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voire espèrent trouver quelques traits d’humour assez courants dans cet exercice. Essayons de ne
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dans cette phrase relève de l’optimisme, sinon de la science-fiction.
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aboutit des années plus tard (entre autres) à ce manuscrit, c’est le fait de t’avoir rencontrée. Merci
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Amin, Eric, Leonardo, François. Merci à Seb, organisateur infatigable de soirées jeux mais aussi de
groupes de travail Machine Learning entre doctorants. Merci à Väıa d’avoir essayé de nous apprendre
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Introduction

Cette thèse s’articule autour de deux projets : ATHENA, pour Active Thermography for Nonde-
structive inspection Automation, et RetinOptic. Ces deux projets sont liés à la même problématique
de traitement d’image, à savoir la détection d’objet et la segmentation. Ces dernières années, les
réseaux de neurones convolutionnels se sont avérés très efficaces pour diverses tâches de vision par
ordinateur, et constituent à présent l’état de l’art pour plusieurs problèmes de détection d’objet et
de segmentation. Les principaux désavantages des techniques d’apprentissage profond sont le besoin
d’une base de données suffisamment grande et représentative, ainsi que le manque d’interprétabilité
des modèles obtenus. Malgré les performances impressionnantes des algorithmes d’apprentissage pro-
fond pour des tâches complexes, lorsque le nombre d’images est petit ou qu’une annotation fiable n’est
pas disponible, il est pertinent de proposer des techniques de segmentation plus classiques, ne reposant
pas sur l’apprentissage supervisé, en particulier si l’interprétabilité est nécessaire. C’est le cas dans
le projet ATHENA; a contrario, dans le projet Retinoptic, nous avons pu constituer progressivement
une base de données de plusieurs milliers d’images, et entrâıner des réseaux de convolution.

Dans la première partie, les objects à détecter peuvent être décrits sommairement comme ”une
zone claire immédiatement à gauche d’une zone sombre” et ”une zone claire à droite d’une zone
sombre, potentiellement séparées par une zone grise plate”. Le nombre d’images à disposition est
assez petit, et l’interprétabilité du modèle requise, ce qui exclut l’utilisation de techniques avancées
d’apprentissage automatique. En plus de fournir un algorithme de segmentation efficace, une partie du
travail consiste à donner des définitions de concepts jusqu’ici mal définis ou dépendants de l’opérateur,
comme la symétrie du signal et le rapport signal/bruit. Il s’avère que notre stratégie, à la fois pour
segmenter les défauts et les caractériser, repose sur l’étude de certains extrema. Dans les deux premiers
chapitres, cette analyse concerne des signaux 1D et reste assez basique, ce qui est suffisant pour
la tâche à accomplir. Une réflexion plus poussée est développée dans le chapitre suivant afin de
caractériser et quantifier les extrema dans un cadre plus général : nous étendons la notion classique
de valeurs d’extinctions pour définir de nouveaux attributs pour les maxima, ainsi que de nouvelles
décompositions morphologiques et de nouveaux opérateurs morphologiques. Ce chapitre, théorique,
peut être lu indépendamment des autres.

Dans la seconde partie, le but est d’estimer si la région de la macula d’une image rétinienne est
de suffisamment bonne qualité, et de localiser la macula le cas échéant. La solution proposée doit
également être rapide, ainsi que suffisamment légère pour tourner sur des systèmes embarqués. Parmi
les quelque 100.000 images à notre disposition, nous avons progressivement annoté un peu plus de
6000, indiquant pour chacune si la macula était clairement visible et entièrement à l’intérieur de
l’image, ainsi que sa position lorsque tel était le cas. Nous avons étudié différents types de réseaux de
neurones, à la fois pour la classification (la macula est-elle visible ?) et la régression (pour prédire les
coordonnées de la fovéa). Nous avons aussi essayé de fournir un autre type d’entrée aux réseaux, basée
sur une décomposition morphologique qui, intuitivement, était susceptible de rendre la tâche plus facile
en supprimant ou en atténuant les artefacts d’illumination, et nous avons essayé de comprendre et
de corriger les comportements inattendus de nos premiers réseaux de régression. Les résultats décrits
dans cette partie, négatifs comme positifs, doivent être interprétés avec prudence. Le but n’est pas
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ici de proposer des règles de conduite universelles pour l’apprentissage profond, mais les situations
rencontrées et les solutions proposées — qu’elles fonctionnent ou non — sont des exemples des obstacles
rencontrés lorsque l’on utilise l’apprentissage profond sur des données réelles.

La macula est le ”centre de la vision” : la fovéa, au centre, est la partie de la rétine qui concentre
le plus de cônes, qui sont les cellules permettant la vision précise et en couleur dans de bonnes
conditions de lumière. Ainsi, les lésions dans la région de la macula peuvent rapidement altérer la
vision centrale, et pour qu’un diagnostic soit fait sur une image rétinienne — que ce soit par un
médecin ou par un algorithme — il est crucial que la qualité soit suffisante dans cette région. Dans un
réseau de télémédecine, il n’est malheureusement pas rare (environ 10% des examens) que la qualité de
l’image soit insuffisante pour effectuer un diagnostic. Un des objectifs du projet Retinoptic consistait
à concevoir un nouveau rétinographe portable, permettant un dépistage plus large de la population.
Cependant, les systèmes portables fournissent généralement des images de moins bonne qualité que
les rétinographes sur table, ce qui constitue la motivation principale de notre estimateur de qualité.

Plan de la thèse

Ce document comporte deux parties, concernant respectivement les projets ATHENA et Retinoptic.
Le chapitre 1 présente la thermographie active, le cas particulier du projet ATHENA, et présente le
problème traité dans cette partie. Le chapitre 2 détaille la solution développée, basée sur l’analyse de
certains extrema d’intérêt, et fournit des exemples de segmentation.

Le chapitre 3 constitue la contribution de cette thèse à la morphologie mathématique : nous
étendons l’analyse des extrema par valeurs d’extinction, et nous définissons plusieurs décompositions
ainsi que plusieurs nouveaux opérateurs morphologiques, et étudions leurs propriétés.

La partie II concerne le projet RetinOptic : au chapitre 4, nous présentons le contexte du projet
et motivons notre objectif de détecter la macula. Le chapitre 5 présente des réseaux de classification
permettant de distinguer les images où la macula est visible de celles où elle ne l’est pas. Au chapitre 6,
nous étudions la localisation de la macula par des réseaux de régression, sous l’hypothèse que nous
disposerions déjà d’une bonne classification. Nous étudions la possibilité d’utiliser en entrée des
réseaux une autre représentation de nos images, utilisant une décomposition morphologique choisie de
manière à rendre la tâche plus simple. Nous proposons également plusieurs solutions pour résoudre un
problème dû à l’anisotropie de notre base de données : les réseaux semblent ne prédire correctement
qu’une des deux coordonnées de la fovéa. Enfin, au chapitre 7, nous présentons une autre approche
du problème, en utilisant un réseau de segmentation entièrement convolutionnel, capable de fournir à
la fois classification et régression.



Introduction

This thesis is articulated around two distinct projects: ATHENA, standing for Active Thermography
for Nondestructive inspection Automation, and RetinOptic. Both projects are related to the same
problematic in image processing, namely object detection and segmentation. In the past few years,
convolutional neural networks have been proven very efficient for addressing a variety of computer
vision tasks, and have now become the state-of-the-art approaches for several object detection and
segmentation problems. The main drawbacks of deep learning techniques are the need for a large, and
representative enough dataset, and the lack of interpretability of the resulting models. Despite the
impressive performances of deep learning algorithms on complicated tasks, when working on a small
number of images and in the absence of a reliable ground-truth annotation, developing more classic
image segmentation techniques, not based on supervised learning, is still relevant, especially in the
case where interpretability is required. This is the case of the ATHENA project; in contrast, in the
Retinoptic project, we were able to progressively constitute a database of several thousand images,
and to train convolutional networks.

In the first part, the objects to detect can be roughly described as ”a bright zone immediately to
the left of a dark zone” and ”a bright zone to the right of a dark zone, possibly with a flat gray zone
in between”. The number of images available was quite small, and model understandability was a
requirement, both of which excluded the use of advanced machine learning techniques. In addition to
providing an efficient segmentation algorithm, part of the work consisted in giving proper definitions
to so far ill-defined or operator-dependent concepts, such as signal symmetry and signal/noise ratio.
It turns out that our strategy, both for segmenting defaults and characterizing them, relies on the
study of certain extrema. In the first two chapters, this analysis concerns one-dimensional signals and
remains very basic, which is sufficient for the task at hand. We next delve further into the reflexion
of how to characterize and quantify extrema: we expand the classic idea of extinction values to define
new features of maxima, as well as morphological decompositions and new morphological operators.
Although the idea stemmed from the work on the ATHENA project, this chapter is self-contained and
can be read independently.

In the second part, the aim is to estimate whether the macular region of a retinal image is of
good enough quality, and to locate it if it is. Additionally, the proposed solution must be fast, and
light enough to run on embedded systems. Out of the more than 100,000 images at our disposal, we
progressively annotated a little more than 6,000 of them, indicating whether the macula was clearly
visible and entirely within the image, and its position when it was. We investigated different kinds
of neural networks, both for classification (is the macula visible?) and regression (for predicting the
fovea’s coordinates). We also tried feeding the networks a different kind of input, based on a morpho-
logical decomposition that, intuitively, might have made the task easier by suppressing or attenuating
illumination artifacts, and tried to understand and correct odd behaviors of our first regression net-
works. The results we describe in this part, both negative and positive, must be interpreted with
caution. Our goal is not to provide universal guidelines or rules for deep learning, but the situations
encountered and the solutions proposed — whether they actually work or not — are examples of
obstacles or shortcomings one might have to face when applying deep learning to real-life data.
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The macula is the ’center of vision’: the fovea, located in its center, is the part of the retina with
the highest concentration of cones, which are the cells responsible for high-resolution, color vision in
good light. As such, lesions in the macular region can quickly impair central vision, and it is crucial
for a diagnosis to be made on a retinal image — be it by a practician or by an automatic diagnosis
algorithm — that the quality of the image is sufficient in this region. Unfortunately, in telemedicine
networks, it is not uncommon (around 10% of all examinations) that image quality is insufficient
for a diagnosis to be made. The RetinOptic project aimed at devising a new, portable retinograph,
which may enable a wider screening of the population, but with the downside that portable devices
typically provide images of lower quality than tabletop ones, which was the main motivation of our
image quality estimator, which is detailed in Chapter 7.

Outline of this thesis

This document is split in two parts, regarding the ATHENA and RetinOptic projects, respectively.
Chapter 1 introduces active thermography, the particular case of the ATHENA project and presents
the problem addressed in this part. Chapter 2 details the solution we developed, based on the analysis
of certain extrema of interest, and provides segmentation examples.

Chapter 3 is the contribution of this thesis to mathematical morphology: we expand the analy-
sis of extrema based on extinction values, and define several decompositions as well as several new
morphological operators, and study their properties.

Part II concerns the RetinOptic project: in Chapter 4, we introduce the context of the project, and
motivate our goal of detecting the macula. Chapter 5 presents convolutional neural network classifiers
for discriminating between images where the macula is visible and images where it is not. Chapter 6
focuses on the localization of the macula by regression neural networks, assuming we already dispose
of a good classifier. We investigate the possibility of feeding the networks a different input, consisting
in a morphological decomposition designed so as to make the task easier. We also propose several
solutions to overcome an issue caused by the structure of our dataset ground truth positions: at
first, the network seem to correctly predict only one of the two coordinates of the fovea. Finally, in
Chapter 7, we present another way of approaching the problem, using a fully-convolution segmentation
network, which is able to act as both a classifier and a regression model, after a simple post-processing.
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Robin Alais, Petr Dokládal, Ali Erginay, Bruno Figliuzzi and Etienne Decencière. ”Fast Macula
Detection and Application to Retinal Image Quality Assessment”, Biomedical Signal Processing and
Control, 2020.

As co-author:

Geology

Arezki Chabani, Caroline Mehl, Isabelle Cojan, Robin Alais and Dominique Bruel.”Semi-automated
component identification of a complex fracture network using a mixture of von Mises distributions:
Application to the Ardeche margin (South-East France)”, Computers & Geosciences, 2020.

Geostatistics

Laure Pizzella, Robin Alais, Simon Lopez, Xavier Freulon and Jacques Rivoirard. ”Taking better
advantage of fold axis data to characterize anisotropy of complex folded structures in the implicit
modeling framework”, Mathematical Geosciences, 2021.



14 INTRODUCTION



Part I

ATHENA

15





Chapter 1

Problem Presentation

Ce chapitre présente les bases de la thermographie active ainsi que le projet ATHENA, sur lequel porte
la première partie de ce manuscrit.

Après avoir rappelé le principe de la thermographie active et introduit le contexte du projet et ses
objectifs, nous détaillons la méthode dite de flying-spot utilisée pour acquérir les thermogrammes, et
présentons les différents défauts à détecter, ainsi que leur signature à une dimension.

1.1 Active Thermography Principle

In recent years, active thermography for condition monitoring has gained interest as an alternative
to other non-destructive techniques such as liquid penetrant or magnetic particle testing. It has the
advantage of being contactless and can be performed in situ more easily. As compared to dye penetrant
testing, it is able to detect not only surface-breaking but also underlying cracks, provided that they are
close enough to the surface to act as a thermal barrier, and it can also be used to detect delaminations
of coated materials [She97].

Active thermography control consists in heating a material and monitoring its surface tempera-
ture. The energy source can be of several types: photonic, for instance a laser, induction heating,
if the material is an electric conductor [Leh+92], or hot air jet heating [Leh+94; Har+94]. Surface
temperature can then be measured by infrared radiometry.

In addition to the various source types, two excitation configurations can be distinguished: pulse
thermography and lock-in thermography. In pulse thermography, heat diffusion is monitored near
the excitation point in order to find potential disturbances in the heat flow: the ’flying-spot’ method
which is studied in this work is a particular case of this approach. Lock-in thermography, on the other
hand, performs a spectral analysis of a sample submitted to a periodic thermal stimulation [Str+13b],
in order to study the properties of the generated thermal ”waves”. An advantage of this approach is
that the response can be averaged over several periods in order to improve signal/noise ratio. First
results indicate that it can be used to estimate crack depth [Str+13a]. One of the main downsides of
lock-in thermography, however, is that it may require the response to be averaged over many periods
in order to obtain a sufficient signal/noise ratio, and the inspected zone cannot be larger than the
infrared camera’s receptive field. This is not the case for flying-spot thermography, since the camera
and heat source move along the inspected specimen.

1.2 ATHENA Project

ATHENA — for Active THErmography for Nondestructive inspection Automation — is a collab-
orative project between academic (MINES ParisTech and Université de Bourgogne) and industrial
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Figure 1.1: Illustration of a flying-spot inspection, in its simplest form: heat is deposited on the
sample by an active source and infrared radiation is measured at another zone, both moving at the
same speed v along the inspected sample. In this figure, the measurement is made behind the heated
zone, but this is not necessarily the case.

actors (ARDPI, Intercontrôle, Ascot, Aubert & Duval, EDF), in relation with the competitive cluster
”Nuclear Valley”, in the form of a French ”Fonds Unique Interministériel” grant.

The project aims at providing a complete solution to perform automated nondestructive inspection
by active thermography; an active photothermal camera was developed, along with the tools to control
a robotic arm upon which it can be mounted; a theoretical analysis of the system was the object of a
PhD thesis at the Université de Bourgogne [Thi17], and an automated defect segmentation software
was developed by Armines / MINES ParisTech, and has been the object of an international conference
communication [Ala+17a].

This part of the manuscript is dedicated to this automated defect segmentation method. After
a brief review of the ’flying-spot’ thermal imaging technique, the requirements of our algorithm are
stated. Chapter 2 details the algorithm itself and formalizes certain notions (defect symmetry, signal
amplitude, noise level) that were so far ill-defined.

1.3 Flying-spot Camera

A particular active thermography technique consists in heating a localized mobile zone of the material
and observing another localized mobile zone with an infrared sensor, the movements of the source and
sensor being synchronized (see Fig.1.1). This idea was originally introduced in the late 1960’s [Kub68]
in order to detect cracks in aeronautic structures. In this precursor work, the heat source was a xenon
arc lamp and the obtained resolution was quite poor; the authors at this point already suggested using
a focalized laser beam as a heat source instead.

In the late 1980’s, a first theoretical analysis of crack detection by flying-spot camera was performed
in [Kau+87]. The authors mention that, from a radiative viewpoint, cracks act as black bodies. They
also point out the problems caused by variations in surface absorptance and emissivity, which result
in what they call ”surface noise”. Having observed that artifacts due to this surface noise can produce
larger signals than those induced by cracks, they used two infrared detectors instead of one, measuring
adjacent regions and used differentiation between the two in order to filter out this surface noise,
making cracks easier to detect.

In a later work [Wan+90], it was proposed to use moving mirrors in order to control the motion of
the source and detection beams; the laser and detector are motionless and aimed at a mirror whose
rotation controls the motion of the source and detection zones upon the inspected sample. From a
theoretical standpoint, in this same work, the authors claim that if there is no offset between the
two zones (i.e. the source and detection beam are focused on the same zone), the resulting image
only describes optic variations of the surface; for the image to contain ’real’ thermal information, the
detection zone must lag behind the heat source. Subsequent works [GB92; GLB93] further investigated
this method, using larger mirrors, and found that the signature of cracks is bipolar, with a peak
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preceding a valley, the amplitude of this signal being maximal when the detector points slightly ahead
of the heated zone.

Instead of punctual or quasi-punctual source and detection beams, it is possible to make the heated
and inspected zone larger, which also has the advantage of making inspection faster. It was proposed
in [Var+92] to focus the source laser on a line and to use a line scan infrared camera. The general
procedure remains the same as that of Fig. 1.1, but the two quasi-punctual spots are replaced by lines
orthogonal to the system’s motion. With this system, instead of a one-dimensional signal, it is now
possible to construct an image by concatenating the observations.

On this kind of image, cracks are visible as bright linear structures, with a more or less pronounced
adjacent darker zone. However, cracks that are parallel to the inspection system’s motion cannot be
detected this way, as they offer little or no resistance to the lateral heat beam. To correctly detect
those cracks as well, it was proposed in [Var+95] to perform a second scan, orthogonal to the first. By
substracting the second image to the first, part of the surface noise can be removed, as details that are
independent to scanning direction disappear. However, artifacts due to surface emissivity variation
remain.

In order to eliminate these artifacts, it was proposed to perform two scans in opposite directions and
subtract the back image to the forth image [Kra+98]. This way, the bipolar signature of defects can be
almost doubled, while peaks induced by emissivity and absorptance variations are highly attenuated.

All the images studied in the present work were obtained by this back-and-forth procedure. The
heating source used was a laser line, and the detector was an infrared camera whose field of view
contains the laser line. Since the detector is not simply a line scan camera but measures a rectangular
zone, from a given video inspection, several thermograms can be generated, by considering different
detection zones, each detection zone consisting in a line parallel to the laser line.

(a) (b)

Figure 1.2: Sample images from a thermographic video: (a) the laser line is on a sane zone (b) it is
upon a punctual crack, visible as a brighter dot at the bottom of the laser line, indicated by the red
arrow.

1.4 Visible Defects And Their One-Dimensional Signatures

Throughout the rest of this study, we will consider images obtained by the back-and-forth scanning
technique described in the previous section, and we will assume that the scan is made in the horizontal
direction, the forward scan being made from left to right, and the back scan from right to left. The
resulting image is the subtraction of the back scan to the forth scan.
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In the following, we will consider two types of thermal blocking defects: cracks and delaminations.

1.4.1 Cracks

Cracks appear on the images as a light zone immediately followed by a dark one. An example is given
in Fig.1.3: the crack can be seen on the left side of the image, between x ≈ 120 at the bottom and
x ≈ 160 at the top. There are however lots of small structures that match the description ”a light
zone followed by a dark one”. Based on this image alone, it is hard to tell whether they do correspond
to small, quasi-punctual cracks or if they are due to variations in absorptance or emissivity, small
scratches, or other possible artifacts. If we plot the gray values along a horizontal line, we can see that
the crack is, as expected, characterized by a bipolar signal where a high local maximum is followed
by a low local minimum. However, there are a lot of oscillations, some of which are of comparable
amplitude.

Figure 1.3: Sample with a visible crack and profile across the green line.

Another example can be seen in Fig. 1.4: in this image, there are multiple cracks on the right-most
side of the image and corresponding oscillations in the gray values. The large valley visible on the
signal plot around x = 1200 is not a defect but is due to the geometry of the inspected piece, in this
case a Pelton wheel bucket. There is no corresponding large peak to this large valley, which is an
information we can make use of when designing our automatic detection algorithm: cracks result in
bipolar, roughly symmetrical signals, while this particular large valley does not have a corresponding
large peak of similar amplitude.

1.4.2 Delaminations

Delaminations also have a bipolar signature, but in the opposite order: they appear as dark zones
followed by light ones, possibly with a flat gray zone in between. The corresponding one-dimensional
signal is bipolar, with the minimum preceding the maximum, and the corresponding valley and peak
may be separated by an almost flat zone. An example is given in Fig. 1.5.
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Figure 1.4: Pelton wheel bucket with multiple cracks and profile across the green line.

Figure 1.5: Sample with a delamination and profile across the green line. The two small structures at
the left and right side of the image are likely smaller delaminations as well.
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1.5 Acquisition Artifacts

1.5.1 Low-frequency trend

Because of thermal inertia, the sample may not cool down back to its equilibrium point immediately
after the first scan, which can lead to an undesirable low-frequency component: the left part of images
is brighter than the right part. If the scan is performed on a whole piece, from one end to the other,
there are also accumulation effects on the sides: heat loss by convection at the edges of the sample is
slower than heat diffusion throughout the material. This can be seen on Figures 1.3,1.4: the leftmost
few pixels are very bright, while the rightmost are very dark. Fig 1.5 is actually a crop of a larger
image, but the same phenomenon is visible on the full image. In Fig.1.3, which corresponds to a
relatively small sample, the leftmost part of the image has an average gray value around 200, while in
the rightmost part, it is around 50.

1.5.2 Acquisition Issues

In addition to physical phenomena, artifacts can occur because of camera-related issues. Figure 1.6
shows part of a thermogram that suffers from various problems: the first highlighted structure is a
delamination, but either the subtraction of the backward scan from the forward scan was improperly
done, or a problem occurred when saving the resulting image; either way, this example is an 8-bit
image where negative values looped back up to 255; where a ’gray’ value should be −10, on this image,
it is 245, and so on.

On this same image, there are also fast oscillations at the bottom that cannot be explained by
physical defects. As it turns out, the most likely explanation in this case is that the detection system
was actually pointing outside of the examined sample and at the curtain behind it.

1.5.3 Image file format

As explained in Section 1.3, the thermograms we want to analyze in the framework of the ATHENA
project are obtained by subtracting one image to another. The raw result of this operation is an
’image’, or an array, containing both nonnegative and negative values. Sign provides an interesting
information: a negative value means that the measured temperature was higher during the back scan
than during the forth scan; a positive value means the contrary; a value close to zero means that the
measured temperature was roughly the same for both scans.

Because of the parasitic low-frequency trend mentioned above, due to thermal inertia effects, this
intuition may not perfectly accurate in some cases, notably on the edges of a sample; nevertheless, it
could be an interesting baseline to work with. Unfortunately, all thermograms were saved as images,
and therefore only contain nonnegative values. The ’neutral’ value corresponding to pixels where the
measured temperature was the same on both scans is not known, and while it is relatively easy to
estimate on some images like Fig. 1.4, it is much harder to guess on images like Fig. 1.3.

The thermographic camera used in this project used a coding on 12-bits, which means that the
subtraction of two images should be coded on 13 bits in order not to lose information. This was
not taken into account in the former stages of the project: the first images were saved on 8 bits in
the JPEG format, which in itself uses lossy compression, so a further layer of information may be
lost because of it. Latter images were saved in a 16-bit TIFF format, but the neutral level was not
provided.
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Figure 1.6: Thermogram exhibiting several artifacts: saturation issue on top, and unexplained oscil-
lations at the bottom.
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1.6 Manual Characterization of Cracks

When a thermogram is inspected by a human expert, the standard practice for characterizing the
defect consists in drawing a line perpendicular to it and considering the profile along this line. The
profile is then separated in three parts: the inferior part, the signal and the superior part. The inferior
and superior parts are approximated by linear regression; the maximal amplitude of noise An is defined
as the greatest absolute difference between these linear approximations and the profile on the inferior
and superior parts.

The signal part is itself split in two; the linear regression on the inferior part is extended to the
leftmost part of the signal, and the linear regression on the superior part is extended to the rightmost
part of the signal. This way, two signal amplitude values A1 and A2 are defined by taking the greatest
absolute difference between profile and linear interpolation on each half of the signal part. Only the
greater of these two values is considered when computing the signal/noise ratio, which is defined as:

R =
max(A1, A2)

An
.

The ratio between A1 and A2 defines the symmetry value of the signal:

S =
min(A1, A2)

max(A1, A2)
.

The process is illustrated in Fig. 1.7. The greatest weakness of this approach is that it is heavily
dependent on several choices of the operator, each of which is somewhat arbitrary. The line along which
the profile is plotted is hand-drawn; the segmentation in inferior part, useful signal and superior part
is visually performed, but apart from the fact that the two extrema (the maximum and the following
minimum, in the case of cracks) must be in the signal part, there is no hard rule for where exactly to
put the borders.

In the example illustrated in Fig. 1.7, two different analyses of the same defect provide very different
values of signal/noise ratio (7.3 and 3.2, respectively) and symmetry (0.77 and 0.96).

In the next chapter, we provide new definitions for these notions; although our algorithm has some
input parameters, they mainly depend on the type of inspected material and on the scanning speed.
Once these parameters are given, both detection and characterization are automated.
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(a) Visible crack and two possible analysis lines.

(b) Profile analysis of the top (green) line. Here An = 4.7, A1 = 26.6 and A2 = 34.75. The estimated
signal/noise ratio is R = 7.3 and the estimated symmetry is S = 0.77.

(c) Profile analysis of the bottom (red) line. Here An = 7.6, A1 = 23.1 and A2 = 24.15. The estimated
signal/noise ratio is R = 3.2 and the estimated symmetry is S = 0.96.

Figure 1.7: Two different manual analyses of the same defect, with very different values in terms of
noise level, signal amplitude, SNR and symmetry.
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Chapter 2

Automatic Defect Segmentation

Ce chapitre détaille l’algorithme de segmentation utilisé pour détecter les défauts dans les thermo-
grammes du projet ATHENA.

Après avoir rappelé les contraintes auxquelles l’algorithme doit répondre, nous détaillons et illus-
trons les différentes étapes. Après un premier filtrage pour éliminer la composante basse fréquence de
l’image, un premier masque de détection est obtenu en analysant séparément chaque ligne de l’image,
puis ce masque initial est complété. Chaque défaut détecté dans le masque final est également car-
actérisé par différentes propriétés, fournies dans un rapport de détection. L’influence des quelques
paramètres d’entrée de notre méthode est également étudiée.

La première phase de détection des défauts, ainsi que l’estimation du niveau de bruit, se base
sur l’étude de certains extrema d’intérêt dans les signaux 1D obtenus après pré-traitement. Cette car-
actérisation des extrema reste élémentaire dans ce chapitre, mais elle a motivé une étude mathématique
plus approfondie qui fait l’objet du chapitre suivant.

2.1 Requirements

As mentioned in the previous section, the method should be able, not only to accurately detect defects,
but also to characterize them. In particular, for a given detected defect, it should provide measures of
height, width (in pixels), area, perimeter, as well as measurements of signal/noise ratio and symmetry.
These values are then provided in a detection report, so that it can be used by the operator in an
interactive post-processing step, for instance in order to filter out small defects by thresholding on area
or height, to discriminate between defects and artifacts by thresholding above a minimal symmetry,
or to keep only significant enough defects by imposing a minimal signal/noise ratio. As mentioned in
the previous chapter, these latter notions of signal/noise ratio and defect symmetry are ill-defined; in
this chapter, we introduce a measure of global noise level on a thermogram, and a formal definition
of symmetry.

2.2 General strategy

There are two types of defects to be detected: cracks and delaminations. The corresponding algorithms
are very similar: in a first step, the image is filtered in order to remove the low-frequency artifact;
a global noise level is then estimated on this filtered image. A first detection is then performed in
one dimension, line by line, by looking for potential signatures of defects. In a postprocessing step,
partial detections are combined, if needed, in order to produce the final detection mask, along with the
detection report: to each connected component of the detection mask are associated various attributes,
such as mean and median signal/noise ratio, mean and median symmetry, area or height (in pixels).
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Figure 2.1: Profile along a thermogram line (in blue) and smoothed profile (red).

Figure 2.2: Filtered image and corresponding profile along the green line.

In an additional step, it is possible for the operator to interactively adjust the detection mask by
specifying minimum or maximum values of these attributes.

2.3 Preprocessing

As explained in the previous chapter, both because of physical effects and because the thermograms
were saved as images, it is not immediately obvious, for a given pixel, whether there was more energy
deposited at this location during the forward or during the back scan. The aim of the preprocessing
step is to recover this information by subtracting to each line of the image a smoothed version of the
line profile. Figure 2.1 illustrates this on the same profile shown in Fig. 1.3, and Fig. 2.2 shows the
filtered image and the line profile after filtering.

Given the scanning velocity and temporal resolution of a given acquisition, it is possible to estimate
the expected peak-to-peak distance of cracks, in pixels. This value, denoted L in the following, is an
input parameter of the method: we use a median filter of size 4L + 1 as our estimation of the low-
frequency component to be removed, and subtract it to the raw profile. The median filter is ill-defined
on the first and last 2L points, which are discarded. Since the scans are usually performed on a whole
piece, these regions of the image are unusable anyway because of thermal effects on the edges.
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For delamination detection, we use a median filter as well, but its size is given by the maximum
expected size of a delamination in the image; that is, the algorithm requires a parameter LD, which
is used as the size of the median filter. In both cases, the detrended profile now has both negative
and nonnegative values, that we can interpret as regions where the sample was hotter during the back
scan, and regions where it was hotter during the forth scan, respectively.

Subtracting the median filter might significantly alter the signal if the parameter L or LD is
underestimated, whereas overestimating it a little does not affect the outcome much; rather than a
precise estimation of L or LD, it is preferrable to provide a reasonable upper bound. A more thorough
discussion on parameter influence is provided below in Section 2.10.

2.4 Relevant extrema

Our defect detection algorithm is based on the study of the extrema of the detrended profile. For
crack detection, we will look for a large positive maximum, immediately followed by a large negative
minimum. For delamination detection, we will look for a large negative minimum followed by a large
positive maximum, possibly with some smaller extrema in between. In addition, our definition of the
noise level of an image is also based on the study of the distribution of the values of local extrema.

Not all local extrema are useful for our task: typically, positive local minima or negative local
maxima are of no interest. In addition, if there are several positive local maxima, or several negative
local minima between two zero-crossings, we choose to keep only the greatest (in absolute value), as
can be seen in Fig. 2.3

More formally, given a detrended profile f (obtained by substracting a median filter to the original
profile), we consider all zero-crossings of this profile f . Between two zero-crossings, the sign of f
does not change; if f is positive, we keep the position and value of the global maximum of f on this
interval; if f is negative, we keep the position and value of the minimum. In the following, these will
be referred to as the relevant extrema of f . In cases of equality between several maxima, we keep only
the leftmost one; in cases of equality between several minima, we keep the rightmost one. Ties are
broken this way because in the case of delamination detection, we will look for a minimum followed
by a maximum with at most LD pixels between the two; picking the rightmost minimum and leftmost
maximum reduces the risk of false negatives.

2.5 Global Noise Estimation

Let X be the set of all values of relevant extrema on all (detrended) horizontal profiles of a given
thermal image. X typically contains many small values corresponding to noise, and may contain some
larger values corresponding to defects or to optical artifacts.

Our idea is to use as our global noise estimator the standard deviation of the noise’s amplitude.
If the set X contains too many or too large ’signal’ (due to defects) or artifact values, the standard
deviation of X is not a good approximation of the standard deviation of the noise alone. In order
to obtain a sensible noise estimation, we first get rid of possible outliers in X, using iterative 3σ
thresholding, as explained below.

The three sigma rule

If X = {x1, . . . , xN} is a finite set of reals, µ = 1
N

N∑
i=1

xi its mean and σ =

√
1
N

N∑
i=1

(xi − µ)2 its standard

deviation, most of the values in X lie in the range [µ− 3σ;µ+ 3σ]; this is often informally called the
three-sigma rule of thumb and is used in various contexts in order to detect outliers of a (possibly
unknown) distribution.
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Figure 2.3: The relevant extrema of the detrended signal are marked with green dots and vertical
green bars. The maxima indicated by the red squares and bars are discarded because there is a
greater maximum in the same interval between two zero-crossings.

If the xi’s are drawn from a normal distribution with mean µ and standard deviation σ, the
probability of falling in the interval [µ−3σ;µ+3σ] is about 0.9973. In the more general case where the
xi’s are drawn from a unimodal distribution with finite variance, the Vysochanskij–Petunin inequality
[Pet80] states that this probability is over 0.95. Finally, for any random variable Y with finite mean
µ and finite non-zero variance σ2 are defined, Chebyshev’s inequality [Che67] provides:

P (|Y − µ| ≥ ασ) ≤ 1

α2

so in particular, for α = 3, this inequality states that the probability of falling outside the range
[µ− 3σ;µ+ 3σ] is less than one ninth.

The proof for Chebyshev’s inequality is very simple and can be adapted in terms of number of
outliers rather than probabilities: given X = {x1, . . . , xN} a finite set of reals, µ its mean and σ its
standard deviation, no more than 1

9 of the values are outside the range [µ− 3σ;µ+ 3σ].

We can easily prove this by contradiction: let us assume that strictly more than 1
9 of the values in

X are outside this range. We can write:

1

N

N∑
i=1

(xi − µ)2 ≥ 1

N

∑
i;|xi−µ|>3σ

(xi − µ)2 >
1

N

∑
i;|xi−µ|>3σ

(3σ)2

and by hypothesis, strictly more than 1
9 of the values xi in X are such that |xi−µ| > 3σ, therefore:

1

N

N∑
i=1

(xi − µ)2 >
1

N

N

9
(3σ)2 = σ2

.

where by definition σ2 = 1
N

N∑
i=1

(xi − µ)2: we reach a contradiction.
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Iterative 3σ thresholding

Given the set X of relevant extrema, we compute its standard deviation σ and keep only the elements
in X whose distance to the mean is less than 3σ, and iterate this process until convergence. Note that
this procedure always converges to a non-empty set: the number of elements in the set decreases at
each step but cannot reach zero, as this would contradict the property above.

After convergence is reached, σ is a reasonable estimation of the amplitude of positive noise, while
−σ is a reasonable estimation of the amplitude of negative noise: we define 2σ as our global noise
estimation.

2.6 One-Dimensional Detection

2.6.1 Cracks

In a first step, we consider as a potential crack signature every ’large enough’ couple consisting in a
relevant maximum followed by a relevant minimum (with no other relevant extremum in between).
In addition to the parameter L, our algorithm takes as input a parameter R, which is the minimum
signal/noise ratio of cracks to be detected. An optional parameter Lmax, which is the largest possible
peak-to-peak distance for cracks, can be provided by the user; if not, it is set to Lmax = 2L. For each
detrended horizontal profile, if a relevant maximum at position x1 with value M > 0 is immediately
followed by a relevant minimum at position x2 with value m < 0, with M −m ≥ 2σR and x2 − x1 ≤
Lmax, we add the segment between x1 and x2 to our crack detection mask. It is also possible to
specify a minimum symmetry value Smin (see below) as input, in which case the segment is added to
the detection mask only if the couple (M,m) satisfies this symmetry condition.

2.6.2 Delaminations

Delaminations appear as a relevant minimum followed by a relevant maximum, but unlike cracks, it is
possible that there are other relevant extrema in between (this would, for instance, be true of the profile
shown in Fig. 1.5). For every line, for every couple {(x1,m); (x2,M)} of relevant minimum/maximum
with M −m ≥ 2σR and x2–x1 ≤ LD, we add the segment between x1 and x2 to the delamination
detection mask.

Unlike cracks, there might be other relevant extrema between x1 and x2. In particular, theoreti-
cally, there could be a relevant minimum x′1 between x1 and x2 and a relevant maximum at x′2 > x2;
if, in addition, this couple (x′1;x′2) meets the signal/noise ratio criterion, the whole segment between
x1 and x′2 ends up being added to the detection mask, although it is possible that x′2 − x1 ≥ LD.
However, even though this is not forbidden from a mathematical point of view, this is unlikely to
happen if the parameter R is not too close to 1. In order to prevent this kind of phenomenon, it is
also possible to specify a minimal symmetry value.

2.7 Defect Symmetry

For cracks as well as for delaminations, a defect is characterized by a minimum m < 0 and a maximum
M > 0. In both cases, we define the symmetry of the defect as the ratio between the smaller and the
greater (in absolute value); formally:

S =
min(−m,M)

max(−m,M)

In order to better discriminate real defects from potential artifacts, a minimal symmetry criterion
(between 0 and 1) can be specified as input to either detection algorithm. When considering a
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candidate couple, this criterion is tested in addition to the signal/noise ratio requirement, and the
candidate kept only if it meets both criteria. It is also possible to use mean or median symmetry of
suspected defects as a postprocessing refining tool.

2.8 Detection Mask Completion

On noisy images, 1D analysis is not always sufficient to recover a crack in its entirety, as some profiles
may exhibit an insufficient SNR, although the defect as a whole is clearly visible, as can be seen on
Fig. 2.4.

Figure 2.4: First detection mask with R = 3.4; the crack is only partially recovered and has several
connected components.

To overcome this problem, we relax the condition M−m ≥ 2σR for candidate maximum/minimum
couples next to annotated cracks if their amplitude is similar enough to neighboring annotated couples:
more precisely, if a crack of amplitude M −m = A is annotated in line i between positions x1 and
x2, we consider the above and below lines i− 1 and i+ 1 between columns x1 − a and x2 + a, where
a is a small parameter allowing for a horizontal shift in the signal we are looking for (typically a = 1
or 2 pixels). If line i− 1 (respectively line i+ 1) contains a maximum M ′ at position x′1 immediately
followed by a minimum m′ at position x′2, and M ′–m′ ≥ λA, we add line i−1 (resp. i+ 1) between x′1
and x′2 to our crack detection mask. The parameter λ is a tolerance parameter controlling how similar
candidate defects should be to their neighbors in order to be added to the detection mask. In all our
tests, we used λ = 0.9, with satisfying results. This process is iterated until convergence, which can
lead to some candidate couples being annotated even though their amplitude is below the threshold
2σR. To prevent false detections and erroneous reconstructions between close but separated defects,
we add the constraint that for each connected component in the obtained mask, the median SNR (the
median value of all line SNRs) must be at least R, which is the minimum SNR demanded by the user.
If a minimum symmetry is specified, in the same way, we can ensure that the median symmetry is at
least the one specified by the user.
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The final crack detection mask obtained, after completion, with the same parameters, can be seen
in Fig. 2.5; the crack is now correctly detected as one connected component. The same strategy could
be used for delaminations, but in practical cases, it has been found unnecessary.

Figure 2.5: Final crack detection mask

An example of delamination detection can be seen in Fig. 2.6.

Figure 2.6: Delamination detection mask

2.9 Post-processing

In addition to the detection mask, to each defect are assigned various features, such as mean/median
SNR, mean/median symmetry, perimeter, area, height, width (in pixels). Each of these features can
be used in order to further discriminate between defects and artifacts, or simply between defects of
interest to the user and defects small enough to be considered harmless. In more realistic cases,
symmetry has been found to be an interesting criterion in order to discriminate between cracks and
artifacts due to the sample’s geometry. In Fig. 2.5, it is obvious that by retaining only large enough
defects (in terms of area), only the crack remains. This kind of user-driven post-processing is all the
more interesting as it can be done in real time: the algorithms described above in order to get a crack
or delamination detection mask can take up to 2 or 3 minutes for 1000x1000 pixel images, but the
post-processing can be done interactively. Screenshots of a simple demonstrator for the thermogram
shown in Fig. 2.7 can be seen in Fig. 2.8.
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Figure 2.7: Example thermogram with many cracks as well as optic artifacts on top and bottom.

2.10 Parameter Influence

Our crack detection algorithm takes as input two mandatory parameters, L and R, which are the
expected size (peak-to-peak distance) of cracks, and the minimal signal/noise ratio, as well as two
optional parameters Lmax and Smin, which are the maximum peak-to-peak distance and the minimal
symmetry for 1D detection.

Parameter L is used in order to estimate the size of the median filter used in pre-processing; as such,
underestimating this parameter can degrade the signal, by making the low-frequency estimation too
close to the original profile. Overestimating it, on the other hand, makes the low-frequency estimation
somewhat ’smoother’, which could in principle cause problems as well, especially if there are geometry
issues to be taken care of (for instance around column 300 in Fig. 2.2). In practice, however, it is
preferrable to slightly overestimate L than to underestimate it, and the precision of this parameter is
not crucial.

Parameter Lmax, which is set by default to Lmax = 2L, is mainly there to avoid false crack
detections, by preventing the pairing of a very distant maximum/minimum couple, for instance if
there are two consecutive delaminations on a very smooth image, like in Fig. 2.6. It was made
available as an input parameter at the request of the end users, in the eventuality of a specific case
where 2L would be too loose an upper bound, but there were no examples in our dataset where setting
it to 2L caused problems.

Parameter R is the minimal signa/noise ratio of cracks to be detected, so it is basically a sensitivity
parameter: the smaller this value, the higher the number of detections. It is possible to raise this value a
posteriori in the postprocessing step, as illustrated in Fig. 2.8; however, because of the reconstruction
step described in Section 2.8, the initial value should not be set too low: if R is too small, this
reconstruction step may incorrectly connect different zones with a high signal/noise ratio into a single
zone, the SNR of which will be much smaller. Thus, applying the algorithm with an initial value R1

then thresholding the median signal/noise ratio on a value R2 > R1 is not equivalent to applying the
algorithm with initial value R2.

Parameter Smin can be given as input to specify a minimal symmetry value; it can be useful in order
to discriminate between defects and artifacts, but even real defects can have quite low symmetries; for
instance, on the profile shown in Fig. 2.2, the symmetry for the crack is only 45

119 ≈ 0.38.

The delamination detection algorithm takes as input the parameters LD, R and the optional Smin;
except for the fact that LD plays a role analogous to both L and Lmax, their influence is very similar to
the crack detection case; however, whereas Smin should be used with caution for cracks, it can arguably
be used more freely here: empirically, the symmetry seems to be quite high for delaminations, but it
is unclear if this due to a physical property of laminated materials, or if it is specific to our dataset.
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Figure 2.8: Three screenshots of a simplified interactive postprocessing software, illustrating a possible
postprocessing on the crack detection mask of the thermogram shown in Fig. 2.7. In this particular
case, the images are shown with the forward scan from top to bottom instead of from left to right.
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2.11 Conclusion and Perspectives

In this first part, we presented an automatic algorithm for detecting cracks and delaminations on ther-
mal images. Our algorithm needed to be as simple, and with as few input parameters as possible, for
it to be used by operators with possibly little background in image processing. The input parameters
are for the most part easily deducible of the experimental settings (source velocity, camera resolution).
The optional parameters Lmax and Smin may be used as fine-tuning parameters if the first detection
mask looks unsatisfactory. We also provided definitions for signal symmetry and signal/noise ratio
(by defining the noise level of an image). These properties were so far ill-defined but widely used
in this domain. The interactive post-processing we propose is therefore quite intuitive for operators.
From a mathematical standpoint, we introduced the concept of relevant extrema: for the thermal
signals of this part, we simply defined those as the highest (positive) maximum or lowest (negative)
minimum on each connected component of the support of a function. However, trying to quantify
the importance of extrema led us to explore in more detail the various possibilities for assigning them
some kind of importance metrics. A classic approach is to apply more and more severe operators until
an extremum disappears, and assigning an extinction value related to a family of operators [VM95;
Vac95]. By pursuing this idea, we discovered novel morphological decompositions as well as new kinds
of extinction values. This is the topic of the next chapter.



Chapter 3

Generalized Extinction Values

Ce chapitre purement théorique peut être lu indépendamment du reste du manuscrit.

Les valeurs d’extinction sont des propriétés quantitatives des maxima ou des minima, utilisées
par exemple pour sélectionner les minima les plus importants comme marqueurs d’un algorithme de
partage des eaux. Dans ce chapitre, nous montrons comment une valeur d’extinction peut être utilisée
pour définir la décomposition d’une fonction comme somme de composantes élementaires, ou pics,
associées à ses maxima. Ces décompositions et leurs propriétés sont illustrées ; en particulier, de
nouvelles valeurs d’extinction sont définies.

Nous définissons également de nouveaux opérateurs morphologiques, en conservant uniquement les
pics les plus ”grands” (selon un certain critère) d’une décomposition donnée, chaque choix du critère
et de la décomposition produisant une famille d’opérateurs différente.

Les opérateurs définis ici étant connectés — il ne créent pas de nouveaux contours — ils sont
particulièrement adaptés aux algorithmes de segmentation.

3.1 Mountaineering Analogy

The International Mountaineering and Climbing Federation recognizes fourteen eight-thousanders:
mountains that are more than 8,000 metres in height above sea level. Mount Everest is the highest,
with an elevation of 8,848 metres, and K2 is generally considered the second-highest, with an elevation
of 8,611 metres. However, if we consider summits — a place or plateau from which one can only go
down — the second-highest summit on Earth is not K2, but the South Summit of Mount Everest
(Fig. 3.1), with an elevation of 8,749 metres.

The South Summit is considered as a sub-peak of Mount Everest, failing at earning its title of
proper mountain, whereas Lhotse (Fig. 3.2), which is also part of the Everest massif, despite a lower
elevation of only 8,516 metres, is considered a different mountain — the fourth-highest one on Earth.

There is no qualitative difference between the South Summit and Lhotse — both are local maxima
— but where the South Summit is only 11 metres higher than the pass between it and the main
summit, Lhotse rises 610 metres above the South Col. This notion is known in mountaineering as
the topographic prominence of a peak or summit: it is the minimum height one must descend before
reaching higher terrain. In the field of mathematical morphology, the same notion is known as the
dynamics of a regional maximum [Gri92].

Dynamics (or topographic prominence) is one of several attributes assigned to extrema, known as
extinction values, which were originally introduced in [VM95], and later generalized in [Vac95]. The
extinction value of a regional maximum, with respect to a decreasing family of anti-extensive connected
operators (ψλ)λ≥0, is the smallest value of λ for which this maximum disappears. By duality, it can
be defined for regional minima as well.

37
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Figure 3.1: Mount Everest as seen from Kala Patthar. The South Summit is the small peak on the
immediate right of the main summit. (Wikimedia Commons, public domain)

Figure 3.2: Lhotse (on the left) is connected to Mount Everest (center) by the South Col. (NASA,
public domain)
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Although many kinds of extinction values can be defined, the most commonly used are the area
extinction value, related to the granulometry of area openings [Vin93], the dynamics [Gri92], related
to h- reconstructions, and the volume [Vac95], related to volumic razings [Vac95].

These were introduced as a way to quantify the importance of regional extrema of an image,
according to their size (area), contrast (dynamics) or a tradeoff between both (volume). The cor-
responding families of operators filter out ’small’ extrema. The extinction values themselves are a
common criterion to select relevant markers prior to watershed segmentation [Mac+15; Vac95]; his-
tograms of extrema characteristics can also be used, in addition or replacement of granulometric
functions [AS03].

Instead of assigning importance metrics to extrema, it is possible to use extinction values or
their corresponding families of operators to obtain a decomposition of a function as a sum of smaller
components, or peaks. This is illustrated in [Ala+17b], in the case of the dynamics; in section 3.2, we
show how this idea can be generalized to other extinction values. Having obtained a decomposition
as a sum of peaks — according to some criterion — new morphological operators can be defined by
removing the ’smallest’ peaks, not necessarily with the same definition of ’small’. For instance, it is
possible to compute the area decomposition of a function, then keep the highest peaks, thus defining an
operator preserving maxima that are either sufficiently large (in terms of their area extinction value)
or sufficiently contrasted, contrary to classical operators like h-reconstructions or area openings, which
erase all maxima with the same dynamics, or with the same area, respectively. For instance, an h-
reconstruction with h = 2 would remove maxima A and C in Fig. 3.3 and alter maximum B; similarly,
an area opening of size 2 would remove maxima A and B. As previously mentioned, the operators
introduced in this work are able to encompass two properties of maxima, like area and dynamics, or
dynamics and volume, and to filter out only maxima that are too ’small’ in both senses. Likewise, the
associated extinction values are able to quantify notions such as ’high enough or large enough’.

Figure 3.3: Maxima A and B have the same area extinction value (2) but different dynamics, while
maxima A and C have the same dynamics but different area extinction values.

3.2 Extinction Decompositions: General Idea

This section intends to first present the main ideas behind extinction decompositions in the clearest
possible way, before diving into the formal construction in the next section. We introduce here some
required definitions, discuss our design choices, and illustrate the dynamics and area decompositions
in a simple case.
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3.2.1 Definitions

Although the concepts of regional maxima and extinction values are well-known, their definitions
may suffer slight differences according to the problem at hand. In particular, we must specify how
we handle the ambiguous case of constant functions, how we break ties between maxima in cases of
equality, or which arbitrary value we assign to the dynamics of a global maximum. Another reason for
redefining these concepts here is that the decomposition we introduce can be defined in a more general
case than the usual framework for image processing: we consider a function f : X → Y , but where X
would typically be a pixel or voxel grid, the only requirement here is that X has a finite simple graph
structure. Additionally, where Y is often required to be a set of integers, we only require that Y ⊂ R+

(but not R, since, as we shall see, 0 plays a particular role). Note: in this work, we denote by R+

the set of all nonnegative real numbers, including zero, and by N the set of all nonnegative integers,
including zero.

Definition 1 (Regional Maximum). A regional maximum of a function f : X → R+ at level y > 0 is
a non-empty connected set M ⊂ X such that:

∀x ∈M , f(x) = y and CM (X+
y (f)) = M

where X+
y (f) = {x ∈ X|f(x) ≥ y} denotes the upper level set of f at level y, and CM (S)

(respectively Cx(S)) denotes the connected component of set S containing set M (respectively point
x).

In other words, a regional maximum M is commonly described as a plateau of f at level y > 0 with
no higher neighbors [Vac95]. This definition does not require that f takes lower values elsewhere, so if
f is equal to a constant λ > 0 on X, we consider that X is a regional (and a global) maximum of f at
level λ. If, however, f = 0, we consider that f has no regional maximum. Following the moutaineering
analogy, 0 can be thought as the sea level.

Definition 2 (Dynamics). The dynamics of a regional maximum M at level y is given by:

Dyn(M) = y − sup{z|∃x ∈ CM (X+
z (f)), f(x) > y}

or

Dyn(M) = y if max(f) = y

With this definition, the value we assign to global maxima might seem arbitrary. The definition
of extinction values given in [Vac95] is actually based on families of operators. It is reminded here.

Definition 3 (Extinction values). Given Ψ = (ψθ)θ a decreasing family of connected, anti-extensive
operators, the extinction value of a regional maximum M w.r.t. Ψ is given by:

EΨ(M) = sup{θ|∀θ′ ≤ θ,M is a subset of a regional maximum of ψθ′(f)}

Dynamics can be defined this way, with the family of h-reconstructions: the h-reconstruction of
a function f is the geodesic reconstruction [Beu01] of f − h under f . For h = max(f) − min(f),
the h-reconstruction of f is a constant function, equal to min(f), which is why some authors would
define the dynamics of global maxima to be equal to max(f) − min(f). However, in order to be
consistent with definition 1, we have to assign the value max(f) to the dynamics of global maxima,
hence definition 2.

The area extinction value of a regional maximum M can be defined the same way, with the family
of area openings[Vin93].

Definition 4 (Area opening). The area opening of size N of f : X → R+ is defined for x ∈ X by:

γaN (f)(x) = sup
(
{y|#{Cx(X+

y (f))} ≥ N} ∪ {0}
)
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where #S denotes the cardinal of set S. In other words, an area opening of size N razes maxima
until their area (number of pixels) is at least N . In the - arguably degenerate - case where N > #X,
the set {y|#{Cx(X+

y (f))} ≥ N} is empty, and we assign the value 0.
The volume extinction value corresponds to the family of volumic razings [Vac95].

Definition 5 (Volumic razing). The volumic razing of size ε > 0 of f : X → R+ is defined for x ∈ X
by:

rvε (f)(x) = sup

{y| ∑
z∈Cx(X+

y (f))

(f(z)− y) ≥ ε} ∪ {0}


Like area openings, volumic razings replace peaks with flat zones, but unlike area openings, they

are not idempotent. It must be noted that the set

{y|
∑

z∈Cx(X+
y (f))

(f(z)− y) ≥ ε}

is never empty if we allow y to take negative values. Here, we impose that rvε (f) is still a function
from X to R+, even for large values of ε.

In this article, we introduce a new kind of extinction value, namely the L1 extinction value, which
is similar to the volume in that it constitutes a tradeoff between area and contrast. It is hard to
give a formal definition here, without first introducing the corresponding decomposition and family of
operators, but the notion and the way it differs from the volumic extinction value should appear clear
in the following.

3.2.2 Label Propagation

The algorithm for computing the decomposition is very similar to the algorithm for computing the ex-
tinction values of the maxima of f , which itself bears much resemblance to the watershed computation
algorithm [VS91]. We start by labeling all regional maxima; we then consider the image’s upper levels
in decreasing order of height and propagate the labels. Figure 3.4 illustrates the first steps of this
process, which are common to all these algorithms (except for the fact that the watershed algorithm
usually operates on minima rather than on maxima): if a connected set of an upper level contains
only one label, it is assigned this label.

When two labels meet at some point M , as in Fig. 3.4c, we can compute the extinction value of
the ’smallest’ maximum and propagate the label of the ’greatest’ one, the meaning of ’smallest’ and
’greatest’ depending on the criterion chosen for the decomposition. In the case of dynamics, maximum
A is lower than maximum B, so M would be assigned the label B, and at this point we would learn
that the dynamics of A is equal to f(A) − f(M) = 4. In the case of the area extinction value, here,
the surface labeled A so far is greater than the surface labeled B, so M would be labeled with A,
and we would compute the area extinction value of B, which is simply the number of pixels labeled
B at this step of the algorithm. The same idea applies for the volume or other extinction values, as
long as they can be calculated at this point. In the subsequent steps of the algorithm, the label of the
smallest maximum is replaced by the label of the greatest, and the process iterates until convergence.

3.2.3 Sketch of the Decomposition Algorithm

When labels meet, instead of computing the extinction value of the smallest maximum, we can assign
a function to it: the part of the graph that has been colored with this label so far. In Fig. 3.4c, if we
compute a decomposition based on dynamics, A is the smallest maximum and we can assign to it the
blue function; if the decomposition is based on area, B is the smallest maximum and we can assign to
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(a) (b)

(c)

Figure 3.4: First steps of all label-propagating algorithms: maxima A and B are assigned different
labels (a), labels a propagated downwards (b), labels meet at point M (c)

it the green function. We could also compare the L1 norms (integrals) of the green and blue function,
which is what we will do in order to define the L1 decomposition in the next section.

More formally, when two or more labels l1, l2, . . . meet at level y, for the labels that go extinct at
this step, we define the peak fli = f−y restricted to the part of the domain that has been labeled with
li. In the case of dynamics decomposition, in Fig. 3.4c, we assign to A the function fA = f − 2 on the
interval [2; 10]. In the case of area decomposition, we would assign to B the function fB = f−2 on the
interval [10; 14]. Before proceeding to the next step of the algorithm, we retrieve the component fli
from f , and replace label li with the label of the highest neighboring maximum. Figure 3.5 illustrates
this: labels A and B meet at level 2; the smaller maximum goes extinct at this step, while the greater
maximum’s label continues propagating below.

(a) Dynamics decomposition: A is the first maxi-
mum to go extinct, while label B continues prop-
agating.

(b) Area decomposition: B goes extinct at level 2,
label A propagates at levels 1 and 0.

Figure 3.5: Dynamics and area decompositions.



3.3. EXTINCTION DECOMPOSITIONS 43

Equality Cases

It is possible that when labels meet, two or more corresponding maxima are the ’greatest’ in the sense
of the chosen criterion. It should be emphasized that this is not a degenerate case, especially if the
chosen criterion is the dynamics, since even a moderate-sized image can have many more maxima than
grayscale levels. A solution would be to break ties arbitrarily; however, this leads to similar maxima
being associated very dissimilar peaks, yet the operators to be introduced in Sec. 3.6 rely on properties
of the peaks, such as area or volume; arbitrarily breaking ties would eventually lead to some part of
the image being arbitrarily filtered out rather than another for no meaningful reason. In order to
avoid this, in case of equality between two or more ’greatest’ maxima, we merge the corresponding
labels.

Maximum Fusion Tree

The idea of a minimum fusion tree was introduced in [Vac95]. In the present work, we focus on
maxima rather than minima, but the idea is the same: the maximum fusion tree describes which
label corresponded to the greatest maximum at the step when a label went extinct: in Fig. 3.5a, A
is extinguished by B, which we denote by making B the father of A in that scenario, while A is the
father of B in Fig. 3.5b. The maximum fusion tree depends on the chosen extinction value; actually,
because of the way equality cases are handled, even the number of nodes may differ.

Memory Representation

Aside from the equality cases mentioned above, the decomposition we are presenting associates one
component, or peak, to each regional maximum of a function. In both illustrations of Fig. 3.5, the
decomposition is simply f = fA + fB.

Storing each peak as a separate function would be very inefficient in terms of memory, and infeasible
in practice even for moderately large images. Instead, the decomposition can be stored as a label image,
a maximum fusion tree, and a list of extinction heights. Their computation is detailed in section 3.3,
but the idea can be illustrated here. The label image contains the first label to be assigned to each pixel
(even if in subsequent steps of the algorithm, the pixel is assigned the label of a greater maximum). If
peaks are visualized as stacked on top of each other as in Fig. 3.5, the image label contains the label
of the top-most peak; in Fig. 3.5a, pixels x between 2 and 10 are labeled A (blue), and other pixels
are labeled B (green).

Given the image label, the maximum fusion tree and the list of extinction heights, we can easily
retrieve the peak associated to a label l: its support is the set of points labeled with l or one of
its descendants in the maximum fusion tree. If we denote EHj the extinction height of label j, for
points labeled l, fl is equal to f −EHl, and for points labeled with a descendant d of l, fl is equal to
EHm − EHl, where m is the son of l on the branch leading to d.

3.3 Extinction Decompositions

3.3.1 Labeling Algorithm

We consider a function f : X → R+, where set X has a finite simple graph structure. In particular,
set X is finite, so Y = f(X) = ∪x∈X{f(x)} is finite. We denote y1, y2, . . . yn the non-zero values of Y ,
in ascending order: 0 < y1 < y2 < . . . < yn.

As mentioned in section 3.2.3, the decomposition is stored as a label ’image’ or function L : X → N,
a maximum fusion tree, and a list of extinction heights. In order to keep track of which labels are still
’active’, we will also use a temporary label image T : X → N; labels in T will be called active, while
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the others will be called inactive. The first step consists in labeling all regional maxima M1,M2, . . .,
in both the final and temporary label images:

L(x) = T (x) =

{
l if x ∈Ml

0 elsewhere.

For each level y in descending order (from yn to y1), we consider the connected components C1, C2, . . .
of X+

y . For each such connected component C:

• find the label m of the greatest maximum included in C, in the sense of the chosen criterion

• in case of equality between several greatest maxima, merge their labels first (in both L and T )

• label unlabeled pixels of C with m:

∀x ∈ C|L(x) = T (x) = 0,

{
L(x) ← m
T (x) ← m

• for each active label l 6= m in C:

– make m the parent of l in the maximum fusion tree

– store the extinction height EHl = y

– deactivate label l:

∀x ∈ C|T (x) = l, T (x) ← m

The algorithm stops just before reaching level zero, meaning that pixels x such that f(x) = 0
remain labeled with L(x) = 0. If the support of f is not connected, several labels are still active after
level y1, and we have not defined a maximum fusion tree, but a maximum fusion forest, with exactly
one tree per connected component of the support. In the present work, it does not matter whether
we obtain a tree or a forest, and if the support of f is disconnected, we can process each connected
component separately. Following the mountaineering analogy of the introduction, with 0 the sea level,
each maximum fusion tree corresponds to one island.

A detailed example of the four decompositions condidered in this work is given in section 3.4.

3.3.2 Attribute Updates

Let us denote by NL the number of non-zero values in the label image L (which might be strictly
inferior to the number of regional maxima because of label merging), and if necessary, modify the
names of the labels so they range from 1 to NL. We have obtained a decomposition f =

∑NL
l=1 fl; in

the next section, we define operators based on attributes of these peaks, such as

maximum value: δ(l) = max(fl)
area: α(l) = #{x ∈ X|fl(x) 6= 0}
L1 norm: λ(l) = ‖fl‖1 =

∑
x∈X fl(x)

volume: µ(l) = ‖fl‖1 +
∑

d∈D(l) ‖fd‖1

where D(l) denotes the descendants of l in the maximum fusion tree.

Notice the difference between the definitions of the λ and µ attributes: the first is simply the
L1 norm of the peak and does not depend on anything else; the second may seem less natural, as it
depends not only on the considered peak, but also on neighboring smaller peaks. As we will see in
Sec. 3.5, the µ attribute is defined this way so that it is equal to the volumic extinction value if the
volume is chosen as the discriminating criterion. A detailed example is provided in the next section.
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Instead of computing these four attributes a posteriori, we can compute them along with the
decomposition. In the initialization step, we assign to the regional maximum Ml the values:

δ(l) = f(Ml)
α(l) = #Ml

λ(l) =
∑

x∈Ml
f(x) = #Ml × f(l)

µ(l) =
∑

x∈Ml
f(x) = #Ml × f(l)

The update rules at level y for each component C of X+
y (f) become:

• find the label m of the greatest maximum included in C, in the sense of the chosen criterion

• in case of equality between k greatest maxima m1, . . ., mk, merge their labels into m = m1:

∀x ∈ C|L(x) ∈ {m2, . . .mk},
{
L(x) ← m1

T (x) ← m1

• and merge their attributes:

δ(m1) ←− max
1≤i≤k

δ(mi)

α(m1) ←−
k∑
i=1

α(mi)

λ(m1) ←−
k∑
i=1

λ(mi)

µ(m1) ←−
k∑
i=1

µ(mi)

• update m’s area, L1 norm and volume attributes:

α(m) += #{x ∈ C|L(x) = 0}
λ(m) += y ×#{x ∈ C|L(x) = 0}
µ(m) += y ×#{x ∈ C|L(x) = 0}

• label unlabeled pixels of C with m:

∀x ∈ C|L(x) = T (x) = 0,

{
L(x) ← m
T (x) ← m

• for each active label l 6= m in C:

– make m the parent of l in the maximum fusion tree

– increment m’s area, L1 norm and volume:

α(m) += α(l)
λ(m) += yα(l)
µ(m) += µ(l)

– store the extinction height EHl = y

– compute label l’s final attributes:

δ(l) ← δ(l)− y
λ(l) ← λ(l)− yα(l)
µ(l) ← µ(l)− yα(l)
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– deactivate label l:
∀x ∈ C|T (x) = l, T (x) ← m

No specific post-processing is required for labels still active after the last level y1 > 0; their
attributes are already correct.

3.3.3 Finding the Greatest Maximum

When computing the dynamics decomposition, the greatest maximum is the one with the highest value,
so we can directly compare the values of δ(l); similarly, when computing the area decomposition, we
can directly compare the values of α(l). In the case of the volume decomposition, in compliance with
definition 5, we need to consider the volume above level y, which is equal to µ(l)− yα(l).

3.3.4 L1 decomposition

In addition to the three former decompositions (dynamics, area, volume), it is also possible to choose
the greatest maximum as the one associated to the component with the greatest L1 norm. Formally,
at height y, if we consider that the ’greatest’ maximum of a connected component C is the one with
the highest value of λ(l)− yα(l), we obtain another decomposition.

3.4 Detailed Example

In this section, we will illustrate the decompositions on a synthetic example, shown in Fig. 3.6. In the
following, we will use the subscripts d, a, L1 and v to disambiguate between the dynamics, area, L1

and volume decompositions, respectively.
The heights and areas of the four regional maxima and three flat zones F1, F2, F3 are summarized

in Table 3.1. We will think of the lowest non-zero flat zone as the ’background’ B, although there is
a lower flat zone Z at level zero. The background B will always be labeled last; it will be attributed
the label of the ’greatest’ of the four maxima - in the sense of the chosen criterion - and Z will not be
labeled, so they are not included in the table.

Zone Height Area

M1 10 9

M2 8 40

M3 5 66

M4 6 35

F1 2 6

F2 3 9

F3 4 6

Table 3.1: Properties of the main flat zones of the image.

The first step of labeling algorithms consists in labeling the regional maxima, in this case M1, M2,
M3 and M4, as illustrated in Fig. 3.6b.

3.4.1 First labeling step, level y = 4

Our example image has 9 different values: in decreasing order, 10, 8, 6, 5, 4, 3, 2, 1 and 0. The first
four values correspond to regional maxima, which are already labeled.

The first level to consider is thus y = 4. The upper level set at this value, X+
4 (f), has three

connected components: M1, M2 and M3 ∪ F3 ∪M4; M1 and M2 contain no unlabeled pixels, so the
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(a) Original image (b) First step of all decomposition algorithms. The
regional maxima M1 to M4 are labeled (here with
different colors) and the non-maximal flat zones
annotated.

(c) Image profile along the middle lines.

Figure 3.6: Example image with four regional maxima and five non-maximal flat zones. The flat zone
denoted by Z is at level 0 and thus will not be labeled. The flat zone denoted by B is the background,
at level 1, which will be labeled last. The three flat zones F1, F2, F3 will be labeled in decreasing
order of height, according to the chosen criterion for a given decomposition.

only connected component to consider here is the last one, which contains an unlabeled flat zone, F3,
and two regional maxima: M3 and M4. Depending on the chosen criterion, either M3 or M4 will be
considered the greater: F3 will be labeled accordingly, and the smaller maximum will have its label
deactivated.

Since we will illustrate the four decompositions in parallel, we will use the subscripts d, a, L1 and
v in order to specify the considered decomposition.

Dynamics decomposition

In the case of the dynamics decomposition, we can simply compare the heights of the maxima: M4 is
higher than M3, so F3 gets labeled with M4’s label, and M3 gets deactivated. At this point we can
finalize M3’s attributes. In particular we have δd(M3) = 1, meaning that the dynamics of M3 is equal
to 1. We do not know yet the dynamics of M4; the temporary value remains δd(M4) = 6.

Area decomposition

Here M3 is the greater maximum: its area is 66, whereas the area of M4 is only 35. F3 gets labeled
with M3’s label, and it is M4 that gets deactivated. Here we obtain the final value δa(M4) = 2, which
is not the dynamics of M4, but a novel kind of importance measure, encompassing both the relative
height and spatial range of a maximum compared to its surroundings.
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L1 decomposition

We have to evaluate the quantities λL1(l)− yαL1(l) for M3 and M4. At initialization we had:

λL1(M3) = 66× 5 = 330
λL1(M4) = 35× 6 = 210
αL1(M3) = 66
αL1(M4) = 35

The calculations yield λL1(M3) − yαL1(M3) = 66 and λL1(M4) − yαL1(M4) = 70. M4 is greater
than M3 in the sense of the L1 criterion, so F3 gets labeled with M4’s label, and M3 gets deactivated.

We can compute the final attribute values λL1(M3) = µL1(M3) = 66, and we can update the
(temporary) values for M4, yielding λL1(M4) = 498 and µL1(M4) = 564.

Volume decomposition

At this step, since the λ and µ attributes are initialized in the same way, the exact same reasoning as
in the previous paragraph is applicable.

3.4.2 Step at level y = 3

The upper level set X+
3 (f) has two connected components: M1 and M2 ∪ F2 ∪M3 ∪ F3 ∪M4. Again,

nothing needs to be done about M1, and only the second connected component has to be considered.
It contains three regional maxima, but only two active labels: M2 and whichever of M3 and M4 was
considered the greater in the previous step.

Dynamics decomposition

Since M3 was deactivated in the previous step, we simply have to compare the heights of M2 and
M4; M2 is higher, so at this step F2 gets labeled with M2’s label and M4 gets deactivated. We can
compute its final attributes; in particular, we learn that its dynamics is 2.

Area decomposition

In the previous step, the α attribute of M3 was updated to αa(M3) = #M3 + #F3 + #M4 = 107,
which is greater than αa(M2) = #M2 = 40. Therefore, F2 gets M3’s label and M2 is deactivated.

L1 decomposition

In order to determine which of M2 or M4 is the greater maximum, we have to compare the values
λL1(M2)− yαL1(M2) and λL1(M4)− yαL1(M4). At this point, λL1(M2) and αL1(M2) have not been
modified since their initializations to λL1(M2) = 8 × 40 = 320 and αL1(M2) = #M2 = 40. On the
contrary, in the previous step at y = 4, the values for M4 have been updated to λL1(M4) = 498 and
αL1(M4) = #M3 + #F3 + #M4 = 66 + 6 + 35 = 107.

The calculations yield λL1(M2)− yαL1(M2) = 320− 3× 40 = 200 and λL1(M4)− y × αL1(M4) =
498− 3× 107 = 177. Therefore, M4 gets deactivated and F2 gets the label of M2.

Volume decomposition

Most of the reasoning is the same as above, but we have to compare the quantities µv(M2)−yαv(M2) =
200 and µv(M4)−yαv(M4) = 564−3×107 = 243. This time, M4 is considered the greater maximum;
M2 is deactivated and F2 gets labeled with M4.
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3.4.3 Last steps: y = 2 and background

The step at level y = 2 is straightforward: there is only one connected component to consider,
containing all four maxima, and the only case where M1 is considered the greatest is the dynamics
decomposition.

The final step at level y = 1 is even simpler: the upper level set X+
1 (f) consists of all the image

with the exception of Z and contains only one active label at this point.

The final label images, as well as a stacked representation of the four components, are shown in
Figs. 3.7, 3.8, 3.9, and 3.10.

(a) Final label image for the dynamics decompo-
sition

(b) Stacked view of the middle lines

Figure 3.7: Completed dynamics decomposition

(a) Final label image for the area decomposition (b) Stacked view of the middle lines

Figure 3.8: Completed area decomposition

(a) Final label image for the L1 decomposition (b) Stacked view of the middle lines

Figure 3.9: Completed L1 decomposition
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(a) Final label image for the volume decomposition (b) Stacked view of the middle lines

Figure 3.10: Completed volume decomposition

3.5 Decomposition Properties

3.5.1 Discriminating Criterion Conservation

By construction, the dynamics of a regional maximum M is equal to its δ attribute in the dynamics
decomposition, δd(M).

Similarly, its area extinction value is equal to its α attribute in the area decomposition αa(M),
and its volumic extinction value is equal to its µ attribute in the volume decomposition µv(M).

By analogy, we can define the L1 extinction value of a maximum as its λ attribute in the L1

decomposition, λL1(M). It is indeed an extinction value as per definition 3; the corresponding family
of operators is introduced in the next section.

3.5.2 Support Inclusion

For any of the four decompositions f =
∑
fl, if s is a descendant of p in the corresponding maximum

fusion tree (or forest), then the support of fs is strictly included in the support of fp. It immediately
follows that α(fs) < α(fp): the α attribute is increasing when going from leaf to root.

3.5.3 Root-to-leaf Decreasingness of the µ Attribute

For all decompositions, the µ attribute is clearly increasing when going from leaf to root. In the case
of the volume decomposition, µv(l) is the volumic extinction value of maximum l; for the three other
decompositions, it is not a classic measurement. It can still be thought of as a ’volume’, but it is the
volume above EHl on the support of fl; in more precise terms, it is the sum of the L1 norms of the
component fl and of all its descendants.

3.5.4 Root-to-leaf Decreasingness of the Discriminating Criterion

In addition to the former properties, which hold true for any of our four decompositions, by construc-
tion, the criterion (dynamics, area, volume, L1 norm) chosen to perform the decomposition is also
increasing from leaf to root of the corresponding fusion tree. Namely, this property states that δd, αa,
λL1 and µv are decreasing from root to leaf.

3.5.5 Other Attributes

The α and µ attributes are increasing from leaf to root in all decompositions; this is also true of the
δ attribute for the dynamics decomposition and the λ attribute in the L1 decomposition.
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There are no monotony properties for δ and λ in the other cases: in the example from Section 3.4,
we have for instance δa(M1) = 8 and δa(M3) = 5, although M3 is the parent of M1 in the area
decomposition.

Although in all decompositions of Section 3.4, the λ attribute is decreasing from root to leaf, it is
easy to construct examples, even with only two maxima, where this is not true for λd and λa (consider
a narrow peak and a large but lower one). A counter-example for λv with three maxima is given in
Fig. 3.11: B is the root of the fusion tree but λv(A) > λv(B).

Figure 3.11: Volumic decomposition example in 1 dimension. The L1 norms (areas) are λv(A) = 91,
λv(B) = 80 and λv(C) = 40. The area colored in orange (91) is less than the sum of the blue and
green areas above level 1 (100), so B is considered greater than A.

3.6 Associated Operators

3.6.1 Leaf Removal

Before considering more general operations, let us consider the simple case where one leaf component is
removed from a decomposition. Let f =

∑N
l=1 f

c
l be one of the decompositions defined in the previous

section, with respect to criterion c. Let us assume for simplicity that no label merging occurs, meaning
that f has exactly N regional maxima, and that the leaf we remove is labeled N (meaning N is a
leaf in the maximum fusion tree for this particular criterion c). Let us now consider the function
g = f − fN . What happens if we compute the decomposition of g with respect to the same criterion
c?

By construction, we have g = f everywhere except on the support of fN , where g is constant
and equal to EHN (note that for g, this is a non-maximal plateau). Considering the algorithm from
section 3.3, it is clear that the first steps, for y > EHN , are exactly the same for f and g, except for
the propagation of label N .

Let us consider the point where the algorithm has just reached level y = EHN , and let us consider
the connected component C of X+

y (f) containing the support of fN . Since N goes extinct at this
height, the greatest maximum of f included in C has a label m 6= N . Since g = f everywhere except
on the support of fN where g = EHN = y, the decomposition algorithm for g will at this point treat
the same component C and find the same greatest maximum m.

At this point, just before they are updated, the area, L1 norm and volume attributes of m are the
same for f and g, and the label images Lf and Lg are equal everywhere except on the support of fN ,
where Lf = N and Lg = 0. After the updates:
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α(m) += #{x ∈ C|L(x) = 0}
λ(m) += y ×#{x ∈ C|L(x) = 0}
µ(m) += y ×#{x ∈ C|L(x) = 0}

we obtain:

αg(m) = αf (m) + αf (N)
λg(m) = λf (m) + yαf (N)
µg(m) = µf (m) + yαf (N).

The next step is labeling the unlabeled pixels of C: after this, we have Lf = Lg and Tf = Tg
everywhere except on the support of fN , where at this point Lf = Tf = N and Lg = Tg = m.

Then, we consider the active labels l 6= m in C: these are exactly the same for f and g except
for label N , so the increments in m’s area, L1 norm and volume are the same except for the extra
increments:

αf (m) += αf (N)
λf (m) += yαf (N)
µf (m) += µf (N)

These exactly compensate the extra increments we had for αg(m) and λg(m), so we now have
αf (m) = αg(m) and λf (m) = λg(m), but we have:

µf (m)− µg(m) = µf (N)− yαf (N) = ‖fN‖1.

The rest of this step - storing extinction heights, computing final attributes and deactivating labels
that are not m - is exactly the same for f and g.

If the criterion c is area, dynamics or L1-norm, at subsequent steps y < EHN , things remain the
same for f and for g until the algorithm ends. This means that if we write the c-decompositions,
respectively:
f =

∑N
l=1 f

c
l and g =

∑N−1
l=1 gcl , we have for all l in {1, . . . , N − 1}, f cl = gcl , as well as for all

l ∈ 1, . . . N − 1:

αf (l) = αg(l)
δf (l) = δg(l)
λg(l) = λg(l)

The former reasoning applies even if label mergings occur: the area, dynamics and L1-norm
decompositions are stable by leaf removal.

This is not true for the volume decomposition; for instance, let us consider the very simple example
given in Fig. 3.11. C is a leaf in the maximum fusion tree, but removing fC changes the volume
decomposition: A would become the root instead of B, and components fA and fB would be different.

3.6.2 Thresholding Operators

In the former sections, we have described four decompositions - actually, any binary granulometry
defines such a decomposition, but in the present work, we will restrict our attention to these four.
Considering a decomposition associated to one of these criterions, c, then thresholding on an attribute
θ over a value ε ≥ 0 ( θ being one the four attributes α, δ, λ or µ), we can define the operator

T c,θε (f) =
∑

l|θ(l)>ε
f cl

= f −
∑

l|θ(l)<ε
f cl
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This operator leaves intact the peaks that are important enough while filtering out those who are
not - the meaning of ’important’ here being defined by the chosen decomposition and criterion. In
particular, thresholding operators are antiextensive :

Property 1. Antiextensivity
∀f : X → R+, T c,θε (f) 6 f .

In the particular cases of T d,δε , T a,αε and T v,µε , they are less active than their ’usual’ counterparts:
h-reconstruction, area opening and volumic razing, respectively.

Property 2. Activity
∀f : X → R+, ∀ε > 0,

Gε(f) 6 T d,δε (f) 6 f
γaε (f) 6 T a,αε (f) 6 f
rvε (f) 6 T v,µε (f) 6 f

where Gε(f) denotes the geodesic reconstruction of f − ε under f , γaε the area opening of size ε and
rvε the volumic razing of size ε.

This is illustrated on the toy image shown in Fig. 3.12. Figure 3.13 shows the difference between
an h-reconstruction and the operator T d,δε with the same value. Figure 3.14 compares area opening
and T a,αε . Finally, Fig. 3.15 compares volumic razing and T v,µε .

Figure 3.12: Toy image used to illustrate the activities of operators T d,δε , T a,αε and T v,µε compared to
their usual counterparts. The numbers indicate the gray level of each flat zone.

Another property of the thresholding operators T c,θε is the fact that they do not create new contours.
More formally, they are connected operators [SOG98], of which we remind the definition here:

Definition 6. Connected operator
An operator T is connected if for all function f , the partition of the flat zones of f is finer than

the partition of the flat zones of T (f).

Property 3. Connectedness
For all c, θ and ε, T c,θε is a connected operator.

Proof. In order to prove this property, let us consider the removal of one component fl. By construc-
tion, any flat zone of f is either entirely included in the support of fl, or entirely outside of it (the
support of fl is a connected component of the strict upper level set {x ∈ X|f(x) > EHl}). Similarly,
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Figure 3.13: Comparison between an h-reconstruction with h = 5 on the left, and T d,δ5 on the right.
In both cases, the maximum on the top right of the original image disappears, but the maxima that
are kept are unaltered by T d,δ5 , whereas they are modified by the h-reconstruction.

Figure 3.14: Comparison between an area opening of size 50 on the left, and T a,α50 on the right. In
both cases, the maximum on the top left disappears and the maximum on the top right is kept intact.
The maximum at the bottom is unaltered by T a,α50 , whereas it is partly erased by the area opening.
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Figure 3.15: Comparison between a volumic razing of volume 100 on the left and T v,µ100 on the right.
The maximum on the top left is erased by both; the other two maxima are partly erased by the
volumic razing but kept intact by T v,µ100 . Note: in this example, we use a slightly different definition
for the volumic razing so that the resulting image is integer-valued.

any flat zone in the support of fl is either entirely within the support of fs with s a son of l in the
fusion tree, or entirely within the support of fl but outside the support of any descendant of l in the
fusion tree. In the first case, since f − fl is equal to f − (EHs − EHl) on the support of fs, the
flat zones are unchanged; in the second case, f − fl is equal to EHl, so that each flat zone of f is
still included in a — possibly larger — flat zone of f − fl. Applying an operator T c,θε is equivalent
to successive removals, and the composition of connected operators is a connected operator, which
proves the proposition.

Property 4. Decreasingness

For all c, θ, (T c,θε )ε is a decreasing family of antiextensive operators.

Since for any choice of decomposition criterion c and attribute θ, we obtain a decreasing family of
connected, antiextensive operators, any couple (c, θ) defines an extinction value by definition 3. Some
are already well-known: the couple (d, δ) defines the dynamics, the couple (a, α) the area extinction
value and the couple (v, µ) the volumic extinction value. It must be noted that although the extinction
values are the same, the families of operators are not.

The other couples define new kinds of extinction values: we already mentioned the L1 extinction
value, naturally defined by the couple (L1, λ); the others can be thought of as second-order extinction
values. All operators and their respective effects are illustrated in Sec. 3.7.

3.6.3 Stable Thresholding Operators

As we have seen, the dynamics, area and L1 decompositions are stable by leaf removal; if c is one
of these three criteria and θ is decreasing from leaf to root for the corresponding decomposition,
applying T c,θε is equivalent to successive leaf removals and the decomposition of T c,θε (f) is simply

T c,θε (f) =
∑

l|θ(l)>ε f
c
l .

The five thresholding operator families which satisfy both conditions are T d,δ, T d,α, T a,α, TL
1,λ

and TL
1,α. For these five families, the following properties are immediate consequences of the decom-

position’s stability by these operators:

Property 5. Idempotence
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∀ε ≥ 0, T c,θε ◦ T c,θε = T c,θε

Property 6. Absorption property

∀a and b ≥ 0, T c,θa ◦ T c,θb = T c,θa∨b

This last property is remindful of granulometries: applying two or more operators is equivalent
to applying the most active one. However, even the stable thresholding operators of this section are
not morphological openings: they are anti-extensive and idempotent, but they are not increasing: for
each operator T c,θε , it is possible to find f and g with f ≤ g such that the inequality T c,θε (f) ≤ T c,θε (g)
does not hold.

Operators belonging to these five families are, however, levelings [Mey04]. Levelings are a particular
case of connected operators, introduced in [Mey98].

Definition 7. Leveling

A function g is a leveling of f if for any pair (p, q) of neighboring pixels:

g(p) < g(q)⇒ f(p) ≤ g(p) and g(q) ≤ f(q)

Property 7. Stable thresholding operators are levelings

For the five stable thresholding families of operators T c,θ, for all ε ≥ 0, for all f : X → R+, T c,θε (f)
is a leveling of f .

Proof. Applying T c,θε is equivalent to successive leaf removals: if a component is removed by T c,θε , so
are all its descendants in the maximum fusion tree. Let f be a function from X to R+ and f =

∑
l f

c
l

its decomposition with respect to criterion c. Let us consider the list of labels m1, . . . ,mn which are
erased by T c,θε but whose father component in the maximum fusion tree is not (or which have no

father in the maximum fusion tree). If we write g = T c,θε (f), we have f = g everywhere except on
the supports of the fmi , which are the connected components of the set {x|f(x) 6= g(x)}. For each
connected component of this set, g is constant and equal to EHmi . Thus, for neighboring pixels p and
q, g(p) 6= g(q) implies that g(p) = f(p) and g(q) = f(q), which in particular proves that g is a leveling
of f .

3.7 Example Illustrations

In this section, we illustrate the concepts defined above on a natural image f : X → {0, . . . , 255}
shown in Fig. 3.16. Here X is the set of pixels with 8-connectivity.

There are 14420 regional maxima on this image; after label merging, there are 14156 peaks in the
dynamics decomposition, 13785 peaks in the area decomposition, and 14306 peaks in both the L1 and
volume decompositions.

The root component of the dynamics decomposition is shown in Fig. 3.17. There are several global
maxima in the image, all of them located in the patches of snow at the top of the image.

The root of the area, L1 and volume decompositions (Fig. 3.18) is in this case the same, since the
’greatest’ maximum is the same in all three senses: a point on the left shoulder of the shirt at the
bottom left.

In both cases, the root component is the geodesic reconstruction of the greatest maximum or
maxima under the image.

3.7.1 Thresholdings on the δ attribute

In this subsection, we focus on the operators T c,δε : in other words, for each decomposition, a peak fl is
kept only if max(fl) is above the threshold ε. As mentioned above, for the dynamics decomposition,
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Figure 3.16: Example image used to illustrate the decompositions and operators defined in this work.
The image is 640 by 480 pixels, 8-bit grayscale (256 levels from 0 to 255).

Figure 3.17: Root component of the dynamics decomposition

Figure 3.18: Root component of the area, L1 and volume decompositions
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(a) Illustration of T d,δ100. (b) Illustration of T a,δ100.

(c) Illustration of TL
1,δ

100 . (d) Illustration of T v,δ100.

Figure 3.19: Comparison of the four operators T c,δε applied to the original image with ε = 100.
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T d,δε erases peaks with low prominence — dynamics — and keeps the most prominent ones. Contrary
to h-reconstructions, which perform a similar task, peaks that are kept are unaltered.

In the other decompositions, peaks that are very high above the nearest ’col’ will be kept, too, no
matter their other attributes: more formally, if M is the only maximum in its connected component
of the upper level set X+

f(M)−ε(f), then by construction, since M does not meet any other label until

a lower level, max(fM ) > ε, so fM is preserved by the operator T c,δε . It is not a necessary condition:
a maximum M is kept as long as it is the ’greatest’ — according to the decomposition criterion — of
its connected component of X+

f(M)−ε(f) (which does, however, require that f(M) ≥ ε). For the area
decomposition, for instance, a lower peak surrounded by higher ones may be kept if it is broad enough.
In the case of the L1 or volume decomposition, lower peaks may be kept if they are ’massive’ enough;
the difference between the two criteria being that in the case of the volume, the ’mass’ (L1 norm) of
the descendants in the fusion tree is taken into account, whereas it is not in the L1 decomposition.
In practice, unsurprisingly, these two decompositions and their associated operators are often very
similar; nevertheless, as detailed in the previous section, they have different properties.

The resulting image after applying the four operators T d,δε , T a,δε , TL
1,δ

ε and T v,δε are illustrated in
Fig. 3.19, with ε = 100.

On these illustrations, we can see that T d,δ100 leaves intact the most contrasted parts (peaks associated
to the most prominent maxima). As compared to the other δ-thresholding operators, only the bright
fold at the bottom of the t-shirt is kept intact, because it is brighter than the rest. In all other three
cases, the rest of the shirt is almost entirely kept, but not the fold at the bottom. Operators T a,δ,
TL

1,δ and T v,δ are harder to interpret: as mentioned above, very prominent maxima will be kept,
independently of their ’importance’ with respect to the decomposition criterion. On the other hand,
even an ’important’ maximum, whose label will propagate downward for a long time, can be associated
a peak with relatively low height. This can be seen on the synthetic example of Sec. 3.4: for the area,
L1 and volume decompositions, the maximum value of the root component is lower than the maximum
value of fM1 (strictly, in the L1 and volume cases).

Nevertheless, as can be seen in Fig. 3.19, these operators do preserve several regions that were
erased by T d,δ100: this is particularly visible on the shirt and on the rocks in the middle of the image, as
well as in the grass at the bottom.

Because the L1 and volume decompositions are very similar, the results of TL
1,δ

100 and T v,δ100 look the
same; the images are actually not exactly identical, but they differ only on 4821 pixels (a little more
than 1.5% of the image), and they differ at most by 4 grey levels. The most noticeable difference

between those two operators and T a,δ100 is the face, which is erased by T a,δ100 but kept intact by TL
1,δ

100 and

T v,δ100.

3.7.2 Thresholdings on the α attribute

In this subsection, we illustrate the operators T c,αε : peaks are kept if their support is large enough. In
particular, T a,αε is comparable to the area opening γaε , as they make the same maxima disappear, the
difference being that the remaining maxima — those with an area extinction value greater than ε —
are unaltered by T a,αε , whereas they are ’flattened’ by γaε .

The other α thresholding operators keep maxima that are locally the greatest, in the sense that a
maximum m and its associated peak are left untouched if and only if there exists a level y such that
m is the greatest maximum in its connected component of X+

y (f), and this connected component has
a cardinality of at least ε.

As can be seen in Fig. 3.20, T d,α700 preserves several bright spots that the other operators erase,
notably snow patches in the background, but also several small dots in the grass.

The other three operators look more similar. A difference can however be seen on the face: the
cheekbone is lighter in T a,α700 than in the other three cases, whereas the earlobe is kept intact by all
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(a) Illustration of T d,α700 . (b) Illustration of T a,α700 .

(c) Illustration of TL
1,α

700 . (d) Illustration of T v,α700 .

Figure 3.20: Comparison of the four operators T c,αε applied to the original image with ε = 700.
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operators except T a,α700 .

The L1 and volume cases are again quite similar — they actually differ on only 1816 pixels — but
the absolute difference reaches 78. Most differences are hardly visible, but a lighter patch can be seen
in T v,α700 in the trees in the very background on the top left.

3.7.3 Thresholdings on the λ attribute

Like the volumic extinction value, which was historically introduced as a compromise between area
and dynamics, the λ attribute (L1 norm of a peak) can be seen as a tradeoff between height and
support cardinality of a peak. A maximum with high dynamics can be associated a peak with a great
δ value but quite narrow, resulting in a smaller λ value than a lower but larger maximum. This can be
seen by comparing operators T d,δ100 (Fig. 3.19a) and T d,λ8000 (Fig. 3.21a): several quite small snow patches
on the top, as well as the rightmost Alpine chough’s beak, are preserved by the former but erased by
the latter; on the contrary, the shirt, forearm and rock above the arm have a lower dynamics but are
wide enough to be kept by T d,λ8000.

A similar statement can be made about the area decomposition: a maximum with a great area
extinction value can be associated a peak with a large α value but relatively low, in which case its
λ value will be quite small; on the other hand, a maximum with a smaller area extinction value but
more prominent can have a larger λ value. In Fig. 3.21a, we can see, for instance, that several snow
patches in the background that were erased by T a,α700 are preserved by T a,λ8000. There are actually also

10 peaks that are preserved by T a,α700 but erased by T a,λ8000, but they are less visible because of their low
dynamics, although several small differences can be noticed in the grass.

On this image, the result of TL
1,λ

8000 looks quite close to the result of T a,λ8000, although there are visible
small differences, for instance on the rock or in the grass. The reconstruction of the face is also closer
to that of T d,λ8000.

The results of TL
1,λ

8000 and T v,λ8000 are visually very similar, except for the trees in the background. A
small difference can be seen in the grass below the rightmost Alpine chough as well.

3.7.4 Thresholdings on the µ attribute

Since for a peak f cl , we have µc(l) = λc(l) +
∑

d∈D(l) λc(d), thresholding on the µ attribute yields a
less active operator than the same thresholding on the λ attribute; for all decompositions:

T c,µε (f) ≥ T c,λε (f)

This can be seen when comparing Figs 3.21 and 3.22: some details are kept by the µ thresholding
operators, while erased by the λ thresholding ones.

3.8 Extension to real-valued functions

3.8.1 Decompositions

All previous ideas can be easily extended to real-valued functions by considering their positive and
negative parts. A function f can be written as f = f+ − f−, with f+ = f ∧ 0 and f− = (−f) ∧ 0.
Both f+ and f− take only nonnegative values, so we can perform their respective decompositions
according to some criterion, just as before; we now consider and quantify the positive maxima and
negative minima of f .

With f+ =
∑

k f
+c
k and f− =

∑
l f
−c
l the respective decompositions of f+ and f− according to

criterion c, the decomposition of f is given by:
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(a) Illustration of T d,λ8000. (b) Illustration of T a,λ8000.

(c) Illustration of TL
1,λ

8000 . (d) Illustration of T v,λ8000.

Figure 3.21: Comparison of the four operators T c,λε applied to the original image with ε = 8000.
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(a) Illustration of T d,µ8000. (b) Illustration of T a,µ8000.

(c) Illustration of TL
1,µ

8000 . (d) Illustration of T v,µ8000.

Figure 3.22: Comparison of the four operators T c,µε applied to the original image with ε = 8000.
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f =
∑
k

f+c
k −

∑
l

f−cl

3.8.2 Self-dual Operators

The definition of the operators T c,θε is easily extended to real-valued functions by applying them (with
their former definition) to f+ and f−:

Definition 8. Generalized thresholding operators

T c,θε (f) =
∑

k|θ(k)>ε

f+c
k −

∑
l|θ(l)>ε

f−cl

These operators are self-dual in the sense that applying them to −f is the same as applying them
to f , then taking the opposite:

Property 8. Self duality

For any (c, θ), for all ε > 0, T c,θε (−f) = −T c,θε (f).

We obviously lose the antiextensivity property, but the operators are still connected. The operators
belonging to the five stable families remain stable: they are still idempotent, and satisfy the absorption
property ∀a and b ≥ 0, T c,θa ◦ T c,θb = T c,θa∨b.

These families of operators also still define levelings; the only difference in the proof is that we
must take into account the case where g(p) < 0 < g(q), in which case we immediately have f(p) ≤ g(p)
and g(q) ≤ f(q).

In order to illustrate this type of operators, let us consider the example image f of Fig. 3.16,
which takes values between 0 and 255, and define g = f − 127.5, which then takes both negative and
nonnegative values. Applying T a,α1000 to g preserves both salient maxima (bright structures) and salient
minima (dark structures), as shown in Fig. 3.23; on the other hand, applying an area opening of size
1000 to both g+ and g− yields the image shown in Fig. 3.24: the snow patches on top are almost
filtered out, as well as the lefmost Alpine chough.

Figure 3.23: Result of the self-dual operator T a,α1000 applied to the centered image g = f − 127.5.
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Figure 3.24: Result of applying an area opening of size 1000 to both g+ and g−.

3.9 Conclusion and Perspectives

In this article, we present several ways to associate peaks to the maxima of a function, yielding a
decomposition of the function as a sum of elementary components. From these decompositions one
can attribute several importance measures to each maximum; particular rules of partial summations
over these components also define new morphological operators, the properties of which are detailed.
Although defined at first from the maxima of a function taking nonnegative values, the decomposi-
tions and operators are generalized to real-valued functions, the peaks and trenches corresponding,
respectively, to positive maxima and negative minima.

The operators presented in this work do not alter the image in the vicinity of the maxima they
preserve; in particular, the families T d,δ, T a,α and T v,µ define the same extinction values but are less
active than their respective counterparts, h-reconstructions, area openings and volumic razings (see
Prop. 2). While removing small details, they leave intact the most salient structures (see Fig.s 3.23
and 3.24, as well as [Ala+17b]).

Although this work is mostly theoretical, the concepts and operators introduced offer new possibil-
ities for image simplification. Since the operators introduced here are connected — they do not create
new contours — they are particularly well-suited for image segmentation. Figure 3.25 shows two seg-
mentations of the example image, obtained by the watershed algorithm applied to the morphological
gradient of Fig. 3.23 (α thresholding of the dual area decomposition) and Fig. 3.24 (area opening of
g+ and g−). In both cases, the 30 minima of the gradient image with the largest area extinction value
were used as markers.

There is no ’better’ segmentation in an absolute sense; depending on the application, one can be
better than the other, but Fig. 3.25 illustrates that the operators introduced in this work offer new
alternatives.
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(a) Watershed segmentation using the gradient of
T a,α1000(f − 127.5)

(b) Watershed segmentation using the gradient of
γa1000(g+)− γa1000(g−)

Figure 3.25: Two segmentations of the original image, obtained by the watershed algorithm using the
30 minima with the largest area extinction value of the gradient of (a) T a,α1000(g) and (b) γa1000(g+) −
γa1000(g−).
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Chapter 4

Introduction

Ce chapitre présente brièvement la rétinopathie diabétique et les enjeux de santé publique associés,
puis présente le contexte du projet RetinOptic. Nous exposons ensuite les raisons ayant motivé le
choix de détecter la macula dans les images rétiniennes, en particulier le rôle de la visibilité de la
macula comme estimateur de qualité des images.

4.1 Diabetic Retinopathy

It is estimated that there were 415 million people with diabetes in 2015, and this number is expected
to reach 642 million by 2040 [Ogu+17]. A common complication of diabetes is diabetic retinopathy
(DR) [EZ16], which is one of the main causes of blindness and visual loss [Sjø+97; Mat+04]. Due
to the heterogeneity of protocols between different epidemiology studies, it is hard to give a precise
prevalence of DR; however, the percentage of diabetic patients found with DR in recent studies is
relatively stable and ranges from 21.9% to 36.8% [DMR09].

DR is detectable and treatable, but regular clinical examination of all patients diagnosed with
diabetes is infeasible in practice; in many developing countries, there is a significant lack of ophthal-
mologists, and in developed countries, the number of people aged 60+ is growing at twice the rate of
the profession [Res+12].

In most clinically significant cases, DR is detectable on eye fundus photographs. Telemedicine
networks [CC03; Bou+08; Mas+08; TWN15] have been created in various countries in order to perform
mass screening; international and local guidelines recommend one fundoscopic examination per year
for diabetic patients [Ame12; Mas+08]. Photographs can be taken by technicians in hospitals, specific
screening centers, pharmacies or even prisons equipped with mydriatic cameras. In recent years,
portable retinographs have been developed, which allow for even more massive screening. Photographs
are then sent to ophthalmologists, who grade them and indicate the course of action to be followed.
Both patient and practician time can be saved this way, provided that images are of good enough
quality.

Due to the increasing amount of data, in conjunction with the limited number of ophthalmologists,
computer retinal image understanding is of utmost interest. The literature concerning eye fundus
image processing is abundant (a non-exhaustive review can be found in [SG15a]), including many
segmentation methods to extract anatomical structures such as the optic disk, the macula or the
vascular network, or pathological structures [Agu+14; NAG09; Ver+13; WSM11; Gup+14; Zha+14],
as well as automatic predictions of DR severity [Que+17; Xia+17; Gar+96].

69
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4.2 The OPHDIAT Telemedicine Network and OPHDIAT Database

OPHDIAT (for OPHtalmologie DIAbète Télémedecine) [Mas+08] is a telemedicine network created
in 2004 by Assistance Publique - Hôpitaux de Paris (APHP) in order to perform DR screening by
eye fundus photography in Ile-de-France. In 2018, 17063 examinations were performed on 43 different
sites.

An examination in the OPHDIAT database typically consists in two images per eye: one centered
on the macula (central image), the other one centered on the optic disk (nasal image). The examination
includes some information about the patient: age, sex, diabetes type, current treatment, date of
diabetes diagnosis; it also includes the model of the retinograph, the center in which the examination
took place and the technician who performed it. All personal data is anonymized.

Each examination is then sent to an ophthalmologist, who performs the diagnosis. He or she
provides information about image quality, DR severity, the course of action to be taken, and a short
conclusion text. An example is given in Fig. 4.1.

Figure 4.1: Typical examination, containing two images per eye, miscellaneous information and de-
tailed diagnosis

Diagnosis per eye and course of action are coded on the scales summarized in Tables 4.1 and
4.2. For the diagnosis of an eye, code 1 is used when the pictures are uninterpretable, in which case
the course of action is almost always 7: the patient must be referred to an ophthalmologist with no
emergency (within two months). In special cases, like pregnancy, the course of action can be different
and the patient is often referred to an ophtalmologist or asked to take pictures again within a shorter
time span. Code 1 for course of action does not appear in any of the 25,702 examinations of the
OPHDIAT database.
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Code Meaning

1 ?
2 No DR
3 Mild NPDR
4 Moderate NPDR
5 Severe NPDR
6 PDR
7 High Risk PDR

Table 4.1: DR diagnosis code summary. NPDR stands for Nonproliferative Diabetic Retinopathy;
PDR stands for Proliferative Diabetic Retinopathy.

Code Meaning

1 ?
2 Eye fundus photographs in 1 month
3 Eye fundus photographs in 3 months
4 Eye fundus photographs in 6 months
5 Eye fundus photographs in 1 year
6 Patient to be referred to an ophthalmologist without emergency (4 months)
7 Patient to be referred to an ophthalmologist without emergency (2 months)
8 Patient to be referred to an ophthalmologist quickly (1 month)
9 Patient to be referred to an ophthalmologist urgently (15 days)
10 DR already known; patient should not be part of the screening

Table 4.2: Course of action code summary.

4.3 The Retinoptic Project

The Retinoptic project is a collaboration between academic and industrial actors, supported by a
French ”Fonds Unique Interministériel” Grant, in relation with the competitive clusters Systematic
and Medicen. The aims of the project included the conception and commercialization of a new portable
retinograph, a medical information online platform, and new image processing algorithms.

In this work, we focus on image quality assessment algorithms; about 10% of the examinations
of the OPHDIAT network are deemed uninterpretable by ophthalmologists. Some of these uninter-
pretable examinations are unavoidable, typically when the patient has cataract, or if the pupil is not
dilated enough; however, in many cases, the issue is not medical, and it would have been possible to
have an interpretable examination by taking another picture. Figure 4.2 illustrates this: both images
are blurry, and thus uninterpretable, but it is likely that an image of better quality could have been
obtained.

4.4 Image Quality Estimation

Image quality estimation is a necessary preliminary step to most retinal imaging understanding tasks,
since it would make little sense applying an automatic diagnosis algorithm to images too noisy, blurred
or not contrasted enough. Most publicly available datasets, like the Kaggle Diabetic Retinopathy
dataset or the Messidor database [Dec+14], contain only gradable images, and in [NAG09], it is
clearly mentioned that for building a local database, ”acceptable image quality, as judged by the
screening program ophthalmologists, was a selection criterion”. A notable exception to this rule is the
ARIA database [Dam06], which in particular contains precise annotations of the fovea and macula,
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Figure 4.2: Both acquisitions are too noisy to be interpreted, but the issue seems to come from the
acquisition, and not from a medical issue like cataract.

even on images where they are hardly — if at all — visible, but their positions can be guessed, using
the rest of the image.

In the context of a telemedicine network, the diagnosis is performed by a human expert, but the
photographs are taken at a different time and location, by operators whose skill and level of experience
can vary. A significant portion of images - around 10% for the OPHDIAT network [Mas+08] - are
deemed uninterpretable by ophthalmologists. This could be prevented by automatically estimating the
quality at acquisition time, sending a warning to the operator if the photograph should be re-taken.
In particular, since an essential requirement is that the region of the macula must be clearly visible for
a diagnosis to be made, macula visibility is a relevant criterion for retinal image quality estimation.

4.5 Macula Segmentation

The literature concerning eye fundus image processing is abundant (see for instance [SG15b] for a non-
exhaustive review); many segmentation methods have been proposed to extract anatomical structures
such as the optic disc, the macula or the vascular network [Agu+14; NAG09; Ver+13; WSM11].

In the present work, we focus on the macula, which is located in the center of the retina, and
is responsible for high-resolution, color vision in good light. The fovea, located in its center, is the
region with the highest concentration of cone cells. Lesions in the macula impair central vision, and
should be detected as soon as possible. When exudates are present on the retina, their distance to
the macula determines whether the appropriate treatment is injections or laser therapy.

On eye fundus images, the macula appears as a dark region with low-contrasted borders, that
contains no vessels. For hemorrhage detection algorithms [Gup+14; KGU13; Tan+13; Zha14], this
often results in a false positive; it is preferrable to first locate the macula, and process it separately.

For all these reasons, it is clear that an accurate macula segmentation algorithm would be of great
interest in an automated or semi-automated diagnosis framework. Several designs have been proposed
(see [Ver+13] for a review), most of which are loosely based on the same idea: the macula is a reddish
region, darker than its neighborhood, and its distance from the optic disc is roughly 2 or 3 times the
diameter of said optic disc. Thus, the first step of these methods actually consists in detecting the
optic disc, which is a relatively easier task.

In recent years, however, neural networks have been proven to be a very efficient tool for general
segmentation; in particular, convolutional neural networks yield impressive results for image classifi-
cation, outperforming other methods in many complicated computer vision tasks, including a recent
Kaggle competition on DR screening [Gra15].
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4.6 Outline of this part

The aim of this part is to provide tools for detecting the macula and assessing image quality around
it on the images of the OPHDIAT network. Additionally, since our algorithms are to be deployed on
embedded systems, we also focus on keeping our solutions as fast and lightweight as possible.

Following the idea of the Kaggle competition for classifying retinal images according to the severity
of DR, we first train neural network classifiers for the seemingly simpler task of predicting whether
or not the macula is visible or not, in Chapter 5. Although this might comparatively seem like a
trivial task, it must be kept in mind that the databases are drastically different: the Kaggle Diabetic
Retinopathy databases contains only central images of good enough quality, while ours is a clinical
database, containing both nasal and central images, with absolutely no guarantee on their quality.

Assuming we dispose of a good classifier for assessing macula visibility, we can then consider only
the images where it is deemed visible, and try to locate it. For this task, we trained regression neural
networks, the output of which being the macula’s x-y coordinates. We considered two possible kinds of
input: either the green channel of the original image, or a morphological decomposition of it, designed
so as to potentially compensate illumination artifacts, thus possibly ’helping’ the network. We also
trained networks with a similar but deeper architecture and compare the results with the shallower
networks. Although the database is not the same, as we annotated more and more images during the
process, we can safely conclude that, at least for this task, deeper networks perform better. This is
the object of Chapter 6.

We then investigate fully-convolutional networks: instead of predicting a score or coordinates like
the networks of the previous chapters, they output a real-valued image. The ground-truth is provided
as a binary disk centered around the fovea’s annotation when annotated, and as a zero-valued image
when not. The output of the networks is never, in practice, a binary disk, but a simple post-processing
enables us to determine whether the macula is visible or not, and to accurately locate it when it is.
Simple features of the network’s output image can also be used as quality scores. The work described
in this chapter was published in [Ala+20]; Chapter 7 is an extended version of this article.
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Chapter 5

Macula Visibility Assessment by
Classification Neural Networks

Dans ce premier chapitre consacré aux réseaux de convolution, nous cherchons à répondre à la ques-
tion ”la macula est-elle visible ?” sur des images rétiniennes. Nous détaillons la création de notre
première base de données, l’architecture choisie pour les réseaux de classification, et présentons les
premiers résultats obtenus. Ayant obtenu des résultats satisfaisants pour cette première tâche, se
pose naturellement la question de la localisation de la macula lorsqu’elle est visible, qui est l’objet du
chapitre suivant.

5.1 Problem presentation

A first question to answer was whether we could train a neural network for the seemingly simple task of
determining whether or not the macula was visible on a retinal image. This may seem quite restrictive,
but in some cases, it is possible to obtain a localization heat map from an image classifier. Occlusion
sensitivity, as defined in [ZF14], is a way of asserting whether a convolutional neural network is truly
identifying an object in an image, or rather using the surrounding context. The idea is to occult the
object of interest in an image, then apply the model to this occulted image. If the object of interest
is mainly responsible for its high classification score, the score will drop; if the model uses the context
information rather than the object itself, it is likely that the score will not change much.

We can monitor the output of the model as we slide the mask over the image, and visualize it as
a score heat map. In our case, if the network is actually able to detect the presence of the macula, its
location will be given by the region where the score is the lowest on the occlusion heat map.

However, in this preliminary approach, the aim was mostly to investigate how our networks would
perform, as well as which input image resolution would be required. Since our algorithms have to be
able to run on embedded systems with an acceptable running time, a relatively modest network and
a low input resolution are likely preferrable to huge networks requiring high-resolution inputs.

5.2 First Database

The macula was manually annotated by two different operators on 1800 eye fundus images: when
visible, the center was labeled by clicking on it. We can see in Fig. 5.1 that the annotations may differ
by a few pixels.

This first database actually suffered from several design flaws. It contains the images of the three
databases e-ophtha HE, e-ophtha EX and e-ophtha MA, which are annotated databases, respectively
for hemorrhage, exudate and microaneurysm detection. There are two sampling biases introduced
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Figure 5.1: Labeled image with the two locations for the macula provided by the two operators

here: since each of these databases contains roughly half pathological images and half healthy ones, the
proportion of pathological images is — thankfully — much greater than it is in a real-life application.
The other issue is that these annotations were only made on good-quality images, which introduces a
second sampling bias regarding image quality.

After the initial annotation of the macula, the two operators agreed on the macula’s visibility on
only 87% of the images, most of the disagreements happening on images where the macula was either
only partially present or localizable but in a image of bad quality. An example of these disagreements
can be seen in Fig. 5.3.

This actually raises an interesting question, in that the phrase ’localize the fovea’, although seem-
ingly simple, needs to be clarified in light of the pursued goal. For instance, in both images of Fig. 4.2,
it is easy to deduce the macula’s localization using the rest of the image, but the macula itself is hardly
visible, if at all.

In the literature, some algorithms exist that aim at localizing structure, including the macula/fovea,
no matter how poor the image quality is. The ARIA database provides pixel-precise annotations for
the fovea and macula on several retinal images, including the one depicted in Fig. 5.2. At this point,
it is highly debatable whether it is sensible to evaluate the performance of a localization algorithm on
this kind of image.

In order to reduce the gap between the two operators, it was decided that the macula should be
annotated only if it was entirely visible and if the corresponding zone of the image was of good enough
quality to distinguish it as well as the small blood vessels surrounding it. After looking a second time
at all images for which there was a disagreement, it was decided which annotation to keep.

The original images come from different retinographs and have various resolutions: in order to
harmonize the data, each image was cropped around the region of interest, and rescaled. The new
resolution must be relatively small, in order for the network not to be too large, but not small to the
point the visibility of the macula cannot be assessed. In first attempts, we used 256x256, and later
128x128 images. Only the green channel of the images was used.
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Figure 5.2: Sample image from the ARIA database. Despite its poor quality, a pixel-wise annotation
for the macula and fovea are provided.

Figure 5.3: Example of disagreement between the two operators: the macula can be seen but is in a
dark zone of the image.
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Figure 5.4: Network architecture

5.3 Network Architecture

The database was split in three parts: a training (80% of images), validation (10%) and test (10%)
set. Images from a given examination were attributed to a same set, in order to avoid similar images
in the training and validation, or training and test sets.

The networks we used consist in convolutional and max-pool layers at the beginning, ending
with a fully-connected layer. Each convolutional layer is followed by a Rectified Linear Unit(ReLU).
More precisely, for the networks with a 128x128 input, there are two 3x3 convolutional layers with
d channels, followed by a 2x2 max-pooling, followed by two new 3x3 convolutional layers, this time
with 2d channels, followed by a 2x2 max-pool layer and two new 3x3 convolutions, this time with 4d
channels. The last convolutional block is then the input of a fully-connected layer of size 16, and the
final output is a logistic unit. This architecture is summarized in Fig. 5.4. We also trained networks
with 256x256 input images, with the same architecture except there is an additional [CONV-CONV-
POOL] block; in this case, the last convolutional blocks have depth 8d. In our experiments, we set
d = 8. The networks were trained using the RMSProp [TH12] optimizer, and with a dropout [Sri+14]
keep probability of 0.7.

5.4 Classification Results

For each architecture, the networks were trained several times, with different random initializations;
we then selected the one with the best logistic loss on the validation set, which turned out to be one
of the 128x128 input networks. On the test set, thresholding the logistic score at 0.5, we obtain 97.8%
accuracy. Several classification results are presented below.

5.5 Conclusion

In this chapter, we saw that we are able to determine whether the macula is visible with great
accuracy, with a relatively simple network, and after rescaling images to a modest 128x128 resolution.
The necessity of providing a precise meaning to the phrase ’the macula is visible’ has been assessed:
our criterion is that the macula must be entirely within the image and that the image quality in its
surrounding region must be good enough. When this is the case, it would be useful to predict the
macula’s location: if we consider that this is equivalent to predicting the fovea’s coordinates, can we
actually use the same network architecture for this task, simply by replacing the logistic classification
loss by the L2 regression loss? This is the object of the next chapter.
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Figure 5.5: The macula was annotated as visible, but the networks predicts that it is not: the score
is only 0.44, which falls below the 0.5 threshold.

Figure 5.6: The image is correctly classified as ’macula not visible’ (score: 0).
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Figure 5.7: The macula is correctly predicted as ’macula visible’ (score: 1).

Figure 5.8: The image is correctly classified as ’macula visible’ but with a relatively high visibility
score (0.44).



5.5. CONCLUSION 81

Figure 5.9: The image is correctly classified as ’macula not visible’, but with a non-zero visibility score
(0.2).
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Chapter 6

Macula Localization by Regression
Neural Networks

Dans ce chapitre, nous proposons de localiser la macula sur des images rétiniennes à l’aide de réseaux
de convolution de régression. Ceci suppose que nous avons à disposition un classificateur afin de
s’assurer au préalable que la macula est bien visible sur les images où nous cherchons à la localiser.

Nous envisageons deux types d’entrée possibles pour nos réseaux : le canal vert des images, ou
une décomposition morphologique de celui-ci visant à corriger les artefacts d’illumination présents
sur certaines images. Les résultats obtenus semblent montrer que ce pré-traitement n’améliore pas
la performance de localisation. Par ailleurs, les premiers réseaux, peu profonds, ne semblent prédire
correctement que la coordonnée horizontale. La normalisation de la sortie atténue cet effet mais
dégrade la performance globale.

Des réseaux plus profonds donnent de meilleurs résultats, même avec moins de neurones dans la
dernière couche complètement connectée (et donc moins de paramètres). Cependant, la limitation
principale reste la difficulté à détecter les erreurs de localisation. Dans le chapitre suivant, nous
investiguons une autre approche du problème, par des réseaux de segmentation, afin d’obtenir à la fois
la classification (macula présente ou non), la localisation lorsque la macula est visible, ainsi qu’un
score de confiance de la prédiction.

6.1 Introduction

Assuming we have a good classifier for assessing whether or not the macula is visible on retinal images,
if we want to locate it, since it can be considered approximately constant in shape and size, the problem
of macula segmentation can be reduced to that of fovea localization.

We have seen that with the architecture introduced in the precedent chapter, we are able to answer
the first question, ’is the macula visible?’, with great accuracy. Now, can the same architecture be
used in order to answer the second one: what are the fovea’s coordinates?

We also wanted to investigate the influence of the network’s complexity on the results: in order to
do so, we tried different values for the number of neurons n in the last, fully-connected layer of our
network. In a subsequent step, we also investigate a deeper architecture.

In our database, we noticed that some images present large horizontal luminosity gradients, which,
at least intuitively, could hinder the localization of a dark structure, like the macula. If we somehow
correct this luminosity artifact, could this ’help’ the network and improve its performance?

We saw in the previous chapter that our first database possibly suffered from some biases; we
first annotated 2700 more images, thus hopefully obtaining a more accurate representation of reality.
Before training the deeper networks on the second half of this chapter, we again annotated more
images, for a total 6098.
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6.2 Morphological Decomposition

As previously, a possible input for a learning algorithm is the resized green channel, as shown in
Fig. 6.1; however, we also used a morphological decomposition in order to correct a possible non-
uniform illumination, and to separate bright and dark objects.

Figure 6.1: The original color image on the left has been cropped around the region of interest,
zero-padded on top and bottom so as not to introduce distortion, then resized to 128x128.

The decomposition is obtained by applying hexagonal alternating sequential filters [SV92] to the
green channel, the size of the largest hexagon being the approximate size of the optic disc. The resulting
image is an estimation of the illumination effects; the positive and negative residues respectively
contain the bright and the dark structures. This decomposition is illustrated in Fig. 6.2.

Figure 6.2: From left to right: result of the alternating sequential filters, positive residue (bright
structures), negative residue (dark structures). The macula appears as a bright circle on the third
image.

Since the macula and vessels are darker than their surroundings, they should appear as bright
structures on the negative residue. Furthermore, the macula is an avascular region, meaning there
should be no blood vessels around. In Fig. 6.2, it can be seen that it does appear as a bright circle
surrounded by a darker region. The positive residue contains bright structures, among which the optic
disc, which is helpful for localizing the macula. The first channel, that we call the horizon, should
contain little to no information. We include it nevertheless in our inputs, because it guarantees that
no information is lost in the transformation. In fact, as explained in section 6.3, any convolutional
neural network taking the green channel as input can be represented as a convolutional neural network
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taking the decomposition as input.

6.3 Network architecture

Figure 6.3: Architecture of the network: the input image can have either 1 or 3 channels. The last
layer before the output is fully connected and contains most of the network’s parameters.

The network we used is almost the same as in the previous chapter, except for the last two layers:
the last max-pooling layer is suppressed, and the last one is linear instead of logistic. Its architecture
is recalled in Fig. 6.3. The depth of the first two convolutional layers, denoted by d in the figure,
was set to 8 in all our experiments. After each max-pooling layer, the depth is doubled. We have
tried different values of n, the number of neurons in the fully-connected layer, ranging from n = 6 to
n = 32. This meta-parameter controls the degree of complexity of the network.

We actually defined two types of networks, depending on the number of channels of the inputs
(1 for the green channel, 3 for the morphological decomposition), but only their first convolutional
layer is different. In the case of green channel inputs, this layer is described by d 3x3 filters (matrices)
Ak, k = 1 . . . d and d scalar biases bk, k = 1 . . . d. If we consider an input (single-channel) image I, the
k-th channel of the intermediary image after the first layer is the convolution I ?Ak + bk.

Now let us consider the decomposition of the image into its horizon, positive and negative residue:
I = H + P − N, as described in section 6.2. In order to describe the first convolutional layer of
the second type of network, we now need to define d triplets (Ah

k ,A
p
k,A

n
k), k = 1 . . . d, and d biases

bk, k = 1 . . . d. The layer’s output’s k-th channel is given by: H ?Ah
k + P ?Ap

k + N ?An
k + bk.

Let us consider now the particular case where for each k there exists a matrix Ak such that
Ah
k = Ap

k = −An
k = Ak.

Clearly H ?Ah
k + P ?Ap

k + N ?An
k = (H + P−N) ?Ak = I ?Ak.

This equality shows that the class of models described by the first type of networks (green channel
input) is strictly included in the class of models described by the second type (3-channel decomposition
input). This is achieved via 144 extra parameters, but as previously mentioned, the model’s complexity
is driven by the number of neurons in the fully connected layer, n: the 1D-input network already has
32771n+ 18042 parameters.
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Figure 6.4: Histograms of distances between predicted location and ground truth in the preliminary
experiment. Top: green channel input, bottom: morphological decomposition 3-channel input.

6.4 Preliminary Results

Our first database, introduced in the previous chapter, contained 1800 retinal images. On 1155 of
those, the macula was deemed visible and entirely within the image by both annotators. Using 1000
images for training and the rest as validation set, we trained two networks, one with the green channel
as input, the other one with the morphological decomposition as input.

The first results were in favor of the morphological decomposition: the average distance to the
ground truth was 9.2 pixels in this case, as opposed to 13.5 pixels for the green channel input network.
The histograms of distances are shown in Fig. 6.4.

From this first experiment, it would be tempting to assume that providing the three channels of
the morphological decomposition instead of the raw green channel makes the task easier; the network
possibly can design some features it cannot with the single channel input. It is even possible that the
decomposition-input network ignore the first two channels altogether and creates features based on
the third one only.

In order to either confirm or deny these intuitions, we conducted a more thorough investigation,
presented in the next section.

6.5 New database

We annotated another 2700 images, all taken at random from the OPHDIAT database. The annotation
was again performed by the same two annotators, independently from each other, by clicking on the
fovea, at the condition that the macula be clearly visible and entirely within the image. In a second
phase, a consensus was found between the annotators when there was a disagreement on the visibility
of the macula.

This time, we did not include the images from the e-ophtha databases, in order not to introduce
a quality bias. A first remark that can be made about the new database concerns the proportion of
images with visible macula: it was considered visible on 2035 images out of a total 3843, which is a
little less than 53%, as compared to the almost 64% (1150 out of 1800) of the initial database.

The database on which our experiments were performed consists in the 2035 images where the
macula was deemed clearly visible and within the field of view by both annotators.

This database (containing the images where the macula was visible) was split into three different
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sets: one for training, one for validation and one for test. Our base contains 2035 images, but they
come from 1650 patients only; we made sure in splitting the database that no patient appeared in two
different sets. We selected 1300 patients for training, 200 for validation and 150 for test, resulting in
respectively 1587, 253 and 195 images.

6.6 Results on the new database

All networks were trained using the RMSProp [TH12] optimizer with a dropout of 0.7, and L2 loss.
Let (x, y) be the ground truth coordinates of the fovea on a particular image and (x̂, ŷ) the predicted
values: the associated loss is L = (x− x̂)2 + (y − ŷ)2.

Learning was performed over 15000 epochs; at each epoch, validation loss was evaluated and the
model was saved if it improved over the best value so far.

For each value of n ∈ {6, 8, 12, 16, 32}, three networks of each type with n neurons in the fully-
connected layer were trained with different random initializations. A fourth one of each type was
trained for n = 6 because two out of the first three ’green-channel’ networks performed significantly
worse than the third one.

Results are presented in tables 6.5 and 6.6, respectively for green channel and morphological
decomposition, in terms of root mean square error. Minimizing the L2 loss is equivalent to minimizing
the root mean square error, but the latter is homogeneous to a distance, and is an upper bound of the
mean distance error, making it somewhat more easily interpretable.

n=32 n=16 n=12 n=8 n=6

3.17 3.45 4.69 5.37 5.41
3.48 4.74 4.94 5.67 6.07
3.66 5.65 6.42 12.44 11.42

11.53

Figure 6.5: Best validation error across 15000 epochs for green channel input networks.

n=32 n=16 n=12 n=8 n=6

3.23 4.48 5.36 4.81 5.66
3.33 5.01 5.75 5.15 5.96
3.80 5.81 5.84 5.67 6.16

6.71

Figure 6.6: Best validation error across 15000 epochs for morphological decomposition input networks.

The two types of networks yield fairly similar performances, even if for all values of n except
n = 8, the lowest loss is achieved by a green channel input network. Three of the smallest networks
of this type, though, significantly underperform, which does not happen when the morphological
decomposition is used as input.

Since the database was annotated by two people, we can also compare these results to human
performance: the mean distance between the two annotators is 1.59, about half the validation loss of
the best network.

The L2 loss (or equivalently, the root mean square error) is only one, scalar, evaluation metric,
and does not capture all the information about the predictions. In the following section, we take a
closer look at the predictions.
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6.7 Problem anisotropy

The OPHDIAT database contains two types of images: acquisitions centered on the macula, and
acquisitions centered on the optic disc. In both cases, the patient’s eye during the acquisition is
horizontal; he is never supposed to look up or down. This means that the fovea’s vertical position
in our database is always roughly the same, as illustrated in Fig. 6.7. Let us consider a model that
always predict the correct horizontal position, and always predicts a constant value, equal to the mean
on the training set, for the vertical position. This model would have a root mean square error of 2.98,
which is lower than all of the networks we trained.

Figure 6.7: Ground truth positions of the fovea in the validation base.

Figure 6.8 shows that this is precisely what our networks tend to do: the smaller the network
is, the smaller the vertical variance of the predictions. The predictions shown here are those of the
best green channel input network with n neurons in the last layer, for n in {6, 12, 16, 32}; the sets of
predicted locations looked the same for the decomposition input networks.

This can be interpreted by considering that the output layer of the neural network is a linear
regression from Rn to R2, and that all the rest of the network is learning n ’good’ features for this
regression task. But since the vertical position is almost constant, it is easily approximated with
no feature at all; the smallest networks, with n = 6, seem to learn 6 features that are as relevant
as possible for predicting the horizontal position, and zero feature for predicting the vertical one.
Although for higher values of n, the vertical variance of the predictions increases, it remains about
half that of the ground truth even for n = 32.

6.8 Output Normalization

In order to better predict the vertical positions, we normalized the outputs. The raw coordinates
(x, y) were replaced by (a, b) = (x−µxσx

,
y−µy
σy

), where µx, σx are the mean and standard deviation of

the x coordinate on the training set (similarly for µy, σy).

Given a prediction (â, b̂), we can of course retrieve the corresponding predicted coordinates (x̂, ŷ) =
(aσx + µx, bσy + µy).
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(a) n = 32 (b) n = 16

(c) n = 12 (d) n = 6

Figure 6.8: Fovea location predictions on the validation database for different green-channel input
networks with decreasing number n of neurons in the last layer.

Note that minimizing the L2 loss between the prediction (â, b̂) and ground truth (a, b) is equivalent
to minimizing the modified L2 loss L = (x− x̂)2 + λ(y − ŷ)2, where λ = σx/σy.

The predictions of new networks, with normalized outputs, are shown in Fig. 6.9. Because of the
larger penalty for vertical errors, for a given number of neurons n in the fully-connected layer, the
variance of the y coordinate is greater than before, which was expected: for n = 16, the vertical
variance is 7.34 with output normalization, and only 3.72 without. For n = 32, the vertical variance
is 7.41 with output normalization, and 5.70 without. For reference, the vertical variance of the
annotations is 8.79.

As mentioned in the previous section, the output layer of our networks can be seen as a linear
regression with n features, and the rest of the network as a mapping between the input image and
those features. By normalizing the outputs, or equivalently by using a modified loss function, it does
seem that we can coerce the network into designing features that are useful for predicting the fovea’s
vertical position. Unsurprisingly, however, this is at the expense of overall precision, when measured
in terms of the usual euclidian norm. Indeed, with normalized outputs, the mean error (distance
between prediction and annotation) is 4.34 pixels for the network we learned with n = 32 (4.59 pixels
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(a) n = 32 (b) n = 16

Figure 6.9: Predictions of the regression networks with output normalization on the validation
database.

for n = 16), which is almost twice as high as the mean errors obtained without normalization (2.43
pixels for n = 32, and 2.71 pixels for n = 16).

The fact that, for a given value of n, normalizing the outputs worsens the network’s performance
could be expected. For the sake of simplicity, let us make the overly simplistic assumption that each
of the n learned features is either useful for predicting the x coordinate but entirely uninformative
for predicting the y coordinate, or useful for predicting y but entirely uninformative for predicting x.
Given the anisotropy of the problem, it can be expected that if the outputs are not normalized, most
or all of the n features would be of the first kind, and that few to none would be of the second kind:
Fig. 6.8 tends to comfort this view, notably in the n = 6 case.

If the outputs are normalized, we could expect a more balanced ratio of horizontal and vertical
features; out of n = 32, for instance, we could imagine that about 16 features would be useful for
predicting the x coordinate, and 16 would be useful to predict the y coordinate. Since the actual
L2 loss is mostly driven by the horizontal precision, this would make this network at a disadvantage
when compared to the unnormalized network with n = 32 features, but it should have a couple more
horizontal, and way more vertical, features than the unnormalized network with n = 16 features.

Actually, the performance of the normalized network with n = 32 (4.59 pixel mean error) is
significantly worse than what we obtained with n = 16 in the unnormalized case (2.71 pixel mean
error). We trained a network with n = 64 neurons with normalized outputs, and its performance (3.85
pixel mean error) is not significantly better than one of the unnormalized networks with only n = 6
(Fig. 6.8(d)), which had a mean error of 3.89 pixels.

There are two possible explanations: either coercing the network into learning better vertical
features makes it harder for it to learn good horizontal ones, or the network does learn quite good
horiztonal features, but the weights of the linear regression are suboptimal when measuring the per-
formance in terms of the usual distance.

The hypothesis that features are either ’purely vertical’ or ’purely horizontal’ is clearly simplistic
(although this is debatable in the n = 6 case), but the general idea remains the same, even taking into
account hybrid features that have some predictive power for both coordinates.

Contrary to our intuition that providing a more ’sensible’ input could lead to better performance,
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and despite promising preliminary results, it seems that the morphological decomposition preprocess-
ing we introduced does not, in fact, help the network learn better features for localization.

Using the L2 loss with a very anisotropic output distribution leads to an unwanted behavior of
our prediction models: it is in a sense ’not worth’ predicting the vertical position, which is almost
constant. Normalizing the outputs leads to more variance in the distribution of the y coordinates, but
this is at the expense of overall performance in terms of mean error. If we consider the n neurons in
the last hidden layer as features designed by the first layers of the network, and the output layer as
a linear regression model, it is unclear whether the bad performance of the networks with normalized
outputs is due to learning bad features or to learning bad weights in the linear regression part.

We next investigate a deeper architecture, which may be able to learn better features than the
shallower one used so far.

6.9 Final database

With the same methodology described previously, we annotated more images; our final database
totals 6098 images, the macula considered visible and entirely within the field of view on 3142 of
which. In the rest of this chapter, since we focus on the regression task, we only focus on these 3142
images, although, as we shall see, fully-convolutional networks could handle all images, contrary to
the regression ones.

We used 2193 images as our training set, 639 as our validation set and 310 images as our test set.
The positions of the validation dataset are shown in Fig. 6.10.

Figure 6.10: Positions of the fovea in the new validation dataset.

6.10 Deeper Regression Networks

On this new database, we tried a deeper architecture, illustrated in Fig. 6.12. As in the previous
section, it consists in a succession of convolution-ReLU/convolution-ReLU/max-pool segments, the
difference being in the number of these segments (five instead of three). Each max-pooling layer is
a 2x2 pooling with stride 2, meaning that the resulting block is half the height and half the width.
After each pooling, the depth of the following convolutional block is doubled. We kept d = 8 for our
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initial depth; the last convolutional block before the fully-connected layer is thus 256 channels deep,
but each channel is only 4x4.

The number of parameters of these networks is 2051n + 294906; compared to the previous archi-
tecture, there are many more weights in the convolutional layers, but since the last block before the
fully-connected layer is much smaller, the number of parameters grows much more slowly with n.

Figure 6.11: Architecture of the deeper regression networks. Each convolutional layer is followed by a
Rectified Linear Unit (ReLU). The red arrows labeled MP indicate a 2x2 max-pooling with stride 2,
dividing the height and width of the block by 2. After each max-pooling, the width of the convolutional
block is doubled.

6.11 Results

We trained three networks, with n = 8, n = 32 and n = 64 neurons in the fully-connected layer,
without output normalization. The predictions on the validation set are shown in Fig. 6.12. Even
with n as small as 8, the networks do not exhibit the same behavior — all predictions on the same
horizontal line, or very close to it — as the ones in the previous section. The vertical variances of the
three models are almost the same: 10.29, 10.51 and 10.30 for n = 8, n = 32 and n = 64, respectively.
The vertical variance on the validation set is actually a bit higher (15.28), but the difference is less
drastic than with the shallower networks.

In terms of localization, all three networks also perform much better: the mean distances between
prediction and annotation are 1.41, 1.29 and 1.34 pixels, for n = 8, 32, 64 respectively. The network
with n = 32 performs better than the network with n = 64, indicating a probable overfitting of the
latter.

If we consider again that the first layers, up to the fully-connected one, design the features of a
linear regression model (the output layer), the features learned by the deeper networks seem to be
much more meaningful than the ones learned by the shallower ones. In particular, the deeper network
with only n = 8 performs better than the shallower ones with n = 32, despite a smaller number of
parameters (’only’ 311314 against more than a million).

6.12 Limitations

Although the mean error of the networks, of the order of the pixel, is very low, they still make large
errors on some images: the best network on the validation set, in terms of mean error, is the one with
n = 32 neurons in the last layer. If we consider that at this resolution, the macula is approximately a
circle of radius 10, and that the localization fails when the predicted location for the fovea is outside
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(a) n = 8 (b) n = 32

(c) n = 64

Figure 6.12: Predictions of the three deeper networks on the validation set.
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Figure 6.13: Example of localization failure. The green cross indicates the manual annotation of the
fovea, the red cross is the prediction of the network.

the macula, this network fails on 5 images. An example can be seen in Fig. 6.13: the prediction of the
network is actually on the optic disk, 33 pixels away from the fovea’s manual annotation.

6.13 Conclusion

There are two issues with approaching macula/fovea localization as a regression problem: the model,
in this case a neural network, always outputs a pair of coordinates, no matter the input. In particular,
if we use a classifier (such as the one described in Chapter 5) to discriminate between images where
the macula is visible and images where it is not, whenever there is a classification mistake, the system
will predict a location even though the macula is not visible. The other issue, even assuming that we
dispose of an ideal classifier, is that there is no way of knowing when the model might be making a
problematic mistake; ideally, it would be useful to have a confidence score associated to a prediction,
and to trigger a warning when this score is too low.

In this chapter, we have seen that our first, ’shallow’, networks, have trouble dealing with the
anisotropy of the outputs, and that normalizing them does not solve this problem. The deeper archi-
tecture performs better than the shallower ones, even with fewer parameters. The databases were not
exactly the same, which has to be taken into consideration, but the difference in terms of mean error
seems to large for this phenomenon to have happened purely by chance. The best network has a very
low mean error, of the order of the pixel on 128x128 input images, and makes very few problematic
errors.

Coupled with a classifier such as the one described in Chapter 5, we can obtain a system able to
determine with great accuracy whether the macula is visible and entirely within the image, and to
localize it if it is. The main issue is that errors, although rare, are hard to detect. The classifier does
predict a soft score between 0 and 1 but in practice it is very close to 0 or to 1 most of the time; the
regression network returns a prediction but no confidence score.
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As an alternative to this system, we also trained fully-convolutional networks, which are able to
perform both tasks, as we shall see in the next chapter.
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Chapter 7

Fully-Convolutional Networks for
Segmentation and Image Quality
Estimation

Ce chapitre est une version plus détaillée de l’article Fast macula detection and application to reti-
nal image quality assessment (Robin Alais, Petr Dokládal, Ali Erginay, Bruno Figliuzzi, Etienne
Decencière), publié dans Biomedical Signal Processing and Control 55 (2020) [Ala+20].

Après avoir procédé en deux temps (classification puis localisation) dans les chapitres précédents,
nous cherchons à présent à obtenir une segmentation directe de la macula. Pour ce faire, nous utilisons
des réseaux entièrement convolutionnels dont la sortie est une image de même taille que l’image
d’entrée.

La visibilité de la macula est un critère essentiel pour les ophtalmologistes pour juger de la qualité
d’une image centrale : la sortie de notre réseau, moyennant un post-traitement morphologique, permet
de fournir non seulement la localisation de la macula mais également un score de qualité.

Par ailleurs, l’algorithme que nous proposons ici est très léger (peu de paramètres) et rapide, ce
qui le rend particulièrement adapté à un déploiement sur des architectures embarquées.

Les résultats obtenus en terme de localisation de la macula sont meilleurs qu’avec les réseaux de
régression des chapitres précédents, et la performance de classification des images (la macula est-elle
visible ou non ?) est proche de la performance humaine. Bien que la visibilité de la macula ne soit
pas le seul critère pour déterminer si une image rétinienne est de bonne qualité ou non, l’algorithme
proposé pourrait permettre de réduire significativement le nombre d’examens non évaluables dans un
réseau de télémédecine et peut être complété par d’autres critères de qualité.

This chapter is an extended version of the article Fast macula detection and application to reti-
nal image quality assessment (Robin Alais, Petr Dokládal, Ali Erginay, Bruno Figliuzzi, Etienne
Decencière), published in Biomedical Signal Processing and Control 55 (2020) [Ala+20].

7.1 Problem Presentation

Image quality estimation is a necessary preliminary step to most retinal image understanding tasks,
since it would make little sense applying an automatic diagnosis algorithm to images too noisy, blurred
or not contrasted enough. Most publicly available datasets, like the Kaggle Diabetic Retinopathy
dataset or the Messidor database [Dec+14], contain only gradable images, and in [NAG09], it is
clearly mentioned that for building a local database, ”acceptable image quality, as judged by the
screening program ophthalmologists, was a selection criterion”.

In the context of a telemedicine network, the diagnosis is performed by a human expert, but the
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photographs are taken at a different time and location, by operators whose skill and level of experience
can vary. A significant portion of images - around 10% for the OPHDIAT network [Mas+08] - are
deemed uninterpretable by ophthalmologists. This could be prevented by automatically estimating the
quality at acquisition time, sending a warning to the operator if the photograph should be re-taken.

For a diagnosis to be made, an essential requirement is that the region of the macula must be clearly
visible. In the present chapter, we focus on this task and present a lightweight CNN architecture
capable of evaluating if the macula is 1) clearly visible 2) entirely within the field of view. In addition,
our algorithm is able to accurately locate the macula if both conditions are met. This position can be
used as well to check if a central image is correctly centered on the macula, or as part of an automated
diagnosis algorithm, where the distance between lesions and the macula is an important information.

7.2 Related Work

So far, proposed methods for locating the macula either require images to be of sufficient quality
[NAG09], or attempt at providing a location based on contextual information like the optic disk and
vascular network, even if the macula itself is not visible in the image [Ver+13; WSM11]. The originality
of our approach lies in the fact that we use real clinical data, including very low-quality images; we
automatically assess image quality, and we deliberately aim at detecting the macular region only if its
visibility is sufficient.

The earliest attempts at defining a score for eye fundus image quality relied on properties of inten-
sity histograms [LW99; LGB01]. Image structure clustering, introduced in [NAG06], applies a bank
of filters in order to perform unsupervised segmentation into several clusters roughly corresponding
to anatomical structures of the retina, such as optic disk, vessels or retinal background. In this ar-
ticle, authors summarize a retinal photograph as a 20-dimensional vector composed of the histogram
of the image structure clusters (5 bins), along with the three histograms of each color plane (5 bins
each); good quality images are then separated from bad quality images by means of a Support Vector
Machine. A similar approach was used in [Pau+10], although for images centered on the optic nerve
of only 22.5◦ field of view. The authors also used a Support Vector Machine as their final classifiers,
but they use Haralick [H+73] and sharpness features.

Other features have been proposed, such as the density of visible blood vessels, either in the whole
image [Gia+08; Gia+10] or near the macula [Hun+11]. Measures of clarity [Fle+12] and blurring
[Pir+12] have also been defined. Finally, some methods combine both general image features and
retina-specific ones, making use of vessel density, histogram, textural, and local sharpness [Yu+12;
POS14; DOC12].

In recent years, convolutional neural networks have been proven very efficient on difficult computer
vision tasks, notably winning the ImageNet Large Scale Visual Recognition Competition (ILSVRC)
2012 competition [KSH12]. CNNs have then been applied to various tasks, including segmentation of
retinal images [Man+16; AlB+18], glaucoma and DR grading [Pra+16; Gul+16; Gra15].

In this context, estimating retinal image quality with convolutional neural networks is an inter-
esting research direction. In [Mah+16a], a convolutional network is trained in order to discriminate
gradable images from artificial ungradable images obtained by adding noise to the original images
of the DRISHTI dataset [Siv+15], which contains 101 acquisitions centered on the optic disk, with
a 30◦ field of view, all images being taken with the pupils dilated. In [Ten+16], the same authors
have experimented with both a ’shallow’ network (the total number of weights cannot be calculated,
since the number of neurons in the two fully-connected layers is not given, but the weights in the
convolutional layers alone exceed 1 million) trained from scratch, and AlexNet [KSH12] fine-tuned on
a dataset consisting in 908 ungradable and 944 gradable non-mydriatic images. On a larger dataset
(9653 ungradable retinal images and 11347 gradable images), they also evaluated the possibility of us-
ing a hybrid method combining saliency maps and CNNs [Mah+16b]. Finally, [Sun+17] compare the
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performance of fine-tuning four CNN architectures - AlexNet [KSH12], GoogLeNet [Sze+15], VGG-16
[SZ14] and ResNet-50 - on a 3000-image subset of the Kaggle database. These preliminary studies
report that large networks are hard to train, and must deal with overfitting issues, due to the huge
amount of parameters. In an attempt to overcome this problem, data augmentation is extensively
used, to the point where so much distortion is introduced that most of the training data is not con-
stituted of real or even realistic examples. An example of this is generating artificial new data by
applying large rotations (up to 210◦ !) to images; the resulting images are unrealistic, and it makes
the network more or less rotational invariant, which is not a desirable feature for analyzing eye fundus
images.

Another drawback of very large networks is their integration in embedded systems. Several million
weights can constitute a significant fraction of the available memory: 233MB for AlexNet, 528MB for
VGGNet for weights and biases alone, and the prediction times on embedded CPUs can be on the
order of a second [Lu+17].

In this work, we propose a lightweight solution, with only 8329 parameters, and a reduced number
of convolutions to be performed, meaning low power consumption as well. A comparison of memory
requirements and computation times on embedded systems between our algorithm and other classic
convolutional networks is given in Table 7.1. Our algorithm, including disk access and post-processing,
was benchmarked on a Raspberry Pi; timings for the other networks come from [Lu+17] and were
obtained on a more powerful 1.9GHz quad-core ARM Cortex-A57 64bit CPU (NVIDIA TX1). For a
given task, we should expect it to be performed faster on the TX1 than on the Raspberry Pi. Despite
this, our algorithm is the fastest, being more than three times as fast as ResNet, and more than 17
times as fast as VGGNet. It is also the lightest by far, requiring only 98kB for storing the network’s
weights. We have also benchmarked a modified version of the segmentation network U-Net [RFB15],
whose performance for our task is evaluated in section 7.5.

Network Time (ms) Time (ms) Weights (MB)
TX1 (CPU) Rasp.Pi

AlexNet 893 233

VGGNet 2809 528

GoogLeNet 638 26

ResNet 567 97

Us 161 0.1

U-Net 92 0.6

Table 7.1: Computation times and memory use of various convolutional networks on embedded sys-
tems. The first four networks have been benchmarked in [Lu+17] on a NVIDIA Jetson TX1. Our
network and our implementation of U-Net were benchmarked on a Raspberry Pi; it should be expected
that they would have run faster on the TX1.

7.3 Database

We extracted 6098 eye fundus images from the e-ophtha database [Dec+13]. This database has itself
been extracted from the OPHDIAT telemedicine network for DR screening. These images are either
central (centered on the macula), or nasal (centered on the optic disk). Different retinographs were
used for the acquisitions, with resolutions ranging from 1440x960 to 3504x2336 pixels. Two different
readers, independently from each other, indicated whether or not the macula was both entirely within
the field of view, and clearly visible, meaning that the fovea and the small vessels around the avascular
region can be seen. When that was the case, the fovea’s position (x- and y- coordinates) was labeled.
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When there was a disagreement on the macula’s visibility, a decision was made on which annotation to
use. Out of the 6098 images that were considered, the macula was deemed visible by both readers on
3142. The remaining images correspond either to bad quality central images or to nasal images where
the macula is at least partly outside the field of view (FOV). Sample images are shown in Fig. 7.1.

(a) (b)

(c) (d)

Figure 7.1: Sample images from the e-ophtha dataset: the macula is considered clearly visible and
entirely within the FOV in both (a) and (b). It is in the center of image (c) but the quality is
insufficient for grading, and it is partly outside the FOV in (d), which is a good quality nasal image.

7.4 Methodology

7.4.1 Image Preprocessing

Briefly put, the idea is to train a network to segment the macular region: with an ideal algorithm, if the
segmentation is unsuccessful, it means that no macula is visible; if the segmentation succeeds, it means
that image quality in the macular region was sufficient, and we immediately get fovea localization as
a byproduct.

To train the network, we used the green channel, which was cropped, zero-padded in order to
retain a square frame when necessary, and resized to a 128x128 image (see Fig. 7.2). This can seem
aggressive, and some details might be lost, but approaches for assessing the severity of DR use networks
with inputs as small as 512x512 [Que+17], even though the task is much more complex and can rely
on the presence of small structures like microaneurysms. A previous work for localizing both macula
and optic disk in good-quality images used as input the green channel resized to 256x256 [AlB+18].
The aim of this work is a bit different, since we are less interested in predicting a precise location -
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although our algorithm never predicts a location outside the macula (see Sec. 7.5.2) - but rather in
estimating the quality of the macular region. A 128x128 resolution is sufficient to visually assess the
visibility of the macula, and means that smaller networks can be used, easier to train and less costly
to run in an embedded framework, in real time.

Where the macula was visible, we used the mean of the two annotations as reference for the fovea’s
position; in 128x128 resolution, the average distance between readers was 1.25 pixels. We considered
the macula to be about 20 pixels wide, and we used as ground truth a disk of ones of radius 10 pixels,
the rest of the image being set to zero. When the macula was not visible because of low image quality
or because it was at least in part outside the FOV (Fig. 7.1c and 7.1d), the ground truth was an
image of zeros.

The only pre-processing consisted in dividing the (8-bit) images by 255, in order to get images
valued between 0 and 1. No contrast enhancement or filtering was applied, since we wanted to evaluate
the quality and macula visibility of raw images. Data augmentation was used by applying vertical
symmetries (transforming a right eye into a left eye or the other way around), but no horizontal
symmetries or rotations were used, to avoid creating unrealistic training data.

The dataset was split in three parts: a training set, used for learning network parameters, a vali-
dation set, used to estimate network performance during learning and setting some hyperparameters,
and a test set, exclusively used to assess the method’s performance. Images corresponding to the same
patient are necessarily in the same set in order to avoid any evaluation bias. The number of images
in each set is given in Table 7.2.

Additionally, in order to further estimate the generalizability of localization performance, we will
use the ARIA Database C (Fig. 7.18), for which fovea localization ground truth is available, as an
additional test set.

Training Validation Test All

Visible 2193 639 310 3142

Not visible 2056 596 304 2956

Total 4249 1235 624 6098

Table 7.2: Number of images in the training, validation and test sets.

7.4.2 Network architecture

We trained a fully-convolutional network consisting only of 3x3 convolutional layers (each followed by
a rectified linear unit) piled up, with all convolutional layers having 8 channels. We used zero-padding
at every step, so that the output image is the same size as the input one. A similar architecture has
been shown to provide good results for cell nucleus segmentation [Pan+10].

The number of convolutional layers we pile up determines the receptive field of each pixel in the
output image: that is, if there are L layers in the network (including the output layer), the value of
one pixel in the output image depends on the values in a 2L + 1 by 2L + 1 square centered at this
position in the input image. This is illustrated in Fig. 7.3. We tried different values of L, ranging
from 10 to 20; the best validation loss was achieved for networks with L = 16. The receptive field is
then 33x33 pixels. When centered on a pixel at the edge of the macula, it contains the fovea and most
- but not all - of the ground truth macular region.

This network has very few parameters: each channel of the first layer is defined by a 3x3 convolu-
tional kernel and a bias term. In the following layers, each channel is defined by a 3x3x8 convolutional
kernel and an extra bias term (73 parameters). Finally, the output layer is defined by a 3x3x8 convo-
lutional kernel and a bias term. The network has a total 8329 parameters, which is extremely few (in
comparison, AlexNet has 60 million parameters).
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(a)

(b) (c)

Figure 7.2: The green channel of the original color image (a) has been cropped around the region of
interest, zero-padded on top and bottom so as not to introduce distortion, then resized to 128x128
(b). Image (c) is the ground truth used to train our convolutional networks.

The network was initialized with truncated normal distributions with standard deviation σ = 0.1
for the convolution weights and zeros for the biases. The objective function we minimized was the L2

distance between images. The gradient was estimated at each step on a mini-batch of 8 images, using
the RMSProp optimizer [HSS12]. The network was trained for 4000 epochs.

7.4.3 Network Visualization

It is notoriously hard to interpret neural networks; however, for convolutional networks like this one,
we can look at the learned filters [ZF14] or at the activations at a given layer. In this particuliar case,
the convolutional filters are 3x3 (for the first layer) or 3x3x8, making the former quite uninformative
and the latter hard to visualize. We can, however, look at the activations after each layer: for the
input image in Fig. 7.4, we show in Figures 7.5, 7.6, 7.7, 7.8 the activations of layers 1,5,10 and 15,
respectively.

Most operations of the first layer look like basic oriented edge detectors, or in the case of the
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Figure 7.3: Illustration of the network’s receptive field. The output value of the pixel at the center of
the green cross depends on the input image’s values in the red square.

Figure 7.4: Input image

first one, possibly approximately a mean filter. The activations of the following layers are harder to
interpret, since they result from a succession of nonlinear operations, but as soon as the fifth layer,
we can see that part of the macula contrasts with its surroundings, either as a bright spot over a dark
background, or as a dark structure surrounded by a lighter zone. With this particular input image, we
could devise a simple post-processing algorithm applied to the fourth channel of the tenth layer and
obtain the fovea’s localization. On the fifteenth layer, we can clearly see the macula’s segmentation
on most channels, although the fifth one seems to be uninformative in this case. The major veins,
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Figure 7.5: Activations of the first layer. The green square on the top left of the images represents
the size of the receptive field at this layer.

Figure 7.6: Activations of the fifth layer. The green square on the top left of the images represents
the size of the receptive field at this layer.

which are the darkest structures of the original image, along with the macula, can still be seen as well.
The output of the network is shown in Fig. 7.9: the non-zero values are in the right place but the
segmentation is clearly not perfect.
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Figure 7.7: Activations of the tenth layer. The green square on the top left of the images represents
the size of the receptive field at this layer.

Figure 7.8: Activations of the fifteenth layer (second-to-last). The green square on the top left of the
images represents the size of the receptive field at this layer.

7.4.4 Network Output Post-processing

Given an input 128x128 gray-scale image, the network outputs a 128x128 nonnegative array. A rectified
linear unit is used in the output layer. We did also experiment using a sigmoid output activation,
along with logistic loss, but it turned out that network convergence was harder to reach, and the
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Figure 7.9: Output of the network.

obtained performance was lower.

Based on an output image, we have to answer the question ”Is the macula visible in the original
image ?”. Since the ground truth image for a positive instance is a binary disk of radius 10, this is
equivalent to answering the (ill-defined) question ”Does the output image look like a binary disk of
radius 10 ?”.

The strategy we implemented goes as follows: the output image is thresholded above a value t in
order to obtain a binary image. Then, only connected components of area greater than a value A are
kept. If there is exactly one component remaining, we assume that the macula is visible, and the fovea
can be located as the centroid of this component. If there is zero component of large enough area, we
assume that the macula is not visible. If there are two or more components with area greater than A,
this means that the algorithm is behaving oddly, and since our application is sensitivity-driven (it is
important to correctly identify ungradable images), as a measure of precaution, we also consider that
the macula is not clearly visible. Examples of network outputs and illustration of our post-processing
are given in figure 7.10.

7.5 Results

7.5.1 Macula Visibility Estimation

Parameter Influence

There are two parameters to be set: the threshold t and minimum area A. In order to pick the
best values for these parameters, we looked at specificity (the fraction of images where the macula
was annotated as visible correctly classified), sensitivity (the fraction of images where nothing was
annotated classified as such) and overall accuracy on the validation set. Doing so on the training
set could lead to overfitting, while doing so on the test set would give a biased estimation of the
algorithm’s ability to generalize.

The specificity, sensitivity and accuracy curves are shown in Fig. 7.11. Unsurprisingly, the higher
the threshold, the higher the sensitivity, but even taking t = 0.5 and A = 1 (i.e. demanding there
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.10: (a-b): input images, (c-d): corresponding network outputs, (e-f): thresholded network
outputs (t = 0.9), (g-h): connected components of area greater than A = 200 pixels. These images
belong to the test set and were chosen specifically because more than one component remained after
thresholding, but this actually happens in only about 5% cases.

is only one connected component after thresholding), almost 97% images where macula visibility was
considered insufficient by human readers are correctly classified. The main observation is that for
A ≤ 200, the choice of parameters actually has very little influence on the results. For the three
considered thresholds, there is a steep fall when setting A above a certain value: in order to maximize
sensitivity while keeping a certain margin to this critical value, we chose to set t = 0.9 and A = 200,
which leads to a reasonable tradeoff, with 99% sensitivity, 95.3% specificity and 97.1% overall accuracy.
We use those parameters in the following.
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(a) Algorithm specificity on the validation dataset
plotted against A for different threshold values.

(b) Algorithm sensitivity on the validation dataset
plotted against A for different threshold values.

(c) Algorithm accuracy on the validation dataset
plotted against A for different threshold values.

Figure 7.11: Influence of the threshold t and the minimum area A on the classification performance.

Test Set Results

Accuracy on the test set reaches 96.4%. In comparison, the agreement ratio between the two annotators
before a consensus was made was only of 89.9%. Sensitivity reaches 98.7%; in other words, out of 304
images where the macula was not annotated in the ground truth, the algorithm makes 4 mistakes. The
images on which these errors are made can be seen in Fig. 7.12. As can be seen on the figure, these
correspond, if not to annotating errors, at least to borderline cases. In two out of the four images, the
small vessels around the macula can even be distinguished.

Specificity reaches 94.2%: out of 310 images where the macula was annotated as clearly visible,
the algorithm correctly classifies 292.

Performance on Pathological Images

Although we obtain a very good performance on our test set in terms of accuracy, sensitivity and
specificity, it is interesting to look more specifically at images where automatic macula detection
would be expected to be hard. Figures 7.13, 7.14, 7.15, 7.16 show examples of network outputs for
images where lesions are present. Although there is one case of unsuccessful detection, we can see that
the network is able to detect the macula even when there are hemorrhages or exudates in the macular
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Figure 7.12: The four test set images for which the algorithm incorrectly predicts that the zone of the
macula is of good quality.

zone.

U-Net Comparison

U-Net [RFB15] is a popular network for segmentation and has been successfully used in a variety of
applications. It makes perfect sense trying to apply it to our problem, however we have found it to
slightly underperform compared to our network, in terms of both specificity and sensitivity. Several
configurations of U-Net were tested. The best one had 4 filters in the initial convolutional layer, and
a gaussian noise layer at the end. On the test set, this network incorrectly predicts that the macula
is not visible on 19 images, which is similar to our network (18 false negatives). The main drawback
is that it has more than twice as many false positives (9 versus 4). It also has many more parameters
(122,953) than our network. As for fovea localization, which is detailed in the next section, the average
error for U-Net is 1.22 pixels, which is again more than our network’s error (0.95 pixel).
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(a) (b)

Figure 7.13: Successful detection despite hemorrhages in the macular region

(a) (b)

Figure 7.14: Partial detection despite exudates near the macula

7.5.2 Fovea Localization Results

Although the main task our algorithm addresses is assessing the quality of the macula region, it can
also be used to segment the macula, or localize the fovea, as mentioned in section 7.4.4. In this section,
we evaluate the performance of our algorithm for localizing the fovea, on the database we extracted
from the e-ophtha database and on the ARIA database.

e-ophtha Database

As mentioned in the previous section, if we use t = 0.9 and A = 200, our algorithm predicts 292
images where the macula is visible, out of the 310 images where it was annotated. By lowering either
parameter or defining another strategy, we could predict a location for the macula for more images,
but it would make little sense in this context trying to localize it if we are not even confident it is in
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(a) (b)

Figure 7.15: Successful detection despite exudates near the macula

(a) (b)

Figure 7.16: Detection failure. In addition to exudates and hemorrhages near the macula, there seems
to be a reflexion in the center of the image.

the FOV. In order to remain consistent, we leave the parameters unchanged and present localization
results only on the images identified by our algorithm.

As previously mentioned in section 7.4.4, we use the centroid of the (only) connected component
of the thresholded output image as our estimation for fovea location. The mean of the two annotators’
positions is used as ground truth. The histogram of distances to the ground truth is shown in Fig.
7.17.

The average test error is 0.95 pixel, which is less than the average distance between the annotators.
One pixel in 128x128 resolution represents 0.075 mm. The largest test error is 4.85 pixels, or 0.33 mm;
it has to be noted that, since the macula was considered to be 10 pixels in radius, all of the predicted
values lie within the macula.
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Figure 7.17: Histogram of distances to ground truth on the test base (in pixels after resizing to
128x128).

ARIA Database C

The ARIA database C contains 61 central eye fundus images with corresponding ground truth anno-
tations for optic disk and fovea. Our network, with the same post-processing parameters as before,
predicts a position for 46 of them, with a mean error of 1.4 pixel (0.1 mm) and a maximum error of 6
pixels (0.44 mm). The average error is again comparable to the average distance between two human
readers (1.25 pixels, as mentioned in Sec. 7.3) and the maximum error is about half the macula’s
radius.

The 15 remaining images correspond to poor quality acquisitions; some examples can be seen in
Fig. 7.18. Although it is quite easy for an experimented human observer to approximately locate
the fovea region, the macular regions of these images are clearly of limited to no interest for an
ophthalmologist.

7.6 Discussion

Guidelines for teleophthalmology recommend taking two photographs per eye, one centered on the
macula, the other centered on the optic disk. A mandatory condition for a couple of images to be
gradable by an ophthalmologist is that the macula is clearly visible in at least one of the two images.
In practice, a significant proportion of examinations - about 10% for the OPHDIAT network - does
not meet this required quality criterion. The algorithm detailed in the present work could significantly
reduce the fraction of ungradable central images. Since the algorithm also provides the location of
the macula, it can also be used in order to assert that a central image is indeed well centered around
it. It can also be used as part of an automated diagnosis algorithm, for which macula segmentation is
often a crucial step [Zha14].

Eye fundus photographs so far are often made by healthcare professionals, using tabletop non-
mydriatic cameras; however, recent years have seen the emergence of portable, handheld retinographs,
cheaper and allowing for screening in remote locations. These generally produce images of lower
quality than tabletop retinographs. The algorithm described in the present work is very lightweight:
it requires very little memory for storage, is very fast, and consumes little energy, compared to the
much larger state-of-the-art networks. It can easily be integrated in an embedded device, telling in
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Figure 7.18: Examples of images from the ARIA database for which the network does not return a
fovea position.

real time the operator whether another acquisition should be made.

7.7 Conclusion

In this chapter, we use a fully-convolutional network to segment the macular region, in order to assess
the quality of eye fundus images. Our algorithm is also able to provide fovea localization, within 0.1
mm of human performance in average, in the case image quality is deemed sufficient.

Although macula visibility is not the only requirement for a retinal image to be gradable for DR,
the method we propose is able to significantly reduce the number of ungradable images sent to medical
experts in teleophthalmology networks, saving both patient and physician time, when the number of
ophthalmologists is insufficient for current needs and the diabetic population is expected to grow much
faster than that of the profession. It can also be combined with other quality criteria, such as contrast
and sharpness, to build a complete quality assessment system.
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Conclusion

Cette thèse s’articule autour de la localisation d’objet et de la segmentation. Il s’agit d’une tâche
courante en traitement d’image, mais il n’existe pas de méthode universelle ; ces dernières années, les
réseaux de neurones convolutionnels sont devenus l’outil le plus populaire pour ces tâches, et dans de
nombreux cas, ils ont obtenu de meilleures performances que les techniques précédentes de l’état de
l’art. Cependant, ces méthodes manquent d’interprétabilité et nécessitent des bases de données de
grande taille pour l’apprentissage. Dans ce manuscrit, nous avons approché de problème de détection
d’objet de plusieurs manières, en fonction du nombre de données annotées disponibles et des contraintes
des projets, comme l’interprétabilité ou le besoin de caractériser les objets une fois segmentés.

Dans la première partie, consacrée au projet ATHENA, l’algorithme de détection de défauts que
nous avons créé est dans l’immédiat l’outil le plus utile pour les utilisateurs finaux, mais il pourrait
s’avérer inutilement complexe si le processus d’acquisition des images était amélioré. Les images sur
lesquelles nous avons travaillé au début du projet étaient souvent bruitées ou peu contrastées, et
une grande partie de l’information était perdue à cause de la compression JPEG — qui par ailleurs
causait des artefacts de saturation. Sur les acquisitions plus tardives, sauvegardées en TIFF 16 bits,
la différence de niveaux de gris entre les défauts et le bruit de fond était tellement importante qu’un
simple seuillage au dessus et en dessous de valeurs bien choisies serait sans doute suffisante pour
obtenir une bonne segmentation.

Cependant, même avec une acquisition idéale, du bruit subsisterait, à cause de la rugosité, de vari-
ations locales du facteur d’absorption ou de l’émissivité, ou à cause de rayures superficielles : notre
estimation du niveau de bruit global reste pertinente. La méthode de seuillages à 3σ successifs que
nous proposons avant d’estimer l’écart-type pourrait s’avérer utile dans d’autres applications, bien
qu’une analyse mathématique plus poussée serait sans doute nécessaire (nous avons prouvé que la
procédure converge, mais pour certaines distributions, la valeur finale pourrait ne pas être une es-
timation pertinente du niveau de bruit). Dans le cas particulier de l’acquisition par thermographie
aller-retour, nous avons aussi donné des définitions mathématiques de la symétrie et du rapport sig-
nal/bruit des défauts, valeurs jusqu’ici dépendantes de l’opérateur, ce qui harmonise les rapports de
détection.

Dans la deuxième partie, consacrée au projet RetinOptic, nous avons utilisé plusieurs types de
réseaux de neurones convolutionnels afin de détecter la macula sur des images de fond d’œil. Il s’avère
qu’un aspect important du problème consiste à trouver une bonne manière de poser le problème. La
première approche a consisté à séparer la tâche en deux : une tâche de classification pour déterminer
si la macula était présente, et une tâche de régression pour la localiser. Bien que nous obtenions une
bonne localisation dans la majorité des cas avec cette stratégie, il est difficile de détecter d’éventuelles
erreurs. Le but consistait à proposer un algorithme pouvant être intégré dans un rétinographe portable
: en estimant la qualité de l’image au moment de l’acquisition, le système peut alerter l’opérateur si la
qualité est insuffisante ; en localisant la fovéa, il permet de s’assurer qu’au moins une image par œil est
correctement centrée sur la macula. En reformulant notre tâche comme un problème de segmentation,
nous avons pu utiliser des réseaux complètement convolutionnels, lesquels fournissent à la fois un score
de qualité et la localisation demandée. De plus, ces réseaux ont très peu de paramètres et sont très
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rapides, ce qui les rend idéaux pour une intégration dans des systèmes embarqués.
Ces dernières années, de nombreux articles de recherche se sont concentrés sur le diagnostic au-

tomatique de la rétinopathie diabétique, avec des résultats prometteurs ; cependant, il reste plusieurs
limitations : il existe peu de bases de données publiques, et les plus populaires ne contiennent que des
images centrales de bonne qualité. L’idée d’utiliser à terme ces algorithmes, non pas pour aider, mais
pour remplacer les médecins, soulève également des questions légales et morales qui sortent du cadre
de cette thèse. Dans l’immédiat, le défaut le plus problématique concerne la gestion des pathologies
graves rares. Il est sans doute possible d’obtenir des performances proches de l’humain pour détecter
les maladies les plus communes (comme la rétinopathie diabétique, mais aussi la dégénérescence mac-
ulaire liée à l’âge ou l’œdème papillaire), mais les cas de mélanome ou d’autres conditions rares sont
trop peu présents dans les bases de données, et un mauvais diganostic dû à un faux positif a des
conséquences sévères.

L’évaluation de la qualité des images que nous proposons n’est pas un outil diagnostic, mais aide
les opthalmologues de manière indirecte. Lorsqu’une acquisition est jugée ininterprétable, le patient
doit consulter un spécialiste, ce qui annule l’intérêt d’un réseau de dépistage ; le fait de s’assurer de la
qualité des images réduit le nombre de consultations inutiles. Notre solution peut être améliorée en y
intégrant d’autres critères de qualité, comme l’estimation du flou ou du contraste, ou d’autres critères
spécifiques aux images rétiniennes. Un avantage de se concentrer sur la macula dans ce manuscrit est
le fait que l’annotation peut être faite relativement rapidement et par des non experts. Cependant,
une base de données comprenant à la fois des images centrales et nasales, dont la qualité serait jugée
par des ophtalmologues, serait utile.

Bien que n’étant pas directement reliés à la segmentation, les décompositions en pics, les nouvelles
valeurs d’extinction et les opérateurs présentés dans ce manuscrit ouvrent de nouvelles possibilités.
En particulier, puisque ces nouveaux opérateurs sont connectés, ils peuvent être utilisés préalablement
à un algorithme de segmentation sans créer de nouveaux contours. Le choix des marqueurs dans
plusieurs algorithmes de segmentation de type ligne de partage de eaux ou waterpixels, est souvent
basée sur les valeurs d’extinction des minima du gradient ; les nouveaux attributs que nous avons
définis peuvent servir de critères de sélection alternatifs.



Conclusion

This thesis is centered around object localization and segmentation. This is a common task in image
processing, but there is no universal algorithm or method for it; in recent years, convolutional neural
networks have become, by far, the most popular tool for these tasks as well as for other image processing
problems, and in many cases, they have been shown to outperform former state-of-the-art techniques.
However, these methods have the main drawbacks of lacking interpretability, and of requiring large
enough datasets for training. In the present work, we tackled this problem of object detection in
different ways, depending both on the availability of annotated data and specific requirements of
real-life applied problems, like interpretability or the need for further characterization of segmented
objects.

In the first part, concerning the ATHENA project, the automatic defect detection algorithm we
devised is the most immediately useful tool for end users of this technology, but it might actually
become unnecessarily complex if the acquisition process is improved. The images we worked with
at the beginning of the project were often noisy or poorly contrasted, and a lot of information was
lost when saving them in JPEG format — which additionally caused saturation artifacts. On later
acquisitions, saved in 16-bit TIFF, the difference in grayscale values between defects and background
noise was so huge that a simple thresholding over and under well-chosen values would likely be enough
to provide a good segmentation.

Even with an ideal acquisition technique, though, some noise is bound to remain, due to rugosity,
local variations in absorptance and emissivity, or superficial scratches: our global noise estimation
should remain relevant. The simple iterative 3σ thresholding method we propose prior to standard
deviation estimation could likewise be useful in a variety of applications, although it would benefit
from a more thorough mathematical analysis (we have proven that the procedure eventually reaches
convergence, but for some distributions, the estimated value could be meaningless). In the specific
case of the two-scan thermography acquisition, we also provided mathematical definitions of defect
symmetry and signal/noise ratio that were so far operator-dependent, which harmonizes detection
reports.

In the second part, concerning the RetinOptic project, we used several kinds of convolutional
neural networks for detecting the macula on eye fundus images. An important aspect of this problem,
it turns out, consists in finding a good way of formulating the problem. The first approach consisted
in splitting the problem in two: a classification task to determine if the macula was present, and
a regression task to locate it. Although we can achieve a good localization with this strategy in a
majority of cases, it is hard to detect possible mistakes, in either step. The aim was to propose an
algorithm to be integrated in a portable retinograph: by estimating image quality at the time of
acquisition, the system can warn the operator if the quality is insufficient, and by localizing the fovea,
it could also assess that there is at least one image per eye correctly centered on the macula. By
reformulating our task as a segmentation problem, we were able to use fully-convolutional networks,
which provide both a quality score and the desired localization. Additionally, these networks have
very few parameters and are very fast, making them ideal for integration in embedded systems.

In recent years, many research articles have focused on automated diagnosis of diabetic retinopathy,
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with promising results; however, there remain several limitations: there are few publicly available
databases for this task, and the most popular ones only contain central images of good quality. The
idea of eventually using these algorithms, not as an aid, but as a replacement for practicians, also raises
legal and moral issues that are beyond the scope of this thesis. An objective problematic drawback of
these methods, for now, is their handling of rare, severe cases. Obtaining close to human performance
for detecting the most common diseases (not only diabetic retinopathy, but also age-related macular
degeneration or papillar edema) is likely achievable, but instances of melanoma or other rare conditions
are too few, and a false negative has dire consequences.

The image quality evaluation we propose is not a diagnosis tool, but helps ophthalmologists in
an indirect way. When an acquisition is deemed ungradable, the patient has to be referred to a
physician, defeating the purpose of a screening network; assessing image quality reduces the number
of unnecessary appointments. Our solution can be improved by integrating other quality criteria,
either general, like blur estimation or contrast, or specific to retinal images. An advantage of focusing
on the macula in this work is that the annotation can be done relatively quickly and by non-experts.
However, a database containing both central and nasal images, with a ground truth quality provided
by ophthalmologists, would be a valuable resource.

Although not directly related to segmentation, the decompositions in peaks, novel extinction values
and operators introduced in this work open new possibilities. In particular, since these new operators
are connected, they can be applied before a segmentation algorithm without creating new contours.
The choice of markers in several segmentation algorithms, like watershed or waterpixels, is often based
on extinction values of the gradient’s minima; the new features we defined can be used as alternative
selection criteria.
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[Ala+20] Robin Alais, Petr Dokládal, Ali Erginay, Bruno Figliuzzi, and Etienne Decencière. “Fast
macula detection and application to retinal image quality assessment”. In: Biomedical
Signal Processing and Control 55 (2020), p. 101567.

[AlB+18] Baidaa Al-Bander, Waleed Al-Nuaimy, Bryan M. Williams, and Yalin Zheng. “Multiscale
sequential convolutional neural networks for simultaneous detection of fovea and optic
disc”. In: Biomedical Signal Processing and Control 40 (Feb. 2018), pp. 91–101. issn:
17468094. doi: 10.1016/j.bspc.2017.09.008.

[Ame12] American Diabetes Association. “Executive Summary: Standards of Medical Care in
Diabetes–2012”. In: Diabetes Care 35.Supplement 1 (Jan. 2012), S4–S10. issn: 0149-
5992, 1935-5548. doi: 10.2337/dc12-s004.

[AS03] Jesus Angulo and Jean Serra. “Automatic analysis of DNA microarray images using
mathematical morphology”. In: Bioinformatics 19.5 (Mar. 2003), pp. 553–562. issn:
1367-4803, 1460-2059. doi: 10.1093/bioinformatics/btg057.

[Beu01] Serge Beucher. “Geodesic reconstruction, saddle zones and hierarchical segmentation”.
In: Image Analysis & Stereology 20.2 (2001), pp. 137–141.

[Bou+08] Marie Carole Boucher, Gilles Desroches, Raul Garcia-Salinas, Amin Kherani, David
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[NAG09] Meindert Niemeijer, Michael D. Abràmoff, and Bram van Ginneken. “Fast detection of
the optic disc and fovea in color fundus photographs”. In: Medical Image Analysis 13.6
(Dec. 2009), pp. 859–870. issn: 13618415. doi: 10.1016/j.media.2009.08.003.

[Ogu+17] K. Ogurtsova, J.D. da Rocha Fernandes, Y. Huang, U. Linnenkamp, L. Guariguata, N.H.
Cho, D. Cavan, J.E. Shaw, and L.E. Makaroff. “IDF Diabetes Atlas: Global estimates for
the prevalence of diabetes for 2015 and 2040”. In: Diabetes Research and Clinical Practice
128 (June 2017), pp. 40–50. issn: 01688227. doi: 10.1016/j.diabres.2017.03.024.

[Pan+10] Baochuan Pang, Yi Zhang, Qianqing Chen, Zhifan Gao, Qinmu Peng, and Xinge You.
“Cell nucleus segmentation in color histopathological imagery using convolutional net-
works”. In: Chinese conference on pattern recognition. 2010, pp. 1–5.
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MOTS CLÉS

Segmentation d’images ; Thermographie ; Valeurs d’extinction ; Opérateurs morphologiques ; Réseaux de
neurones convolutionnels ; Imagerie rétinienne

RÉSUMÉ

Cette thèse traite de la détection et de la localisation d’objets, dans le contexte de deux projets : ATHENA et RetinOptic.
Ces dernières années, les réseaux de neurones convolutionnels sont devenus l’approche prédominante pour ces tâches;
cependant, ces techniques ont leurs inconvénients, et peuvent dans certains cas ne pas être appliquables. Lorsque peu
d’exemples sont disponibles, ou que l’interprétabilité du modèle est essentielle, des méthodes de traitement d’image plus
traditionnelles peuvent être plus adaptées. Dans ce manuscrit, plusieurs approches de détection sont décrites, selon la
disponibilité des données et les contraintes spécifiques des problèmes.
Dans la première partie, consacrée au projet ATHENA, le but est de détecter et caractériser des défauts sur des images
thermiques de pièces métalliques. La solution proposée, reposant sur l’analyse de certains extrema, nous permet de
fournir une segmentation des défauts, et des définitions rigoureuses des concepts de rapport signal/bruit ou de symétrie
du signal, jusqu’ici mal définis et dépendants de l’utilisateur.
Une analyse théorique plus détaillée des extrema est ensuite présentée, étendant la notion classique de valeurs d’ex-
tinctions. Nous introduisons et illustrons plusieurs nouvelles décompositions morphologiques, ainsi que de nouveaux
opérateurs morphologiques, et de nouveaux attributs des extrema.
Dans la seconde partie, consacrée au projet RetinOptic, l’objectif est de détecter et localiser la macula sur des images de
fond d’œil, à l’aide d’une solution suffisamment rapide et légère pour être intégrée à un système embarqué. Nous avons
constitué une base annotée de plus de 6000 images, et utilisé différents types de réseaux de convolution, correspondant
à différentes formulations de notre problème : classification, régression ou segmentation. Via un post-traitement de la
sortie de notre réseau de segmentation, nous fournissons un score de qualité de l’image reposant sur la visibilité de la
macula.
L’objectif d’un réseau de télémedecine est d’éviter les consultations médicales non nécessaires, dans un contexte où les
ophtalmologistes sont peu nombreux par rapport au nombre croissant de personnes diabétiques; en cas d’acquisition
ininterprétable, il s’agit d’un échec du réseau de télémédecine. Grâce à une vérification automatique de la qualité de
l’image telle que nous le proposons, l’opérateur peut être prévenu si l’acquisition doit être refaite. En limitant le nombre
d’examens ininterprétables, le nombre de consultations non nécessaires peut également être limité, améliorant l’efficacité
du système de dépistage.

ABSTRACT

This thesis is centered around object detection and localization, in the context of two projects: ATHENA and RetinOptic.
Over the past few years, convolutional neural networks have become the predominant approach for these tasks; however,
these techniques have their drawbacks, and may not be applicable, in certain cases. When few examples are available,
or when model interpretability is required, more traditional image processing methods may be better suited to the task. In
the present work, object detection is addressed in different ways, depending both on the availability of data, and problem-
specific requirements.
In the first part, concerning the ATHENA project, the aim is to detect and characterize defects on thermal images of
metallic pieces. The solution we propose, based on the analysis of certain extrema of interest, enables us to provide a
segmentation of defects, and proper definitions to the concepts of signal/noise ratio, or signal symmetry, which were so
far ill-defined and operator dependent.
A more thorough theoretical analysis of extrema is then presented, expanding on the classic notion of extinction values.
We introduce and illustrate several new morphological decompositions, as well as new morphological operators, and new
features of extrema.
In the second part, concerning the RetinOptic project, the aim is to detect and localize the macula on eye fundus images,
with a solution light and fast enough to be integrated in an embedded system. We constituted an annotated database of
more than 6000 images, and used several kinds of convolutional networks, corresponding to different ways of formulating
the problem, as a classification, regression, or segmentation task. By post-processing the output of our segmentation
network, we provide an image quality score based on the visibility of the macula.
The purpose of a telemedicine network is to avoid unnecessary medical appointments, in a context where ophthal-
mologists are few, compared to the growing number of diabetic people; that purpose is defeated if the acquisition is
uninterpretable. With an integrated image quality assessment like the one we propose, the operator can be told whether
the acquisition should be re-done. By limiting the number of uninterpretable examinations, the number of unnecessary
appointments can be limited as well, improving the efficiency of the screening network.

KEYWORDS

Image segmentation; Thermography; Extinction values; Morphological operators; Convolutional neural net-
works; Retinal imaging


