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Chapter 1

Context

Abstract: Genome-Wide Association Studies have been spread over last
15 years to become an interesting approach for biomarker discovery by finding
association between the genotype presented with Single Nucleotide Polymor-
phisms and the phenotype that denotes a particular disease or trait of interest.
However, it is necessary to deal with many challenges such as the missing
heritability, the curse of dimensionality, population stratification and linkage
disequilibrium. Consequently, machine learning techniques have been adapted
to address such issues. For example, feature selection models based on regu-
larization terms have been proven to be efficient to identify candidate genes
associated with diseases. Unfortunately, these models suffer from the lack of
robustness, they are sensitive to small perturbations in the input dataset. Sev-
eral measurements have been proposed to estimate the stability of the feature
selection. Further methods have been suggested to improve the stability in
identifying consistently the same features over different input subsamples.

Résumé: Les études d’association pangénomiques se sont émergés au
cours des 15 dernières années pour devenir une approche intéressante pour
la découverte de biomarqueurs en trouvant une association entre le génotype
présenté par des polymorphismes nucléotidiques et le phénotype qui correspond
à une maladie ou un trait d’intérêt particulier. Cependant, il est nécessaire
de faire face à de nombreux défis tels que l’héritabilité manquante, le fléau de
la dimension, la structure de la population et le déséquilibre de liaison. Par
conséquent, les techniques d’apprentissage automatique ont été adaptées pour
résoudre ces problèmes. Par exemple, les modèles de sélection des variables
basés sur des termes de régularisation se sont avérés efficaces pour identi-
fier les gènes candidats associés aux maladies. Malheureusement, ces modèles
manquent de robustesse, ils sont sensibles aux petites perturbations dans le
jeu de données d’entrée. Plusieurs mesures ont été proposées pour estimer
la stabilité de la sélection des variables. D’autres méthodes ont été suggérées
pour améliorer la stabilité dans l’identification cohérente des mêmes variables
sur différents sous-échantillons d’entrée.
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1.1 Introduction
Since the accomplishment of the human genome project, many studies have
shown that the risk of diseases development can be explained from the human
genome. The progress of genetic research allows then the identification of
common genetic factors associated with a disease.

Variations in the genome are called Single Nucleotide Polymorphisms
(SNPs) and they represent the most of the genetic material between in-
dividuals. However, this task is complex as the human genome contains
around 15 million Single Nucleotide Polymorphisms (SNPs) [Tak and Farn-
ham(2015)]. To link variation in the human population to the risk of disease,
researchers have developed Genome-Wide Association Studies (GWAS) which
find association between the human genome (the genotype) and a studied
disease (the phenotype) by comparing data from people suffering from the
disease (cases) and healthy people (controls). This design is defined as case-
control study. Unfortunately, datasets used in GWAS analysis usually contain
a huge number of features (SNPs) compared to the number of participants.
This problem is known as the curse of dimensionality and implies the statis-
tical power of classical GWAS analysis that has remained limited because of
the small number of samples. High-dimensional data therefore requires the
use of appropriate methods.

In addition, in the case of complex diseases, SNPs identified by GWAS
do not always provide the whole information about the phenotype variability.
This problem is known as the missing heritability in genomic studies [Manolio
et al.(2009),Zuk et al.(2012),Nolte et al.(2017)].
In order to find adapted solutions, recent studies [Bermingham et al.(2015)]
were oriented towards the exploration of feature selection models such as
Lasso to reduce the dimensionality of data by keeping only the relevant fea-
tures associated with disease and excluding irrelevant associations. Conse-
quently, many contributions have been developed in the last 15 years sug-
gesting several improvements for feature selection procedure by proposing
efficient designs dedicated for GWAS analysis. One way to improve feature
selection for GWAS analysis is to add prior knowledge about biological en-
vironment in a graph or a group structure. On the one hand, feature selec-
tion models can incorporate connectivity in graph constraints from biological
networks, in addition to regularization terms [Azencott et al.(2013)]. On
the other hand, Linkage Disequilibrium (LD), presented by high correlation
between nearby SNPs, can be incorporated also in feature selection models
based on group structure such as the group Lasso [Yuan and Lin(2006),Jacob
et al.(2009)]. Indeed, SNPs in strong LD can be clustered in groups [Ambroise
et al.(2019)]. However, despite the promising results of feature selection mod-
els, they are still sensitive to the slightest variation in the input dataset and
lack of stability [Haury et al.(2011)]. To evaluate the robustness of these
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methods, several stability of the selection measurements were proposed to
quantify the variability that occurs down to the smallest perturbation in the
dataset [Kalousis et al.(2007),Kuncheva(2008), Lustgarten et al.(2009),Wald
et al.(2013),Nogueira et al.(2018)]. Unfortunately, disappointing results show
that although best hyper parameters was chosen to obtain the highest stability
index, feature selection methods still lack of robustness [Haury et al.(2011)].

Further works have proposed new procedures of combining feature selec-
tion along with subsampling. These methods are known as, stability selection,
and aim to improve the stability of the selection of any existing sparsity enforc-
ing method [Meinshausen and Bühlmann(2009),Shah and Samworth(2013)].

In this chapter, we start by defining fundamental biological notations
about GWAS and its challenges in Section 1.2. Then, we present in Section 1.3
the main Machine Learning models applied to GWAS, and more precisely fea-
ture selection methods based on regularization: Lasso which shrinks the less
important features to zero using an `1-norm regularization, Group Lasso which
allows some predefined groups of covariates to be jointly selected, Multitask
Lasso which provides joint tasks learning procedure and Elastic Net which
uses a mixed `1-norm and `2-norm penalties. We also detail their loss func-
tions and the use cases of each of them. Section 1.4 details the concept of
the stability of the selection quantification. The desirable properties that a
stability measure should possess will be presented. Next, we describe in Sec-
tion 1.5 the datasets that we use to conduct our analysis during this thesis.
First, two case-control breast cancer datasets: DRIVE Breast Cancer On-
coArray Genotypes Distribution set (DRIVE) and CIDR-GWAS of Breast
Cancer in the African Diaspora - the ROOT study (ROOT). Second, three
case-control datasets of three different diseases from the Wellcome Trust Case
Control Consortium 1 data (WTCCC1): Rheumatoid Arthritis (RA), Type
1 Diabetes (T1D) and Type 2 Diabetes (T2D). Also, we work with Arabidopsis
thaliana dataset which represent a genotype plant data composed of five chro-
mosomes. We choose to work on the flowering duration time as a phenotype
(DTF3). Finally, we also use simulated datasets generated by GWAsimulator
software to evaluate the developed methods. In the last section, we outline
the contributions achieved in this dissertation.

1.2 Genome-Wide Association Studies

1.2.1 Association analysis
Genome-Wide Association Studies (GWAS) have rapidly developed over the
last 15 years, becoming an interesting approach to identify candidate ge-
nomic regions associated with complex diseases in human medicine [Visscher
et al.(2017)]. In other words, the aim of GWAS is to determine the associa-



1.2. Genome-Wide Association Studies 5

tion between genotype and phenotype. The achievements of GWAS projects
come after the completion of the Human Genome Project with the goal of
determining the sequence of individual human genomes. It provides a way to
decode the whole human genome with a good mapping at the level of Single
Nucleotide Variant (SNVs). A SNV consists of a single base-pair variation at a
specific position in the genome. In order to be considered as Single Nucleotide
Polymorphism (SNP), a SNV is required to be present at a frequency of at
least 1% or more of all chromosomes. A SNP (pronounced "snip") includes
two alleles denoted by Adenine [A] Cytosine [C], Guanine [G], or Thymine
[T]. These new genetic markers are the most common genetic variations in
the genome. The human genome contains 3 billions base pair divided in 22
pairs of autosomes and one pair of sex chromosomes (XX or XY) [WS and
JH(2012)]. Autosomes are ordered roughly in relation to their sizes from
chromosome 1 to chromosome 22. It was estimated that more than 17 mil-
lion SNPs in the human genome have been cataloged in the SNP Database
dbSNP1 [Naidoo et al.(2011)].

Categorical studies

One common design used in GWAS is case-control studies, where the esti-
mation of a SNP corresponds to variation on the observed phenotype on a
binary 0-1 scale. GWAS compare the genotypes of two groups of participants:
samples with the phenotype of interest, called cases with a particular disease,
and similar samples without the phenotype called controls. The aim of GWAS
is to identify SNPs present only in cases or only in control subjects and that
are thus said to be associated to the disease.

Statistical test

Traditional GWAS methods are based on single-marker analyses, that consist
in conducting an independent statistical test for each marker. For a classic
GWAS approach, let us define n to be the number of samples (participants)
and p to be the number of features (SNPs), y = (y1, y2, ..., yn) denotes the
vector of phenotype values for each sample. The genotype matrix is presented
by xij for an individual i and a SNP j, where i = 1...n and j = 1...p.

To perform GWAS analysis, a linear regression model is considered for
each SNP from p SNPs:

yi = β0 + βjxij + εi,

where β0 corresponds to the model intercept, xij is the genotype vector for
the SNP j, βj denotes the SNP j effect and εi ∼ N (0, σ2) is Gaussian error
term. The significance is evaluated SNP by SNP individually. Following a

1http://www.ncbi.nlm.nih.gov/projects/SNP/

http://www.ncbi.nlm.nih.gov/projects/SNP/
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Figure 1.1: An example of a Manhattan plot for DRIVE dataset presented in
Section 1.5.1.

t-test or χ2-test, their p-values are computed against the null model: H0 =
βj = 0.

The obtained p-values can be visualized to identify the regions of interest
determined by the used statistical test.

On the one hand, Manhattan plots show the p-values of the entire GWAS
on a genome scale. The p-values are represented in order by chromosome
(X-axis). The Y-axis corresponds to the −log10 of the p-values. Each point
in the Manhattan plot is a SNP across the human chromosomes from left to
right and the heights correspond to the strength of the association with the
phenotype (the disease). The strongest associations represented by the peaks
in the plot as shown in Figure 1.1.

On the other hand, the Quantile-Quantile plots (Q-Q plots) represent the
expected distribution of association test statistics (X-axis) across the SNPs
compared to the observed values highlighted in Y-axis. A deviation from
X = Y line describes a relevant difference between cases and controls in the
genome. In other words, the Q-Q plot is a representation of the deviation
of the observed p-values from the null hypothesis. If the observed values are
similar to the expected values, all dots are on the diagonal between the X-axis
and the Y-axis. Otherwise, if the observed values seem to be relevant than
expected, dots in the graph will move toward the Y-axis. An example of a
Q-Q plot is presented in Figure 1.2.
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Figure 1.2: An example of a Q-Q plot for DRIVE dataset presented in Sec-
tion 1.5.1.

1.2.2 Missing heritability
Factors including genetics, environment and random chance can all contribute
to the variation between individuals in their phenotypes. Hence, genetic sus-
ceptibility to disease depends also on additional environmental risk factors.
As an example, some genes are known and identified to play a role in obesity,
but they strongly rely on other environmental factors such as smoking with-
drawal, pregnancy and antidepressant medication [Mayhew and Meyre(2017)].
Heritability can be defined then as the contribution of genetics to describe the
studied phenotype. It is quantified with a genetic measure that finds the ob-
servable differences in a trait due to genetic factors between individuals within
a population. The heritability in complex diseases can be measured using dif-
ferent statistics such as: Sibling recurrence risk [Rybicki and Elston(2000)],
Genetic risk [Jr. et al.(2019)] and Phenotypic variance [Byers(2008)]. We give
in Table 1.1 the estimation of the heritability explained for some complex
disease.

The term "missing heritability" refers to the lack of information about
the overall genetic component and risk of common diseases detected from
GWAS [Manolio et al.(2009)]. GWAS data explain only a modest fraction of
heritability. Common variants account for only a small proportion of genetic
components, and the missing heritability lies in the huge class of rare genetic
variants that GWAS do not consider. Many explanations have been suggested,
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missing heritability occurs because of joint genetic effects of common SNPs
acting additively. This additive effect is computed as the sum of the effect of
each allele at all loci that influence the phenotype.

Disease Number Proportion of Heritability
of loci heritability measureexplained

Age-related macular 5 50% Sibling recurrence riskdegeneration
Crohn’s disease 32 20% Genetic risk (liability)
Systemic lupus 6 15% Sibling recurrence riskerythematosus
Type 2 diabetes 18 6% Sibling recurrence risk

HDL cholesterol 7 5.2% Residual
phenotypic variance

Height 40 5% Phenotypic variance
Early onset 9 2.8% Phenotypic variancemyocardial infarction
Fasting glucose 4 1.5% Phenotypic variance

Table 1.1: Estimation of missing heritability for several complex dis-
eases [Manolio et al.(2009)]

1.2.3 The curse of dimensionality

Designing methods for GWAS analysis must take into account the complexity
of the high dimensionality in SNPs microarrays. Hundreds-of-thousands, or
even millions, of SNP markers per individual are common in GWAS which
implies a huge number of tests to find association with the phenotype of
interest. Hence, this leads to a lack of statistical power because of the small
samples size. The problem is known as, the curse of dimensionality, i.e., small
n, big p. Thus, this leads to mysterious effect and massive computational
complexity challenge.

Despite the considerable decrease in sequencing cost and time thanks to
geneticists effort, it remains challenging to bridge the large number of SNPs
to obtain n = p. In fact, the number of possible cases affected with common
diseases in a given population is still low and not sufficient to resolve high
dimensionality of SNP arrays.

Although Machine Learning community suggested some proposals to alle-
viate the effect of high dimensionality in genomic data using parallelization
models [O’Brien and Szu(2017)], most algorithms still suffer from the lack of
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robusteness in identifying causal regions of interest, model over-fitting and
local convergence.

1.2.4 Population stratification

In association analysis, population stratification is defined by the presence
of different ancestral subpopulations within samples based on their allelic
frequency in the same GWAS study. It occurs when the number of samples
between cases and controls is different among these subpopulations, this can
lead to spurious results especially when the association is found due to the
population structure rather than a relationship with the studied disease. The
population stratification can also occur in homogeneous populations where
individuals belong to the same ancestry or country, as like as heterogeneous
populations that include samples from different genetic ancestries.

It is possible to detect whether the data contains a population stratifica-
tion or not by computing the inflation factor λ. This is computed for each
chromosome along the genome as the median of the observed χ2-test statistics
divided by the expected median of the corresponding χ2 distribution. Em-
pirically, a value larger than 1 implies the presence of population structure
confounder. Principal Components Analysis (PCA) can also capture the exis-
tence of subpopulations within samples by computing the eigenvectors of the
genotype data’s covariance matrix. We give in Figure 1.3 an example of PCA
plot detecting the population structure of the 1000 Genome Project GWAS
data (described in Appendix A.1.1), five populations of different ancestries
were captured using the first three Principal Components (PCs). In order to
avoid false discoveries due to population stratification issue, we present and
compare in Chapter 2 several adjustment methods for case-control phenotype.

1.2.5 Linkage disequilibrium

Alleles of genes on the same chromosome tend to be transmitted together,
this is called Linkage disequilibrium (LD). It results in a strong correlation
between SNPs in the neighborhood of the same chromosome. LD occurs
through recombination events over generations from maternal and paternal
chromosomes, it provides information about past event. LD explains how
much an allele of one given SNP is correlated and segregated by chance with
another allele of another SNP. Many measurments of LD have been proposed
in the literature [Devlin and Risch(1995)]. One of the common method relies
on using the squared correlation coefficient r2 that is defined as:

r2 (fa, fb, fab) = (fab − fafb)2

fa (1− fa) fb (1− fb)
,
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Figure 1.3: An example of PCA plot capturing the population structure in the
1000 Genome Project data. Five ancestral populations were detected using
the first three Principal Components (PCs): African, Hispanic, East-Asian,
Caucasian and South Asian

where fab is the frequency of haplotypes having an allele a at locus 1 and
an allele b at locus 2. r2 can be ranged between 0 and 1.

Many factors influence LD such as genetic linkage, population structure,
genetic recombination, mutation rate or genetic drift. Population structure
as described precedently manifests in LD as differences of the LD regions
across population. Indeed, several studies have proved that different ancestral
populations present large variation in the LD patterns structure [Nakamoto
et al.(2006),Teo et al.(2009),Park(2019)]. [Nakamoto et al.(2006)] have studied
LD patterns of human CYP7A1 gene in different populations from HapMap
data that we present in Appendix A.1.2. They have shown that the LD-
blocks (of strongly correlated SNPs) are different and do not have the same
size across the studied populations (CEU, YRI, JPT and CHB). Figure 1.4
exposes an example of their findings in a region of 13 SNPs in the CYP7A1
gene, the Caucasian population (CEU) presents two LD blocks of sizes 14 kb
and 2 kb, the African population (YRI) gives two different LD-blocks of sizes
9 kb and 2 kb, the Japanese population (JPT) produces one bigger LD block
of 16 kb and finally the Chinese CHB population shows one different LD block
of 10 kb size.

In association analysis, the power of the test in detecting the true causal
SNPs will greatly rely on the LD strength between the tested SNP and the
causal region. In general, the top ranked candidate SNPs are in LD with the
real causal ones. Thus, with the growth of SNP arrays, inducing the LD pat-
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Figure 1.4: LD blocks of CYP7A1 gene in different populations (CEU, YRI,
JPT and CHB) from the HapMap data. Bright red color corresponds to
very strong LD, white color to no LD, pink red and blue to intermediate
LD [Nakamoto et al.(2006)]

terns information in GWAS analysis will improve the biological interpretation
and alleviate the curse of dimensionality.

1.2.6 Microarray data

In our study, we conduct our analysis using SNP arrays that were manufac-
tured to genotype human DNA at hundred of thousand of SNPs across the
whole genome [LaFramboise(2009)]. For each SNP, an individual’s genotype
is the specific combination of alleles that it possesses. By convention, the most
common allele at each SNP is called A and the less common SNP is called B.
Therefore, there are three possible pairs of alleles for each SNP: AA, AB and
BB. There is a pair of probes for each of the alleles.

The most commonly used SNP array platforms are: Affymetrix platform
and Illumina platform. Despite the differences between their technologies,
they share the same main components such as their screening arrays contains
oligonucleotide probes. Both array technologies call for the hybridization of
fragmented single-stranded DNA to arrays containing hundreds of thousands
of unique nucleotide probe sequences.

For the genotypes, we use the additive encoding where the minor allele
explains the disease prevalence: the major allele in homozygous subjects is
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represented by 0, the heterozygous genotype is represented by 1 and the minor
allele in homozygous subjects is represented by 2. In practice, PLINK [Purcell
et al.(2007)] files are widely used for analyzing SNP arrays. Their format are
presented in Appendix B.

1.3 Feature selection methods

1.3.1 GWAS as a Machine Learning problem
Thus far, classical GWAS analysis have exponentially grown in power and pre-
cision using SNP arrays which cover the whole human genome including mil-
lions of SNPs. Despite their advancement, the precision of GWAS approaches
remains limited as they are based on statistical tests where the association
with the phenotype is evaluated SNP by SNP. In addition, microarrays con-
tain data in high-dimensional spaces with a huge number of features (SNPs)
comparing to the number of participants. Such data design requires the explo-
ration of other appropriate methods including notably feature filtering steps.

GWAS have generated a number of important bioinformatics challenges,
including the modeling of complex genotype-phenotype relationships using
data mining and ML methods. The use of biological knowledge databases
helps the interpretation of the genetic association studies by developing pow-
erful models. Therefore, ML models have been developed and successfully
applied to avoid the curse of dimensionality in GWAS data. From a ML per-
spective, the choice of relevant set of attributes is an initial step called feature
selection.

A common association study problem can be solved by providing a pre-
dictive model for a complex disease in a population from a training dataset of
markers genotype and phenotypes of case-control design. The general steps
for ML application to GWAS problem are:

• Construction of proper dataset (including preprocessing and quality con-
trol analysis)

• Feature selection

• Predictive model construction

• Model validation

In this thesis, we focus mainly in the feature selection step. It remains
challenging to construct a predictive model using only GWAS data. Although
diseases or some tumor growth are related to the genetic inheritance, there
are other factors that explain in higher percentage the affection with a dis-
ease, such as environmental factors related to the lifestyle of patients. So far,
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the development of an efficient biomarker discovery framework using feature
selection models is more valuable than constructing a predictive model.

Therefore, in a GWAS study, the aim is to select features which are fully
associated with a given phenotype of interest. Several feature selection algo-
rithms exist within the ML framework.

1.3.2 Lasso
Lasso was first proposed by [Tibshirani(1996)] and it uses an `1-norm regu-
larization. The model penalizes the coefficients of the regression attributes in
a way which shrinks some of them to zero to ensure sparsity. The variables
that still have non-zero coefficients are considered selected to be a part of
the model. The aim is to minimize the prediction error. Lasso model is the
solution to the following equation:

min
β∈Rp
L(y, βX) + λ

p∑
j=0
| βj |,

where the penalization parameter λ controls the strength of the penalty.
The larger the parameter , the sparser the model. The choice of this parameter
has a great importance and it is chosen by cross-validation in practice.

Lasso was succefully applied in GWAS applications. [Wu and Chen(2009)]
have evaluated the performance of Lasso penalized with logistic regression
in case control design on coeliac disease. In his study, they confirmed their
discoveries by retrieving SNPs known for the same disease in previous stud-
ies. [Li et al.(2010)] later proposed a two-stage procedure by combining super-
vised PCA with Bayesian Lasso. The approach has shown promising results in
identifying body mass index (BMI) SNPs that support previous studies find-
ings. Also, [Waldmann et al.(2013)] have conducted a study to analyze GWAS
data in different quantitive phenotypes using feature selection model including
Lasso. Recently, [Yang and Wen(2020)] have presented a new permutation-
assisted tuning procedure in Lasso (called plasso) in order to determine the
ammount of shrinkage, the model was succefully applied to real data to find
associated SNPs with BMI phenotype.

1.3.3 Group Lasso
The group Lasso deals with problems where the features follow a group struc-
ture where it is desirable to yield sparsity (or not) to all coefficients within a
group simultaneously [Yuan and Lin(2006)].

For G groups, group Lasso is defined by the following convex optimization
problem:

min
β∈Rp
L(y, βX) + λ

G∑
j=1

√
pj ‖βj‖2 ,
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where √pj scales the penalization factor according to the group size and ‖βj‖2
is the Euclidean norm. This approach yields the sparsity criterion at the group
level and not among the features within a group.

In a biological context, sometimes features can belong to several groups.
The overlap group Lasso [Jacob et al.(2009)] allows the features to contribute
to more than one group by solving the problem defined as:

min
β∈Rp
L(y,X(

V∑
j=1

vj)) + λ
V∑
j=1
‖vj‖2 ,

where V is a set of groups, and vj is a group with vj ∈ Vj.
The loss function is defined by ΩV as:

ΩV (β) := inf
vj∈Vj

‖vj‖2 ,where β =
V∑
j=1

vj

Consequently, this penalty is used for solving the optimization problem:

min
β∈Rp
L(y, βX) + λΩV (β).

[Silver and Montana(2011)] have proposed to use the group Lasso in which
SNPs are grouped into functionally related gene sets or pathways. The authors
have shown that the method produces good results in Alzheimer’s disease
comparing to existing methods. Few studies have used the group Lasso where
the groups correspond to SNPs that are in LD [Liu et al.(2012), Dehman
et al.(2015),Ambroise et al.(2019)].

1.3.4 Sparse group Lasso

The sparse group Lasso yields sparsity of both groups and features within a
group. That is, the model considers two regularizers. The first corresponds
to the penalty of group Lasso and enforces sparsity at the group level. The
second corresponds to a second penalty that yields sparsity within each group.
The group Lasso is defined by the following convex optimization problem:

min
β∈Rp
L(y, βX) + λ1

G∑
j=1

√
pj ‖βj‖2 + λ2

p∑
j=1
‖βj‖1 .

[Yang et al.(2017)] have conducted a GWAS analysis using the sparse
group Lasso for both gene groups and network to identify Alzheimer’s disease-
related risk SNPs.
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1.3.5 Multitask Lasso

Multitask Lasso is a derivative method from Lasso, which performs learning
with related joint tasks. This setting can be performed for GWAS applica-
tions [Sugiyama et al.(2014)] as it improves the precision of feature selection
by increasing the number of samples among the tasks for multiple phenotypes.
In addition, this mapping can be exploited by incorporating one task for each
subpopulation within samples for one phenotype.

Several multitask approaches have been proposed [Bellon et al.(2016)].
Here, we present the Multitask Lasso proposed by [Obozinski et al.(2006)].
The connection between the tasks is given by the `2-norm regularization, which
encourages the shrinkage of coefficients shared between tasks. A `1-norm
regularization term ensures sparsity across all tasks. The aim is to select the
same features for all tasks.

We consider T to be the number of tasks to learn and the training set
consists of the samples {(X(tm), y(tm)) for t = 1...T and m = 1...nt} where
i indexes the i.i.d (independent and identically distributed) samples for each
task t. The objective function of the multitask Lasso is then defined as:

min
β∈RT×p

T∑
t=1

1
nt

nt∑
m=1
L

y(tm),

β(t)
0 +

p∑
j=1

β
(t)
j X

(tm)
j

+ λ
p∑
j=0

T∑
t=1

β2
tj.

1.3.6 Elastic Net

Elastic Net [Zou and Hastie(2005)] is a combination of two approaches: (1)
Ridge Regularization using `2-norm penalty term, and (2) Lasso presented
above. The model retains the capacity of feature selection by excluding ir-
relevant features and replicates the associated features into groups. The loss
function of Elastic Net is defined as:

min
β∈Rp
L(y, βX) + λ1

p∑
j=0

β2
j + λ2

p∑
j=0
| βj |,

where λ1 and λ2 are the penalization terms that control the strength of both
regularization terms.

Elastic Net was successfully applied to GWAS in case-control study to
rheumatoid arthritis phenotype [Cho et al.(2009)], as well as, to height vari-
ation in Korean population [Cho and Kim(2010)].
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1.4 Stability of the feature selection

1.4.1 Major problem of feature selection models
In high dimensional data sets, a feature selection procedure is typically ap-
plied to obtain a smaller set with reduced dimensionality. Therefore, feature
selection is an efficient method to discover the SNPs associated to the trait
by removing irrelevant features. In GWAS, it is important to note that the
slightest variation in the input dataset leads to different selected subsets by
feature selection methods. This is due to the problem of high-dimensional data
where we have a small number of samples as compared to the large number
of features. Consequently, it is essential to quantify the robustness of feature
selection models using an empirical measurement based on several desirable
properties. This ensures the selection of meaningful subset of features. In this
section, we discuss the concept of the stability of the selection.

1.4.2 Measurement of the stability of the selection
The stability of the selection can be defined as the sensitivity to small pertur-
bations in the input dataset [Kalousis et al.(2007)]. Let us repeat a feature
selection procedure M -times for M different bootstraps. Doing so, we obtain
Z of M subsets of selected features that we use to measure the stability. The
stability is defined by the average of the similarity measure sim between all
pairs of subsets. The stability measure is denoted by Φ̂ : {0, 1}M×p → R and
given by:

Φ̂(Z) = 2
M(M − 1)

M−1∑
i=1

M∑
j=i+1

sim(si, sj),

where si is ith subset in Z.
Several similarity measurements were proposed relying on a set of desirable

properties [Nogueira et al.(2018)].

1.4.3 Desirable properties
The observed desirable properties of stability measures in the literature are
presented by [Kuncheva(2008),Nogueira et al.(2018)] and they are described
as follows:

• Fully defined: The stability measure should allow the selection of any
collection of subsets. Thus, with this property, we avoid returning a
constant number of features.

• Monotonicity: The stability measure should be a strict decreasing
function of the variances of the selection of each feature. [Kuncheva(2008)]
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explained that for a fixed subset size, k, and number of features, p, the
larger the intersection between the subsets, the higher the value of the
stability measure. Therefore, this property ensures that the stability
value increases with the size of the intersection of the two sets.

• Bounds: The stability measure should be bounded by a constant value
which is not related to the number of selected features in the subsets.
Some proposed similarities in the literature do not include this property.
Then, the stability measure achieves higher value if we select a higher
number of features.

• Maximum: The stability measure achieves its maximum if-and-only-
if all selected features are identical within the subsets. Some methods
[Wald et al.(2013), Somol and Novovicova(2010)], which do not include
this property, violate the forward implication and the stability mea-
sure still achieve its maximum even if we select different features each
time. Other methods [Lustgarten et al.(2009)] violate the backward
implication, such that even if the selection is stable and we select the
same number of features for all subsets, these methods take different
values of stability.

• Correction for chance: Under the null model of a feature selection
method, the stability measure should be constant. For this property,
we assume to correct for random selection by chance which represents
a fully unstable case. The stability value in this scenario is supposed to
be near to zero, then E[Φ] = 0.

We present in Appendix C.1, the desirable properties for 17 stability indexes
proposed in the literature, and for each of the 5 properties, we show which
measure satisfies which property.

1.5 Data studied in this thesis

1.5.1 Breast cancer datasets
Breast cancer is the cancer that forms in breast cells tissue. It is the most
common diagnosed cancer for women after skin cancer, and it is the second
cause of death in women after lung cancer. The tumor usually starts in the
inner lining of milk ducts or the lobules that supply them with milk. Breast
cancer can affect men, but it is far more common in women. Apart to being
women, other risk factors can increase the formation of this disease such as age,
obesity, alcohol consumption and the age of first birth. It is also estimated that
about 5% to 10% of cases are linked to ihnerited genetic mutation targeting
two genes, BRCA1 and BRCA2. Some of their mutations influence the risk
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of Breast cancer disease, but they remain unknown.
For this reason, GWAS analysis are involved to identify new breast cancer
loci. In this thesis, our analysis are performed using two breast cancer data
for case-control phenotype:

DRIVE Breast Cancer OncoArray Genotypes Distribution set

OncoArray dataset [Christopher et al.(2016)] is composed of 28 281 individuals
that were genotyped for 582 620 SNPs. 13 846 samples from the individuals
are cases and 14 435 are controls. The dataset contains data for the following
countries: USA, Uganda, Nigeria, Cameroon, Australia and Denmark. In this
study, environmental parameters were provided as well such as: age, estrogen
rate, study or histological type.

CIDR-GWAS of Breast Cancer in the African Diaspora - the ROOT
study

A total of 3 766 study subjects were genotyped on the Illumina HumanOmi2.5-
8v1 platform with the GRCh37/hg19 genome build. The genotype data con-
tains 1 681 cases and 2 085 controls. This dataset contains samples for an
African population including three different subpopulations as follows: 2 073
American African, 330 African Barbadian and 1 363 African. For each par-
ticipant, 2 379 855 SNPs were assessed. In addition, this dataset provides
information about some environmental variables for all samples participating
in the study such as: age group, height, weight, BMI, age of menarche, parity,
age of first birth, menopause, age of menopause, alcohol contraceptive and
estrogen rate.

The genotype is not the only factor linked to breast cancer risk. The
inclusion of these environmental data to the study provides a more complete
modeling to this problem.

1.5.2 Wellcome Trust Case Control Consortium 1

The data come from theWellcome Trust Case Control Consortium 1 (WTCCC1)
studies [Consortium(2007)]. This study includes seven major diseases from
over 2 000 individuals for each disease (cases), 14 000 cases in total and almost
3 000 individuals not affected with the diseases (controls). The participants
included in the study live in England, Scotland, and Wales (’Great Britain’)
and the vast majority identified themselves as white Europeans. This dataset
presents a homogeneous population. The genotyping process was performed
using Affymetrix 500K chip. In this thesis, we chose to study 3 different
phenotypes:
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Rheumatoid Arthritis (RA)

Rheumatoid arthritis is a long-term autoimmune disorder that affects lining
of the synovial joints [Guo et al.(2018)]. Although the cause of rheumatoid
arthritis is not clear, it is thought to involve a combination of genetic and en-
vironmental factors. The underlying mechanism involves the body’s immune
system attacking the joints. It was estimated that the disease affected around
24.5 million people in 2015 and resulted in 38 000 deaths in 2013, up from
28 000 in 1990 [GBD2013(2015)].

The dataset contains the mapping of 453 772 SNPs for 3 479 individuals
(1 241 males, 2 238 females). 1 999 are cases and 1 480 are controls.

Type 1 Diabetes (T1D)

Diabetes is a prolonged elevation of the concentration of glucose in the blood,
called hyperglycemia [Association(2009)]. In the case of type 1 diabetes, this
is due to a lack of insulin, a hormone that regulates blood sugar. It is caused
by the malfunctioning of T-cells (cells of the immune system) which identify
the β-cells of the pancreas as foreign to the patient’s body and eliminate
them. It is therefore an autoimmune disease. According to the World Health
Organization, there were 9 million people with type 1 diabetes in 2019.

The dataset from WTCCC1 contains the mapping of 453 772 SNPs for
3 443 individuals (1 739 males, 1 704 females). 1 963 are cases and 1 480 are
controls.

Type 2 Diabetes (T2D)

Type 2 diabetes is caused by a disturbance in carbohydrate metabolism. If
it appears gradually and insidiously, the disease has serious, even fatal, con-
sequences in the long term. Hyperglycemia is caused by a decrease in the
sensitivity of cells, particularly those in the liver, muscle, and fat tissue, to
insulin. The role of this pancreatic hormone is to facilitate the penetration of
glucose (their main fuel) into the cells, thus lowering its concentration in the
blood. To meet the increased demand for insulin resulting from this insen-
sitivity, the insulin-secreting cells of the pancreas produce more insulin until
they run out. Insulin production then becomes insufficient, and glucose ac-
cumulates irreparably in the blood. More than 90% of people with diabetes
have type 2 diabetes [Cantley and Ashcroft(2015)]. In 2017, type 2 diabetes
affects approximetly 462 million people in the world [Khan et al.(2020)].

The dataset contains the mapping of 453 772 SNPs for 3 479 individuals
(1 903 males, 1 576 females). 1 999 are cases and 1 480 are controls.
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1.5.3 Arabidopsis thaliana
Arabidopsis thaliana [Grimm et al.(2017)] is one of the most studied genome in
plant biology. We use the 1001 Genomes Project set (Build TAIR10) [Weigel
and Mott(2009),Consortium(2016)] that contains 1 135 samples for 6 973 565
SNPs divided into 5 chromosomes. We choose to study the flowering time that
was scored as days until first open flower (DTF3) as a quantitative phenotype.
It contains 923 samples. This dataset groups plants samples coming from 46
countries. We use this dataset as a case of a diverse population data, as it
presents a high population stratification inflation factor.

1.5.4 Simulated data
In this thesis, we rely on different simulated datasets to evaluate the developed
methods. For real data, the interpretation of the identified candidate SNPs
by a given model remains difficult, as we do not have a ground truth about
which SNP must be selected. Consequently, the usage of simulated datasets
helps to count the false positive rate as the user predefines the disease loci. We
use GWAsimulator to simulate retrospectively genotype data for case control
samples by following a disease model in a sliding-window algorithm. By using
SNP chips as a reference, this tool is able to generate population samples.

For case control design, the program allows the user to choose the disease
model parameters such as: disease prevalence, the number of disease loci, its
locations, the risk allele, the genotypic relative risks and two-way interaction
effects between pairs of disease loci.

Let xj = 0, 1, 2 denotes the number of copies of the risk allele at SNP j
and fj be the risk allele frequency at SNP i. We define ri1 and ri2 as the risk
ratio of genotypes 1, 2 versus 0.

For population simulation, assuming Hardy-Weinberg equilibrium (HWE),
the population genotypic frequencies are Pr(0) = (1−fi)2, Pr(1) = 2fi(1−fi)
and Pr(2) = f 2

i .
For the genotype X = {x1, ..., xp}, the penetrance is given by f(X) =

Pr(affected|X). The software consider the penetrance as a function of geno-
types presented as follows:

logit[f(X)] = α + β1x1 + . . .+ βpxp,

where logit(g) = ln[g/(1− g)] and the parameters α and βi are chosen by
the user in the input control file.

In order to generate case-control data, using the disease model defined
above, GWAsimulator algorithm computes the conditional probabilities
Pr(X | case) and Pr(X | control) for all disease loci and samples prede-
fined by the user. For other SNPs, the tool uses a moving-window algorithm
to simulate the genotypes assuming that all of them follow Hardy-Weinberg
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equilibrium (HWE). GWAsimulator follows also the LD patterns of the pop-
ulation given in the reference data.

In this thesis, we generate different simulations for each study according
to our goals and the structure of data we need to conduct our analysis.

1.6 Contributions
The goal of my thesis was the development of a stable framework of fea-
ture selection for biomarker discovery in GWAS by dealing with the different
challenges in GWAS explained above: the curse of dimensionality, the com-
putational complexity, the population structure, Linkage disequilibrium and
the lack of stability of the selection.

The first contribution is presented in Chapter 2, we present several existing
population stratification adjustment methods, mainly genomic control, several
PCA-based methods and Linear mixed models (LMM). We also compare and
evaluate these correction methods in simulated and real datasets.

Chapter 3 focuses on an empirical evaluation of the stability of differ-
ent widely-used feature selection models: single-marker analyses based on a
traditional t-test, Lasso and Elastic Net. The novelty of this work lies on
the evaluation of the stability of the selection of these methods at different
genomic scales (the SNP level, the LD-group level and the gene level). In addi-
tion, to improve the stability in different scales, we implemented two stability
selection approaches.

The fourth work (Chapter 4) consists in developing a novel feature se-
lection model, the Multitask Group Lasso (MuGLasso), where the tasks cor-
respond to the ancestral subpopulations and the groups corresponds to the
LD-groups. The model relies on an `1,2-norm regularization term. We incor-
porate a stability selection procedure to improve the robustness of the model,
and we rely on gap safe screening rules in the optimization process to speed
up the solvers. The goal was to select shared LD-groups for all subpopula-
tions/tasks and specific LD-groups for some subpopulations/tasks thanks to
a post-processing step.

The fifth contribution presented in Chapter 5 is an extension of the Mu-
GLasso, called the Sparse Multitask Group Lasso (SMuGLasso). The partic-
ularity of SMuGLasso is to add an `1-norm penalty to improve the sparsity
of specific LD-groups for the subpopulations/tasks. This method is com-
putationally more expensive comparing to MuGLasso, but leads to better
interpretable results.

Finally, I made the codes and the algorithms that I developed during my
thesis all open online for reproducible science.
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The materials of the different contributions presented in this thesis are
available in the following github repositories:

• GWA-skills: Classic GWAS tools (quality control and preprocess-
ing) and population stratification correction: https://github.com/
asmanouira/GWAskills

• multiscale-stability: Multiscale genomic evaluation the stability of
the feature selection in GWAS: https://github.com/asmanouira/
multiscale-stability

• GWAS-admixed-population-simulator: Simulating GWAS data in
PLINK format with GWAsimulator tool using HapMap 3 data: https:
//github.com/asmanouira/GWAS-admixed-population-simulator

• MuGLasso and SMuGLasso: Multitask group Lasso and Sparse
Multitask group Lasso in diverse populations https://github.com/
asmanouira/MuGLasso_GWAS

https://github.com/asmanouira/GWAskills
https://github.com/asmanouira/GWAskills
https://github.com/asmanouira/multiscale-stability
https://github.com/asmanouira/multiscale-stability
https://github.com/asmanouira/GWAS-admixed-population-simulator
https://github.com/asmanouira/GWAS-admixed-population-simulator
https://github.com/asmanouira/MuGLasso_GWAS
https://github.com/asmanouira/MuGLasso_GWAS


Chapter 2

Population stratification
adjustment in case-control
studies for Genome-Wide

Association Studies

Abstract: Population stratification is one of the major problems in as-
sociation analysis. It occurs when samples among a dataset come from diverse
or admixed populations, presenting genotype data of participants of different
ancestries. Thus, the association could be detected due to population struc-
ture rather than a true association with the studied phenotype. In addition,
different population do not necessary share the same linkage disequilibrium
patterns. Many methods have proposed in the literature to adjust for popu-
lation stratification, such as genomic control, PCA-based models and linear
mixed models. In this chapter, we present a deep comparison study of the
well-known population stratification adjustment methods. We rely on different
simulated datasets and two real breast cancer datasets to conduct our analysis.

Résumé: La structure de la population est l’un des problèmes majeurs de
l’analyse d’association. Cela se produit lorsque des échantillons d’un ensem-
ble de données proviennent de populations diverses ou mélangées, présentant
des données génotypiques de participants d’ascendances différentes. Par con-
séquent, l’association pourrait être détectée en raison de la structure de la pop-
ulation plutôt qu’une véritable association avec le phénotype étudié. De plus,
différentes populations ne partagent pas nécessairement les mêmes structures
de déséquilibre de liaison. De nombreuses méthodes ont été proposées dans la
littérature pour corriger cette stratification, telles que le contrôle génomique,
les modèles basés sur l’ACP et les modèles mixtes linéaires. Dans ce chapitre,
nous présentons une étude comparative approfondie des méthodes courantes
d’ajustement de la stratification de la population. Nous nous servons de dif-
férents jeux de données simulées et sur deux jeux de données réelles de cancer
du sein pour effectuer notre analyse.
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2.1 Introduction

Population stratification refers to the presence of differences in allele frequen-
cies between subpopulations within the samples, due to different ancestry.
The presence of population stratification is one of the major problems in as-
sociation studies as it increases type I error and leads to ambiguous results.
This is particularly true when allele frequency differences in cases and con-
trols are due to differences in ancestry rather than association between SNPs
and disease. Several methods have been developed to adjust for population
stratification, such as genomic control (Section 2.2.1), PCA-based methods
(Section 2.2.2) and Linear mixed models (Section 2.2.3).

To investigate population structure, we chose to use PCA-based methods.
They are based on the idea that the first principal components of a set of
genomes (that is to say, the eigenvectors of their covariance matrix) map to
subpopulations [Price et al.(2006), Zeggini et al.(2008),Need et al.(2009),Yu
et al.(2008a), Peloso et al.(2009), Peloso and Lunetta(2011), Novembre and
Stephens(2008),Qizhai and Kai(2008)]

Other methods have been developed based on mixed models [Kang
et al.(2010), Zhang et al.(2010)], where the phenotype is modeled using a
mixture of fixed effects and random effects. These fixed effects include the
SNPs and additional covariates such as gender or age. The random effects
are based on the phenotypic covariance matrix. Nonetheless, PCA-based
approaches remain computationally less intensive and provide simpler imple-
mentation. In addition, using mixed models often increase the complexity
of the problem for the next steps of this study. Indeed, feature selection
procedures become more complex using mixed categorical data.

Notations: For the following sections, we denote by xij the genotype for
individual i on SNP j, where i = 1...N and j = 1...M . yi denotes the
phenotype of individual i.

In this chapter, we start by presenting in Section 2.2 the most common
used methods of population stratification correction in GWAS for case-control
study, mainly genomic control, PCA-based models and linear mixed models
(LMM). Then, we explain in Section 2.3 the influence of LD at the popula-
tion structure and the importance of LD-pruning before applying PCA-based
models. In Section 2.4, we describe the studied data to conduct our analysis,
and we provide details about the implementation and the evaluation of the
presented methods for population stratification correction. We present in Sec-
tion 2.5 the results of the applied methods. Lastly, we discuss and conclude
in Section 2.6 the comparison study that we conduct in this first work.
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2.2 Correcting associations analysis
In this section, we present the state-of-the art methods adjusting for popula-
tion stratification in case-control studies.

2.2.1 Genomic control
This statistical method has been developed by [Devlin and Roeder(1999)] and
it was the first approach proposed for the correction of association analysis.
It involves measuring the extent of the inflation of the association test statis-
tics that is caused by population structure and adjusting the test statistics
accordingly. In case-control studies, the association between one SNP and the
phenotype can be measured using a χ2 test of association. Under the null
hypothesis that there is no association between the SNPs and the phenotype,
all association test statistics follow χ2 distribution with one degree of freedom
(denoted χ2

1). The genomic inflation factor λ is defined as the ratio of the
median of the observed χ2 statistics and the expected median of a χ2

1 and
should be equal to 1 under the null. Hence [Devlin and Roeder(1999)] uses a
scaling factor of λ to adjust the test statistics:

χadj1 = χ2
1
λ
.

However, this uniform adjustment can lead to overcorrection of causal SNPs
because allele frequencies across ancestries can vary from some markers to
others. Thus, markers with strong differentiation will suffer from a loss of
power [Wu et al.(2011),Price et al.(2006)].

2.2.2 PCA-based methods
EIGENSTRAT

EIGENSTRAT is a popular software for correcting population stratification,
developed by [Price et al.(2006)] and implemented in the EIGENSOFT pack-
age. The adjustment is based on the top principal components (PCs) com-
puted from the genotype matrix. It uses the eigenvectors (called axes of vari-
ation in their article) to correct both the genotype and the phenotype. More
specifically, the idea here is to project both the genotypes and the phenotype
on a space that is orthogonal to the one spanned by the principal components
that capture population structure. EIGENSTRAT is equivalent to includ-
ing the top PCs as covariates in a linear regression model. A statistical test
based on univariate analysis is then performed to the adjusted genotype and
phenotype using a generalization of the Armitage trend test [Armitage(1955)]
to test whether the correlations between adjusted genotype and phenotype
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follow a χ2
1 distribution.

Let’s describe now the components of EIGENSTRAT algorithm:

• Input format
The input of the EIGENSTRAT is a genotype matrix in which the rows
are individuals, the columns are SNPs. The cells take values in 0, 1 or 2
which refers to the number of a random selected allele for an individual’s
genotype at a SNP.

• Normalization of features
The data is normalized by dividing each SNP j by

√
pj(1− pj), where

pj is the allele frequency for a SNP j and defined by:

pj = 1 +∑
i xij

2 + 2M .

• Calculation of PCs, eigenvectors and eigenvalues
Calculation of the covariance matrix C:

Cij = 1
M

M∑
s=1

(xis − 2p̂s)(xjs − 2p̂s)
2p̂s(1− p̂s)

,

where p̂s is the allele frequency at marker s. The eigenvectors V are then
obtained by the spectral decomposition of C as: V −1CV = D, where D
is the diagonal matrix of eigenvalues of C.

• Detection of population structure via PCs
The key idea behind EIGENSTRAT is that the detection of the ancestry
differences between samples is performed using the axes of variations
(eigenvectors) as they provide a geographic interpretation. In fact, the
range of graduation of the values for an eigenvector is different from a
subpopulation to another, depending on the ancestry.

• Adjustment of genotype and phenotype using the eigenvectors
The adjustment is produced continuously depending on the detected
population ancestry. Let us call aik the contribution of individual i to
the kth eigenvector and K the total number of eigenvectors considered.
The genotype adjustment is given by xadjij = xij −

∑K
k=1 γjkaik where the

regression coefficients are defined by γjk = ∑N
i=1 aikxij and

∑
i a

2
ik = 1 if

the data do not contain missing values. Hence xadjj is the projection of
SNP xj onto a space orthogonal to that of the K axes of variation.
The phenotype correction is performed in the same way.
Note: This setting is equivalent to the use of the eigenvectors as covari-
ates in a multilinear regression model:

yi = α + β1ai1 + β2ai2 + ...+ βKaiK + ηxis + εi,
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where aik is the ancestry for an individual i along an axis of variation
k, η is the Armitage trend test and used to evaluate H0 : η = 0 vs
HA : η 6= 0.

• Verification of association using χ2
1 distribution

Finally, the χ2
1 test statistic is given by:

EG = (N −K − 1)Corr2(xadjs , yadj),

where xadjs is the adjusted genotype at marker s, and presents the resid-
uals after regressing genotypes on the top PCs K. The phenotype yadj
is defined equivalently. Corr2 denotes the statistical test that EIGEN-
STRAT statistical test EG follows, it corresponds approximately to χ2

test.

Logistic Regression

Several approaches have been developed using a logistic regression model
for the adjustment of population structure in case-control studies [Zeggini
et al.(2008),Need et al.(2009),Yu et al.(2008a),Peloso et al.(2009),Peloso and
Lunetta(2011), Novembre and Stephens(2008), Qizhai and Kai(2008)]. Basi-
cally, logistic regression is applied by integrating the top PCs as covariates.
The key idea behind this algorithm is to apply a logit function to Generalized
Linear Model as the case-control outcome (phenotype) does not follow normal
distribution [Wu et al.(2011)].

[Need et al.(2009)] investigated genotype data in Schizophrenia for case-
control study. Their method was performed by using the top PCs coming
from EIGENSTRAT software and sex as covariates in a logistic model.

In this study, we will focus on the PCA-L variant described by the following
fitted logistic regression:

logit (πi) = α + β1ai1 + · · ·+ βKaiK + ηxij,

However, in machine learning application, the usage of feature selection
models (presented in Section 1.3) by including the top PCs in a feature se-
lection model will not ensure its selection. For this reason, we will also test
another variant proposed by [Abegaz and et al.(2021)]. They aim to correct
the effect of population stratification by adjusting the phenotype and comput-
ing the new one yadji by fitting a logistic regression model on the top PCs and
subtracting the obtained residuals π̂i from the real phenotype values (1 for
cases or 0 for controls). The logistic fitted model on the top PCs (a1, . . . , aK)
is defined by the following equation:

logit (πi) = α + β1ai1 + · · ·+ βKaiK .
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Then, the adjusted phenotype yadji is computed:

yadji = yi − π̂i,

where the residuals π̂i are obtained as follows:

π̂i =
exp

(
α̂ + β̂1ai1 + · · ·+ β̂KaiK

)
1 + exp

(
α̂ + β̂1ai1 + · · ·+ β̂KaiK

) .
Note that this model has been proposed by analogy with the residual

regression model, which is well-known for linear regression. In that case,
fitting the features individually is equivalent to fitting the features jointly.

Finally, the quantitative adjusted phenotype is used to conduct association
analysis with linear regression.

Choice of the number of principal components

PCA-based methods are widely applied to detect population structure by cap-
turing variation among variables and including PCs as covariates. Numerous
studies have examined the choice of the number of PCs to include [Peres-Neto
et al.(2005)]. Some studies have proposed to use a fixed number for all use
cases. For instance, [Price et al.(2006)] set a number of PCs equal to 10 by de-
fault to run EIGENSTRAT. [Abegaz et al.(2018)] and [Pardiñas et al.(2018)]
mention that a reasonable number of PCs is 5, while other studies use only
the 2 first PCs.

[Patterson et al.(2006)] have proposed a method based on coupling the
Tracy–Widom statistic with PCA method in order to determine the number
of components. Nonetheless, [Elhaik(2021)] has claimed that this statistic is
sensitive and may produce an overestimated number of PCs.

Another alternative is to pick up the number of PCs that correspond to
the number of top eigenvectors. This can be determined according to their
corresponding values of eigenvalues that are significant and explain the high-
est variation of the features. However, [Yu et al.(2008a)] have claimed that
this technique may lead to ambiguous interpretations, especially if samples
between cases and controls are distributed equitably. The authors have sug-
gested another alternative to identify the relevant number of PCs, based on a
permutation procedure. The goal is to choose a minimal number of PCs, but
results in an efficient adjustment. Note that including a very large number of
PCs as covariates may cause numerical instability in association studies [Lin
and Zeng(2011)]. But, using fewer PCs than needed may cause in residual
bias [Zhao et al.(2018)].

In this thesis, we propose to investigate empirically the effect of including
different number of PCs on the inflation factor λ. Then, we choose the number
of PCs that results in the lowest value of λ close enough to 1. Following this
procedure, the chosen number of PCs can differ from one dataset to another.
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2.2.3 Linear Mixed Models (LMM)
Linear mixed models (LMM) are widely used for population stratification cor-
rection in GWAS [Kang et al.(2008), Price et al.(2010)]. LMM can capture
the population structure by modeling the phenotype with a mixture of fixed
effects and random effects. For GWAS, the fixed effects are represented by
the genotype (the SNPs) and the covariates, while the random effects corre-
spond to a phenotypic covariance matrix. Thus, a categorical phenotype yi
is presented by the fixed effects xij (similar to a simple linear model), mixed
with the random effect component u as follows:

yi = ηxij + u+ ε,

where u+ε denotes the total noise variance. More precisely, u corresponds
to the heritable component of random variation and ε corresponds to the non-
heritable component of random variation. The component u + ε is modeled
with a kinship matrix K.

Note that a kinship matrix is presented by the coefficients modeling the
pairwise genetic similarity between samples, its components explain the popu-
lation structure and other genetic effects such as family structure and cryptic
relatedness. The kinship coefficient is the probability that an allele taken ran-
domly from a first population (at a given locus) will be identical by descent to
an allele taken randomly from another population at the same locus [Ochoa
and Storey(2021)].

The population structure and the relationship between the samples are
presented by means of variance components of the random effects:

Var(u) = σ2
gK.

The inflation factor due to population structure can be detected by the
coefficient σ2

g .
LMM are known to be computationally intensive. However, several ef-

ficient variants are provided to scale the model for GWAS data, such as
FastLMM [Lippert et al.(2011)], EMMAX [Kang et al.(2010)] and TAS-
SEL [Zhang et al.(2010)].

2.3 Population structure and Linkage Dise-
quilibrium

Performing PCA analysis requires some additional steps before computing the
eigenvectors using singular value decomposition. These steps include mainly
examining the effect of LD in multiple populations.
In fact, PCs can detect the LD patterns instead of the population structure,
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adding these particular PCs as covariates can lead to lower power in associa-
tion analysis [Privé et al.(2020)]. One can consider that some regions in the
genome are overrepresented by PCs [Abdellaoui et al.(2013)] due to the strong
correlation of SNPs in LD, decreasing the effect of population structure and
the ancestral components.

To address this issue, LD-pruning is common. This procedure consists
in removing the SNPs that are in LD by computing the correlation between
a pair of SNPs in a window using r2, and discarding one of the pair if r2 is
greater than a chosen cutoff. The choice of this threshold is critical, [Gusareva
and Steen(2014)] recommend setting the filtering threshold to 0.75.

However, [Price et al.(2010)] did not recommend pruning because it doesn’t
affect the top PCs in HapMap populations. They have suggested instead to
remove long-range LD regions. Also, [Abdellaoui et al.(2013)] have proposed
to mix both procedures by discarding long-range LD regions and pruning
SNPs in LD as well. In another approach, [Privé et al.(2020)] have developed
an R package called bigsnpr, which included a procedure of LD clumping
and discarding of long-range LD regions as an optional step. Note that LD
clumping has a similar purpose as LD pruning, but it uses a statistical test
to compute the p-values of SNPs associated to the phenotype. It takes the
first SNP and removes all the SNPs correlated to it in a specific window and
with a chosen cutoff for r2. In the case of PCA, as no p-values are available at
this stage, it is recommended to use Minor Allele Frequency (MAF) instead
of p-values as the statistic to rank SNPs (in decreasing order), this makes
clumping very similar to pruning.

In this thesis, we perform LD pruning to tackle this problem. The choice
of the pruning cutoff is estimated by an empirical evaluation according to each
dataset case. For some datasets, choosing a less restrictive cutoff is sufficient to
resolve the confounding factor caused by LD. Nevertheless, for other datasets
an important amount of pruning is needed to be able to capture population
structure with PCs. We show examples in Section 2.5.1.

2.4 Data and implementation details

2.4.1 Data

Breast cancer GWAS data

In this chapter, we study two datasets of breast cancer: DRIVE Breast Cancer
OncoArray Genotypes Distribution set (DRIVE) and CIDR-GWAS of Breast
Cancer in the African Diaspora - the ROOT study (ROOT). Both of them
suffer from population stratification. We have already presented them in
Section 1.5.1.
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Simulated data

We simulate 3 different case-control datasets using GWAsimulator (described
in Section 1.5.4). We rely on HapMap3 1 data as a reference dataset to obtain
two different populations: CEU (Utah residents with Northern and Western
European ancestry from the CEPH collection) and YRI (Yoruba in Ibadan,
Nigeria). The simulated datasets mimic the LD patterns of HapMap3 data
for both populations. The simulation procedure of each dataset is performed
as given in the following steps:

1. Set the input control files from HapMap3 (for CEU and YRI), and choose
mainly the number of samples (females and/or males; cases and controls)
and the disease loci.

2. Simulate samples from the two subpopulations (CEU and YRI), varying
the case control ratio between samples to model the population stratifi-
cation confounder.

3. Merge the obtained subpopulations in one dataset and convert it into
PLINK format for further analysis.

A step-by-step detailed tutorial was made available online to produce the
simulation procedure: GWAS-admixed-population-simulator2.

We generate 3 datasets of 2 000 samples and 503 487 SNPs with different
population stratification severity: no population stratification (no PS), mod-
erate population stratification (moderate PS) and strong population strati-
fication (strong PS). The details of these datasets are presented in Table 2.1.
Note that we simulate the dataset no PS only to prove the efficiency of the
simulation procedure and to make sure that λ = 1. Hence, no PS dataset
does not require correction for population stratification. In this study, we will
examine the adjustment of the other simulation cases (moderate PS, strong
PS).

We show in Figure 2.1 the obtained Q-Q plots for each simulated dataset
case.

2.4.2 Preprocessing and quality control
We perform the following quality control steps on the studied data:

Minor allele frequency (MAF) We only keep SNPs with minor allele
frequency with MAF>5% because the statistical power is extremely low for
rare SNPs.

1http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/2010\T1\
textendash05_phaseIII/

2https://github.com/asmanouira/GWAS-admixed-population-simulator

http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/2010\T1\textendash 05_phaseIII/
http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/2010\T1\textendash 05_phaseIII/
https://github.com/asmanouira/GWAS-admixed-population-simulator
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Dataset CEU case:control YRI case:control Disease loci location
ratio ratio CHR: odds ratio

no PS 500:500 500:500 12: 1.5
moderate PS 450:550 550:450 19: 1
strong PS 400:600 600:400 21: 2 and 22: 2

Table 2.1: For each simulated dataset, the ratio of cases and controls is given
for both subpopulations, the predefined disease loci are presented for all sub-
populations in chromosomes 12, 19, 21 and 22

Figure 2.1: Q-Q plots obtained for three simulated datasets (no PS, moder-
ate PS, strong PS) before population stratification adjustment

Hardy-Weinberg equilibrium (HWE) The main purpose of the HWE
test is to identify poorly genotyped SNPs. We exclude SNPs with HWE-
P-Value < 0.0001. Under Hardy-Weinberg assumptions, allele and genotype
frequencies can be estimated through generations. Thus, the allele and the
genotype frequencies are constant over generations once a population is in
Hardy-Weinberg equilibrium. Its disequilibrium can be indicative of genotyp-
ing errors or population stratification.

Sex checks For ROOT data, we exclude samples with a male genotype as
all participants involved in this study are known to be female.

Missing phenotypes Samples with missing phenotype (case or control sta-
tus) are excluded from the study.

Genotype imputation The datasets presented in Section 2.4.1 contain
missing SNPs values. Classic GWAS analysis can deal with non-imputed
data as they scan the association between genotype and phenotype SNP per
SNP. However, genotype imputation provides higher power and precision to
association analysis by increasing the chances of detecting causal variants. In
addition, low-dimension analyses such as PCA or machine learning algorithms
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Black Black/White Hausa Ibo Yoruba Others Unknown
African 0 0 11 140 1073 137 2
AfAm 0 0 0 0 0 0 2073
AfBB 312 18 0 0 0 0 0

Table 2.2: Samples number per subpopulation for ROOT dataset. AfAM is
African American and AfBB is African Barbadian

USA Denmark Australia Cameroon Nigeria Uganda
23 819 2 140 1 693 150 442 62

Table 2.3: Samples number per country for DRIVE dataset

require complete data. Therefore, imputation is a very important step before
starting GWAS analysis, and it must be executed with a lot of care.

In practice, we perform imputation with IMPUTE2 [Howie et al.(2009)]
software. The exploited reference dataset is the 1000 Genome Project(GP)
Phase3 [Consortium(2015)], and it provides information about a huge number
of SNPs for different ancestries. The method compares phased haplotypes to
the reference haplotypes which contain no genotyped markers in the dataset.
The term "phased" refers to the statistical estimation of haplotypes from the
genotype data. The imputation is then performed according to the given score
of probability of possible allele based on the haplotype frequencies.

LD pruning We use PLINK [Purcell et al.(2007)] to filter SNPs on strong
LD. For the DRIVE dataset and the simulated datasets, the pruning was per-
formed with an LD cutoff of r2 > 0.85 and a sliding window size of 50Mbp. For
the ROOT dataset, a cutoff of r2 > 0.1 was needed to capture the population
structure in a sliding 20Mbp window.

=⇒ After runing these preprocessing and quality control steps, 313 237
SNPs remain in DRIVE dataset, 262 454 SNPs in ROOT dataset. For simu-
lated data, we obtain 304 605 SNPs, 305 100 SNPs and 304 536 SNPs respec-
tively in no PS, moderate PS and strong PS datasets.

Population structure We present the outliers of population structure for
the studied datasets by running PCA. Table 2.2 shows the ancestries in the
ROOT data. Table 2.3 presents the countries of samples included in the
DRIVE dataset.
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Dataset Number of included PCs
for PCA-based methods

DRIVE 7
ROOT 3
Simulated (moderate PS) 2
Simulated (strong PS) 2

Table 2.4: For each dataset, the chosen number of included PCs is presented
for each dataset

2.4.3 Implementation details
We present in this part the tools that we use in order to implement the
presented methods for population stratification adjustment. We run PLINK to
obtain the adjusted p-values after the genomic control correction and the first
logistic regression PCA method, based on including the top PCs as covariates
(LogReg1). The second logistic regression PCA method (LogReg2), based
on phenotype adjustment by computing the residuals using top PCs, was
implemented using scikit-learn, the computation of the eigenvectors and
the obtained p-values was performed using PLINK. To test EIGENSTRAT,
we use EIGENSOFT3 that is developed by the authors of [Price et al.(2006)].

The choice of the number of included PCs is decided empirically. As
presented in Section 2.2.2, we pick up the best number of PCs that adjust
for population stratification and provide closest inflation factor λ to 1. We
present in Table 2.4 the selected number of PCs for each studied dataset.

2.5 Results

2.5.1 LD pruning helps to capture the population
structure in ROOT and DRIVE datasets Prin-
cipal Components

In this section, we study the effect of LD pruning on capturing the populations
of the studied datasets (see Table 2.3 and Table 2.2). As mentioned in Sec-
tion 2.3, LD pruning is needed to capture population structure. The chosen
parameters of pruning are detailed in Section 2.4.2. We show in Figure 2.2a
the two first PCs representation before LD pruning for ROOT dataset, the
population structure is not detected and diluted the genetic patterns that de-
scribe ancestry differences. In Figure 2.3, we highlight the importance of LD
pruning in detecting the population structure. Figure 2.2b and Figure 2.4a
illustrate respectively the obtained PCA outliers before and after LD pruning

3https://github.com/DReichLab/EIG

https://github.com/DReichLab/EIG
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in DRIVE dataset. For both datasets, we observe that before LD pruning,
PCA do not detect the population structure. After performing LD pruning,
the outliers of each subpopulations are captured by PCA.
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Figure 2.2: For ROOT and DRIVE datasets, PCA plots before LD pruning

2.5.2 Population stratification adjustment methods de-
crease the inflation factor

The inflation factor is one indicator of population stratification presence, espe-
cially when it exceeds 1 as we explained in Section 1.2.4. We show in Table 2.5
the inflation factor computed before and after correcting for population struc-
ture. For all studied datasets λ is higher than 1 before adjustment. Then,
the table shows the effect of each tested method in correcting the population
stratification by decreasing the inflation factor. In DRIVE dataset, we ob-
serve that λ decreases, but it remains higher than 1. This happens because
this dataset represents a meta-analysis study where data was collected from
different genotyping centers and different studies. These parameters partici-
pate as well in this rate of inflation factor. For ROOT dataset, all participants
were genotyped in CIDR center.

2.5.3 Performance of adjustment methods in correcting
for population stratification under simulated data

In this section, we analyze and compare the obtained results of each tested
technique in adjusting for population structure in the simulated data under
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(a) All subpopulations were included (b) Only African American and African Bar-
badian subpopulations where included

Figure 2.3: PCA for ROOT dataset after performing LD pruning of r2 > 0.1,
colors coding corresponds to subpopulations and symbols denotes races pre-
sented in Table 2.2. AfAm is African American, AfBB is African Barbadian,
AfNG is African from Nigeria

moderate and strong population stratification.
First, to compare the efficiency of the methods presented in Section 2.2

at recovering predifined causal SNPs, we rely on the following performance
metrics: false positive rate (FPR), false negative rate (FNR), precision, recall
and accuracy.

For the moderate PS dataset, we observe in Table 2.8 that FastLMM,
based on LMM, outperforms the other tested methods. FastLMM retrieves
the simulated top causal SNPs with an accuracy, a recall and a precision of
100%, and an FPR and FNR of 0%. It is followed by the PCA-based mod-
els (EIGENSTRAT, LogReg1 and LogReg2) that present a fair amount of
correction by decreasing remarkably the FPR (of 33.33% to 50%) with good
accuracy, precision and recall in identifying predefined causal SNPs compared
to the metrics obtained before adjustment. Lastly, GC shows the lowest per-
formance. It is important to mention that some models caused an FNR that
was not present before adjustment, specifically GC (25%), EIGENSTRAT and
LogReg2 (both 12.5%). This can be explained as an overcorrection issue for
some causal SNPs that happen when adjusting for population stratification.

Additionally, we compare in Table 2.6 the simulated odds ratios (OR) of
10 chosen SNPs with the estimated OR obtained by the tested adjustment
models. The highlighted cells in green correspond to the lowest percentage of
absolute change from true values of OR. The absolute change describes the
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Figure 2.4: PCA plots on DRIVE on the left and simulated data on the right

actual increase or decrease from a true value of OR to a new value of OR.
Hence, we confirm again that under moderate PS, FastLMM is the best and
the less-biased model in estimating the true OR, followed by the PCA-based
models mainly EIGENSTRAT and LogReg1 that show also low variation in
the estimation of OR. However, GC gives the highest percentages of absolute
change from true values of OR (highlighted in red in Table 2.6).

Second, for the strong PS dataset, Table 2.9 shows that EIGENSTRAT is
the only model that succeed in discarding totally the FPR, but it produces an
FNR of 33.33% due to an overcorrection effect. The model presents the best
precision of 100%, a high accuracy of 88.88% and a recall of 66.66%. Also,
FastLMM presents the best accuracy of 90% compared to other adjustment
methods. However, LogReg2 and GC show the lowest performance. This
confirms the observation in Table 2.5 showing that LogReg2 fails in adjust-
ing properly for population structure confounder with a high inflation factor
of λ = 1.278. Table 2.7 examines the estimated OR in regards to the true
predefined OR. EIGENSTRAT yields the less-biased estimates under strong
PS simulated data, followed by FastLMM that presents also low percentages
of absolute change from true OR. However, we notice that LogReg2 has the
highest percentages and fails approximately in estimating the true OR com-
paring to any other tested technique.
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Dataset Before Population stratification adjustment methods

adjustment GC EIGEN LogReg1 LogReg2 FastLMMSTRAT
DRIVE 1.153 1.125 1.124 1.126 1.069 1.123
ROOT 1.085 0.998 1.011 1.000 1.046 1.018
Simulated 1.826 1.001 1.000 0.998 1.000 1.000(moderate PS)
Simulated 4.780 1.000 1.000 0.999 1.278 1.000(strong PS)

Table 2.5: For each dataset, the inflation factor is given after population
stratification adjustment obtained by the tested methods

This supports our observations about the low performance of LogReg2 men-
tioned before in the metrics evaluation.

Method TP FP FN TN FPR FNR Preci- Re- Acc-
sion call uracy

No adjustment 4 6 0 0 100% 0% 40% 100% 40%
GC 6 1 2 1 50% 25% 85.71% 75% 70%
EIGEN- 7 1 1 1 50% 12.5% 87.5% 87.5% 80%STRAT
LogReg1 7 1 0 2 33.33% 0% 87.5% 100% 90%
LogReg2 7 1 1 1 50% 12.5% 87.5% 87.5% 80%
FastLMM 7 0 0 3 0% 0% 100% 100% 100%

Table 2.8: Under moderate PS simulated data, the following metrics are
given: TR: true positive, truly selected SNPs; FP: false positive, wrongly
selected SNPs; FN: false negative, wrongly non-selected SNPs; TN: true
negative, truly non-selected SNPs; FPR, false positive rate = FP

FP+TN ; FNR:
false negative rate = FN

TP+FN ; Precision = TP
TP+FP ; Recall =

TP
TP+FN ; and

Accuracy= TP+TN
TP+FP+FN+TN
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Method TP FP FN TN FPR FNR Preci- Re- Acc-
sion call uracy

No adj 3 7 0 0 100% 0% 30% 100% 30%
GC 2 1 1 4 20% 33.33% 66.66% 66.66% 75%
EIGEN- 2 0 1 6 0% 33.33% 100% 66.66% 88.88%STRAT
LogReg1 7 1 0 2 14.28% 33.33% 66.66% 66.66% 80%
LogReg2 2 4 0 4 50% 0% 33% 100% 60%
FastLMM 3 1 0 6 14.28% 0% 75% 100% 90%

Table 2.9: Under strong PS simulated data, the following metrics are given:
TR: true positive, truly selected SNPs; FP: false positive, wrongly selected
SNPs; FN: false negative, wrongly non-selected SNPs; TN: true negative,
truly non-selected SNPs; FPR, false positive rate = FP

FP+TN ; FNR: false
negative rate = FN

TP+FN ; Precision = TP
TP+FP ; Recall =

TP
TP+FN ; and Accu-

racy= TP+TN
TP+FP+FN+TN

2.5.4 Population stratification adjustment in real data
In this section, we examine the obtained Q-Q plots for all tested correction
methods in real data and their corresponding inflation factors. However, we
can not perform a metric evaluation as done for simulated data because we
do not have a ground-truth or prior-knowledge about the true associations.

For DRIVE dataset, Table 2.5 shows that LogReg2 outperforms the other
tested models. It produces the lowest inflation factor by reducing it from
λ = 1.153 (before adjustment) to λ = 1.069. The other methods give very
similar values after adjustment of λ ' 1.12. This can be visualized also
in Figure 2.5 that presents the different Q-Q plots drawn before and after
population stratification adjustments.

For ROOT dataset, all models help to reduce the inflation factor to be
very close to 1, this interpretation is confirmed in the Q-Q plots shown in
Figure 2.6.
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Figure 2.5: Q-Q plots obtained for DRIVE dataset before adjustment and af-
ter adjustment using the following methods: Genomic control(GC), EIGEN-
STRAT, Logistic Regression with top PCs as covariates (LogReg1), Logistic
Regression for phenotype adjustment (LogReg2) and FastLMM.
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Figure 2.6: Q-Q plots obtained for ROOT dataset before adjustment and af-
ter adjustment for population stratification using the following methods: Ge-
nomic control(GC), EIGENSTRAT, Logistic Regression with top PCs as co-
variates (LogReg1), Logistic Regression for phenotype adjustment (LogReg2)
and FastLMM.
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2.6 Discussion and conclusion
In this chapter, we have presented a review of the main adjustment methods
for population stratification confounder in case-control phenotype on GWAS
data. We have applied particularly the following techniques: the genomic
control (GC), three PCA-based models (EIGENSTRAT, LogReg1 and Lo-
gReg2) and FastLMM based on LMM. We have used different simulated data
scenarios (moderate and strong population stratification) and two cancer
real datasets (DRIVE and ROOT) to evaluate the tested methods. We have
found that adjustment results differ from data to another, they depend also on
the severity of population stratification. Globally, FastLMM has been the best
method for population structure adjustment especially in both simulated data
scenarios. However, it did not offer a good enough correction of the inflation
factor λ in DRIVE dataset. PCA-based models, mainly EIGENSTRAT and
LogReg1, offer also good adjustment performance. However, while examining
results of LogReg2, our conclusions have been divided. On the one hand, the
method has given the best correction on DRIVE dataset. On the other hand,
in the strong PS simulated data, the performance of LogReg2 in retrieving
the predefined causal SNPs and their corresponding odds ratios has been low
compared to the other tested techniques.

We have observed also an overcorrection effect of some causal SNPs that
occurs particularly after using some adjustments models. This has been de-
tected by the presence of a considerable FNR after adjustment for population
stratification that was not existent before correction.

Another critical point of these methods is that they make the application
of feature selection models based on regularization terms more complex. For
example, using mixed models increases the complexity of the problem for the
next steps of this study. Regularization-based feature selection procedures
become more complex to set up using mixed models. Also, EIGENSTRAT
and LogReg1 models that consist in adding the top PCs as covariates in the
model will not facilitate the feature selection task. For instance, if the feature
selection model does not select all the considered PCs, then it will not con-
sider the population stratification presence. Indeed, LogReg2 is one possible
alternative, as it adjusts for the phenotype previously. The new phenotype is
quantitative and represents no more a case-control analyze, it remains then
possible to apply feature selection models with quadratic loss function. How-
ever, the observed reduced performance of LogReg2 in identifying causal SNPs
in some data cases limits the confidence in its discoveries.

In addition, many studies prove that different genetic populations do not
share always the same markers associated with disease or tumor growth [Medina-
Gomez et al.(2015),Wu et al.(2013),Fu et al.(2011)]. Unfortunately, the pre-
sented adjustment methods perform a uniform correction and do not consider
the possibility of the presence of populations-specific causal markers.
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We aim in this thesis to address the population stratification problem in a
more efficient way by providing a powerful framework that allows the applica-
tion of machine learning models and the identification of populations-specific
markers associated with a disease. This helps to avoid the discussed issues
raised in traditional adjustments approaches. This study has allowed us to
continue this work by proposing two novel methods for addressing population
stratification issue efficiently. The developed models address also other GWAS
problems such as the curse of dimensionality, the high computational complex-
ity and the lack of stability. These methods are presented in Chapter 4 and
Chapter 5.



Chapter 3

Multiscale genomic evaluation
of the stability of the selection
for Genome-Wide Association

Studies

Abstract: The stability of the feature selection refers to the robustness
of the selected variables, it represents an important criterion in Genome-Wide
Association Studies to trust the precision of the discovered features considered
as associated with the phenotype. Thus, quantifying the stability of the selec-
tion is possible relying on a set of desirable properties. The state-of-the-art
methods focus on measuring the stability at the selection level. We propose
to study the stability at different genomic levels (Single Nucleotide Polymor-
phisms (SNPs) level, Linkage Disequilibrium (LD) blocks level and gene level)
of several feature selection methods (single-marker analyses, Lasso, Elastic
Net and stability selection models). We demonstrate that the stability of both
feature selection models (i.e., Lasso and Elastic Net) increases remarkably at
the LD-blocks and the gene level compared to the SNP level. Although we have
found that single-marker analyses is the most stable technique, this method
suffer from low statistical power in retrieving causal SNPs and, thus, misses
many meaningful associations. As well, we show that stability selection re-
markably improves the robustness of the tested methods (Lasso, Elastic Net).

Résumé: La stabilité de la sélection des variables fait référence à la ro-
bustesse des variables sélectionnées, elle représente un critère important dans
Les études d’association pangénomiques pour faire confiance à la précision des
variables découvertes considérées comme associées au phénotype. Ainsi, quan-
tifier la stabilité de la sélection est possible en s’appuyant sur un ensemble de
propriétés souhaitables. Les méthodes existantes se concentrent sur la mesure
de la stabilité au niveau de la sélection. Nous proposons d’étudier la stabilité à
différents niveaux génomiques (au niveau des polymorphismes nucléotidiques
(SNPs), au niveau des blocs de déséquilibre de liaison (LD) et au niveau des
gènes) de plusieurs méthodes de sélection de variables (analyses à marqueur
unique, Lasso, Elastic Net et modèles de sélection de stabilité). Nous démon-
trons que la stabilité des deux modèles de sélection des variables (c’est-à-dire



48 Chapter 3. Stability of the selection evaluation

Lasso et Elastic Net) augmente remarquablement au niveau des blocs LD et
au niveau de gène par rapport au niveau de SNP. Bien que nous ayons con-
staté que les analyses à marqueur unique sont la technique la plus stable, cette
méthode souffre d’une faible puissance statistique dans la découverte des SNP
causaux, et rate donc de nombreuses associations significatives. Aussi, nous
montrons que la sélection de stabilité améliore remarquablement la robustesse
des méthodes testées (Lasso, Elastic Net).
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3.1 Introduction
Genome-Wide Association Studies (GWAS) represent a powerful approach
in the identification of associated causal Single Nucleotide Polymorphisms
(SNPs) with a phenotype of interest and genes involved in human diseases. In
high-dimensional data, this task remains challenging due to the small number
of participants compared to the number of SNPs. Numerous methods have
been proposed to reduce the number of variables by keeping only a meaningful
set of variants that explain the studied phenotype [Tibshirani(1996),Zou and
Hastie(2005),Obozinski et al.(2006),Jacob et al.(2009)]. This helps to improve
the prediction power and reducing possible over-fitting risk.

Besides, the selection of relevant regions in the genome leads to discov-
ering candidate genes in relationship with some diseases or the growth of
some tumors. The classical approach consists of using single-marker analyses.
From a machine learning point of view, further methods using regularization
terms have been developed. These approaches are based on a multivariate
approach where the effect of variants is treated jointly. Some studies have
shown that a major concern of feature selection is the lack of stability, de-
fined as the variability of the selection for small perturbation in the input
set [Haury et al.(2011), Nogueira and Brown(2016), Nogueira et al.(2018)].
Many ways of scores for measuring the stability of the selection have been
proposed with different motivations relying on a set of desirable properties
that a stability index must fullfill [Kalousis et al.(2007),Kuncheva(2008),Lust-
garten et al.(2009), Somol and Novovicova(2010),Wald et al.(2013),Nogueira
and Brown(2015),Nogueira and Brown(2016),Nogueira et al.(2018)] (See Sec-
tion 1.4).

An additional concern in GWAS is Linkage Disequilibrium (LD) presented
in Section 2.3, which corresponds to high correlation between SNPs and leads
to strong statistical dependence between the predictors and a considerable
loss of statistical power. One proposed solution in the literature is to merge
strongly correlated SNPs into blocks and perform single-marker analyses or
feature selection at the LD-block level to alleviate the effect of LD [Dehman
et al.(2015),Ambroise et al.(2019)]. Indeed, few studies have proven that per-
forming the selection at the LD-block level addresses the curse of dimension-
ality and improves remarkably the prediction power [Liu et al.(2012),Dehman
et al.(2015)]. However, [Haury et al.(2011)] have shown that classical meth-
ods based on single-marker analyses remain more stable compared to mul-
tivariate feature selection methods. Thus, few articles [Meinshausen and
Bühlmann(2009)] and [Shah and Samworth(2013)] have presented a way to
improve the stability and to decrease type I error by introducing subsampling
technique in two different ways. In this chapter, we present an empirical
evaluation to compare several methods based on single-marker analyses and
machine learning at different genomic scales: the SNP level, the LD-block
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level and the gene level. We have found that the stability of the selection of
Lasso and Elastic Net remarkably increased at the LD-block and gene levels
compared to the SNP level. Hence, to improve the stability of the selection,
we have applied two different stability selection models based on subsampling
procedures. We have used Wellcome Trust Case Control Consortium 1 data
(WTCCC1) [Consortium(2007)] to conduct our analysis on three different
diseases: Rheumatoid Arthritis (RA), Type 1 Diabetes (T1D) and Type 2
Diabetes (T2D).

3.2 Methods

3.2.1 Association analysis and feature selection models
A classic GWAS approach based on single-marker analyses is carried out by
performing a simple statistical test for each SNP individually. This technique
was detailed in Section 1.2.1.

From a Machine Learning perspective, the choice of an appropriate set
of features is an important step in which the dimensionality of the space is
reduced, in order to train a minimal subset of features that are relevant for
building the predictive model. In a GWAS study, the aim is to select features
which are fully associated with a given phenotype of interest. Several feature
selection algorithms exist within the Machine Learning framework. We con-
duct our study using two regularization based models: Lasso (described in
Section 1.3.2) and the Elastic Net (explained in Section 1.3.6), both of them
ensure sparsity and association between the genotype presented by X and the
phenotype of interest y, which is qualitative (binary) in our case. One can
claims that basic methods based on linear models can be considered as elemen-
tary techniques, that do not ensure a good representation of GWAS problem.
However, modeling nonlinear effects in GWAS is not straightforward. It is
necessary to add biological interactions to model efficiently the nonlinearities.
In fact, these interactions increase dramatically the complexity of the prob-
lem and the curse of dimensionality. Consequently, linear methods remain an
interesting approach to model a GWAS problem efficiently, thanks to their
satisfying interpretability.

We have already established in Section 1.3 the objective functions of these
feature selection models using the generic loss. We rewrite them using the
logistic loss where y denotes a case-control phenotype:

(1) The loss function of Lasso is given by:

min
β∈Rp
−yX>β + log

(
1 + exp

(
X>β

))
+ λ

p∑
j=0
| βj |

where the penalization parameter λ controls the strength of the penalty.
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(2) The loss function of Elastic Net is defined as follows:

min
β∈Rp
−yX>β + log

(
1 + exp

(
X>β

))
+ λ1

p∑
j=0

β2
j + λ2

p∑
j=0
| βj |,

where λ1 and λ2 are the penalization terms that control the strength of both
regularization terms.

3.2.2 Measuring the stability at different genomic scales
The stability of the selection index

We have presented in Section 1.4.2 the measurement of the stability of the
selection. The choice of stability index is made following a set of desirable
properties detailed in Section 1.4.3. The general steps to quantify the stability
of the selection are listed below:

• Generate M randomized samples of the dataset by using resampling or
bootstrapping.

• Perform a chosen feature selection model on these M generated samples
to obtain the selected feature subset Z = {s1, . . . , sM}.

• Pick up a stability index Φ̂(Z) : {0, 1}M×p −→ R to compute the sta-
bility of the applied feature selection procedure.

[Nogueira and Brown(2015)] compared the state-of-the-art methods of
stability measurement. Among these methods, two main indexes fulfill all
the properties that a stability measure must respect. The first method is
carried out with the Pearson similarity index and represents an extension
of [Kuncheva(2008)]. Assume Z = {s1, . . . , sM} is the set of M selected
features where each su is a subset of the features. The total number of features
is denoted by p and the number of features selected on the uth feature set is
given by ku. A set of selected features su can be represented by an indicator
vector zu,. ∈ {0, 1}p, where zu,j = 1 if feature j is selected and 0 otherwise.
The Pearson correlation between two feature sets su and sv is presented by
the following equation:

φPearson (su, sv) =
1
p

∑p
j=1 (zu,j − z̄u,.) (zv,j − z̄v,.)√

1
p

∑p
j=1 (zu,j − z̄u,.)2

√
1
p

∑p
j=1 (zv,j − z̄v,.)2 ,

where ∀u ∈ {1, . . . ,M}, z̄u,. = 1
p

∑p
j=1 zu,j = ku

p

The stability of the selection based on Pearson correlation can be rewritten
as follows:
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φPearson (su, sv) = ru,v − E∇ [ru,v]
phuhv

=
ru,v − kukv

p

phuhv
,

where ∀u ∈ {1, . . . ,M}, hu =
√

ku
p

(
1− ku

p

)
and ru,v denotes the number of

features in common between the feature sets su and sv. E∇ is an adjustment
term equal to the expected value of ru,v when the feature selection model
selects randomly ku and kj features from all features p.

When the number of selected features k is the same for all feature sets,
assuming S an index of the variability in the choice of features, the Pearson
correlation is established as follows:

Φ̂Pearson(Z) = 1− S

Smax
=

1
p

∑p
j=1 s

2
j

k
p

(
1− k

p

) ,
where Smax is the maximal value of S when the feature selection model

selects k features per feature set. s2
j = M

M−1 q̂j (1− q̂j) corresponds to the
sample variance of selection of the jth feature. q̂j corresponds to the observed
frequency of the selection of a feature j, also the sample mean of the variable
Zj.

The second stability index was proposed by [Nogueira et al.(2018)], it is
similar to the first method. When the number of selected features is the same
for selected subsets, the only difference is that the selected number of features
ki is the same for all subsets, denoted by k, and computed as the average
number of selected features across all selected sets.
Under the null model of feature selection procedure H0 and for all features
j, the expected value of the sample variance of Zj is given by E

[
s2
j | H0

]
=

k̄
p

(
1− k̄

p

)
.

Then, the stability measurement was defined by [Nogueira et al.(2018)] as
follows:

Φ̂Nogueira(Z) = 1−
1
p

∑p
j=1 s

2
j

E
[

1
p

∑p
j=1 s

2
j | H0

] = 1−
1
p

∑p
j=1 s

2
j

k
p

(
1− k̄

p

)
Empirically, both of the presented stability measurements give similar re-

sults, as they fulfill all desirable properties that an index must have (see Ta-
ble C.1). We have decided to work with the Pearson correlation alternative,
as it is preferable to consider the exact number ki of selected features for each
selected set, rather than the average number k of selected features across all
selected sets.
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The stability evaluation at different levels

The typical methodology of the stability estimation is performed in general
at the same level as the feature selection procedure. In other words, we tend
to compute the stability index at the level of SNPs if the feature selection
algorithm select SNPs, and at the level of genes if it selects genes, and so on.

Thus, one interesting direction is to evaluate the stability of the selection
of widely-used methods for GWAS at different scales, more precisely the SNP
level, the LD-block level and the gene level. In this study, we conduct the
four following tasks:

• Implementation of four different approaches: single-marker analyses,
Lasso, Elastic Net, bootstrap-stabilized Lasso using two methods [Mein-
shausen and Bühlmann(2009),Shah and Samworth(2013)].

• Measurement of the stability of the selection at the SNP level for each
applied model.

• Definition of LD-blocks of strongly correlated SNPs, to compute the
stability at the LD-block level. We consider an LD-block to be selected
if one SNP within it was selected by the feature selection model.

• Mapping of SNPs to genes to compute the stability at the gene level. A
gene is considered as selected if the SNPs associated to that gene was
selected.

3.2.3 Linkage Disequilibrium blocks clustering
As explained in Section 1.2.5, LD induces a strong correlation between nearby
SNPs in the same chromosome. From a Machine Learning point of view, in-
cluding correlated features in a model is similar to use redundant information.
Thus, such features representation can be seen as inconsistent and reduces
the performance of the model. One solution to resolve this issue and improve
GWAS data representation is to group highly correlated SNPs in the same
chromosome to biologically relevant blocks, named LD-blocks. [Ambroise
et al.(2019)] have proposed a clustering approach to obtain these LD-blocks.
The main idea of this algorithm is based on incorporating a constraint in the
classical hierarchical agglomerative clustering where each SNP belongs to its
own cluster and iteratively merges the two most similar clusters according to
a distance function called a linkage criterion, this constraint relies on Ward’s
linkage given by dwl as follows:

dwl(A,B) = pA × pB
pA + pB

δ (gA,gB)2 ,
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where pA and pB are the cardinals of the clusters A and B respectively,
and gA and gB are the centers of the clusters, respectively. δ denotes the
dissimilarity between gA and gB.

It is possible therefore to perform feature selection at the LD-block level
instead of the single SNP level. This can be conducted using the group Lasso
for example that handles groups set from prior knowledge. We will handle this
procedure to develop novel methods presented in Chapter 4 and Chapter 5.

3.2.4 FUMA for functional mapping and annotation of
genes

After the selection of a subset of causal SNPs associated with the disease,
one major question is to interpret the relevance of these results biologically.
A possible solution is to perform functional mapping of these SNPs to genes.
FUMA [Watanabe et al.(2017)] is a useful tool in order to map functionally
annotated SNPs to genes according to the physical position in the genome,
eQTL mapping and 3D chromatin interaction. FUMA uses information from
multiple biological data to perform these mapping analysis, several controller
parameters are to be set such as the physical window to map SNPs to genes
(the default parameter is 10 kb). In this study, we perform functional mapping
for all SNPs included in the datasets using FUMA. Hence, we compute the
stability of the selection at the gene level. Note that one SNP could be mapped
to several genes. But, the mapping to genes is sometimes not possible for some
SNPs.

3.2.5 Stability selection
We present first the stability selection procedure developed by [Meinshausen
and Bühlmann(2009)] where they propose improving the stability using a sub-
sampling method. In this formulation, variable selection is performed repeat-
edly on subsamples. They demonstrate that the subsampling approach can be
used to determine the amount of regularization needed to control the family-
wise error type I rate. Stability selection is a feature selection based method,
it can be combined with several existing methods and aims to improve their
performance. The procedure relies on computing the stability path, which rep-
resents the probability of a feature to be selected across random subsamples,
as a function of the regularization parameter.

We denote by I a random subsample of {1, . . . , n} of size bn/2c, we call
Ŝλ(I) the set of features selected by the selection procedure of interest (for
example, Lasso), with a hyperparameter λ, on this subsample of the data.
For any feature j ∈ {1, . . . , p}, we call Π̂λ

j the probability that feature j is
selected on a random subsample of size bn/2c of the data. This probability is
determined, given m such random subsamples I1, I2, . . . , Im, as the proportion
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of those subsamples for which the feature selection procedure selects a feature
j:

Π̂λ
j = 1

m

m∑
j=1

1j∈Sλ(Ij).

Finally, given a threshold 1
2 < πcutoff ≤ 1 (in this work, we used πcutoff =

0.75), the stable set of selected features is determined as:

Ŝstable = {j : max
λ∈Λ

Π̂λ
j ≥ πcutoff}.

To bound the number of expected false selected features, [Meinshausen
and Bühlmann(2009)] present the following theorem (Theorem 1 in their
paper):

Assuming the set of feature with non-zero coefficients by S = {j : βj 6= 0},
and the set of features with zero coefficients by N = {j : βj = 0}. Assuming
that the distribution of

{
1{j∈Ŝλ}, j ∈ N

}
is exchangeable for all λ ∈ R+.

Also, assuming that the original procedure is not worse than random setting,
i.e. for any λ ∈ R+:

E
(∣∣∣S ∩ Ŝλ∣∣∣)

E
(∣∣∣N ∩ Ŝλ∣∣∣) ≥ |S||N | .

The number of falsely selected variables V =
∣∣∣N ∩ Ŝstable

∣∣∣ is then bounded
by:

E(V ) ≤ 1
2πcutoff − 1

q2
λ

p
,

where qλ = E (|Sλ(I)|) denotes the expected number of selected variables
The desired calibration is to obtain E(V ) ≤ α with α small.

As an example, for a cutoff πcutoff = 0.75, and α = 0.05, λ is then chosen
such as qλ <

√
0.025p in order to obtain a FWER < α. Therefore, E(V ) is

controlled at the desired level following Theorem 1 if we select 93 features
from p = 350 000 features.

Another variant of stability selection, named complementary pairs stability
selection (CPSS), was proposed by [Shah and Samworth(2013)]. It improves
the applicability of the previous stability selection method. The subsamples
are introduced in B complementary pairs {(I2m−1, I2m) : m = 1, . . . , B} where
each Im is a subsample of {1, . . . , n} of size bn/2c.

Assuming a feature selection model Ŝn := Ŝn (X1, . . . , Xn) whereX1, . . . , Xn

are vector-valued data, the authors define the probability of the selection of
a feature of index j ∈ {1, ..., p} as follows:
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pj,n = P
(
j ∈ Ŝn

)
= E

(
1{j∈Ŝn}

)
.

Here, 1{j∈Ŝn} has a Bernoulli distribution with parameter pj,n and can be
seen as an unbiased estimator of pj,n. As mentioned before, the main goal
of this method is to improve pj,n estimation by applying the subsampling
procedure.

The authors introduce the CPSS version of the feature selection model
Ŝn by ŜCPSS

n,πcutoff
=

{
j : Π̂B(j) > πcutoff

}
. The function Π̂B : {1, . . . , p} →

{0, 1/(2B), 1/B, . . . , 1} is defined by the following equation:

Π̂B(j) := 1
2B

2B∑
m=1

1{j∈Ŝ(Ij)}.

In addition, they define the simultaneous selection of Ŝn for both complemen-
tary pairs (I2m−1, I2m) with Π̃B as follows:

Π̃B(j) := 1
B

B∑
m=1

1{j∈Ŝ(I2m−1)}1{j∈Ŝ(I2m)}.

Finally, this variant of stability selection methods provides bounds for
both:

1. The expected number of features integrated by this model (CPSS) with
low selection probability features that are excluded.

2. The expected number of features integrated by this model with high
selection probability that are excluded.

These bounds result in higher precision in the feature selection procedure by
improving the error control. We present below Theorem 1 given by [Shah and
Samworth(2013)] that allows to control these bounds:

For α ∈ [0, 1], we denote by Lα =
{
j : pj,bn/2c 6 α

}
the set of features

indexes with low selection probability obtained using the feature selection
procedure Ŝbn/2c. We denote also by Hα =

{
j : pj,bn/2c > α

}
the set of features

indexes with high selection probability.

1. If πcutoff ∈
(

1
2 , 1

]
, then:

E
∣∣∣ŜCPSS
n,πcutoff

∩ Lα
∣∣∣ 6 α

2πcutoff − 1E
∣∣∣Ŝbn/2c ∩ Lα∣∣∣ .

2. Assuming N̂CPSS
n,πcutoff

= {1, . . . , p}\ŜCPSS
n,πcutoff

and N̂n = {1, . . . , p}\Ŝn. If
πcutoff ∈

[
0, 1

2

)
, then:

E
∣∣∣N̂CPSS

n,πcutoff
∩Hα

∣∣∣ 6 1− α
1− 2πcutoff

E
∣∣∣N̂bn/2c ∩Hα

∣∣∣ .
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3.2.6 Related work

Stability selection was first presented by [Bach(2008)] where he has introduced
Bolasso (Bootsrapped Lasso). The author has proved that using a small num-
ber of subsamples for Lasso and fixing the probability threshold πcutoff = 1
provide a robust feature selection procedure. Thus, only consistentely selected
features are kept by the model. However, [Meinshausen and Bühlmann(2009)]
have claimed that Bolasso relies on choosing the regularization term λ across
subsamples. If the value of λ is too large on more than 10% of all subsamples,
the model discards relevant features.

Following the success of stability selection methods, further studies have
been conducted to propose other alternatives. For instance, [Alexander and
Lange(2011)] have proposed to apply stability selection procedure to GWAS
applications. Their approach provides feature selection on groups of SNPs
contained in gene regions instead of raw SNPs selection, in order to decrease
the predictor correlation among markers, and increase the biological inter-
pretability.

In addition, [Haury et al.(2012)] have proposed another stability selection
method called TIGRESS. In this work, a combination of Least-angle regres-
sion (LARS) and stability selection was developed. Note that LARS is a
feature selection model, where the coefficients are first initialized by zeros.
The algorithm tends to find the features that are associated with the pheno-
type (the disease) by increasing the relevant coefficients. [Haury et al.(2012)]
approach integrates a new scoring method for stability selection. This score
is defined by the area under the stability curve. The advantage of the new
measure compared to [Meinshausen and Bühlmann(2009)] is that it takes into
consideration the full distribution of ranks of a variable in the feature selec-
tion procedure. They have proved experimentally that this method provides
better performance in terms of stability. However, TIGRESS was tested in
gene-expression data that has much fewer features (around 20 000), as com-
pared to GWAS datasets (containing hundreds of thousands up to millions of
features). Hence, the method does not fit computationally the GWAS scale.

Recently, [Sabourin et al.(2019)] have proposed ComPaSS-GWAS, their
approach is based on complementary pairs stability selection of [Shah and
Samworth(2013)]. It was applied to GWAS data for a quantitative phenotype.
ComPaSS-GWAS splits randomly the samples in half repeatedly and compare
the results of the selection between both splits using a traditional GWAS test.
The significant SNPs that were selected across each random split are finally
returned with a score of corroboration between 0 and 1. Nevertheless, the
method was only conducted on single-marker analyses that do not suffer from
the lack of stability.
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3.3 Experiments

3.3.1 Data
Wellcome Trust Case Control Consortium 1 (WTCCC1)

We study three datasets from the WTCCC1 data from different diseases
(Rheumatoid Arthritis (RA), Type 1 Diabetes (T1D) and Type 2 Diabetes
(T2D) that we have introduced in Section 1.5.2.

3.3.2 Preprocessing
We exclude poorly performing SNPs that do not pass the following quality
control filters recommended in [Consortium(2007)]. We remove SNPs with a
minor allele frequency lower than 5%, a p-value for Hardy-Weinberg Equilib-
rium in controls lower than 0.001 and a missing genotyping rate larger than
10%. In addition, samples that have an overall genotyping missing rate larger
than 10% are also excluded. The SNPs of sex chromosomes are removed
because they were not genotyped for all participants. The WTCCC1 data
was already imputed using CHIAMO, but the remaining missing values are
replaced with the major allele denoted by 0.

3.3.3 Implementation details
In this section, we detail the packages and tools that we use to implement the
developed methods.

We start by generating bootstrapped samples from the data. Then, we
perform classic GWAS based on single-marker analyses using PLINK [Purcell
et al.(2007)] that runs a 1dfχ2 allelic test between each SNP individually and
the phenotype on each bootstrapped sample.

We use scikit-learn package to implement Lasso and Elastic Net models.
The Lasso model is evaluated for different values of the penalization parameter
λ. In Elastic Net, we fix λ1 = 0.05 and the model is evaluated for different
values of λ2 similarly to what is done for Lasso.

In order to improve the stability of both feature selection algorithms,
we use the stability-selection package1 that handles scikit-learn feature
selection estimators and both stability selection methods presented in Sec-
tion 3.2.5.

As mentioned before, the stability is evaluated at different genomic scales
(SNP, LD-block and gene). We obtain the LD-blocks using the R package
adjclust [Ambroise et al.(2019)]. Finally, the SNPs to genes mapping is
determined with the web-based platform of FUMA [Watanabe et al.(2017)].

1https://github.com/scikit-learn-contrib/stability-selection

https://github.com/scikit-learn-contrib/stability-selection
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Dataset Number of Number of Number of SNPs
SNPs LD-blocks mapped to genes

RA 354 678 1 580 93 788
T1D 354 523 2 035 93 741
T2D 354 615 1 887 93 870

Table 3.1: For each dataset, the number of SNPs and their corresponding
LD-blocks and genes obtained after the clustering and the positional mapping
respectively

The stability index at each genomic scale (SNP, LD-block and gene) is
computed using the Pearson Correlation Coefficient method described in Sec-
tion 3.2.2.

The implemented codes are available online in the following github repos-
itory: https://github.com/asmanouira/multiscale-stability

3.4 Results

3.4.1 Clustering the SNPs to LD-blocks and mapping
the SNPs to genes

In order to compute the stability of the selection at the different genomic
scales (SNP, LD-block and gene levels), we determine first the LD-blocks and
the genes corresponding to the SNPs from each dataset. Thus, we identify the
LD-blocks and the genes that were selected across all bootstrapped samples.
We present in Table 3.1 for each dataset, the number of obtained LD-blocks
after performing the hierarchical agglomerative clustering of the SNPs, as well
as the number of mapped SNPs to genes using FUMA. We observe particu-
larly that the mapping of genes was not possible for all SNPs. Thus, the
interpretation of the stability index at the gene level is different to the SNP
level and the LD-block level. Indeed, many SNPs selected consistently across
the samples bootstraps were not mapped to genes. In this case, it is then
normal to have higher stability index at the LD groups level or/and the SNP
level compared to the gene level.

3.4.2 The stability of the selection in classical GWAS
In this work, we choose M = 10 the number of bootstrapped samples gen-
erated randomly to compute the stability of the selection index. We then
run PLINK repeatedly 10-times for the 10 bootstrapped samples. For single-
marker analyses, the obtained p-values are an indicator of the statistical sig-
nificance and a strong association with the disease. Thus, we consider that the
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Dataset Average number Average number Average number of
of selected SNPs of selected LD-blocks mapped SNPs to genes

RA 103 19 2
T1D 227 13 3
T2D 10 10 2

Table 3.2: For single-marker analyses, the average number of selected SNPs,
LD-blocks and genes across all bootstraps

Dataset Stability index Stability index Stability index
at SNP level at LD-block level at gene level

RA 0.829 0.833 0.810
T1D 0.851 0.770 0.753
T2D 0.860 0.859 0.870

Table 3.3: For single-marker analyses, the stability indexes at different ge-
nomic scales: SNP level, LD-block level and gene level

selected features correspond to the significant SNPs with p-values exceeding
the Bonferroni threshold in each bootstrapped sample. Table 3.2 shows the
average number of selected SNPs, LD-blocks of strongly correlated SNPs and
genes along all the bootstraps. Table 3.3 demonstrates that the stability of
the selection in traditional GWAS methods is robust for all genomic scales,
as the variability of selected sets across samples is very small. However, these
approaches remain limited in recovering regions of interest associated with the
disease. Indeed, very few genes associated with the phenotype were discovered
(see Table 3.2).

3.4.3 Lasso and Elastic Net lead to better biological
interpretation for biomarker discovery

Here, we examine the results for RA dataset in detail. Note that the results
and the observations in T1D and T2D datasets are similar to those in RA
study. We discuss results obtained in T1D and T2D in Appendix C.

In this section, we evaluate the stability of the selection for machine learn-
ing methods, i.e., Lasso and Elastic Net. The empirical quantification of the
stability for Lasso presented in Table 3.4 shows lower stability index values
compared to classic GWAS methods, especially at the SNP-level. However,
we observe that the stability values at the LD-block level and the gene level
increase remarkably. Such an observation demonstrates that the robustness of
the selection in the LD-block level and the gene level allows better performance
using Lasso. From a biological point of view, selecting a SNP that belongs to
an LD-block is similar to select all SNPs of that LD-block. In other words,
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Dataset Stability index Stability index Stability index
at SNP level at LD-block level at gene level

RA 0.379 0.567 0.451
T1D 0.404 0.539 0.468
T2D 0.317 0.553 0.292

Table 3.4: For Lasso, the stability indexes at different genomic scales: SNP
level, LD-block level and gene level

all SNPs in the same LD-block explain the same biological information. We
underline also that feature selection models such as Lasso select more SNPs,
LD-blocks and mainly genes compared to traditional GWAS methods (see
Table 3.4). Consequently, Lasso recovers markers that classical single-marker
analyses have missed. At the gene level, results remain unclear to compare
with the SNP-level and the LD-block level because some selected SNPs were
not mapped to genes as mentioned before in Section 3.4.1. For RA, Figure 3.1
illustrates the number of selected SNPs, LD-blocks and genes for different val-
ues of λ. The choice of the best λ is a compromise between the stability and
the prediction error. Figure 3.2 shows that the best trade-off between the
greatest stability for the smallest error is given by λ = 0.013, that results
in selecting 231 SNPs, 138 LD-blocks and 22 genes. Figure 3.3 presents the
stability index against the average prediction error, it illustrates the trade-off
to consider between both metrics to choose the best regularization λ. For
λ = 0.013, the average error is equal to 0.108 and results stability indexes of
0.331 at the SNP level, of 0.484 at the LD-block level and of 0.451 at the gene
level. The empirical results of Lasso for the phenotypes T1D and T2D are
presented and evaluated respectively in Appendix C.2 and Appendix C.3.

Next, we implement Elastic Net that is known to improve the stability of
Lasso by adding an `2-norm penalty. Indeed, metrics in Table 3.5 highlight
a notable gain of stability at all studied genomic scales, and in particular at
the LD-block level. Similarly to Lasso, Elastic Net selects higher number of
discovered genes compared to single-marker analyses. For Elastic Net, the
choice of the best λ2 is also a trade-off that offers better stability for lower
error. Figure 3.6 demonstrates that the optimal value of λ2 = 0.028, producing
an error of 0.005 and resulting in stability values of 0.359 at the SNP level,
of 0.585 at the LD-block level and of 0.466 at the gene level. Consequently,
Figure 3.5 shows that for the chosen best λ2 = 0.028, we select 1 001 SNPs,
800 LD-blocks and 158 genes. Figure 3.5 presents the obtained values of
the stability index at the three genomic scales across the different values of
lambda.

The results of Elastic Net for the phenotypes T1D and T2D are detailed
respectively in Appendix C.4 and C.5.
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Figure 3.1: For Lasso, number of selected SNPs, LD-blocks and genes
against values of lambda

Dataset Stability index Stability index Stability index
at SNP level at LD-block level at gene level

RA 0.431 0.602 0.496
T1D 0.425 0.590 0.521
T2D 0.405 0.612 0.466

Table 3.5: For Elastic Net, the stability index values at different genomic
scales: SNP level, LD-block level and gene level

3.4.4 Stability selection methods increase the stability
index of Lasso

In this section, we study the stability of both stability selection meth-
ods (presented in Section 3.2.5). First, we find that [Meinshausen and
Bühlmann(2009)] approach improves the stability index of Lasso for all stud-
ied phenotypes at the different genomic scales, as shown in Table 3.6. The
obtained stability values given in Table 3.7 using [Shah and Samworth(2013)]
method are higher than those obtained with the first approach and any other
tested feature selection model. However, [Shah and Samworth(2013)] method
is very intensive computationally compared to the other methods and requires
higher memory resources due to the CPSS procedure. It is important to men-
tion that both stability selection approaches restrict the number of selected
variables as compared to basic feature selection methods, which reduce the
false positive rate.
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Figure 3.2: For Lasso, the average error and stability index for different
values of lambdas

3.5 Discussion and conclusion
We have presented in this chapter an empirical evaluation approach to com-
pare the stability of the selection measurement of common methods in GWAS:
single-marker analyses and Lasso. The stability of the selection is an impor-
tant criterion to evaluate the efficiency of a feature selection model in iden-
tifying causal variants. In fact, considering false candidate SNPs selected
randomly produces high rate of false discoveries, and leads consequently to
wrong biological interpretation. Thus, the robustness of the selection pro-
cedure is essential to obtain a meaningful selected set of features that will
not be affected by the variability among samples of the input dataset. Our

Dataset Stab at SNP Stab at LD-block Stab index at gene
(# of sel SNPs ) (# of sel LD-blocks) (# of mapped SNPs)

RA 0.493 (524) 0.602 (483) 0.482 (96)
T1D 0.581 (435) 0.650 (386) 0.561 (77)
T2D 0.554 (621) 0.623 (540) 0.500 (81)

Table 3.6: For Lasso, the stability index values obtained at different genomic
scales (SNP level, LD-block level and gene level) after stability selection us-
ing [Meinshausen and Bühlmann(2009)] method. In brackets, the number of
selected/mapped features is given for each studied level
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Figure 3.3: For Lasso, the stability index at different genomic scales (SNP,
LD-block and gene levels) against the average error

Dataset Stab at SNP Stab at LD-block Stab index at gene
(# of sel SNPs ) (# of sel LD-blocks) (# of mapped SNPs)

RA 0.521 (498) 0.614 (428) 0.479 (75)
T1D 0.593 (423) 0.704 (359) 0.587 (68)
T2D 0.620 (599) 0.664 (512) 0.521 (71)

Table 3.7: For Lasso, the stability index values obtained at different ge-
nomic scales(SNP level, LD-block level, gene level) after stability selection
using [Shah and Samworth(2013)] method. In brackets is given the number
of selected/mapped features at each studied level

analysis show that traditional GWAS based on single-marker analyses remain
the leading approach to avoid false discoveries, as it gives the best stability
measurements in all studied datasets. However, it is essential to realize that
the classical GWAS test is limited to an univariate test that often detects very
few associations with the phenotype.

We show in this work effective alternatives to improve the stability of
feature selection methods by using Elastic Net or stability selection techniques.
Indeed, these approaches improve significantly the robustness of the selection
with close stability indexes of single-marker analyses and better biological
information.

The novelty of this contribution is the quantification of the stability of the
selection at various genomic scales, i.e., SNP level, LD-block level and gene
level. Our study helps to explore the ability of feature selection models in
targeting common regions in higher genomic scales. Hence, we have discovered
one of the causes behind the lack of stability in regularization techniques, such
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Figure 3.4: For Elastic Net, the average error and stability index for
different values of lambda

as Lasso. In other words, some SNPs were not selected repeatedly along the
bootstrapped samples, but they were in the same LD-block as other SNPs that
were selected also by the same model. As a consequence, we obtain much lower
values of stability index at the SNP level than at a higher level. Indeed, we
observe that the stability of the selection increases at the LD-block and gene
scales. From a biological point of view, selecting any SNP that belongs to the
same LD-block results in the same interpretation. Hence, doing the selection
process at the LD-block level results in higher stability without losing any
biological information.
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against the values of lambda
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Chapter 4

Multitask group Lasso for
Genome-Wide Association

Studies in diverse populations

Abstract: Genome-Wide Association Studies, or GWAS, aim at finding
Single Nucleotide Polymorphisms (SNPs) that are associated with a phenotype
of interest. GWAS are known to suffer from the large dimensionality of the
data with respect to the number of available samples. Other limiting factors
include the dependency between SNPs, due to linkage disequilibrium (LD), and
the need to account for population structure, that is to say, confounding due to
genetic ancestry. We propose an efficient approach for the multivariate anal-
ysis of multi-population GWAS data based on a multitask group Lasso formu-
lation. Each task corresponds to a subpopulation of the data, and each group
to an LD-block. This formulation alleviates the curse of dimensionality, and
makes it possible to identify disease LD-blocks shared across populations/tasks,
as well as some that are specific to one population/task. In addition, we use
stability selection to increase the robustness of our approach. Finally, gap
safe screening rules speed up computations enough that our method can run
at a genome-wide scale. To our knowledge, this is the first framework for
GWAS on diverse populations combining feature selection at the LD-groups
level, a multitask approach to address population structure, stability selection,
and safe screening rules. We show that our approach outperforms state-of-
the-art methods on both a simulated and a real-world cancer datasets.
Résumé: Les études d’association pangénomiques, ou GWAS, visent
à trouver des polymorphismes nucléotidiques (SNPs) associés à un phénotype
d’intérêt. Les GWAS sont connus pour souffrir de la grande dimensionnalité
des données par rapport au nombre d’échantillons disponibles. D’autres fac-
teurs limitants incluent la dépendance entre les SNP, à cause du déséquilibre de
liaison (LD), et la nécessité de tenir compte de la structure de la population,
c’est-à-dire de la confusion due à l’ascendance génétique. Nous proposons
une approche efficace pour l’analyse multivariée des données GWAS multi-
population basée sur une formulation multi-tâches group Lasso. Chaque tâche
correspond à une sous-population des données, et chaque groupe à un bloc LD.
Cette formulation atténue le fléau de la dimension et permet d’identifier les
blocs LD de la maladie partagés entre les populations/tâches, ainsi que cer-
tains qui sont spécifiques à une population/tâche. De plus, nous utilisons la
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sélection de stabilité pour augmenter la robustesse de notre approche. Enfin,
les approches gap safe screening rules accélèrent suffisamment les calculs pour
que notre méthode puisse fonctionner à l’échelle du génome. À notre con-
naissance, notre méthode est la première approche proposée pour les GWAS
sur les populations diverses combinant la sélection de variables au niveau des
groupes LD, une approche multitâche pour traiter la structure de la population,
la sélection de stabilité et les approches gap safe screening rules. Nous mon-
trons que notre approche surpasse les méthodes existantes sur des ensembles
de données simulées et réelles de cancer.
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4.1 Introduction
Over the last 15 years, Genome-Wide Association Studies (GWAS) have be-
come one of the most prevalent methods to identify regions of the genome
associated with complex phenotypic traits, and in particular complex diseases
in humans [Visscher et al.(2017)]. One of the major concerns in GWAS is
population stratification, which arises when allele frequency differences be-
tween cases and controls are due to differences in genetic ancestry rather than
to association with the phenotype. Many correction methods have been pro-
posed to adjust the inflation of associations in diverse populations, including
methods based on principal components analysis or on linear mixed mod-
els [Yiwei and Wei(2015)]. However, it is possible that these techniques lead
to overcorrection, in particular by masking population-specific disease loci.

An additional issue in GWAS is Linkage Disequilibrium (LD), which
manifests as correlation between adjacent Single Nucleotide Polymorphisms
(SNPs), creating statistical dependence between those markers and reducing
statistical power [Dehman et al.(2015)]. Combining strongly correlated SNPs
into blocks, that is to say, groups of adjacent and correlated SNPs, and mod-
eling the association signal over an entire region, is one way to address this
limitation.

Classical approaches for GWAS are based on single-marker analyses, test-
ing for association between each SNP and the phenotype independently. This
may prevent the detection of effects that are due to SNPs acting additively,
leading many authors to favor fitting a linear model to all SNPs jointly [Sebas-
tian et al.(2014)]. Penalized regression approaches, such as the Lasso, which
uses an `1-norm regularization to shrink some coefficients of the model to zero,
effectively removing them from the model, are particularly suited to this task.

Additional regularizers can be used to enforce additional prior hypotheses
on the coefficients of such a linear model. Among them, the group Lasso [Yuan
and Lin(2006),Dehman et al.(2015)] ensures sparsity at the level of pre-defined
groups of features, and the multitask Lasso [Obozinski et al.(2006), Kriti
et al.(2010)] fits models on related tasks jointly, encouraging similar sparsity
patterns across all tasks.

In this work, we propose to combine both approaches into a multitask
group Lasso framework, in which groups correspond to pre-defined LD pat-
terns, and each task corresponds to a subpopulation, therefore simultaneously
addressing the limitations of single-marker analyses and the issues of both LD
and population structure.

In addition, we draw on the stability selection framework [Meinshausen
and Bühlmann(2009)] to improve the stability of the results, that is to say,
their robustness to small perturbations in the input data, such as the removal
of a few samples. Indeed, because the number of SNPs is typically much larger
than that of samples, penalized regression approaches tend to select different
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sets of SNPs when presented with slightly different subsets of the same data,
which severely limits their interpretability.

Finally, we use the recently proposed gap safe screening rules proposed by
E. Ndiaye et al. [Ndiaye et al.(2017)] to improve computational complexity,
and scale our approach to about one million SNPs.

In what follows, we present our proposed approach in detail, place it in
the context of existing work, and evaluate it on both a simulated data set and
a real-world cancer GWAS data set.

4.2 Methods
Our proposed approach, MuGLasso, follows four steps, which we detail in this
Section. First, we assign each sample to a genetic population, hence forming
different but related tasks (Section 4.2.1). Second, we create LD-groups from
correlations between SNPs, so as to perform feature selection at the level of
groups rather than individual SNPs(Section 4.2.2). Third, we jointly fit one
regularized model per task, using an `2,1 penalty that enforces sparsity at
the level of LD-groups (Section 4.2.3). Finally, we use stability selection to
improve the robustness of the solution (Section 4.2.4).

4.2.1 Population stratification
Population structure, whereby the data is made of subsets of individuals that
differ systematically both in genetic ancestry and in the phenotype under
investigation, is a major confounding factor in GWAS. Indeed, it leads to
detecting allele frequency differences in cases and controls that correspond
to differences in ancestry, instead of a more direct association between geno-
type and phenotype. Several approaches have been developed to adjust for
population structure.

Among them, a large number of methods rely on Principal Component
Analysis (PCA) [Zeggini et al.(2008), Need et al.(2009), Price et al.(2006)],
and consist of including top Principal Components (PCs) of the genotypes
as covariates in regression models. In addition, linear mixed models [Yu
et al.(2006)] can be used to model the phenotype as a combination of fixed
and random effects, with the covariance of the latter being computed from a
genetic similarity matrix. Although they often outperform PCA-based meth-
ods, the mixed model approaches tend to be more computationally demand-
ing. Both approaches are similar in that regressing out principal components
can be seen as approximation of a linear mixed model [Yiwei and Wei(2015)].

However, these techniques may lead to ignoring population-specific SNPs,
which is why we propose a multitask approach that can identify disease loci
that are either population-specific or shared between populations. We there-
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fore form tasks by separating the data into subpopulations, identified as clus-
ters (using k-means clustering) on the projection of the genotypes on their
top PCs.

4.2.2 Linkage disequilibrium groups
Linkage disequilibrium (LD) is the non-random association of alleles of at
least two loci [Slatkin(2008)]. LD can be leveraged to form groups of corre-
lated SNPs. Grouping SNPs helps to alleviate the curse of dimensionality in
GWAS by reducing the number of testing possibilities. This can be achieved
by combining p-values within a group of correlated SNPs [Hu et al.(2016)], or
through the use of penalized regression approaches that perform feature selec-
tion at the level of groups, rather than at the level of individual SNPs [Dehman
et al.(2015)]. The latter has the advantage over individual statistical testing
of modeling the additive effects of multiple genetic markers simultaneously.

Adjacency-constrained hierarchical clustering

In many species, including humans [Reich et al.(2001)], LD is known to be cor-
related to the physical distance between SNPs. Hence, genomes can be clus-
tered in LD blocks of strongly correlated adjacent SNPs, called in this chap-
ter LD-groups. Such LD-groups can be obtained using adjacency-constrained
hierarchical agglomerative clustering [Ambroise et al.(2019)], in which only
physically adjacent clusters can be merged. We detailed the clustering method
in Section 3.2.3.

LD-groups across populations

Because LD patterns may be influenced by genetic ancestry [Boehnke(2000)],
we perform LD-groups partitioning for each population separately. We then
combine those LD-groups into common shared LD-groups. More specifically,
the set of coordinates of the boundaries of the shared LD-groups is obtained
as the union of the sets of coordinates of the boundaries of the LD-groups for
each population. This procedure is described in Supplementary Figure D.1.

4.2.3 Multitask group Lasso
General framework and problem formulation

We use a penalized regression approach to fit a multivariate linear model
between the phenotype and the SNPs, with a regularization term that ensures
that (1) the solution is sparse at the level of LD-groups and (2) the regression
coefficients are smoothed within groups and across tasks. Such an approach
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provides shared LD-groups associated with the phenotype across all tasks,
and allows for some LD-groups to be specific to each task.

Problem formulation Given a set of p SNPs measured for n samples, we
split the n samples in T subpopulations/tasks, each of size nt for t = 1, . . . , T ,
and the p SNPs in G LD-groups, each of size pg for g = 1, . . . , G. For each
population t, we denote by x(t)

m the p-dimensional vectors of SNPs of the m-th
sample in the population (m = 1, . . . , nt), and by y(t)

m its phenotype. We then
formulate the following optimization problem:

min
B∈Rp×T

1
n

T∑
t=1

nt∑
m=1
L

y(t)
m ,

p∑
j=1

β
(t)
j x

(t)
mj

+ λ
G∑
g=1

√
pg
∥∥∥B(g)

∥∥∥
F
, (4.1)

where β(t) ∈ Rp is the vector of regression coefficients specific to task t : β(t) =
(B1t, . . . , Bpt), L is the quadratic loss if the phenotype is quantitative (y ∈ R)
and the logistic loss if it is qualitative (y ∈ {0, 1}), ‖.‖F denotes the Frobenius
norm, and B(g) is a pg×T matrix containing the regression coefficients, across
all tasks, for the SNPs of group g. Hence the penalization term ties the
regression coefficients across tasks and groups, and ensures sparsity at the
group level. The penalization parameter λ > 0 controls the amount of sparsity.
Note that to fit an intercept, it is sufficient to add a feature that is equal to
1 to each sample.

Related work

`2,1-norm regularization Our approach is closely related to the group
Lasso [Yuan and Lin(2006)] and multitask Lasso [Obozinski et al.(2006)],
which both make use of an `2,1-norm regularization. More precisely, the
group Lasso corresponds to a special case of Equation (4.1), with a single
task (T = 1), resulting in sparsity at the group levels. Using a group Lasso
where the groups are defined based on LD blocks has been successfully applied
to GWAS on up to 20 000 SNPs [Dehman et al.(2015)]. The multitask Lasso
corresponds to a special case of Equation (4.1), with each group containing
exactly one SNP. This formulation ties sparsity patterns across tasks and has
been applied before to multi-population GWAS, although only a few thousand
SNPs [Kriti et al.(2010)].

The multitask group Lasso we propose can also be reformulated as an `2,1-
norm regularization problem, through the creation of a new dataset (X̃, ỹ)
where X̃ ∈ Rn×pT is a block-diagonal matrix such that each of the T diagonal
blocks corresponds to the SNP matrix X(t) ∈ Rnt×p for task t, and ỹ is a n-
dimensional vector obtained by stacking the phenotype vectors for each task.
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Equation (4.1) can then be rewritten as:

min
b∈RpT

1
n

n∑
i=1
L

ỹi, pT∑
k=1

bkx̃ik

+ λ
G∑
g=1

√
pg
∥∥∥b(g)

∥∥∥
2
, (4.2)

with b(g) ∈ RpgT the regression coefficients corresponding to all SNPs of group
(g) for all tasks. In essence, this is a group Lasso with G groups each con-
taining T copies (one per task) of the pg features of SNP group g. Thus
Bjt = bp(t−1)+j.

Other multitask group Lassos Other authors have proposed variations
on the idea of a multitask group Lasso before. Several publications [Wang
et al.(2012),Lin et al.(2014)] add a second regularization term to our formu-
lation, increasing within-group or across-task sparsity. Unfortunately, this
dramatically increases computational time, and indeed none of these publica-
tions analyze genome-wide data sets. In addition, because interpretation will
be done at the group level rather than at the SNP level, within-group sparsity
is not necessarily desirable in this context.

Several authors have built on these propositions and add a third reg-
ularization term, either enforcing group-independent task sparsity [Xiaoli
et al.(2017)] or overall sparsity (with an `1-norm over all coefficients) [Li
et al.(2020)]. Again, the addition of these regularizers severely hinders the
applicability of these methods at a genome-wide scale due to computational
limitations.

Hence none of these methods is readily applicable to our setting. In ad-
dition, their stability has never been evaluated, even though it is an impor-
tant criterion for the reliability and interpretability of the results (see Sec-
tion 4.2.4).

Gap safe screening rules

To speed up the computation of the solution of Equation (4.2), we call upon
gap safe screening rules [Ndiaye et al.(2017)], which are used to efficiently iden-
tify features for which the regression coefficients will be zero and hence ignore
them when solving the problem. Such screening rules have been proposed for
a large number of popular regularized regressions [Ndiaye et al.(2017)], in-
cluding `2,1-norm regularizations. In particular, Equation (4.2) can be solved
using the Gap_Safe_Rule package1. We briefly summarize the idea underlying
gap safe screening rules in Appendix D.2.3.

1https://github.com/EugeneNdiaye/Gap_Safe_Rules

https://github.com/EugeneNdiaye/Gap_Safe_Rules
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4.2.4 Stability selection

Unfortunately, in GWAS, penalized regression approaches often lack stability,
that is to say, robustness to slight variations in the input dataset [Alexan-
der and Lange(2011)]. However, stability increases both the reliability of
the results and the interpretability. To address this limitation, stability se-
lection [Meinshausen and Bühlmann(2009),Alexander and Lange(2011)] con-
sists of performing feature selection repeatedly on subsamples of the data
and only retains the features most often selected. More specifically, given
a subsample I ⊂ {1, . . . , n} of size bn/2c of the data, we call Ŝλ(I) the
set of features selected by the selection procedure of interest (for example,
a Lasso), with hyperparameter λ, on this subsample of the data. For any
feature j ∈ {1, . . . , p}, we call Π̂λ

j the probability that feature j is selected
on a random subsample of size bn/2c of the data. This probability is deter-
mined, given m such random subsamples I1, I2, . . . , Im, as the proportion of
those subsamples for which the feature selection procedure selects feature j:
Π̂λ
j = 1

m

∑m
k=1 1j∈Sλ(Ik). Finally, given a a threshold 1

2 < πcutoff ≤ 1 (in this
work, we used πcutoff = 0.75), the stable set of selected features is determined
as Ŝstable = {j : maxλ∈Λ Π̂λ

j ≥ πcutoff}.
We presented in detail stability selection methods in Section 3.2.5.

4.3 Experiments

4.3.1 Data

Simulated data Using GWAsimulator [Li and Li(2008)], we simulated
GWAS data with realistic LD patterns from two populations (CEU : Utah
residents with Northern and Western European ancestry and YRI: Yoruba
in Ibadan, Nigeria) of the HapMap 3 data. We induced population structure
by varying the case:control ratio within each subpopulation (CEU 1 100:900
and YRI 900:1 100), as well as by simulating population-specific disease loci.
We simulated a total of 149 970 disease SNPs, 2 999 (resp 4 999) of which are
specific to the CEU (resp. YRI) population (see Appendix D.1.1). The data
contains 4 000 samples and 1 400 000 SNPs.

DRIVE Breast Cancer OncoArray The DRIVE OncoArray dataset (db-
Gap study accession phs001265/GRU) contains 28 281 individuals that were
genotyped for 582 620 SNPs. 13 846 samples are cases and 14 435 are controls.
More details are available in Appendix D.1.2.
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4.3.2 Preprocessing
Quality control and imputation We removed SNPs with a minor allele
frequency lower than 5%, a p-value for Hardy-Weinberg Equilibrium in con-
trols lower than 10%, or a missing genotyping rate larger than 10%. We
removed duplicate SNPs and excluded samples with more than 10% of SNPs
missing. We imputed missing genotypes in DRIVE using IMPUTE2 [Howie
et al.(2009)].

LD pruning We performed LD pruning using PLINK [Purcell et al.(2007)]
with a LD cutoff of r2 > 0.85 and a window size of 50Mb, both to reduce the
number of SNPs and to better capture population structure using PCA [Ab-
dellaoui et al.(2013)]. 1 000 000 SNPs remain in the simulated data and 313 237
in DRIVE.

PCA and population structure We used PLINK [Purcell et al.(2007)]
to compute principal components of the genotypes. We thus identify two
populations in the simulated data, matching the CEU and YRI populations
(see Supplementary Figure D.3a). In DRIVE, we identify two populations
(see Supplementary Figure D.3b), which we call POP1 (samples from the
USA, Australia and Denmark) and POP2 (samples from the USA, Cameroon,
Nigeria and Uganda).

LD-groups choice We obtain LD-groups for each of the PCA-based popu-
lations using adjclust [Ambroise et al.(2019)] and obtain shared LD-groups as
described in Section 4.2.2. Table 4.1 shows the number of LD-groups obtained
for each subpopulation and the final number of shared groups.

Data Subpopulations # of # of shared
LD-groups LD-groups

Simulated data CEU 25 281 35 792YRI 15 636

DRIVE real data POP1 8 152 17 782POP2 5 032

Table 4.1: For each subpopulation of both datasets (simulated and real), LD-
groups number is given and the shared LD-groups number after combination

4.3.3 Comparison partners
As a baseline, we use PLINK [Purcell et al.(2007)] to perform tests of associa-
tion between each SNP and the phenotype, either using the top PCs as covari-
ates (Adjusted GWAS), or treating each population separately (Stratified
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GWAS). We also compute a PCA-adjusted phenotype as the residuals of a
regression between the top PCs and the phenotype. To evaluate the effects of
grouping correlated SNPs and separating the populations in tasks, we compare
MuGLasso to a Lasso (single task, no groups) on each population (Stratified
Lasso) or on the adjusted phenotype (Adjusted Lasso), as well as a group
Lasso (single task) on each population (Stratified group Lasso) or on the
adjusted phenotype (Adjusted group Lasso).

For computational efficiency, we use bigLasso [Yaohui and Patrick(2017)]
for the Lasso, and Gap_Safe_Rule [Ndiaye et al.(2017)] for the group Lasso.
For all methods, we set the regularization hyperparameter by cross-validation.

To compare these methods, we report runtime, ability to recover true
causal SNPs (in the case of simulated data), and stability of the selection.
To measure selection stability, we repeat the feature selection procedure on
10 subsamples of the data, and report the average Pearson’s correlation be-
tween all pairs of indicator vectors representing the selected features for each
subsample (see Appendix D.2.4 for details).

4.4 Results

4.4.1 MuGLasso draws on both LD-groups and the
multitask approach to recover disease SNPs

On the simulated data, we observe (Figure 4.1a) that MuGLasso is better than
any other method at recovering the true disease SNPs. Performing feature
selection at the level of LD-groups, rather than individual SNPs, improves
performance. Indeed, the group Lassos and MuGLasso outperform the SNP-
level Lassos. In addition, treating all samples simultaneously (as in MuGLasso
or the adjusted approaches) also improves performance. This confirms our
hypothesis that grouping features and using all samples simultaneously both
alleviate the curse of dimensionality.

On DRIVE, MuGLasso recovers 1 051 SNPs in addition to all SNPs from
the adjusted GWAS. They point to 32 risk genes that cannot be identified by
the classical GWAS; half of those have been identified in meta-GWAS that
included our samples, and another 7 have been associated with breast cancer
risk or growth in other studies (see Supplementary Table D.3).

However, this increased ability to recover relevant SNPs comes with an
increase in computational time (see Supplementary Figure D.4 on simulated
data and Figure 4.2a on DRIVE). However, the implementation is efficient
enough to allow computations on 106 SNPs, even with the added cost of
repeated subsampling to increase stability.
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Figure 4.1: On simulated data, ability of different methods to retrieve causal
disease SNPs as a ROC plot (4.1a), and stability index of MuGLasso as a
function of the number of bootstrap samples (4.1b). On the ROC plot, the
black dot indicates the performance of the stratified GWAS at the Bonferonni-
corrected significance threshold.

4.4.2 MuGLasso provides the most stable selection

Figures 4.1b (simulated data) and 4.2b (DRIVE) show the stability index of
MuGLasso as a function of the number of subsamples. Increasing the number
of subsamples increases the stability of the selection. We use 100 bootstrap
samples in all subsequent experiments as it appears to be an acceptable trade-
off between runtime and stability.

Tables 4.2 and 4.3 show the stability index of the different methods, on
simulated data and DRIVE, respectively. We ran the adjusted GWAS once on
the entire data set, as would usually be done, and therefore cannot report its
stability. Our results again illustrate that stability selection does increase the
stability of Lasso methods. We confirm this by running MuGLasso without
stability selection as well as Adjusted group Lasso with stability selection on
top. In both cases, the stability index increases when stability selection is
used. In addition, we report the total number of selected SNPs and LD-
groups. For methods that select individual SNPs, we obtain the number of
selected LD-groups by considering that each selected SNP selects its entire
LD-group. Our results illustrate that the improved stability of MuGLasso
does not come at the expense of selecting more features. On the contrary,
stability selection provides fewer SNPs/LD-groups with better stability.
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Figure 4.2: On DRIVE, runtimes of the different Lasso approaches (4.2a) and
stability index of MuGLasso as a function of the number of bootstrap samples
(4.2b).

4.4.3 MuGLasso selects both task-specific and global
LD-groups

For both datasets, the LD-groups selected by MuGLasso are a mixture be-
tween population-specific LD-groups (identified as those with near-zero re-
gression coefficients for one task) and LD-groups that are shared between
both populations. Table 4.4 shows the number of LD-groups/SNPs in each of
these categories for MuGLasso. By contrast, the adjusted approaches do not
provide population-specific LD-groups or SNPs.

Finally, we report on Figure 4.3 the precision and recall of MuGLasso
and the stratified approaches on the population-specific SNPs. MuGLasso
outperforms all other approaches in both precision and recall.

4.5 Discussion and Conclusions
We presented MuGLasso, an efficient approach for detecting disease loci in
GWAS data from diverse populations. Our approach is based on a multi-
task framework, where input tasks correspond to subpopulations, and feature
selection is performed at the level of LD-groups. Assigning samples from
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Methods # of selected # of selected Stability Selection
LD-groups SNPs index level

MuGLasso 5 623 155 312 0.4912 LD-groups
MuGLasso without 6 124 161 221 0.4412 LD-groupsstab sel
Adjusted group Lasso 6 054 162 104 0.4134 LD-groups+ stab sel
Adjusted group Lasso 6 347 167 204 0.3714 LD-groups
Stratified group Lasso 4 836 154 732 0.3398 LD-groups
Adjusted Lasso 5 379 158 856 0.2368 Single-SNP
Stratified Lasso 5 704 168 158 0.1742 Single-SNP
Adjusted GWAS 5 063 141 340 - Single-SNP

Table 4.2: Stability index and number of selected features for different meth-
ods, on simulated data

PCA-identified populations to different tasks addresses the issue of popula-
tion stratification, and retains the flexibility of identifying population-specific
disease loci. Treating all samples together, by contrast with stratified ap-
proaches, alleviates the curse of dimensionality. Ensuring sparsity at the level
of LD-groups addresses the high correlation between nearby SNPs and also
alleviates the curse of dimensionality. Although more time-consuming than
a classical GWAS, our implementation is computationally efficient enough to
scale to the analysis of entire GWAS data sets of about one million SNPs.

On simulated data, MuGLasso outperforms state-of-the-art approaches in
its ability to recover disease loci. This also holds for population-specific SNPs;
hence performance is not driven solely by the ability to recover disease loci
that are common to all populations. In addition, MuGLasso is the most stable
of all evaluated method, which increases interpretability.

Finally, although we presented MuGLasso in the context of admixed pop-
ulations, our tool could be used in other multitask settings. In particular,
tasks can stem from related phenotypes [Wang et al.(2012)] or from differ-
ent studies pertaining to the same trait, in a meta-analysis approach [Lin
et al.(2014)]. Groups could also be defined according to different prior bi-
ological knowledge, for example based on functional units such as genes, in
the spirit of gene-set analyses of GWAS data. In addition, although we only
presented results on case-control studies with two populations, the method
directly applies to quantitative phenotypes and any number of tasks.

An important outcome of our study is that, although we have not included
in MuGLasso a regularization term that would enforce sparsity at the level
of tasks as in [Li et al.(2020)], we still obtain task-specific groups. Including
such an additional term in Equation (4.1) would perhaps improve the already
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Methods # of selected # of selected Stability Selection
LD-groups SNPs index level

MuGLasso 62 1 357 0.4312 LD-groups
MuGLasso without 72 1 524 0.3911 LD-groupsstab sel
Adjusted group Lasso 59 1 293 0.3234 LD-groups+ stab sel
Adjusted group Lasso 68 1 466 0.2613 LD-groups
Stratified group Lasso 58 1 119 0.2498 LD-groups
Adjusted Lasso 41 874 0.2068 Single-SNP
Stratified Lasso 38 789 0.1581 Single-SNP
Adjusted GWAS 16 306 - Single-SNP

Table 4.3: Stability index and number of selected features for different meth-
ods, on DRIVE

Data Population # of selected
LD-groups (and SNPs)

Simulated data
CEU 95 (2 418 SNPs)
YRI 103 (3 081 SNPs)

shared (CEU and YRI) 5 227 (149 813 SNPs)

DRIVE
POP1 6 (148 SNPs)
POP2 2 (43 SNPs)

shared (POP1 and POP2) 54 (1166 SNPs)

Table 4.4: For MuGLasso, number of selected LD-groups/SNPs, across and
per population

state-of-the-art task-specific precision and recall of MuGLasso, but this would
unfortunately come at the expense of a notable increase in computational
time, if only because of the cross-validation needed to set the value of a second
hyperparameter.

An in-depth biological analysis of the loci identified by MuGLasso on
DRIVE would illustrate the biological relevance of our method, but is out
of the scope of this methodological approach.

In the future, we are looking forward to making use of the post-inference
selection framework for group-sparse linear models [Fan et al.(2016)] to pro-
vide p-values for the selected loci. As of now, it is unclear how to apply these
ideas to case-control studies in a computationally efficient manner.
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Figure 4.3: For simulated data, precision and recall of MuGLasso and the
stratified approaches on the populations-specific SNPs

Code
Code is available at https://github.com/asmanouira/MuGLasso_GWAS.

https://github.com/asmanouira/MuGLasso_GWAS


Chapter 5

Sparse multitask group Lasso
for Genome-Wide Association
Studies in diverse populations

Abstract: Among the challenges in Genome-Wide Association Studies
is the population stratification that refers to the presence of differences in allele
frequencies between subpopulations within samples, due to different ancestry.
Moreover, diseases can have differences in prevalence across populations, thus,
risk variants can differ from one genetic ancestry to another. We propose an
extended approach of MuGLasso, called SMuGLasso, taking in account the
presence of population-specific linkage disequilibrium groups (LD-groups). To
do so, we add an additional `1-norm regularization to select causal markers in
a precise and refined approach. Alike MuGLasso, the groups in SMuGLasso
correspond to Single Nucleotide Polymorphisms (SNPs) in strong LD and
the tasks correspond to ancestral subpopulations. We include the stability
selection procedure to boost the robustness of our algorithm. We also han-
dle the computational complexity of the method by using gap safe screening
rules. We conduct our analysis in a real case-control breast cancer dataset,
a real plant dataset presenting a quantitative phenotype and a simulated data.

Résumé: Parmi les défis des études d’association pangénomiques, il y
a la structure de population qui fait référence à la présence de différences
dans les fréquences alléliques entre les sous-populations au sein des échan-
tillons, à cause d’une ascendance différente. De plus, les maladies peuvent
avoir des différences de prévalence entre les populations, ainsi, les variantes
de risque peuvent différer d’une ascendance génétique à l’autre. Nous pro-
posons une approche étendue de MuGLasso, appelée SMuGLasso, prenant en
compte la présence de groups LD de populations spécifiques. Dans ce but,
nous ajoutons une régularisation supplémentaire de norme `1 pour sélection-
ner les marqueurs causaux dans une approche précise et raffinée. Comme pour
MuGLasso, les groupes de SMuGLasso correspondent aux polymorphismes nu-
cléotidiques (SNPs) en forte déséquilibre de liaison (LD) et les tâches corre-
spondent à des sous-populations ancestrales. Nous intégrons la procédure de
sélection de stabilité pour renforcer la robustesse de notre algorithme. Nous
gérons également la complexité de calcul de la méthode en utilisant les ap-
proches gap safe screening rules. Nous menons notre analyse sur un jeu de
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données réel d’un phénotype qualitative qui est le cancer du sein, un jeu de
données végétales présentant un phénotype quantitatif et un jeu de données
simulées.



87

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.1 Population structure . . . . . . . . . . . . . . . . . . . 89
5.2.2 Linkage disequilibrium groups clustering . . . . . . . . 90

5.3 Sparse multitask group Lasso . . . . . . . . . . . . . . 90
5.3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . 90
5.3.3 General framework and problem formulation . . . . . 91
5.3.4 Gap safe screening rules . . . . . . . . . . . . . . . . . 92

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.3 Comparison patterns . . . . . . . . . . . . . . . . . . . 96

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5.1 SMuGLasso and MuGLasso rely on both LD-groups

and the multitask approach to recover disease SNPs . 96
5.5.2 SMuGLasso and MuGLasso outperform the other

methods in terms of stability . . . . . . . . . . . . . . 98
5.5.3 The selection of both task-specific and shared LD-groups 98

5.6 Discussion and conclusion . . . . . . . . . . . . . . . . 99



88 Chapter 5. SMuGLasso for GWAS

5.1 Introduction
Feature selection models have become a popular approach in GWAS to dis-
cover the genetic causes of many complex diseases such as cancer. A com-
mon GWAS analysis relies on analyzing genotype data, typically presented by
SNPs to find association with a studied disease or a related quantitative trait.
However, many factors can influence the power of identifying causal markers
such as curse of dimensionality, population stratification, linkage disequilib-
rium and lack of stability. Thus, feature selection application needs particular
attention to avoid wrong discoveries. The major challenge is to maximize the
robustness of the selection in discovering regions of interest and discarding
false positives.

Most of existing feature selection methods consider that causal SNPs are
shared across diverse populations. Nonetheless, many studies have reported
that some populations present different genes in relationship with the develop-
ment of some diseases [Medina-Gomez et al.(2015)]. Indeed, diseases can have
differences in prevalence across populations, thus, risk variants can differ from
one genetic ancestry to another [Rosenberg et al.(2010)]. [Tishkoff et al.(2006)]
have mentioned that Africans and Europeans do not share the same genes as-
sociated with lactase-persistence phenotype. Also, [Zubair et al.(2016)] have
conducted a study to retrieve causal SNPs related to lipid traits in diverse pop-
ulations. They have discovered novel SNPs mapping three genes in African
American population that were not identified in either East Asian or European
populations.

We have presented in Chapter 4 a novel framework for feature selection,
called the multitask group lasso (MuGLasso), in which the groups correspond
to SNPs in strong LD and the tasks correspond to ancestral subpopulations.
We have shown the effectiveness of the model and its stability in retrieving
causal SNPs related with breast cancer or/and its tumor growth. From a bi-
ological point of view, most of our gene findings support previous discoveries
in other studies. Moreover, MuGLasso obtains task-specific LD-groups in ad-
dition to the shared ones across tasks, even without including a regularization
term enforcing sparsity at the level of tasks. However, in the current model de-
sign, retrieving task-specific LD-groups needs additional post processing steps
to identify LD-groups with close-to-zero regression coefficients for one task.
Hence, adding a second regularization term to carry out populations-specific
sparsity may improve the performance of the selection at this level.

In this chapter, we present the Sparse Multitask group Lasso (SMu-
GLasso), an extended approach of MuGLasso. Our goal is to improve
population-specific selection of LD-groups, by combining the `1,2-norm penalty
of MuGLasso with an additional `1-norm at the level of LD-groups. We com-
pare risk genes findings of SMuGLasso to MuGLasso on simulated data and
DRIVE breast cancer data. Moreover, we study the performance of the
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algorithm for Arabidopsis thaliana in quantitative phenotype. Finally, we
compare the stability of the selection of SMuGLasso, MuGLasso and other
existing methods in identifying causal LD-groups/SNPs.

5.2 Methods
In this section, we present SMuGLasso which consists of four steps:

1. Alike MuGLasso, we assign each sample to a genetic population. Thus,
each population is assigned to an input task in the multitask framework.

2. Identically, we form LD-groups of strongly correlated SNPs to perform
feature selection at the group level using biological prior knowledge.

3. We fit a linear model with a regularization composed of two penalty
terms: (1) a MuGLasso term that consists of an `1,2-norm which en-
forces sparsity at the level of LD-group across all tasks/populations,
and (2) an `1-norm which ensures sparsity at LD-groups level for spe-
cific populations.

4. We include the stability selection procedure to boost the robustness of
our algorithm.

Unlike MuGLasso, this setting does not require additional steps after train-
ing to determine populations-specific LD-groups. SMuGLasso provides indeed
a more precise and refined approach in the selection for population-specific
causal markers.

5.2.1 Population structure
Diverse and admixed populations studies are a double-edged sword in GWAS.
On the one hand, they offer a good solution to increase the number of samples
unlike homogeneous studies where the number of samples is in most data very
restricted. Indeed, genotyping hundreds of thousands of participants from
different ancestries to study a phenotype of interest helps to alleviate the curse
of dimensionality. On the other hand, such analyses require close attention to
the confounder raised by population stratification, that is, when association is
detected on the population structure rather than on the phenotype of interest.

We have presented in Chapter 2 a full review of existing population strat-
ification adjustment methods. Our results have shown that these techniques
can lead sometimes to overcorrection of some causal SNPs. Thus, we have ob-
served a false negative rate appearing after correction in simulated data. More-
over, adjustment techniques do not consider the presence of some population-
specific markers related to disease.
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Consequently, there is a need in the GWAS field to provide efficient frame-
works that profit from the number of samples advantage of diverse studies,
while addressing the population stratification issue and considering the exis-
tence of population-specific causal LD-groups.

We follow the same procedure as for MuGLasso to identify the subpopu-
lations that we infer as tasks. We use PCA with k-means clustering to define
which sample belongs to which subpopulation. We have detailed the proce-
dure in Section 4.2.1

5.2.2 Linkage disequilibrium groups clustering
We have shown in Chapter 3 and Chapter 4 in two different studies that the
selection at LD-groups level has improved remarkably the stability (i.e., the
variability to small changes in the input samples) compared to the selection
of individual SNPs. Indeed, grouping SNPs together decreases the number of
choices of selection for a regularization-based model. Thus, selection at the
LD-groups level alleviates the curse of dimensionality in GWAS data.

We use adjacency-constrained hierarchical clustering algorithm to form the
LD-groups assigned to SMuGLasso (see Section 4.2.2).

5.3 Sparse multitask group Lasso

5.3.1 Notations
In this chapter, we use the same notations as MuGLasso, given in Chapter 4
for the problem formulation.

Given a set of p SNPs measured on n samples, we split the n samples in
T subpopulations/tasks, each of size nt for t = 1, . . . , T , and the p SNPs in G
LD-groups, each of size pg for g = 1, . . . , G. For each population t, we denote
by x(t)

m the p-dimensional vector of SNPs of the m-th sample in the population
(m = 1, . . . , nt), and by y(t)

m its phenotype.

5.3.2 Related work
We have presented in Section 4.2.3 several studies related to multitask variants
composed of either two or three regularization terms. We have reported that
these models do not scale to high-dimensional data, and therefore none of
them has been applicable to our setting.

To efficiently choose the additional population-specific regularization term
of SMuGLasso, we have investigated thoroughly the applicability of these
methods. We have found that the proposed sparsity enforcing penalties are
inappropriate to the problem we consider. Our goal is to implement a regular-
ization term that enforces the sparsity for specific populations at the level of
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the LD-group. In this section, we examine particularly the method proposed
by [Li et al.(2020)] that have suggested implementing three regularization-
based multitask models. Their optimization problem is reformulated by the
following equation:

min
β∈Rp×k

1
2

T∑
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nt∑
m=1

∥∥∥∥∥∥y(t)
m −
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(t)
j x

(t)
mj
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2

2
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1︸ ︷︷ ︸
R3(β)
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(5.1)

In this setting, [Li et al.(2020)] enforce population-specific groups spar-
sity using the term R2(β) in order to select some groups only for some
tasks/subpopulations. However, using only this regularization term, the opti-
mization problem is separated over tasks. In other words, the selection is done
separately for each single task. Thus, to ensure that tasks are fitted simul-
taneously, the authors add the term R1(β) which corresponds to multitask
regularization at the single-SNP level across the T tasks. Finally, they also
aim to enforce sparsity within groups with an `1-norm over all SNPs, using
a third regularization term (defined by R3(β)). It corresponds to the second
regularization term of the sparse group lasso presented in Section 1.3.4.

We aim in this study to improve the selection for populations-specific LD-
groups. We have tested the regularization terms proposed by [Li et al.(2020)].
First, adding R2(β) to MuGLasso did not maintain the multitasking over the
tasks T . Also, implementing R3(β) combined with MuGLasso hinders the
interpretation of the selected features. Thus, selecting SNPs within groups
for specific populations make it hard to decide the number of SNPs within
an LD-group g that must be 0 to consider the group as not selected for a
specific task t. Finally, the addition of two penalties to MuGLasso increases
dramatically the computational limitations at a GWAS scale.

Consequently, we present in Section 5.3.3 our solution to formulate the
problem.

5.3.3 General framework and problem formulation
The optimization problem of SMuGLasso is written as follows:

min
B∈Rp×T

1
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,

(5.2)
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where β(t)
j ∈ R is the regression coefficient of the j-th SNP for the task t, L

is the quadratic loss if the phenotype is quantitative (y ∈ R) and the logistic
loss if it is qualitative (y ∈ {0, 1}), ‖·‖F denotes the Frobenius norm, and
‖·‖1 denotes the `1-norm. B(g) is a pg × T matrix containing the regression
coefficients, across all tasks, for the SNPs of group g.

SMuGLasso can be reformulated through the creation of a new dataset
(X̃, ỹ) where X̃ ∈ Rn×pT is a block-diagonal matrix such that each of the T
diagonal blocks corresponds to the SNP matrix X(t) ∈ Rnt×p for a task t, and
ỹ is a n-dimensional vector obtained by stacking the phenotype vectors for
each task. The model can then be rewritten as:

min
b∈RpT

1
n
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L

ỹi, pT∑
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bkx̃ik
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∥∥∥
1
,

where b(g) ∈ RpgT is the vector of regression coefficients corresponding to all
SNPs of group g for all tasks. The penalization parameters λ1 and λ2 control
the strength of both regularization terms.

5.3.4 Gap safe screening rules
Gap safe screening rules [Ndiaye et al.(2017)] is a technique that offers a
notable speed-up by discarding irrelevant features prior to starting a sparse
optimizer. The method can be inserted to any iterative solver. Here, we solve
the optimization problem formulated in Section 5.3.3 using the coordinate
descent that is commonly used in feature selection models and can easily
ignore useless coefficients. We have detailed the fundamental of these rules in
Appendix D.2.3.

5.4 Experiments

5.4.1 Data
Simulated data Using GWAsimulator (presented in Section 1.5.4), we sim-
ulate GWAS data following LD patterns of two populations (CEU: Utah res-
idents with Northern and Western European ancestry and YRI: Yoruba in
Ibadan, Nigeria) from the HapMap 3 data (see Appendix A.1.2). We gener-
ate different numbers of samples through subpopulations to mimic the struc-
ture of real data where samples through subpopulations are not necessarily
equally distributed. We also produce the population stratification confounder
by varying the case:control ratio within each subpopulation (CEU 1 300:1 700
and YRI 400:600). We predefine a total of 200 disease SNPs as shown in
Table 5.1, in which 50 SNPs (respectively 50 SNPs) are specific to the CEU
(respectively YRI). We decide to locate the predefined disease loci randomly



5.4. Experiments 93

Populations Number of SNPs
Specific-CEU 50
Specific-YRI 50
Shared (CEU+YRI) 100
Total 200

Table 5.1: For simulated data, number of predefined causal SNPs

and without loss of generality through chromosome 12, 19, 21 and 22 (See
Table 5.2). In total, the data is composed of 4 000 samples and 50 000 SNPs.

DRIVE Breast Cancer OncoArray The DRIVE OncoArray dataset con-
tains 28 281 individuals that were genotyped for 582 620 SNPs. 13 846 sam-
ples are cases and 14 435 are controls. We have detailed the description of the
data in Section 1.5.1. Additional information about data access and ethical
approval are presented in Appendix D.1.2.

Chromosome Subpopulations
CEU YRI

12 4 000 - 4 050 4 000 - 4 050
19 1 000 - 1 050 1 000 - 1 050
21 ∅ 10 000 - 10 050
22 1 000 - 1 050 ∅

Table 5.2: For simulated data, location of predefined disease loci represented
by start/end positions information in each subpopulation through chromo-
somes: 12, 19, 21 and 22

Arabidopsis thaliana We perform a quantitative analysis using Arabidop-
sis thaliana dataset (presented in Section 1.5.3). We study DTF3 phentoype
that corresponds to the flowering time per days. The dataset contains 923
samples and 6 973 565 SNPs.

5.4.2 Preprocessing
Quality control and imputation For simulated dataset and DRIVE
breast cancer, we follow the same quality control procedure as presented
in Section 4.3.2. For Arabidopsis thaliana, we perform the quality control
steps recommended by [Grimm et al.(2017)]. The phenotype was Box-Cox
transformed [Box and Cox(1964)] to improve the measurements normality.
We remove SNPs with a minor allele frequency lower than 5%.
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LD pruning We perform LD pruning using PLINK [Purcell et al.(2007)]
with an LD cutoff of r2 > 0.85 and a sliding window of 50Mb for simulated
data and DRIVE. For Arabidopsis thaliana, we use an LD cutoff of r2 > 0.75
and a window size of 50Mb. After preprocessing steps, we obtain 50 000 SNPs
in simulated data, 312 237 SNPs in DRIVE and 564 291 SNPs in Arabidopsis
thaliana.

Population structure We use PLINK [Purcell et al.(2007)] to compute
principal components of the genotype matrix. In the simulated data, we find
two populations, corresponding to the CEU and YRI populations identically
as simulated data used in Chapter 4 (see Figure D.3a). In DRIVE, we iden-
tify two populations (see Supplementary Figure D.3b) that we have called in
Chapter 4 POP1 (samples from the USA, Australia and Denmark) and POP2
(samples from the USA, Cameroon, Nigeria and Uganda).

In the Arabidopsis thaliana dataset, from 46 samples countries, we retrieve
5 populations using k-means clustering of the top 4 principal components
(see Figure 5.1 and Figure 5.2). In Appendix E.1, we examine population
stratification adjustment methods following the study presented in Chapter 2.
Here, the phenotype being continuous (DTF3), we perform linear regression
for PCA-based models instead of logistic regression (when the phenotype is
qualitative).
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Figure 5.1: PCA plots in Arabidopsis thaliana, we identify 5 subpopulations
from 46 countries
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Figure 5.2: K-means clustering for Arabidopsis thaliana

Data Subpopulations # LD-groups # shared LD-groups

Simulated data CEU 1 407 1 566YRI 995

DRIVE real data POP1 8 152 17 782POP2 5 032

Athaliana data

POP1 1 846

7 080
POP2 1 950
POP3 2 002
POP4 1 728
POP5 1 834

Table 5.3: For each subpopulation of the studied datasets (simulated, DRIVE
and Arapidopsis thaliana) LD-groups number is given and the shared LD-
groups number after combination across subpopulations

LD-groups choice For simulated and DRIVE data, we determine the LD-
groups for each subpopulation and each chromosome using adjclust [Am-
broise et al.(2019)]. We thus obtain shared LD-groups across subpopulations
as explained in Section 4.2.2. However, for Arabidopsis thaliana, adjclust
did not scale computationally to the huge number of SNPs in the five chro-
mosomes. Thus, we first split each chromosome to independent blocks of
LD using snpldsplit [Privé(2021)] function from bigsnpr R package [Privé
et al.(2018)]. We then form the LD-groups by applying adjclust on the ob-
tained chunks of independent LD blocks. Table 5.3 shows the number of
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LD-groups obtained for each subpopulation and the final number of shared
groups.

5.4.3 Comparison patterns
We compare SMuGLasso with MuGLasso and the comparison patterns pre-
sented in Section 4.3.3 which are Adjusted GWAS, Stratified GWAS, Stratified
Lasso, Adjusted Lasso, Stratified group Lasso and Adjusted group Lasso.

5.5 Results

5.5.1 SMuGLasso and MuGLasso rely on both LD-
groups and the multitask approach to recover
disease SNPs

On simulated data, we observe that SMuGLasso and MuGLasso outperform
the other methods at recovering the predefined disease loci (See Figure 5.3).
In addition, we confirm again that performing feature selection at the level
of LD-groups provides better performance compared to the selection of single
SNPs. Indeed, grouping SNPs helps to alleviate the curse of dimensional-
ity and improve the identification of causal markers. Table 5.7 and Table 5.8
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Figure 5.3: On simulated data, ability of different methods to retrieve causal
disease SNPs as a ROC plot

detail respectively for SMuGLasso and MuGLasso, the number of selected LD-
groups and SNPs across and per subpopulation for each dataset. Compared
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to MuGLasso, we notice that SMuGLasso ensures more sparsity for shared
selection across all subpopulations thanks to its additional `1-norm penalty.
SMuGLasso provides a more precise selection for populations-specific level.
Indeed, SMuGLasso recover successfully causal LD-groups/SNPs that Mu-
GLasso have missed in simulated data.

On DRIVE, SMuGLasso recovers 1 279 SNPs including the 306 SNPs dis-
covered by the adjusted GWAS. We detail in Table E.2 of Appendix E the
breast cancer risk loci detected by SMuGLasso and MuGLasso on DRIVE.
SMuGlasso successfully recover the 9 risk genes identified by classical GWAS.
The model also identifies 18 new risk genes (also discovered by MuGLasso).
From a total of 27 genes recovered by SMuGLasso, 17 have been identified
in meta-GWAS data containing our samples. Also, 7 other genes have been
proved to be associated with breast cancer risk. MuGLasso retrieves 5 addi-
tional risk genes that are not discovered by SMuGLasso, yet their association
with breast cancer risk or growth was not proven in other studies. Also, we
give in Table E.3 (Appendix E) the genes associated with DTF3 phenotype
for Arabidopsis thaliana. We find that both SMuGLasso and MuGLasso re-
cover the 7 genes selected by Adjusted GWAS. SMuGLasso recovers a total of
48 genes including 8 genes that are populations-specific findings. MuGLasso
finds 7 additional genes that were not selected by SMuGLasso. MuGLasso
recovers only 4 populations-specific genes from a total of its 55 discovered
genes. We note that SMuGLasso is more intensive computationally compared
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Figure 5.4: Runtimes of Lasso approaches for simulated, DRIVE and
Arabidopsis thaliana datasets

to MuGLasso and any other tested method (see Figure 5.4). This computa-
tional cost is caused by the additional populations-specific regularization term.
However, the implementation is efficient enough to scale to high-dimensional
GWAS data.
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5.5.2 SMuGLasso and MuGLasso outperform the other
methods in terms of stability

Methods # selected # selected Stability Selection
LD-groups SNPs index level

SMuGLasso 8 290 0.5811 LD-groups
SMuGLasso without 9 328 0.5045 LD-groupsstab sel
MuGLasso 10 363 0.7015 LD-groups
MuGLasso without stab sel 11 402 0.6124 LD-groups
Adjusted group Lasso 11 374 0.5929 LD-groups+ stab sel
Adjusted group Lasso 12 392 0.5340 LD-groups
Stratified group Lasso 13 452 0.4491 LD-groups
Adjusted Lasso 12 422 0.4053 Single-SNP
Stratified Lasso 13 441 0.3140 Single-SNP
Adjusted GWAS 3 109 - Single-SNP

Table 5.4: Stability index and number of selected features for different meth-
ods, on simulated data

Similarly to MuGLasso, we use 100 subsamples to perform stability selec-
tion [Meinshausen and Bühlmann(2009)]. Indeed, the obtained metrics in
Tables 5.4, Table 5.5 and Table 5.6 show that stability selection increases the
robustness of SMuGLasso, MuGLasso and Adjusted group Lasso for the three
datasets. Also, we give the number of selected SNPs and LD-groups for each
method. For methods providing the selection at single-SNP level, once a SNP
is selected we consider that the entire LD-group is selected. MuGLasso re-
mains the model that gives the best stability values on all datasets, followed
by SMuGLasso that outperforms the other applied feature selection methods.
Note that SMuGLasso produces less selected SNPs and LD-blocks compared
to MuGLasso. Indeed, enforcing an additional penalty yields sparser model.

5.5.3 The selection of both task-specific and shared LD-
groups

SMuGLasso ensures the selection of both shared (accross tasks) and task-
specific LD-groups. As mentioned in Chapter 4, MuGLasso can also provide
such a selection at the cost of a post-processing step, which consists in remov-
ing the groups with near-zero regression coefficients for a specific task. We
present in Table 5.7 and Table 5.8 the number of both shared and populations-
specific LD-groups (and SNPs) obtained respectively by SMuGLasso and Mu-
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Methods # selected # selected Stability Selection
LD-groups SNPs index level

SMuGLasso 58 1 279 0.3881 LD-groups
SMuGLasso without 60 1 354 0.3325 LD-groupsstab sel
MuGLasso 62 1 357 0.4312 LD-groups
MuGLasso without stab sel 72 1 524 0.3911 LD-groups
Adjusted group Lasso 59 1 293 0.3234 LD-groups+ stab sel
Adjusted group Lasso 68 1 466 0.2613 LD-groups
Stratified group Lasso 58 1 119 0.2498 LD-groups
Adjusted Lasso 41 874 0.2068 Single-SNP
Stratified Lasso 38 789 0.1581 Single-SNP
Adjusted GWAS 16 306 - Single-SNP

Table 5.5: Stability index and number of selected features for different meth-
ods, on DRIVE

GLasso in simulated, DRIVE and Arabidopsis thaliana datasets. Feature se-
lection in stratified models is determined separately for each task. Thus, the
populations-specific LD-groups in stratified models correspond to LD-groups
that were only selected in one population. However, the adjusted methods for
population stratification (Adjusted group Lasso, Adjusted Lasso and Adjusted
GWAS) do not allow the selection of population-specific LD-groups. As illus-
trated in Figure 5.5, SMuGLasso contributes to better recall performance for
populations-specific SNPs. Thus, SMuGLasso reduces dramatically the num-
ber of falsely selected SNPs thanks to its additional `1-norm regularization.

5.6 Discussion and conclusion
We have presented in this chapter SMuGLasso, an extended approach of Mu-
GLasso. The proposed model is based on a multitask framework in which
the tasks are genetic populations and features are clustered in groups. The
selection is performed at the scale of LD-groups. The populations are iden-
tified using PCA and k-means to assign each sample to a subpopulation.
This setting alleviates the curse of dimensionality and addresses population
stratification in diverse populations. SMuGLasso includes an additional reg-
ularization term compared to MuGLasso which penalizes the LD-groups for
task-specific. Thus, our model provides indeed a more precise recovery of risk
regions related to the phenotype at population-specific level.

We have shown in simulated data that SMuGLasso outperforms MuGLasso
and the other implemented methods in retrieving population-specific true
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Methods # selected # selected Stability Selection
LD-groups SNPs index level

SMuGLasso 80 6 367 0.4315 LD-groups
SMuGLasso without stab sel 87 7 220 0.3883 LD-groups
MuGLasso 104 8 254 0.5733 LD-groups
MuGLasso without 149 10 935 0.5040 LD-groupsstab sel
Adjusted group Lasso 90 6 944 0.4489 LD-groups+ stab sel
Adjusted group Lasso 114 8 358 0.3654 LD-groups
Stratified group Lasso 133 10 135 0.3147 LD-groups
Adjusted Lasso 112 9 258 0.2600 Single-SNP
Stratified Lasso 135 9 897 0.2140 Single-SNP
Adjusted GWAS 7 31 - Single-SNP

Table 5.6: Stability index and number of selected features for different meth-
ods, on Arabidopsis thaliana

Data Population # selected LD-groups
(and SNPs)

Simulated data
CEU 2 (104 SNPs)
YRI 3 (64 SNPs)

shared (CEU and YRI) 3 (122 SNPs)

DRIVE
POP1 5 (155 SNPs)
POP2 1 (21 SNPs)

shared (POP1 and POP2) 52 (1 103 SNPs)

Athaliana

POP1 3 (247 SNPs)
POP2 5 (381 SNPs)
POP3 1 (81 SNPs)
POP4 3 (232 SNPs)
POP5 1 (72 SNPs)

shared (5 populations) 67 (5 354 SNPs)

Table 5.7: For SMuGLasso, number of selected LD-groups/SNPs, across and
per population
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Data Population # selected LD-groups
(and SNPs)

Simulated data
CEU 2 (88 SNPs)
YRI 1 (14 SNPs)

shared (CEU and YRI) 6 (261 SNPs)

DRIVE
POP1 6 (148 SNPs)
POP2 2 (43 SNPs)

shared (POP1 and POP2) 54 (1166 SNPs)

Athaliana

POP1 2 (164 SNPs)
POP2 4 (303 SNPs)
POP3 ∅
POP4 3 (232 SNPs)
POP5 ∅

shared (5 populations) 95 (7 555 SNPs )

Table 5.8: For MuGLasso, number of selected LD-groups/SNPs, across and
per population

disease loci. SMuGLasso reduces possible false discoveries that could oc-
cur in MuGLasso and the other feature selection methods. Although results
demonstrate that MuGLasso is the most stable model, SMuGLasso gives also
very close stability indexes in all tested datasets with the lower number of
selected LD-groups/SNPs compared to MuGLasso and other regularization
based models. Furthermore, stability selection technique has been proved to
be efficient to improve the stability measurements of SMuGLasso.

In this study, thanks to gap safe screening rules we have addressed the
computational complexity that occurs by including an additional regularizer
to MuGLasso. Our model has been efficiently implemented in qualitative and
quantitative phenotypes.

We have finally presented the discovered genes by SMuGLasso and Mu-
GLasso in both studied real data for further biological interpretation. In the
future, we aim to conduct pathway analysis to study the mechanisms under-
lying the studied phenotypes from the recovered risk genes.
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6.1 Introduction
Since the accomplishment of the human genome project, the emergence of
Genome-Wide Association Studies (GWAS) have provided valuable insights
in explaining the influence of the genetic variation in disease development. De-
spite its success, there are many challenges that slow down the understanding
of complex diseases mechanisms. GWAS suffer from the curse of dimension-
ality that leads to low statistical power, as well as, population stratification
that produces ambiguous results. In addition, the strong correlation between
the SNPs, due to LD, complicates the feature selection procedure. Another
major issue is the lack of stability of regularization based methods, that is to
say, robustness to slight variations in the input dataset. Thus, an unstable
model leads to false biological interpretation due to wrong discoveries. Hence,
the stability is an important indicator to trust feature selection discoveries. In
this thesis, we aim to evaluate and improve the stability of the feature selec-
tion while addressing many limitations in GWAS. We develop novel machine
learning models which deal with these challenges. The following sections pro-
vide in a first part a summary of the chapters presented in this dissertation.
Then, a second part details speculation about the future of GWAS by raising
some questions about the limitations in this research area, as well as, propos-
ing some possible future directions to continue this work. Lastly, we conclude
with some final thoughts.

6.2 Chapters summary
• In Chapter 2 we have compared methods correcting for population

stratification in case-control studies. To do so, we have used the genomic
control technique, three PCA-based models and linear mixed models.
We have conducted our analysis on simulated data and two breast can-
cer datasets. Also, we have studied empirically the performance of each
method with data simulated using two different scenarios displaying ei-
ther moderate or strong population stratification. Results have shown in
most cases that linear mixed model FastLMM outperforms other meth-
ods followed with the PCA-based model EIGENSTRAT. However, these
techniques do not consider the existence of populations-specific causal
variants. Indeed, these methods provide a uniform correction for popu-
lation stratification for all subpopulations. This study led us to propose
novel frameworks that address population stratification efficiently and
make it possible to discover populations-specific variants.

• In Chapter 3 we have evaluated empirically the stability of the feature
selection of several GWAS methods. The stability has been evaluated
at different genomic scales (SNP level, LD-blocks level and gene level).
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To do so, we have tested three different feature selection frameworks:
the classical univariate statistical test, Lasso, Elastic Net. Moreover,
we have examined stability selection techniques based on subsampling
on random samples subsets. Our study shows that stability selection
improves remarkably the robustness of any tested method. We have
conducted our analysis using WTCCC1 data for three different diseases.
Furthermore, we have shown that the stability of both feature selection
models (i.e., Lasso and Elastic Net) increases remarkably at the LD-
blocks and the gene level compared to the SNP level. Although we have
found that classical GWAS technique based on single-marker analyses
outperforms feature selection methods, in terms of stability, this method
suffer from low statistical power in retrieving causal SNPs and thus
misses many meaningful associations.
To our knowledge, this is the first study that quantifies the stability of
feature selection models at different genomic scales. Finally, as we have
found that grouping SNPs in strong LD produces better stability, we
have decided to account for LD-blocks (or groups) in the methods we
have developed in the following chapters.

• In Chapter 4 we have presented the multitask group Lasso (Mu-
GLasso), a novel feature selection model in diverse populations. In our
approach, the tasks correspond to genetic populations and the groups
correspond to groups of SNPs in LD. We have used PCA and k-means
clustering to identify which sample belongs to which task. The LD-
groups have been determined using adjacency-constrained hierarchical
agglomerative clustering. The model relies on an `1,2-norm regular-
ization term. Despite its complex architecture, MuGLasso is efficient
enough to scale high-dimensional GWAS data thanks to gap safe screen-
ing rules. We have also incorporated the stability selection procedure
to improve the robustness of the model. Hence, our performance met-
rics show that MuGLasso outperforms any other tested technique in
case-control simulated and breast cancer data. Furthermore, MuGLasso
has been able to identify both shared and task-specific causal SNPs.
The task-specific discoveries have been identified using further post-
processing step (when some LD-groups yield values close-to-zero in only
specific population). Our model efficiently addresses the population
stratification issue thanks to multitasking. It has also reduced the curse
of dimensionality severity thanks to SNPs grouping. MuGLasso has
alleviated the computational complexity thanks to gape safe screening
rules, as well as the lack of robustness thanks to stability selection.
Finally, we have presented MuGLasso risk gene discoveries that are
related to breast cancer risk or its tumor growth. Most of our findings
were also identified either in other studies or in meta-data including our
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samples.

• In Chapter 5 we have presented an extended approach of MuGLasso,
the sparse multitask group Lasso (SMuGLasso). The model includes
an additional `1-norm regularization that penalizes populations-specific
LD-groups. Our goal was to provide a more precise method to select
task-specific LD-groups. Although MuGLasso provides the possibility to
obtain populations-specific genes. The selection of populations-specific
LD-groups is identified as those with near-zero regression coefficients for
one task. However, the choice of the threshold of coefficients to consider
an LD-group as selected for a particular population remains critical. We
have shown in this chapter that SMuGLasso retrieves successfully causal
LD-groups (and SNPs) better than MuGLasso and any other tested
method. Furthermore, SMuGLasso reduces considerably false discover-
ies in simulated data. Indeed, adding an additional `1-norm regularizer
results in a sparser model. On the DRIVE dataset, SMuGLasso has
identified most of the genes that were found in MuGlasso. Yet, SMu-
GLasso has discarded some genes that were retrieved by MuGLasso.
Interestingly, we did not find any study linking the genes discarded by
SMuGLasso with breast cancer in the literature, indicating that those
genes are most likely false discoveries. Thus, the model identify fewer
LD-groups but still offer stability performances very close to MuGLasso
stability performances. Finally, while SMuGLasso is more computation-
ally intensive than MuGLasso, it has been efficiently implemented for
GWAS data.

6.3 Future of GWAS
What about the predictive power of GWAS findings in clinical ap-
plications?
The predictive power of GWAS is limited in clinical application because

of the low proportion of heritability explained and the small number of par-
ticipants. Indeed, many studies have shown that the identified SNPs pro-
duce low performance in discriminating samples according to a phenotype of
interest in most complex diseases [Janssens and van Duijn(2008), Loos and
Janssens(2017)].

The goal of using GWAS discoveries in clinical applications in order to
prevent and treat diseases remains very challenging at the moment. Even in
diseases for which genetic variation is known to explain most of the heritability,
prediction of the disease status is not successfully achievable because of the
small number of participants. Also, false positive findings produced by GWAS
and feature selection methods are another reason of the poor predictive power.
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In this thesis, we have mainly worked on improving the robustness of
feature selection models to reduce false positive findings and to boost the
stability of the selection.

What about the detection of the epistasis in humans?
Epistasis is defined as the interaction between genetic loci. In that case,

the effect of one locus on the phenotype depends on one or more other loci.
In this thesis, the influence of the interaction between SNPs were not

studied. First, including epistasis would intensify the curse of dimensionality
and would decrease the statistical power to identify causal SNPs. In addition,
both developed models (MuGLasso and SMuGLasso) would not support com-
putationally the huge number of features that would need to be added to the
model if we were to include epistasis.

An important point of discussion to raise here is, does GWAS have been
really successful in detecting epistasis in human?

In fact, there is limited evidence in the literature showing that epista-
sis explains a large percentage of complex disease heritability. It has been
constantly reported that epistasis contributes to the missing heritability in
complex disease [Okser et al.(2013),Wei et al.(2014),Cortes et al.(2015)]. In-
deed, non-linear SNPs interactions have hardly identified genetic variants with
significant effect on the phenotype. Furthermore, it remains challenging to
identify gene-gene interactions by using GWAS and post-GWAS methods in
humans because of the lack of statistical power. Also, modeling epistasis in-
teraction is a very complex task, it remains unclear how to perform several
common GWAS analysis such as adjusting for population stratification in di-
verse studies or accounting for LD.

In any case, very large number of samples and wider computing resources
are needed to detect significant gene-gene interactions.

To summarize, the exploration of epistasis is a very motivational research
problem that future work in GWAS will hopefully resolve, but it needs special
attention. The usage of machine learning models may boost the identification
of epistasis interactions in humans. Also, few algorithms have been proposed
recently, integrating deep learning based methods for epistasis detection [Li
et al.(2018),Wang et al.(2019),Fergus et al.(2020)].

What about post-selection inference in GWAS?
Feature selection models do not rank the selected SNPs by statistical sig-

nificance with p-values. Thus, using all SNPs mapped to a gene, including
those with low association power, can mask the association signal of a gene.
To address the lack of interpretability in regularization based methods, post-
selection inference [Zhang and Zhang(2014)] plays a pivotal role to produce
valid p-values of identified features with Lasso methods. [Slim et al.(2022)]
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have proposed a post-selection inference method for GWAS application us-
ing kernels to model epistasis interactions between nearby SNPs. Indeed, the
method has been successfully implemented in quantitative BMI phenotype.
However, applying these methods for qualitative phenotypes is not feasible
because these tasks are computationally very intensive. In the future, inte-
grating post-inference selection in multitask frameworks (such as MuGLasso
and SMuGLasso proposed in this thesis) is a very interesting research direction
of major interest. For now, it remains difficult to implement this framework
in a computationally efficient manner especially for case-control studies.

What about biological networks exploration in GWAS?
Biological networks model a complete representation of the interactions be-

tween appropriate biological elements in a graph, where the nodes correspond
to SNPs or genes and the edges correspond to association of SNPs or genes
with the phenotype of interest. Biological networks were proved successful in
explaining complex disease mechanisms [Climente-González et al.(2021)]. In-
deed, adding prior knowledge about biological mechanisms in feature selection
methods provides a realistic design of the problem. In this setting, feature
selection models provide connectivity and association constraints, in addition
to regularization terms in order to design biological interactions [Azencott
et al.(2013)].

Another attractive direction to continue this work is to incorporate bi-
ological networks regularizers in multitask models such as MuGLasso and
SMuGLasso.

What about the application of deep learning approaches in GWAS?
Deep learning is a technique widely applied in many fields areas including

bio-informatics applications, such as bioimage analysis and computer vision of
cellular and tissular phenotypes. One can assume that deep learning could fa-
cilitate inclusion of nonlinear transformations in GWAS by extracting relevant
features from high-dimensional data. This would be an interesting addition
to traditional machine learning models that are based on regularization terms
that predict a linear combination of weights by assuming a linear relationship
between variants and a phenotype of interest. However, the high-dimensional
characteristic of GWAS data makes the task of exploring models like neural
networks very complex. The major weakness of deep learning application to
GWAS is the lack of interpretability in underlying genetic effects from SNPs,
as well as, the computational issues. Few nonlinear models have been re-
cently proposed by integrating multi-omics data along with GWAS data [Xu
et al.(2021),Fang et al.(2022)]. Indeed, such analysis can boost the biological
interpretation that GWAS data can not handle alone in nonlinear models.
Thus, coupling different genetic data helps to identify high-confidence risk
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genes. For now, it remains unclear how to build an efficient framework for
identifying causal variants associated with diseases, or predicting phenotypes
from genetic variants using only GWAS data.

6.4 Final thoughts
Despite the limitations mentioned above in GWAS field to fully explain the ge-
netic background of complex diseases, many motivational studies have shown
the efficiency of GWAS to discover genes associated to diseases (see Fig-
ure 6.1). Indeed, over the 15 past years, many contributions have been pro-
posed making many advances in the field. In this thesis, we have proposed
novel methods that outperform existing models in terms of stability of the se-
lection and in identifying risk genes associated with the studied phenotypes.
We have addressed many GWAS issues such as linkage disequilibrium, pop-
ulation stratification, lack of statistical power, curse of dimensionality and
computational limitations. As explained before, many interesting future di-
rections are possible to further improve the methods developed in this thesis.
In the future, we hope that the developments of post-inference and biolog-
ical networks methods will contribute to improve the confidence in feature
selection models discoveries.

Figure 6.1: GWAS advantages and challenges
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Appendix A

GWAS data

A.1 GWAS data

A.1.1 1000 Genome Project
In 2008, the International Genome Sample Resource has created 1000 Genome
Project [Consortium(2015)] to develop a catalogue of common human genetic
variation, using control samples from people who declared to be healthy. The
datasets are publicly available, many released were provided. Mainly, the 1000
Genomes phase 3 release offer genotype data for 26 populations divided into
5 main populations as shown in Table A.1.

A.1.2 International HapMap Project
The International HapMap Consortium has launched the International
HapMap Project in 2001 to develop HapMap Project of the human genome [Con-
sortium(2003)]. It describes the common patterns of human DNA sequence
variation. All HapMap data are freely available to the public through the
database dbSNP. Three releases were produced: Phase I in 2005, Phase II in
2007 and Phase 3 in 2010.

Genotype samples were provided from the following 11 populations: ASW
African ancestry in Southwest (USA),CEU Utah residents with Northern and
Western European ancestry from the CEPH collection, CHB Han Chinese in
Beijing (China), CHD Chinese in Metropolitan Denver (Colorado), GIH Gu-
jarati Indians in Houston (Texas), JPT Japanese in Tokyo (Japan), LWK
Luhya in Webuye (Kenya), MXL Mexican ancestry in Los Angeles (Cali-
fornia), MKK Maasai in Kinyawa (Kenya), TSI Toscani in Italia and YRI
Yoruba in Ibadan (Nigeria).

Table A.2 gives the number of samples for each population that were geno-
typed in release 3 from samples that existed already in release I and II, as
well as the number of SNPs that passed quality control.

HapMap is one of the important tools in GWAS for researchers to conduct
multiple studies to find genes that affect health, disease, and response to drugs
and environmental factors [Altshuler et al.(2010)]. However, no phenotype
information is available for the HapMap samples, all samples are considered
as controls. The tool was efficiently employed for phenotype simulation, it
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Population Number of individuals with HapMap 3 Number of SNPs
(Number of individuals total) (after QC)

ASW 71 (of 90) 1 632 186
CEU 162 (of 180) 1 634 020
CHB 82 (of 92) 1 637 672
CHD 70 (of 90) 1 619 203
GIH 83 (of 90) 1 631 060
JPT 82 (of 89) 1 637 610
LWK 83 (of 90) 1 631 688
MXL 71 (of 90) 1 614 892
MKK 171 (of 180) 1 621 427
TSI 77 (of 90) 1 629 957
YRI 163 (of 180) 1 634 666
Total 1 115 (of 1 261) 1 525 445

Table A.2: Population samples and SNPs for genotyping in HapMap 3 release

was used to generate realistic simulated data by following the LD patterns of
populations provided in the study.
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Appendix B

PLINK files format

• PED file: Samples data: each row corresponds to a participant. The
first six columns refer to:

– Family ID
– Sample ID
– Paternal ID
– Maternal ID
– Sex (1=male; 2=female; other=unknown)
– Affection (1=control; 2=case; -9 or 0=missing)

The following columns contain bi-allelic SNPs information. So, each
SNP is presented by two columns. To summarize, the number of columns
is:
6 + 2× number of SNPs

• FAM file: This file contains the first six fields in a PED file presented
above.

• BED file: Binary file contains the genotype information.

• MAP file: Markers data: each row represents a SNP. The fields in a
MAP file are:

– Chromosome
– Marker ID
– Genetic distance
– Physical position

• BIM file: Similar to MAP file with two extras columns of allele names.
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Appendix C

Lasso and Elastic Net stability
evaluation for the phenotypes

T1D and T2D

C.1 State-of-the-art stability of the selection
methods

We present in Table C.1 the properties of stability measurements proposed in
the literature. For each of the 17 index, and for each of the 5 properties, we
show which measurement satisfies which property.

Reference Name Fully Mono- Bounds Maxi- Correc-
defined tonicity mum tion

[Dunne et al.(2002)] Hamming X X X X
[Kalousis et al.(2005)] Jaccard X X X X
[Yu et al.(2008b)] Dice X X X X
[Zucknick et al.(2008)] Ochiai X X X X
[Consortium(2006)] POG X X X X
[Kuncheva(2008)] Kuncheva X X X X
[Lustgarten et al.(2009)] Lustgarten X X X X
[Wald et al.(2013)] Wald X X X
[Zhang et al.(2009)] nPOG X X X X
[Goh and Wong(2016)] Goh X X
[Davis et al.(2006)] Davis X X
[Krizek et al.(2007)] Krizek X
[Guzman-Martinez et al.(2011)] Guzman X X X
[Somol and Novovicova(2010)] CWrel X X X
[Lausser et al.(2013)] Lausser X X X
[Nogueira and Brown(2015)] Pearson X X X X X
[Nogueira et al.(2018)] Nogueira X X X X X

Table C.1: Satisfied properties for each stability measurement [Nogueira
et al.(2018)]
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phenotypes T1D and T2D

C.2 Results of Lasso for T1D phenotype
For T1D disease, Figure C.3 shows the stability index values against the aver-
age error values obtained by Lasso for different values of lambda. We choose
λ = 0.017 as the best parameter that gives the trade-off compromised between
the stability and the error average. For λ = 0.017, we obtain the following
stability indexes: 0.272 at the SNP level, 0.412 at the LD-block level and 0.243
at the gene level. For the same value of λ, Figure C.1 highlights the number
of selected features at different genomic scales: 367 SNPs, 258 LD-blocks and
60 genes. Finally, Figure C.2 gives the obtained values of stability and error
across different values of λ.
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against lambdas in T1D phenotype
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Figure C.2: For Lasso, the average error and stability index for different
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Figure C.3: For Lasso, the stability index at different genomic scales (SNP,
LD-block and gene) against the average error in T1D phenotype

C.3 Results of Lasso for T2D phenotype
Figure C.5 shows the stability values obtained at the different genomic scales
against the average error for different values of the penalization parameter λ of
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Lasso studied in T2D phenotype. We choose λ = 0.059 as the best parameter
compromising the stability and the error, it gives an error of 0.237 and stability
values of 0.197 at the SNP level, of 0.552 at the LD-block level and of 0.213
at the gene level. Figure C.4 highlights that for chosen λ = 0.059, we obtain
3 099 SNPs, 1335 LD-blocks and 520 genes. Finally, Figure C.5 illustrates the
measurements of the stability and the error across different values of λ.
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Figure C.5: For Lasso, the average error and stability index for different
values of lambdas in T2D phenotype

C.4 Results of Elastic Net for T1D phenotype
According to Figure C.8, we choose here the best lambda to be λ = 0.077
that gives an error of 0.03 and stability indexes of 0.226 at the SNP level, of
0.557 at the LD-block level and of 0.27 at the gene level. Figure C.6 shows
that for λ = 0.077 we obtain 2 140 SNPs, 987 LD-blocks and 398 genes. Also,
Figure C.7 presents all the stability values obtained at different levels for
different values of λ.
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Figure C.6: For Elastic Net, number of selected SNPs, LD-blocks and genes
against lambdas in T1D phenotype
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Figure C.7: For Elastic Net, the stability index is given for different values of
lambda in T1D phenotype

C.5 Results of Elastic Net for T2D phenotype
We observe that all the stability indexes increase for T2D phenotype using
Elastic Net compared to Lasso. Figure C.11 shows that the best stability
values ensuring a low prediction error is obtained with λ = 0.022, it produces
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Figure C.8: For Elastic Net, the stability index at different genomic scales
(SNP, LD-block and gene) against the average error in T1D phenotype

an error of 0.006 and stability indexes of 0.29 at the SNP scale, of 0.566 at
the LD-block scale and 0.384 at the gene scale. As shown in Figure C.10,
for λ = 0.022, we obtain 941 selected SNPs, 824 selected LD-blocks and 178
selected genes. Figure C.9 presents the obtained stability values across the
tested values of lambda.
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Figure C.9: For Elastic Net, the stability index is given for different values of
lambda in T2D phenotype
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Figure C.10: For Elastic Net, number of selected SNPs, LD-blocks and genes
against lambdas in T2D phenotype
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Multitask group lasso
(MuGLasso) supplementary
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D.1 Data availability

D.1.1 Simulated data
Code to reproduce our simulations is available on https://github.com/
asmanouira/MuGLasso_GWAS

Table D.1 shows the location of the predefined disease loci, for each popu-
lation. Table D.2 shows the number of predefined disease loci, both common
to both population and specific to each population.

Chromosome Subpopulations
CEU YRI

2 1 000 - 50 000 1 000 - 50 000
12 10 - 37 000 10 - 40 000
19 1 000 - 50 000 1 000 - 50 000
21 10 - 10 000 10 - 7 000
22 - 10 - 2 000

Table D.1: For simulated data, location of predefined disease loci represented
by start/end positions information in each subpopulation through chromo-
somes: 2, 12, 19, 21 and 22

https://github.com/asmanouira/MuGLasso_GWAS
https://github.com/asmanouira/MuGLasso_GWAS
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Populations Number of SNPs
Specific-CEU 2 999
Specific-YRI 4 989
Shared (CEU+YRI) 141 982
Total 149 970

Table D.2: For simulated data, number of predefined causal SNPs

D.1.2 DRIVE

Data access The dataset “General Research Use” in DRIVE Breast
Cancer OncoArray Genotypes is available from the dbGaP controlled-
access portal, under Study Accession phs001265.v1.p1 (https://www.ncbi.
nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001265.
v1.p1). Researchers can gain access the data by applying to the data access
committee, see https://dbgap.ncbi.nlm.nih.gov.

Ethics approval The dataset was obtained from NIH after ethical review
of project #17707, titled "Network-guided multi-locus biomarker discovery",
and used under approval of this request (#67806-4).

Acknowledgments OncoArray genotyping and phenotype data harmo-
nization for the Discovery, Biology, and Risk of Inherited Variants in Breast
Cancer (DRIVE) breast-cancer case control samples was supported by X01
HG007491 and U19 CA148065 and by Cancer Research UK (C1287/A16563).
Genotyping was conducted by the Center for Inherited Disease Research
(CIDR), Centre for Cancer Genetic Epidemiology, University of Cambridge,
and theNational Cancer Institute. The following studies contributed germline
DNA from breast cancer cases and controls: the Two Sister Study (2SISTER),
Breast Oncology Galicia Network (BREOGAN), Copenhagen GeneralPopu-
lation Study (CGPS), Cancer Prevention Study 2 (CPSII), The European
Prospective Investigation intoCancer and Nutrition (EPIC), Melbourne Col-
laborative Cohort Study (MCCS), Multiethnic Cohort (MEC), Nashville-
Breast Health Study (NBHS), Nurses Health Study (NHS), Nurses Health
Study 2 (NHS2), Polish Breast CancerStudy (PBCS), Prostate Lung Colorec-
tal and Ovarian Cancer Screening Trial (PLCO), Studies of Epidemiologyand
Risk Factors in Cancer Heredity (SEARCH), The Sister Study (SISTER),
Swedish Mammographic Cohort (SMC), Women of African Ancestry Breast
Cancer Study (WAABCS), Women’s Health Initiative (WHI).

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001265.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001265.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001265.v1.p1
https://dbgap.ncbi.nlm.nih.gov
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Figure D.1: Choice of shared LD-groups choice after adjacency-constrained
hierarchical clustering for each population

D.2 Supplementary Methods

D.2.1 LD groups across populations
Figure D.1 illustrates the process by which we obtain LD-groups across
populations, from LD-groups obtained on each population separately using
adjacency-constrained hierarchical clustering (see Section 4.2.2)

D.2.2 Multitask group lasso
Figure D.2 illustrates the architecture of the multitask group Lasso described
in Section 4.2.3.

Figure D.2: Multitask group Lasso architecture
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D.2.3 Gap safe screening rules
Let X ∈ Rn×d be a design matrix and y ∈ Rn the corresponding vector
of outcomes, which can be binary or real-valued. We consider the following
optimization problem:

β̂(λ) ∈ arg min
β∈Rd

Pλ(β) :=
n∑
i=1

fi
(
X>i. β

)
+ λΩ(β), (D.1)

where all fi : R→ R are convex and differentiable functions with 1/γ−Lipschitz
gradient, and Ω : Rd → R+ is a norm that is group-decomposable, i.e., the
set of d features is partitioned in G groups of sizes d1, d2, . . . , dG, and

Ω(β) =
G∑
g=1

Ωg

(
β(g)

)
,

where each Ωg is a norm on Rdg and, as previously, β(g) corresponds to the
coefficients of β restricted to the features in group g. As before, the λ pa-
rameter is a non-negative constant controlling the trade-off between the data
fitting term and the regularization term.

Equation (4.2) is a special case of Equation (D.1) because the squared loss
and the logistic loss are convex and differentiable.

Safe screening rules make it possible to solve such problems more efficiently
by discarding features whose coefficients are guaranteed to be zero at the
optimum, prior to using a solver. They usual rely on the dual formulation of
Equation (D.1):

θ̂(λ) = arg max
θ∈∆X

Dλ(θ) := −
n∑
i=1

f ∗i (−λθi), (D.2)

where f ∗i : R → R is the Fenchel-Legendre transform of fi, defined by
f ∗i (u) = supz∈R〈z, u〉 − fi(z) and ∆X ⊂ Rn is defined by
∆X =

{
θ ∈ Rn : ∀g = 1, . . . , G,ΩD

g (X(g)>θ) ≤ 1
}
, where ΩD

g : Rpg → R is
the conjugate norm of Ωg, defined by ΩD

g (u) = maxzinRpg :Ωg(z)≤1〈z,u〉, and
X(g) ∈ Rn×pg is the design matrix X restricted to the features/columns in
group g.

In our setting,

• ΩD
g (u) =

∥∥∥β(g)
∥∥∥

2
and ΩD(u) = maxg=1,...,G

1
wg

∥∥∥u(g)
∥∥∥

2
.

• If one uses the squared loss, that is to say, fi(z) = 1
2(yi − z)2, then

f ∗i (z) = 1
2z

2 + yiz and the Lipschitz constant is γ = 1.
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• If one uses the logistic loss, that is to say, y ∈ {0, 1}n and fi(z) =
−yiz + log(1 + exp(z)), then

f ∗i (z) =

(z + yi) log(z + yi) + (1− (z + yi)) log(1− (z + yi)) if 0 ≤ (z + yi) ≤ 1
+∞ otherwise,

and the Lipschitz constant is γ = 4.

The general idea of safe screening rules, introduced by [Laurent El Ghaoui(2010)],
is to find a region R ⊂ Rn such that if θ̂(λ) ∈ R, for any g ∈ {1, . . . , G},

ΩD
g

(
X(g)>θ̂(λ)

)
< 1⇒ β̂(λ) = 0.

Gap safe screening rules [Ndiaye et al.(2017)] exploit the duality gap
(Pλ(β)−Dλ(θ)) to obtain the radius of the safe region R. More specifically,
Ndiaye et al. show that ∀β ∈ Rp,∀θ ∈ ∆X ,

∥∥∥θ̂(λ) − θ
∥∥∥

2
≤
√

2(Pλ(β)−Dλ(θ))
γλ2 ,

which leads them to define, for any β ∈ Rp and θ ∈ ∆X , the ball centered in
θ and of radius

√
2Pλ(β)−Dλ(θ)

γλ2 as a safe region, that is to say a region that is
guaranteed to contain θ̂(λ).

D.2.4 Measuring selection stability
To measure the stability of a feature selection property, we use the sample’s
Pearson coefficient [Nogueira and Brown(2016)]. This stability index is closely
related to that proposed by Kuncheva [Kuncheva(2008)] and is appropriate for
the comparison of feature sets of different sizes. This index relies on repeating
the feature selection procedureM time (in this work,M = 10) and evaluating
the overlap if the M resulting feature sets.

Each of the M sets of selected features can be represented by an indicator
vector s ∈ {0, 1}p, where sj = 1 if feature j is selected and 0 otherwise.
The stability index between two feature sets S and S ′, represented by their
indicator vectors s and s′, is computed as the Pearsons’s correlation between
these two vectors:

φ(S,S ′) =
∑p
j=1(sj − s̄)(s′j − s̄′)√∑p

j=1(sj − s̄)2
√∑p

j=1(s′j − s̄′)2
, (D.3)

where s̄ = 1
p

∑p
j=1 sj and s̄′ = 1

p

∑p
j=1 s

′
j.
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Note that, because ∑p
j=1 sj = |S| , ∑p

j=1 sjs
′
j = |S ∩ S ′| , and s2

j = sj, we
can rewrite Equation (D.3) as

φ(S,S ′) =
|S ∩ S ′| − 1

p
|S| |S ′|√

|S|
(
1− |S|

p

)√
|S ′|

(
1− |S′|

p

) ,

hence interpreting this index as the size of the intersection of the two sets,
corrected by chance, that is to say, ensuring that the expected value of the
index is 0 when the two selections are random.

The stability index betweenM sets of selected features is computed as the
average pairwise stability index between all possible pairs of sets of selected
features:

φ(S1,S2, . . . ,SM) = M(M − 1)
2

M∑
k=1

M∑
l=k+1

φ(Sk,Sl). (D.4)

D.3 Supplementary Results

D.3.1 PCA of the genotypes

Figure D.3 shows the genotypes of the simulated data (Figure D.3a) and the
DRIVE data (Figure D.3b) projected on the two first principal components
of the data.

D.3.2 Runtimes

Figure D.4 shows the runtimes of the different Lasso methods on simulated
data.
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D.3.3 Breast cancer risk loci detected by MuGLasso on
DRIVE

On the DRIVE dataset, MuGLasso selected 1 357 SNPs, forming 62 LD
groups. Those SNPs include all the 306 SNPs that are significant in the ad-
justed GWAS approach. We used FUMA [Watanabe et al.(2017)] to analyze
the remaining 1 051 SNPs, and found that 57% of these SNPs are within 10kb
of protein coding genes. Hence MuGLasso identifies a total of 32 genes (listed
in in Table D.3), in addition to the 9 genes (ITPR1, MRPS30, MAP3K1,
SETD9, MIER3, EBF1, FGFR2, TOX3 and MKL1 ) identified by the ad-
justed GWAS.

Out of these 32 genes, 17 were previously identified in breast cancer meta-
analyses which data include our 28 281 samples from the General Research
Use dataset of the DRIVE Breast Cancer OncoArray Genotypes (see Ta-
ble D.3). More specifically, these studies respectively used 10 707 ER-negative
breast cancer cases 76 649 controls [Garcia-Closas et al.(2013)] 45 290 cases
and 41 880 controls of European ancestry [Michailidou et al.(2013)], 62 623
breast cancer cases and 61 696 controls [Michailidou et al.(2015)], 122 977
cases and 105 974 controls of European ancestry together with 14 068 cases
and 13 104 controls of East Asian ancestry [Michailidou et al.(2017)], and
210 088 controls (9 494 of which are BRCA1 mutation carriers) and 30 882
cases (21 468 ER-negative cases and 9 414 BRCA1 mutation carriers), all of
European origin [Milne et al.(2017)].

This suggests that MuGLasso was able to rescue loci that are significant
in a better-powered study (that is to say, a study with a larger number of
samples).

In addition, we were able to find in the literature prior evidence of relation-
ship with breast cancer risk or tumor growth for 7 additional genes, suggesting
biological relevance of the MuGLasso findings.

Further analyses would be required to really get to the biological inter-
pretation of these results. In particular, we restricted ourselves to mapping
SNPs to genes based on a 10kb window, where other authors rather use 50kb,
and FUMA provides many additional possibilities using known eQTLs and
chromatin interactions across all tissues or for relevant tissues. In addition,
pathway enrichment analyses could also be very relevant. One could also
compare the selected SNPs to those significant in large meta-analyses such
as [Milne et al.(2017),Michailidou et al.(2017)] in a more systematic manner
to investigate how much power is gained by using MuGLasso on a subset of
these GWAS data sets. Finally, we have analyzed jointly all selected SNPs
and have not distinguished between those that are specific to one of the two
populations and those that are common to both.
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Genes found in meta-GWAS including the samples used in this work
Gene symbols Evidence
ASTN2 [Michailidou et al.(2017)]
CCDC170 [Garcia-Closas et al.(2013),Michailidou et al.(2013),Michailidou et al.(2015)]

[Michailidou et al.(2017),Milne et al.(2017)]
CDYL2 [Michailidou et al.(2013),Michailidou et al.(2015),Michailidou et al.(2017)]
DIRC3 [Michailidou et al.(2013),Michailidou et al.(2015),Michailidou et al.(2017)]

[Milne et al.(2017)]
ELL [Michailidou et al.(2013),Michailidou et al.(2015),Michailidou et al.(2017)]

[Milne et al.(2017)]
ESR1 [Garcia-Closas et al.(2013),Michailidou et al.(2015),Michailidou et al.(2017)]

[Milne et al.(2017)]
FTO [Garcia-Closas et al.(2013),Michailidou et al.(2013),Michailidou et al.(2015)]

[Michailidou et al.(2017),Milne et al.(2017)]
GRHL1 [Michailidou et al.(2017)]
KCNU1 [Michailidou et al.(2015),Michailidou et al.(2017)]
NEK10 [Michailidou et al.(2013),Michailidou et al.(2015),Michailidou et al.(2017)]

[Milne et al.(2017)]
PAX9 [Michailidou et al.(2013),Michailidou et al.(2015),Michailidou et al.(2017)]
PTHLH [Garcia-Closas et al.(2013),Michailidou et al.(2013),Michailidou et al.(2015)]

[Michailidou et al.(2017),Milne et al.(2017)]
SSBP4 [Michailidou et al.(2017)]
TGFBR2 [Michailidou et al.(2013),Michailidou et al.(2015),Michailidou et al.(2017)]
TNRC6B [Michailidou et al.(2017)]
ZMIZ1 [Michailidou et al.(2013),Michailidou et al.(2015),Michailidou et al.(2017)]
ZNF365 [Michailidou et al.(2017),Milne et al.(2017)]

Genes found to be associated with breast cancer risk or tumor growth in the literature
Gene symbols Evidence
ADSL oncogenic driver in triple negative breast cancer [Zurlo et al.(2019)]
CACNA1I underexpressed in breast cancer [Phan et al.(2017)]
CCDC91 likely target gene of breast cancer risk variants [Ferreira et al.(2019)]
NUP205 forms a complex with NUP93 which regulates breast tumor growth

[Bersini et al.(2020)]
POP1 expression correlates with prognosis in breast cancer [Liu et al.(2021)]
PPFIBP1 promotes cell motility and migration in breast cancer [Chiaretti et al.(2016)]
SGSM3 associated with breast cancer in a Chinese population [Tan et al.(2017)]

Other genes
C7orf73, CCSER1, CD2AP, HK1, HRSP12, LUC7L3, MED21, REP15

Table D.3: The 32 potential breast cancer risk genes within 10kb of loci iden-
tified by MuGLasso and not the adjusted GWAS, together with information
as to their biological relevance
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Appendix E

Sparse Multitask group Lasso
(SMuGLasso) supplementary

materials

E.1 Population stratification adjustment in
Arabidopsis thaliana dataset

In this part, we study the population stratification confounder in Arabidopsis
thaliana dataset. We also compare the adjustment methods presented in
Chapter 4 (Section 2.2): genomic control, PCA-based models and linear mixed
models.

As mentioned before in Section 5, we study a quantitative phenotype in
Arabidopsis thaliana dataset. To apply PCA-based methods, we use linear
regression to correct for population stratification, instead of logistic regression
when the phenotype is qualitative (case-control).

Inflation factor Before adjustment for population structure, the inflation
factor was λ = 9.06. This value denotes a strong population stratification
case as λ exceeds extremely 1.

Comparing population stratification correction methods We con-
duct a comparison study of population stratification adjustment techniques.
However, [Grimm et al.(2017)] recommend to use linear mixed models, more
precisely FastLMM. Indeed, FastLMM outperforms the other methods in de-
creasing the inflation factor. It gives the lowest value near to 1. We present in
Table E.1 the values of the inflation factor obtained after correcting for pop-
ulation stratification used the different methods mentioned above. We show
also in Figure E.1 the Q-Q plots before adjustment (Figure E.1a) and after
adjustment using FastLMM (Figure E.1b).
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Methods Inflation factor λ
Before adjustment 9.0609
GC 4.3872
EIGENSTRAT 1.5910
Linear regression with 10 PCs as covariates 1.7050
Linear regression after phenotype adjustment 1.8901
FastLMM 1.1006

Table E.1: For Arabidopsis thaliana, inflation factor values are given before
and after adjustment for population stratification

E.2 Breast cancer risk loci detected by SMu-
GLasso and MuGLasso on DRIVE

We present in Table E.2 the breast cancer risk genes findings using our de-
veloped models SMuGLasso and MuGLasso. We compare our discoveries to
Adjusted GWAS findings.

E.3 DTF3 loci detected by SMuGLasso and
MuGLasso on Arabidopsis thaliana dataset

We present in Table E.3 our genes findings related to the time to flowering
duration in Arabidopsis thaliana plants using SMuGLasso and MuGLasso.
We show also the discoveries of Adjusted GWAS.
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(a) Before population stratification correction (b) After population stratification correction
using FastLMM

Figure E.1: For Arabidopsis thaliana, Q-Q plots before and after population
stratification adjustment

Adjusted GWAS ITPR1, MRPS30, MAP3K1, SETD9, MIER3, EBF1,
FGFR2, TOX3, MKL1

SMuGLasso

ITPR1, MRPS30, MAP3K1, SETD9, MIER3, EBF1,
FGFR2, TOX3, MKL1, ADSL, ASTN2, CACNA1I, CCDC170,
CCDC91, CDYL2, DIRC3, ELL, ESR1, FTO, GRHL1, HK1,
HRSP12, KCNU1, NEK10, NUP205, PAX9, POP1, PPFIBP1,
PTHLH, REP15, SGSM3, SSBP4, TGFBR2, TNRC6B, ZMIZ1,
ZNF365.

MuGLasso

ITPR1, MRPS30, MAP3K1, SETD9, MIER3, EBF1,
FGFR2, TOX3, MKL1, ADSL, ASTN2, C7orf73, CACNA1I,
CCDC170, CCDC91, CCSER1, CD2AP, CDYL2, DIRC3, ELL,
ESR1, FTO, GRHL1, HK1, HRSP12, KCNU1, LUC7L3, MED21,
NEK10, NUP205, PAX9, POP1, PPFIBP1, PTHLH, REP15,
SGSM3, SSBP4, TGFBR2, TNRC6B, ZMIZ1, ZNF365.

Table E.2: For DRIVE dataset, list of risk genes associated with breast cancer
selected by SMuGLasso, MuGLasso and Adjusted GWAS. In bold are genes
selected by Adjusted GWAS. CEU-specific selected genes are highlighted in
blue and YRI-specific selected genes are highlighted in red. The others (in
black) are risk genes shared across all populations
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Methods List of selected genes

Adjusted GWAS AT5G10100, AT5G45830, AT4G00730, AT4G00752,
AT4G00630, AT4G00740, AT4G00750.

SMuGLasso

AT5G10100, AT5G45830, AT4G00730, AT4G00752,
AT4G00630, AT4G00740, AT4G00750, AT4G01915,
AT5G15020, AT5G17710, AT5G27945, AT5G53410,
AT3G58590, AT1G20130, AT3G29450, AT3G14490,
AT1G03365, AT3G14470, AT1G28410, AT2G23430,
AT3G27040, AT4G17970, AT4G09160, AT2G34890,
AT4G30100, AT2G39990, AT4G35080, AT2G18500,
AT3G46340, AT1G29300, AT3G27670, AT5G41820,
AT2G38720, AT3G44610, AT4G33760, AT5G40450,
AT1G27520, AT3G26140, AT4G16990, AT1G61360,
AT3G61170, AT5G55910, AT2G25940, AT5G51830,
AT1G43600, AT2G39310, AT4G34310, AT1G78970.

MuGLasso

AT5G10100, AT5G45830, AT4G00730, AT4G00752,
AT4G00630, AT4G00740, AT4G00750, AT4G01915,
AT5G15020, AT5G17710, AT5G27945, AT5G53410,
AT3G58590, AT1G20130, AT3G29450, AT3G14490,
AT1G03365, AT3G14470, AT1G28410, AT2G23430,
AT3G27040, AT4G17970, AT4G09160, AT2G34890,
AT4G30100, AT2G39990, AT4G35080, AT2G18500,
AT3G46340, AT1G29300, AT3G27670, AT5G41820,
AT2G38720, AT3G44610, AT4G33760, AT5G40450,
AT1G27520, AT3G26140, AT4G16990, AT1G61360,
AT1G43600, AT2G39310, AT4G34310, AT1G78970,
AT4G33480, AT5G40290, AT1G12970, AT3G13550,
AT2G32170, AT4G27290, AT1G59690, AT3G61170
AT5G55910, AT2G25940, AT5G51830.

Table E.3: For Arabidopsis thaliana dataset and for Adjusted GWAS, SMu-
GLasso and MuGLasso, list of selected genes associated with DTF3 trait. In
bold are the genes selected by Adjusted GWAS. In blue are genes selected for
specific populations. The others are shared genes selected across all popula-
tions
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RÉSUMÉ

Les études d’association pangénomiques, ou les GWAS ont pour objectif de détecter des polymorphismes nucléotidiques
(SNPs) associés à un phénotype d’intérêt. Parmi ses défis, le problème de la grande dimensionnalité des données qui
se manifeste par le faible nombre d’échantillons disponibles. D’autres facteurs limitants incluent notamment la corrélation
entre les SNPs, à cause du déséquilibre de liaison (LD), la structure de la population, c’est-à-dire, la confusion due
à l’ascendance génétique et la faible puissance statistique en détectant un nombre limité de SNPs significatifs. Les
modèles d’apprentissage automatique basés sur l’analyse multivariée contribue à avancer la recherche en GWAS. Par
conséquent, les modèles de sélection de variables réduisent la dimensionnalité des données en ne conservant que
les variables pertinentes. Cependant, ces méthodes manquent de la stabilité, c’est-à-dire de la robustesse suite à
des légères variations dans le jeu de données d’entrée, ce qui peut conduire à une fausse interprétation biologique.
Par conséquent, nous nous concentrons dans cette thèse sur l’évaluation et l’amélioration de la stabilité de sélection
comme il s’agit d’un indicateur important pour avoir de la confiance aux SNPs découverts. Dans cette thèse, nous
développons deux nouvelles méthodes efficaces (multitask group lasso et sparse multitask group lasso) basées sur
l’analyse multivariée de Lasso sur des données multi-populations. Chaque tâche correspond à une sous-population des
données et chaque groupe à un LD-groupe. Cette formulation atténue le problème de fléau de la dimension et permet
d’identifier des LD-groupes pertinents partagés entre les populations/tâches, ainsi que certains LD-groupes qui sont
spécifiques à une population/tâche. De plus, nous utilisons la sélection de stabilité pour augmenter la robustesse de
nos approches. Enfin, les règles "Gap Safe Screening Rules" accélèrent les calculs en permettant à nos méthodes de
fonctionner à l’échelle génomique. En analysant plusieurs données, dont un ensemble de données sur le cancer du sein,
l’efficacité des modèles développés a été démontrée dans la découverte de nouveaux gènes à risque liés à la maladie.
MOTS CLÉS

GWAS, apprentissage automatique, sélection de variables, multitask group lasso, sparse multitask group
lasso, stabilité de sélection.

ABSTRACT

Genome-Wide Association Studies, or GWAS, aim at finding Single Nucleotide Polymorphisms (SNPs) that are associ-
ated with a phenotype of interest. GWAS are known to suffer from the large dimensionality of the data with respect to the
number of available samples. Many challenges limiting the identification of causal SNPs such as dependency between
SNPs, due to linkage disequilibrium (LD), the population stratification and the low of statistical of univariate analysis.
Machine learning models based on multivariate analysis contribute to advance research in GWAS. Hence, feature selec-
tion models reduce the dimensionality of data by keeping only the relevant features associated with disease. However,
these methods lack of stability, that is to say, robustness to slight variations in the input dataset. This major issue can
lead to false biological interpretation. Hence, we focus in this thesis on evaluating and improving the stability as it is an
important indicator to trust feature selection discoveries. In this thesis, we develop two efficient novel methods (multitask
group lasso and sparse multitask group lasso) for the multivariate analysis of multi-population GWAS data based on a
two multitask group Lasso formulations. Each task corresponds to a subpopulation of the data, and each group to an LD-
block. This formulation alleviates the curse of dimensionality, and makes it possible to identify disease LD-blocks shared
across populations/tasks, as well as some that are specific to one population task. In addition, we use stability selection
to increase the robustness of our approach. Finally, gap safe screening rules speed up computations enough that our
method can run at a genome-wide scale. By analyzing several data including breast cancer dataset, the efficiency of the
developed models was demonstrated in discovering new risk genes related to disease.
KEYWORDS

GWAS, machine learning, feature selection, multitask group lasso, sparse multitask group lasso, stability
selection.
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