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1.1 Motivation and problem statement

Lifting surfaces became a significant research field due to their numerous applications in the in-

dustrial sector. Examples of such applications involve turbojet blades [1], pumps [2], propellers [3],

airplane wings [4], and boats hydrofoils [5]. Lifting surfaces mainly refer to thin structures designed

in special geometry (e.g., foil or blade geometries) that can lead to a pressure gradient proportional

to the velocity field in the fluid medium. The performance of such structures greatly depends on their

geometrical and material aspects, which should be optimized to satisfy given specifications.
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1.1. MOTIVATION AND PROBLEM STATEMENT

An important part of enhancing the lifting structures involves the consideration of the flow-induced

vibrations [6]–[8] under high excitation levels and certain flow regimes. This can lead to fatigue and

erosion and thus reduce the structure’s lifetime and possibly leads to failure. Moreover, in aerodynam-

ics and hydrodynamics applications, high vibration levels can substantially reduce the performance

and generate high noises level. A famous example in the literature is the flutter phenomenon [9]–

[13], which is an unstable, self-excited structural oscillation that can lead to damage in aeronautical

applications.

Those problems led to initiate the ”Smart Lifting Surfaces” project in collaboration between the

Institut de Recherche de l’École navale (IRENav) in Brest, the Conservatoire National des Arts et

Métiers (CNAM) in Paris, Institut Carnot Arts, the Laboratoire d’Ingénierie des Systèmes Physiques

et Numériques (LISPEN) in Lille, and Laboratoire d’électrotechnique et d’électronique de puissance

(L2EP) in Lille. This project mainly focuses on the hydrofoil structures that are utilized in marine

applications. The main aim was to propose novel and practical methods to reduce the vibrations of the

hydrofoils, which can be experimentally tested and whose control is simple to implement. The novelty

is based on using active materials, such as piezoelectric transducers, that can modify the dynamics

in the flow field without substantially changing the structure geometry. Thus, such an approach can

reduce the design constraints on the structure geometry to optimize the performance. In addition,

it can lead to the implementation of electronic vibration absorbers, which can represent an effective

solution since classical mechanical dampers are not feasible for the lightweight lifting bodies in the

hydrodynamic regime.

Through this project, two main research paths were followed: the first one focuses on studying

the fluid-structure interaction in the water medium to study the vortex sheddings [14], shown in

Fig. 1.1, and their consequences on the vibrations of the hydrofoil at different ambient conditions. In

addition, the integration of piezoelectric patches and the piezoelectric couplings in the water medium

were studied. The second path focuses on designing novel electronic vibration absorbers that can be

implemented to the hydrofoil in the hydrodynamics regimes on the one hand and easily controlled in

real-life applications on the other hand.

Figure 1.1: Vortex sheddings in the wake of a hydrofoil structure. Retrieved from [15].
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1.2. HYDROFOIL STRUCTURES

This thesis is a part of the second project path. It focuses on proposing different designs of nonlinear

electro-mechanical vibration absorbers. These absorbers are composed of an electronic circuit (referred

to as a shunt circuit) connected to the hydrofoil through a piezoelectric patch. Such absorbers will be

referred to as piezoelectric shunt absorbers. The main goal of this thesis is the intentional use of the

nonlinear components in the shunt circuit. Through this thesis, a detailed theoretical study is devoted

to analyzing the nonlinear dynamics of the absorbers to deduce the guidelines that can be utilized

for practical implementations. In addition, experimental tests are performed on beam and hydrofoil

structures to validate the proposed absorbers.

1.2 Hydrofoil structures

Hydrofoils are lift surfaces that operate in water medium and have been used for decades in the

marine industry. Using hydrofoils aims to increase the marine, sailing, or surfing boats’ efficiency by

enhancing the speed to the energy consumption ratio. They are also used in different applications

such as surf-boats. The basic idea consists of mounting a foil structure on the boat hull to create a lift

force. Consequently, as the boat increases its speed, the boat hull is lifted out of the water, as shown

in Fig. 1.2, and the area of contact between the boat and the water is minimized thus reducing the

drag force and the wave-induced energy level and as a consequence, reducing the energy consumption.

The idea of using hydrofoils dates back to 1861 when Thomas Moy tested a hull with three lifting

surfaces to study the lifting and the drag forces. Also, in 1898, Italian inventor Enrico Forlanini

obtained patents in the UK and US for his hydrofoil designs. In 1905, Enrico Forlanini built a

hydrofoil and tested it in the Lake Maggiore in Italy, and the hydrofoil enabled an increase of the

boat’s speed up to 68 kilometers per hour. A lift force was generated and elevated the boat half a

meter above the water surface. Those examples proved the validity of the hydrofoils and opened the

doors afterward for numerous kinds of research involving optimal studies regarding the design of the

hydrofoils in terms of their geometry and material characteristics to overcome many design limitations.

Two important limitations associated with the hydrofoils performance are the ventilation [18], [19]

and cavitation [20]–[22] which both cause adverse effects regarding the stability and controllability of

the hydrofoils. Ventilation, as shown in Fig. 1.3(a), appears when the subatmospheric pressure causes

air to be drawn from above the free surface and forms a semi-stable cavity attached to the foil [23].

Whereas, cavitation is the formation of void or cavities in the liquid when the negative pressure

increases on a lifting device [24]. This can appear in different behaviors such as vortex cavitation and

bubble cavitation as shown in Fig. 1.3(b) and Fig. 1.3(c), respectively, which can cause errosion that

leads to failure, as shown in Fig. 1.3(d) . Both phenomena directly affect the drag and lift coefficients,

and they should be taken into account during the design process of the hydrofoil. Moreover, cavitation

13



1.2. HYDROFOIL STRUCTURES

(a) (b)

(c) (d)

Figure 1.2: (a) and (b) Luna Rossa AC75 sailing boat [16]. (c) USS Hercules (PHM-2) marine boat [17].
(d) Wind surf with a hydrofoil.

can induce high vibration levels [25], [26] that can cause low performance and possible damage of the

hydrodynamics structures.

(a) (b) (c) (d)

Figure 1.3: (a) Ventilation, (b) Vortex cavitation, (c) Bubble cavitation, and (d) Errosion failure of
pump blades due to cavitation. Retrieved from [27]
.

Optimization of the hydrofoil structures involves mainly their geometrical and material character-

istics. The geometrical optimization aims to maximize the lift to the drag force ratio [28]–[30] while

the material optimization aims to develop lighter and stronger materials that can operate at high

speeds [31]–[33]. As the analytical treatment of such problems can be cumbersome, CFD (compu-

tational fluid dynamics) numerical tools have been developed to deal with such problems involving

fluid-structure interaction (FSI). Examples of such softwares are ABAQUS, ANSYS, OpenFoam, and

14



1.3. LINEAR VIBRATION SUPPRESSION

STAR-CCM++, in addition to special softwares dedicated to the FSI study of lifting surfaces such

as SOPHIA [34] which is developed at Centrale Nantes. Another software to solve FSI problems is

developed at IRENav, which involves the coupling between ABAQUS and the open source software

CFX [35].

It is also worth mentioning the contributions, through different doctoral theses, developed at

IRENav regarding the design and optimization of the hydrofoils, such as the performance study of

hydrofoils with isotropic material [36], numerical and experimental FSI investigation of hydrofoils in

composites [27], and the effect of the hydrofoil section thickness on the appearance of a twist angle [37].

In addition to the above limitations, the high vibration levels can be a considerable problem, espe-

cially when the vortex shedding frequency in the wake of the structure (see Fig. 1.1) becomes close to

one of the natural frequencies of the hydrofoils and thus activating resonance [38]–[40]. Consequently,

high stress and fatigue levels can be generated in addition to high noise levels. This work attacks this

problem using the design of nonlinear electronic absorbers thanks to the ability to integrate smart

materials, in particular piezoelectric materials, into the hydrofoil structure.

1.3 Linear vibration suppression

Vibration suppression is a growing research field due to its importance in avoiding the failure

of structures that undergo high excitation levels. Different approaches have been proposed for this

sake. The most famous linear absorber is the tuned mass damper (TMD) [41], shown in Fig. 1.4(a).

TMD represents a secondary attachment to the host structure that can attenuate the vibrations under

harmonic excitation (or even random excitation [42]).

The TMD is widely studied in the literature for single and multi modal vibration attenuation [43]–

[48] and it is used in wide range of applications in civil engineering [49]–[52], vibration absorption in

bladed disks [53], and noise control [54]. The basic idea is to tune the TMD oscillating frequency

close to one of the natural frequencies of the primary structure, which is considered linear as shown

in Fig. 1.4. This creates an anti-resonance near the tackled natural frequency. The attenuation of the

TMD greatly depends on the ratio between the secondary and the primary masses in addition to the

damping ratio of the primary oscillator, while the damping ratio of the secondary oscillator can be

optimized to reduce the peaks generated across the fundamental resonance (see Fig. 1.4(b)). For a

wider review on the TMD and its optimization, one can refer to [55]–[57] and references therein.

Although the TMD proved effective in many applications, it suffers from many limitations, espe-

cially in applications involving lightweight structures when the size and mass constraints are presented.

In addition, the TMD works in a narrow band near the natural frequency of the structure. Moreover,

the TMD is sensitive to any resonance frequency shift in the primary structure, thus substantially

15



1.4. NONLINEAR VIBRATION SUPPRESSION
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Figure 1.4: (a) Schematic representation of the tuned mass damper applied to a primary system
modeled as a single degree of freedom oscillator. u1, M , k1, and c1 are the displacement, mass,
stiffness, and damping coefficient of the primary oscillator. u2, m, k2, and c2 are the displacement,
mass, stiffness, and damping coefficient of the TMD attachment. F (t) is the excitation force. (b)
Typical frequency response function (FRF) of the primary oscillator with a TMD under harmonic
forcing for different damping coefficient c2.

losing its performance [58].

1.4 Nonlinear vibration suppression

1.4.1 Main features

Nonlinear theory and its applications related to mechanical vibrations took a wide range of interest

since it can describe a wide range of phenomena that linear theory lacks to identify. In structural

mechanics, the linear theory is shown to be applicable for small deformations where the linear version

of Hook’s law is valid. However, for high deformations, a nonlinear correction should be considered [59],

[60]. Analysis tools for solving linear problems such as the modal superposition, time domain, and

frequency domain analysis are well developed [61], [62]. However, in the modern industry, where

lighter weight structures are demanded, large deformations are expected, and thus the analysis should

be extended to the nonlinear domain.

Sources of nonlinearities can be geometrical (e.g. pendulums [63] and large deformations of

beams [64], [65] and plates and shells [66]), contact (e.g. nonlinear boundary conditions [67]), and

material nonlinearities (e.g. nonlinear elasticity [68] and thus nonlinear stress-strain relation). In

those applications, the linear spring model requires correction through an additional nonlinear stiff-

ness (which can be a combination of quadratic, cubic, and nonsmooth terms) that should be introduced

to the equations of motion. In addition, nonlinearities can appear in the damping terms such as the

problems involving nonsmooth and nonlinear friction [69], [70] or drag force [71] in aeronautics appli-

cations. Indeed, nonlinear analysis is harder since it involves the consideration of features that do not
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have a counterpart in the linear theory. In addition, the principle of superposition does not extend to

the nonlinear theory. Examples of those features involve [72], [73]:

� rich response in which multiple steady-state solutions (periodic, quasi-periodic, and chaotic) can

be observed for harmonic excitation,

� sensitive dependence on the initial conditions and possible chaos responses,

� jump phenomenon and bifurcations in addition to the appearance of stable and unstable re-

sponses,

� the dependence of the resonance frequency on the oscillation amplitude,

� modal interaction and energy transfer through internal resonances and the response of the sub-

harmonics or the super-harmonics with mono-harmonic excitation.

Some of the above features can even appear for a simple nonlinear model such as the Duffing

equation [74] in which a weak nonlinear term is added to the linear oscillator. This equation is very

essential in nonlinear vibration theory as it covers many simplified single degree of freedom (DOF)

models such as nonlinear cables [75], nonlinear circuits [76], cantilever beams motion [65], beam

buckling [77] and pendulum under harmonic excitation [78]. The Duffing equation reads in terms of

the unknown x(t):

ẍ+ µẋ+ ω2
0x+ γx3 = F cos Ωt, (1.1)

where µ, ω0, γ, F , Ω, and t denote the damping factor, resonance frequency, nonlinear coefficient,

forcing, excitation frequency, and time, respectively. To emphasize some features of this equation,

the frequency responses of the first and third harmonics amplitudes of x(t), computed numerically

with MANLAB software (see Sec. 1.6.1.3 for more details), are plotted in Fig.1.5(a) and Fig. 1.5(b),

respectively, for different excitation levels. It is observed in Fig. 1.5(a) that for small excitation,

the response undergoes linear behavior. However, as the excitation increases, a hardening behavior is

observed (the curve shape bends to the right), with unstable branches detected. In addition, Fig. 1.5(b)

shows the response of the third harmonics with an appearance of hardening behavior and the response

of the third order super-harmonic at Ω = ω0/3. The black dashed lines are the so-called ”backbone

curves”that represent the dependence of the excitation frequency on the oscillation amplitude [79]–[81].

They also represent the free conservative periodic solution of Eq. (1.1). In a physical sense, backbone

curves satisfy the phase resonance condition when the dissipation energy cancels the injected energy

to the system [82]–[84]. Geometrically, they determine the skeleton of the forced response [85], as can

be seen in Fig. 1.5. When considering higher number of DOFs, these backbone curves define a family
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F = 0.1
F = 0.2
F = 0.4
F = 0.8
F = 1.2
backbone curve

(a) (b)

Figure 1.5: Frequency response of the Duffing oscillator in Eq. (1.1) for different forcing levels. (a) first
harmonic, (b) third harmonic. The dashed line denotes the backbone curve for the free conservative
case (F = µ = 0). Solid and dotted lines denote the stable and unstable solution of the forced response,
respectively. The numerical values are γ = 0.1, µ = 0.1, and ω0 = 1.

of periodic solutions on two-dimensional invariant manifolds (i.e., orbits that start out in the manifold

remain in it for all time) in the phase space, called the nonlinear normal modes [86]–[88]. The nonlinear

normal modes can be considered as the extension of the classical linear normal modes [89]–[91] which

represent a very useful tool to analyze complicated nonlinear modal dynamics problems. Examples

of such problems include the analysis of nonlinear absorbers [92], parametrically excited cantilever

beam [93], nonlinear MEMS [94], nonlinear finite element modeling [95], model order reduction [96],

[97], nonlinear dynamics of cables [98], and beam buckling [99]. One can also refer to the following

review articles for more applications [100]–[102].

1.4.2 Nonlinear absorbers: state of the art

Nonlinear absorbers are proposed to enhance the efficiency of the linear absorbers in terms of

attenuation reduction, robustness, design feasibility, and broadband frequency range. Thanks to the

features mentioned in the previous section, new concepts and ideas can be exploited to achieve the

enhancement goal. The basic idea is that instead of avoiding the nonlinearities, they are intentionally

added to the absorber and tuned in a particular way to generate different nonlinear phenomena.

Like linear absorbers, the nonlinear ones can be passive or active depending on the application. In

the following, an illustration of some families of nonlinear absorbers and their main advantages are

emphasized.

Nonlinear energy sink (NES) is a family of nonlinear absorbers introduced in [103] with a huge

contribution afterward (e.g. [104]–[107]) due to its ability to create high attenuation with a high
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broadband frequency range. The main idea consists of adding a secondary attachment to the primary

structure with light mass, strong nonlinear stiffness, and a damping element [108]. The NES then

has a non constant natural frequency leading to a transient resonance capture in a 1:1 resonance

manifold [109], [110]. Consequently, a fast irreversible energy pumping from the primary structure to

the NES occurs, which is denoted by ”targeted energy transfer” [103], [111], [112], and then the energy

is dissipated in the damping element. In particular, the NES can extract energy from virtually any

mode of the primary structure [113]. Comparisons between the NES and TMD performance [114],

[115] showed that the former leads to a wider frequency band of attenuation and is less sensitive to

the shifts in the natural frequency of the primary structure. In addition, a lighter mass is required

for the NES, giving it the advantage when mass constraints are presented. Applications of NES

are numerous including seismic mitigation [116], sound mitigation [117], aeronautics [118], [119] and

industrial machines [120]. Vibro-impact NES were also introduced to act as shock isolators by including

a nonsmooth piecewise stiffness term [121]–[124]. For a wider overview of the NES one can refer also

to the following review articles [125]–[127].

More adaptive nonlinear absorbers are also proposed, such as the nonlinear tuned vibration ab-

sorber (NLTVA), which is introduced in [128] to damp the vibration of structures with nonlinearities.

It utilizes the same concept as the NES in terms of adding a nonlinear stiffness in the secondary

attachment. However, the main difference is that the added nonlinearity is tuned according to the

nonlinear restoring forces in the primary structure. Such tuning ensures the robustness of the absorber

for higher oscillation amplitudes that can lead to the change of the resonance frequencies of the host

structure. Applications with mechanical absorbers and tuning guidelines can be found in [129].

Other types of nonlinear absorbers are also proposed in the literature such as those involving

nonlinear damping attachments [130], [131] and centrifugal pendulum vibration absorbers [132]–[135].

1.4.3 Two to one (2:1) internal resonance and saturation phenomenon

Internal resonance is a nonlinear feature that occurs through modal interaction when two or more

modal frequencies are commensurable [136]. For example, if two modal frequencies ωi and ωj satisfy

pωi = qωj , with p, q ∈ N∗, a strong coupling between the two corresponding modes occur, leading to an

energy transfer between the modes and the internal resonance is denoted by a p-to-q (or p : q) internal
resonance. Such phenomenon can occur at small amplitudes with geometries involving symmetries

such as 1:1 internal resonance in beams [137] and cylindrical shells [97], [138] or by intentional tuning

of mechanical systems such as the 2:1 internal resonance in gongs [139] and combination of 1:1 and

1:2 internal resonance (i.e., 1:1:2 internal resonance) as in spherical shells [140], [141]. The internal

resonance can also occur at high amplitudes due to the variation of the resonance frequencies with the

oscillation amplitude so that a commensurable relation is obtained at a certain amplitude [90]. One
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can note that the type of internal resonance depends on the nonlinearities in the system. For example,

1:1 or 1:3 internal resonance [142] (or combination of both) are associated with cubic nonlinearities,

while other types, such as 2:1 internal resonance, are associated with quadratic nonlinearities. A

two-to-one (2:1 or 1:2) internal resonance occurs when two modal frequencies satisfy ω2 = 2ω1, in the

presence of quadratic nonlinear coupling. Two cases can be considered [72], [143] for this particular

type of internal resonance; if the energy is injected into the mode oscillating near ω2 (i.e., the excitation

frequency Ω near ω2), the energy is transferred to the mode oscillating at half the driving frequency

near ω1 = Ω/2. Conversely, if the energy is injected to the mode oscillating near ω1 (i.e., Ω near ω1),

the energy is transferred to the mode oscillating at twice the driving frequency near ω2 = 2Ω. It was

firstly discovered in [144] that the former case exhibits an exciting feature denoted by the ”saturation

phenomenon”. In addition, it is illustrated in [145], [146] that both cases can exhibit Hopf bifurcations.

To examine the saturation feature, let’s consider the following two degrees of freedom nonlinear

system in terms of x1(t) and x2(t):

ẍ1 + 2µ1ẋ1 + ω2
1x1 + α1x1x2 = 0, (1.2a)

ẍ2 + 2µ2ẋ2 + ω2
2x2 + α2x

2
1 = f cos Ωt. (1.2b)

System (1.2a, b) is the canonical form to examine the 2:1 internal resonance and its dynamics. It

considers two quadratic resonant terms α1x1x2 and α2x2
1 (refer to Appendix A in Sec. 5.2 for illustration

about the resonant and non-resonant terms). If ω2 = 2ω1 and we drive the system near ω2 (i.e. Ω
near ω2), the first order multiple scales solution (see Sec. 1.6.1.1) of x1 and x2 reads:

x1(t) = a1 cos
(︃Ω

2 t− γ1 + γ2
2

)︃
, x2(t) = a2 cos (Ωt− γ2) , (1.3)

where (a1, a2) are the amplitudes and (γ1, γ2) are phase angles. Their closed form are given in Sec. 2.2.

To examine the system dynamics, the typical frequency response of a1 and a2 is shown in Fig. 1.6(a)

as function of σ1 = Ω −ω2. Realize that if we assume a linear case, only a2 should respond (the black

curve). However, above a threshold excitation, the primary resonance enters an instability region in

which an energy transfer occurs to the subharmonic of x1 leading a1 to respond (the blue curves).

Consequently, the primary resonance of a2 is replaced by an antiresonance at Ω = ω2 with an amplitude

independent of the excitation level, as shown in Fig. 1.6(c) where the amplitudes at Ω = ω2 (a∗
1 and

a∗
2) are plotted versus the excitation level. The phase response is shown in Fig. 1.6(b) suggesting a

monotonic behavior of γ1 with a lockage at 3π/2 at Ω = ω2.

By defining the attenuation as the amplitude reduction with respect to the linear resonance am-

plitude corresponding the response of x2(t) with α1 = α2 = 0 (i.e., the amplitude difference between

the green and black curves in Fig. 1.6(c)), one can conclude that the saturation phenomenon leads to

an increasing attenuation as the forcing increases beyond a given threshold value. Thus, the attenu-

ation can be considered amplitude dependent. This conclusion led to the design of auto-parametric
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absorbers that exploit the saturation feature by intentionally adding quadratic nonlinearities. The

idea of utilizing the 2:1 internal resonance is proposed in many contributions, mainly with an electro-

mechanical control systems with feedbacks [147]–[149] or with piezoelectric actuators [150], [151] for

active vibration control strategy. In some other application, the 2:1 internal resonance proved to be

efficient for energy harvesting [152]–[154].

Contrary to the mentioned works where the saturation feature is realized with an active control

strategy, we aim to exploit this feature in a passive way through a nonlinear piezoelectric shunt

absorber. Such an absorber will be realized through an electronic circuit (referred to as a shunt circuit)

with a nonlinear voltage component, intentionally introduced. The electronic circuit will be connected

to the host structure through a piezoelectric transducer. The main concepts of the piezoelectric shunt

absorbers are introduced in the next section.

a1

a2

γ1

γ2

threshold forcing

a∗
1

Saturation Amplitude a∗
2

(a) (c)

(b)

Figure 1.6: Typical response of the amplitudes a1 and a2 and the phases γ1 and γ2 by solving (1.2a,b)
for ω2 = 2ω1. The numerical values are α1 = α2 = 0.1, µ1 = 0.005 , µ2 = 0.01. (a) and (b) show
respectively the amplitude and phase response with respect to the detuning σ1 = Ω − ω2 for values
of the forcing f (f ∈ {0.005; 0.03; 0.05}). (c) amplitude response at the resonance frequency (σ1 = 0)
with respect to the excitation level f . In the plots, the linear responses of a2 and γ2 are plotted in
black. The solid and the dashed-dotted lines denote respectively the stable and the unstable solutions.
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1.5 Piezoelectric shunt absorbers

1.5.1 General aspects of piezoelectric materials

Piezoelectric materials are the most studied smart material for practical implementations. This

is due to the numerous advantages such as low cost, large frequency bandwidth, and the easiness of

implementation. Thank to the piezoelectric direct effect [155] (i.e., applied mechanical strain generates

electric charge) and the inverse effect [156] (i.e., applied electric potential generates mechanical stress),

the piezoelectric materials can be used for sensing and actuating in wide range of applications such as

active control of vibration [157]–[159], noise [160], energy harvesting [161], [162], and structural health

monitoring [163].

There exist a lot of types of piezoelectric materials [164], [165] such as single crystalline material

such as quartz (Fig. 1.7(a)), piezoceramics (Fig. 1.7(b)) such as lead zirconate titanate (PZTs), polymer

(such as polyvinylidene fluoride, PVDF), piezoelectric composites, such as macro-fiber composite

(MCF) [166] (Figs. 1.7(c), (d)), and glass ceramics (such as Li2Si2O5 and Ba2TiSiO6). Those types

have their own pros and cons depending on the application. Nevertheless, PZT materials are still the

most widely used in many applications due to their high piezoelectric coupling. Their main drawback

is that they are limited to small deformations due to their brittle characteristic.

(a) (b)

(c) (d)

Figure 1.7: (a) natural piezoelectric crystal materials: Quartz (SiO2). (b) Different shapes and sizes
of PZT ceramics. (c) MCF patch layout. (d) MCF structural arrangement [167].

The mathematical formulation of the direct and inverse piezoelectric effects is denoted by the
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piezoelectric constitutive equations, which are expressed in the tensor form as [168]:

Sij = sEijklTkl + dkijEk, (1.4a)

Di = diklTkl + εTikEk, (1.4b)

where Sij is the mechanical strain, Di is the electric displacement, Tkl is the mechanical stress, Ek

is the electric field, sEijkl is the mechanical compliance (reciprocal of the elastic modulus) measured

at zero electric field, dikl is the piezoelectric strain coefficient, and εTik is the dielectric permittivity

measured at zero mechanical stress. Note that the constitutive equations can be written in other three

forms by arranging differently the state variables S, D, E, and T . Note also that those equations

neglect the nonlinearities that can be presented for high deformations [169].

Three possible coupling methods of the piezoelectric materials denoted by 31, 33, and 15 modes

are shown in Fig. 1.8. The coupling is distinguished by the direction of the applied loading or the

imposed electric field with respect to the poling direction in which the latter is usually considered

in the 3-direction (see the back arrows in Fig. 1.8). Namely, the coupling is associated with the 31

mode if the imposed electric field direction is perpendicular to the polar direction and one considers

the deformation in the same direction. Whereas, if the directions of the imposed electric field and the

poling are parallel, then the coupling is associated with the 33 mode and the deformation is in the

two orthogonal directions (i.e., 1and 2). Finally, the 15 mode is associated with the shearing of the

piezoelectric material which considers an imposed electric field orthogonal to the polarity direction.

One can refer to [170] for a further illustration about the piezoelectric coupling methods and their

characteristics.

”33” coupling ”31” coupling ”15” coupling

Figure 1.8: Piezoelectric coupling modes. Retrieved from [171].

1.5.2 Piezoelectric shunt absorber: Basic concept and linear configurations

Piezoelectric shunt absorbers are firstly introduced in [172] as an electro-mechanical extension of the

mechanical dampers in which a dedicated electronic circuit (referred to as a shunt circuit) is connected

to an elastic structure through a piezoelectric transducer bonded to the host structure. Thanks to

the piezoelectric effects, the mechanical energy injected into the host structure can be transformed
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into electrical form and then dissipated or counteracted in the shunt circuit. The main advantages of

those absorbers are the easiness of set and control compared to the mechanical dampers. They are

also more efficient for lightweight structures where size and weight represent design constraints.

The two simplest architectures of the linear piezoelectric shunts are resistive and resonant shunts,

denoted respectively by the R-shunt and RL-shunt, as shown in Fig. 1.9. R-shunt enables the dissi-

pation of the energy into Joule’s heat. Regarding the RL-shunt, since the piezoelectric patch can be

electrically modeled as a capacitor, an RLC circuit oscillator is then formed, which can be tuned to

behave analogously to a TMD in which the structure mode is replaced by two damped modes [173].

Those shunts architectures are passive and collocated as the sensing and actuation are served simul-

taneously by the piezoelectric patch, giving them the control stability advantage over active control

strategies [174].

I. Introduction II. Theoretical Analysis III. Normal form IV. Experimental Validation V. Conclusions

Linear vs nonlinear piezoelectric shunts

I Linear Shunts

Elastic Structure

External Forcing
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R with RL-shunt

 Electrical analogous of the mechanical dampers (tuned mass damper TMD).
 Easy to set and control.

I Nonlinear Shunts

 A nonlinear component Vnl is intentionally added
to the shunt circuit.

 Features : energy transfer between the modes and
saturation phenomenon.
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Figure 1.9: R-shunt and RL-shunt schematics. PE patch refers to a piezoelectric patch. Q, Q̇, and V
are the charge in the piezoelectric electrode, the time derivative of the charge (i.e., the current), and
the voltage across the PE patch.

Optimizing the R-shunt and RL-shunt in terms of attenuation ability has been studied widely in the

literature. For example, [175] enhanced the R-shunt performance by means of negative capacitance.

In [176], detailed theoretical and experimental studies of the performance of the R-shunts and RL-

shunts in the case of free and forced vibrations and closed-form expressions of the optimal attenuation

are derived. In [177], an optimal study of the RL-shunt to damp the first vibration mode of a beam

with a circular cross-section and three collocated resonantly shunted stack transducers is established.

In [178], an optimal study regarding the placement and the dimensions of the piezoelectric shunt is

performed. In addition, [179] presented an exact closed-form solution to the H∞ optimization of an

R-shunt.

An important result in [176] showed that the critical parameter for an optimal attenuation of the

RL-shunt, for a given mechanical damping ratio, is the piezoelectric coupling factor. It is equivalent

to a stiffness ratio, contrary to the mechanical TMD, where the critical parameter is the mass ratio
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between the secondary and primary systems. This piezoelectric coupling can be represented as a

dimensionless quantity denoted by ki (with subscript i being the i − th mode of the structure) and

characterizes the energy ratio transformed by the PE patch. Following [180], it is defined as:

k2
i = ω̂2

i − ω̌2
i

ω̂2
i

, (1.5)

with ω̂i and ω̌i are the resonance frequencies of the i− th mode measured by setting the piezoelectric

patch in open and short circuit configuration, respectively.

Similar to the mechanical dampers, the R-shunt and RL-shunt act near a single modal frequency

of the structure. However, an extension to multi-modal damping using parallel or series arrays of

RL-shunts is also proposed. For example, [181] proposed a method for designing and adapting multi-

modal piezoelectric resonant shunts with a lower required number of electrical components. Moreover,

a periodic array of shunted patches is discussed in [182]. It is also worth mentioning the technique

of self-adaptive RL-shunt proposed in [183] where the inductance is designed to tune the mechanical

resonance. Some industrial applications of the piezoelectric shunts involved the optimization of ma-

chining performance in a boring of aluminum to increase cutting stability [184], the sound attenuation

in a duct [185], mistuned bladed disks [186], and vibration suppression of a hard disk driver [187].

1.5.3 Nonlinear piezoelectric shunt absorbers

Nonlinear piezoelectric shunts are an extension of the linear configuration that aims to exploit the

nonlinear features presented in the dynamical response. The basic idea consists of intentionally adding

a nonlinear voltage source Vnl to an RL-shunt circuit, as shown in Fig. 1.10.

Vnl = f(V )

Figure 1.10: Nonlinear shunt circuit schematic with a nonlinear voltage source component Vnl.

The idea of utilizing nonlinearities with piezoelectric shunt methodology has few applications in the

literature thus far. Namely, the applications extended the mentioned families of nonlinear absorbers

in section 1.4.2 to be realized with piezoelectric devices in an active or passive way. For example, the

nonlinear energy sink is extended theoretically in [186], [188] to be realized with a piezoelectric shunt to
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overcome the challenges associated with the implementation of the mechanical NES. In addition, [189]

experimentally tested an essentially nonlinear circuit with piezoelectric NES to attenuate the vibrations

of mistuned bladed disks. The piezoelectric NES in [189] is realized with a semi-passive nonlinear shunt

circuit to damp the vibrations of a cantilever beam. The shunt circuit is composed of a collection of

operational amplifiers (OA) and a negative capacitance to cancel the piezoelectric capacitance. In

addition, the nonlinearity introduced in the circuit is proportional to the cubic of the charge in the

piezoelectric electrode and realized through two analog multipliers, as shown in Fig. 1.11. The results

suggested high attenuation with robustness with respect to the mistuning in the system.

system. Nonlinear capacitors present nonlinear voltage-charge behavior usually close to a third order polynomial [34], and
relying on the nonlinearity of the ferroelectric capacitor [26] is a relatively limited approach since the inherent cubic
nonlinearity cannot be tailored easily. Here, we present a circuit configuration to introduce exclusively cubic voltage-charge
behavior.

Fig. 2 displays the nonlinear circuit proposed in this work. The piezoelectric material is connected to a resistor R1 and
inductor L1, providing electrical analogous of damping and inertia, respectively. A negative capacitance circuit is also con-
nected in series to the piezoelectric material to minimize the linear voltage-charge term in Equation (4). The bottom part of
the circuit has a series of operational amplifiers and two multipliers (AD633) to obtain the cubic voltage-charge behavior.

In the circuit of Fig. 2, the negative capacitance is obtained from,

Cneg ¼ �Ra4C2
Ra3

(5)

where Ra3 ¼ Ra3c
þ Ra3m

and the subscript c stands for “complementary” and the subscript m stands for “measurement”.
The voltage across the resistor Ra3m

(Vmeas ¼ Vc � V2) is the reference to obtain the cubic term of the essentially nonlinear
circuit (Vc ¼ aq3p). The voltages V2 and Vc are measured with the operational amplifiers OA2 and OA3, respectively, and driven
to the voltage amplifier (OA4, Ra1 and Ra2) that provides Vmeas ¼ Vc � V2. The voltage output of OA4 is proportional to the
current flowing in Ra3m

that is also proportional to the charge flowing from the piezoelectric layers. Therefore,

Vmeas ¼ Vc � V2 ¼ Ra3m
_q2 ¼ Ra3m

Ra4C2
qp (6)

which is driven to the voltage amplifier (OA5, Ra1 and Ra2) to adjust the voltage input of the multipliers. The voltage output of
each multiplier (AD633) is defined as

Vq2 ¼ V2
amp

10
(7)

and

Fig. 2. Nonlinear electrical circuit representing an electrical NES.

T.M.P. Silva et al. / Journal of Sound and Vibration 437 (2018) 68e78 71

Figure 1.11: Nonlinear shunt circuit to realize the nonlinear energy sink. Retrieved from [189].

In addition to the NES, the NLTVA is also realized theoretically in [190] with piezoelectric shunt

methodology and validated experimentally on a cantilever beam in [191] through a digital controller

composed of a microprocessor and a current source.

The realization of the NES and the NLTVA with piezoelectric shunt methodology involved the

usage of nonlinearities of polynomial type (i.e., quadratic or/and cubic) that appear explicitly in
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the shunt circuit. Thus, the electro-mechanical system functions in a smooth behavior. Nonsmooth

behavior was also exploited with the piezoelectric shunt absorbers with the so-called synchronized

switch damping (SSD) technique, which was proposed in [192]. The nonsmooth behavior is presented

since the SSD technique consists of continuously switching, through an introduced switch component,

the electric impedance of the shunt circuit in a synchronous manner with the structure oscillation.

Although no explicit nonlinearities are involved with this technique, it is considered in the nonlinear

piezoelectric shunts family since the nonsmooth behavior can generate strong implicit nonlinearities.

It is also worth mentioning that the synchronized switch technique was used also for applications

involving energy harvesting [193], [194].

As explained in [195], switching synchronization is crucial for SSD technique performance. Namely,

the switch is left open most of the time and is closed every time the structure reaches a maximum

amplitude. Thus, an opposition of the voltage is obtained, which is imposed on the piezoelectric

element. The obtained voltage has the equivalent effect to a force imposed on the structure that

changes its sign at oscillation and thus opposes the motion of the structure. Three types of the

SSD technique were proposed: the synchronized switch damping on a short circuit (SSDS) such that

the shunt includes only a resistive element [192], the synchronized switch damping on inductor (SSDI)

where an inductor is additionally added [196], and the synchronized switch damping on voltage (SSDV)

where a constant voltage source is added [197], [198]. The SSDS and the SSDI techniques, shown in

Fig. 1.12, are semi-passive, contrary to the SSDV, in which their optimal design can lead to higher

performance compared to the linear resonant shunt when considering a one DOF structure [195].

Namely, because of the synchronization of the electric circuit to the structural oscillations, no precise

tuning of the electric parameters on the mechanical frequency characteristics is required. Thus, the

attenuation is very robust to any change in the mechanical structure.

Figure 1.12: SSDS and SSDI piezoelectric shunts schematics. Retrieved from [195].

Following the above contributions, this work proposes designing three different semi-passive non-

linear piezoelectric shunt absorbers, depending on the nonlinear voltage Vnl, intentionally introduced

to an RL-shunt (see Fig. 1.10). The first design, discussed in chapters 2 and 3, includes solely a

quadratic nonlinearity proportional to the square of the piezoelectric voltage V such that Vnl = βV 2
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where β is a controlled gain. The main idea is to activate the two-one-internal resonance (discussed

in Sec. 1.4.3) and thus exploit the saturation phenomenon. The second design includes quadratic and

cubic nonlinear voltage components such that Vnl = βqV
2 +βcV

3 where βq and βc are respectively the

gains of the quadratic and the cubic nonlinearities. The idea behind adding the cubic nonlinearities,

as discussed in chapters 4 and 5, is to correct the saturation phenomenon violated due to the pres-

ence of unavoidable quadratic nonresonant terms. The final design, discussed in chapter 6 includes a

nonsmooth behavior such that Vnl = β(V + |V |), realized by a diode in the shunt circuit.

1.5.4 Problem of high inductance

In the applications involving the usage of an RL-shunt, the optimal attenuation requires that the

electrical resonance frequency to be close to the mechanical one corresponding to the structure mode

to be attenuated [176]. Thus, when tackling low frequency modes, the low capacitance characteristic

of the piezoelectric transducer (usually to the order of nano-Farads) demands a high inductance in

the shunt circuit, which can represent a practical limit. For example, if one aims to design an RL-

shunt to damp a mode at a frequency close to ω = 30 × (2π)rad/s with a piezoelectric capacitance

around Cp = 30nF, an inductance value close to L = 1/(ω2Cp) = 940H is necessary to obtain an

optimal attenuation. Such inductance value is very high to be achieved through the classical passive

inductor. To overcome this issue, synthetic inductors have been proposed, which are mainly composed

of electrical components such as resistors, capacitors, and operational amplifiers.

Synthetic inductors are based on a generalized impedance converter (GIC), which is known as a

gyrator. The most frequently used synthetic inductors in the piezoelectric shunt applications are the

Antoniou [199] and Riordan [200] since they are easy to implement and tune. A schematic of both

synthetic inductors is shown in Fig. 1.13.
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V2 V1 V3 V1

I1 I1 I2 I2 I3

I3
Zin

OA1
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I2
Z1 Z2 Z3 Z4

Z5 Z1
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I1

I2

I3
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OA1 OA2

Figure 1.13: (a) Antoniou synthetic inductor and (b) Riordan synthetic inductor.

Assuming ideal operational amplifiers and zero losses, the input impedance Zin of both inductors
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is the same and can be estimated as:

Zin = Z1Z3Z5
Z2Z4

. (1.6)

To arrive to an expression of Zin admitting an inductance impedance, Z1 Z3, and Z5 are set as resistive

impedances (i.e. Z1 = R1, Z2 = R2, and Z3 = R3) . Regarding Z2 and Z4, two options can be used,

either setting Z2 with a resistive impedance and Z4 with a capacitive impedance (i.e., Z2 = R2 and

Z4 = 1/(jωC)), or vise versa. With both options, the input impedance can be expressed as:

Zin = jωL, (1.7)

with L being the synthetic inductor that can be tuned by the variable resistors shown in Fig. 1.13. Its

numerical value can be estimated as:

L = R1R3R5C

R2
. (1.8)

The behavior of the synthetic inductor is proved to be identical to a real inductor only in a specific

frequency range [201]. However, two main issues have been addressed. Since the RL-shunt is sensitive

to any mistuning in the structure resonance frequency, the synthetic inductor should be adaptive,

which can be practically hard for the classic configurations in Fig. 1.13. A solution to this issue

is addressed in [202] using a voltage-controlled synthetic inductor in which an analog multiplier is

required in the circuit.

The second issue is the parasitic resistance, which is addressed in some experimental applications

as in [201], [203] and in our experiments (see chapter 3 and chapter 5), is not predicted theoretically

in Eq. (1.7). It can be noted that there is no mathematical formulation in the literature to explain this

parasitic resistance theoretically. However, experimentally, it is proven to increase linearly with the

inductance value. This can be an issue in the applications of the RL-shunt, especially if the parasitic

resistance is higher than the optimal resistance required. Two possible solutions were proposed to

overcome this issue. The first solution is to add a capacitance in parallel to the piezoelectric capac-

itance [204], which leads to the reduction of the optimal inductance required and thus reduces the

parasitic resistance. However, the main drawback is the attenuation reduction since the piezoelectric

coupling factor will be lowered. The other solution is to use a negative resistance in series with the in-

ductance or to use the proposed modified Antoniou synthetic inductor in [176], [205] where a negative

resistance can be generated by adding a resistor between the inverting inputs of the two operational

amplifiers shown in Fig. 1.13(a). The drawback of the second solution is the limitation of the negative

resistance due to the stability limit.

One can note that the usage of synthetic inductors requires an external energy source to supply

the operational amplifiers. Thus, careful attention should be given to the voltage and current limits

at their input and output ports. Due to this energy source, the RL-shunts are transformed from fully

passive to semi-passive absorbers. In this context, it is worth mentioning the successful attempt to
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design a passive inductor with high values that led to preserving the passive feature of the shunt

circuit [206], [207]. Note that in most applications of the RL-shunt, the Antoniou inductor is used

instead of the Riordan one. In our experimental tests, as shown in chapters 3, 5, and 6, we adopted this

choice. In addition, the ability of adding a negative resistance [176] to oppose the parasitic resistance

is an advantage for the Antonio inductor.

1.6 Nonlinear system analysis and solution methodologies

1.6.1 Theoretical methods

Contrary to the linear systems where exact solutions can be easily obtained, this can be a very

hard task in the models exhibiting nonlinear behavior due to their rich and complex dynamics. In

many branches of physics and engineering, mechanical oscillations are modeled as nonlinear differen-

tial equations. Thus, numerous analytical and numerical techniques have been established to retrieve

the essential dynamics of these equations enabling a parametric study of the system, stability and

bifurcation analysis, and obtaining the rich response of different harmonics. Consequently, the theo-

retical analysis of the nonlinear systems is crucial to obtain different design aspects and constraints

for real-life engineering problems.

In this work, the nonlinear dynamics of the designed absorber is analyzed theoretically using two

analytical approaches, the multiple scales method and the normal form. In addition, a numerical

continuation software ”MANLAB” is used for numerical analysis. In what follows, those tools will be

introduced.

1.6.1.1 Multiple scales method

Perturbation methods represent efficient analytical tools to analyze nonlinear vibration problems.

They can be used to obtain closed-form solutions of different simplified nonlinear models. In the

literature, different perturbation techniques have been proposed [208], [209] such as straightforward

expansion, Lindstedt-Poincaré method, method of renormalization, method of averaging, and method

of multiple scales.

The basic idea of the perturbation methods is to perform an asymptotic expansion of the solution

with respect to a small perturbation parameter (usually denoted by ε). Such perturbation parameter

can have a physical meaning in the system or can be introduced as a scaling parameter (or a book-

keeping parameter) to scale the nonlinearities present in the system in addition to the damping and the

forcing at different orders. The main advantage of the perturbation techniques is their ability to give

accurate results at small oscillation amplitudes. However, at higher amplitudes (or low amplitudes

with strong nonlinearities), achieving accurate results requires higher orders of expansion which can

30



1.6. NONLINEAR SYSTEM ANALYSIS AND SOLUTION METHODOLOGIES

be a cumbersome process. In this context, one can refer to [210] where a Python code is developed to

obtain high-order solutions with MSM.

The multiple scales method (MSM) proved to be very efficient in terms of easier derivations and

accuracy in many applications compared to the other methods. Examples of those applications involve

different nonlinear problems in structural dynamics (e..g reduced order models of beams [211], [212],

shells [140], [213], rings [214]), problems with internal resonance [145], [215], nonlinear vibration

absorbers [216], buckling dynamics [217], and MEMS (micro electro-mechanical systems) cantilever

resonators [88].

In our analysis of the nonlinear absorber behavior, the MSM is used for the analytical treatment.

To emphasize the steps of this method, we consider a simple case by applying this method to the

Duffing oscillator presented in Eq. (1.1). As a first step, Eq. (1.1) is rescaled with respect to an

introduced small book-keeping parameter ε as follows:

ẍ+ εµẋ+ ω2
0x+ εγx3 = εF cos Ωt. (1.9)

Note that here the highest order of expansion is to the order of ε. However, if quadratic nonlinearities

are additionally presented, a higher order of expansion (i.e., order of ε2) is required so that the effect

of quadratic nonlinearities is considered at order ε and the cubic ones at ε2. In addition, it is common

to consider the forcing and damping scaling at the highest order considered in the problem [209],

nevertheless, this choice is not unique.

The MSM requires the definition of different time scales as:

Tk = εkt, (1.10)

where k ∈ N represents the order of expansion. Since we consider the expansion to the order of ε, we

consider only the times scales T0 and T1. Using the chain rule, the first and second derivatives of x(t)
can be expressed as:

d

dt
= D0 + εD1 +O(ε2), (1.11a)

d2

dt2
= D2

0 + 2εD0D1 +O(ε2), (1.11b)

where Dk = d
dTk

. To simplify the derivation and to obtain a closed form expression of the backbone

curves, we consider the free conservative case (i.e., F = µ = 0). Then, by substituting Eqs. (1.11a, b)

in Eq. (1.9), one obtains:

D2
0x+ ω2

0x+ ε(2D0D1x+ γx3) +O(ε2) = 0. (1.12)

We seek an approximation of x(t) by expanding with respect to ε as:

x(t; ε) = x0 + εx1 +O(ε2). (1.13)
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Then by substituting Eq. (1.13) in Eq. (1.12) and by equating the coefficient of ε0 = 1 and ε, one

obtains:

D2
0x0 + ω2

0x0 = 0, (1.14a)

D2
0x1 + ω2

0x1 = −2D0D1x0 − γx3
0. (1.14b)

The obtained differential equations in (1.14a, b) are solved successively. The solution of the first

equation can be easily obtained as:

x0 = A(T1)eiω0T0 + c.c, (1.15)

where A(T1) is the unknown amplitude that depends solely on T1, i is the imaginary number, and c.c

denotes the complex conjugate. Then by substituting Eq. (1.15) in Eq. (1.14b), one obtains:

D2
0x1 + ω2

0x1 = (−2iω0D1A− 3γA2Ā)eiω0T0 − γA3e3iω0T0 + c.c. (1.16)

The most important step in the MSM derivation is to identify and then eliminate the so-called secular

terms in Eq. (1.16), which are the terms that express oscillations at the resonance frequency. Precisely,

they are the terms multiplying eiω0T0 . Eliminating those terms is essential since they force the system

at its resonance causing unbounded oscillations. Equating those terms to zero demands:

D1A = 3iγ
2ω0

A2Ā. (1.17)

In addition, upon eliminating the secular terms from Eq. (1.16), one can obtain x1 as :

x1 = γ

9ω2
0 − 1A

3e3iω0T0 + cc. (1.18)

At this step, it is convenient to use the polar form of A(T1) defined as:

A(T1) = 1
2a(T1)eiθ(T1), (1.19)

where a(T1) and θ(T1) are respectively the amplitude and the phase. Note that one can also use the

Cartesian form instead. Then by substituting the polar form in Eq. (1.15) and Eq. (1.18), x(t) can be

recovered from Eq. (1.13) as :

x(t; ε) = a cos(ω0t+ θ) + γ

4(9ω2
0 − 1)a

3 cos(3ω0t+ 3θ) +O(ε2). (1.20)

To obtain θ and a, the polar form is introduced in the secular condition presented in Eq. (1.17) .

By equating the real and imaginary parts, one arrives to the following modulation equations:

D1a = 0, (1.21a)

aD1θ = 3γ
8ω0

a3, (1.21b)
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Eq. (1.21a) suggest that a = a0 = constant while θ can be found by integrating Eq. (1.21b) to obtain

for a ̸= 0:

θ = 3γ
8ω0

a2T1 + θ0. (1.22)

Then, by substituting Eq. (1.22) in Eq. (1.20), the free solution to the first order of ε is expressed as:

x(t; ε) = a0 cos(ωnlt+ θ0) + γ

4(9ω2
0 − 1)a

3
0 cos(3ωnlt+ 3θ0) +O(ε2), (1.23)

where ωnl defines the backbone curve near the primary resonance as:

ωnl = ω0 + ε
3γ
8ω0

a2. (1.24)

One can realize that Eq. (7.14) predicts that if γ > 0, ωnl increases with the oscillation amplitude and

thus hardening behavior occurs, as predicted numerically in Fig. 1.5. However, if γ < 0, the opposite

occurs, and thus a softening behavior occurs. In addition, Eq. (1.23) suggests a contribution of the

third harmonic in the dynamics.

For the case of forced damped response, one can follow the same derivation steps to derive the

frequency responses of the steady-state amplitude a and phase angle θ of the first harmonic, which

are expressed as [72]:

Ω = ω0 + ε

[︄
3γ
8ω0

a2 ± 1
2

√︄
F 2

a2ω2
0

− µ2

]︄
, (1.25a)

tan θ = 1
2

µ

Ω − ω0 − 3γ
8ω0

a2 . (1.25b)

One can realize that the expression of the backbone curve presented in Eq. (7.14) can be obtained

by setting F = µ = 0 in the amplitude forced response in Eq. (1.25a) and by replacing Ω by ωnl.

Moreover, the same equation of the backbone curve can be obtained from the phase expression in

Eq. (1.25b) by setting the denominator to zero to obtain the phase resonance condition (i.e., θ = π/2).
This suggests that the backbone curve intersects the forced damped response at the phase resonance.

Note that this conclusion is very important for the detection of the backbones experimentally, but it

cannot be generalized since, for some cases (for example, in the free solution with 2:1 internal resonance

as suggested in chapter 4), the free and forced response do not intersect. In addition, stability analysis

can be established by identifying the eigen-values of the Jacobian matrix. In conclusion, the MSM

method is able to predict the main dynamics features of the free and forced solutions, with relatively

easy derivation, showing its ability to analyze weakly nonlinear systems. Note also that the steps

shown can be applied exactly in the same manner for more complicated problems such as analyzing

the features of the internal resonance suggested in our designed absorber.
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1.6.1.2 Normal form method

Normal form method is an approach that aims to analyze the nonlinear systems and their bifur-

cation topology by expressing their dynamics in the simplest form possible. It was introduced by

Poincaré [218] and Poincaré-Dulac [219] and reviewed through many introduction textbooks since

then [220], [221]. The normal form requires a nonlinear change of coordinates through a power series

expansion near a hyperbolic fixed point [222]–[225]. Then, the expansion coefficients can be freely

chosen, thanks to the method of free function [224], to cancel as much as possible the nonlinear terms,

specifically the nonresonant terms, to achieve a simplified system in the normal form basis [226]–[228].

Three types of normal form exist in the literature, the complex normal form [101], the real normal

form [229], and the fully real normal form [225]. The latter is the most suitable for oscillation prob-

lems, and thus it is used in our analysis (see chapter 4). In this context, two important theorems

govern the derivation of the normal that focus on the existence of an internal resonance condition,

which is important for the nonlinear analysis of the absorber dynamics illustrated in this work.

To present the two theorems, a general nonlinear system is considered and expressed as:

Ẋ = LX +
N∑︂

k=2
Gk(X), (1.26)

where X ∈ RN is the state vector. The term LX represents the linear part where L = diag(λN ) is an
N ×N matrix and λN is the eigen-value. Gk represents the nonlinear part with k denoting the order

of expansion (e.g., k = 2 denotes the quadratic nonlinearities and k = 3 denotes the cubic ones), and

N is the maximum order retained. The internal resonance condition can then be expressed as:

λi =
∑︂

j

pjλj with pj ∈ N∗ and
∑︂

j

pj = N. (1.27)

The first theorem (Poinacré theorem) states that in case there is no internal resonance presented in

the system, one can find a nonlinear transformation Y = X + H(Y ) that linearize the system in

Eq. (1.26) so that Ẏ = LY is obtained (i.e., all the nonlinear contributions of Gk are canceled). On

the other hand, the second theorem (Poincaré Dulac theorem) states that in the case of the internal

resonance, the linearization is not possible and the resonant nonlinear terms should be retained in the

normal form system. Thus, the cancellation is only possible for the nonresonant terms, leading to

simplify the initial system in Eq. (1.26). The latter theorem plays an important role in our analysis

(see chapter 4) of the nonlinear absorber exhibiting the 2:1 internal resonance.

In addition to its ability to simplify the dynamics, normal form has a strong relation with the

nonlinear normal modes since the introduced nonlinear transformation spans the dynamics on curved

invariant manifolds in the phase space that are tangent to the linear flat manifolds near the hyperbolic

fixed point [226], [227], [230]. Those two features (i.e., dynamics simplification and definition of the
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nonlinear normal modes) led the researchers to utilize this method to build efficient reduced order

models of the nonlinear systems through the finite element method with a lower number of modes

retained in the system to arrive for accurate results [231]–[233].

1.6.1.3 MANLAB

MANLAB is an interactive path-following and bifurcation analysis software implemented in a

MATLAB environment to compute the periodic solutions of the nonlinear dynamical system through

a numerical continuation. The continuation relies on the so-called Asymptotic Numerical Method

(ANM) combined with Fourier series expansion, known as the Harmonic Balance Method (HBM).

MANLAB is an open source code in which different versions are developed by several theses [234]–

[236] and available to download on the ”Laboratoire de Mécanique et d’Acoustique de Marseille”

website [237]. This software is the main numerical tool that has been used in this work, and thus its

basics will be introduced in this section. Note that in what follows, all the explanations are a summary

of the detailed works in [238]–[242].

We start by explaining the ANM, which is the basic method for the numerical continuation in

MANLAB. It is first introduced in [243], [244] as a continuation technique based on a high-order

Taylor series expansion of the unknowns with respect to a path parameter. The main aim of ANM is

to find a solution for the following N -dimensional algebraic system:

R(U , λ) = 0, (1.28)

where U ∈ RN , λ ∈ R is the continuation parameter, and R : RN×R −→ RN is a real analytic function

of its arguments which can be expressed as a combination of rotational and elementary transcendental

functions such as polynomials, exponential, trigonometric, log, etc... The analytic function assumption

means that the arguments of R should be smooth, otherwise a regularization procedure should be

introduced [245](refer to Appendix B in Sec. 6.2). Thanks to the implicit function theorem which

states that if R is continuously differentiable with respect to U and λ, and if the Jacobian J = ∂R
∂U is

invertible, there exist a differentiable function g such that:

g :
⃓⃓
⃓⃓
⃓
R −→ RN
λ ↦−→ g(λ) = U

(1.29)

Thus, the unknown U can be expressed as a function of the continuation parameter λ. However, some

issues can be presented with this representation, especially when the curve of U crosses a vertical

tangent with respect to λ. Classical example can be observed during the bifurcation analysis when a

saddle-node bifurcation occurs in the bifurcation diagram of U with λ considered as the bifurcation

parameter as shown in Fig. 1.14. To overcome this issue, a path parametrization procedure can be
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U
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Ũ0

Ũ(a)Ũ(a) − Ũ0

a
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Figure 1.14: Bifurcation diagram of U with respect to λ. The green dots denote the computations steps
boundary according to a. The red and orange dots denote respectively the saddle-node bifurcations
(SN) and Pitchfork bifurcations (PF).

introduced with respect to a scalar quantity a such that:
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

U = U(a)

λ = λ(a)

f(U , λ(a)) = 0

=⇒
⎧
⎨
⎩

R(U(a), λ(a)) = 0

f(U , λ(a)) = 0
(1.30)

Thus, new algebraic equations of size RN+1 are defined, which are not singular with respect to a. In

MANLAB, the pseudo-arclength parametrization is used, which leads to the definition of a as:

f(U , λ(a)) = 0 =⇒ a =
(︂
Ũ(a) − Ũ0

)︂T
Ũ1, (1.31)

where Ũ =
[︁
UT λ

]︁T
, Ũ0 = Ũ(a = 0), Ũ1 = ∂Ũ

∂a

⃓⃓
⃓
a=0

, and the superscript ”T” denotes transpose.

Upon defining the parametrization technique and thanks to the implicit function theorem assumptions,

Ũ can then be expanded as a power series with respect to a. According to the definition of Ũ , one

obtains:

U(a) =
P∑︂

k=0
akUk, (1.32a)

λ(a) =
P∑︂

k=0
akλk. (1.32b)

In practice, the power series is truncated to a given order P , which is commonly taken equal to 20.
The approach implemented in MANLAB to compute the unknowns Uk relies on quadratic recasting
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of Eq. (1.28) through the definition of auxiliary variables Ua ∈ RNa :

R
(︂
Ũ ,Ua

)︂
= R

(︂
W̃
)︂

= C + L
(︂
W̃
)︂

+ Q
(︂
W̃ , W̃

)︂
= 0, (1.33)

where W̃ =
[︂
Ũ ,Ua

]︂T
∈ RNf , with Nf = N +Na + 1, is the new unknown vector which is composed

of the initial vector Ũ and the auxiliary vector Ua so that the system will solely include nonlinearities

of quadratic type. C, L, and Q are, respectively, constant, linear and quadratic operators with values

in RNf . Note that Ua is expanded as Taylor series with respect to a in a similar manner to U in

Eq. (1.32a). Upon substituting the expansions of Ũ and Ua in Eq. (1.33) then balancing the coefficients

of ak for each order k ∈ [0, P ] and using the definition of a in Eq. (1.31), one arrives at a nonlinear

initial system at order a0 and P -linear equations at higher orders of a as follows:

Order a0 : R(W̃0) = 0

Order a1 :
{︄

J0W̃1 = 0
W̃T

1 W̃1 = 1

Order a2 :

⎧
⎨
⎩

J0W̃2 = −Q
(︂
W̃1, W̃1

)︂

W̃T
1 W̃2 = 0

Order a3 :

⎧
⎨
⎩

J0W̃3 = −
[︂
Q
(︂
W̃1, W̃1

)︂
+ Q

(︂
W̃2, W̃2

)︂
+ Q

(︂
W̃3, W̃3

)︂]︂

W̃T
1 W̃3 = 0

...
...

Order aP :

⎧
⎨
⎩

J0W̃P = −∑︁P−1
i=1 Q

(︂
W̃i, W̃P−i

)︂

W̃T
1 W̃P = 0

(1.34)

The terms
(︂
W̃0, W̃1, W̃2, W̃3, ..., W̃P

)︂
are the Taylor series coefficients of W̃ to be determined. J0 =

∂R
∂W̃

⃓⃓
⃓
W̃0

is denoted by the stiffness matrix which appears in the all P linear systems at orders of a

higher than zero. Thus, computing the initial vector W̃0 and the matrix J0 is necessary to obtain

the Taylor coefficients at higher orders. In MANLAB, this is established through an initialization

procedure using the Newton-Raphson method [246], which can be modified at each solution branch.

One must also note that the defined power series with respect to a admits a radius of convergence

that defines the range of utility of the series by a maximum value of a, denoted by amax, defined by:

∀a ∈ [0 amax], ∥R
(︂
W̃ (a)

)︂
∥ ≤ ε, (1.35)

where ε is a tolerance parameter defined by the user which remains constant at each computation step

of the solution branches while amax is automatically computed. Note also that the complete branch of
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solutions (i.e., each local branch bounded by two green points in Fig. 1.14) is obtained by successive

power series, meaning that the series is initiated such that its first point equals the last point of the

previous one. With this process, the zeroth order R(W̃0) = 0 is always satisfied, up to the chosen

tolerance ε.

In this work, we are interested in using MANLAB to estimate the periodic responses of nonlinear

oscillatory problems so that the nonlinear dynamics of our designed absorbers (i.e. nonlinear forced

frequency response, stabilities, bifurcations, backbone curves etc...) can be determined. To explain the

implementation of such a problems in MANLAB, we consider a simple example which is the simple

Duffing oscillator in Eq. 1.9. The main preliminary step is to expand the unknown x(t) (assumed

periodic with period 2π/ω with ω the angular frequency) in the form of a truncated Fourier series up

to harmonic H ∈ N as:

x(t) = x0 +
H∑︂

k=1
(xck cos kωt+ xsk sin kωt) , (1.36)

where x0, xc, and xs are the Fourier coefficients of x(t). Then by substituting x(t) in Eq. (1.9) and

balancing the 2H + 1 harmonic terms (i.e., use the harmonic balance method (HBM)), one arrives at

an algebraic system of the form:

R(X, ω, λ) = 0, (1.37)

where X ∈ RNt is a vector containing all the Fourier coefficients. Nt = Ndof(2H + 1) with Ndof is the

number of degrees of freedom which is one in our simple case. R : RNt ×R2 −→ RNt is a real analytic

function that defines the residual of the HBM. Thus, one can realize that we arrived at an algebraic

system similar to that in Eq. 1.28 which can be solved by ANM by the same steps discussed above. In

other words, the role of the HBM is to transform the nonlinear differential system into an algebraic

system that is suitable to be solved with ANM using MANLAB. The main difference is the appearance

of an additional unknown ω, and thus an additional equation is required.

To determine this additional equation, we consider two different cases, the forced response and

the free response, where the latter is used to determine the backbone curves. In the former case, the

computation is straightforward by setting ω = Ω = λ as the new equation (i.e., Ω is the bifurcation

parameter, and thus the frequency response can be directly determined). However, for the free response

it can be more complicated since in this case, Ω is not defined and the system is autonomous and

conservative. The autonomous nature of the system then requires defining a phase condition which is

necessary to achieve a unique solution for the periodic orbit [247]. Note that for the forced response

case, one can consider the bifurcation parameter to be the excitation amplitude (i.e., λ = F ) or the

nonlinear coefficient (i.e., λ = γ) by fixing Ω at a certain excitation frequency in either case.

Implementing the nonlinear differential equations in MANLAB should be done in the first order
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Results Visualization: stability, bifurcations, etc...

Main code: 
- define the equations
- number of harmonics
- auxiliary variables
- tolerance
- initialization

Interactive interface:
- branches calculations
- export data
- choose tolerance
- continuation of the bifurcated branches

Information about the simulations:: 
- residuals
- bifurcation type
- convergence

Figure 1.15: MANLAB interface.

after performing the quadratic recast in the form of the algebraic system presented in Eq. (1.33). In

the older versions of MANLAB, the operators C, L, and Q should be defined explicitly; however, for

the recent version used in this work, it is enough to only define the first order form of the nonlinear

system with the auxiliary condition with non-explicit definition of the operators. For example, the

forced Duffing oscillator in Eq.(1.33) is implemented by including three variable (x, v, w) such that:

⎧
⎪⎪⎨
⎪⎪⎩

ẋ = v,

v̇ = F cos Ωt− ω2
0x− 2ξω0v − γxw,

0 = w − x2

(1.38a)

(1.38b)

(1.38c)

where λ = Ω and w defines the auxiliary variable introduced for the quadratic recast.
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For the free solution case, the implementation can be done as follows:

⎧
⎪⎪⎨
⎪⎪⎩

ẋ = v,

v̇ = −ω2
0x− λv − γxw,

0 = w − x2

(1.39a)

(1.39b)

(1.39c)

Note that the term λv is kept in the equation to avoid an overdetermined system with the phase

resonance condition because the latter condition is implicit in MANLAB [247], [248]. Thus λ can be

considered as a fictitious bifurcation parameter with λ ≃ 0 to consider an undamped case. Examples

of the free and forced response of the Duffing equation solved with MANLAB can be found in Fig. 1.5.

One can also refer to Fig. 1.15 that shows the MANLAB interface. Regarding the stability computation

with MANLAB, it is based on the computation of the Floquet exponents in the frequency domain

with a Hill eigenvalue problem. The stability analysis is beyond the scope of this brief introduction,

but one can refer to [249] for further explanation.

1.6.2 Experimental methods

Experimental vibration analysis is widely studied in the literature in terms of measurement proce-

dures, signal processing, vibration noise, and data post-processing. An essential tool in experimental

vibrations is the experimental modal analysis which is a technique used to estimate the modal model

of the linear time-invariant systems [250]. The main tool used for the modal analysis is the frequency

response function (FRF) which is defined as the ratio between the output signal (i.e., the measured

signal such as the displacement or the velocity) to the input signal (i.e., the excitation), expressed in

the Fourier domain. Experimental FRFs can be estimated by measuring the desired output through

various methods such as shock excitation or continuous chirp signal excitation [251]. The input and

output data are usually transferred to data acquisition systems that use dedicated algorithms such as

fast Fourier transformation (FFT). Upon estimating the FRFs, the natural frequencies and the modal

damping ratios can be directly extracted for the oscillation modes in a certain frequency spectrum.

In addition, the FRF characterizes the whole dynamical behavior of the linear system (i.e., when the

nonlinearities are not involved).

When nonlinearities are involved in the vibration system, the classical methods to identify the

FRFs can not be utilized since the superposition principle does not extend to the nonlinear theory.

Indeed, those methods lack the ability to identify the dynamics behavior, such as the ones depicted

in the nonlinear frequency response shown in Fig. 1.5, which undergoes bifurcation and change of

stability. The experimental determination of the nonlinear frequency response, which is the linear

extension of the linear FRF, can be categorized into two families, which are the open and close loop

methods.

40



1.7. RESEARCH AIMS AND CHALLENGES

Open loop methods are the simplest methods that do not require any feedback to the input.

Measuring the frequency response with such methods is point-wise, meaning that a single excitation

frequency should be identified at each step in a certain frequency spectrum, keeping the excitation level

fixed throughout the measurement. Example of such method is the stepped sine method (SSM) [142]

which is the one used in the experimental validations in this work (see chapters 3, 5, and 6). The main

procedure involves exciting the system at different excitation frequencies and constant forcing levels.

At each excitation frequency, the time histories of the output signals are measured and post-processed

to compute the amplitude and the phase angles frequency responses. Since the possible appearance of

multi-harmonic response due to the nonlinearities, the frequency response should be measured for each

harmonic separately. This can be performed through a homodyne detection [252] (or demodulation

technique). Two main limitations of the SSM can be summarized as: i) the SSM is usually slow,

especially for large transient states with very small damping. ii) SSM cannot identify the unstable

responses since the basin of attraction near a bifurcation point shrinks, leading to a jump phenomenon

to a stable periodic orbit [73].

Closed loop methods are introduced to achieve faster experiments and identify the unstable periodic

orbits and the backbone curves. Examples of such method are the phase lock loop (PLL) [253], [254],

control-based continuation (CBC) [255], and response-controlled stepped-sine testing (RCT) [256].

The common feature between those methods is that they use a control strategy through feedback to

the input signal. For example, the PLL enables the measurements of the backbone curves by sweeping

the excitation amplitude and prescribing the phase resonance condition, and the error between the

measured and prescribed phase is feedbacked to an integral controller. In the same manner, the stable

and unstable forced responses are obtained by sweeping the phase lag between the measured and the

input signals, keeping the excitation amplitude constant.

1.7 Research aims and challenges

The main research idea is about designing piezoelectric shunt absorbers that exploit nonlinear fea-

tures, in particular the saturation phenomenon, to enhance the vibration attenuation of the hydrofoils.

In this context, there are two main aims of this research summarized as follows:

� Propose different design strategies of the nonlinear piezoelectric shunt absorbers that enable to

exploit the nonlinear features efficiently to enhance the attenuation. Two types of nonlineari-

ties will be realized, namely smooth nonlinearities (cubic and quadratic) and nonsmooth ones

(realized with a diode). Theoretical analysis and a parametric study are performed to conclude

a guideline for a practical implementation that includes the main advantages, constraints, and

limitations.
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� The second aim is to validate experimentally the designed absorber on a real hydrofoil structure,

in a laboratory setup. The experimental validation includes experimental modal analysis of

the electro-mechanical modal system, the design of the nonlinear shunt circuit, and nonlinear

frequency response estimation.

� The saturation phenomenon represents the core idea of our proposed absorbers. This thesis aims

to design electro-mechanical nonlinear absorbers with piezoelectric transduction that exploits

this feature but in a passive or semi-passive methodology. Namely, instead of following the

control strategies as in [147]–[151] that involved displacement or velocity feedbacks with active

controllers. The main challenge in our design is to be able to sustain the passive feature of

the shunt design, thanks to the piezoelectric ability of intrinsic sensing and actuating. Indeed,

the necessary nonlinearities that should be introduced to the system will involve the electric

quantities, such as the voltage across the piezoelectric patch. Although it is easier to be measured

in practice, it can generate more complicated dynamics. Thus, we aim to obtain shunt circuits

that are capable of sustaining high voltage and current limits and tuned to overcome different

issues that can be a result of preserving the passive feature of the absorber.

1.8 Dissertation Overview

This dissertation is a collection of articles accepted/submitted to peer-reviewed journal articles.

Each article represents a chapter on its own. An overview of the dissertation content is summarized

as follows:

� Chapter 2 is devoted to presenting the theoretical model of a semi-passive nonlinear piezoelec-

tric shunt absorber exhibiting a saturation phenomenon through a 2:1 internal resonance tuning.

Two possible implementations of the quadratic nonlinearities are proposed, and the main gov-

erning equations for each case are presented and analyzed through an electro-mechanical modal

expansion. An analytical and numerical analysis has been established to study the effect of the

design parameters on the response. An antiresonance correction is also proposed to correct the

saturation that is violated due to the complex dynamics suggested by the nonresonant quadratic

terms. Such nonresonant terms appear as a consequence of the piezoelectric coupling which

admit high value compared to the resonant terms in (1.2a,b) and thus breaking the symmetry

of the typical response in Fig. 1.6. In the end, the absorber is numerically applied to a beam

structure, and a guideline for the absorber design is then illustrated.

� Chapter 3 shows the experimental validation of the results suggested in chapter 2 by applying the

absorber to damp the first vibration mode of a cantilever beam. The experimental measurement

protocol and the experimental electro-mechanical modal analysis are illustrated. In addition, the
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design of the nonlinear shunt circuit is shown. The measured frequency response is compared with

the numerical ones. The suggested antiresonance correction in chapter 2 is tested experimentally

thanks to a locking property of the phase angle between the two mechanical and electrical

oscillators. Thanks to the saturation phenomenon, shown in Fig. 1.6, higher attenuation is

achieved compared to that of an optimized linear absorber but less efficient for broadband

attenuation due to the existence of an additional peak near the primary resonance.

� Since the nonresonant quadratic terms lead to a symmetry breaking and lack of performance

of the absorber, chapter 4 shows the analysis of a two degree of freedom system that considers

quadratic and cubic nonlinearities using the normal form method. This method enables the

appearance of the quadratic nonresonant terms as cubic terms in the normal form basis that

perturbates the symmetrical behavior of the dynamics. The dynamics is analyzed analytically

and numerically, and closed-form expressions of the backbone curves are presented. In addition,

the relation between the free and forced solutions is presented, and the representation of the

dynamics with 2 :1 internal resonance on the invariant manifolds is illustrated. Finally and most

importantly, a saturation correction is presented by properly tuning the cubic nonlinearities to

cancel the effects of the quadratic nonresonant terms.

� Chapter 5 uses the cubic tuning suggested in chapter 4 to estimate the cubic nonlinear gain to

be added to the shunt circuit. This technique is tested experimentally on a hydrofoil structure

to damp its first bending mode. Through this study, the experimental protocol is detailed

in addition to the design of the nonlinear shunt circuit. The measured frequency response is

compared with the numerical ones validating the proposed technique in preserving the saturation

up to high excitation levels, and thus enhancing the attenuation.

� Chapter 6 illustrates the theoretical design of the nonlinear shunt absorber with a nonsmooth

component. The nonsmooth component is set to be proportional to the superposition of the

piezoelectric voltage and its absolute value function. The main idea is to utilize the nonsmooth

gain to tune the electrical frequency. In addition, introducing a nonsmooth term can create even

harmonics if it is not symmetric in the same way as quadratic nonlinearities. The idea is therefore

to introduce in series with the piezoelectric, a semi-rectified voltage driven by its own voltage, and

modulated by a gain to weight its effects. The nonsmooth component can be realized in practice

in a passive manner using a diode or a transistor. Two possible tunings, namely 1:1 and 1:2

tunings between the electrical and the mechanical resonance frequencies, are considered, showing

a similar behavior compared to a linear resonant shunt. The main advantage is the ability to

set a much lower inductance required for the optimal tuning, and richer dynamics is observed

including strong nonlinear coupling between the electrical and the mechanical modes through

a 2:1 internal resonance associated with the 2:1 tuning case. We also present the experimental
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validation of the proposed absorber in which both tunings are considered. The shunt circuit is

illustrated in which the nonsmooth component is realized with a half-wave rectifier circuit that

includes a diode. The absorber is applied to damp the first twisting mode of the hydrofoil, and

the experimental frequency response curves are shown to validate the numerical predictions.
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Chapter 2

Theoretical modeling of the nonlinear shunt
absorber with quadratic nonlinearity

Contenu

2.1 Article presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2 A nonlinear piezoelectric shunt absorber with a 2:1 internal resonance: Theory . . . . 46

2.1 Article presentation

The present chapter solely constitutes of the text of the article entitled by ”A nonlinear piezo-

electric shunt absorber with a 2:1 internal resonance: Theory” published in ”Mechanical system and

system processing (MSSP)” journal. The article illustrates the theoretical analysis of a semi-passive

nonlinear piezoelectric shunt absorber to attenuate the vibrations of an elastic structure under ex-

ternal excitation. The absorber consists of a resonant circuit with a nonlinear quadratic component

intentionally added to activate the two-to-one (2:1) internal resonance. Such a particular type of

internal resonance additionally requires tuning the electrical resonance frequency close to half of the

mechanical frequency of the structure mode to be attenuated. The main feature that we aim to exploit

is the resulting saturation phenomenon in which the mechanical displacement becomes independent

of the excitation level, above a threshold forcing, leading to a high vibration reduction.

The main governing equations of the electro-mechanical system are obtained by truncating the

displacement on the mode to be attenuated, leading to a two degrees of freedom system where the

unknowns are the displacement and the charge in the piezoelectric electrode. Two design architectures

regarding the nonlinear component were then studied. The first requires a nonlinearity proportional

to the square of the charge in the piezoelectric electrode (Vnl = βQ2), while the other is designed

such that the nonlinearity is proportional to the square of the voltage across the piezoelectric patch
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(Vnl = βV 2). The two choices are examined by expanding the equations on an electro-mechanical

basis characterizing the mechanical and the electrical behaviors. The expansion led to a two degree

of freedom system exhibiting nonlinear coupling with two resonant quadratic terms (similar to that

studied in Sec. 1.4.3) and four nonresonant terms. The nonresonant terms are unavoidable due to the

piezoelectric coupling and the passive nature of the absorber.

The multiple scales method is then adopted to obtain a closed form expression by neglecting the

effect of the nonresonant terms. The obtained expressions described the appearance of an antiresonance

that replaces the primary resonance of the excited mode associated with a saturation phenomenon. In

addition, the results suggested the energy transfer to the subharmonic of the electrical mode.

A parametric study is then established to study the effect of the design parameters, namely the

electrical damping ratio ξe, the nonlinear gain β, and the tuning between the electrical and mechanical

frequencies, on the performance. The results showed the attenuation is proportional to kiβ/ξe where ki

is the electro-mechanical modal coupling factor of the i-th mode of the structure. Thus, for a constant

piezoelectric coupling, the attenuation can be enhanced by increasing the nonlinear gain and setting

a lower electrical damping ratio.

The physical system is solved numerically, showing a more complicated response and loss of satu-

ration due to a shift of the antiresonance as the excitation increases. In addition, the response curve

symmetry observed for the simplified system with the quadratic resonant terms is broken leading to

a kind of softening behavior. This is due to the influence of one of the nonresonant terms that admit

high value. Nevertheless, two features are preserved, the shifted antiresonance amplitude remains the

same and the the phase between the electrical and the mechanical modes is locked at 3π/2 at the

antiresonance frequency.

The absorber is then numerically applied to a beam structure, and the results showed that choosing

the nonlinearity to be proportional to the square of the voltage across the piezoelectric patch is

more practical. Taking into account this choice and using the proposed antiresonance correction, the

preserved saturation suggested a high vibration reduction, compared to the linear response. This is

because the saturation feature suggests a displacement amplitude independent of the excitation level.

In the end, a design guideline is illustrated to state the optimal selection of the design parameters.

2.2 A nonlinear piezoelectric shunt absorber with a 2:1 internal resonance:
Theory
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A B S T R A C T

In this paper, a semi-passive nonlinear piezoelectric shunt absorber is presented, aiming at
attenuating the vibration of a resonant elastic structure under external excitation. This is done
by connecting the elastic structure to a nonlinear shunt circuit via a piezoelectric patch. The
nonlinear shunt circuit consists of resonant circuit that includes a quadratic non-linearity. A
particular tuning of the natural frequency of the shunt enables to create a two to one internal
resonance. This generates a strong coupling between the mechanical mode and the electrical
mode, leading to replace the mechanical resonance with a nonlinear antiresonance associated
with an amplitude saturation, thus leading to an efficient vibration reduction. In this paper,
we first propose a theoretical model that is expanded onto a suitable electromechanical modal
basis and reduced to the two modes of interest, nonlinearly coupled by quadratic terms. Then,
analytical solutions are obtained by the multiple scale method and compared to a reference
numerical solutions stemming from the harmonic balance method. This enables to investigate
the performance of the system in term of vibration absorption as well as giving design rules to
tune the nonlinear shunt and to choose the free parameters of the system.

1. Introduction

Vibration reduction is an important research field in many engineering applications, especially in the industrial machine design
and in the sectors where lightweight structures can be used. One of the efficient strategies that took a wide range of interest the
past 20 years is the electrical shunt damping family of techniques, due to its efficient vibration attenuation properties and to its ease
of set and control. It consists in using an electromechanical transducer to convert the vibratory energy of the host structure into
electrical energy in a dedicated electronic circuit, designed to dissipate it and/or to counteract the structure’s vibrations. Depending
on the physics of the transducer, piezoelectric or electromagnetic, shunts have been proposed in the pioneering works [1,2] and
have been addressed in a huge number of contribution since (see [3,4] and reference therein). Contrary to active control for which
independent sensors and actuator are connected in closed loop, the shunt principle consists in using a single transducer, that serves
as sensor and actuator at the same time when connected to a suitable electronic circuit. In most shunt architectures, the system is
unconditionally stable, contrary to active control strategies.

A large majority of shunts are linear, the simplest architecture being the electromechanical analogs of mechanical dynamical
dampers such as Frahm (also called dynamic vibration absorber, DVA) or Lanchester dampers [5,6], also called respectively resonant
and resistive shunts [7]. In the case of a piezoelectric transducer, equivalent to a capacitor 𝐶, the resonant shunt consists in using a
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simple inductor 𝐿 as electronic circuit (and eventually an additional resistor 𝑅) to obtain a resonant 𝑅𝐶 (𝑅𝐿𝐶) circuit coupled to
a given mode of the primary mechanical structure [7,8]. More complex architectures can include a negative impedance to improve
the performances [9] or be based on periodic piezoelectric transducers architectures for multimode damping [10].

However, it might be interesting to benefit from special dynamical phenomenon related to nonlinearities, examples of which are
given in the recent reviews [11,12]. In the field of nonlinear absorbers, several families of strategies have been proposed in the past,
firstly using mechanical devices and then being sometimes transposed to electromechanical analogs. The first family of absorbers,
currently known as ‘‘nonlinear energy sinks’’ (NES) and using the so-called principle of ‘‘targeted energy transfer’’, was originally
proposed in 2001 [13]. In the original concept, it consisted in attaching to a primary linear structure an essentially nonlinear
oscillator into which the vibratory energy is transferred and localized. Because of the essentially nonlinear properties of the absorber,
its free oscillation frequency strongly depends on the amplitude of the motion and there is always an amplitude for which the two
oscillators lock in frequency, leading to an irreversible energy transfer (precisely through a one to one internal resonance). Since
then, a huge amount of works emerged (more than one hundred selected publication are mentioned in the recent review [14]).
We cite here some of them, relevant to us because they explain the design rules and propose several types of nonlinearities: [15]
for cubic spring smooth stiffness, [16] for polynomial magnetic stiffness, [17] for a bistable stiffness and [18] for vibro-impact
nonlinearities. The extension of the mechanical NES to piezoelectric devices has been theoretically proposed in [19] and recently
realized, for the first time, with an analog circuitry (using multipliers) in [20]. It was also recently proposed in [21] in an active
control philosophy, using force feedback.

A second family is the one of the so-called ‘‘nonlinear tuned vibration absorbers’’ (NLTVA), introduced in [22], that are a
generalization of the classical DVA adapted for primary structures which have nonlinearities. Indeed, those nonlinearities, in most
cases, lead to a dependence of the characteristic frequencies (free oscillations, resonance, antiresonance. . . ) upon the amplitude of
the motion. Consequently, a DVA, which has to be tuned to a particular fixed frequency, will correctly work on a limited range of
amplitude. In contrary, the NLTVA is designed to present nonlinearities similar to those of the primary system. It is then naturally
able to adapt itself to the dynamics of the primary structure for a large amplitude range. Since the pioneering work [22], the principle
has been investigated in several studies using mechanical absorbers (see [23] and reference therein). The extension of NLTVA to
piezoelectric shunts has been theoretically proposed in [24] and experimentally demonstrated in [25] with passive only electronic
components and in [26] with a digital signal processor connected to the piezoelectric patches by analog electronic interfaces made
of operational amplifiers.

The third family of nonlinear absorbers is composed of the synchronized switch damping (SSD) strategies. They consist in
switching the electromechanical transducer on two distinct shunt impedances, synchronously with the oscillations of the host
structure. This idea was initially proposed in [27,28] for piezoelectric transduction and developed in numerous contributions since
then (see [29] for a recent review). Those SSD techniques are adaptive, intrinsically stable, require low power but their effect can be
viewed as a resonance peak reduction, proportional to the excitation amplitude, similarly to traditional resistive or resonant shunts,
with higher performance for one degree of freedom host structure [30].

The fourth family of nonlinear absorbers is based on the use of internal resonances. In a nonlinear system, if the ratio of two
modal frequencies 𝜔𝑖 and 𝜔𝑗 is a rational number, namely 𝑞𝜔𝑖 ≃ 𝑝𝜔𝑗 with 𝑝, 𝑞 ∈ N∗, a strong coupling between the two corresponding
modes can occur, leading to particular exchanges of energy between the modes. This is called a 𝑝:𝑞 internal resonance and (𝜔𝑖, 𝜔𝑗)
can be the (linear) natural frequencies of the modes as well as there nonlinear extension (the frequencies of the nonlinear modes,
that depend on the amplitude of the motion). On the first case, the internal resonance is observed at low amplitude and is often
a consequence of a particular geometry, obtained with symmetries (1:1 internal resonance are encountered in beams/strings of
symmetric cross section [31], in circular/square plates [32,33], in cylindrical shells [34] and spherical caps [35]) or by intentional
tuning, in musical instruments (1:2, 1:2:4 and 1:2:2:4:4:8 internal resonances are encountered in gongs and steel-pans [36,37]) or
in micro-systems applications [38–40]. In the second case of an internal resonance with the nonlinear free oscillation frequencies,
the coupling appear at larger amplitude, when the change of frequencies due to the amplitude of the motion is compatible with the
frequency relationship (see e.g. [41,42]).

When two modes of a system with quadratic nonlinearities fulfills a 1:2 internal resonance (𝜔2 ≃ 2𝜔1), the modal coupling
leads to energy exchanges that occur at different frequencies (if the energy is injected to the second mode resonance near 𝜔2, it is
transferred to the first mode at half the driving frequency. On the contrary if the first mode is resonantly driven near 𝜔1, the energy
is transferred to the second mode at twice the driving frequency, near 𝜔2 ≃ 2𝜔1. To signify the energy transfer, those two cases
a sometimes called 2:1 and 1:2 internal resonances, respectively) and that leads to a significant reduction of the amplitude of the
driven mode. Moreover, a saturation phenomenon is theoretically predicted in the first case, for which the amplitude of the driven
mode becomes independent of the forcing amplitude above a threshold, whereas in the second case, a quasi-periodic regime is
obtained at resonance [43]. This leads to the idea of intentionally designing a resonant absorber with quadratic nonlinearities tuned
to half the frequency of one mode of the primary structure, to beneficiate of the saturation phenomenon. In mechanical systems,
this leads to the concept of autoparametric vibration absorbers, firstly proposed in [44] and addressed in many contributions since
then (see [45,46] and references therein). The use of a 2:1 internal resonance to design an electromechanical control system has
been proposed in many works. A first family of works proposes the vibration reduction of an elastic beam by the active control of
the rotation of a direct current (DC) motor (see [47,48] in which the controller is an analog electronic circuit made of multipliers).
Then, this technique has been extended to piezoelectric actuators in [49] with also an analog circuit with multipliers. Then, the
same concept has been applied with a real time digital controller to several structures (a beam and a truss in [50] and a triangular
panel in [51]), with design guidelines exposed in [52]. The same authors also tried a 1:2:4 internal resonance in [53].
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Fig. 1. Nonlinear shunt circuit.

All the above internal resonance based contributions can be related to active control. Indeed, they rely on the use of separate
sensor and actuator linked with a controller (analog or digital), in which the nonlinearities and the additional degree of freedom
are implemented and tuned. To our knowledge, no attempt on implementing a 2:1 internal resonance with a piezoelectric shunt
has been published and this article aims at filling this gap. It is worth citing that other internal resonances have been tested: a
1:1 internal resonance in [54] as well as in the already considered NES contribution [20]. A 1:3 internal resonance between two
modes of a PZT cantilever beam has been investigated in [55]. It is also worth citing [56,57], which propose strategies to implement
electrical circuits analog to particular nonlinear oscillators, using multipliers.

In this paper, we propose a new semi-passive vibration attenuation approach based on a nonlinear piezoelectric shunt. Indeed,
we test the simple idea of connecting, thanks to a piezoelectric transducer, a linear vibrating structure to a resonant electronic
circuit in which a quadratic nonlinearity is intentionally introduced. We then add a new vibration mode in the system, that can be
tuned to obtain a 2:1 internal resonance. We target creating a nonlinear antiresonance in place of the resonance of the mechanical
mode as well as a saturation phenomenon. We also test two type of quadratic nonlinearities: one which is equivalent to a nonlinear
capacitor, for which the electric charge is proportional to the square of the voltage, and a second one which is simply a voltage
source proportional to the square of the voltage at the terminals of the piezoelectric element. In this paper, we restrict ourselves to
the theory, the experimental proof of concept being postponed to an incoming article.

The outline of this paper follows. In Section 2, a model of the mechanical structure coupled to the nonlinear electric circuit is
proposed, leading to a reduced model composed of two electromechanical modes coupled by quadratic terms. In Section 3, closed
form approximated expressions for the amplitude and the phases of the two modes are obtained with the method of multiple scales
(MMS) and the effect of several design parameters is studied. In Section 4, those results are compared to a reference solution obtained
by a numerical continuation method to analyze the effect of the non-resonant nonlinear terms of the system. In Section 5, the results
are applied to design a test case of a nonlinear piezoelectric absorber coupled to the first bending mode of a cantilever beam with
piezoelectric patches. Some general guidelines are given in the last two sections.

2. Governing equations

We consider an arbitrary elastic structure subjected to a mechanical harmonic excitation and connected to a nonlinear resonant
shunt circuit through a piezoelectric element, as shown in Fig. 1. If we discretize the displacement field of the elastic structure in
a finite-element context, the equations of motions can be written [58]:

𝑴𝒖̈ +𝑲𝒖 +𝑲𝑐𝑉 = 𝑭 cos𝛺𝑡, (1a)

𝐶p𝑉 −𝑄 −𝑲T
𝑐 𝒖 = 0, (1b)

𝑉 + 𝐿𝑄̈ + 𝑅𝑄̇ + 𝑉nl = 0, (1c)

where 𝒖(𝑡) is the mechanical displacement vector of size 𝑁 ∈ N at time 𝑡, 𝑉 (𝑡) is the voltage at the terminals of the piezoelectric
element, 𝑄(𝑡) is the charge in one of its electrodes, 𝑴 and 𝑲 are the mass and stiffness matrices, of size 𝑁 × 𝑁 , 𝑲𝑐 is the
electromechanical coupling vector, of size 𝑁 , 𝑭 is the external excitation vector, of size 𝑁 , 𝛺 is the driving frequency, 𝐶p is the
blocked capacitance of the piezoelectric patch, 𝐿 and 𝑅 are the inductance and the resistance in the shunt circuit and 𝑉nl(𝑡) represents
the nonlinear voltage added to the shunt circuit.

We propose in this text to investigate the following two choices for 𝑉nl:{
𝛽1𝑄2, (a)
𝛽2𝑉 2, (b)

(2)

where 𝛽𝑖 (𝑖 = 1, 2) are constant parameters. The first case, Eq. (2)a, can be viewed as a nonlinear capacitor for which the inverse of
its capacitance 𝐶nl depends linearly on the amplitude of the charge: 𝑉nl = 𝑄∕𝐶nl with 𝐶nl = 1∕(𝛽1𝑄). The unit of 𝛽1 is V∕C2. This
choice is driven by the mechanical nonlinear absorbers, for which their stiffness is nonlinear. The second case, Eq. (2)b, is simply
a voltage source that is proportional to the square of the voltage 𝑉 (𝑡) at the terminals of the piezoelectric patch, since in practice
this voltage is easily monitored. The units of 𝛽2 is V−1. Those kind of nonlinearities can be obtained in practice by analog circuits
with multipliers [20] or with a digital real time controller [26]. In the following, to simplify the mathematical expressions, 𝛽 will
be written with no index when not necessary.
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2.1. Modal expansion

We consider the natural modes (𝜔̆𝑖,𝜱𝑖), 𝑖 = 1,… , 𝑁 , of the mechanical structure with the piezoelectric element in short circuit
(𝑉 = 0), solutions of:

(
𝑲 − 𝜔̆2

𝑖𝑴
)
𝜱𝑖 = 𝟎. (3)

We expand the mechanical displacement vector on this modal basis, truncated to the 𝑖th mode only:

𝒖(𝑡) = 𝜱𝑖𝑞𝑖(𝑡), (4)

where 𝑞𝑖(𝑡) is the 𝑖th modal coordinate. This one mode assumption is valid as long as the other modes natural frequencies are far
enough from 𝜔̆𝑖 and from internal resonance relations with 𝜔̆𝑖. The initial problem (1)a,b is then equivalent to, for all 𝑖 = 1,… , 𝑁 :

𝑞𝑖 + 𝜔̆2
𝑖 𝑞𝑖 +

𝜃𝑖
𝑚𝑖

𝑉 =
𝐹𝑖
𝑚𝑖

cos𝛺𝑡, (5a)

𝐶p𝑖𝑉 −𝑄 − 𝜃𝑖𝑞𝑖 = 0 (5b)

where 𝑚𝑖 = 𝜱T
𝑖 𝑴𝜱𝑖 is the 𝑖th modal mass, 𝐹𝑖 = 𝜱T

𝑖 𝑭 is the 𝑖th modal forcing and 𝜃𝑖 = 𝜱T
𝑖 𝑲𝑐 is the 𝑖th modal piezoelectric coupling

coefficient. As explained in [59], 𝐶p𝑖 is the effective capacitance of the piezoelectric patch in the vicinity of the 𝑖th resonance, which
takes into account the static effect of all the other modes than the 𝑖th one. The above one degree of freedom model is then valid
for a resonant motion of the system around its 𝑖th mode, namely by forcing around its natural frequency (𝛺 ≃ 𝜔𝑖).

Using Eq. (5)b to eliminate the piezoelectric voltage 𝑉 in Eqs. (5)a and (1)c, one obtains a problem in term of (𝑞𝑖, 𝑄) as unknowns:

𝑞𝑖 + 2𝜉𝑖𝜔̂𝑖𝑞̇𝑖 + 𝜔̂2
𝑖 𝑞𝑖 +

𝜃𝑖
𝑚𝑖𝐶p𝑖

𝑄 =
𝐹𝑖
𝑚𝑖

cos𝛺𝑡, (6a)

𝑄̈ + 2𝜉𝑒𝜔𝑒𝑄̇ + 𝜔2
𝑒𝑄 +

𝜃𝑖
𝐿𝐶p𝑖

𝑞𝑖 +
𝑉𝑛𝑙
𝐿

= 0, (6b)

where 𝜔̂2
𝑖 = 𝜔2

𝑖 + 𝜃2𝑖 ∕(𝐶p𝑖𝑚𝑖) is an approximation (because of the one mode expansion) of the 𝑖th open circuit natural frequency.
A mechanical modal viscous damping term of factor 𝜉𝑖 has been added. In addition, the electrical natural frequency and damping
factor are defined by:

𝜔𝑒 =
1√
𝐿𝐶p𝑖

, 𝜉𝑒 =
𝑅
2

√
𝐶p𝑖

𝐿
(7)

We also define the dimensionless electromechanical modal coupling factor (EMMCF) of the 𝑖th mode as:

𝑘2𝑖 =
𝜔̂2
𝑖 − 𝜔̆2

𝑖

𝜔̂2
𝑖

=
𝜃2𝑖

𝜔̂2
𝑖 𝐶p𝑖𝑚𝑖

. (8)

Notice that its denominator is the open circuit natural frequency, following the IEEE standard [60] and because it simplifies the
upcoming calculations. This is a different choice than in [58], where the short-circuit natural frequency was chosen, which gives a
slightly different value of the EMMCF.

To simplify the writing of the governing equations (6)a,b, we define the following parameters:

𝜏 = 𝜔̂𝑖𝑡, 𝑞𝑖 =
√
𝑚𝑖𝑞𝑖, 𝑄̄ =

√
𝐿𝑄, 𝑟𝑖 =

𝜔𝑒
𝜔̂𝑖

, (9a)

𝐹𝑖 =
𝐹𝑖

𝜔̂2
𝑖
√
𝑚𝑖

𝑉nl =
𝑉nl

𝜔̂2
𝑖

√
𝐿

𝛺̄ = 𝛺
𝜔̂𝑖

(9b)

in order to obtain:

̈̄𝑞𝑖 + 2𝜉𝑖 ̇̄𝑞𝑖 + 𝑞𝑖 + 𝑘𝑖𝑟𝑖𝑄̄ = 𝐹𝑖 cos 𝛺̄𝜏, (10a)
̈̄𝑄 + 2𝜉𝑒𝑟𝑖 ̇̄𝑄 + 𝑟2𝑖 𝑄̄ + 𝑘𝑖𝑟𝑖𝑞𝑖 + 𝑉nl = 0, (10b)

where the derivatives in Eq. (10) are with respect to the dimensionless time 𝜏. The time has been rescaled by the open circuit
natural frequency 𝜔̂𝑖 and we use a special scaling of the unknowns, so that (𝑞𝑖, 𝑄̄) share the same dimension (mkg1∕2), to obtain the
same coupling parameter 𝑘𝑖𝑟𝑖 in both equations, with 𝑟𝑖 the ratio of the electrical and mechanical natural frequencies. To prove that
(𝑞𝑖, 𝑄̄) share the same dimension, remember that energy units can be equivalently J, Nm or CV. Since the time 𝜏 is dimensionless,
the units of 𝐹𝑖 and 𝑉𝑛𝑙 are the same as (𝑞𝑖, 𝑄̄): mkg1∕2.

2.2. Electro-mechanical modal expansion

The two degrees of freedom (𝑞𝑖, 𝑄̄) of Eq. (10)a,b are linearly coupled because of the piezoelectric coupling 𝑘𝑖. It is then possible
to obtain a new system with diagonal linear part by expanding the unknowns onto the electromechanical modal basis (𝜔𝑘,𝜳 𝑘) of
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Fig. 2. (left) Mode shape parameter 𝜀 (from Eq. (14)) and (right) electromechanical natural frequency ratio 𝜔1∕𝜔2 (from Eqs. (12)) as a function of the frequency
ratio 𝑟𝑖, for various values of the EMMCF 𝑘𝑖, as specified.

the problem, solution of:
(
𝑲̄ − 𝜔2

𝑘𝑰
)
𝜳 𝑘 = 𝟎, 𝑘 = 1, 2, 𝑲̄ =

(
1 𝑘𝑖𝑟𝑖

𝑘𝑖𝑟𝑖 𝑟2𝑖

)
. (11)

Solving this eigenproblem, one obtains:

𝜔2
1 =

1 + 𝑟2𝑖 −
√
𝛥

2
, 𝜔2

2 =
1 + 𝑟2𝑖 +

√
𝛥

2
(12)

with 𝛥 = (1 − 𝑟2𝑖 )
2 + 4𝑘2𝑖 𝑟

2
𝑖 and

𝜳 1 =
(
−𝜀
1

)
, 𝜳 2 =

(
1
𝜀

)
, (13)

with

𝜀 =
2𝑘𝑖𝑟𝑖

1 − 𝑟2𝑖 +
√
𝛥

. (14)

Then, following the modal expansion:
(
𝑞𝑖(𝜏)
𝑄̄(𝜏)

)
=

2∑
𝑘=1

𝜳 𝑘𝑥𝑘(𝜏), (15)

one obtains the following change of variables:

𝑞𝑖(𝜏) = −𝜀𝑥1(𝜏) + 𝑥2(𝜏), (16a)

𝑄̄(𝜏) = 𝑥1(𝜏) + 𝜀𝑥2(𝜏). (16b)

Since the coupling factor 𝑘𝑖 is small compared to 1, 𝜀 is also small compared to 1, which is illustrated in Fig. 2(left). For instance,
for 𝑟𝑖 = 0.5 and 𝑘𝑖 = 0.1, 𝜀 = 0.07. Eq. (16) then shows that the dominant effect of 𝑥1 and 𝑥2 will be respectively on 𝑄̄ and 𝑞. Based
on that, Ψ1 and Ψ2 will be designated as the electrical and mechanical modes respectively.

As for the frequencies, 𝜔1 is close to the dimensionless electrical frequency 𝜔𝑒∕𝜔̂𝑖 = 𝑟𝑖 and 𝜔2 is close to the dimensionless
mechanical frequency 𝜔̂𝑖∕𝜔̂𝑖 = 1. In particular, if the EMMCF 𝑘𝑖 is zero, there is no electromechanical coupling, the system (10)a,b
is uncoupled and 𝜀 = 0, 𝜔1 = 𝑟𝑖 and 𝜔2 = 1. To quantify the effect of 𝑘𝑖 on the electromechanical eigenmodes shift with respect to
purely electrical and mechanical modes, Fig. 2(right) shows the natural frequency ratio 𝜔1∕𝜔2 as a function of 𝑟𝑖 for various values
of 𝑘𝑖. One can see that 𝑘𝑖 imposes a detuning between the electromechanical natural frequency ratio 𝜔1∕𝜔2 with respect to 𝑟𝑖. In
particular, to obtain a specified tuning 𝜔1∕𝜔2 (for instance 0.5 to obtain a 2:1 internal resonance), 𝑟𝑖 has to be slightly overtuned
(𝑟𝑖 > 𝜔1∕𝜔2).

Regarding the nonlinear voltage 𝑉𝑛𝑙, considering Eq. (5)b, we write it in the following form:

𝑉𝑛𝑙 = 𝛽(𝜅1𝑄 + 𝜅2𝑞𝑖)2, (17)

where (𝜅1, 𝜅2) = (1, 0) to verify Eq. (2)a and (𝜅1, 𝜅2) = (1, 𝜃𝑖)∕𝐶p𝑖 to verify Eq. (2)b.
By substituting Eq. (15) in Eqs. (10), multiplying by Ψ𝑇

𝑘 , using the orthogonality properties of the electromechanical eigenmodes
and the form of 𝑉𝑛𝑙 defined in Eq. (17), and by considering that the modal mass is 1 + 𝜀2 ≃ 1 because 𝜀 ≪ 1, the following can be
written:

𝑥1 + 2𝜇1𝑥̇1 + 2𝜇12𝑥̇2 + 𝜔2
1𝑥1 + 𝛬1𝑥

2
1 + 𝛬2𝑥1𝑥2 + 𝛬3𝑥

2
2 = 𝑓1 cos 𝛺̄𝜏, (18a)
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𝑥2 + 2𝜇12𝑥̇1 + 2𝜇2𝑥̇2 + 𝜔2
2𝑥2 + 𝛬4𝑥

2
1 + 𝛬5𝑥1𝑥2 + 𝛬6𝑥

2
2 = 𝑓2 cos 𝛺̄𝜏. (18b)

In the above system, the new (dimensionless) damping terms are defined as:

𝜇1 = 𝜉𝑒𝑟𝑖 − 𝜉𝑖𝜀
2, 𝜇12 = (𝜉𝑒𝑟𝑖 − 𝜉𝑖)𝜀,

𝜇2 = 𝜉𝑖 + 𝜉𝑒𝑟𝑖𝜀
2 (19)

and the forcing terms are:

𝑓1 = −𝜀𝐹𝑖, 𝑓2 = 𝐹𝑖, (20)

with units mkg1∕2. The nonlinear coefficients of Eq. (18) write:

𝛬1 = 𝜆1 − 𝜆2𝜀 + 𝜆3𝜀
2

𝛬2 = 2𝜆1𝜀 + 𝜆2(1 − 𝜀2) − 2𝜆3𝜀
𝛬3 = 𝜆1𝜀

2 + 𝜆2𝜀 + 𝜆3

𝛬4 = 𝜀𝛬1

𝛬5 = 𝜀𝛬2

𝛬6 = 𝜀𝛬3

(21)

where

𝜆1 = 𝛽𝜅2
1 𝑟

3
𝑖 𝜔̂𝑖𝐶

3∕2
p𝑖 , 𝜆2 =

2𝛽𝜅1𝜅2𝑟2𝑖 𝐶p𝑖√
𝑚𝑖

, (22a)

𝜆3 =
𝛽𝜅2

2 𝑟𝑖
√
𝐶p𝑖

𝑚𝑖𝜔̂𝑖
. (22b)

The common units of all those coefficients are m−1 kg−1∕2.
Then, for the choice of Eq. (2)a, (𝜅1, 𝜅2) = (1, 0) and the 𝜆𝑖 write:

𝜆1 = 𝛽1𝑟
3
𝑖 𝜔̂𝑖𝐶

3∕2
p𝑖 , 𝜆2 = 𝜆3 = 0. (23)

For the choice of Eq. (2)b, (𝜅1, 𝜅2) = (1, 𝜃𝑖)∕𝐶p𝑖 and:

(𝜆1, 𝜆2, 𝜆3) = (𝑟3𝑖 , 2𝑟
2
𝑖 𝑘𝑖, 𝑟𝑖𝑘

2
𝑖 )𝜆0, 𝜆0 =

𝛽2𝜔̂𝑖√
𝐶p𝑖

. (24)

3. Analytical results

3.1. Multiple scale solution

In this section, closed form expressions governing the response of the electromechanical modal system of Eqs. (18)a,b is given.
This is done in order to study the performance of the vibration absorber and the effect of the design parameters, given later in this
section, that could be controlled to enhance the vibration absorber performance.

We restrict ourselves to the case of a 2:1 internal resonance with 𝜔2 ≃ 2𝜔1. This leads to neglect in Eqs. (18)a,b the effect of the
non-resonant terms of coefficients 𝛬1, 𝛬3, 𝛬5, and 𝛬6 on the dynamics. This is motivated by the normal form theory, which proves
that only the resonant terms (of coefficients 𝛬2 and 𝛬4) have an effect at first order (see [61,62]). We are also interested in the case
for which the energy is injected mainly to the mechanical (2nd. mode) and transferred to the electrical (1st. mode) because of the
nonlinear term. We then consider a pure forcing of the second (mechanical, high frequency) oscillator and neglect 𝜀𝑓1 with respect
to 𝑓2, since 𝜀 ≪ 1. Finally, the damping coupling terms of coefficient 𝜇12 are neglected. This is motivated because 𝜀 ≪ 1 and also
because the damping is considered small: 𝜇1, 𝜇2 ≪ 1. In this case, it can be shown that the non diagonal terms have a negligible
effect on the dynamics [63].

Consequently, for the analytical results, we consider the following system:

𝑥1 + 2𝜖𝜇1𝑥̇1 + 𝜔2
1𝑥1 + 𝜖𝛬2𝑥1𝑥2 = 0 (25a)

𝑥2 + 2𝜖𝜇2𝑥̇2 + 𝜔2
2𝑥2 + 𝜖𝛬4𝑥

2
1 = 𝑓2 cos 𝛺̄𝜏 (25b)

where a bookkeeping parameter 𝜖 has been added to scale the terms of the equation before applying the perturbation method.
Following the multiple scales method, as fully described in [64], the two modal coordinates 𝑥1(𝜏) and 𝑥2(𝜏) are approximated at
first order by:

𝑥1 = 𝑎1 cos

(
𝛺̄
2
𝜏 −

𝛾1 + 𝛾2
2

)
, (26a)

𝑥2 = 𝑎2 cos(𝛺̄𝜏 − 𝛾2). (26b)

where the amplitudes 𝑎1 and 𝑎2 and the phase angles 𝛾1 and 𝛾2 are the solutions of the following modulation equations:

𝑎′1 = −𝜇1𝑎1 −
𝛬2𝑎1𝑎2
4𝜔1

sin 𝛾1, (27a)
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1
2
(𝛾 ′1 + 𝛾 ′2)𝑎1 =

𝜎1 + 𝜎2
2

𝑎1 −
𝛬2𝑎1𝑎2
4𝜔1

cos 𝛾1, (27b)

𝑎′2 = −𝜇2𝑎2 +
𝛬4𝑎21
4𝜔2

sin 𝛾1 +
𝑓2
2𝜔2

sin 𝛾2, (27c)

𝛾 ′2𝑎2 = 𝜎1𝑎2 −
𝛬4𝑎21
4𝜔2

cos 𝛾1 +
𝑓2
2𝜔2

cos 𝛾2, (27d)

where ◦′ = 𝜕◦∕(𝜕𝜖𝜏) is the derivative with respect to the slow time scale and

𝜖𝜎1 = 𝛺̄ − 𝜔2, 𝜖𝜎2 = 𝜔2 − 2𝜔1, (28)

are the two detuning parameters, which express respectively the nearness of the driving frequency to the mechanical resonance
𝛺̄ ≃ 𝜔2 and the detuning of the two natural frequency with respect to the exact internal resonance, which would be 𝜔2 = 2𝜔1.

The response amplitudes 𝑎1 and 𝑎2 and the phase angles 𝛾1 and 𝛾2 are estimated using the fixed-point solution of the above
dynamical system, i.e with 𝑎′1 = 𝑎′2 = 𝛾 ′1 = 𝛾 ′2 = 0. It leads to two kinds of solutions (see e.g. [64,65] for details):

• An uncoupled (U) solution, for which only the directly excited mode responds (𝑎2 ≠ 0, 𝑎1 = 0). This is the trivial linear solution,
which writes:

𝑎𝑈2 =
𝑓2

2𝜔2

√
𝜎21 + 𝜇2

2

, 𝛾𝑈2 = arctan
𝜇2
−𝜎1

, (29a)

𝑎𝑈1 = 0. (29b)

• A coupled (C) solutions, for which the energy is transferred from the second (directly excited) oscillator to the first one thanks
to the nonlinear terms. In this case, 𝑎1 ≠ 0 and 𝑎2 ≠ 0 are obtained by:

𝑎𝐶2 =
2𝜔1
|𝛬2|

√
4𝜇2

1 + (𝜎1 + 𝜎2)2, (30a)

𝑎𝐶1 = 2

√√√√√−𝛤1 ±

√√√√ 𝑓 2
2

4𝛬2
4

− 𝛤 2
2 , (30b)

𝛾𝐶1 = arctan
−2𝜇1
𝜎1 + 𝜎2

[2𝜋], (30c)

𝛾𝐶2 = arctan
2(𝛬4𝜇1𝜔1𝑎21 + 𝛬2𝜇2𝜔2𝑎22)

(𝜎1 + 𝜎2)𝛬4𝜔1𝑎21 − 2𝜎1𝛬2𝜔2𝑎22
[2𝜋], (30d)

where [2𝜋] means modulo 2𝜋 and with

𝛤1 =
2𝜔1𝜔2
𝛬2𝛬4

[
2𝜇1𝜇2 − 𝜎1(𝜎1 + 𝜎2)

]
, (31a)

𝛤2 =
2𝜔1𝜔2
𝛬2𝛬4

[
2𝜎1𝜇1 + 𝜇2(𝜎1 + 𝜎2)

]
. (31b)

In all the above expressions, the phases 𝛾1 and 𝛾2 are strictly defined since their sine and cosine are given in the dynamical
system (27). The formula including arctan(𝑏∕𝑎) must be understood as the angle of the complex number 𝑎+𝑖𝑏, computed numerically
with the function atan2(𝑏, 𝑎) in most numerical languages.

3.2. Typical response

A stability analysis of the fixed points of the slow scale dynamical system (27) shows that there exists an instability region in
the plane (𝜎1, 𝑎2) in which the U-solution is unstable [65]. Namely, it is the case as long as:

𝑎2 ≥ (𝜎1), (𝜎1) = 2𝜔1
|𝛬2|

√
4𝜇2

1 + (𝜎1 + 𝜎2)2. (32)

The analytical expression of (𝜎1) is exactly the same than 𝑎𝐶2 (𝜎1) which means that the boundary of the instability region coincides
with the C-solution for the directly excited mode 𝑎2.

Fig. 3 shows the typical frequency response of the system when driven at constant 𝑓2 and sweeping around the second oscillator
resonance 𝛺̄ ≃ 𝜔2 (𝜎1 ≃ 0). At the crossing points between the amplitude of the U-solution and the instability region, two subcritical
pitchfork bifurcations (points ‘‘PF’’ in Fig. 3) give rise to an unstable C-solution, which becomes stable after saddle–node bifurcations
(points ‘‘SN’’). This stable C-solution is characterized by a non-zero response of the low-frequency (electrical) mode, which oscillates
at the subharmonic 𝛺̄∕2 (see Eq. (26)a). In the frequency band between the two pitchfork bifurcations, the resonance of the driven
(mechanical) mode is replaced by a low amplitude response, which shows a minimum at exactly 𝛺̄ = 2𝜔1 (Point 𝐴 of Fig. 3, 𝜎1 = −𝜎2,
see Eq. (30)a), that can be viewed as a nonlinear antiresonance. The phase 𝛾1 is exactly 3𝜋∕2 [2𝜋] at this point (see Eq. (30)c). The
main idea of the article is to take advantage of this nonlinear antiresonance to reduce de vibrations of a given resonance.
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Fig. 3. Typical frequency response of Eqs. (25) obtained with the MS method: amplitude 𝑎1, 𝑎2 and phases 𝛾1, 𝛾2 as a function of the detuning 𝜎1 for a constant
forcing 𝑓2. The parameters are 𝛬2 = 𝛬4 = 0.1, 𝜇1 = 0.005, 𝜇2 = 0.01, 𝑓2 = 0.2, 𝜎2 = 0.05. ‘‘PF’’means pitchfork bifurcation; ‘‘SN’’means saddle–node bifurcation;
superscript 𝑈 refers to the uncoupled solution (in black) whereas superscript 𝐶 refers to the coupled solution (in blue for (𝑎1 , 𝛾1) and in green for (𝑎2 , 𝛾2)). The
blue shaded area depicts the instability region for 𝑎𝑈2 . Dotted and dash-dotted lines depict unstable branches.

Fig. 4. Typical response of Eqs. (25) obtained with the MS method for a perfect tuning 𝜎2 = 0 (𝜔2 = 2𝜔1). (a) amplitudes 𝑎1 and 𝑎2 as a function of the detuning
𝜎1 for several values of the forcing 𝑓2 (𝑓2 ∈ {0.005; 0.015; 0.03; 0.05}); (b) amplitudes 𝑎1 and 𝑎2 for a forcing at the antiresonance (𝜎1 = 0, 𝛺̄ = 𝜔2, as a function
of the forcing 𝑓2. The numerical values are 𝛬2 = 𝛬4 = 0.1, 𝜇1 = 0.005, 𝜇2 = 0.01. Superscript 𝑈 refers to the uncoupled solution (in black) whereas superscript 𝐶
refers to the coupled solution (in blue for 𝑎1 and in green for 𝑎2). The blue shaded area depicts the instability region for 𝑎𝑈2 .
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By tuning the electrical mode eigenfrequency exactly to half the one of the mechanical mode, 𝜔1 = 𝜔2∕2 (𝜎2 = 0), it is then
possible to replace the linear resonance of the mechanical mode by the nonlinear antiresonance. Since the energy transfer to the
electrical mode is nonlinear, the performances are dependent on the excitation level. This is illustrated in Fig. 4 in which several
response curves are shown for increasing forcing levels 𝑓2. For low values of 𝑓2, the linear resonance (the U-solution) is below the
instability region and no energy transfer occurs. For the perfect tuning, 𝜎2 = 0, the minimum value 𝑓 ∗

2 of the force necessary to
create the energy transfer is obtained by equating 𝑎2 between Eqs. (29)a and (30)a with 𝜎1 = 𝜎2 = 0:

𝑓 ∗
2 =

8𝜔1𝜔2𝜇1𝜇2
|𝛬2| =

4𝜔2
2𝜇1𝜇2
|𝛬2| . (33)

Above this threshold (𝑓2 > 𝑓 ∗
2 ), the coupled regime occurs and an interesting result is that the amplitude 𝑎𝐶2 of the driven mode

is independent of the forcing level 𝑓2 instead of being proportional to it, which is observed before the threshold. This leads to a
saturation phenomenon for 𝑎𝐶2 , shown in Fig. 4(b), with the constant amplitude:

𝑎∗2 =
𝑓 ∗
2

2𝜔2𝜇2
=

4𝜔1𝜇1
|𝛬2| =

2𝜔2𝜇1
|𝛬2| , (34)

equal to the one at the antiresonance.
On the contrary, the amplitude of the electrical mode increases with a square root dependence on the forcing amplitude at the

antiresonance, also shown in Fig. 4(b). It can be written:

𝑎∗1 =

√
2

|𝛬4| (𝑓2 − 𝑓 ∗
2 ), (35)

obtained by setting 𝜎1 = 𝜎2 = 0 in Eqs. (31) and (30)b.
Still in the special case of perfect tuning (𝜎2 = 0), the values of the pitchfork bifurcation frequencies can be obtained by equating

𝑎2 between Eqs. (29)a and (30)a with 𝜎2 = 0 ⇒ 𝜔1 = 𝜔2∕2 (or equivalently by enforcing 𝑎𝐶1 = 0 in Eq. (30)b), as:

𝜎+PF =

√√√√√√√

√√√√(4𝜇2
1 − 𝜇2

2)
2 +

𝑓 2
2𝛬

2
2

𝜔4
2

− 4𝜇2
1 − 𝜇2

2

2
, (36a)

𝜎−PF = −𝜎+PF, 𝛥PF = 2𝜎+PF. (36b)

where 𝛥PF characterizes the instability bandwidth (see Fig. 3). Moreover, the values of the saddle–node bifurcations frequencies are
obtained by enforcing to zero the radicand of the inner square root of 𝑎𝐶1 in Eq. (30)b:

𝜎+SN =
𝑓2|𝛬2|

𝜔2
2(2𝜇1 + 𝜇2)

, 𝜎−SN = −𝜎+SN, 𝛥SN = 2𝜎+SN, (37)

where 𝛥SN characterizes the full bandwidth of the response (see Fig. 3).
One idea could be to use 𝛥SN and 𝛥PF as design parameters: one could think of adjusting the shunt parameters 𝜇1 and 𝛬2 to

obtain a vibration reduction bandwidth 𝛥𝑃𝐹 as large as possible while minimizing the amplitude of the two lateral ‘‘wings’’ of the
frequency response by decreasing 𝛥𝑆𝑁 as much as possible. However, it should not be forgotten that the response of the system is
nonlinear and forcing amplitude dependent. In particular, 𝛥SN and 𝛥PF are increasing functions of the forcing 𝑓2. Consequently, by
looking at Fig. 4, it is clear that tailoring 𝛥𝑃𝐹 and 𝛥𝑆𝑁 is possible at a given forcing amplitude, but that the particular shape of the
frequency response will by lost for higher forcing amplitudes.

3.3. Effect of the parameters

In order to propose guidelines for the design of the nonlinear shunt, this section addresses the effect of the parameters of the
system: the detuning 𝜎2 = 𝜔2 − 2𝜔1 (from now on, we drop the bookkeeping parameter 𝜖 in the equations, meaning that the small
parameters 𝜇1, 𝜇2, 𝛬2, 𝛬4, 𝜎1, 𝜎2 are now considered with there nominal values, assumed small, to guarantee the validity of the
multiple scale developments), the excitation level 𝑓2, the damping parameters (𝜇1, 𝜇2) and the coefficients of the quadratic terms
(𝛬2, 𝛬4). In all this section, we assume that 𝜔1 = 1, with no loss of generality since one can rescale the time in Eqs. (25) and show
that the topology of the response curves does not depend on 𝜔1. The effect of 𝑓2 has been investigated in the previous section and
we consider here the other parameters.

The effect of the detuning parameter 𝜎2 is to shift the antiresonance frequency (𝜎2 > 0 (resp. 𝜎2 < 0) shifts it to the lower (resp.
upper) frequencies) and to desymmetrize the shape of the frequency response. In particular, a perfect tuning (𝜎2 = 0, 𝜔2 = 2𝜔1)
gives symmetrical curves with respect to the vertical axis 𝜎1 = 0 (𝛺̄ = 𝜔2). This can be inferred by comparing Fig. 3 (obtained with
𝜎2 = 0.05) and Fig. 4(a) (with a perfect tuning, 𝜎2 = 0). In practice, a perfect tuning appears to be optimal since it guarantees the
tuning of the antiresonance in place of the linear resonance. This case is solely investigated in the remaining of the section.

By observing Eqs. (32)–(37), one can conclude that 𝛬2 and 𝜇1 have a crucial effect on the system’s response, since they appear
in all those equations. The first effect of (𝛬2, 𝜇1) is on the shape of the instability region boundary . Following Eq. (32), if 𝜇1 = 0,
 = 2𝜔1|𝜎1|∕|𝛬2| and thus reduces to a triangle bounded by straight lines of slope ±2𝜔1∕|𝛬2|. Consequently, increasing 𝛬2 decreases
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Fig. 5. Effect of variation of parameters 𝛬2 and 𝜇1 on the system’s frequency response, obtained with the MS method for a perfect tuning 𝜎2 = 0 (𝜔2 = 2𝜔1).
(a) Effect of the variation of 𝛬2, with 𝜇1 = 0 and 𝜇1 ≠ 0, on the instability region (𝜎1); (b) Effect of the variation of 𝛬2 on the response curves amplitudes
(𝑎1 , 𝑎2); (c) Effect of the variation of 𝜇1 on the response curves amplitudes (𝑎1 , 𝑎2). The uncoupled solution 𝑎𝑈2 is in black and the coupled solutions (𝑎𝐶1 , 𝑎

𝐶
2 ) are

respectively in blue and green.

Fig. 6. Effect of variation of parameters 𝛬4 and 𝜇2 on the system’s frequency response, obtained with the MS method for a perfect tuning 𝜎2 = 0 (𝜔2 = 2𝜔1). (a)
Effect of the variation of 𝛬4 on the response curves amplitudes (𝑎1 , 𝑎2); (b) Effect of the variation of 𝜇2 on the response curves amplitudes (𝑎1 , 𝑎2). The uncoupled
solution 𝑎𝑈2 is in black and the coupled solutions (𝑎𝐶1 , 𝑎

𝐶
2 ) are respectively in blue and green.

these slopes and thus widens the instability region, as illustrated in Fig. 5(a). The effect of increasing 𝜇1 from zero is to round the
shape of the instability region at its lower end and thus to decrease its area. Since the amplitude 𝑎𝐶2 of the driven mode coincides
with , the same conclusions can be drawn, as shown in Figs. 5(b, c). In particular, the parameter |𝛬2|∕𝜇1 seems crucial: increasing
it leads to reduce the threshold amplitude of the energy transfer (see Eqs. (33) and (34) and Fig. 5(a–c)). A zero value of (𝑓 ∗

2 , 𝑎
∗
2) can

even theoretically be obtained with a zero electrical damping (𝜇1 = 0). In addition, Figs. 5(b, c) illustrate the effect of (𝛬2, 𝜇1) on
the amplitude 𝑎𝐶1 of the electrical mode: increasing 𝛬2 and/or decreasing 𝜇1 increases 𝑎𝐶1 . As a conclusion, it is clear that increasing
|𝛬2|∕𝜇1 leads to improve the performances of the absorber.

On the contrary, 𝛬4 appears only in the amplitude 𝑎1 of the electrical mode. Consequently, increasing it leads to decrease 𝑎𝐶1
and thus to improve the absorber performance, as shown in Fig. 6(a). Finally, Fig. 6(b) illustrates the effect of the mechanical mode
damping 𝜇2 on the system’s response. Decreasing 𝜇2 leads to increase the amplitude of the linear resonance, but has no effect on the
instability boundary  and the saturation amplitude 𝑎∗2. Consequently, the less the mechanical mode is damped, the less the forcing
threshold 𝑓 ∗

2 is and the better performance the absorber has.

4. Validity of the analytical solution and design of the nonlinear absorber

In Section 3, an analytical solution of the dynamical system (18) is investigated, by canceling the non diagonal damping terms and
the non-resonant terms (of coefficients 𝛬𝑖, 𝑖 = 1, 3, 5, 6). This section is devoted to the validity of this analytical solution, by comparing
it to reference numerical simulations. They are obtained with the software Manlab, that enables the numerical continuation of
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Fig. 7. Frequency response of Eqs. (25): comparison of the analytical MS solution (thin ‘- -’) to a reference Manlab solution (thick ‘—’) of the same system.
Amplitude 𝑎1, 𝑎2 the detuning 𝜎1. The parameters are 𝛬2 = 𝛬4 = 0.1, 𝜇1 = 0.005, 𝜇2 = 0.01, 𝑓2 = 0.2, 𝜎2 = −0.05. ‘‘QP’’ means quasi-periodic response; ‘‘det.’’
means ‘‘detuning’’. The uncoupled solution 𝑎𝑈2 is in black and the coupled solutions (𝑎𝐶1 , 𝑎

𝐶
2 ) are respectively in blue and green. 𝐻 = 20 harmonics have been

considered for the Manlab HBM computations.

periodic solutions of the dynamical system. It is based on the harmonic balance method (HBM) and the asymptotic numerical
method [66,67], with a special strategy to compute the branching points and the stability of the branches [42,68].

4.1. Validity of the analytical solution without the non-resonant terms

We first investigate the validity of the analytical MS solution of Eqs. (27) of the simplified dynamical system (25) in 2:1 internal
resonance (𝜔2 ≃ 2𝜔1), by comparing it to the Manlab solution. Fig. 7 shows its frequency response with typical parameters. We
can observe that the reference Manlab solution is more asymmetrical with respect to the MS solution. One interesting effect is that
the frequency of the nonlinear antiresonance is slightly shifted to the low frequencies and does not appear exactly at 𝛺̄ = 2𝜔1
(𝜎1 = −𝜎2). By changing the tuning of the two modes, it has been verified that this shift always appears toward the low frequencies,
for any positive or negative small detuning 𝜎2, and that it increases with the excitation level 𝑓2. It has also been numerically verified
that the phase of the electrical mode is precisely 𝛾𝐶1 = 3𝜋∕2 [2𝜋] at the numerical antiresonance frequency, as predicted by the MS
solution.

Another feature is the appearance of a small frequency band in which the periodic response is unstable due to Neimark–Sacker
bifurcations, which leads to a quasi-periodic response. This quasi-periodic response does not appear for any values of the parameters
and tends to be more prominent for large values of 𝑓2. These Neimark–Sacker bifurcations can be predicted with the MS solution,
but no close form expression is at hand since they depend on the solution of an order four polynomial [69]. We consequently decided
not to show them on the MS solution plots.

4.2. Effect of non-resonant terms

We investigate in this section the effect of the non-resonant terms on the dynamics. To estimate their order of magnitude in
a practical piezoelectric shunt example, we consider, as explained in Section 2, that the coupling factor 𝑘𝑖, and thus 𝜀, are small
compared to 1. Then, for the case of 𝑉nl = 𝛽1𝑄2 (Eqs. (2)a, (23)), one has with Eqs. (21):

𝛬1 = 𝜆1, 𝛬2 = 2𝜀𝜆1, 𝛬4 = 𝜀𝜆1 (38)

𝛬3 = 𝜀2𝜆1, 𝛬5 = 2𝜀2𝜆1, 𝛬6 = 𝜀3𝜆1. (39)

In the other case of 𝑉nl = 𝛽2𝑉 2 (Eqs. (2)b, (24)), keeping the leading order in 𝜀 in Eqs. (21) conducts to 𝛬𝑘 ≃ 𝜆𝑘 for all 𝑘 = 1, 2, 3.
Then, to set the ideas, we consider numerical values: 𝑟𝑖 = 0.5 and 𝑘𝑖 = 0.1 leads to 𝜀 = 0.07 (Fig. 2). One then obtains:

𝛬1 = 0.13𝜆0, 𝛬2 = 0.05𝜆0, 𝛬4 = 0.009𝜆0 (40)

𝛬3 = 0.005𝜆0, 𝛬5 = 0.004𝜆0, 𝛬6 = 0.0004𝜆0. (41)

In both cases for the choice of 𝑉nl, 𝛬1 is larger than the two coefficients (𝛬2, 𝛬4) of the resonant terms, with the other coefficient
(𝛬3, 𝛬5, 𝛬6) negligible. It is then assumed in the remaining of the section that 𝛬1 is the dominant non-resonant term and we analyze
its effect on the frequency response of the system, with 𝛬3 = 𝛬5 = 𝛬6 = 0. We thus consider Eqs. (25) with an additional nonlinear
term 𝛬1𝑥21 in Eq. (25)a.

As a first step, the effect of 𝛬1 on the response is investigated in Fig. 8 for the perfect tuning case (𝜎2 = 0 ⇔ 𝜔2 = 2𝜔1). One
can see that increasing 𝛬1 from zero to positive values of the order of magnitude of the resonant term coefficients 𝛬2 and 𝛬4 leads
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Fig. 8. Effect of variation of parameter 𝛬1 on the frequency response of the complete system (18), obtained with Manlab, for a perfect tuning 𝜎2 = 0 (𝜔2 = 2𝜔1).
The parameters are 𝛬1 ∈ {0; 0.2; 0.3}, 𝛬2 = 𝛬4 = 0.1, 𝛬3 = 𝛬5 = 𝛬6 = 0, 𝜇1 = 0.005, 𝜇2 = 0.01, 𝑓2 = 0.1. The uncoupled solution (𝑎𝑈2 , 𝛾

𝑈
2 ) is in black and the coupled

solutions (𝑎𝐶1 , 𝛾
𝐶
1 ), (𝑎

𝐶
2 , 𝛾

𝐶
2 ) are respectively in blue and green, with a darker color as 𝛬1 increases.

to a qualitative change of the shape of the response curves. Their symmetry with respect to the axis 𝜎1 = 0 is lost, with a kind of
overall ‘‘bending’’ of the curves to the low frequencies and with a decreasing of the amplitude of 𝑎𝐶1 (blue curves). This bending
seems qualitatively analogous to a softening behavior of the resonance of a Duffing oscillator. The main result is that increasing 𝛬1
shifts the antiresonance frequency of 𝑎𝐶2 to the low frequencies (see the minimum of the green curves in Fig. 8(a)). It then shows that
the simple tuning property of the simplified model (see Section 3.2, the antiresonance depends only on the eigenmode tuning since
it is obtained exactly at 𝜎1 = −𝜎2 (𝛺̄ = 2𝜔1)) is lost with a non-zero 𝛬1. One can also observe that the asymmetry of the response
curves due to high values of 𝛬1 also increases the amplitude of the high frequency peak of the mechanical mode response 𝑎𝐶2 .

However, two interesting properties are kept with a non-zero 𝛬1. First, the amplitude of the antiresonance seems independent of
𝛬1 and thus keeps the analytical value 𝑎∗2 of Eq. (34). Secondly, the property of phase locking of 𝛾𝐶1 = 3𝜋∕2[2𝜋] at the antiresonance
seems perfectly kept. Those results have only been verified numerically by observing the minimum of 𝑎𝐶2 and the crossing of
𝛾𝐶1 = 𝑓 (𝜎1) curve with the horizontal 3𝜋∕2 line, as seen in Fig. 8.

We now investigate the effect on the frequency response of the other parameters of the system, namely 𝑓2, 𝜎2 and 𝜇1, with a
nonzero value of the non-resonant term coefficient, chosen equal to the ones of the resonant terms (𝛬1 = 𝛬2 = 𝛬4 = 0.1). Figs. 9(a,
b) show that increasing 𝑓2 or decreasing 𝜇1 naturally increase the amplitude of the responses but also amplifies the negative effect
of a non-zero 𝛬1 described above, by increases the shift the antiresonance to the low frequencies. However, as seen in Fig. 9(c), it
is still possible to adjust the value of the antiresonance frequency by changing the eigenmode detuning 𝜎2: decreasing (increasing)
𝜎2 from zero shifts it to the high-frequencies (low-frequencies). Moreover, one can observe in the insets of Figs. 9(a, c) that the
antiresonance amplitude is still independent of 𝑓2 and 𝜎2 and equal to 𝑎∗2. Another remark is that a quasi-periodic response can also
be observed for low (negative) values of 𝜎2, a feature already observed with 𝛬1 = 0 in Fig. 7. Moreover, one can observe in Fig. 9(b)
that the amplitude of 𝑎𝐶1 at the antiresonance seems independent of 𝜇1. This effect is here a particular case, a consequence of the
choice of the parameters, different from the one used in Fig. 5, and not of the presence of 𝛬1.

4.3. Correction of the antiresonance detuning

As seen in the previous sections and contrary to what predicted by the MS solution of the simplified model, the frequency of
the antiresonance of 𝑎𝐶2 is clearly affected by the parameters and this effect is amplified by a non-zero value of the non-resonant
term coefficient 𝛬1. On the contrary, the amplitude of this antiresonance keeps its analytical value 𝑎∗2 (Eq. (34)), independent of the
forcing 𝑓2. In the purpose of the vibration control of the mechanical mode, it then seems possible to keep the saturation phenomenon



Mechanical Systems and Signal Processing 170 (2022) 108768

13

Z.A. Shami et al.

Fig. 9. Effect of variation of parameters 𝑓2, 𝜎2 and 𝜇1 on the frequency response of the complete system (18), obtained with Manlab. (a) Variation of forcing 𝑓2.
(b) Variation of the damping 𝜇1. (c) Variation of the detuning 𝜎2 (𝜔2 = 2𝜔1 + 𝜎2). The common parameters are 𝛬1 = 𝛬2 = 𝛬4 = 0.1, 𝛬3 = 𝛬5 = 𝛬6 = 0, 𝜇2 = 0.01,
the others are specified on the plots. The uncoupled solution (𝑎𝑈2 , 𝛾

𝑈
2 ) is in black and the coupled solutions (𝑎𝐶1 , 𝛾

𝐶
1 ), (𝑎

𝐶
2 , 𝛾

𝐶
2 ) are respectively in blue and green,

with a darker color as the varied parameter increases. The insets show a zoom of the nonlinear antiresonance region. ‘‘QP’’ means quasi-periodic response.

Fig. 10. (a) Amplitude of 𝑎𝐶2 at 𝜎1 = 0 as a function of the detuning 𝜎2 (𝜔2 = 2𝜔1 + 𝜎2), for several values of the forcing 𝑓2 (𝑓2 ∈ {0.02; 0.05; 0.1; 0.2; 0.4}),
obtained with Manlab with the complete system (18); (b) ‘o’: values of 𝜎2 for each minima of the curves of Fig. (a), as a function of 𝑓2, and ’—’: linear fit. The
parameters are: 𝛬1 = 𝛬2 = 𝛬4 = 0.1, 𝛬3 = 𝛬5 = 𝛬6 = 0, 𝜇1 = 0.005, 𝜇2 = 0.01.

of 𝑎𝐶2 at a fixed frequency, by adjusting the eigenmode detuning 𝜎2 (𝜔2 = 2𝜔1 + 𝜎2) as a function of 𝑓2, in order to counterbalance
the detuning of the antiresonance as a function of 𝑓2.

To investigate this idea, Fig. 10(a) shows the amplitude 𝑎𝐶2 at the mechanical mode resonance 𝜎1 = 0 (𝛺̄ = 𝜔1) as a function of
the eigenmode detuning 𝜎2, for several values of the forcing 𝑓2, all the other parameters being chosen constant. This was numerically
obtained with Manlab, by performing a continuation in 𝜎2, with 𝜎1 = 0 and 𝑓2 constant. This plot shows that the 𝑎𝐶2 = 𝑓 (𝜎2) curves
show a minimum, which corresponds to the value 𝜎∗2 of 𝜎2 necessary to place the antiresonance of 𝑎𝐶2 exactly at the resonance
𝜎1 = 0 ⇔ 𝛺̄ = 𝜔2. Then, Fig. 10(b) shows those optimal values 𝜎∗2 as a function of the forcing 𝑓2. A linear fit is also plotted, showing
that a linear relation

𝜎∗2 = −𝛼𝑓2, 𝛼 ∈ R+, (42)

is at hand. The slope is negative, in agreement with that can be observed in Figs. 9(a, c), in which one has to reduce the detuning
𝜎2 to shift the antiresonance to the high frequencies to counterbalance an increase of 𝑓2.

The 𝜎∗2 = −𝛼𝑓2 curve of Fig. 11(b) has been tested, to verify that the antiresonance of 𝑎𝐶2 can be placed at the resonance frequency
𝜔2 regardless of the excitation level. Several resonance curves for different excitation levels 𝑓2 are shown in Fig. 11(a), with, for
each response, the value of the detuning 𝜎2 adjusted to verify Eq. (42). One can observe in the inset that the antiresonance frequency
is perfectly kept at 𝜎1 = 0, allowing for a perfect autotuning. Then, using Manlab, we performed a continuation with 𝑓2 left free,
𝜎1 = 0 and 𝜎2 function of 𝑓2 with Eq. (42). We obtained Fig. 11(b), that shows that using the autotuning relation (42) enables
to recover the saturation phenomenon, since the amplitude 𝑎𝐶2 (𝜎1 = 0) at the antiresonance is independent of 𝑓2. Fig. 11(b) also
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Fig. 11. Typical response of the complete system (18) obtained with Manlab, with the value of the detuning 𝜎2 adjusted as a function of the forcing 𝑓2 according
to Fig. 10(b) to place the nonlinear antiresonance (AR correction) at 𝜎1 = 0. (a) frequency response: amplitudes 𝑎1 and 𝑎2 as a function of the detuning 𝜎1 for
several values of the forcing 𝑓2 (𝑓2 ∈ {0.05; 0.1; 0.2}), with a darker color as 𝑓2 increases. The inset shows a zoom of the nonlinear antiresonance region. ‘‘QP’’
means quasi-periodic response; (b) Force response: amplitudes 𝑎1 and 𝑎2 at 𝜎1 = 0 as a function of the forcing 𝑓2 with (‘—’) and without (‘- -’) the AR correction.
The parameters are: 𝛬1 = 𝛬2 = 𝛬4 = 0.1, 𝛬3 = 𝛬5 = 𝛬6 = 0, 𝜇1 = 0.005, 𝜇2 = 0.01.

Fig. 12. Beam with a piezoelectric patch and a nonlinear shunt.

shows the response of the system without the autotuning (with 𝜎2 = 0), showing that the saturation phenomenon is lost but that a
vibration reduction at the resonance of 𝑎2 is however achieved, since the green dashed curved (𝑎𝐶2 without AR correction) is below
the black dash-dotted curve (𝑎𝑈2 ). One can also observe that the amplitude of the electrical mode 𝑎𝐶1 is almost left unchanged, at
the antiresonance, by the non-zero value of 𝛬1, since the two blue solid and dashed curves are almost merged.

4.4. Conclusions

The comparison between the responses of the complete system (18) and the MS analytical solution (27) of the simplified system
(without the non-resonant terms) seen in the previous sections leads to the following conclusions, regarding the design of the
vibration absorber. We studied only the effect of the leading resonant-term, of coefficient 𝛬1. The complete system (18) shows a
more complicated frequency response in comparison to that of the simplified one, due to the non-resonant term, that appeared to
have a significant effect on the response. First, a kind of softening behavior is observed, since the curves show an overall bending
to the low frequencies. It is responsible of a shift of the antiresonance frequency of the mechanical mode, that is now a function
of the forcing and the damping. Secondly, we showed that the amplitude of this antiresonance remains independent of the forcing
amplitude, with a phase 𝛾𝐶1 also locked at 3𝜋∕2. Thirdly, in order to correct this antiresonance shift, we showed that it is possible
to continuously adjust the frequency 𝜔1 of the electrical mode as a function of the forcing amplitude 𝑓2 (with the linear relation
of Eq. (42) and 𝜎2 = 𝜔2 − 2𝜔1 ⇒ 𝜔1 = (𝜔2 + 𝛼𝑓2)∕2), to keep the antiresonance frequency independent of 𝑓2 and then to obtain a
perfect saturation phenomenon of the mechanical mode amplitude 𝑎𝐶2 at the antiresonance. Qualitatively, since 𝛼 > 0, one has to
overtune 𝜔1 with respect to the perfect tuning 𝜔1 = 𝜔2∕2. A last comment is that the proportionality coefficient 𝛼 depends on the
other parameters of the system and in particular on the nonlinearity coefficient 𝛽. This will be investigated in Section 5.7.

5. Application to a real structure

We investigate in the section the application of the proposed nonlinear shunt absorber to an arbitrary elastic structure with
piezoelectric patches (as depicted in Fig. 1) and we give an example considering a beam structure (Fig. 12).
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Fig. 13. Mode shape parameter 𝜀 as a function of the electromechanical coupling factor 𝑘𝑖 for different values of the frequency ratio 𝑟𝑖, as specified. ‘—’: exact
value from Eq. (14); ‘- -’: linear approximation, Eq. (46).

5.1. Effect of electromechanical modal expansion

The simplified model of Section 3 aimed at raising simple design guidelines, which were extended to a more realistic model in
Section 4. However, both models are valid within the electromechanical modal expansion of Eqs. (15) and (16). The effect of this
latter is investigated in this section.

First, the electromechanical modal analysis of Section 2.2 shows that the two dimensionless natural frequencies of the system
are 𝜔1 and 𝜔2. Analyzing Eq. (12) shows that 𝜔1 is slightly smaller than 𝑟𝑖 and 𝜔2 is slightly above 1. This shows that the two
corresponding dimensioned natural frequencies of the system, denoted 𝜔̃𝑒 = 𝜔1𝜔̂𝑖 and 𝜔̃𝑖 = 𝜔2𝜔̂𝑖, are such that 𝜔̃𝑒 ≲ 𝜔𝑒 and 𝜔̃𝑖 ≳ 𝜔̂𝑖:
they are located apart from the two uncoupled frequencies 𝜔𝑒 and 𝜔̂𝑖, because of the piezoelectric coupling. This means that all the
frequency responses shown in Sections 3 and 4, and consequently the frequency band of vibration reduction, are in the vicinity of
the 𝜔̃𝑖 resonance, slightly above the open circuit resonance at 𝜔̂𝑖, obtained with 𝑄 = 0 in Eqs. (6). This will be illustrated in Fig. 16.

Then, following the modal expansion (4), the displacement of the point of the structure can be written 𝒖(𝑡) = 𝜱𝑖𝑞𝑖(𝑡) =
𝜱𝑖𝑞𝑖(𝑡)∕

√
𝑚𝑖, where the scaling of Eq. (9) has been used. We consider that the external forcing is harmonic, of angular frequency 𝛺.

Then, the first order solutions for the displacement and charge electromechanical modal coordinates (𝑥1(𝑡), 𝑥2(𝑡)) seen in Sections 3
and 4, Eqs. (26)a,b, and the electromechanical modal change of variables (16)a enable writing the displacement as:

𝒖(𝑡) =
𝜱𝑖√
𝑚𝑖

[
−𝜀 𝑎1 cos

(
𝛺
2
𝑡 −

𝛾1 + 𝛾2
2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑥1(𝑡)

+ 𝑎2 cos
(
𝛺𝑡 − 𝛾2

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑥2(𝑡)

]
, (43)

As a first result, because the leading harmonics of 𝑥1(𝑡) is 𝛺∕2 (H1∕2) and the one of 𝑥2(𝑡) is 𝛺 (H1), there is a frequency splitting
between 𝑥1(𝑡) and 𝑥2(𝑡). Consequently, the saturation phenomenon (see Fig. 11) that has been exhibited on 𝑥2(𝑡) in Sections 3 and
4 is equally observed on the mechanical displacement 𝒖(𝑡) of any point of the structure, at the driving frequency 𝛺. In addition, the
electromechanical modal change of variables (16)a creates a subharmonic component (H1∕2) in 𝒖(𝑡), proportional to 𝑥1(𝑡), a priori
of a smaller amplitude because of the 𝜀 factor.

In the same manner, Eqs. (9), (16)b give, for the electrical charge:

𝑄(𝑡) = 1√
𝐿

[
𝑎1 cos

(
𝛺
2
𝑡 −

𝛾1 + 𝛾2
2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑥1(𝑡)

+𝜀 𝑎2 cos
(
𝛺𝑡 − 𝛾2

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑥2(𝑡)

]
. (44)

Here, the leading harmonics is H1∕2, with a H1 harmonics of smaller amplitude, because of the 𝜀 factor.

5.2. Saturation amplitude and design

To evaluate the relevant parameters for the design of the nonlinear shunt, we base ourselves on the amplitude 𝑎∗2 of the
mechanical mode saturation given by Eq. (34). Inserting this equation into Eq. (43), the 𝛺 (H1) harmonics amplitude of the
displacement vector then reads:

𝒖∗H1 =
𝑎∗2𝜱𝑖√

𝑚𝑖
= 𝑢∗H1𝜱𝑖, with 𝑢∗H1 =

2𝜔2𝜇1
𝛬2

√
𝑚𝑖

(45)
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Table 1
Typical values of capacitance 𝐶p𝑖 and 𝛽1∕𝛽2 for a thickness/length ratio ℎ𝑝∕𝑙𝑝 = 0.01, a frequency ratio 𝑟𝑖 = 0.5, a typical
dielectric permittivity 𝜖33 = 2000𝜖0 ≃ 2 ⋅ 10−8 F∕m (𝜖0 = 8.82 ⋅ 10−12 F∕m is the vacuum permittivity) for a PZT like
piezoelectric material [58], as a function of width 𝑏.
𝑏𝑝 [m] 1e−6 1e−3 1e−2 1e−1
𝐶p𝑖 2 pF 2 nF 20 nF 200 nF
𝛽1∕𝛽2 = 1∕(𝐶2

p𝑖𝑟
2
𝑖 ) 1024 1018 1016 1014

We can verify that the above amplitude is logically independent of the scaling of the mode shape 𝜱𝑖 since the modal mass is
𝑚𝑖 = 𝜱T

𝑖 𝑴𝜱𝑖 (see Eqs. (5)).
To go further, we consider practical values of the parameters. As explained in Section 2.2, the parameter 𝜀 is small and depends

on the electromechanical coupling factor 𝑘𝑖 and the tuning of the electrical resonance 𝑟𝑖. To easily analyze the mathematical results,
we neglect in 𝛥 the term 4𝑟2𝑖 𝑘

2
𝑖 and Eqs. (14) and (12) give:

𝜀 ≃
𝑘𝑖𝑟𝑖
1 − 𝑟2𝑖

, 𝜔2 ≃ 1. (46)

Fig. 13 shows that the above linear approximation of 𝜀 as a function of 𝑘𝑖 is valid on a large range of 𝑘𝑖 values, below 𝑘𝑖 = 0.2.
Then, because 𝜀 is small, we approximate 𝜇1 and 𝜇2 in Eq. (19) by:

𝜇1 ≃ 𝜉𝑒𝑟𝑖, 𝜇2 ≃ 𝜉𝑖. (47)

Finally, 𝒖H1 depends on 𝛬2, which depends on the choice of the nonlinear shunt in Eq. (2).
Considering the first case of nonlinear shunt for which the voltage is proportional to the squared electrical charge (Eq. (2)a)),

one obtains, with Eqs. (21) and (23), 𝛬2 = 2𝜀𝛽1𝑟3𝑖 𝜔̂𝑖𝐶
3∕2
p𝑖 , which gives:

𝒖∗(1)H1 =
𝜉𝑒
𝑘𝑖𝛽1

1 − 𝑟2𝑖
𝑟3𝑖 𝐶

3∕2
p𝑖

𝜱𝑖

𝜔̂𝑖
√
𝑚𝑖

(48)

In the second case for which the voltage is proportional to the squared piezoelectric voltage (Eq. (2)b), one obtains, with Eqs. (21)
and (24),

𝛬2 ≃ 2𝜆1𝜀 + 𝜆2 − 2𝜆3𝜀 =
2𝑟2𝑖 𝑘𝑖(1 − 𝑘2𝑖 )

1 − 𝑟2𝑖

𝛽2𝜔̂𝑖√
𝐶p𝑖

,

which gives, with 1 − 𝑘2𝑖 ≃ 1:

𝒖∗(2)H1 =
𝜉𝑒
𝑘𝑖𝛽2

(1 − 𝑟2𝑖 )
√
𝐶p𝑖

𝑟𝑖

𝜱𝑖

𝜔̂𝑖
√
𝑚𝑖

(49)

Eqs. (48) and (49) share similarities. If one wants to minimize the saturation vibration amplitude of the structure 𝒖∗H1, one
has to consider the factor 𝜂 = 𝜉𝑒∕(𝑘𝑖𝛽) as low as possible, i.e. with a low electrical shunt damping ratio 𝜉𝑒 and high piezoelectric
coupling factor 𝑘𝑖 and nonlinearity coefficient 𝛽. Since the values of 𝜉𝑒 and 𝑘𝑖 are in practice limited by the material constants of the
components, one can imagine increasing 𝛽 as much as possible, with a suitable electronic circuit, to efficiently improve the shunt
performance, and/or balance a too high 𝜉𝑒 or a two low 𝑘𝑖.

5.3. Order of magnitude of coefficient 𝛽

Following the previous section and considering the two choices for the nonlinear shunt design in Eq. (2), if we consider a given
targeted saturation amplitude 𝒖∗H1, the ratio between 𝑢∗(1)H1 and 𝑢∗(2)H1 gives the order of magnitude of 𝛽1∕𝛽2 of the two choices:

𝑢∗(1)H1

𝑢∗(2)H1

= 1 =
𝛽2

𝛽1𝐶2
p𝑖𝑟

2
𝑖

⇒
𝛽1
𝛽2

= 1
𝐶2

p𝑖𝑟
2
𝑖

. (50)

Remember that the units of 𝛽1 and 𝛽2 are not the same. One observes that 𝛽1∕𝛽2 depends only on the piezoelectric patch capacitance
𝐶p𝑖 and the frequency ratio 𝑟𝑖. In most practical cases, 𝐶p𝑖 takes a very small value in Farads. This is illustrated in Table 1 in which
the capacitance of a rectangular piezoelectric patch of length 𝑙𝑝, thickness ℎ𝑝 and width 𝑏𝑝 is indicated, computed with:

𝐶p𝑖 =
𝜖33𝑙𝑝𝑏𝑝
ℎ𝑝

, (51)

where 𝜖33 is the permittivity of the material. Typically, if the patch is thin (𝐿∕ℎ = 100) and of centimetric dimensions, 𝐶p𝑖 ≃ 20nF,
which leads to a very large ratio 𝛽1∕𝛽2, of the order of 1016 F2. This huge ratio can be explained because piezoelectric transducers
typically exhibit small charges and high voltages. More insights on practical values of the gains 𝛽𝑘 are investigated in the next
section on a practical example, of centimetric size.
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5.4. Electric charge order of magnitude

We evaluate here the effect of the design parameters on the value of the electric charge at the antiresonance. We consider its
leading harmonics H1∕2, which, considering Eqs. (44) and (35), (9), (20), reads:

𝑄∗
H1∕2 =

𝑎∗1√
𝐿

=

√
2

𝐿𝛬4

√
𝐹 − 𝐹 ∗

𝜔̂2
𝑖
√
𝑚𝑖

. (52)

In the above equation, 𝐹 ∗ = 𝜱T
𝑖 𝑭

∗ is the value of the forcing amplitude 𝐹 = 𝜱T
𝑖 𝑭 at the nonlinear coupling threshold. Considering

Eq. (34) and the scaling (9), one shows that:

𝐹 ∗ = 2𝜉𝑖𝜔̂2
𝑖𝑚𝑖𝑢

∗
H1. (53)

In the same manner than in the previous sections, we consider successively the two shunt designs. For the first case (Eq. (2)a),
one obtains, with Eqs. (21) and (23), 𝛬4 = 𝜀𝛽1𝑟3𝑖 𝜔̂𝑖𝐶

3∕2
p𝑖 which gives:

𝑄∗(1)
H1∕2 =

√√√√ 2(1 − 𝑟2𝑖 )

𝑘𝑖𝛽1𝑟2𝑖 𝜔̂𝑖
√
𝑚𝑖𝐶p𝑖

√
𝐹 − 𝐹 ∗, 𝐹 ∗ =

2𝜉𝑖𝜉𝑒(1 − 𝑟2𝑖 )𝜔̂𝑖
√
𝑚𝑖

𝑘𝑖𝛽1𝑟3𝑖 𝐶
3∕2
p𝑖

. (54)

In the above equation, the relation (7) between 𝐿 and 𝜔𝑒 as well as the approximation (46) for 𝜀 have been used.
For the second case (Eq. (2)b), one obtains, with Eqs. (21), (24), (46),

𝛬4 = 𝜀(𝜆1 − 𝜆2𝜀 + 𝜆3𝜀
2) =

𝑟4𝑖 𝑘𝑖
1 − 𝑟2𝑖

(
1 − 𝑜(𝑘2𝑖 )

) 𝛽2𝜔̂𝑖√
𝐶p𝑖

,

where 𝑜(𝑘2𝑖 ), of the order of 𝑘2𝑖 , will be neglected in the following. One then obtains:

𝑄∗(2)
H1∕2 =

√√√√√2(1 − 𝑟2𝑖 )𝐶
3∕2
p𝑖

𝑟2𝑖 𝑘𝑖𝛽2𝜔̂𝑖
√
𝑚𝑖

√
𝐹 − 𝐹 ∗, 𝐹 ∗ =

2𝜉𝑖𝜉𝑒(1 − 𝑟2𝑖 )𝜔̂𝑖
√
𝑚𝑖𝐶p𝑖

𝑘𝑖𝛽1𝑟𝑖
(55)

As considered in the previous Section 5.3, by considering a given targeted threshold amplitude 𝒖∗H1, the ratio between the two
charge expressions in the two cases of shunt design gives:

𝑄∗(1)
H1∕2

𝑄∗(2)
H1∕2

=
𝛽2

𝛽1𝐶2
p𝑖

= 𝑟2𝑖 ≃ 1∕4, (56)

where the last equality comes from Eq. (50) and 𝑟𝑖 ≃ 0.5.
Two comments can be raised. The first one is that, considering a given threshold amplitude 𝒖∗H1, the electric charge amplitudes

estimated for the two shunt designs (Eq. (2)a or (2)b) are of the same order of magnitude, since the ratio is ≃ 1∕4. Then, the other
major parameter which influences the amplitude of the electric charge is the force threshold 𝐹 ∗: the smaller it is, the higher 𝑄∗

H1∕2
is for a given excitation amplitude 𝐹 . This is illustrated in Figs. 4(b) or 11(b), where decreasing 𝐹 ∗ (or 𝑓 ∗

2 ) would translate the 𝑎𝐶1
curve to the left and thus increase the value of its amplitude for a given forcing 𝑓2. Finally, another important parameter is 𝑘𝑖𝛽
which appears in the denominator of 𝑄∗

H1∕2 and in 𝐹 ∗. We can write 𝑄∗
H1∕2 =

√
(𝑎𝑥 − 𝑏)∕𝑥2 with 𝑥 = 𝑘𝑖𝛽 and 𝑎, 𝑏 functions of the

other parameters. One can remark that this function is increasing as a function of 𝑥, showing that an increase of 𝑘𝑖𝛽 also leads to an
increase of the electric charge. This was already observed in Figs. 5(b) and 6(a) where 𝑎𝐶1 increases as a function of 𝛬2 and 𝛬4, both
proportional to 𝑘𝑖𝛽.

5.5. Subharmonic of the displacement

As shown in Eq. (43), the electromechanical coupling is responsible of a parasitic subharmonic H1∕2 in the displacement 𝒖(𝑡).
To estimate its relative amplitude, we compute the ratio of harmonics H1∕2 and H1 at the antiresonance:

𝑢∗H1∕2

𝑢∗H1
=

𝜀𝑎∗1
𝑎∗2

= 𝜀

√√√√2(𝐹 − 𝐹 ∗)
𝛬4𝜔̂2

𝑖
√
𝑚𝑖

𝛬2
2

4𝜔2
2𝜇

2
1

. (57)

With the same reasoning as in the previous sections, for the first case of 𝑉nl = 𝛽1𝑄2, one obtains 𝛬4 = 𝛬2∕2 and:

𝑢∗(1)H1∕2

𝑢∗(1)H1

=

√√√√√𝑘3𝑖 𝛽1
𝜉2𝑒

2𝑟4𝑖 𝐶
3∕2
p𝑖 (𝐹 − 𝐹 ∗)

(1 − 𝑟2𝑖 )3𝜔̂𝑖
√
𝑚𝑖

. (58)

For the second case of 𝑉nl = 𝛽2𝑉 2, 𝛬4 = 𝑟2𝑖𝛬2∕2 and:

𝑢∗(2)H1∕2

𝑢∗(2)H1

=

√√√√𝑘3𝑖 𝛽2
𝜉2𝑒

2(𝐹 − 𝐹 ∗)
(1 − 𝑟2𝑖 )3𝜔̂𝑖

√
𝑚𝑖𝐶p𝑖

. (59)
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Fig. 14. Saturation amplitude 𝑢∗(𝑘)H1 , 𝑘 = 1, 2 as a function of 𝛽𝑘, from Eqs. (61) and (62), for various values of the electrical damping ratio 𝜉𝑒, as specified. The
plot is related to the first mode of a beam (𝜁𝑖 = 𝜁1 = 1.875) in steel (𝐸 = 200 GPa), with a thickness/length ratio ℎ∕𝐿 = 0.01, a frequency ratio 𝑟𝑖 = 0.5, a dielectric
permittivity 𝜖33 = 2000𝜖0 ≃ 2 ⋅ 10−8F∕m (𝜖0 = 8.82 ⋅ 10−12F∕m is the vacuum permittivity) and a coupling factor 𝑘𝑖 = 0.2. In the first case, 𝑘 = 1, the beam thickness
is 𝑏 = 10 mm.

Considering the above result, two conclusions can be drawn. First, since the subharmonic is proportional to 𝑎∗1 (similarly to the
electric charge 𝑄∗

H1∕2), it is also proportional to the factor
√
𝐹 − 𝐹 ∗. Secondly, it is proportional to the factor

√
𝑘3𝑖 𝛽∕𝜉2𝑒 , a fact that

will be analyzed in Section 6.

5.6. An arbitrary thin piezoelectric beam

All the previous investigations can be applied to an arbitrary structure. To precise the design, we particularize the geometry and
we consider a beam with a piezoelectric patch, as depicted in Fig. 12. To obtain the order of magnitude of the several parameters,
we neglect the mechanical inertia and stiffness of the piezoelectric patch and consider in the model only those of the elastic layer
(see for instance [58,70] for more refined models). We denote by (𝐸, 𝜌) the Young’s modulus and density of the elastic layer and
we consider a rectangular cross section of width 𝑏 and thickness ℎ. 𝑙 is the length of the beam. An analytical model is thus at hand
and gives, for this beam (with a classical Euler–Bernoulli kinematics [71]):

𝜔̆𝑖 ≃ 𝜔̂𝑖 =
𝜁2𝑖 ℎ

𝑙2

√
𝐸
12𝜌

, 𝑚𝑖 = 𝜌𝑏ℎ𝑙∕4, 𝛷𝑖(𝑙) = 1, (60)

with 𝜁1 = 1.875, 𝜁2 = 4.694, 𝜁3 = 7.855. . . and 𝛷𝑖(𝑙) the value of the 𝑖th mode shape at the tip of the beam. To obtain a consistent
order of magnitude of the electric capacitance of the piezoelectric patch, we use Eq. (51), by considering a piezoelectric patch of
equivalent size to that of the elastic layer.

Introducing the above parameters in Eqs. (48) and (49) leads to:

𝑢∗(1)H1 =
4
√
3𝜉𝑒

𝑘𝑖𝜁2𝑖
√
𝐸

1 − 𝑟2𝑖
𝑟3𝑖

1
𝛽1𝜖

3∕2
33 𝑏2

, (61)

𝑢∗(2)H1 =
4
√
3𝜉𝑒

𝑘𝑖𝜁2𝑖
√
𝐸

1 − 𝑟2𝑖
𝑟𝑖

√
𝜖33𝐿2

𝛽2ℎ2
, (62)

where 𝑢∗(𝑘)H1 , 𝑘 = 1, 2, are the beam tip displacement amplitudes for the two shunt design choices. One observes that those two
equations are independent of the density of the material 𝜌. They are composed of three factors. The first one is common two both
equations; the second one depends on the piezoelectric shunt tuning 𝑟𝑖 = 𝜔𝑒∕𝜔̂𝑖 ≃ 0.5. The third one differs in the two equations,
because of the different physical nature of 𝛽1 (of unit V∕C2) and 𝛽2 (of units V−1), stemming from the two choices for the nonlinear
shunt.

In the case of the second choice (𝑉𝑛𝑙 = 𝛽2𝑉 2
𝑝 ), Eq. (62) shows that the saturation value 𝑢∗(2)H1 of the tip amplitude of the beam,

expressed in [m], does not depend on the size of the structure but only of its slenderness ratio ℎ∕𝑙. On the contrary, 𝑢∗(1)H1 for the first
choice (𝑉𝑛𝑙 = 𝛽1𝑄2) is inversely proportional to the squared size of the structure, through its squared width 𝑏2. The dependence on
the other parameters is the same for both cases. To set the ideas of the order of magnitude of 𝛽1 or 𝛽2 in a practical case, Fig. 14 gives
the saturation amplitude 𝑢∗(𝑘)H1 of the beam’s tip as a function of 𝛽𝑘. In the case of a centimetric thin beam (ℎ∕𝑙 = 0.01) in steel, with
a PZT piezoelectric patch, a saturation amplitude of 0.05 mm is obtained for 𝛽2 ≃ 0.005 V−1, whereas 𝛽1 ≃ 5 ⋅1013 V∕C2, in agreement
with Table 1. In a practical case, since analog nonlinear capacitors with the required level of nonlinearity are scarce in common
electronic components, one would probably rely on analog multipliers or a synthetic digital shunt to realize the electronics. In those
cases, huge values of 𝛽1, naturally explained by the small electric charge generated by the piezoelectric transducers, would probably
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Table 2
Parameters of the first mode of the beam used for the frequency response of Fig. 16.
𝜔̂1∕(2𝜋) 𝜉1 𝑚1 𝐶p1 𝜃1 𝑘1 𝛷1(𝑙)
37.51 Hz 0.005 8.9 g 32.45 nF 0.88 mN∕V 0.22 1

Fig. 15. Amplitude 𝑢H1 at the open circuit natural frequency 𝛺 = 𝜔̂1 of the beam tip of the beam as a function of the frequency parameter 𝑟1 = 𝜔𝑒∕𝜔̂1, for
several values of the nonlinearity coefficient 𝛽2 (𝛽2 ∈ {0.008; 0.01; 0.015} V−1), as specified, and for a given value of the forcing 𝐹 = 0.53 mN. Those curves were
obtained by numerical continuation of Eqs. (6) with Manlab. The parameters are those of Table 2 and the electrical damping ratio is 𝜉𝑒 = 0.0053.

be realized in practice using dedicated charge amplifiers, with possible complex electronic implementations. On the contrary, the
second design choice of 𝑉𝑛𝑙 = 𝛽2𝑉 2

𝑝 appears more straightforward, with smaller values of 𝛽2, and would probably lead to simpler
electronic circuit designs, which motivates the practical example of the next section.

5.7. A practical example

In this section, we give an example of design of the nonlinear piezoelectric shunt on a particular structure. We choose the
piezoelectric beam already used in [59]. It is a stainless steel cantilever beam (with a length of 178.8 mm, a width of 30.5 mm and
a thickness of 1.1 mm) with two Physik Instrumente PIC 151 piezoelectric patches (with a length of 70 mm each, 0.5 mm thick and
with wrapped electrodes) bonded on each side of the beam and electrically connected in series. An experimental modal analysis
gave us the modal parameters of Table 2, for the first mode of the beam (𝑖 = 1). In the following, we consider that the beam is
driven at its tip, with a point force 𝐹 (𝑡) = 𝐹 cos𝛺𝑡.

We choose to design a shunt based on the second possible case, namely with 𝑉nl = 𝛽2𝑉 2. Looking at Fig. 1 shows that three
parameters have to be chosen to design the shunt: its inductance 𝐿, resistance 𝑅 and nonlinearity coefficient 𝛽2. The inductance
𝐿 influences the electrical frequency 𝜔𝑒 (Eq. (7)), that has to be tuned properly to obtain the 2:1 internal resonance. In theory,
it is obtained with 𝜔2∕𝜔1 = 𝜔̃𝑖∕𝜔̃𝑒 = 0.5. Following Fig. 2, 𝜔𝑒 has to be overtuned with respect to 𝜔̂𝑖∕2 and with the present
electromechanical coupling factor of 𝑘𝑖 = 0.22, an estimation of the tuning is 𝑟𝑖 ≃ 0.525.

Moreover, to lock the antiresonance at a given frequency, this tuning slightly depends on the amplitude of the motion and other
parameters, as explained in Section 4. We then use a numerical continuation of the modal reduced order model (6) as a function of
the electrical frequency 𝜔𝑒 to precisely determine it. It is obtained in practice with Manlab, by leaving 𝜔𝑒 free whereas the driving
frequency 𝛺 and forcing 𝐹 are prescribed. Since we are targeting an antiresonance in the middle of the frequency band of vibration
reduction, we choose here 𝛺 = 𝜔̃𝑖: the resonance of the coupled electromechanical system, corresponding to 𝛺̄ = 𝜔2 or 𝜎1 = 0 in
Sections 3 and 4. As explained in Section 5.1, 𝜔̃𝑖 is slightly above the open circuit resonance of the system at 𝛺 ≃ 𝜔̂𝑖. With Eq. (12),
it is clear that 𝜔̃𝑖 = 𝜔2𝜔̂𝑖 depends on 𝑘𝑖 and 𝑟𝑖. Consequently, we choose our initial guess 𝑟𝑖 = 0.525, which leads to 𝜔̃1 = 37.85 Hz
with Eq. (12).

Fig. 15 (analogous to Fig. 10(a) in the case of the modal model Eqs. (18)) is obtained. It shows that the amplitude 𝑢(2)H1 of the first
harmonics of the beam tip has a minimum for a certain value 𝑟∗𝑖 of the frequency ratio 𝑟𝑖 that correspond to place the antiresonance
of 𝑢(2)H1 = 𝑓 (𝛺) exactly at 𝛺 = 𝜔̃1. This plot is also valuable since it enables to visualize the value of 𝛽2 necessary to obtain a
certain amplitude threshold 𝑢∗(2)H1 . For instance, the dark green curve shows that 𝛽2 = 0.015 V−1 leads to an amplitude threshold of
𝑢∗(2)H1 = 0.02 mm and that a tuning 𝑟𝑖 = 0.5309 is necessary for the AR correction at this forcing (𝐹 = 0.53 mN). The obtained tunings
for the three values of 𝛽2 shown in Fig. 15 are, as expected, slightly above our initial guess of 𝑟𝑖 = 0.525.

Using the values of 𝑟∗𝑖 taken from Fig. 15, Fig. 16 shows the frequency response of the first harmonics of the beam tip 𝑢(2)H1 = 𝑓 (𝛺)
and the subharmonics of the electric charge 𝑄H1∕2 = 𝑓 (𝛺). Instead of plotting this frequency response for several values of the forcing
𝐹 , which would give a plot similar to Fig. 11, we show here the frequency response for several values of the nonlinearity coefficient
𝛽2 for a given value of the external forcing 𝐹 . This plot confirms that the AR correction obtained by adjusting 𝑟𝑖 according to the
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Fig. 16. Resonant response around the first resonance of the beam for several values of the nonlinearity coefficient 𝛽2 (𝛽2 ∈ {0.008; 0.01; 0.015} V−1) and the
nonlinear shunt tuned to obtain the nonlinear antiresonance at 𝛺 = 𝜔̂1, according to the minima of the curves in Fig. 15 (𝑟1 = 𝜔𝑒∕𝜔̂1 ∈ {0.5252; 0.5276; 0.5300}).
(a) amplitude of the first harmonics of the beam’s tip displacement 𝑢H1 and (b) amplitude of the subharmonic of the electrical charge 𝑄H1∕2 obtained by numerical
continuation of Eqs. (6) with Manlab, with a darker blue as 𝛽2 increases. The parameters are those of Table 2, with 𝐹 = 0.53 mN and 𝜉𝑒 = 0.0053.

minima of Fig. 15 works since the nonlinear antiresonance is perfectly located at 𝛺 = 𝜔̃1, the resonance of the coupled system. This
plot also shows the linear resonances of the system, in the vicinity of 𝛺 = 𝜔̃𝑖 ≃ 37.85 Hz. The slight dependence of 𝛺 = 𝜔̃𝑖 upon 𝑟𝑖
is also visible in Fig. 16(a), since three linear resonances are obtained in dashed–dotted lines. The open circuit resonance around
𝜔̂𝑖 = 37.51 Hz is also shown in dashed lines. An interesting point is that increasing the value of 𝛽2 slightly decreases the value of
the electrical charge in Fig. 16(b).

Moreover, as already observed in Section 4, some quasiperiodic (QP) responses are obtained in Fig. 16. They can be close to
the antiresonance point and seems to approach it as 𝛽2 or 𝐹 are increased. Those QP responses are also obtained in Fig. 15. Some
examples of QP response as a function of time are shown in Figs. 17(d, e). There amplitude is of the same order of magnitude than
the one of the periodic response at the antiresonance point (Figs. 17(b, c)), leading to think that this QP responses are not an issue
for the vibration reduction. On the contrary, it can be observed that there is a unexpected strong effect of the subharmonic H1∕2 on
the total response in displacement, since its amplitude is of the same order of magnitude than the leading harmonics H1. This is the
joint consequence of the large coupling factor 𝑘1 = 0.22 used in the simulations as well as the fact that at the antiresonance point,
the H1 harmonics is small because of the saturation phenomenon, leading to H1∕2 harmonics of the same order of magnitude.

6. Design guidelines and parameter optimization for high vibration attenuation

As highlighted in the previous section, the design parameters that have to be chosen and controlled in a given application of the
nonlinear shunt are the electrical frequency tuning 𝑟𝑖 = 𝜔𝑒∕𝜔̂𝑖, the nonlinearity coefficient 𝛽, the electrical damping factor 𝜉𝑒 and
the piezoelectric coupling factor 𝑘𝑖. Here is a set of guidelines that can be considered when selecting each parameter.

Firstly, one has to remark that the response of the nonlinear shunt is amplitude dependent, as shown for instance in Fig. 11. It
means that, contrary to a fully linear system, the shape of the frequency response depends on the amplitude 𝐹 of the forcing. On
the contrary, the major property of the shunt is the saturation phenomenon, that depends on the vibration amplitude threshold 𝑢∗H1,
which is the minimum vibration amplitude above which it is independent of the forcing. This occurs at a particular driving frequency,
close to twice the electrical frequency 𝜔𝑒, that has to be tuned close to half the targeted resonance, such that 𝑟𝑖 = 𝜔𝑒∕𝜔̂𝑖 ≃ 0.5 in
order to activate the energy transfer thanks to the 2:1 internal resonance.

The main design criterion is thus the amplitude threshold 𝑢∗H1, that we want to be as small as possible. In addition, the amplitude
of the electric charge 𝑄∗

H1∕2 during the energy transfer has also to be considered for the design of the electrical components of
the circuit. Finally, the electromechanical coupling creates a subharmonic H1∕2 in the displacement signal that can have a non
negligible amplitude with respect to the H1 harmonics, and thus decreases the damping performance (see Fig. 17). The harmonics
ratio 𝑢∗H1∕2∕𝑢

∗
H1, to be minimized, is thus also a design criterion.
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Fig. 17. (a) Resonant response around the first resonance of the beam with both the leading harmonics H1 and the subharmonic H1∕2 of the beam’s tip
displacement (same case as Fig. 15 for 𝛽2 = 0.015 V−1); (b, c): periodic response at the antiresonance point; (d, e): examples of quasi-periodic responses, obtained
by time integration. The parameters are those of Table 2, with 𝐹 = 0.53 mN and 𝜉𝑒 = 0.0053.

As shown in Sections 5.2 and 5.5:

𝑢∗H1 ∝
𝜉𝑒
𝑘𝑖𝛽

= 𝜂,
𝑢∗H1∕2

𝑢∗H1
∝

√√√√𝑘3𝑖 𝛽

𝜉2𝑒
= 1

𝜂

√
𝑘𝑖
𝛽
, (63)

where ∝ means ‘‘proportional to’’. Consequently, to minimize the saturation amplitude 𝑢∗H1, one has to choose 𝜂 as small as possible.
However, decreasing 𝜂 leads to an increase of the subharmonic 𝑢∗H1∕2. . . Considering the criterion ‘‘minimize 𝑢∗H1 and 𝑢∗H1∕2’’, one can
first choose the electrical damping factor 𝜉𝑒 as small as possible. It is linked to the electrical resistance of the electronic circuit built
for the shunt. Decreasing it is often limited in practice by the inherent resistance of the wires. Using an active negative capacitance
synthetic circuit could be an alternative to artificially decrease 𝜉𝑒 (see e.g. [4]). Then, one can remark that the piezoelectric coupling
factor 𝑘𝑖 and the nonlinearity parameter 𝛽 play the same role and that their product 𝑘𝑖𝛽 has to be as large as possible to minimize
𝜂 and thus 𝑢∗H1. On the contrary, the subharmonic amplitude 𝑢∗H1∕2 is directly linked to the piezoelectric coupling. Then, a correct
design should be with a low (but non-zero) piezoelectric coupling factor 𝑘𝑖 to minimize 𝑢∗H1∕2, which can be counterbalanced by a high
nonlinearity coefficient 𝛽. In particular, if a given 𝑢∗H1 is targeted, one can think of minimizing 𝑢∗H1∕2 by decreasing 𝑘𝑖 while increasing
𝛽 in the same proportion, to keep 𝑘𝑖𝛽 (and 𝑢∗H1) constant.

In most applications (linear shunt damping, energy harvesting), the piezoelectric coupling factor 𝑘𝑖 has to be as high as possible,
which also leads to a good performance here by minimizing the saturation amplitude 𝑢∗H1. This is achieved by selecting a quality
piezoelectric material as well as with suitable optimization of the geometry and placement of the piezoelectric patch on the
structure (see [70,72]). It can be also improved by adding a negative capacitance in the shunt circuit, since it is equivalent to
artificially increase the coupling factor [59]. On the contrary, for our present application, a not too high 𝑘𝑖 is preferable to minimize
the subharmonic amplitude, and the opposite reasoning has to be followed, allowing piezoelectric materials with lower coupling
constants and non optimal geometry/placement of the patches.

As shown in Section 5.4, the amplitude 𝑄∗
H1∕2 of the electric charge is an increasing function of 𝑘𝑖𝛽. It is also proportional to√

𝐹 − 𝐹 ∗, with 𝐹 ∗ being proportional to 𝑢∗H1 (see Eq. (53)). It then means that optimizing the parameters to decrease 𝑢∗H1 also leads
to an increase of 𝑄∗

H1∕2. Moreover, increasing 𝑘𝑖𝛽 or decreasing 𝜉𝑒 has also the negative effect to widen the bistability region of
the response curve in which a potential high amplitude response of the system can be reached, on the sides of the antiresonance
(see Fig. 5, since 𝛬2 is proportional 𝑘𝑖𝛽 and 𝜇1 is proportional to 𝜉𝑒). Consequently, the benefit gained by decreasing the amplitude
threshold 𝑢∗H1 has a direct effect on increasing the electrical charge in the circuit and widening the side bistable regions.

In addition, the parameter 𝑟𝑖 must be chosen so that the coupled solution appears and must be slightly corrected as a function
of the values of 𝛽 and 𝐹 , as illustrated in Sections 4.3 and 5.7. It has been shown in Fig. 10 that the correct tuning 𝑟∗𝑖 is a linear
function of the forcing 𝐹 , with a coefficient that depends on the other parameters. Consequently, a performant shunt design should
include a tuning correction of the electrical mode, using the proportionality relation (42). In practice, since the antiresonance occurs
for a phase locking 𝛾1 = 3𝜋∕2, this property could be used to estimate the 𝛼 proportionality coefficient.
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7. Conclusion

In this paper, a passive nonlinear vibration absorber has been designed by utilizing a nonlinear piezoelectric electric shunt circuit
with quadratic non-linearity. The quadratic non-linearity has been chosen to create a 2:1 internal resonance between a given resonant
(mechanical) mode of the primary structure and a resonant electric circuit tuned at the order two subharmonic. The main feature
to exploit from the 2:1 internal resonance is the saturation phenomenon, which leaves the mechanical amplitude independent of
the forcing amplitude above a threshold. It is linked to a nonlinear energy transfer from the mechanical mode to the electric mode,
leading to an efficient vibration attenuation near the resonance frequency.

Since the coupling of the mechanical mode and the electric mode through the piezoelectric patch breaks the invariance of those
linear modes, the 2 ∶ 1 internal resonance properties are directly linked to the electromechanical modal coordinates, that are linear
combination of the electrical and mechanical modes. However, because the energy is transferred from the excitation frequency
harmonic to the subharmonic, we proved that this does not break the pure saturation phenomenon that is created on the mechanical
amplitude of the structure at the driving frequency. However, this invariance break is also responsible of an unwanted subharmonic
component in the displacement.

The choice of the nonlinear shunt parameters (piezoelectric coupling factor 𝑘𝑖, inductance 𝐿, resistance 𝑅 and nonlinearity
parameter 𝛽) has also been thoroughly addressed. It was shown that improving the performance of the shunt, by lowering as much
as possible the mechanical amplitude coupling threshold 𝑢∗H1, relies on decreasing as much as possible the factor 𝜂 = 𝜉𝑒∕(𝑘𝑖𝛽), with 𝜉𝑒
the dimensionless damping ratio proportional to 𝑅. Consequently, the electric circuit of the shunt must be designed as less resistive
as possible, and, contrary to more classical shunt applications, the piezoelectric coupling factor 𝑘𝑖 must be chosen not so high to
minimize the subharmonic component creation. The main design parameter is thus the nonlinearity parameter 𝛽, that has to be
chosen as high as possible.

The second design parameter set is the electrical tuning of the shunt, linked to the inductance 𝐿. The electrical frequency 𝜔𝑒
has to be chosen close to half the short circuit natural frequency of the targeted mechanical mode: 𝜔𝑒 ≃ 𝜔̂𝑖∕2 to activate the 2 ∶ 1
internal resonance. The fine tuning depends on the piezoelectric coupling factor 𝑘𝑖 (because of the invariance break considered
above) in a constant fashion, but also slightly on the forcing amplitude. This unexpected effect is directly related to the high value
of the non resonant term of coefficient 𝛬1 in the electromechanical modal system. This high value of 𝛬1 cannot be avoided with
the architecture of our shunt. However, it was proven that the relation between the fine tuning of 𝜔𝑒 as a function of the forcing
amplitude is linear, which gives a simple manner to correct this effect in a practical electronic circuit implementation.

Two shunt designs have also been tested (see Eqs. (2)). In theory, no difference of performance has been shown between both
designs in the shunt performance and in the shape of the frequency response. The only notable difference is in the numerical value
of the nonlinearity coefficient 𝛽, that has to be chosen very high in the first design (𝑉nl = 𝛽𝑄2, 𝛽 ≃ 5 ⋅ 1013V∕C2) and small for
the other one (𝑉nl = 𝛽𝑉 2, 𝛽 ≃ 5 ⋅ 10−3V−1). This huge difference in the orders of magnitudes has to be considered in a practical
implementation of the electronic circuit. If electronic multiplier components are used like in [20], the second design has probably
to be preferred.

Some quasi-periodic (QP) solutions have also been observed in our simulations, close to the antiresonance point. Those QP
solutions are responsible for beatings superimposed to the classical periodic solutions, that could slightly decrease the vibration
control performance, depending on the beating amplitude. The appearance of those QP responses is also probably linked to the
increase of the performance factor 𝑘𝑖𝛽∕𝜉𝑒, in a non trivial manner. A way of investigation should be the tracking of the Neimark–
Sacker bifurcations, using numerical continuation, as proposed for instance in [73]. The study of those QP solutions is left for further
studies.

Finally, one must bear in mind that this kind of nonlinear shunt is forcing amplitude dependent. The first consequence is that
the amplitude reduction appears above an amplitude threshold. So, below this amplitude, a classical linear absorber (like a resonant
shunt for instance [7]) has better performance. However, above the threshold, since the amplitude at the antiresonance saturates,
the present nonlinear shunt behaves better and better as long as the forcing amplitude increases. It is thus well suited to cases for
which the force is harmonics (like in rotating machines [74]), with a frequency in the vicinity of the mechanical resonance. In other
cases of a force with a large band frequency content, the side resonance created by the non-resonant term 𝛬1 on the right of the
antiresonance, as seen in Fig. 11 or 16, could be an issue.
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3.1 Article presentation

The present chapter solely constitutes of the text of the article entitled by ”A nonlinear piezoelectric

shunt absorber with a 2:1 internal resonance: experimental proof of concept” published in ”Smart

Materials and Structures (SMS)” journal. The article illustrates the experimental investigation of the

absorber presented in chapter 2 to damp the first bending mode of a cantilever beam structure. The

article starts with a review of the main results suggested in chapter 2 focusing on the loss of saturation,

the antiresonance correction strategy, and the preserved phase locking feature.

Experimental modal analysis is also presented to identify the electro-mechanical modal param-

eters of the first bending modes necessary to design the circuit. Those parameters are the modal

mass, resonance frequency, mechanical damping ratio, piezoelectric coupling factor, and piezoelectric

capacitance. The modal analysis relies on the piezoelectric coupling characteristic in which differ-

ent experimental frequency response functions are measured and fitted with their equivalent ones to

determine the unknown parameters.

The nonlinear shunt circuit and its main components are discussed with the nonlinearity generated

through an analog multiplier. The electrical parameters used are presented with a focus on the behavior

of the synthetic inductor. In addition, the measurement protocol is illustrated, showing the main

71



3.2. A NONLINEAR PIEZOELECTRIC SHUNT ABSORBER WITH 2:1
INTERNAL RESONANCE: EXPERIMENTAL PROOF OF CONCEPT

signals measured throughout the experiment, namely the beam tip velocity and piezoelectric voltage.

To validate the energy transfer, the nonlinear frequency responses of the first harmonic of the velocity

and the subharmonic of the voltage are obtained using the sine step method with a demodulation

procedure both for the amplitudes and the phase angles.

A comparison between the numerical and experimental results is performed with an excellent

fitting validating the antiresonance shifting with a constant amplitude and the lockage of the phase

γ1 between the electrical and the mechanical modes at the antiresonance frequency. In addition, the

effect of increasing the excitation is illustrated, validating the antiresonance shifting with constant

amplitude. The effect of increasing the nonlinear gain is also measured, showing a reduction in the

antiresonance amplitude with a shifting similar to the effect of increasing the excitation level. The

antiresonance correction proposed in chapter 2 is then tested thanks to the preserved lockage of the

relative phase angle γ1, leading to experimentally preserving the saturation and to a high attenuation

level.

The performance of the designed absorber is then compared with that of an optimized linear

resonant shunt showing a higher attenuation near the resonance frequency. The main drawback is the

limitation of broadband attenuation due to the additional peak presented near the primary resonance.

In addition, a quasiperiodic response is observed with the nonlinear absorber near the antiresonance

frequency which can be an issue.

3.2 A nonlinear piezoelectric shunt absorber with 2:1 internal resonance:
experimental proof of concept

72
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Abstract
An experimental proof of concept of a new semi-passive nonlinear piezoelectric shunt absorber,
introduced theoretically in a companion article, is presented in this work. This absorber is
obtained by connecting, through a piezoelectric transducer, an elastic structure to a resonant
circuit that includes a quadratic nonlinearity. This nonlinearity is obtained by including in the
circuit a voltage source proportional to the square of the voltage across the piezoelectric
transducer, thanks to an analog multiplier circuit. Then, by tuning the electric resonance of the
circuit to half the value of one of the resonances of the elastic structure, a two-to-one internal
resonance is at hand. As a result, a strong energy transfer occurs from the mechanical mode to
be attenuated to the electrical mode of the shunt, leading to two essential features: a nonlinear
antiresonance in place of the mechanical resonance and an amplitude saturation. Namely, the
amplitude of the elastic structure oscillations at the antiresonance becomes, above a given
threshold, independent of the forcing level, contrary to a classical linear resonant shunt. This
paper presents the experimental setup, the designed nonlinear shunt circuit and the main
experimental results.

Keywords: nonlinear piezoelectric shunt, vibration attenuation, 2:1 internal resonance,
energy transfer, saturation phenomenon

(Some figures may appear in colour only in the online journal)

1. Introduction

Mechanical structures used in industrial applications are often
submitted to high levels of vibration. This could lead to large
amounts of stress, fatigue, and noise, especially for lightweight
structures, reducing their life cycle and the comfort of their
users. This article proposes the experimental proof of concept
of an original nonlinear piezoelectric shunt vibration absorber,
theoretically introduced in [1], and based on an intentional

∗
Author to whom any correspondence should be addressed.

two-to-one internal resonance between a mode of the mech-
anical structure and a nonlinear electrical oscillator.

Passive dynamical vibrations absorbers were the first to
be designed, such as Lanchester [2] or Frahm dampers [3].
They consist of adding inertial, damping, and stiffness com-
ponents to the primary structure, organized so that their vibra-
tions counteract or dissipate those of the primary structure.
Though still well used in many applications, researchers began
developing in the early 1990s electromechanical analogs of
those mechanical dampers. The principle is to couple the
structure vibrations to an electrical circuit thanks to an elec-
tromechanical transducer. The circuit, usually called a shunt,
can be designed passive, active, or semi-passive in the case

1361-665X/22/035006+18$33.00 Printed in the UK 1 © 2022 IOP Publishing Ltd
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of supplied electronic components such as operational amp-
lifiers. Since piezoelectric transduction was first proposed in
the pioneering work [4], electromagnetic transduction has also
been investigated (see [5] and reference therein).

Most of the shunts strategies published until now are lin-
ear, which means that the electronic circuit is a combination of
inductances, resistances, and capacitances, the electric analogs
of mechanical inertia, viscous damper, and stiffness. They can
be devoted to the resonance reduction of a single mode, with
an analog of Frahm and Lanchester dampers (see e.g. [6]), pos-
sibly enhanced by negative capacitances [7, 8]. They can also
be used to create a frequency adaptive antiresonance to filter
a monoharmonic excitation signal [9]. Among others, one can
design a shunt with an electronic network as an electromech-
anical analog of the mechanical structure, to achieve broad-
band vibration damping (see e.g. [10]). Many other designs
have been proposed, the interested reader being redirected to
recent review papers on the subject [11, 12].

On the contrary to the above cited linear shunts, nonlin-
earities can be introduced intentionally in the vibration con-
trol device to benefit from particular dynamical phenomena
without counterparts in the linear theory. Examples of the use
of geometrically nonlinear stiffnesses are reviewed in [13, 14].
Then, in the field of nonlinear absorbers, several strategies
have been proposed, that can be gathered in four main fam-
ilies. For each family, the present text considers solutions
based on piezoelectric control with experiments, the inter-
ested reader being redirected to [1] for a broader literature
review. The first family is related to nonlinear energy sinks
(NES), which take the benefit of an absorber with strong non-
linearities, into which the energy is transferred and trapped.
To our knowledge, only two experimental studies propose a
NES that includes a piezoelectric transduction: [15], with an
analog electronics that includes multipliers and [16], in an act-
ive control philosophy with force feedback. The second fam-
ily is related to nonlinear tuned vibration absorber (NLTVA),
introduced in [17]. They are designed with nonlinearities in
the absorber mirroring those of the primary system, leading
to self-adaptation to the host structure’s dynamics amplitude,
contrary to the linear tuned absorbers. Such nonlinear vibra-
tion absorbers were extended to piezoelectric shunt circuits
theoretically in [18] and experimentally validated in [19–21]
with passive electronic components. The third family is related
to the so called synchronized switch damping techniques, pro-
posed in [22, 23], that was addressed in many theoretical and
experimental studies since (see the recent review [12]).

A fourth family, directly related to our present work, is
based on the intentional use of internal resonances. In a non-
linear system, if the ratio of two modal frequencies ωk and
ωl is a rational number (i.e. ωk/ωl ≃ n/m with n,m ∈ N∗),
a strong coupling between the two corresponding modes is
likely to occur, enabling to transfer energy from one mode to
the other. As explained in [1], the present article focus on the
intentional use of a 2:1 internal resonance, that is activated by
the presence of quadratic nonlinearities in the system, lead-
ing to an energy transfer from the driven mode (of natural fre-
quency ω2), to a mode tuned at half this frequency (of natural
frequency ω1 ≃ ω2/2). This leads to two important features:

(a) a significant amplitude reduction of the resonance of the
driven mode, which is replaced by a nonlinear antiresonance,
and (b) a saturation phenomenon, that leads to an amplitude
of the driven mode independent of the excitation level. Using
the features of a 2:1 internal resonance for vibration reduction
purposes has been illustrated in some works in the past, and
we focus here only on experimental studies. For example, an
analog electronic circuit made of multipliers was proposed in
[24, 25] to damp the vibration of a plant composed of a beam
connected to the shaft of a DC motor, by tuning the natural
frequency of the controller to half that of the beam. In [26],
the same technique was used, but with piezoelectric actuat-
ors. Moreover, the same method has been applied on different
structures like a truss in [27] and triangular panels [28] using
a real-time digital controller coupled to the elastic structure
with quadratic nonlinearities and tuned to have the saturation
phenomenon.

The main originality of our work is to use the particular fea-
tures of a 2:1 internal resonance in a semi-passive way using
a piezoelectric shunt circuit. We proposed a complete theor-
etical analysis to design such an absorber in a previous work
[1], in which a detailed guideline for the absorber design has
been given. In this work, an experimental analysis based on
the previous theoretical results is proposed, by applying the
vibration absorber to a cantilever beam structure to damp its
first bending mode. The outline of this paper is as follows: in
section 2, a brief theoretical analysis, emphasizing the main
features of the designed absorber, is given. In section 3, the
experimental setup and protocol, in addition to the nonlinear
shunt circuit design, are shown. Finally, section 4 is devoted
to experimental results and the absorber’s performance.

2. Theory

2.1. Governing equations

In this section, a summary of the main equations that govern
the electromechanical system is illustrated. The full theoret-
ical model with numerical and analytical results is outlined in
our previous paper [1], and only the main points are recalled
here. We consider an arbitrary elastic structure subjected to an
external excitation and connected to a nonlinear shunt circuit
via a piezoelectric (PE) patch as shown in figure 1. The dis-
placement vector u(x, t) at any point x of the structure at date
t is expanded on a given linear modes ϕi(x) of the structure in
short circuit. One obtains:

u(x, t) = ϕi(x)qi(t), (1)

where qi(t) is the ith modal coordinate, that verifies [1]:

q̈i+ 2ξiω̂iq̇i+ ω̂2
i qi+

θi
miCpi

Q=
Fi
mi

cosΩt, (2a)

Q̈+ 2ξeωeQ̇+ω2
eQ+

θi
LCpi

qi+
Vnl

L
= 0. (2b)

In the above equations, Q(t) is the electric charge in one of
the electrodes of the PE patch and (mi, ξi, ω̂i, Fi, θi) are
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Figure 1. Nonlinear shunt principle.

respectively the modal mass, damping, natural frequency in
open circuit (Q= 0), forcing and piezoelectric coupling coef-
ficient of the ith mode. Cpi is the effective capacitance of the
piezoelectric patch [7], and the electrical natural frequency and
damping factor are defined by:

ωe =
1√
LCpi

, ξe =
R
2

√
Cpi

L
, (3)

where (R,L) are respectively the resistance and the inductance
of the electric circuit. Vnl(t) represents the nonlinear voltage
source added to the shunt circuit, that is chosen to include
quadratic nonlinearities to activate the 2:1 internal resonance.
In this study, Vnl(t) is taken to be proportional to the square
of the voltage V(t) across the piezoelectric patch, by a con-
stant gain β, as shown in figure 1. Another choice could be
a nonlinear voltage proportional to the square of the electric
charge in the PE patch electrode (i.e. Vnl = βQ2). As shown in
[1], this latter choice would lead to a huge value of β (of the
order of 1015 V/C2) to achieve the absorber’s design condi-
tions, unrealistic in practice. One has thus:

Vnl = βV2, V=
1
Cpi

(Q+ θiqi) , (4)

where the second equation is the classical constitutive law
of the PE patch [1]. We also define the dimensionless elec-
tromechanical modal coupling factor (EMMCF) of the ith
mode as [29]:

k2i =
ω̂2
i − ω̌2

i

ω̂2
i

=
θ2i

ω̂2
i Cpimi

, (5)

with ω̌i the natural frequency in short circuit (V = 0).
To simplify the writing of the governing equations (2a) and

(2b), we define the following parameters:

τ = ω̂it, q̄i =
√
miqi, Q̄=

√
LQ, ri =

ωe
ω̂i

,% δi = kiri,

(6a)

F̄i =
Fi

ω̂2
i
√
mi

V̄nl =
Vnl

ω̂2
i

√
L

Ω̄ =
Ω

ω̂i
(6b)

to obtain a system in term of q̂i and Q̂with symmetric coupling
terms:

¨̄qi+ 2ξi ˙̄qi+ q̄i+ kiriQ̄= F̄i cos Ω̄τ , (7a)

¨̄Q+ 2ξeri ˙̄Q+ r2i Q̄+ kiriq̄i+ V̄nl = 0, (7b)

where the derivatives in equation (7) are with respect to the
dimensionless time τ . Note that the unknowns (q̄i, Q̄) share the
same unit (m kg1/2). Moreover, an important parameter is ri,
the ratio between the electrical natural frequency (linked to the
resonant electric circuit) and themechanical natural frequency,
that will be chosen close to 0.5 to achieve the 2 : 1 internal
resonance.

Since equations (2a), (2b) or (7a), (7b) are linearly coupled
because of the piezoelectric coupling, this latter system is diag-
onalized by further expanding the unknowns (q̄i, Q̄) on the
electromechanical modal basis, constituted of two modesΨk,
k= 1,2 such that:

Ψ1 =

(
−ε
1

)
, Ψ2 =

(
1
ε

)
, (8)

with

ε=
2kiri

1− r2i +
√
∆
, (9)

and the associated eigenfrequencies:

ω2
1 =

1+ r2i −
√
∆

2
, ω2

2 =
1+ r2i +

√
∆

2
, (10)

with ∆= (1− r2i )
2 + 4k2i r

2
i . The modal expansion reads:

(
q̄i(τ)
Q̄(τ)

)
=

2∑

k=1

Ψkxk(τ) =

(
−εx1(τ)+ x2(τ)
x1(τ)+ εx2(τ)

)
. (11)

Because the electromechanical coupling is often small
(ki < 0.2), ε is also small (of the same order of magnitude) and
the two electromechanical modes are very close to a purely
electrical mode for Ψ1 (x1 ≃ Q̄) and a purely mechanical
mode for Ψ2 (x2 ≃ q̄i). The same rule applies to the eigen-
frequencies ω1 and ω2, which are close to the dimensionless
uncoupled natural frequencies ωe/ω̂i = ri and ω̂i/ω̂i = 1. Pre-
cisely, because of the small positive term 4k2i r

2
i in ∆, (ω1,ω2)

are slightly out of the frequency band [ri,1] (ω1 ≲ ri; ω2 ≳ 1).
Consequently, themechanical resonance of the system appears
at a dimensioned frequency ω̃i = ω2ω̂i, which is slightly above
the open circuit frequency ω̂i. Moreover, the tuning of the
electrical mode at almost half the frequency of the mech-
anical mode to achieve the 2:1 internal resonance, must be
prescribed on the electromechanical natural frequency ratio
ω1/ω2, which is slightly lower than ri = ωe/ω̂i. This is quant-
itatively illustrated in figure 2, which shows that for a targeted
value of ω1/ω2, ri must be chosen slightly larger (for instance,
ri = 0.543 for ω1/ω2 = 0.5 and ki = 0.2).
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Figure 2. Electromechanical natural frequency ratio ω1/ω2 (from
equations (10)) as a function of the frequency ratio ri, for various
values of the EMMCF ki, as specified.

After modal expansion and using the definition (4) of Vnl,
one obtains [1]:

ẍ1 + 2µ1ẋ1 +ω2
1x1 +Λ1x

2
1 +Λ2x1x2 +Λ3x

2
2 = f1 cos Ω̄τ ,

(12a)

ẍ2 + 2µ2ẋ2 +ω2
2x2 +Λ4x

2
1 +Λ5x1x2 +Λ6x

2
2 = f2 cos Ω̄τ .

(12b)

In the above system, we assume that the modal mass is such
that 1+ ε2 ≈ 1 since ε ≪ 1 and that the non-diagonal damp-
ing terms are neglected since they are small and have thus a
negligible effect on the dynamics [30]. The expressions of the
damping terms µ1 and µ2, the nonlinear coefficients Λk, and
themodal forcing terms f 1 and f 2 are given in [1]. This last sys-
tem (12a) and (12b) is at the basis of the theoretical analysis
of [1] since it is the canonical system to study the 2:1 internal
resonance and its dynamical effects (nonlinear antiresonance
and saturation phenomenon), as recalled in the following.

2.2. Typical response and saturation phenomenon

To illustrate the main features of the 2:1 internal resonance
used for our absorber design, a first order solution of sys-
tem (12a) and (12b), in the case of the 2:1 internal resonance
(ω2 ≈ 2ω1), can be written [1, 31]:

x1(τ) = a1 cos

(
Ω̄

2
τ − γ1 + γ2

2

)
,x2(τ) = a2 cos

(
Ω̄τ − γ2

)
,

(13)

where a1 and a2 are the amplitudes, γ2 is the phase angle of
x2(τ), and γ1 represents the relative phase angle between x1(τ)
and x2(τ). The closed-form expressions of the amplitudes and
phase angles (obtainedwith a first order multiple scale,MSM),
in addition to a detailed theoretical study, can be found in
[1]. A typical example is illustrated in figure 3. It shows the
response of amplitudes a1 and a2 with respect to the detuning
σ1 = Ω̄−ω2 for different excitation levels. Two main features
are visible:

• there exists a threshold force for the excitation f 2 above
which the linear response enters an instability region
(shaded in blue). In this region, the energy transfer from the
high to low-frequencymodes occurs, and the linear response
loses its stability. This activates the response of a1, which
increases with the excitation, while a2 tends to have a kind
of antiresonance in place of the linear resonance frequency
(see figure 3(a));

• focusing on the amplitudes at the resonance frequency
(a∗1 and a

∗
2 ), it can be observed in figure 3(b) that a

∗
2 becomes

independent of the excitation level, a feature called a satur-
ation phenomenon, whereas a∗1 keeps increasing. Note that
the same analysis could be drawn at any other frequency that
lies in the frequency range of the instability region since the
a2 curve is independent of f 2.

Another major feature of this system is related to phase γ1.
The analytical results suggest that γ1 is monotonic as a func-
tion of the excitation frequency Ω, independent of the excita-
tion level f 2, and always locked at a value of 3π/2 [2π] at the
antiresonance frequency ([2π] means modulo 2π).

2.3. Response in the physical space

Figure 3 and equations (12a) and (12b) are related to the elec-
tromechanical coordinates x1(τ) and x2(τ). To go back to the
physical coordinates (the mechanical displacement and the
electric charge), the modal transform of equation (11) is used
to write:

u(t) =
Φi√
mi

[
− εa1 cos

(
Ω

2
t− γ1 + γ2

2

)

︸ ︷︷ ︸
x1(t)

+a2 cos(Ωt− γ2)︸ ︷︷ ︸
x2(t)

]
,

(14a)

Q(t) =
1√
L

[
a1 cos

(
Ω

2
t− γ1 + γ2

2

)

︸ ︷︷ ︸
x1(t)

+εa2 cos(Ωt− γ2)︸ ︷︷ ︸
x2(t)

]
.

(14b)

Consequently, u(t) and Q(t) are mainly composed of two har-
monics, at Ω/2 ( harmonic H1/2) and at Ω (harmonic H1).
Because of the small value of ε, the leading harmonics in the
response of u(t) and Q(t) are, respectively, H1 and H1/2, so
that, at the antiresonance, the energy is transferred from the
mechanical mode to the electrical mode and from the fre-
quency Ω to its subharmonic Ω/2.

2.4. Effect of nonresonant terms

The first order analytical solution that leads to figure 3 (using
the multiple scale method, MSM) naturally neglects the non-
resonant nonlinear terms of system (12a) and (12b), namely
the terms of coefficients Λ1, Λ3, Λ5, Λ6. Indeed, the skeleton
of the dynamics under 1:2 internal resonance is constituted by
the resonant terms (of coefs.Λ2 andΛ4) which are responsible
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Figure 3. Typical response of the amplitudes a1 and a2 and the phases γ1 and γ2, stemming from the first order multiple scale solution of
system (12a) and (12b), for ω2 = 2 ω1 and by neglecting the nonresonant terms, from [1]. The numerical values are Λ2 = Λ4 = 0.1,
µ1 = 0.005, µ1 = 0.01. (a) and (b) show respectively the amplitude and phase response with respect to the detuning σ1 for values of the
forcing f 2 ( f2 ∈ {0.005;0.03;0.05}). (c) amplitude response at the resonance frequency (σ1 = 0) with respect to the excitation level f 2. In
the plots, the linear responses of a2 and γ2 are plotted in black. The solid and the dashed-dotted lines denote respectively the stable and the
unstable solutions.

for the strong coupling between the modes (see [1, 31, 32] for
the analytical solution and [33, 34] for details about resonant
terms). However, it is shown in [1] that in the present case of
a nonlinear shunt, the order of magnitude of Λ1 is larger than
the one of Λ2 and Λ4, leading to an unusual and major effect
of the corresponding non-resonant term, which quantitatively
modifies the ideal response of figure 3.

This is illustrated in figure 4 in which a numerical solu-
tion of equations (2a) and (2b) (obtained with the continu-
ation software Manlab [35, 36]) is shown. To be more pre-
cise, we considered the case of the first bending mode of the
cantilever beam structure shown in figure 6, with the displace-
ment u(t) considered at the beam tip (u(t) = qi(t) with a mode
shape scaled to 1). Themodal parameters used in the numerical
simulations are the ones found experimentally and gathered in
table.

By observing the physical response of the amplitudes cor-
responding to the H1 and H1/2 harmonics of the displacement
and charge (uH1 andQH/12), shown in figure 4, and by compar-
ison with the typical response illustrated in figure 3, the effect
of the non-resonant terms can be inferred [1]:

• the antiresonance shifts to the low frequencies with increas-
ing excitation level, violating the saturation phenomenon;

• although the antiresonance is shifting, its amplitude remains
constant at a saturation amplitude u∗H1, which is the same as
a∗2 analytically obtained with the MSM;

• the phase angle γ1 is kept locked at 3π/2 at the antireson-
ance point;

• a break in the response symmetry is observed, leading to
another peak to the right of the resonance peak and the
appearance of a softening behavior, as it can be seen in the
charge response.

The main aim of this work is to exploit the saturation phe-
nomenon, which is broken because of the non-resonant terms
intrinsically related to the nonlinear shunt. To correct this, we
proposed an antiresonance correction (AR correction) tech-
nique, that consists in locking the antiresonance by choosing
the proper value of the ratio ri for each excitation level to
counter-balance the shifting observed in figure 4. As shown
in detail in [1], this can be simulated by a numerical continu-
ation of the system (2a) and (2b) using Manlab, to obtain the
amplitude of uH1 as a function of ri for a certain excitation level
and with a prescribed driving frequency equal to the resonance
frequency shown in figure 4 (ω̃1 = 37.7Hz). Then, the value of
ri where uH1 achieves its minimum value is the required value
to lock the antiresonance at the resonance frequency.

5
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Figure 4. Frequency response of the beam tip displacement first
harmonic uH1 amplitude, the charge QH1/2 subharmonic and the
phase γ1, obtained by solving system (2a) and (2b) using Manlab
for several excitation levels. The numerical values are β= 0.012,
ri = 0.52, ξe = 0.002, and the mechanical damping coefficient is
ξ1 = 0.005. The displacement linear response is plotted in black.
The solid and dotted lines denote, respectively, the stable and the
unstable solutions.

Following the AR correction, the response of uH1 shown
in figure 4 is replaced by the one shown in figure 5(a) where
it clearly shows that the antiresonance is locked at ω̃1. One
can note the appearance of a quasi-periodic solution (QP) for
F= 0.57 mN. Also, figure 5(b) shows the amplitude of u∗H1
with respect to the excitation level where one can observe
that the proposed AR correction preserves the saturation
phenomenon.

Experimentally, the AR correction will be performed ana-
logously, using the preserved feature of γ1 = 3π/2 at the anti-
resonance point. Namely, for a certain excitation level and by
prescribing the driving frequency at ω̃i, the required value of
ri, which is controlled by the inductance in the circuit, is the
one that locks γ1 at 3 π/2. This will be illustrated in detail in
section 4.4.

2.5. Summary on the theoretical results

The main conclusions that can be drawn from the above theor-
etical analysis in addition to the analysis done in detail in our
theoretical paper [1] are as follows:

• Connecting the proposed nonlinear shunt circuit to an arbit-
rary structure via a PE patch leads to an electromechanical
system governed by a fully quadratic nonlinear system (12a)
and (12b). By tuning ω̂i ≈ 2ωe, a 2:1 internal resonance

occurs, leading to an energy transfer from the mechanical
mode to be attenuated to the electrical mode designated by
the shunt circuit.

• The saturation phenomenon is violated as seen in figure 4.
To preserve this phenomenon, we propose an antiresonance
correction by slightly tuning the value of ri for each excita-
tion level, by locking the phase γ1 at 3π/2.

3. Experimental details

3.1. Structure under test

The experimental tests were conducted on a cantilever beam
with two PIC 151 piezoelectric (PE) patches symmetrically
glued on the two faces of a stainless steel beam, as shown in
figure 6. The nonlinear shunt circuit is connected to the struc-
ture with the PE patches in series and with opposite polariza-
tions to couple the electric shunt circuit to the bending of the
beam [37]. A contactless electromagnetic actuator composed
of a fixed coil and a magnet attached to the structure tip is used
to generate an electromagnetic force by inducing a current in
the coil. In [38], a detailed design has been illustrated for such
a coil-magnet system and a linear relationship has been found
between the current I(t) induced in the coil and the resulting
forcing F(t):

F(t) = αI(t), (15)

where α is a constant.

3.2. Experimental modal analysis

Before conducting the experiments with the nonlinear shunt
circuit, an experimental modal analysis was performed to
identify the parameters of our model of the electromech-
anical system under test. The experimental modal analysis
shown here consists of utilizing the benefit of the piezoelec-
tric coupling between the mechanical and electrical domains
(i.e. the structure and the shunt circuit). Focusing on a partic-
ular mechanical mode of the structure (the ith), we normalize
its mode shape with its value at the tip xt of the beam, such that
ϕi(xt) = 1. Considering the transverse displacement u(t) of the
beam at its tip and a colocalized point forcing F(t) = F0 cosΩt
(see figure 6), equation (1) shows that u(t) ≡ qi(t) and Fi = F0

in equation (2a). We then consider two sets of experiments:

• a mechanical forcing with the PE patches either in short
(V = 0) or open (Q= 0) circuit, leading to the two frequency
response functions (FRFs) (from equations (2a), (2b) and
(4)):

H1(Ω) =
ů

I̊

∣∣∣∣
V=0

=
γi

Ω2 − ω̌2
i + 2jξiω̂iΩ

,

Ĥ1(Ω) =
ů

I̊

∣∣∣∣
Q=0

=
γi

Ω2 − ω̂2
i + 2jξiω̂iΩ

. (16)

Notice that the difference between H1 and Ĥ1 is the
short/open natural circuit frequencies ω̌i or ω̂i.

6



Smart Mater. Struct. 31 (2022) 035006 Z A Shami et al

Figure 5. (a) Frequency response of the first harmonic amplitude of the beam tip displacement uH1, estimated by solving system (2a) and
(2b) using Manlab, for several excitation levels and with AR correction. (b) First harmonic amplitude of the beam tip displacement at the
resonance frequency u∗H1 with respect to the excitation level, with and without AR correction. The numerical values are β= 0.012 and
ξ1 = 0.005. The displacement linear response is plotted in black. The solid and dotted/dashed lines denote, respectively, the stable and
unstable solutions. QP refers to a quasi-periodic response, obtained after a loss of stability due to Neimark-Sacker bifurcations.

Figure 6. Experimental setup. Dimensions are in mm. The width of the beam and PE patches is 30.5 mm.
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Figure 7. Fitting between experimental and analytical FRFs. The solid and dashed lines depict the experimental and the analytical results,
respectively.

Table 1. Electro-mechanical modal parameters of the first bending mode of the cantilever beam (subscript i= 1).

Parameters ω1/(2π) (Hz) ω̂1/(2π) (Hz) ξ1(%) k1 θ1(mN V−1) m1[g] α (N/A) Cp1 (nF)

Value 36.6 37.51 0.5 0.20 0.8 8.8 0.6 32.45

• an electrical forcing by prescribing the voltage V(t) without
mechanical forcing, that conducts to define:

H2(Ω) =
ů

V̊

∣∣∣∣
F=0

= − λi
Ω2 − ω̌2

i + 2jξiω̂iΩ
,

C(Ω) =
Q̊

V̊

∣∣∣∣∣
F=0

= Cpi+
δi

Ω2 − ω̌2
i + 2jξiω̂iΩ

. (17)

In the above equations, •̊(Ω) is the Fourier transform of •(t)
and the amplitude constants reads:

γi =
α

mi
, λi =

θi
mi

, δi =
θ2i
mi

. (18)

By fitting the FRFs of equations (16) and (17) on the exper-
iments, it is possible to estimate the values of the unknown
parameters of the ith mode of the structure: ω̌i, ω̂i, ξi, mi, θi,
Cpi and α, as well as the EMMCF ki with equation (5). Notice
that in the first sets of experiments, one could also measure the
FRF Q̊/F̊ (with F̊= α̊I), which is theoretically equal to H2 in
the second step of experiments (following equations (2a) and
(2b), which is also a consequence of the Maxwell-Betti reci-
procity theorem). This could give another set of measurements
to improve the parameter estimation because of the redund-
ancy. However, it was not possible to measure Q and I at the
same time, since we had only one available current probe in
the laboratory.

In practice, we estimated the parameters of the first mode
of the experimental beam. We measured the FRFs with a chirp
signal as input. For the mechanical forcing, a Brüel & Kjær
2719 power amplifier connected to the coil was used; for the
electrical forcing, we used a TREK PZD700A piezoelectric
amplifier. In both cases, a Polytec OFV-505 vibrometer meas-
ured the velocity at the tip of the beam, and a PHILIPS PM

9355 precision current clamped was used to measure the cur-
rent intensity, either in the coil (I(t)) for the first set of experi-
ments, or in the piezoelectric circuit to obtain the charge Q(t),
for the second sets of experiments. The piezoelectric voltage
was obtained with the voltage monitor of the TREK amplifier.
A M+P international analyzer was used to generate the input
signal and compute the FRFs.

Figure 7 shows the experimental FRFs and the obtained
fitting, that directly give the open and short circuit frequen-
cies (ω1 and ω̂1), the damping coefficient ξ1 and the effective
capacitance Cp1. The gains γ1, λ1, and δ1 are also determined
directly and used to estimate the other modal parameters: the
modal massm1, the coupling coefficient θ1 and themechanical
forcing constant α as follows: θ1 = δ1/λ1 ⇒ m1 = θ1/λ1 ⇒
α= γ1 m1. Finally, the EMMCF is obtained using the second
equation (5) (k1 = θ1/ω̂1/

√
m1Cp1). The deducedmodal para-

meters numerical values are gathered in table 1. Notice that the
value of k1 estimated with the open/short circuit frequencies
(the first equation (5)) is slightly larger: k1 = 0.22. The value
k1 = 0.2 was however kept since it leads to an excellent match
between theory and experiments, seen in figure 7. Moreover,
in the process, the velocity and current signals are divided by
jΩ to get the displacement and charge.

3.3. Nonlinear shunt circuit description

The nonlinear shunt circuit used in the tests is shown in
figure 8. It consists of three sub-circuits to realize (a) a tun-
able synthetic inductor (outlined in blue in the figure 8). (b) a
voltage measurement (orange). (c) a nonlinear voltage gener-
ator (light red). Preliminary simulations of the circuit showed
that fairly large voltages appear, especially during transients.
Hence, the operational amplifiers OA1 to OA6 are OPA445
(Texas Instruments) which can operate up to ±40 V input

8
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Figure 8. Nonlinear shunt circuit design.

Figure 9. Experimental estimation of the parasitic resistance Re as
function of the inductance L.

and output voltage and supply 15 mA to drive the patches.
To obtain an electrical resonance frequency close to half the
mechanical resonance frequency, an inductance ca 2000 H is
required for the beam. Therefore, a synthetic inductor is real-
ized using an Antoniou circuit [11, 39], which can achieve
large inductor values, given by

L=
R1 R2 R4 C

R3
. (19)

The L value is tuned using the variable resistor R4. According
to the theory, the nonlinear shunt is more effective if the elec-
tric damping is null, since it leads to a perfect antiresonance
(a zero mechanical mode amplitude, see [1]). In practice, how-
ever, it was noticed that this circuit introduces a parasitic res-
istance as already observed in [40]. The resistance Re in series
with the Antoniou synthetic inductor accounts for this prob-
lem in the schematic. The dependence of Re on L was estim-
ated by testing the Antoniou inductor circuit in series with a
33 nF capacitor to realize a resonant circuit then fit the FRF

Table 2. Fixed component values in the nonlinear shunt circuit.

Component R1(kΩ) R2(kΩ) R3(kΩ) C(µF) R5(kΩ) R6(kΩ) R7(kΩ)

Value 2 1 1 10 82 22 3.8

response. This relationship is shown in figure 9, which was
later used during the experiment to assess the results.

The voltage measurement is ensured by two voltage
dividers involving the resistor R5 and R6, which are decoupled
using two voltage followers (OA3 and OA4) in order to avoid
further introduction of parasitic resistance. The voltage across
the patches is thus measured and attenuated to a level compat-
ible with the differential amplifier DA (INA826, Texas Instru-
ment), which ensures noise rejection. Finally, the quadratic
non-linearity is realized using a multiplier (AD633, Analog
Device) amplified by an inverting amplifier (OA5) with a tun-
able gain thanks to R8 to control β (cf equation (4)) as follows

β =
R8

10 R7

( R6

R5 +R6

)2
. (20)

The resulting voltage Vnl is then supplied to the patches by
the follower (OA6) to ensure a low output impedance. Table 2
gathers the actual values of the components used throughout
the experiments presented.

3.4. Nonlinear frequency responses measurements

3.4.1. Measurement of leading harmonics. As discussed in
section 2.3, when considering the 2:1 internal resonance, an
energy transfer is expected to occur from the driven mechan-
ical mode to an electrical mode at half the driven frequency. To
experimentally validate the energy transfer and the nonlinear
shunt behavior exhibited by the theoretical results of section 2,

9
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we are only interested in the amplitudes and phase angles of
the fundamental harmonic (H1) of the structure tip displace-
ment u(t) and the subharmonic (H1/2) of the chargeQ(t) in the
PE patch electrodes. Following equation (14), we denote them
by:

u(t) = uH1 cos(Ωt− γ2)+ oh,

Q(t) = QH1/2 cos

(
Ω

2
t− γ1 + γ2

2

)
+ oh, (21)

with ‘oh’ meaning ‘other harmonics’ and uH1, QH1/2 denot-
ing their amplitudes. In practice, we estimate u(t) and Q(t)
by measuring the velocity v(t) of the structure tip with a
laser vibrometer (Polytec 0FV 505) and the voltage across the
PE patches terminals V(t) with a differential voltage probe
(Française d’Instrumentation ST 500-5). Those two signals
can be written:

v(t) = vH1 cos(Ωt−φv)+ oh,

V(t) = VH1/2 cos(Ω/2 t−φV)+ oh (22)

with (vH1,φv), (VH1/2,φV) denoting their amplitude/phase
pairs. Taking the time derivative of u(t) in equation (21) leads
to:

vH1 =ΩuH1, φv = γ2 −π/2. (23)

To find the relation between V(t) and Q(t), we rewrite
equation (4) as:

V(t) =
1
Cpi

[
Q(t)+ θ1u(t)

]
, (24)

since ϕi(xt) = 1 as explained in section 3.2. Then, replacing
in equation (24) the H1/2 harmonics of u(t) and Q(t) of
equations (14a) and (14b) and eliminating a1, one obtains:

VH1/2 =
QH1/2

Cpi

(
1− εθi

√
L√

mi

)
, φV = (γ1 + γ2)/2. (25)

The order of magnitude of the second term in the above
expression of VH1/2, directly related to the electromechan-
ical coupling, can be evaluated by using the following rela-
tions: ε ≃ kiri/(1− r2i ) (obtained by neglecting 4k2i r

2
i in ∆

in equation (9), see [1]), θi = kiω̂i
√
Cpimi (equation (5)) and√

L= 1/(ωe
√
Cpi). After simplifications, one obtains:

εθi
√
L√

mi
≃ k2i

1− r2i
≃ 4k2i

3
< 8.3 · 10−2, (26)

for a tuned nonlinear shunt with ri ≃ 1/2 and ki < 0.25. Con-
sequently, even for a high piezoelectric coupling of ki = 25%,
the above term is more than one order of magnitude smaller
than one, and can be neglected, leading to:

VH1/2 ≃ QH1/2/Cpi. (27)

In conclusion, the amplitude and phase of the leading har-
monics of the beam tip displacement and the electric charge
are directly estimated by the H1 harmonics of the velocity and
the H1/2 harmonics of the PE voltage, using equations (23),
(25) and (27).

3.4.2. Harmonics amplitude and phase estimation using
demodulation. Since the response of the system is highly
nonlinear due to the nonlinear shunt, to validate the theory
of figure 4, we prescribe a harmonic force F(t) = F0 cosΩt
at the beam’s tip, with the coil/magnet device described in
section 3.1, and we perform stepped sine experiments. It con-
sists in choosing a given discrete set of values of Ω around
the resonance frequency ω̃1 of the structure’s first bending
mode. For each frequency, the excitation frequency and level
(measured by a current clamp) are kept constant until the
steady-state is reached, in which several periods of the beam
tip velocity v(t) and the PE voltage V(t) are recorded, before
stepping to the next discrete frequency. The same measuring
devices than in section 3.2 (B&K 2719, PM 9355, OFV 505
& ST 500-5) were used. The input/output signals were syn-
thesized/measured with National Instrument cards (NI-9234,
NI-9263) driven by a Matlab program.

At each excitation frequency, the harmonics amplitude and
the phase angles are extracted by a demodulation procedure
[41] (also known as synchronous or homodyne detection).
Each measured signal s(t) is multiplied by sine/cosine signals
at the frequency of the leading harmonic, and the result is aver-
aged over a number of periods. Namely, if s(t) is periodic:

s(t) = s0 +
+∞∑

h=1

sh cos(hΩt−φh), (28)

one obtains for the kth harmonic:

Ic = ⟨s(t)coskΩt⟩nkTk =
sk
2
cosφk,

Is = ⟨s(t)sinkΩt⟩nkTk =
sk
2
sinφk, (29)

where

⟨•(t)⟩nkTk =
1

nkTk

ˆ nkTk

0
•(t)dt (30)

is the average of the signal •(t) over a duration equal to nk har-
monic periods Tk = 2π/(kΩ). Consequently, the kth harmonic
amplitude and phase are obtained by:

sk = 2
√
I2c + I2s , φk = arg(Ic + jIs). (31)

In our case, we used k= 1 to estimate the H1 harmonic of
v(t) and k= 1/2 for the H1/2 harmonic of V(t). In practice,
the integral in equation (30) was performed with a trapezoidal
numerical integration and the number n1 of periods used in the
averages of equation (29) to estimate the H1 harmonics of v(t)
was chosen even to exactly filter the subharmonic part of the
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Figure 10. Experimental and numerical results comparison of the amplitudes of vH1 and VH1/2 and the phase angles ϕv and ϕV , plotted in
blue and orange, respectively. The results are estimated with F= 0.45 mN, ξe = 0.002, ξ1 = 0.005, β= 0.035, and r1 = 0.537. The
numerical data are shown in solid and dotted lines for stable and unstable solutions, respectively, in dark blue and orange, with the
uncoupled solution plotted in black. The experimental data are plotted respectively with −▷− and −◀− for sweeping up and down in
the excitation frequency Ω. The experimental uncoupled results are shown in −◦−. The experimental and numerical quasi-periodic regime
are shown in the shaded region and the dashed-dotted line, respectively.

signal (n1 = n1/2 = 12 in practice). Moreover, at each excita-
tion frequencyΩ, the averages of equation (29) were evaluated
for ten successive nkTk time blocks, to identify quasi-periodic
regimes.

This procedure enable to robustly estimate vH1, φv,
VH1/2 and φV , in order to obtain uH1, QH1/2 and γ1 using
equations (23), (25) and (27):

uH1 = vH1/Ω, QH1/2 = CpiVH1/2, γ1 = 2φV −φv − π

2
.

(32)

4. Experimental results

4.1. Experimental validation of the theoretical predictions

As an initial step, we compared the numerical results of
the system (2a) and (2b), integrated with Manlab, to the
experimental results. This is shown in figure 10, where the
numerical and experimental frequency responses are plotted
for the amplitudes of vH1 and VH1/2, in addition to the phase
angles φv and φV . The measurements were done to catch
the whole response features by sweeping up and down the
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Figure 11. Experimental time signals of v(t) and V(t) for two frequency points in figure 10: (left) the periodic response at Ω= 37.75 Hz and
(right) the QP regime at Ω= 37.5 Hz.

excitation frequency. Then, the amplitude and the phases are
extracted at each frequency using the demodulation procedure
discussed in section 3.4. The comparison between the numer-
ical and experimental results is illustrated as follows.

One can first observe that two linear responses are plotted
in black. The first corresponds to the response in the open cir-
cuit (OC) case, while the other one corresponds to the lin-
ear response when connecting only the R-L version of the
full shunt circuit shown in figure 8 (i.e. with β= 0). The lat-
ter case is compared with the experimental results showing
an excellent agreement, validating the estimated electromech-
anical modal parameters of section 3.2. Also, the latter case
admits a resonance frequency ω̃1 slightly higher than the open
circuit frequency ω̂1 due to the coupling effect, as discussed in
section 2.3.

Then the experimental and numerical nonlinear frequency
responses of the velocity and voltage show a very good over-
all agreement. Namely, the energy transfer from the H1 har-
monic (at Ω) to the H1/2 harmonic (at Ω/2) due to the 2:1
internal resonance is experimentally observed. The main fea-
tures obtained theoretically in figure 4 are experimentally val-
idated. Namely, the antiresonance (at point AR, Ω/(2π) =
37.72 Hz) is clearly observed, especially in the sweeping-
down response. Although the value of r1 is chosen to have
ω2 = 2ω1 , the antiresonance is shifted from the resonance fre-
quency (to the lower frequencies), due to the non-resonant
terms, as predicted numerically. One can realize that the
bifurcation topology of the numerical solution is also val-
idated experimentally, especially for the pitchfork bifurca-
tion PF1, which is predicted at the same frequency as the
experimental jump 2. However, a small difference is seen for
the other pitchfork bifurcation (PF2), for which the theory
suggests that jumps 3 and 4 should appear at the same fre-
quency. The numerically predicted quasi-periodic (QP) solu-
tion is also seen experimentally near the antiresonance, only
for the sweeping down case. It appears exactly at point NS2, as
predicted by the change of stability of the theoretical branch.
However, the QP frequency range is smaller in experiments
since it stops at jump 1 in the sweep-down response, for which
the response jumps back to the uncoupled response. In theory,
the end of the QP response is predicted at point NS1 in the

low frequencies. This difference could result from an instabil-
ity in the QP solution (which cannot be predicted by Manlab).
Amore detailed stability analysis could be necessary to ensure
this, which is beyond the scope of this work.

The numerical and experimental responses of the phase
angles φv and φV also show a good agreement. Note that φV
is only shown in the frequency range where the energy trans-
fer occurs (i.e. between jumps 1 and 4). At the antiresonance
(at point AR, Ω/(2π) = 37.72 Hz), φV = −0.01 π rad and
φv = 0.05π rad. Thus, using equation (32), γ1 is estimated to
−0.57π ≈ 3 π/2 rad, validating the feature seen theoretically
in figure 4.

To extend the above analysis, figure 11 displays two
examples of measured time signals. Figure 11(a) shows a peri-
odic response (around Ω/(2π) = 37.75 Hz), in which one can
clearly observe the H1 and H1/2 harmonics superposition in
the time signals, validating equation (14). Moreover, because
this periodic response was chosen near the antiresonance, the
H1 harmonic amplitude is small and the effect of the H1/2
harmonic, related to the nonlinear shunt, is significantly large.
Figure 11(b) shows a QP solution (at Ω/(2π) = 37.5 Hz), for
which the beatings are clearly visible.

From the above analysis, one can conclude that the agree-
ment between experiments and theory is remarkable and that
all theoretical features of the nonlinear shunt are recovered
experimentally: the bifurcation scenario, the nonlinear anti-
resonance, the locking of γ1 at 3π/2 and the existence of a
QP solution.

4.2. Effect of the nonlinearity gain β

As illustrated in the theoretical results of [1], the nonlinear gain
β has a crucial effect on the absorber performance. We meas-
ured the amplitudes vH1 and VH1/2 for three different values
of β, as shown in figure 12, by sweeping up and down in the
excitation frequency. Note that the value of β was modified
by changing the value of resistance R8 in the shunt circuit (see
equation (20)).

The main advantage of increasing the value of β on
the absorber performance is the antiresonance amplitude
reduction (at points AR1, AR2, and AR3), which is clearly
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Figure 12. Experimental results for vH1 and VH1/2 for different values of β. The values of β for the blue, red, and dark green curves are
respectively 0.012, 0.023, and 0.035. The tests are done with F= 0.45 mN, ξe = 0.002, ξ1 = 0.005, and r1 = 0.524. The experimental data
are plotted respectively with −▷− and −◀− for sweeping up and down in the excitation frequency Ω. The experimental uncoupled
results are shown in −◦−.

observed. However, it appears in parallel to an antiresonance
frequency shift, as predicted by theory. This drawback can be
counter-balanced by a detuning of the electrical oscillator, as
illustrated in section 4.4.

The other advantage of increasing β is the reduction of the
PE voltage amplitude, which could be interesting to remain in
the functioning limits of the electrical components of the cir-
cuit. Another drawback of increasing β is the amplitude amp-
lification of the peak to the right of the linear resonance, which
reduces the usable frequency range of the absorber.

4.3. Effect of the excitation level

The effect of the excitation level on the response is illus-
trated in figure 13, where only downward frequency sweeps
are shown. The ratio r1 is also chosen to have ω1/ω2 ≃ 0.5
and activate the internal resonance, using figure 2 to take
into account the effect of the piezoelectric coupling. One can
realize that increasing the excitation amplitude while keeping
the other design parameters fixed leads to increased velocity
and PE patch voltage amplitudes. Also, the peak’s amplitude
observed to the right of the linear resonance peak in the velo-
city response increases with the excitation level (analogous to
the effect of β). Moreover, a softening behavior can be seen
when looking at the voltage response for F0 = 2.5 mN. A QP
regime is detected at F0 = 0.45 mN and F0 = 1.3 mN near the
antiresonance.

Looking at the antiresonance, one can observe that its amp-
litude remains almost constant with the increase of the excit-
ation level, but shifts to the lower frequencies as the excita-
tion level increases. This validates the numerical predictions in
figure 4, suggesting a violation of the saturation phenomenon
at a fixed excitation frequency.

4.4. Saturation phenomenon with detuning

Our purpose is to preserve the saturation phenomenon to
enhance the absorber’s efficiency. Because the antiresonance
amplitude remains constant, it is sufficient to lock the anti-
resonance at the resonance frequency. This is done follow-
ing the antiresonance (AR) correction described in section 2.4.
Namely, a change in the tuning parameter r1 should be intro-
duced for each excitation level by changing the inductance in
the shunt circuit.

The procedure to track the antiresonance and then lock
it at a prescribed frequency is established before performing
the stepped sine measurements. Namely, a sinusoidal signal
of frequency equal to the mechanical resonance frequency
ω̃1/(2π) = 37.75Hz is amplified to the desired excitation level
and then fed to the coil. This resonance frequency is the one
measured with β= 0 as in figure 13. After reaching the steady-
state with the nonlinear subharmonic energy transfer, the velo-
city v(t) and the PE patch voltage V(t) are visualized using an
oscilloscope in an XY mode to obtain a Lissajous plot (i.e.
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Figure 13. Experimental results of vH1 (first row) and VH1/2 (second row) for several excitation levels F with unit of mN. Only the data for
sweeping down the excitation frequency are shown in solid lines. The measurements are done for β= 0.035, ξe = 0.002, ξ1 = 0.005, and
r1 = 0.537. The shaded regions depict the detected quasi-periodic regime.

Figure 14. (a) Example of Lissajous plot for F= 0.45 mN estimated numerically (with Manlab) and experimentally. (b) Deduced value of
r∗1 for different excitation levels. The curves are estimated for β= 0.035, ξe = 0.002, and ξ1 = 0.005.

the voltage as a function of the velocity). Because of the fixed
value of the phase angle γ1 = 3π/2, a unique shape for the
Lissajous plot appears when the antiresonance is shifted to the
resonance frequency. In other words, we vary the inductance
value until getting the numerically predicted Lissajous plot

for γ1 = 3π/2 as shown in figure 14(a). Thus, the achieved
inductance value is the required one to have the proper ratio
r1 (denoted by r∗1 ) to lock the antiresonance at the reson-
ance frequency ω̃1. The same procedure is repeated for each
excitation level, enabling us to have an r∗1 = f(F0) relation, as
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Figure 15. Experimental frequency response of vH1 for sweeping down the excitation frequency for several excitation levels with the AR
correction. (a) The response for F= 0.45 mN (in green), F= 0.58 mN (in dark red), and F= 0.88 mN (in blue). (b) The response for
F= 1.3 mN (in black), F= 2.5 mN (in purple). (c) Antiresonance saturation amplitude v∗H1 at the resonance frequency ω̃1 versus the
excitation level plotted for three different cases: the linear response, with fixed r1 = 0.537, and with the AR correction in. The curves are
estimated for β= 0.035, ξe = 0.002, and ξ1 = 0.0055. The shaded regions depict the detected quasi-periodic regime.

plotted in figure 14(b). For example, this relation shows that
r∗1 , for F= 0.45 mN and β= 0.035, should be 0.547. Also,
this relation suggests that a further decrease in the inductance
(i.e. an increase in r1) should be introduced as the excitation
level increases to lock the antiresonance. Note that this relation
depends on the other design parameters (i.e. β, k1).

The frequency response of vH1 is experimentally measured
by setting the proper value of r1 using the r∗1 = f(F0) relation of
figure 14(b). The results are illustrated in figures 15(a) and (b)
by sweeping down the excitation frequency for the same excit-
ation levels used in figure 13. One can note that using the sug-
gested AR correction, the antiresonance is locked at the pre-
scribed frequency (i.e. at ω̃1/(2π) = 37.75 Hz), leading to the
preserving of the saturation phenomenon. However, changing
the value of r1 led to the appearance of QP regimes near the
antiresonance that were not appearing in figure 13 for constant
r1, for example in the response forF= 0.88mN. Also, one can
note a slightly softening behavior on the uncoupled resonance
curve in the case of the highest forcing level (in purple), which

could be due to the non-negligible effects of thematerial piezo-
electric nonlinearities in the PE patches [42]. In addition, for
the highest excitation level, the QP regime being shifted fur-
ther to the left made the Lissajous plot more complicated to
obtain at the resonance frequency 37.75 Hz; we obtained r∗1
for a slightly higher frequency to have the periodic solution.

Note that the linear responses shown in figures 15(a) and
(b) are plotted by setting β= 0 with values of r1 equal to r∗1
which varies for each excitation level (unlike figure 4 where
a constant value of r1 is used). Based on this, the resonance
frequency increases slightly above ω̃1 as the excitation level
increases. This can be observed at the highest excitation that
requires the highest value of r∗1 . In this context, the suggested
AR correction locks the antiresonance at a unique prescribed
frequency that is slightly lower than the resulting linear reson-
ance frequency for higher excitation levels, due to its depend-
ency on r1.

To further illustrate the saturation phenomenon, the amp-
litude of vH1 at the prescribed frequency ω̃1, denoted by v∗H1,
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Figure 16. Comparison between the performance of the optimized linear shunt and the designed absorber for F= 2.5 mN, β= 0.035, and
ξ1 = 0.0055. The dashed curves depict the linear responses for the short circuit case (black), the open circuit case (brown) and β= 0
(purple). The solid lines depict the responses for β= 0.035 (purple) and for the optimized linear shunt (blue).

is plotted versus the excitation level F in figure 15(c) (sim-
ilar to figure 5(b)). The amplitudes of v∗H1 are taken directly
from the experimental measurements showing the frequency
response of vH1. Three different cases are plotted: the lin-
ear case (β= 0), the case where a constant r1 is used (see
figure 13), and the case when introducing the antiresonance
correction (figures 15(a) and (b)). The results suggest a signi-
ficant attenuation enhancement for the latter case where the
saturation phenomenon is almost preserved. As a matter of
fact, one can observe a slight increase in v∗H1 when using the
AR correction mainly because of the slight increase of the
electrical damping ξe due the increasing value of r∗1 for higher
excitation levels.

4.5. Performance comparison with optimized linear shunt

To further demonstrate the nonlinear shunt performance,
figure 16 shows a comparison of the resonant response of
the structure with the nonlinear shunt for the highest excita-
tion level F= 2.5 mN (purple curve of figure 15) and with
a tuned linear resonant (RL) shunt. For the latter, β= 0 and
the electrical frequency ωe ≃ ω̂1 was tuned with the equal
peak method [6] (with Re = 35.26 kΩ and L= 555.82 H, with
R4 = 27.79 kΩ).

5. Conclusion

In this paper, the experimental validation of a passive non-
linear piezoelectric shunt absorber, introduced theoretically
in our previous study [1], was performed. This absorber is

designed by intentionally introducing a quadratic nonlinear-
ity proportional to the square of the voltage across the piezo-
electric patches (PE patches) in series with a resonant shunt
circuit. Doing so creates a 2:1 internal resonance between a
given mechanical mode of the primary structure and the shunt
circuit tuned at the first subharmonic frequency. Our designed
absorber aims to exploit the convenient features of such an
internal resonance: a saturation phenomenon, in which the
amplitude of the mechanical mode becomes independent of
the excitation amplitude after a threshold, and a nonlinear anti-
resonance in place of the linear resonance frequency, leading
to high vibration attenuation. These two features are linked to
the nonlinear energy transfer from the mechanical mode to be
attenuated to the electrical mode characterized by the shunt
circuit.

We showed a remarkable agreement between our experi-
ments and the theoretical prediction, thus perfectly validat-
ing them. In addition, the performances of the shunt were
explored, showing an amplitude that is independent of the
vibration level at the antiresonance, associated with better per-
formance at high amplitude than a classical linear resonant
shunt. One drawback of our architecture, based on a non-
linear voltage proportional to the square of the piezoelectric
(PE) voltage, is the unexpected detuning of the shunt as a
function of the amplitude, that was manually corrected by a
phase-locking of the PE voltage with the mechanical response
of the structure. Another drawback is the saturation limit of
the analog electronic components, which limits the maximum
amplitude of operation of the shunt and constraints the design
of the electronic circuit, to finely balance the voltages and
avoid noise in the circuit.
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Chapter 4

Theoretical study of the dynamics of a
coupled oscillator with 1:2 internal
resonance using normal form
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4.1 Article presentation

The present chapter solely constitutes of the text of the article entitled by ”Nonlinear dynamics of

coupled oscillators in 1:2 internal resonance: effects of the nonresonant quadratic terms and recovery of

the saturation effect”published in ”Meccanica”journal. The article aims to understand more rigorously

the effect of the nonresonant quadratic terms on the dynamics using the normal form method and

propose a procedure to cancel their effect. By doing so, we aim to correct the saturation feature in

a more efficient manner and thus increase the performance of the absorber. The choice of utilizing

the normal form is based on its ability to simplify the dynamics on the one hand and to represent

the nonresonant term as cubic terms that perturbate the dynamics on the other hand. For this sake,

a generalized two degree of freedom system considering all the possible quadratic and cubic terms,

without restriction on their values, is considered. In addition, the eigen-frequencies are tuned to study

the case of 2:1 internal resonance.

The first step was constructing the considered system’s normal form by considering a nonlinear

change of coordinates through a third-order Taylor expansion. The obtained normal form system

is simplified since a lower number of nonlinear terms are retained. In addition, all the nonresonant
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4.2. NONLINEAR DYNAMICS OF COUPLED OSCILLATORS IN 1:2 INTERNAL
RESONANCE: EFFECTS OF THE NONRESONANT QUADRATIC TERMS AND
RECOVERY OF THE SATURATION EFFECT

quadratic terms are canceled in the second order and appeared as cubic terms in the third order. The

main finding which was not illustrated in the previous works considering the normal form derivations

is the appearance of cubic terms related to the resonant quadratic terms due to the consideration of

the 2:1 internal resonance.

The free conservative version of the normal form system is then considered to obtain closed-form

expressions of the backbone curves in the case of the 2:1 internal resonance using the multiple scales

method. The obtained results suggested two families of backbone curves depending on the phase

angles between the two oscillators. The analytical results are validated by comparing them with the

numerical ones showing an excellent fitting. A bifurcation and stability analysis of the backbones

curves are also established. In addition, the validation of the normal form system is further discussed

by comparing its numerical forced response with that of the initial system showing an excellent fitting,

especially at low excitation levels. In addition, the relation between the forced response and backbones

is illustrated, showing the ability of the obtained analytical backbones to predict the skeleton of the

forced solution for a different set of parameters.

Thanks to the closed-form expression of the backbones, a set of relations between the resonant

cubic terms and the nonresonant quadratic terms are estimated to cancel the effect of the latter terms

in the normal form basis. This can lead to the recovery of the symmetric behavior and thus the

saturation phenomenon. The idea is then tested by estimating the numerical forced response of the

initial system with the cubic terms set according to the obtained relations. The results suggested the

preservation of the saturation phenomenon up to a high excitation level.

4.2 Nonlinear dynamics of coupled oscillators in 1:2 internal resonance: ef-
fects of the nonresonant quadratic terms and recovery of the saturation

effect
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non-resonant quadratic terms. The aim of the present 
study is thus to explain the effect of the non-resonant 
quadratic terms on the dynamics. To that purpose, 
the normal form up to the third order is used, since 
the effect of the non-resonant quadratic terms will be 
transferred into the resonant cubic terms. Analytical 
solutions are detailed using a second-order mutli-
ple scale expansion. A thorough investigation of the 
backbone curves, their stability and bifurcation, and 
the link to the forced–damped solutions, is detailed, 
showing in particular interesting features that had not 
been addressed in earlier studies. Finally, the satura-
tion effect is investigated, and it is shown how to cor-
rect the detuning effect of the cubic terms thanks to 
a specific tuning of non-resonant quadratic terms and 
resonant cubic terms. This choice, derived analyti-
cally, is shown to extend the validity of the saturation 
effect to larger amplitudes, which can thus be used 
in all applications where this effect is needed e.g. for 
control.

Keywords  Nonlinear modes · Backbone curves · 
Forced response · Invariant manifolds · Quadratic 
coupling · Normal form · Saturation phenomenon · 
Second order multiple scale expansion

1  Introduction

The vibratory behaviour of nonlinear systems can be 
very complex as compared to linear ones, showing, 

Abstract  This article considers the nonlinear 
dynamics of coupled oscillators featuring strong 
coupling in 1:2 internal resonance. In forced oscil-
lations, this particular interaction is the source of 
energy exchange, leading to a particular shape of the 
response curves, as well as quasi-periodic responses 
and a saturation phenomenon. These main features 
are embedded in the simplest system which considers 
only the two resonant quadratic monomials conveying 
the 1:2 internal resonance, since they are the proemi-
nent source allowing one to explain these phenomena. 
However, it has been shown recently that those fea-
tures can be substantially modified by the presence of 
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in particular, a dependence of its characteristic fre-
quencies upon the amplitude, bifurcations associated 
to stable and unstable solutions, periodic response 
with rich harmonics content as well as more complex 
quasi-periodic and chaotic responses  [1–3]. Those 
phenomena are often related to strong nonlinear cou-
plings between the degrees of freedom (DOFs) of the 
system, leading to energy exchanges between them. 
Important couplings are generally fostered by particu-
lar relationships between the characteristic frequen-
cies, leading to the important concept of internal res-
onance (IR) in vibration theory [4]; but other kind of 
couplings might also appear for systems with widely 
spaced frequencies [5].

The specific case of a 1:2 internal resonance is met 
when two nonlinear oscillators have their eigen-fre-
quencies �1 and �2 such that �2 ≃ 2�1 . This case has 
been the subject of numerous studies in the past, see 
e.g. [1, 4, 6–9]. In general, the 1:2 case is studied by 
considering only the quadratic terms and more spe-
cifically the two resonant monomials that are respon-
sible of the strong coupling between the two oscil-
lators, see e.g.  [1, 10] for the simplified equations 
(normal form) to use for such case, as well as  [11, 
12] for general discussion on the normal form and 
the resonant monomials. The dynamics of such quad-
ratically coupled nonlinear oscillators display a rich 
behaviour with two families of backbone curves [10, 
13], appearance of quasi-periodic behaviour [1], and 
analytic expression of the locus of Neimark–Sacker 
bifurcation [10].

A particularly interesting feature of systems with 
1:2 internal resonance is the saturation effect that is 
observed in the forced response, when the external 
excitation frequency Ω is in the vicinity of the second 
mode: Ω ≃ �2 . As shown for example in [1], once the 
coupling is effective, then the amplitude of the second 
mode stays constant for increasing forcing amplitude, 
while the amplitude of the first mode (not excited by 
the load) increases, meaning that all the energy, input 
to the second oscillator, is transferred to the first. This 
saturation effect is important and can be used with the 
purpose of controlling the amplitude of the second 
mode, enforcing its saturation to a maximum ampli-
tude. Successful applications have been reported for 
example in [14–16].

Recently, it has been shown both theoretically and 
experimentally in [17, 18] that the non-resonant quad-
ratic terms play an important role in the saturation 

effect if one goes to moderately large amplitude. Con-
sequently, a fine tuning of a vibration absorber based 
on the saturation effect needs to properly address not 
only the resonant quadratic terms, but also the non-
resonant ones, in order to obtain a comfortable range 
of amplitude where the saturation effect is effective. 
The aim of this paper is to reconsider theoretically the 
effect of these non-resonant quadratic terms on the 
dynamics of the system with 1:2 internal resonance, 
in order to extend the amplitude range of the satura-
tion effect.

Numerous analytical methods have been proposed 
in the past in order to derive approximate solutions 
to nonlinear vibration problems thanks to asymptotic 
expansions. In this realm, the normal form approach 
is particularly appealing since it conveys very impor-
tant meaning related to nonlinear resonances [11, 12, 
19, 20], derives the simplest form of the dynamics, 
and expresses its skeleton [21, 22]. It can also be used 
for model order reduction, see e.g.  [23–25], and has 
a strong relationship with the parametrisation method 
of invariant manifold, see e.g. [26, 27], such that the 
normal form dictates the reduced dynamics on an 
invariant manifold and can be used for building ex-
nihilo models  [11]. In this contribution, the normal 
form is used to analyze the dynamics of the system 
with 1:2 internal resonance. Interestingly, whereas 
general formulations for deriving real normal forms 
of coupled oscillators are derived in [11, 23], they are 
restricted to the case without internal resonance. The 
computation of the normal form, up to the cubic term, 
with a 1:2 internal resonance, needs thus a particular 
development. A first aim of this paper is thus to make 
this derivation and gives the expression of the normal 
form with 1:2 resonance up to cubic order.

The second aim of the paper is to analyze the 
nonlinear dynamics of the system with 1:2 internal 
resonance up to cubic terms. Recent studies derived 
important results about the topology of the solutions 
in the unforced conservative case (nonlinear modes/
backbone curves) [10, 13]. These results will be here 
enlarged to the next order by analyzing the effects of 
the cubic terms. In the normal form derivation, the 
non-resonant quadratic coefficients are reported to 
the cubic order, in the trivially resonant terms. Hence, 
their effect can be tracked and analyzed. The last aim 
of the study is thus to show how the non-resonant 
quadratic terms have important effects on the nonlin-
ear dynamics and more particularly on the saturation 
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effect. At last, it is shown analytically how to tune 
non-resonant quadratic terms and resonant cubic 
ones, in order to extend the amplitude validity region 
where the saturation effect is particularly efficient.

2 � Equations of motion, normal form and multiple 
scales solution

The starting point is a conservative two DOFs system 
with smooth nonlinearities, in the form of a Taylor 
expansion up to the third order: 

 In the above system, (X1(t),X2(t)) are the displace-
ments of the two DOFs at time t, ⋅̇ = d ⋅ ∕dt is the 
time derivative, and (gk

ij
, hk

ijl
) , i, j, l, k = 1, 2 are the 

coefficients of the quadratic and cubic terms. This 
kind of system is encountered in many fields of phys-
ics and engineering [2, 4] and especially when reduc-
ing the dynamics of curved thin mechanical structures 
such as shells and arches, the curvature being respon-
sible of the appearance of the quadratic 
terms [27–29]. Here, all possible quadratic and cubic 
terms are considered, without restriction on their val-
ues. In particular, the case for which Eq.  (1) derive 
from a potential leads to known relationships between 
some of the coefficients, such that finally, only nine 
free coefficients remains in this case, which is 
recalled in "Appendix A", see also e.g. [2, 30]. Note 
however that this specific case is not considered here 
for the sake of generality, and also because in some of 
the targeted applications, the nonlinear terms are arti-
ficially created; see e.g. the case of electronic circuits 
for vibration control applications [17, 31].

2.1 � Real normal form up to the third order with a 
second‑order resonance

The aim of this section is to derive the normal form 
of Eq.  (1) up to cubic terms, in the specific case 
where a 1:2 internal resonance exists between the two 
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eigenfrequencies of the problem, such that the rela-
tionship �2 ≈ 2�1 holds. The theory of normal form 
has been used for a long time for vibratory problems, 
in order to simplify as much as possible the dynami-
cal system under study by cancelling all the non-
resonant monomials thanks to a nonlinear change of 
coordinates, see e.g. [19, 21, 32, 33]. It has also been 
used in the context of model order reduction to under-
line the link with nonlinear normal modes (NNMs), 
defined as invariant manifolds in phase space  [11, 
23, 27]. Importantly, different styles of normal form 
exist due to the non-uniqueness of the solutions of the 
homological equations, and the freedom of choosing 
one solution or another leads to the idea of free func-
tions, as explained for example in [22, 34].

Focusing on the case of vibratory problems where 
the eigenspectrum is composed of pairs of complex 
conjugate eigenvalues, three main different styles of 
normal forms can be distinguished. The first one is 
the complex normal form, as first introduced in [19], 
which is closer to the formulas used in the dynamical 
system community, see e.g. [21, 33, 35]. The second 
one is the real normal form introduced in [20, 34, 36], 
which allows one to retrieve more easily oscillator 
equations. The third one is a full real normal form, 
first introduced in [11, 23], where the oscillator form 
of the equations is strongly enforced throughout the 
calculation, imposing the variables to stay homoge-
neous to a displacement and a velocity. Further com-
ments on these different normal forms can also be 
found in  [37], in the context of the parameterisation 
method for invariant manifolds. In this article, this 
third normal form will be used to simplify Eq. (1).

A generic calculation, up to cubic order, and 
including detailed analytical formulas for all the 
coefficients of the nonlinear mappings and normal 
form, has already been provided in [11, 38] for con-
servative problems, and in [12, 23] for assemblies of 
damped nonlinear oscillators. However, this calcu-
lation is led to the case where no internal resonance 
exists between the eigenfrequencies of the problem. 
In the case where a second-order internal resonance 
exist, like the 1:2 resonance considered here, the cal-
culation needs to be adapted. In particular, the cubic 
terms need to be recomputed to take into account the 
resonant monomials of second order that are due to 
the 1:2 resonance. In turn, these resonant terms will 
modify some coefficients used for the change of coor-
dinates, and some of the cubic terms of the normal 
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form. The aim of this section is thus to enlarge the 
general results provided in  [11] to the case of a 1:2 
resonance.

For the sake of conciseness, only the result of this 
calculation is given here in the main text. The inter-
ested reader can find the full demonstration and the 
complete calculation in "Appendix B". The real nor-
mal form of Eq.  (1), up to cubic order, with a 1:2 
internal resonance between the two eigenfrequencies 
( �2 ≈ 2�1 ), reads: 

 In these equations, (R1,R2) are the normal coordi-
nates, homogeneous to a displacement. These new 
coordinates are nonlinearly related to the original 
ones thanks to an identity-tangent nonlinear map-
ping. For completeness, the nonlinear change of 
coordinate needs to consider both the displacements 
(original displacement with Xp coordinate and normal 
displacement with Rp , p=1,2) and the velocities, here 
written as Yp = Ẋp for the original coordinates, and 
Sp = Ṙp for the normal ones. The nonlinear mappings 
read, for p=1,2: 

 The expressions of all the introduced coefficients in 
Eq. (3) are given in "Appendix B", following the gen-
eral formulas given in [11]. In Eq. (2), only the reso-
nant monomials are present. Due to the 1:2 internal 
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resonance, only two quadratic monomials are present, 
instead of the six in the original Eq.  (1). Due to the 
asymptotic nature of the normal form calculation, 
which eliminates the non-resonant terms order by 
order, the coefficients of the cubic terms are modified 
by the appearance of Ap

ijk
 , Bp

ijk
 , Dp

ijk
 and Ep

ijk
 . The first 

two coefficients Ap

ijk
 and Bp

ijk
 have already been con-

sidered in [11], and their expressions read: 

 One can note in particular that these two coefficients 
appear due to the elimination of the non-resonant 
quadratic terms, hence they involve only quadratic 
original gp

ij
 coefficients, with the coefficients of the 

quadratic part of the nonlinear mappings: ap
jk

 and bp
jk

 . 
The last two terms, Dp

ijk
 and Ep

ijk
 , are new as compared 

to the general results presented in [11], and their pres-
ence is only due to the existence of the 1:2 internal 
resonance and the two resonant quadratic monomials 
in the normal form. Their expressions write: 

 The remainder of the paper consists in analyzing the 
solutions of the normal form of the system with 1:2 
internal resonance and up to cubic terms, Eq. (2). A 
particular emphasis will be set to understand the 
effect of the non-resonant quadratic monomials on 
the dynamical characteristics of the system. Note that 
these non-resonant monomials have been cancelled in 
Eq. (2). However, the associated coefficients gp

ij
 inter-

vene in the cubic terms, and will thus have an impor-
tant effect on backbone curves and frequency 
response functions. The analysis will be done using a 
multiple scales solution up to the second-order to take 
the cubic terms into account.
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2.2 � Multiple scales solution: modulation equations

In this section, an approximate analytical solution of 
the normal form system (2), using the multiple scales 
method (MSM), is proposed. Analytical solutions of 
1:2 internally resonant problems have been proposed 
in many instances, for example, with the MSM for 
first and second-order developments [1, 39]. They are, 
however, generally restricted to the case with forcing 
and damping, and cubic terms are generally not taken 
into account. Besides, the study of the backbones for 
free vibration problems has been only recently con-
sidered, see e.g.  [10, 13], but still without consider-
ing the cubic terms. The main aim of the develop-
ment proposed here is to extend these latter results 
by including the effect of cubic terms, in the presence 
of 2:1 internal resonance. For other types of internal 
resonance, such as 1:1 internal resonance, one can 
refer to [40], where detailed second-order MSM deri-
vations are established to obtain the free solution of 
Eq. (1), considering all the quadratic and cubic terms.

Eq.  (2) are first rewritten by introducing a small 
bookkeeping parameter � in order to scale the differ-
ent nonlinear terms as: 

 where the coefficients �k , k = 1,… 10 have been sim-
ply introduced from Eq. (2), see Eq. (50) in "Appen-
dix C" for their detailed expressions.

The second-order expansion using MSM requires 
the definition of three time scales T0 = t , T1 = �t , and 
T2 = �2t . Following the method (see "Appendix  C" 
for details), the free solution is approximated as: 

 where a1 , a2 , �1 and �2 are real functions of the slow 
time scales only (T1, T2) . The nearness of the inter-
nal resonance condition leads to define the internal 
detuning parameter � as:
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(7a)
R1(t) = a1(T1, T2) cos(�1T0 + �1(T1, T2)) + O(�),

(7b)
R2(t) = a2(T1, T2) cos(�2T0 + �2(T1, T2)) + O(�),

The complete derivation is reported in "Appendix C" 
for the sake of brevity. Solvability conditions are 
obtained by eliminating resonant terms both at orders 
� and �2 , leading respectively to two sets of equations 
of the form D1A = … and D2A = … for each of the 
slow time scales (where D1 and D2 refers to a partial 
derivative with respect to T1 and T2 ). These two sets 
of equations can be recombined using the so-called 
reconstitution method [39, 41], yielding:

for any complex amplitude A(T1, T2) . After some 
algebra, detailed in "Appendix  C", one obtains the 
following slow time scale modulation equations: 

 where

Note that these recombined equations now explicitly 
depend on both quadratic terms, via the (�1, �2) coef-
ficients; and cubic terms, via the newly introduced 
coefficients �k , k = 1,… 4 , which read: 

(8)�� = 2�1 − �2.

(9)Ȧ =
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 On can remark as a particular feature that the coeffi-
cients �5 and �8 do not appear in the above Λi expres-
sions, even though they are associated to resonant 
cubic monomials in the real normal form. The MSM 
expansion shows that their effect is seen from the next 
order of development. As a matter of fact, real nor-
mal form differs from complex normal form, is less 
symmetric, and produces more resonant monomials. 
Also, the MSM expansion, using complex notations, 
implicitly relies on the complex normal form, and 
expresses the resonant monomials through the solv-
ability condition. Hence it can be concluded that the 
monomials associated with �5 and �8 are resonant for 
the real normal form, but not for the complex normal 
form, explaining the fact that they disappear when 
one writes down the modulation equation with the 
MSM.

Since �p explicitly depends on the slow time scale 
T1 , the system defined by Eqs. (10a–10d) is not auton-
omous. Then, it is convenient to combine the phase 
Eqs. (10c,10d) with (11) to obtain:

in which dT1∕dt = � has been used. Consequently, 
one obtains two equivalent autonomous systems, 
being, respectively Eqs.  (10a, 10b, 10c)–(13) in 
term of variables (a1, a2, �1, �p) and Eqs.  (10a, 10b, 
10d)–(13) in term of variables (a1, a2, �2, �p) . This 
generic four-dimensional dynamical system will be 
reduced to a three-dimensional one in the next sec-
tion, in the particular case of stationary solutions. 
One must also remark that Eqs. (10c, 10d) (and con-
sequently Eq.  (13)) are valid only if a1, a2 ≠ 0 since 
they result from Eqs. (62c, 62d) divided respectively 
by a1 and a2.

Now that the modulation equations have been 
derived, the focus will be on analyzing their solu-
tions. Before proceeding in the next section, it is 
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worth underlining that the quadratic terms in Eq. (62) 
are the same as those reported in [10], obtained with a 
first-order MSM solution, hence highlighting how the 
results presented here will extend earlier derivations. 
Another important point, discussed in "Appendix  C 
and E", is that these modulation equations are slightly 
different from those obtained in previous studies, see 
e.g. Eqs. (175–178) of [39], in which a similar prob-
lem is considered through a second-order MSM solu-
tion. The discrepancies are the consequence of the 
different assumptions used in the MSM process. In 
particular, alternative derivations, as those presented 
in [39], have been deeply analyzed and compared to 
the ones presented here, and "Appendix  E" is com-
pletely devoted to these calculations, which clearly 
show that the retained assumptions lead to better 
results as compared to reference numerical solutions, 
justifying our final choice.

2.3 � Branches of stationary solutions

Integrating the modulation Eq. (10) can lead to vari-
ous free vibration solutions, depending on the four 
initial conditions R1(0) , R2(0) , Ṙ1(0) , Ṙ2(0) . Restrict-
ing ourselves to solutions that are stationary in ampli-
tude, i.e. such that da1∕dt = da2∕dt = 0 , imposes a 
stringent condition on the phase �p , since non trivial 
solutions are obtained when sin �p = 0 , which implies 
that �p is also stationary, with value �p = k� with 
k ∈ ℤ and cos �p = p with p = ±1.

Then, because a1 , a2 and �p are constants, one 
obtains three conditions. The second member of 
Eq. (10c, 10d) are constants, which leads to the first 
two: 

where �1 and �2 are integration constants and the 
coefficients Γk , k = 1,… 6 are functions of the sys-
tem’s parameters. Their expression naturally appear 
in the modulation equations in the process of the 
MSM, see "Appendix C" for details, and their explicit 
expressions read: 
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 Finally, the third condition is the following relation-
ship between a1 and a2 , obtained with Eqs. (11), (14a, 
14b):

Then, eliminating (�1, �2) in Eqs  (7a, 7b) with 
Eqs. (14a–14b), one obtains: 

 where the nonlinear frequencies are functions of the 
amplitudes as follows: 

One can notice that the obtained solutions are fam-
ilies of periodic orbits, with frequencies �nl1 and �nl2 
depending on the amplitudes a1 and a2 . The frequency 
dependence upon amplitudes given in Eq.  (18) 
defines the two backbone curves of the coupled solu-
tions of the system. In phase space, the corresponding 
families of periodic orbits lie on invariant manifolds 
known as a Lyapunov Subcenter Manifold (LSM) in 
this conservative case  [27]. This LSM is univocally 
defined as a nonlinear mode (NNM) in vibration the-
ory [11, 12, 27, 42, 43].

Based on the above developments, several solu-
tions can be found:

•	 The trivial solution a1 = a2 = 0;
•	 An uncoupled solution with (a1 ≠ 0, a2 = 0) , 

denoted as the U1-mode. Eq.  (62d) shows that 
a2 = 0 ⇒ a1 = 0 so that this U1-mode is not 

(15a)Γ1 =
��1

4�1

[

1 +
��

2�1

]

, Γ4 =
��2

4�2

[

1 −
��

2�2

]

,

(15b)

Γ2 = −
�2Λ2

8�1

, Γ3 = −
�2Λ1

8�1

, Γ5 = −
�2Λ3

8�2

, Γ6 = −
�2Λ4

8�2

.

(16)𝛾̇p = 2𝜔̃1 − 𝜔̃2 + 𝜀𝜎 = 0 ⇒ a2
1
=

(2𝜔1 − 𝜔2)a2 + 2Γ1p a
2
2
+ (2Γ3 − Γ6)a

3
2

Γ4 p + (Γ5 − 2Γ2)a2
.

(17a)R1(t) = a1 cos
(

�nl1t + �1

)

+ O(�),

(17b)R2(t) = a2 cos
(

�nl2t + �2

)

+ O(�),

(18a)�nl1 = �1 + Γ1 p a2 + Γ2a
2
1
+ Γ3a

2
2
,

(18b)�nl2 = �2 + Γ4 p
a2
1

a2
+ Γ5a

2
1
+ Γ6a

2
2
.

admissible1. Going back to the initial system (6), 
this result is natural since a quadratic invariance 
breaking term �2R2

1
 is present in the second equa-

tion. Consequently, the U1-mode does not exist as 
a possible solution of the system.

•	 An uncoupled solution with (a1 = 0, a2 ≠ 0) , 
denoted as the U2-mode. This solution is possible 
and corresponds to the single mode vibration of 
the second mode. Since it is dictated by a nonlin-
ear oscillator, on can easily derives the uncoupled 

backbone curve of the U2-mode from Eq. (18b) as 

 The backbone curve of the U2-mode, obtained 
by imposing R1 = 0 in the second equation of the 
initial system (6b), has thus a hardening/softening 
behaviour dictated by the sign of Γ6.

•	 a coupled solution with (a1 ≠ 0, a2 ≠ 0) , denoted 
as C− mode. In this case, the fact that �p is a con-
stant, see Eq.  (16), shows that the oscillations of 
the two DOFs are locked, in frequency and phase: 

 as well as in amplitude since a1 is a function of a2 
thanks to Eq. (16). At this stage, one must remem-
ber that two values for cos �p = p = ±1 are admis-
sible, leading to two distinct coupled modes: the 
C+ mode, with p = 1 , k even and the C− mode, 
with p = −1 , k odd. An interesting consequence 
of the locking is the shape of those C+ and C− 
modes in the configuration space (R1,R2) . Using 
Eq. (20) in Eqs. (17a, 17b), one obtains: 

 from which one easily shows that: 

(19)�nl2 = �2

(

1 +
Γ6

�2

a2
2

)

.

(20)�nl1 = �nl2∕2, �1 = (�2 + k�)∕2,

(21a)R1(t) = a1 cos

(

�nl2

2
t +

�2 + k�

2

)

+ O(�),

(21b)R2(t) = a2 cos
(

�nl2t + �2

)

+ O(�),

1  One cannot use directly Eq.  (14b), since it is valid only if 
a
1
, a

2
≠ 0
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 The two above equations show that the two modes 
have the shape of parabolas in the space (R1,R2) , 
as shown in Fig. 1, a result that has already been 
underlined in  [10], but using a first-order MSM 
on a quadratic system. Analogous results on the 
topology of coupled modes were also obtained 
in the case of 1:1 internal resonance, where the 
modes were denoted, depending on their shape 
in the configuration space, as “normal mode” and 
“elliptic mode” [44, 45].

The main difference in the results reported here, 
as compared, for example, to the recent ones on the 
backbone curves derived in [10], lies in the fact that 
cubic terms are taken into account thanks to the nor-
mal form approach and the second-order MSM. The 
main consequence is that the backbone curve of the 
U2-mode has a curvature and is not a straight line 
anymore, because of the cubic term. In the same con-
text, the coupled backbones of the C+ and C− modes 
will show a curvature, a feature that was not present 
in [10].

2.4 � Existence conditions and branching of the 
coupled solution

This section is devoted to the derivation of results on 
the existing conditions of the C+ and C− modes and 
their branching to the U2-mode. Only the mathemati-
cal derivations are given, illustrative examples being 
postponed to Sect.  3.1 where a special emphasis on 
the topology of the bifurcated solutions will be given.

(22)

C+ mode:
R2

a2

= 2
R
2

1

a
2

1

− 1; C −mode:
R2

a2

= −2
R
2

1

a
2

1

+ 1.

Starting with the uncoupled solution (U2-mode), 
one easily observes that there are no restriction that 
might give rise to a condition of existence. The dis-
cussion can thus focus on the case of the coupled 
C+ and C− modes. A simple condition is derived 
by imposing that the expression of a2

1
 in Eq.  (16) 

must be positive. For the ease of the discussion, let 
us first consider the simplified case of the first-order 
MSM solution, already analyzed in [10]. This case 
is obtained by dropping all �2 terms in Eq.  (15), 
leading to Γ1 = ��1∕(4�1) , Γ4 = ��2∕(4�2) and 
Γ2 = Γ3 = Γ5 = Γ6 = 0 . The positive sign of a2

1
 from 

Eq. (16) depends on the signs of �1 and �2 , leading to 
the two following conditions that enforces a2

1
≥ 0:

with

Hence in this simplified case, −p�0 appears as the 
unique root where a2

1
 vanishes in Eq.  (16). Since 

we can consider a2 > 0 without loss of generality, 
the coupled backbones exist only if �1 and �2 share 
the same sign, and one of the coupled backbones 
is defined for a2 ≥ 0 whereas the other exists for 
a2 ≥ |�0| (reminding that p = ±1 ). In this latter case, 
a2 = |�0| leads to a1 = 0 and to �nl2 = �2 , which 
means that one of the coupled backbones emerges 
from the uncoupled U2-mode backbone curve (which 
is in this simplified case the vertical line �nl2 = �2 ) at 
a non zero amplitude a2 = |�0| . In the special case of 
� = 0 , both backbones emerge at a vanishing ampli-
tude, and from the x-axis (referring to the frequency) 
at the same point as �2 = 2�1.

Let us now analyze the more difficult present case 
of the solutions at second order. In this case, the situ-
ation is less straightforward since it depends on all six 
nonzero Γk coefficients. Requiring that a2

1
 is positive 

in Eq. (16) leads to the following condition:

(23)
sign�1 = sign�2 ⇒ a2 ≥ −p�0;

sign�1 ≠ sign�2 ⇒ a2 ≤ −p�0,

(24)�0 =
2�1 − �2

2Γ1

=
2�1(2�1 − �2)

��1
=

2�1�

�1
.

(25)

L(a2) ≡ a2

[

(2�1 − �2) + 2Γ1 p a2

+ (2Γ3 − Γ6)a
2

2

][

Γ4 p + (Γ5 − 2Γ2)a2

]

≥ 0,

(a) (b)

Fig. 1   Parabolic Modes of the coupled solutions in the config-
uration plane ( R1(t) , R2(t) ). a the C+ mode and b the C− mode
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where L(a2) is the product of the numerator and 
denominator of the right-hand side of Eq.  (16). The 
roots of the polynomial L(a2) are:

in addition to the vanishing solution. The two roots 
�2,3 are important since they come from the numerator 
of a2

1
 , such that they nullify a1 ( a2 = �2,3 ⇒ a1 = 0 ). 

In comparison to the above considered first-order 
MSM results, the three roots �1,2,3 are obtained 
instead of the single root −p�0 . Note that, as long as � 
is small, the second-order MSM solution is a correc-
tion to the first-order, and thus should not change the 
situation drastically. In particular, in the spirit of per-
turbative reasoning based on the leading orders, one 
can easily assume that Γ2 , Γ3 , Γ5 , and Γ6 are small. 
Consequently, since the denominators 2Γ2 − Γ5 and 
Γ6 − 2Γ3 are small, one of the two roots, either �2 or 
�3 , should be close to −p�0 , whereas the two others, 
either �2 or �3 in addition to �1 , are far from −p�0 in 
absolute value. As a consequence, we can conjecture 
by perturbative reasoning that the starting point of 
the coupled backbone curves in the plane ( �nl2, a2 ) 
admits an amplitude of �2 (or �3 ) and represents a 
branching point from the uncoupled backbone curves.

(26)

�1 =
Γ4p

2Γ2 − Γ5

,

�2,3 =
1

Γ6 − 2Γ3

[

Γ1p ±

√

Γ2

1
+ (2�1 − �2)(Γ6 − 2Γ3)

]

,

To illustrate the above reasoning, we assume 
an equal value for all cubic coefficients �i = � , 
∀i = 1,… 10 to control the amount of cubic terms 
with a single parameter. Then, Fig. 2 shows the evo-
lution of the roots �2,3 from Eq. (26), and −p�0 , from 
Eq. (24) as a function of � for two different values of 
� and two different values of the detuning. It clearly 
shows that the new roots �2,3 of the second-order 
analysis emerge from the root −p�0 of the first-order 
analysis, hence validating the above perturbative rea-
soning. This will be further illustrated in Figs. 3 and 
4 in the next section, showing undoubtedly that the 
coupled backbone that starts at a non-zero-amplitude 
branches from the uncoupled U2 mode. With a calcu-
lation, this can be verified by substituting a2 from the 
numerator of Eq. (16), which defines �2,3 , in (18a), to 
obtain Eq. (19).

Note that in the special case of � = 0 ( �2 = 2�1 ), 
�1 is given by Eq. (26) and the two roots reads:

With the same reasoning, since Γ6 − 2Γ3 is small 
with respect to Γ1 , �0 = 0 is replaced here by �2,3 = 0 , 
showing that the branching point between the 
U2-mode and the coupled-mode backbones appears 
at a2 = 0.

(27)�2,3 = 0 or
2pΓ1

Γ6 − 2Γ3

,

(a) (b)

Fig. 2   Behaviour of the roots �2,3 as function of the cubic � coef-
ficient taken with equal values for simplicity ( � = �k ∀k ) and 
with �1 = �2 = 1 . Solid lines refers to the C+ mode with p = 1 , 
while dashed lines refers to the C− mode with p = −1 . The 
red and blue lines denote respectively the case with � = 0.001 

and � = 0.01 . The black line denotes −p�0 . (a) case of a nega-
tive detuning with �2 = 2 and �1 = 0.975 , (b) case of a positive 
detuning with �2 = 2 and �1 = 1.025 . (Color figure online)
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All these results complement and extend those 
given in  [10]. In particular, the fact that the branch 
point of the coupled backbones lies on the uncoupled 
one was not demonstrated in [10]. Moreover, we have 
shown here that the result extends when considering 
the cubic terms. The main difference is that under 
such assumption, the backbone curve of the U2-mode 
is now curved (thanks to the cubic term). However, 
the branching point of the C+/C− solution remains 
on the same uncoupled backbone.

2.5 � Stability of the coupled C+ and C− solutions

The stability of the solutions requires computing the 
eigenvalues of the Jacobian of the modulation equa-
tions. For the ease of the solution, it appears more 
convenient to compute this Jacobian for the underly-
ing three-dimensional autonomous system obtained 
from the two amplitude Eqs.  (10a, 10b), comple-
mented with the angular Eq. (13) (see "Appendix C" 
for the calculation details). Since there is no damp-
ing in the system, the stability is assessed if the 

eigenvalues are either zero or purely imaginary, lead-
ing to a neutrally stable fixed point [4].

In the case of the coupled C+ and C− solutions, 
the Jacobian is written in "Appendix D" and leads to 
the eigenvalues:

with

In the most general case of arbitrary coefficients Γk , 
assessing the sign of the radicand is difficult. More 
simple reasoning can be conducted with a perturba-
tive approach, as in the previous section. Indeed, if � 
is small, then Γ2,3,5,6 are also small with respect to Γ1,4 
. Consequently at first-order (thus coinciding with the 
solution analyzed in [10]), the eigenvalues simplifies 
to �2,3 ≃ ±a1

√

−Γ2
4
a2
1
∕a2

2
− 4Γ1Γ4 . If �1 and �2 share 

the same sign, it is also the case for Γ1 and Γ4 and one 

(28)�1 = 0, �2,3 = ±a1

√

√

√

√�a2 − Γ2
4

a2
1

a2
2

− 4Γ1Γ4,

(29)� = 2Γ4 p (Γ6 − 2Γ3) + 2Γ1 p (2Γ2 − Γ5).

(a) (b) (c)

(d) (e) (f)

Fig. 3   Backbone curves of the system in the specific case 
where only the quadratic resonant terms are considered such 
that g1

12
= g2

11
= 1 , while the other nonlinear coefficients are 

zero. Three different detunings are analyzed: � = −0.05 (first 
column), � = 0 (second column), and � = 0.05 (third column). 
Comparison between the second-order MSM result (dash-

dotted) and the reference numerical solution directly obtained 
from the normal form (2a–d) (solid line with circle markers). 
Coupled solutions, C+ mode and C− mode, are plotted in blue 
and red, respectively. The uncoupled solution (U2 mode) is 
plotted in green with solid and dotted lines denote the stable 
and unstable solutions, respectively. (Color figure online)
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concludes that �2,3 are purely imaginary. The coupled 
solutions C+ and C− are then stable.

Following the same reasoning as in the previous 
section, the second-order solution can be assessed as 
a perturbation of the first-order, and one can conclude 
that for small amplitudes, the coupled backbones will 
thus be stable. Note that following these branches of 
the solution to higher amplitudes, then the stability 
might change, leading to secondary bifurcations and 
loss of stability of the coupled solutions. This is left 
for further study and outside the scope of the present 
analytical development.

2.6 � Stability of the uncoupled U2 solution

In the case of the uncoupled U2 solution, the situa-
tion is more intricate since the modulation Eqs. (10a, 
10b), (13) in the polar form lead to a singular Jaco-
bian. In fact, a1 = 0 for the U2-mode, which means 
that �1 and thus �p are not properly defined. One 
has then to use a Cartesian form of the modulation 

equations that is written in "Appendix D". In the case 
of the U2 solution, the eigenvalues of the Jacobian of 
the modulation equations read (see Eq. (80)):

where N(a
2
, p) = (2�

1
− �

2
)∕2 + pΓ

1
a
2
+ (Γ

3
− Γ

6
∕2)a2

2
 . 

Notice that the zeros of N(a2, p) in term of a2 are 
�2,3 introduced in Sect.  2.4 and that 2a2N(a2, p) is 
precisely the numerator of a2

1
 in Eq.  (16). Conse-

quently, the value a2 = �2,3 makes �2,3 = 0 , which 
immediately proves that there is a change of stability 
of the U2-mode at the branching points between the 
U2-mode and the C+/C− modes, depending on the 
sign of 2�1 − �2 and of p = ±1.

Then, assessing the sign of N(a2, p) seems difficult 
in the general case of arbitrary values of Γ1,3,6 but, as 
done before, we refer to the first-order MSM solution. 
In this case, Γ3 = Γ6 = 0 and the eigenvalues reads:

(30)�1 = 0, �2,3 = ±
√

−N(a2, 1)N(a2,−1),

(a) (b) (c)

(d) (e) (f)

Fig. 4   Backbone curves of the system with quad-
ratic and cubic terms considered: g1

12
= g2

11
= 1 , 

g1
11

= g1
22

= g2
12

= g2
22

= 0.5 , and hp
ijk

= 0.1 for i, j, k, and 
p = 1, 2 . Three different detunings are considered: � = −0.05 
(first column), � = 0 (second column), and � = 0.05 (third 
column). Comparison between the second-order MSM result 
(dash-dotted) and the reference numerical solution directly 

obtained from the original Eqs. (2a–d) (solid line for stable 
solution, dotted line for unstable solution, with circle markers 
on both types of numerical solutions). Coupled solutions, C+ 
mode and C− mode, are plotted in blue and red, respectively. 
The uncoupled solution (U2 mode) is plotted in green with 
solid and dotted lines denote the stable and unstable solutions, 
respectively. (Color figure online)
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in which the radicand is negative if 0 < a2 < |𝜁0| and 
is positive if a2 > |𝜁0| , with �0 defined in Eq.  (24). 
Consequently, in the case of the first-order MSM 
solution, the U2-mode is stable for a2 below the 
branching point with the coupled mode, and is unsta-
ble above. The branching point between the U2 and 
the C+/C− modes is consequently a supercritical 
pitchfork bifurcation. In the general case for which 
Γ3,6 are non-zero, one can use the perturbative reason-
ing, based on the fact that the coefficients of the sec-
ond-order are small and that we are evaluating locally 
the loss of stability at the branching point (which is 
for small amplitudes). Then, one can conclude that 
the above findings are still valid with �0 replaced by 
�2,3 (see Fig. 2).

In the special case without detuning, � = 0 
( �2 = 2�1 ), Eq. (30) predicts that

Using the same reasoning as in Sect. 2.4, the radicand 
of the square root is positive, showing that the eigen-
value are real for all a2 > 0 . Consequently in this case 
without detuning, the U2-mode branch is fully unsta-
ble, which is in agreement with the location of the 
branch point at a2 = 0.

3 � Backbone curves, frequency response functions 
and invariant manifolds

3.1 � Backbone curves

The aim of this section is to illustrate the previous 
findings on the topology of the solution branches 
(backbone curves). A special emphasis is set on 
showing the changes brought by taking into account 
the cubic terms in the normal form system (2a-d), as 
compared to the results given by considering only the 
quadratic resonant monomials, in order to illustrate 
the effects of the non-resonant quadratic terms. In all 
the results shown, the second-order MSM solution 
is used, either by setting to non-zero values only g1

12
 

and g2
11

 , or by considering all the coefficients appear-
ing in (2a–d). The second-order MSM solution is also 
compared to a reference numerical solution obtained 

(31)�2,3 = ±

√

Γ2
1
a2
2
−

(2�1 − �2)
2

4

(32)�2,3 = ±a2

√

4Γ2
1
− (2Γ3 − Γ6)

2a2
2

/

2.

with a continuation procedure. The continuation of 
periodic orbits is realized thanks to the harmonic bal-
ance method (HBM), and the asymptotic numerical 
method, as implemented in the open code Manlab, 
which also computes stability [46–48].

The two selected cases are shown respectively in 
Figs.  3 and 4, depicting the three backbones of the 
system analyzed in the previous section, for various 
values of the parameters. The uncoupled, U2-mode, 
with a1 = 0, a2 ≠ 0 is shown in green, while the two 
coupled C+ and C− modes are in blue and red.

Figure  3 shows the special case where only the 
resonant quadratic monomials have been selected 
( g1

12
= g2

11
= 1 ), while all other coefficients have 

been set to zero. The system thus reduces to the 
one studied in  [10], with the distinctive feature that 
a second-order MSM solution is still at hand. Since 
no cubic terms are present, the uncoupled back-
bone degenerates to a straight vertical line. The cou-
pled C+ and C− modes share the properties already 
underlined in  [10, 13]. For a negative detuning, the 
C− mode emerges at zero amplitude for �nl = 2�1 , 
while the C+ mode emerges at a non-zero a2 ampli-
tude, at �nl = �2 . The situation is reversed for posi-
tive detuning, the C+ mode starting with zero ampli-
tude at �nl = 2�1 and the C− mode branching from 
the uncoupled solution with a non-zero amplitude. 
For a perfectly tuned system, � = 0 , �2 = 2�1 and all 
branches start at zero amplitude.

The main novelties, as compared to the previ-
ous studies, are twofold. First the analysis clearly 
shows that the non-vanishing branch point is exactly 
on the uncoupled U2-mode, starting either at ampli-
tude a2 = �3 for negative detuning, or a2 = �2 for 
𝜎 > 0 . Second, since a second-order MSM result is 
shown here, one can observe that the coupled C+/
C− branches show an important curvature in the 
(�nl, a2) plane, which was not the case in the previ-
ously shown results using first-order MSM.

Figure 4 shows the more general case where cubic 
terms are taken into account in the normal form. 
More specifically, the values have been set to: 
g1
12

= g2
11

= 1 , g1
11

= g1
22

= g2
12

= g2
22

= 0.5 , and 
h
p

ijk
= 0.1 for i, j, k, and p = 1, 2 . As a main conse-

quence, the uncoupled U2 backbone is now curved, 
due to the presence of the non-vanishing Γ6 coeffi-
cient, see Eq.  (19). With the selected values, Γ6 < 0 
and consequently, the U2-mode shows a softening 
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behaviour. Interestingly, and as shown in the previous 
section, the non-zero branch point of the C+ mode, 
for a negative detuning, is located at a2 = �3 , exactly 
on the backbone of the uncoupled solution. The same 
applies for positive detuning, the C− mode branching 
from the U2 backbone at amplitude a2 = �2 . Since 
non-zero cubic terms are now present, the shape of 
the coupled C+/C− backbones shows a much more 
important curvature, seen in particular in the plane 
(�nl, a1) where the branches of C+ solution first 
increases and then decreases.

The comparison between the second-order MSM 
and the reference numerical solution shows a very 
good agreement, even in very adverse conditions as 
the one shown in Fig.  4. Also, the stability analysis 
led in the previous section is very well recovered by 
the numerical solution, validating the perturbative 
reasoning. In particular, U2-mode is seen to lose sta-
bility at the supercritical pitchfork bifurcation point 
as analyzed, where the coupled solution emerges. 
Also, the stability of the coupled solution is found 
to be in line with the analytical results, since stable 
solutions are retrieved for small amplitudes. Interest-
ingly, the numerical solution shows that the coupled 
branch can lose stability for higher amplitudes, as 
expected from the analysis following the remarks at 
the end of Sect.  2.5. Note that in Figs.  3 and 4, the 
stability of the analytical solution is not addressed at 
high amplitudes.

As a conclusion to this section, the numerical 
simulations shown in Figs. 3 and 4 show that the sec-
ond-order MSM solution presented in Sect. 2.2 is in 
excellent agreement with a reference numerical solu-
tion, both for the quantitative shape of the backbone 
curves and their stability. Indeed, some discrepancies 
between the analytical and numerical solutions are 
observed, especially the response of the C+ backbone 
in Fig. 4 d,e,f due to the approximate nature of MSM 
at high amplitudes that can be corrected by taking 
into account higher expansion orders.

3.2 � Forced oscillations: normal form validity and 
link to the free solutions

This section is devoted to the link between the back-
bone curves and the forced–damped response of the 
system, as well as to assess the validity of the nor-
mal form transform, Eq. (2), in comparison with the 
dynamical solutions given by the original equations 

(1). Since the normal transformation relies on an 
asymptotic development up to the third order, one 
needs to assess that the assumption is valid in the 
range of amplitudes used in the present analysis. In 
this section, only numerical results will be used, and 
the second-order MSM solution will not be employed 
anymore. The numerical solutions are derived thanks 
to the continuation of periodic orbits with the soft-
ware Manlab.

The forced–damped frequency response functions 
will be considered for the original system by adding 
two linear damping terms 2𝜉1𝜔1Ẋ1 and 2𝜉2𝜔2Ẋ2 to 
(1a, 1b) where �1 and �2 are the damping coefficients. 
The forcing will be considered only on the upper-
frequency mode, thus a harmonic force F cos�t is 
added to Eq.  (1b), where F and � are, respectively, 
the forcing amplitude and the driving frequency. For 
the normal form system, Eqs. (6a, 6b) are used, and 
damping and forcing are added in the same manner. 
This constitutes an assumption, which holds as long 
as small values of damping and forcing are consid-
ered, which will be the case here. If too large values 
of the damping are to be considered, then the nor-
mal form calculations need to address the damping 
within the calculations, as shown for example in [23, 
37]. Also, for too large values of the forcing, a non-
autonomous version of the normal transform must be 
derived, see for example [49]. For the range of ampli-
tudes investigated in this contribution, the first-order 
assumption on the damping and forcing is sufficient, 
and one might consider high-order terms only if 
larger amplitudes had to be taken into account.

In order to represent the amplitude of the 
forced–damped solutions, and by analogy with the 
first-order MSM solution (see e.g. [17]), X1(t) and 
X2(t) are expressed as: 

 where “OH” means other harmonics of smaller 
amplitude, �1 and �2 are the phase angles and X11∕2 
and X21 are respectively the amplitudes of the leading 
harmonics of X1(t) and X2(t) . In this solution, X2(t) is 
the directly excited degree of freedom that oscillates 
at the driving frequency � and X1(t) gains energy 
through the internal resonance coupling and oscillates 

(33a)X1(t) = X11∕2 cos

(

�

2
t −

�1 + �2

2

)

+ OH

(33b)X2(t) = X21 cos(�t − �2) + OH
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at the subharmonic �∕2 . For the solution obtained 
from the normal form, Eqs.  (6a, 6b), (R1(t),R2(t)) 
are back transferred to the physical coordinates 
(X1(t),X2(t)) with the nonlinear mapping (3a, 3b), and 
then the amplitude of the first harmonic is selected for 
representation.

The comparison between the forced responses of 
both systems is shown in Fig. 5 for positive, negative, 
and zero values of � . It is observed that the forced 
solution develops according to the backbone curves 
of the C+ and C− modes. Namely, the two peaks 
appearing in the forced response of X1 and X2 lie in 
the vicinity of the backbone curves. The comparison 
also shows a very good match between the forced 
responses of X1 and X2 , and the two systems (normal 
form versus initial system) predict a Neimark–Sacker 
bifurcation along the coupled branch for � = 0.05 
leading to quasi-periodic solutions. A small mismatch 

can be observed at larger amplitudes between the two 
solutions, and it appears to be more salient on the 
backbone curves than on the forced-damped solu-
tions, meaning that the validity range of the normal 
form approximation is more limited in this specific 
case by the third-order truncation than by the assump-
tions made on damping and forcing.

A last point worth investigation when compar-
ing free and forced-damped solutions, is the point 
of coincidence of the two solutions, since it has 
a significant practical application for observing 
phase resonance in experiments. A phase resonance 
occurs when, for a particular driving frequency � , 
the forcing term exactly cancels the damping, such 
that the oscillator behaves as if it was in undamped 
free oscillations, see e.g. [50] for a discussion of the 
general case,  [51] for application to a single DOF 

(a) (b)

(d) (e) (f)

Fig. 5   Frequency response of the fundamental harmonic 
amplitude X21 of X2(t) (the first row) and the subharmonic 
amplitude X11∕2 of X1(t) (the second row) for F = 0.01 (the 
lighter color) and F = 0.02 (the darker color). The plots are 
done for g1

11
= g1

12
= g2

11
= 1 , g1

22
= g2

12
= g2

22
= 0.03 , all the 

cubic terms hp
ijk

= 0.3 , �1 = 0.007,  and   �2 = 0.01 . The first, 
second, and third column are the results for � = −0.05 , � = 0 , 
and � = 0.05 , respectively. Comparison between numerical 
solutions obtained from the original system (blue solid lines 

with circle markers) and the third-order real normal form 
(green solid lines). Backbone curves are plotted respectively 
in blue dashed lines (original system) and green dashed lines 
(normal form). The uncoupled free and forced solutions are 
plotted in orange and black, respectively (solid line for sta-
ble solutions and dotted lines for unstable). The star symbol 
denotes the bifurcation point from which coupled solution 
emerges from the U2 backbone. ”QP” denotes the quasi-peri-
odic regime that emerges between two Neimark–Sacker bifur-
cation points. (Color figure online)
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problem, and  [45] for two cubic oscillators in 1:1 
internal resonance.

In the above simulations, since the forcing term 
is added only to the second oscillator (Eq. 1b), it can 
only cancel the damping term 2𝜉2𝜔2Ẋ2 of the second 
oscillator, and not the one of the first oscillator. We 
then conclude that a phase resonance is not possible 
here without adding a forcing term also to the first 
oscillator (Eq. 1a). This is further illustrated with the 
three-dimensional views of Fig  6, in which one can 
see in the insets that the forced response do not inter-
sect the backbone curves, since they lie in distinct 3D 
planes. A limit condition for a phase resonance would 
be to have no damping in the first oscillator ( �1 = 0 ). 
Those results can be verified by comparing Eqs. (33a, 
33b) and (17a, 17b), which shows that the phase 
resonance can be obtained only with �1 = k� , which 
is possible only if �1 = 0 and �2 = �∕2 (see the first-
order MSM solution of [17]), the latter result being 
consistant with a phase resonance of the second oscil-
lator. These results might have very important practi-
cal applications if one is interested in applying phase 
resonance on an experimental system displaying 1:2 
internal resonance.

3.3 � Periodic orbits and 3D manifolds

This section is devoted to illustrating the geometry of 
the nonlinear modes of the system, viewed as periodic 

orbits and invariant Lyapunov subcenter manifolds in 
phase space. The validity limit of the normal form 
is also addressed by highlighting the departure of 
the computed manifolds, following the presentation 
shown in [52].

Families of periodic orbits in the undamped 
case, following the backbone curves, are numeri-
cally computed with the continuation method. 
Fig.  7 shows the obtained results for the initial sys-
tem, given by Eqs.  (1a, 1b). It can be observed that 
the C+ and C− modes have similar shapes, up to a 
change X2 ↦ −X2 , which is consistent with the 
parabolic shapes of the periodic orbits in the (X1,X2) 
plane, as shown in Fig. 1. Note that the phase space 
(X1,X2, Ẋ1, Ẋ2) is four-dimensional, while the mani-
folds are two-dimensional. In order to represent them, 
two different projections in three-dimensional spaces 
are given in Fig.  7a, b, for the perfectly tuned case 
with � = 0 . As shown in Sect. 3.1, if � = 0 , the back-
bone curves of both C+ and C− modes emerge from 
zero X1 = X2 = 0 amplitude, a result consistent with 
the birth of the manifold at the origin of the phase 
space in this case. On the other hand, if � ≠ 0 , one of 
the modes branches from the U2-mode with a pitch-
fork bifurcation, which corresponds to the black orbit 
shown in Fig. 7c.

About this branching, a remark is worth to be 
raised: since the pitchfork is supercritical (see 
Sects.  2.5 and 2.6), after the bifurcation, two stable 

Fig. 6   Three dimensional view, in the space (�,X11∕2,X21) , 
of the forced response and the backbone curves, analogous 
to Fig.  5 with � = 0 . The uncoupled and coupled forced 
responses are in green and orange, respectively, whereas the 
C+ and C− backbone curves are in blue and red, respectively. 

The unstable parts are shown in dashed lines. (a) and (b) show 
different view angles of the same plot to clarify the 3D repre-
sentation. The zooms are selected to highlight that the free and 
forced solution branches do not cross each other. (Color figure 
online)
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coupled branches are observed. In fact, those two 
solutions correspond to the two possible values of k 
for each C+ or C− coupled mode in Eq.  (21a). For 
the C+ mode (resp. the C− mode), k must be even 
(resp. odd) and k = 0 and k = 2 (resp. k = 1 and 
k = 3 ) give two different periodic orbits that have the 
same shape in the phase space (so as the correspond-
ing manifolds), but differ because of a � phase shift 
in X1(t).

The validity limit of the third-order real normal 
form approximation can also be ascertained graphi-
cally by comparing the invariant manifolds of the 
initial system, Eq. (1a, 1b), with those obtained with 
the normal form, as given in Eq.  (2). Fig.  8 shows 
the invariant manifolds of the C+ and C− nonlin-
ear modes computed by numerical continuation 
with Manlab. On the one hand, the periodic orbits 
(X1(t),X2(t)) of the initial system (1a, 1b) are shown 
in orange color. On the other hand, the third-order 
normal form of Eq. (2) is used to compute the peri-
odic orbits (R1(t),R2(t)) , which are transformed back 
to the initial coordinates using the nonlinear map-
ping (3a, 3b), shown in green. One can observe that 
the third-order solution suggests an excellent approx-
imation of the reference solution for small ampli-
tudes, consistent with the backbones curves shown 
in Fig. 5. At higher amplitudes, the third-order mani-
fold departs from the reference solution, in which 
qualitative changes in the solution are observed. One 
can note in particular, for the case considered, that 

the folding of the original manifold shown in Fig. 8d 
is missed by the third-order approximation. Higher-
orders are then needed to recover the folding, as 
shown for example in [37].

4 � Recovering the saturation phenomenon

A well-known feature of a system presenting 1:2 
resonance is the saturation phenomenon, as recalled 
in the introduction. This saturation effect is very well 
described for coupled oscillators including only the 
resonant quadratic monomials, i.e. the terms with 
coefficients g1

12
 and g2

11
 in the initial system (1a, 1b), 

and gave rise to numerous descriptions and applica-
tions in the past, see e.g.  [1, 14–16] and references 
therein. The saturation effect exists when the system 
is forced in the vicinity of the high-frequency mode 
�2 . After a threshold corresponding to the loss of 
stability of the uncoupled U2-mode, the coupled 
solution appears, and is characterized by a constant 
amplitude for X2 when the amplitude of the forcing 
is increased, meaning that all the energy is trans-
ferred to the first oscillator. In terms of the frequency-
response functions, this corresponds to the fact that 
the coupled branch shows a minimum in the vicinity 
of � ≃ �2 , which can be interpreted as an anti-reso-
nance. This case is illustrated in Figs. 9a and 10, for 
the resonant excitation considered in Sect.  3.2, for 
which the amplitude X21 of the H1 harmonics of X2(t) 

Fig. 7   Three-dimensional phase space representation of the 
invariant manifolds (LSM, families of periodic orbits/nonlinear 
modes) of the initial system given by Eqs. (1a, 1b), computed by 
numerical continuation. Parameter values selected as in Fig. 5a, b 
C+ and C− modes, respectively in blue and red, for the perfectly 
tuned case with � = 0 such that �2 = 2�1 . (a) Representation in 
( X1 , Ẋ1 , X2 ) space, (b) in ( X2 , Ẋ2 , X1 ) space. (c) case with a nega-

tive detuning, � = −0.05 . The manifold in green is the U2-mode 
(uncoupled solution), which shows a branch point with the C+ 
mode (in blue). The orbit for which branching is occuring at the 
pitchfork bifurcation is highlighted in black. A black point shows 
the origin of the phase space. (Color figure online)
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shows a valley-like shape, with a minimum around 
� = �2 = 2 , whose amplitude is almost independ-
ent of the forcing (F is multiplied by a factor 3 in 
the plot). Consequently, locking the frequency of the 
excitation around the minimum of X21 and increasing 
the amplitude F leads to no increase of X21 and thus 
its saturation.

However, if non-resonant quadratic terms are 
present in (1a, 1b), it has been observed in [17, 18] 
that this saturation phenomenon is much less effi-
cient, mainly because the anti-resonance is shifted as 
the excitation increases. Consequently, if one locks 
the driving frequency at a given value, then X21 at 
this particular frequency will depend on the driving 
amplitude F, thus severely mitigating the saturation 

phenomenon. The effect of the non-resonant terms is 
illustrated in Figs. 9b and 10, with a shift of the anti-
resonance toward the low frequencies and a symme-
try breaking of the shape of the response curves.

Considering, as explained in Sect.  3.1, that the 
main effect of both the quadratic non-resonant terms 
and the cubic ones is to bend the response curves, one 
could think of using intentionally some cubic terms to 
cancel the bending of the response curves brought by 
the quadratic terms, using the analytical free solution 
of the normal form of Sect. 2.2. This idea shares some 
common points with the one developed in [53], where 
the nonlinearity is also intentionally tuned in order to 
create a nonlinear vibration absorber that extends the 
so-called den Hartog’s equal peak method.

Fig. 8   Invariant manifolds corresponding to the C+ and C− 
nonlinear modes of the system, with the parameters of Fig.  5, 
in the case � = 0 ⇔ �2 = 2�1 . Comparison between the 
numerical solution of the initial system  (1a, 1b) (orange, peri-
odic orbits computed with numerical continuation) and the one 
from the third order normal form of Eq.  (2) (green, periodic 
orbits computed with numerical continuation and back trans-
formed with the nonlinear mapping  (3a, 3b)). First row: C+ 

mode, second row: C− mode. First column, space ( X1 , Ẋ1 , 
X2 ); second column, space ( X2 , Ẋ2 , X1 ). The parameters are: 
g1
11

= g1
12

= g2
11

= 1 , g1
22

= g2
12

= g2
22

= 0.03 , and all the cubic 
terms hp

ijk
= 0.1 . The view angle is different in the first and sec-

ond row for clarity reason. A black point shows the origin of 
the phase space. (Color figure online)
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(a) (b) (c)

(d) (f)(e)

Fig. 9   Frequency response of the fundamental harmonic 
amplitude X21 of X2(t) (the first row) and the subharmonic 
amplitude X11∕2 of X1(t) (the second row) for several excita-
tion levels, computed numerically with Manlab in the case 
� = 0 (i.e. �2 = 2�1 ). The first column: only the quadratic 
resonant terms are considered ( g1

12
= g2

11
= 1 ). The second 

column: all the quadratic terms are considered with null cubic 
terms ( g1

11
= g1

12
= g2

11
= 1 , g1

22
= g2

12
= g2

22
= 0.1 ). Third 

column: all the quadratic terms are considered with the cubic 
terms are set based on (34a–34d). The damping coefficients 
are �1 = 0.007 and �2 = 0.01 . The uncoupled forced solution is 
plotted in black and the coupled solutions are plotted in green 
and blue. The dotted and solid lines denote the stable and 
unstable solutions, respectively. The dashed lines denotes the 
coupled free solution. (Color figure online)

Fig. 10   Fundamental harmonic amplitude X21 of X2(t) as 
a function of the excitation level F, computed numerically 
with a continuation method, in the perfectly tuned case � = 0 
(i.e. �2 = 2�1 ), and for an external excitation frequency 
� = �2 , corresponding to the cases of Fig. 9. Black line: lin-
ear response with all nonlinear terms cancelled; blue line: only 

the quadratic resonant terms are considered (Fig. 9a); red line: 
all the quadratic terms are considered with null cubic terms 
(Fig.  9b); green line: same quadratic terms with the tuned 
cubic terms of Eqs. (34a–34d) (Fig. 9c). The solid and dotted 
lines denote the stable and unstable solutions, respectively. 
(Color figure online)
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In order to do so, the idea is to select the values of 
the cubic coefficients hp

ijk
 in order to cancel the effect 

of the quadratic non resonant terms g1
11

 , g1
22

 , g2
12

 , g2
22

 
in the coefficients Γ2,3,5,6 , such that the backbone 
curve of Eqs. (18a, 18b) degenerate to those obtained 
if only the quadratic resonant terms were present. 
Using the complete expressions of the Γ coefficients 
as reported in the "Appendix C", Eqs. (67b, 67c, 67e, 
67f), the following tuning rule expresses the cubic 
nonlinear coefficients as function of the quadratic 
non-resonant ones, as: 

 Note that only the resonant cubic terms are the 
parameters to be controlled. The other cubic terms are 
not considered since they are eliminated in the nor-
mal form derivation process, in which it is assumed 
that such terms have a negligible effect at the third 
order. To catch the effect of such terms, one has to 
continue the derivation up to the fourth order, which 
is not considered in this study.

To validate the proposed technique, Fig.  9c con-
siders the resonant excitation of Sect.  3.2 with the 
cubic coefficients set as suggested in Eqs. (34a–34d). 
One observes that this leads first to a lock of the anti-
resonance point as the excitation level increases and 
secondly to response curves with a more symmetric 
shape, as compared to Fig.  9b where the cubic cor-
rection terms are not included. In addition, one can 
see that for the first two excitation levels, the fre-
quency response is almost identical to that of Fig. 9a, 
which shows the simplified version of (1a, 1b) where 
only the quadratic resonant terms are considered. 
Differences are finally observed when going up to 
very large amplitudes, which are due to higher-order 
effects (quintic, ..) that are not taken into account in 
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the analytics. As a final result, Fig. 10 shows that the 
present tuning of the cubic terms perfectly cancels the 
effect of the non-resonant quadratic terms, obtaining 
a perfect saturation phenomenon, up to comfortable 
amplitudes for an experimental application, and that 
significantly enhanced the saturation effect obtained 
by considering only the resonant quadratic terms. In 
the numerical example considered here, the green 
and the blue curves almost perfectly match up to an 
amplitude 23 times the threshold forcing level.

5 � Conclusion

In this article, the second-order effect of the quad-
ratic non-resonant terms, and the cubic terms, of two 
oscillators featuring 1:2 internal resonance has been 
investigated. A special emphasis has been put on the 
topology of the solution branches for free vibrations 
(backbone curves) and forced–damped response. The 
conjugated effect of the non-resonant quadratic terms 
and the cubic terms, appearing in the same order of 
expansion in the normal form approach, has been 
analyzed with a second-order multiple scales expan-
sion. The overall topology in terms of instabilities, 
bifurcation, and branching is not deeply modified 
as compared to a first-order analysis; since the most 
important features of the 1:2 internal resonance are 
driven by the resonant quadratic terms. However, 
important quantitative features have been deeply ana-
lyzed, complementing already published results on 
the same problem, which were limited to a first-order 
development [10, 13].

In the course of the development, numerous inter-
esting results have been derived. The complete ana-
lytical derivation of the real normal form for a prob-
lem featuring 1:2 internal resonance, and up to the 
third order, has been shown, complementing the 
results given in [11, 38] where the assumptions of no 
internal resonance were retained. The topology of the 
invariant manifolds linked to the backbone curves/
nonlinear modes of the system with 1:2 internal res-
onance has also been investigated. In particular, the 
fact that the branch point of the coupled solution is 
along the uncoupled U2-mode, hence complement-
ing the bifurcation portrait of the conservative prob-
lem, has been highlighted. The validity domain of the 
normal form transform, in both free and forced vibra-
tions, is also assessed by comparisons to numerical 
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solutions. Finally, the connection between the free 
and the forced responses of the system has been ana-
lyzed, with possible future applications in phase reso-
nance testing of structures with internal resonances 
[45, 51].

The main application of the analysis presented 
herein is the improvement of the saturation effect, 
typical of systems featuring 1:2 internal resonance, 
and that has already attracted attention in the past in 
order to design an effective method for passive vibra-
tion control. In particular, the simulations show that 
when the vibration amplitudes increase, cubic non-
linearities cannot be neglected anymore, resulting in 
numerous effects that have been analyzed with the 
present developments, in particular the bending of 
all backbone curves (uncoupled and coupled). Due to 
the combined effects of quadratic non-resonant and 
cubic terms, the overall symmetry of the response is 
broken, the shape of the frequency response curves 
is importantly modified, and the minimum of the 
coupled branch, denoted as a sort of anti-resonance, 
depends strongly on the amplitude, thus destroy-
ing the perfectness of the saturation effect. A tuning 
methodology, involving quadratic non-resonant terms 
and cubic terms, has thus been proposed in order to 
recover this saturation effect and enlarge its range of 
validity, by giving back a more symmetric shape to 
the frequency response functions.
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A Relationships between nonlinear coefficients

This appendix details the known relationships exist-
ing between the coefficients of the monomials given 
in Eq. (1) when the internal force is assumed to derive 
from a potential. In such case, the potential energy is 
a quartic function whose general expression reads:

The internal forces are found by deriving this expres-
sion with respect to X1 and X2 , which leads to the fol-
lowing relationships between the coefficients: 

B Detailed calculation of the normal form

This appendix is devoted to the complete presenta-
tion of the calculations needed to arrive at the nor-
mal form given in Eq.  (2), starting from the origi-
nal set of two coupled nonlinear oscillators, Eq.  (1). 
The calculation follows the general guidelines given 
in  [11, 38], and is adapted here to take into account 
the additional condition given by the presence of a 
1:2 internal resonance between the two eigenfrequen-
cies of the system. This resonance condition being 
on the second-order terms will have consequences 
on the calculation of the cubic terms, which needs to 
be properly tracked. Since the normal form calcula-
tion is sequential in nature, the first step consists in 
processing the quadratic terms. To that purpose, let us 
truncate Eq. (1) at the second-order of the nonlinear-
ity, and rewrite them as a first-order problem in time, 
in order to make clearly appear the contributions due 
to the two independent variables displacement and 
velocity: 
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(37a)Ẋ1 = Y1,



Meccanica	

1 3
Vol.: (0123456789)

 A quadratic, indentity-tangent, nonlinear change of 
coordinates, is first introduced in order to cancel as 
much as possible the nonlinear terms in Eq.  (37). 
New variables ( Ui , Vi ) are introduced as: 

 In these equations, the introduced coefficients ap
ij
 , bp

ij
 , 

and �p
ij
 , for i, j, p=1, 2; are unknowns and will be set 

according to the idea of canceling non-resonant 
monomials in the equations of motion. To that pur-
pose, Eq. (38) are differentiated with respect to time 
and introduced in  (37). Identification of the same 
monomials leads to the values of the coefficients that 
can be used. Let us first recall the general solution 
reported in [11, 38] for the case where no internal res-
onance exists between �1 and �2 . One obtains:
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2
+ b

2

11
V
2

1
+ b

2

12
V
1
V
2
+ b

2

22
V
2

2
,

(38d)
Y2 = V2 + �2

11
U1V1 + �2

12
U1V2 + �2

21
U2V1 + �2

22
U2V2.

(39)

a1
11

=
−g1

11

3�2
1

, b1
11

=
−2g1

11

3�4
1

, �1
11

=
2g1

11

3�2
1

, �1
21

=
g1
12

4�2
1
− �2

2

,

a1
12

=
g1
12

�2
2
− 4�2

1

, b1
12

=
2g2

12

�2
2
(�2

2
− 4�2

1
)
, �1

12
=

g1
12
(2�2

1
− �2

2
)

�2
2
(4�2

1
− �2

2
)
, �2

21
=

g2
12
(�2

1
− 2�2

2
)

�2
1
(�2

1
− 4�2

2
)
,

a1
22

=
g1
22
(2�2

2
− �2

1
)

�2
1
(�2

1
− 4�2

2
)
, b1

22
=

2g1
22

�2
1
(�2

1
− 4�2

2
)
, �1

22
=

2g1
22

4�2
2
− �2

1

,

a2
11

=
g2
11
(�2

2
− 2�2

1
)

�2
2
(4�2

1
− �2

2
)
, b2

11
=

2g2
11

�2
2
(�2

2
− 4�2

1
)
, �2

11
=

2g2
11

4�2
1
− �2

2

,

a2
12

=
g2
12

�2
1
− 4�2

2

, b2
12

=
2g2

12

�2
1
(�2

1
− 4�2

2
)
, �2

12
=

g2
12

4�2
2
− �2

1

,

a2
22

=
−g2

22

3�2
2

, b2
22

=
−2g2

22

3�4
2

, �2
22

=
2g2

22

3�2
2

.

In the case of the 1:2 internal resonance condition 
(i.e., �2 ≈ 2�1 ), it appears that the coefficients a1

12
 , 

b1
12

 , �1
12

 , �1
21

 , a2
11

 , b2
11

 , and �2
11

 are singular since their 
denominators contains the term (�2 − 2�1) . In such 
case, the remedy is to set all these coefficients to zero. 
The coefficients used in Eq.  (3) in the main text are 
thus those given in Eq.  (39), except for the singular 
ones that are replaced by:

As a consequence, the associated resonant second-
order monomials, which are here g1

12
X1X2 and g2

11
X2
1
 , 

cannot be eliminated from the normal form, in con-
trary to the other four quadratic terms. After this first 
step, one is thus able to write the normal form of 
the problem with 1:2 resonance, up to the quadratic 
terms, as: 

 The next step of the calculation is to rewrite Eq (41) 
up to the cubic terms. Besides the original cubic 
terms with coefficients hp

ijk
 , present in Eq  (1), new 

(40)a1
12

= b1
12

= �1
12

= �1
21

= a2
11

= b2
11

= �2
11

= 0.

(41a)U̇1 = V1 + O(U3
i
,V3

i
),

(41b)V̇1 = −𝜔2
1
U1 − g1

12
U1U2 + O(U3

i
,V3

i
),

(41c)U̇2 = V2 + O(U3
i
,V3

i
),

(41d)V̇2 = −𝜔2
2
U2 − g2

11
U2

1
+ O(U3

i
,V3

i
).
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cubic terms will appear due to the nonlinear nature of 
the change of coordinates, where products involving 
linear and quadratic terms will produce new cubic 
terms. Let us first focus on the processing of these 
new terms. In the calculation, the derivatives of 
Eq.  (38) with respect to time need to be computed. 
The derivative of quadratic terms (e.g. V2

1
 ) makes 

appear products involving the time derivative ( 2V1V̇1 
in this case). To eliminate time, one can simply use 
Eq. (41), such that, up to order four, one can write for 
the monomial considered as an example: 
V1V̇1 = −𝜔2

1
U1V1 − g1

12
U1U2V1 + O(U4

i
,V4

i
) , hence 

making appear the new expected cubic terms. Repeat-
ing this procedure for the four equations, and using 
Eq.  (40) to simplify the expressions, one easily 
arrives at: 

 Note that the obtained cubic terms in (42) are solely 
due to the presence of the 1:2 internal resonance con-
dition. Importantly, those terms were not present in 
the previous calculations shown in [11, 38], led under 
the specific assumption of no internal resonance. This 
means that the general guidelines provided in [11, 38] 
to derive the normal form can be followed, provided 
the changes underlined here to take correctly into 
account a 1:2 resonance.

At this stage, one can observe that the first and 
third lines, Eqs. (42a)–(42c), are not as simple as they 
were at the starting point, see e.g. Eq. (37), underlin-
ing a simple link between displacement and velocity. 
To recover this and obtain a more convenient expres-
sion of (42a)-(42c), one can define W1 and W2 as: 

 such that the system (42) can be rewritten as: 

(42a)U̇1 = V1+2b
1
11
g1
12
U1U2V1 + 2b1

22
g2
11
U2

1
V2,

(42b)
V̇1 = −𝜔2

1
U1 − g1

12
U1U2+𝛾

1
11
g1
12
U2

1
U2 + 𝛾1

22
g2
11
U2

1
U2,

(42c)
U̇2 = V2+b

2
12
g1
12
U1U2V2 + b2

12
g2
11
V1U

2
1
+ 2b2

22
g2
11
U2

1
V2,

(42d)
V̇2 = −𝜔2

2
U2 − g2

11
U2

1
+𝛾2

12
g2
11
U3

1
+ 𝛾2

21
g1
12
U1U

2
2
+ 𝛾2

22
g2
11
U2

1
U2.

(43a)W1 = V1 + 2b1
11
g1
12
U1U2V1 + 2b1

22
g2
11
U2

1
V2,

(43b)
W2 = V2 + b2

12
g1
12
U1U2V2 + b2

12
g2
11
V1U

2
1
+ 2b2

22
g2
11
U2

1
V2,

 As mentioned earlier, Eq.  (44) refer to the problem 
up to cubic nonlinearity where only the terms added 
by the presence of the 1:2 resonance have been 
tracked. We are now in the position of rewriting the 
complete system up to the third order, on which the 
next step of the normal transform could be applied by 
vanishing the non-resonant cubic monomials thanks 
to a third-order nonlinear change of coordinates. To 
that purpose, one simply needs to track the cubic 
terms coming from the original system with hp

ijk
 coef-

ficients, and those created by the quadratic nonlinear 
change of coordinate and appearing without the sec-
ond-order internal resonance. This leads to the fol-
lowing equations: 

(44a)U̇1 = W1,

(44b)

Ẇ1 = −𝜔2
1
U1 − g1

12
U1U2 + 𝛾1

11
g1
12
U2

1
U2

+ 𝛾1
22
g2
11
U2

1
U2 + 2b1

11
g1
12
(W2

1
U2

+ U1W2W1 − U2
1
U2𝜔

2
1
) + 2b1

22
g2
11
(2U1W1W2 − U2

1
U2𝜔

2
2
)

+ O(U4
i
,W4

i
),

(44c)U̇2 = W2,

(44d)

Ẇ2 = −𝜔2
2
U2 − g2

11
U2

1
+ 𝛾2

12
g2
11
U3

1

+ 𝛾2
21
g1
12
U1U

2
2
+ 𝛾2

22
g2
11
U2

1
U2

+ b2
12
g1
12
(W1U2W2 + U1W

2
2
− U1U

2
2
𝜔2
2
)

+ b2
12
g2
11
(−𝜔2

1
U3

1
+ 2U1W

2
1
)

+ 2b2
22
g2
11
(2U1W1W2 − U2

1
U2𝜔

2
2
) + O(U4

i
,W4

i
).

(45a)U̇1 = W1,

(45b)

Ẇ1 = −𝜔2

1
U1 − g1

12
U1U2 − (h1

111
+ A1

111
)U3

1

− (h1
112

+ A1

112
− D1

112
)U2

1
U2 − (h1

122
+ A1

122
)U1U

2

2

− (h1
222

+ A1

222
)U3

2
− B1

111
U1W

2

1
− B1

122
U1W

2

2

− (B1

112
− E1

112
)U1W1W2 − (B1

211
− E1

211
)U2W

2

1

− B1

212
U2W1W2 − B1

222
U2W

2

2
+ O(U4

i
,W4

i
),

(45c)U̇2 = W2,
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 In these equations, the coefficients Ap

ijk
 and Bp

ijk
 , with 

i, j, k, p = 1, 2 ; are the same as those already reported 
in [11, 38], meaning that they arise from the compu-
tation of the non internally resonant case. Their gen-
eral expressions are the same as reported in [11, 38] 
and read: 

 As compared to the case without internal resonance, 
one can note that the general expression is exactly 
similar, but one has just to take care that due to the 
1:2 resonance, some of the ap

ij
 , bp

ij
 , �p

ij
 coefficients van-

ish following Eq. (40).
On the other hand, the coefficients Dp

ijk
 and Ep

ijk
 , 

with i, j, k, p = 1, 2 , comes from Eq. (45), and are only 
due to the presence of the 1:2 internal resonance. 
They read:

The last step of the computation of the real nor-
mal form up to cubic terms consists of applying a 

(45d)

Ẇ2 = −𝜔2

2
U2 − g2

11
U2

1
− (h2

111
+ A2

111
− D2

111
)U3

1

− (h2
112

+ A2

112
− D2

112
)U2

1
U2 − (h2

122
+ A2

122
− D2

122
)U1U

2

2

− (h2
222

+ A2

222
)U3

2
− (B2

111
− E2

111
)U1W

2

1

− (B2

122
− E2

122
)U1W

2

2
− (B2

112
− E2

112
)U1W1W2

− B2

211
U2W

2

1
− (B2

212
− E2

212
)U2W1W2

− B2

222
U2W

2

2
+ O(U4

i
,W4

i
).

(46a)A
p

ijk
=

N∑
l≥i

g
p

il
al
jk
+

N∑
l≤i

g
p

li
al
jk
,

(46b)B
p

ijk
=

N∑
l≥i

g
p

il
bl
jk
+

N∑
l≤i

g
p

li
bl
jk
.

(47)

D1
112

= �1
11
g1
12
+ �1

22
g2
11
− 2b1

11
g1
12
�2
1
− 2b1

22
g2
11
�2
2
,

D2
111

= �2
12
g2
11
− b2

12
g2
11
�2
1
,

D2
112

= �2
22
g2
11
− 2b2

22
g2
11
�2
2
,

D2
122

= �2
21
g1
12
− b2

12
g1
12
�2
2
,

E1
112

= 2b1
11
g1
12
+ 4b1

22
g2
11
,

E1
211

= 2b1
11
g1
12
,

E2
111

= 2b2
12
g2
11
,

E2
122

= b2
12
g1
12
,

E2
112

= 4b2
22
g2
11
,

E2
212

= b2
12
g1
12
.

third-order nonlinear change of coordinates in order 
to cancel all non-resonant cubic monomials in  (45). 
As already noted, for example, in  [11, 12, 38], the 
main difference with second-order is the presence 
of trivial resonances at the cubic order. Due to the 
fact that the eigenspectrum is composed of pairs of 
purely imaginary complex conjugate numbers, trivial 
resonances are always fulfilled at third order so that 
numerous monomials cannot be cancelled whatever 
the values of the eigenvalues. This is in contrast to 
quadratic terms where, in case of no second-order 
internal resonance, all the terms can be cancelled by 
the change of coordinate. Here the procedure simply 
follows the general guidelines given in  [11, 12, 38]. 
The nonlinear change of coordinates is introduced as: 

 To derive the expressions of the unknown coeffi-
cients rp

ijk
 , up

ijk
 , �p

ijk
 , and �p

ijk
 , with i, j, k, p = 1,… , 2 ; 

introduced in Eq.  (48), one has to differentiate (48) 
with respect to time and report in the equations of 
motion, Eq.   (45). Identifying the monomials term-
by-term leads to explicit expressions for the 
unknowns, some of them being set directly to zero 
because of the trivial resonances. Interestingly, this 
step of the calculation exactly follows the guidelines 
already provided in  [11, 12, 38]. Hence the general 
formula can be simply used without changes.

After this calculation, most of the cubic monomi-
als present in Eq. (45) can be cancelled by the nonlin-
ear change of coordinates, the only remaining being 
linked to trivial resonances. Finally, the normal form, 
up to the third order, and with the 1:2 internal reso-
nance taken into account, reads: 

(48a)

Up = Rp +

N∑
i=1

N∑
j≥i

N∑
k≥j

r
p

ijk
RiRjRk +

N∑
i=1

N∑
j=1

N∑
k≥j

u
p

ijk
RiSjSk,

(48b)

Wp = U̇p = Sp +

N∑
i=1

N∑
j≥i

N∑
k≥j

𝜇
p

ijk
SiSjSk +

N∑
i=1

N∑
j=1

N∑
k≥j

v
p

ijk
SiRjRk.

(49a)Ṙ1 =S1,

(49b)

Ṡ1 = − 𝜔2
1
R1 − g1

12
R1R2 − (h1

111
+ A1

111
)R3

1
− (h1

122
+ A1

122
)R1R

2
2

− B1
111

R1S
2
1
− B1

122
R1S

2
2
− B1

212
R2S1S2,

(49c)Ṙ2 =S2,
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 One can note that the normal form is equivalent to 
that obtained in [11], except for the additional terms 
E2
112

 and D2
112

 , which comes as a direct consequence 
of keeping the resonant quadratic terms due to the 1:2 
internal resonance.

C Detailed calculation of the Multiple scales 
solution

In this section, we develop the application of the sec-
ond-order MSM to Eq.  (2). The starting point is the 
system given by Eq. (6), that makes appear the scaled 
following coefficients: 

The unknowns R1(t) and R2(t) of Eq.  (6) are 
expanded in powers of � as: 

 In addition, the first and second derivatives with 
respect to the initial time t are expressed as: 

(49d)

Ṡ2 = − 𝜔2

2
R2 − g2

11
R2

1
− (h2

112
+ A2

112
− D2

112
)R2

1
R2

− (h2
222

+ A2

222
)R3

2
− (B2

112
− E2

112
)R1S1S2

− B2

211
R2S

2

1
− B2

222
R2S

2

2
.

(50a)g1
12

= ��1, g2
11

= ��2,

(50b)

h1
111

+ A1
111

= �2�1, h1
122

+ A1
122

= �2�2,

B1
111

= �2�3, B1
122

= �2�4, B1
212

= �2�5,

(50c)

h2
112

+ A2

112
− D2

112
= �2�6, h2

222
+ A2

222
= �2�7,

B2

112
− E2

112
= �2�8,

(50d)B2
211

= �2�9, B2
222

= �2�10.

(51a)
R1(t;�) = r10(T0, T1, T2) + �r11(T0, T1, T2)

+ �2r12(T0,T1,T2) + O(�3),

(51b)
R2(t;�) = r20(T0, T1, T2) + �r21(T0, T1, T2)

+ �2r22(T0, T1, T2) + O(�3).

(52a)
d

dt
= D0 + �D1 + �2D2 + O(�3),

(52b)

d2

dt2
= D2

0
+ 2�D0D1 + �2(D2

1
+ 2D0D2) + O(�3),

 where Dn ≡ �∕�Tn . Substituting Eq.  (51) in (6), 
using (52) and equating the coefficients of like pow-
ers of � yields:

•	 At order �0 : 

•	 At order � : 

•	 At order �2 : 

The solutions of (53a, 53b) are expressed as: 

 where cc stands for the complex conjugate. Upon 
substituting (56) in (54), the elimination of the reso-
nant terms yield the following solvability condition: 

 where the internal detuning is �� = 2�1 − �2 , 
already introduced by Eq.  (8) in the main text to 

(53a)D2
0
r10 + �2

1
r10 = 0,

(53b)D2
0
r20 + �2

2
r20 = 0.

(54a)D2
0
r11 + �2

1
r11 = −2D0D1r10 − �1r10r20,

(54b)D2
0
r21 + �2

2
r21 = −2D0D1r20 − �2r

2
10
.

(55a)

D2

0
r12 + �2

1
r12 = −2D0D1r11 − 2D0D2r10 − D2

1
r10

− �1r10r21 − �2r11r20 − �1r
3

10
− �2r10r

2

20

− �3r10(D0r10)
2 − �4r10(D0r20)

2

− �5r20D0r10D0r20,

(55b)

D2

0
r22 + �2

2
r22 = −2D0D1r21 − 2D0D2r20 − D2

1
r20

− 2�2r10r11 − �6r
2

10
r20 − �7r

3

20

− �8r10D0r10D0r20 − �9r20(D0r10)
2

− �10r20(D0r20)
2.

(56a)r10 = A1(T1, T2)e
i�1T0 + cc,

(56b)r20 = A2(T1, T2)e
i�2T0 + cc,

(57a)D1A1 =
i𝛽1Ā1A2

2𝜔1

e−i𝜎T1 ,

(57b)D1A2 =
i�2A

2
1

2�2

ei�T1 ,
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quantify the nearness of �2 to 2�1 . With the elimina-
tion of the resonant terms, Eq. (54) are rewritten as: 

 The solutions of Eq. (58) can be expressed as: 

 Note that in the latter equations, both homogeneous 
and particular solutions have been taken into account, 
hence explaining that two terms are present. Indeed, 
homogeneous solutions to (58) leads to the first terms 
with coefficients Bi(T1, T2) , i = 1, 2 ; while the par-
ticular solutions give rise to the other two terms.

The modulation equations at order �2 can now be 
constructed by substituting Eqs.  (59),  (57) and  (56) 
in (55). By canceling the resonant terms, one obtains 
the solvability condition at this order as: 

 with the coefficients Λk defined in the main text by 
Eq. (12a–12d).

The present second-order MSM has the pecu-
liarity of the treatment of the homogeneous solu-
tion introduced at order � (terms of coefficients Bi in 
Eq.  (59)). To derive a solution, one has to find the 
complex amplitudes (A1,A2,B1,B2) , requiring eight 
real numbers, whereas the system has two DOFs and 
thus only four initial conditions. As a consequence, 
one has to find four real additional relationships to 
close the problem. In [54, §4.1] and [1, §2.3.1], con-
sidering a free Duffing equation, it is shown with a 

(58a)D2
0
r11 + �2

1
r11 = −�1A1A2e

i(�1+�2)T0 + cc,

(58b)D2
0
r21 + 𝜔2

2
r21 = −2𝛽2A1Ā1.

(59a)r11 = B1e
i�1T0 +

�1A1A2

�2(2�1 + �2)
ei(�1+�2)t + cc,

(59b)r21 = B2e
i𝜔2T0 −

𝛽2A1Ā1

𝜔2
2

+ cc.

(60a)

2i𝜔1D2A1 = Λ1A1A2Ā2 + Λ2A
2

1
Ā1 − 𝜎

𝛽1Ā1A2

2𝜔1

e−i𝜎T1

−
[

2i𝜔1D1B1 + (𝛽1Ā1B2 + 𝛽2A2B̄1)e
−i𝜎T1

]

,

(60b)

2i𝜔2D2A2 = Λ3A1A2Ā1 + Λ4A
2

2
Ā2 + 𝜎

𝛽2A
2

1

2𝜔2

ei𝜎T1

−
[

2i𝜔1D1B2 + 2𝛽2A1B1e
i𝜎T1

]

,

straightforward expansion that it is equivalent to: (i) 
consider the homogeneous solution of the order � sys-
tem and compute its redundant complex amplitude at 
the end of the process by considering the initial condi-
tions; and (ii) simply discard the homogeneous solu-
tion. In [55, §6.2.1], the MSM, up to second-order, is 
applied to a Duffing equation using method (ii), since 
much less algebra is involved. This issue is precisely 
the subject of  [39], in which second-order MSM is 
applied to several forced one DOFs examples and the 
free vibration of the 2-DOFs system considered here, 
Eq. (6), but without cubic terms. It is shown that bet-
ter solutions, as compared to those obtained by other 
perturbation methods, are obtained by considering a 
non-zero homogeneous solution and by computing it 
using conditions based on physical considerations. In 
particular, the system (6) is assumed to derive from a 
potential energy (with the relations on quadratic and 
cubic coefficients given in "Appendix A") and the Bi 
complex amplitudes are selected as functions of Ai , 
such that the modulation equations  (60) also derives 
from a potential. This method is tested in "Appen-
dix  E" for our system. However, it seems to us that 
this approach is not consistent in our case since our 
initial system (6) does not necessarily derive from a 
potential. Consequently, as done for the free Duffing 
equation in  [55, §6.2.1], we propose here to simply 
cancel the homogeneous solution ( B1 = B2 = 0 ). 
It is shown in "Appendix E" that the obtained solu-
tion is more accurate at large amplitude, compared 
to a numerical reference simulation. It must also be 
noted that in [39], a solution with B1 = B2 = 0 and 
D2

1
Ai = 0 (which leads to cancel also the terms in the 

second members of Eq. (60) proportional to � ) is pro-
posed, as well as in [8, 56, 57] for the same system in 
forced vibrations. Our solution is slightly different as 
we only enforce B1 = B2 = 0 and we compute D2

1
Ai 

with Eq. (57).
Another issue is the treatment of the two time 

scales T1 and T2 since our initial ordinary differential 
equations (ODEs) (6) have been replaced by partial 
differential equations (57),(60) as functions of the two 
time scales (T1, T2) . For simple systems like a free 
Duffing oscillator, it is possible to exactly integrate 
them (see [55, §6.2.1]). However, we prefer here 
recombining them in a single ODE using the chain 
rule (52a) (also called the reconstitution method [39, 
41]), as given by Eq. (9).
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The complex-valued amplitudes A1(T1, T2) , 
A2(T1, T2) are expressed in polar form as follows:

Then, by substituting those equations in Eqs.  (57), 
(60) and by using Eq.  (9), the separation of the real 
and imaginary parts yields to: 

 It is convenient to rewrite the above equations as: 

 where

and

(61)Ak(T1, T2) =
1

2
ak(T1, T2)e

i�k(T1,T2), k = 1, 2.

(62a)ȧ1 =
𝜀𝛽1a1a2

4𝜔1

[

1 +
𝜀𝜎

2𝜔1

]

sin (2𝜃1 − 𝜃2 + 𝜎T1),

(62b)ȧ2 = −
𝜀𝛽2a

2
1

4𝜔2

[

1 −
𝜀𝜎

2𝜔2

]

sin (2𝜃1 − 𝜃2 + 𝜎T1),

(62c)

a1𝜃̇1 =
𝜀𝛽1a1a2

4𝜔1

[

1 +
𝜀𝜎

2𝜔1

]

cos (2𝜃1 − 𝜃2 + 𝜎T1)

− 𝜀2
Λ1a1a

2

2
+ Λ2a

3

1

8𝜔1

,

(62d)
a2𝜃̇2 =

𝜀𝛽2a
2

1

4𝜔2

[

1 −
𝜀𝜎

2𝜔2

]

cos (2𝜃1 − 𝜃2 + 𝜎T1)

− 𝜀2
Λ3a

2

1
a2 + Λ4a

3

2

8𝜔2

.

(63a)ȧ1 = Γ1a1a2 sin 𝛾p,

(63b)ȧ2 = −Γ4a
2
1
sin 𝛾p,

(63c)a1𝜃̇1 = Γ1a1a2 cos 𝛾p + Γ2a
3
1
+ Γ3a1a

2
2
,

(63d)a2𝜃̇2 = Γ4a
2
1
cos 𝛾p + Γ5a

2
1
a2 + Γ6a

3
2
.

(64)�p = 2�1 − �2 + �T1,

(65)Γ1 =
��1

4�1

[

1 +
��

2�1

]

, Γ4 =
��2

4�2

[

1 −
��

2�2

]

,

Those coefficients can be rewritten as function of the 
initial parameters of the system as 

 Using Eq. (64) with (63c,d) to eliminate �1 or �2 , one 
has:

D Stability details

The Jacobian of the modulation equations in polar 
coordinates (63a, 63b),(68) reads:

(66)

Γ2 = −
�2Λ2

8�1

, Γ3 = −
�2Λ1

8�1

, Γ5 = −
�2Λ3

8�2

, Γ6 = −
�2Λ4

8�2

.

(67a)Γ1 =
g1
12
(4�1 − �2)

8�2
1

,

(67b)

Γ2 =
1

8�1

[

3h1
111

−

(

2

�2
2

+
1

4�1�2

)

g1
12
g2
11
−

10
(

g1
11

)2

3�2
1

]

,

(67c)

Γ3 =
1

8�1

[

2h1
122

+
16�2

2
− 4�2

1

�2

1
(�2

1
− 4�2

2
)
g1
11
g1
22
−

2g1
12
g2
22

�2

2

+

(

1

4�2

1

+
1

�2(2�1 + �2)

)

(

g1
12

)2
+

4g1
22
g2
12

�2

1
− 4�2

2

]

,

(67d)Γ4 =
g2
11
(3�2 − 2�1)

8�2
2

,

(67e)

Γ5 =
1

8�2

[

2h2
112

+
2

�2
1
− 4�2

2

(

g2
12

)2
−

4g2
11
g2
22

3�2
2

+

(

2

�2(2�1 + �2)
−

1

2�1�2

)

g1
12
g2
11
−

2g1
11
g2
12

�2
1

]

,

(67f)

Γ6 =
1

8�2

[

3h2
222

+
8�2

2
− 3�2

1

�2
1
(�2

1
− 4�2

2
)
g1
22
g2
12
−

10
(

g2
22

)2

3�2
2

]

,

(68)
𝛾̇
p
=2𝜔1 − 𝜔2 +

(

2Γ1a2 − Γ4

a
2

1

a2

)

cos 𝛾
p

+ (2Γ2 − Γ5)a
2

1
+ (2Γ3 − Γ6)a

2

2
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with

For the coupled solutions C+ or C−, sin �p = 0 and 
cos �p = p , which leads to:

with

To assess the stability of the uncoupled U2 solution, 
the modulation equations must be rewritten under a 
Cartesian form. To do so, according to [4, 31], we 
define:

Differentiating p1 , q1 and p2 with respect to t, one 
obtains:

Then, replacing in the above equations ȧ1 , ȧ2 and 𝛾̇p 
by their values in the polar modulation equations (63) 
and (68), using basic trigonometric identities and 

(69)J =

⎛

⎜

⎜

⎝

Γ1a2 sin �p Γ1a1 sin �p Γ1a1a2 cos �p
−2Γ4a1 sin �p 0 − Γ4a

2
1
cos �p

J31 J32 J33

⎞

⎟

⎟

⎠

(70)J31 = −2Γ4

a1

a2
cos �p + 2(2Γ2 − Γ5)a1,

(71)J32 =

(

2Γ1 +
Γ4a

2
1

a2
2

)

cos �p + 2(2Γ3 − Γ6)a2,

(72)J33 = −

(

2Γ1a2 −
Γ4a

2
1

a2

)

sin �p.

(73)J =

⎛

⎜

⎜

⎝

0 0 J13
0 0 J23
J31 J32 0

⎞

⎟

⎟

⎠

(74)

J13 = Γ1pa1a2,

J23 = −Γ4pa
2

1
,

J31 = −2Γ4p
a1

a2
+ 2(2Γ2 − Γ5)a1,

J32 = 2Γ1p +
Γ4a

2

1

a2
2

p + 2(2Γ3 − Γ6)a2.

(75)
p1 = a1 cos

(

�p∕2
)

, q1 = a1 sin
(

�p∕2
)

, p2 = a2.

(76)

ṗ1 = ȧ1 cos(𝛾p∕2) − a1𝛾̇p∕2 sin(𝛾p∕2),

q̇1 = ȧ1 sin(𝛾p∕2) + a1𝛾̇p∕2 cos(𝛾p∕2),

ṗ2 = ȧ2.

the definitions (75) of p1 , q1 and p2 , one replaces the 
modulation equations (63) and (68) by: 

 Computing the Jacobian J of the above modulation 
equations and imposing a1 = 0 ⇒ p1 = q1 = 0 for 
the uncoupled U2 solution, one obtains:

with

where a2 = p2 by definition. Its eigenvalues are thus:

E MSM with homogeneous solution and enforced 
Lagrangian

We consider here the approach of [39] that considers 
the homogeneous solutions in Eq.  (59) and enforces 
the modulation Eq.  (60) to derive from a potential. 
This is obtained by enforcing:

or 

(77a)

ṗ1 = Γ1p2q1 +
Γ4

2

q1

p2

(

p2
1
− q2

1

)

−

(

Γ3 −
Γ6

2

)

p2
2
q1

−

(

Γ2 −
Γ5

2

)

q1
(

p2
1
+ q2

1

)

−
1

2
(2𝜔1 − 𝜔2)q1,

(77b)

q̇1 = Γ1p1p2 −
Γ4

2

p1

p2
(p2

1
− q2

1
) +

(

Γ3 −
Γ6

2

)

p1p
2

2

+

(

Γ2 −
Γ5

2

)

p1(p
2

1
+ q2

1
) +

1

2
(2𝜔1 − 𝜔2)p1,

(77c)ṗ2 = −2Γ4p1q1.

(78)J =

⎛

⎜

⎜

⎝

0 J12 0

J21 0 0

0 0 0

⎞

⎟

⎟

⎠

(79)
J
12

= −(2�
1
− �

2
)∕2 + Γ

1
a
2
− (Γ

3
− Γ

6
∕2)a2

2
,

J
21

= (2�
1
− �

2
)∕2 + Γ

1
a
2
+ (Γ

3
− Γ

6
∕2)a2

2
,

(80)�1 = 0, �2,3 = ±
√

J12J21

(81)
2i�1D1B1 + D2

1
A1 = 0, 2i�1D1B2 + D2

1
A2 = 0,

(82a)B1 =
−𝛽1

4𝜔2
1

A2Ā1e
−i𝜎T1 + cc,
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 One can note that upon substituting (82) in (60), all 
the terms related to B1 and B2 in addition to the terms 
multiplied by � will be eliminated. We arrive at the 
following modulation equations: 

 with 

 Note that coefficients Λ�
k
 are different than the Λk in 

Eq.  (60). In addition, one can note that the modula-
tion equations in (83a, b) don’t derive from a poten-
tial since Λ�

1
≠ Λ�

3
 even if it is the case for the ini-

tial system (i.e., by setting g1
12

= 2g2
11

 , g2
12

= 2g1
22

 , 
h1
122

= h2
112

 , h2
122

= 3h1
222

 and h1
112

= 3h2
111

 ). This can 
be analyzed by realizing that if one considers the ini-
tial system (1a, 1b) to derivee from a potential, it is 
not necessarily the case for the normal form system 
(2a, 2b) which relies on a truncation from an asymp-
totic development. In particular, if one neglects all 
the cubic terms from ((2a, 2b), one obtains the same 
results as in [39] where the Lagrangian is enforced.

Following the same procedure in Sect.  2.2, the 
modulation equations are expressed in the polar form 
as: 

(82b)B2 =
−�2

4�2
2

A2
1
ei�T1 + cc.

(83a)2i𝜔1D2A1 = Λ�
1
A1A2Ā2 + Λ�

2
A2
1
Ā1,

(83b)2i𝜔2D2A2 = Λ�
3
A1A2Ā1 + Λ�

4
A2
2
Ā2,

(84a)

Λ�
1
= �2

1

[

1

4�2
1

−
1

�2(2�1 + �2)

]

− 2�4�
2
2
− 2�2,

(84b)Λ�
2
=

9�1�2

4�2
2

− �3�
2
1
− 3�1,

(84c)

Λ�
3
= 2�1�2

[

1

4�2
1

−
1

�2(2�1 + �2)

]

− 2�6 − 2�9�
2
1
,

(84d)Λ�
4
= −3�7 − �10�

2
2
.

(85a)
da1

dt
=
��1a1a2

4�1

sin �p,

 and the autonomous version is obtained by combin-
ing (85c, 85d) with Eq. (11), yielding:

Using the same procedure in Sect.  2.2, we can find 
the expressions governing the relation between a1 
and a2 in addition to the expressions of the nonlinear 
modes �nl1 and �nl2 , as: 

 where 

(85b)
da2

dt
= −

��2a
2
1

4�2

sin �p,

(85c)
d�1

dt
=
��1a2

4�1

cos �p − �2
Λ�

1
a2
2
+ Λ�

2
a2
1

8�1

,

(85d)
d�2

dt
=
��2a

2
1

4�2a2
cos �p − �2

Λ�
3
a2
1
+ Λ�

4
a2
2

8�2

,

(86)

d�p

dt
=�� + �

(

�1a2

2�1

−
�2a

2
1

4a2�2

)

cos �p

+ �2

(

Λ�
3
a2
1
+ Λ�

4
a2
2

8�2

−
Λ�

1
a2
2
+ Λ�

2
a2
1

4�1

)

.

(87a)a2
1
=

(2�1 − �2)a2 + 2Γ�
1
a2
2
+ (2Γ�

3
− Γ�

6
)a3

2

Γ�
4
+ (Γ�

5
− 2Γ�

2
)a2

,

(87b)�nl1 = �1 + Γ�
1
a2 + Γ�

2
a2
1
+ Γ�

3
a2
2
,

(87c)�nl2 = �2 + Γ�
4

a2
1

a2
+ Γ�

5
a2
1
+ Γ�

6
a2
2
,

(88a)Γ�
1
= p

g1
12

4�1

,

(88b)Γ�
2
=

1

8�1

[

3h1
111

−
9

4�2
2

g1
12
g2
11
−

10

3�2
1

(

g1
11

)2

]

,

(88c)

Γ�
3
=

1

8�1

[

2h1
122

+

(

16�2
2
− 4�2

1

�2
1
(�2

1
− 4�2

2
)

)

g1
11
g1
22
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2g1
12
g2
22

�2
2

+

(

1

�2(2�1 + �2)
−

1

4�2
1

)

(

g1
12

)2
+

4g1
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g2
12

�2
1
− 4�2

2

]

,



Meccanica	

1 3
Vol.: (0123456789)

 Note that the relation �nl2 = 2�nl1 is still satisfied. In 
addition, the solution of R1(t) and R2(t) illustrates the 
same locking properties in the amplitudes and phase 
angles illustrated in Section 2.2.

A comparison is shown in Fig.  11 between the 
analytical results governing the backbone curves of 
both approaches presented in (18a, 18b) and (87b, 

(88d)Γ�
4
= p

g2
11

4�2

,

(88e)

Γ�
5
=

1

8�2

[

2h2
112

+

(

2

�2
1
− 4�2

2

)

(

g2
12

)2
−

4g2
11
g2
22

3�2
2

+

(

2

�2(2�1 − �2)
−

1

4�2
1

)

g1
12
g2
11
−

2g1
11
g2
12

�2
1

]

,

(88f)

Γ�
6
=

1

8�2

[

3h2
222

+

(

8�2
2
− 3�2

1

�2
1
(�2

1
− 4�2

2
)

)

g1
22
g2
12
−

10
(

g2
22

)2

3�2
2

]

,

87c), with the numerical solution computed with the 
continuation method implemented in Manlab, which 
is considered as our reference solution. The plots are 
done for positive, negative, and zero values of � to 
underline the effect of the additional term appearing 
in (60a, 60b). Both results match with the numerical 
solution at low amplitudes. However, at higher ampli-
tudes, the first approach used in Sect.  2.2 suggests 
more accurate results as compared to the numerical 
ones, especially for the C+ mode. Namely, the sec-
ond approach that leads to the results in (87b, 87c) 
shows a kind of softening behavior associated with 
the response of the C+ mode at high amplitudes.
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4.2. NONLINEAR DYNAMICS OF COUPLED OSCILLATORS IN 1:2 INTERNAL
RESONANCE: EFFECTS OF THE NONRESONANT QUADRATIC TERMS AND
RECOVERY OF THE SATURATION EFFECT
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Chapter 5

Experimental validation of the Saturation
Correction with cubic nonlinearity
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5.1 Article presentation

The present chapter solely constitutes of the text of the article entitled by ”Saturation correction for

a piezoelectric shunt absorber based on 2:1 internal resonance using a cubic nonlinearity” submitted to

”Smart Materials and Structures (SMS)”journal and currently, it is under review. The article addresses

the experimental validation of the proposed procedure in chapter 4 which consists of designing a shunt

absorber that includes both quadratic (βqV
2) and cubic (βcV

3) with V is the voltage across the

piezoelectric patch, and βq and βc are the quadratic and cubic nonlinear gains, respectively. The main

idea is to properly tune the cubic nonlinearity according to the results in chapter 4. The experimental

tests are performed to attenuate the first bending mode of a hydrofoil structure.

The article starts by reviewing the main results presented in chapter 2 and chapter 3 and the

results regarding the tuning of the cubic nonlinearities suggested from the normal form method in

chapter 4 are also recalled. The main governing equations are presented, and the electro-mechanical

expansion, used in chapter 2 is adopted to estimate the cubic and quadratic nonlinearities, in the

modal basis, as a function of the cubic nonlinear gain βc and the quadratic gain βq, respectively.

As suggested in chapter 4, four conditions on the cubic nonlinearities should be taken into ac-

count. However, due to experimental limitations, only one condition can be satisfied. The condition
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5.2. SATURATION CORRECTION FOR A PIEZOELECTRIC SHUNT ABSORBER
BASED ON 2:1 INTERNAL RESONANCE USING A CUBIC NONLINEARITY

selection criteria is based on identifying the nonresonant quadratic term with the highest value of the

nonresonant quadratic terms (and thus the strongest influence on the dynamics). Upon identifying

this term, a simple tuning of the cubic gain βc is estimated, which appeared to depend only on the

chosen quadratic gain βq such that βc = 10/9β2
q . With this tuning of βc, the numerical results showed

the recovery of the saturation up to a certain amplitude where the non-tuned cubic nonlinearities start

to admit significant mistuning.

The experiment protocol and the experimental modal analysis are discussed. In addition, the

measurement procedure of the frequency response is shown that relies on the sine step method with

the demodulation procedure to determine the amplitude and phase angles of the first harmonic of

velocity and the subharmonic of the voltage. The nonlinear shunt circuit is also presented, which

includes two analog multipliers to generate the quadratic and the cubic nonlinearities.

A comparison between the numerical and the experimental frequency response suggested an excel-

lent fitting. The ability to shift back the antiresonance to the resonance frequency and to symmetrize

the response by setting the obtained tuning of βc is also validated. The saturation recovery is also vali-

dated up to high excitation amplitudes by measuring the amplitude-frequency response of the velocity

for different excitation levels. To extend the saturation limit, a sensitivity analysis regarding the value

of βc is performed, showing that at high excitation amplitudes, a small correction of the estimated

analytical tuning should be performed. Indeed, this technique has an amplitude limitation that should

be considered when choosing the main design parameters (i.e., βq and the electrical damping ratio ξe).

5.2 Saturation correction for a piezoelectric shunt absorber based on 2:1

internal resonance using a cubic nonlinearity
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Abstract

In this study, we present a theoretical and experimental analysis of an antires-

onance detuning correction for a nonlinear piezoelectric shunt absorber based

on a two-to-one internal resonance. Thanks to this purely nonlinear feature,

the oscillations of the primary system become independent of the forcing at a

particular antiresonance frequency, thus creating an efficient reduction of the

vibration. Past works of the literature present the design of the piezoelectric

shunt and show that it is subjected to a softening behavior that detunes the

antiresonance frequency as a function of the amplitude and thus degrades the

performance. It is also shown that this softening behavior is caused by some

non-resonant terms present in the equations, linked to the piezoelectric cou-

pling. To counteract this undesired effect, we propose in this work to add a

cubic nonlinearity in the shunt circuit, in addition to the quadratic one already

present. Its tuning is based on a normal form analysis already published, which

shows how cubic nonlinearities can cancel the effect of quadratic non-resonant

terms. The present article focuses on the experimental proof of concept of this

antiresonance detuning correction as well as the analysis of its range of validity.

It is applied to the damping of the first bending mode of a hydrodynamic foil
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structure.

Keywords: Piezoelectric shunt absorbers, 2:1 Internal Resonance, Normal

Form, Saturation phenomenon, Nonlinear Vibrations

1. Introduction

In the domain of vibration attenuation, passive absorbers are used in many

industrial applications due to their simplicity and well-established tuning rules.

Two famous classical examples are the Lanchester [1] and Frahm [2] mechanical

dampers, which consist in adding inertia, stiffness, and damping components5

to the primary structure to mitigate its vibration. This principle has been ex-

tended by proposing electromechanical analogs. To do so, the primary structure

is coupled to a dedicated electrical circuit, referred to as a shunt, through an elec-

tromechanical transducer. Depending on its nature, the so-called piezoelectric

shunts or electromechanical shunts were proposed in the pioneering works [3, 4]10

and were addressed in a huge number of contributions since then (see [5, 6, 7] and

reference therein). Shunt circuits can be passive or semi-passive when electronic

components which require a power supply are used, like operational amplifiers.

In either case, shunt circuits consist in resistive or/and reactive dipoles (i.e.,

a capacitor or an inductor) in order to modify and/or create resonances and15

antiresonances in the vibratory behavior of the structure. Many studies inves-

tigated the enhancement of the basic resistive or resonant shunts [8, 7], among

others, in terms of broadband / multimodal attenuation [9, 10, 11], artificial in-

creasing of coupling factor using negative capacitances [12, 13], adaptivity using

pulse width modulation [14] and experimental concept for high voltage in the20

shunt [15].

Whereas all the above cited works rely on purely linear behaviors, nonlinear

components can be added intentionally to the shunt circuit to benefit from

particular features to enhance the absorber’s performance. Several contributions

have already been proposed in the literature, being ,in most of the cases, the25

electromechanical implementation of an earlier purely mechanical concept. They
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can be gathered into four families, and we consider here only a few relevant

references dedicated to piezoelectric shunts, since broader literature reviews

are available elsewhere, for instance in [16, 17]. The first concept is known

as nonlinear energy sinks (NES), for which strong nonlinear components are30

used in order to transfer and trap the vibratory energy in the absorber, the

idea being to improve the properties of traditional tuned vibration absorbers, in

particular in term of robustness to a detuning. This concept was introduced in

[18] and extended to piezoelectric shunts in [19] for the theory and in [20] for an

experimental proof of concept using analog multipliers. The second concept, so-35

called nonlinear tuned vibration absorbers, is intentionally adapted to a primary

nonlinear structure. It was introduced in [21], extended to piezoelectric shunts

in [22] for a single resonance attenuation and for multi-mode control in [23]. In

this case, the nonlinear behavior of the shunt is chosen as a mirror to the one

of the primary structure, such that the damping performance is independent40

of the amplitude. The third family gathers the synchronized switch damping

techniques, addressed in many contributions since the pioneering works [24, 25]

for vibration damping and energy harvesting (see the review [6]).

The fourth concept, which interests us here, is based on the intentional use

of internal resonance between two vibration modes. Namely, if two modal fre-45

quencies ωp and ωk are commensurable (i.e. ωp/ωk = n/m with n,m ∈ N∗)

and if the system has some particular nonlinearities, a strong energy transfer

can occur between the corresponding modes. In particular, in the presence of

quadratic nonlinearities in the shunt circuit, a special case can be realized by

tuning two natural frequencies of the system such that ω2 = 2ω1, a so-called50

two-to-one (2:1) internal resonance. As a result, an energy transfer occurs from

the driven mode (at ω2) to the other mode tuned at ω1 [26]. This particu-

lar nonlinear interaction can be used to reduce the vibration amplitude of the

driven mode since it creates an antiresonance in the frequency response, which

is associated with an amplitude saturation [16]. Namely, if the system is driven55

at the antiresonance frequency, the amplitude of the driven mode is reduced and

independent of the driving amplitude thanks to an energy transfer to the other
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mode. This principle was exploited for vibration attenuation using mechani-

cal systems (see [27, 28, 29] and reference therein) or within an active control

context in [30, 31, 32, 33, 34]. One can also refer to [35], where the saturation60

phenomenon is theoretically studied considering cubic nonlinearities.

In the context of piezoelectric shunts, the use of a 2:1 internal resonance

was proposed by the authors in [16]. The principle is to couple an electrical

oscillator to the primary structure that includes quadratic nonlinear terms and

to tune its natural frequency ω1 close to half ω2, one of the natural frequencies65

of the primary structure. An experimental proof of concept was proposed in [17]

using an analog shunt circuit including a multiplier to create quadratic nonlin-

earities. It was shown that because of the linear piezoelectric coupling (which

is mandatory), some unwanted nonlinear terms appear in the equations, which

are responsible for a deterioration of the nonlinear interaction. Indeed, those70

terms bring a softening behavior to the system, which detunes the antiresonance

frequency as a function of the amplitude of driving, thus killing the saturation

phenomenon. In [16], the saturation phenomenon was artificially recovered by

manually detuning the electrical resonator as a function of the amplitude.

The effect of the unwanted nonlinear quadratic coupling terms was recently75

investigated in theory in [36]. It was proven using the normal form theory that

they are equivalent to cubic nonlinearities and that their effect is equivalent to

the hardening/softening effect brought by the cubic nonlinear term of a classical

Duffing oscillator. As a consequence, it was proposed to add cubic nonlineari-

ties in the shunt circuit, specifically tuned to cancel the effect of the unwanted80

quadratic terms, thus recovering the antiresonance frequency stability and the

saturation phenomenon. The present article is specifically devoted to the exper-

imental proof of concept of this idea. We first recall in section 2 the main ideas

of the underlying theory, already exposed in detail in [16, 36]. Then, section 3

is devoted to the experimental proof of concept. We target the first bending85

mode of a hydrodynamic foil with embedded piezoelectric patches, which are

connected to a shunt circuit including two analog multipliers to create cubic

nonlinearities in addition to the quadratic ones. Finally, section 4 investigates
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the limits of our saturation correction and the practical tuning of the cubic

nonlinearity in the shunt circuit.90

2. Theoretical Model

2.1. Governing Equations

Piezoelectric patch

Elastic structure

R

L

Vnl = βqV
2 + βcV

3

Nonlinear shunt

u(t)Ext. forcing

V

Q̇

Q

Figure 1: Nonlinear shunt circuit

This section briefly describes the model of an electromechanical system cou-

pled to a nonlinear shunt as sketched in Fig. 1. For a full theoretical analysis,

one can refer to [16]. We consider an elastic structure subjected to external95

forcing and connected to a nonlinear shunt circuit via a piezoelectric patch (PE

patch). The displacement u(x, t) at a position x of the structure and at time

t is expanded on the basis of the linear modes. Considering that the frequency

of the external forcing is close to the resonant frequency of a weakly damped

mode i (i ∈ N∗), its modal shape φi(x) dominates, hence:100

u(x, t) ' φi(x)qi(t), (1)

where qi(t) is the i-th modal displacement. Due to the piezoelectric effect, the

modal displacement is coupled to the electric charge Q(t) in one of the electrodes

as follows [8, 16]:

q̈i + 2ξiω̂iq̇i + ω̂2
i qi +

θi
miCpi

Q =
Fi
mi

cos Ωt (2a)

Q̈+ 2ξeωeQ̇+ ω2
eQ+

θi
LCpi

qi +
Vnl

L
= 0 (2b)

5



where mi, ξi, ω̂i, and Fi are respectively the modal mass, the modal damping

coefficient, the natural frequency in open circuit condition (i.e., Q = 0), and

the forcing. θi is the piezoelectric coupling coefficient and Cpi is the effective

capacitance of the piezoelectric patch [12]. Considering the schematic in Fig.

1, the shunt circuit includes an inductance L in series with a resistor R and a105

voltage source Vnl(t). The electric natural frequency and damping factor are

then:

ωe =
1√
LCpi

, ξe =
R

2

√
Cpi

L
. (3)

In this study, the nonlinear voltage component Vnl(t) is composed of two terms,

respectively proportional to the square and the cube of the PE voltage V (t),

given by:110

Vnl = βqV
2 + βcV

3, (4)

where βq and βc are two tuning constants, of units V−1 and V−2, respectively.

The piezoelectric law [8, 16] relates the PE patch voltage V (t) to qi(t) and Q(t)

as:

V =
1

Cpi
(Q+ θiqi). (5)

Another important quantity, that characterize the energy transfer from a mode

i to the shunt circuit, is the dimensionless electromechanical modal coupling115

factor (EMMCF) of the i-th mode, defined as [37, 8, 16]:

k2
i =

ω̂2
i − ω̌2

i

ω̂2
i

=
θ2
i

ω̂2
iCpimi

, (6)

with ω̌i the natural frequency in short circuit conditions (i.e V = 0).

The dynamical system (2) is then expanded on the electromechanical basis

to diagonalize its linear part as follows [16]:


qi(t)
Q(t)


 =


[−εx1(t) + x2(t)]/

√
m

[x1(t) + εx2(t)]/
√
L


 , (7)

where (x1, x2) are the two electromechanical modal coordinates and120

ε =
2kiri

1− r2
i +
√

∆
, (8)
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with

ri = ωe/ω̂i and ∆ = (1− r2
i )

2 + 4k2
i r

2
i . (9)

In the sequel, the ratio between the electrical resonance frequency and the open

circuit frequency ri is chosen close to 0.5 to activate the 2:1 internal resonance.

Moreover, because ki is often small, it is also the case for ε, meaning that

x1(t) ' Q(t) and x2(t) ' qi(t): the two electromechanical modal coordinates125

are close to a mainly electrical mode for x1(t) and a mainly mechanical mode

for x2(t).

Using the change of variables (7) in the governing equations (2a,b) as well

as the following time scaling:

t̄ = ω̂it, Ω̄ = Ω/ω̂i, (10)

and by droping the overbars in the result, one obtains:

ẍ1 + 2µ1ẋ1 + ω2
1x1 + g1

11x
2
1 + g1

12x1x2 + g1
22x

2
2

+ h1
111x

3
1 + h1

112x
2
1x2 + h1

122x1x
2
2 + h1

222x
3
2 = f1 cos Ωt, (11a)

ẍ2 + 2µ2ẋ2 + ω2
2x2 + g2

11x
2
1 + g2

12x1x2 + g2
22x

2
2

+ h2
111x

3
1 + h2

112x
2
1x2 + h2

122x1x
2
2 + h2

222x
3
2 = f2 cos Ωt. (11b)

For this new system, the new modal frequencies ωk and the damping terms µk

are related to the original ones by:

µ1 = ξeri − ξiε2, µ2 = ξi + ξeriε
2, (12a)

ω2
1 =

1 + r2
i −
√

∆

2
, ω2

2 =
1 + r2

i +
√

∆

2
, (12b)

and the forcing terms become130

f2 =
Fi

ω̂2
i

√
mi

, f1 = −εf2. (13)

Notice that ω1 and ω2 are scaled thanks to Eq. (10), such that, if ri = 0.5,

ω1 ' 0.5 and ω2 ' 1. The system (2) thus admits a mechanical resonance

frequency ω̃i = ω2ω̂i slightly higher than the open circuit frequency ω̂i due to

the coupling with the shunt circuit [16, 17].
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The quadratic nonlinear coefficients gpij(for i, j, and p = 1, 2) are expressed135

as:

g1
11 = λ1 − λ2ε+ λ3ε

2

g1
12 = 2λ1ε+ λ2(1− ε2)− 2λ3ε

g1
22 = λ1ε

2 + λ2ε+ λ3

g2
11 = εg1

11

g2
12 = εg1

12

g2
22 = εg1

22

(14)

where the coefficients λk are:

(λ1, λ2, λ3) = (r3
i , 2r

2
i ki, rik

2
i )λ0, λ0 =

βqω̂i√
Cpi

. (15)

Finally, the cubic coefficients hpijk (for i, j, k, and p = 1, 2) are given by:

h1
111 = γ1 − γ2ε+ γ3ε

2 − γ4ε
3

h1
112 = γ2 + (3γ1 − 2γ3)ε+ (γ4 − 2γ2)ε2 + γ3ε

3

h1
122 = γ3 + (2γ2 − γ4)ε+ (3γ1 − 2γ3)ε2 − γ2ε

3

h1
222 = γ4 + γ3ε+ γ2ε

2 + γ1ε
3

h2
111 = εh1

111

h2
112 = εh1

112

h1
122 = εh1

122

h2
222 = εh1

222

(16)

where the coefficients γk are:

(γ1, γ2, γ3, γ4) = (r4
i , 3kir

3
i , 3k

2
i r

2
i , k

3
i ri)γ0, γ0 =

βcω̂
2
i

Cpi
. (17)

2.2. The case of purely quadratic nonlinearities

First, system (11) is studied considering only the quadratic nonlinearities,

to recall the main results exposed in [16, 17, 36]. The six quadratic nonlinear140

terms can be gathered into two families since they don’t have the same effect

on the dynamics. The two terms of coefficients g1
12 and g2

11 are called resonant

terms since, because ω2 ' 2ω1, they drive the two oscillators close to their

resonance. They are responsible for the skeleton of the nonlinear dynamics

since they condition the energy transfers and the appearance of the bifurcations.145

The four other terms (of coefficients g1
11, g1

22, g2
12, and g2

22) are non-resonant:

they drive the oscillators far from their resonances and have, for this reason, a

second-order effect in most classical systems (see Appendix A for more details).

However, because the value of some of the coefficients can be large in our present

8



application, it was shown that they introduce a non-negligible softening behavior150

in the system that breaks the symmetry of its frequency response, degrading

the saturation property and thus reducing the absorber’s efficiency. We briefly

recall in the remaining of this section the main characteristics of the dynamics

of system (11) with quadratic terms only before explaining in the next section

how cubic terms can correct it.155

a1

a2

a∗1

Saturation Amplitude a∗2

Lin
ea

r
R
es

po
ns

e

threshold forcing
(a) (b)

Figure 2: Typical response of the amplitudes a1 and a2, stemming from the first order multiple

scale solution of system (11a, b), for ω2 = 2ω1 and by neglecting the non-resonant terms. The

numerical values are g112 = g211 = 0.1, µ1 = 0.005 , µ2 = 0.01. (a) amplitude response with

respect to the detuning σ1 for values of the forcing f2 (f2 ∈ {0.005; 0.03; 0.05}). (b) amplitude

response at the resonance frequency (σ1 = 0) with respect to the excitation level f2. In the

plots, the linear responses of a2 are plotted in black. The solid and dotted lines denote,

respectively, the stable and the unstable solutions.

Excluding the non-resonant quadratic terms, that is keeping only g1
12 and

g2
11 in Eqs. (11), the system is reduced to its canonical form to study the 2:1

internal resonance and its dynamical effects. Using the multiple scale method

(MSM), the first order solution for the tuning ω2 ≈ 2ω1 can be expressed as

[38]:160

x1(t) = a1 cos

(
Ω

2
t− γ1 + γ2

2

)
, x2(t) = a2 cos (Ωt− γ2) , (18)

where (a1, a2) are the amplitudes of the electromechanical variables and (γ1, γ2)

are phase differences. Their closed form are given in [16].

9



Figure 2(a) shows a1 and a2 as functions of the frequency of excitation (pre-

cisely the detuning parameter σ1 = Ω− ω2), for different values of f2 and with

f1 = 0 (f1 6= 0 and large would account for an independent electrical excitation,165

which is out of the scope of the paper). The main feature is that when the ampli-

tude of x2 reaches the instability region outlined in light blue, it remains on its

border regardless of the excitation level, as the energy is transferred to x1 at the

subharmonic Ω/2. This energy exchange leads to a minimum of a2 for Ω = ω2,

called ”antiresonance” for simplicity from now on. Plotting a∗2 = a2(Ω = ω2),170

the amplitude of x2 at the antiresonance, against the forcing level reveals the

so-called saturation of the amplitude a2 (Fig.2(b)).

L
in
ea
r
R
es
p
on
se

a∗1

a∗2

threshold forcing(b) (c)(a)

Figure 3: Numerical response of the amplitudes a1 and a2 obtained by solving (11a, b)

using MANLAB, for ω2 = 2ω1. The numerical values are g111 = 0.25, g112 = g211 = 0.1,

g122 = g212 = g222 = 0.005 , µ1 = 0.005 , and µ2 = 0.01. (a) and (b) show respectively the

amplitude response of a1 and a2 with respect to the detuning σ1 for two forcing levels. (c)

amplitude response at the resonance frequency (σ1 = 0) with respect to the excitation level

f2. In the plots, the linear responses of a2 are plotted in black. The solid and dotted lines

denote, respectively, the stable and the unstable solutions.

If all quadratic terms are considered in Eq. (11a, b), a second order MSM

would be required to calculate closed-form expressions for the amplitude and

the phase, as shown in [36]. In this study, we rely on numerical solutions using175

MANLAB [39, 40]. In Fig. 3, the frequency response of both electromechanical

10



variables are depicted independently for comparison with Fig. 2(a,b). First,

because of the non-resonant terms, the curves lose their symmetry with respect

to the origin, bending downward as the amplitude increases in a way similar

to a softening Duffing oscillator. Second, and more critically, the antiresonance180

shifts to the left (note that the minimum of the antiresonance is not affected)

while the resonance reappears and increases. Plotting a∗2 (the value of a2 at

σ = 0) versus the excitation amplitude in Fig. 3(c) shows that the saturation

property disappears. This behavior has been experimentally reproduced on a

cantilever beam structure equipped with a PE patch connected to a nonlinear185

shunt circuit similar to the one used in section 3 without cubic nonlinearities

(the one of Fig. 8 with βc = 0) [17].

2.3. Correction of the antiresonance with cubic nonlinearities

It has been shown in [36] with the normal form theory that the non-resonant

quadratic terms are equivalent to cubic terms. Therefore, we propose to addi-

tionally add a cubic nonlinear component in the nonlinear voltage presented in

the shunt circuit to create cubic terms in the dynamics, tuned in order to cancel

the effect of the quadratic non-resonant terms. To fully understand this process,

we consider the free response (canceling damping and forcing) of system (11),

including the cubic nonlinear terms (hpijk). Using a normal form transform and

applying a second order MSM, the two electromechanical variables read [36]:

x1(t) ' R1(t) = a1 cos
(
ωnl1t+ φ1

)
+O(ε), (19a)

x2(t) ' R2(t) = a2 cos
(
ωnl2t+ φ2

)
+O(ε), (19b)

where ε is a small parameter, (R1, R2) are so-called normal coordinates and

(a1, a2, φ1, φ2) are the amplitude and phase of the free solution. The nonlinear

frequencies ωnl1 and ωnl2 are functions of the amplitudes as follows:

ωnl1 = ω1 + Γ1 p a2 + Γ2a
2
1 + Γ3a

2
2, (20a)

ωnl2 = ω2 + Γ4 p
a2

1

a2
+ Γ5a

2
1 + Γ6a

2
2, (20b)
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where the coefficients Γk are expressed as:

Γ1 = p
g1

12(4ω1 − ω2)

8ω2
1

, (21a)

Γ2 =
1

8ω1

[
ζ1 −

(
2

ω2
2

+
1

4ω1ω2

)
g1

12g
2
11

]
, (21b)

Γ3 =
1

8ω1

[
ζ2 +

(
1

4ω2
1

+
1

ω2(2ω1 + ω2)

)
(
g1

12

)2
]
, (21c)

Γ4 = p
g2

11(3ω2 − 2ω1)

8ω2
2

, (21d)

Γ5 =
1

8ω2

[
ζ3 +

(
2

ω2(2ω1 + ω2)
− 1

2ω1ω2

)
g1

12g
2
11

]
, (21e)

Γ6 =
ζ4

8ω2
, (21f)

in which the parameter p = ±1 defines two sets of solutions, respectively denoted

p+ and p− modes. The coefficients ζk depend only on the cubic and the non-

resonant quadratic terms, as follows:

ζ1 = 3h1
111 −

10

3ω2
1

(
g1

11

)2

, (22a)

ζ2 = 2h1
122 −

(
16ω2

2 − 4ω2
1

ω2
1(4ω2

2 − ω2
1)

)
g1

11g
1
22 −

2g1
12g

2
22

ω2
2

− 4g1
22g

2
12

4ω2
2 − ω2

1

, (22b)

ζ3 = 2h2
112 −

(
2

4ω2
2 − ω2

1

)
(
g2

12

)2 − 4g2
11g

2
22

3ω2
2

− 2g1
11g

2
12

ω2
1

, (22c)

ζ4 = 3h2
222 −

(
8ω2

2 − 3ω2
1

ω2
1(4ω2

2 − ω2
1)

)
g1

22g
2
12 −

10
(
g2

22

)2

3ω2
2

. (22d)

For details about the above results, the reader is routed to [36].

The curves (ωnl1, ωnl2) = f(a1, a2) defines the backbone curves of the sys-

tem. They are plotted in Fig. 4 for different sets of parameters, and one can

observe that they are very close to the resonance points of the forced responses

and that their overall bending as a function of the amplitudes (a1, a2) controls

the one of the frequency response and especially its symmetry. Eqs. (20) shows

that the bending of the backbone curves is controlled by the value of the coef-

ficients Γk, that depends first on the resonant quadratic coefficients (g1
12, g

2
11),

but also on the non-resonant quadratic terms and the cubic terms hlijk. This
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Figure 4: (a) and (b) show respectively the comparison between the responses of a1 and a2 by

considering only the quadratic terms (in green for a2 and in blue for a1) and by additionally

considering the cubic terms as illustrated in (23a, d) (in purple for a2 and in red for a1). The

plots are done for f2 = 0.03 (the light colors) and f2 = 0.05 (the darker colors) with ω2 = 2ω1.

The numerical values are g111 = 0.25, g112 = g211 = 0.1, g122 = g212 = g222 = 0.005 , µ1 = 0.005

, and µ2 = 0.01. The solid and dotted lines denote the stable and unstable forced solutions,

respectively, and the dashed lines denote the free solution. (c) shows the amplitude response

at the resonance frequency (σ1 = 0) with respect to the excitation level f2. In the plots, the

linear responses of a2 are plotted in black.

dependence on the two latter terms is gathered into coefficients ζk of Eqs. (22).

Consequently, we propose to tune the values of the cubic coefficients hkijl to nul-

lify coefficients ζk, in order to cancel the effect of the non-resonant quadratic

terms. It leads to the following values for the cubic coefficients:

h1
111 =

10

9ω2
1

(
g1

11

)2

(23a)

h1
122 =

(
8ω2

2 − 2ω2
1

ω2
1(ω2

1 − 4ω2
2)

)
g1

11g
1
22 −

g1
12g

2
22

ω2
2

+
2g1

22g
2
12

ω2
1 − 4ω2

2

, (23b)

h2
112 =

(
1

ω2
1 − 4ω2

2

)
(
g2

12

)2 − 2g2
11g

2
22

3ω2
2

− g1
11g

2
12

ω2
1

, (23c)

h2
222 =

(
8ω2

2 − 3ω2
1

3ω2
1(ω2

1 − 4ω2
2)

)
g1

22g
2
12 −

10
(
g2

22

)2

9ω2
2

(23d)

Notice that only four of the cubic terms are concerned with the previous process.190
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It is logical since they are resonant and all the other cubic terms are non-

resonant and have thus no influence at this (cubic) order of the nonlinearities of

the system. Their effect would appear at least in a fourth-order normal form,

out of the scope of the present study.

For comparison, the forced response with and without the compensation195

based on Eqs. (23a-d) are depicted in Fig. 4 for different excitation levels. The

two backbone curves corresponding to the p+ and p− modes are also represented.

As expected, the compensation proposed permits to restore ,to a fair extent,

the desirable properties visible in Fig. 2. First, the symmetry is recovered at

least for low to medium forcing (cf. Fig. 4(a)). Second, the antiresonance200

is mostly decoupled from the excitation level, that is, its frequency is almost

fixed, as visible in Fig. 4(b), and the nearby resonant peaks and pseudo periodic

regimes vanish. Finally, this clearly restores the saturation of the amplitude a∗2

as illustrated in Fig. 4(c).

Apart from the present saturation correction, it is interesting to investigate205

if the bending effect of the quadratic non-resonant terms on the frequency re-

sponse of the system is hardening or softening. First, considering the leading

term in the expressions of the gkij as a function of ε � 1 shows that all gkij

are positive. Moreover, the expressions of the Γk coefficients (21) shows that

the quadratic non-resonant terms appear only within coefficients ζk, given by210

Eqs. (22). Those equations show that because ω2 ' 2ω1, the contribution in

the ζk of the quadratic non-resonant terms is always negative. Considering the

backbone curve equations (20), it proves that the effect of the quadratic non-

resonant terms is always softening.

2.4. Application to our piezoelectric shunt215

The previous section showed how to tune four of the cubic nonlinear terms

in (11) to cancel the softening effect of the quadratic non-resonant terms. How-

ever, in the practical implementation of our shunt circuit, the cubic term are

created with the term βcV
3 in the voltage source Vnl(t) (see Eqs. (4), (16), (17)).

Consequently, there is only one parameter to be tuned, the coefficient βc. We220
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must then adapt the strategy of the previous section considering this constraint.

To do so, we consider the magnitude of the four non-resonant quadratic terms

g1
11, g1

22, g2
12, g2

22 given by Eqs. (14). Since ε � 1 (the piezoelectric coupling

factor ki is small), and keeping the leading order in ε, we can assume that g1
11 '

λ1 = r3
i λ0, g1

22 ' λ3 = rik
2
i λ0, g2

12 ' ελ2 = 2r2
i kiελ0, g2

22 ' ελ3 = εrik
2
i λ0,225

meaning that g1
11 is the largest, almost one order of magnitude larger than the

three others. This is confirmed by a numerical example: if we choose ri = 0.5,

ki = 0.15, this leads to ε = 0.1, g1
11 = 0.125λ0, g1

22 = 0.0112λ0, g2
12 = 0.0075λ0

and g2
22 = 0.001125λ0. Consequently, our strategy is to tune βc to cancel the

effect of g1
11 only, such that ζ1 = 0.230

Thus, βc is deduced by substituting Eq. (16) and (14) into Eq. (23a) to get:

βc =
10

9

ri
ω2

1

(ri − εki)β2
q =

10

9
β2
q , (24)

since one has ri(ri − εki)/ω2
1 = 1 for any value of ri by substituting the expres-

sions of ω2
1 from Eq. (12b) and ε from Eq. (8). Notice that Eq. (24) respects

the units of βq and βc, which are respectively V−1 and V−2.

Two important remarks follow from Eq. (24):235

� The required value of βc is independent of the electromechanical modal

parameters of the structure. It is set based on the value of βq only, which

is a free parameter set thanks to the shunt circuit.

� Contrary to βq, βc always admits a positive value. Note that changing the

sign of βq does not affect the amplitude response, but modifies the phase240

[16].

To validate the proposed technique, we solve numerically the physical system

in (2) using the modal parameters of the first bending mode of the experimental

foil that will be tested in section 3, gathered in Table. 1, and by enforcing βc

to satisfy Eq. (24) with r1 = ωe/ω̂1 = 0.5051 to ensure the 2:1 resonance245

condition ω2 = 2ω1. The frequency response of the first harmonic amplitude of

the displacement uH1 is shown in Fig. 5 for several excitation levels, and two

cases are illustrated. The first case considers only the quadratic voltage source
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Figure 5: (a) Numerical frequency response of the first harmonic of the displacement uH1,

obtained by numerical continuation of (2a, b) using MANLAB, considering only quadratic

nonlinear term (in green) and by considering additionally a cubic term (in purple) such that

βc verifies Eq. (24). The excitation level F ∈ [0.42, 0.26, 0.16] mN with darker color as F

increases. The numerical values are βq = 0.03 V−1, βc = 0.001 V−2 , ξe = 0.002, and

r1 = 0.5055. The modal parameters used are the ones gathered in Table 1. (b) Amplitude of

uH1 at the resonance frequency (Ω = ω̃1), denoted by u∗H1, with respect to the excitation level.

In the plots, the solid and dotted lines denote the stable and unstable solutions, respectively.

The linear responses (i.e., βq = βc = 0) are plotted in black.

(i.e., Vnl = βqV
2) while the other case considers additionally a cubic voltage

source (i.e., Vnl = βqV
2 + βcV

3), such that βc verifies Eq. (24).250

Comparing Fig. 5 with Fig. 4, the following remarks about the efficiency of

our control strategy can be formulated:

� even if only ζ1 is used for the compensation, the cubic term βcV
3 in the

shunt voltage clearly counterbalances the shift of the antiresonance toward

the low-frequencies and pins it near the mechanical resonance frequency ω̃1255

(Fig. 5(a)). As a consequence, the saturation of the amplitude at Ω = ω̃1

is recovered for an interesting range of forcing below 0.3 N (Fig. 5(a)).

There are also no quasi-periodic parts in the frequency response curves,
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as would be the case with a tuning using ri instead of βc, as proposed in

[17].260

� above 0.3 N, the amplitude saturation disappears, and our compensation

with βcV
3 ceases to be efficient. This is probably because of the three

resonant cubic terms h1
122, h2

112 and h2
222, created by the non-resonant

quadratic terms, whose effects in the response are not compensated by βc.

� it should also be noted a slight shift of the antiresonance to the right265

as well as a slight increase of its amplitude as a function of the forcing

in Fig. 5(a). This creates a very slight positive slope in the saturation

plateau below 0.3 N in Fig. 5(b), of negligible importance at first sight.

This is probably due to the presence of the non-resonant cubic terms,

since the coefficients h1
112, h1

222, h2
122 and h2

111 are non-zero because the270

voltage term βcV
3 (see Eqs. (16)). In comparison, if βc = 0, those terms

are strictly null, leading to a shift in the antiresonance frequency, but with

constant amplitude (see the green curves in Fig. 5(a))

2.5. Tuning the saturation region

The free parameters of our absorber are the nonlinear voltage coefficients275

(βq, βc) and the electrical damping ξe. The electrical frequency ωe (or equiva-

lently the ratio ri = ωe/ω̂i) is fixed by the shunt tuning in 1:2 internal resonance,

such that ω2 = 2ω1, using Eq. (12b). In this section, we study the effect of ξe

and βq, while βc verifies Eq. (24). The effect of βc on the response is addressed

in section 4.280

The effect of ξe and βq on the saturation region are depicted respectively in

Fig. 6(a) and Fig. 6(b) where u∗H1, the first harmonic amplitude measured at the

resonance frequency, is represented as a function of the forcing level for different

values of ξe and βq. It is observed that they have an adverse effect on the range285

where the amplitude saturation is effective. Moreover, as mentioned earlier, the

amplitude at σ = 0 is directly linked to the ratio ξe/kiβq, that is: widening

17



βq
=
0.
06

βq
=

0.
03
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ξe = 5e− 4
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Figure 6: Displacement at the resonance frequency u∗H1 as function of the excitation level by

considering the cubic component with βc verifies Eq. (24) and r1 = 0.5055. (a) for different

values of βq and (b) for different values of ξe. The modal parameters used are gathered in

Table. 1. The dotted lines denote the maximum excitation level where the saturation is valid.

The black dashed-dotted line denotes the linear response.

the saturation range also reduces the attenuation at resonance. Therefore, in

the experimental proof of concept shown in the next section, we will choose

ξe = 0.002 and βq = 0.03 (corresponding to the blue curves in Fig. 6) as a290

trade-off between having a lower antiresonance on the one hand and a wider

saturation region on the other hand.

3. Experimental proof of concept

3.1. Experimental Setup

Parameters ω̌1/(2π) [Hz] ω̂1/(2π) [Hz] ξ1(%) k1 θ1[mN/V] m1[g] α [N/A] Cp1 [nF]

Value 91.5 92.1 0.54 0.11 0.78 4.1 0.6 38

Table 1: Electro-mechanical modal parameters of the first bending mode of the foil (subscript

i = 1) with relation to PE patch 2.
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Figure 7: Experimental Setup. Dimensions are in mm. The thickness of the PE patches is

1mm.

The experimental tests were conducted on a clamped-free foil structure fixed295

at its base in a vice, as shown in Fig. 7. This structure is similar to the one used

in [41]. Three PE patches are glued on cavities machined on the surfaces of the

foil: on one face (denoted patches 1, 2), two P-876.A15 DuraAct polymer coated

multi-layer piezoelectric patches are used for transduction with the first bending

mode, whereas a macro-fiber composite M8557-F1 with 45◦ fiber orientation is300

used on the other face (denoted patch 3) for a coupling with the first torsion

mode. In all the tests of this article, only patch 2 is used since we focus on the

first bending mode. Consequently, patch 2 is connected to the shunt circuit,

and patch 1 and 3 are short-circuited. The three PE patches are from the PI

Ceramic manufacturer.305
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The mechanical excitation is realized by a coil interacting with a magnet

fixed on the foil. The applied force is proportional to the current in the coil

i.e F (t) = αI(t), where α = 0.6 N ·A−1 [17], with very low distortion [42].

A Brüel & Kjær 2719 power amplifier, connected to the coil, is used for all

mechanical excitations. The foil vibrations are measured with a Polytec OFV-310

505 vibrometer, that provides the velocity of a point colocalized with the magnet

location, close to the tip of the foil. Electrical measurements are performed using

a PHILIPS PM 9355 precision current probe in the piezoelectric circuit to obtain

the charge Q(t) and a Française d’Instrumentation ST 500-5 differential voltage

probe to measure the PE patch voltage V (t).315

A first set of experiments is performed to obtain the modal characteristics

of the first bending mode of the foil, which are gathered in Table. 1. All details

of this set of measurements are provided in Appendix B.

3.2. Nonlinear shunt circuit description

V

AD633
R7

R8

R1

OA1

R2

R3

R4

OA2

R5

R5

OA3

OA4

R6

R6

C

PE voltage
measurement

inductor L
R

P
E
p
a
tc
h
2 DA1

Vnl

OA5

R9

R10
AD633

OA6
NL voltage source

DA2

OA7

Figure 8: Nonlinear shunt circuit design.
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Component R1 [kΩ] R2 [kΩ] R3 [kΩ] C [µF] R5 [kΩ] R6 [kΩ] R7 [kΩ] R9 [kΩ]

Value 2 1 1 10 82 22 10 10

Table 2: Component values in the nonlinear shunt circuit of Fig. 8

The nonlinear shunt circuit used for the tests is shown in Fig. 8. It consists320

of three interconnected sub-circuits to realize (i) a tunable synthetic inductor

(outlined in blue); (ii) a voltage measurement (outlined in orange), and (iii) a

nonlinear voltage generator (outlined in light red). To handle the large voltage

levels that can appear, especially during transients, the operational amplifiers

OA1 to OA7 are OPA445 (Texas Instrument) which can operate up to ±40V325

and supply 15mA to drive the patches. The synthetic inductor is a so-called

Antoniou circuit [43] to achieve the high inductance value needed to obtain

an electrical resonance frequency close to half of the mechanical resonance fre-

quency. The inductance value is given by

L =
R1R2R4C

R3
(25)

Here L is tuned using the variable resistance R4.330

In this study, we fix the value of the frequency ratio to r1 = 0.5055 (notice

the subscript i = 1 for the first bending mode of the foil structure under test)

to verify the 2:1 internal resonance condition between the electromechanical

natural frequencies ω2 = 2ω1. Therefore, considering the values of Table. 2,

R4 = 15.3 kΩ to obtained the required value L = 307.5 H. The resistor R335

models the parasitic resistance generated by the Antoniou circuit and a physical

resistance added to tune the electrical damping. Based on the observations

in [17], the parasitic resistance of the Antoniou circuit is proportional to the

inductance value L set in the circuit. In the current set-up, we measured a

parasitic resistance of 260Ω, estimated with a frequency-to-bandwidth ratio of340

the electrical resonance, close to Ω = ωe, in linear operation, with βq = βc = 0.

Then, to achieve an electrical damping ratio of ξe = 0.002, corresponding to

the setting discussed in Section 2.5, a resistor of value 100 Ω is added, such that
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R = 260 + 100 = 360 Ω.

The PE voltage measurement is established through two voltage dividers345

composed of R5 and R6 and two voltage followers OA3 to OA4 (OPA445, Texas

Instrument) to ensure a large input impedance. The voltage dividers are used to

attenuate the voltage to values compatible with the multipliers used afterward.

Since the PE patch is not grounded, these voltages are first fed to the differential

amplifier DA1 (INA826, Texas Instrument). The quadratic and cubic nonlinear-350

ities are generated using two multipliers (AD633, Analog Device). The output

voltages of the multipliers are amplified through two inverting amplifiers in-

volving OA5 and OA6 and fed to the differential amplifier DA2 (INA826, Texas

Instrument) to eliminate common mode noises that were observed at the out-

put of the multipliers. The follower OA7 minimizes the output impedance while355

protecting the AD633 and the INA826 from excessive current. The nonlinear

coefficients βq and βc are controlled respectively by the variable resistance R8

and R10, and they are given by

βq =
R8

10R7

(
R6

R5 +R6

)2

, βc =
R10

100R9

(
R6

R5 +R6

)3

(26)

To satisfy the value of βc, realized by Eq. 24, R10 should be set as

R10 =
10R9

9

R6

R5 +R6

(
R8

R7

)2

. (27)

3.3. Measurement protocol360

To validate experimentally the energy transfer during the 2:1 internal res-

onance and the nonlinear shunt behavior, the amplitudes and phase angles of

the fundamental harmonic (H1) of the structure tip displacement u(t) and the

subharmonic (H1/2) of the charge Q(t) in the PE patch electrodes are consid-

ered. Since the mode shape is scaled to verify φ1(xm) = 1 (see Appendix B),

u(t) and Q(t) can be recovered by substituting Eq. (18) in Eq. (7) to have:

u(t) = uH1 cos(Ωt− γ2) + uH1/2 cos

(
Ω

2
t− γ1 + γ2

2

)
, (28a)

Q(t) = QH1 cos(Ωt− γ2) +QH1/2 cos

(
Ω

2
t− γ1 + γ2

2

)
. (28b)

22



In practice, u(t) and Q(t) can be obtained by measuring the foil tip velocity v(t)

with the laser vibrometer and the voltage across the PE patch terminals V (t)

using the differential voltage probe. The latter two signals can be expressed as:

v(t) = vH1 cos(Ωt− ϕv) + oh, V (t) = VH1/2 cos(Ω/2t− ϕV ) + oh. (29)

with ”oh” meaning ”other harmonics” and (vH1, ϕv), (VH1/2, ϕV ) denote the

experimentally measured amplitude/phase pairs. To recover the amplitude uH1365

and γ2, we differentiate Eq. (28a) with respect to time to have:

uH1 = vH1/Ω, γ2 = ϕv + π/2, (30)

and to estimate QH/2 and the relative phase angle γ1, we substitute Eq. (28a,

b) in Eq. (5) resulting in:

QH1/2 ≈ VH1/2 Cpi, γ1 = 2ϕV − ϕv − π/2. (31)

Note that the relation between QH1/2 and VH1/2 is an approximation where

the contribution of the mechanical displacement in Eq. (5) is neglected based370

on the previous observations related in [17]. Thus, one can use Eq. (31) to

relate the subharmonic amplitudes of the charge and the voltage. Note also

that the charge can be obtained by measuring the current through the current

probe. However, in practice, the measured time signals with the current probe

appeared to be more noisy compared to that with a differential voltage probe.375

In addition, it is useful to obtain the order of magnitude of the PE voltage

V (t) to ensure that it does not exceed the operating limits of the operational

and differential amplifiers. For those reasons, we preferred to measure the PE

voltage V (t) instead of Q(t). Thus, in the following sections, we will show the

frequency response of VH1/2 instead of QH1/2.380

To establish the amplitude and phase frequency responses, a sine current

with fixed intensity is fed to the coil/magnet device to generate a harmonic

force F = F0 cos Ωt. Then, the excitation frequency Ω is increased (or decreased)

by steps, keeping the intensity fixed, sweeping a domain close to the resonance

frequency ω̃1 of the first bending mode of the foil. For each frequency, vH1, VH1/2,385
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ϕv, and ϕV are extracted in the steady state using the demodulation technique

explained in [17]. The input/output signals were synthesized/measured with

National Instrument cards (NI-9234, NI-9263) driven by a Matlab program.

3.4. Experimental validation of the theoretical results

For comparison, Fig. 9 presents experimental results and numerical simula-390

tions of system (2) with MANLAB. The experimental frequency responses of

vH1, VH1/2, ϕv, and γ1 were obtained by sweeping up and down the excita-

tion frequency. γ1 was not directly measured but deduced from the measured

phases ϕv and ϕV using Eq. (31). To experimentally validate the effects of the

additional cubic component, seen in Fig. 5, Figure 9 presents both the result395

considering only the quadratic nonlinearity (i.e., Vnl = βqV
2) as well as those

with the cubic compensation, namely Vnl = βqV
2 +βcV

3. Only the sweep-down

response is plotted in the first case, while in the latter case, the sweep-up and

down responses are shown.

For completeness, the linear responses with the PE patch 2 of the foil in400

open circuit (OC) as well as the one with patch 2 connected to the RL circuit

(i.e for βq = βc = 0) are also depicted in Fig. 9. The latter response admits a

resonance frequency ω̃1 slightly higher than the open frequency ω̂1 due to the

piezoelectric coupling, as mentioned in Section 2.1. In addition, one can observe

an excellent fitting between the numerical and the experimental results of the405

linear response.

Regarding the nonlinear frequency response, the experimental and numeri-

cal results of the velocity, voltage amplitudes, and phase angles are overall in

excellent agreement with the theory. The energy transfer from the H1 harmonic

to the H1/2 harmonic, typical for the 2:1 internal resonance, is thus experi-410

mentally validated and the response behavior with the additional cubic term as

seen in Fig. 5 is well reproduced. In particular, the effect of setting βc and r1

as discussed is demonstrated. Clearly, the resonance is replaced by the antires-

onance AR2, as opposed to the βc = 0 case, where the antiresonance is moved

to AR1 (cf Fig. 5). In addition, the experimental results confirm the recovery415
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Figure 9: Experimental and numerical results comparison of the amplitudes of vH1 and VH1/2

and the phase angles φv and γ1, considering only quadratic nonlinear term (in blue) and by

considering additionally a cubic term (in orange) such that βc verifies Eq. (24). The results

are estimated with F = 0.27mN, ξe = 0.002, ξ1 = 0.0052, β = 0.03, and r1 = 0.5055.

The numerical data are shown in solid and dotted lines for stable and unstable solutions,

respectively. The experimental data are plotted respectively with − B − and − J − for

sweeping up and down in the excitation frequency Ω. The experimental uncoupled results are

shown in − ◦ −.
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of the response symmetry with the usage of the cubic component. Concerning

the antiresonance amplitude, a slight increase is detected with the usage of the

cubic component, validating the numerical prediction in Fig. 5.

The bifurcation topology of the numerical solution is experimentally repro-

duced since near the frequencies corresponding to the pitchfork-bifurcations420

(PF1 and PF2), jump 1 and jump 2 are detected, and near the saddle-node

bifurcation (SN), jump 3 to the linear solution is observed. Furthermore, the

small discrepancy between the jumps and the numerical bifurcation point was

also observed in [17]. Regarding the response of the phase angles, the exper-

imental results suggest that the locking of γ1 at the antiresonance frequency425

with a value 3π/2 is not altered by the presence of the cubic component.

Figure 10 shows the time signals of the foil tip velocity v(t) and the PE

voltage V (t) measured for the case for the two nonlinear configurations. The

signals are recorded for their respective antiresonance, i.e., Ω/(2π) = 91.07 Hz

for the quadratic case (AR1), and Ω/(2π) = 92.3 Hz for the quadratic and430

cubic case (AR2). The addition of the cubic compensation modifies the phases

with respect to the excitation (all curves in Fig. 10 are synchronized with the

currents, which are not represented here for clarity). However, one should note

that the relative phase between the harmonics H1 and H1/2 remains equal to

3π/2 for all configurations of the nonlinearity (cf. Fig. 9). One can also notice435

the presence of a subharmonic component in the velocity signal. This is due

to the PE coupling (the term εx1(t) in qi(t) in Eq. (7)) and this can represent

a drawback since it increases the peak-to-peak amplitude of the mechanical

vibration. This issue is discussed in [16] in terms of minimizing the effect of the

subharmonic, by acting on βq and ξe.440

3.5. Effect of the excitation level and recovery of the saturation

Experimental tests have been conducted for different excitation levels, keep-

ing the other parameters fixed, to validate the antiresonance correction. Fig.11(a)

and Fig. 11(b) depict the measured frequency responses of the first harmonic

amplitude of the foil tip velocity vH1 and the first subharmonic amplitude of445
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(a) (b)

Figure 10: (a) and (b) show respectively the time signals of the foil tip velocity and the PE

voltage at the antiresonance points of Fig. 9. The blue and orange lines denote respectively

the measured signals at Ω/(2π) = 91.07 Hz (point AR1) and at Ω/(2π) = 92.3 Hz (point AR2)

when considering only the quadratic component and when considering both the quadratic and

the cubic components.

the PE voltage VH1/2 respectively.

In the case where only the quadratic component is considered, the frequency

response, estimated by sweeping down the excitation frequency, is shown. Whereas

only the sweeping-up response is shown when considering the cubic component.

The predicted features are confirmed by the experiment. First, the addition of450

the cubic term βc pins the antiresonance to a certain extent, as opposed to the

purely quadratic case where the antiresonance is obviously displaced. This ob-

servation holds up to some excitation level where the shift of the antiresonance

starts toward higher frequencies. Simultaneously, one can notice the progressive

increase of the response at the upper limit of the 2:1 resonance. To further con-455

firm the interest of the additional cubic term, Fig. 5(c) gathers the amplitudes

at the resonance and antiresonance for the linear and nonlinear cases, respec-

tively. By comparing with Fig. 4(c), the experiment shows a good agreement

with the theory, and supports the claim that this strategy enhances the energy

transfer between the foil and the electronic circuit.460
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Figure 11: (a) and (b) show respectively the experimentally measured frequency responses of

the amplitudes of vH1 and VH1/2 for different excitation levels, considering only quadratic

nonlinear term (dashed lines) and by considering additionally a cubic term (solid lines) such

that βc verifies Eq. (24). The results are estimated with ξe = 0.002, ξ1 = 0.0052, βq =

0.03, βc = 0.001, and r1 = 0.5055. The black dashed-dotted line denote the experimentally

measured linear response of vH1 (i.e., βq = βc = 0). (c) Amplitude of vH1 measured at the

resonance frequency, denoted by v∗H1, as function of the excitation level.

4. Sensitivity to the Value of βc

As discussed in section 2.5, the saturation region is restored by the addition

of a cubic component in the shunt circuit, and its width can be enlarged by

decreasing the nonlinear quadratic coefficient βq and/or increasing the electri-
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Figure 12: Numerical frequency response of the first harmonic of the displacement uH1,

obtained by numerical continuation of (2a, b) using MANLAB, for three different values of

βc. One of those values satisfies Eq. (24) (in green) with two other lower and higher values

(respectively in red and blue). The dotted and solid lines denote the stable and unstable

solutions, respectively. The results are estimated for F = 0.26mN, ξe = 0.002, βq = 0.03, and

r1 = 0.5055. The modal parameters used are the ones gathered in Table 1. The black lines

denote the linear response (with βq = βc = 0).

cal damping coefficient ξe. However, this benefit is counterbalanced by a lower465

attenuation. Nonetheless, this could be improved by considering βc as a tun-

ing parameter that depends on the amplitude of the forcing. The numerical

simulations depicted in Fig. 12 demonstrate the idea: here, different frequency

responses of the first harmonic of the displacement uH1 are plotted for various

values of βc resulting in different locations of the antiresonance. In this re-470

spect, βc has a similar effect as the tuning parameter r1 = ωe/ω̂1 which is used

to correct the antiresonance in [17], but with the interesting benefit of creat-

ing no quasi-periodic zones and keeping the overall symmetry of the frequency

response.

Based on the free solution, Eq. (24) suggests that βc is simply proportional475

to βq, and it can indeed be used for low excitation levels. However, this is only

true if the non-compensated quadratic components are small, and generally,

βc depends on the excitation level. Since no closed-form expressions are at
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hand for the forced solution, we estimate numerically βc required to set the

antiresonance at a given frequency by studying the first harmonic amplitude480

of the displacement measured at the resonance frequency u∗H1 as a function

of βc for fixed values of the excitation in terms of amplitude and frequency.

Such simulations are depicted in Fig. 13(a). Based on such simulation, the

required tuning of βc estimated in Eq.(24) (i.e., βc = 0.001) is validated for

low excitation levels since it enables minimizing the amplitude. However, as485

the excitation increases, a correction through lowering the required value of βc

should be prescribed (βc = 0.00093 for F = 0.49mN).

(a) (b)

Figure 13: First harmonic amplitude of the foil tip displacement evaluated at the resonance

frequency ω̃1, denoted by u∗H1, as function of βc for three different excitation levels, plotted in

(a), and as function of F for three different values of βc, plotted in (b) . The plots are obtained

by numerical continuation of (2a, b), keeping βc and F free in (a) and (b), respectively and

by prescribing the excitation frequency Ω at ω̃1 in both plots. The plots are estimated for

βq = 0.03, ξe = 0.002, r1 = 0.5055. The modal parameters used are the ones gathered in

Table. 1. The linear response (βq = βc = 0) in (b) is shown in black, with the stable and

unstable responses depicted in solid and dotted lines, respectively.

The effect of βc on the saturation is shown in Fig. 13(b) by studying the

amplitude of u∗H1 as a function of the forcing level, estimated at the resonance

frequency. The results suggest that if βc is set according to Eq. (24), a satu-490

ration region appears up to a certain excitation, as studied in Fig. 6(a,b). If a

higher value of βc is chosen, the saturation phenomenon is not presented. For
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a lower value of βc, in particular βc = 0.00093, the saturation phenomenon is

not presented also, but the response curve shows three different phases. The

first phase suggests an amplitude increasing up to a certain amplitude which495

can be explained by the low value of βc that lacks to correct the antiresonance

shifting. The second phase suggests an amplitude decreasing until reaching a

minimum at F = 0.49mN, compatible with the result in Fig. 13(a). The third

face suggests a further increase in the amplitude due to the high effects of the

uncompensated nonresonant quadratic terms.500

To validate the antiresonance correction by a suitable tuning of βc, we per-

formed the same experimental tests shown in Section. 3.5 but considering only

the highest excitation level (F = 0.49mN) and by setting βc = 0.00093, as

suggested from Fig. 13a. The experimental frequency response of u∗H1 suggests

a correction of the antiresonance in which, with the numerical predicted value505

of βc , the antiresonance AR1 is replaced by AR2 at the first bending mode

resonance frequency ω̃1. In Fig. 14, we give an experimental validation of the

AR1 AR2

ω̃1

Figure 14: Experimentally measured frequency response of vH1 for two different cases. The

first case corresponds to βc = 0.001 to satisfy Eq. (24), plotted in yellow. The other case

corresponds to βc = 0.00093 as predicted in Fig. 13 for F = 0.49mN, plotted in purple. The

results are estimated for βq = 0.03, ξe = 0.002, r1 = 0.5055, and F = 0.49mN. The black

dashed-dotted line denotes the linear response (with βq = βc = 0).
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antiresonance correction procedure at higher forcing levels. Actually, the pro-

posed antiresonance correction can be repeated for higher excitations to have

a wider stability region. Moreover, here we rely on the numerical value of the510

suitable βc suggested from Fig. 13, but for a more practical estimation of the

suitable value, one can use the property verified the phase between H1 and H1/2

at antiresonance where γ1 = 3π/2 (cf. Fig. 9).

5. Conclusions

This study addressed theoretically and experimentally a solution to handle515

the detuning of a quadratic nonlinear piezoelectric shunt absorber. This type

of vibration absorber aims at exploiting the saturation of the vibration of the

primary system that occurs during a 2:1 internal resonance. This feature is

hindered by unwanted side effects when the nonlinearity is implemented using a

measurement of the PE patch voltage. When doing so, nonresonant quadratic520

terms appear, and we showed that they introduce undesirable softening behavior

of the free response. Based on the normal form theory, quadratic nonresonant

terms are equivalent to cubic terms, and we showed that an added cubic nonlin-

earity in the shunt can compensate the largest nonresonant quadratic coupling.

It is found that the gain governing the cubic term βc is simply proportional to525

the quadratic gain for small excitation levels. This was validated experimen-

tally, but this correction has a limited effect: as the excitation level increases,

this approach is less effective. Thus, for a given excitation level, βc was modi-

fied based on the prediction of the model, and the experiments confirmed that

the antiresonance could be restored. Future work will explore the possibility of530

automatically adjusting βc based on the antiresonance condition γ1 = 3π/2.

Appendix A. Resonant and non-resonant terms

This section gives a basic explanation of the resonant and nonresonant terms.

More rigorous definitions are given in texts related to the normal form theory,
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see [44, 45]. Considering Eqs. (11) with quadratic nonlinear terms only and in

free vibrations, one obtains:

ẍ1 + ω2
1x1 = −g1

11x
2
1 − g1

12x1x2 − g1
22x

2
2, (A.1a)

ẍ2 + ω2
2x2 = −g2

11x
2
1 − g2

12x1x2 − g2
22x

2
2. (A.1b)

Then, at first order, one can consider that x1(t) ' a1 cos(ω1t+ϕ1) and x2(t) '
a2 cos(ω2t + ϕ2), with (a1, a2, ϕ1, ϕ2) being the amplitudes and phases. Then,

using basic trigonometric identities, one shows that the nonlinear term x2
1(t)

contains a constant and an harmonic at 2ω1, x2
2(t) contains a constant and

an harmonic at 2ω2 and x1(t)x2(t) contains two harmonics, at ω1 + ω2 and

|ω1 − ω2|. Then, if ω2 ' 2ω1, the frequency content of the nonlinear terms can

be summarized as:

x2
1(t)  2ω1 ' ω2, (A.2)

x2
2(t)  2ω2 ' 4ω1, (A.3)

x1(t)x2(t)  ω1 + ω2 ' 3ω1, |ω1 − ω2| ' ω1, (A.4)

which shows that x2
1(t) (resp. x1(t)x2(t)) can be considered as a forcing term

that drives the second (resp. the first) oscillator close to its resonance frequency,

at ω2 (resp. ω1). All the other terms have a frequency content away from the535

two resonance of the oscillators. This is a physical explanation of the resonant

or nonresonant role of the different nonlinear terms in the equations.

Appendix B. Linear Modal Analysis

Before conducting the experiments with the nonlinear shunt circuit, a linear

modal analysis was performed to estimate the electromechanical modal param-540

eters necessary to design the shunt circuit properly. The modal analysis pro-

cedure is similar to that of [17]. It consists in fitting the analytical frequency

response functions (FRFs) with the experimental ones.

Focusing on a particular mode of the foil (i-th mode), the FRFs are measured

with two different sets of experiments depending on the forcing type:545
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Ȟ1(Ω) Ĥ1(Ω) H2(Ω) C(Ω)

Cp1

Figure B.15: Fitting between the experimental (solid lines) and analytical FRFs (dashed

lines).

� We consider a mechanical forcing using the coil-magnet system, and we

measure the velocity v(t) of the foil with the laser vibrometer at the mea-

surement point, collocated with the magnet location xm. We perform

these operations in two successive conditions: with patch 2 in short-circuit

(V = 0) and in open-circuit (Q = 0), all the other patches being short-

circuited. We then obtain the following FRFs, the displacement spectrum

at the tip of the foil being obtained by dividing the spectrum of v(t) by jΩ.

Considering that the coil/magnet system is equivalent to a point forcing

and that the mode shape is normalized such that φ1(xm) = 1, one has

q1(t) = u(t) and, following Eqs. (2):

Ȟ1(Ω) =
ů

I̊

∣∣∣∣
V=0

=
γi

Ω2 − ω̌2
i + 2jξiω̂iΩ

, (B.1a)

Ĥ1(Ω) =
ů

I̊

∣∣∣∣
Q=0

=
γi

Ω2 − ω̂2
i + 2jξiω̂iΩ

, (B.1b)

where Ȟ1(Ω) and Ĥ1(Ω) are the FRFs in the short and open circuit case,

respectively.

� We consider an electrical forcing by prescribing a voltage V (t) to patch 2
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with a TREK PZD700A piezoelectric amplifier, with the other patches

short-circuited. Then we obtain:

H2(Ω) =
ů

V̊

∣∣∣∣
F=0

= − λi
Ω2 − ω̌2

i + 2jξiω̂iΩ
, (B.2a)

C(Ω) =
Q̊

V̊

∣∣∣∣∣
F=0

= Cpi +
δi

Ω2 − ω̌2
i + 2jξiω̂iΩ

. (B.2b)

In the above equations, •̊(Ω) is the Fourier transform of •(t) and the amplitude

constants read:

γi =
α

mi
, λi =

θi
mi

, δi =
θ2
i

mi
. (B.3)

The fitting near the resonance frequency of the first bending mode is shown in550

Fig. B.15. This fitting allows to estimate γ1, λ1, and δ1 (subscript i = 1 stands

for the first bending mode) and thus deduce the modal mass m1, the coupling

coefficient θ1 = δ1/λ1 and m1 = θ1/λ1. The open and short circuit frequencies

(resp. ω̌1 and ω̂1), the mechanical damping coefficient ξ1, and the effective

PE capacitance Cp1 can be directly obtained by the fitting. In addition, the555

EMMCF k1 can be obtained using Eq. 6. α = γ1m1 is obtained in [17]. All the

electromechanical modal parameters of the first bending mode of the foil are

gathered in Table. 1.
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Chapter 6

Theoretical modeling and experimental
analysis of nonlinear piezoelectric shunt
absorber with a nonsmooth component
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6.1 Article presentation

The present chapter solely constitutes of the text of the article entitled by ”A nonlinear tunable

piezoelectric resonant shunt using a bilinear component: theory and experiment”submitted to ”Nonlin-

ear Dynamics” journal. The article addresses the design of a tunable resonant piezoelectric shunt with

a nonsmooth component. The nonsmooth component is chosen to be proportional to the superposition

of the voltage across the piezoelectric patch and its absolute value function, leading to a bilinear form.

The obtained nonsmooth component is not symmetric and thus generate even harmonics similar to

quadratic nonlinearities. Such nonsmooth component can be analyzed by a simple electric component

such as a diode or a transistor in practice. In addition, the nonsmooth component leads to switch the

electric resonance frequency between two distinct values depending on the sign of the voltage. The

main feature that we aim to study is the ability to tune the electric shunt resonance frequency with

the nonsmooth component by setting lower inductance in the shunt circuit. In addition, we aim to

examine the possibility of obtaining nonlinear modal coupling between the electrical and mechanical

modes, thanks to the implicit nonlinearities generated by the nonsmooth component.

As a first step, the effect of the nonsmooth component is studied by considering one degree of
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freedom oscillator with a nonsmooth term. Then, the free and forced solutions are examined. The

free solution is proved to be periodic but not harmonic with a modified resonance frequency ω̄e that

depends on the nonsmooth gain β and is independent of the oscillation amplitude. The forced solu-

tion is analyzed numerically by examining the multi-harmonic response generated by the nonsmooth

component. Namely, the frequency response of each harmonic is studied in which the results suggest

that each harmonic admits a frequency response equivalent to a linear oscillator with a resonance

frequency equals to the estimated resonance frequency ω̄e. This led us to propose an approximation of

dominant harmonics, namely the zeroth, the first, and the second harmonics, by a linear oscillator. To

establish the approximation, a gain ϕp, corresponding to the p-th harmonic, is introduced to quantify

the energy distribution to each harmonic. Interestingly, a strong nonlinear behavior of the harmonic

appeared at the superharmonic resonances motivating the ability to activate internal resonance.

The approximation is then extended to the full system by considering two tuning cases of the

nonsmooth component. The first one considers a one-to-one tuning (1:1 tuning) such that the modified

electric resonance frequency ω̄e is tuned equal to the mechanical resonance frequency ω̂ of the structure

mode to be attenuated. The second one considers a two-to-one tuning (2:1 tuning) such that ω̄e =
1/2ω̂. The tuning is solely performed through the nonsmooth component, considering the inductance

to be free parameter in the circuit (i.e., no condition is imposed on the inductance value).

Thanks to the obtained approximation, an analytical approximation of the frequency responses

were obtained by introducing a new piezoelectric coupling factor modified by a factor of
√
ϕ1 and

√
ϕ2

for the 1:1 tuning and 2:1 tuning, respectively. Both tuning cases suggested that the behavior of the

first harmonic response is equivalent to a linear resonant shunt with the activation of the 2:1 internal

resonance for the latter case. Thus, an optimization study is established to determine the optimal

tuning of β and the electric damping ratio ξe to achieve an optimal attenuation with low inductance

compared to the linear resonant shunt. In particular, the effect of the inductance on the optimal

attenuation is studied for each tuning case as it appears explicitly in the attenuation expressions,

contrary to the linear resonant shunt in which the inductance should satisfy a tuning condition. It is

shown that the optimal attenuation for the 1:1 tuning case reduced by 1dB, compared to that of a

linear resonant shunt, for a reduction of the inductance by a factor of 100. Interestingly, for the 2:1

tuning case, the attenuation increases with the decrease of the inductance up to a limit where it stays

almost constant. The results are then verified numerically by applying the absorber to attenuate the

first twisting mode of a hydrofoil structure.

An experimental proof of concept is also established considering also the first twisting mode of

the hydrofoil structure in which the nonsmooth behavior is realized in a passive way with a half-

wave rectifier circuit that includes a diode. The measurement protocol to estimate the experimental

frequency response for each case is discussed in addition to the shunt circuit used in the experiments.

The theoretical predictions regarding the optimal parameters are experimentally validated through
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a comparison between the numerical and the experimental frequency responses, considering the first

harmonics of the displacement and the piezoelectric voltage for the 1:1 tuning case. For the 2:1 tuning

case, the first harmonic of the displacement with the subharmonic of the voltage were considered to

validate the energy transfer and thus the activation of the 2:1 internal resonance. Then, a sensitivity

analysis regarding the values of β and ξe on the response for both tuning cases is performed, showing

tuning characteristics similar to that of a linear resonant shunt. A discussion is finally illustrated

regarding the experimental tests which validates the dependence of the optimal attenuation on the

inductance in the shunt circuit regarding the 1:1 and 2:1 tuning cases.

6.2 A nonlinear tunable piezoelectric resonant shunt using a bilinear com-
ponent: theory and experiment

169



Noname manuscript No.
(will be inserted by the editor)

A nonlinear tunable piezoelectric resonant shunt using a bilinear
component: theory and experiment

Zein A. Shami · Christophe Giraud-Audine · Olivier
Thomas

Received: date / Accepted: date

Abstract In this article, we propose a new concept for tuning a resonant piezoelectric shunt absorber
thanks to the use of a nonsmooth electronic component. It consists in adding in the resonant shunt
circuit a voltage source which is a bilinear function of the voltage across the piezoelectric patch. The
main advantage is the ability to change the electrical resonance frequency with the bilinear component
gain, enabling a tuning as well as a possible reduction of the required inductance value. Because of the
intrinsic nonlinear nature of the bilinear component, a multi-harmonic response is at hand, leading to
a nonlinear coupling between the mechanical and electrical modes. Two particular tunings between
the electrical and the mechanical resonance frequencies are tested. The first one is one-to-one, for
which the electrical resonance is tuned close to the mechanical one. It is proved to be similar to a
classical linear resonant shunt, with the additional tuning ability. The second case consists in tuning
the electrical circuit at half the mechanical resonance, leading to a two-to-one (2:1) internal resonance.
The obtained response is also found to be similar to a classical resonant shunt near the main resonance.
In either case, the shunt performances are analytically and numerically studied, leading to optimal
values of the design parameters as well as an estimation of the amplitude reduction provided by the
shunt. Finally, experimental validation is proposed, targeting the damping of the twisting mode of a
hydrofoil structure, in which the bilinear component is realized with a diode.

Keywords Piezoelectric shunt absorber, Nonsmooth component, bilinear absorber, 2:1 internal
resonance, Nonlinear Oscillations, Diode

1 Introduction

Piezoelectric shunt absorbers represent an efficient way to attenuate the vibrations of structures under
external excitation, especially when the size and weight constraints are presented. Those absorbers
were proposed in [1] as an extension to the mechanical absorbers by utilizing a piezoelectric (PE)
transducer connected to a dedicated electronic circuit.
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The simplest architectures of those shunt circuits are the resistive shunt (R-shunt, including a sim-
ple resistor) and the resonant shunt (RL-shunt, composed of a resistor and an inductor L), which
are passive absorbers with a linear behavior. While the R-shunt dissipates the energy in heat form,
the RL-shunt consists in coupling an electrical resonator (an RLC circuit, with C being the intrinsic
capacitance of PE patch) to the host structure. It is thus an electrical analogue of a tuned mass
damper (TMD) which can be tuned in a similar manner to achieve an optimal attenuation. In this
context, it has been shown through the optimal study of the RL-shunt in [2] that for a given mechan-
ical damping ratio, the optimal attenuation depends only on the PE coupling factor. Thus, enhancing
the absorber performance can be done by increasing the PE coupling using, for example, a nega-
tive capacitance [3] or by optimizing the placement of the PE patch on the host structure [4]. Two
main issues are encountered with the PE shunts: i) their sensitivity to any change in the resonance
frequency of the structure [5], ii) for some applications targeting low-frequency modes, a very high
inductance is required, which can be a practical issue [6, 7]. In addition, the R and RL-shunts act
near a single structure mode, but they can be extended for multi-modal attenuation through multiple
attachments [8–10]. One can refer further to the following reviews [11, 12] for a wider illustration
regarding the optimization and different applications of the PE shunts.

PE shunts properties can be enhanced by intentionally introducing a nonlinear component in the
shunt circuit to exploit some purely nonlinear features. An example of such applications is the so-called
nonlinear energy sink ”NES”, introduced in [13], and realized theoretically and experimentally with
piezoelectric shunt methodology in [14] and [15], respectively, by adding cubic nonlinear component
in the shunt circuit. Another example is the so-called nonlinear tuned vibration absorber ”NLTVA”
introduced in [16] and realized with PE shunt theoretically [17] and experimentally [18]. Recently, a
new semi-passive absorber, introduced in [19] and realized experimentally in [20], exploited a two-to-
one (2:1) internal resonance and a saturation phenomenon by adding a quadratic nonlinear component
in a classical RL-shunt. This concept was improved to correct an unwanted detuning by adding a cubic
component, as shown theoretically in [21] and experimentally in [22].

In many applications, the nonlinearities can be presented (or approximated) in a polynomial form
(i.e., quadratic or/and cubic). In essence, polynomial nonlinearities naturally appear in a wide range
of nonlinear models involving geometric and material nonlinearities such as thin beam and plate
models [23, 24]. The free and forced response of systems involving such types of nonlinearities can be
analyzed analytically (up to a certain order) using several methods such as perturbation techniques
[25], elliptic functions [26], and normal form [27]. However, in some other applications involving
clearance [28], vibro-impacts [29] or dry friction [30, 31], nonsmooth piece-wise functions naturally
appear in the model, leading to strong nonlinear effects.

Utilizing nonsmooth nonlinear components for vibration reduction is firstly introduced in [32] to
enhance the design of the NES to act as shock isolators. A lot of studies were then conducted to analyze
the energy transfer between linear and nonsmooth NES attachments. For example, the targeted energy
transfer between a single degree of freedom linear system and nonsmooth NES is studied in [33]. Also,
the dynamics of a NES of non-polynomial piece-wise potential is investigated in [34]. In addition,
introducing a nonsmooth component led to the design of vibro-impact NES where detailed design
rules were given in [35]. A recent theoretical and experimental study [36] proposed an enhanced NES
by using a cubic spring in addition to a piece-wise linear spring.

To the authors’ knowledge, the only attempt to use a nonsmooth component in a PE shunt method-
ology involved the synchronized switch damping (SSD) technique. The latter idea is proposed in [37]
for piezoelectric transduction that is switched between two distinct shunt impedances, in synchronic-
ity with the oscillations of the host structure [38]. The principle is the following: when the system is
moving away from equilibrium, a voltage is applied such that the piezoelectric force resulting tends
to restore the system to its equilibrium point. Various topologies have been proposed regarding the
circuit connected in series with the patch via the switch: a simple resistor [37], a resistor and an
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inductor to increase the voltage inversion [39] or the same circuit with an added static voltage source
[40, 41]. In the latter case, the voltage may have to be controlled as well to avoid instabilities [42].
This technique proved to be efficient in terms of vibration reduction, but it can become complicated
to tune in practice due to the imperfection of synchronization time required [38] as well as to the
creation of higher harmonics and noise [43].

The main originality of this work is to present the design of a tunable PE resonant shunt with
a nonsmooth voltage component, without any required synchronization. In practice, the nonsmooth
voltage component can be realized in a passive way with a half-wave rectifier circuit that includes a
diode, so that the bilinear function of the voltage across the piezoelectric transducer is obtained. In
addition, the proposed design of the nonsmooth component allows us to tune the resonance frequency
of the shunt circuit without changing the inductance. Thus, a lower inductance can be set for the
optimum design, which is an advantage when considering low-frequency modes. This paper focuses on
the theoretical bases of the absorber and its experimental proof of concept, by targeting the mitigation
of the first twisting resonance of a hydrofoil structure.

This paper is organized as follows: in section 2, the theoretical study is illustrated, showing the
main governing equations with the nonsmooth term in addition to their approximation. We also show
the optimal study for one-to-one and two-to-one tuning cases of the electric resonance frequency. The
obtained optimal parameters, in addition to the optimal attenuation, are then numerically verified.
In section. 4 we show the experimental proof of concept where the nonlinear shunt circuit and the
measurement protocol are illustrated. In addition, we show the experimental frequency responses for
both tuning cases to validate the theoretical estimations.

2 Theoretical Analysis

2.1 Governing Equations

Piezoelectric patch

Elastic structure

R

L

Vnl = β(V + |V |)

Nonlinear shunt

u(t)Ext. forcing

V

Q̇

Q

Vnl

V

2β

1

(a) (b)

Fig. 1: (a) Elastic structure coupled to the nonlinear shunt circuit; (b) graph of the function V →
Vnl = β(V + |V |).

We consider an arbitrary elastic structure subjected to an external excitation and connected to a
shunt circuit via a piezoelectric patch, as shown in Fig. 1(a). Following [2, 19, 20], the displacement
u(x, t) at position x in the structure and time t is truncated on one linear mode such that:

u(x, t) = ψ(x)q(t), (1)
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where ψ(x) is the mode shape and qi(t) is the i-th modal displacement. Then, (Q(t), q(t)) are the
solutions of the following system:

q̈i + 2ξiω̂iq̇i + ω̂2
i qi + θi

miCpi
Q = Fi

mi
cosΩt, (2a)

Q̈+ 2ξeωeQ̇+ ω2
eQ+ θi

LCpi
qi −

Vnl
L

= 0. (2b)

In the above equations, mi, ξi, ω̂i, θi, and Fi are, respectively, the modal mass, the mechanical
damping ratio, the natural frequency in open circuit condition (Q = 0), the piezoelectric coupling
coefficient, and the forcing, all corresponding to the i-th mode. Cpi is the effective capacitance of the
piezoelectric patch for the i-th mode [3]. The electrical natural frequency ωe and electric damping
ratio ξe are defined as:

ωe = 1√
LCpi

, ξe = R

2

√
Cpi
L
, (3)

where R and L are the resistance and the inductance in the shunt circuit, respectively.
The PE patch voltage V (t) can be defined as a function of qi(t) and Q(t) using [2]:

V = 1
Cpi

(Q+ θiqi). (4)

We also define the dimensionless electromechanical modal coupling factor (EMMCF) of the i-th mode
as:

k2
i = ω̂2

i − ω̌2
i

ω̂2
i

= θ2
i

ω̂2
iCpimi

, (5)

with ω̌i the natural frequency in short circuit (V = 0).
In this study, we consider the nonlinear voltage component Vnl(t) to be bilinear in terms of V (t),

as shown in Fig. 1(b), and expressed as:

Vnl = β(V + |V |), (6)

where β is a dimensionless gain. The goal of introducing a nonsmooth nonlinearity in the form pre-
sented in Eq. (6) is first to generate even harmonics in the system, because it is not a symmetrical
function of V , to possibly activate a 2:1 internal resonance, and second to use simple electrical com-
ponents such as a diode or a transistor to practically realize it.

By substituting Eq. (6) in Eq. (2b) and eliminating V using Eq. (4), we obtain:

q̈i + 2ξiω̂iq̇i + ω̂2
i qi + θi

miCpi
Q = Fi

mi
cosΩt, (7a)

Q̈+ 2ξeωeQ̇+ ω2
eQ+ ω2

eθiqi − βω2
e (Q+ θiqi + |Q+ θiqi|) = 0. (7b)

Two important conclusions can then be drawn at this stage: (i) the governing equations in (7a,b)
are indeed non-linear because of the non-smooth term (|V | =⇒ |Q + θiqi|) which only appears in
Eq. (7b) and creates a harmonic distortion. (ii) although nonlinearities are present, (7a,b) are in fact
fully linear in amplitude. For example, replacing F by 2F in Eq. (7a) leads to obtain (2qi, 2Q) instead
of (qi, Q) (see also Fig. 10) since the absolute value function is linear in amplitude (i.e., |2x| = 2|x|
for x ∈ R). However, it is not always additive or superposable, since |x1 +x2| 6= |x1|+ |x2| if x1x2 < 0
for x1, x2 ∈ R.
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2.2 1DOF system with the nonsmooth term

To give a first analysis of the behavior of the coupled system (7a,b), we consider here only Eq. (7b),
we exclude the piezoelectric coupling (i.e., setting θi = 0), and we add a direct forcing term, leading
to:

Q̈+ 2ξeωeQ̇+ ω2
eQ− βω2

e (Q+ |Q|) = P cosΩt, (8)

where P is the forcing amplitude.

2.2.1 Free solution

π/ωeπ/ω′e

T = 2π/ω̄e

(a) (b)

Fig. 2: (a) Example of the free response of Eq. (8) over one period. (b) Ratio η = ω̄e/ωe as a function
of β.

To analyze the free response, we set P = 0, and we rewrite Eq. (8) as:

Q̈+ 2ξeωeQ̇+ ω2
eQ = 0 if Q ≤ 0, (9a)

Q̈+ 2ξeωeQ̇+ ω′2e Q = 0 if Q ≥ 0, (9b)

where ω′e = ωe
√

1− 2β. In the conservative case (ξe = 0), Eqs. (9) suggest that the free response is
a succession of one half period of sine of period ωe and one half period of sine of frequency ω′e, as
illustrated Fig. 2(a) . Then, the oscillation period can be expressed as:

T = 2π
ω̄e

= π

ωe
+ π

ω′e
, (10)

where ω̄e is the modified angular frequency of the free response due to the nonsmooth term, which
reads:

ω̄e = 2
√

1− 2β
1 +
√

1− 2β︸ ︷︷ ︸
η

ωe = 2
√

1− 2β
1 +
√

1− 2β
1√
LCp

, η = ω̄e
ωe
, (11)

where η represents the ratio between the modified (ω̄e) and unmodified (ωe) natural frequencies.
Eq. (11) proves that even if the behaviour is nonlinear, the free oscillation frequency of Eq. (7b) does
not depend on the amplitude. Indeed, the oscillations are periodic but not harmonic since they are
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the succession of two half sine functions of different periods: the more β is large, the more the two
periods are different, and higher the harmonics content is expected.

Moreover, Eq. (11) suggests that given an electrical resonance frequency ωe (i.e., given an induc-
tance), the modified electrical oscillation frequency ω̄e can be adjusted according to the value of β.
However, the value of β should be less than 1/2 to avoid unstable response ( if β > 0.5, ω′e admits
imaginary part). This feature is the main advantage of this nonlinear shunt circuit: by adjusting the
nonlinear parameter β, one can tune the electrical circuit frequency at a particular value while fixing
the inductance at a low value, which is an advantage for practical implementation. Fig. 2(b) shows
the ratio η as a function of β, illustrating that it can be lowered to zero (at β = 0.5) and increased
up to a factor of 2 (for β → −∞).

2.2.2 Forced Solution

β = 0.444 β = 0.3136 β = 0 β = −0.841 β = −3.883 β = −20.758 β = −152.497β = 0.492

Fig. 3: Harmonics H0, H1 and H2 of the periodic solutions of Eq. (8) in the vicinity of the primary
resonance, as a function of Ω̃ = Ω/ωe for ξe = 0.005. The harmonics’ amplitude is normalized with
respect to the excitation level. The vertical dotted black lines show the value ω̄e(β).

To analyze the forced response, we rewrite Eq. (8) in a dimensionless form by introducing the
following parameters:

t̃ = ωet, Q̃ = Q
ω2
e

P
, Ω̃ = Ω/ωe. (12)

Using the dimensionless parameters in Eq. (12), one obtains:

¨̃Q+ 2ξe ˙̃Q+ Q̃− β
(
Q̃+ |Q̃|

)
= cos Ω̃t̃. (13)

One can realize that the solution of Eq. (13) depends only on the damping ratio ξe and the gain β.
As a consequence, the shape of the resonance curve of Eq. (13) is independent of the excitation level
P and can be obtained for any value of P and ωe using the scaling defined in (12).
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(a) (b) (c)

Fig. 4: Harmonics H1 (a), H0 (b) and H2 (c) of the periodic solutions of Eq. (8) in the vicinity of the
primary resonance, as a function of Ω̃ = Ω/ωe for ξe = 0.005 and different excitation levels P . The
numerical values used in the simulations are ξe = 0.005 and β = 0.444.

Eq. (13) is solved numerically with the continuation software MANLAB [44, 45] since there is no
analytical solution at hand. MANLAB is based on a Harmonic Balance method to compute the peri-
odic solutions. It requires a regularization of the nonsmooth term, which is discussed in Appendix B.
Note that in all the numerical simulations with MANLAB, 40 harmonics were considered. Fig. 3 shows
the dimensionless frequency response, normalized with respect to the excitation level, of the zeroth
(H0), first (H1), and second (H2) harmonics of the periodic solutions of Eq. (8) for different values
of β. Note that only H0, H1, and H2 harmonics are considered since they represent the dominant
harmonics observed in the numerical simulations, and they will be relevant in the upcoming analysis.
Indeed, other harmonics with lower amplitudes are present such as the third and fourth harmonics.

Two important conclusions can be drawn from the response shown in Fig.3. First, the nonlinear
term creates a full harmonic content, with H0 being dominant in amplitude, H2 being significant but
with lower amplitude, and the higher harmonics being negligible. Second, the relative amplitude of
the harmonics with respect to the fundamental H1 increases with the absolute value of the nonlinear
coefficient |β|: with β = 0, the response is fully linear with no harmonics, except H1. However, if β is
close to 0.5 or tends to −∞, the harmonic content increases significantly. Interestingly, the amplitude
of H0 exceeds that of H1 for extreme values of β (e.g., for β = 0.492 and β = −152.497).

The most important observation is that the shape of each harmonic, considered separately, seems
close to the frequency response of a linear oscillator near its resonance frequency, which is obtained
here in the vicinity of the free oscillations frequency, for Ω = ω̄e. Such property is conserved even for
higher excitation, as shown in Fig. 4, in which the linearity property with respect to the excitation
level is clearly observed.

On the contrary to the quasi-linear behavior described above, the nonlinear nonsmooth term can
generate a strongly nonlinear superharmonic response near Ω = ω̄e/2. This is emphasized in Fig. 5,
which shows the superharmonic responses for different values of β, of the H0, H1, and H2 harmonics.
The results suggest that the superharmonic response appears to be nonlinear (hardening effect with
unstable branches), and the nonlinear effect increases with |β|. This suggests that introducing the
nonsmooth term can represent an option for the application involving internal resonance (as will be
discussed in section 3.2).

2.2.3 Forced response approximation with a linear oscillator

As discussed in the previous section, the nonlinear frequency response of the harmonics seems similar
to the frequency response function (FRF) of a linear oscillator near the primary resonance. Thus, we
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(a) (b) (c)

Fig. 5: Harmonics H0 (in red), H1 (in black), and H2 (in blue) of the periodic solutions of Eq. (8)
in the vicinity of the superharmonic resonance of order two. (a) β = 0.3136, (b) β = 0.444, and (c)
β = −3.883. The numerical values are ξe = 0.005 and P = 0.1. The solid and dotted lines denote the
stable and unstable responses, respectively.

seek an approximation of Eq. (8) that is defined by the following linear oscillator, for p = 0, 1, 2:

Q̈p + 2ξ̄eω̄eQ̇p + ω̄2
eQp = φpP cosΩt, (14)

where Qp is the approximated response of the p-th harmonic of Q(t), ξ̄e is the modified damping ratio
due to the nonsmooth term, and φp is an unknown gain, corresponding to the p-th harmonic, intro-
duced to quantify the difference between the analytical and numerical solutions and to be determined
by fitting the analytical frequency response of Qp with the numerical frequency response of the p-th
harmonic. From a physical point of view, the gain φp enables quantifying the energy distribution at
each harmonic due to the presence of the nonsmooth component.

To determine the modified damping ratio ξ̄e, we assume (and we will verify hereafter) that the
nonsmooth term has no effect on the damping coefficient (i.e., the term multiplying Q̇), and thus:

ξ̄eω̄e = ξeωe ⇒ ξ̄e = ξe/η. (15)

Then, the FRF of Qp is expressed as:

Zp(Ω) = Q̊p
P

= φp

ω̄2
e −Ω2 + 2jξ̄eω̄eΩ

. (16)

where Q̊p denotes the Fourier transform of Qp(t) and j =
√
−1. To validate the estimated damping

ratio and to determine the gain φp, we set ξ̄e according to Eq. (15) and we only vary the value of φp
to fit the numerical FRFs, shown in Fig. 3, for each harmonic with their equivalent analytical ones,
defined in Eq. (16). Examples of those fittings for different values of β are shown in Fig. 6 near the
primary resonance. Notice the appearance of superharmonic responses, clearly observed in the H2
response in Fig. 6(c), not taken into account in our equivalent linear model.

Considering this numerical fitting, we can draw two conclusions. The first one is that the equivalent
damping ratio ξ̄e, defined in Eq. (15), is the perfect one since the fitted equivalent linear FRFs match
exactly the shape of the numerical (nonlinear) ones, by varying only the value of φHp to reach the
perfect fit.

The second conclusion is that by fitting the analytical and numerical frequency responses for H0,
H1, and H2 for different values of β, the gain φp for each of those harmonics can be estimated as a
function of β (it is shown by markers in Fig. 7). Note that the estimated values of φp are firstly plotted
with respect to log10(1− 2β) and then mapped to the values of β. Additionally, the results prove that
increasing |β| leads to more distribution of energy to the other harmonics as both φ0 and φ2 increase.
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(a) (b)

(c) superharmonic responses

Fig. 6: Examples of the fitting between the numerical and analytical frequency responses, normalized
with respect to the excitation level, of the harmonics H0 (a), H1 (b), and H2 (c). The numerical
results, estimated by solving Eq. (13) with MANLAB, are depicted in solid lines and the analytical
results, according to Eq. (16), are depicted in dashed lines. The fittings are performed near the primary
resonance for β ∈ {0.444, 0.313, 0,−0.841,−5.1,−20.758} and ξe = 0.005.

Compatible with the results in Fig. 3, H2 harmonic has a lower influence compared to H0 even for
high values of |β|. More precisely, it appeared that the amplitude of H2 tends to a constant value as
|β| increases. On the contrary, H0 harmonic admits larger influence in which φ0 suggests higher value
compared to φ1 for extreme values of |β|.

Table 1: Polynomial coefficients am of φp(β) for β > 0.

a0 a1 a2 a3 a4 a5 a6

φ1 1 0.0065 −0.1432 0.0610 −0.0078 0 0
φ0 0 0.7354 0.002 −0.1528 0.0547 −0.0061 0
φ2 0 0.1628 0.0066 −0.0825 0.0455 −0.0102 0.0008

Interestingly, those last results suggest that φp admits a symmetric behavior with respect to log10(1−
2β). Thus, to obtain a closed-form approximation of φp, which will be used in the further analysis,
we seek a polynomial expression of φp as:

φp(y) =
N∑

m=0
amy

m, y(β) = − log10(1− 2β) = −2 log10

(
η

2− η

)
, (17)
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Fig. 7: φp as a function of β corresponding to harmonics H0 (red), H1 (black), and H2 (blue). The
circles denote the values estimated by fitting the analytical and the numerical responses for each value
of β, and the solid lines denote the closed form approximated polynomial curves.

where N ∈ N is the polynomial order and am ∈ R are the polynomial coefficients. Thanks to the
symmetric property, the relation φp(y) = −φp(y) can be used to estimate the coefficients am only
for y > 0 (i.e., β > 0) and then directly obtain the coefficients for y < 0 (i.e., β < 0) by changing
the sign of the coefficients am of the odd monomials (i.e. am with m odd). In addition, to take into
account the fact that only H1 will respond for y = 1 (i.e., β = 0), we enforce constraints on a0 for
each harmonic such that a0 = 1 for H1 and a0 = 0 for H0 and H2. With the constraint enforcement
on a0, a good fitting between the polynomial expressions (solid lines in Fig. 7) and the obtained data
(circle markers) required N = 4 for φ1, N = 5 for φ0, and N = 6 for φ2. The estimated coefficients
am for each harmonic are gathered in Table. 1 only for β > 0.

3 Response of the full system according to the tuning of the nonsmooth component

In this section, we study the response of the full system (7a,b) with two particular tunings of the
nonsmooth term. Based on the analysis in section 2.2, two main points can be emphasized. First, it was
shown that each harmonic of the response of the electrical oscillator could be considered separately and
approximated by an equivalent linear system. This suggests using the first harmonic as an oscillator
that can be tuned on one resonance of the host mechanical system to act as an RL-shunt, with the
additional interest of tuning it using the nonsmooth gain β. This is investigated in section 3.1, by
tuning the electrical oscillator on the i-th vibration mode, such that ω̄e ' ω̂i. Secondly, a nonlinear
behavior was observed with the appearance of H0 and H2 harmonics and of a 1:2 superharmonic
response of the electrical oscillator. This behaviour is a characteristic of a non-symmetric nonlinearity
(see the curve Vnl = f(V ) in Fig. 1(b)) and suggests to investigate a 2:1 internal resonance, by tuning
the electric oscillator at half the mechanical frequency (ω̄e ' ω̂i/2) and testing a transfer of energy
from the mechanical oscillator to the electrical one, as already done using quadratic nonlinear terms
in [19, 20, 22]. This is investigated in section 3.2.
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3.1 One-to-one tuning of the nonlinear shunt (ω̄e = ω̂i)

3.1.1 FRF approximation

As analyzed in the previous sections, the nonlinear electrical oscillator (Eq. (7b)) oscillates with a
fundamental harmonic (H1) that responds linearly around its primary resonance Ω ' ω̄e, suggesting
that it can serve as a linear attachment similar to a standard RL-shunt. Thus, we consider here a
tuning of β to have ω̄e = ω̂i: the modified electrical frequency is tuned to the open circuit natural
frequency of the host structure, as a classical linear resonant shunt, expecting similar behavior.

For this tuning case, we are interested in the first harmonic response behavior. Then, we replace
Eq. (7b) by its linear approximation (14). Since the external forcing is only applied on Eq. (7a), the
PE coupling term θ/(LCpi)qi in Eq. (7b) is considered as a forcing term, thus a multiplication by φ1
will be enforced based on the linear approximation in section 2.2.3. In addition, ωe = 1/(

√
LCpi) is

replaced by the modified frequency ω̄e. Thus, we arrive at the following approximation:

q̈i + 2ξiω̂iq̇i + ω̂2
i qi + θi

miCpi
Q = Fi

mi
cosΩt, (18a)

Q̈+ 2ξ̄eω̄eQ̇+ ω̄2
eQ+ ω̄2

eφ1θiqi = 0. (18b)

To simplify the writing of (18a,b), we define the following change of variables:

t̃ = ω̂it, Ω̃ = Ω

ω̂i
, q̃i = √miqi, Q̃ = 1

ω̄e
√
φ1Cpi

Q =
√
L

η
√
φ1
Q, fi = Fi

ω̂2
i

√
mi

, (19)

where the dimensionless time t̃ and frequency Ω̃ are different than those of section 2.2.2. The two
following frequency ratios are also defined:

ri = ωe
ω̂i
, r̄i(β) = ω̄e(β)

ω̂i
, (20)

ri being related to the electrical frequency ωe and r̄i its modified version due to the detuning brought
by the nonsmooth term. One arrives at the following system:

¨̃qi + 2ξi ˙̃qi + q̃i + k̄ir̄iQ̃ = fi cos Ω̃t̃, (21a)
¨̃Q+ 2ξ̄er̄i ˙̃Q+ r̄2

i Q̃+ k̄ir̄iq̃i = 0, (21b)

where the derivatives are with respect to the dimensionless time τ . k̄i is the modified dimensionless
electromechanical modal coupling factor due to the presence of the nonsmooth term defined as:

k̄i(β) = ki
√
φ1(β). (22)

Note that k̄i depends on β, as suggested by the expression of φp in Eq. (17). More importantly, k̄i
is smaller than the unmodified coupling factor ki since φ1 < 1 for for any nonzero value of β, as
illustrated in Fig. 7. The physical meaning of this observation is that the nonsmooth term leads to a
distribution of the energy to different harmonics, contrary to the linear case, where all the energy is
transferred to the fundamental harmonic. Thus, a reduction of energy in the H1 harmonic is observed
and quantified by the gain φ1.

The FRFs of Eqs. (18a,b) reads:

Hq(Ω) = q̊

F
= 1
mi

ω̄2
e −Ω2 + 2jξ̄eω̄eΩ

D(Ω) , HQ(Ω) = Q̊

F
= −ω̄

2
eφ1θi
mi

1
D(Ω) , (23)

with D(Ω) = (ω̂2
i −Ω2 + 2jξiω̂iΩ)(ω̄2

e −Ω2 + 2jξ̄eω̄eΩ)− k̄2
i ω̄

2
e ω̂

2
i and where q̊ and Q̊ are the Fourier

transform of q(t) and Q(t), respectively.



12 Zein A. Shami et al.

3.1.2 Optimal tuning

(a) (b)

Fig. 8: Optimal value βop of β to tune the RL-shunt as a function of (a) ri = ωe/ω̂i and (b) as a
function of the reduction ratio of the shunt inductance with respect to its optimal value for a linear
RL-shunt L0/L.

To obtain the optimal response of our modified RL-shunt, we follow the same optimization procedure
as the one used for classical RL-shunts [2], as recalled in Appendix A. Comparing Eqs. (21) and (A.1),
one observes that (ω̄e, k̄i, ξ̄e) replace (ωe, ki, ξe). Considering first the frequency tuning, the optimal
value for the modified electrical frequency, denoted by ω̄op

e , should satisfy:

ω̄op
e = ω̂i ⇒ r̄op

i = 1. (24)

Then, by substituting ω̄e from Eq. (11) in Eqs. (24), one arrives to the following optimal value of β,
denoted by βop, as a function of the unmodified electrical tuning ratio ri = ωe/ω̂i:

ηop = ω̄op
e

ωe
= ω̂i
ωe

= 1
ri

⇒ βop = 1
2

[
1− 1

(2ri − 1)2

]
. (25)

Notice that (see Fig. 2(b)):

ri ∈ [1,+∞] ⇔ η ∈ [0, 1] ⇔ β ∈ [0, 0.5], (26a)
ri ∈ [0.5, 1] ⇔ η ∈ [1, 2] ⇔ β ∈ [−∞, 0], (26b)

such that ri is necessary larger than 0.5.
The above equations show that the nonsmooth component brings a new degree of freedom in the

tuning of the resonant shunt. In practice, one can adjust the value of the nonlinear gain such that
β = βop (Eq. (25)), bringing the modified electrical frequency close to the mechanical one, such that
ω̄e = ω̂i (r̄i = 1). In practice, a standard RL-shunt is tuned using the value L of the inductance, such
that the electrical frequency is equal to the open-circuit mechanical one: ωe = 1/

√
LCpi = ω̂i. Here,

adjusting the value of β is an additional degree of freedom to tune the RL-shunt. The range of tuning
can be such that ωe > ω̂i (ri > 1): in this case βop > 0; on the contrary, one can have ω̂i/2 < ωe < ω̂i,
leading to βop < 0. This is illustrated in Fig. 8(a), which shows the evolution of βop as a function of
ri.

This new degree of freedom can be used in practice to finely adjust the tuning of an RL-shunt that
has a nonoptimal value of the inductance L. It can also be used intentionally in the case of a low-
frequency mechanical mode that would require a high value of L, often difficult to achieve in practice.
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In this case, one chooses a smaller L than the optimal one and corrects the tuning by adjusting β. To
clarify the reduction in L, we compare it with the required inductance for the optimal condition of
the linear RL-shunt (see Appendix A), denoted by L0. Considering that ωe = 1/

√
LCpi, one has:

L

L0
=
(
ω̄e
ωe

)2

= 1
r2
i

⇒ L = L0
r2
i

. (27)

Thus, the inductance can be reduced by a factor of r2
i compared to that of the linear RL-shunt.

This quadratic law can be very advantageous in practice: for instance, a value of ri = 10 leads to a
reduction in the inductance of a factor L0/L = 100. This is illustrated in Fig. 8(b), which shows βop

as a function of L0/L.

In addition to the frequency tuning, the electrical damping must also be tuned. The optimal value
of the electrical damping ratio ξe and thus of the resistor R are obtained by:

ξ̄op
e =

√
6k̄i
4 ⇒ ξop

e = ηopξ̄op
e =

√
6

4ri
k̄i =

√
6

4ri
ki
√
φop

1 ⇒ Rop =
√

6
2Cpir2

i ω̂i
ki
√
φop

1 , (28)

where φop1 = φ1(β = βop) as defined by Eq. (17). Contrary to the linear RL-shunt, the optimal damping
ratio ξop

e do not depend only on the coupling factor ki, but also on the linear tuning ri = ωe/ω̂i of
the shunt, since φop1 depends on ri through βop (Eq. (25)):

φop
1 =

4∑

m=0
am [2 log10(2ri − 1)]m , (29)

where am are defined in Table 1 for the first harmonic and for β > 0 (ri > 1). For β < 0 (0.5 < ri < 1),
one must change the sign of am for m even, as explained in section 2.2.3.

3.1.3 Performance

(a) (b)

Fig. 9: Optimal attenuation AdB as a function of ri and ki. (a) 3D plot for a linear RL-shunt (blue
surface, β = 0) and for the 1:1 tuning case with the nonsmooth component (red surface), for ξi = 0.01.
The black line denotes the intersection between the two surfaces at ri = 1; (b) AdB as function of ki
for ξi = 0.001 (solid lines), ξi = 0.01 (dashed lines), and ξi = 0.1 (dashed-dotted lines) and for each
value of ξi, for three different values of ri: ri = 10 (in green), ri = 5 (in red), ri = 2 (in blue), and
ri = 1 (in black). The case for ri = 1 denotes also the linear resonant shunt since β = 0.
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The optimal attenuation AdB of the nonlinear RL-shunt, in dB scale, can be obtained using the
procedure of Appendix A by replacing ki by its modified value k̄i. It reads:

AdB = 20 log10
Hq|k̄i=0(Ω̃ = 1)

Hq|ξ̄e=ξ̄op
e r̄i=1(Ω̃ = 1)

= 20 log10

(
1 + k̄i

ξi
√

6

)
= 20 log10

(
1 +

ki
√
φop

1

ξi
√

6

)
. (30)

By substituting Eq. (29) in Eq. (30), we can conclude that in contrary to the linear resonant shunt
case where only ki and ξi are involved, the optimal attenuation depends also on the ratio ri (and thus
on the inductance). In addition, one can expect a reduction of AdB as β increases due to the reduction
of ki by a factor of

√
φ1.

The dependence of AdB on (ki, ξi, ri) is examined in Fig. 9. Classically, one observe that AdB
increases as a function of the coupling factor ki and when the mechanical damping ratio ξi is decreased,
in the same way than for a linear RL-shunt (see Fig. 24 in Appendix A and [2]). On the contrary, the
effect of the nonsmooth term on AdB appears through its dependence on the tuning ratio ri through
φop

1 = φ1(βop). Fig. 9 clearly show that this dependence on ri is very weak since AdB is only slightly
reduced with respect to the linear RL-shunt (with β = 0 ⇔ ri = 1). This is an excellent result since
the huge benefit of being able to decrease a lot the inductance L (ri = 10 ⇔ L = L0/100) is not
counterbalanced by a significant decrease of the performance, of the order of 1 dB.

3.1.4 Numerical validation

In this section, we numerically validate the frequency response and the optimal parameters of our
modified RL-shunt by considering the first twisting mode of the hydrofoil structure that will be
tested experimentally in section 4 (see Fig. 17). The modal parameters corresponding to this mode
are gathered in Table. 3. The numerical results are obtained by solving Eq. (7a,b) with MANLAB,
considering 40 harmonics in the simulations. Then, the frequency responses of the first harmonic
amplitude of the displacement uH1, the charge QH1, and the PE voltage VH1 are obtained. Note that
in what follows, the modal parameters correspond to this particular mode, and thus the subscript i
associated with the modal parameters notations is omitted in the remaining of this section. Note also
that the modal parameters are gathered in Table. 3 follow the normalization of the mode shape such
that ψ = 1 at the point of the structure where the displacement is studied and thus according to
Eq. (1), we have u(t) = q(t).

As a first step, we choose the inductance L such that ωe = 2ω̂ (i.e. r = 2 and L = 0.737 H),
meaning that the linear RL-shunt is overtuned by a factor 2. We correct this overtuning by adjusting
the other parameters at their optimal value: β = βop = 0.444 (Eq. (25)) and ξe = ξop

e (Eq. (28)). The
first harmonics of u(t) and Q(t) in the periodic steady state are shown in Figs. 10(a,b) as a function
of the driving frequency Ω, for three values of the forcing F . Then, in Figs. 10(c,d), the same curves
are plotted normalized by the forcing level F and superimposed to the FRFs Hq(Ω) and HQ(Ω)
(Eqs. (23)) of the linear equivalent system (18a,b). One observes a perfect match, proving first that
the linearity of the response with respect to the excitation level is perfect, as well as the agreement
between the full nonlinear system (7a,b) and its linear approximation (18a,b).

Fig. 11 is analogous to Fig. 10(c,d) and shows how the frequency responses are changed when the
parameters β and ξe are changed around their optimal values βop and ξop

e . Note that we chose to
plot VH1 instead of QH1 since obtaining the order of magnitudes of the voltage will be useful for the
practical realization of the shunt circuit. Those plots are similar to the response of a linear RL-shunt
when ωe and ξe are varied around their optimal value, showing again the equivalence of our modified
RL-shunt to a classical linear RL-shunt.

To validate numerically the dependence of the optimal attenuation on the frequency ratio r and,
thus the inductance, as suggested in Figs. 9(a,b), Fig. 12(a) shows the numerical frequency response
of uH1 normalized with respect to the forcing level for different values of r in which the optimal
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(b)

(a) (c)

(d)

Numerical
Analytical

Fig. 10: (a,b): Numerical frequency response of the first harmonics uH1 and QH1 of u(t) and Q(t)
for increasing excitation levels; (c,d) superposition of analytical (Hq(Ω) and HQ(Ω) from (23a,b) in
dashed blue line) and numerical (uH1/F and QH1/F in solid red line) frequency responses normalized
with respect to the forcing. In the plots, optimal values are used such that β = βop = 0.444 R =
Rop = 237.58Ω, estimated from Eq. (25) and Eq. (28), respectively. The modal parameters used are
the ones gathered in Table. 3 and L = 0.737H ⇔ r = ωe/ω̂ = 2.

conditions are always satisfied (i.e., for each value of r we set R = Rop, β = βop ⇒ ω̄e = ω̂). Similar
to Fig. 11, we consider the first twisting mode of the hydrofoil structure shown in Fig. 17. The results
validate that tuning r to higher values, and thus lower inductance, reduces the optimal attenuation
with respect to that of the RL-shunt while preserving the response shape. In addition, Fig. 12(b)
shows the optimal attenuation AdB as function of r for the RL-shunt with β = 0 (Eq. (A.4)) and
for the shunt with the nonsmooth term Eq. (30). Compatible with the results in Figs. 9(a,b), the
results clearly show that for higher values of r (lower values of inductance), the optimal attenuation
is slightly decreased, compared to the linear RL-shunt, by ' 1dB for a reduction of the inductance by
a factor of 100 for r = 10, compatible with results in Figs. 9(a,b). One can note that the attenuation
predicted in Eq. (30) is numerically validated by a comparison with that obtained numerically, where
an excellent fitting is obtained for different values of r. Note that the numerical attenuation, shown
in circle markers in Fig. (12b), is directly deduced from Fig. 12(a) by the amplitude difference in dB
scale between the open circuit frequency and the optimal response at Ω = ω̄e.
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(a) (b)

(c) (d)

Fig. 11: Numerical frequency response of the first harmonics of uH1 (a,b) and VH1 (c,d) of u(t) and
V (t), both normalized by the excitation level F . The response is shown for different values of β with
R = Rop = 237.58Ω (a,c) and different values of R with β = βop = 0.444 (b,d). The modal parameters
used are the ones gathered in Table. 3 and L = 0.737H ⇔ r = ωe/ω̂ = 2.

3.2 One-to-two tuning of the nonlinear shunt (ω̄e = 1/2ω̂i)

In this section, we examine another possible tuning denoted by two-to-one (2:1) tuning such that ω̄e =
ω̂i/2. Due to the nonlinearities generated by the nonsmooth term, this tuning is expected to activate
a nonlinear modal coupling through a 2:1 internal resonance. As discussed in [19, 20], if quadratic
nonlinear terms are present in Vnl(t), the 2:1 internal resonance leads to create an antiresonance
at which the amplitude of the host structure becomes independent of the forcing level, a so-called
saturation phenomenon. In this section, we investigate the behavior of our system (which includes a
nonsmooth nonlinearity and not a quadratic one) in the same internal resonance condition.

3.2.1 Validation of the occurrence of the 2:1 internal resonance

To validate the energy transfer through the 2:1 internal resonance, we focus on the first harmonic
response of the displacement amplitude uH1 and the first subharmonic response of the charge QH1/2.
We consider them dominant in the Fourier series like in a classical 2:1 internal resonance energy
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(a) (b)

r = 1; L = 2.94H; β = 0

r = 2; L = 0.73H

r = 5; L = 0.118H

r = 10; L = 0.029H

Fig. 12: (a) Numerical frequency response of the first harmonic uH1 of the displacement u(t), normal-
ized with respect to the forcing level F , for different values of the ratio r and by satisfying the optimal
conditions in Eq. (25) and Eq. (28). (b) Optimal attenuation for the case of RL-shunt (Eq. (A.4)) and
the case with the nonsmooth component with one to one tuning (Eq. (30)). The circle markers are
the attenuation obtained numerical frequency responses for each value of r. The modal parameters
used are the ones gathered in Table. (3).

transfer (see [19]) and we express u(t) and Q(t) as:

u(t) = uH1 cos (Ωt− γ2) + oh, (31a)

Q(t) = QH1/2 cos
(
Ω

2 t−
γ1 + γ2

2

)
+ oh, (31b)

where “oh” denotes other harmonics, including the contribution of the H0 and H2 harmonics due to
the presence of the nonsmooth term. γ2 is the phase angle of the first harmonic of the displacement
with respect to the forcing, and γ1 can be considered as the relative phase angle between the two
oscillators, which is proved to be locked at 3π/2 at the antiresonance frequency in the case of 2:1
internal resonance [19].

Similar to the 1:1 tuning case in section 3.1, the electrical frequency is tuned according to the
nonsmooth gain β with no condition on the inductance value. Thus, the 2:1 tuning condition requires
tuning β as:

ω̄e = 1
2 ω̂ ⇒ β = 1

2

[
1−

(
1

4ri − 1

)2
]

(32)

To test the ability of activating the 2:1 internal resonance, we solve numerically the system (2a,b) by
setting β according to Eq. (32) with an arbitrary low electrical damping ratio and using the modal
parameters in Table. 3. In addition, the inductance L = 2.948 H is chosen to have r = ωe/ω̂ = 1.
The results are shown in Fig. 13, which clearly shows that a nonlinear energy transfer occurs from
the first harmonics H1 of u(t) to the subharmonic H1/2 of Q(t). This energy transfer occurs after
pitchfork bifurcation “PF” (or period-doubling bifurcation), in a frequency band centered around the
mechanical resonance, at Ω ' ω̂i.

However, contrary to a classical 2:1 internal resonance produced by quadratic nonlinear terms (as
in [19]), the topology of the coupled response curve is completely different and does not show any
saturation phenomenon. They appear with a shape very close to the response of a linear RL-shunt.
This suggests to consider the second harmonic of Q(t) (which is H1 here) as an equivalent linear
oscillator that can be optimized as a classical RL-shunt to mitigate the resonance of the i-th mode of
the host structure. Following this idea, as seen in Fig. 13(a), the tuning of β according to Eq. (32)
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PF
PFPF

PF
PF

PF

(a) (b)

(c)

Fig. 13: (a) and (b) show respectively the numerical frequency response of uH1 and QH1/2 for increasing
excitation levels. (c) shows the relative phase γ1 between the two oscillators. The linear response is
plotted in black. The stable and unstable responses are depicted in solid and dotted lines, respectively.
The purple star denotes the pitchfork bifurcation (PF). The numerical values used are β = 0.444,
R = 36Ω, L = 2.948H. The modal parameters used are the ones gathered in Table. 3.

and the chosen ξe do not lead to an optimal response, that would be characterized by a symmetric
shape and minimal peaks, as observed in Fig. 11 for the 1:1 tuning case. Thus, an optimization study
is necessary to obtain the optimal values of β and ξe to achieve an optimal attenuation similar to that
of a linear RL-shunt.

Another important feature concerns the relative phase γ1 that locks at 3π/2 at the antiresonance
frequency, independent from the excitation level. This feature was proved analytically and numerically
in [19] with the addition of quadratic nonlinearities in the shunt circuit. As seen in Fig 13c, the
same phase lockage is equally preserved, which can be exploited for tuning the system in practical
implementation, similar to the experimental study in [20].

3.2.2 Optimization study

Similar to the case with 1:1 tuning, the optimization is established through the nonsmooth gain β to
tune the electrical resonance frequency and the electrical damping ratio ξe (thus the resistance R), to
obtain a mechanical frequency response as low and flat as possible. Two points are considered for this
optimization: (i) we are looking for an optimal value of β that symmetrizes the frequency response,
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as for a classical RL-shunt; (ii) the coupled response is obtained through a 2:1 internal resonance, as
observed in the previous section.

As shown in [19], the symmetric response with a 2:1 internal resonance requires a ratio between
the electrical frequency ω̄e and the mechanical one ω̂i to be slightly higher than half (i.e., contrary
to the tuning in (Eq. (32)). The exact value of this ratio, denoted by r∗i , can be estimated by setting
ω2 = 2ω1 where ω2 and ω1 are the natural frequencies in the electro-mechanical basis (see Appendix C
and [19]). The obtained r∗i depends only on the piezoelectric coupling factor ki as follows:

r∗i =

√
1
8

(
17− 25k2

i − 5
√

25k4
i − 34k2

i + 9
)
. (33)

Given the value of r∗i , the optimal value of β is then estimated as:

ω̄op
e = r∗i ω̂i ⇒ ηop = r∗i

ri
⇒ βop = 1

2

[
1−

(
r∗i

2ri − r∗i

)2
]

(34)

Since it is the second harmonics of the charge Q(t) that is coupled to the primary (mechanical)
oscillator, we consider for the optimization its equivalent linear oscillator, as defined by Eq. (14) in
section 2.2.3 with p = 2. Thus, the key point is to modify the piezoelectric coupling through the
gain φ2. Following the same reasoning as in section 3.1.1, the modified PE coupling factor for the
two-to-one tuning case can be expressed as:

k̄i
∗ = ki

√
φ2(β). (35)

We then express the optimal value of ξe (and the resistance R) as follows:

ξ̄op
e =

√
6

4 k̄∗i , ⇒ ξop
e =

√
6r∗i k̄∗i
4ri

=
√

6r∗i ki
√
φop

2
4ri

⇒ Rop =
√

6r∗i
2Cpi

r2
i ω̂i

ki
√
φop

2 , (36)

where φop2 = φ2(β = βop) to satisfy the optimal conditions. Considering Eq. (17) and (34), on has:

φop
2 =

6∑

m=0
am

[
2 log10

(
2ri − r∗i
r∗i

)]m
, (37)

where am are defined in Table 1 for the second harmonic. The optimal attenuation can then be
expressed as:

AdB = 20 log10

(
1 + k̄i

∗

ξi
√

6

)
= 20 log10

(
1 +

ki
√
φop

2

ξi
√

6

)
. (38)

Similar to 1:1 tuning case, the optimal attenuation depends explicitly on ri (thus the inductance)
but with a reduction of the piezoelectric coupling factor by

√
φ2. Thus, a further reduction of the

attenuation compared to that of the linear resonant shunt is expected since φ2 admits an order of
magnitude lower than that of φ1, as suggested in Fig. 7. This is further illustrated in Fig. 14 by
comparing AdB of the 2:1 tuning case and that of a linear RL-shunt.
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(a) (b)

Fig. 14: Optimal attenuation AdB as a function of ri and ki. (a) 3D plot for a linear RL-shunt (blue
surface, β = 0) and for the 2:1 tuning case with the nonsmooth component (red surface), for ξi = 0.01;
(b) AdB as function of ki for ξi = 0.001 (solid lines), ξi = 0.01 (dashed lines), and ξi = 0.1 (dashed-
dotted lines) and for each value of ξi, for three different values of ri: ri = 10 (in green), ri = 5 (in
red), ri = 2 (in blue), and ri = 1 (in black). The case for ri = 1 denotes also the linear resonant shunt
since β = 0.

3.2.3 Numerical validation

In order to validate the results suggested from the optimal analysis, we solve numerically the sys-
tem (7a,b) to obtain the frequency responses of uH1 and VH1/2 for different values of β and R (thus
ξe) including the optimal conditions in Eq. (34) and Eq. (36), respectively. This is shown in Fig. 15
in which we choose the inductance such that r = 1 ⇔ L = 2.948 H.

Similar to the plots in section 3.1.4, we consider the first twisting mode of the foil shown in Fig. 17.
The results clearly suggest that setting R and β according to the obtained optimal conditions en-
ables the recovery of the symmetric behavior and the minimization of the peaks near the resonance
frequency. It is worth mentioning that the response is very sensitive to any small perturbation of the
optimal value of β (observe the very close values of β used in Figs. 15(a,c)).

Regarding the optimal attenuation, one can realize that Eq. (38) shares similar behavior compared
to that of the 1:1 tuning case in Eq. (30) in which the attenuation depends on the inductance.
However, as observed in Fig. 7 and contrary to the behavior of φ1, the value of φ2 increases with
β then tends to admit a constant value as β increases. This suggests that decreasing the inductance
and thus the optimal value of β leads to enhancing the optimal attenuation, contrary to the one-to-
one tuning case. To validate this result, we perform a similar analysis to that in section 3.1.4 (in
Fig. 12) by studying the frequency response of uH1 at the optimal condition with different values of
the inductance. The numerical results in Fig. 16(a) clearly validate the increase of the attenuation
as the inductance decreases, which can also be seen in Fig. 16(b), where the optimal attenuation
is plotted versus the inductance value. In addition, it is realized that the attenuation increases up
to a certain level where it remains almost constant as the inductance decreases. This behavior is
explained by the presence of φ2 in the optimal attenuation expression, which admits the same trend
versus β as shown in Fig. 7. Moreover, comparing the numerical attenuation obtained numerically
and analytically shows an excellent fitting, validating the attenuation expression in Eq. (38). It is
also worth mentioning that the attenuation in this tuning case is reduced compared to the optimized
RL-shunt with a narrower bandwidth due to the substantial reduction of the coupling factor suggested
in Eq. (35) since φ2 admits a very low amplitude.
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(a) (b)

(c) (d)

Fig. 15: Numerical frequency response of the first harmonic of the velocity uH1 (first row) and the
PE voltage VH1/2 (second row), both normalized with respect to the excitation level. The response
is shown for different values of β with R = Rop = 73Ω (first column) and different values of R with
β = βop = 0.4435 (second column). The inductance value used in the simulations is L = 2.94H =⇒
r = ωe/ω̂ = 1. The stable and unstable responses are depicted in solid and dotted lines, respectively.
The displacement and voltage responses are plotted in dB and linear scales, respectively.

3.3 Summary

The introduced nonsmooth term enables tuning the electric resonance frequency of the shunt cir-
cuit while setting a low inductance in the circuit. In addition, it suggests a multi-harmonic response
dominated by the zeroth, first, and second harmonics that appeared to be similar to that of a linear
oscillator. In addition, strong nonlinearities appeared in the superharmonic response. A 1:1 and 2:1
tuning cases has been studied through the approximation of the main system (7a, b) to an approx-
imated system in (18a,b) by modifying (and reducing) the piezoelectric coupling factor by

√
φ1 and√

φ2 for the 1:1 and 2:1 tuning, respectively. In either case, closed-form expressions of the optimal
values of β and R in addition to optimal attenuation are determined and gathered in Table. 2. Con-
trary to the linear resonant shunt, the frequency ratio ri (thus the inductance) appears explicitly in
the attenuation expression. The 1:1 tuning case shows an important feature in which one can reduce
the required inductance by a factor of 100 for an attenuation reduction around 1dB compared to that
of a linear resonant shunt. While for the 2:1 tuning case, a substantial reduction of the attenuation
is observed but with an interesting feature in which the attenuation increases with the reduction of
the inductance up to a certain level where it stays almost constant. The analytical results were then
validated numerically by applying the absorber to attenuate the first twisting mode of a hydrofoil
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(a)

r = 8; L = 0.046H

r = 2; L = 0.73H

r = 5; L = 0.118H
r = 1; L = 2.94H

r = 0.62; L = 7.76H

(b)

Fig. 16: (a) Frequency response of the first harmonic of the displacement, normalized with respect to
the forcing level, for different values of the ratio r and by satisfying the optimal conditions in Eq. (34)
and Eq. (36). (b) Optimal attenuation for the case of RL-shunt (Eq. (A.4)) and the case with the
nonsmooth component with two to one tuning (Eq. (38)). The circle markers are the attenuation
obtained numerical frequency responses for each value of r. The modal parameters used are the ones
gathered in Table. (3).

structure. Considering also the first twisting mode of the hydrofoil, an experimental validation will
be shown in the next section.

Table 2: Optimal parameters and optimal attenuation for the 1:1 and 2:1 tuning cases.

Case Optimal β Optimal R Optimal attenuation [dB]

1:1 tuning βop = 1
2

[
1−
(

1
2ri−1

)2
]

Rop =
√

6
2Cpir2

i
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√
6

√
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1

)

2:1 tuning βop = 1
2

[
1−
(
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√
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2Cpi

r2
i
ω̂i
ki
√
φop

2 AdB = 20 log10

(
1 + ki
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√
6

√
φop

2

)

4 Experimental Validation

4.1 Experimental setup

The experimental tests were conducted on a clamped-free foil structure fixed at its base in a vice, as
shown in Fig. 17. This structure is similar to the one used in [22, 46]. Three PE patches are glued
on cavities machined on the surfaces of the foil: on one face (denoted patches 1, 2), two P-876.A15
DuraAct polymer coated multi-layer piezoelectric patches are used for transduction with the first
bending mode, whereas a macro-fiber composite M8557-F1 with 45◦ fiber orientation is used on the
other face (denoted patch 3) for coupling with the first twisting mode. In all the tests of this article,
only patch 3 is used since we focus on the first twisting mode. Consequently, patch 3 is connected
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to the shunt circuit, and patch 1 and 2 are short-circuited. The three PE patches are from the PI
Ceramic manufacturer.

6

chord length = 85
191

100

60

Coil

Magnet

NL shunt circuit Patches 1, 2

Patch 3

Foil structure

Patch 3

Top view

Fig. 17: Experimental Setup. Dimensions are in mm. The thickness of the PE patches is 1mm.

The mechanical excitation is realized by a coil interacting with a magnet fixed on the foil. The
applied force is proportional to the current in the coil i.e F (t) = αI(t), where α = 0.6 N A−1 [20],
with very low distortion [47]. A Brüel & Kjær 2719 power amplifier, connected to the coil, is used
for all mechanical excitations. The foil vibrations are measured with a Polytec OFV-505 vibrometer,
that provides the velocity of a point colocalized with the magnet location, close to the tip of the
foil. Electrical measurements are performed using a PHILIPS PM 9355 precision current probe in the
piezoelectric circuit to obtain the charge Q(t) and a Française d’Instrumentation ST 500-5 differential
voltage probe to measure the PE patch voltage V (t).

To properly design the nonlinear shunt, we firstly performed an experimental modal analysis, equiv-
alent to that in [20, 22], to obtain the modal characteristics of the first twisting mode of the foil, which
are gathered in Table. 3. Note that since we tackle only the twisting mode, the subscript i will be
omitted in what follows.

Table 3: Electro-mechanical modal parameters.

Parameter ω̌/(2π) ω̂/(2π) ξ m Cp θ k ψ(xm)
Value 509.4 Hz 511.36 Hz 0.0012 10.42 g 32.8 nF 5.2 mN/V 0.0875 1
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Note that ψ(xm) = 1 means that the modal parameters are estimated by scaling the mode shape
at the measurement point of the structure xm to be unity, thus according to Eq. 1, u(t) = q(t) (i.e.,
the same scaling of the mode shape considered in the previous section).

4.2 Nonsmooth shunt circuit

R
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Fig. 18: Shunt circuit schematic.

Table 4: Component values in the nonlinear shunt circuit of Fig. 18

Component R1 [kΩ] R2 [kΩ] R3 [kΩ] C [µF] R5 [kΩ] R6 [kΩ] R7 [kΩ] R8 [kΩ]
Value 2 1 1 10 82 22 10 10

The nonlinear shunt circuit used for the tests is shown in Fig. 18. It consists of three interconnected
sub-circuits to realize (i) a tunable synthetic inductor (outlined in blue); (ii) a voltage measurement
(outlined in orange), and (iii) a nonlinear voltage generator (outlined in light red). To handle the
large voltage levels that can appear, especially during transients, the operational amplifiers OA1 to
OA7 are OPA445 (Texas Instrument) which can operate up to ±40V and supply 15mA to drive the
patches. The synthetic inductor is a so-called Antoniou circuit [48] to achieve the high inductance
value needed to obtain an electrical resonance frequency close to half of the mechanical resonance
frequency. The inductance value is given by

L = R1R2R4C

R3
, (39)

where L is tuned using the variable resistance R4.
As discussed in section 3, the electric resonance frequency is controlled solely with the nonsmooth

gain β according to a free choice of the inductance L. In all the experimental tests in this study, and
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for different tunings of the shunt circuit, the value of L is always chosen to be less than 3 H. For such
values, the parasitic resistance generated by the Antoniou inductor, observed in [20], is to the order
of 0.1Ω and will be neglected here. Thus, the resistor R in the shunt models corresponds to a physical
resistance added to tune the electrical damping. Note that the parasitic resistance is estimated with
a frequency-to-bandwidth ratio of the electrical resonance, close to Ω = ωe, in linear operation, with
β = 0.

The PE voltage measurement is established through two voltage dividers composed ofR5 andR6 and
two voltage followers OA3 to OA4 (OPA445, Texas Instrument) to ensure a large input impedance.
The voltage dividers are used to attenuate the voltage to values compatible with the differential
amplifier DA (INA826, Texas Instrument). Since the PE patch is not grounded, these voltages are
first fed to the differential amplifier DA. The nonsmooth voltage with the absolute function, as in
Eq. (6), is generated through a half-wave rectifier circuit composed of OA5, a diode (1N4002), and
a resistor R7 connected to the ground. The output voltage of the half-wave rectifier circuit is fed to
an inverting amplifier, realized with OA6, to respect the assumed sign convention of the nonsmooth
voltage in (2a,b) and to control the nonsmooth gain β. The follower OA7 is used to minimize the
output impedance while protecting the INA826 from excessive current. The nonsmooth gain β is
controlled according to the variable resistor R9 as:

β = 1
2

(
R6

R5 +R6

)
R9
R8

. (40)

Note that changing the sign of the nonsmooth voltage can be done by flipping the polarity of the diode
without using the inverting amplifier. However, for such a case, the nonsmooth gain will be controlled
either by a voltage divider composed of R5 and R6 or by adding a new voltage divider instead of the
inverting amplifier. In the first case, and for certain values of β, one might risk achieving a voltage at
the input of the DA higher than the operating levels. In the second case, a restriction on the value of
β is presented. Thus, we prefer to use the inverting amplifier so that the sign convention is respected
with easy controllability of the nonsmooth gain.

4.3 Measurement protocol

The experimental tests aim to verify the results suggested theoretically in section 3, and thus we
consider the same tuning cases, namely, the 1:1 and 2:1 tuning. It is proved that the former case
leads to a fully linear response near the resonance frequency while the latter activates the 2:1 internal
resonance and thus leads to the response of the subharmonic of the charge. Since the mode shape is
scaled to verify ψ(xm) = 1, we express the time signals of the displacement u(t) and the charge Q(t)
for the 1:1 tuning as:

u(t) = uH1 cos(Ωt− δ1) + oh, (41a)
Q(t) = QH1 cos(Ωt− δ2) + oh, (41b)

and for the 2:1 tuning case, we include the subharmonic response such that [19]:

u(t) = uH1 cos(Ωt− γ2) + uH1/2 cos
(
Ω

2 t−
γ1 + γ2

2

)
+ oh, (42a)

Q(t) = QH1 cos(Ωt− γ2) +QH1/2 cos
(
Ω

2 t−
γ1 + γ2

2

)
+ oh, (42b)

where uH1 and uH1/2 are respectively the amplitude of the first and subharmonic of the displacement
and QH1 and QH1/2 are respectively the amplitude of the first and subharmonic of the charge. δ1 and
δ2 are the phase angles of first harmonic of u(t) and Q(t) for 1:1 tuning case. γ2 is the phase angle of
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the first harmonic of u(t) for the 2:1 tuning case. Note that δ1, δ2, and γ2 are measured with respect to
the forcing. γ1 is the relative phase angle between the first and the subharmonic, which is estimated to
be locked at 3π/2 at the antiresonance frequency associated with the 2:1 internal resonance [19, 20].
“oh” denotes the other harmonics, in particular, the zeroth and the second harmonics, generated due
to the nonsmooth component.

In practice, the amplitude and phase angles of the harmonics of u(t) and Q(t) can be obtained by
measuring the foil tip velocity v(t) with the laser vibrometer and the voltage across the PE patch
terminals V (t) using the differential voltage probe (see the procedure in [20]). In what follows, we
chose to show the experimental frequency response of uH1, instead of vH1, in both tuning cases because
it will be more convenient to validate the optimization results suggested theoretically (see Table. 2).
In addition, we chose to show VH1 and VH1/2 in the 1:1 and 2:1 tuning cases, respectively, instead of
QH1 and QH1/2, since it will be useful to obtain the voltage level to ensure that it does not exceed
the operating limits of the operational and differential amplifiers in the shunt circuit (see Fig. 18).
Indeed, the subharmonic response is measured for the 2:1 tuning case to validate the energy transfer
and, thus, the activation of the 2:1 internal resonance.

Note that in either tuning case, the frequency responses will be shown normalized with respect to
the forcing, following the results in section 3, which suggest that the response curves are linear with
respect to the excitation. To estimate the forcing F in [N], the current I in the coil is measured using
a PHILIPS PM 9355 precision current probe, then the relation F = αI is used.

To establish the amplitude and phase frequency responses, we consider two different procedures
for the 1:1 and 2:1 tuning cases. In the former case, the frequency response is directly estimated
by exciting the foil with a chirp signal of time-varied excitation frequency using the coil/magnet
system. This method can be extended to realize the frequency response for the 1:1 tuning case since
it is proved in section 3.1 that the response is fully linear near the resonance frequency (i.e., no
bifurcations or change of stability). In addition, we consider the first harmonics to be dominant in
comparison with the zeroth and second harmonics for the range of β used in this study. Thus, the
multi-harmonic nature of the response at the steady state will not lead to a significant effect on the
measured frequency response. In the 2:1 tuning case, the chirp signal method is not suitable due to the
bifurcation and change of stability associated with the response. Thus the sine-stepped method is used
instead, similar to that in [20]. Namely, a sine current with fixed intensity is fed to the coil/magnet
device to generate a harmonic force F = F0 cosΩt. Then, the excitation frequency Ω is increased (or
decreased) by steps, keeping the intensity fixed, sweeping a domain close to the resonance frequency
of the first twisting mode of the foil. For each frequency, the harmonics amplitude and phases of
the velocity (thus the displacement) and the PE voltage are extracted in the steady state using the
demodulation technique explained in [20]. The input/output signals were synthesized/measured with
National Instrument cards (NI-9234, NI-9263) driven by a Matlab program.

5 Experimental Results

5.1 Experimental validation of the theoretical results

In order to validate the numerical predictions in section 3 and, in particular, the estimated optimal
parameters, a comparison between the numerical and experimental results is presented in Fig. 19 for
the 1:1 and 2:1 tuning cases. In the former case, the frequency responses of uH1 and VH1 in addition
to δ1 are shown. In the latter case, uH1 and VH1/2 in addition to the phase γ1 and γ2 are presented.
Moreover, in the 1:1 tuning case, the inductance L = 0.73H is chosen such that r = ωe/ω̂ = 2 while
for the 2:1 tuning case, L = 2.94H is chosen such that r = ωe/ω̂ = 1. In either case, the values of β
and R are set according to their optimal conditions gathered in Table 2.
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(a)

(c)

(b)

Fig. 19: Comparison between the numerical (dashed lines) and experimental (solid lines) frequency
responses. In (a), the response of uH1 is shown for the 1:1 tuning (in green) and 2:1 tuning (in red),
respectively. The short and open circuit responses are shown in gray and black lines, respectively.
In (b), the phase δ1 is shown for the linear case (in black) and for the 1:1 tuning (in green) in
addition to γ2 (in red) and γ1 (in purple) for the 2:1 tuning. In (c), the responses of VH1 and VH1/2
are shown for the 1:1 tuning (in green) and 2:1 tuning (in red), respectively. For the 1:1 tuning
case, we set L = 0.73H,β = βop = 0.444, and R = Rop = 237.5Ω. For the 2:1 tuning case, we set
L = 2.94H,β = βop = 0.4435, and R = Rop = 73Ω. The modal parameters used in the numerical
simulations are gathered in Table 3.

For completeness and comparison purposes, both the linear and the nonlinear frequency responses
are depicted. The linear ones are estimated with the PE patch 3 in open and short circuit config-
urations. Comparing the numerical and the experimental results of the linear responses shows an
excellent fitting validating the modal parameters estimated in Table 2 and the inductance tuning
with the Antoniou inductor.
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Regarding the nonlinear responses (i.e., with the nonsmooth component included in the shunt), the
numerical and experimental frequency responses of the displacement, PE voltage, and phase angles
suggest an excellent agreement for the 1:1 and 2:1 tuning cases. The following major points, suggested
numerically in section 3, are validated: i) the response of uH1 for both tuning cases suggests a curve
shape similar to that of the resonant shunt. ii) the estimated optimal parameters of β and Re lead to
the optimal response for both tuning cases since the response curves of uH1 show a symmetric behavior
with respect to the resonance frequency with the amplitude of the two peaks around primary resonance
is minimized. iii) Although an equivalent response shape compared to the RL-shunt is observed, the
amplitude of uH1 in the 1:1 tuning case admits slightly higher amplitude while a substantial increase in
the amplitude is observed for 2:1 tuning case. This suggests different attenuation abilities for the two
tuning cases, which is further discussed in section 5.3. vi) the response of the voltage subharmonic for
the 2:1 tuning validates the energy transfer and the activation of the 2:1 internal resonance. It can be
realized the substantial increase in the order of magnitude of VH1/2 compared to VH1 of the 1:1 tuning
case. v) the last major point concerns the phase angles. It appeared that in the optimal condition, the
first harmonic phase angle of the displacement for both tuning cases (i.e., δ1 and γ2) are equal at the
resonance frequency. Thus, if the first harmonic is dominant, the displacement signals corresponding
to the two tuning cases will be in phase (see Fig. 20(a)). In addition, the relative phase angle γ1, only
defined for the 2:1 tuning case, admits a value of 3π/2 at the antiresonance frequency, equivalent to
the results obtained in [19, 20] when quadratic nonlinearities are introduced in the shunt.

(a) (b)

Fig. 20: (a) and (b) show respectively the measured time signals of the velocity and the PE voltage for
the 1:1 tuning (in green) and 2:1 tuning (in red) at Ω = ω̂ = 511.3× (2π) rad/s with excitation level
F = 5.2 mN. For the 1:1 tuning case, we set L = 0.73H, β = βop = 0.444, and R = Rop = 237.5Ω.
For the 1:1 tuning case, we set L = 2.94H,β = βop = 0.4435, and R = Rop = 73Ω.

The time signals of the velocity v(t) and the PE voltage V (t) are shown in Fig. 20 for the tuning
cases in addition to the linear response in the open circuit configuration. The signals are recorded at
the open circuit frequency (i.e., Ω = ω̂ = 511.3× (2π) rad/s). The signals clearly show that for the 1:1
tuning case, the switching effect between two resonance frequencies (i.e., ωe and ω′e in Eq. (9)) appears
clearly in PE voltage signals with a slight effect in the velocity signal. In addition, one can realize
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that the velocity signals of the 1:1 tuning and 2:1 tuning in Fig. 20(a) are in phase at the resonance
frequency, as suggested in Fig. 19(b). Also, one can clearly observe the presence of the subharmonic in
the voltage and velocity signal in the 2:1 tuning case in Fig. 20(b), following the expressions in (42a,b).

5.2 Effect of the design parameters

(a) (b)

(c) (d)

Fig. 21: Experimental frequency response of the first harmonic of the velocity uH1 (first row) and
the PE voltage VH1 (second row), both normalized with respect to the excitation level, for the 1:1
tuning case. The response is shown for different values of β with R = Rop = 237.58Ω (first column)
and different values of R with β = βop = 0.444 (second column). The inductance value used in the
simulations is L = 0.737H =⇒ r = ωe/ω̂ = 2. The displacement and voltage responses are plotted
in dB and linear scales, respectively.

This section is devoted to show the tuning effect of the design parameters, namely the resistor in
the shunt R (thus ξe) and the nonsmooth β. Thus, we performed two sets of experiments. In the first
set, we considered three different values of β, including its optimal value, and we fixed the R at the
optimum value. Similarly, in the second set, we considered three different values of R, including its
optimal value, and we fixed β at its optimum value. We show in Fig. 21 the frequency responses of
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uH1 and VH1 for the 1:1 tuning case and in Fig. 22, we show the frequency responses of uH1 and VH1/2
for the 2:1 tuning case. Regarding the value of the inductance, we consider the same setting as in
Fig. 19 for both tuning cases.

One can realize from Figs. 21(a),(c) and Figs. 22(a),(c) that the response is very sensitive to β since
it appears that any small perturbation of the optimal value of β in both tuning cases can break the
response symmetry (i.e., the two peaks around the primary resonance admit different amplitudes) and
thus shift the antiresonance from the resonance frequency. As β is varied with the resistance R9 in the
shunt circuit (see. Fig. 18), the value of this resistance should be set in a precise manner. The results
in Figs. 21(b),(d) and Figs. 22(b),(d) show that setting a resistance lower than the optimal value in
the shunt leads to an increase in the peaks’ amplitude around the primary resonance with a decrease
in the amplitude of the antiresonance. However, setting a higher value leads to the appearance of one
peak near the resonance frequency in which no antiresonance is detected. The experimental results
clearly validate the numerical ones in Fig. 11 and Fig. 15 for the 1:1 and 2:1 tuning cases, respectively.
In addition, it is validated that the behavior with respect to β and R is equivalent to that of the linear
RL-shunt but with the main difference that the tuning parameter in our case is β instead of the
inductance (see Appendix A).

5.3 Discussion about the optimal attenuation

The main advantage suggested by the absorber is the ability to choose the inductance to be lower
compared to that required by the RL-shunt, in which the electric resonance frequency is tuned with the
nonsmooth gain β. Thus, it is necessary to experimentally validate the effect of the inductance value
on the optimum attenuation suggested with the nonsmooth component. The analytical expressions
of the optimal attenuation in Table 2 show that the inductance appears explicitly through the gain
φ1 and φ2 for the 1:1 and 2:1 tuning cases, respectively. To validate those results, we measure the
frequency response of uH1 considering the two tuning cases for different values of the inductance. The
results are shown in Fig 23(a) and (b) for the 1:1 and 2:1 tuning, respectively. For each value of the
inductance, we correct β and the value of R to respect the optimal condition. The 1:1 tuning suggests
that the attenuation decreases as the chosen inductance in the circuit is reduced. On the contrary,
the 2:1 tuning case suggests an increase of the attenuation, accompanied by a narrower bandwidth, as
the inductance is reduced up to a certain level where the attenuation appears to stay constant around
22dB. Indeed, the optimal attenuation for both tuning always admits a value lower than that of the
linear RL-shunt.

This attenuation behavior for both tunings is predicted through the expressions in Table. 2 as shown
in Fig. 23(c) (see the solid and dashed lines). For clarity, the optimal attenuation is plotted versus
the frequency ratio r instead of the inductance. Those two quantities are related by r = ωe/ω̂ =
1/(ω̂LCp). As the results in Figs 23(a) and (b) are shown in the dB scale, the optimal attenuation,
measured experimentally, is obtained by subtracting the amplitude of the linear response from that
corresponding to the nonsmooth response, both measured at the resonance frequency (similar to
the plots in Fig. 12 and Fig. 16). This is repeated for different values of inductance, in which the
results are then plotted in Fig. 23(c) (with circle and diamond markers). Clearly, for both tunings,
the experimental results follow the same pattern suggested analytically with a small discrepancy,
especially for the 2:1 tuning. Realize also that we were able to reach an inductance reduction by a
factor of 64 compared to that required by the linear resonant shunt with a reduction in the attenuation
around 0.8dB for the 1:1 tuning case. A further reduction in the inductance was hard to be achieved
in practice since it requires a value β more closer to 0.5, which can lead to unstable response.

It is worth mentioning that not only the attenuation depends on the tuning of β but indeed the
whole dynamics. For example, if we consider the case with the inductance L = 0.11H (red curve in
Fig. 23(a),(b)), the transition between the 1:1 tuning (i.e., fully linear behavior near the resonance
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(a) (b)

(c) (d)

Fig. 22: Experimental frequency response of the first harmonic of the velocity uH1 (first row) and the
PE voltage VH1/2 (second row), both normalized with respect to the excitation level, for the 2:1 tuning
case. The response is shown for different values of β with R = Rop = 73Ω (first column) and different
values of R with β = βop = 0.4435 (second column). The inductance value used in the simulations is
L = 2.94H =⇒ r = ωe/ω̂ = 1. The displacement and voltage responses are plotted in dB and linear
scales, respectively.

frequency) to the 2:1 tuning (i.e., activation of the 2:1 internal resonance) required a change of β
by around 1%. Thus, a high precision in the value of β is required to obtain the required behavior
associated with each tuning case which is challenging in practice.

6 Conclusion

In this article, a new nonlinear piezoelectric shunt was proposed, based on the intentional use of a
bilinear component in the electrical circuit. This nonlinear component has three important properties.
The first one is to create an apparent electrical oscillation frequency ω̄e with a value that can be
adjusted with the gain β, thus creating a tunable oscillator. The second property is that its response
is fully linear in amplitude: despite its nonsmooth nature, no strong nonlinear behavior was observed.
The nonlinearity appears through the creation of harmonics in the response of the system, mainly of
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(a)

(b) r = 1; L = 2.94H

r = 2; L = 0.73H

r = 5; L = 0.118H r = 8; L = 0.046H

r = 1; L = 2.94H

r = 2; L = 0.73H

r = 5; L = 0.118H

r = 8; L = 0.046H

(c)

Fig. 23: (a) and (b) show the experimental frequency response of the first harmonic of the velocity
uH1 for different values of the inductance for the 1:1 and 2:1 tuning, respectively. (c) Comparison
between the optimal analytical attenuation and that measured experimentally for both tuning cases.

even order, because of its non-symmetric characteristic. The third property is that the behavior of
the harmonics can be approximated by independent linear oscillators. Mixing those three properties,
it was shown that the behavior of our shunt is (i) equivalent to a standard RL-shunt with (ii) the
noteworthy property of being tunable using the gain β.

We investigated two possible tuning of the shunt. The first (classical) one is a 1:1 tuning, for which
the apparent electrical frequency is tuned equal to the mechanical resonance frequency to mitigate
(ω̄e = ω̂i). In this case, it was shown that it is possible to detune the RL-shunt by a factor ri = ωe/ω̂i
between 0.5 and 10 (in theory up to +∞) without changing the amplitude reduction performance
significantly: only a 1 dB decrease was observed. This tuning ability can be a considerable advantage
in practice since it substantially decreases the inductance L of the shunt by a factor r2

i , i.e., up to a
factor 100 if ri = 10.

The second tuning case, relying on a 2:1 internal resonance (the apparent electrical frequency is
tuned equal to half the mechanical resonance frequency to mitigate, ω̄e ' ω̂i/2), shows a similar RL-
shunt behavior though relying on a purely nonlinear process of energy transfer between two frequency
bands, from the driving frequency Ω to its subharmonic Ω/2. However, the performances are decreased
since they rely on the energy transfer between the oscillators, which is weaker in the case of a 2:1
tuning with respect to the 1:1.

Even if strongly nonlinear behavior were not at hand, this nonsmooth component could pave the
way for future studies involving energy harvesting and the possibility of adding quadratic and cubic
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nonlinearities with the nonsmooth component in the shunt circuit to possibly obtain a response
similar to an RL-shunt but associated with a saturation phenomenon. In addition, due to the multi-
harmonic response generated by the nonsmooth component, and also the possible design of other
nonsmooth laws for the component, the tuning cases shown in this study are not unique. One can
test the possibility of other types of nonlinear modal coupling through a 1:3 internal resonance (i.e.,
ω̄e = 1/3ω̂) or 1:2 internal resonance (i.e., ω̄e = 2ω̂). The analysis of other types of internal resonance
with the nonsmooth component is left for future studies.
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Appendix A: RL-shunt response and optimization: reference solution
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Fig. 24: (a) Typical FRF of the RL-shunt in the optimal case. (b) Attenuation A as function of k for
different mechanical damping factor ξi.
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In this section, we recall the response of a mechanical system coupled to a RL-shunt. We thus consider
Eqs. (21a,b) without the nonsmooth term (i.e., β = 0 ⇒ r̄i = ri, k̄i = ki), which reads:

¨̃qi + 2ξi ˙̃qi + q̃i + kiriQ̃ = fi cos Ω̃t̃, (A.1a)
¨̃Q+ 2ξeri ˙̃Q+ r2

i Q̃+ kiriq̃i = 0. (A.1b)

The mechanical FRF is thus:

Hq(Ω̃) = ω̂2
imi

q̊

F
=

r2
i − Ω̃2 + 2jΩ̃ξeri(

1− Ω̃2 + 2jΩ̃ξi
) (
r2
i − Ω̃2 + 2jΩ̃ξeri

)
− k2

i r
2
i

, (A.2)

where q̊i(Ω̃) is the Fourier transform of qi(t).
As a classical result (see e.g., [2]), it is possible to choose the electrical frequency ωe and the damping ratio ξe

such that the amplitude of the i-th resonance of the elastic structure is minimized and has a blunt shape, shown
in Fig. 24(a). The optimal values of ωe and ξe are:

ωop
e = ω̂i ⇒ rop

i = 1; ξop
e =

√
6ki
4

. (A.3)

Then, as in [2], a performance indicator of the RL-shunt can be defined as the difference, in dB, between the
amplitude at the resonance of the mechanical oscillator without shunt (for instance, with the shunt in open-circuit)
and the maximum amplitude of the blunt shunt with the optimal RL-shunt. Here, to simplify, we define the latter
as the amplitude at the open circuit frequency, i.e., for Ω = ω̂i (Ω̃ = 1). The optimal attenuation AdB is then
estimated with Eq. (A.2) as:

AdB = 20 log10
Hq |ki=0(Ω̃ = 1)

Hq |ξe=ξop
e ,ri=1(Ω̃ = 1)

= 20 log10

(
1 + ki

ξi
√

6

)
(A.4)

Eq. (A.4) suggests that the attenuation is solely function of the mechanical damping factor ξi and the piezo-
electric coupling ki, as shown in Fig. 24(b). Note that the above expression for AdB is taken at the open circuit
frequency and not at the frequency of the fixed points as in [2] to obtain a simpler expression whose numerical
value is very close.

Appendix B: Regularization of the nonsmooth term and implementation in MANLAB

The numerical results in this work were all obtained using Manlab, which requires regularization of the nonsmooth
term associated with the absolute value function of the piezoelectric voltage |V |. As a first step, we define a new
variable y as:

y = |V | =⇒
{
y = −V if V < 0,
y = V if V > 0.

(B.1)

Then, the regularization is obtained through the following equation:

(y − V )(y + V ) = δ =⇒ y2 − V 2 − δ = 0, (B.2)

where δ ∈ R is the regularization parameter. As seen in Fig. 25, if δ = 0, the solution is equivalent to y = |V |. For
a small value of δ, the angular point at V = 0 of the graph of the absolute value function is replaced by a smooth
curve that gets closer to the nonsmooth exact one as δ approaches zero.

Upon obtaining the regularization, the two degree of freedom system in (2a,b) is implemented in MANLAB
in the first order form considering four main variables (q, Q, v, w) and two auxiliary variables (V , y) [45]:





q̇i = v,

Q̇ = w,

v̇ = −2ξiω̂iv − ω̂2
i qi −

θi

miCpi
Q+ F

mi
cosΩt,

ẇ = −2ξeωew − ω2
eQ−

θi

LCpi
qi −

β

L
(y + V ) ,

0 = V − 1
Cpi

(Q+ θiqi) ,

0 = y2 − V 2 − δ,

(B.3a)
(B.3b)

(B.3c)

(B.3d)

(B.3e)

(B.3f)



38 Zein A. Shami et al.

Fig. 25: Graph of the function y = |V | and its regularized versions for different values of δ.

where Eqs. (B.3a,b,c,d) are the main equations and Eqs. (B.3e,f) are the auxiliary equations introduced to obtain
the voltage V and the regularization variable y.

Appendix C: Tuning ratio for the 2:1 tuning

Following the reasoning used in [19], we consider the linear system (21a, b). Since the stiffness part is not diagonal,
it is possible to compute its two dimensionless frequencies, which read:

ω2
1 =

1 + r̄2
i −
√
∆

2
, ω2

2 =
1 + r̄2

i +
√
∆

2
, (B.4)

with ∆ = (1− r̄2
i )2 + 4k̄2

i r̄
2
i . Enforcing ω2 = 2ω1, one arrives to the following order 2 polynomial in r̄2

i :

4r̄4
i + (25k̄2

i − 17)r̄2
i + 4 = 0, (B.5)

that have two roots. r∗i of Eq. (33) is the one which is smaller than 1, close to 0.5.



6.2. A NONLINEAR TUNABLE PIEZOELECTRIC RESONANT SHUNT USING A
BILINEAR COMPONENT: THEORY AND EXPERIMENT
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Conclusions

Main results

This thesis is part of a larger project interested in reducing the vibration of lifting surfaces. In

the scope of this project, it was planned to make a demonstrator on a hydrofoil. Hydrofoils are

lifting structures that are usually mounted at the boat hull to generate a lift force. Consequently, the

contact area between the water and the boat is minimized, leading to the reduction of the drag force.

The main problem that this thesis aims to solve is the strong vibration levels, in particular, induced

flow vibrations, to which hydrofoils are subjected in certain flow regimes. Such high-level vibration

levels can cause several problems, such as high-stress levels and fatigue, that can reduce the overall

performance substantially. As conventional mechanical dampers cannot be easily implemented in such

thin structures, the technique proposed in this project is based on the use of piezoelectric resonant

shunt absorbers. This technique mainly consists of connecting a shunt circuit to the host structure

through a piezoelectric patch. The latest is simply glued on the structure at relevant places to maximize

the energy conversion from the mechanical domain to the electrical domain. The main novelty proposed

in this thesis is the intentional addition of a nonlinear component in the shunt circuit to exploit

some properties of nonlinearly coupled oscillators to enhance the absorber’s performance. The main

feature that this thesis focused on is the saturation phenomenon in which the oscillation amplitude

remains constant as the excitation level increases. It should be noted that this, therefore, assumes

an attenuation that is all the more effective as the excitation is high, which is of course impossible

to achieve in the linear case. It should be also noted that the considered excitation considered is of

sinusoidal type.

Another constraint of the project is to avoid a displacement or velocity feedbacks as was done

in [147]–[151] which can be very difficult for applications involving the usage of the hydrofoil. Instead,

the main circuit architecture of the nonlinear shunt circuits proposed in this thesis is composed of a

resonant shunt (i.e., a resistor in series with an inductor) connected in series with a nonlinear voltage

source. It was thus necessary to modify the initial quadratic nonlinearity to achieve saturation in
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practice. Based on the type of the introduced nonlinearity in the circuit, we considered three different

designs. The first circuit has only a quadratic nonlinearity by drawing directly from theory, but due to

practical limitations, it has performance degradations of the nonlinearity. The second design includes

a modified nonlinearity that is a superposition of quadratic and cubic types in order to partially fix

the problem. The last design includes a nonsmooth nonlinear component mathematically expressed

by an absolute value function of the voltage across the piezoelectric patch. This circuit was initially

motivated by a simpler realization and potentially supporting higher voltages.

First design: considering only quadratic nonlinearity

The theoretical analysis of the first design, discussed in chapter 2, aims to study the absorber

performance and conclude guidelines for practical implementation. Adding a nonlinearity of quadratic

type in series with the usual resonant circuit aims to create a 2:1 internal resonance between a given

mechanical mode of the structure and an electrical mode associated with an electrical shunt circuit

tuned at the order two subharmonic. Despite the apparent difference in the structure of the system,

it is theoretically demonstrated that the primary resonance of the first harmonic of the displacement

is replaced by an antiresonance associated with an amplitude saturation. The energy injected into

the system is thus transferred to the subharmonic of the charge. The study of the design parameters,

namely the electrical damping ratio ξe, the nonlinear gain β, and the modal piezoelectric coupling factor

ki showed that enhancing the attenuation relies on decreasing the ratio ξe/(kiβ) as much as possible.

In addition, numerical simulations have revealed much more complex behaviors where the symmetric

feature of the analytical models considering only the resonant quadratic terms is lost. The main

drawbacks are the violation of the saturation phenomenon due to the shifting of the antiresonance as

the excitation level increases and the additional peak observed in the displacement frequency response

near the primary resonance. The simulation also helped to attribute the cause to the nonresonant

terms that admit a very high value which is unavoidable with this shunt design.

Thus, an antiresonance correction is proposed and numerically tested on a real structure that relies

on properly tuning the inductance at each excitation level. This is possible since the antiresonance

is characterized by a phase between the electrical and mechanical modes of 3π/2. This way, the

saturation is recovered; however, quasi-periodic regimes may appear.

The experimental proof of concept of the first design is discussed in chapter 3 in which the absorber

is tested to attenuate the first bending mode of a cantilever beam structure excited with a mono-

harmonic sinusoidal forcing. The frequency responses of the first harmonic of the displacement uH1

and the subharmonic of the piezoelectric voltage VH1/2 are measured using a demodulation technique

to validate the energy transfer between the harmonics. The quadratic nonlinearity in the circuit is

generated using an analog multiplier. The high inductance is realized with a synthetic inductor which

introduces a parasitic resistance, increasing ξe, which can be balanced by increasing the nonlinear gain
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β, without the usage of a negative resistance.

The numerical results are validated experimentally by the excellent matching between the numerical

and the experimental frequency responses. In addition, the effect of the design parameters is also

experimentally validated, and the symmetry breaking of the frequency response with the antiresonance

shifting is observed. The proposed antiresonance correction based on the relative phase between uH1

and VH1/2 discussed above is also verified. By comparing the performance of the designed nonlinear

absorber with that of an optimized linear shunt, higher attenuation near antiresonance is obtained,

although less efficient for broadband attenuation due to the appearance of an extra peak near the

primary resonance.

Second design: saturation correction through a cubic nonlinearity

A more rigorous understanding of the effects of the nonresonant quadratic terms on the dynamics is

required to obtain a better performance and propose a more efficient strategy to correct the saturation

in practice. This is discussed in chapter 4 using the normal form approach. Namely, we considered a

two degrees of freedom system equivalent to that obtained in the electromechanical basis discussed in

chapter 2 where additional cubic nonlinearities are taken into account. The analysis with the normal

form enabled the analytical estimation of the nonlinear normal modes (NNMs) of the system in the

case of 2:1 internal resonance. These calculations reveal two families of backbone curves depending on

the phase angle between the two oscillators, and in addition, the effect of the nonresonant quadratic

terms is also illustrated. Namely, they induced a curvature of the backbone curves, which explains the

loss of symmetry. Thanks to the obtained analytical expressions, we proposed a strategy to recover

the symmetric property of the backbones by balancing the cubic resonant terms with the quadratic

nonresonant terms so that the effect of the latter terms in the normal form basis is eliminated. By

doing so, the symmetric property of the forced solution is preserved, and consequently, the satura-

tion phenomenon is recovered. Numerical simulation of the proposed tuning suggests the saturation

recovery up to a high excitation level.

Motivated by this result, a modified circuit was designed and experimentally tested in chapter 5

to damp the first bending mode of a hydrofoil structure. The quadratic and cubic nonlinearities are

chosen proportional to the square and cubic of the voltage across the piezoelectric patch, and they

are tuned by two gains βq and βc, to control the quadratic and cubic nonlinearities, respectively. In

practice, only one out of four nonresonant terms of the normal form can be compensated. Hence this

validation concentrates on the dominant one, which gives the simple relationship βc = 10/9β2
q . The

measured frequency response of the first harmonic of the velocity and the subharmonic of the charge

validated the recovery of the symmetric property of the response with the estimated tuning of βc . In

addition, the experimental results validated the recovery of the saturation phenomenon up to a certain
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excitation level is also verified.

Third design: resonant shunt circuit with nonsmooth component

The third design studied in this thesis involves introducing a nonlinear nonsmooth component in

the shunt circuit. Initially, this idea arose from the fact that it quickly became apparent that the

voltages involved in previous tests push op-amps to their limits. The proposed circuit was inspired by

the so-called half-wave rectifier. Indeed, based on the antiresonance waveforms, it can be seen that

the effect of the subharmonics produced by the nonlinear coupling is to dissymmetrize the voltage

across the terminals of the piezoelectric patch. The idea is therefore to introduce in series with the

piezoelectric, a semi-rectified voltage driven by its own voltage, and modulated by a gain to weight its

effects.

The theoretical study is performed in chapter 6 in which the nonsmooth component is set to be

proportional to the superposition of the piezoelectric voltage and its absolute value function. The

nonsmooth component then enables a continuous switching of the stiffness associated with the electric

circuit according to the voltage sign. In addition, introducing a nonsmooth term can create even

harmonics, since it is not symmetric, in the same way as quadratic nonlinearities. Since the analytical

treatment of the governing equations with the nonsmooth term can be very complicated, we simplified

the analysis by studying the dynamics of a one degree of freedom oscillator, including the nonlinearity

as a nonsmooth voltage source. A solution for the free oscillations of the system can then be obtained,

and it demonstrates that their frequency is directly controlled by the gain β. An immediate interest in

this result concerns one of the problems of shunts at low frequency: it becomes possible to use smaller

inductances, which can be easier to realize in practice.

Considering the forced response with mono-harmonic sinusoidal excitation, the numerical results

show a multi-harmonic response in which the harmonics admit a linear resonance shape near the

resonance frequency ω̄e. In addition, the amplitude of the harmonics appeared to be linear with respect

to the excitation level. However, a strong nonlinear response of the superharmonics is obtained due to

the strong nonlinearities presented by the nonsmooth term. The suggested linear behavior led to the

approximation of the zeroth, first, and second harmonics by a linear oscillator. The energy distribution

to each harmonic is quantified by a gain ϕp for the p-th harmonic. The approximation is then extended

for the full system through the introduction of a modified piezoelectric coupling of the form ki
√︁
ϕp

lower than the initial coupling factor ki. Two frequency tuning are then considered using β, a 1:1

tuning (ω̄e = ω̂i) and 2:1 tuning (ω̄e = ω̂i/2). The former case behaves linearly near the resonance

frequency, while the latter comprises a transfer of energy towards the sub-harmonic by an internal

resonance 2:1; however, the branches of the bifurcations admit a linear behavior with respect to the

excitation. Thus, for the 2:1 internal resonance, the saturation phenomenon disappears. Optimal
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study is performed for either cases by considering a modified piezoelectric coupling ki
√
ϕ1 for the 1:1

tuning case and ki
√
ϕ2 for the 2:1 tuning. Contrary to linear resonant shunts, the inductance appeared

explicitly in the expressions of the optimal attenuation AdB for both cases. The main observation is

that AdB is reduced with the decrease of the inductance for the 1:1 tuning case in an opposite manner

for the 2:1 tuning case. In addition, the 2:1 tuning case shows a lower performance with shorter

attenuation bandwidth due to the substantial reduction of the coupling factor associated with
√
ϕ2.

The nonlinear shunt with the nonsmooth component is also validated experimentally, in which the

two possible tunings, the 1:1 and 2:1 tunings, are considered. The shunt circuit is illustrated in which

the nonsmooth component is analyzed with a diode. The absorber is applied to attenuate the first

twisting mode of the hydrofoil. The experimental frequency response curves validated the numerical

prediction in addition to the optimal parameters estimated in the theoretical analysis.

Perspectives

Presently, the various set-up for the nonlinear shunts has been studied theoretically and validated

under very controlled conditions. In addition, the tests on the foil structure were not conducted in

water medium. In the context of controlling the foil in more realistic conditions, the interactions

with the fluid might behave very differently than the mono-frequency excitation used in this work.

Moreover, the fluid is known to alter directly some parameters, such as the modal mass, which make

the tuning even more challenging.

The first important step to be performed involves the experimental validations of the design of

nonlinear shunts with hydrofoil placed in a water medium. The preliminary study to perform such a

step should include a fluid-structure interaction analysis to analyze the vortex shedding in the laminar

and turbulent flows and its effect on the vibrations and the piezoelectric coupling factor. In addition, a

sensitivity analysis of the electromechanical modal parameters with respect to the water temperature

and pressure might be necessary.

Regarding the nonlinear shunt circuit designs, some enhancements can be proposed. During exper-

imental testing of 2:1 resonances, the observed circuit voltages quickly become very high. It was also

necessary to maintain the excitations at levels compatible with the operational limits of the electronic

components. They are probably not very representative of the levels in real conditions. Nevertheless,

the attained voltages during the experiments were still far from the operating limits of the components(

i.e., the operational amplifiers, the differential amplifier, and the multipliers), thus it will be useful

to test the circuits in their full ranges (i.e., to consider higher excitation levels that leads to higher

voltages). Indeed, at high levels of excitation, more complex responses was proven to appear (as in

chapter 3), leading to detune the system and losing the saturation feature. However, thanks to the

introduced cubic nonlinearity, one can find the right tuning of the cubic gain to lock the antiresonance
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at the resonance frequency and preserve the high performance, even at higher forcing levels. This is

suggested in the following plot (see more discussion in Sec. 4 in chapter 5) in which, for the modal

parameters considered, if one considers a low forcing level (between 0 and 0.35 mN), the value of the

cubic gain βc = 0.001, estimated analytically, will preserve the saturation. However, at higher forcing

levels, thus attaining higher voltages in the circuit, one can slightly modify the cubic gain tuning to

recover the saturation amplitude (for example, observe the minimum in Fig. 6.1(b) for F = 0.49mN
with βc = 0.00093 < 0.001).

(a) (b)

Figure 6.1: Choosing the right tuning of the cubic gain βc as the excitation level F increases.

A first possibility of improvement would be to use operational amplifiers whose maximum voltages

are higher. However, this option seems quite complex in implementation. Indeed, band gain products

are generally less efficient and stability problems may result. This supposes moreover to have several

power supplies: those intended for the power amplifiers, and those necessary for the mathematical

functions such as the analogical multipliers.

Another problem concerns the inductor. Generally, it must have significant values, which justifies

making it by a gyrator circuit like the Antoniou inductor. However, we have observed on several

occasions that this circuit presents a parasitic resistance or even instabilities under conditions that

are still poorly identified. They are all the more troublesome as they seem to be linked to internal

defaults in the amplifiers themselves. Another option would be to change technology, using switching

amplifiers, to solve the problem of voltage levels and to digitize part of the mathematical functions,

allowing higher flexibility. In particular, the use of a quadratic nonlinearity requires a complex tuning

that does not seem robust with respect to parametric variations.

It has already been verified that the resonances of the submerged foil were influenced by the speed
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of the flow, for example, which suggests that some form of resonance tracking will be needed. This type

of problem has already been studied for nonlinear resonance plots. It is possible by automatic tuning

with phase lock loop (PLL) to stabilize vibrations by forcing the resonance condition. It, therefore,

seems possible to transpose these techniques to automate the adjustment of the nonlinear shunt.

The use of a nonsmooth nonlinearity turned out to have an unexpected behavior. Namely, It seemed

relatively efficient to achieve a 2:1 internal resonance, but without the saturation feature. On this

last point, it may be interesting to combine nonmooth nonlinearities with polynomial nonlinearities,

starting by taking up the “diode” principle but substituting a quadratic branch for the linear branch.

On the other hand, this circuit offers on the 1:1 resonance the possibility of making a tunable shunt

in a simple way by playing on the slope of the linear part of the characteristic. This result makes it

possible to use lower inductance values for the resonant shunts and possibly be an alternative approach

for a tunable resonant shunt.
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[119] L. Sanches, T. A. M. Guimarães, and F. D. Marques, “Nonlinear energy sink to enhance the

landing gear shimmy performance,”Acta Mechanica, vol. 232, pp. 2605–2622, July 2021.

226



BIBLIOGRAPHY

[120] E. Gourc, S. Seguy, G. Michon, and A. Berlioz, “Delayed dynamical system strongly coupled

to a nonlinear energy sink: Application to machining chatter,” in International Conference on

Structural Nonlinear Dynamics and Diagnostics, 2012.

[121] F. Georgiadis, A. F. Vakakis, D. McFarland, and L. A. Bergman,“Shock isolation through passive

energy pumping in a system with piecewise linear stiffnesses,” in 19th Biennial Conference on

Mechanical Vibration and Noise, Parts A, B, and C, vol. 5, pp. 1569–1574, 2003.

[122] C.-H. Lamarque, O. V. Gendelman, A. Ture Savadkoohi, and E. Etcheverria, “Targeted energy

transfer in mechanical systems by means of non-smooth nonlinear energy sin,”Acta Mechanica,

vol. 221, pp. 175–200, 2011.

[123] C.-H. Lamarque, A. Ture Savadkoohi, and Z. Dimitrijevic, “Dynamics of a linear system with

time-dependent mass and a coupled light mass with non-smooth potential,”Meccanica, vol. 49,

pp. 135–145, 2014.

[124] B. Youssef and R. I. Leine, “A complete set of design rules for a vibro-impact NES based on a

multiple scales approximation of a nonlinear mode,” Journal of Sound and Vibration, vol. 501,

2021.

[125] Z. Lu, Z. Wang, Y. Zhou, and X. Lu, “Nonlinear dissipative devices in structural vibration

control: A review,” Journal of Sound and Vibration, vol. 423, pp. 18–49, June 2018.

[126] H. Ding and L.-Q. Chen, “Designs, analysis, and applications of nonlinear energy sinks,” Non-

linear Dynamics, vol. 100, pp. 3061–3107, June 2020.

[127] A. F. Vakakis, O. V. Gendelman, L. A. Bergman, A. Mojahed, and M. Gzal, “Nonlinear targeted

energy transfer: State of the art and new perspectives,”Nonlinear Dynamics, vol. 108, pp. 711–

741, Apr. 2022.

[128] G. Habib, T. Detroux, R. Viguie, and G. Kerschen, “Nonlinear generalization of Den Hartog’s

equal-peak method,”Mechanical Systems and Signal Processing, vol. 52–53, pp. 17–28, 2015.

[129] G. Raze and G. Kerschen, “Multimodal vibration damping of nonlinear structures using multiple

nonlinear absorbers,” International Journal of Non-Linear Mechanics, vol. 119, p. 103308, Mar.

2020.

[130] M. Vakilinejad, A. Grolet, and O. Thomas, “A comparison of robustness and performance of

linear and nonlinear Lanchester dampers,” Nonlinear Dynamics, vol. 100, pp. 269–287, Mar.

2020.

227



BIBLIOGRAPHY

[131] S. J. Elliott, M. G. Tehrani, and R. S. Langley, “Nonlinear damping and quasi-linear modelling,”

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sci-

ences, vol. 373, Sept. 2015.

[132] M. Cirelli, M. Cera, E. Pennestr̀ı, and P. P. Valentini, “Nonlinear design analysis of centrifugal

pendulum vibration absorbers: An intrinsic geometry-based framework,” Nonlinear Dynamics,

vol. 102, pp. 1297–1318, Nov. 2020.

[133] V. Mahe, A. Renault, A. Grolet, O. Thomas, and H. Mahe, “Dynamic stability of centrifugal

pendulum vibration absorbers allowing a rotational mobility,” Journal of Sound and Vibration,

vol. 517, p. 116525, Jan. 2022.
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[206] B. Lossouarn, M. Aucejo, J.-F. Deü, and B. Multon, “Design of inductors with high inductance

values for resonant piezoelectric damping,” Sensors and Actuators A: Physical, vol. 259, pp. 68–

76, June 2017.
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guliéres,”Bulletin de la Société Mathématique de France, vol. 40, pp. 324–383, 1912.

[220] A. H. Nayfeh, The Method of Normal Forms. Wiley-VCH, 2011.

[221] M. Haragus and G. Looss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-

Dimensional Dynamical Systems. Springer London, 2011.
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[237] “MANLAB: An interactive path-following and bifurcation analysis software.”

http://manlab.lma.cnrs-mrs.fr.

236



BIBLIOGRAPHY

[238] L. Guillot, B. Cochelin, and C. Vergez, “A generic and efficient taylor series– based continua-

tion method using a quadratic recast of smooth nonlinear systems,” International Journal for

Numerical Methods in Engineering, vol. 119, pp. 261–280, 2019.
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Chapter 7

Résumé étendu en Français

7.1 Introduction

7.1.1 Contexte et objectifs de la thèse

Les surfaces de levage sont devenues un domaine de recherche important en raison de leurs nom-

breuses applications dans le secteur industriel. Des exemples de telles applications impliquent des pales

de turboréacteurs, des pompes, des hélices, des ailes d’avion et des hydrofoils de bateaux. Les surfaces

de levage se réfèrent principalement à des structures minces conçues dans une géométrie spéciale (par

exemple, des géométries de feuille ou de lame) qui peuvent conduire à un gradient de pression pro-

portionnel au champ de vitesse dans le milieu fluide. Les performances de telles structures dépendent

fortement de leurs aspects géométriques et matériels, qui doivent être optimisés pour répondre à un

cahier des charges donné.

Une partie importante de l’amélioration des structures de levage implique la prise en compte

des vibrations induites par l’écoulement sous des niveaux d’excitation élevés et certains régimes

d’écoulement. Cela peut entrâıner de la fatigue et de l’érosion et ainsi réduire la durée de vie de la struc-

ture et éventuellement conduire à une défaillance. De plus, dans les applications aérodynamiques et

hydrodynamiques, des niveaux de vibration élevés peuvent réduire considérablement les performances

et générer un niveau de bruit élevé. Un exemple célèbre dans la littérature est le phénomène de flot-

tement, qui est une oscillation structurelle instable et auto-excitée qui peut entrâıner des dommages

dans les applications aéronautiques.

Ces problèmes ont conduit à initier le projet ”Smart Lifting Surfaces” en collaboration entre

l’Institut de Recherche de l’École navale (IRENav) de Brest, le Conservatoire National des Arts et

Métiers (CNAM) de Paris, l’Institut Carnot Arts, le Laboratoire d’Ingénierie des Systèmes Physiques

et Numériques (LISPEN) à Lille, et Laboratoire d’électrotechnique et d’électronique de puissance

(L2EP) à Lille. Ce projet se concentre principalement sur les structures d’hydrofoils qui sont util-
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isées dans les applications marines. L’objectif principal était de proposer des méthodes nouvelles et

pratiques pour réduire les vibrations des hydrofoils, qui peuvent être testées expérimentalement et

dont le contrôle est simple à mettre en œuvre. La nouveauté repose sur l’utilisation de matériaux

actifs, tels que des transducteurs piézoélectriques, qui peuvent modifier la dynamique dans le champ

d’écoulement sans modifier sensiblement la géométrie de la structure. Ainsi, une telle approche peut

réduire les contraintes de conception sur la géométrie de la structure pour optimiser les performances.

De plus, cela peut conduire à la mise en œuvre d’amortisseurs de vibrations électroniques, qui peuvent

représenter une solution efficace puisque les amortisseurs mécaniques classiques ne sont pas réalisables

pour les corps portants légers en régime hydrodynamique.

A travers ce projet, deux grandes voies de recherche ont été suivies : la première porte sur l’étude de

l’interaction fluide-structure dans le milieu eau pour étudier les délestages tourbillonnaires, représentés

sur la Fig. 7.1, et leurs conséquences sur le vibrations de l’hydrofoil à différentes conditions ambiantes.

De plus, l’intégration des patchs piézoélectriques et les couplages piézoélectriques dans le milieu aqueux

ont été étudiés. La deuxième voie se concentre sur la conception de nouveaux absorbeurs de vibrations

électroniques qui peuvent être mis en œuvre sur l’hydrofoil dans les régimes hydrodynamiques d’une

part et facilement contrôlés dans des applications réelles d’autre part.

Figure 7.1: Rejets de vortex dans le sillage d’une structure d’hydrofoil.

Cette thèse fait partie du deuxième parcours du projet. Il se concentre sur la proposition de dif-

férentes conceptions d’amortisseurs de vibrations électromécaniques non linéaires. Ces absorbeurs sont

composés d’un circuit électronique (appelé circuit shunt) relié à l’hydrofoil par l’intermédiaire d’un

patch piézoélectrique. De tels absorbeurs seront appelés absorbeurs shunt piézoélectriques. L’objectif

principal de cette thèse est l’utilisation intentionnelle des composants non linéaires dans le circuit

shunt. L’idée derrière l’ajout de non-linéarités dans l’absorbeur est d’exploiter des caractéristiques

particulières qui n’ont pas de contrepartie dans la théorie linéaire, principalement le phénomène de

saturation. A travers cette thèse, une étude théorique détaillée est consacrée à l’analyse de la dy-

namique non linéaire des absorbeurs pour en déduire les lignes directrices pouvant être utilisées pour

des implémentations pratiques. De plus, des essais expérimentaux sont effectués sur des structures de

poutres et d’hydrofoils pour valider les absorbeurs proposés.
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7.1.2 Hydrofoils

Les hydrofoils sont des surfaces portantes qui fonctionnent en milieu aquatique et sont utilisés

depuis des décennies dans l’industrie maritime. L’utilisation d’hydrofoils vise à accrôıtre l’efficacité des

bateaux de plaisance, de voile ou de surf en améliorant le rapport entre la vitesse et la consommation

d’énergie. Ils sont également utilisés dans différentes applications telles que les bateaux de surf. L’idée

de base consiste à monter une structure en forme de feuille sur la coque du bateau pour créer une force

de levage. Par conséquent, lorsque le bateau augmente sa vitesse, la coque du bateau est soulevée hors

de l’eau, comme le montre la Fig. 7.2, et la zone de contact entre le bateau et l’eau est minimisée,

ce qui réduit la force de trâınée et le niveau d’énergie induit par les vagues et, par conséquent, la

consommation d’énergie.

(a) (b)

(c) (d)

Figure 7.2: (a) et (b) voilier Luna Rossa AC75. (c) Bateau marin USS Hercules (PHM-2). (d) Planche
à voile avec un hydrofoil.

7.2 Absorbeur piézoélectrique shunt : configurations linéaires et non linéaires

Les absorbeurs shunt piézoélectriques sont la principale technique utilisée dans cette thèse pour

atténuer les vibrations. Cette technique a été présentée comme une extension électromécanique des

amortisseurs mécaniques dans laquelle un circuit électronique dédié (appelé circuit shunt) est con-

necté à une structure élastique via un transducteur piézoélectrique lié à la structure hôte. Grâce aux
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effets piézoélectriques, l’énergie mécanique injectée dans la structure hôte peut être transformée en

forme électrique puis dissipée ou contrecarrée dans le circuit shunt. Les principaux avantages de ces

absorbeurs sont la facilité de réglage et de contrôle par rapport aux amortisseurs mécaniques. Ils

sont également plus efficaces pour les structures légères où la taille et le poids sont des contraintes de

conception.

7.2.1 Shunts piézoélectriques linéaires

Les deux architectures les plus simples des shunts piézoélectriques linéaires sont les shunts résistifs

et résonnants, désignés respectivement par R-shunt et RL-shunt, comme le montre la Fig. 7.3. Le R-

shunt permet de dissiper l’énergie en chaleur de Joule. En ce qui concerne le RL-shunt, puisque le patch

piézoélectrique peut être modélisé électriquement comme un condensateur, un oscillateur à circuit RLC

est alors formé, qui peut être réglé pour se comporter de manière analogue à un TMD dans lequel le

mode de structure est remplacé par deux modes amortis. Ces architectures de shunts sont passives et

colocalisées car la détection et l’actionnement sont servis simultanément par le patch piézoélectrique,

ce qui leur confère l’avantage de stabilité de contrôle par rapport aux stratégies de contrôle actives.

Comme pour les amortisseurs mécaniques, le R-shunt et le RL-shunt agissent à proximité d’une seule

fréquence modale de la structure. Cependant, il est possible d’étendre les applications d’amortissement

multimodal en utilisant des réseaux parallèles ou en série de shunts électroniques.

I. Introduction II. Theoretical Analysis III. Normal form IV. Experimental Validation V. Conclusions

Linear vs nonlinear piezoelectric shunts

I Linear Shunts

Elastic Structure

External Forcing

k
c

m

External Forcing

Elastic Structure

PE Patch

L

V
Q

Q̇

R

R-Shunt RL-Shunt

R with RL-shunt

 Electrical analogous of the mechanical dampers (tuned mass damper TMD).
 Easy to set and control.

I Nonlinear Shunts

 A nonlinear component Vnl is intentionally added
to the shunt circuit.

 Features : energy transfer between the modes and
saturation phenomenon.

PE patch

Elastic structure

R

L

Vnl

Nonlinear shunt

u(t)Ext. forcing

V

Q̇

Q

3/20

Figure 7.3: Schémas R-shunt et RL-shunt. Le patch PE désigne un patch piézoélectrique. Q, Q̇ et
V sont la charge dans l’électrode piézoélectrique, la dérivée temporelle de la charge (c’est-à-dire le
courant) et la tension aux bornes du patch piézoélectrique.

Comme pour les amortisseurs mécaniques, le R-shunt et le RL-shunt agissent près d’une seule

fréquence modale de la structure. Cependant, il est possible d’étendre les applications d’amortissement

multimodal en utilisant des réseaux parallèles ou en série de shunts électroniques. Une autre limitation

est le niveau élevé d’inductance requis pour le RL-shunt pour amortir les modes de basse fréquence.

Par exemple, si l’on souhaite concevoir un shunt RL pour amortir un mode à une fréquence proche de

242
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ω = 30 × (2π)rad/s avec une capacité piézoélectrique d’environ Cp = 30nF, une valeur d’inductance

proche de L = 1/(ω2Cp) = 940H est nécessaire pour obtenir une atténuation optimale. Une telle

valeur d’inductance est très élevée pour être obtenue par l’inductance passive classique. Pour surmon-

ter ce problème, des inducteurs synthétiques ont été proposés, qui sont principalement composés de

composants électriques tels que des résistances, des condensateurs et des amplificateurs opérationnels.

7.2.2 Shunts piézoélectriques nonlinéaires

Les shunts piézoélectriques non linéaires sont une extension de la configuration linéaire qui vise

à exploiter les caractéristiques non linéaires présentées dans la réponse dynamique. L’idée de base

consiste à ajouter intentionnellement une source de tension non linéaire Vnl à un circuit RL-shunt,

comme le montre la Fig. 7.4. L’idée d’utiliser les non-linéarités avec la méthodologie des shunts pié-

Vnl = f(V )

Figure 7.4: Schéma d’un circuit shunt non-linéaire avec une composante de source de tension non-
linéaire Vnl.

zoélectriques a jusqu’à présent peu d’applications dans la littérature. Les principales applications

concernaient la réalisation de puits d’énergie non linéaires (NES) de manière théorique et expérimen-

tale, les absorbeurs de vibrations accordés non linéaires (NLTVA) et les shunts non lisses tels que la

technique d’amortissement par commutation synchronisée (SSD).

Suite aux contributions ci-dessus, ce travail propose trois conceptions différentes d’absorbeurs

shunt piézoélectriques non linéaires semi-passifs, en fonction de la tension non linéaire Vnl, introduite

intentionnellement dans un shunt RL (voir Fig. 7.4). La nouveauté de cette thèse est d’exploiter

le phénomène de saturation en utilisant la technique du shunt piézoélectrique. Le phénomène de

saturation est expliqué dans la section suivante.

7.2.2.1 Phénomène de saturation

Le phénomène de saturation est l’idée centrale que cette thèse vise à exploiter pour améliorer

l’atténuation. Ce phénomène est une caractéristique particulière d’un certain type de résonance in-
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terne, à savoir la résonance interne deux à un (2:1). Ce type de résonance interne est activé en présence

d’un couplage non linéaire quadratique entre deux oscillateurs ayant des fréquences modales ω1 et ω2

comme suit :

ẍ1 + 2µ1ẋ1 + ω2
1x1 + α1x1x2 = 0, (7.1a)

ẍ2 + 2µ2ẋ2 + ω2
2x2 + α2x

2
1 = f cos Ωt. (7.1b)

avec α1 et α2 les coefficients non linéaires quadratiques, (a1, a2) les amplitudes, et (γ1, γ2) les angles

de phase. Pour activer la résonance interne 2:1, un réglage particulier de la fréquence modale tel que

ω2 = 2ω1 doit être présenté. Lorsque l’on considère un forçage harmonique de fréquence d’excitation

a1

a2

γ1

γ2

threshold forcing

a∗
1

Saturation Amplitude a∗
2

(a) (c)

(b)

Figure 7.5: Réponse typique des amplitudes a1 et a2 et des phases γ1 et γ2 en résolvant (7.1a,b) pour
ω2 = 2ω1. Les valeurs numériques sont α1 = α2 = 0, 1, µ1 = 0, 005 , µ2 = 0, 01. (a) et (b) montrent
respectivement la réponse en amplitude et en phase par rapport au désaccord σ1 = Ω − ω2 pour les
valeurs du forçage f (f ∈ {0, 005; 0, 03; 0, 05}). (c) Réponse en amplitude à la fréquence de résonance
(σ1 = 0) par rapport au niveau d’excitation f . Dans les graphiques, les réponses linéaires de a2 et γ2
sont tracées en noir. Les lignes pleines et en pointillés indiquent respectivement les solutions stables
et instables.

Ω ≈ ω2 et d’amplitude d’excitation F , un transfert d’énergie se produit du mode excité vers le sous-

harmonique du mode basse fréquence oscillant à ω1 = Ω/2 . Ainsi la réponse de x1(t) et x2(t) :

x1(t) = a1 cos
(︃Ω

2 t− γ1 + γ2
2

)︃
, x2(t) = a2 cos (Ωt− γ2) , (7.2)
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La réponse présentée dans la Fig. 7.5a suggère qu’au-delà d’un niveau d’excitation seuil, la résonance

linéaire est remplacée par une antirésonance dont l’amplitude est indépendante du niveau d’excitation

comme le suggère la Fig. 7.5c. De plus, les résultats de la Fig. 7.5b suggèrent un verrouillage de la

phase γ1 à 3π/2 à la fréquence d’antirésonance qui est utilisée pour désaccorder l’emplacement de

l’antirésonance.

En définissant l’atténuation comme la réduction d’amplitude par rapport à l’amplitude de ré-

sonance linéaire correspondant à la réponse de x2(t) avec α1 = α2 = 0 (c’est-à-dire la différence

d’amplitude entre les courbes verte et noire de la Fig. 1.6(c)), on peut conclure que le phénomène

de saturation entrâıne une atténuation croissante lorsque le forçage augmente au-delà d’une valeur

seuil donnée, contrairement aux absorbeurs linéaires. Ainsi, l’atténuation peut être considérée comme

dépendant de l’amplitude.

7.2.2.2 Conceptions d’absorbeurs proposées

Trois conceptions d’absorbeur shunt non linéaires proposées dans cette thèse en fonction de la

composante de tension non linéaire Vnl, illustrées à la Fig. 7.4 :

� La première conception comprend uniquement une non-linéarité quadratique proportionnelle au

carré de la tension piézoélectrique V telle que Vnl = βV 2 où β est un gain contrôlé. L’idée

principale est d’activer la résonance interne 2:1 et d’exploiter ainsi le phénomène de saturation.

� La deuxième conception inclut des composants de tension non linéaires quadratiques et cubiques

tels que Vnl = βqV
2 + βcV

3 où βq et βc sont respectivement les gains des non-linéarités quadra-

tiques et cubiques. L’idée derrière l’ajout des non-linéarités cubiques est de corriger le phénomène

de saturation violé en raison de la présence des inévitables termes non résonants quadratiques.

� La conception finale implique un comportement non lisse tel que Vnl = β(V + |V |), réalisé par

une diode dans le circuit shunt.

7.3 Première conception : avec non-linéarité quadratique

Cette section est consacrée à la conception théorique de l’absorbeur shunt avec une tension non

linéaire quadratique proportionnelle au carré de la tension aux bornes du patch piézoélectrique (Vnl =
βV 2), comme le montre la Fig. 7.6. L’idée principale est d’activer la résonance interne 2:1 et d’examiner

ainsi le phénomène de saturation.
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PE patch

Elastic structure

R

L

Vnl = βV 2

Nonlinear shunt

u(t)Ext. forcing

V (t)

Q̇(t)

Q(t)

Figure 7.6: Circuit shunt non linéaire avec composante de tension quadratique.

7.3.1 Governing equations

En développant le vecteur de déplacement mécanique u(t) sur cette base modale, tronquée au iième

mode seulement (u(t) = Φiqi(t)), les équations de gouvernance en termes de déplacement modal qi(t)
et de la charge sur l’électrode piézoélectrique Q(t) sont :

q̈i + 2ξiω̂iq̇i + ω̂2
i qi + θi

miCpi
Q = Fi

mi
cos Ωt (7.3a)

Q̈+ 2ξeωeQ̇+ ω2
eQ+ θi

LCpi
qi + Vnl

L
= 0. (7.3b)

avec Fi le forçage modal, mi la masse modale, θi le facteur de couplage piézoélectrique, et ξi le

taux d’amortissement mécanique, tout correspond au i-ième mode. Cpi la capacité effective du patch

piézoélectrique au voisinage de la iième résonance, qui tient compte de l’effet statique de tous les

modes autres que le i-ième. ω̂2
i = ω2

i + θ2
i /(Cpimi) est la fréquence de résonance en circuit ouvert avec

ωi est la résonance en court-circuit fréquence (V = 0), les deux correspondent au mode i-ième. De

plus, la fréquence propre électrique et l’amortissement électrique facteur sont définis par :

ωe = 1√︁
LCpi

, ξe = R

2

√︄
Cpi

L
(7.4)

Le facteur de couplage modal piézoélectrique électromécanique sans dimension ki est également défini

comme :

ki = ω̂2
i − ω2

i

ω̂2
i

= θ2
i

ω̂2
iCpimi

(7.5)

Par comparaison avec les équations présentées dans (7.1a,b), la résonance interne 2:1 peut être

examinée en découplant linéairement (7.3a,b). Ceci est réalisé par expansion (qi(t), Q(t)) en termes

de (x1, x2) sur une base modale électromécanique comme :

(︄
qi(t)
Q(t)

)︄
=

2∑︂

k=1
Ψkxk(t) =

(︄
−εx1(t) + x2(t)
x1(t) + εx2(t)

)︄
with ε(ki) ≪ 1 (ki < 0.25), (7.6)
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pour obtenir ce qui suit en substituant Vnl = βV 2 et Eq. (7.6) in (7.3a, b) et en rappelant que

V = 1
Cpi

(Q+ θiq) :

ẍ1 + 2ξ1ω1ẋ1 + ω2
1x1 + g1

12x1x2 + g1
11x

2
1 + g1

22x
2
2 = f1 cos Ωt, (7.7a)

ẍ2 + 2ξ2ω2ẋ2 + ω2
2x2 + g2

11x
2
1 + g2

12x1x2 + g2
22x

2
2 = f2 cos Ωt. (7.7b)

avec gkij les coefficients non linéaires quadratiques qui sont fonction de β et les paramètres modaux

électromécaniques. On peut se rendre compte que le système obtenu dans (7.7a, b) est similaire à celui

obtenu dans (7.1a, b) mais avec des termes supplémentaires, à savoir, g1
11x

2
1, g

1
22x

2
2, g

2
12x1x2 et g2

22x
2
2

qui sont désignés par les termes non résonnants puisqu’ils éloignent le système de sa résonance. Les

deux autres termes, g1
12x1x2 et g2

11x
2
1 sont désignés par les termes de résonance qui sont responsables

du fort transfert d’énergie à travers la résonance interne 2:1 (activée avec le réglage ω1 = ω2/2) et pour
la réponse symétrique obtenue sur la Fig. 7.5. Notez que les termes non résonnants sont inévitables

en raison de leur dépendance au couplage piézoélectrique qui doit toujours être présenté. Dans le cas

de la résonance interne 2:1, le déplacement u(t) et la charge Q(t) peuvent être récupérés en utilisant

Eq. (7.6) comme :

u(t) = Φi√
mi

[︂
− ε a1 cos

(︃Ω
2 t− γ1 + γ2

2

)︃

⏞ ⏟⏟ ⏞
x1(t)→H1/2

+ a2 cos (Ωt− γ2)⏞ ⏟⏟ ⏞
x2(t)→H1

]︂
, (7.8a)

Q(t) = 1√
L

[︂
a1 cos

(︃Ω
2 t− γ1 + γ2

2

)︃

⏞ ⏟⏟ ⏞
x1(t)→H1/2

+ε a2 cos (Ωt− γ2)⏞ ⏟⏟ ⏞
x2(t)→H1

]︂
. (7.8b)

On peut se rendre compte que le déplacement et la charge sont composés de la sous-harmonique H1/2

et de la première harmonique H1 due au transfert d’énergie. Puisque ε << 1 (dû au faible couplage

piézoélectrique), la sous-harmonique H1/2 et la première harmonique H1 dominent respectivement

la réponse de la charge et du déplacement. Ainsi, dans ce qui suit, les harmoniques dominantes ne

seront représentées que dans les réponses en fréquence. Il est important de mentionner qu’en raison du

dédoublement harmonique, la saturation présentée dans la réponse de a2 (voir Fig. 7.5) est également

observée dans la réponse H1 du déplacement.

7.3.2 Effect of the nonresonant terms

Pour examiner la saturation avec la réponse physique, le système (7.3a, b) est résolu directement

à l’aide du logiciel de continuation MANLAB pour examiner les réponses en fréquence de la première

harmonique du déplacement et de la sous-harmonique de la charge à valider l’occurrence de résonance

interne 2:1. Les réponses en fréquence sont représentées sur la Fig. 7.7, estimées avec ωe ≈ ω̂i/2 et en

considérant les paramètres électromécaniques modaux du premier mode de flexion de la structure de
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Figure 7.7: Réponse en fréquence de l’amplitude de la première harmonique de déplacement de la pointe
du faisceau uH1, de la sous-harmonique de charge QH1/2 et de la phase γ1, obtenue en résolvant (7.3a,
b) en utilisant MANLAB pour plusieurs niveaux d’excitation. Les valeurs numériques sont β = 0.012,
r1 = ωe/ω̂1 = 0.52, ξe = 0.002, et le coefficient d’amortissement mécanique est ξ1 = 0.005. La réponse
linéaire de déplacement est tracée en noir. Les lignes pleines et pointillées désignent respectivement
les solutions stables et instables.

poutre représentée dans la Fig.7.9 (voir Tableau 7.1). Notez que pour le mode considéré l’indice i = 1
est remplacé.

Par rapport à la réponse typique de la Fig. 7.5, les résultats suggèrent le transfert d’énergie vers

le sous-harmonique de la charge avec l’existence de l’antirésonace dans la réponse de déplacement.

Cependant, à mesure que le niveau d’excitation augmente, l’antirésonance se déplace vers la gamme

des basses fréquences, mais en atteignant la même amplitude u∗
H1. Ainsi, le phénomène de saturation

est perdu à Ω ≈ ω̂i. On peut également se rendre compte de l’existence de pic élevé à proximité de

la résonance primaire. De plus, la réponse de la charge suggère un comportement d’adoucissement à

des niveaux d’excitation élevés. De manière intéressante, la réponse de la phase γ1 suggère un blocage

à 3π/2 à la fréquence d’antirésonance qui est une propriété observée sur la Fig. 7.5. En conclusion,
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la réponse suggère l’occurrence de la résonance interne 2:1 mais avec une réponse plus compliquée.

Cela peut s’expliquer en examinant (7.7a, b), exprimé dans la base électromécanique qui suggère que

l’un des termes non résinants, à savoir g1
11 est proportionnel à 1/Cpi et atteint ainsi une très grande

amplitude. Bien que cela ne soit pas résonnant, cela semble avoir un effet significatif sur la réponse,

comme suggéré dans la Fig. 7.7.

7.3.3 Antiresonance correction and preserving the saturation

R
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R

Réponse avec correction ARu∗
H1

QP

(a) (b)

Figure 7.8: (a) Réponse en fréquence de la première amplitude harmonique du déplacement de la
pointe du faisceau uH1, estimée en résolvant (7.3a, b) à l’aide de MANLAB, pour plusieurs niveaux
d’excitation et avec correction AR. (b) Amplitude de la première harmonique du déplacement de la
pointe du faisceau à la fréquence de résonance u∗

H1 par rapport au niveau d’excitation, avec et sans
correction AR. Les valeurs numériques sont β = 0.012 et ξ1 = 0.005 La réponse linéaire de déplacement
est tracée en noir. Les lignes pleines et pointillées/pointillées désignent, respectivement, les solutions
stables et instables. QP fait référence à une réponse quasi-périodique, obtenue après une perte de
stabilité due aux bifurcations de Neimark-Sacker.

Étant donné que la saturation est la principale caractéristique de l’absorbeur non linéaire conçu,

une correction d’antirésonance (AR) est introduite pour empêcher le déplacement de l’antirésonance et

ainsi la verrouiller à la fréquence de résonance. La motivation de cette correction est que l’amplitude

de l’antirésonance atteint la même amplitude que celle indiquée pour la réponse en fréquence de uH1

sur la Fig. 7.7. Ainsi, un désaccord du circuit shunt (c’est-à-dire le choix de l’inductance appro-

priée dans le circuit) peut être choisi de sorte que le décalage soit contrebalancé à chaque niveau

d’excitation. La procédure est effectuée numériquement avec MANLAB en estimant l’inductance

requise à Ω = ω̂i à laquelle l’amplitude de la première harmonique du déplacement uH1 atteint son
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minimum. Lors de l’identification de cette inductance, la réponse en fréquence de uH1 est obtenue,

comme le montre la Fig. 7.8a. Les résultats suggèrent clairement que la correction AR permet le

verrouillage de l’antirésonance à la fréquence de résonance et récupère ainsi la saturation comme le

montre la Fig. 7.8b. Notez que le principal problème de cette correction AR est qu’elle n’est pas

automatique et qu’elle conduit à l’apparition de régimes quasi-périodiques près de l’antirésonance.

7.3.4 Experimental verification

NL shunt circuit
PE Patches

Beam

Coil

Magnet

F (t)

u(t)

V (t)

Q̇(t)

N
L

s
h
u
n
t

70
180

0.5

0.5

1.1

Figure 7.9: Montage expérimental. Les dimensions sont en mm. La largeur de la poutre et des patchs
PE est 30,5 mm.

Les essais expérimentaux ont été menés sur une poutre en porte-à-faux avec deux patchs piézoélec-

triques (PE) PIC 151 symétriquement collé sur les deux faces d’une poutre en acier inoxydable, comme

le montre la Fig. 7.9. Le circuit de shunt non linéaire est connecté à la structure avec les patchs PE

en série et avec des polarisations opposées pour coupler le circuit de shunt électrique à la flexion de

la poutre. Un actionneur électromagnétique sans contact composé d’une bobine fixe et d’un aimant

fixé à la pointe de la structure est utilisé pour générer une force électromagnétique en induisant un

courant dans la bobine. Une relation linéaire a été trouvée entre le courant I(t) induit dans la bobine

et le forçage résultant F(t) tel que F (t) = αI(t), avec α une constante. Avant de mener les expériences

avec le circuit shunt non linéaire, une analyse modale expérimentale a été effectuée pour identifier les
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Figure 7.10: Conception de circuit shunt non linéaire.

paramètres modaux du système électromécanique testé. L’analyse modale expérimentale présentée ici

consiste à exploiter le bénéfice du couplage piézoélectrique entre les domaines mécanique et électrique

(c’est-à-dire la structure et le circuit shunt). En se concentrant sur un mode mécanique particulier

de la structure (le iième), la déformée modale est normalisée de sorte que sa valeur à la pointe de la

poutre xt, telle que Φ(xt) = 1. En considérant le déplacement transversal u(t)de la poutre à son ex-

trémité et un point colocalisé forçant F (t) = F0 cos Ωt (voir Fig. 7.9), u(t) = qi(t) et Fi = F0 in (7.3a,

b). Différents tests expérimentaux ont été effectués, puis les fonctions de réponse en fréquence (FRF)

obtenues ont été ajustées avec les fonctions analytiques correspondantes pour obtenir les paramètres

modaux électromécaniques, qui sont rassemblés dans le Tableau 7.1.

Table 7.1: Paramètres modaux électromécaniques du premier mode de flexion de la poutre en porte-
à-faux (indice i=1).

Parameters ω1/(2π) [Hz] ω̂1/(2π) [Hz] ξ1(%) k1 θ1[mN/V] m1[g] α [N/A] Cp1 [nF]
Value 36.6 37.51 0.5 0.2 0.8 8.8 0.6 32.45

Le circuit shunt non linéaire utilisé dans les expériences est illustré à la Fig. 7.10. Il se compose

de trois sous-circuits : une inductance synthétique accordable pour réaliser la haute inductance (en

bleu), le circuit de mesure de tension (en orange) et la source de tension non linéaire (en rouge) dans

laquelle la non linéarité est réalisée par un multiplicateur analogique. L’inductance L et le gain non

linéaire β peuvent être réglés respectivement en utilisant R4 et R8. Leurs valeurs numériques peuvent
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être estimées comme suit :

L = R1R2R4C

R3
, β = R8

10R7

(︂ R6
R5 +R6

)︂2
. (7.9)

7.3.5 Experimental results

Figure 7.11: Résultats expérimentaux de vH1 (première ligne) et VH1/2 (deuxième ligne) pour plusieurs
niveaux d’excitation F d’unité mN. Seules les données de balayage de la fréquence d’excitation sont
représentées en traits pleins. Les mesures sont effectuées pour β = 0.035, ξe = 0.002, ξ1 = 0.005
et r1 = ωe/ω̂1 = 0.537. Les régions ombrées représentent le régime quasi-périodique détecté. Les
évolutions temporelles des réponses périodiques et quasi-périodiques sont également présentées. (la
vitesse en bleu et la tension en orange)

Dans cette section, les réponses en fréquence mesurées expérimentalement de la première har-

monique de la vitesse de pointe du faisceau vH1 et de la sous-harmonique de tension PE VH1/2 sont

démontrées. La vitesse et la tension ont été respectivement mesurées à l’aide d’un vibromètre laser et

d’une sonde de tension différentielle. Les réponses en fréquence sont présentées sur la Fig. 7.11 qui ont

été estimées à l’aide de la méthode sinusöıdale avec démodulation. Les résultats valident le déplace-

ment de l’antirésonance d’amplitude constante en plus du comportement d’adoucissement observé à

des niveaux d’excitation élevés avec un pic élevé près de la résonance primaire.. De plus, l’existence

d’un régime quasi-périodique au voisinage de l’antirésonance a également été validée. On peut aussi

se rendre compte que les évolutions temporelles suggèrent clairement la réponse multi harmonique de

la vitesse et de la tension qui peut être déduite de (7.8a, b).
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Pour récupérer expérimentalement la saturation, la même correction AR présentée théoriquement

est suivie d’un désaccord du circuit shunt à chaque niveau d’excitation. Dans les expériences, ceci est

obtenu grâce au verrouillage des angles de phase γ1 à 3π/2 (voir Fig. 7.7) à la fréquence d’antirésonance.

Cela a permis de déterminer l’inductance requise pour verrouiller l’antirésonance à la fréquence de

résonance. Avec cette correction AR, la réponse en fréquence expérimentale de la vitesse a été estimée

suggérant la récupération de la saturation comme le montre la Fig. 7.12 avec l’apparition de régimes

quasi-périodiques. De plus, une atténuation élevée a été obtenue expérimentalement par rapport à la

réponse linéaire.

Trois principaux problèmes sont restés dans l’absorbeur proposé : i) la correction d’antirésonance

récupère la saturation mais n’est pas automatique, ii) le pic élevé près de la résonance primaire

toujours présenté conduit à de faibles performances pour l’atténuation à large bande, iii) la correction

AR conduit à l’apparition de régime quasi-périodique qui peut être un problème en termes de contrôle

et de réglage du système. Pour ces raisons, une amélioration de l’absorbeur est proposée en ajoutant

en plus une non-linéarité cubique dans le circuit shunt, qui est discutée dans la section suivante.
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Figure 7.12: (a) Réponse en fréquence expérimentale de vH1 pour balayer la fréquence d’excitation
pour plusieurs niveaux d’excitation avec la correction AR. (b) Amplitude de saturation antirésonance
à la fréquence de résonance ω̂1 en fonction du niveau d’excitation tracé pour trois cas différents : la
réponse linéaire, avec r1 = ωe/ω̂1 = 0.537 fixe, et avec la correction AR. Les courbes sont estimées pour
β = 0.035, ξe = 0.002, et ξ1 = 0.0055. Les régions ombrées représentent le régime quasi-périodique
(QP) détecté.

7.4 Deuxième conception : avec des non-linéarités quadratiques et cubiques

7.4.1 Motivation

Comme discuté dans la section précédente, le principal problème avec la conception de l’absorbeur

est l’effet substantiel des termes quadratiques non résonnants qui conduisent à une réponse plus com-
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7.4. DEUXIÈME CONCEPTION : AVEC DES NON-LINÉARITÉS
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pliquée et entravent l’effet de saturation. De plus, la correction AR proposée n’était pas automatique.

Pour résoudre ce problème de manière plus réaliste, une compréhension plus approfondie de l’effet des

termes non résonnants est nécessaire. Ceci peut être réalisé avec la théorie de la forme normale qui

stipule que les termes quadratiques non résonnants apparaissent comme des termes cubiques dans le

système de forme normale du troisième ordre. Ainsi, l’idée était d’introduire une non-linéarité cubique

dans le circuit, comme le montre la figure 7.13(Vnl = βqV
2 + βcV

3) tel que βc soit correctement réglé

pour annuler l’effet des termes quadratiques non résonnants et récupérer la saturation comme on le

voit sur la Fig. 7.5. Dans ce qui suit une symétrie de la procédure est montrée, mais pour plus de

détails, on peut se référer au chapitre 4.

PE patch

Elastic structure

R

L

Vnl = βqV 2 + βcV 3

Nonlinear shunt

u(t)Ext. forcing

V (t)

Q̇(t)

Q(t)

Figure 7.13: Circuit shunt non linéaire avec composante de tension quadratique et cubique.

7.4.2 Système de forme normale et solution libre

La première étape consiste à construire les principales équations gouvernantes dans la base du

modèle électromécanique similaire à celle de (7.7a, b). La même procédure est suivie mais en incluant

la non-linéarité cubique pour obtenir :

ẍ1 + 2µ1ẋ1 + ω2
1x1 + g1

11x
2
1 + g1

12x1x2 + g1
22x

2
2

+ h1
111x

3
1 + h1

112x
2
1x2 + h1

122x1x
2
2 + h1

222x
3
2 = f1 cos Ωt, (7.10a)

ẍ2 + 2µ2ẋ2 + ω2
2x2 + g2

11x
2
1 + g2

12x1x2 + g2
22x

2
2

+ h2
111x

3
1 + h2

112x
2
1x2 + h2

122x1x
2
2 + h2

222x
3
2 = f2 cos Ωt. (7.10b)

La deuxième étape consiste à introduire un changement non linéaire de variables par une expansion

polynomiale du troisième degré comme :

(Xp, Yp = Ẋp) → P(3)
p (Rp, Sp = Ṙp) (7.11)

Puis, en substituant Eq. 7.11 dans (7.10a, b), en négligeant f1 et en fixant f2 = f , en gardant les

mêmes coefficients d’amortissement dans le processus de dérivation et après avoir effectué un peu
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d’algèbre avec le réglage ω1 = ω2/2 pour considérer la résonance interne 2:1, le système de forme

normale en termes de (Rp, Sp = Ṙp) est obtenu comme :

R̈1 + 2µ1Ṙ1 + ω2
1R1 + g1

12R1R2 + α1R
3
1

+ α2R1R
2
2 + α3R1Ṙ

2
1 + α4R1Ṙ

2
2 + α5R2Ṙ1Ṙ2 = 0 (7.12a)

R̈2 + 2µ2Ṙ2 + ω2
2R2 + g2

11R
2
1 + α6R

2
1R2

+ α7R
3
2 + α8R1Ṙ1Ṙ2 + α9R2Ṙ

2
1 + α10R2Ṙ

2
2 = f cos Ωt (7.12b)

avec αm = f(gpij , h
p
ijk). On peut se rendre compte que tous les termes quadratiques non résonnants

ont été annulés dans (7.12a,b) et apparaissent comme des termes cubiques. En effet, seuls les termes

quadratiques résonants subsistent puisqu’ils déterminent la dynamique essentielle dans le cas de la

résonance interne 2:1.

Ayant le système de forme noraml, l’étape suivante consistait à annuler l’effet de tous les monômes

cubiques dans le système de forme normale. Dans ce travail, la procédure proposée est d’obtenir la

solution libre de (7.12a,b) (et donc les ”backbone curves” montrant le changement de la fréquence

de résonance sur l’amplitude d’oscillation ). L’hypothèse principale est que puisque les ”backbone

curves” déterminent le squelette de la solution forcée (voir Fig. 7.14), la symétrisation de ces courbes

en annulant les monômes cubiques symétrisera la solution forcée (similaire à celle de la Fig. 7.5) et

ainsi récupérer la saturation. La solution libre de (7.12a,b) est déterminée à l’aide de la méthode des

échelles multiples en définissant µ1 = µ2 = f = 0. La solution libre approchée s’écrit :

R1(t) = a1 cos
(︃
ωnl

2 t+ ϕ2 + kπ

2

)︃
+O(ε), (7.13a)

R2(t) = a2 cos
(︁
ωnlt+ ϕ2

)︁
+O(ε), (7.13b)

avec ϕ2 le déphasage entre le mode excité et le forçage et k ∈ Z qui conduit à deux modes couplés

distincts C+ et C- selon le déphasage entre les deux oscillateurs. ωnl = f(a1, a2) détermine l’équation

des backbone curves qui se lit comme suit :

ωnl2 = ω2 + Γ4 p
a2

1
a2

+ Γ5a
2
1 + Γ6a

2
2. (7.14)

avec Γ4 ne dépend que des monômes quadratiques résonnants tandis que Γ5 et Γ6 dépendent des

monômes quaratiques et cubiques non résonnants. Les expressions de Γk se trouvent au chapitre 4.

Équilibrer les termes cubiques avec les termes quadratiques non résonnants nécessite que Γ5 = Γ6 = 0,
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(a) (b) (c)

(d) (f)(e)

C+C-
C+

C-

C+
C-

Figure 7.14: Réponse en fréquence de l’amplitude harmonique fondamentale X21 de x2(t) (la première
ligne) et de l’amplitude sous-harmonique X11/2 de x1(t) (la deuxième ligne) pour plusieurs niveaux
d’excitation, calculés numériquement avec Manlab dans le cas σ = 0 (c’est-à-dire ω2 = 2ω1). La
première colonne : seuls les termes de résonance quadratiques sont pris en compte (g1

12 = g2
11 = 1). La

deuxième colonne : tous les termes quadratiques sont considérés avec des termes cubiques nuls (g1
11 =

g1
12 = g2

11 = 1, g1
22 = g2

12 = g2
22 = 0.1). Troisième colonne : tous les termes quadratiques sont considérés

avec les termes cubiques sont définis en fonction de (7.15a-d). Les coefficients d’amortissement sont
µ1 = 0.007, µ2 = 0.02. La solution forcée découplée est tracée en noir et les solutions couplées sont
tracées en vert et bleu. Les lignes pointillées et pleines indiquent les solutions stables et instables,
respectivement. Les lignes pointillées désignent la solution libre couplée.

ce qui conduit à quatre ensembles de conditions sur les termes cubiques résonnants :

h1
111 = 10

9ω2
1

(︂
g1

11
)︂2

(7.15a)

h1
122 =

(︄
8ω2

2 − 2ω2
1

ω2
1(ω2

1 − 4ω2
2)

)︄
g1

11g
1
22 − g1

12g
2
22

ω2
2

+ 2g1
22g

2
12

ω2
1 − 4ω2

2
, (7.15b)

h2
112 =

(︄
1

ω2
1 − 4ω2

2

)︄
(︁
g2

12
)︁2 − 2g2

11g
2
22

3ω2
2

− g1
11g

2
12

ω2
1

, (7.15c)

h2
222 =

(︄
8ω2

2 − 3ω2
1

3ω2
1(ω2

1 − 4ω2
2)

)︄
g1

22g
2
12 − 10

(︁
g2

22
)︁2

9ω2
2

(7.15d)

Pour tester le réglage proposé, le système (7.10a, b) est résolu avec MANLAB pour estimer respec-

tivement les réponses en fréquence des amplitudes de la première et de la sous-harmonique de x2

et x1. La Fig. 7.14 montre trois cas différents : i) avec uniquement le quadratique résonant, ii) les

termes quadratiques non résonnants sont également pris en compte, et iii) les termes cubiques sont

considérés et accordés selon (7.15a-d). De plus, les ”backbone curves” C+ et C- sont représentées.
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Les résultats suggèrent clairement que l’accord des termes cubiques selon (7.15a-d) conduit à une

réponse symétrique et à un blocage de l’antirésonance à la fréquence de résonance, récupérant ainsi la

saturation.

7.4.3 Réglage de βc

Figure 7.15: Amplitude de la première harmonique du déplacement de la pointe du foil évaluée à la
fréquence de résonance, notée u∗

H1, en fonction de F pour trois valeurs différentes de βc. Les tracés
sont estimés pour βq = 0.03, ξe = 0.002, r1 = ωe/ω̂1 = 0.5055. La réponse linéaire (βq = βc = 0)
est indiquée en noir, avec les réponses stables et instables représentées respectivement par des lignes
pleines et pointillées.

Pour estimer le réglage βc requis pour une mise en œuvre pratique, rappelons qu’une seule condition

cubique peut être satisfaite. La condition d’accord consiste à annuler l’effet du terme quadratique non

résonnant le plus élevé, à savoir g1
11 et donc à satisfaire l’équation. (7.15) a qui conduit à l’accord

suivant de βc :

βc = 10
9 β

2
q . (7.16)

Ainsi, le réglage de βc ne dépend que de βq et la valeur de βc doit toujours être positive. Pour valider

la technique proposée, le système (7.3a, b) est résolu numériquement avec MANLAB en appliquant

la condition de réglage dans Eq. (7.16) et en utilisant les paramètres modaux foil dans Tableau 7.2.

La figure 7.15 montre la première amplitude harmonique du déplacement mesurée à la fréquence de

résonance (notée u∗
H1) en fonction du niveau de forçage. Les résultats suggèrent qu’en choisissant le

réglage dans Eq. (7.16) (voir la courbe bleue), la saturation peut être étendue jusqu’à des niveaux

d’excitation élevés. Cette limite est due à la capacité de régler une seule condition cubique tandis

que les trois autres termes cubiques de (7.15a-d) n’ont pas été réglés, créant un effet significatif à des

niveaux d’excitauon élevés. Il convient de mentionner que la région de saturation peut être étendue

à une excitation plus élevée en introduisant une petite correction à l’accord estimé de βc (voir le

minimum suggéré par la ligne jaune).
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7.4.4 Validation expérimentale sur une structure d’hydrofoil

7.4.5 Montage expérimental

6

chord length = 85
191

60

35

Coil

Magnet

NL shunt circuit Patches 1, 2

Patch 3

Foil structure

Patch 1 Patch 2

Top View

Side View

Figure 7.16: Montage expérimental. Les dimensions sont en mm. L’épaisseur des patchs en PE est de
1mm.

Table 7.2: Paramètres modaux électromécaniques du premier mode de flexion de la feuille (indice
i = 1) par rapport au patch PE 2.

Parameters ω̌1/(2π) [Hz] ω̂1/(2π) [Hz] ξ1(%) k1 θ1[mN/V] m1[g] α [N/A] Cp1 [nF]
Value 91.5 92.1 0.54 0.11 0.78 4.1 0.6 38

Les tests expérimentaux ont été menés sur une structure de feuille libre fixée à sa base dans un

étau, comme le montre la Fig. 7.16. Trois patchs PE sont collés sur des cavités usinées sur les surfaces

du foil : sur une face (notées patchs 1, 2), deux patchs piézoélectriques multicouches enduits polymère

P-876.A15 DuraAct sont utilisés pour la transduction avec le premier mode de flexion, tandis qu’un

composite macro-fibres M8557-F1 avec une orientation des fibres à 45 degrés est utilisé sur l’autre

face (notée patch 3) pour un couplage avec le premier mode de torsion. Dans tous les tests de cet

article, seul le patch 2 est utilisé puisque nous nous concentrons sur le premier mode de flexion. Par

conséquent, le patch 2 est connecté au circuit shunt et les patch 1 et 3 sont court-circuités. Les trois

patchs en PE proviennent du fabricant PI Ceramic. L’excitation mécanique est réalisée par une bobine

interagissant avec un aimant fixé sur le foil. Les signaux mesurés sont la vitesse à la pointe de la feuille

et la tension à travers le patch PE. L’analyse modale expérimentale et le protocole expérimental est

la vente discutée pour celle de la première conception. Les paramètres électromécaniques modaux du

premier mode de flexion de la feuille sont rassemblés dans le Tableau. 7.2.

Le circuit shunt non linéaire est illustré à la Fig. 7.17 qui est similaire à celui de la Fig. 7.10 mais
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avec une multiplication supplémentaire pour réaliser la non-linéarité cubique. L’inductance, βq et βc

sont respectivement réglées avec les résistances variables R4, R8 et R10. Pour satisfaire le réglage dans

Eq. (7.16), R10 doit satisfaire :

R10 = 10R9
9

R6
R5 +R6

(︄
R8
R7

)︄2

. (7.17)

V

AD633
R7

R8

R1

OA1

R2

R3

R4

OA2

R5

R5

OA3

OA4

R6

R6

C

PE voltage
measurement

inductor L
R

P
E
p
a
tc
h
2 DA1

Vnl

OA5

R9

R10
AD633

OA6
NL voltage source

DA2
OA7

Figure 7.17: Conception de circuit shunt non linéaire avec non linéarité cubique.

7.4.6 Résultats expérimentaux

Pour valider expérimentalement la procédure, la réponse en fréquence de la première amplitude

harmonique de la vitesse et la sous-harmonique de la tension PE ont été mesurées. Les résultats de

la Fig. 7.18 montrent les réponses avec βc = 0 et pour βc accordés selon Eq. (7.16). Les résultats

ont validé que l’accord cubique estimé peut verrouiller l’antirésonance à la fréquence de résonance et

récupérer la saturation jusqu’à un niveau d’excitation élevé, conduisant à une atténuation élevée.

7.5 Troisième conception: avec une non-linéarité non lisse

Cette section est dédiée à l’illustration de la conception auto-absorbante dans laquelle un composant

non lisse est intentionnellement ajouté au circuit électronique. Comme le montre la Fig. 7.19, l’élément

non lisse Vnl est choisi pour être bilinéaire en termes de tension PE V (t) de sorte que (c’est-à-dire ,
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Figure 7.18: (b) et (a) montrent respectivement les réponses en fréquence mesurées expérimentale-
ment des amplitudes de vH1 et VH1/2 pour différents niveaux d’excitation, en considérant uniquement
le terme non linéaire quadratique (lignes pointillées) et en considérant en plus un terme cubique (traits
pleins) tel que βc vérifie Eq. (7.16). Les résultats sont estimés avec ξe = 0.002, ξ1 = 0.0052, βq = 0.03,
βc = 0.001 et r1 = 0.5055. La ligne pointillée noire indique la réponse linéaire mesurée expérimentale-
ment de vH1 (c’est-à-dire, βq = βc = 0). (c) Amplitude de vH1 mesurée à la fréquence de résonance,
notée v∗

H1, en fonction du niveau d’excitation.

Vnl = β(V + |V |)) avec β un gain sans dimension. Le but d’introduire une non-linéarité non lisse sous

une telle forme est d’abord de générer des paires d’harmoniques dans le système, puisqu’il ne s’agit

pas d’une fonction symétrique de V , d’activer éventuellement une résonance interne 2:1, puis d’utiliser

de simples des composants électriques tels qu’une diode ou un transistor pour y parvenir.

PE patch

Elastic structure

R

L

Vnl = β(V + |V |)

Nonlinear shunt

u(t)Ext. forcing

V (t)

Q̇(t)

Q(t)

Vnl

V

2β

1

Figure 7.19: (a) Structure élastique couplée au circuit shunt non linéaire ; (b) graphe de la fonction
V → Vnl = β(V + |V |).
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7.5.1 Main equations

En substituant Vnl = β(V + |V |) dans Eq. (7.3)b, les équations gouvernantes en termes de déplace-

ment modal qi(t) et la charge Q(t) sont:

q̈i + 2ξiω̂iq̇i + ω̂2
i qi + θi

miCpi
Q = Fi

mi
cos Ωt, (7.18a)

Q̈+ 2ξeωeQ̇+ ω2
eQ+ ω2

eθiqi − βω2
e (Q+ θiqi + |Q+ θiqi|) = 0. (7.18b)

Deux conclusions importantes peuvent alors être tirées : (i) les équations gouvernantes de (7.18a,b)

sont bien non linéaires à cause du terme non lisse (|V | =⇒ |Q + θiqi|) qui n’apparâıt que dans

Eq. (7.18b) et crée une distorsion harmonique. (ii) bien que des non-linéarités soient présentes,

(7.18a,b) sont en fait entièrement linéaires en amplitude. Cependant, il n’est pas toujours additif

ou superposable, puisque |x1 + x2| ≠ |x1| + |x2| si x1x2 < 0 pour x1, x2 ∈ R.

Pour donner une première analyse du comportement du système couplé (7.18a,b), nous ne con-

sidérons ici que l’Eq. (7.18b), nous excluons le couplage piézoélectrique ( c’est-à-dire en fixant θi = 0),
et nous ajoutons un terme de forçage direct d’amplitude P , conduisant à :

Q̈+ 2ξeωeQ̇+ ω2
eQ− βω2

e (Q+ |Q|) = P cos Ωt, (7.19)

7.5.2 Free solution

π/ωeπ/ω′
e

T = 2π/ω̄e

(a) (b)

Figure 7.20: (a) Exemple de réponse libre de Eq. (7.19) sur une période. (b) Rapport η = ω̄e/ωe en
fonction de β.

Pour analyser la réponse libre, nous fixons P = 0, et nous réécrivons Eq. (7.19) comme :

Q̈+ 2ξeωeQ̇+ ω2
eQ = 0 if Q ≤ 0, (7.20a)

Q̈+ 2ξeωeQ̇+ ω′2
e Q = 0 if Q ≥ 0, (7.20b)
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avec ω′
e = ωe

√
1 − 2β. Dans le cas conservateur (ξe = 0), Eqs. (7.20) suggèrent que la réponse libre est

une succession d’une demi-période de sinus de période ωe et d’une demi-période de sinus de fréquence

ω′
e, comme illustré Fig. 7.20(a) . Ensuite, la période d’oscillation peut être exprimée comme suit :

T = 2π
ω̄e

= π

ωe
+ π

ω′
e

, (7.21)

avec ω̄e la fréquence angulaire modifiée de la réponse libre due au terme non lisse, qui se lit :

ω̄e = 2
√

1 − 2β
1 +

√
1 − 2β⏞ ⏟⏟ ⏞
η

ωe = 2
√

1 − 2β
1 +

√
1 − 2β

1√︁
LCp

, η = ω̄e
ωe
, (7.22)

avec η le rapport entre les fréquences naturelles modifiées (ω̄e) et non modifiées (ωe), tracées sur

la Fig. 7.20(b). Eq. (7.22) prouve que même si le comportement est non linéaire, la fréquence

d’oscillation libre de Eq. (7.18b) ne dépend pas de l’amplitude. De plus, Eq. (7.22) suggère qu’étant

donné une fréquence de résonance électrique ωe (c’est-à-dire, étant donné une inductance), la fréquence

d’oscillation électrique modifiée ω̄e peut être ajustée selon la valeur de β. Cependant, la valeur de

β doit être inférieure à 1/2 pour éviter une réponse instable. Cette caractéristique est le principal

avantage de ce circuit shunt non linéaire : en ajustant le paramètre non linéaire β, on peut accorder la

fréquence du circuit électrique à une valeur particulière tout en fixant l’inductance à une valeur faible,

ce qui est un avantage pour la mise en œuvre pratique.

7.5.3 Solution forcée

Pour analyser la réponse forcée, nous réécrivons Eq. (7.19) sous une forme adimensionnelle en

introduisant les paramètres suivants :

t̃ = ωet, Q̃ = Q
ω2
e

P
, Ω̃ = Ω/ωe. (7.23)

En utilisant les paramètres sans dimension dans Eq. (7.23), on obtient :

¨̃Q+ 2ξe ̇̃Q+ Q̃− β
(︂
Q̃+ |Q̃|

)︂
= cos Ω̃t̃. (7.24)

On peut se rendre compte que la solution de l’Eq. (7.24) ne dépend que du rapport d’amortissement ξe

et du gain β. Par conséquent, la forme de la courbe de résonance de l’Eq. (7.24) est indépendante du

niveau d’excitation P et peut être obtenue pour n’importe quelle valeur de P et omegae en utilisant

la mise à l’échelle définie dans (7.23). Ceci est illustré sur la Fig. 7.21 en résolvant Eq. (7.19) pour

différents niveaux d’excitation. On peut clairement observer que le terme non lisse crée un contenu

harmonique complet dans lequel les harmoniques zéro (H0) et deuxième (H2) ont une contribution

significative en plus de la première harmonique (H1), les harmoniques supérieures étant négligeables.

L’observation la plus importante est que la forme de chaque harmonique, considérée séparément,
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semble proche de la réponse en fréquence d’un oscillateur linéaire au voisinage de sa fréquence de

résonance, qui est obtenue ici au voisinage de la fréquence des oscillations libres, pour Ω = ω̄e.

Contrairement au comportement quasi-linéaire décrit ci-dessus, le terme non linéaire non lisse peut

(a) (b) (c)

Figure 7.21: Harmoniques H1 (a), H0 (b) et H2 (c) des solutions périodiques de l’Eq. (7.19) au voisinage
de la résonance primaire, en fonction de Ω̃ = Ω/ωe pour ξe = 0.005 et différents niveaux d’excitation
P . Les valeurs numériques utilisées dans les simulations sont ξe = 0.005 et β = 0.444.

générer une réponse superharmonique fortement non linéaire près de Ω = ω̄e/2 comme le montre

la Fig. 7.22. Cela suggère que l’introduction du terme non lisse peut représenter une option pour

l’application impliquant une résonance interne.

(a) (b) (c)

Figure 7.22: Harmoniques H0 (en rouge), H1 (en noir) et H2 (en bleu) des solutions périodiques de
Eq. (7.19) au voisinage de la résonance superharmonique d’ordre deux. (a) β = 0.3136, (b) β = 0.444
et (c) β = −3.883. Les valeurs numériques sont ξe = 0.005 et P = 0.1. Les lignes pleines et pointillées
indiquent les réponses stables et instables, respectivement.

7.5.4 Approximation avec un oscillateur linéaire

Comme indiqué dans la section précédente, la réponse en fréquence non linéaire des harmoniques

semble similaire à la fonction de réponse en fréquence (FRF) d’un oscillateur linéaire proche de la

résonance primaire. Ainsi, on cherche une approximation de Eq. (7.19) définie par l’oscillateur linéaire

263
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suivant, pour p = 0, 1, 2 :

Q̈p + 2ξ̄eω̄eQ̇p + ω̄2
eQp = ϕpP cos Ωt, (7.25)

où Qp est la réponse approchée de la p-ième harmonique de Q(t), ξ̄e est le taux d’amortissement

modifié dû au terme non lisse, et ϕp est un gain inconnu, correspondant au p-ième harmonique,

introduit pour quantifier la différence entre les solutions analytique et numérique et à déterminer en

ajustant la réponse en fréquence analytique de Qp avec la réponse en fréquence numérique du p- ième

harmonique.

Pour déterminer le rapport d’amortissement modifié ξ̄e, nous supposons et vérifions que le terme

non lisse n’a aucun effet sur le coefficient d’amortissement (c’est-à-dire le terme multipliant Q̇), et

donc :

ξ̄eω̄e = ξeωe ⇒ ξ̄e = ξe/η. (7.26)

Étant donné que ϕp jouera un rôle important dans le processus d’optimisation décrit ci-après, une

Figure 7.23: ϕp en fonction de β correspondant aux harmoniques H0 (rouge), H1 (noir) et H2 (bleu).
Les cercles indiquent les valeurs estimées en ajustant les réponses analytiques et numériques pour
chaque valeur de β, et les traits pleins indiquent les courbes polynomiales approchées.

approximation polynomiale en termes de β est estimée pour chaque harmonique, grâce à la propriété

de symétrie illustrée à la Fig. 7.23 (voir chapitre 6 pour plus de détails).

7.5.5 Réponse du système complet : deux cas de réglage et une atténuation optimale

Dans cette section, deux cas de réglage sont étudiés : un réglage 1:1 avec ω̄e = ω̂i et un cas de

réglage 2:1 avec ω̄e = ω̂i/2, grâce à l’approximation discutée précédemment. L’étude impliquant la

résolution (7.18a, b) avec MANLAB pour examiner la réponse et l’éventuelle activation de la résonance

interne 2:1 pour le cas d’accord 2:1. Le cas d’accord 1:1 suggère de coupler la résonance mécanique

avec l’harmonique H1. Étant donné que la réponse de l’harmonique H1 est entièrement linéaire près de

la fréquence fondamentale, une fixation linéaire est alors couplée au mode mécanique à atténuer et une
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(a) (b)

r = 1; L = 2.94H; β = 0

r = 2; L = 0.73H

r = 5; L = 0.118H

r = 10; L = 0.029H

Figure 7.24: (a) Réponse en fréquence numérique de la première harmonique uH1 du déplacement u(t),
normalisée par rapport au niveau de forçage F , pour différentes valeurs du rapport r (ou l’inductance
L) et en satisfaisant les conditions optimales . (b) Atténuation optimale pour le cas du shunt RL et
le cas avec la composante non lisse avec un réglage 1:1. Les marqueurs circulaires sont les réponses
en fréquence numériques d’atténuation obtenues pour chaque valeur de ri = ωe/ω̂i = 1

ω̂i

√
LCpi

. Les

paramètres modaux utilisés sont ceux rassemblés dans Table. (7.4).

réponse similaire à un amortisseur de masse accordé est attendue (voir Fig. 7.24) . L’idée principale

est d’introduire un facteur de couplage piézoélectrique modifié k̄i pour prendre en compte l’effet de la

composante non résonnante qui se lit :

k̄i(β) = ki

√︂
ϕ1(β). (7.27)

Ayant le couplage piézoélectrique modifié, une procédure d’optimisation est proposée (similaire à

celle du shunt résonnant linéaire) dans laquelle les paramètres optimaux considérés sont le gain non

lisse β et le rapport d’amortissement électrique (ou la résistance R), en imposant tout condition sur

l’inductance. Les expressions des paramètres optimaux en plus de l’atténuation optimale AdB sont

rassemblées dans Table. 7.3. L’atténuation est définie comme la différence entre l’amplitude linéaire

et l’amplitude avec le shunt non linéaire à la fréquence de résonance, mesurée en échelle de dB. Il

est à noter que l’atténuation dépend de l’inductance dans le circuit, contrairement au cas du shunt

résonnant linéaire, ce qui est logique puisqu’aucune condition sur l’inductance n’a été imposée. La

figure 7.24(a) montre la réponse en fréquence de la première harmonique de déplacement pour le

cas optimal pour différentes valeurs d’inductance. On peut voir que l’atténuation diminue légèrement

pour un réglage d’inductance plus faible. Ceci est examiné plus en détail dans la Fig. 7.24(b) où il

montre que l’inductance peut être réduite d’un facteur 100 par rapport à celle requise par le shunt

linéaire mais sans perdre sensiblement les performances.

En ce qui concerne le cas d’accord 2:1, les résultats de la Fig. 7.25 suggèrent que l’activation de la

résonance interne 2:1 est activée puisque la sous-harmonique de la charge répond par une bifurcation

en fourche (PF). On peut se rendre compte que la réponse en déplacement ne présente pas la satura-
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7.5. TROISIÈME CONCEPTION: AVEC UNE NON-LINÉARITÉ NON LISSE

tion et la réponse est bien linéaire avec le niveau d’excitation, similaire à celle d’un shunt résonnant

linéaire. Les paramètres optimaux et les expressions d’atténuation optimales pour ce cas de réglage

sont rassemblés dans Table. 7.3. Notez que l’optimisation pour le réglage 2:1 considère la modification

du facteur de couplage piézoélectrique similaire à celui de l’équation. (7.27) mais avec ϕ2 puisque la

résonance mécanique est couplée à l’harmonique H2.

PF
PF

PF

PF

PF

PF

PFPFPFPF

PF

PF

(a) (b)

Figure 7.25: (a) et (b) montrent respectivement la réponse en fréquence numérique de uH1 et QH1/2

pour les niveaux d’excitation croissants. La réponse linéaire est tracée en noir. Les réponses stables
et instables sont représentées respectivement par des lignes pleines et pointillées. L’étoile violette
indique la bifurcation de la fourche (PF). Les valeurs numériques utilisées sont β = 0.444, R = 36Ω,
L = 2.948H. Les paramètres modaux utilisés sont ceux rassemblés dans Table. 7.4.

Table 7.3: Paramètres optimaux et atténuation optimale pour les cas de réglage 1:1 et 2:1.

Cas β optimal R optimal Atténuation optimale [dB]

1:1 tuning βop = 1
2

[︃
1 −

(︂
1

2ri−1

)︂2
]︃

Rop =
√

6
2Cpir

2
i ω̂i
ki
√︂
ϕop1 AdB = 20 log10

(︃
1 + ki

ξi

√
6

√︂
ϕop1

)︃

2:1 tuning βop = 1
2

[︃
1 −

(︂
r∗

i
2ri−r∗

i

)︂2
]︃

Rop =
√

6r∗
i

2Cpir
2
i ω̂i
ki
√︂
ϕop2 AdB = 20 log10

(︃
1 + ki

ξi

√
6

√︂
ϕop2

)︃

7.5.6 Validation expérimentale

La validation expérimentale a été effectuée pour atténuer le premier mode de torsion de la même

structure d’hydrofoil illustrée à la Fig. 7.26. Dans ces tests, le patch 3 était couplé au circuit shunt

tandis que les patchs 1 et 2 étaient en court-circuit. Même protocole expérimental comme indiqué

précédemment a été utilisé. Les paramètres modaux électromécaniques ont été déterminés et rassem-
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(a)

(b) r = 1; L = 2.94H

r = 2; L = 0.73H

r = 5; L = 0.118Hr = 8; L = 0.046H

r = 1; L = 2.94H

r = 2; L = 0.73H

r = 5; L = 0.118H

r = 8; L = 0.046H

(c)

Figure 7.26: (a) et (b) montrent la réponse en fréquence expérimentale de la première harmonique
de la vitesse uH1 pour différentes valeurs de l’inductance pour l’accord 1:1 et 2:1, respectivement.
(c) Comparaison entre l’atténuation analytique optimale et celle mesurée expérimentalement pour les
deux cas de réglage.

blés dans le Tableau. 7.4. Le composant non lisse est réalisé avec un circuit redresseur demi-onde

avec une diode comme indiqué sur la Fig. 7.26. Les réponses en fréquence mesurées de la première

Table 7.4: Paramètres modaux électromécaniques du premier mode de torsion.

Parameter ω̌/(2π) ω̂/(2π) ξ m Cp θ k ψ(xm)
Value 509.4 Hz 511.36 Hz 0.0012 10.42 g 32.8 nF 5.2 mN/V 0.0875 1

harmonique du déplacement pour différentes valeurs d’inductance sont présentées sur les Figs. 7.26(a)

et (b) pour les cas de réglage 1:1 et 2:1 respectivement. Les résultats valident la réponse similaire par

rapport à celle du shunt résonnant linéaire avec la possibilité de régler une inductance beaucoup plus

faible dans le circuit (une réduction d’un facteur 64 par rapport à celle requise par le shunt résonnant

linéaire est obtenue dans les expériences). De plus, comme le montre la Fig 7.26(c), les expériences

ont validé le comportement d’atténuation optimal, prédit théoriquement, en fonction de l’inductance.

7.6 Conclusion

Cette thèse vise à atténuer les vibrations des hydrofoils à l’aide d’absorbeurs shunt piézoélectriques.

Le procédé consiste à connecter la structure en feuille à un circuit électronique via un patch piézoélec-
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Figure 7.27: Schéma du circuit shunt avec composant non lisse.

trique. L’idée principale est d’introduire intentionnellement un composant non linéaire dans le circuit

shunt pour améliorer l’atténuation. L’originalité principale de cette thèse est d’exploiter le phénomène

de saturation en utilisant la méthode du shunt piézoélectrique. Pour ce faire, trois conceptions dif-

férentes ont été proposées. La première conception consiste à ajouter une composante de tension

non linéaire quadratique proportionnelle au carré de la tension aux bornes du patch piézoélectrique

(Vnl = βV 2). La saturation est conservée et validée expérimentalement sur une structure de poutre en

porte-à-faux à l’aide d’une correction d’antirésonance non automatique. La seconde conception consis-

tait à introduire en plus une non-linéarité cubique accordée grâce aux résultats suggérés par la théorie

des formes normales. L’absorbeur a ensuite été testé expérimentalement sur une structure hydrofoil

permettant de récupérer la saturation jusqu’à des niveaux d’excitation élevés et une atténuation élevée

a été obtenue. La troisième conception consistait à introduire une non-linéarité non lisse pour activer

la résonance interne 2:1 et être facilement analysée avec une diode. Les résultats ont montré que le

circuit shunt peut alors être réglé avec le gain non lisse β avec un réglage à faible inductance, ce qui

est un avantage pratique. Deux cas d’accord entre la fréquence de résonance électrique ω̄e et celle

mécanique ω̂i ont été étudiés. Le cas d’accord 1:1 (ω̄e = ω̂i) a montré un comportement similaire

par rapport à un shunt résonnant linéaire. De même, l’accord 2:1 (ω̄e = 1/2ω̂i) a également mon-

tré le même comportement mais avec l’activation de la résonance interne 2: 1 sans saturation. Des

études d’optimisation ont ensuite été réalisées suggérant la possibilité d’accorder le circuit avec une

très faible inductance par rapport à celle requise par le shunt résonnant linéaire, sans perdre beaucoup

de performances.Les résultats ont ensuite été validés en appliquant l’absorbeur sur la structure de

l’hydrofoil.





Zein Alabidin SHAMI

Vibration Control of Hydrofoil Structures
with Nonlinear Piezoelectric Shunt Absorbers

Résumé : Les hydrofoils sont des structures à surface portante qui sont montées sur la coque des bateaux afin
d’augmenter le rapport entre la vitesse et la consommation d’énergie. Le concept de base consiste à générer une
force de levage sur le corps du bateau, ce qui entrâıne une réduction de la surface de contact avec l’eau et donc une
diminution de la force de trâınée. A des vitesses plus élevées, les hydrofoils sont soumis à des vibrations induites
par l’écoulement qui peuvent conduire à des contraintes élevées et à la fatigue, diminuant ainsi leurs performances.
Cette thèse a pour but d’atténuer ces vibrations en utilisant un absorbeur piézoélectrique non-linéaire en
dérivation. Ces absorbeurs consistent à connecter un circuit électronique de dérivation à la structure de l’hydrofoil
par transduction piézoélectrique. Dans ce travail, les circuits de dérivation consistent principalement en un
circuit résonnant (c’est-à-dire une résistance en série avec une inductance) avec un composant non linéaire ajouté
intentionnellement. Le but de l’ajout de la non-linéarité est d’exploiter certaines caractéristiques pour améliorer
l’atténuation de l’absorbeur. La principale caractéristique prise en compte dans ce travail est le phénomène de
saturation qui conduit à l’indépendance de l’amplitude d’oscillation par rapport au niveau d’excitation. Par
conséquent, une forte atténuation des vibrations peut être atteinte à des niveaux d’excitation élevés. Ce travail
propose différentes architectures de circuits non linéaires, incluant des non-linéarités quadratiques, cubiques et
non lisses. Ces absorbeurs sont étudiés théoriquement et vérifiés expérimentalement avec une discussion détaillée
sur leurs avantages, leurs performances et leurs limites.

Mots clés : Surfaces portantes, hydrofoils, absorbeurs de vibrations, absorbeurs piézoélectriques non
linéaires en dérivation, phénomène de saturation.

Abstract : Hydrofoils are lifting surface structures that are mounted on the boats’ hull to increase the speed
to the power consumption ratio. The basic concept is based on generating a lift force on the boat body leading
to a reduction of the contact area with the water and thus a lower drag force. At higher speeds, hydrofoils are
subjected to flow-induced vibrations that can lead to high stresses and fatigue, lowering their performance. This
thesis aims to attenuate those vibrations using the nonlinear piezoelectric shunt absorber. Those absorbers consist
of connecting an electronic shunt circuit to the hydrofoil structure through piezoelectric transduction. In this work,
the shunt circuits mainly consist of a resonant circuit (i.e., a resistor in series with an inductor) with a nonlinear
component intentionally added. The purpose of adding the nonlinearity is to exploit some features to enhance
the absorber attenuation. The main feature under consideration in this work is the saturation phenomenon that
leads to the independence of the oscillation amplitude from the excitation level. Consequently, high vibration
attenuation can be reached at high excitation levels. This work proposes different nonlinear circuit architectures,
including quadratic, cubic, and nonsmooth nonlinearities. Those absorbers are studied theoretically and verified
experimentally with a detailed discussion on their advantages, performance, and limitations.

Keywords : Lifting surfaces, hydrofoils, vibration absorbers, nonlinear piezoelectric shunt absorbers, sat-
uration phenomenon.
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