0<s<t,and 2(0) = zp, (3.20)

An equivalent definition is to interpret ¥ as a function of (¢, z) and directly impose

0

a\I/t(zo) = f(U(20),t), VteER, 2z €R (3.21)

Remark that to define the flow, we require knowledge of the exact solution based at any point
zo. Hence, an explicit representation of the flow as a 2D map is almost never available for
realistic systems. Nevertheless, thinking of dynamical systems in a geometric way, in terms of
the flow that transforms subsets of phase space, can bring useful insight.

In the discussion so far, the choice of starting point £ = 0 has been somewhat arbitrary, as
the system is T-periodic, and one can translate time by any multiple of the period T'. Explicitly,
for every two trajectories z1(t) and zo(t) that share a point z1(tp) = 2a2(to + kT'),k € Z at
some time tp, it follows that z;(¢t) = 29(t + kT"),Vt € R. z; and 29 are in fact one and the same
solution. This observation leads to the following (discrete) group property for the flow:

Vo =V pyroVp =V gpoli=-.. = UL (3.22)

Here, the powers and open circle o stand for the composition of maps, defined by \IIQT(ZQ) =
U7 oWr(zg) = Ur(Ur(20)). We now define the Poincaré map as the flow corresponding to
one system period, mapping any initial condition to its solution a time T later:

P = Ty (3.23)

One additional possible interpretation is that given a continuous-time solution z(t) of (3.17),
powers of P allow us to sample the solution at multiples of the drive period:

P*(z0) = 2(kT). (3.24)
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Once we have defined the Poincaré map, we can consider the discrete dynamical system
241 = P(Zk),k €N, (3.25)

which can be studied in its own right. We call {zx|k € N} the orbit of P based at zp. When
considering the discrete-time dynamical system (3.25), we can identify the powers P* of the
Poincaré map as the flow of this discrete-time dynamical system. We say that P generates
the discrete flow. To simplify the terminology, we will refer to P* simply as the flow, as the
context should make it clear whether we are talking about the continuous-time system, or its
discrete version (3.25).

The Poincaré map allows us to define all the relevant system behavior in the context of
this work. An immediate example is that subharmonic solutions z(t) of period nT" correspond
to an n-periodic orbit (or simply n-orbit) {2} == 2(kT)|k = 0,1,...,n — 1} of P, with

P(z) = 2541, k=0,1,...,n—2,
Pls1) =

This is easily verified given the relation (3.24). One last equivalent formulation is that to a
subharmonic of period nT" are associated n fized points z; of P", in the sense that

P (zp) =z, k=0,1,...,n—1 (3.27)

In summary, an n1'-periodic subharmonic continuous-time solution corresponds to an n-orbit
of the corresponding Poincaré map P, which in turn corresponds to a set of n distinct fized
points of P™.

3.2.1.2 Local properties of the flow

For notational simplicity, we will focus on a fixed point of P in this section, instead of fixed
points of P" for a general n > 1. The discussion of this section is completely analogous for
n > 2 however. Denote the fixed point of P by z*. We can ask ourselves the question what
the dynamics in its immediate vicinity is like. Do neighboring points converge to z*, are they
repelled by it, or do they remain at a bounded distance from it indefinitely? Such questions
are the subject of a stability analysis of the fixed point. We will first provide a rather informal
discussion of the possible cases that can be concluded from a local linearization analysis,
yielding a few distinct possibilities for the stability type of the fixed point.

Since an analysis based on a linearization is only approximately valid a priori, we next detail
in which cases a linearization analysis yields provably correct conclusions regarding the true,
exact flow around fixed points. This is the subject of so-called invariant manifold theorems,
providing the existence of one-dimensional manifolds that are invariant under the flow. This
allows us to locally reduce P to a one-dimensional map, by restricting it to the appropriate
one-dimensional invariant manifold.

One last question one could ask is through what mechanism fixed points can appear or
disappear, or change stability type, upon changing a system parameter u. We define a bifur-
cation of a fixed point to be any process where fixed points are created or disappear, or any
process where a fixed point changes stability type, where p is the corresponding bifurcation
parameter. Lastly we will briefly discuss the possible bifurcations that can take place for fixed
points of P upon changing the parameters of our system, concluding this subsection on local
properties of the flow.
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Stability type of fixed points through linearization

Consider an initial condition z* 4+ Az, with P(z*) = 2z*, and Az a small variation. We can
define variations Az, at later times k7T such that

2¥ 4+ Azpp = P(2" + Azyg).
Letting the variations Az tend to zero, formally replacing it by the infinitesimal 0z, we obtain
0z+1 = VP(Z%) dz. (3.28)

For small variations, we can thus study the linear system generated by the linearized Poincaré
map VP (z*) to obtain the stability type of the fixed point z*. When both the eigenvalues ¢, n
of VP(z*) lie outside the unit circle (|C[, |n] > 1), we call z* a source, as neighboring points
diverge from it at an exponential rate. When both eigenvalues lie in the interior of the unit
circle, we speak of a sink, or a stable node, as neighboring orbits converge exponentially to
z*. When |{| > 1, but |n| < 1, the fixed point corresponds to a saddle point, displaying one
unstable, and one stable direction. Indeed, considering the eigenvectors v,w € R? of VP(z*),
we find one contracting direction since (VP(z*)k)v = nFv, and one expanding direction, as

(VP(z*))fw = ¢Fw, with |¢| > 1. The stable (resp. unstable) manifold theorem then states
that locally, there exists an exact corresponding manifold Wy (resp. W,,), locally tangent to
{z* + hv|h € [-1,1]},1 > 0 (resp. {z* + hw|h € [—[,1]},] > 0) that remains invariant under the
application of P. More precisely, points in W are mapped to points in W;, and the system
can be reduced to a one-dimensional map when restricted to Ws. This manifold is dubbed
the stable manifold, since for this one-dimensional (1D) flow, z* is exponentially stable.
Sinks, sources and saddles are three so-called hyberbolic fixed points, since a linearization
analysis allows us to classify their stability type. When one of the eigenvalues of VP(z*) lies
exactly on the unit circle, a linearization analysis is inconclusive to characterize the flow in
the vicinity of z*, and a higher-order normal form calculation should be pursued, involving
higher powers of the variations dz. When |n| = 1, but || # 1, we can still find one stable
(resp. unstable) direction corresponding to the eigenvector w if |¢| < 1 (resp. [¢| > 1). To
the eigenvector v corresponding to 7 is now associated an invariant manifold called the center
manifold. The 1D flow restricted to this center manifold is structurally-stable, but instead
corresponds to a bifurcation point. We will briefly classify the types of fixed points and the
types of bifurcations that can take place, for the specific case of the model introduced in (3.16).

3.2.1.3 Specifics for dissipative driven oscillators

Consider now the system introduced in (3.16), with a nonzero dissipation rate = > 0. For the

<$)\) 7
D

and we can readily identify the vector field as

state vector we have

_ Px
f(z7) = (—m B~ Fsin(ex+& sin(um))' (3.29)

For this case of a dissipative oscillator, it is easy to see that only stable nodes and saddle
points can occur as fixed points of P", whereas sources cannot occur. This is due to the
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area-contracting nature of the system. Indeed the local flow ¥ around a source could never
be area-contracting. For a mathematical proof we can use Lemma 3.1, providing an explicit
representation for the eigenvalues n4 of V(P")(z5), with P™(z§) = 2§. Through this lemma,
it is easy to see that at least one eigenvalue of V(P™)(z3) must lie inside the unit circle, so the
fixed point z; cannot correspond to a source. Another immediate consequence of Lemma 3.1 is
that the only possible local bifurcations of fixed points of P™ correspond to either a saddle-node
bifurcation, for which

ny =1, for L:exp<7m~>in(3.31) ,

Vd

or a period-doubling bifurcation, or flip bifurcation, for which

ny =—1,for L= —exp< 7rn~> in (3.31)

Vd
For a general introduction to these bifurcation mechanisms, we refer to chapter 3 of [57].

Lemma 3.1. Consider a fized point z5 of P",n € N,n > 1, where P is the Poincaré map
associated to the vector field (3.29). The eigenvalues of V(P™)(z3) can either be written as

Ny = exp(—mz)ew, 0 € [0,2m), (3.30)
Va
or as
Ny = exp<—m~>Lﬂ,L €R,|L| >1. (3.31)
Vg

Proof. The main idea of the proof is to exploit the fact that the system exhibits a constant

contraction rate given by

Te(Vf) = _5,

as

0 1
Vi) = —1 — Beos(x + &g sin(vgT)) —é :

To work towards the final result, we perform a similar linearization of the flow W, correspond-
ing to the continuous-time system (3.17) around the point zj, and integrate the resulting
equation over n drive periods, yielding

VWonx (25) = V(P")(20)-

vd

To conclude the proof, we only need an expression for the product of the eigenvalues of V (P")

(i.e. det(V(P™))), as one easily sees that nyn_ = exp(— 2”5) for both cases (3.30) and (3.31).
vq

We now summarize the derivation.
By definition the flow satisfies

0

57 Ur(2) = f(Ur(2),7), 2 € R? (3.32)
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We can linearize this equation around the continuous-time 27n/v4-periodic solution ¥, (z5) =
z(1) = (x(7),p(7)), analogous to the reasoning on the discrete-time system given in (3.28):

0

ar
This is now a linear time-dependent equation enabling the study of the system in the vicinity
of z(7), and since z(7) is 2mn/vg-periodic, the linear system (3.33) is of the same period. The
dissipative nature of the system can be exploited by considering det(VW,), as this quantity
captures the local expansion of oriented surfaces around the given solution:

VU, () = VI((7), 1)V (). (3.33)

0
9 det(VU.(z5)) = Te(V f(2(7), 7)) det(VU.(25)), (3.34)
where we have used Jacobi’s formula. Now we can leverage the local contraction rate, by
substituting
1
Te(Vf(z(7) = —=,
Q
as

0 1
V(7)) = (-1 — Beos((r) + Easin(var)) —2?)-
Integrating the resulting equation over a time 27wn /vy readily yields
2
det (v\pm(z;;)) = det(V(P™)(2)) = exp<—7”3>,
vd VdQ
independently of the exact fixed point 2. Since V(P") is a matrix with real entries (obtained

by integrating a system with real variables), its eigenvalues 74 must either be real, or come
in complex conjugate pairs, with still

< 27m>
nin- =exp| ——= |.
vaQ

This concludes the proof. O

3.2.1.4 Numerical scheme

In this work, phase portraits of the Poincaré map were simulated using time-domain simula-
tions, orbit per orbit for different chosen initial conditions. The system was simulated in a
form where the dissipation rate on the two variables is equal, after an extra change of variables
— see Section 4.3.1 later, the result of which is (4.28), anticipated here:

del 5

de_ b R,

diﬁ = —& — rp — Psin(Z + Easin(7ys)).
S

We used a first-order integration scheme that is symplectic for k = 0, defined as
.%kJrl = jk + ds(ﬁkJrl - Ii.f:k), (3.363)

Pryr = B — ds (xk "V kst + Gsin(Fy + asin(ig kds))). (3.36b)
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Note that the updated value pg41 must be used in the right hand side of (3.36a) for the scheme
to be symplectic for k = 0. Since the unknown pg1 only appears in linear terms, we can solve
for it, and the update rule can readily be written down explicitly:

i — ds (xk + Bsin(iy + &g sin(ig k ds))>

Do = 3.37

Pk+1 1+ rds ) ( a)

Fpp1 = g + ds(Prat — K. (3.37b)
We chose ds = =~ for all numerical simulations shown in this work, which corresponds to

50004
1000 samples per period of the drive.

3.2.2 Floquet theory and numerical simulations

In this section, we will review the basics of Floquet theory [40, 109], both for closed Hamil-
tonian systems, as for a weak coupling to a bath where the Born-Markov approximation is
valid. This Floquet formalism is used to perform the numerical simulations of this part of the
dissertation. The main goal is to describe the long-time asymptotic behavior of the system.

Consider a time-dependent Hamiltonian H(¢) that is time-periodic, with period T' = 27 /wy,
acting on Hilbert space H. The Floquet theorem states that there exists solutions of the
corresponding Schrédinger equation

d i
S le(t) = —H@) [9(1) (338)

of the form

[ (£)) = €775 |6, (8)) (3.39)

where the Floquet modes {|¢,(t))} form an orthonormal basis of the Hilbert space H at any
time ¢, and are T-periodic:

60 (t +T)) = [6r(1)),VE €R, (3.40a)
(¢r(t)|1(t)) = 0r1, VE ER. (3.40D)

Here, {e,} are called the Floquet quasi-energies. Clearly, e, is defined up to multiples of fwy as
the Floquet modes |¢,(t)) can be multiplied by e~*«“d, Without, loss of generality we choose
the quasi-energies €, to lie in the first Brillouin zone [—hwgy/2, hwg/2]. An equivalent viewpoint
is that the Floquet modes (resp. quasi-energies) are the eigenvectors (resp. eigenvalues) of the
generalized Hamiltonian

0

H(t) —ih—,

(t) — iho,

considered to act on the Hilbert space of square integrable T-periodic wave functions in H.
Since the Floquet modes at any time ¢ form an orthonormal basis of the Hilbert space H, one
can obtain the solution of the Schrédinger equation corresponding to an arbitrary initial state

|1(0)) by decomposing it into the basis of Floquet modes:

[(8) =3 e 7= [6n (1)) (0 (0) [1(0)) - (3.41)

T
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The Floquet modes can be numerically computed as the eigenstates of the unitary evolution
U(t) generated by (3.38). Indeed, we note that the solution of the following equation

d i
ZU() = —-HOUE,  U@0)=1

with I representing the identity operator, is given by

U(t) =Y e w5, (1) X (0)]

T

Therefore, one obtains the Floquet quasi-energies and the correct basis of Floquet modes at
time ¢ = 0 by numerically diagonalizing U(T). Next, we can again numerically integrate the
Schrédinger equation with initial conditions |¢,(0)) to obtain the Floquet modes at any time
te[0,T7].

Floquet theory can be extended to describe the effect of a weak coupling to a thermal bath.
In particular, the asymptotic behavior of the system is described by an extension of Fermi’s
golden rule ([54], section 9). We will give a quick summary of this Floquet-Markov theory
here, and explain the numerical approach that we use in the manuscript. For concreteness,
recall that in (3.4) , we modeled the system coupled capacitively to a thermal bath through
the Hamiltonian

Hgsp = Z hwblw] blw] + hg[w]N @ (blw] + blw]), (3.42)

where blw] is the annihilation operator of the bosonic mode with frequency w, and g[w] is
a frequency-dependent coupling rate. Assuming the coupling rates glw] to be the slowest
timescale in the joint system, and assuming a non-resonance condition on the quasi-energies
(detailed here-under), one can apply the standard Floquet-Markov-Born approximation ([54],
section 9). This Floquet-Markov-Born approximation yields a Lindblad type master equation
for the system alone, that can easily be solved in the Floquet basis. When parameterizing the
density matrix of the system in terms of its components in the Floquet basis (corresponding
to the first Brillouin zone),

L= (o (t)]p(t)]n(t)) | (3.43)
one obtains a set of decoupled rate equations for p,;:
e ®) = 3" Luapu(t) — Lieprr(t) (3.442)
dtprr = l rlPU IrPrr\l), .
Lot = == 3 L + L)1) (3.44b)
dtprl = 9 — mr ml ) Prl . '

The transition rates L,; are given by an extension of Fermi’s golden rule:
Ly = Z Yrdm + Meh ([ Arim|) (Vrtm + V1, —m)- (3.45)
m
Here,
o M,y =g — & + mhwy,
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e nyy(w) represents the average number of thermal photons in the bath mode at frequency
w, given by the Bose-Einstein distribution at thermal equilibrium with bath temperature

Thath:
1

— .
eXp ( kpThbath ) -1

e The coefficients ~,,, are in turn given by

Nth =

Yrlm = 2W@(Arlm)J(Arlm)’Prlm’27 (346)

where J(w) is the spectral function of the coupling rate to the bath, defined in turns of
the glw] and to be evaluated mode by mode, and © is the Heaviside function.

e Lastly, the matrix elements P,;,, are defined by

i (dr(t)|a — algi(t)) = Prme™ ", (3.47)

The above rate equation can be contrasted to Fermi’s golden rule for stationary systems
as follows. The transition frequency between two Floquet modes is now not simply given by
one unique difference in energy. Instead there are an infinite number of possible transition
frequencies, shifted by harmonics of the drive frequency wg. This is consistent with the fact
that the Floquet modes themselves can contain any harmonic of the drive in principle. The
total transition rate between two Floquet modes r <+ [ induced by the coupling to the bath
is now the sum of the rates of these different possible transitions, obtained by evaluating the
bath spectral noise density at these different transition frequencies.

It is easy to see that the rate equations (3.44) ensure that the asymptotic density matrix
Poo(t) is diagonal in the Floquet basis, since p,; — 0,7 # [, and that the state converges to a
unique classical mixture over the Floquet modes,

p(t) = poo(t) = Zpr [or ()X r ()] -

To compute the probability distribution {p,} corresponding to this mixture, it suffices to solve
the linear system of equations Rp = 0, with

Ryy =Ly — 6,0 ) Lym. (3.48)

The fact that the asymptotic density matrix is diagonal in the Floquet basis derives from a
secular approximation as part of the Floquet-Born-Markov approximation, where one neglects
time-dependent terms that oscillate at frequencies (e, — ;)/h — mwg, whenever either r # [
or m # 0. We will see later on that indeed no (near-)degeneracies occur in the quasi-energy
spectrum typically, so this secular approximation is justified.

3.2.2.1 Assumptions in this work, and numerical implementation

In this work, we assume the limit of a cold bath, and hence assume Ti,5;n = 0, so ng, = 0. We
furthermore assume J(w) = J to be constant. We observe that the maximal Brillouin-zone
difference that has to be chosen in (3.45) for the simulations to converge amounts to mmax = 5.
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We use the Floquet toolbox of the QuTiP [63] open source package to compute the Flo-
quet decomposition, using a modified version of the subroutine calculating the rate matrix R
in (3.48). The number of Fock states that has to be used to simulate the system depends on
the type of asymptotic cycle poo(7) obtained. We will address this question in Section 4.2.

One numerical difficulty that occasionally presents itself lies in the numerical evaluation of
the eigenvector of the transition matrix R corresponding to the eigenvalue zero. Numerically
we see that R shows at least one eigenvalue that is 0 up to machine precision. For some
system parameters we encountered the possibility of the transition matrix R exhibiting two
very-nearly degenerate eigenvectors, both corresponding to eigenvalues very close to 0. At
this point the employed numerical diagonalization algorithm becomes unstable, and whether
the steady-state poo is uniquely defined cannot be concluded based on the numerics. Such
parameter values will be removed from the numerical data in the next chapter, as mentioned
there.
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Chapter 4

Robust Floquet cat-confinement

Dans le chapitre précédent, nous avons présenté [’application de Poincaré et la théorie de
Floquet comme les deuz langages permettant de décrire le comportement a long terme de notre
systeme forcé. Dans ce chapitre, nous commencons par utiliser ces outils pour fournir une
définition physique concréte de 'objectif principal de cette partie: le confinement des états
chats de Schriodinger de maniére robuste. Pour définir ce confinement des états chats, nous
établissons un paralléle fort entre des solutions sousharmoniques classiques et des modes de
Floquet sous forme de chats quantiques, d’un nombre de composants correspondant. En effet,
nous montrons qu’une méme condition de résonance satisfaite par le forcage est responsable
a la fois des processus multi-photons qui confinent les états chats, ainsi que de [’existence des
solutions subharmoniques correspondantes. Dans la Section 4.2, les effets du chaos classique
sur le confinement des états chats sont étudiés. Pour cette étude, nous nous concentrons
sur une condition de résonance (3 : 1), correspondant & une variété de trois d’états chats
de Schrodinger a trois composants. Plutét que de converger vers une variété protégé d’états
chats, le régime asymptotique est fortement entropique, et l’état quantique se disperse sur
une grande surface de l’espace des phases. Nous montrons que [’abaissement d’un parameétre
effectif du circuit (appelé parametre de régularité) introduit dans le chapitre précédent supprime
complétement ce comportement chaotique. Nous présentons ensuite une explication théorique
en correspondance avec cette transition en fonction du parameétre de régularité, celle-ci basée
sur le blocage d’une route principale vers le chaos. Enfin, dans la Section 4.4, nous étudions
la protection de la variété d’états chats dans le régime non-chaotique, appelé régulier. Nous
montrons que l'augmentation du second parameétre effectif du circuit, appelé parameétre de
redimensionnement quantique, augmente lécart spectral de quasienergie entre les états chats
et leurs états de premi‘/ere excitation, sans jamais mener & des régimes chaotiques. Nous
concluons dans la Section 4.5 en ce concentrant sur les extensions possibles de la méthode
développée.

In the previous chapter we introduced both the Poincaré map and Floquet theory as the
two languages in which to describe the long-time asymptotic behavior of our driven system,
for the classical and the quantum version respectively. In this chapter, we first use these tools
to provide a concrete physical definition of the main goal of this part, namely the confinement
of Schrodinger cat states that are robust against perturbations. Our way of defining this
cat-state confinement draws a strong parallel between classical subharmonic solutions and
the different coherent-state components of the quantum cat states. In Section 4.2, we study
the breakdown of cat-state confinement due to classical chaotic dynamics. For this we focus
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on a (3 : 1)-resonance condition, corresponding to a manifold of 3-component Schrédinger
cat states. Rather than converging to a degenerate manifold of cat states, the asymptotic
regime is highly entropic, and the quantum state mixes over a large area in phase space. We
show that one effective circuit parameter (dubbed the regularity parameter) introduced in
the previous chapter can be lowered to eliminate the highly entropic regimes of the quantum
system. Next, we present a theoretical explanation in accordance with this phase transition
as a function of the regularity parameter 3, based on the blocking of a main route to chaos for
the system. This suggests that for a small but finite value of 8 the chaotic behavior can be
suppressed altogether. Lastly, in Section 4.4, we show that in the non-chaotic regime, a second
effective circuit parameter dubbed the quantum scaling parameter can be tuned independently
to increase the spectral gap separating the cat state manifold from higher-excited states,
without ever running into chaotic behavior. We conclude in Section 4.5, focussing on possible
extensions of the developed method.

4.1 (n:m)-resonances and Schrodinger cat states

In this section, we will show that the inductively-shunted transmon introduced in Section 3.1
can be used to provide Hamiltonian confinement of a degenerate manifold of Schrédinger cat
states. On the one hand, this is a proof that the studied system is well-chosen, as it can exhibit
highly-nonclassical behavior. On the other hand, our definition of cat qubit confinement lays
a connection between the classical and quantum system that we believe to be novel. The
presentation serves to introduce the desired behavior of the system, expressed in terms of the
Floquet decomposition of the system, without considering the influence of system and drive
parameters on the behavior of the system. This dependence on parameters is the subject of
Sections 4.2,4.3 and 4.4.

We start with a general introduction on the benefits of cat codes. This is done using
examples of general idealized models that confine the manifold of cat states. Next, in Sec-
tion 4.1.2, we detail how a degenerate manifold of three-component cat states can be confined
by appropriately driving the inductively-shunted transmon. We define this cat state confine-
ment in terms of the Floquet decomposition, and more specifically in terms of the long-time
asymptotic behavior characterized by Floquet-Markov simulations. In Section 4.1.3, we dis-
cuss an observed connection between the phase portrait of the classical Poincaré map on the
one hand, and the degenerate manifold of cat states on the other hand. We conclude that the
confinement of general n-component cat states goes hand in hand with stable n-orbits of the
Poincaré map, and vice versa.

4.1.1 Confined cat qubits

Let a € C be a given complex number, and denote by a the annihilation operator of a bosonic
mode, [a, aT] = 1. A coherent state |«) is the normalized quantum state parametrized by
a € C such that

ala) = ala),

A coherent state can be considered the most “classical” a quantum state can be, as in a phase-
space picture, |a) adheres to a Gaussian distribution centered around the classical point (x, p)

with o = z\%p , with equal and minimal standard deviations Az, Ap of the two quadratures
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given by the Heisenberg uncertainty principle:

The corresponding Wigner quasiprobability distribution is represented in Figure 4.1(left).
Given this classical correspondence, for a = |ale?® € C, we will call |a| the amplitude and 6
the classical phase of the state |«).

We can then define the normalized opposite-phase superpositions

oy _ la) £|-a)
ce) = N (4.1)

These states go by the name of Schrédinger cat states, as they form the quantum superpo-
sition of two opposite classical phases € and 6 + 7 of the oscillator, which can be considered
macroscopic when || is large. The states |CE) are orthogonal, whereas |+a) are not. The
normalization constant N3 amounts to

21 + (—ala)) = \/m

so for a large amplitude |a|, the two coherent states do become orthogonal for all practical
purposes. The basic idea behind the exact orthogonality of |CX) is a parity argument. To see
this, it is instructive to consider the representation of a coherent state in the basis of Fock
states |n), namely the eigenstates of the photon number operator afa:

-l Z ,with afa|n) =n|n). (4.2)

nEN

Indeed, in this way it can be verified that |C}) involves only states with an even number of
photons, and similarly |C; ) involves only states with an odd number of photons.

The cat states !Cg‘:> have been proposed as basis states of a quantum bit (or qubit), to be
used for universal quantum computation |78, 92]. The logical code space is spanned by the
computational basis states

‘C>\—/i_§|ca> =|a) + O(exp<—2|a|2)), (4.3)

L) = ct >\/§|Ca> - a>+o(exp(_2|a\2)), (4.4)

In terms of protection of information against errors, the merit of the proposed cat-qubit stems
from the fact that bit flips (errors mapping |0z) into |11) and vice versa) are exponentially
suppressed in |a|?. Increasing |o|? (also called the size of the cat, coinciding with the mean
photon number 7 = (a|afala)) thus exponentially suppresses the occurrence of bit flips.
This fact is not trivial to see, but we can generally understand this bit-flip protection in two
steps. First, mechanisms must be put in place to confine the physical state to the manifold
of cat states. For now assume the state remains within the code space, as we elaborate on
these possible confinement mechanisms hereunder. If the state remains within the code space,
we can look at the matrix element | (o|E|—a)|? proportional to the rate of direct transitions

0L) =
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Figure 4.1: Wigner representations of |a) , |—a), [C$) and |C%), for & = 2.5. The two coherent
states are well-separated in phase space, even for this moderate mean number of photons
n = 6.25. One can see that the sign of the interference fringes is interchanged for the two cat
states. The larger the value of |al, the closer the positive and negative interference fringes
alternate each other. This proximity may be another way to understand why larger cat states
become (linearly) more fragile to phase-flip errors.

between |a) and |—a) induced by an error operator E. One can show that this matrix element
is exponentially small in |04|2 for any error operator E that acts locally in phase space. This
is for example the case for displacement errors (E = a + af), and in fact for most physically
relevant error mechanisms. For the case of displacement errors we can calculate:

2
(—aja+ a”a)‘ = o — o*|? exp(—4\a\2).

A physical intuition for this scaling is that the two coherent states become more and more
separated in phase space when |a| becomes large, and operators that act locally in phase
space can only couple them with exponentially small rates. Using the same reasoning, one can
show that the rate of phase-flips (errors mapping }C$> into {C2> and vice versa) is expected
to increase with |a|2. Indeed, still considering displacement errors, we obtain

2
[(ezla+allep)| = o+ o',

when neglecting terms that are exponentially small in ]a\2. Note that the resulting increase
in phase-flip rate is only linear in ]a\Q however, and this remains true for error operators
that act locally in phase space. This noise-bias allows for more hardware efficient quantum
error correction, by ramping up |04|2 as to render bit-flip errors negligible, and subsequently
correcting only for the (linearly) increased phase-flip errors using quantum error correction
techniques. For this, the present noise-bias has to be preserved while performing a universal
set of logical gates [58, 103].
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As we mentioned the two-dimensional code space spanned by the cat states is embedded
in a larger, in fact infinite-dimensional Hilbert space. Hence, there is not only the danger of
logical errors occurring directly within the code space, but the physical state can also leak out
of the code space. Protection against this leakage can be provided in two different and com-
plementary ways, and state-of-the-art experiments have succeeded in confining a manifold of
cat states using either a dissipative stabilization mechanism [80, 82| or a Hamiltonian confine-
ment mechanism [55]. Recent theoretical work has shown that these two complementary ways
can also be combined [49], using well-chosen adaptations of the Hamiltonian providing the
confinement. The first approach [80, 82| stabilizes the computational manifold by engineering
a dissipative mechanism where pairs of oscillator photons are exchanged with single photons
of a strongly dissipative environment, typically composed of a second, low-Q oscillator. The
effective coupling Hamiltonian that has to be engineered is of the form

g2(a> — a?) @bl + g3 (aT2 — oz*2> ® b, (4.5)

which takes place at a rate |go|, and where the b mode is designed to be low-Q, and in
interaction with a cold bath. In summary, in the dissipative case, a quantum state that has
leaked outside the code space is actively made to reconverge to the code space, due to the
dissipative stabilization of the cat qubit manifold. The local reconvergence rate due to this
effective two-photon dissipation process is of the order [92]

|§72|2 2
~N — a‘
Kp

K2 )
where k; stands for the photon loss rate of mode b.

As a second flavor of cat-qubit confinement [55|, a Kerr-Hamiltonian of the following form
is engineered,

Hier = K (al? — a*2) (a2 — 0?), K > 0. (4.6)

The cat qubit code space thus coincides with the kernel of Hgerr. For this Hamiltonian
cat-qubit confinement, once the state is perturbed out of the code space, there is no active
mechanism to bring it back. However, for a given strength of Hamiltonian perturbations,
one can determine how much the cat qubit manifold is perturbed as a whole by considering
the gap in the spectrum of Hger. When applying sufficiently weak and sufficiently slowly-
varying Hamiltonian perturbations, typical results from perturbation theory [65] tell us that
the perturbed eigenspace will remain very close to that of the cat qubit manifold. For the
case of the Kerr Hamiltonian, this spectral gap is shown to scale as

4K |of?

in the limit of large |a|. In the next subsection, we define an analogous spectral gap on the
quasi-energies of the driven system, capturing the analogous robustness of the cat subspace
as a whole to sufficiently weak and sufficiently slowly-varying Hamiltonians.

As a last point, the question remains how to engineer Hamiltonians that confine cat states,
such as (4.5) or (4.6), starting from the available superconducting circuit elements, preferably
with large go and K respectively in order to achieve strong cat confinement. The Josephson
junction plays the central role of the nonlinear element with which such nonlinear processes
are engineered. To engineer a given nonlinear process, one typically applies one or several
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microwave drives called pumps [55, 80]. For example, (4.5) can be seen a four-wave mix-
ing process mediated by the junction that is made resonant by applying a microwave pump
satisfying the frequency-matching condition [82]

2wq = wp + wp,

where w, is the frequency of the a-mode, wy, is the frequency of the b-mode, and w, stands
for the frequency of the applied pump.

The engineering of such parametric interactions through basic first-order analysis meth-
ods (such as first-order rotating-wave approximation [132|, and first-order adiabatic elimina-
tion [8]) is now state-of-the-art knowledge. Our contribution will be to show how these can be
kept robust in more extreme regimes corresponding to large driving amplitudes, and we will
perform this study for the benchmark system of the inductively-shunted transmon. We will do
this for the exact system, considering the full Josephson nonlinearity and true time-dependence
due to the driving. This creates a first difficulty to be overcome, namely characterizing the
correct resonance condition that selects the desired parametric interaction. In this chapter,
we adopt a numerical approach for this based on numerical Floquet-Markov simulations of the
driven quantum system, while in Chapter 5, such resonance conditions are characterized in the
limit where the oscillator can be considered to be classical. We there perform an approximate
analytical study. In the remainder of this section, we will focus on drive parameters for which
a given resonance condition is satisfied. The benefit of considering the full cosine potential
and the exact time-dependence through numerical Floquet-Markov simulations is that effects
are captured that go beyond approximate models such as rotating-wave approximations. We
identify these effects as chaotic dynamics in Section 4.2, and show how these can lead to the
breakdown of the desired parametric process if the circuit parameters are not well chosen.

4.1.2 Floquet-Markov signatures of cat confinement

In this section, we will show that the inductively-shunted transmon can be used to confine a
degenerate manifold of Schrédinger cat states. We focus on a fixed set of appropriately chosen
drive parameters, and we define the cat state confinement based on the Floquet decomposition.
We focus on the asymptotic regime of our system with Hamiltonian (recalled from (3.11))

p° x* B
Hr) =2 +5 - 55 cos(\/iAx + &y sin(VdT)), (4.7)
and consider a weak dipolar coupling to an environmental bath, as modeled in (3.42). Recall
from Section 3.2.2 that numerical Floquet-Markov simulations then allow us to find the unique
infinite-time asymptotic state poo(7) as a probabilistic mixture over the Floquet modes |¢, (7)),

poo(T) =D prldr(T)Nr(7)].

We recall that for these Floquet-Markov simulations we assume a zero-temperature bath, and
frequency-independent coupling rates to the different modes of the bath.

With well-chosen drive parameters (v4,&4), we obtain the asymptotic regime displayed in
Figure 4.2. A joint account is given of the quasi-energies of the driven system (3.11), as well
as the occupation probabilities of the corresponding Floquet modes in po. In plot (a), one
can see that the probability vector p, only has considerable support on a triplet of dominant
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Figure 4.2: Numerical account of the infinite-time Floquet state poo(7), for f = 0.5, A =
0.2,&4 = 0.75 and vg = 3.5. (a) The Floquet quasi-energies are plotted against their respective
occupation probabilities. The quasi-energy spectrum shows three branches that are separated
by v4/3, making e, mod v4/3 threefold degenerate to good approximation. The corresponding
occupation probabilities show the same trend, with 3 states being equally occupied in triplets.
poo mainly has support on one dominant triplet of modes |¢%) only. This signature of resonance
is confirmed in the plots on the right. (b) Wigner representation of one of the three dominantly
occupied Floquet modes, at time 7 = 0. The mode is seen to represent a three-component
Schrodinger cat state. The other two modes |¢%) ,k = 1,2 in the triplet correspond to three-
component cat states with complementary interference pattern. (c) Wigner representation
of one of the three Floquet modes |ng) with next-highest occupation probability, at time
7 = 0. The |ng) show a close resemblance to the three analogous symmetric superpositions
of displaced Fock |1)-states. These excited states are seen to be the most coupled to the cat
states, as they have the next-highest occupation probability. The quasienergy spectral gap
Ae between the [¢¢) and the |n}') amounts to 0.073.

Floquet modes, that each share the same occupation probability (~ 1/3). We will denote
these dominant Floquet modes by |¢%),k = 0,1,2. We also observe that the quasienergies
elloy)] of |of) are degenerate modulo v4/3 up to very good accuracy. This is a signature of
resonance in the driven system. A Wigner representation at time 7 = 0 mod 27 /v, of one
of these dominant modes can be seen in plot (b), showing that within good approximation,
|¢) corresponds to the symmetric coherent superposition of three coherent states, namely
a Schrodinger cat state. The other two states |¢}),k = 1,2 correspond to the two other
three-component cat states with the complementary interference pattern. Further numerical
simulations (not shown) indicate that the ¢ (7)) represent cat states at any time 7, and

that, moreover, for the physical state | (7)) = e~ielon)] |¢% (7)) (recall (3.39) from Floquet
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theory) which is a solution of the Schrodinger equation with Hamiltonian (4.7) we can write,
up to an insignificant accumulated global phase:

2

1 ) , v

Y5 (7)) = ‘Cg(mod3)(7)> =@ > s ae*”é”e*l?‘”>,a €Ck=0,1,2,  (48)
k 1=0

where N, k(g) is an appropriate normalization constant. The [¢(7)) are therefore approximately
given by the completely symmetric superposition of three coherent states, uniformly rotating
at angular frequency v4/3.

In Figure 4.2(a), we can see that the next-most occupied triplet [ng) of Floquet modes is
populated with a probability that is a few orders of magnitude smaller (p, ~ 1073). These
correspond to the Floquet modes that are most coupled to ¢ (7)) (defined by Fermi’s golden
rule (3.45) of Section 3.2.2), resulting in the next-highest occupation probability. These can
be considered to be excited states of the |¢f), in this non-equilibrium driven system, and
we will denote them by |97 (7)). Figure 4.2(a) shows that this process continues in three
separate branches that can still be labeled by & = 0,1,2, with every next-most coupled
state down the branch being ordered in decreasing occupation probability. We see that also
every excited triplet of states shares the same occupation probability, and furthermore, the
quasienergies of each triplet are likewise approximately degenerate modulo v4/3. They thus
form resonant triplets, just as the cat states |¢f (7)), and this process continues until the
occupation probabilities become negligible (p, ~ 107%) for these system parameters.

We can get some basic intuition into this asymptotic, infinite-time regime, based on the
possible transition rates between Floquet modes induced by the coupling to the cold bath.
With such a dipolar coupling, we can expect the environment to be able to discern the different
possible cat states from one another. Moreover, the transition rates between |¢}) ,k =0, 1,2
are equal in all directions. For the case of two-component cat states (see (4.1)) for example,
the transition matrix element induced by single photon loss errors reads

[ (Cglalcg)| =~ laf,

up to terms that are exponentially small in |a|2, which indeed implies equal transition rates
in both directions. One can generalize this argument to three-component (and general multi-
component) cat states, and so the asymptotic state po(7) within the degenerate cat manifold
essentially mixes equally over the 3 different cats:

3 3

1 (0% (0% 1 (6% (0%
Poo(T) = 3 Z |9 (T)X @k (T)] = 3 Z Cr (mod 3) (T)><Ck (mod 3) (7] (4.9)
k=1 k=1
which can be rewritten as
1 3 l vy ! Z
~ —2igm —i-2T —2igm —i-2T
Poo(T) =~ 3 Z ‘ae 3Te "3 ><ae sTe '3 (4.10)

k=1

Also for the higher-excited states we can attribute this triplet-structure of p, to the transition
rates being equal in all directions. The transition rates between the cats [¢f) and next-excited
states |nf) are highly unidirectional, for this specific bath model, with |n$) transitioning into
|¢%) at a much higher rate than vice versa, which explains the convergence of p, to a mixture of
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essentially only the |¢%). For this non-equilibrium driven system, the |n}’) are still occupied to
some extent, even for the case of a bath at zero temperature. Up to this residual population
of excited states (0.1% for the case of Figure 4.2), which we will neglect in the following
argument, the coupling to the bath respects the cat code space, however.

Apart from characterizing the limit of infinite time, the obtained Floquet decomposition
also allows us to describe the transient behavior of the system, for which we can neglect the
weak coupling to the bath. Consider an initial state within the cat code space, and suppose
we want to apply logical operations on the cat qubit. A prominent approach is to apply an
extra drive that is resonant with the transitions between the |¢f) (see e.g. Zeno gates for
two-component cats [49, 58|). For this one needs to drive at the frequency

Vq
o

] (4.11)

Vgate ‘= +

or possibly shifted over a number of Brillouin zones, in which case vgate = &% +1vg,l € Z. If
this driving also induced transitions between the |¢¢) and other Floquet modes however, the
state is driven out of the logical code space. Transitions to the first-excited states |n}) will be
the most prominent when driving with frequencies around approximately vgate, as their quasi-
energy difference to the cat states is the smallest modulo v4/3 (see Figure 4.2(a)), and hence
transitions between |ng) and |¢f) are the next-most resonant. To maximally benefit from
strong driving, which enables fast Hamiltonian gates, we want the quasi-energy gap between
the |ng) and [¢F) to be as large as possible, so the state remains within the logical code space.
Hence we define the quasienergy spectral gap as

Ac = min  minlellé®)] — el 4.12
€=, nin min |ef|¢f)] — ellni)] + Ival, (4.12)

where e[|¢f)] corresponds to the quasienergies of the cat states |¢%), and e[|n})] stands for
the quasienergies of the first-excited states |nj). This definition is directly analogous to the
spectral gap reported to provide protection during fast gates in the case of Kerr cats [55].
One of the main conclusions of this chapter is to identify the quantum scaling parameter A
as the main parameter governing the magnitude of this spectral gap Ae, hence increasing
the confinement rate (and therefore the protection) of the cat qubit during such Hamiltonian
driving. We will study this in Section 4.4

4.1.3 Correspondence with classical subharmonics

As mentioned, this part of the dissertation sets out to understand the behavior of the quantum
system by also studying the equations of motion of the corresponding classical system. A first
connection between the quantum and classical system can be established in the context of
the desired behavior of Section 4.1.2, namely the confinement of Schrédinger cat states. We
establish this connection by numerically simulating the Poincaré map P associated to the
classical equations of motion, recalled here from (3.14)

dz
dr
dp p

= —x B
dr Q  V2\

= p, (4.13a)

sin(\@)\x + &4 sin(ud7)>. (4.13b)
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We recall from Section 3.2.1.1 that P samples continuous-time solutions of (4.13) at multiples

= ({2}

of the drive period, as

with 2(0) = zg, p(0) = po.

0.105

Figure 4.3: Quantum-classical correspondence of the asymptotic regime for Q = x,8 =
0.5,vg = 3.5,§4 = 0.75 and A = 0.2. (a) 6 orbits of the Poincaré map P are plotted over
300 iterations of P. Each different orbit is plotted in a different color. The red-shaded orbits
correspond to irrational flow on nested invariant tori [2, 45, 74, 94| encircling the nominal fixed
point of P (corresponding to a harmonic, 27 /v4-periodic continuous-time trajectory). The
green-shaded orbits are seen to encircle a 3-orbit of P with three different phases. The blue-
shaded orbits encircle both the nominal fixed point, as well as the 3-orbit of P corresponding
to this (3 : 1)-resonance. For a finite Q, the red orbits slowly spiral into the nominal fixed
point, which then corresponds to a stable node. A similar conclusion holds for the green
orbits and the 3-orbit of P. (b) Husimi Q-function of ps at time 7 = 0 mod 27/v4. Note the
uniform distribution of p, over the three cat states |¢3(0)),k = 0,1,2, or equivalently over
three coherent states |oy),l = 0,1,2. The locations of the 3 coherent states displayed in the
Husimi Q-function are seen to correspond to the classical phases of the 3-orbit of P up to very
good accuracy.

Figure 4.3 shows the phase portrait of P in the dissipationless case of Q= (a) alongside
the Husimi-Q function of the asymptotic state po, at times 7 = 0 mod 27 /vy (b). The Husimi-
Q function will be the preferred representation for p.., as the Wigner representation does not
show an interference pattern for p., in any case, and the Husimi-Q representation shows a
closer analogy to the classical system. Encircled by a family of quasiperiodic orbits ' shown
in red in Figure 4.3(a), P admits a fixed point (z®, p®)),

h h h h
P(I§ )} )) = (@, "),

! These quasiperiodic orbits correspond to irrational flow on nested two-dimensional invariant tori [2, 74, 94]
of the suspended system (where 7 is considered a dynamical variable with 7 = 1), enclosing the subharmonic
orbit.
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Figure 4.4: Schematic depiction of the observed quantum-classical correspondence in the con-
text of Schrodinger cat Floquet modes. (a) Illustration of the dynamics of the classical periodic
planar system (4.13) with two standard axes z, p and time 7 considered as a third periodic
variable. A (3:1) subharmonic trajectory is shown in black, intersecting the surface of the
Poincaré section S in three points (red, blue and green). (b) Schematic depiction of the
equivalent quantum system given by the Hamiltonian (4.7). The periodically driven system is
characterized by the Floquet modes of the Hamiltonian. At the (3:1)-resonance, we observe
three Floquet modes |¢% (7)) with quasi-energies degenerate modulo v4/3. The Floquet modes
superposition |¢7 (7)) can be mapped, qualitatively and quantitatively, to the three amplitudes
on (a), with Floquet choice 7 = 0 mod 27 /v, corresponding to the choice of intersection time
for the Poincaré section §. Concerning the cat-confinement, assuming a zero-temperature flat
spectrum bath (see (3.42)), the |¢f(7)) are dominantly populated in the asymptotic regime.
The three Floquet modes |9 (7)) represent the most coupled excited states that are also
populated in this asymptotic regime. The gap Ae between the quasi-energies of [n(7)) and
|¢% (7)) provides protection of the three-component Schrédinger cat state during fast Hamil-
tonian gates. Wigner functions associated to these Floquet modes are represented for k = 0
and at time 7 = 0 modulo 27 /vy.

corresponding to a 27 /vg-periodic harmonic solution (2™ (7), p® (7)) of (4.13), with () (0) =
xgh), p (0) = p(h). Encircled by a family of quasiperiodic orbits shown in green, P admits a

3-orbit {( l(g 1),pl(3:1)),l =0, 1,2}, corresponding to 3 fixed points (x 1(3 1)7171(3:1)) of P3. The

corresponding 67 /vg-periodic solution (231(7), p®1 (7)) completes one lap around the har-
monic solution (z™,p®) during its period 67 /vy (not shown here). Hence the superscript
(n :m) = (3 : 1), since the subharmonic is of period n = 3 times the drive period, and
completes m = 1 lap around the harmonic solution during its period (see Definition 4.1).

Definition 4.1. Consider a harmonic, 27 /v4-periodic solution (2™ (1), p( ( )) of (4.13). An
(n : m)-subharmonic is defined as a 27n/vg-periodic solution (z(™™) (1), p™™ (7)) of (4.13)
that completes m laps? around the harmonic solution (z®™(r),pM™ (7)) durlng its period
2nm/vg.

Now let us again consider the Husimi-Q representation of the asymptotic quantum state
Poo in Figure 4.3(b). Consistent with (4.10), pso predominantly has support on three coherent

2Note that two different solutions at the same time 7 cannot cross, so this is well-defined.
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states |aq),l =0, 1,2, and, moreover, we approximately have that
Jfl(&l) +Zpl(31)

V2

This general quantum-classical correspondence is depicted schematically in Figure 4.4. In Fig-
ure 4.4 (a), the subharmonic orbit is shown in a representation where the time 7 is considered
a third dynamical variable, with 7 = 1. This lifts the classical equations of motion to an
autonomous dynamical system in 3D (so solutions are not allowed to cross), where 7 should
be considered a periodic variable, such that the state space corresponds to that of a torus if we
consider a bounded domain for x and p. A (3 : 1)-subharmonic trajectory is shown in black.
The three fixed points of P correspond to the intersection points of the trajectory with the
Poincaré surface of section S, which is defined by 7 = 0 mod 27 /v,. The corresponding Flo-
quet modes [¢¢ (7)) are depicted schematically in Figure 4.4(b), and a Wigner representation
at time 7 = 0 mod 27 /v, is included, showing that the |7 (7)) resemble cat states.

Comparing the Floquet-Markov simulations of the quantum system with the phase portrait
of the classical Poincaré map for different drive parameters (4, £4), this quantum-classical cor-
respondence is seen (simulations not shown here) to be valid for general (n : m)-subharmonics
and general multi-component Schrodinger cat states. This leads us to Observation 4.1, sum-
marizing the conclusions of this section.

(07 as

Observation 4.1. Consider a pair of positive coprime integers (n,m) and define the parity
r = (n+m)mod2, so either r = 0 or r = 1. The existence of an (n : m)-subharmonic
of (4.13) indicates the existence of (1 + r)n associated Floquet modes |3 (7)) of (4.7) that
correspond to (1 + r)n-component Schrodinger cat states. The corresponding quasi-energies
ellog)] are degenerate modulo T*vg, due to a multi-photon process where (1+r)m drive photons
at frequency vq are converted into (1+7)n photons of the oscillator at frequency vy, and vice
versa. Moreover, this manifold of cat states is spanned by states approximately of the form

U2 = | Chmod 1030 ) (4.14)
1 et 2tk _q| _gilm_p _.m
:/\W Z e trnT lge T A+nTe 7«an7’>’ k:(),,”7(1_|_r)n_1.
k 1=0

This general correspondence motivates the study of classical (n : m)-subharmonics of the
classical system as to find the drive parameters that lead to the confinement of a manifold
of general multi-component cat states. Characterizing the set of (n : m)-subharmonics using
perturbative techniques will be the subject of Chapter 5. To understand the role of the
parity » = (m + n) mod 2 in Observation 4.1, we need to consider a global symmetry of the
system which is due to the parity of the Josephson cosine potential, and which is treated in
Section 4.1.4. Section 4.1.4 is not essential to follow the remainder of this chapter however.

4.1.4 Global symmetry from parity considerations

The system exhibits a global symmetry, linked with the parity of the Josephson cosine poten-
tial. We will discuss the consequences of this symmetry on the corresponding classical system,
and link back to the consequences for the quantum system at the end of this subsection. This
will allow us to explain the role of the parity » = (m + n) mod 2 in Observation 4.1.
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Recalling the classical equations of motion (4.13) here,

dz

— 4.15
o =P (4.15a)
dp ___p_

= —x 6
dr Q  V2\

one can see that the transformation

sin (\/5)\33 + &4 sin(yd7)> , (4.15b)

r — -,
p — —p, (4.16)
T = T4+

Vd

leaves (4.15) invariant, as all individual terms change sign. This symmetry implies that for
any given solution (z(7),p(7)) of (4.15), another exact solution of the system is given by
(—=2(7+.-), —p(7+7)). This observation has the consequence that when considering periodic
orbits of P, we can classify them into two distinct categories. Consider a harmonic solution
(x1(7),p1(7)) with the period of the drive, i.e. i—g—periodic. As a first case, we can have that

x1 (T + :) = —x1(7r), V7T €R, (4.17a)
d

p1 <7‘ + :) = —pi(1), VreR, (4.17b)
d

in which case we merely obtained a particular symmetry of the given solution. We will
call harmonic solutions for which (4.17) is valid symmetric harmonics. Note that (4.17) im-
mediately implies that the solution has the period of the drive, as z1(7) = —z1(7 + o) =
(=1)2z1 (T + 27:) =z (T+ 277;), and analogously for p;. As a second case, assume the orbit does
not exhibit the symmetry (4.17), in which case we can immediately identify a second, different
solution of the system. Both of the considered harmonics will then be called non-symmetric
harmonics.

The same reasoning can be applied to n-orbits of P, so considering a solution (z,(7), pn (7))
for which (z,(7),pn(7)) = (zn(7 + %ﬁl—d”),pn(T + 237”)) Indeed, applying the symmetry (4.16)
n times, we have a derived symmetry of the system:

x — (=1)"z,
p — (=1)"p, (4.18)
T = T+ %

We can similarly classify the n-orbits by asking the question if
Tn (7‘ + mr) = (—=1)"z,(7), (4.19a)

Pn <r + ””) = (—=1)"pn(7), (4.19b)

holds or not. We can see that when n is even, this leads to a contradiction, as the period

of the solution would be given by %, corresponding to an n/2-orbit of P. We can conclude
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that an m-orbit of P cannot exhibit the symmetry (4.18) when n is even. However, when n
is odd, the symmetry is well-defined. We then either have a so-dubbed symmetric n-orbit for
which (4.19) is satisfied, or we can identify a second, different n-orbit of P corresponding to
(=zn(T+ 72), —pn(T + 77))-

The remaining question to be answered is which n-orbits of P adhere to the symme-
try (4.18), and which do not. In numerical simulations of the Poincaré map, we observe that
(not shown here) for the specific class of (n : m)-subharmonics defined in Definition 4.1, the
subharmonic adheres to the symmetry whenever n+m is even, whereas (n : m)-subharmonics
where m+n is odd are non-symmetric, and hence always come in pairs. While we do not have
a general proof of this fact, we can gain some intuition by anticipating some of the results
of Chapter 5. In Chapter 5, we show that for small enough values of 3, for any pair of pos-
itive integers (m,n) that are coprime, there exists a prominent class of (n : m)-subharmonic
solutions of the form

2mm(r) ~ R sin(%ucﬂ‘ + 0), (4.20a)

. m
™™ (1) ~ R cos (ngT + 9), (4.20b)

for some distance R > 0 and angle 6§ € [0,27) that depend intricately on 5 and the drive
parameters (v4,&y). We can see that when n+m is even (so both m and n are odd, as they are
coprime), the solution (4.20) exhibits the symmetry (4.19), corresponding to a symmetric n-
orbit of P. When n+m amounts to an odd number, the solution in question is non-symmetric.
In this latter case, a second (n : m)-subharmonic resonance can readily be identified, by
applying (4.18) to the original solution. We see numerically that this discussion remains valid
for any (n : m)-subharmonic where n and m are coprime, whether they be approximately of
the form (4.20) or not.

An analogous discussion for the quantum system can be made. We can make use of the
following lemma to show that certain Floquet modes must necessarily come in pairs.

Lemma 4.2. Consider a Floquet mode |¢(T)) of the quantum Hamiltonian H(T) given in (4.7)
with corresponding quasienergy ¢,

(#17) ~ i) 6t =<0t

(3)

is also a Floquet mode of H(T), with the same quasienergy €.

Then
i) =

Proof. Recalling

2 2
H(7) = % + X? - 2’% cos (\/5/\X +&q Sin(VdT))7

it is easy to see that H(7) adheres to the symmetry

eiwaTaH (7_ + 7T> — H(T)emaTa'



This readily implies that

Lemma 4.2 implies that the Floquet modes must either be symmetric, with

eiwaTa

¢<T n 7;)> —16(r)), (421)

o))

or they must necessarily come in pairs of two non-symmetric Floquet modes (|¢>(T)> ,

with
(T ) > .
vy

The question is again which Floquet modes of the system are symmetric and which are not.

) et

Using the approximate relation

1 n—1

-1k
R (7)) = |Chlmod ny ) =~y D€ "
‘ > N,ﬁ ) pr

-lm

aoe_mﬂe_igw> k=0,..n—1,  (4.22)

with
iRe™ %

\@ )

a completely analogous discussion as for the classical system shows that for a given pair of
coprime integers (n,m), these correspond to symmetric Floquet modes only when m + n is
even (so both m and n are odd), and have to come in pairs when m + n is odd. This explains
why for m + n odd, Observation 4.1 shows a doubling of the number of cat-state Floquet
modes.

As a last point of this section, note that if we had considered a DC-biased Josephson
potential

g =

ﬂ COS()\-T + beias + §d Sin(VdT)) ; ¢bias 7& Oa

then the symmetry (4.16) would be broken, as the corresponding term in the vector field (last
term of (4.15b)) no longer exactly switches sign. Hence, if we had taken a different flux bias
point in Section 3.1, this discrete symmetry would not have been present, and the condition
that m + n must be even would not be necessary in Observation 4.1.
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Figure 4.5: Floquet-Markov simulations of the weakly-dissipative quantum system governed
by Hamiltonians (3.11) and (3.42), identifying the asymptotic quantum state p as a function
of drive parameters £z and v4. We target a (3:1)-resonance, for a fixed value of the quantum
scaling parameter A = 0.2 and two different values of the regularity parameter 5 = 0.5 (plots
(a),(c),(e)) and B = 1.5 (plots (b),(d),(f)). Plots (a) and (b) show the effective number of Flo-
quet modes Ny over which the asymptotic periodic orbit is mixed (see (4.23)). We observe
black zones with essentially one Floquet mode (harmonic regime), purple zones with essen-
tially three Floquet modes ({|¢%) }r=12,3 of Figure 4.4(b), representing the (3:1)-subharmonic
regime), and yellow zones indicating a highly entropic pso. The white points in plots (a,b)
indicate that the numerical simulations are inconclusive to determine po, see Remark 4.1 for
an explanation. The Husimi Q-functions shown in plots (c) and (d) correspond to the green
cross on the associated plot of Noc.. Plot (c) essentially corresponds to an equal mixture of
the degenerate Floquet modes {|¢%)}x=123. Plot (d) shows the wave-packet explosion [23]
characterizing a highly entropic asymptotic regime (note the different color map compared to
(c)). Plots (e) and (f) show phase portraits of the Poincaré map P of the associated classical
dynamics (3.14) in the limit of infinite Q. Each color corresponds to a different orbit of P. In
(e), we see a center close to the origin, associated to a harmonic solution, encircled by orbits in
shades in red corresponding to nested invariant tori [2, 74, 94| enclosing the harmonic center.
The orbits in green are seen to encircle three fixed points (centers) of P which appear as
three distinct phases of the corresponding 3-orbit of P. Finally, the blue orbits correspond to
nested invariant tori enclosing the harmonic and subharmonic orbits. In plot (f), the harmonic
and subharmonic solutions are still present but are enclosed by a vast chaotic region, densely
covered by a single orbit plotted in blue. This chaotically covered region resembles the region
covered by the wave-packet explosion in (d)
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4.2 Signatures of classical chaos in asymptotic quantum regime

In this section, we perform a numerical study of the quantum system to analyze the effect of
a first circuit parameter, namely the regularity parameter § = E;/E} that was introduced
in Section 3.1.1. For this we focus on the asymptotic behavior of the system, captured by a
classical probability distribution over the different Floquet modes:

poo(T) =Y pr 6r(T)Nr ()]

Both the Floquet modes |¢,) and the occupation probabilities are calculated through the
numerical Floquet-Markov simulations introduced in Section 3.2.2, according to the model
introduced in Section 3.1, where the system is weakly coupled to a cold bath. We characterize
this asymptotic behavior by the von Neumann entropy S of pso(7),

S(poc) = = Tr(pos In(poc)) = — Zpr In(p;),

i.e. the standard entropy of the classical probability distribution over Floquet modes. The
effective number of occupied Floquet modes can subsequently be defined as

Noce = exp(S(po))- (4.23)

A state that is the uniform mixture of Ny Floquet modes leads to the same von Neumann
entropy as poo-

We fix A = 0.2 and study the asymptotic regime for various values of 3, while varying the
drive parameters, focusing on the case of a (3 : 1)-resonance. Our findings are summarized
in Figure 4.5, where we focus on two possible values of § = 0.5,1.5. Plots (a) and (b) of
Figure 4.5 show the effective number of modes Ny.. as a function of the drive parameters.
Plot 4.5(a), for § = 0.5, features two zones: the black one, corresponding to a dominant
harmonic solution, and the purple one, corresponding to a dominant (3:1)-subharmonic solu-
tion. Indeed, a Husimi-Q function of p(0) for drive parameters chosen in this subharmonic
zone shows essentially a mixture of the three states |¢%(0)),k = 0,1,2 (Figure 4.5(c)). In
plot 4.5(b), for = 1.5, a high-entropy zone appears in yellow. In this zone the subharmonic
regime is essentially lost, and po(7) spreads over a large portion of phase space, as seen in
plot 4.5(d). This spreading is called wave-packet explosion and is a quantum signature of
classical chaos in the weakly-dissipative regime [23|. Stronger dissipation (with respect to
the Lyapunov exponents of classical chaos) would instead induce wave-packet collapse along a
classical chaotic trajectory [23]. To investigate this classical dynamics, Figures 4.5(e,f) show
the Poincaré maps corresponding to (3.16), for the same parameter values 3, v4, & and in the
limit of infinite Q. Each color represents an orbit associated to a different initial condition.
Close to the origin of plot (e), a fixed point indicates a harmonic solution of (3.16), surrounded
by closed orbits corresponding to invariant tori enclosing the harmonic center. Further from
the origin, orbits encircling three points of the same color indicate a 67 /v -periodic solution
of (3.16), corresponding to three fixed points of P. For a large yet finite Q (not shown), the
closed orbits become slowly winding spirals, indicating the asymptotic stability of the stable
nodes. In plot (f), for § = 1.5 these regular features reduce to very small zones, while a large
portion of phase space is covered by a single dense orbit, indicating a dominantly chaotic
regime. The densely covered region is very similar to the wave packet explosion of plot (d).

59



0.025 - - 2
|66(7)) |6(0)) (b)
° ° ° 10'
0.0201 @ | - 0
0_
0.015 1
—101— : — R_2
<
2
0.010 [75(0)) )|
10 -
nG (7))
0.005 { ags ige. e, SoartySonses | 0
TR MM NG 01
S Ve 1 Vet Tuy
..:oy. % f.."...’ og ’:...’ oo
0.000 Lot 2e b —101- - , 2
-1 0 1 —10 0 10 ™
€ x

Figure 4.6: Characterization of p for the parameter values of Figure 4.5 (d) (8 = 1.5, =
0.2,64 = 1.75,v4 = 3.5). (a) The Floquet quasi-energies are plotted against their respective
occupation probabilities in po,. We observe a triplet of most occupied states whose quasiener-
gies are degenerate modulo v4/3, indicating a (3 : 1) resonance. The next-most occupied
Floquet modes are seen to all be occupied to similar extents, and together make up 93% of
the total population (mind the linear scaling for p,). (b) Wigner representation of the most
occupied Floquet mode, at time 7 = 0. We still roughly observe a symmetric superposition
of three coherent states as in Figure 4.2, which however appear squeezed and distorted. (c)
Wigner representation of the fourth-most occupied Floquet mode, at time 7 = 0. Instead
of a symmetric coherent superposition of displaced Fock-|1)-states as in Figure 4.2, we ob-
serve a distorted state closer to a symmetric superposition of displaced Fock-|2)-states. The
quasienergies of the next-occupied states densely fill up the first Brilluoin zone, showing the
absence of an energy gap wth respect to the cat state manifold.

Remark 4.1. The white points in plots 4.5(a,b) indicate where the numerical Floquet-Markov
simulations are inconclusive to determine the asymptotic behavior. We recall from Sec-
tion 3.2.2, that the probabilities p, are determined as the unique vector making up the kernel
of the matrix R describing the transition rates between Floquet modes (see (3.48)). For the
parameter values corresponding to the white points in plots 4.5(a,b), R exhibits two different
eigenvectors of probabilities (pa,) and (pp,) that correspond to very small eigenvalues:

PA1 PB1
R|PA2 | ~R|PB2| ~0.
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The kernel of R is then spanned by a probabilistic (convex) combination of situation A and
situation B. In other words there is no unique steady state po, for which to plot Noc.. For the
white points of plot (a), both the harmonic regime (displaced vacuum) as well as the (3 : 1)
subharmonic regime are eigenvectors in the kernel of R. The white points in plot (b) represent
a similar situation, but where both the (3 : 1) and a (5 : 1)-resonance appear to approximately
make up the kernel of R. In any case, the two situations A and B are always seen to correspond
to regular situations, where only a handful of states are occupied (in case of a resonance), or
where the system is in a pure state (displaced vacuum), and no chaotic regime is observed for
the white points in plots 4.5(a,b). We would also like to stress that the computation of the
Floquet modes that make up situation A and B have themselves fully converged in terms of
the truncation of the Hilbert space. For the physical long-time evolution of the system, we
can expect any distribution in the kernel of R to be long-lived, so both situations A and B
should be metastable.

To get a different view on how the cat-confinement is broken by the chaotic regime, we plot
the Floquet quasienergies €, against their respective occupation probabilities in Figure 4.6,
for the drive parameters of Figure 4.5(d). Comparing to the regular case of Figure 4.2, we can
see that a triplet of most-occupied Floquet modes can still be identified, vaguely resembling
Schrédinger cat states, which appear severely distorted however. Moreover, together these
three modes only make up 7% of the total population, as opposed to 99.6% in the regular case
of Figure 4.2. The remaining Floquet modes are all occupied with probabilities that are of
the same order of magnitude (~ 1/200), and together make up 93% of the asymptotic state
Poo- Notably, the quasienergy spectral gap defined in (4.12) is ill-defined here, as no clear
exited state can be designated that is most coupled to the cat state triplet, and we can see
that quasi-energies corresponding to occupied Floquet modes seem to become dense.

Further Floquet-Markov simulations (not displayed here) show that for the range of drive
parameters displayed in Figure 4.5(a,b), no highly entropic points are observed for any 5 < 0.5,
and the plots of Ny looks essentially similar (except for an AC-Stark shift [115] of the resonant
drive frequencies that scales with §). Furthermore, also when varying A (see the simulations
in Figure 4.9, in Section 4.4), no chaotic behavior is observed for 5 = 0.5. This suggests
the following general picture: for low enough values of 5 < 0.5, target subharmonics remain
robustly stable when varying the drive amplitude and accounting for the AC Stark shift [115].
For larger values of 8 2> 0.5, ramping up the drive amplitude carries with it the danger of
inducing a highly entropic regime instead of the target resonance. In the next section we
propose a theoretical explanation compatible with these observations. Performing a system
theoretical analysis on the classical equations of motion, we study what can be concluded
using analytical tools, for small enough S.

4.3 Avoiding chaos in the classical system

In the previous section, numerical Floquet-Markov simulations indicated that when choosing
the regularity parameter 5 small enough, we can seemingly suppress high-entropy asymptotic
regimes for the periodically-driven dissipative nonlinear quantum system governed by 4.7. We
further argued that such high entropy regimes go hand in hand with large chaotic regions
in phase space for the corresponding classical system. In this section, we hence study the

61



behavior of the classical system (3.16), recalled here:

dx)y
I 4.24
% =T\ ]2 — Bsin(zy + &g sin(var)). (4.24b)

The goal of this section is to prove that taking § small enough would prevent (4.24) from
displaying chaotic behavior. This would exclude the observed wave-packet explosion of Fig-
ure 4.5(d), and allow for a robust subharmonic regime of the system, corresponding to the
confinement of Schrédinger cat states.

(b)

&a, Vd
(a) single harmonic

limjt cycle

Iy} no period-doubling
(below 1)
c\\ao“cf —fo 0 >
eyt o)) 1/Q
[ e
single harmonic (C)
limit cycle
&a,va .
A — 5 ‘06“3\1\0‘
A00C - N .
: : f o single harmonic
no’period-doubling S ] limit cycle
(below 7) peribd-doubling
0 - cascade
1/Q 0 o
-1
fo~(B) 1/Q

Figure 4.7: Schematic representation of the study on avoiding chaos in system (4.24). (a) For
B < fo(1/Q) given in (4.37), corresponding to dissipation dominating nonlinearity, the system
is contracting [86] and all solutions are attracted towards a single asymptotic limit cycle (green
region), regardless of the values of the drive parameters (£4,14). For 8 < fi1(1/Q,7) given
by (4.58), which admits arbitrarily low dissipation, a period-doubling bifurcation is excluded,
regardless of the values of the drive parameters (£4, v/4), for all solutions of period shorter than
7 (blue region). This is useful, as the Gambaudo-Tresser conjecture (here Conjecture 4.6)
states that if a region of parameters featuring chaotic behavior exists (red region on plots (a)
and (c)), then a period-doubling cascade must exist at its boundary. (b) Having fixed g at a
low value, as indicated by the dotted line on plot (a), the green and blue regions as a function
of the remaining parameters (1/ Q,ﬁd,yd) cover the whole parameter space. This excludes
the existence of a period-doubling cascade, and thus of chaotic behavior for any values of
(1/ Q,fd, vq), unless the cascade is initiated by a first period-doubling of a subharmonic of
period larger than 7. This absence of chaos would correspond to the parameter values of
Figure 4.5(e), except now for a finite Q < co. (c) Fixing § at a higher value, as indicated
by the dashed line on plot (a), there exists a parameter region (outside both green and blue
region) where a period-doubling cascade can be expected, such that regions featuring chaotic
behavior (red zone) can exist. Such chaotic behavior is indeed observed for parameter values
as in Figure 4.5(f), also with a finite Q < .

The general approach to prove the absence of chaotic behavior for small 3 is illustrated in
Figure 4.7, and goes as follows.
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e When the dissipation rate 1/ Q dominates the regularity parameter 8 (green zone in
Figure 4.7), we can prove that the system is contracting, i.e. any two close solutions
converge towards each other, such that the asymptotic regime has to feature a single
limit cycle that is globally attractive. This is valid for any values of the drive parameters
(€ayv4), see Section 4.3.2. Our goal is to extend the conclusion about the absence of
chaos, from strong dissipation 1/ Q to weak dissipation, while at the same time allowing
for additional subharmonic solutions.

e For appropriately fixed (3, the remaining parameters (1/ Q, 4, vq) thus feature a region
where (4.24) converges to a single limit cycle, hence there is no chaos. If there ex-
ists another parameter region featuring chaotic behavior, then it has been conjectured
that the boundary to this region has to feature a period-doubling cascade — see the
Gambaudo-Tresser conjecture, here Conjecture 4.6 in Section 4.3.3.

e Thus, conversely, by excluding the possibility of period-doubling bifurcations in a pa-
rameter region overlapping with the green zone, we exclude the existence of a chaotic
regime within this parameter region. For the particular system (4.24), we prove that
period-doubling is indeed impossible, at least for solutions of period smaller than 7,
provided f is small enough compared to 1/7. This criterion allows arbitrarily weak
dissipation and any values for the drive parameters (blue zone in Figure 4.7). For this,
see Corollary 4.11 in Section 4.3.4.

e All these elements together thus indicate that for low enough 3, even for extremely
small damping and for any values of drive parameters, the classical system should not
transition into a chaotic regime. The addition of two remaining points would make this
a rigorous result: (i) proving the Gambaudo-Tresser conjecture, which was recently done
under extra technical conditions in [31], and (ii), proving a bound similar to Corollary
4.11 but independent of the period of the solution.

To simplify the mathematical analysis, in Section 4.3.1 we first perform a last change of
variables on (4.24). We also derive the linearized dynamics around a trajectory of the system,
i.e. the differential equation governing how small deviations from this trajectory will evolve
over time.

4.3.1 Final change of variables and local linearization around a solution

The goal of our last change of variables is to obtain equal dissipation rates for both state
variables. For this, we replace p by a hyperbolically-rotated quadrature, defining

P+55
= 7”1, i=ua, (4.25)
1 - @
and we rescale time as:
1
si=y /1= —=17. (4.26)
402



(4.27a)

Defining the modified parameters
5 g
B = 1_ L
4Q?
1 - @
1
(4.27¢)

we obtain the following model:
d
&j = D — KZ, (4.28a)
d ~
e p=—T — Kkp — Bsin(T + g sin(0ys)). (4.28Db)
s
We define the vector field f(Z,p, s) such that
L) = p@s) = b K& (4.29)
ds\p) ~ TP T Lg g — Bsin(@ + &gsin(igs)) ) '
and denote the flow corresponding to system (4.29) by ¥, : R? — R% s € R, such that by
definition 5
55 Vs(Z0,P0) = f(¥s(Zo,Po), 5)- (4.30)
The Poincaré map P, which propagates any initial condition over one period 27 /74, thus
corresponds to
P=Uz.
vd
We now turn to local linearization. Given any solution (Z®)(s), (%) (s)) = ‘Ifs(i“éb),ﬁ(()b)) of
the system (4.29), we can investigate how small variations (AZg, Apg) of the initial condition
evolve under the same dynamics,
~(b ~  ~(b ~ ~ ~ ~ ~
\Ils(x(() ) + Az, p(()) +Ap) = (#0(s)+ Az, 5O (s) + Apy)
At the limit of infinitesimal (AZg, Apg), the corresponding dynamics is given by the lineariza-
tion of the vector field around the solution, i.e.:
d [Azs\ AT
dS(AﬁS> - sz(z’S)|z:(j(b)(s),ﬁ(b)(8)) (Aﬁs> (431)
1 AT
—R Aﬁs ’

< —1— Beos(3®)(s) + &y sin(7ys))

Once a solution (#(®)(s),5(")(s)) is known, the linear time-dependent equation (4.31) enables
the study of the system in that solution’s vicinity. We will denote the flow corresponding to
(4.32)

this linear system as ®, € R2*2, thus satisfying
(37.) (%)
Aﬁs ° AﬁO ’
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with

d —K 1
&rbs - < -1- Bcos(i(b)(s) + &asin(7gs)) —K > ®s - (4.33)

By integrating over n drive periods, we obtain the local linearization of the n’th power of the
Poincaré map around the chosen initial condition:

V(P (@), 55)) = Ponmjz, » nEN (4.34)
(b) ~(b)

In particular, when (Z;”,p, ) corresponds to a fixed point of P", we can obtain the flow of
the linearized system by applying a time-independent linear map:

k
V(pnk>(aééb>,ﬁéb>) = (V(Pn)(j;gb)7ﬁéb))> = Bopnsy » Kim €N (4.35)

4.3.2 When é dominates : single asymptotic limit cycle

If any two close trajectories asymptotically converge towards each other, then by induction
the asymptotic regime of the system has to consist of a single trajectory. We here prove that
our system (4.29) satisfies the first property, known as contraction in the dynamical systems
theory [86], for 1/ Q sufficiently large compared to 8, and for any values of the drive parameters
(€4, 74). We further prove that the asymptotic trajectory must be a regular 27 /v4-periodic
limit cycle.

Contraction thus analyzes local variations between two close trajectories, and therefore it
studies the linearized vector field (4.31). In particular, contraction at a rate r > 0 holds if we
can prove that

d
&(A:iQ + Ap?) < -1 (AF* + Ap?) (4.36)
for any values of #()(s) and s in (4.31).

Lemma 4.3. The system (4.29) is a contraction, i.e. it satisfies (4.36) for a fized r > 0
independently of i) (s), p")(s) and s, for any values of the drive parameters, provided

1 - L
2
g< Y& (4.37)

Q

Proof. Writing out %(Aﬁ + AﬁQ) gives a quadratic expression in (AZ, Ap), which satisfies
(4.36) provided

(k — r)(AZ% + AP?) + B cos (:z<b>(s) s sin(ﬁds)) AFAG > 0.

This readily gives the bound 3/2 < &, which translates into (4.37). O

Under condition (4.37), any trajectory of our system is thus attracted towards a single
asymptotic solution. We can further prove that this solution must be a 27 /74-periodic limit
cycle. We separate the statement into two steps, as the first one will be useful in other
contexts.
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Lemma 4.4. Any disk around the origin of radius larger than B//i = remains pos-

1
gz
itiely invariant under the evolution of the system (4.29), i.e. when starting on this disk the

trajectory mowves into its interior and stays there for all times.

28Q
1

Proof. Writing out % (5:2 + ]52), we readily see that it is negative as soon as k(Z2 + p?) > B|]5|,
which holds under the stated condition on the radius. O

Lemma 4.5. For any values of the parameters, the system (4.29) always features a solution
that is a 2w /vg-periodic trajectory.

Proof. The proof uses the Brouwer fixed-point theorem on the Poincaré map P. This theorem
states that any continuous function which maps a closed disk onto its interior must admit at
least one fix point inside this disk. The function P is continuous as resulting from integrating
a smooth vector field, and by Lemma 4.4 it maps any disk around the origin of radius larger
than 3 /K onto its interior. Therefore P must always feature a fixed point, corresponding to a
27 /Dg-periodic trajectory of (4.29). O

4.3.3 Linking chaos to period-doubling cascades

The system (4.29) is a dissipative, periodically-driven, planar, nonlinear system. For such
systems, it has been conjectured that the only possible route to chaos upon varying parameters
is through a period-doubling cascade starting from an initially-stable orbit. More precisely:

Conjecture 4.6. (Gambaudo, Tresser, [31, 46]) In the space of C* orientation-preserving
embeddings of a planar disk, with k > 1, which are area-contracting, generically, maps which
belong to the boundary of positive topological entropy have a set of periodic orbits which, except
for a finite subset, is made of an infinite number of periodic orbits with periods m2* for a given
m and all k € N.

The conditions of Conjecture 4.6 hold for our Poincaré map P associated to (4.29), as a
function of the parameters (1/Q, &g, v4). Indeed:

e P is smooth for any parameter values, as resulting from the integration of a smooth
vector field.

e P embeds any disk of radius larger than 8 /K into itself, as established by Lemma 4.4.
Thus, for any fixed 8 and any strictly positive interval % € [Ql ’ﬁ] C (0, %), there

exists a disk of sufficient radius for which the embedding holds for all parameter values.

e P is orientation-preserving and area-contracting for any (1/Q,&q,v4) with 1/Q > 0.
These are both local features to be checked uniformly in (Z, p) on the linearized Poincaré
map VP(Z,p). Orientation is preserved if det(VP) > 0 and area is contracted if
|det(VP)| < 1. From (4.33), we have

—K

—1— Beos(3b)(s) + &y sin(7ys)) —K

d
& det((I)s) =tr <

> det(®s) = —2k det(Py)

and integrating from det(®y) = 1 up to s = 27/74 we readily obtain

det (VP) = eXp<—4;dK> € (0,1).
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Figure 4.8: Splitting of the parameter space for the two parts of our proof excluding period-
doubling bifurcation of a 27wn/v4-periodic solution of (4.29).

Physically, these properties hold by virtue of P being generated by a weakly dissipative
system, that reduces to a Hamiltonian system for x = 0.

We illustrate how this conjecture will be used in the context of our study, see Figure
4.7(b)-(c). For fixed 3, consider an open set of values for the parameters (1/Q, &4, v4), which
we will vary to define the set of maps. In particular, the values of 1/ Q should span an interval
ranging from the lowest damping expected, up to a value satisfying Lemma 4.3 in Section 4.3.2
(green zone on Fig.4.7(b)). Thanks to Lemma 4.3, the set of parameter values thus contains
settings (green zone) for which the system asymptotically converges to a single harmonic orbit.
According to Conjecture 4.6, if the set of parameter values also contains settings for which
the system features “positive topological entropy”, which is the technical definition of what we
have been calling “chaos” (red zone on Figure 4.7(c)), then somewhere between these two types
of settings there must be a boundary with a period-doubling cascade. In the next section, to
conclude our study, we will thus try to exclude the existence of a parameter region featuring
chaotic behavior, by establishing conditions that exclude its boundary, i.e. period-doubling
(blue zone on Fig.4.7(b)).

We note that the Gambaudo-Tresser conjecture has recently been proven under extra tech-
nical conditions in [31].

4.3.4 A bound on [ to exclude period-doubling

From the previous sections, we have identified that the transition to a chaotic regime when
(& vg, 1/ Q) are varied, must involve the period-doubling bifurcation of periodic orbits of the
system. In this last section, we establish that taking 8 low enough excludes a period-doubling
bifurcation for any subharmonic solution of (4.24), at least if the period of this subharmonic
is lower than 7, with the bound on £ depending on 7. The bound is uniformly valid for any
values of the drive amplitude &; and for arbitrarily low dissipation 1/ Q.

We thus consider as starting point a fixed maximal period of 7. If we want to exclude the
period doubling of a given subharmonic solution of (4.24) of period 27n/v,, we must assume
that 27n /vy < 7 remains valid for any values of v4, bounded away from zero. We then want
to exclude that the considered solution undergoes a period-doubling bifurcation when varying
(vg,&q,1/ Q) in the relevant parameter range. Our proof again works with the slightly changed
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coordinates (4.29) and slightly modified parameters (3,74), and it comprises two parts, see
Figure 4.8:

e In Section 4.3.4.1, we perform a local study close to the considered subharmonic, estab-
lishing a bound on /3 under which the premises for a period-doubling bifurcation can be
excluded. This local study provides a conclusive bound only for some parameter region
(blue zone on Figure 4.8).

e In Section 4.3.4.2, for another parameter region (fed on Fig.4.8), we perform a global
study in phase space, showing that for low enough g the 27n/4-periodic solution cannot
exist.

These two parameter regions are defined as bands with 1/7,; centered respectively around
integer and half-integer multiples of 1/n. (Recall that in (4.29) the natural frequency of the
harmonic oscillator for 3 = 0 has been normalized to 1.) Making these two regions overlap
(Section 4.3.4.3), we exclude any period-doubling bifurcation of this solution within the full
parameter range.

4.3.4.1 Values of B and 74 excluding period-doubling

Consider a fixed point (Z*,p*) of the smooth map P™, corresponding to the continuous-time
trajectory (Z,(s), pn(s)) with (Z,,(0),p,(0)) = (Z*,p*), for some fixed parameter values. When
varying parameters, the location and the stability of the fixed point must vary smoothly,
unless it undergoes a bifurcation. A good introduction to basic bifurcation theory can be
found in [57]. We are focusing on period-doubling bifurcations, where the initial solution be-
comes unstable while a stable periodic orbit of double the period appears in its vicinity. The
important property for our purposes is that at any point where (Z,(s),pn(s)) undergoes a
period-doubling bifurcation, the linearized Poincaré map V(P™)(Z*,p*) must have an eigen-
value crossing —1 [57]. In order to exclude a period-doubling bifurcation, we thus set out to
bound the eigenvalues of V(P") away from —1. Due to the absence of an exact expression for
the subharmonic solution (Z,(s), pn(s)), we approximate V(P™)(z*, p*) by splitting the flow
W, up into a known part, based on the linear part of the system, and an unknown part that
we treat as a perturbation, proportional to B . We obtain the following result.

Lemma 4.7. Fiz vy > 0, and n € N,n > 1. Choose the m € N which minimizes ‘1 — %ﬂd|,
and define the detuning

Ug. (4.38)
for which thus |§] < g—z. If
4 _ D
exp<5im> -1 < 2cos <57En> , with 6] < |5| < (4.39)
Vd Vq

— 2n

then YV (P™)(z,p) obtained by integrating (4.33) cannot exhibit an eigenvalue —1 for any point
(%,p) € R%. Therefore, under condition (4.39), a 2mn/v4-periodic subharmonic cannot undergo
a period-doubling bifurcation.

Proof. The proof is organized as follows.
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e We first perform a change of variables that integrates out the time-independent part of
the linearized dynamics determining, which is also independent of 3.

e We then bound the spectral norm 2 of the flow operator corresponding to this linearized
dynamics uniformly in the remaining parameters. This bounds the effect of the terms
proportional to 5.

e From this, we next bound the spectral norm of the difference between the flow operator
at time s = 0 (which is the identity matrix) and the flow at any time s later.

e Finally, we use this proximity in spectral norm to deduce information about the eigen-
values of the original flow operator, in particular evaluating a parameter setting which
guarantees that the eigenvalues cannot reach —1.

e Change of variables: We start by moving to a rotating frame with frequency 774, such that

u(s) _ cos(%ﬁds) — sin(%ﬂds) z(s) (4.40)
v(s)) "~ \sin(Z0gs) cos(Zogs) ) \B(s) ) '
Note that for the flow @™ corresponding to the variables (u,v) we still have ‘If%:m) =

Wr = P" where we introduced the total period

2mn
T = —,
vq

due to the periodicity of the change of variables, Applying the change of variables to (4.33),

we obtain the following evolution equation for vl (uo,v0), the linearized flow around an

arbitrary solution (u(s),v(s)) with (u(0),v(0)) = (ug,vo):

%V\ngm) (ug,v0) = (—H((l) (1)> + 5(_01 (1)> + BT ™ (u(s), v(s), fd)) V™) (ug, vg),
(4.41)
where
sin(%ﬁds) cos(%ﬁds) siHQ(%ﬁds)
L™ (u(s), v(s), &) = cos({(s))
— cosQ(%ﬁds) - sin(%ﬁds) cos(%ﬁds)

with ¢(s) = u(s) cos(Zigs) + v(s) sin(Zigs) + &g sin(vgs). We will drop the reference to the
particular solution (ug(s),vo(s)) for notational convenience.

To conclude the proof we must bound the eigenvalues of VU7, = VP" away from —1. Since
Wy is the identity map, VW = 1, where 1 is the 2x 2 identity matrix, with eigenvalues +1. Our
strategy is to show that the eigenvalues cannot move far away from 1 when integrating (4.41)
over a time 7T;,. We can already explicitly integrate the time-independent part, corresponding
to 8 = 0, by defining

X(s)=exp((k1—6(%4))s) VU, ,
yielding
d

LX) = BRss T (£4) R_ss X (s), (4.42)

3The spectral norm of a square matrix A is defined as the largest singular value of A, which is the square
root of the largest eigenvalue of AT A.
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where R is the rotation matrix

Rss = <Z?§((§j)) _cilsl(lgj)>

e Bounding the norm of X: We can write (4.42) as an integral equation:
S
X(5) = X(O0)+ 3 [ Re. O™ (€0) Rsu X(2) (4.43)
0
Taking the spectral norm of both sides, applying the triangle inequality, pulling the norm

into the integral in the right hand side, and subsequently using the submultiplicativity of the
spectral norm, we obtain

X< IXO+5 [ X [rem 6] a- (4.44)
Since the entries of Fg":m) are all smaller than 1 in absolute value, uniformly in z and &4,

an:m) ({d)H < 2. Plugging this into (4.44) and applying the simplest form of the

Gronwall Lemma (recalled as Lemma 4.8 below) then yields

we have ‘

IX(s)]| < X (0)]e** = 2P, (4.45)

since X (0) = 1.
e Tying X to the identity: Now, consider again Equation (4.43):

X(s)—1= /0 ) BRs., T"™) (¢4) R_5.X (2) dz. (4.46)

Analogously to the previous point, taking the spectral norm of both sides, subsequently pulling
the norm into the integral into the right hand side, using the submultiplicativity of the spectral
norm and the bound on ||I'||, we obtain

t
[X(s) —1]| < 25/0 | X (s)]| ds. (4.47)
Plugging (4.45) in the right hand side and evaluating at s = T,, we obtain
I1X(T,) — 1) < 28T — 1. (4.48)

e Confining the eigenvalues of VW : We have thus bounded how X (7},) departs from the
identity, from which there remains to deduce a bound on the eigenvalues of

Vi, = e*”T”R_csTnX =e ""R s + €7HT"R—6Tn (X(Th) - 1)

The last expression indicates how we intend to view V¥, . namely as the flow corresponding to
B = 0 plus a perturbation. The Bauer-Fike theorem (recalled as Theorem 4.9 below), bounds
how eigenvalues behave under such perturbations. In this theorem, we use p = oo for the
Schatten norm, which corresponds to the operator norm that we have used above. The norm
of the perturbation in the right-hand side of (4.52) is bounded by He_“T" R_57,(X(T},) — 1) H <
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e~ rTn (62BT" — 1), and since e """ R_s7, is diagonalized by a unitary, the condition number

equals 1. The Bauer-Fike theorem then says that for any eigenvalue p of VU7 | there exists
an eigenvalue 7 of e=*n R_s7, such that

Iy — u| < eI (eQBT" - 1). (4.49)
Of course we know that 1 = e(~#+10)Tn,
The final argument is thus: if any eigenvalue y is sufficiently close to some 7 = e(=#+10)Tn

while all these n are sufficiently far from —1, then each pu can be bounded away from —1.
Explicitly, if
1 +e(—n:ti5)Tn

> e Tn (e"’BTn - 1), (4.50)
then

1=y — (—RES)Tn | (—rEid)Tn 1‘ > ‘1 | (—REO)T,

- ’77 — RENT| 5 0. (4.51)

Multiplying both sides of (4.50) by e, one readily sees that x = 0 is the most constraining
case, and working out the algebra for this case gives the stated criterion (4.39). O

We here recall the two lemmas used in the proof of Lemma 4.7:

Lemma 4.8. (Gronwall, [28]) Consider the integral equation

W) < e(t) + /0 9(5)h(s) ds,

with the scalar functions g, h and ¢ all non-negative on the interval [0,t], and ¢ differentiable.

hen
Tz [ + [ S0 [ 0o

We have used this Gronwall Lemma with both g and ¢ constant. In particular, the second
term on the right drops out.

Theorem 4.9. (Bauer-Fike, [9]) Suppose A € C"*" is a diagonalizable matriz, and V € C™"*"
18 the non-singular similarity transformation that brings A into its diagonal form A:

A=VlAV.
Define the condition number
VI,
rp(V) = W,
P

with ||-||, the p-Schatten norm. Let p be an eigenvalue of A+ B, B € C"*". Then there exists
an eigenvalue n of A such that

n = ul < Rp(V)II Bl (4.52)
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We used the Bauer-Fike Theorem with the operator norm (p = oco) and with a matrix A
which is diagonalized by a unitary, such that x,(V) = 1.

Lemma 4.7 is useful only for part of the parameter space, represented by the blue bands in
Fig. 4.8. Indeed, the criterion (4.39) requires B = 0 as J tends towards its maximal value QD—Z, SO
part of the parameter values for § are not covered by Lemma 4.7. Therefore, we next provide
in Section 4.3.4.2 another result to cover these largest values of & (red bands in Fig. 4.8) while
allowing for nonzero values for 3. We will then combine both results in Section 4.3.4.3 to
obtain our overall conclusion.

4.3.4.2 Values of 3 and iy excluding an n-subharmonic

The rough idea can be sketched as follows. We consider a harmonic 27/74-periodic solution
as a point of reference — we will show that such a solution must exist for any parameter
values. If the natural dynamics for 3 = 0 corresponds to a trajectory where a half-integer
number of laps around the harmonic orbit are completed over a period 2nm /4, then in case
of small 8 > 0 it is unlikely for a trajectory which completes an integer number of laps around
the harmonic solution to exist anywhere. It then immediately follows that it is unlikely for
any trajectory to exist that can possibly close on itself to form a periodic orbit. The only
remaining trivial fixed point of P™ would be the unavoidable fixed point of P corresponding
to the harmonic solution.

Lemma 4.10. If the interval [(1—/3’)17%, (1—0—5)%1] contains no integer multiple of 1/n, then the

2mn
Ug

system (4.29) can feature no periodic solution other than a single 2 [Uq-periodic solution.

Proof. By Lemma 4.5 in Section 4.3.2, the system always features at least one 27 /74-periodic
solution. Let us denote it by (z7(s), p;(s)) and define the displaced variables

x3(s) (4.53a)
pi(s), (4.53b)

za(s) = (s)
pa(s) = p(s)

describing how other solutions behave compared to this solution. The corresponding equations
of motion are, without approximation,

d

&Jz’d = Pd — KZdq, (4.54)
d ~

P4 = —Td — KPd — 23 sin(%) cos(% + 27(8) + &4 sin(ﬁds)>. (4.54b)

In polar coordinates x4 = R cos(#), pg = Rsin(#), we obtain:

%R = —kR —sin(0)2f3 sin <]2% cos(9)> Ccos (1; cos(0) + 27 (s) + &4 sin(Dds)) , (4.55)
. in(£ cos(0
%0 =-1-p cos%@)W cos <]; cos(0) + z7(s) + &4 sin(ﬂds)> . (4.56)

By definition, x4(s) = pg(s) = 0 (corresponding to R = 0) is a solution for any time s, and no

other trajectories ever cross the point R = 0. Recognizing the expression % €[-1,1] in
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(4.56), we can bound ]%9 +1]<B. A 2;;"—periodic solution has to make an integer number

of laps m around the (periodically displaced) origin. We thus need

2 2 = 2 ~
6(0) — e(m> —2rm € {fmu —B), 2+ By,
V4 Vq Vq
which is equivalent to the statement. O

Using the notation of Lemma 4.7, this criterion excludes the existence of an (n:m)-subharmonic

omnB  2wnd
mp 2 (4.57)

Vg Vg

for [6™™)| > §, provided

4.3.4.3 Combining Lemma 4.7 and Lemma 4.10 into a uniform criterion on
We now select 0 to have overlapping regions of 1/, as explained in Figure 4.8.

Corollary 4.11. Consider a simply connected open set S, of possible parameter values (1/@, va, &)
with vg 2 Vmin and Q > Qmin > 1/2. For some parameter setting in this set, consider a stable
subharmonic solution of (4.24) of period smaller than or equal to 2wn /vy, € N, > 2, and de-
note the largest period that this solution could possibly have when varying vq by T = 270/ Vmin.-
If
0.53 1
/8 = T ! 4Q1211in ,

then this solution cannot undergo a period-doubling bifurcation when varying (1/@, va,€q) in
Sp.

(4.58)

Proof. To cover the whole parameter space, we must match the value of ¢ in both criteria,
(4.39) and (4.57). Choosing 0 smaller makes (4.39) easier to achieve, yet it confines 1/74
close to integer multiples of 1/n. Conversely, choosing § larger makes (4.57) easier to achieve,
while confining 1/7, closer to half-integer multiples of 1/n. The best compromise is obtained
when both criteria yield the same bound on 3. We thus equate the right hand sides of (4.39)
and (4.57), to numerically find the optimal value § ~ 0'5372%1 for the boundary between red
and blue regions of Figure 4.8. Substituting this value in (4.57), working back to the original
variables using (4.27a), (4.27b) and imposing the condition for all parameter values then gives
the stated criterion (4.58). O

Important remark: Corollary 4.11 speaks of a subharmonic in the strict sense, i.e. a 2nm/U4-
periodic solution with n > 2. Indeed, when using Lemma 4.10 in the proof, we leave open
the possible behavior of a 27 /D4-periodic solution. However, this poses no problem for our
intended use of Corollary 4.11 to exclude a period-doubling cascade. Indeed, with the strict
interpretation of Corollary 4.11, we thus leave open the possibility that a 27 /D4-periodic so-
lution would undergo period-doubling, but the resulting subharmonic would then be covered
by Corollary 4.11 such that further period-doubling is necessarily excluded.

Under the condition of Corollary 4.11, we are thus always in a zone where the considered
subharmonic cannot undergo period-doubling, either because of Lemma 4.7 or because it
cannot exist in the first place (Lemma 4.10). In other words, starting from a subharmonic of
period 27n /vy we are necessarily in the blue zone of Fig. 4.8, and when moving towards the
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red zone of Fig. 4.8 this subharmonic must disappear in a saddle-node bifurcation without the
occurrence of period-doubling.

Note that this result is independent of the drive amplitude £; and only requires an upper
bound on the dissipation rate 1/ Q that is trivial to meet in practice.

Finally, to apply the Gambaudo-Tresser Conjecture 4.6, the parameter set S, of Corollary
4.11, with condition (4.58), should overlap with a zone where condition (4.37) of Lemma 4.3
holds (green zones on Fig. 4.7). Indeed, this would give rise to the conditions shown in
Figure 4.7(b): for some parameter region we know that there is a single harmonic limit cycle,
while for an overlapping region we know that there can be no period-doubling cascade (starting
below 7), and thus according to the conjecture there can be no transition into a chaotic regime.

Let us thus analyze how to combine both conditions (4.37) and (4.58). Condition (4.58)
holds for all Quin > Q if it holds for Q. Conversely, for Q>1 / V2, the right hand side of
(4.37) is decreasing in Q, so (4.37) holds for all @ < @ if it holds for Q. For the regions
satisfying (4.37) and (4.58) to overlap for a fixed 3, we thus need Q < Q. By inspection, the
limit is obtained at 1/Q = 1/Q = 0.53/7 < /2. The associated constraint on 3 becomes:

0.53 0.53) 2
B< =y 1= (2T> . (4.59)

This concludes our analytical results in the context of preventing the classical system (4.24)
from behaving chaotically, by preventing the period-doubling cascades that are conjectured
to be a necessary precursor for chaotic behavior (Gambaudo-Tresser Conjecture 4.6) when
Q < oo. Since the bound (4.59) depends on the maximal period 7 of a given subharmonic
solution, our results are only partial in nature, but we believe the discussion of this section
provides theoretical indications that indeed for a finite small-enough value of 8 no period-
doubling cascades should occur. Note that our arguments are mainly based on the fact that
the Josephson potential and its first derivatives are uniformly bounded, so similar results
should hold in other systems with these properties.

4.4 Enhancement of the quasienergy spectral gap

While in Section 4.1 we showed how the periodically-driven inductively-shunted transmon
could be used for the confinement of Schrodinger cat states under appropriate resonance
conditions of the drive, the detrimental effect of possible chaotic behavior was identified in
Section 4.2. There we showed that we can tune the regularity parameter § to effectively
suppress this chaotic behavior. In this section, we focus on this non-chaotic case, and while
fixing the value of 5 to 0.5, we study the effect of a second parameter we call the quantum
scaling parameter

which was introduced in Section 3.1.1. We previously argued that this parameter governs key
properties of the quantum behavior of the system, as it can be entirely eliminated from the
classical dynamics.

We numerically study the role of A in the context of the confinement of 3-component
Schrodinger cat states. For this we again focus on the Floquet decomposition of the driven
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system. We fix § = 0.5 and study the asymptotic regime for various values of A, while varying
the drive parameters, focusing on the case of a (3 : 1)-resonance. We consider the quasienergy
spectral gap Ae between the manifold of cat states |¢f (7)) and the next-excited Floquet
modes |nZ(7)), defined in (4.12), and schematically illustrated in Figure 4.4. We previously
argued that the magnitude of |Ae| captures the robustness of the cat subspace as a whole to
sufficiently weak and sufficiently slowly-varying Hamiltonian perturbations.

Our findings are summarized on Figure 4.9. We investigate three different values A =
0.2,0.3,0.4 and drive parameters &4, 4 leading to a constant mean photon number n = 9
or 16 in the cat states |¢%) (plots 4.9(a) and (b)). For these settings, Figures 4.9(c,d) show
the quasienergy gap Ae. For fixed 71, increasing A is seen to ramp up the quasi-energy gap.
Likewise, for fixed A, increasing 7 is seen to ramp up the quasi-energy gap. The fact that the
spectral gap increases also with the average number of photons could have been anticipated
from previous work. Indeed, for the Kerr cat encoding [55], this gap equals K|a|? where K is
the quartic Kerr strength and |a|? = f, the cat state’s average number of photons.

10!

(c) A=0.2 (d)
n=09 A=03 10 16
A=04
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0.0 T I T T
1 gd 2 1 fd 2

Figure 4.9: Behavior of the quantum system as a function of quantum scaling parameter A
for fixed § = 0.5. Plots (a) and (b) are similar to plot 4.5(a) and show that the system does
not present a chaotic region for A = 0.2,0.3,0.4. In the same plots, we represent the drive pa-
rameters leading to constant mean photon number 7 = 9 or 16 in the asymptotic Schrodinger
cat states. Plots (c) and (d) show the quasi-energy spectral gap (Ae in Figure 4.4(b)), cor-
responding to those drive parameters. For fixed 7, increasing A\ ramps up the quasienergy

gap.
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In conclusion, we demonstrated the quantum signature of the classical transition to chaos as
the breaking down of the confinement process and the appearance of a high-entropy asymptotic
behavior. In this section, we showed that with the regularity parameter 3 fixed to avoid such
transition, the quantum scaling parameter A can be varied to control the quantum confinement
strength in the subharmonic regime. It is thus possible to benefit from a strong nonlinear effect
while maintaining the dynamics in a regular regime.

4.5 Conclusions

The work presented in this chapter is a natural continuation of work by the QUANTIC-team
of Inria Paris in collaboration with the team of Michel Devoret at Yale University, after the
inductively-shunted transmon was proposed as a novel circuit element that behaves more stable
under the strong drives that are needed for state-of-the-art superconducting circuits experi-
ments [126]. In [126], a resonator was driven in the strongly-dispersive regime and coupled to
inductively-shunted transmon. It was shown that the AC-Stark shift of the resonator remained
well-defined and varied smoothly with the effective number of photons in the resonator. This
was contrasted to the case of the traditional transmon when considered in the exact same
setting, where the AC-Stark shift of the resonator showed strong discontinuities. Moreover,
the asymptotic behavior remained much more pure for the inductively-shunted transmon than
for the regular transmon considered in the same setting. As a first axis of extension of [126],
we explicitly focused on the resonant behavior of the circuit in a single-mode setup, show-
ing its ability to mediate multi-photon processes, which has key applications in the field of
bosonic encodings. Indeed, we have studied the confinement of highly non-classical states,
namely Schrodinger cat states. It is within this concrete and topical application domain that
we obtained a deeper understanding of the structural instabilities reported to plague practical
nonlinear quantum devices. A first main contribution of this work was to explicitly ascribe
this unwanted behavior to the possibility of complex dynamical behavior of the corresponding
classical equations of motion: chaotic dynamics. This chaotic dynamics was studied wielding
the proper tools from classical dynamical systems theory, namely by considering the Poincaré
map. This excursion into classical dynamical systems furthermore allowed us to obtain a novel
and dual understanding of the mentioned multi-photon processes on a classical level.

Using a change of variables detailed in Section 3.1.1, we identified renormalized circuit pa-
rameters that each govern different and complementary system properties. The identification
of these parameters once again emphasizes the role of the inductively-shunted transmon as
a ubiquitous model for nonlinear oscillators to be used for quantum information processing
with superconducting circuits, as any device allows for a circuit model description composed
of these same three basic building blocks: an inductor, a capacitor, and a Josephson junction.
As an immediate contribution we exhaustively quantified the effect of the two effective circuit
parameters § and A on regularity and anharmonicity respectively, on either a classical or quan-
tum level, and using either numerical or analytical tools. Besides these contributions which
are inherently circuit-related, the methods proposed in this chapter can readily be applied to
different systems, as analogous effective parameters can be identified for related families of
systems that contain an inductive shunt. We argue that the ability to perform perturbation
theory that is valid on a global level hinges on the presence of the inductive shunt, and this dis-
sertation explores one such perturbation theory for the classical system in Chapter 5, utilizing
the fact that the harmonic part of the system dominates the bounded nonlinearity. Applying
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such an averaging-type of perturbation theory on the quantum level [15, 34, 88, 91, 125| for
our specific system should be the subject of future work, explicitly identifying 3 as the per-
turbation parameter. These results are then to be contrasted with theoretical explanations of
the strong-drive problem [100, 110] in general, and especially to other state-of-the-art pertur-
bation techniques [101, 125| that identify different small parameters. This small parameter

has been chosen to be 4/ Sg—f in a transmon limit for example [101], rather than of 5 = E;/Ey,
in our case.

Regarding a more explicit connection to classical chaotic dynamics representing structural
instabilities of the system, we presented a twofold argument why shunted junction models
should be less prone to any perceivable chaotic dynamics altogether, when choosing correct
circuit parameters. First, since the topology of phase space is that of a bounded disk, the
Gambaudo-Tresser conjecture predicts the occurrence of a period-doubling cascade at the
onset of chaos. Secondly, in Section 4.3, we argued that choosing  small enough should
exclude period-doubling bifurcations altogether. We were able to prove this for low-enough-
order subharmonic solutions, again utilizing the boundedness of the Josephson cosine potential
with respect to the harmonic part of the potential. Future work could look into improving
upon this result, obtaining a bound similar to (4.58) that scales more favorably with the
period T of the considered subharmonic solution. The analytical results of Section 4.3 are not
immediately applicable to models where an inductive shunt is absent, such as for the traditional
transmon [73]. Firstly, an equivalent regularity parameter cannot immediately be identified,
due to the absence of the inductive shunt (E; = 0 in (3.1)). Secondly, for the transmon,
the topology of phase space is equivalent to that of a cylinder, as the superconducting phase
becomes a periodic variable. The conditions of the Gambaudo-Tresser conjecture are then
not rigorously fulfilled, since one should be able to restrict the Poincaré map to an invariant
subset of phase space with the topology of a compact disk.
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Chapter 5

Classical study of subharmonic
working points

Dans la Section 4.1, nous avons établi une correspondance entre des sousharmoniques stables
de période 25—,1", indice m € N et parité ¥ = m +n mod 2 d’une part, et le confinement
de (1 + r)n états chats de Schridinger a (1 + r)n composants d’autre part. Les résultats de
la Section 4.2 nous ont donné une idée préliminaire sur comment choisir les paramétres du
forcage pour rendre un tel processus de confinement multi-photons résonnant, dans le cas ot
n = 3,m = 1, et dans le cas non-chaotique de 5 ~ 0.5. Dans ce chapitre, nous cherchons
a €tablir un modéle simplifié qui décrit la condition de résonance des parameéetres du forcage
(Va,€q) afin de créer des sous-harmoniques (n : m) stables. Cette analyse suit la méthode
générale de moyennisation géométriqgue. Nous appliquons cette technique perturbative dans
le cas non-chaotique de 8 < 0.5, en considérant 5 comme une perturbation. Cependant,
contrairement & la Section 4.3, nous saisisserons des effects O(f), et négligerons seulement
les effets d’ordre O(BQ) en premiére instance. Le chapitre est présenté comme suit. Aprés
un bref résumé sur la théorie de moyennisation géométrique des systémes périodiques, nous
obtenons une classe de modéles moyennisés au premier ordre qui élimine la dépendance en
temps, pour tout (n :m) fizé. Ensuite, nous analysons la structure des points d’équilibre de ce
modeéle moyenisé et nous la comparons aux simulations numériques de type Floquet-Markov.
La résonance (3 : 1) sert a nouveau d’illustration, et la méme méthodologie peut facilement
étre appliquée a d’autres résonances.

In Section 4.1, we showed a clear correspondence between stable subharmonic solutions
of period 23—”, winding number m € N and parity » = m 4+ n mod 2 on the one hand, and
the confinement of (1 + r)n Schrodinger cat states with (1 + 7)n components on the other
hand. The results outlined in Section 4.2 gave us a preliminary numerical account of how
the drive parameters should be chosen to render such a multi-photon confinement process
resonant for n = 3,m = 1, in the non-chaotic case of 8 ~ 0.5. In this chapter, we set out to
obtain a simplified model that describes the resonance condition the drive parameters (v4,£4)
need to satisfy in order to create stable (n : m)-subharmonics for the classical system. This
analysis is performed following the method of geometric averaging. We apply this perturbative
technique in the non-chaotic case of 8 < 0.5, treating 3 as a perturbation. However, in contrast
to Section 4.3, we will capture O(3) effects, and only neglect effects of (’)(ﬁQ). The chapter is
outlined as follows. After a short summary of the theory of geometric averaging for periodic
systems, we obtain a class of first-order averaged models that eliminates the dependence on
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time, for any fixed (n : m). Next, we analyze the equilibrium point structure of this average
model and compare to the numerical Floquet-Markov simulations. The (3:1) resonance again
serves as an illustration of the general theory, and the same methodology can readily be applied
to other resonances.

5.1 Summary of averaging theory

We will summarize the method of geometric averaging (originally due to Krylov and Bogoli-
ubov [75]) using the notation of Section 3.2.1, in terms of a general T-periodic vector field
describing the dynamics of a two-dimensional state variable z € R2. What is new, is that the
oscillations of the vector field as a function of time ¢ are now assumed to be fast with respect
to the magnitude of the vector field itself. To capture this, we introduce a small positive
dimensionless variable ¢ < 1, and assume the following equations of motion for z,

s=cef(zt), ze€R%teR, (5.1)
where f is now assumed of the same order as the frequency of its oscillations:
ITf]l = O().

Another way to interpret this condition, is that the state of the system should not change
significantly on the timescale of the oscillations present in the vector field. To (5.1) we can
associate an autonomous averaged vector field, by neglecting its oscillations in time:

_ 1 [T
O=5 | rea
Based on the average vector field, one defines the averaged system
z=cf(z), z€R? (5.2)

whose solutions z(¢) are meant to approximate those of the true system (5.1), for small values
of €. More precisely, the flow of the averaged system over one system-period provides a
good approximation of the true Poincaré map of (5.1). Explicitly, and analogously to the
introductory material in 3.2.1, we define

P, := U, with gt\I/t(zo) =ef(We(20),t), Vzo €R%:tER. (5.3a)

A standard version of the averaging theorem for periodic systems can be found in chapter 4
of [57]. We will summarize the main conclusions relevant to this work. One can establish the
following local correspondences between f and P., for small enough .

(7) Consider a solution z(t) of (5.2) and a solution z(t) of (5.1), based at Zy and zy respec-
tively. If 2o — z0| = O(e), then |2(t) — z(t)| = O(e) on a timescale 0 < t < tymax = O(1).

(17) Consider a hyperbolic equilibrium point z* of (5.2), namely

where the stability matriz A(2*) :== V f(2*) only has eigenvalues with nonzero real parts.
Then there exists an g9 > 0 such that for all 0 < e < gg, P, possesses a unique hyperbolic
fixed point z* of the same stability type as z*, with z* = z* + O(e).
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(747) Consider a trajectory Zs(t) in the stable manifold of the hyperbolic equilibrium point z*
of f, and let P¥(z;0) be an orbit in the stable manifold of the corresponding fixed point
z* of P, (with still 2* = 2* + O(e)). If |25(0) — z50] = O(e), then ’ZS(]{?T) - Pf(zsyo)} =
O(g),Vk € N. Similar results apply for unstable manifolds of hyperbolic fixed points (in
reversed time).

(iv) If for some system parameter u = pg, the averaged vector field f (1) of (5.2) undergoes

a saddle-node bifurcation, then for € small enough, the Poincaré map 735(“ ) of (5.1)
similarly undergoes a saddle-node bifurcation, for an e-close parameter value fi.

Since in Section 4.1, the quantum-classical correspondence in the asymptotic regime was shown
to involve stable periodic orbits of the Poincaré map, we are interested in characterizing
these as a function of system parameters. The averaging theorem justifies characterizing the
equilibrium points of an averaged vector field instead, if we can identify the corresponding
small parameter €. In the next section we will hence study the equilibrium points of the
average vector field in a well-chosen frame. Before moving on to the next section, a final
comment can be passed on to the interested reader.

Remark 5.1. While the above results tell us that local behavior of the averaged system carries
over to the true system, the same does not hold for global properties of the flow. One example
of such a global property is a homoclinic loop connecting a saddle-type equilibrium of f to
itself. One can in general not expect such an exact identification of stable and unstable
manifolds to hold for the true system (5.1). Determining if the two manifolds still intersect
for small e — and if so, if they intersect in a transversal manner — is a delicate matter, and
requires a careful analysis for many classes of systems [50, 61]. On the other hand, there do
exist results proving the topological equivalence of the phase portraits of Py and P, under
conditions of Morse-Smale-type structural stability of Py (see for example theorem 4.4 in [57]),
but this is beyond the scope of this work.

5.2 General properties of (n : m)-resonances

We recall the form of the classical system with symmetric dissipation rates in the two quadra-
tures, introduced in (4.28):

d _ - -
—r = — KT
ds p )
d _ R S .
LP= T Rp— Bsin(Z + &g sin(vgs)).
s

Here, the frequency of oscillation is given by the normalized drive frequency 74, and should be
considered of order 1. To write our system in the normal form (5.1), amenable to averaging,
we will move to a rotating frame with frequency 774, where m and n are two strictly positive
coprime integers:

- m_ . /m
= cos(—ms)u + sm(—yds)v, (5.6a)
n n

= cos(%z)w)v — sin(%ﬁds) u. (5.6b)

=
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Recalling the definition of the detuning from (4.38),

m
=1——7 .
1) nl/d, (57)

the resulting equations of motion are
. s .o (M . m . AL .~
U= o0u—Ku-+ Bsm(—l/ds) sin (u cos(—ms) +v sm(—yds) + &4 sm(uds)),
n n n
) ~ m _ . m _ L /m .
U= —0u— KV — Bcos(—ws) sin (u cos(—vd8> + v sm(—ms) + &4 sm(yds)),
n n n
where now § can be considered small with respect to 3. Note that we have changed the
periodicity of the system, as the smallest common period of all time-dependent terms amounts
to 2nm /4. The equilibria found through an averaged model will thus correspond to 2n7/vy-
periodic subharmonic solutions a priori. The averaged model is defined as
2nm

0u — KU + Byd/ o sin(@ﬁds> sin(ﬂ cos(ﬂﬂds) + @sin(mﬁﬁ) + &4 sin(ﬁds)>ds,
0 n n n

U

- 2nmw
(5.9a)
o onn
U= —0U— KU — Bﬁ “ cos(mﬁds> sin(ﬁ cos(mﬁds) + 17sin(mz7ds) + &4 sin(ﬁds)>ds.
2nm Jo n n n

(5.9b)

For the solutions of this model to correspond to the true system up to good accuracy, we a
priori need to assume that

KV + 02 < 2
n
161Va? + 0% < 22,
n
B< X
n
The general correspondences between the averaged model and the true system summarized in
the previous section are asymptotic in nature however, so there are no clear a priori allowable
values for (k,d,3) (and corresponding regions in phase space) for which averaging is valid.
Explicit bounds on these values fall beyond the scope of this work. We will thus study the
averaged model (5.9) as is, knowing there exist some small-enough values for (k, d, §) for which
the obtained conclusions are valid for the true system. In Section 5.3 however, we compare
the predictions of this averaged model to exact numerical Floquet-Markov simulations.
Analogously to the discussion in Section 3.2.1.2 on the stability types of the Poincaré map,

we can define the stability type of an equilibrium point (u*,v*) in terms of the eigenvalues of
the stability matriz

i
ou
oV
ou

Explicitly, we obtain

A(u*,v")

+8

2nm

(5 )

2nm

5 Vd foW sin(Z0gs) cos(Zgs) cos(¢(s)) ds

n
nm

— [ cos? (2 1ys) cos(((s)) ds
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(5.10)

U
v
9y
v

<
Il
<

(5.11)

2nm

Jo* sin®(2,4s) cos(¢(s)) ds

2nm

—Jo vd sin(%ﬂds) COS(%DdS) cos(((s)) ds

)



with

C(s)=u" cos(%ﬁds) + 0 sin(%ﬂw) + &g sin(vys).
If both eigenvalues of A have strictly negative real parts, (a*,9*) corresponds to a stable node.
If A has one eigenvalue with strictly positive real part and a second with strictly negative real
part, we speak of a saddle point. If both eigenvalues of A have strictly positive real parts, the
equilibrium point corresponds to a source.

As was the case for the true Poincaré map (see Section 3.2.1.3), the dissipative nature
of (5.9) dictates that also for the averaged model, equilibrium points (u*,7*) necessarily
correspond to either stable nodes or saddle points, and no sources are allowed. This is easy
to see by considering Tr(A) = —2k, so the eigenvalues of A must sum to —2x. Furthermore,
since A only has real entries, its eigenvalues are either both real, or are a complex conjugate
pair. Then it easily follows that the eigenvalues n+ of A can be written as

nﬂ::_"{’iX7

where x is either strictly positive or purely imaginary. Consequently, the only possible bifur-
cation mechanism is a saddle-node bifurcation where ny = 0, for x = k. At this bifurcation
point, a saddle-node pair is either created or annihilated together (depending in which direc-
tion one changes the system parameters). Denoting the total number of nodes by Ny, and
the total number of saddle points by Vg, this implies that for any set of system parameters
(k,9,8,€4), Ny — Ng remains constant. For system (5.9), we can prove that N, — Ny = 1. The
main idea behind the proof is a standard topological argument based on the Poincaré index
(see Proposition 1.8.4 of [57]) of a closed curve C encircling all the equilibrial. The index
theorem equates IV, — Ng to the number of turns made by the vector field when traversing the
curve C, and for our system this number of turns amounts to 1.

We now turn to finding the equilibrium points of (5.9). It is instructive to perform the
equilibrium point analysis in polar coordinates,

N

= Rsin(0), (5.12a)
Rcos(6). (5.12Db)

<l
Il

The equivalent vector field for (6, R) becomes

Ng(n:m) (07 Ra gd)

0=0+p 7 : (5.13a)
R=—kR+ Bh™™ (0, R, &), (5.13b)
with
g(n:m)(g’ R,&) = E%—oo cos(knd) Ji+kn(R) T—km (&) ;M +neven, (5.14a)
D ke o0 COS(2kn0) Ty 2k (R) T—2km (&a) ~ » m+n odd,
h(nm) (9’ R, fd) ) Zl;oz—oo Sln(k'ne)jl-f—kn(R)j—km(gd) , M-+ neven, (514b)
=D he— oo SIN(2ENO) T1 2k (R) T —2km (&a) 5 m +n odd,

1We show in Section 5.2.2 that for x > 0 all equilibria are necessarily situated in a bounded region of phase
space.
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where 7 is the I’th order Bessel function of the first kind. To make the notation more uniform,
we will introduce the parity

0 , m+4n even,

r:==(m+mn) mod2=
1 , m+mnodd,

and drop the superscript ™) to make the notation less heavy, while it should be remembered

that g and h depend on the pair of coprime integers (m,n). In this way we can write

g(9> R, §d) = Z COS((l + T)kne)Jl+(1+r)kn(R)jf(lJrr)km(fd)7 (5.15&)
k=—00

h(0, R, &) = — > sin((L+7)kn0) Ty (14rykn (BT (14 (Ea)- (5.15b)
k=—00

As an immediate observation, for any value of x, 8 and ¢, if either n > 2, orn=1and r =1,
the origin R = 0 corresponds to an equilibrium point, since h(60,0,&4) = 0,V0,&,. Since we
are interested in finding subharmonic solutions with n > 1, we can exclude the case n = 1,
r = 0 however, so we can always assume the origin to be an equilibrium point. Subsequently
excluding the origin, the remaining equilibria (6*, R*) can be sought for by solving

_59(9*7 R*7£d)

6= = (5.16a)
K= BW. (5.16b)

Thus excluding the origin, whenever we find a node (resp. saddle point) we know there must
exist a corresponding saddle point (resp. node). For this reason, we do not focus on the
stability type for now, and postpone this question to Section 5.3. The rest of this chapter is
outlined as follows. First, a set of global symmetries of the set of equilibria is discussed. Next,
in Section 5.2.2 we consider some insightful limiting cases, for which analytical conclusions
can be obtained. Section 5.3 then details a numerical approach for characterizing the set of
equilibria, for the case m =1,n = 3.

5.2.1 Global symmetries

The averaged model (5.9) adheres to a global rotational symmetry, causing a degeneracy in
the set of equilibria.

(i) The averaged vector field is invariant under rotation by an angle ﬁ, since h(6 +

n(fL), ) =h(0,-,-), and g(f + n(fir)) = ¢(#,-,-). This means that for any trajectory

(0(s), R(s)), another solution is obtained by considering (6(s) + kﬁ,]{(s)), k =

1,...,(1+7r)n—1. In particular, any equilibrium (6*, R*) is part of a group of (1 +r)n
equilibria of the same stability type.

(#7) In the Hamiltonian limit of k = 0, R = 0 is automatically satisfied for

km
0= ——— k=0,...,(1 -1 q
n(l—l—?")’ 07 7( +T)n Y (5 7)
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readily identifying a subset of possible equilibria. Note that for any value of R*, the
detuning can be chosen to satisfy (5.16a), so such equilibria must exist for

5 € [_Bgsup, —Bgmf} ,

where
Giug = nf g(0*, R 7§d),
e*e{o,ﬁ},mo R
o g(e*a R*a gd)
gsup — sup T

Since g is bounded, these limits are well-defined.

(73¢) Still in the Hamiltonian case, an extra symmetry of (5.13) can be established:

0 — —0, (5.182)
5 — —s. (5.18b)

The system is therefore called reversible, due to this time-reversal symmetry. (5.18) has
no immediate extra consequences for any of the equilibria satisfying 0* = kﬁ, since
the set is invariant under § — —6. However, any equilibrium (6*, R*) that is not of this
form must necessarily come with a second equilibrium (—6*, R*) of the same stability
type. This symmetry is broken for x > 0, but one can expect a certain approximate
symmetry to hold, as an infinitesimal amount of dissipation can only change the phase
portrait in a continuous manner.

5.2.2 Limiting behavior

There are two interesting limits to be considered in terms of the distance R to the origin.

e For R < 1, we can Taylor expand (5.13) to obtain up to leading order, for n > 1:

6=206+ gjo(gd) + O(R), (5.19a)
R=—-kR+O(R?). (5.19b)

The origin of phase space is seen to be a stable node for x > 0, and a center in the limit
of Kk — 0. We call this equilibrium the nominal point. Close to the origin, the aver-
aged model describes an essentially linear system (harmonic oscillator). The Josephson
nonlinearity only shows itself in the fact that the frequency of this effective harmonic
oscillator depends on the d