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Mécanique

Composition du jury :

Yann MONERIE
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permis de continuer ma formation jusqu’à mon dernier jour de doctorant.
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ma soutenance.
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Un grand merci à Benjamin de m’avoir intégré et accueilli dans la ”Dream team” et pour
l’organisation parfaite de chaque petit ou grand événement, Romain de m’avoir montré le
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cadeau de thèse.
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Chapter 1

Introduction

1 Framework

This Ph.D. work is realized in the framework of a collaboration between the Centre des
Matériaux (CdM) of the École Nationale Supérieure des Mines de Paris, Onera – the french
aerospace lab, and Transvalor’s Z–set development team.

The numerical developments of this work are implemented in the finite element software
Z–set, dedicated to general structural analysis, with a particular emphasis on advanced
material representation. The software is composed of different modules that allow performing
pre/post-processing operations in addition to the finite element analysis of a structure.

2 Industrial context

Predicting the development of damage and tearing is a major challenge when trying to prevent
failure. This is particularly important to prevent crack propagation in critical parts of an
aircraft or a pipeline, or to control the propagation of cracks, for example, in the case of the
metal part forming. More broadly, the control of damage phenomena is part of most design
phases, when a technical and economic trade-off between structural integrity and efficiency
is required.

These predictions increasingly rely on numerical simulation tools. These numerical
simulations are generally based on the finite element method in the context of fracture
mechanics. In particular, these methods are essential in the case of complex industrial parts
for which full-scale experiments are too expensive or impractical.

Developing a simulation tool capable of predicting the structural failure of complex
industrial parts is one of the objectives of Transvalor to broaden the use of numerical
simulations to structural failure, and thus propose a complete simulation device ready to
be used by technicians and engineers.

Nowadays, the modeling and numerical simulation of ductile fracture for industrial
structures remain complex due to finite deformations, softening phenomena, and the need
for more accurate characterization of materials. In this industrial context, this thesis aims at
producing a framework for the simulation of ductile fracture compatible with actual industrial
simulations.

3 Scientific context

Several approaches exist in the literature to describe the development of damage. The first
approach, referred to as “global approach”, is based on macroscopic parameters such as the
energy release rate (G) or stress intensity factors (KI). Additional parameters describing
the level of constraint at the crack tip, such as the T and Q parameters, can also be used
[O’Dowd and Shih, 1991; Thaulow et al., 2004]. The global approaches introduce a reduced
number of parameters, which explains their popularity for industrial applications. However,
they have some limitations: (i) they are limited to cases where an existing crack is present
and are unable to predict crack initiation, (ii) they are limited to cases where plasticity is
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limited, (iii) material parameters determined using this approach (e.g. toughness (KJ ) or J—
∆a curves) may strongly depend on the geometry of the investigated test specimens [Sumpter
and Forbes, 1992; Sumpter, 1993; O’Dowd et al., 1995] so that transferability to structures
remains difficult, (iv) the approach does not explicitely accounts for physical degradation
mechanisms.

A second approach, referred to as “local approach to failure”, is based on a
micromechanical analysis of the material degradation. In the case of ductile failure of
metals, micrographic investigations have evidenced different stages of damage [Garrison
and Moody, 1987b]: chronologically, the nucleation of voids (creation of porosity), the
growth of voids, and the coalescence of voids. Different models, based on micromechanical
consideration [Gurson, 1977; Tvergaard and Needleman, 1984; Rousselier, 1987] or purely
phenomenological [Lemaitre, 1985], are already available in the literature. All these damage
models share a common characteristic nevertheless: softening or negative strain hardening.
Without special treatment, this behavior leads to a mathematically ill-posed and non-physical
problem since the dissipated energy at failure cannot be determined [Benallal et al., 1993]. In
practice, this leads to pathologically dependent results on spatial discretization. The modeling
of the fracture phenomena must be enriched by coupling the responses between neighboring
material points; this is called nonlocal modeling [Pijaudier-Cabot and Bazant, 1987; Peerlings
et al., 1996; Lorentz and Andrieux, 1999; Forest, 2009; Miehe et al., 2010]. The main
advantage of continuous damage models based on the local approach is that they allow
for crack initiation without the need to introduce a pre-crack, unlike the global approach.
However, this continuous description of fracture is only valid until the initiation of a crack.
After crack initiation, the continuous model cannot represent displacement jumps across the
crack.

A third approach, called the continuous–discontinuous approach to failure, consists of
using a continuous damage model up to crack initiation. Then, when a zone is sufficiently
damaged, a discrete crack representation is introduced into the model to represent the
displacement jumps across the crack lips accurately. Crack propagation is represented
similarly. In practice, this approach requires the choices of several elements. How to
represent the crack? Where to represent the crack? When to switch from a continuous
representation of the crack (smeared manner) to a discrete representation of the crack? A
multitude of combinations is then possible, giving rise to as many different procedures.

4 Objectives

In this work, this third approach is chosen to simulate ductile fracture. The main objective
of this work is to develop a framework for the continuous–discontinuous approach, based on
a micromechanical model adapted to finite strains for the continuous part and on remeshing
techniques for the discontinuous part. The developed approach must be numerically robust
and efficient. Its applicability is validated by making comparisons between simulations and
experimental tests.

5 Structure

This work is structured as follows:
In chapter 2, a review of the literature on continuous damage models and

micromechanical models for ductile fracture is first presented. The localization problem,
which is the major drawback of these coupled damage models in their local form, is
explained and then illustrated by a simulation using the local GTN model. At the end
of this first part, the GTN model is chosen as the damage model to be used for this
work. Then, the regularization approaches of the damage models are presented with
their strengths and weaknesses. After this, the implicit gradient method is chosen as the
regularization method for the GTN model. Finally, the different elements of damage–to–
crack transition approaches are detailed. The proposed continuous–discontinuous approach
based on remeshing techniques is chosen to simulate ductile failure. At the end of the
first chapter, the framework for the simulation of ductile fracture is detailed. The existing
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components of the framework are presented, and the components that have been developed
during this work are associated with reference to the corresponding chapter detailing them.

In chapter 2, a continuous nonlocal damage model based on the implicit gradient
methodology is developed. The model uses two characteristic lengths in order to regularize
each damage mechanism independently: (i) growth of primary voids, (ii) nucleation of
secondary voids on strengthening particles. The model is written within a finite strain
framework, with the updated Lagrangian formulation in order to be compatible with the
chosen remeshing strategy. The implementations of the nonlocal finite element and the GTN
damage model are detailed. A detailed mesh convergence study is conducted to verify mesh
insensitivity to size and orientation, which is essential in remeshing. In addition, with a
convergence study on the localization bandwidth, a relationship between the characteristic
length and the localization bandwidth is identified. This relationship is used in order to
determine the minimal element size to achieve mesh convergence. At the end of this chapter,
applications to cup–cone and slant failure are presented using the developed model. The
effect of the specimen size on the crack paths is demonstrated.

In chapter 3, the continuous–discontinuous approach is presented with a pragmatic
remeshing strategy to optimize mesh size and, therefore, computation time. At first,
new components to improve the simulation of ductile crack propagation using 3D meshes
are developed. In particular, a novel crack initiation algorithm is developed in order to
initiate correct shaped cracks. In addition, a new criterion for the continuous–discontinuous
transition is developed in order to determine the crack increment size to be inserted. The
problem of the deterioration of the convergence rate after remeshing is addressed, and
a reequilibrium method is then proposed to overcome this issue. The efficiency of the
developed continuous–discontinuous approach is tested with respect to spatial discretization
and time discretization. Finally, applications using the developed method using different 2D
and 3D meshes of specimens used in experimental tests in the literature are presented.

In chapter 4, the main objective is to evaluate the predictive capability of the proposed
approach. For that purpose, an experimental database from a previous thesis [Davaze, 2019]
is used to perform comparisons between simulations and experimental tests. At first, the
material of the experimental database is briefly recalled. Then, the constitutive model is
adapted in order to reproduce the nonlinear phenomena observed in the experiments for quasi-
static loading. The nonlocal framework with two characteristic lengths from chapter 2 is used.
Finally, simulations of the experimental tests using the developed continuous–discontinuous
approach are compared to the experimental result. A good general agreement is found.

Finally, chapter 5 summarizes this work and proposes some avenues for future
research.
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est expliqué puis illustré par une simulation sur le modèle local GTN. A la fin de cette
première partie, le modèle GTN est choisi comme modèle de dommage à utiliser pour ce
travail. Ensuite, les approches de régularisation des modèles de dommages sont exposées
avec leurs forces et faiblesses. Enfin, la méthode du gradient implicite est choisie comme
méthode de régularisation à utiliser pour le modèle GTN. L’approche de transition entre
l’endommagement et la fissuration est présentée et chaque composant de cette méthode est
détaillé. A la fin de cette section, une approche continue-discontinue basée sur des techniques
de remaillage est choisie pour simuler la rupture ductile. À la fin du premier chapitre, un cadre
pour la simulation de la rupture ductile est développé, les composants existants du cadre sont
présentés, et les composants qui doivent être développés sont renvoyés au chapitre qui les
détaille.

1 Ductile failure

1.1 Ductility and ductile fracture
Materials can be classified according to their ductile or brittle behavior: generally ceramics,
glasses, concretes and composites are grouped in the category of brittle materials category
while metals and polymers belong to the category of ductile materials. This classification is
not absolute: at high temperatures a material can tolerate higher deformations and is thus
more ductile. At very low temperatures metals (such as ferritic steels) or polymers can
become brittle. Other factors can affect the ductility of a material such as corrosion and
irradiation.

In this work, the main focus is ductile fracture, which is a mode of material failure that
occurs generally at high strain levels. The fracture surface is characterize by the presence
of dimples ; inside these dimples second-phase particles or inclusions are often observed
[Garrison and Moody, 1987a].

1.2 Mechanisms of ductile failure
The micrographic analysis of metals and the observation of the surface or of the bulk of the
deformed material containing inclusions has led to identify the process of ductile failure as a
three stages process [Besson, 2009]:

1. Voids nucleate at inclusion and second-phase particles by cohesion from the metallic
matrix or by fracture of these inclusion. Voids may also preexist in the material,

2. Due to large plastic strain and triaxial stresses, voids expand and their shape is
determined by material properties and test conditions,

3. The final step of the three stage process of ductile fracture is coalescence. During this
stage, large enough voids link together, either by internal necking of the ligament or by
void sheeting.

In general, the ductile fracture process is accompanied by large plastic deformations. It is
therefore mandatory, in the numerical simulation of this process by the finite element method
(FEM), to use a large deformation framework.

1.3 Continuum damage models
Continuum damage model aim to characterize, represent and model at the macroscopic scale
the effects of distributed defects and their growth on the material behavior. In order to model
the evolution of defects, a damage variable, generally called D as described in the work of
[Kachanov, 1958], is introduced. In figure 2.1, a Representative Volume Element (RVE)
of section S on which is applied a normal load F is illustrated: where the stress in the
undamaged volume is σ = F

S
. It can be observed that the effective area of the RVE subjected

to uniaxial tension is S − SD, where SD represents the defects area in the considered plane.
The damage variable D is defined as:

D = SD
S

(2.1)
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Figure 2.1: Cross section of a damaged material

For the undamaged material SD = 0 which given then D = 0. As the damage is related to
the growth of defects, D evolves to its critical value, usually in literature equal to 1, which
corresponds to a fully damaged material SD = S. Thus, it is convenient to introduce the
effective stress σ̃ instead of the uniaxial stress σ = F

S
:

σ̃ = F

S − SD
= F/S

1− S/SD
= σ

1−D > σ (2.2)

The strain equivalent principle ε̃ = ε as introduced in [Lemaitre and Chaboche, 1985]:

σ

Ẽ
= σ̃

E
(2.3)

Where Ẽ = (1−D)Eis the effective stiffness. This effective stiffness is used numerically to
describe the loss of load crying capacity due to damage.

The continuum damage models are mostly defined in the framework of thermodynamic
of irreversible processes. In this framwork, state variable are introduced to define the
thermodynamic state of the RVE. These variables are split into ”measurable” state or external
variables (as total strain tensor ε and temperature T ), and internal state variables that are not
directly ”measurable” (as the plastic strain p, damage D, ...).

For each stat variable an thermodynamic force is associated: σ is associated to the elastic
strain ε, the hardening–law radius R is associated to the cumulative plastic strain p and the
elastic release rate Y is associated with the damage variable D. Then, to link these force to
the state variable, two states function are defined:

1. The free energy density per unit volume ψ which is expressed as a function of the state
variables. The function ψ is divided in case of an elastoplastic material wit damage,
into an elastic and plastic contributions as:

ψ(εe, D, p) = ψe(εe, D) + ψp(p) (2.4)

where εe is the elastic strain tensor.

The thermodynamic forces are then obtain by differentiating ψ with respect to the stat
variables:

σ = ∂ψe
∂ε

, R = ∂ψp
∂p

, Y = ∂ψe
∂D

(2.5)

2. The dissipation potential D that considers the contribution plasticity and damage
irreversible processes. In case of standard generalized elastoplastic materials, the
dissipation potential is expressed using the yield function Φ(σ) and the damage
dissipation potential FD as:

D = Φ(σ, R) + FD(Y,D) (2.6)
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The evolution of the internal state variables is then obtained by differentiating D with
respect to thermodynamic forces:

ε̇p = ε− εe = λ̇
∂Φ
∂σ

, ṗ = −λ̇ ∂Φ
∂R

, Ḋ = −λ̇∂FD
∂Y

(2.7)

where λ is the plastic multiplier.

Damage evolution depends of the choice of the damage potential FD. The most used
potential is the one introduced in [Lemaitre, 1996]:

FD(Y ) = S0

(b+ 1)(1−D)

(−Y
S0

)b+1
(2.8)

However, other formulations have been presented in literature:

1. [Tai and Yang, 1986] :

FD(Y ) = S0D

2

(−Y
S0

)2
(2.9)

2. [Chandrakanth and Pandey, 1995] :

FD(Y ) = 1
2

S0

(Dp)α/n
(−Y
S0

)2
(2.10)

3. [Bonora, 1997] :

FD(Y ) = 1
2
S0(Dc −D)(α−1)/α

(1−D)p(2+n)/n

(−Y
S0

)2
(2.11)

4. [Bouchard et al., 2010]

FD(Y ) = S0

b+ 1
1

1−D

(−Y
S0

)b+1 1
pα

(2.12)

where S0, Dc, b, α and n are damage materials parameters. The damage evolution Ḋ for each
potential can be deduced using eq.2.7.

1.4 Micromechanical models for ductile failure
Another type of models exist in literature called the micromechanical damage models. These
type of models represent ductile failure based the direct description of the ductile damage
process at micro scale: the nucleation, growth and coalescence of cavities. A brief review of
these models are presented in this section.

1.4.1 Rice & Tracey Model

The first attempts to model voids growth are the theoretical analysis by McClintock
[Mc Clintock, 1968] and Rice and Tracey [Rice and Tracey, 1969]. The first model by
McClintock computes the growth of cylindrical voids in a plastic material. The second model
by Rice & Tracey studies the growth of a spherical void in a perfectly plastic material. From
both analysis, quantitatively similar formulations of voids growth are found:

Ṙ

R
=
(
A+B exp

(
C
σ∞m
σ∞eq

))
ε̇∞eq (2.13)

where R is the radius of the cavity, ε̇∞eq is the von Mises equivalent strain imposed at a
boundary considered infinitively far from the void. σ∞m and σ∞eq are the remote mean and
von Mises stresses. A,B, etC are the constants of the model. A is close to one and depend
of loading direction, C equal to 1.5 in the analysis of Rice & Tracey, and to

√
3(1 − κ) in

the McClintock model (κ as the hardening coefficient). At last B is a numerical coefficient
not so well defined in their analyses, for Rice & Tracey is equal to 0.283 and

√
3

4 (1 − κ) in
McClintock analysis.
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To adapt the Rice&Tracey model to the elastoplastic case, [Mudry, 1982] replaces ε̇∞eq by
the rate of the equivalent plastic strain (ṗ∞). To account for the hardening of the metallic
matrix, σ0 is substituted by the flow stress σF which is a function of p∞ and which is equal
to the von Mises stress:

Ṙ

R
= B exp

(
C
σm
σeq

)
ṗ∞ (2.14)

After integrating the expression in 2.14:

log
(
R

R0

)
=
∫ p

pc

B exp
(
C
σm
σeq

)
dp (2.15)

where R0 is the initial void radius and pc is the critical strain at which nucleation from
particles starts. Using the model define in 2.15, a fracture criterion can be derived: the
fracture of the material begins if the value of R/R0 exceeds a critical value R/R0|c. This
value is supposed to be a material property.

The major finding of this model is that the void growth process is a function that depends
exponentially on the stress triaxiality which is the third of the trace of the stress tensor
(1

3 trace(σ)) divided by the equivalent von Mises stress (σeq).
The Rice and Tracey model and its variants can easily be implemented to post–process

FEM computations to evaluate the damage state in a structure. This approach was generalized
by introducing a damage indicator D. Its evolution can be expressed in a generic manner as
(see [Defaisse et al., 2018]):

Ḋ = FUNCTION(stress state, p)ṗ (2.16)

In particular the effect of the third invariant of the stress tensor (i.e. the Lode parameter) is
nowadays accounted for [Bai and Wierzbicki, 2015]. Although this model type is still used in
computations of ductile damage to this day, it should be restricted only to preliminary studies
or to model failure initiation only (preferably in uncracked structures). This is because this
type of model lacks the ability to describe the interaction between voids and the effect of void
growth (i.e. softening) on the mechanical behavior of the material.

1.4.2 The Gurson model

A second analytical model was introduced by [Gurson, 1977]. This model is a result of an
upper bound analysis of a perfectly plastic finite sphere (matrix) containing a spherical void.
Damage is represented in this model by the porosity (f ) which is the ratio of void volume
to total volume. The Gurson analysis leads to the definition of a yield plastic surface that
depends on the macroscopic stress and the porosity:

Φ =
σ2
eq

σ2
0

+ 2f cosh
(3

2
σm
σ0

)
− 1− f 2 (2.17)

Where σm is the mean stress, σ0 is the yield stress For an undamaged material without
porosity, the von Mises criterion is retrieved. Failure of the material occurs when the stress
tensor is null (i.e no force transmission by the material). In the classical Gurson model,
complete failure occurs when the porosity f is equal to 1, meaning the material consists only
of voids! The Gurson model has been modified in order to obtain a more realistic failure
condition.

The evolution law of porosity can be deduced from volume conservation, with a constant
matrix volume:

f = V − Vm
V

⇔ ḟ = Vm
V

V̇

V
= (1− f)trace(ε̇p) , V̇m = 0 (2.18)

where Vm is the volume of the matrix and V is the total volume.
From the definition of the yield surface 2.17, the elastic domain shrinks while the porosity

increases (see figure 2.2):
By deriving the yield criterion with respect to the stress and using the normality rule, the

evolution law of the plastic deformation can be written as:

ε̇p = (1− f)κ̇∂Φ
∂σ

(2.19)
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Figure 2.2: Gurson elastic domain for different porosities.

where κ is a plastic multiplier.
The model can be also used for material with hardening by substituting in the yield

surface the yield stress σ0 by the flow stress (σF ) that takes into account work-hardening.
A cumulated plastic strain can be defined by the following equation:

(1− f)σF ṗ = σ : ε̇p (2.20)

The Gurson model is considered one of the very sound models, because of its strong
micro-mechanical background. Nevertheless, this model only describes the growth of
cavities, but ignores the other two mechanisms of ductile fracture. Other models, based on
the Gurson model, are developed in order to be more consistent with the experimental reality.

1.4.3 The Gurson-Tvergaard-Needleman (GTN) model

In order to fit properly experimental test using the Gurson model, the nucleation and
coalescing of porosity needed be accounted for in the model. A porosity of nucleation fn was
added to the model following the work of [Chu and Needleman, 1980], and briefly recalled
in the first part of this section. Also, in the work of [Tvergaard and Needleman, 1984], the
Gurson yield surface was modified to account for the coalescing of porosity, and the new yield
surface is named after Gurson–Tvergaard–Needleman (GTN). This modification is detailed
in the second part of this section.

(i) Nucleation To introduce nucleation in the GTN model, the porosity is split into two
contributions, the classical growth porosity deduced from the mass conservation and a new
contribution that depend on the cumulated plasticity rate κ̇, as the following:

ḟ = ḟg + ḟn = (1− f)trace(ε̇p) + Anκ̇ (2.21)

A Gaussian form for the nucleation rate introduced by [Chu and Needleman, 1980], is usually
associated with the GTN model:

An = fN

sN
√

2π
exp

(
1
2(κ− κN

sN

2
)
)

(2.22)

Where fN is the fraction of inclusions at which porosities could be nucleated; κN is the
cumulated plastic deformation that correspond to the maximum of nucleation rate; sN the
standard deviation on the nucleation strain.

(ii) Coalescence In order to take into account the effect of coalescence in the Gurson
model, [Tvergaard and Needleman, 1984] introduced the following modified yield surface:

Φ =
σ2
eq

σ2
0

+ 2q1f
∗ cosh(3q2

2
σm
σ0

)− 1− (q1f
∗)2 (2.23)
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Where q1 and q2 are two material parameters to be identified, and f ∗ is the effective porosity
defined by:

f ∗ =
{

f if f < fc
fc + δ(f − fc) if f ≥ fc

(2.24)

where fc and δ are respectively the threshold and speed of the coalescence mechanism.
Although this particular form for f ∗ is very often used, other functions could be suitable.
Using low values of fc can lead to convergence problems using the FEM. fc can be computed
from a unit cell computations (see [Zhang et al., 2000]).

(iii) Failure Using the GTN model, failure is achieved when the porosity f or effective
porosity f ∗ reaches it maximal value:

f = fr − fc
δ

+ fc (2.25)

where fr = 1/q1 and is the critical porosity. If this porosity is reached and using 2.23, a
null stress tensor is obtained σ = 0. These two equation resume the most known model for
ductile failure using local approach: the GTN model

(iv) An effective stress from the GTN model Micro-mechanics based models can have
a generic expression. For the GTN model, this generic presentation can be expressed by
defining an effective stress σ∗ as the following (see [Besson et al., 2001]): F (σ∗, R) = σ∗ −R

G(σ, σ∗, f ∗) = σ2
eq

σ2
∗

+ 2q1f
∗ cosh(3q2

2
σm

σ∗
)− 1− (q1f

∗)2 def.σ∗= 0 (2.26)

a stress measure σ∗ is defined implicitly to satisfy the equation G(σ, σ∗, f ∗) = 0.

1.4.4 GTN model extensions for low stress triaxiality

One of the major drawbacks of the GTN model concerns the fact that it underestimates
damage under shear or, more generally, under low triaxiality loading [Li et al., 2011]. In
order to improve the performance of the GTN model outside of high triaxiality loading,
some extensions take into account the rotation of the cavities in addition to the change of
their shapes while others phenomenologically associate the evolution of the damage to the
deviatoric part of the shear. The common principle of all these improvements is to involve
the third invariant or Lode parameter in the evolution of porosity. In this section, we describe
these extensions that incorporate the effect of shear in the GTN model.

(i) Nahshon& Hutchison extension In the work of [Nahshon and Hutchinson, 2008], in
addition to the classical growth porosity of the GTN model, a shear porosity is introduced
where its evolution is expressed as:

ḟs = kf(1− L(σ)2)σ
dev : ε̇p
σeq

(2.27)

where k in a constant between 0 and 3. σdev is the deviatoric part of the stress tensor. L is
the Lode parameter and can be expressed as:

L(σ) = 27det(σ)
(3

2σ
dev : σdev)3/2 (2.28)

The shear porosity fs is not directly related to the plastic strain as is the case for the
growth and nucleation porosity. Thus this fs variable can be seen only as a damage variable.
This shear modification was used to simulate successfully ductile failure under low stress
triaxlality. However, it effect is non negligible in case of high stress striaxiality loading
[Nielsen and Tvergaard, 2009]. In order to limit this effect, a slit modification to this shear
porosity was proposed in [Nielsen and Tvergaard, 2009]:

ḟs = kf(1− L(σ)2)Ω(η)σ
dev : ε̇p
σeq

(2.29)
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where Ω(η) is a function of the stress triaxiality η = σH/σeq:

Ω(η) =


0 if η > 1/2

1− 2η if 0 ≤ η ≤ 1/2
1 if η < 0

(2.30)

(ii) Xue Extension In the work of [Xue, 2008], a similar approach to the previous model
where a new shear damage variable was introduced. Based on the analysis of a hollow plate
under shear loading, a new damage variable D was introduced where it evolution depends on
both the total porosity f and the shear loading:

Ḋ = δD(q1ḟ + Ḋs) (2.31)

where the coefficient δD is defined as:

δD =
{

1 if D ≤ q1fc
1/q1−fc

f−fc
if q1fc < D ≤ 1 (2.32)

and Ḋs is the evolution of the damage under shear loading:

Ḋs = q3f
q4g(θL)εpeqε̇peq (2.33)

where θL = arctan
(

2−σII−σI−σIII√
3(σI−σIII)

)
is the Lode angle and g(θL) is a function that verifies

g(0) = 0 and g(1) = 1. The following expression for this function was proposed in [Xue,
2008]:

g(θL) = 1− 6
π
|θL| (2.34)

And from the analytic solution of the hollow plate, q3 = 6
√

(π), q4 = 1/2 for 2D simulations
and q3 = 3(6/π)1/3, q4 = 1/3 for 3D simulations. For the implementation of this model, two
approach were proposed in [Xue, 2008]: (i) to consider the damage variable D as an internal
variable that influence the integration of the behavior; (ii) as a parameter computed based on
the porosity and stress tensor after the integration of the behavior.

(iii) Shape and rotation extensions [Kailasam and Ponte Castañeda, 1998] have
performed analyses on the behavior of ellipsoidal cavities in a composite and have shown by
second order homogenization that the shape and orientation of the cavities that evolve with
the deformation play an important role in the macroscopic behavior of the material. In order
to take into account these microscopic phenomena, they introduced new variables describing
microscopically the deformation and the rotation of the cavities. The model of [Kailasam and
Ponte Castañeda, 1998] was formalized and later completed by [Danas and Ponte-Castaneda,
2009a,b] by the latter work, [Cao et al., 2015] recently performed an application to the GTN
model and developed a model capable of simulating damage at low triaxiality, by making an
ad hoc modification to the GTN law :

Φ = σ̃eq
2

σ2
0

+ 2q1f
∗ cosh(3q2

2
σ̃m
σ0

)− 1− (q1f
∗)2 (2.35)

where σ̃eq = (σeq(1− αf) + 2αf(σ : ((I− 1
3I ⊗ I) : Q) : σ))1/2

σ̃m = σ:( 1
3I⊗I:Q):σ

(3|σ:( 1
3I⊗I:Q):σ|)1/2

(2.36)

Where Q is a fourth order tensor where its components are the semi–axes, a1, a2, a3, of the
general ellipsoidal void and the three orientation vectors n(1), n(2), n(3) as illustrated in 2.3.
The expression of the tensor Q is detailed in the appendix of [Cao et al., 2015].

Unlike the previous two extensions, the evolution of porosity in this model keeps the
same expression as in the GTN model. The shear effect is introduced implicitly by the
modified threshold function due to the consideration of anisotropy in the stress tensor. From
the simulations in [Cao et al., 2015], this model leads to physically relevant results under
hydrostatic and shear loading. The authors also showed differences in failure behavior
under prolate and oblate ellipsoids. But in this method, the expressions resulting from the
second order homogenization seem very heavy. Its numerical performance also remains to
be compared with the two previous models which are more pragmatic.
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Figure 2.3: A representative general ellipsoidal void with semi-axes a1, a2, a3 and the
corresponding orientation vectors n(1), n(2), n(3) ; (b) a prolate void; and (c) anoblate void (
from [Cao et al., 2015]).

1.5 Damage localization
In the process of ductile failure of a material, a significant accumulation of plastic strain in
a thin zone near the failure point is observed in experimental tests. The size of this zone,
commonly called the localization band, depends on the material properties, the geometry of
the structure and the nature of the loading.

Nevertheless, the numerical simulation by finite elements, with local models, shows a
strong dependence on the mesh: the damage tends to be localized in a band formed by a
single layer of elements, whatever its size. Moreover, the orientation of the damage band
also depends on the orientation given to the mesh. If an infinitely refined mesh is used,
the thickness of the localization will tend towards zero, leading to a zero dissipated energy,
totally unrealistic. In order to illustrate this mesh dependency, we conducted simulations
of an axisymmetric tensile test, for different mesh orientations, using the local GTN model.
The load–diameter reduction curves are different for each mesh orientation. Also the crack
path follows the mesh orientation. Thus the crack path is also mesh sensitive This problem
is mainly due to the instability of the macroscopic behavior of the material (softening)
induced by the increase of damage. During the softening of the material, the system of
equations describing the mechanical problem becomes non–elliptic, thus, the continuum
damage models that are motivated by micromechanical models lose part of their validity.

Localization is assumed to occur when it becomes possible to form a strain rate
discontinuity in a planar band. This band is characterized by its unit normal ~n and the
displacement jump across the band whose direction is denoted ~g as shown in figure 2.5.
In [Hadamard, 1904], it was shown that the strain rate tensor depends on ~n and ~g as:

∆ε̇ = 1
2(~n⊗ ~g + ~g ⊗ ~n) (2.37)

The normal vector ~n can be obtained as the vector that minimizes the Rice criterion [Rice,
1976, 1980] which is expressed in case of small strain hypothesis as:

det(~n.D.~n) = 0 (2.38)

where D in elasto–plastic materials is the elastoplastic tangent matrix (σ̇ = D : ε̇). Additional
terms to D are needed in case finite strain (in case of hypo–elasticity see [Besson et al.,
2001], and hyper–elasticity see [Huespe et al., 2012]). In [Besson et al., 2001], in case of
visco–plastic material, the bifurcation analysis is conducted using a perturbation analysis. It
was also proposed to use in general the consistent tangent matrix as an approximation of the
elastoplastic tangent.

1.6 Conclusion
In this section, several local damage models have been presented. These models describe the
degradation of the material by means of a spatial field, generally called damage field. The
damage field can either: affect the material behavior, which is the case of coupled damage
models; or not, which is the case of uncoupled damage models. The use of coupled damage
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Figure 2.4: Evolution, for the local model, of the engineering stress as a function of the
diameter reduction −∆φ/φ0 for mesh orientations in the case of the axisymmetric specimen.
The global responses are similar for all the orientations. However, the total porosity for
each mesh size at total failure shows different a crack path for each mesh orientation, which
indicates mesh dependence.

Figure 2.5: Geometry of a localization band from [Besson et al., 2001]

models leads to softening of the material at critical damage values. The high damage field
is often localized in narrow bands that depend on the discretization, in other words, local
coupled models suffer from pathological mesh dependency.

From a physical point of view, this localization phenomenon is explained by a lack of
information on the scale in the modeling. Indeed, the construction of a macroscopic behavior
law in local models is based on the assumption that the variation of macroscopic mechanical
fields is negligible below a minimal scale characterizing the Representative Volume Element
(RVE). This assumption is no longer respected if localization bands develop below this
scale. It is therefore necessary, in order to remain in the spirit of the continuous medium,
to introduce a notion of characteristic length corresponding to the scale of REV.

2 Regularized damage models
Different strategies exist in the literature to overcome the pathological mesh dependency
when using continuum damage mechanics models (CDMs). There is cohesive zone models,
thick level set method and finally the nonlocal methods. In this section only a brief review
of nonlocal models will be presented. This type of models consist in introducing a material
internal length. With the use of nonlocal models, the constitutive equations are preserved
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with small adaptations. This is beneficial especially in case of constitutive models based on
a strong micro-mechanical description of the damage processes.

2.1 Integral methods
The underlying idea of integral methods is to take into account a spatial vicinity effect to
describe the behavior of a material point. This is achieved by computing the weighted
average of a local variable around the material point under consideration [Pijaudier-Cabot and
Bazant, 1987] [Bazant and Pijaudier-Cabot, 1988]. Consider D a damage variables causing
localization and D its nonlocal counterpart averaged at a space position x in the body Ω:

D(x) =
∫

Ω D(y)w(y − x)dΩ∫
Ω w(y − x)dΩ (2.39)

Where w is a weight function, verifying the following condition:∫
V
w(x)dΩ = 1 (2.40)

An example of this weight function can be expressed as Gaussian:

w(x) = 1
(2π)3/2l3

exp
(
−||x||

2

2l2

)
(2.41)

Another example of the weight function can be expressed as bell-shaped polynomial:

w(x) = 105
32π2l3

1−
(
||x||
l

)2
2

(2.42)

Where l is the characteristic length. The bell polynomial function 2.42 is often preferred in

Figure 2.6: Typical nonlocal weighting functions: Gaussian (a) and bell-shaped polynomial
functions (b) (from [Rastiello et al., 2018]).

numerical computations, because it ensures null interactions between any pair of material
points such that their distance is larger than l (i.e., w(x) = 0 / ||x||/l ≥ 1). And
subsequently, the nonlocal field is locally averaged over a small sub domain. Implementing
this integral method in the finite element method can be challenging. In particular, the
calculation of the integral 2.39 requires the consideration of a patch of elements around the
node under consideration. This can be very intrusive in the FEM code unless a fully explicit
scheme is used. In that case the average is performed over the increments of the damage
variable

The integral method was used to regularize GTN model in [Enakoutsa et al., 2007]. The
integral method considers that any sufficiently close node must interact. However, nodes that
are sufficiently close but separated by a crack, a geometric hole or even by a localization
damage band should interact less. One solution consist in modeling the damage evolution
as a wave propagation in continuous media based on the Wentzel-Kramers-Brillouin (WKB)
approximation. In this formulation, the interaction distances are defined as the solution of a
stationary Eikonal equation dependent on the damage variable. It allows to model nonlocal
interactions that progressively disappear in the damaged areas as the wave is blocked by
cracks or geometric holes [Desmorat et al., 2015][Rastiello et al., 2018].
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2.2 Explicit/Implicit gradient methods
In order to overcome the complex and intrusive implementation of integral methods, gradient
methods were developed [Peerlings et al., 1996]. This method was initially proposed to
regularize the local equivalent deformation εeq but was later extended to deal with any type
of local variable D which can be a scalar or a tensor. The Taylor series expansion of a local
variable D around a spatial position ~xi is as follows:

D(y) = D(x) + ∂D

∂xi
(yi − xi) + 1

2!
∂2D

∂xi∂xj
(yi − xi)(yj − xj) (2.43)

+ 1
3!

∂3D

∂xi∂xj∂xk
(yi − xi)(yj − xj)(yk − xk)

+ 1
4!

∂4D

∂xi∂xj∂xk∂xl
(yi − xi)(yj − xj)(yk − xk)(yl − xl) ...

The substitution of 2.43 into 2.39, and considering the integral over an infinite body (R3)
leads to the following:

D(x) = D(x)
∫
R3
w(y − x)dΩ + ∂D

∂xi

∫
R3
w(y − x)(yi − xi)dΩ (2.44)

+ 1
2!

∂2D

∂xi∂xj

∫
R3
w(y − x)(yi − xi)(yj − xj)dΩ

+ 1
3!

∂3D

∂xi∂xj∂xk

∫
R3
w(y − x)(yi − xi)(yj − xj)(yk − xk)dΩ

...

Taking into account 2.40 and the fact that the odd integral terms are null and that the
remaining integrals are constants (respectively c2, c4, . . . ), the nonlocal variable can be
expressed as:

D(x) = D(x) + c2∇2D + c4∇4D . . . (2.45)

Thus, neglecting higher terms in expression 2.45 leads to the definition of the explicit
nonlocal operator:

D(x) = D(x) + c2∇2D = D(x) + l2c∆D (2.46)

The parameter c2 is a squared length, so an internal length lc appears in the explicit
formulation of the gradient as in the integral method. This explicit formulation is not adapted
to the finite element method. Indeed, the computation of the Laplacian of the local variable
D, which is defined on the integration points is problematic for two reasons: (i) It requires
the extrapolation to the nodes which create a source of error. (ii) It equires computing
the Laplacian of the extrapolated variable which is not necessarily C1. A solution to this
limitation is to construct an implicit formulation [Peerlings et al., 1996]. To begin with, the
Laplacian operator must be applied to 2.46:

∆D(x) = ∆D(x)− c2∇4D(x) (2.47)

Once substituted into 2.45, the following equation is obtained:

D(x) = D(x) + c2∇2D(x)− (c4 − c2
2)∇4D(x) . . . (2.48)

Finally, the implicit gradient formulation is than obtained after neglecting higher order terms:

D(x) = D(x) + c2∇2D(x) = D(x) + l2c∆D(x) (2.49)

In the case of ductile failure, it was proposed in [Mediavilla et al., 2006b,a; Feld-Payet
et al., 2011], to replace the local effective cumulative plastic strain p with its nonlocal
counterpart p in the damage evolution variables. In particular, for the GTN model, the
nonlocal cumulated plastic strain was used for the regularization of both the growth porosity
(fg) and nucleated porosity (fn). The nonlocal plastic strain can also be used to regularize
hardening as outlined in [Peerlings et al., 2012]. However the implicit gradient formulation
does not provide any guidelines to express the constitutive equations with respect to the
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nonlocal variable(s). Using p allows regularizing three local variables (p, fg and fn) at
the computational cost of one additional unknown field (p) [Linse et al., 2012]. However,
in some cases the quantity trace(n) can be very localized and thus the growth porosity
fg = (1 − fg)trace(n)p remains localized. A local tensor variable can also be used as
shown is [Hütter et al., 2013]. In this work, based on the plastic strain tensor εp, a nonlocal
counterpartεp is computed and then used in calculation of the evolution of the growth and
nucleation porosity.

The idea of using multiple internal length scales was introduced in [Nguyen et al.,
2020] for ductile failure. In the proposed model, an internal length was associated to each
damage mechanism: (i) void growth based on the classical GTN model, (ii) coalescence by
internal necking governed by a heuristic extension of the Thomason yield surface based on
the maximum principal stress, (iii) shear-dominated coalescence mechanisms triggered by
the maximum shear stress. Although the model proposes different internal length scales,
the same characteristic length was assigned to the three nonlocal variables in the presented
simulations.

2.3 Micromorphic models
Another approach, to regularize the ill-posed mechanical problem, is the micromorphic
approach. This approach consist in enriching the kinematic description of the material
behavior, by introducing an additional micromophic variable and its first gradient in
the Helmholtz energy [Forest, 2009]. The local internal variables have a micromorphic
counterpart which takes into account the interactions at the microscopic level. In case of
an elasto-plastic material, the effective cumulative plastic strain p and its micromorphic
counterpart pχ are expressed in the Helmholtz energy [Mazière and Forest, 2015] as follows:

ψ = 1
2(ε− εp) : E : (ε− εp) + ψp(p) + 1

2Hχ(p− pχ)2 + 1
2Aχ∇pχ.∇pχ (2.50)

Where Aχ and Hχ are two model parameters. E and εe are respectively the elasticity and
the elastic deformation tensors. ψp is the contribution to the Helmholtz energy governing the
hardening of the material. Thus, the thermodynamical associated forces are:

σ = ∂ψ

∂ε
= E : (ε− εe) (2.51)

Rχ = ∂ψ

∂p
= R +Hχ(p− pχ) (2.52)

aχ = ∂ψ

∂pχ
= −Hχ(p− pχ) (2.53)

~bχ = ∂ψ

∂∇pχ
= Aχ∇pχ (2.54)

The yield surface is now expressed as:

φ = σeq − (σ0 +Rχ) = σeq − (σ0 +R +Hχ(p− pχ))

Unlike the gradient methods where no rule exists for the formulation of the constitutive
law with the nonlocal variables, the micromorphic approach defines the coupling between
the micromorphic variable pχ and the constitutive equation naturally in the writing of the
thermodynamic force representing the hardening Rχ.

The dissipation on the body Ω is expressed in the following equation:

D =
∫

Ω

(
σ : ε̇p −Rχṗ− aχṗχ −~bχ.∇ṗχ

)
dΩ (2.55)

Using the Green formula on eq 2.55, the dissipation potential can be rewritten as:

D =
∫

Ω
(σ : ε̇p −Rχṗ− (Aχ∆pχ +Hχ(p− pχ))ṗχ) dΩ (2.56)

−
∫
∂Ω
Aχ∇pχ.~nṗχdS
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Based on the hypothesis that the dissipation potential related to the micromorphic variable
pχ is null, the following equation is obtained:

Aχ∆pχ +Hχ(p− pχ) = 0 ⇒ pχ = p+ Aχ
Hχ

∆pχ (2.57)

This equation shows an equivalence between the micromorphic approach and the gradient
implicit approach where l2c = Aχ/Hχ. Thus the implementation of the micromorphic
approach is very similar to the implicit gradient method.

Based on the general micromorphic approach presented in [Forest, 2009], an extensions
of the model to ductile fracture was introduced by [Brepols et al., 2017], a fully coupled
damage-plasticity model where damage exhibits gradient effects. This proposed extension
relies upon a ’two-surface’ formulation in which plasticity and damage are treated with
independent physical mechanisms, considering both a yield and damage function as well
as appropriate loading/unloading conditions. The numerical implementation of the model in
FEM was detailed and the results presented are independent of mesh size. Moreover, this
model can well capture the initiation and propagation of cracks.

Another fully coupled damage model taking into account the strong coupling between
all fields (Cauchy stress, kinematic hardening and isotropic hardening) and micromorphic
damage was used in [Diamantopoulou et al., 2017]. The implementation in the commercial
FEM code ABAQUS/Explicit have been detailed. The implemented model has been
successfully validated by simulation—test comparisons of a classical tensile test as well as
by a bending test.

Another class of the micromorphic approach based on the improvement of Gurson’s
original homogenization procedure was initially introduced in [Gologanu et al., 2007].
The GLPD model is of micromorphic nature since it involves the second gradient of the
macroscopic velocity and generalized macroscopic stresses of moment type, together with
some characteristic microstructural length. The implementation of the GLPD method was
detailed in [Enakoutsa and Leblond, 2009], numerical 2D simulation were presented. The
independence of the GLPD on mesh size was verified. In addition, a good agreement between
the simulation and some experimental tests was reported. However, using the developed
algorithm, a slow convergence rate of the model was obtained: the reported CPU time is 2
to 3 times longer than the standard local Gurson’s model. In the work of [Huetter, 2017],
a gradient extension of Gurson’s model which combines computational efficiency with a
sound micromechanical basis was proposed. However no simulation was shown to support
the numerical efficiency of the developed extension.

The micromorphic models use a local variable and its micromorphic counterpart. In the
case where the two variables are needed to be very close so that to use the gradient of the
local variable in practice, high values of the penalty term (Hχ in the case presented above)
are employed. The use of high values of Hχ results in poor convergence [Scherer et al.,
2020]. This problem is partially resolved with the next nonlocal approach which uses an
energy enriched framework.

2.4 Enriched energy models
The enriched energy approach consists in regularizing the ill-posed mechanical problem by
adding a positive function of the gradient of a local variable to the Helmholtz energy. Thus,
minimizing the Helmholtz energy results in constraining the gradient of the local variable
to have small values. Controlling the gradient of the local variable involves controlling the
localization bandwidth by a parameter that can be related to the internal length of the material.
According to [Lorentz and Andrieux, 1999; Lorentz, 2005; Lorentz and Godard, 2011; Zhang
et al., 2018; Chen et al., 2020], the Helmholtz energy is expressed on a Ω body as :

ψ = 1
2(ε− εp) : E : (ε− εp) + ψp(p) + 1

2c∇p.∇p (2.58)

where c is a model model parameter (unit N) which can be expressed as c = σ0l
2
c so as to

introduce a material characteristic length lc.
This approach has been applied in the case of a GTN model [Zhang et al., 2018; Chen

et al., 2020]. In general, any localization variable of the GTN model can be chosen in the
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case of this approach. In order to regularize both the nucleation porosity fn and the growth
porosity fg, the effective cumulative plastic strain p was chosen since it is involved in the
evolution both porosities. Numerically, the gradient of the variable p, as p is defined at the
integration point, cannot be calculated correctly as in the case of the explicit gradient model.
Therefore, a relaxed formulation is proposed in [Zhang et al., 2018], introducing a nodal
variable a and ensuring the equality of p and a in a weak sense. This equality is enforced by
an ed Lagrangian using a Lagrange multiplier (l) used to enforce the weak equality between
p and a ; it is expressed as follows:

L(ε, εp, p, a, l) =
∫

Ω
ψ(ε, εp, p, a, l)dΩ (2.59)

=
∫

Ω
ψloc(ε, εp, p)dΩ +

∫
Ω
ψgdt(a)dΩ +

∫
Ω
ψrlx(p, a, l)dΩ

where

ψloc(ε, εp, p) = 1
2(ε− εp) : E : (ε− εp) + ψp(p) (2.60)

ψgdt(a) = 1
2c∇a.∇a (2.61)

ψrlx(p, a, l) = l(a− p) (2.62)

The associated forces to the state variables are then expressed in the following:

σ = ∂ψ

∂ε
= E : (ε− εp) (2.63)

Rnl = ∂ψ

∂p
= R(p)− l (2.64)

Ra = ∂ψ

∂a
= l (2.65)

Rl = ∂ψ

∂l
= a− p (2.66)

R∇a = c∇a (2.67)

The yield surface is now expressed as:

φ = σeq − (σ0 +Rnl) = σeq − (σ0 +R− l)

Similar nodal forces are obtained as the ones in obtained with micromorphic models,
except for the Lagrangian term (Rl). Note that a is introduced to numerically solve the
problem. Therefore it should not be considered as the micromorphic counterpart of p. The
equality between both variables is weakly enforced. As explained above the near equality
between p and pχ is obtained for the micromorphic model using a very high value for Hχ

which then acts as a penalty factor. Both models then become close but CPU time becomes
very large for the micromorphic model as Hχ increases [Scherer et al., 2020].

The dissipation retains its usual definition:

D =
∫

Ω
(σ : ε̇)dΩ− L̇

=
∫

Ω

(
σ : ε̇p − (R− l)ṗ− lȧ − c∇a.∇ȧ− (a− p)l̇

)
dΩ (2.68)

Using Green’s formula one obtains:

D =
∫

Ω

(
σ : ε̇p − (R− l)ṗ− (a− p)l̇

− (l − c∆a)ȧ
)
dΩ−

∫
∂Ω
c∇a.~nȧdS (2.69)

Considering that the new variables a and l do not contribute to the dissipation, their evolution
is obtained in eq 2.70. Thus, as in the case of the micromorphic model, the strong form is
obtained:

a = p

l − c∆a = 0 (2.70)
∆a.~n = 0 on ∂Ω
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Using this result, the yield surface can be rewritten as :

φ = σeq − (σ0 +R− l) = σeq − (σ0 +R− c∆a) (2.71)

which is very similar to the yield surface obtained using the micromorphic model.
A locking-free FE formulation was also proposed in [Zhang et al., 2018] in a logarithmic

total lagrangian large strains framework. The numerical implementation is detailed for the
3 then 5 field formulation. Simulation in 2D and 3D were presented. Mesh independence
is verified with respect to mesh size and mesh arrangement. Furthermore, the model was
applied to an experimental test base and good correlation with the experimental tests was
obtained. However, it was reported that the convergence rate of simulations starts to decrease
after the onset of crack propagation: cracked elements lose their stiffness and may become
extremely distorted.

A solution to convergence problems was proposed in [Chen et al., 2020], by adding a
penalty term which brings an additional coercivity so as to avoid the potential appearance of
spurious plastic strain localization.

2.5 Phase field damage
The phase-field approach to model systems with sharp interfaces consists in incorporating
a continuous field variable that differentiates several physical phases in a given system by
a smooth transition. In the context fracture mechanics, such order parameter describes the
smooth transition between the fully broken and intact material phases, thus approximating
the sharp crack discontinuity, and is, therefore, referred to as the crack field. The evolution
of this field as a result of the external loading conditions models the fracture process. A
complete review of phase field based approaches is presented in [Ambati et al., 2015].

The phase field model for fracture was introduced in a variational form by [Francfort and
Marigo, 1998] as a generalization of Griffith’s criterion to predict the critical stress for brittle
fracture. The minimization of a functional that contains the sum of total elastic strain energy
and fracture energy enables predicting the initiation, propagation, merging and branching of
multiple cracks under complex loading conditions. The entire (quasi-static) process of crack
initiation, propagation and branching is governed by a minimization problem of the energy
functional:

E(~u,Γ) =
∫

Ω
ψe(ε(~u))dΩ +Gc

∫
Γ
dS (2.72)

where ψe is the elastic energy density function, Gc the material fracture toughness and Γ the
admissible crack set.

In order to minimize this energy, it is needed to determine a priori the fractured surface
in order to calculate the fracture energy. This results in a computational scheme that is
non–tractable and inconvenient to apply. To overcome this limitation, another variational
formulation based on regularizing the energy functional which is expressed, following the
work of [Bourdin et al., 2000], as:

El(~u, d) =
∫

Ω
((1− d)2 + η)ψe(ε(~u))dΩ +Gc

∫
Ω

(
1

2lc
d2 + lc

2 lc|∇d|
2
)
dΩ (2.73)

where d is the phase field variable describing the degradation of the material; d = 0 represent
intact material and d = 1 represent a totally broken material. lc is the characteristic length
that controls the width of the transition zone, defined by d and η is a dimensionless parameter
needed to prevent numerical difficulties that occur at total failure.

Initially the phase field approach was developed for quasi–brittle material. However,
recently this approach was extended to ductile fracture. For most damage models describing
ductile fracture, the damage variable is related to the development of plastic zones. A phase
field framework for ductile failure was proposed in [Miehe et al., 2015]. the Helmholtz energy
of gradient damage approaches coupled with ideal elastic–plastic is given as:

ψ(ε, εp, p, d) = (1− d)2ψe(εe) + (1− d)2ψp(p) + ψd(d,∇d) (2.74)

= (1− d)2
(1

2(ε− εp) : E : (ε− εp) + ψp(p)
)

+ Gc

2lc

(
d2 + l2c |∇d|2

)
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The associated thermodynamic forces:

σ = ∂ψ

∂ε
= ((1− d)2 + η)E : (εe) (2.75)

Rp = ∂ψ

∂p
= ∂ψp

∂p
= (1− d)2R(p) (2.76)

Rd = ∂ψ

∂d
= −2(1− d)(ψe + ψp) + Gc

lc

(
d− l2c∇2d

)
(2.77)

The classical dissipation function:

D =
∫

Ω
σ : ε̇dΩ− d

dt

∫
Ω
ψdΩ (2.78)

=
∫

Ω

(
σ : ε̇p −Rpṗ−

[
−2(1− d)(ψe + ψp) + Gc

lc
d
]
ḋ−Gclc∇d∇ḋ

)
dΩ

Using the Green formula, the dissipation can be rewritten as:

D =
∫

Ω

(
σ : ε̇p −Rpṗ−

[
−2(1− d)ψe + Gc

lc
(d− l2c∆d)

]
ḋ
)
dΩ−

∫
∂Ω
Gclc∇d.~nḋ dS

(2.79)
If the dissipation related to the phase field variable is considered null, the strong form of

the evolution of the phase field variable can be written as:

Gc

lc
(d− l2c∆d) = 2(1− d)(ψe + ψp) in Ω (2.80)

∇d.~n = 0 on ∂Ω (2.81)

In the work of [Miehe et al., 2015], the evolution of the regularized crack surface has been
given in it local form as a function of the crack driving forceH as:

ηdḋ = (1− d)H− (d− l2c∆d) in Ω (2.82)
∇d.~n = 0 on ∂Ω (2.83)

By the identification of the two equation 2.80 and 2.82, the expression of the crack driving
force is found:

H = 2
Gc/lc

(ψe + ψp) (2.84)

In order to over come the numerical difficulties of the phase field models and to account for
the irreversibly of the cracking process, the elastic energy ψe was replaced by maxs∈[0,t] ψe(s)
(see [Miehe et al., 2010]).

In brittle materials, the evolution of the phase field variable d only depends on the elastic
energy. However, in case of ductile fracture, the plastic strain energy is added to the crack
driving force H: a plastic degradation function is added in order to weaken the material
where the plastic deformation is localized as proposed in [Borden et al., 2016; Miehe et al.,
2015]. A similar approach was used in [Eldahshan et al., 2021b] coupled with remeshing to
simulate ductile fracture. Its was shown that a fine remesh zone should be attributed to the
localization band at the appropriate time in order to accurately predict the initiation of the
crack in accordance with the experimental test.

A phase field approach adapted to porous ductile materials using a modified GTN–type
plasticity model to account for a temperature–dependent growth of voids on micro-scale
followed by crack initiation and propagation on macro-scale was presented in [Dittmann
et al., 2020]. Also simulations in accordance with experimental results in terms of hardening,
necking, crack initiation and propagation were shown.

2.6 Conclusion
In order to overcome mesh dependency, one solution is to use nonlocal models. Several
nonlocal models and the phase field approach were briefly recalled. The presented models
regularize the ill-posed mechanical problem during softening. The principle of each method
was detailed, and their extension to ductile failure was discussed. In this thesis work, only the
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implicit gradient method developed in chapter 3, is used to simulate ductile failure. The same
model is chosen to simulate ductile failure using the crack insertion coupled with remeshing
techniques as described in 4. Note that any other regularized model can be used in the
developed framework for ductile fracture, using crack insertion coupled with remeshing.

Regularized damage models allows the modeling of crack initiation without the
introduction of a pre-crack. However, continuum damage models still suffer from various
problems during the crack propagation phase. The first problem is related to the fact that
with a continuous damage field, the description of the crack lips (line in 2D simulations
and surface in 3D simulations) is not possible. The second problem is related to the high
deformation in the damaged zone. Especially near the crack front, all the softened elements
stretch terribly, and thus possibly degrade the convergence rate of the calculation. These
problems can be solved by using the so-called continuous–discontinuous methods. A brief
review of the different continuous–discontinuous methods is presented in the next section.

3 Damage to crack transition
Continuous–discontinuous methods aim at modeling discontinuities/cracks based on a
relatively localized continuous field. Several technical challenges must be addressed to
achieve this goal. First, a discrete crack model must be defined to represent the discontinuity
in the simulations. Second, a method should be chosen to determine the discrete crack
localization from the continuous field, hereafter referred to as the discontinuity localization
methods. It should be noted that these methods are not necessarily part of every damage to
crack transition framework. And finally, a criterion should be formulated to indicate when
the transition from a continuous damage field to its equivalent crack model is most relevant,
hereafter called the insertion criterion.

Let us note that this review is mainly based on Feld-Payet [to be published]

3.1 Discontinuity modeling methods
In this section, the most common methods used in the literature to model discontinuity are
presented. These methods are compared in terms of their accuracy to model the kinematics of
crack propagation, their compatibility and ease of implementation within the finite element
method and their applicability to ductile failure simulations.

3.1.1 Remove/kill elements

The kill elements method, also known as the remove element method, consists in eliminating
the contribution of a considered broken element from the global rigidity matrix. In the
following three variants of the same methodology are presented.

(i) Classical kill elements Only an insertion/deletion criterion (for example, an element
is deleted if the chosen variable exceeds the critical value) is needed in the classical kill
elements method. Each element which validates this criterion is removed from the simulation.
This method is widely used [Tvergaard, 1982] [Tvergaard and Needleman, 2006] [Gao et al.,
1998] [Hambli, 2001] [Saanouni, 2008] [Xue and Wierzbicki, 2009] because of its simplicity
of implementation and its low computational cost. However, on the one hand, the use of
this technique should lead to the suppression of a large band of elements in the case of
nonlocal models. Lat us not that the bandwidth of the removed elements is not controlled.
Subsequently, the computation body may suffer a mass loss, which may be quite significant
depending on the size and/or the bandwidth of the removed elements. On the other hand,
using the classical “kill elements” method results in a mesh-dependent crack path. In addition
the crack lips are not smooth due to the removed elements (see figure 2.7).

(ii) Kill elements with remeshing This variant of the kill element method is obtained
when coupled with remeshing techniques [El khaoulani and Bouchard, 2012; Borouchaki
et al., 2005]. This variant aims at minimizing the size of the removed elements. The method
thus allows to partially solve two of the three major problems of the “remove elements”
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Figure 2.7: Distribution of ductile damage inside the truncated side–pressed cylinder from
[Saanouni, 2008]. The crack is represented in the simulation using the classical “remove
elements” method.

method, i.e. (i) minimizing the mass loss by minimizing the size of the removed elements,
(ii) improving the crack lip surface with remeshing before element removal (see figure 2.8).
However, the problem of uncontrolled bandwidth of the removed elements can still lead to
multiple rows of removed elements, and thus to unrealistic crack path.

Figure 2.8: Evolution of damage and mesh at the center of the specimen from [El khaoulani
and Bouchard, 2012]. The crack is represented in the simulation using kill elements coupled
with remeshing.

(iii) Controlled kill elements This variant of the “kill elements” method is obtained if
the remove element technique is used with a discontinuity localization method (detailed in
the next section) as proposed in [Yun et al., 2019]. The discontinuity localization method
determines the localization the crack surface from the continuous damage field (fig. 2.9-
a). Only the elements crossed by the localized crack surface are removed (fig. 2.9-b).
The improvement brought by this variant lies in controlling the bandwidth of the removed
elements which is then limited to one row of elements.

3.1.2 Element cracking

A more realistic way to represent a crack is to consider for 3D problems a 2D crack surface
(or in 2D, a 1D crack line). The geometry of the crack surface (or crack line in 2D) is then
incorporated into the mesh. This representation of the localized crack can be done either by:
(i) inter–element cracking, (ii) intra–element cracking.

(i) Inter–element cracking The inter–element cracking representation consists in
inserting a discontinuity at the interfaces between the elements. However in order to avoid
mesh dependence, a pre–adapted mesh to the geometry of the crack is needed, which implies
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(a) (b)

Figure 2.9: Crack surface and damaged elements: (a) crack surface; (b) damaged elements
from [Yun et al., 2019]. Controlled kill element was used to represent the crack in a fracture
simulation of a quasi-brittle material.

Figure 2.10: Scheme displaying a) intra–element cracking and b) inter–element cracking.

an a priori knowledge of the crack path. Practically, this method can be implemented by
duplication nodes on the crack path in order to create the crack lips (see figure 2.10-a).

Figure 2.11: Damage distribution reported on the deformed configuration from [Cuvilliez
et al., 2012]. Intra-element cracking coupled with a cohesive band model inserted on a pre-
defined planar crack path.

(ii) Intra-element cracking using remeshing Unlike the previous method, intra–
element cracking with remeshing do not require prior knowledge of the crack path. However,
an adaptive strategy is necessary to incorporate the geometry of the crack in the structure’s
mesh. A global or local mesh adaption is performed, in order to model the initiation of
a new crack or the propagation of an existing crack. In practice, an intersection operation
between the crack path and the mesh is necessary to generate the crack nodes in the mesh
then duplicate them in order to create the crack lips (see figure 2.10-b) (see [Chiaruttini et al.,
2013]).

Inter–element cracking has been used for ductile failure in 2D simulations [Mediavilla
Varas, 2005; Mediavilla et al., 2006a] and extended to 3D in [Feld-Payet, 2010; Areias et al.,
2018; Javani et al., 2016].
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Figure 2.12: Damage distribution reported on the deformed configuration from [Feld-Payet,
2010]. Intra-element cracking with adaptive remeshing for crack insertion.

In order to optimize the computational cost of the adaptive remeshing procedure, an error
estimator [Askes and Sluys, 2000; Rodriguez-Ferran and Huerta, 2000; Feld-Payet, 2010]
can be used: the error estimator generates an optimized mesh, refined in the areas where the
damage field is localized and coarsened mesh in the areas where the damage field is more
regular (see figure 2.12 ).

Let us note that both the previous representations of cracks can be coupled with cohesive
zone bands. The cohesive band have its own interface behavior that can be coupled to the
CDM model or not. An application of the inter-element cracking method coupled with
cohesive band is presented in [Cuvilliez et al., 2012].

3.1.3 eXtended Finite Element (X–FEM) method for crack representation

As opposed to the inter–element cracking method which necessitate mesh adaptation in order
to describe the crack lips opening/closing, the X–FEM aims at representing the discontinuity
using the same mesh.

The X–FEM method relies on the use of unit partitioning [Melenk and Babuška, 1996]
to enrich a standard finite element approximation in displacement by discontinuous functions
capable of modeling the crack opening (see figure 2.13).

Figure 2.13: Crack on a uniform mesh (left) and on a non-uniform mesh (right) from [Moes
et al., 1999]. The circled nodes are enriched by the jump function whereas the squared nodes
are enriched.

The X–FEM method has been used with the Thick Level Set method to simulate crack
propagation in softening materials. The TLS method was then used to regularize the
mechanical problem at material softening and the X–FEM is used in the transition from
continuous to discontinuous modeling (see [Moës et al., 2011]). Also the X-FEM method has
been used with a cohesive zone model (CZM) to simulate ductile fracture in [Nikolakopoulos
et al., 2021] with a relatively coarse mesh. However the small strain framework considered in
this paper may not be completely appropriate for ductile failure which is usually accompanied
by large plastic strain.

Note: Although the remeshing technique for inter–element cracking and X-FEM offer the
best representation of the crack lips kinematics during the simulation, they lead to a change of
the discretization which brings its own challenges. These challenges are mainly related to the
transfer of fields from the old mesh to the new mesh: transfer operations causes unavoidable
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errors, thus the mechanical stat after the transfer is unbalanced. This unbalance if not treated
may results in the degradation of the convergence rate or the complete divergence of the
resolution algorithm.

3.2 Discontinuity localization methods (DLM)
In the context of the local approach to fracture, discontinuity localization methods aim at
defining a crack surface from a spatial (field scalar or tensor). In the case of a mesh with a pre–
existing crack, the discontinuity localization method must define the next crack increment.

However, in the case of a mesh without any crack, the discontinuity localization method
must define where the first crack increment should be inserted. To the best of the author’s
knowledge, few procedures treat this case in the literature, especially for crack initiation away
from any boundary.

3.2.1 Direction criteria– Pre-processing of DLM

Direction criteria aims at the orientation of the crack path. They are based on indicators that
can either be a vector field to the crack path, or a scalar field that is maximal where the crack
is supposed to be inserted. This indicator can be a global field defined on the whole mesh so
the method is qualified as global, or a field only exploited in the vicinity of the crack path so
the method qualified as local. This indicator is used as an input of the so-called crack path
tracking algorithm to determine the exact position of a continuous crack path.

(i) Vector field from stability or bifurcation analysis This vector field can be computed
in the case of coupled local (i,e. non–regularized) damage models. As mentioned in the
section (1.5), localization is assumed to occur when it becomes possible to form a strain
rate discontinuity in a planar band. This band is characterized by its unit normal ~n and the
displacement jump across the band. The normal vector ~n can be obtained as the vector that
minimizes the Rice criterion [Rice, 1976, 1980] :

det(~n.D.~n) = 0 (2.85)

where D in elasto–plastic materials is the elastoplastic tangent matrix (σ̇ = D : ε̇). In
practice, the condition det(~n.D.~n) = 0 is never exactly met. So the normal ~n is obtained as
the first occurrence of det(~n.D.~n) < 0. In [Besson et al., 2001] the consistent tangent matrix
was used and gave similar prediction for the bifurcation analysis. However, for viscoplastic
materials, linear perturbation analysis can be used to obtain the acoustic tensor ~n.D.~n. Note
that additional terms are added to 2.85 in case of finite strain ( see Besson et al. [2001] for
hypo-elastic material or [Huespe et al., 2012] for hyper-elastic material).

This approach was used to model ductile failure in [Crété et al., 2014; Wolf et al., 2018;
Huespe et al., 2009] using GTN model within the small strain framework and extended to
large strain framework in [Huespe et al., 2012].

This type of analysis has very strong arguments for the choice vector field indicator of the
crack path, but requires a very high computational cost for 3D simulations.

(ii) Vector field from principal component analysis (PCA) Another technique is based
on PCA of a tensor field, in order to determine normals to the crack path. This technique is
computationally less expensive than the stability or bifurcation analysis and can be used in
case of nonlocal models. Different tensor fields have been used in literature:

1. The strain tensor was used in 2D [Dufour et al., 2012] and in 3D [Areias et al., 2018]
for quasi-brittle fracture simulation;

2. The stress tensor used in 2D for quasi-brittle fracture simulation [Bobinski and
Tejchman, 2016];

3. The anisotopic damage tensor was used in for 3D quasi-brittle fracture simulation in
[Javanmardi and Maheri, 2019].
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The vector field corresponds to one of the components of the eigenvectors obtained from the
principal component analysis of the considered tensor.

The bifurcation analysis and the PCA of a tensor provide several vectors for each
evaluation point. But only one vector is needed to define the normal to the crack front (in
the absence of branching). To choose the appropriate vector field, in the literature, most
authors using these methods follow this recommendation: the direction of propagation is the
direction of the output vector field that maximizes the displacement gradient [Rabczuk and
Belytschko, 2007] or the equivalent deformation [Crété et al., 2014].

(iii) Scalar fields Various scalar fields have been used in the literature to determine the
crack surface. Some authors use directly the damage field (see [Broumand and Khoei, 2013;
Seabra et al., 2013; Feld-Payet, 2010; Feld-Payet et al., 2015; Bottoni et al., 2015]). But
other scalar fields can be considered, such as the cumulative plastic strain which is used in
the calculation of the damage field in the case of the GTN model.

In the case of quasi-brittle failure, the scalar field can be the L2 norm of the eigenvectors
Vεi

of the deformation tensor [Simone et al., 2003]: εeq =
√

Σi < Vεi
>2. Another example

of a scalar field is the equivalent strain calculated on the basis of the maximum eigenvalue
maxσi of the stress tensor [Bobinski and Tejchman, 2016]: εeq = maxσi

E
.

3.2.2 From a direction criterion to the crack surface–crack path tracking algorithm

The crack path tracking algorithms use the vector field or scalar field mentioned in the
previous section to define a continuous crack path. This definition can be either explicit,
through the construction of an auxiliary crack mesh, or based on the iso–value (equal to θc)
of a scalar field θ evaluated at the nodes of the structure’s mesh.

(i) Global method This method was initially presented in [Oliver et al., 2002] for single
2D and 3D crack propagation and in [Oliver et al., 2004] for multiple 3D crack tracking with
examples of quasi-brittle fracture simulations. This method considers as input data the vector
field of the normals to the crack path ~n, to compute the tangential vector(s) ~t in 2D (or (~t, ~s)
in 3D), of a scalar field θ(x) (see figure 2.14.a), so that:

∂θ

∂t
= 0 for 2D cases ; ∂θ

∂t
= ∂θ

∂s
= 0 for 3D cases (2.86)

In order to obtain the scalar field θ (see figure 2.14.b), a heat–conduction–like problem
with adiabatic heat flux boundary condition at the boundary ∂Ω and no internal heat source
need to be solved:

div(~q) = 0 in Ω (2.87)
~q = −(~t⊗ ~t+ ~s⊗ ~s).∇θ in Ω (2.88)

q.~v = 0 on ∂Ω (2.89)

As described in figure 2.14.c, from the nodal values of the monotonous field θ the crack
path Γc can then be implicitly defined:

Γc = {x ∈ Ω/θ(x) = θc} (2.90)

Where θc is a threshold value set by an adiabatic heat flux boundary condition.

Figure 2.14: Scheme of the global method algorithm from [Oliver et al., 2004]
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This problem solved thanks to the finite element method on the whole mesh, hence the
name ”global method”. Note that the stiffness matrix K = (t ⊗ t + s ⊗ s) is singular. This
is why a perturbation term is added in the formKε = K + ε1.

This global method was used in [Cervera and Chiumenti, 2006] in the case of a quasi-
brittle problem with strain localization in order to track cracks and to allow the crossed
elements to crack in order to obtain an objective mesh solution. Also In the work of
[Dufour et al., 2012], the global method was used to estimate the crack opening in quasi-
brittle simulation. In the case of ductile failure, the same method was used within the small
strain framework [Huespe et al., 2009] to track cracks and represent them using a ”strong
discontinuity” method, and then adapted to large deformations in [Huespe et al., 2012]. More
recently, the same method has been used for polycrystalline materials to select the elements
crossed by the crack path and then enrich the surrounding nodes using X-FEM method [Beese
et al., 2018].

The global method uses as input the normals to the crack paths ~n, a global quantity. This
global quantity varies little along time in the case of quasi–fragile simulations as indicated
by [Oliver et al., 2004]. This means that the crack path can be almost entirely determined at
the early stages of the degradation. However, in other cases where vector field ~n, and thus
the crack path, may vary in time, it is necessary to update the ~n field and to consider crack
propagation along the current θ iso–value that crosses the last element on the consolidated
part of the crack path.

(ii) Crack-path field technique This technique was originally introduced in [Dias et al.,
2012] as an improvement of the global method. it requires more inputs than the global
method: Indeed, in addition to the vector field of the normals to the crack path ~n, it uses
a localization scalar field, such as the equivalent deformation field εeq. The mathematical
framework of the method has been introduced in [Oliver et al., 2014]: the idea is to use the
derivative of the scalar field εeq in the direction ~n to define the crack path thanks to its zero
iso–value. To do so, the first step is to consider the localized field εeq (a field computed at the
integration point) in order to obtain a smoother nodal field ψt = ψ(t) equivalent to the local
form in a weak sense by solving:

∀ψ?
∫
B
ψ?(x) (ψt − εeq(x, t)d) dB = 0 (2.91)

where ψ? are test functions. It is then possible to consider the derivative of this smoothed

field along the assumed normal vector ~n given as an input data:
∂ψt
∂~n

(x) = ∇ψt.~n. In order
to determine the zero iso–value of this new scalar field, it is possible to build a smoothed
version of it using the same procedure:

∀µ?
∫
B
µ?(x)

(
µt −

∂ψt
∂~n

(x)d
)
dB = 0 (2.92)

Figure 2.15: Schematic distribution of the function µ in a 2D problem, where the crack path
Γ is defined as the zero level set of µ [Dias et al., 2018]

As described in 2.15, the crack path Γc is then be retrieved in an element basis from the
smoothed µ:

Γc = {x ∈ B/µt(x) = 0} (2.93)

Note that this method is qualified as a local crack path tracking algorithm because of the
use of smoothing operations only on a restrictionB of the domain Ω where the scalar variable
is strongly localized.
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The crack-path field was used for crack tracking to simulation 2D crack propagation in
[Oliver et al., 2014] [Dias et al., 2016] and extended to 3D simulations in [Dias et al., 2016]
for quasi-brittle cases. This method is more efficient than the global method in terms of
computational cost: the local smoothing operation are done locally and no global resolution
of an auxiliary equation is needed. However, the computational cost associated with the
computation of the normals to the crack path using a bifurcation analysis or a PCA analysis
remains significant, especially is cases where the normals to the crack paths vary during the
propagation process which is the case for ductile fracture.

A major limitation of this method is related to the choice of a vector field assumed to be
sufficiently close to the normals to the crack path. This choice is far from obvious, especially
in cases where a bifurcation analysis is not relevant. Approximations to the vector field ~n
using the gradient of a function f of displacement field u(x, t): ∇f(u(x,t))

||u|| ≈ ~n were proposed
in [Lloberas-Valls et al., 2016] in case of dynamic simulation. To the author knowledge,
this crack-path field technique was not used in case of nonlocal models to simulate ductile
fracture.

(iii) Marching ridges algorithm This method Feld-Payet et al. [2015] shares similarities
with the crack-path method field. For instance they both aim to construct an scalar function
with a zero iso–value corresponding to the crack path. However, the marching ridges
algorithm, by considering a finite set of vectors to test whatever the application may be instead
of guessing a vector field sufficiently close to the crack normals, simplifies the inputs: its only
requires the gradient vector of a localized scalar field. By the same token, this algorithm is
more efficient cost wise then the crack-path method since the heavy computational step of
normals to the crack is not needed.

The first step of this algorithm is a smoothing operation on the considered scalar variable
f (computed at integration points). This smoothing operation can be done following the
super convergent patch recovery method described in [Zienkiewicz and Zhu, 1992]. From
the smoothed field f ? defined at the nodes, the computation of the spacial gradient ∇f ? is
straightforward.

Figure 2.16: polar grid search around the crack front in 2D from [Feld-Payet et al., 2015]

The idea is then to approximate locally the crack path by a straight kine over a distance R
and to determine its direction defined by an angle. To do so, a polar grid centered at the last
known point of the crack path is used (see figure 2.16). From here a second scalar function
µ(x) = ∇f.~eθ is evaluated, where eθ is the tangential vector to the polar grid at a given angle
θ. The crack corresponds to the zero iso–level of the function µ:

Γc = {x ∈ Ω/µ(x) = 0} (2.94)

In practice, the µ function is evaluated only at a finite number of discrete points,
regularly distributed on a polar grid, and the zero iso–level is considered to be locally well
approximated by the straight line corresponding to the angle between two evaluations of µ
where its sign changes from positive to negative.

Another difference of this method is the explicit definition of the crack path after the
polar grid search unlike the implicite definition with the above mentioned methods. One
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Figure 2.17: Schematic representation from [Feld-Payet et al., 2015], of the damage profile
plotted for two different evaluation radii (left) and the corresponding circles centered at the
point of maximum damage, thus already on the ridge (right)

of the main advantages of this algorithm is that it is able to simultaneously capture several
directions of crack propagation. Besides, this algorithm can be used in 3D problems by
performing this 2D search in several planes distributed along the crack front as demonstrated
in Feld-Payet et al. [2015].

The adequate choice of the radius of search is important in order of obtain an accurate
crack path. In particular, this algorithm is only valid if the local radius of curvature is smaller
than the distance between the point of evaluation and the considered point of the crack front
R (see figure 2.17). The evaluation radius should enlarged for treating quasi-plateau areas
with small evaluation radii.

(iv) Local maximum search over different radii This crack path tracking algorithm
was originally introduced in [Brokken et al., 1998; Brokken, 1999] in the case of uncoupled
damage models in 2D simulations. It considered a scalar field S which is evaluated on polar
grids in order to determine the direction Θi

dircorresponding to the maximum of S at radius
ri. Finally the selected direction Θdir is the median of the directions Θi

dir.
The input scalar field considered by Brokken [1999] was the S = ∆R/R

Rc
, where ∆R/R

is the void growth according to the Rice & Tracey criterion and Rc is the critical void
growth. More precisely, the authors used the nodal extrapolation Sn of this field S, originally
computed at the integration points (with 0 ≤ Sn ≤ 1) which is evaluated at several radii
ri = 1/2∆L, 3/4∆L, 5/4∆L, 3/2∆L (see figure 2.18).

Figure 2.18: Schematic representation for of the multiple polar grid search for the maximum
from [Brokken et al., 1998]

This method was used in the case of nonlocal coupled damage models in [Mediavilla
Varas, 2005; Mediavilla et al., 2006a,a] in 2D simulations and then extended to 3D simulation
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in [Javani et al., 2014, 2016]. The input scalar variable used is the nonlocal damage variable
ωp.In the case of nonlocal models, if the damage variable is used as the nonlocal variable,
this crack path tracking algorithm is the most efficient with respect to computational cost for
the following reasons: (i) the input nodal scalar field is obtained directly from the nonlocal
computation, (ii) the polar grid search is performed locally around the crack tip (in 2D) or
the crack front (in 3D), (iii) the crack path is also expressed explicitly by the xic positions.
However, since the local maximum is sought by the polar grid method, only one Θdir direction
is obtained. Therefore, in the presence of branches, only the branch where the damage is
maximum will be found. Moreover, the resulting crack path depends on the correct choice of
the evaluation radii ∆ri as it is the case for the Marching ridge algorithm presented earlier.

(v) Maximum of projection onto a geometrical form This approach is quite similar to
the local maximum search over different radii. The principle is to search for the maximum
of the projection of the considered scalar field onto a line. As with any method dealing
witg a scalar field, there is a smoothing operation involved before the final evaluation.
Smoothing can be performed, for example, by using Bézier curves [Seabra et al., 2013],
or a convolution product between the scalar field and a Gaussian function [Bottoni et al.,
2015]. This smoothing operation is done to obtain a field rather independent of the mesh. As
far as the projection is concerned, it can be done on a straight line [Bottoni et al., 2015] or
a portion of circle [Seabra et al., 2013]. The position of the geometric shape is determined
as the projection of current crack front considering the vector −−−→xi−1xi at a given distance ∆L
(see figure 2.20). From the smoothed field projected on the geometrical shape, the maximum
of the latter is the next point on crack–path. Then, the crack path is determined explicitly in
a step-by-step manner (see figure 2.19).

Figure 2.19: Scheme of the search by projection on the orthogonal line to the crack path
procedure from [Brokken et al., 1998]

Figure 2.20: Scheme of the search by projection on a circle around the the crack path
procedure from [Seabra et al., 2013]
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This approach was presented and validated only in 2D simulations. The proposed
approach benefits from the same computational cost efficiency as the previous method. But
for the same reason, no branching detection is possible.

(vi) A medial-axis-based approach This approach was introduced in [Tamayo-Mas and
Rodrı́guez-Ferran, 2015] to track cracks in a regularized medium. The algorithm takes as
input a smooth scalar damage field, and considers the path of the crack to be the medial-axis
(or the medial surface in 3D) of the localization band. The medial-axis is constructed as the
centers of circles/spheres that are bi-tangential to the a given iso-level surface of damage (see
figure 2.21). This approach can track cracks in a 2D or 3D simulation and can also capture
branching as shown in [Tamayo-Mas and Rodrı́guez-Ferran, 2015; Tamayo-Mas et al., 2019].

Figure 2.21: Scheme of the median-axis-search from [Tamayo-Mas and Rodrı́guez-Ferran,
2015]

However, this approach is not able to deal with crack initiation away from any boundary.
Besides, it suppose that the regularized damage field is symmetric with respect to the crack
path. Which is not necessarily the case if there is some change during loading in the
propagation direction.

3.2.3 Initiation of cracks methods

In the previous section dealing with direction criteria the methods were explained assuming
the existence of a pre-crack or if the structure is crack free, assuming the knowledge of at
least a point on the future crack surface.

The problem of crack initiation is often simplified in the literature. Most authors consider
only the simulation of crack initiation at the structure’s surface [Mediavilla Varas, 2005;
Seabra et al., 2013]. However, only few authors have addressed crack initiation inside
structure. The problem is even more challenging in 3D where the first crack increment is
a surface whereas it is simply a point in 2D.

In this section, the different crack initiation methods are briefly presented keeping in mind
these difficulties.

(i) Initiation of 2D crack using maximum search or the marching ridges algorithm
When damage is not coupled with the constitutive behavior, it is possible to use material
bifurcation as a criterion to define in which element a crack should initiate. Another option is
to search for local maxima on a scalar field to define a starting point for the crack path as in
[Brokken, 1999; Mediavilla Varas, 2005; Feld-Payet, 2010; Bottoni et al., 2015; Seabra et al.,
2013]. Let us note that depending on the smoothing technique used to construct the input
scalar field, this starting point can either be a node in the mesh or any point in the structure.

Let us note that it is usual to take some measure to avoid cracks initiation in the wake
of already existing cracks. A simple solution allow initation of only a single crack in each
separate localization band. To distinguish different localization bands, a threshold should be
defined and the smoothed input scalar field can be constructed only locally for each cluster
of points exceeding this specific threshold.
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(ii) Initiation in3D with implicit definition of the crack When considering a nodal
scalar field where a specific value of this field indicates the presence of the crack (2.90 2.93),
the crack surface corresponding to crack initiation can be determined in quite a similar way
as for crack propagation. Indeed a scalar field is always evaluated at the element level to find
points on the edges of the element that coincide with the crack path. A crack is initiated if
three different edges of the element are intersected by the surface representing the crack path,
thus defining the crack surface of the first crack ([Oliver et al., 2002] [Oliver et al., 2014]).

(iii) Initiation of 3D crack using a centered rectangle in a cluster of damaged points
This method was described in [Javani et al., 2016] to initiate cracks in the outer surface of the
mesh or in the body of the mesh. The initiated 3D crack is modeled by a rectangle placed in a
group of nodes that have exceeded the critical damage value fcrit. The center of the rectangle
is computed as a weighted average of the damaged points {xicrit ∈ Ω / f(xic) > fcrit} (where
f is the scalar damage field). In the case of a near-surface crack, the weights are calculated
as the inverse of the distance to the external surface multiplied by the damage values, so
that the center will be the closest point to the external surface. The plane of the rectangle
is the median plane through the cluster of damaged points. The dimensions of the rectangle
are calculated to obtain the minimum rectangle containing all orthogonal projections of the
damaged points.

Figure 2.22: 3D crack initiation algorithm from [Javani et al., 2016]

Let us note that the number of damaged points must be carefully chosen to obtain a
rectangle with the appropriate normal.

(iv) Initiation of 3D crack using Marching ridges algorithm Another possible
approach is to use the same initiation and propagation algorithm as proposed in [Feld-Payet
et al., 2015]. In 3D, the Marching ridge algorithm starts the search from a discretized line.
For each segment of the line, its next projection is computed using the 2D Marching ridge
algorithm in the plane orthogonal to the segment. Thus, the Marching ridge algorithm in 3D
only needs one segment to initiate the crack.

Figure 2.23: 3D crack initiation scheme using the marching ridges in 3 orthogonal planes
from [Feld-Payet et al., 2015]

In order to determine the first segment for crack initiation, the global maximum of the
smoothed scalar field is first determined. Then, three orthogonal planes centered on the
corresponding point denoted x0 and representing the global reference frame are defined(see
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2.23). A search with the 2D Marching ridges algorithm is performed in each of these planes,
to provide a maximum of the three intersection lines with the damage crest surface. The
longest intersection is then selected and a new 2D search in an orthogonal plane can be
performed with the Marching ridges algorithm. This search enables to determine the second
direction to build a rectangular shaped crack increment.

Using this approach, a unified method for initiation and propagation is proposed.
However, the computational cost of the three–plane search is not negligible. Especially if
it is used during a computation where the algorithm is called at the end of each converged
load increment.

3.3 Insertion criteria
The purpose of an insertion criterion is to determine the right time for the transition from
continuous to discontinuous modeling. The insertion criterion depends on the nature of the
constitutive law. In particular, in the case where a coupled local damage model is used,
the insertion criterion must select the insertion time in order to avoid the loss of solution
uniqueness that occurs with material softening. However, in the case of a nonlocal damage
model, the uniqueness of the solution is guaranteed by the nonlocal treatment. The insertion
criterion must then allow the crack to be inserted, unless a cohesive zone model is used.

Furthermore, the evaluation of the insertion criterion also depends on the chosen
representation of the crack. In the case where the representation is mesh dependent, the
evaluation of the insertion criterion can be performed at the integration points for the kill
element method, or at the nodes of the mesh for inter-element cracking method. However,
in the case of a mesh-independent representation of the calculation (e.g. intra-elemental
remeshing cracking or X-FEM), the input field of the criterion should be related to points on
the crack surface.

(i) Stability and bifurcation criteria In case of coupled local damage model, this
criterion is usually used with the global method or the crack-path field method. This criterion
select the moment of insertion of the crack in an element Ωe is usually allowed if these two
conditions are met:

1. The bifurcation criterion 2.85 is validated within Ωe.

2. The crack surface from the discontinuity localization method crosses the considered
element Ωe.

Representation of the crack is updated whenever these conditions are me in a new
element. This is why, this method is usually used with enrichment method for crack.

(ii) Critical value criterion When considering a spacial field and a critical value,
the crack increment is inserted when the chosen field reaches the critical value in the
corresponding area.

A quantity as the equivalent strain can be used as an input of the insertion criterion [Jirásek
and Zimmermann, 2001]. This choice is interesting because the critical equivalent strain
could eventually be determined experimentally using image correlation if crack initiation
and propagation is properly detected.

In case where a damage variable is available in the material model, it can be chosen as
the input field of the insertion criterion.

(i) For a normalized damage variable in the sense of Kachanov, D = 1 represents a
completely damaged material and D = 0 represents intact material.

1. If the discrete crack is inserted directly without a cohesive band, the natural critical
value should be fcrit = 1. Practically for numerical reasons, this value is approximated
fcrit ∈ {0.9, 0.99, 0.999}, and the higher critical value, the later the insertion is
authorized by th insertion criterion as reported in [Simone et al., 2003].

2. If a cohesive band is used in order to dissipate the remaining energy, the critical value
is chosen depending on the identification parameters for the cohesive model. Therefore
lower values of fcrit can be used.



4. Mesh adaption for an efficient continuous–discontinuous approach 53

(ii) In case of micro-mechanical based models as the GTN, the damage variable is the
porosity in the material. For these models the critical porosity is determined as the porosity
corresponding to the zero effective stress. For the GTN model: f ?crit ≈ 1/q1.

(iii) Dimensions of the crack increment For crack representation methods that proceed
on an element basis, the dimension of the crack element is not controlled by the used,
but directly by the verification of the insertion criterion. However, when inserting crack
increments larger than one element, the user can choose the minimal size of the crack
increment to be inserted. The dimensions of the crack increment should be carefully selected
for the following reasons: if a large crack increment is chosen, the crack insertion will be
delayed, and therefore the softened elements in the crack tips will be overstretched which may
affect the convergence rate. In the opposite case, if a too small crack increment is inserted,
the remeshing will be triggered too often and the calculation cost will be higher. This is why,
a minimal crack–increment has been imposed in Feld-Payet et al. [2015]; Mediavilla Varas
[2005]; Javani et al. [2016].

3.4 Conclusion
One of the main objectives of this thesis is to allow the use of a nonlocal model to guide the
initiation and the propagation automatically over long distances. In this case, a fine mesh
along all possible crack paths is required, and thus the propagation distances are limited by
the size of the mesh i.e. limited to the number of degrees of freedom. The selected method
based on a continuous–discontinuous transition must be adapted to this problem.

First, the crack representation adopted for the rest of this thesis is inter–element cracking
with mesh adaption. This choice is based on three considerations: (i) inter–element cracking
provides the best representation of the crack lips while being mesh independent, (ii) mesh
adaption avoids elements distortion due to large plastic deformation (especially ahead of
the crack front), (iii) while ensuring a good quality/cost ratio by enabling both to refine the
elements in the process zone before crack insertion to properly capture the nonlocal damage
evolution and then to increase the element size after crack opening.

Secondly, for the discontinuity localization method, the Marching ridges algorithm, is
selected to allow a robust detection of cracks, potentially initiating crack completly inside the
structure in 2D and 3D. Finally, as the chosen continuous damage model is a nonlocal GTN
model, the natural choice for the insertion criterion is the critical porosity criterion. With this
choice, crack insertion is necessarily performed within zones that transmit almost no forces.

A remaining challenge for this thesis is to define the optimal dimensions of the crack
increment, in particular in 3D. This choice must take into account both the remeshing
frequency and the convergence rate after each remeshing.

In the following part, the different elements required for automatic mesh adaption, even
without crack insertion are tackled.

4 Mesh adaption for an efficient continuous–discontinuous
approach

4.1 Introduction
While nonlocal models enable to solve the mesh dependence problem for modeling ductile
cracks, they however require a fine mesh along the localization band, at least on the areas
where degradation is evolving. For crack propagating over long distances, using a fine mesh
throughout the structure is not possible, otherwise the computational size may become too
large.

In order to keep a reasonable computational cost, this work proposes to resort to an
automatic mesh procedure to provide an optimal mesh characterized by: (i) a fine mesh in
the active localization band (i.e. near the area where to the future crack increment should be
inserted), (ii) a coarser mesh in the areas far from the crack path or in the already cracked
areas. In order to maintain a good compromise between computational cost and accuracy, a
possible solution is to couple the remeshing procedure with a discretization error estimator.



54 Chapter 2. Bibliography: Simulation of ductile failure

In the first part of this section, the most commonly used discretization error estimators are
recalled, then a remeshing procedure based on these error estimators is presented. Finally,
the transfer operators that are necessary whenever there is a change in discretization are also
presented.

4.2 Discretization error estimators
A discretization error estimator informs on the capability of a mesh to represent the unknown
solution.

This can be done prior to the computation so the error estimator is called “a priori error
estimator“ of after to the computation so the error estimator is called “a posteriori error
estimator“ [Ainsworth, 1997].

Only a posteriori error estimator will be presented, because the priori error estimators
cannot be implemented in FEM software, in most cases (theses estimators use incalculable
constants to bound the exact error ).

A posteriori error estimators can be regrouped in three classes:
- Error estimators based on the equilibrium defaults (see ??) in the finite element solution.
- Error estimators by measuring the error between a constructed admissible field and the

field computed using the constitutive equation,
- Error estimators built on the irregularity defects of the finite element solution,
At first, in order to introduce briefly discretization error estimator for each category, a

simple static mechanical problem on an elastic linear solid will be introduced. The adaptation
to non-linear problem will then be presented for the chosen discretization error estimator.

(i) Discretization error The discretization error resulting from a finite element
approximated displacement solution, denoted ~uh, to the standard mechanical problem is
defined as: (see [Ainsworth, 1997])

~e = ~u− ~uh (2.95)

where ~u stands for the exact solution. The same definition can be written in terms of the
approximated stress σh:

eσ = σ − σh (2.96)

The discretization error is generally measured thanks to the energetic norm, which has a
strong physical meaning and is equivalent to other norms like the L2 norm:

ηex = ||~e||H,Ω = [
∫

Ω ε(~e) : H : ε(~e)dΩ]
1
2

ηex,σ = ||eσ||H−1,Ω = ||σ − σh||H−1,Ω = [
∫

Ω(σ − σh) : (H−1 : (σ − σh))dΩ]
1
2

(2.97)

where ηex and ηex,σ are respectively, the exact global measure of the error on the displacement
and the stress field. H is the fourth order elasticity tensor and Ω ∈ Rn is the domain of the
solid structure

A local form of the exact measure of error can be expressed within each element of the
mesh as shown bellow. This local error is necessary to all adaptive procedures.

Within each element EK of the mesh, an elementary contribution to the global error ηex

can be defined as:

ηexEk
= ||~e||H,Ek

=
[∫
Ek

ε(~e) : H : ε(~e)dΩ
] 1

2
avec

∑
Ek∈Ωh

||~e||2H,Ek
= ||~e||2H,Ωh

(2.98)

(ii) Quality indicator of discretization error estimators Since the exact solution is
rarely known, the same goes for the exact error. The exact error ηex is only evaluated in
some benchmark test cases, where the analytical solution is known, to quantify the efficiency
of the estimation. However, ηexin most cases is out of reach. In practice, a solution on a more
finer mesh ~ufinh can be used to approach ηex. But the aim of the different error estimators is
to avoid such an expensive computation while providing the best approximation possible of
the exact error. In order to compare different discretization error estimators, some indicator
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have been proposed in the literature. The most popular and straightforward indicator is the
efficiency index, which is defined as:

γ = η

ηex
(2.99)

where η is an estimation of the exact error.
The closer the efficiency index to 1, the more precise the estimator is (i.e γ ≈ 1 is

equivalent to η ≈ ηex). If the efficiency index γ > 1, the estimator is said to be reliable
because it’s provides an upper bound to the exact error.

Other properties of an error estimator are taken into account to evaluate its performance
as, the cost in terms of computation, the complexity/intrusion–level in terms of its
implementation in FEM software, etc.

4.2.1 Residual discretization error estimators

This category of error estimators introduced initially by [I.Babuška, 1978], exploits the lack
of equilibrium in the FEM approached solutionσh to evaluate the error due the discretization.
This type of error estimator exploits the fact that ~e = ~u − ~uh is a solution to the mechanical
problem. If this quantity is injected in the weak form of the mechanical problem, the
following equation is obtained:∫

Ω
σ(~e) : εdΩ =

∑
E∈Ωh

∫
ΩE

rE~v
?dE +

∑
Γ∈∂ΩE

∫
ΩE

rΓ~v
?dΓ (2.100)

where rE is the residual within each element E of the mesh under the volume forces ~F , and
can be expressed by:

rE = div(σh|E) + ~F|E (2.101)

and rΓ is the residual on at the interface of two adjacent elements E and E
′ , and can be

expressed by:

rΓ =


σh|E · ~nE + σh|E′ · ~nE′ if Γ = ∂E ∩ ∂E ′
σh|E · ~n− ~Fd if Γ ∈ ∂fΩ
0 if Γ ∈ ∂uΩ

(2.102)

An upper bound of the discretization error can then be estimated as(see [Bank, 1985]):

||~e||H,Ω ≤ η = C
 ∑
E∈Ω

h2
E||rE||2L2(E) +

∑
Γ∈∂Ω

hΓ||rΓ||L2(Γ)

 1
2

(2.103)

where hE and hΓ are respectively the minimal element size of volume elements and boundary
elements.

All the terms of the second member of 2.103 are explicitly computable but the constant
C. This constant is difficult to evaluate and in most cases mesh dependent. From this global
estimator, local contribution of error ηE can be derived for the adaptive procedure.

The estimator defined in 2.103 is called the explicit residual error estimator. Implicit
versions also exist, such, as the flux free residual estimator [Dı́ez et al., 2004] and the
equilibrated residual estimator [Ainsworth et al., 2007]. They use the resolution of the
problem 2.100 locally on elements or patches of elements.

4.2.2 Error estimators using the constitutive equation

This category of error estimator was introduced initially by [Ladeveze and Leguillon, 1983].
The error is defined by the energetic norm of the difference between a statically admissible
field τ and the computed kinematically admissible ~uh field:

erdc(~uh, τ ) = ||τ −H : ε(~uh)||H−1,Ω (2.104)

This choice is due to the fact that the constitutive equation can be considered as the less
reliable.

The most interesting asset brought by this error estimator is the reliability of the
estimation. For two admissible fields, an upper bound is guaranteed for ηex:
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ηex = ||~u− ~uh||H,Ω ≤ erdc(~̂uh, σ̂h) (2.105)

where σ̂h is a statically admissible field to be constructed from σh.
The construction of an admissible stress field σ̂h can be done with different more or less

complex methods [Kempeneers Martinj, 2009; Parret-Fréaud, 2011].
Overall this category of estimators is considered as the most reliable, but the high cost

of the construction of an admissible stress field is not negligible and the implementation is
intrusive in a FEM software.

4.2.3 Gradient recovery discretization error estimators

Recovery procedures in error estimation were introduced by [Zienkiewicz and Zhu, 1987].
These procedures are widely popular because of their simplicity in terms of concept and also
in implementation. They consist in approximating the discretization error by the difference
between the finite element solution σh and the so-called recovered solution σ∗, which is
constructed to be a better approximation of the exact solution then σh.

||e∗,σ|| = ||σ∗ − σh||H−1,Ω (2.106)

In homogeneous media, let us recall that the approximated stress field σh presents
some discontinuities from an element of the mesh to another, while the exact stress field
is continuous in homogeneous media. The recover field is constructed to be continuous, thus
closer to the exact stress field σ than σh. The construction of the continuous field σ∗ is based
on the concept of super–convergent points, and is explained in the next section. Note that in
case of heterogeneous media, this type of error estimator is not accurate because the exact
stress tensor can be discontinuous.1

(i) Super-convergence and optimal recovery strategy The proof of existence of
particular points in the mesh where stress and displacement fields are most accurate was
discussed in [Grätsch and Bathe, 2005]. In general, the best sampling points for displacement
are the nodes of the mesh. For the gradient (like stress) field there are optimal points inside
the elements (often, the integration points).

Let consider a typical second order equation for which the exact solution is assumed to
be known. In figure 2.24, a comparison between FEM solution quadratic 1D element and the
exact solution is displayed. The approximate solution is exact on the nodes of the elements.
And for the gradient field (which can represent the strain or the stress), the approximate
solution is exact on points inside the element. In the present case, these locations are Gauss
integration points for 1D quadratic element.

The concept of super-convergent point has been generalized to 2D elements. For
quadrangular elements, on the super-convergent points, the error decreases quicker than any
other location within the element (the error is of the order of o(hp+1)) 2. On the other hand, for
the triangular elements, it has been shown that the super-converging points do not exist, but
one can refer to the table 2.25 for optimal sampling points and their degree of convergence.

The information available in 2.25 is not valid for distorted elements, the full study is
available in [Zienkiewicz and Zhu, 1995].

(ii) Superconvergent patch recovery (SPR) The SPR method and its variants use the
superconvergent points to construct the smoothed field σ∗. Based on the SPR method, the
ZZ2 discretization error estimator was introduced in [Zienkiewicz and Zhu, 1992].

In practice, the smoothed field σ∗ is constructed by patch (see 2.26). Each component of
the stress field is approximated on a patch by a polynomial function with the same degree as

1In case of heterogeneous media, σ∗ can be constructed for each homogeneous part of the structure as will
be described in the next section, while adding a constraint: imposing that the normal stress across the interfaces
between different materials remain continuous [El Ouazani Tuhami et al., 2018].

2p designates the degree of the mesh shape functions and h the fineness of the mesh
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Figure 2.24: (a) Visualization of the optimal sampling points of a function (b) and its gradient
for 1D (quadratic ) (from [Zienkiewicz and Taylor, 2000]).

Figure 2.25: Order of super–converging sampling points for different C0 elements, (from
[Zienkiewicz and Taylor, 2000])

mesh shape functions:

σ̂∗i|Patch = P~a = [1, x, y, . . . , yp]~a
~a = [ a1, a2, . . . , am]T (2.107)

The coefficients ai of the polynomial function are solution of the following minimization
problem:

Π = ∑n
k=1 [σh,i(xk, yk)− Pk~a]2

Pk = P(xk, yk)
(2.108)
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Figure 2.26: super-convergent point on patches; sampling point for the smoothed field (from
[Zienkiewicz and Taylor, 2000])

where (xk, yk) are coordinate of the superconvergent points of the patch. The coefficients ai
are immediately obtained:

~a =
[
n∑
k=1

(PtkPk)
]−1

·
n∑
k=1

Ptkσ̂h,i(xk, yk) (2.109)

The polynomial function is identified for each patch using 2.109. For each vertex
node, the smoothed approximation is computed directly using the polynomial function. In
the case of quadratic meshes, the value of the field on the middle nodes is an average
value of contributions computed from the patches sharing this node. The final smoothed
approximation is obtained by using these nodal values in combination with the displacement
shape functions.

The smoothed field σ∗ constructed using the SPR procedure can be used to compute an
error estimator, the so called ZZ2 error estimator:

||e∗,zz2|| = ||σ∗SPR − σh||H−1,Ω =
∑

ΩE

||e∗,zz2E ||2
 (2.110)

(iii) Adaptation to non linear problems An extension of the ZZ2 discretization error
estimator to non-linear problems was proposed by [Boroomand and Zienkiewicz, 1999]. An
incremental measure of error adapted for non linear problem has been defined:

||e∗,incr|| =
[∫

Ω
(σ∗ − σh).(∆ε∗ −∆εh)dΩ

] 1
2

=
∑

ΩE

||e∗,incrE ||2
 1

2

(2.111)

In order to compute this incremental error estimator, two SPR recoveries are needed:
a first one for the stress field σ and a second one for the increment of strain field ∆ε.
According to [Boroomand and Zienkiewicz, 1999], this error estimator is also valid in finite
strain framework.

The ZZ2 incremental error estimator can be compared to the global energy, computed
using the smoothed field, in order to obtain a relative version of the error estimator:

η∗,incr = ||e
∗,incr||
E∗

Where E∗ =
[∫

Ω
σ∗.∆ε∗dΩ

] 1
2

(2.112)

This relative version is essential for adaptive procedures.
Since the principle of recovery procedure can be applied to any integration point field,

tensor or scalar, a ZZ2 incremental error estimation can be applied to a scalar field f was
proposed by [Pires et al., 2004; Feld-Payet et al., 2011]:
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||e∗,incr scalar|| =
[∫

Ω
(f ∗ − fh).(∆f ∗ −∆fh)dΩ

] 1
2

=
∑

ΩE

||e∗,incr scalarE ||2
 1

2

(2.113)

η∗, incr scalar = ||e
∗,incr scalar||
E∗

where E∗ =
[∫

Ω
f ∗.∆f ∗dΩ

] 1
2

(2.114)

4.2.4 Conclusion

The gradient recovery discretization error estimators represents a good compromise for the
mesh adaption purposes, as evidenced in Feld-Payet [2010]. Indeed, they involve a relatively
small computational cost. And they can easily be extended to non–linear mechanical problem
and can be either used for scalar or tensor fields. In our case of the nonlocal GTN model,
the porosity or cumulative plasticity variables can be used in order to detect the high gradient
areas i.e., the localization bands. Besides, since the discretization error uses the increment
of a scalar field and damage hardly evolves in the already cracked areas or far from the crack
tip, the error estimated by the incremental estimator should be small and therefore the mesh
in these areas should be relatively coarse, once the error estimation is combined with a mesh
an optimality criterion.

4.3 Mesh adaption procedure
An adaptive procedure should allow to ensures the respect of the desired precision during the
computation with minimal cost.

For this reason driving the adaptive procedure using a discretization error was chosen. To
achieve this goal, both the global and local error estimations are used to generate an optimal
mesh when the precision is unsatisfactory. Different criteria are presented in this section. For
a more complete review see [Dı́ez and Huerta, 1999].

4.3.1 Global criterion for mesh adaption

The global criterion consists in verifying that the global relative estimated error η do not
exceed the threshold defined by the user ε0, other wise a mesh adaption is triggered. The
criterion can be expressed by the following inequality:

η ≤ ε0 (2.115)

4.3.2 Construction of a map size using the discretization error

The common motivation behind the local criteria is: how to build an ”optimal mesh” based
on a distribution of error which should be, in some sens, equally distributed and/or should
enable to obtain the minimal elements number for the new mesh.

The different criteria presented bellow where constructed based on these hypotheses:
1- The mechanical problem is linear.
2- The field used to measure the error is regular enough so that the convergence of the

error only depends on the type of the finite element:

η ≈ O(hq)
ηEk
≈ O(hq)mes(ΩE) 1

2 = O(hq+d/2) (2.116)

where q is the order of the shape function used in the mesh, and d is the dimension of the
space.

For non-linear simulation, the convergence of the incremental ZZ2 error estimator is
different from the convergence rate for linear problems (in 2.116). According to [Boroomand
and Zienkiewicz, 1999], the actual rate of convergence is:

η = O(hq) +O(hq/2) (2.117)
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In practice, this modification is not taken into account for the construction of the local
criterion.

All the local criteria try to determine the elementary size factor between the current and
the new mesh sizes:

rE = h∗E
hE

(2.118)

where hE and h∗E are respectively the element size on the current and the next mesh, for a
considered elementΩE . Let us note that in the following all the quantities on the new mesh
are all annotated with an asterisk (i.e η∗, η∗E, h∗E).

(i) Uniform repartition of the error on the current mesh There are different ways if
enforcing the equal distribution of the global error, or more exactly of the square of the global
error. For example, [Oñate and Castro, 1991] have proposed to formulate the local condition
on the current mesh:

η2
E = η2

N
where N is the number of elements in the current mesh (2.119)

Writing equation 2.116 for the current and the new meshes, and using the hypothesis in
2.119, the elementary size factor can be written as:

rE = η
2

2q+d
− 1

q ε
1/q
0(

ηE ·
√
N
) 2

2q+d

(2.120)

A simplified version is introduced in by [Boroomand and Zienkiewicz, 1999] coupled with
the incremental ZZ2 error estimator:

rE =
(

ε0

ηE
√
N

)1/q

(2.121)

(ii) Uniform repartition of the error on the new mesh [Ladevèze and Pelle, 2001]
chooses to express the equal distribution of error on the new mesh:

(η∗)2
E = (η∗)2

N∗
where N∗ is the number of elements in the new mesh (2.122)

In order to use the previous equation, an estimate for the new mesh size N∗ is needed:

N∗ =
∑
ΩE

1
rdE

(2.123)

Following the same method to construct the previous criterion 2.120, the elementary size
factor can be written as:

rE = ε
1/q
0

η
2

2q+d

E

[∑
ΩE
η

2d
d+2q

E

]1/2q (2.124)

(iii) Uniform repartition of the specific error on the current mesh [Bugeda and Oliver,
1993] proposed to impose a uniform distribution of error divided by the volume of the
element:

ηE
mes(ΩE) = η

mes(Ω) (2.125)

The elementary size factor can directly be expressed as:

rE =
[
ε0mes(ΩE)
ηEmes(ΩE)

]1/q

(2.126)
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(iv) Minimal element number of the mesh This criterion proposes to minimize the
number of elements in the new mesh (see [Li and Bettess, 1995])):

L(rEi
, λ) =

∑
ΩE

1
rdE

+ λ

∑
ΩE

r2q
E η

2
E − ε0

 (2.127)

The solution of this minimization can be written as:

rE = ε
1/q
0

η
2

2q+d

E

[∑
ΩE
η

2d
d+2q

E

]1/2q (2.128)

This elementary factor is the same as the one obtain with the hypothesis of uniform
elementary error distribution on the new mesh.

4.3.3 Conclusion

In the chosen adaptive procedure, the main goal is to obtain an optimal mesh in terms of
precision and cost. According to [Dı́ez and Huerta, 1999], the criterion based on uniform
repartition of the error on the current mesh gives meshes where the target error is respected
with acceptable computation cost, but the new mesh has the most significant element’s
number. Besides, the local criterion aiming for the minimal element’s number and the
criterion based on the uniform repartition of error on the new mesh, both lead to a new mesh
with the least number of elements and a measured error on the new mesh very close to the
target precision.

The chosen criterion will then be the one minimizing the size of the mesh and resulting
in a uniform distribution of the error on the new mesh:

rE = ε
1/q
0

η
2

2q+d

E

[∑
ΩE
η

2d
d+2q

E

]1/2q (2.129)

Note: With the chosen local criterion, if the estimated error is too low, then the elementary
size factor rE will diverge. In order to avoid this artifact, a maximum element size is imposed
during the remeshing process.

4.4 Transfer operator
Transfer operators are necessary each time there is a change of discretization. Both nodal
data (displacement, nonlocal variables, etc) and integration point data (stress, strain, internal
variables) should be transferred onto the new mesh. In order to minimize the perturbation
associated with the transfer operation on the computation after remeshing, the transfer field
should satisfy the same constrains as the original fields, i.e respecting the local equilibrium,
boundary conditions and transfer should preserve the localization band width. In practice,
a transfer operator that satisfies all these constrains does not exist and an inevitable error of
transfer is always present. Therefore compromises on the choice of the transfer operator have
to be made depending on the type of problem.

In this section the most used transfer operators are briefly presented.

4.4.1 Nodal field transfer operator

For nodal fields, the transfer operator is straightforward. First, each node of the new mesh,
having ~Xnew as coordinates, is localized on the old mesh3, then the shape functions φoldi of
the old mesh are used to compute the value of the field f on the new mesh:

f(Xnew) =
∑
i

φoldi (Xnew).f(Xi) (2.130)

where ~Xi is the coordinate of the node i of the corresponding element. Note: For computation
including cracks, a special element locator’s is needed for nodes on the closed crack lip.

3i.e. one must determine the element of the old mesh containing the considered node
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4.4.2 Integration point data transfer operator

(i) Nearest Integration point For each integration point (IP) on the new mesh, the closest
IP on the old mesh is searched, and the corresponding value of the field is transferred:
f(X ip

new) = f(Xclosest ip
old ).

This transfer operator is valid if the mesh does not change drastically before and after the
remeshing procedure. Due to its simplicity, this operator has a negligible computation cost,
and preserve high gradient fields after their transfer [Simone et al., 2003].

(ii) Integration point transfer using extrapolation to nodes This transfer operation can
be divided into three steps: (i) extrapolation of data from the integration points of the old
mesh to the nodes of the old mesh [Lee and Bathe, 1994; Perić et al., 1996; Mediavilla Varas,
2005], (ii) classical nodal transfer from the old mesh to the new mesh. (iii) interpolation from
nodes to integration points of the new mesh using the shape functions.

This method causes a significant diffusion compared to the nearest integration point
transfer as reported in [Perić et al., 1996]. This diffusion is not desirable especially for
damage simulation where the size of the localization band needs to be preserved.

(iii) Nearest integration point with patch smoothing procedure This technique was
introduced by [Boroomand and Zienkiewicz, 1999]. The first step consists in determining
the element Eold

k of the old mesh containing the considered point IP new. For each node j of
the element Eold

k , a patch Pj can be constructed (the elements sharing the considered node).
Let us not f , the field to be transferred. On each patch, a smoothed f ∗ is computed using

a weighted least square fit with a polynomial function.
The value at the new IP is computed as an weighted average of the nodal smoothed field

computed from each patch P:

f(XIPnew) =
∑
j ωjf

∗
j∑

j ωj
(2.131)

where ωj designates the weight associated with the node j.
This type of methods suffer from diffusion of the field due the averaging step. The

presented method using smoothing by patch, is considered in literature, the best method in
terms of minimizing the diffusion problem due to the use of local patches.

(iv) Moving least square This method was introduced in Villon et al. [2002] to transfer
the integration point fields based on approaching the discrete IP field with a continuous field
which is defined locally as polynomial function of order p. In other word, the scalar IP field
f (or each scalar component of an IP tensor field) is written in the new mesh at an IP XIPnew

as a polynomial function P and its parameters a as:

f(XIPnew) = P Ta (2.132)

The parameters ~a of the polynomial function are then obtained by minimizing the
following quantity:

JXIP new (a) = 1
2

∑
i∈V (XIP new )

W (Xi, XIPnew)||P T (Xi −XIPnew
i

)a− f(Xi)||2 (2.133)

where V (XIPnew) represent the vicinity of an IP XIP , and W (Xi, XIPnew) correspond to
a weight function defined in the vicinity V . This method is widely used Brancherie et al.
[2005]; Feld-Payet [2010] due to its performance (the computation of the new field is done
locally), and With the right choice of the size of the vicinity V for an integration point, the
diffusion problem of high gradient field could be limited Patzák and Jirásek [2004].

4.4.3 Choice of transfer operator

For the transfer operator, there is no perfect choice valid for any type of problem. The choice
of the operator may depend on the constitutive equations. In particular, in case of coupled
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damage models for which the localization band is an important object of study, the transfer
operator should priorities the limitation of diffusion problems. The nearest integration point
operator and its variation are valid candidates. However, the relevance of these method is
only limited to cases where the mesh sizes do not change significantly.This is not the case
with mesh adaption procedures based on error estimation. In this case of procedures, a more
elaborate transfer operator as the moving least square per patch is more adapted, the patch
size should be tuned in order to limit diffusion problems in case of localizing variables.

In this thesis work, different transfer operators are used depending on the remeshing
procedure

4.5 Reequilibrium
4.5.1 Context

The transfer operation needed after mesh adaption creates inevitable transfer errors: neither
the global equilibrium nor the constitutive equations are satisfied. Also as the transfer of
nodal and integration point variables is independent the transferred strain does correspond
to the nodal displacement. These in consistencies degrade the rate of convergence of after
remeshing, or can result in a divergence of the resolution algorithm if the transfer creates a
significant error.

In order to limit this problem, some measures are needed to facilitate the convergence of
the resolution algorithms.

4.5.2 Load increment division

In order to facilitate convergence after remeshing, [Boroomand and Zienkiewicz, 1999]
proposed to subdivide the load increment until the convergence is obtained. This technique
compatible with most FEM resolution algorithms. However, a significant computational time
may still be needed, especially with crack increment insertion, in order to find the right
load increment that enables convergence. Indeed, for highly non linear problems, this load
subdivision may lead to really small increment, thus the convergence rate after remeshing is
greatly impacted.

In practice, this method can be used coupled with other more elaborate reequilibrium
methods.

4.5.3 Local reequilibrium

In order to limit the transfer error, a minimal number of variable should be transferred
[Camacho and Ortiz, 1997; Mediavilla Varas, 2005; Boroomand and Zienkiewicz, 1999;
Javani et al., 2014] to compute the remaining ones on the new mesh. With this strategy,
the computed variable satisfy at least local relations such as the constitutive equations. In
theory The rate of convergence should be improved because the transfer errors are reduced.
However, the authors proposing this method did not provide a thorough analysis of this
reequilibrium method and its improvement on the rate of convergence.

4.5.4 Elastic step

Another approach is based on an additional elastic step in order to reestablish the global
equilibrium [Mediavilla Varas, 2005]. The convergence of this step is somewhat easier than
the normal step where plastic and damage variable can evolve. However, from the author
experience, although this step may help the rate of convergence after mesh adaption, it does
not guarantee the convergence of the next step.

4.5.5 Temporary boundary conditions

Another method consist in applying the force associated with th displacement field and
gradually dissipating it over a time increment until the structure returns to equilibrium
[Boroomand and Zienkiewicz, 1999; Javanmardi and Maheri, 2019]. This strategy has not
been fully studied. From the author experience, in presence of a long crack in the computation
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mesh and using this reequilibrium strategy, the resolution algorithm may get stuck in the
reequilibrium step because of often divergences and load increment subdivisions.

4.5.6 Comments

In order to benefit from the speed up of the proposed remeshing strategy coupled with
the error estimator, an efficient reequilibrium strategy is needed. Because, in the absence
of an additional correction step(s) and using only the simple load increment division, all
the computation time gained from the optimized mesh can be wasted in too small load
increments. All the presented method in literature have only been used in simple benchmark
simulations.

5 Summary
Continuous damage models are widely used in the literature to simulate ductile failure with
the local approach. These models can be either be qualified as uncoupled damage models, so
that the material model is not affected by the evolution of the damage indicator, or qualified
as coupled damage models, so that the material behavior is affected by the damage evolution.
Coupled damage models are more realistic because the material behavior of a healthy material
is different from a damaged material. However, the use of coupled damage models for the
simulation of structures using FEM leads to the well-known mesh dependency that occurs
during material softening. Thus, for local damage models, the mesh size is considered a
parameter of the model.

So–called nonlocal models have been developed to overcome this mesh dependency.
These nonlocal models introduce in the material behavior a characteristic length, equivalent
to the specific mesh size used in the local simulations. This characteristic length could be
interpreted as related with the interactions between the material defaults at the microscopic
length scale. It can be introduced by different methods:

- (i) in additional terms to the Helmholtz energy either to enrich the kinematics of
the continuous medium (micromorphic approaches) or to constrain the gradient of a local
variable (energy-enriched approaches) in order to regularize the mechanical problem.

-(ii) as an additional equation that produces a smoothed form the local variables (integral
methods, explicit/implicit gradient).

-(iii) as a regularization of the Griffith’s functional energy, as in case of the phase field
approach, in order to replace the discrete (crack) transition from the broken area to the intact
area by a smooth transition with progressively damaged zone.

In order to use a nonlocal model to simulate the initiation and propagation of ductile
cracks over long distances, two main limitations have to be addressed, (i) the continuous
damage model cannot describe the kinematics of crack opening and closing, (ii) due to the
necessary fine discretization in the localization band, the size of the problem increases with
the length of the crack.

On one hand, the first limitation can be addressed by using the so–called continuous–
discontinuous approach, which consists, in the case of a ductile fracture, in representing
the crack as a discontinuity in the sufficiently damaged areas. To carry out a continuous–
discontinuous approach, (i) a representation of the crack must be defined, (ii) a method
of localization of the discontinuity is necessary to automatically define the position of a
continuous crack surface, (iii) and an insertion criterion to select the most appropriate time
to transit from the continuous model to the discontinuous model is essential.

On the other hand, the second limitation can be addressed by using efficient mesh
adaption. In contrast to fixed–mesh modeling where a fine mesh is assigned in all areas
likely to be crossed by a crack, resulting in a significant increase in computational size, only
the regions of interest are finely meshed automatically during the simulation. To do this,
error estimation can be used, in combination with a global criterion to trigger this adaptive
remeshing, and with a local criterion is needed to specify the new mesh size.

In Figure 2.27, the proposed continuous–discontinuous procedure with mesh adaption is
summarized. A nonlocal implicit gradient GTN model 4 with two characteristic lengths is

4The model is written using the updated Langrangian framework, in order to obtain an accurate description
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Figure 2.27: Flowchart summarizing the proposed continuous–discontinuous procedure with
a nonlocal GTN model and discrete crack lips representation using mesh adaption

used to simulate ductile failure (see chapter 3) where the damage variable is the total porosity
f . At the end of each converged load increment, the incremental error is evaluated. If it
exceeds a specific threshold prescribed by the user, the mesh adaption procedure is triggered.
Simultaneously, the marching ridges algorithm takes an input f ∗, the smoothed version of f
obtained using the SPR method, and its computed spatial gradient ∆f ∗ and searches for the
crack direction to provide an auxiliary mesh describing the crack surface. Then an insertion
criterion is tested to determine whether there should be crack initiation and/or propagation, if
a crack is found. Mesh adaption is triggered if the insertion criterion is validated the insertion
of the found crack increment.

The remeshing procedure, described in chapter 4, consists in generating a new mesh 5

respecting the size map calculated using the mesh optimal criterion and possibly including
the crack surface. Once the new mesh is generated using meshGems, the mechanical fields
necessary to resume the calculation are transferred using the nearest integration point or
the moving least square methods. A reequilibrium step is then performed to correct the
transferred fields and thus improve the convergence rate after the remeshing procedure.

of the deformed mesh if this latter is adequately meshed
5Remeshing is carried out on the updated frame so that the deformed structure is meshed with good quality

element as opposed to stretched element found in case of the total Lagrangian framework in presence of high
strain.
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Résumé en français
Cette étude a pour but d’examiner un modèle d’endommagement ductile non–local de
Gurson-vergaard-Needleman (GTN) aux déformations finies. Ce modèle est basé sur une
formulation implicite du gradient qui permet de résoudre le problème des déformations
parasites et de la localisation de l’endommagement. Le modèle intègre deux longueurs
caractéristiques du matériau différentes qui sont utilisées pour régulariser séparément
l’endommagement par croissance des vides et l’endommagement par nucléation des vides.
Les conditions pour obtenir des solutions convergentes sont étudiées et peuvent être utilisées
pour concevoir les mailles. L’effet des valeurs des longueurs caractéristiques sur la formation
de la fracture en forme de cône et de la fracture oblique est étudié. Les effets de taille sont
finalement prédits, les petits spécimens étant plus enclins à la fracture plate.
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Taken from: A. El Ouazani Tuhami, S. Feld-Payet, S. Quilici, N. Osipovc, J. Besson. A
two characteristic length non–local GTN model: application to cup–cone and slant fracture,
in preparation.

1 Introduction

Predicting ductile failure is a major challenge when trying to prevent catastrophic failure
of structures or to control crack propagation in the case of metal forming. One of the
main challenges is the prediction of complex crack paths in metals such as cup cone or
slant fracture. To achieve this goal, models able to robustly represent the local degradation
phenomena (damage nucleation, growth and coalescence) are needed. Among such models
is the micro-mechanics based Gurson–Tvergaard–Needleman (or GTN) model [Tvergaard
and Needleman, 1984]. Based on this seminal framework, numerous extensions have been
proposed which are reviewed e.g. in [Tvergaard, 1990; Besson, 2009; Benzerga and Leblond,
2010; Pineau et al., 2016]. They are able to account for void shape, void orientation, plastic
anisotropy, strain rate sensitivity, coalescence by internal necking. . .

All these models must lead to softening up to a point where the material entirely loses
its load-carrying capacity so as to be able to model fracture. These softening models were
first developed within the usual local framework and thus suffered from the well–known
numerical issues such as mesh size and mesh orientation dependence [Rousselier et al., 1989;
Liu et al., 1994; Besson et al., 2001]. Due to the loss of ellipticity of the equations in statics,
the solution of the mechanical problem is no longer unique. Overcoming these issues is
fundamental for the reliability of fracture simulations. Using a finite strain framework is also
required as ductile fracture is always accompanied by large deformations. Several solutions
have been proposed to overcome mesh dependency. A first solution is based on a local
enrichment by embedding a finite thickness band [Huespe et al., 2009]. In that case, the band
is introduced when loss of ellipticity is detected within one element. The normal to the band
is determined following Rice’s bifurcation analysis [Rice, 1976]. Another solution is based
on implicit gradient methods [Peerlings et al., 1996; Geers et al., 1998] which facilitate the
use of integral methods as originally proposed in [Pijaudier-Cabot and Bazant, 1987; Bazant
and Pijaudier-Cabot, 1988]. These methods have been used to model ductile fracture for
metals within a finite strain framework [Enakoutsa et al., 2007; Mediavilla et al., 2006b; Linse
et al., 2012; Hütter et al., 2013; Javani et al., 2016; Seupel et al., 2020; Leclerc et al., 2020]
although they were initially developed for quasi–brittle failure. Using an implicit gradient
formulation, the local constitutive equations are preserved at the cost of small adaptations.
This makes this formulation particularly attractive in the case of the GTN model, as its
initial micro-mechanical foundations are then preserved. Multiple internal lengths were
introduced in [Nguyen et al., 2020]. This model uses an implicit gradient formulation written
in the initial configuration. An internal length was associated with each damage evolution
mechanism: (i) void growth based on the classical GTN model, (ii) internal necking governed
by a heuristic extension of the Thomason model [Thomason, 1985a,b] based on the maximum
principal stress, (iii) shear–dominated coalescence mechanisms controlled by the maximum
shear stress [Torki et al., 2015]. Although the model proposes different internal length scales,
the same characteristic length was assigned to the three nonlocal variables in the presented
simulations. Micromorphic models [Forest, 2009] can also be used to solve problems
related to the loss of ellipticity. They use local state variables and their “micromorphic”
counterparts. The free energy of the system depends on the gradient of the micromorphic
variables and on coupling terms. Ductile fracture was modeled using this class of models
in [Brepols et al., 2017; Diamantopoulou et al., 2017]. In particular, models based on a
microdilatational theory [Huetter, 2017] appear to be well suited to represent ductile damage
by void growth. More recently, nonlocal gradient enhanced energy (GEE) models, first
developed for quasi-brittle fracture [Lorentz and Andrieux, 1999], were also used to model
ductile failure [Zhang et al., 2018; Chen et al., 2020]. They only use the gradient of a
local state variable. A decomposition—coordination technique is used to treat the non–
locality. The variable of interest is duplicated: a first instance is used at the (global) scale
of the structure while a second instance is used at the (local) constitutive law level. As both
variables represent the same field, they should be equal. A Lagrange multiplier is introduced
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to ensure this equality weakly. Finally, the regularization of ill-posed problems can also
be achieved by coupling the elastoplastic models with phase-field formulations. This type of
formulation was initially introduced for brittle failure [Francfort and Marigo, 1998; Hofacker
and Miehe, 2012; Miehe et al., 2010; Heider and Markert, 2017]. However, many extensions
to ductile fracture have been introduced for 2D simulations [Ambati et al., 2015; Aldakheel
et al., 2018], for 3D simulations [Aldakheel et al., 2018; Ambati et al., 2016; Borden et al.,
2016; Miehe et al., 2015, 2016; Hu et al., 2021] and also for 3D simulations with remeshing
techniques [Eldahshan et al., 2021b]. More recently, a porous ductile model using a phase-
field formulation was introduced in which the critical energy is decomposed into elastic and
plastic contributions where the plastic part is described using a GTN model [Dittmann et al.,
2020].

This work proposes a nonlocal extension of the GTN material model (based on [Besson
et al., 2001, 2003]) using an implicit gradient framework incorporating two nonlocal
characteristic lengths to capture complex ductile failure patterns, such as cup–cone or slant
crack paths. The most common issue with nonlocal formulations is the choice of the
characteristic lengths. In this chapter, comparisons with experimental data on steel specimens
first enable ontaining an order of magnitude for the model parameters. Then two length scales
are distinguished in the model to account for the different spacings that exist between material
defaults responsible for damage nucleation and void growth. In the case of ferritic steels used
in modern pipelines, two damage mechanisms exist: (i) void growth from MnS and oxides
and (ii) damage nucleation at iron carbides (Fe3C), which occurs at high strains. Mns and
oxides early debond from the metallic matrix so that they can be considered as initial voids.
Similar damage behavior is e.g. observed in aluminum alloys where coarse particles are Fe–
rich inclusions and small particles are strengthening dispersoids [Bron et al., 2004]. In order
to guide the choice of these characteristic lengths, an original study is conducted on their
effect on the occurrence of cup-cone and slant fracture.

This work is structured as follows. First, in section 2, the local version of the model
is briefly recalled and its nonlocal modification is introduced. The proposed finite strain
formulation is also introduced within an updated Lagrangian framework. In section 3, a
parameter fit is carried out for both the local and nonlocal version of the GTN model based
on existing literature data. In section 4, the independence of the results to both mesh size and
mesh orientation is checked using the same characteristic length for both mechanisms. The
relationship between the numerically obtained localization band width and the characteristic
lengths is also investigated. This allows the selection of appropriate mesh sizes for given
characteristic lengths. Finally, in section 6, an investigation is presented of the effect of
different characteristic lengths for damage nucleation and void growth on the formation of
cup-cone and slant crack paths and the results are translated in terms of size effects.

2 Material models and their framework

In the first part of this section, the local version of the considered GTN model used throughout
the chapter is briefly recalled. From this basis, the proposed modifications to obtain a
nonlocal model with two characteristic lengths are developed. A corotational finite strain
formulation is used to deal with large strains (see section 2.2). This allows to use a
simple small strain like formulation for the constitutive model based on an additive strain
decomposition of the strain tensor.

2.1 Material models

The used local model is based on the GTN model presented by Besson et al. [2001] but with a
different nucleation function using the accumulated plastic strain κ as opposed to the original
model which uses the growth porosity fg.
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2.1.1 Local GTN model

One assumes the additive decomposition of the strain tensor (ε) into an elastic (εe) and a
plastic (εp) part. The elastic strain tensor and the stress tensor are related using Hooke’s law:

σ = E : εe (3.1)

where E is the fourth-order elasticity tensor. Work hardening is assumed to be isotropic, and
the flow stress of the sound material (R(κ)) is expressed as a function of the accumulated
plastic strain κ assuming a power law:

R(κ) = K(e0 + κ)n (3.2)

e0, K and n are parameters to be identified (any other function could indeed be used). The
yield surface is then expressed following Besson et al. [2001] as:

Φ = σ? −R(κ)

where σ? is an effective stress measure depending on both the stress tensor and the void
volume fraction, which is the only damage parameter. In the case of the GTN model, the
effective scalar stress is implicitly defined as:

G(σ, f, σ?) =
σ2

eq

σ2
?

+ 2q1f? cosh
(
q2

2
σkk
σ?

)
− 1− q2

1f
2
?

def= 0 (3.3)

where σeq is the von Mises stress invariant1 of the Cauchy stress, σkk designates its trace,
q1 and q2 are two parameters and f? is a function of porosity. Function f? is defined as in
[Tvergaard and Needleman, 1984]:

f? =

f if f ≤ fc

fc + δ(f − fc) otherwise
(3.4)

where fc represents the porosity at the onset of void coalescence and δ ≥ 1 is a parameter
which represents the increased deleterious effect of porosity above fc. The damage variable
f can be itself decomposed into two parts which reflect the fact that damage is caused by
damage nucleation (fn) and void growth (fg), so that the total damage is equal to f = fg+fn.
The evolution of these damage variables is given by the following set of equations:

ḟg = (1− fg)trace(ε̇p) mass conservation (3.5)
ḟn = An(κ)κ̇ strain controlled nucleation (3.6)

whereAn is a coefficient representing the damage nucleation rate. It is expressed as a function
of κ so as to represent strain-controlled nucleation [Chu and Needleman, 1980; Zhang et al.,
2000]. Note that eq. 3.5 slightly differs from the original one where (1 − fg − fn) is used
and not (1 − fg). As MnS inclusions early debond from the matrix, it is unnecessary to
describe nucleation of voids on these inclusions. In this work, nucleation correspond to
damage created on iron carbides which are much smaller than the MnS inclusions. It is
assumed that this creates very small voids but high damage. For that reason, the equation
for ḟg is modified as growth is only attributed to large voids originated at MnS inclusions.
In practice, this modification has little effect on the overall behavior. The plastic strain rate
tensor ε̇p is obtained using the normality rule:

ε̇p = (1− f)κ̇∂Φ
∂σ

= (1− f)κ̇∂σ?
∂σ

= (1− f)κ̇n (3.7)

where n designates the normal to the yield surface. Using this expression, the following
equivalence between the macroscopic (left handside) and the microscopic (right handside)
plastic dissipations is obtained as:

ε̇p : σ = (1− f)κ̇σ? (3.8)

1Note that the model can be easily extended to plastically anisotropic materials by replacing the von Mises
by any stress measure accounting for anisotropy [Benzerga and Besson, 2001; Tanguy et al., 2008; Shinohara
et al., 2016].
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as σ? is an homogeneous function of order 1 of σ.
It is assumed that the considered material can exhibit a slight strain rate dependence, so

that κ̇ is expressed as:

κ̇ = F(Φ) = ṗ0

〈
σ? −R
σ0

〉n
(3.9)

where 〈.〉 is the positive part function and n, ṗ0 and σ0 are material parameters.

2.1.2 Nonlocal GTN model

The proposed extension of this GTN model uses the implicit gradient methodology proposed
in [Peerlings et al., 1996; Geers et al., 1998; Engelen et al., 2003] to regularize two state
variables: the volume variation ω = trace(εp) and the effective accumulated plastic strain κ.
Their nonlocal counterparts are referred to as ω and κ. Their evolution within the considered
material body Ω is governed by the following Helmholtz-type equations:

ω − l2ω∆ω = ω in Ω (3.10)
κ− l2κ∆κ = κ in Ω (3.11)

with the following natural boundary conditions:

~∇ω.~n = 0 on ∂Ω (3.12)
~∇κ.~n = 0 on ∂Ω (3.13)

where ∂Ω and ~n respectively designate the boundary of the body Ω and its outer normal
vector.

Let us note that the gradients are calculated on the current configuration and not on the
initial configuration as considered by [Leclerc et al., 2020; Nguyen et al., 2020]. Besides, this
model introduces two characteristic lengths in equations 3.10 and 3.11, lω and lκ, respectively
associated to void growth and nucleation mechanisms.

The nonlocal variables ω and κ are then used to formulate the evolution of the damage
variables fg and fn as:

ḟg = (1− fg)ω̇ (3.14)
ḟn = An(κ)κ̇ (3.15)

These two equations now replace equations 3.5 and 3.6. All other equations remain
unchanged. In particular, the hardening law R(κ) remains identical, which would not be the
case with micromorphic models [Forest, 2009] or gradient enhanced energy models [Chen
et al., 2020] as it is expressed as a function of κ in those cases. In the present case, the flow
stress then remains unaffected by the gradient of κ.

2.1.3 Implicit local resolution

The state variables describing the material behavior are then the elastic strain tensor (εe),
the accumulated plastic strain (κ), the porosity due to void growth (fg), the porosity due to
damage nucleation (fn) and the volume variation ω. Their evolution laws can be expressed
as functions of the rates of the input variables ε̇, ω̇, κ̇ as:

ε̇e = ε̇− (1− fg)κ̇n (3.16)
κ̇ = F(Φ) (3.17)
ḟg = (1− fg)ω̇ (3.18)
ḟn = An(κ)κ̇ (3.19)
ω̇ = trace ((1− fg)κ̇n) = (1− fg)κ̇trace(n) (3.20)

The implicit resolution of this system of equations for each integration point, detailed in
A, requires its integration over a finite time step ∆t. This leads to a system of equations
relating the residuals of these equations to the increments of the state variables ∆V S =
(∆εe,∆κ,∆fg,∆fn,∆ω), for a given set of the increments of input variables ∆V IN =
(∆ε,∆ω,∆κ). The resolution of this system directly gives the increments of output variables
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∆V OUT = [∆σ,∆ω,∆κ]. It then becomes possible to numerically compute the consistent
tangent matrix by considering that any given small variation of the input variables δV IN leads
to a modification of the state variables so that the residual equations remain null (see details
in B). The consistent tangent matrix can be expressed as a block–matrix as:

Kmat = ∂∆V OUT

∂∆V IN
=



∂∆σ
∂∆ε

∂∆σ
∂∆ω

∂∆σ
∂∆κ

∂∆ω
∂∆ε

∂∆ω
∂∆ω

∂∆ω
∂∆κ

∂∆κ
∂∆ε

∂∆κ
∂∆ω

∂∆κ
∂∆κ


(3.21)

The terms of this matrix are required to express the elementary stiffness matrix of the
associated finite elements.

2.2 Finite strain framework
Both local and nonlocal GTN models must be formulated within a finite strain framework.
This is done using a rotating frame concept.

(i) Corotational framework To do so, a corotational formulation [Sidoroff and Dogui,
2001] is used. The corotational frame is defined using the rotation tensorQ such that:

Q̇ = W .Q with Q(t = 0) = 1 (3.22)

where the W tensor designates the skew–symmetric part of the velocity gradient tensor L.
The symetric part of the velocity gradient tensor is denoted D so that: L = D +W . This
velocity gradient tensor is defined from the transformation tensor F = ∂~x/∂ ~X (where ~X is
the position of a material point in the initial configuration and ~x its position in the current
configuration) and its derivative as: L = Ḟ .F−1. Knowing the rate of deformation D, one
gets the material deformation rate through the following expression:

ε̇ = QT .D.Q (3.23)

Knowing the corotational Cauchy stress (i.e., the Cauchy stress expressed in the coordinate
system that rotates with the material), the Cauchy stress in the unrotated frame is given by:

Σ = Q.σ.QT (3.24)

Let us note that the rotated rate of σ is the Jaumann rate of Σ.

Proof:

Σ̇ = Q̇.σ.QT +Q.σ̇.QT +Q.σ.Q̇T

= W .Q.σ.QT +Q.σ̇.QT +Q.σ.QT .W T

= W .Σ−Σ.W +Q.σ̇.QT usingW T = −W .

(ii) Finite element formulation Considering cases where the load is applied sufficiently
slowly so that the inertial forces can be neglected, the weak form of the equilibrium equations
then reads:

∀ ~v?
∫

Ω
Σ : L? dΩ =

∫
Ω

Σ : D? dΩ = W ?
ext, with L? = ∂~v?

∂~x
(3.25)

where ~v? is a virtual velocity field, W ?
ext represents the virtual power of external forces and

D? is the symmetric part of L?.

In the case of a nonlocal formulation, based on equations 3.10, 3.11 and 3.12, the weak
form corresponding to the nonlocal variables is expressed as:

∀ ẇ?
∫

Ω(w − w)ẇ? + l2w ~∇w.~∇ẇ? dΩ = 0
∀ ṗ?

∫
Ω(p− p)ṗ? + l2p

~∇p.~∇ṗ? dΩ = 0 (3.26)
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where ẇ? and ṗ? designates a virtual rate of the nonlocal field. Gradients are evaluated in the
current configuration as ~∇• = ∂•/∂~x.

These equations must then be discretized both in time and in space, as detailed in C.
For the spatial discretization, quadratic shape functions are used for displacement degrees of
freedom (DOFs), and linear shape functions are used for the nonlocal variables (The notation
P2P1P1 is used in this chapter to refer to this choice of interpolation order).

The discretization of the set of equations 3.25 and 3.26 leads to a global system built
thanks to the assembly of elementary reactions. This system relates the unknown variables
to the external forces through the assembly of elementary stiffness matrices. The calculation
of the different terms of these elementary matrices requires the evaluation of the consistent
tangent matrix Kmat, as detailed in D. The resolution of this system is performed implicitly
using a Newton–Raphson algorithm and leads to the simultaneous determination of the DOFs
associated with the displacements and the nonlocal variables (as opposed to a staggered
resolution scheme).

3 Fitting of the model parameters

3.1 Model parameters
The constitutive model of [Besson et al., 2001, 2003] being relatively close to the local one
presented in this chapter, it is possible to use the same elasto–visco–plastic parameters and
most of the GTN parameters (see table 3.1). The low initial porosity (f0) corresponds to that
of a modern line pipe steel. It corresponds to the MnS inclusion volume fraction as these
particles easily debond from the matrix.

Table 3.1: Set of material parameters from [Besson et al., 2001, 2003]

Young modulus E 210 GPa
Poisson ratio ν 0.3
Isotropic hardening (power law) K 795 MPa

e0 0.002
n 0.13

Gurson criterion q1 1.5
q2 1.
f0 1.5 10−4

Viscosity ṗ0 1s−1

σ0 55 MPa
n 5

The main difference between the constitutive model of [Besson et al., 2001, 2003] and
the local model in this chapter is the damage nucleation rate function An(κ) in equation 3.6.
In the model described in [Besson et al., 2001, 2003], An(κ) is a function of the growth
porosity fg, whereas in this chapter, this function is chosen to be a constant (An) when the
accumulated plastic strain reaches a threshold κc:

An(κ) =

An if κ > κc

0 otherwise
(3.27)

The model was changed as the initial version did not allow forming cup-cone fracture using
the nonlocal formulation. This leaves thus two material parameters, An and κc, to be fitted.
Besides, the nonlocal model requires the identification of the two nonlocal characteristic
lengths lω and lκ.

3.2 Tests used for the fit of the nucleation law
The experimental database consists in an axisymmetric tensile test presented in [Besson et al.,
2001] and a plane strain test described in [Besson et al., 2003]. Both tests were carried out
on the same material, i.e., X70 HSLA (high strength low alloyed) ferritic-pearlitic steel, and
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are experimental results from [Rivalin, 1998]. They have been selected because they result in
complex crack paths, with cup-cone fracture for the axisymmetric specimen and slant fracture
for the plane strain specimen. In addition, the tests have been used in the literature [Scheider
and Brocks, 2003; Huespe et al., 2012; Leclerc et al., 2020] as a reference to identify and
study ductile fracture models.

Finite element simulations are carried out for both tests in order to fit the parameters
(trial and error procedure). Meshes, dimensions as well as boundary conditions are shown in
fig. 3.1a and fig. 3.1b. Mesh design is similar in both cases. In the case of the plane strain
specimen, the entire specimen is meshed to enable the formation of a slanted crack path. In
both cases, elements have quadratic shape functions with eight nodes and reduced integration
(4 integration points). In the following S0 represents the initial minimal cross-section of
each specimen; S0 = π/4φ2

0 for the axisymmetric specimen (with φ0 the initial diameter at
the center of the specimen); S0 = e0w0 for the plane strain specimen where e0 represents
the specimen thickness and w0 the width of the specimen. The normalized force (F/S0) is
then plotted as a function of the minimum diameter variation (∆Φ/Φ0) or thickness variation
(∆e/e0).

(a) Axisymmetric mesh with
(cax8r) element (b) Plane strain specimen mesh with (c2d8r) element

Figure 3.1: Dimensions and boundary conditions for the tensile test simulations of the
axisymmetric specimen 3.1a and the plane strain specimen 3.1b.

3.3 Parameter fit for the local model
In the case of local models, it is important to keep the same mesh size in areas where cracks
propagate [Liu et al., 1994; Skallerud and Zhang, 1999]. Because the diameter of the tensile
bar (10 mm) is twice the thickness of the plane stress specimen (5 mm) and because symmetry
is not accounted for in the latter case, the same number of elements (Nh) is used to discretize
the minimum cross-sections in order to keep the same mesh size. The initial aspect ratio of
these elements (rh) is set to 6:1 so that it leads to approximately square elements at the onset
of fracture. Using Nh = 60, the initial mesh size is consequently: 83µm× 14µm.

The fitted material parameters are:

An = 0.2 and κc = 1.2 (3.28)

Indeed, using these values, the global responses for both test cases show a good agreement
with both reference results, as can be seen in fig. 3.2. In the case of the axisymmetric
specimen (figure 3.2a), it can be noted that the fitted local model response is identical to
the reference one before crack initiation, which corresponds to the sharp load drop. In this
regime, the damage has minimal effect on the overall behavior. Crack initiation occurs
at a slightly higher diameter reduction (−∆φ/φ0 = 0.453) compared to the reference
(−∆φ/φ0 = 0.44). Besides, as load drop is faster for the new fitted parameters, the total
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(a) Axisymmetric specimen
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(b) Plane strain specimen

Figure 3.2: Evolution, for the local model, of the engineering stress as a function of the
diameter reduction−∆φ/φ0 for the axisymmetric specimen (left) and the thickness reduction
−∆e/e0 for the plane strain specimen (right). The comparison with global curves from the
literature (respectively from [Besson et al., 2001] and [Besson et al., 2003]) indicates a correct
parameter fit. Total porosity is displayed at total failure for both simulations: a cup–cone
failure (left) and a slant failure (right) can be respectively observed.

diameter reduction (−∆φ/φ0)c = 0.467) is ultimately slightly smaller than in the case of the
reference simulation (−∆φ/φ0)c = 0.48. The difference is less than 3 % and is acceptable.
As can be seen on the image of total porosity at the end of the simulation (fig. 3.2a), a cup-
cone crack path is obtained.

In the case of the plane strain specimen (fig. 3.2b), the computed forces before crack
initiation are slightly higher than the reference ones. This can be explained by the fact that in
the reference simulation [Besson et al., 2003], a Hill anisotropic model was used to describe
plasticity. Such behavior is not accounted for in the present material model. In this case
too, the thickness reduction (−∆e/e0)c = 0.59 predicted using the new model parameters
is slightly different from the reference (−∆e/e0)c = 0.566. As in the case of the tensile
test, the difference is acceptable. As can be seen on the image of total porosity at the end of
the simulation (fig. 3.2b), a V-shaped crack path is obtained. Note that both V-shaped and
S-shaped crack paths can be experimentally obtained [Besson et al., 2013].

3.4 Parameter fit for the nonlocal model

Using the local model, the band width is about the element height in the deformed
configuration. For the above-considered cases, this size is llocalb ≈ 70µm. The characteristic
length for the nonlocal model was then selected so that the resulting band width (lnlb ) is
approximatively equal to llocalb . It is therefore assumed that the mesh size for the local
model allows representing the material internal length following the early work by Rousselier
[1987]. Having lnlb ≈ llocalb is a simple way to establish a correspondence between both
models. Is is shown below (section 5.3) that the band width is related to the nonlocal
characteristic length by the following relation: lnlb ≈ 1.5lc. Using this relation, one gets
lω = lκ ≈ 40µm. Using these values, 90 elements are required to discretize the specimen
radius or thickness with at least three elements in the band width. Using fewer elements
results in simulations being mesh dependent. This results in an initial element height equal
to 10µm. As for the damage nucleation rate parameter An, since the nonlocal model will
always lead to higher ductilities than the local model with hmin different that the resulting
localization bandwidth for a given set of material parameters, it was necessary to impose
a larger value: An = 0.4. Nucleation parameters for the local and nonlocal models are
compared in table 3.2. Note that the number of elements used to mesh the minimum cross-
section differs using the above hypotheses. Using Nh = 60 for the nonlocal model would
result in slightly mesh-dependent simulations.

This fit leads to a relatively good agreement of the global responses for both test cases with
the reference results as well as results from the literature [Huespe et al., 2012; Leclerc et al.,
2020], as can be seen in figures 3.3 and 3.4. For the simulation of the smooth axisymmetric
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Table 3.2: Material parameters for the local and nonlocal models.

local model nonlocal model
κc 1.2 1.2
An 0.2 0.4
lκ = lω — 40µm

bar (see figure 3.3), the engineering stress—diameter reduction curve is particularly close
to the reference from [Besson et al., 2001], and the total failure diameter reduction is well
predicted. As can be seen on the images of total porosity taken at different stages of the
simulation on the same figure, a cup–cone crack path is also obtained.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

0

0

100

200

300

400

500

600

F S 0
(M

Pa
)

mesh Nh = 90
[Besson 01]
[Huespe 12]
[Leclerc 20]
Local fit

Figure 3.3: Evolution, for the nonlocal model, of the engineering stress as a function
of the diameter reduction −∆φ/φ0 for the axisymmetric specimen with a central spatial
discretization of Nh = 90. The confrontation with global curves from the litterature [Besson
et al., 2001; Huespe et al., 2012; Leclerc et al., 2020] and the local model indicates a correct
parameter fit. Total porosity is displayed at various times of the simulation to illustrate the
formation of the expected cup–cone crack path.

In contrast, the global response for the plane strain simulation (presented in figure 3.4)
shows a slight overestimation of the strain at crack initiation compared to the reference and a
higher total failure strain. This difference can be explained by the fact that the crack path
remains flat (as can be seen on the images of the total porosity maps taken at different
stages of propagation). This result is not in agreement with experimental data as well as
the simulation using the local framework, which both exhibit slant fracture. The effect of the
characteristic lengths on the crack path is discussed below in section 6 where it is shown that
slant fracture may indeed be obtained using the nonlocal framework and a proper choice for
the characteristic lengths.

4 Study of the convergence properties of the nonlocal model
In this section, the convergence of the solution with respect to mesh size and mesh orientation
is first checked. This allows to determine the mesh size needed to obtain convergence as a
function of the internal lengths, which are assumed to be equal. Using the appropriate mesh
size, it is then possible to establish a relation between the internal lengths and the numerically
obtained band widths.
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Figure 3.4: Evolution, for the nonlocal model, of the engineering stress as a function of the
thickness reduction−∆e/e0 for the plane strain specimen with a central spatial discretization
of Nh = 90. The confrontation with global curves from the literature[Besson et al., 2003;
Huespe et al., 2012; Leclerc et al., 2020] and the local model indicates a correct parameter fit.
Total porosity is displayed at various steps of the simulation to illustrate the propagation of a
flat crack instead of a slanted one. This illustrates the need to properly calibrate the nonlocal
characteristic lengths.

4.1 Effect of mesh size
Several meshes with the same element initial aspect ratio rh = 6 and the same orientation but
different element sizes are used to study the effect of mesh size.

(i) Local model In the case of the local model, the considered set of number of elements
in the width of the central section Nh is: 45, 60, 75 or 90. The engineering stress (F/S0) is
plotted as a function of the variation of the minimum diameter −∆φ/φ0 for different mesh
sizes in figure 3.5. On the same graph, the distribution of total porosity f at total failure is
shown for the different meshes. Let us note that all the simulations predict crack initiation for
the same diameter reduction and that the diameters at full failure (F/S0 = 0) only slightly
differ. In this particular case, the well–known mesh size dependency (see e.g. [Liu et al.,
1994; Rousselier et al., 1989]) has no significant effect on the global response as the load
drop is very sharp. Indeed, whatever the mesh size, the highly damaged area is localized
within one row of elements.

(ii) Nonlocal model In the case of the nonlocal model, the considered set of number of
elements in the width of the central section Nh is: 20, 45, 60, 75, 90,, or 180. In figure
3.6, the engineering stress—diameter reduction curves and the total porosity f at total failure
are shown for the different meshes. The global response appears to be converged, and the
simulation leads to a cup cone crack path as soon as Nh ≥ 45. Let us note that, for the
coarsest mesh (Nh = 20), the global response is very different than for the other meshes
close to full failure. In that case, there is no crack bifurcation so that the minimum diameter
always plastically deforms. In the case of cup–cone failure, the material undergoes elastic
unloading at the notch root due to crack bifurcation at some stage of loading so that the
minimum diameter does no longer change. Obviously, for Nh = 20, the mesh is too coarse
to properly capture the width of the highly damaged zone, and the simulation is, in that
case, mesh size dependent. In all cases where cup–cone fracture is obtained, there exist two
possible symmetric crack paths when flat propagation ends. One path is selected, but the other
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Figure 3.5: Evolution, for the local model, of the engineering stress as a function of
the diameter reduction −∆φ/φ0 for different spatial discretization in the case of the
axisymmetric specimen. The similarity of the global responses does not enable to observe a
dependence on the mesh size. The total porosity for each mesh size at total failure shows a
cup–cone failure with a slight deviation near the axis of symmetry.

path can still be visualized. In the case of the smallest mesh size (Nh = 180) a zigzagging
crack path is obtained. In that case, the crack first runs downwards (−45◦) and then upwards
(+45◦). Such a behavior is often experimentally observed [Besson et al., 2001].

4.2 Effect of mesh orientation

In this section, three meshes having the same number of elements in the central part and
same initial ratio rh = 6 : 1 are used. However the mesh is slightly tilted with respect to the
horizontal axis. The tilt angles are: 0◦, 5◦ and 10◦. Note that because of large strain, the final
tilt angle is much larger than the initial one.

(i) Local model In the case of the local model, the number of elements in the central
part is Nh = 60. In figure 3.7, the global responses and the total porosity f at total failure
are shown for the different meshes. Although the global responses are very similar, it is
interesting to note that each mesh leads to a different crack path. Indeed, when there is not
tilt, a classical cup–cone fracture path is obtained as shown above. For a tilt angle of 5◦,
the crack first runs upwards from the center of the specimen and then runs downwards after
reaching the mid-radius. For a tilt angle of 10◦, the crack runs upwards following one row of
elements. In both cases, cup–cone fracture is not observed and the predicted crack path is only
formed by cones. The local model thus clearly suffers from a strong dependence on mesh
orientation. This implies that the crack path can hardly be predicted using local models. They
can be useful if the predicted crack path corresponds to the expected one. In that case, the
local stress and strain history can be investigated to analyze/understand crack formation. This
can be done by prescribing the crack path using the computational cell methodology [Xia and
Shih, 1995; Besson et al., 2013]. The result also indicates that automatic meshing can hardly
be used to generate the mesh because its design cannot be fully controlled. Simulations with
automatic remeshing during the calculation are also not possible.
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Figure 3.6: Evolution, for the nonlocal model, of the engineering stress as a function
of the diameter reduction −∆φ/φ0 for different spatial discretization in the case of the
axisymmetric specimen. The global responses are similar for the mesh sizes Nh > 20. The
total porosity for each mesh size at total failure shows a cup–cone failure with a straight first
horizontal part except for the coarsest mesh size Nh = 20, which exhibits a flat crack path.
The finest mesh size Nh = 180 enables the crack path to bifurcate twice, which can also be
experimentally observed. These results indicate mesh independence.

(ii) Nonlocal model In the case of the nonlocal model, the number of elements in the
central part is Nh = 90. In figure 3.8, the engineering stress–diameter reduction curves and
the total porosity f at total failure are shown for the different meshes. All the simulations
give the same global response and lead to a similar cup–cone crack path. In all cases, the
band width of the damage localization band is the same. Therefore, it can be concluded that
results are converged and insensitive to mesh orientation. This paves the way for the use of
automatic meshing techniques of complex parts and remeshing.

5 Analysis of the damage localization bands

In this section, the relation between the characteristic length and the width of the localization
band is investigated. To do so, it is first necessary to define how to measure the width of
a localization band. The finite element discretization needed to obtain a converged band
width is then investigated. Based on these results, the relation between the characteristic
length and the band width is studied for both axisymmetric and plane strain specimens as this
relationship may depend on the stress state.

5.1 Definition of the band width

In the literature, there is no agreement, to the author knowledge, on a definition of a measure
of the width of the localization bands. Mazière et al. [2010] study localized bands in a nickel-
based superalloy which exhibits a Portevin–Le Chatelier effect. Their proposed method is
based on the analysis of the local plastic strain rate. It is applied to FE simulations but
is designed to mimic actual experimental techniques (see references in the chapter). In
[Labergere et al., 2014], the authors study a copper sheet and also use the strain rate profile
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Figure 3.7: Evolution, for the local model, of the engineering stress as a function of the
diameter reduction −∆φ/φ0 for various mesh orientations in the case of the axisymmetric
specimen. The global responses are similar for all the orientations. However, the total
porosity for each mesh size at total failure shows a different crack path for each mesh
orientation, which indicates mesh dependence.

to determine the band width. The profile is fitted by a pseudo-Voigt function for which the
band width is a fitting parameter. Gorodetskyi et al. [2017] propose a method able to detect
discontinuities such as displacement jumps which can be applied to both FE simulations
and experimental DIC results. In [Mehenni et al., 2019], plastic strain localization is
experimentally studied as a function of the applied strain rate in the case of an Al—Mg
alloy exhibiting a PLC effect. The bandwidth is defined “as the width at middle height of the
localized strain band”. In this study, it is proposed to define the band width (referred to as lvb
for variable v = ω or v = κ) as the width over which the considered variable reaches half its
maximum value. In that sense, this definition corresponds to that of Mehenni et al. [2019]. In
the following, the case of the axisymmetric specimen will only be described as similar results
are obtained for the plane strain specimen. Profiles in the deformed configuration along the
symmetry axis for both ω and ω are exemplified in fig. 3.9 where the band width for ω is
shown by the blue arrows and the band width for ω by the red arrows. The profiles for ω
can easily be plotted as this variable is defined at nodes and can be interpolated. Plotting the
profiles for the local variable ω first requires extrapolating values at Gauss points to nodes
(red curve in figure 3.9). In all cases, the band width for the local variable is about the
size of one single element in the deformed configuration. In the following, the width of the
localization bands is determined when the maximum of ω reaches 0.5 along the profile. In
that case, the material points are close to full failure. Applying this definition to measure
the band width for the local and nonlocal volume variations along the vertical symmetry axis
for the axisymmetric specimen leads to consistent relative measures. Indeed, as shown in
fig. 3.9, the band width measured on ω is larger than the band width measured on its local
counterpart ω, even if the maximum of the nonlocal variable is lower than the maximum of
the local variable, as expected using an implicit gradient nonlocal formulation.
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Figure 3.8: Evolution, for the nonlocal model, of the engineering stress as a function of the
diameter reduction −∆φ/φ0 for various mesh orientations in the case of the axisymmetric
specimen. The global responses are similar for all orientations. Besides, the total porosity
for each mesh size at total failure shows an identical cup–cone crack path for each mesh
orientation. These observations indicate mesh independence.

5.2 Conditions to obtain a converged band width
In this part, the evolution of the band width with element size is studied. As the present
model makes use of gradients of ω and κ computed in the current configuration, it is important
to evaluate the localization band width in the deformed configuration as proposed above. The
element height after deformation and when fracture starts is referred to asHr1 in the following
(see fig. 3.10). The element height along the element row just above is referred to as Hr2.
Due to different loading histories, the element elongation at fracture can differ greatly from
one simulation to another. It is therefore important that the initial element height (hmin)
is small enough to assure that the element height at fracture (Hr1) is still able to represent
the localization band. The convergence of the band width should therefore be checked with
respect to Hr1.

Different values for the number of element along the thickness of the specimens are
used: Nh = 540, 270, 180, 90, 60, 45, 30, 20. This study is performed for two values of
the characteristic length, taken here equal for both nonlocal variables (lκ = lω = 80µm
and lκ = lω = 40µm). Both axisymmetric and plane strain specimens are considered. The
considered variable is the nonlocal volume variation but similar results can be obtained if the
nonlocal effective accumulated plastic strain is used to measure the localization band width.

Figure 3.11 shows the evolution of the band width size as a function of the element
height in the current configuration (Hr1), as defined in fig. 3.10. Each set of points can
be approximated by a line, which means that it can be assumed that the band width is an
affine function of the mesh size. Using this approximation, the band width for Hr1 → 0 can
be extrapolated to a non-zero value which is an estimated value of the band width l∞b free
from discretization error. In practical applications, this error is always present.

5.3 Relation between the band width and the internal lengths lκ and lω
Let us note that in fig. 3.11, for a given geometry, the line corresponding to the largest
characteristic length (i.e. lκ = lω = 80µm) has approximately the same slope as the line
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Figure 3.9: Band width measure for the nonlocal volume variation ω when ωmax = 0.5.
Evolution of the local and nonlocal volume variations along the symmetry axis. The double
arrows show the measure of the corresponding band widths lωb and lωb .
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Figure 3.10: (a) Definition of Hr1 and Hr2. (b) Contours of the nonlocal volume variation ω
when ωmax = 0.5. Arrows here define current element heights Hr1 and Hr2.
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Figure 3.11: Evolution of the measured band width for both lκ = lω = 40µm and lκ = lω =
80µm on both the axisymmetric and plane strain tensile tests as a function of the element
height in the current configuration Hr1. There appears to be a linear relation between the
band width and the element height. This means that it is possible to estimate a value of the
band width l∞b free from any discretization error for Hr1 = 0.
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corresponding to a smallest characteristic length (i.e. lκ = lω = 40µm) but leads to a higher
band width estimate l∞b . In order to validate this observation for other characteristic lengths
and to establish a simple relation between the characteristic length and the band width l∞b ,
the same series of simulations was performed for additional values for of lω = lκ: i.e. 20µm,
60µm, and 100µm. Plotting the evolution of the measured band width l∞b versus the imposed
characteristic length (see fig. 3.12), it can be observed that for a given geometry the measured
points approximately lie on a line. Using this regression, it is observed, as expected, that a null
band width is obtained when the characteristic length is also null. Let us note that the slope
in this linear relationship is different for each geometry. However, the difference between the
relation obtained for plane strain and axisymmetric elements remains small: l∞b ≈ 1.54lκ,ω
in the first case and l∞b ≈ 1.69lκ,ω in the second case. This simple relation presents a major
advantage as it enables to estimate, for a given geometry, and based on the choice of the
characteristic length, the width of the localization band. It is then possible to choose the
number and size of the elements in the localization band (respectively denoted a and Hr1) in
order to properly capture its gradients with: a×Hr1 < l∞b . In all the nonlocal simulations of
this chapter (except for fig. 3.6), the factor a is at least equal to 3, i.e. there are at least three
P2P1P1 elements in the band width at the onset of failure.
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Figure 3.12: Evolution of the estimated band width free from discretization error for both the
axisymmetric and plane strain tensile tests as a function of the characteristic length (lκ = lω).
There appears to be a proportional relation between the band width and the characteristic
length, with slightly different coefficients for each geometry. This means that it is possible to
estimate the size the band width for a given characteristic length and a given geometry.

6 Using two characteristic lengths to model the cup–cone
and slant fracture

In this section, two different characteristic lengths (lκ ≤ lω) are used to model the occurrence
of cup–cone and slant fracture.

6.1 Procedure
Several simulations were performed for different characteristic lengths varying between
20µm and 100µm and different ratios lω/lκ (i.e. 1, 2, 3, 4 and 5). Let us note that larger ratios
were not considered in order to avoid too large computational costs due to mesh refinement
associated with the requirement to have 3 elements in the band width at the onset of fracture
(3×Hr1 < l∞b ).

The relative values of the two characteristic lengths are chosen to be consistent with
the physical degradation of metallic materials, and especially steels. Indeed, in steels, two
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damage mechanisms exist: (i) void growth from sulfides/oxides and (ii) damage nucleation at
iron carbides Fe3C which occurs at high strains [Tanguy et al., 2008]. As the spacing between
sulfides/oxides is larger than between carbides, it makes sense to only consider lω ≥ lκ.

Figure 3.13: Contours of total porosity at total fracture for different characteristic lengths
lκ and lω for the axisymmetric specimen. Cup–cone crack paths are observed only for
lκ < 80µm. The characteristic length lκ should then be relatively small compared to the
specimen size to observe a cup–cone fracture. The larger the characteristic lengths, the wider
the localization band (which is linked to the displacement at failure) and the further from the
symmetry axis the bifurcation..

6.2 Cup–cone fracture
For the axisymmetric specimen, the contours of total porosity at full fracture for different
characteristic lengths are displayed in fig. 3.13. It appears that large values for lκ prevent the
occurrence of crack bifurcation for the considered specimen. As seen in fig. 3.13, simulations
with lκ≥ 80µm predict a flat crack while all simulations with lκ< 80µm predict the cup–
cone crack path. For a given value of lκ, it can be noticed that the larger lω, the wider
the localization band. Similarly, for a given value of lω, the band width increases with
increasing lκ. This is indeed expected since a large characteristic length leads to a larger
band. In addition larger bands tend to increase the length of the flat part of the crack path.
The flat central crack then bifurcates to form the slanted crack path at +45◦ or −45◦. In
one case (lω = 60µm and lκ = 20µm) a zigzagging crack path is obtained, but it was
impossible to determine why such a crack path was formed, although this phenomenon is
often experimentally observed.

6.3 Slant fracture
For the plane strain specimen, the contours of total porosity at total fracture for different
characteristic lengths are displayed in fig. 3.14. For lκ ≥ 40µm flat fracture is always



7. Conclusions 85

obtained so that only one crack path is shown (lω = lκ = 40µm). For lκ = 20µm slant
fracture is always obtained (V–shape). In that case, the effect of lω is small. The band width
only slightly increases with increasing lω.

Figure 3.14: Contours of total porosity at total fracture for different characteristic lengths lκ
and lω for the plane strain case. Slant fracture is observed only for lκ = 20µm. The effect of
lω appears to be limited in this case.

6.4 Size effect
It is interesting to revisit the above observations from a more physical point of view and to
consider, for a given set of material lengths, how specimen size impacts the formation of the
cup–cone and slant fracture. Indeed increasing the material lengths for given specimen size
is equivalent to decreasing the size of the specimen for given material lengths. Similar crack
paths are obtained as long as the ratios lω/L and lκ/L are constant where L is a characteristic
dimension of the simulated structure (diameter or thickness in the present case).

From the results corresponding to the axisymmetric specimen (fig. 3.13), it can be
concluded that it is easier to form a cup–cone crack path for large specimens (case
corresponding to lκ < 80µm for a given geometry) than for smaller specimen sizes. From the
results corresponding to the plane strain specimen (fig. 3.14), it can be concluded that only
sufficiently large plane strain specimens break following the slant crack path. This opens the
way to the determination of material lengths by using homothetic specimens so as to obtain
different crack paths. Lengths could be fitted to represent the different fracture pattern. This
will obviously require the use of very small specimens in the case of metals where lengths
are expected to be of the order of the mean spacing between damage initiation sites.

7 Conclusions
In this work, a nonlocal GTN model for ductile fracture was proposed which uses two
material lengths. The model is based on an implicit gradient formulation applied to the plastic
volume variation (material length lω) and the accumulated plastic strain (material length lκ).
The model allows to regularize void growth and strain-controlled nucleation. The model
parameters are fitted to reproduce the global response for tests carried out on a pipe line steel
using a tensile bar and a plane strain specimen. These experiments have been already used
in the literature to test several models and numerical techniques. Each test is representative
of a characteristic crack path: cup–cone fracture (tensile test) and slant fracture (plane strain
test).

The material parameters were first fitted assuming that both lengths are equal (lω = lκ)
in order to reproduce the macroscopic behavior of both specimens. It was checked that mesh
independence is obtained if a sufficiently fine mesh is used. In particular, it was shown that
a local model is strongly dependent on mesh design (mesh orientation in the present study)
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whereas the nonlocal model is not. This implies that remeshing cannot be applied if a local
model is used but with a nonlocal model, it can be a solution to reduce computational cost in
cases where long crack propagation needs to be simulated.

A novel methodology was proposed to estimate, for a given geometry, the band width
associated with a given characteristic length free from discretization error. By applying this
methodology for different characteristic lengths, it was possible to establish a linear relation
between the estimated band width and the characteristic length. This piece of information
was then used to select the proper discretization of the localization bands for given values of
the characteristic lengths in order to obtain converged solutions. In practice, the element size
at failure is recommended to be three times smaller than the characteristic lengths.

Finally, two distinct characteristic lengths were used to simulate both test cases. It was
first concluded that the characteristic length controlling strain controlled damage nucleation
plays an important role on the occurrence of crack bifurcation: it must be small enough
relative to the specimen size in order to observe a cup–cone crack path or a slanted crack path.
It was also noted that increasing the characteristic lengths leads to an increase of both the band
width and the radius at which the cup–cone crack path starts to bifurcate and propagate either
at +45◦ or−45◦. Larger values favor flat crack advance. This study also enabled to conclude
that crack path should be affected by the size of the specimens. Pure flat fracture should
be favored when using (very) small specimens. It could theoretically be possible to identify
them separately. This paves the way to the more direct determination of material lengths by
using homothetic specimens to obtain different crack paths. The fitted lengths should then be
able to represent both the macroscopic behavior and the crack path for all sample sizes.
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Résumé en français
L’approche continue–discontinue est présentée avec une stratégie pragmatique de remaillage
pour optimiser le maillage et donc le temps de calcul. Dans un premier temps, de nouvelles
composantes de la simulation de la propagation de fissures ductiles à l’aide de maillages 3D
sont développées. En particulier, un nouvel algorithme d’initiation de fissures est proposé
afin d’initier des fissures de forme correcte. En outre, un nouveau critère pour la transition
continu-discontinu est développé afin de déterminer la taille de l’incrément de fissure à
insérer dans le maillage en utilisant le remaillage. Le problème de la détérioration du taux
de convergence après le remaillage est abordé, et une méthode de rééquilibrage est ensuite
proposée pour surmonter ce problème. L’efficacité de l’approche continue-discontinue
développée est testée par rapport à la discrétisation spatiale et à la discrétisation temporelle.
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Enfin, des applications de la méthode développée utilisant différents maillages 2D et 3D de
spécimens utilisés dans des tests expérimentaux sont présentées.

Taken from: A. El Ouazani Tuhami, S. Feld-Payet, S. Quilici, N. Osipov, J. Besson. New
contributions for robust and cost-efficient continuous–discontinuous transition:
application for complex crack path simulations., in preparation

1 Introduction

To predict crack initiation or when linear fracture mechanics cannot predict complex crack
propagation, it can be interesting to use continuum damage mechanics models describing
local material degradation phenomena. However, the continuum damage mechanics models
have their limits. On the one hand, they cannot provide an accurate estimation of the
opening and growth kinetics of the crack Mediavilla Varas [2005]. On the other hand, In
the case of industrial problems with a large computational size, the propagation length is
limited by the computational size of the continuous model due the fine discretization Chen
[2019]. Indeed, the use of regularized methods Bazant and Pijaudier-Cabot [1988]; Forest
[2009]; Lorentz [2005]; Francfort and Marigo [1998]; Peerlings et al. [1996] is primordial in
case of ductile rupture, in order to avoid pathological mesh dependency Pijaudier-Cabot and
Bazant [1987]; DE BORST et al. [1993], and these types of regularized methods necessitate
a fine refinement of the mesh inside localization bands. To overcome these two problems,
different propositions exist in the literature for continuous–discontinuous models to fracture.
They consist in inserting a strong discontinuity in the FE model based on the material
degradation field. In the work of El khaoulani and Bouchard [2012], an anisotropic mesh
adaption strategy was used to describe ductile fracture using bubble P1+/P1 tetrahedral
elements. An implicit gradient formulation was used to overcome the mesh dependency.
To drive the remeshing procedure, an error estimator based on the damage and damage
rate was used. Moreover, to represent the crack path and avoid stretched elements in the
vicinity of the crack tip, simple element erosion was used. A cup–cone simulation using
a 3D mesh was presented to showcase their proposed remeshing strategy. However, the
obtained meshes were refined over the whole crack path, which does not solve the issue
of large computational size. In addition, the crack path resulting from a simple element
erosion was indented, and the bandwidth of the removed element was not controlled. In
the work of Javani et al. [2016], an implicit gradient method is also used to regularize the
ill-posed mechanical problem. A global remeshing procedure was used to avoid element
distortion occurring at high strains. An extension to 3D simulation of the crack path tracking
algorithms and the discrete crack representation introduced in Mediavilla Varas [2005] was
detailed. Also, a method capable of initiating 3D crack in the volume or near the body
surface was also developed. Then, simulations in 3D showcasing simple crack paths were
presented. However, their proposed method using the smoothed local maximum search
over different radii to track crack paths is not capable of detecting crack branching. In
the work of Yang et al. [2018], a local h—adaptive remeshing procedure was developed.
An improved transfer operator based on point selection was developed in order to optimize
remeshing computational cost. However, the presented simulations refined the whole crack
path; thus, the meshing procedure is not efficient for industrial simulations. Also, with the
use of simple element deletion, the crack path is imprecise due to the indented crack path
and to uncontrolled bandwidth of deleted elements. In the work of Leclerc et al. [2020],
an implicit gradient method was applied with multiple internal lengths to a multi-surface
model with internal necking and damage mechanisms under shear. For damage to crack
transition, cohesive bands were inserted between the element interfaces. The position and
insertion time of the cohesive band was determined using a bifurcation analysis. Then, 2D
simulations of cup–cone and slant fracture were presented. However, as the cohesive band
was introduced between element interfaces, the resulting crack path was mesh–dependent.
In addition, fine meshing is needed along the whole crack path; thus, the extension to real
industrial simulation is limited due to the high computational cost. Another type of approach
based on the XFEM method, and that does not necessitate fine meshing, was presented in
Nikolakopoulos et al. [2021]. A simulation of the cup–cone crack path was showcased using
a coarse mesh. Thus this approach is not limited by the high computational cost. However,
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the framework was restricted to the small strain hypothesis due to the complexity of the
proposed formalism to simulate ductile failure. In a more recent work, Eldahshan et al.
[2021a] proposed a phase-field approach coupled with remeshing and discrete crack insertion.
The main contribution of this work was the development of a crack path tracking algorithm
and crack insertion method based on remeshing adapted for parallel computations. Various
numerical applications were presented to illustrates the capacities of the developed algorithm
(CIPFAR: Crack Insertion and Propagation using the Phase Field and Adaptive Remeshing)
to simulate ductile failure. However, the proposed continuous–discontinuous model uses a
“bubble finite element” formulation (P1+/P1) based on the small strain hypothesis, which
is not adapted for ductile failure even with the use of an updated Lagrangian formalism and
remeshing. Also, the proposed remeshing strategy (detailed in Eldahshan et al. [2021b])
consists in refining the mesh in the process zone and does not offer the efficiency brought by
mesh coarsening in zones already crossed by the discrete crack.

In this chapter, different novel contributions are proposed to arrive at a continuous–
discontinuous strategy enabling efficient simulations of complex crack path advance at a
reasonable cost. The complete strategy is described in section 2, with more details on the
new contributions. Then, the gain in robustness and cost efficiency offered by the proposed
contributions is evaluated in section 3. Finally, the ability of the proposed strategy to capture
complex crack paths, such as cup–cone and slant failure, or deal with challenging simulations,
is illustrated in section 4 on several 2D and 3D cases. All simulations are performed with the
Z-set software Foerch et al. [1997]; Besson and Foerch [1997]. The implicit gradient GTN
model with two characteristic lengths of El Ouazani Tuhami et al. [accepted], presented in the
previous chapter section 2 is used within a finite strain framework. A fully implicit resolution
scheme is used.

2 continuous–discontinuous damage transition strategy

2.1 Regarding the constitutive behavior
Although this chapter proposes numerical contributions for the continuous–discontinuous
transition, it is necessary, in order to illustrate the principles and evaluate the robustness of the
proposed numerical tools, to consider real application cases. As our main applications cases
deal with failure of ductile media, the implicit gradient GTN model with two characteristic
lengths of El Ouazani Tuhami et al. [accepted] is used. This model is able to describe all
three stages of ductile failure within the finite strain framework and is especially suited to
model complex crack path such as the one associated with cup cone failure. It is therefore
perfectly suited to serve for this chapter. However, the proposed contributions could be used,
with slight adjustments, in combination with different models. That is why the considered
constitutive behavior is only briefly recalled in the previous chapter in section 2. The only
requirements for the model are:

• There should be a continuous scalar field, f,D, ..., representing material degradation;

• It is possible to estimate a critical value fcrit for f corresponding to complete material
degradation (or in other words, a material point with fcrit = fr can be considered as
broken);

• Material degradation is more or less localized in a band of width lb.

In the present case, the best scalar field candidate for the considered nonlocal GTN model is
the total porosity variable ft.

2.2 Summary of the strategy
The chosen continuous–discontinuous damage transition strategy can be summarized by the
following choices:

1. Mesh adaption to produce optimal meshing: (i) before crack initiation, the map size of
the mesh is set by the user and actualized after a chosen time increment ∆tremeshing.
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(ii) after crack initiation, an automatic mesh refinement of the active process zone is
carried out, which guaranties mesh coarsening in already cracked zones;

2. Discontinuity representation method using mesh adaption by representing the crack as
a strong discontinuity in the mesh;

3. Strategy to define where to insert a crack increment: marching ridges algorithm for
propagation in 2D and 3D and 2D crack initiation and new strategy for 3D crack
initiation;

4. Criterion to determine when to insert a crack increment: new criterion based on the
crack increment’s surface;

5. Procedure to retrieve equilibrium after the model has been changed due to crack
increment insertion: transfer with finite element interpolation for nodal data, and
nearest integration point association for integration points data and new reequilibrium
procedure consisting in a relaxation stage using the material behavior for a few
increments as opposed to the elastic step reequilibrium where only the elastic behavior
is considered.

Each component of the proposed procedure is detailed in the following. The sequence of the
corresponding operations is represented in figure 4.1.

Figure 4.1: Flowchart describing the proposed continuous–discontinuous approach with the
different involved components and their inputs/outputs. After resolution of the mechanical
problem, the considered scalar field related to material degradation f is smoothed thanks to
the superconvergent patch recovery method. Then a crack path tracking algorithm is used to
determine where the next crack increment should be inserted and its geometry. The crack
increment is not inserted until the insertion criterion is verified. Only then is a new mesh
generated thanks to the mesh generator meshGems based, on the one hand, on the intersection
of the structure’s mesh and the crack increment mesh, and on the other hand on the tracking of
the active process zones which are meant to be refined. The variables are then transferred onto
the new mesh. To facilitate the return to equilibrium and ensure a satisfactory convergence
rate, a reequilibrium step is proposed. Computation of the next load increment can then be
performed.

2.3 Where to insert a crack increment?
2.3.1 Crack path tracking algorithms

To define the location of a continuous and sufficiently regular crack surface, crack path
tracking algorithms considering an underlying spatial scalar field representing material
degradation are preferred here. Indeed, these algorithms use only local information near
the crack front, thus the computational cost is negligible compared to the FEM computation.
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This low computational cost is essential for a procedure like the one proposed as it is called
after each converged load increment. Some rarely addressed challenges for these algorithms
are crack initiation completely inside the volume of a structure and crack branching. The
ability of the algorithms to overcome these challenges can serve as differentiation points. In
this regard, the marching ridges algorithm introduced in Feld-Payet et al. [2015] enables to
deal with both situations and is thus chosen in this work for the crack propagation phase.
However, although this algorithm provides a unified way to deal with crack propagation and
crack initiation, a more cost effective solution which leads to a more realistic first crack
increment is proposed for crack initiation in 3D. In both cases, the algorithm provides an
explicit surface of the crack increment that can be used directly by the cutting algorithm
Chiaruttini et al. [2013] to introduce the crack into the computational mesh. Let us start with
the initiation of the crack in the computational mesh which leads to the creation of a first
crack front. The crack propagation, modeled by the advancement of the crack front is then
tackled.

2.3.2 Crack initiation

(i) In 3D The geometrical approach proposed in this chapter consist in approximating
the first crack increment for 3D cases by an elliptical surface. This surface is defined as the
ellipse shape containing the orthogonal projection of the positions of the broken integration
points (i.e. points having reached the critical value fcrit), see figure 4.2.

Figure 4.2: Ellipse shape representing the first crack increment build from a cluster of points
having reached the critical value fcrit. The ellipse (in red) is defined, from its center G
corresponding to the barycenter of the broken points, so that it contains all the projections on
its surface of the considered points (in blue).

In practice, the center of the ellipse is classically chosen to be the barycenter of the
broken points. The plane of the elliptical shape is obtained thanks to the Singular Value
Decomposition (SVD) theory Stewart [1993]. According to this approach, if the coordinates
of the considered points are stored in a matrix M coord ∈ R3×Nbroken , where Nbroken is the
number of broken points, then this matrix can be decomposed as follows:

M coord = V ΣW t (4.1)

where V ∈ R3×3 and W ∈ RNbroken×Nbroken are orthogonal matrices and Σ is the matrix
with diagonal coefficients corresponding to the eigenvalue in ascending order (so that it is
uniquely defined). Then, the columns of the matrix V , respectively ~V1, ~V2 and ~V3, represent
the preponderant vectors describing the cluster of broken points. In particular, the plane of
the ellipse is defined by (G, ~V1, ~V2), as illustrated in figure 4.2. Finally, the radii of the ellipse,
denoted a and b, are choses so that the ellipse contains all the projections of the broken points
on the ellipse plane. To do so, it is useful to consider the matrix M ∗

coord = ΣW t which
contains the coordinates of each broken point in the new coordinate system (G, ~V1, ~V2, ~V3)).
The radii of the ellipse can then simply be defined by the following:

• for the largest radius: a = maxi(|M ∗
coord[0, i]|) for i ∈ [0,Nbroken[;

• and for the smallest radius: b = maxi(|M ∗
coord[1, i]|) for i ∈ [0,Nbroken[.
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(ii) In 2D For 2D cases, the marching ridges algorithm provides an efficient and
sufficiently cost efficient approach to determine the first crack increment. Its principle is
recalled in the next section.

2.3.3 Crack propagation using the marching ridges algorithm

(i) Principle in 2D: In 2D, the idea of the marching ridges algorithm is to start from a
point of the crack and approximate the next crack increment by a line segment. As, the crack
is assumed to appear where material degradation is maximum, the segment should be placed
on the ridge of the considered scalar field representing material degradation f .

As with any crack path tracking algorithm considering a scalar field, the first step is a
smoothing operation performed on the considered scalar field f . Following Feld-Payet et al.
[2015], this is done using the super–convergent patch recovery (SPR) technique Zienkiewicz
and Zhu [1992]. The smoothed field is then defined using the same interpolation functions
as for the displacements. Consequently, the evaluation of the smoothed degradation variable
fSPR or its spatial gradient at any point is straightforward. Then, it is necessary to define a
starting point x0: in 2D, a simple choice is to consider the global maximum of the scalar field
for crack initiation and the current crack front for crack propagation. This point can then be
used as the center of a polar grid used to evaluate the projection of the spatial gradient of the
considered field fSPR onto the tangential vector ~eθ at an evaluation radius R and for a finite
number of angles θ separated by the angular accuracy ∆θ. The next points on the ridge then
correspond to the points (R, θ) for which the derivative of fSPR with respect to θ is positive
before (i.e for θ −∆θ/2) and negative after (i.e for θ + ∆θ/2):{

~eθ(θ −∆θ/2).∇fSPR(x0 +R~er(θ −∆θ/2)) > 0
~eθ(θ + ∆θ/2).∇fSPR(x0 +R~er(θ + ∆θ/2)) < 0 (4.2)

(ii) Adaptation to 3D for crack propagation In Feld-Payet et al. [2015], a simple
method to adapt this planar search for 3D crack propagation was proposed. It consists in
performing the 2D search in planes that are orthogonal to the current crack front. In practice,
the current crack front is a line that can be approximated by a finite number of segments. Let
us note that this discretization can be completely independent of the FE discretization: e.g.
in this work, the crack front line is discretized into segments of length equal to the evaluation
radius R. For each segment, it is straightforward to define an orthogonal plane for the 2D
search. For increased robustness, several parallel planes can be defined for one segment so
as to be able to average the resulting direction(s), especially for large segments. The starting
point x0 is then the intersection of the considered plane with the current crack front line.
Finally, an average direction is computed for each point connecting two segments using their
respective directions (see figure 4.3). This 3D adaption method is actually quite generic and
can be used with any crack path tracking algorithm developed for 2D cases.

A major difference in this work compared to Feld-Payet et al. [2015], is that the crack
increments do not have the same length for all the segments discretizing the current crack
front in 3D, which broadens the scope of the methodology. Indeed, for each point between
two segments, the propagation length is given by the distance to the iso-value f = fcrit. Each
point of the current front is then associated to a new end point that serves as control point to
build a Bezier curve of degree 2 . Finally, the next crack front is defined by projecting each
node of the current crack front onto the Bezier curve, which completely defines the crack
increment.

As material degradation progresses, the iso-line f = fcrit usually gets further from the
crack front, thus increasing the size of the crack increment until the insertion criterion allows
its insertion.

2.4 Insertion criterion

An insertion criterion determines whether a crack increment is ready to be inserted into the
mesh based on the local fields. This insertion should be performed when material degradation
is sufficiently important.
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Figure 4.3: Use of the marching ridges algorithm for 3D structures with 2D polar grid search
in planes orthogonal to the current crack front segments, figure a), as proposed in Feld-Payet
et al. [2015]).

2.4.1 In 2D

In case of 2D simulations, the insertion criterion can be easily defined since the crack
increment is a line segment (for both initiation and propagation), especially when inserting
crack increments of constant length. It then suffices to evaluate the considered material
degradation related field f and to allow crack insertion when it exceeds the critical value
fcrit along the entire crack increment, as in Feld-Payet et al. [2015]. This is also the choice
made here for 2D problems. The main challenge is then to define an appropriate crack
increment size to avoid too frequent remeshing if the crack increment is too small, or delayed
insertion if the crack increment is too large, resulting in stretched elements near the crack
front. Following Feld-Payet et al. [2015], a crack increment length ∆a build as a multiple of
the localization bandwidth lb: ∆a = mc × lb, with mc is a multiplication factor that can be
tuned (a study on the effect of the crack increment length ∆a on the crack path is presented
in section 3.1.2 leading to mc ≈ 4).

A more elaborate criterion for 3D structures is needed since the crack can be represented
by a complex surface.

2.4.2 For crack initiation in 3D

For crack initiation, a minimal size of the elliptical crack surface should be determined in
order to avoid inserting too small increments into the mesh. In order to be as consistent as
possible with the criterion proposed for 2D cases, it is proposed here to proceed to insertion
only if both radii of the ellipse (build to contain all the projections of the points with f ≥ fcrit)
are greater than ∆a.

2.4.3 For crack propagation in 3D

When the crack increment does not have a simple geometrical shape, as it may be the case
during crack propagation, a new criterion has to be defined. We propose here to consider
the area of the crack increment, Areal, and to compare it with the area considered when using
constant crack length increments, which had provided good results in Feld-Payet et al. [2015].
A progression with constant crack increments corresponds to an isotropic propagation of the
current crack front. The area of the uniform crack increment is thus denoted Aunif . The
real crack increment is validated for insertion if its area Areal is greater than the area of the
uniform crack propagation Aunif (see figure 4.4).
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Figure 4.4: The proposed insertion criterion for crack propagation in 3D structures compares
the area of the crack increment with constant length for each segment, Aunif , and the area
obtained with different lengths, Areal: insertion is allowed only when Areal ≥ Aunif .

2.5 Mesh adaption

2.5.1 Discontinuity representation

In order to obtain a realistic representation of cracks’ opening/closing, a discrete
representation of crack lips in the computation mesh is preferred. In the present case, the
discrete representation is obtained thanks to mesh adaption since this operation is already
used even before crack initiation in order to avoid element distorsion.

Insertion of the discrete crack into the volumetric mesh here relies on a cutting operation
of the external boundary of the mesh by the crack surface. A robust cutting algorithm
introduced in Chiaruttini et al. [2013] is used to perform this operation. Note that the
same cutting algorithm is used to perform discrete crack propagation in fatigue problems
Proudhon et al. [2016]; Fessler et al. [2017]. This cutting algorithm produces a surface mesh
incorporating both the outer surface of the structure mesh and the crack surface. Then, an
additional refinement operation, using meshGems Frey and George [2008], is performed in
order to fill in the volume of the created surface mesh and generate a suitable mesh with
acceptable element quality and adapted discretization. This refinement operation is detailed
in the next section.

2.5.2 Local refinement of active localization bands

Through refining specific areas and coarsening the mesh in others, the objective is to achieve a
compromise between accuracy and cost. This strategy requires to distinguish Active Damage
Zones (APZ) from areas where damage does not significantly evolve to only refine the APZ.
Inside the APZ, the minimal element size hmin necessary for the convergence of the mesh is
imposed(see El Ouazani Tuhami et al. [accepted]). Outside the APZ, the sizes of the elements
are linearly interpolated between the minimal and maximal sizes, respectively hmin and hmax,
according to the distance of the considered element from the APZ; this enables to minimize
the computational cost.

In practice, the APZ is defined differently according the simulation stage:

• Before crack initiation, the APZ is defined by a circle in 2D, or a sphere in 3D,
centered on the potential locations of crack initiation. The radius of the circle LAPZ
is defined as the maximum distance between two points reaching fcrit and fcrit/2
respectively. Depending on the size of the APZ, this radius can be adapted by
considering a larger area through a more general definition of the radius involving
fcrit/mAPZ with mAPZ ≥ 2. This choice is made so that an adequate fine mesh is
attributed to zones of crack initiation at early stages of the damaging process (see figure
4.5-a). Note that this procedure is based on prior knowledge of the potential locations
of crack initiation. However, adaptive mesh procedures based on error estimation
(see chapter 5, Feld-Payet [2010]) may automate the mesh adaption in this stage of
the simulation, but fine tuning of the error estimator parameters and the map size
computation are needed to achieve the same goal;
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• After crack initiation: the same definition is used, but the center of the APZ changes. In
2D, the center is considered as the farthest point from the crack front, taken along the
last crack increment direction, where the considered scalar field f reaches fcrit/mAPZ .
Then the distance between this point and the crack front is the radius LAPZ (see figure
4.5-b). In 3D, the center line of the APZ is constructed as the 1D line intersecting the
points reaching the fcrit/mAPZ in front of the crack front (also a line in 3D). Thus
the APZ is the cylinder revolving around the center line and its radii is define by the
distance between the center line and the crack front. Note that in the propagation phase,
as the damage already evolved and reached the critical value fcrit, the APZ refinement
is done automatically as opposed to the initiation stage.

Figure 4.5: Automatic detection of the active process zone (APZ) for the remeshing
procedure: the center and radius definitions change a) before and b) after crack initiation.
Using this procedure, only the active process zone ahead of the crack front is finely meshed.
The mesh used for areas already crossed by a crack are coarser depending on their distance
to the crack front.

2.5.3 Mesh adaption within a finite strain framework

Since the FE simulation is performed within a finite strain framework, it is important to ensure
that the aspect ratios of the elements stay correct throughout the simulation. To do so, mesh
adaption is performed on the current configuration and at a given frequency ∆tremeshing set
by the user. This first criterion is considered only before crack initiation.

2.6 Transfer operator
In order to resume the simulation after each discretization change, it is necessary to transfer,
from the old mesh to the new mesh, the data stored at the nodes and integration points.

2.6.1 Nodal data transfer operator

The procedure for transferring the nodal variables is standard: each node of the new mesh
is located in an element of the old mesh, and then the new nodal value is calculated using
the element’s shape functions. In the present case, since the remeshing is performed on the
current configuration, the displacement vector ~u is set to ~0 on the new mesh, so no transfer
is needed for the displacement field. However, since the considered model is based on an
implicit gradient formulation, the nonlocal nodal variable are transferred using the described
method.

2.6.2 Integration points data transfer operator

For the state variables stored at the integration points, the nearest integration point transfer
technique is used Simone et al. [2003]. This technique has been chosen to preserve the high
gradients of the localized variables, since no smoothing operation is used. Let us note that
a prerequisite to use this technique is that the meshes do not change significantly before
and after remeshing. This is the case with the proposed mesh adaption procedure thanks
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to a regular refinement (due to the mesh adaption frequency ∆tremeshing or to the insertion
of sufficiently small crack increments) of the APZ which moves progressively as the crack
advances, with a gradually evolving mesh size outside the APZ.

2.7 Reequilbrium using a relaxation step

Independent transfer operations on the nodal and integration point variables create
unavoidable errors: in particular, neither the global equilibrium equations nor the local
constitutive equations are satisfied and the transferred strains are not consistent with the nodal
displacements. These inconsistencies in the transferred fields degrade the convergence rate
after remeshing and it may lead to a large number of increments if a load increment division
procedure Boroomand and Zienkiewicz [1999] is used. Too significant errors may even lead
to divergence of the resolution algorithm.

In this chapter, the author propose a novel reequilibrium method based on the elastic
balancing step introduced in Mediavilla Varas [2005]. The idea of this latter method is to
retrieve equilibrium thanks to an additional step with frozen boundary conditions during
which there should be no evolution of state variables like plasticity and damage. This
balancing step then consists in solving the mechanical problem using the transferred nodal
and integration data, while considering an elastic behavior. However in presence of damage
and crack insertion, even with this balancing step, from the author experience, degradation
of convergence rate and risk of divergence are still a problem. Part of the problem may come
from the fact that plasticity and damage variables are kept constant.

For the proposed reequilibrium procedure, only adapted for viscous material, the
boundary conditions are also frozen but during a non null time increment ∆treeq during which
the mechanical problem is solved, with several sub-increments, considering the material
behavior as opposed to the elastic behavior used in Mediavilla Varas [2005]. This procedure
can be interpreted as a viscous relaxation of the material. Plasticity and damage are then free
to evolve, but this evolution should actually be rather negligible due to the fixed boundary
conditions and the choice of a small time increment for the reequilibrium procedure. Indeed,
the reequilibrium time increment ∆treeq is taken as a fraction (1/10, 1/100 or 1/1000) of the
time increment required for convergence during the ductile failure process. Note that, the
closer ∆reeq to the time increment required for convergence, the better the rate convergence,
but in the simulations presented in this chapter, a smaller value of this parameter is chosen to
limit the state fields variation during this reequilibrium step. This time increment is divided
onto sub-increments which are taken very small at first and they rapidly increases, until the
imposed time ∆treeq has elapsed. In average, we have observed, for the considered model,
a number of increments during the reequilibrium stage following a crack increment insertion
around 8. After this reequilibrium increment, the usual boundary conditions are considered
again and the usual convergence rate should be retrieved, or only slightly diminished.

2.8 Summary of the parameters of the continuous–discontinuous
procedure

In table 4.1, the parameters of the the continuous–discontinuous procedure used for all the
applications in this chapter are listed.

3 Evaluation of robustness and cost efficiency

In this section, first, the robustness of the considered continuous–discontinuous approach,
and in particular of the proposed new ingredients to build the crack surface is illustrated on
2D nonlocal simulations of an axisymmetric tensile test for different mesh sizes and different
crack increment sizes ∆a. Then the gain in cost offered by the use of the mesh adaption
based on the tracking of the APZ and the reequilibrium procedure is illustrated on the same
application.
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Table 4.1: The parameters of the the continuous–discontinuous procedure. Notation lb
designates the localization bandwidth that can be measured following the methodology
described in El Ouazani Tuhami et al. [accepted].

Remeshing parameters
Minimal element size hmin lb/2
Size of APZ mAPZ 2
Remeshing frequency ∆tremeshing adjustable
Marching ridges algorithm
Evaluation radius R 4lb
angular precision ∆θ 5◦
Insertion criterion
Critical value for insertion fcrit 0.95fc = 0.6333
Crack increment length ∆a 4lb
Reequilibrium time increment ∆treeq 10−4s

3.1 Robustness
3.1.1 Mesh size independence

In order to illustrate the robustness of the continuous–discontinuous approach, and in
particular of the proposed new ingredients to build the crack surface, let us compare
the results obtained with different mesh sizes for the same structure. Let us consider
the axisymmetric round tensile specimen (see figure 3.1a) corresponding to one of the
experimental tests in Rivalin [1998], the same experimental test was used in literature as
benchmark simulation Besson et al. [2001]; Huespe et al. [2012]; Leclerc et al. [2020];
El Ouazani Tuhami et al. [accepted].

In order to obtain converged results, the localization band should be discretized by several
elements. It is thus necessary to first determine the width of the localization band lb. In the
present case, it is possible to refer to El Ouazani Tuhami et al. [accepted] and the linear
relation found between the characteristic length lc and the bandwidth size laxib identified for
this axisymmetric test:

laxib = 2.13lc (4.3)

For the considered model, there are two characteristic lengths. Only the smallest one
(i.e. lκ = 20µm, see the previous chapter, section2) should be considered to evaluate the
bandwidth. The smallest bandwidth should thus be, according to equation 4.3: lb = 45.6µm.
Consequently, meshes with with minimum size hmin ∈ {10, 20, 40}µm are considered. For
comparison purposes, a simulation with a very fine fixed mesh from with Nh = 180 elements
in the minimal cross section and an initial element aspect ratio equal to 6 : 1, without crack
insertion, is also considered.

In Figure 4.6, the evolution of the engineering stress is displayed as a function of the
diameter reduction for all the considered meshes and the total porosity ft for each mesh size
at total failure is also shown. For meshes with minimal element size hmin ≤ 40µm ≤ lb, the
global response is very similar to the simulation using a very fine mesh (Nh = 180) without
crack insertion, which is assumed to provide converged results. A cup–cone crack path is
obtained for all the considered mesh. It is clear that the crack lip opening is more realistic
using the proposed procedure compared to the simulation without crack insertion. In the last
case, the crack is represented in a smeared manner, thus the position of the crack lips or crack
front is simply not defined.

3.1.2 Crack increment size effect

The crack increment length ∆a is an important parameter of the proposed procedure because
it affects both the discretization of the crack path and the number of mesh adaptions (through
the insertion criterion). On the one hand, its choice is guided by considerations similar to
the ones guiding the choice of the elements’ size for any finite element computation, i.e. it
should be :

1. small enough to enable a proper discretization, in this case, of the crack path;
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Figure 4.6: Evolution of the engineering stress as a function of the diameter reduction
−∆φ0/φ for different minimal mesh sizes obtained when simulating a tensile test on an
axisymmetric specimen. With minimal mesh sizes hmin ∈ {10, 20, 40}µm, the proposed
continuous–discontinuous method has been used whereas the simulation with a very fine
mesh is without any mesh adaption or crack insertion. For all the considered meshes, the
global responses are similar and the total porosity at complete failure shows a cup—cone
failure. This similarity indicates that the proposed procedure is rather robust to the choice of
the mesh size.

2. large enough in order to minimize computational cost, in particular to limit the cost
associated to a change of discretization by limiting the number of crack insertions.
Let us note that in the present case, choosing large increment also means less transfer
related errors, whereas for standard finite element computation, larger elements usually
lead to more discretization error.

On the other hand, this choice should also be guided by an additional constraint when
considering a scalar variable presenting a plateau instead of a sharp ridge: the crack increment
length should not be smaller than plateau width, otherwise, the crack path may zigzag. This
is the case here since the porosity variable ends up saturating locally due to the choice of
regularization through an implicit gradient formulation. That is why only crack increment
length larger than the localization bandwidth are considered in this study.

Let us then compare 3 simulations with the same minimum element size hmin = 20µm
but different crack increment lengths: ∆a ∈ {80, 160, 240}µm. As shown in figure 4.7, the
evolution of the engineering stress as a function of the diameter reduction is the same for the
3 crack increment lengths. It can thus be concluded that the global response is rather robust
to the choice of the crack increment length.

This also means that it is necessary to use different criteria to choose an appropriate crack
increment length. By looking at the different contours of total porosity at complete failure in
figure 4.7, one can see that for the largest increment, i.e. ∆a = 240µm, the crack path is not
completely smooth, which can be explained by excessive stretching of the elements near the
crack front due to delayed insertion. Smaller sizes should thus be considered. The choices
∆a = 160µm and ∆a = 80µm lead to rather similar crack paths. However, in the first case,
only 20 remeshes are necessary to obtain the complete propagation in comparison to the 38
remeshes for the smallest crack increment length. In order to minimize computational costs,
the value ∆a = 160µm should be preferred. This crack increment length corresponds to four
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times the evaluated localization bandwidth (i.e. ∆a = 4lb), which is the order of magnitude
recommanded by the author.
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Figure 4.7: Evolution of the engineering stress as a function of the diameter reduction
−∆φ0/φ for different crack increment lengths ∆a, using the proposed continuous–
discontinuous method, in the case of the axisymmetric specimen. It appears that ∆a has
no effect on the global response. However, the largest increment length, ∆a = 180µm,
leads to a cup–cone crack path which is not completely smooth compared to the other crack
increment lengths.

3.2 Cost efficiency
3.2.1 Gain from refining only the active process zones

In this section, the gain obtained thanks to the refinement of only the active process zones is
evaluated. To do so, the three following approaches are compared in terms of the number of
nodes:

1. the proposed continuous–discontinuous procedure with refinement of only the active
process zones;

2. an approach with mesh refinement of the all the process zones without coarsening after
a process zone is no longer active;

3. a simulation with a fixed mesh (i.e. without any mesh adaption) of rectangular
quadratic elements with 239 123 nodes. This last case is meant to be representative of a
situation where the exact crack path is not known a priori, so minimum size elements
to achieve convergence are used in the entire zone of possible crack propagation.

For both cases with mesh adaption, triangular elements are used with a minimum element
size hmin = 20µm. Let us specify that all three approaches lead to similar global responses
and identical crack paths.

In Figure 4.8, the evolution of the total number of nodes as the meshes are adapted is
given for all the three approaches. Let us note that the smallest number of nodes is obtained
with the proposed procedure: about 3 times less than the mesh adaption procedure without
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Figure 4.8: Evolution of the number of nodes as a function of the number of mesh adaption
procedures for the proposed procedure with refinement of only the active process zones
(in blue), mesh adaption with only refinement without coarsening of the process zones (in
orange) and a fixed mesh (in green). The firt approache consistently leads to a smaller and
rather constant number of elements.

coarsening and 13 times less than the fixed mesh. Besides, with the proposed approach, the
total number of nodes is approximately the same for all remeshing instances. In other words,
the total number of nodes does not depend on the length of the crack path, in contrast with
the second procedure without mesh coarsening for which the number of nodes increases as
the crack propagates. The proposed approach consisting in refining only the active process
zones is thus very cost effective.

3.2.2 Gain from the reequilibrium procedure

In this section, in order to evaluate the cost effectiveness of the reequilibrium procedure, let
us compare the computational cost for three simulations:

1. a simulation with the full proposed approach and in particular, the reequilibrium
procedure;

2. a simulation with mesh adaption only in the active process zone, but without the
reequilibrium procedure;

3. a fixed mesh similar to the one presented in the previous section 3.2.1.

Since each iteration involves the update of the local internal variables and the inversion of the
global matrix, which are quite expensive operations, especially with a non linear problem,
the accumulated number of iterations is an appropriate measure of the computational cost.

In figure 4.9, the evolution of the accumulated number of increments is given as a function
of the imposed vertical displacement Ud

2 , from Ud
2 = 3mm. Let us specify that the global

response obtained in all the three considered cases is identical. The lowest number of
increments is obtained with the fixed mesh (i.e. without any field transfer): only 690time
increments are needed to obtain total failure. But even with this fixed mesh, there is an
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increase of the number of increments after crack initiation (first integration points reaching
fcrit). This trend is also observed with the simulations with mesh adaption. It can thus
be assumed that, whatever the considered approach is, the severity of the nonlinearities
associated with the damage evolution during the fracture process may be responsible for a
part of the difficulties to converge. However, additional difficulties appear when adapting
the mesh to insert a crack increment, as the number of increments seems to increase as
soon as the crack initiates (compared to the relatively small number of increments before).
There is indeed a cost that has to be paid in order to introduce, in the continuous model, a
discrete and well defined crack. However, this cost can be limited thanks to the proposed
reequilibrium procedure. Indeed, the number of time increments is two times smaller than
without reequilibrium.
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Figure 4.9: Evolution of the cumulated number of time increments as a function of imposed
vertical displacement for the simulation of the axisymmetric tensile test on a fixed mesh (in
black), with mesh adaption but without reequilibrium (in red) and with mesh adaption and
the proposed reequilibrium procedure (in dark red). The higher number of time increments is
obtained for the simulation with mesh adaption without reequilibrium. With the reequilibrium
procedure, the total number of increment is approximately divided by two. The lowest
number of time increments is obtained for the fixed mesh for which there is no discrete crack
represented, so no transfer needed. In all cases, the crack propagation phase is accompanied
by an increase in the number of increments.

4 Numerical applications

4.1 Introduction

The purpose of this section is to demonstrate the effectiveness of the proposed continuous–
discontinuous approach, and in particular of the new ingredients, on several cases from the
literature. The considered cases are selected among the most used specimens for material
identification and either lead to a non-trivial crack paths (like tensile tests on notched round or
round bar specimens) or present some difficulty for its simulation (like a tensile test on a CT
specimen resulting in relatively long crack propagation with very large strains). Numerical
applications are presented in various frameworks: 2D axisymmetric, 2D plane strain and
3D simulations. The material characteristic presented in table 3.1 are used unless specified
otherwise.
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4.2 Cup–cone failure prediction for different 2D axisymmetric tensile
tests

In this section, more cases presenting a cup–cone failure are tackled: round specimens
with different notch radii ({2, 4, 10}mm) and without any notch (referred to as round bar
and assimilable to a notched specimen with an infinite radius Rn) are simulated with 2D
axisymmetric meshes: see figure 4.10-a for a description of the geometry and boundary
conditions. The interest of considering several radii is to study the effect on the crack path of
different stress triaxiality states at the center of the specimen, since triaxility level increases
as the notch radius decreases. The results are first compared in terms of evolution of the
engineering stress as a function of the diameter reduction −∆φ0/φ in figure 4.11. It appears

Figure 4.10: Specimens’ geometry specifications and boundary conditions.

that the ductility decreases with the notch radius. This observation is in agreement with
experimental observation Bao and Wierzbicki [2004]. In the same figure, for each specimen,
three stages of the simulation are highlighted with numbered arrows. Corresponding contours
of the total porosity are plotted for each highlighted stage in figure 4.12. For every specimen,
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Figure 4.11: Evolution of the engineering stress as a function of diameter reduction−∆φ0/φ
for all the considered axisymmetric specimens, using the proposed continuous–discontinuous
approach. The final diameter reduction decreases with the notch radius. For each global
response, three particular instants of the simulation are highlighted with a numbered arrow in
order to track damage evolution and crack path in figure 4.12.
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the crack is initiated (stage 1) at the center where stress triaxiality is maximum. Then for all
the specimens a cup–cone crack path is predicted (stage 3). It is interesting to note that the
distance from the symetry axis at which the cup–cone crack path bifurcates increases as the
notch radius decreases: this indicates that the cup–cone bifurcation diameter is a function of
the triaxiality at the center of the specimen.

Figure 4.12: Total porosity ft contours at the three instants of the simulation highlighted in
figure 4.11, for all the considered axysimmetric specimens. For all the specimens, there is a
cup–cone crack path at stage 3. The diameter corresponding to the bifurcation increases as
the notch radius decreases. Let us note that, for the round bar specimen, striction causes the
boundary to appear as curved at these advanced stages of material degradation.

4.3 Slant fracture prediction for 2D plane strain tensile tests
In this section, the proposed continuous–discontinuous procedure is applied to predict slant
fracture for a tensile test selected from Rivalin [1998], the geometry and boundary conditions
are presented in figure 4.10-b. It is interesting in this case to compare the results with a fixed
mesh without crack insertion since, contrary to the cup–cone fracture simulations in figure
4.6, slight differences are found in this case. Let us note that both simulations are performed
assuming plane strain conditions. Besides, both discretizations are chosen sufficiently fine
(i.e. with a minimum element size of hmin = 20µm for the triangular meshes generated with
the proposed procedure and with Nh = 180 rectangular elements in the section for the fixed
mesh) in order to have converged results.

In figure 4.13, the evolution of the engineering stress is plotted as a function of the
thickness reduction −∆e0/e0 for both the simulation using the proposed procedure and the
simulation with a fixed mesh. Similar global responses for both simulations are obtained
up to the latest stages of the simulation: at this point, the simulation with crack insertion
ends up with a slightly larger final thickness reduction. In order to better understand this
difference, it is interesting to consider the total porosity contours in the same figure. In both
cases, a slant crack path is predicted. However, with the fixed mesh, the slant crack path is
symmetric with regards to the central vertical axis, whereas with the proposed continuous–
discontinuous procedure, an antisymmetric slant crack path first appears before a bifurcation
towards another shear band is observed. The occurence of the crack bifurcation seems to
coincide with the deviation of the global curves: the difference between the crack paths may
then explain the difference in the global responses at the latest stages of the simulation.

Let us note that this bifurcation of the slant fracture towards another shear band was also
reported in the numerical work of Leclerc et al. [2020] using a different ductile model and
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a different continuous–discontinuous approach. However, in the work of Leclerc et al., only
one half of the specimen was modeled, which means that the symmetry conditions impose
a symmetric crack path with regards to the central vertical axis. From these results, it can
be assumed that, rather than the symmetric or antisymmetric characteristic of the crack path,
it might be the insertion of a true discontinuity in the model that favors the occurence of
crack bifurcation. However, more simulation with fixed meshes with different characteristic
lengths would be necessary to support this assumption.
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Figure 4.13: Evolution of the engineering stress as a function of the thickness reduction
−∆e0/e0 of the plane strain specimen for both a simulation with the proposed continuous–
discontinuous procedure and a simulation with a fixed mesh. The global curves are similar
up to the latest stages of the simulation where the simulation with the proposed continuous–
discontinuous procedure ends up with a larger final thickness reduction. Total porosity is
displayed at various times of the simulation using the proposed method, and at total failure
for the fixed mesh simulation. The proposed method predicts an axisymmetric slant crack
path with a bifurcation whereas the fixed mesh simulation predicts a symmetric slant crack
path. The bifurcation coincide with the deviation of the global responses.

4.4 Blunting and long crack propagation for a 2D plane strain CT test
In this section, a 2D plane strain simulation of a tensile test on a CT specimen is used
to showcase the capability of the proposed continuous–discontinuous procedure, and in
particular of the mesh adaption procedure of only refinement of APZ, to predict crack tip
blunting before crack initiation and to simulate long crack path propagation accompanied
by very large strains. The geometry and boundary conditions can be found in figure 4.10-
c For this geometry, since no prior convergence study was performed to determine the
maximal acceptable size for converged results according to the methodology proposed in
El Ouazani Tuhami et al. [accepted], two meshes with different minimum element sizes
hmin ∈ {20, 40}µm are used to verify the mesh convergence. In figure 4.14, the evolution
of the engineering stress is plotted as a function of Crack MOuth Displacement (CMOD) for
the two considered meshes. Both curves are identical which tends to indicate that mesh
convergence is achieved. Besides, based on the contours of total porosity in the same
figure, it can be seen that mesh adaption enables to maintain a good quality for the elements
near the crack tip, even in the presence of large strains. Indeed, before crack initiation,
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Figure 4.14: Evolution of the engineering stress as a function of Crack MOuth Displacement
(CMOD) for two meshes of the CT specimen with different minimum element sizes:
hmin ∈ {20, 40}µm. The global response is identical for both meshes which tends to indicate
mesh convergence. Contours of the total porosity ft are displayed at different times of the
simulation. Before crack initiation (marked with a green cross), crack tip blunting is well
described thanks to mesh adaption which enables to preserve good quality elements near the
crack tip. Then the crack propagates over a relatively long distance with still well shaped fine
elements near the crack tip and a coarsened mesh along the crack lips.

crack tip blunting is gradually developing and well captured by the simulation. This good
representation of the crack tip blunting would be more difficult to obtain with a fixed mesh
due to stretched element near the crack tip. During crack propagation, good quality elements
are preserved in the vicinity of the crack tip while the non-active process zones behind
the crack tip are coarsened. This enables to keep a the number of nodes throughout the
crack propagation process approximately the same and thus to limit computational cost.
Furthermore, thanks to crack insertion into the computation mesh, a stable and relatively
long crack propagation until total failure is obtained with, all along, a well represented crack
opening.

4.5 3D simulation of cup–cone failure

In this section, a 3D simulation of a cup–cone failure on a simple round bar (without any
notch) is presented to illustrate the efficiency of the proposed ingredients that are specific to
3D, i.e. the proposed geometrical approach based on a scalar damage field to initiate a crack
with an elliptical crack surface and the proposed insertion criterion based on the area of the
crack increment. The considered initial mesh is presented in figure 4.16-a: only a quarter
of the specimen is simulated. In spite of the gain offered by the new ingredients (see 3.2)
for the post-processing operations related to crack increment evaluation and insertion, 3D
simulations are still quite expensive during the increments’ calculation due to integration
of the constitutive behavior for a very large number of elements and the resolution of the
linearized mechanical problem. In order to reduce this last part of computational costs which
are not the subject of this chapter, larger elements are considered here, with hmin = 80µm
(i.e. four times larger than for the previously presented 2D simulations of cup–cone in 4.2).
Consequently, larger minimum characteristic lengths are also used to have a sufficient number
of elements to discretize the localization band (here lκ = lω = 40µm, see previous chapter
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section 5.2). The results are confronted with the ones obtained performing, on the one hand,
a 2D axisymmetric simulation using the proposed continuous–discontinuous procedure and a
finer mesh (hmin = 20µm) and on the other hand, a 2D axisymmetric simulation with a fixed
mesh with Nh = 180 rectangular elements discretizing the section.

In figure 4.15, the evolution of the engineering stress is plotted as a function of the
diameter reduction −∆φ0/φ for all the three considered simulations. The global responses
from the three simulations are very similar, which tends to validate the results of the 3D
simulation. Contours of the total porosity ft are also displayed at different times for the
3D simulation to illustrate the cup–cone crack path. The final cup–cone fracture surface
obtained with the 3D simulation is shown in figure 4.16-b. It is clear that, thanks to the
proposed continuous–discontinuous procedure, the crack lips are particularly well described
and smooth. This is an advantage of discrete crack determination, which requires the use
of a crack path tracking algorithm. Let us note that contrary to continuous–discontinuous
procedures that use element erosion prior to mesh adaption, with the proposed procedure
there is abolutely no material loss.
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Figure 4.15: Evolution of the engineering stress as a function of diameter reduction−∆φ0/φ
for the simulation of a bar with round section with the proposed approach in 3D (in red), the
proposed approach with 2D axisymmetric elements and a smaller minimum element size (in
green) and a fixed mesh with 2D axisymmetric elements (in blue). All the global responses
are similar, which thend to indicate the validity of the used 3D mesh. Contours of the total
porosity are displayed at different times for the 3D simulation to illustrate the cup–cone crack
propagation.

Let us note that the cup–cone fracture surface obtained with the 3D simulation is in
good qualitative agreement with experimental results of Besson et al. Besson et al. [2003]
(reproduced in El khaoulani and Bouchard [2012]).

5 Conclusion
In this chapter, some new contributions were proposed to enable a robust and cost–efficient
transition between a continuous model evaluating local material degradation and a model
representing propagation of a discrete crack. These contributions have been evaluated on
complex crack path simulations (i.e. either non-trivial crack paths or challenging simulations



5. Conclusion 107

Figure 4.16: a: initial mesh of quarter of the specimen for the 3D simulation. b: fracture
surfaces obtained from the 3D simulation. The predicted cup–cone crack surfaces are smooth,
well defined and qualitatively in agreement with what can be expected from the experimental
results obtained by Besson et al. Besson et al. [2003].

with large strains and long crack propagation) using the nonlocal GTN model with two
characteristic lengths of El Ouazani Tuhami et al. [accepted].

First, starting from the proposed methodology of Feld-Payet et al. Feld-Payet [2010];
Feld-Payet et al. [2015], a new procedure was proposed in order to facilitate the return
to equilibrium and to improve the convergence rate after change of discretization. As
a consequence, several simulations of specimens used for material identification with
both plane strain and axisymmetric elements and different numerical parameters could be
performed and presented in this chapter. It has been shown that this reequilibrium procedure
enables to limit the number of increments during crack propagation, which contributes to the
cost-efficiency of the method. Another new element, that also enables to limit computational
cost, is the refinement of only the active process zones. This feature has a double advantage:
not only are the degradation phenomena leading to complete failure is well described, but
also, the number of elements (and thus the computational cost) remains approximately
constant. Finally, two more contributions, on rarely tackled subjects, are proposed for
simulations in 3D. The first one deals with crack initiation completely inside the structure: a
simple geometrical crack initiation methodology based on SVD analysis of the coordinates
of broken points has been proposed to generate an elliptical shaped first increment. This
solution offers a gain in computational cost compared to the method of Feld-Payet [2010];
Feld-Payet et al. [2015]. Finally, a new insertion criterion was proposed to select both the
most appropriate time to insert a given crack increment and the crack increment’s surface.
These new features enabled to successfully simulate the challenging case of a cup–cone
failure in 3D.

The obtained results with the proposed continuous–discontinuous procedure have been
validated in several ways. First, whenever possible, comparisons with simulations on a fixed
very fine mesh were performed. Different minimum element sizes where tested in order to
show the insensitivity of the procedure to the mesh size. Several crack increment lengths
were considered in order to illustrate the insensitivity of the global response. This study also
enabled to propose guidelines, based on the crack path representation, for the choice of the
optimal crack increment length. Finally, in all cases, it was verified that the simulated crack
surfaces were, in comparison with numerical simulations or experimental observations from
the literature, in qualitative good agreement.

The proposed methodology thus enables to consider continuous–discontinuous transition
for a vast number of cases. Let us note that among the Four proposed ingredients, three
can be used with a different discontinuity representation: indeed, the simple geometrical
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approach to initiate elliptical crack shapes in 3D meshes, the new 3D insertion criterion
and the reequilibrium procedure could all be used in combination with X-FEM or even
to perform controlled element erosion. Thanks to all the proposed contributions, the cost
associated to crack insertion can be significantly limited. However, the resolution of the
mechanical problem still remains expensive in 3D: it would then be interesting to consider
parallel computing. Let us note that, if several cracks were to appear in different areas,
parallel computing could also be considered to perform the post-processing operations related
to crack detection, insertion and propagation in each area independently. However, if a crack
is to propagate at the interface of two adjacent domain, problem of consistency of the crack
front may arise. Therefore, the cutting and the crack path tracking algorithm, must be adapted
to the parallel framework in order to take full advantage of parallel computing.
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Résumé en français

L’objectif principal est d’évaluer la capacité prédictive de la méthode développée. Pour ce
faire, une base de données expérimentale issue d’une précédente thèse [Davaze, 2019] est
utilisée pour effectuer des comparaisons entre simulations et tests expérimentaux. Dans
un premier temps, le materiau étudié ainsi que la base de données expérimentales sont
brièvement décrits. Ensuite, un modèle de comportement est développé afin de reproduire
les phénomènes non linéaires observés dans les essais expérimentaux. Le modèle nonlocal
à deux longueurs caractéristiques du chapitre 3 est utilisé dans la simulation présentée.
Enfin, les simulations des essais expérimentaux utilisant l’approche continue-discontinue
développée sont comparées aux résultats expérimentaux. Un bon accord est trouvé.
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1 Inputs from to the previous work of [Davaze, 2019;
Davaze et al., 2020]

1.1 Summary of the work

The aim the Ph.D. work of [Davaze, 2019] work was to develop and implement a robust
and efficient numerical method enabling the numerical prediction, by the FEM, of ductile
failure of car parts made of thin metal sheets during crash simulations. This numerical
method was verified using a representative ductile material often used in the automotive
industry: the DP450 “dual-phase” steel sheets. The first part of the work consisted in the
characterization and the constitutive modeling of the DP450 steel. Characterization tests
(approximately 120) has been carried out over a wide range of loading rates (quasi–static and
dynamic), stress triaxialities, Lode parameter, and at different temperatures. Based on the
exploitation of the results, a numerical local constitutive model have been established taking
into account the different observed phenomena that have an influence on crack initiation
and propagation: plasticity, strain-rate dependence (viscosity and self-heating) and damage
[Davaze et al., 2020]. As the local coupled damage model suffers from mesh sensitivity, the
second part of the work consisted in implementing two regularization methods: the first one
based on the micromorphic [Forest, 2009] approach and the second one based on the implicit
gradient method [Peerlings et al., 1996]. Both approaches were implemented using an explicit
resolution scheme adapted to dynamic simulations. After comparison, the implicit gradient
method appeared to be more practical, robust and easy to identify and was retained as the best
solution. Simulations were then carried out on several geometries, with dynamic loading, for
which mesh independence (size or orientation) was demonstrated. In addition, simulations
were generally in good agreement with experimental results [Davaze et al., 2021].

In this chapter, the experimental database developed in the work of [Davaze, 2019]
is used, in order to evaluate the predictive capability of the continuous–discontinuous
approach presented in the previous chapter. This chapter is structured as follows: First,
in the section 1.2, the studied material is presented, as well as the experimental tests used
in the characterization of the mechanical behavior. Then, the main experimental results
are discussed in section 1.4, and the constitutive equations used to model the observed
phenomena are presented in section 2. It should be noted that a model, adapted to the
quasi-static part of the experimental database, and very similar material parameters are
used compared to those used in the work of [Davaze, 2019]. Finally, simulations of
different specimen geometries under quasi–static loading using the proposed continuous–
discontinuous method are performed. In these simulations, meshes with minimal element
size obtained from the mesh study presented in [Davaze et al., 2021] are used. In addition,
comparison of global responses and crack paths between experiments and simulations are
presented in section 4.

1.2 Material: DP450 “dual-phase” Steel

The material of this study is a dual-phase DP450 steel which is a material often used in
the automotive industry. This material is suitable for the metal forming process due to its
large maximum elongation and its low yield stress. This material also provides good shock
absorption which is essential in car crash conditions. This DP steel is composed of a small
amount of martensite within a ferrite matrix (see fig. 5.1). Alloying elements are given in
tab. 5.1 The material have been supplied as a 1.18mm thick sheet obtained by rolling process.
In the following the rolling direction will be referred to as L (0◦), the transverse direction as
T (90◦) and the diagonal direction as D (45◦).

Table 5.1: Nominal chemical composition (weight %) from [Davaze et al., 2020]

C Mn Si P S Cu Al Fe
0.08 1.6 0.4 <

0.05
<
0.01

< 0.2 < 1. bal.
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Figure 5.1: Microstructure of DP450 steel after nital etching from [Davaze et al., 2020].

1.3 Experimental procedures
A comprehensive experimental campaign was performed during Davaze’s Ph.D. to highlight
all possible phenomena that may have an influence on crack initiation and propagation.
Almost 120 tests were carried out on specimens with 9 different geometries to vary stress
state (see figure 5.2). These specimens were tested at different loading rates and temperatures.
However, in this chapter only simulations with low loading rate (quasi–static simulations)
are performed, thus only the corresponding experimental tests are presented. Flat standard
(see figure 5.2.a) and large (see figure 5.2.b) specimens were used to characterize the plastic
behavior of the material. Notched specimens, referred to as NT1 (figure 5.2.c), NT2 (figure

Figure 5.2: Specimen used in the experimental campaign(measurement points are marked
with •). Specific dimensions used at high rates are outlined in red (from [Davaze, 2019])

5.2.d), V45 (figure 5.2.e), Central hole (figure 5.2.f) and FN (figure 5.2.i), were used to
analyze the effect of high stress triaxiality on plasticity and crack initiation. The smaller the
notch is, the higher the stress triaxiality. To study crack initiation at lower stress triaxiality,
a shear “M-shape” specimen (figure 5.2.g) was also used. Finally, crack propagation was
studied using a Center Crack Panel (CCP) specimen (figure 5.2.h). A very thin notch (with
a radius of 0.1mm) was introduced in this specimen using Electro-Discharge Machining
(EDM); the notch radius is, in that case, 0.1 mm. Note that because of the steel sheet small
thickness (1.18 mm), buckling could not be avoided in compression tests so that negative
stress triaxiality was not considered.

The specimen (std. flat, NT1, V45, M-shape and CCP) were tested at low and high
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velocities (see figure 5.3.a) for the quasi-static tests. Measurements are taken using MTS

Figure 5.3: Experimental setups and measure devices for quasi-static tensile tests. (from
[Davaze, 2019])

Figure 5.4: Illustration of shadow tracking measure on NT1 specimen. (from [Davaze,
2019])

extensometers: longitudinal 632.11 (gauge length = 27mm) for relative displacement on
standard flat, and Central Hole specimens and clips (632.02) for notch opening on NT1,
NT2 and V45 specimens. Shadow tracking [62] (see figure 5.4) was also used to assess the
transverse strain on the same specimens. For Large flat, NT1, V45, M-shape and CCP/CCP-
dyna geometries, relative displacement was measured by Digital Image Correlation (DIC)
with virtual extensometers. Measurement points for some geometries are marked with • on
5.2. All tests were repeated two or three times to check reproducibility, which was found to
be very good. The summary table of the performed tests for all specimens, loading rates and
temperatures is given in table 5.2.

1.4 Main experimental results
From experimental observations, the phenomena that have an influence on crack initiation
and propagation:

• Plasticity : isotropic with hardening,

• Strain rate sensitivity : increase in strength with the increasing strain rate,

• Self-heating : heat generation at high strain rate that leads to a loss of macroscopic
ductility,

• Damage : nucleation, growth and coalescence of cavities responsible for fracture.

The details of the full experimental analysis are presented in [Davaze et al., 2020].

2 Constitutive equations
In this section, the constitutive equations used in the model are detailed. A simpler model
than the one developed in [Davaze et al., 2020, 2021] is chosen because only the quasi–static
part of the experimental data is considered.
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Table 5.2: Table summarizing the number of tests per configuration realized in the
experimental campaign at room temperature of 20◦C. Tests also performed at 100◦C are
market with a red dot •. Those used for the plasticity constitutive model identification
are marked with ?, and those for the damage constitutive model are market with ?. (from
[Davaze, 2019]) [Davaze et al., 2020]

0.002mm.s−1 0.003mm.s−1 0.004mm.s−1 0.009mm.s−1

NT1 2 L 2 T ? ? - - -
NT2 2 L 2 T ? - - -
V45 2 L 2 T •? - - -
M–
shape

- 2 L 2 T ? ? - -

CCP - - 2 L 2 T •
FN - - - 2L

2.1 Hardening model

To model the hardening observed on the experimental results, Davaze proposed a modified
Voce law [Voce, 1948] with a linear hardening term:

R(κ) = Re +Hκ+Q(1− e−bκ) (5.1)

where Re is the initial tensile yield stress, H the linear hardening coefficient, κ is the
cumulated plastic strain, Q and b are the two Voce parameters. Their value is set according
to the work of [Davaze et al., 2020] see table 5.3

2.2 Nonlocal damage model

In the experimental study from [Davaze et al., 2020], it has been observed that failure
of DP450 steel is due to the nucleation and growth of cavities. To represent these
phenomena, the Gurson-Tvergaard-Needleman (GTN) coupled damage model [Tvergaard
and Needleman, 1984] was used, with the effective stress of the GTN model written as: F (σ∗, R) = σ∗ −R

G(σ, σ∗, f ∗) = σ2
eq

σ2
∗

+ 2q1f
∗ cosh(3q2

2
σm

σ∗
)− 1− (q1f

∗)2 def.σ∗= 0 (5.2)

where σeq is the von Mises equivalent stress and f ∗ is a function of the porosity and defined
as:

f ∗ =
{

f if f < fc
fc + δ(f − fc) if f ≥ fc

(5.3)

In the work of [Davaze et al., 2020], a local GTN model was identified for a fixed
mesh size to fit the experimental tests. Then in the subsequent work of [Davaze et al.,
2021], an implicit gradient approach with regularization of the cumulative plastic strain κ
was proposed. For this nonlocal model, a characteristic length (equal to 200µm) has been
identified.Let us note that all material parameters of the local model had been preserved for
the nonlocal version, except the controlled strain nucleation parameters: An and κc, in order
to fit the experimental data base. This model has been implemented in an explicit resolution
scheme in order to be suitable for dynamic simulations. The high-speed loading tests from the
experimental database were simulated, with the implicit gradient model, and good agreement
with the experiments was found.

In this section, the nonlocal model two characteristic lengths introduced in chapter 3 is
adapted to simulate the low-velocity tests from the experimental database. In addition to
nucleation and growth porosity, shear damage, as introduced in [Nahshon and Hutchinson,
2008], is also used to properly describe the development of damage at low triaxiality, which
is the case for the M-Shape specimen. In summary, the total porosity is expressed as follows:

f = fn + fg + fsh (5.4)
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with the evolution of each damage mechanism given as:

ḟn = An(κ)κ̇ (5.5)
ḟg = (1− f)ω̇ (5.6)

ḟsh = kwf(1− L(σ)2)σ
dev : ε̇p
σeq

(5.7)

In these equations, kw is a parameter to identify and L is the Lode parameter as defined in
2.28.

2.3 Strain rate dependence

In the work of [Davaze et al., 2020], the strain rate effects are modeled using the following
flow expression with the Johnson–Cook model for the viscous part and the Zhao for the
thermal softening part:

σF = R(κ)
(

1 + C
〈

ln
κ̇

ε̇0

〉
+

)
︸ ︷︷ ︸

Viscosity

(1− µ(T − Tref ))︸ ︷︷ ︸
Thermal softening︸ ︷︷ ︸

Strain–rate effects

(5.8)

Because only the quasi–static applications are considered in this chapter, the thermal
softening effect can be neglected. Therefore, another approach is chosen to model the strain
rate dependence:.

κ̇ = F(φ) = ṗ0

〈
σ? −R
σ0

〉n
(5.9)

where ṗ0 and σ0 are two material parameters. And σ? is the GTN effective stress as defined
in 2.26.

2.4 Model parameters

The identified parameters from [Davaze et al., 2021] are summarized in table 5.3. The
viscosity parameters σ0, n and ṗ0 are selected to correctly fit the quasi–static part of the data
base. Note that the identified characteristic length from [Davaze et al., 2021] is attributed to
both lκ and lω.

3 Continuous–discontinuous approach
In this section, the continuous–discontinuous approach described in chapter 2.27 is used to
simulate the quasi–static part of the experimental database, in order to evaluate the predictive
capability of this approach. This approach is very similar to the one used in the chapter 4,
but with a different remeshing strategy. In the present case, remeshing is based on the data
provided by an incremental error estimator. This choice was made for cost reasons. Indeed
for the considered experimental database, the active process zone is relatively large and finely
meshing this whole region with the minimal mesh size would be too expensive, especially
for 3D simulations. On the contrary, error estimation coupled with an appropriate remeshing
criterion enables to obtain good accuracy–cost compromise.

3.1 Error estimator on thin metallic sheets

Let us recall from chapter 2, the scalar incremental error estimator based on the Super
convergent Patch Recovery (SPR) adapted for non linear problems:

η∗, incr scalar = ||e
∗,incr scalar||
E∗

where E∗ =
[∫

Ω
f ∗.∆f ∗dΩ

] 1
2

(5.10)
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Table 5.3: Set of identified parameter from [Davaze et al., 2021]

Young modulus E 192GPa
Poisson ratio ν 0.3
Modified Voce Hardening law

Re 283.0 MPa
H 587.0 MPa
Q 208.0 MPa
b 23.9 MPa

Gurson criterion
q1 1.5
q2 1.

Coalescing parameters
δ 12.66
fc 0.2

Shear damage parameter kw 2.65
Controlled strain nucleation parameters

An 0.37
κc 0.3

Viscosity parameters
ṗ0 1s−1

σ0 55. MPa
n 5.
lκ 200µm
lω 200µm

In this equation, the quantity e∗,incr scalar is defined as:

||e∗,incr scalar|| =
[∫

Ω
(f ∗ − fh).(∆f ∗ −∆fh)dΩ

] 1
2

=
∑

ΩE

||e∗,incr scalarE ||2
 1

2

(5.11)

The smoothed fields f ∗ and ∆f ∗ are calculated using the SPR technique [Zienkiewicz and
Zhu, 1992]. The accuracy of the error obtained from the SPR technique inside the domain is
significantly better than that obtained near the external boundary [Ródenas et al., 2007] (see
figure 5.5).

Figure 5.5: Cylinder subjected to internal pressure. Error estimator using the recovered stress
σ∗22 (from [Ródenas et al., 2007]).

In the case of a thin metal sheet with 3D meshes, the majority of the nodes belong to the
external boundary. This lead to a poor accuracy of the error estimator overall. To overcome
this problem, [Ródenas et al., 2007] proposed a modified superconvergence patch recovery
technique called SPR-C. This modified technique consists in applying an additional constraint
in the classical 2.108 construction of the smoothed field. This additional constraint ensures
that the smoothed field respects the boundary conditions of the mechanical problem. In
[Ródenas et al., 2007], this constraint has been added using a Langrange multiplier.

Here, another approach, only adapted to 3D thin sheet meshes is proposed. This solution
is based on the assumption that for a thin sheet simulation using a 3D mesh, the variation of
the considered field f 1 is small in the sheet thickness.

So at first, the scalar field f is projected into the 2D mesh used to extrude the thin sheet
5.6. The error is then evaluated on this 2D mesh, with less apex nodes connected to the

1In the present case, the total porosity is the field chosen for the error estimation
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Figure 5.6: Scalar incremental strategy adapted for thin 3D meshes.

external boundary. Then a 2D map size is computed using the local criterion 2.128:

rE = ε
1/q
0

η
2

2q+d

E

[∑
ΩE
η

2d
d+2q

E

]1/2q (5.12)

Finally, the 2D map size is extruded uniformly along the thickness of 3D sheet mesh so to
obtain the 3D map size needed for the mesh generator meshGems [Frey and George, 2008].

3.2 Continuous–discontinuous parameters

Using the definition of the bandwidth introduced in chapter 3, the obtained bandwidth for
all specimen 5.2 is approximately: lb = 400µm. Most of the continuous–discontinuous
parameter depend on the localization bandwidth and are summarized in 5.4:

Table 5.4: Continuous–discontinuous parameters used in the simulations presented in 4

Error estimator and remeshing
parameters
Minimal element size hmin lb/2 = 200µm
Threshold error ε0 0.01
Remeshing frequency ∆tremeshing adjustable
Marching ridges algorithm
Evaluation radius R 2lb = 800µm
angular precision ∆θ 5◦
Insertion criterion
Critical value for insertion fcrit 0.8fr = 0.16
Crack increment length ∆a 2lb = 800µm
Reequilibrium time increment ∆treeq 1.e− 4s

Note that with the chosen local criterion eq.5.12, if the estimated error is too low, then
the elementary size factor rE will be unreasonably large. In order to avoid this artifact,
a maximum element size hmin is imposed during the remeshing process. Considering the
identified parameters (see table 5.3), the element failure is obtained for f = fr = 0.2.
However, the critical value fcrit for crack insertion is chosen smaller than fr (i.e. 0.16),
so to obtain a better convergence rate after crack insertion: because for bigger values of fcrit,
the crack insertion is delayed and the mesh becomes extremely stretched near the crack tip.
5.4.

In the presented simulations the crack increment length ∆a and fcrit are chosen only
considering numerical reasons: (i) to avoid frequent remeshing; (ii) to obtain an accurate
crack direction and (iii) preserve an overall good convergence rate. However, if a correlation
image analysis were performed on experimental test coupled with a crack path tracking
algorithms [Feld-Payet et al., 2019], the crack tip and propagation velocity could be precisely
estimated. In this case, the increment crack length ∆a and fcrit could be experimentally
calibrated.
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4 Quasi-static simulations of the experimental data base

In this section, simulations of the quasi–static tests are carried out using the proposed
continuous–discontinuous approach (see flowchart 2.27). Experiments and simulations are
systematically compared in order to evaluate the prediction capability of the proposed
continuous–discontinuous approach.

4.1 Inputs

In order to simulate all the sample geometries presented in figure 5.2, the constitutive model
is implemented following a fully implicit scheme in the object–oriented FE software Z–set
[Foerch et al., 1997; Besson and Foerch, 1997]. The material model and the implicit gradient
finite element are implemented according to the formalism presented in 3. The simulations
are performed using unstructured tetrahedral meshes generated with meshGems [Frey and
George, 2008]. The meshes consist of 10–nodes elements with 4 Gauss points.

The usual symmetry conditions are used so that half of the samples are meshed (half
thickness). The other symmetries are not taken into account in order to be able to represent the
experimentally observed non-symmetrical crack paths for the M and FN shaped specimens.

4.2 Results

Quasi–static simulations at room temperature are presented and results are shown in figure 5.7
(standard flat), figure 5.8 (NT1), figure 5.9 (NT2), figure 5.10 (V45), figure 5.11 and figure
5.12. An overall good prediction is observed for all specimens. For the load—displacement
curves, experimental scatter is represented by the filled area; this scatter corresponds to both
material anisotropy and actual scatter (which is very limited). Experimental macroscopic
transverse strains curves obtained by shadow tracking (see figure 5.4) are also compared in
figures 5.7b, 5.8b, 5.9b, 5.10b. In cases where cracks are initiated at the notch root, transverse
strains can only be evaluated before the onset of cracking as the shadow tracking technique
is not accurate enough to detect the crack tip. This situation prevails in all cases except for
the standard flat specimens in which cracks are initiated at the center of the specimen. For all
simulations, the porosity field f after complete failure is plotted.

In all cases a very good agreement is obtained between simulated and experimental load–
displacement/notch opening curves up to full specimen failure (i.e. load = 0). This first
shows that the hardening model is appropriately identified. Crack initiation location is also
well represented for all specimen: in particular initiation at the center of the specimen for
standard flat specimens is well captured by the model (5.7c). However, in figure 5.7b, the
engineering stress is plotted as a function of the transverse strain. The same results are
obtained with the same parameters (taken from Davaze’s work) and same loading on the
standard flat specimen without remeshing. This to say, that the early fracture predicted from
in the simulation is not due the continuous–discontinuous procedure but to the parameters fit.

Therefore, the damage parameters needed to be re-adjusted taken into account the whole
experimental database so that to obtain a better fit.

M–shape simulated failure given in 5.11b, occurs almost simultaneously at both shear
ligaments.

Due to its geometry, four crack initiation spots exist in the FN specimen. This leads
to crack path dissymmetry and to several possible paths. The crack initiation locus then
depends on the boundary conditions (due to e.g. a small misalignment in the griping system
or specimen positioning). Note that, these differences have no influence on the macroscopic
load—displacement curves. To be as representative as possible of the actual experimental
conditions, displacements measured using DIC were used as boundary conditions on
horizontal lines located at∓17mmmm from the center line of the specimens. The simulation
is then able to represent the observed crack path for the FN specimen (se figures 5.12b and
5.12c).

Let us note that for all the presented simulations, the meshes are only refined in the area
where the damage is developing thanks to the use of the incremental error estimator on the
total porosity variable f . In addition, mesh adaption allows the opening of the crack lips
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to be well represented in all simulations, and to obtain an accurate crack path thanks to the
remeshing procedure with discrete crack insertion.

Note that the CCP simulation was note presented due to convergence problems
encountered during the propagation process. Even with the use of the reequilibrium step
which successfully preserved a good convergence rate for all other tests, the CCP simulation
diverges during the reequilibrium step after the fifth crack increment insertion. The cause of
the divergence is still not solved. This is all the more surprising that, in principle the CCP
specimen is relatively close to the V45 specimen which was successfully simulated.
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Figure 5.7: For the standard flat specimen, the load–Engineering transverse strain obtained
from simulation and experiments are compared. Also, the map of total porosity ft is displayed
at complete failure.
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Figure 5.8: For the NT1 specimen, the load–notch opening is obtained from simulation and
experiment are compared. Also, the map of total porosity ft is displayed at complete failure.
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Figure 5.9: For the NT2 specimen, the load–notch opening is obtained from simulation and
experiment are compared. Also, the map of total porosity ft is displayed at complete failure.
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Figure 5.10: For the V45 specimen, the load–notch opening is obtained from simulation and
experiment are compared. Also, the map of total porosity ft is displayed at complete failure.
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Figure 5.11: For the M–shape specimen, the load–relative displacement curve ∆L is obtained
from simulation and experiment are compared. Also, the map of total porosity ft is displayed
at complete failure.
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Figure 5.12: For the FN specimen, the load– displacement obtained from simulation and
experiment are compared. Also, the map of total porosity ft is displayed at complete failure.

5 Conclusion
In order to evaluate the prediction capability of the developed continuous–discontinuous
procedure, the experimental data base of [Davaze et al., 2020] is used for experimental–
simulation comparisons. Only the quasi–static tests were considered in the study.

At first, a simplified version of the constitutive equation, considering only non linear
phenomena that occurs at low speed loading tests, was proposed. The implicit gradient
nonlocal approach developed in 3 was used in order to obtain mesh insensitive results during
the remeshing process. The identified parameters and characteristic length used in [Davaze
et al., 2021] were, as much as possible, reused in the presented simulations. Note that,
the identified parameters in [Davaze et al., 2021] considered only the dynamic part of the
experimental data base, and in this chapter their pertinence is evaluated for the static part of
the same experimental data base.

In addition, a remeshing strategy, coupled with an incremental error estimator, was
adapted for thin sheet simulations with 3D meshes and then used in the proposed continuous–
discontinuous procedure. This remeshing strategy is more adapted than the active process
zone remeshing procedure which was not adapted for the FN simulation for example, because
of the size of the active process zone.

Finally, the result of the simulations were compared to experimental responses and good
agreement was found for all specimen except for the standard flat specimen; where the crack
initiation was not well predicted. This is due to the fact that, the chosen parameters from
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Davaze work did not take into account the quasi–static experiments. Therefore, a better
fit is necessary for the damage parameters in order to obtain good correlation for all the
experimental data base.

The opening of the crack lips was well represented due to the crack insertion into the
simulation mesh. Also optimal meshes were produced thanks to the use of the incremental
error estimator based on the total porosity variable. However, convergence problems were
encountered for the CCP specimen even though this test is very similar to the V45 which was
successfully simulated with a good convergence rate

Furthermore, because the crack lips opening and the crack tip position were well
presented in the simulations using the proposed continuous–discontinuous procedure,
experimental calibration of the parameters (fcrit, ∆a) can become possible if the crack tip
position could be accurately measured, e.g. following the procedure described Feld-Payet
et al. [2019]. In any case, these results already constitute an encouraging step toward a better
understanding and prediction of the ductile failure for laboratory tests then for industrial
structures.



Chapter 6

Conclusion and perspectives

This thesis was dedicated to developing a general framework for ductile crack initiation and
propagation over long distances. In order to achieve this goal, the developed framework is
based on the continuous–discontinuous modeling of ductile failure. First, the ductile failure
process is described using a physically–based model, the GTN model, in order to model the
damage of the structure as a continuous scalar field. The continuous aspect of the procedure
was the main subject of chapter 3, with the development of a nonlocal GTN model with two
characteristic lengths. Then, once damage reaches a critical value, a transition from the failure
modeling as damage to a discrete crack is carried out using mesh adaption. This transition can
be used to describe both crack initiation and propagation. Indeed, as the damage continues
to grow ahead of the initial crack, it drives the crack propagation process. The transition
from the continuous model to a discreet crack using mesh adaption was presented in chapter
4. Finally, the developed approach was applied in chapter 5 to an existing experimental
database in order to evaluate its predictive capability.

1 Implicit nonlocal GTN model with two characteristic
lengths adapted for mesh adaption

In this work, a nonlocal GTN model based on an implicit gradient formulation (applied
to both the accumulated plastic strain that drives void nucleation and the plastic volume
variation driving void growth). The implementation of this model was detailed for the
updated Lagrangian framework. Indeed, throughout the failure process, large plastic strains
are present in the localization bands where cracks would initiate. Thus, the use of finite
strain formulation becomes a necessity. The implementation of the model was validated with
a thorough mesh convergence study proving mesh insensitivity was achieved. The model
parameters were fitted to reproduce the global response for tests on a pipeline steel using a
tensile bar and a plane strain specimen. Experimental results were taken from the literature.
Each test is representative of a characteristic crack path: cup–cone fracture (tensile test) and
slant fracture (plane strain test). Some guidelines regarding the choice of the characteristic
length were proposed. For that purpose, a novel methodology was proposed to measure the
localization bandwidth free from discretization error. Then by applying this methodology,
a linear relationship between the characteristic length and the localization bandwidth was
identified. These results were then used to select the proper discretization for given values of
the characteristic lengths to obtain converged solutions. Finally, the effect of the characteristic
length was demonstrated on the formation and shape of the cup–cone crack path. This study
concluded that the cup–cone crack path should be affected by the size of the specimens. Pure
flat fracture should be favored when using (very) small specimens. It could theoretically be
possible to identify the internal length directly. This result paves the way for a more direct
determination of material lengths by using homothetic specimens so as to obtain different
crack paths. The fitted lengths should then be able to represent both the macroscopic behavior
and the crack path for all sample sizes.
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2 Damage crack transition using mesh adaption
The proposed continuous–discontinuous procedure is based on the method presented in Feld-
Payet [2010] using mesh adaption in order to introduce a discrete crack into zones that
have reached a critical value for damage. Some new contributions were proposed and
implemented in the Z–set software to enable a more robust and cost–efficient transition
between a continuous model evaluating local material degradation and a model representing
the propagation of a discrete crack. (i) A new procedure was proposed in order to facilitate
the return to equilibrium and to improve the convergence rate after a change of discretization
(remeshing). It has been shown that this reequilibrium procedure limits the number of
increments during crack propagation, which contributes to the cost-efficiency of the method.
(ii) Another new element is the refinement of only the active process zones. This feature has
a double advantage: not only are the degradation phenomena leading to complete failure
are well described, but also the number of elements (and thus the computational cost)
remains approximately constant. (iii) Besides, two contributions related to 3D simulation
were proposed. The first one deals with crack initiation entirely inside the structure: (a
simple geometrical crack initiation methodology based on SVD analysis of the coordinates
of broken points has been proposed to generate an elliptically shaped first crack increment.
(iv) Finally, a new insertion criterion was proposed to select both the most appropriate time to
insert a given crack increment and the crack increment’s surface. The proposed methodology
thus enabled to consider continuous–discontinuous transition for a vast number of cases and
enabled to successfully simulate the challenging case of a cup–cone failure in 3D.

3 Toward a predictive continuous–discontinuous model for
ductile failure

To evaluate the predictive capability of the proposed continuous–discontinuous approach to
failure, the experimental database constructed in the work of Davaze [2019] is used to conduct
experiments—simulations comparisons.

Only the quasi-static experimental tests were considered. For the continuous part of the
approach, the nonlocal model detailed in chapter 3 was adapted and reused with the same
parameters calibrated in the work of Davaze et al. [2021]. Note that, the calibrated parameters
in Davaze et al. [2021] only considered the dynamic part of the experimental database and its
relevance for the quasi-static experiments is evaluated in this work.

Concerning the continuous/discontinuous transition, the strategy detailed in 4 is used
to perform the presented simulations. A more suitable remeshing strategy driven by an
incremental error estimator was considered. Indeed, because of the significant size of the
APZ, the remeshing strategy using the incremental error estimator produced more suitable
meshes, thus a better cost—precision trade-off.

Finally, the experimental results were simulated using the proposed approach, and a
good agreement, with respect to the global responses and crack paths, was found for all
specimens except for the prediction of the crack initiation for the standard flat specimen.
This result indicates that the parameter fit, carried out in the work of Davaze et al. [2021],
on the “dynamic” experiments of the database can be improved to reproduce with increased
accuracy crack initiation and propagation for the entire experimental database.

4 Future work
The presented work and obtained results demonstrate the accuracy and robustness of the
proposed continuous–discontinuous approach. Nevertheless, several improvements could be
proposed to enhance the efficiency of the proposed method. Thanks to the results in chapter
3, a proposition was made to possibly identify the characteristic length(s) using homothetic
specimens and studying the change from a straight crack path to a cup–cone crack path when
increasing the specimen size. Indeed, the choice of the characteristic length may be restricted
due to numerical reasons as using very small lengths would require significant computational
efforts.
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In chapter 4, even though the fine remeshing is only applied to the APZ, the 3D simulation
of the axisymmetric specimen was conducted using a larger minimal mesh size than the one
used for 2D simulation due to the size of the computation. To overcome this issue, several
improvements could be the subject of future work:

1. Adaptation of the continuous—discontinuous procedure to parallel computing. Parallel
computing and parallel remeshing are problems that are well addressed in the literature;
however, the building brick needed for the continuous—discontinuous procedure needs
to be adapted for the parallel computing framework. In particular, the question of
robustness of the crack path tracking algorithm should be addressed when the crack
crosses several decomposed domains.

2. The sequential mumps solver was used for the resolution of the mechanical
problem. With these types of solvers, significant computational resources are needed.
Another less expensive alternative is the use of an iterative solver. However, a
good preconditioner adapted for remeshing is then essential to ensure an efficient
convergence rate.

3. Using a lower approximation for the finite element by adapting the “bubble elements”
to the nonlocal framework. This could be well adapted for less critical industrial
applications. Indeed, P1+/P1/P1 nonlocal element would provide a less accurate result,
but larger structural simulations could be performed.

Another challenge was encountered in the simulations of the experimental database. One
particular simulation of the CCP specimen was not possible due to divergence during the
reequilibrium step of the resolution algorithm after the fifth crack insertion. A possible
explanation is a significant transfer error due to the volumetric locking problem. Therefore, a
locking–free nonlocal element formulation would be needed to eliminate this source of error.
This also means additional nodal field(s) of unknowns in the finite element formulation. So
in order to preserve the efficiency of the proposed approach, a bubble formulation is essential,
especially for industrial applications.

Thanks to the proposed continuous–discontinuous procedure, the position of the crack
front is explicitly known throughout the simulation. This information could be used in
the fitting procedures of the models if the crack position and shape are experimentally
determined.
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Appendix A

Implementation of the nonlocal GTN
model

Integrating the set of equations 3.16 to 3.20 over a finite time step ∆t using a fully implicit
scheme is equivalent to solving the following set of non linear equations with respect to the
increments of the state variables ∆V S = (∆εe,∆κ,∆fg,∆fn,∆ω) for a given increment of
the input variables ∆V IN = (∆ε,∆ω,∆κ) :

Re = ∆εe + (1− f)∆κn−∆ε (A.1)
Rκ = ∆κ−F(φ)∆t (A.2)
Rg = ∆fg − (1− f)∆ω (A.3)
Rn = ∆fn − An∆κ (A.4)
Rω = ∆ω − (1− f)∆κtrace(n) (A.5)

Using a fully implicit scheme all variables in the previous system are evaluated at the end of
the time increment. Solving the system requires the evaluation of its Jabobian matrix which
is formally expressed as:

J = ∂R

∂∆V S
(A.6)

where R = (Re, Rκ, Rg, Rn, Rω). The Jacobian matrix can be computed block-wise as
follows (the zero terms are omitted).
• Derivatives ofRe:

∂Re

∂∆εe
= I + (1− f)∆κN : E with N = ∂n

∂σ
(A.7)

∂Re

∂∆κ = (1− f)n (A.8)

∂Re

∂∆fg
= (1− f)∆κnf −∆κn with nf = ∂n

∂f
(A.9)

∂Re

∂∆fn
= (1− f)∆κnf −∆κn (A.10)

• Derivatives of Rκ:

∂Rκ

∂∆εe
= −(F ′∆t)n : E with F ′ = dF/dφ (A.11)

∂Rκ

∂∆κ = 1−F ′H∆t with H = dR/dκ (A.12)

∂Rκ

∂∆fg
= −F ′σ?f∆t with σ?f = ∂σ?

∂f
(A.13)

∂Rκ

∂∆fn
= −F ′σ?f∆t (A.14)

• Derivatives of Rg:

∂Rg

∂∆fg
= 1 + ∆ω (A.15)

∂Rg

∂∆fn
= ∆ω (A.16)
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• Derivatives of Rn:

∂Rn

∂∆fn
= 1 (A.17)

• Derivatives of Rω:

∂Rω

∂∆εe
= −(1− f)∆κI : N : E (A.18)

∂Rω

∂∆κ = −(1− f)trace(n) (A.19)

∂Rω

∂∆fg
= −(1− f)∆κ trace(nf ) (A.20)

∂Rω

∂∆fn
= −(1− f)∆κ trace(nf ) (A.21)

∂Rω

∂∆ω = 1 (A.22)

The partial derivatives of σ? are obtained considering the stationarity of the G function
(eq. 3.3) : G = 0 and δG = 0. One then has:

χ = 1
h

= ∂G

∂σ?
, n = ∂σ?

∂σ
= −h∂G

∂σ
= −hν, ∂σ?

∂f
= −h∂G

∂f
, (A.23)

and

N = ∂n

∂σ
= −h∂

2G

∂σ2 − h
3∂

2G

∂σ2
?

ν ⊗ ν + h2
(

∂2G

∂σ∂σ?
⊗ ν + ν ⊗ ∂2G

∂σ∂σ?

)
(A.24)

and

nf = ∂n

∂f
= −h ∂2G

∂σ∂f
+ h2∂G

∂f

∂2G

∂σ∂σ?
+ h2

(
∂2G

∂σ?∂f
− h∂

2G

∂σ2
?

∂G

∂f

)
ν (A.25)



Appendix B

Consistent tangent matrix

Once the solution of the system of equations A.1 to A.5 is found, it becomes possible to
numerically compute the consistent tangent matrix. For any given small variation of the input
variables δV IN, the state variables will be modified so that R remains null. One therefore
has:

δR = δ0 = ∂R

∂∆V IN
.δV IN + ∂R

∂∆V S
.δV S = ∂R

∂∆V IN
.δV IN + J .δV S (B.1)

so that
δV S = −J−1.

∂R

∂∆V IN
.δV IN (B.2)

The outputs variable are expressed as function of the state variables only so that:

δV OUT = ∂∆V OUT

∂∆V S
.δV S = −∂∆V OUT

∂∆V S
.J−1.

∂R

∂∆V IN
.δV IN (B.3)

so that the consistent tangent matrix is equal to:

Kmat = −∂∆V OUT

∂∆V S
.J−1.

∂R

∂∆V IN
=



∂∆σ
∂∆ε

∂∆σ
∂∆ω

∂∆σ
∂∆κ

∂∆ω
∂∆ε

∂∆ω
∂∆ω

∂∆ω
∂∆κ

∂∆κ
∂∆ε

∂∆κ
∂∆ω

∂∆κ
∂∆κ


(B.4)

The matrices ∂R/∂∆V IN and ∂∆V OUT/∆∂V S are computed as block-matrices. The
calculation is straightforward with:

∂Re

∂∆ε = −I, ∂Rg

∂∆ω = −(1− f), ∂Rn

∂∆κ = −An (B.5)

and
∂∆σ
∂∆εe

= E,
∂∆κ
∂∆κ = 1, ∂∆ω

∂∆ω = 1 (B.6)

Indeed, in the case of κ and ω, the output and state variables are similar. All other terms are
null.
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Appendix C

Global problem discretization

1 Spatial discretization
Elements have nodal DOFs corresponding to the displacements and nonlocal variables κ
and ω. They are represented as vector ue, κe and ωe. Linear shape functions are used to
interpolate the nonlocal nodal variables in the elements (i.e. κe and ωe), so that:

κ = N .κe and ω = N .ωe (C.1)

where N is a matrix formed with the linear shape functions. The gradients of κ and ω are
computed as:

~∇κ = G.κe and ~∇ω = G.ωe (C.2)

where the matrix G is formed with the derivatives of the linear shape functions with respect
to the final configuration. The gradient with respect to the initial configuration is computed
as ~∇0κ = G0.κe where G0 is formed with the derivatives of the linear shape functions with
respect to the initial configuration.

Standard quadratic shape functions are used to interpolate the nodal variables associated
with the displacements in the elements (i.e. ue). The transformation tensorF and the velocity
gradient tensor L are computed as:

F = 1 +BF .u
e and L = BL.u̇

e (C.3)

where BF is a matrix formed with the derivatives of the quadratic shape functions with
respect to the initial configuration whereas BL uses the derivatives of the same shape
functions with respect to the final configuration. The deformation rate D is expressed as
BD.u̇

e.

2 Temporal discretization
The finite strain formulation is obtained using a mid–point integration scheme over the time
step [t, t + ∆t]. The transformation tensor at t + 1

2∆t is first computed as F 1
2

= R 1
2
.U 1

2
=

F 1 − 1
2∆F using the standard polar decomposition. The tranformation increment is then

computed as:
∆L = ∆F .F−1

1
2

= ∆D + ∆W (C.4)

where ∆D and ∆W are respectively the symmetric and skew–symmetric parts of ∆L. The
rotationQ is updated as (based on the mid–point integration of eq. 3.22)

∆Q =
(
1− 1

2∆W
)−1

.∆W .Q0 (C.5)

Proof:
Eq. 3.22 is: Q̇ = W .Q. The mid–point integration corresponds to:

∆Q = ∆W .
(
Q0 + 1

2∆Q
)

= ∆W .Q0 + 1
2∆W .∆Q
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Solving for ∆Q leads to eq. C.5

The strain ∆ε is updated as:
∆ε = QT

1
2
.∆D.Q 1

2
(C.6)

The constitutive equations are then integrated (see A) using this strain increment. The
resulting stress tensor is rotated back as Σ = Q 1

2
.∆σ.QT

1
2
. The 2nd (e.g. ∂∆σ/∂∆ω) and

4th (∂∆σ/∂∆ε) order tensors in the consistent matrix (eq. B.4) are also rotated back using
Q 1

2
. The rotated quantities are indicated with a |�. In particular ∂∆σ/∂∆ε|� = CJ is

associated with the Jaumann rate of the stress tensor Σ. The tangent operator corresponding
to the Truesdell rate is then given by:

Cτ = CJ − 1
2(Σ⊗1 + Σ⊗1 + 1⊗Σ + 1⊗Σ) + Σ⊗ 1



Appendix D

Details of the terms involved in the global
system

1 Elementary reactions
From the discretized form of the weak formulation (3.25 and 3.26), elementary reactions
associated unknowns are given as:

F κ =
∫

Ωe
(κ− κ)N + l2κG

T .G.κe dΩ (D.1)

F ω =
∫

Ωe
(ω − ω)N + l2ωG

T .G.ωe dΩ (D.2)

F u =
∫

Ωe
BT
L.{Σ} dΩ =

∫
Ωe

0

BT
L.{Σ} JdΩ0 (D.3)

(D.4)

where notation {Σ} indicates that the tensor Σ is expressed using Voigt notations. Let us
underline that the integrals are taken over the current configuration. Integration is performed
using standard Gauss integration.

Let us introduce here the functionMR such that the product c of two second order tensors
a and b, usually written c = a.b, can be expressed using Voigt notations as:

{c} = {a.b} = MR(b).{a} (D.5)

The matrixMR(b) thus depends linearly on b.

2 Elementary stiffness matrix
It is then necessary to evaluate the elementary stiffness matrix which is computed as a block
matrix.

K =

Kuu Kuκ Kuω

Kκu Kκκ Kκω

Kωu Kωκ Kωω

 (D.6)

Calculation ofKuu,Kuκ,Kuω

Calculation of the first bloc line of the elementary stiffness matrix can be obtained through
the derivative of F u with respect to ue, κe and ωe:

Ḟ u = Ḟ uu + Ḟ uκ + Ḟ uω = Kuu.u̇e +Kuκ.κ̇
e +Kuω.ω̇

e (D.7)

Derivation of Ḟ u leads to:

Ḟ u =
∫

Ωe
0

JḂT
L.{Σ}+ JBT

L.{Σ̇}+ J̇BT
L.{Σ} dΩ0 (D.8)

In the central term, the derivative tensor Σ̇ can be separated into three parts corresponding to
variations relative to the different unknowns:

Σ̇ = Σ̇u + Σ̇κ + Σ̇ω (D.9)
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The calculation of Kuu follows usual derivations for finite strain formulation and leads
to:

Kuu =
∫

Ωe
BT
D. {Cτ} .BDdΩ +

∫
Ωe
BT
L.MR(Σ).BLdΩ = KM

uu +KG
uu (D.10)

where KM
uu is the part related to the material non linearity and KG

uu the geometrical non
linearity.

Derivation ofKuu:
In order to computeKuu, one first considers variations with respect to ue. One can show
thatBL = MR(F−1).BF andBT

L = BT
F .MR(F−T )

Proof:

{L} = BL.u̇
e =

{
Ḟ .F−1

}
= MR(F−1).{Ḟ } = MR(F−1).BF .u̇

e

One then has:
BT
L = BT

F .M
T
R(F−1) = BT

F .MR(F−T )

The product ḂT
L.{Σ} can then be written as:

ḂT
L.{Σ} = BT

F .MR(
˙

F−T ).{Σ} = BT
F .

{
Σ.

˙
F−T

}
(D.11)

One has:

˙
F−T = −(F−T⊗F−1) : Ḟ T = −F−Tik F−1

jl Ḟ
T
kl = −F−Tik Ḟ T

klF
−T
lj = −LT .F−T (D.12)

therefore {
Σ.

˙
F−T

}
= −

{
Σ.LT .F−T

}
= −MR(F−T ).

{
Σ.LT

}
Finally

ḂT
L.{Σ} = −BT

F .MR(F−T ).
{
Σ.LT

}
= −BT

L.
{
Σ.LT

}
and Ḟ uu can be expressed as (note that J̇ = J trace(L)):

Ḟ uu =
∫

Ωe
0

JBT
L.
{
−Σ.LT + Σ̇u + trace(L)Σ

}
dΩ0 (D.13)

The Truesdell rate of Σ is:

Στ = Σ̇u −L.Σ−Σ.LT + trace(L)Σ

so that

Ḟ uu =
∫

Ωe
0

JBT
L. {Στ +L.Σ} dΩ0 (D.14)

=
∫

Ωe
0

JBT
L. {Cτ : L+L.Σ} dΩ0 (D.15)

=
∫

Ωe
0

JBT
L. ({Cτ} .{L}+MR(Σ).{L}) dΩ0 (D.16)

=
∫

Ωe
0

JBT
L. ({Cτ}+MR(Σ)) .{L} dΩ0 (D.17)

=
∫

Ωe
0

JBT
L. ({Cτ}+MR(Σ)) .BL.u̇

e dΩ0 (D.18)

=
∫

Ωe
BT
L. ({Cτ}+MR(Σ)) .BL dΩ .u̇e (D.19)
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So that:

Kuu =
∫

Ωe
BT
D. {Cτ} .BDdΩ +

∫
Ωe
BT
L.MR(Σ).BLdΩ = KM

uu +KG
uu (D.20)

whereBL was replaced byBD considering the symmetries of Cτ .

Then, to compute theKuκ term, let us focus on the part of the derivative of Σ that depends
on κ:

Σ̇κ = ∂∆Σ
∂∆κ κ̇ (D.21)

The corresponding variation of F u is:

Ḟ uκ =
∫

Ωe
0

JBT
L.
{
Σ̇κ

}
dΩ0 =

∫
Ωe

0

JBT
L.

{
∂Σ
∂κ

}
(N .κ̇e) dΩ0 (D.22)

so that:

Kuκ =
∫

Ωe

(
BT
D.

{
∂Σ
∂κ

})
⊗N dΩ (D.23)

where
∂Σ
∂κ

is computed using a sub block matrix of the consistent tangent matrix Kmat

(eq. B.4) as :
∂Σ
∂κ

= ∂σ

∂κ

∣∣∣∣∣
�

(D.24)

The bloc Kuω is computed in a similar way by replacing κ by ω from equation D.21 to
equation D.24.

Calculation ofKκu,Kκκ,Kκω

Calculation of the second bloc line can be obtained by writing the variation of F κ:

Ḟ κ =
∫

Ωe
0

J(κ̇− κ̇)N + Jl2κ
(
ĠT .G+GT .Ġ

)
.κe + Jl2κG

T .G.κ̇
e

+J̇
(
(κ− κ)N + l2κG

T .G.κe
)

dΩ0 (D.25)

and considering the derivative κ̇ as the sum of the partial derivative of κ regarding the
variables ue, κe and ωe:

κ̇ = κ̇u + κ̇κ + κ̇ω (D.26)

The term Kκu is the most complex of the three terms to calculate. Indeed it requires to
calculate the derivative of Ḟ κ with respect to the displacements, which involves three terms:
−Jκ̇N , Jl2l (ĠT .G+GT .Ġ).κe and J̇

(
(κ− κ)N + l2κG

T .G.κe
)

def= J̇T k.
Considering the first term, one has:

−Jκ̇uN = −J
{
∂∆κ
∂∆ε

∣∣∣∣∣
�}
.BD.u̇

e

To compute the second term, one first notices thatG = F−T .G0 (note that in the case the
Voigt notation is not used).

Proof:
~∇κ = G.κe

or using indexes with κ = Nkκ
e
k

∂κ

∂xi
= Gikκ

e
k = ∂Nk

∂xi
κek = ∂Nk

∂Xj

∂Xj

∂xi
κek = ∂Nk

∂Xj

F−1
ji κ

e
k

= F−Tij
∂Nk

∂Xj

κek = F−Tij G0
jkκ

e
k

so thatG = F−T .G0 .
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Therefore

Ġ =
˙

F−T .G0

remembering that
˙

F−T = −LT .F−T

Ġ = −LT .F−T .G0 = −LT .G and ĠT = −GT .L

Let V be the operator linking the Voigt representation of a tensor to the matrix representation
such that

a = V .{a} or aij = Vijkak
and V∗ such that aT = V∗.{a}. Indeed V∗ijk = Vjik. Using this notation,

GT .Ġ.κe = −GT .LT .G.κe = −GT . (V∗.(BL.u̇
e)) .G.κe

= −GT . (V∗.(BL.u̇
e)) .~∇κ

GT
ijĠjnκ

e
n = −GT

ijV
∗
jklB

L
lmu̇

e
m∇kκ = −GT

ijVkjlB
L
lmu̇

e
m∇kκ

= −GT
ij∇kκVkjlB

L
lmu̇

e
m

GT .Ġ.κe = −GT .(~∇κ.V .BL).ue

Similarly
ĠT .G.κe = −GT .(~∇κ.V∗.BL).u̇em

and

ĠT .G.κe +GT .Ġ.κe = −GT .(~∇κ.(V + V∗).BL).u̇e

= −2GT .(~∇κ.V .BD).u̇e

Finally, one now considers the last term J̇T k.

J̇T k = J trace(L)T k = J({1}.BD.u̇
e)T κ = JT κ ⊗ ({1}.BD).u̇e (D.27)

In the end, one finally gets:

Kκu =
∫

Ωe

(
−
{
∂∆κ
∂∆ε

∣∣∣∣∣
�}
− 2l2κGT .(~∇κ.V) + T κ ⊗ {1}

)
.BD dΩ (D.28)

where
∂∆κ
∂∆ε

∣∣∣∣∣
�

is computed using a sub block matrix of the consistent tangent matrix Kmat

(eq. B.4) as:
∂∆κ
∂∆ε

∣∣∣∣∣
�

= Q.
∂∆κ
∂∆ε .Q

T (D.29)

Calculation of the termKκκ is more direct:

Kκκ =
∫

Ωe

(
1− ∂κ

∂κ

)
N ⊗N + l2κG

T .G dΩ (D.30)

using

κ̇κ = ∂κ

∂κ
κ̇ = ∂κ

∂κ
N .κ̇

e

Similarly, one has:

Kκω =
∫

Ωe
−∂κ
∂ω
N ⊗N dΩ (D.31)

using

κ̇ω = ∂κ

∂ω
ω̇ = ∂κ

∂ω
N .ω̇

e

Calculation ofKωu,Kωκ,Kωω

Calculation of the last bloc line can be obtained exactly in the same way as the second bloc
line by writing the variation of F ω. It leads to the same terms only replacing κ by ω.
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École des Mines de Paris, 1998.

Antonio Rodriguez-Ferran and Antonio Huerta. Error estimation and adaptivity for nonlocal
damage models. International Journal of Solids and Structures, 37(48):7501–7528, 2000.

G. Rousselier. Ductile fracture models and their potential in local approach of fracture. Nucl.
Eng. Des., 105:97–111, 1987.

Gilles Rousselier, Jean-Claude Devaux, Gérard Mottet, and Georges Devesa. A Methodology
for Ductile Fracture AnalysisBased on Damage Mechanics: Anlllustration of a Local
Approach of Fracture. In Nonlinear fracture mechanics: Volume I, Elastic-Plastic fracture,
STP995V2-EB, ASTM International. 1989.
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RÉSUMÉ

La prédiction de l’endommagement sous des chargements accidentels constitue un enjeu majeur pour garantir la sécurité
des installations industrielles : centrales nucléaires, pipelines, etc. Il est alors important de prédire correctement l’initiation
et la propagation des fissures. L’objectif de ce travail est de développer une stratégie fiable et efficace pour prédire l’initiation
et la propagation des fissures sur de longues distances en utilisant la méthode des éléments finis (FEM) dans le cadre
d’une approche locale. La première partie de la thèse consiste à développer un modèle d’endommagement indépendant
du maillage et adapté aux métaux tels que les aciers de construction. Pour ce faire, un modèle GTN non local à gradient
implicite avec deux longueur internes a été développé et implémenté dans le logiciel Z–set. Ce modèle est adapté pour
représenter les deux mécanismes d’endommagement actifs dans les aciers : (i) la nucleation, (ii) la croissance des cavités.
Cependant, l’utilisation de modèles non locaux est limitée par le coût de calcul, en cas des discrétisations fines d’un long
chemin de fissure. Ce problème est abordé en utilisant des techniques de remaillage. Les mêmes courbes de contrainte–
déformation et les mêmes trajets de fissure ont été obtenus en utilisant le remaillage par rapport à la simulation à maillage
fixe avec 20 fois moins de DDLs. En outre, une approche continue–discontinue est adoptée pour représenter avec précision
la cinématique de la propagation de la fissure. Cette nouvelle approche est appliquée à une base de données expérimentale
existante, et un bon accord entre les simulations et les expériences est trouvé.

MOTS CLÉS

Fissuration ductile, modèle GTN non local, gradient implicite, techniques de remaillage automatique, insertion
de fissures discrètes

ABSTRACT

The prediction of damage development under hypothetical accidental loading constitutes a major stake to guarantee the
safety of industrial installations: nuclear power-plants, pipelines, etc. It is then important to correctly predict crack initiation
and propagation. The aim of this work is to develop and implement a reliable and efficient strategy to predict crack initiation
and propagation over long distances using the Finite element Method (FEM) in the scope of local approach ro failure. The
first part of the thesis consists in developing a mesh objective GTN damage model adapted for metals such as construction
steels. To do so an implicit gradient nonlocal model with two internal length scales was developed and implemented in the Z-
set software. The two internal length scales model is tailored to represent both damage mechanisms active in steels: (i) void
nucleation on strengthening particles, (ii) void growth. However, the use of nonlocal models is limited by the computational
cost, especially for long distance propagation computations, due to the fine discretization needed in the localization band.
This problem is addressed by using mesh adaption. Same stress-strain curves and crack–paths were obtained using mesh
adaption in comparison to fixed mesh simulation with 20 times fewer DOFs. In addition, a continuous–discontinuous approach
is adopted to accurately represent the kinematics of the crack propagation (i.e. displacement jumps). This new approach is
applied to an existing experimental database, and good agreement between simulations and experiments is found.
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