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Chapter 1. Introduction

1.1 Context

Electricity: a commodity in constant equilibrium

Electricity makes the modern world possible. Industrial societies are built on the as-
sumption that power demand shall be met and that outages are rare occurrences|1].
Reliable techno-economic structures, guided by energy policies, are set up to ensure that
production matches consumption at all times.

From a technical point of view, consumption units mainly get their electricity from
production means connected through the electrical grid. These energy transfers must
always be balanced at short time scales, which requires complex coordination.

2021 served as a good reminder that this balance can be fragile, even in developed
countries. Issues can arise when the power system is not robust enough to face sudden
natural events, such as a cold snap in Texas [2]. A rapid change in worldwide supply and
demand for energy, such as the one observed during the economic recovery in mid-2021,
can cause a simultaneous surge of coal, gas and oil prices [3], which also leads to higher
power prices.

In addition, the long-term equilibrium depends on adequate investments. Power
system assets typically have a multi-decade lifetime and usually take years to commission.
Thus, anticipation is essential.

Equilibrium through wholesale electricity markets

In liberalized energy markets, the supply-demand equilibrium is met both from a physical
point of view (i.e. consumption is equal to production) and from a financial point of
view (i.e. energy is bought and sold).

Wholesale electricity markets allow producers and consumers to agree on electricity
quantities to be exchanged and to set the corresponding prices. Market participants
trade electricity on organized exchange markets or over-the-counter according to their
preferences, which notably depend on temporal horizons and delivery points. The supply-
demand dynamics are supplemented by fiscal policies (subsidies and taxes) as well as a
wide range of regulations, which are defined by public authorities to guide the evolution
of the power sector.

A constrained equilibrium

Finding an equilibrium in the short and long runs is a complex task that is directly linked
to the three dimensions of the energy trilemmal: (i) energy security, (ii) energy equity
and (iii) environmental sustainability. Under the current societal paradigm, the power
system has to be robust enough to ensure energy security, and not oversized to avoid
wasting resources. This reliability comes at a cost, and so financial compensation can
incentivize market participants to provide and deploy adequate technologies. Meanwhile,
electricity is seen as a necessity, and fair access to all must be ensured; unaffordable en-
ergy can even spark social unrest. Nevertheless, technology-enabled energy consumption
is also responsible for the damage we cause to the environment, which has escalated

!Term defined by the World Energy Council



1.2. Problem statement

since the industrial revolution. Inconsiderate use of materials and energy is causing a
biodiversity collapse that cannot be overlooked. Thus, supply-demand not only has to
be balanced, but it also has to remain within acceptable physical limits.

The importance of electricity prices

The price associated with electricity is probably the most significant indicator of the
value we attribute to this commodity. Considered as a signal[4], the evolution of prices
indicates risks and opportunities. Understanding price formation mechanisms to antic-
ipate future price developments helps us to define relevant investment strategies and
public policies. This requires identifying key price drivers and their influence. In the
European Union, the electricity sector is marked by two major trends: the energy transi-
tion, and the development of a fully integrated internal energy market. These two trends
directly impact wholesale electricity prices and will be presented in this thesis.

1.2 Problem statement

1.2.1 Research question

Numerical models allow us to study prices in a quantitative fashion. Relying on economic
theories and price formation hypotheses, empirical models can be built. This requires
using real data about the power system and energy markets, made possible by open
data, which are increasingly prevalent thanks to supportive regulation and data-sharing
initiatives. Year after year, the pool of available data grows and the quality improves
(higher granularity, standardization, etc.). Leveraging these data is key to developing
relevant models of electricity prices.

The context of uncertainty regarding the future of electricity prices and the possi-
bilities offered by their modeling to gain a better understanding of price formation lead
us to the following central question that motivates this thesis: "How can we best use
available public data in order to model the relationship between price drivers and the
dynamics of wholesale electricity prices while accounting for the actual price formation
mechanism?"

1.2.2 Relevance

The energy transition implies the emergence of new usages and technologies. The prof-
itability of the solutions deployed depends on the price of electricity on wholesale mar-
kets, but also on other revenue streams, such as ancillary services, capacity markets, and
guarantees of origin. Electricity prices vary depending on time (e.g. prices are typically
higher during the day than at night, notably due to demand variations) and location
(e.g. bidding areas). Prices can be volatile and vary greatly from one hour to the next,
so that high temporal granularity is needed in the modeling to make precise assessments.
The following applications illustrate why wholesale electricity price modeling matters for
market participants.
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Renewable energy sources

Renewable energy sources (RES) are key elements of the energy transition, and their
development has benefited from subsidies. One form of subsidy used in the past was
feed-in tariffs, whereby renewable energy producers were not exposed to merchant risks,
but benefited from a fixed price to sell their electricity. Now that the cost of installing
RES has significantly decreased, policies are changing so that RES have to, or will have
to, sell on markets as well. Still, in many cases?, RES benefit from a feed-in-premium, a
subsidy paid in addition to the wholesale price. The rationale is that exposing RES to
price signals should lead to a more effective and stable functioning of the power system
(e.g. stop production when prices are negative). But these new rules mean that RES
producers have to estimate their potential revenues from the market on the long-run
based on price forecasts.

Flexibilities and storage

Once consequence of the growing share of intermittent energy resources is that power
systems need to become more flexible in response to new uncertainties and increased
variability. This is achieved through a combination of solutions. First, demand side
response means that electricity needs are adjusted (i.e. reduced, deferred or advanced)
based on price opportunities, which reflects a surplus in cheaper electricity produced (the
cheapest electricity is also often the cleanest since wind, solar and rain are free, while
carbon emissions induce additional costs due to carbon policies). Second, storage tech-
nologies with adequate responsiveness and capacities for different time scales (e.g. daily
storage with batteries, seasonal storage with hydrogen) generate revenues from variation
in prices, where energy is collected when prices are low and released when they are high
(i.e. price arbitrage). Third, sector coupling (i.e. the interaction between electrical,
gas and heat networks) helps to create new synergies and to use the most cost-effective
energy vector for a given situation, which depends for example on the meteorological
conditions. Finally, flexible production units, for which start-stop delays and ramping
capabilities are competitive compared to the other technologies in the energy mix, can
also benefit from price opportunities and avoid being exposed to prices below their short-
run marginal production costs. The valuation of all the above-mentioned flexibilities and
the incentives to develop them directly depend on the evolution of wholesale electricity
prices.

Retail market

Wholesale prices are a major component of retail prices. Even though our primary focus
is on the business-to-business market (B2B), our observations remain relevant for the
business-to-consumer market (B2C). Expectation of future prices can guide individuals
in their decisions regarding electricity production (whether or not to install PV and
batteries, with auto-consumption or connected to the main grid), and also regarding the
heating technology they install (e.g. electricity or gas). Smart electricity meters can

Zhttp:/ /www.res-legal.eu/
3https: //www.emissions-euets.com /internal-electricity-market-glossary/1811-feed-in-premium

4



1.2. Problem statement

mean greater exposure to market prices for retail consumers depending on the contract
(e.g. regulated or market-based). At the scale of a district or a city, initiatives can
also arise regarding the development of local energy communities or, in the future, the
development of peer-to-peer (P2P) energy-trading solutions in local energy markets. All
of these cases reveal that, to some extent, retail consumers can also choose their level of
risk exposure to the potential evolution of prices on wholesale electricity markets.

1.2.3 Scope

Modeling wholesale electricity markets is a broad subject matter. The specific scope of
this thesis is defined in this subsection.

Day-ahead markets

Day-ahead markets occupy a central position in the trading of electricity on exchanges.
Typically, auctions are organized a day before physical delivery, and a single price (also
called uniform price or market clearing price) is set for all traded volume for a given
time and location. This time is called market time unit (MTU) and is generally equal
to one hour. The location is a node (e.g. a delivery point on the transmission grid) or a
zone (e.g. a country) depending on the market design. Since the day-ahead market price
is transparent, it gives a significant signal and is also suitable for modeling purposes.
In addition, the high temporal granularity (one price per hour) is an essential feature
to properly capture the value of energy production and flexibility solutions, which vary
throughout the day.

The main other electricity markets are briefly presented in chapter 2, but will not be
the focus of this thesis. Day-ahead markets are presented in detail in chapter 3.

The EU internal energy market

Through directives and regulations, legally binding frameworks for electricity markets
are established at the European Union level.

First of all, the EU has set an objective to be climate-neutral by 2050, which has
implications in terms of the technologies to be adopted in the coming decades (energy
efficiency, sector coupling, carbon capture utilization and storage, etc.). The technical
constraints imposed by technologies play a role in the choice of market design and in price
formation. Moreover, a coordinated effort from the EU helps to combat carbon leakage
(e.g. reduce imports of CO2-intensive electricity from Western Balkan countries) by
imposing a Carbon Border Adjustment Mechanism, thus reducing the risk of importing
cheap but highly polluting electricity.

The Clean Energy for all Europeans package, published in 2015, was a major polit-
ical milestone, which laid out the energy union strategy. Four years later, the directive
on common rules for the internal market for electricity (EU) 2019/944 completed this
package by defining how the market must develop in the coming years. Among the key
elements of this directive, we note that the focus is on harmonization between countries
to foster competition, while also boosting collaboration and synergies between energy



Chapter 1. Introduction

systems. Single Day-ahead Coupling (SDAC) will create a unique pan-European, cross-
zonal, day-ahead electricity market, in which social welfare will be maximized thanks to
a common algorithm named EUPHEMIA. Interconnections between areas are constantly
being developed, and at least 70% of the capacity must be available to market partici-
pants. The European Union Agency for the Cooperation of Energy Regulators (ACER)
ensures that long-term remedial actions are taken to limit grid congestion, which pre-
vents the optimal use of energy resources. Similar to production and consumption units,
storage assets must participate in the electricity market.

All of these elements indicate that the internal electricity market is set to be developed
in a relatively predictable fashion for the coming decade. Major unsuspected structural
changes in the coming years are unlikely to occur for the following reasons: (i) political
decisions have to be taken by consensus at the EU level involving long processes, (ii)
developing the interoperability of I'T and governance structures requires years of work,
(iii) national power systems have become interdependent, which implies that a sudden
withdrawal from cooperation is virtually impossible.

Multiannual time series of hourly prices

We noted that, in the long-run, opportunities and risk arise for investors depending on
the evolution of prices. Considering a longer time scale is also necessary for policy makers
to establish an adequate market design and fiscal regulations. For these reasons, we will
focus on multiannual time series of prices.

As mentioned previously, the value of electricity depends notably on the dynamics
of the power system, that is to say, the constraints imposed on supply and demand. In
order not to limit the study to global trends, which do not accurately reveal the potential
of new investments, we will focus on time series of prices with an hourly resolution, which
corresponds to a high temporal granularity.

1.3 State of the art and Gap analysis

The supply-demand equilibrium is typically represented by a bottom-up approach, where
the price results from the optimal use of power system assets while accounting for techno-
economic constraints. Such models, where the merit order plays a key role in the for-
mation of prices, are called structural models in the scientific literature; a survey of
structural models is proposed in [5]. This approach is especially suitable for long-term
studies, since the method can account for an evolution in the power system and the
market design. These models are widely used, but they require formulating numerous
hypotheses in order to identify short-run marginal costs. In addition, the simulations do
not necessarily lead to price forecasts that reflect the observed market dynamics, since
this class of models is not primarily designed to capture the strategic behavior of market
participants. A detailed analysis of the scientific literature is presented at the beginning
of chapter 4. Here we examine salient works from the literature and identify how we
could build upon these previous endeavors.

While electricity price forecasting is overall a well-developed field of research [6], few
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models have been specifically designed for time horizons of one year or more, which cor-
responds to long-term studies [7]. Among this type of model, an approach for coupled
electricity markets is proposed in [8], where the supply curve is constructed by stacking
sell orders for which the price offers are a function of the supply margin (i.e. the dif-
ference between the total available capacity and the demand) and the production cost
by technology. While the proposed approach reflects many aspects of the functioning of
the market and the power system, it does not aim at accurately simulating the hourly
dynamics of prices. Conversely, in [9], specific attention is given to the variability realism
of simulations. Their model starts with a description of the supply curve per technology
through the short-run marginal cost. Price offers are then reduced in the case of low
demand (reflecting for example must-run constraints) and increased for high demand
(inducing a scarcity rent). The authors make use of real data to simulate realistic prices,
but their method accounts neither for technical constraints that are typically included
in unit commitment problems, nor for the influence of other neighboring markets. In
addition, complementary methodologies are proposed in [10] and [11] to model hourly
prices using the merit order approach at the technology level to realistically model the
price dynamics on the German day-ahead market. Both models make use of real data
and linear regressions. The regressions are used in [10] to adjust the output of the merit
order model to account for effects such as ramp constraints and strategic bidding, while
[11] uses statistics to model the foreign trade balance. These models employ data to
enhance the realism of simulations, but they do not propose to directly use statisti-
cal calibration within the optimization problem itself in a parametrized fashion, thus
potentially limiting the modularity of the problem formulation.

1.4 Objectives and Contributions

The overarching objective of this thesis is to propose methods allowing to leverage the
wealth of available data, especially electricity market data, in order to enhance the
structural model approach used to simulate time series of electricity prices on day-ahead
markets over multiannual horizons and with a fine (i.e. hourly) time step. The novelty
of our model lies in its goal to bridge the gap between (i) optimization methods that
estimate the minimal total cost of supplying electricity, and (ii) data-driven methods that
aim at capturing the observed trends in how the market effectively solves this resource
allocation problem. Bringing the two approaches together enables us to build upon
robust theoretical foundations without neglecting the effects observed in practice. The
model is developed with the intent of being suitable for the estimation of future prices
on the long run based on scenarios of the evolution of electricity markets and power
systems. Following the above defined overarching objective, complementary technical
objectives are formulated:

o Highlight key trends in the EU power system and electricity markets, which will
shape the future evolution of wholesale electricity prices

o Leverage open data in order to study the formation of electricity prices
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o Propose innovative models that combine optimization and statistical approaches
in order to simulate realistic time series of prices

o Formalize the quantitative link between price drivers and market prices through a
convex optimization formulation

o Propose a parametrization of price offers in order to account for the techno-
economic constraints and strategic behaviors

o Define an algorithm to estimate price parameters while accounting for real data
and merit order effects

o Validate the proposed methods over multiple years on a real case study

o Use the models for prospective studies based on scenarios involving possible evo-
lutions of the energy landscape

Key aspects of these objectives are further detailed thereafter.

Modeling the link between price drivers and price dynamics

Hourly prices on a day-ahead market depend on: (i) the state of the power system at the
current, previous and upcoming hours, (ii) what happens on other European markets,
and (iii) the positions taken by traders on other markets as well as the future positions
that they intend to take. Numerous factors influence prices, but the modeling has to
focus on those that are considered essential. This selection is non-trivial and partially
guided by the availability of trustworthy information. Once the price drivers have been
identified based on market analysis and the academic literature, the link between these
factors and electricity prices has to be constructed through a model.

In reality, market prices spontaneously emerge from the decisions taken by unco-
ordinated market participants, and so modeling corresponds to explicitly revealing the
underpinning price formation mechanisms. At the root of the market price formation,
we find the orders submitted by buyers and sellers for energy volumes at a limited price.
Modeling the formation of price offers in a parametrized fashion is thus a key aspect of
our approach.

Estimating the model parameters from historical data

A proper formalism has to be proposed in order to exploit data so that the modeling
matches the observations more closely. An estimation algorithm is required to learn
from the wealth of available data. As the prices are implicitly and indirectly impacted
by many drivers, modeling strategies have to be found to reveal these links in order to
propose appropriate methods that quantify the contribution of each factor.

Generating time series of price from scenarios

As the evolution of future wholesale electricity prices is uncertain, prospective models
have to rely on inputs built from scenarios. These scenarios reflect changes in technical
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conditions and economic perspectives. Thus, one of the modeling challenges is to ensure
that the simulated time series of prices are sensitive to these changes so that a compar-
ative evaluation of multiple scenarios can be performed. The scenarios themselves have
been built based on current trends in the public and private sectors.

1.5 Document outline

This section presents the structure of the remainder of the document.

In chapter 2, we begin with a global overview of the worldwide energy system, and,
more specifically, we present the current role of fossil fuel. This introductory analysis
led us to the conclusion that electricity will have to play an increasing role if we want
to maintain modern lifestyles while reducing carbon emissions. From this worldwide
perspective, we focus on Europe and on the EU energy policies that have been proposed
to reach net zero emissions by 2050. To be implemented, the European power system
will have to keep changing at a tremendous pace. We propose to give key figures and
to analyze the current power system through different dimensions (demand, supply,
storage and the electrical grid) in order to assess the current situation and reveal trends
regarding the future of energy systems. Finally, we explain how wholesale electricity
markets facilitate transactions to sustain the power system. The market is structured
around power exchanges and other platforms that propose products covering a range
of time frames. This structure, as well as the institutions, regulations, and market
participants that constitute the European electricity market, are presented in order to
understand the reality behind price formation.

In chapter 3, we take a look at day-ahead electricity markets, which represent a
key element of the European internal energy market. We detail the operation of these
markets, especially the mechanism underlying price formation. The notions of merit
order and marginal pricing are explained, as they are a key element for our approach to
modeling electricity prices. We also analyze the role of interconnections between bidding
zones, notably how they lead to a more efficient use of assets, from both a technical
and economic perspective. This understating of the functioning of electricity markets
allows us to finally analyze time series of electricity prices. We start the analyses after
having observed that wholesale electricity prices are predictable to some extent due to
the inherent constraints imposed by the physics of power systems, the deterministic price
formation mechanism of the market clearing, and the decisions of market participants
based on sound economic reasoning. We progressively complexify the scope of these
analyses by first presenting the main features of prices in a univariate fashion, then by
highlighting the dependency on price drivers, and finally by showing how these prices
can be modeled thanks to statistical and machine learning models. We discuss some
limitations of these purely data-driven modeling methods and how they can be mitigated
thanks to alternative modeling approaches.

In chapter 4, we propose to go beyond a purely data-driven model by explicitly
accounting for our knowledge about the functioning of power systems and markets into
our modeling approach. Similar methodologies proposed by academics and practitioners
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are discussed in light of a literature review. Our methodology is innovative in the way
we propose to take into account historical market and power system data within the
structural model framework. We introduce a novel parametrization of market orders
and a corresponding estimation algorithm used to statistically determine the value of
these parameters. The methodology is presented in detail and then illustrated in a
case study related to the French power system from 2015 to 2018. Using our model,
multiannual time series of prices are simulated and analyzed. We discuss how the overall
method is validated through the case study, but remark that some limitations must still
be mitigated in order to apply this approach to prospective studies.

In chapter 5, we build upon the proposed model by allowing the estimation algorithm
to account for additional relevant economic data (i.e. supply curves) and to better reflect
the variability of time series of prices. These studies show the modularity of the method
and how it can be extended depending on the datasets available to the modeler. We also
perform a sensitivity analysis to draw attention to the importance of the initialization
of the estimation method. We then extend the simulation model itself by introducing
additional factors, such as the ramp constraints and active storage management, in
order to better reflect the power system constraints that impact price formation. We
also verify that the model is still effective when considering multiple bidding zones at
once, since this is an essential feature to conduct prospective studies. Using the validated
model, applications are finally proposed. A methodology used to build scenarios for the
prospective studies is introduced. The results of the scenario-based studies are discussed
in light of the strengths and limitations of the method.

Chapter 6 concludes this thesis. The main observations and contributions are sum-
marized. Reflecting on the results achieved so far, perspectives are offered for future
research.

1.6 List of scientific communications

This research has been presented to an audience of electricity market experts (peer-
reviewed journal and international conference). The thesis has also been presented to a
broader audience of scientists interested in various topics related to the energy transition
during poster sessions.

In addition, winning the EEM20 Forecasting Competition with a team composed of
members of our laboratory led to communications not directly related to the topic of
this thesis. The goal of this competition was to propose hourly probabilistic forecasts of
wind production aggregated at regional levels.

The list of scientific communications is presented thereafter.

Peer-reviewed journal:
o Data-driven Structural Modeling of Electricity Price Dynamics - Valentin MAHLER,
Robin GIRARD, Georges KARINIOTAKIS - Energy Economics, Elsevier, 2022,
107, pp.105811, doi:10.1016/j.eneco.2022.105811
(https://hal.archives-ouvertes.fr/hal-03542564)
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1.6. List of scientific communications

International conferences:

o Simulation of day-ahead electricity market prices using a statistically calibrated
structural model - Valentin MAHLER, Robin GIRARD, Sébastien BILLEAU, Georges
KARINIOTAKIS - 16th International Conference on the European Energy Market
(EEM19) - IEEE PES - September 2019 - Ljubljana, Slovenia.
(https://hal.archives-ouvertes.fr/hal-02351932/document)

o Probabilistic Forecasting of Regional Wind Power Generation for the EEM20 Com-
petition: a Physics-oriented Machine Learning Approach - Kévin BELLINGUER,
Valentin MAHLER, Simon CAMAL, Georges KARINIOTAKIS - 17th Interna-
tional Conference on the European Energy Market (EEM20) - KTH, IEEE -
September 2020 - Stockholm, Sweden (by visio)
(https://hal.archives-ouvertes.fr/hal-02952589/document)

o Forecasting regional wind production based on weather similarity and site clustering
for the EEM20 Competition, Kévin BELLINGUER, Valentin MAHLER, Simon
CAMAL - 40th International Symposium on Forecasting (ISF20) - International
Institute of Forecasters - October 2020 - Rio de Janeiro, Brazil (by visio)
(https://hal.archives-ouvertes.fr/hal-03157849)

Webinar:

o EEM20 Forecasting Competition: Probabilistic forecast of aggregated wind produc-
tion with hourly resolution - Kévin BELLINGUER, Valentin MAHLER, Simon
CAMAL - International Energy Agency Wind Task 36
(https://youtu.be/n0m3S18Zwtk)

Poster presentations:
o Modélisation de l’évolution des prixz sur le marché de l’électricité dans un contexte

de forte pénétration des énergies renouvelables - PhD student seminar - French
Agency for Ecological Transition (ADEME) - March 2019 - Angers, France

o Simulation of day-ahead electricity market prices using a statistically calibrated
structural model - Summer School on Data-Driven Analytics and Optimization for
Energy Systems - Technical University of Denmark, Center for Electric power and
Energy (DTU CEE) - June 2019 - Copenhagen, Denmark
(https://hal.archives-ouvertes.fr/hal-03445344/document)

o Modélisation de l’évolution des prix de l’électricité dans un contexte de forte péné-
tration des énergies renouvelables - PhD students seminar - Doctoral school ISMME
(Ingénierie des Systémes, Matériauz, Mécanique, Energétique) - September 2020 -
Online
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Chapter 2. Energy transition and European Electricity markets

A prerequisite to properly study electricity markets is to gain a good understanding
of supply, demand and how trades are made possible. This is what we propose to do in
this chapter. The goal is not only to present the system as it is today, but also how it
is likely to evolve. To do so, a multidisciplinary approach is adopted. Key figures and
studies are presented in order to base analyses on quantitative data.

We begin by presenting the worldwide energy consumption and its link to the An-
thropocene. The specific place of electricity among all energy sources is highlighted and
its specific role with regards to the energy transition is explained. After this global
overview, we focus on the European power system and how electricity is produced, con-
sumed and supplied to end-users. Finally, we analyze how wholesale markets facilitate
the trade of electricity across Europe.

2.1 The climate-energy nexus

2.1.1 Fossil fuels contribution to climate change

In order to significantly reduce the risks and impacts of climate change, the Paris agree-
ment adopted in December 2015, set the goal to hold "the increase in the global average
temperature to well below 2°C above pre-industrial levels". The increase in global av-
erage temperatures is notably due to fossil CO, emissions, which are the main sources
of emitted greenhouse gas (GHG) [12]. A carbon budget, i.e. the maximum amount of
carbon dioxide (COg) that can still be released in the atmosphere before compromising
a climate objective, can be estimated thanks to climate models. The 2°C carbon budget
is incompatible with the coal, oil and natural gas consumption trends that have been
observed since the beginning of the industrial revolution [13, 14]. This budget not only
impose to reduce fossil fuel consumption, but also to consider a high share of the carbon
reserves as unburnable [15]. Nevertheless, we are absolutely not on track to bridging the
emissions gap [12]. The magnitude of climate change will depend on how quickly we
reduce these emissions and to which extent we manage to capture emitted greenhouse
gases. According to projections, implementing no climate policies should lead to a global
average temperature rise relative to pre-industrial levels of around 4.5°C by 2100. The
current policies, if implemented properly, should lead to an increase of approximately
3°C. Changes in the energy sector are essentials since energy consumption is responsible
for three-quarters of the global greenhouse gas emissions [16].

2.1.2 What are fossil fuels used for?

Fossil fuels, which store energy in potential form (chemical energy), are mainly used to
generate kinetic energy (motion energy, electrical energy and thermal energy). Glob-
ally, the motion energy used in the transport sector comes quasi exclusively from oil.
According to the International Energy Agency [17], around two-third of the electrical
energy comes from fossil fuels (mostly from coal and natural gas). Besides being used for
electricity generation, coal and natural gas are also used to produce heat for two main
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usages: (i) in industrial processes and (ii) to warm air and water for commerce, public
services and the residential sector. In addition, fossil fuels are also used as feedstock to
produce goods.

2.1.3 Levers to reduce fossil fuel emissions

Reducing emissions imply to decrease the product between the final energy consumption
and the emission intensity. Ideally, emission intensity should be estimated thanks to
whole life-cycle assessment in order to account for upstream emissions, such as conversion
losses from primary to final energy.

Final energy consumption depends on the world population and the consumption
per capita (keeping in mind that the variability between individuals is considerable:
"the emissions of the richest 1% the global population account for more than twice the
combined share of the poorest 50%" [12]). The fair level of consumption per capita relates
to the concept of energy sufficiency [18], which is hard to quantify and to transpose into
acceptable public policies. Energy sufficiency is also unlikely to be spontaneously adopted
by most individuals [19].

Emission intensity can be reduced by using electricity produced from low-carbon
sources (mainly hydropower, nuclear, wind and solar). Large scale electrification of the
heating & cooling sector and the transport sector is thus an ongoing industrial challenge
and a key component of the energy transition [20].

2.1.4 Low-carbon electricity for climate change mitigation

A set of solutions complementary to low-carbon electricity have been proposed to foster
the energy transition:

» Develop storage technologies, such as batteries and hydrogen, which enable to use
low-carbon energy that would have been curtailed otherwise. Storage devices can
replace fossil fuels reservoirs for many applications.

o Expand transmission and distribution infrastructures to ensure that green energy
can be used where and when it is needed.

e Reduce energy consumption through energy efficiency measures, while ensuring
that economy-wide rebound effects are managed [21].

o Negate emissions thanks to the capture of carbon in flue gas or in the atmosphere,
using nature-based solutions or dedicated technologies [22] (the potential of these
solutions is limited and they should not be seen as a viable alternative to drastic
emission reductions [23]).

In spite of these innovations, it remain unclear whether green growth is feasible [24,
25] and if it is a suitable solution to the problems we face [26], knowing that Anthropocene
challenges are not limited to climate change [27]. The progressive increase in primary
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energy consumption from low-carbon sources over the last decades, both in absolute
numbers with regards to the share of the total primary energy consumption, did not
coincide with a decrease in fossil fuel consumption. As a consequence, effective methods
to globally and durably reduce emissions from fossil fuels still have to be empirically
demonstrated.

2.1.5 The energy transition in Europe

As the cradle of the industrial revolution, Europe is directly and indirectly responsible
for a significant share of cumulative emissions. The continent is now dedicated towards
net-zero targets and is at the forefront of energy transition policies (as of October 2021,
outside Europe, only Japan and New-Zealand have passed net-zero targets in law!).
Since the European Union is responsible for 7% of the annual greenhouse gas emissions?,
a rapid and successful transition that do not rely on emission outsourcing would demon-
strate a feasible transition path on a large scale. So far, the decarbonization efforts
are encouraging: as result of the decreasing share of fossil fuels in the energy mix, the
greenhouse gas emission intensity of electricity generation has decreased by a half since
1990, as illustrated in Figure 2.1.
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Figure 2.1: Greenhouse gas emission intensity of electricity generation in the EU-27 [28]

To reach climate neutrality by 2050, the EU commission set the target to reduce
greenhouse gas emission to at least 40% in 2030 compared to 1990. This 2030 target
should be achieved thanks to share of renewable energy reaching at least 32% and energy

Thttps://www.climatewatchdata.org/net-zero-tracker
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efficiency of 32.5% compared to 1990 [29]. This ambition is likely to be revised upwards
with the upcoming Fit for 55 package, which is discussed among member states. To
reach the 2030 objectives, each country develops his own national strategy. The chosen
approach is detailed in National energy and climate plans (NECPs) [30], which have to
be in line with the national long term strategies meant to reach the Paris agreement
at the horizon 2050 [31]. The International Energy Agency conducted a comprehensive
review of the EU energy policy, leading to the publication of a detailed report on energy
system transformation and energy security [32].

Carbon trading is one of the key instruments of transition policies. A limited amount
of greenhouse gases emissions by the power, industry and aviation sectors is allowed in the
EU. The market price of emissions evolves according to supply and demand within the
EU Emission Trading System (EU ETS). The cap on the number of emission allowances
decreases every year on a regulatory basis. For stationary installations such as power
plants, the EU-wide cap was reduced by 1.74% per year for the period 2013-2020 and
is reduced by an annual factor of 2.2% for the period 2021-2030. For the year 2021,
emissions corresponding the global warming potential of around 1.6 billion tons of CO,
is allowed [33].

2.2 The European power system

2.2.1 Demand

As for the rest of the world, electricity represents a minor share of the final energy con-
sumption in Europe (around 10% of the total consumption), while fossil-based energies
are dominant, as shown in Figure 2.2. This means that the potential for electrification
is still consequent in Europe. Overall, electricity consumption is quite stable for the
period 2000-2018. Electricity is mainly consumed by the industry sector (around 38%),
services (around 29%) and households (around 28%), as shown in Figure 2.3. The main
industrial contributors are (i) chemical & petrochemical, (ii) machinery, (iii) iron & steel,
(iv) food, beverage & tobacco, and (v) paper, pulp & printing (details are given in Table
2.1). More specific data about energy consumption are published by the European Com-
mission [34], including energy balance sheets, which contain country-specific information
[35].

The composition of electricity demand will evolve due to electrification of end-uses
and the development of new usages. The main drivers for electrification are heating, ven-
tilation and air conditioning (heat-pumps), industrial heat (boilers, furnaces), e-mobility
(electric vehicles) and hydrogen production. In the future, carbon capture should rep-
resent a new electricity-intensive industry. We also note that computer systems play
an increasingly important role and lead to new usages (internet of things, industry 4.0,
high-definition video, virtual reality, cryptocurrencies, smart contracts, ...). Energy ef-
ficiency measures, such as the use of combined heat and power systems, can help to
counter-balance some of the consumption increase.

Demand side management is likely to influence the future temporal consumption
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Figure 2.2: Final energy consumption by fuel, EU, 1990-2019 [36]

patterns of electricity. Costs and CO, emissions reductions can be achieved by taking into
account the supply constraints when using electricity. As hourly emissions by country
resulting from electricity generation can be estimated from open data and retrieved in
real time [37], some consumers can reduce their carbon footprint by balancing loads
across time and space (e.g. non-urgent computation on a server).
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Figure 2.3: Consumption of electricity by sector, EU-27, 2000-2018 [3§]

Table 2.1: Consumption of electricity by sector, EU-27, 2018 [38]

(GWh)
Electricity
Final energy consumption 2511766
INDUSTRY SECTOR 956463
Iron & steel 112171
Chemical & petrochemical 169042
Non-ferrous metals 63616
Non-metallic minerals 64895
Transport equipment 50451
Machinery 113102
Mining & quarrying 20364
Food, beverages & tabacco 109985
Paper, pulp & printing 105077
Wood & wood products 25993
Construction 25260
Textile & leather 18550
Not elsewhere specified (industry) 77956
TRANSPORT SECTOR 58929
Rail 48590
Road 1675
Domestic aviation 0
Domestic navigation 0
Pipeline transport 2059
Not elsewhere specified (transport) 6606
OTHER SECTORS 1496374
Commercial & public services 737063
Households 705522
Agriculture & forestry 50846
Fishing 675
Not elsewhere specified (other) 2268
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2.2.2 Supply

The generation mix evolves according to demand, installed capacity, weather and technico-
economic constraints. The fossil fuel share in electricity production is progressively de-
creasing in Europe and is replaced by renewable energy sources, as shown in Figure
2.4.
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Figure 2.4: Monthly electricity generation mix in the EU [39]

Over the past two decades, significant increase in global installed capacity has been
observed, especially for wind, solar photovoltaic (PV) and gas power plants, as shown in
Figure 2.5. This evolution can be be understood in light of the change of unsubsidized
levelized cost of energy (LCOE) for utility-scale generation. According to Lazard’s anal-
ysis [40], the mean LCOE in 2020 for the key technologies are by $175/MWh for gas
peaker (-36% compared to 2009), $163/MWh for nuclear (+33%), $141/MWh for solar
thermal tower (-16%), $112/MWh for coal (4+1%), $80/MWh for geothermal (+6%),
$59/MWh for gas in combined cycle power plants (-29%), $40/MWh for wind (-70%)
and $37/MWh for solar using crystalline silicon photovoltaics (-90%). The cost reduc-
tion for renewables is driven by decreasing capital costs, improving technologies and
increased competition. An acceleration of the shift in energy mix would have significant
consequences in term of revenues for the owners of stranded assets (e.g. coal power
plants).

Power plant databases are available online and a tool has been proposed to match
and compare them [41] (European power plants by capacity and fuel type also can be
visualized on an interactive map [42]). In addition to large power plants, distributed
generation is gaining traction for renewables (mainly PV), but also for nuclear technolo-
gies (small modular reactors[43], which represent a largely unproven solution for a fast
and effective energy transition).
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Figure 2.5: Installed electrical capacity in the European Union [44]

In the coming decades, new geographical areas will be used by the power sector. Re-
newable energy production will increasingly take place offshore [45, 46] (mainly thanks to
wind turbines, since waves and tidal technologies are not expected to grow significantly).
Moreover, because of drastic cost reduction of enabling technologies, renewable energy
produced outside Europe can also be imported directly as electricity [47] or through a
chemical conversion, such as the production of green hydrogen [48]. Bioenergy (biomass
and biogas) will replace some of the uses of fossil fuels, including electricity generation,
but its bio-feedstock would have to come mainly from wastes, agricultural residues and
industrial by-products in order to not cause detrimental impacts in terms of land and
ocean uses. Geothermal technologies, which enable to make use of energy stored un-
derground [49], is not a key element of the European transition strategy. For the sake
of completeness, we also note that energy production could theoretically take place at
higher altitudes or in space, but it is at the research stage and should play no role in en-
ergy production in the foreseeable future. In addition to these considerations regarding
the locations of power system assets, the energy transition will depend on adequate ac-
cess to materials and components for all technologies. Finally, sufficient water resources
near hydraulic power plants and nuclear power plants will be essential.

2.2.3 Storage

Storage technologies have different applications, which can be classified as (i) gener-
ation support services and bulk storage services, (ii) services to support transmission
infrastructure, (iii) services to support distribution infrastructure, (iv) ancillary services,
and (v) services providing customer energy management [50]. To fulfill this range of
applications, different technologies have to be used depending on the required capacity

21



Chapter 2. Energy transition and European Electricity markets

(i.e. energy), responsiveness (i.e. power) and the needed efficiency to be competitive.
The technologies can be mechanical (e.g pumped hydro, compressed air, flywheels), elec-
trochemical (e.g. batteries), electrical (e.g. supercapacitors, superconducting magnetic
energy storage), chemical (e.g. power-to-gas) or thermal (e.g. heat storage, thermo-
chemical storage) [51].

Driven by the conjunction of new needs and technological innovation, storage takes an
increasingly important role in power systems. Pumped hydro storage is the main energy
storage in the EU, by such a margin that it could be considered as the only significant
one (it is the only storage technology reported in the transparency platform for the pan-
European market [52]). Power-to-gas, especially green hydrogen (i.e. hydrogen produced
thanks to low-carbon electricity), can be used for long-term energy storage; but it will
have to compete with other usages, which might be more interesting in terms of costs and
carbon reduction (chemical and industrial processes, transportation, ...)[53]. Batteries
become competitive for short- to mid-term storage and are progressing rapidly both as
bulk storage and as distributed solution "behind-the-meter" [54].

2.2.4 Electrical grid

The electrical grid is composed of a transmission network and a distribution network.
For a given geographical area, these grids are respectively managed by a transmission
system operator (TSO)? and a distribution grid operator (DSO).

Structure

Europe has the largest interconnected electrical grid in the world. As of 2015, around
310 000 km of transmission lines were managed by the European TSOs [55]. The Euro-
pean T'SOs are represented by the European Network of Transmission System Operators
(ENTSO-E). The legal mandate of ENTSO-E, as defined in regulation (EC) 714/2009
[56], is to “ensure optimal management of the electricity transmission network and to
allow trading and supplying electricity across borders in the Community”. ENTSO-E
missions include enhancing the creation of the Internal Electricity Market (IEM) and to
perform pan-European resource adequacy assessment [57]. Maps of the EU transmission
grid are published by ENTSO-E [58] and the corresponding data are available online
[59]. A list of open data related to transmission grids is maintained by the Open Energy
Modelling Initiative [60].

In the past decades, distribution grids were more seen as subordinated to the trans-
mission grid and thus more passive regarding electricity markets. But, with the growing
share of distributed generation and storage, combined with demand side response, DSOs
play an increasingly active role in the coordination of supply and demand. The Elec-
tricity regulation (EU) 2019/934 [61] lead to the creation of the EU DSO Entity in
order to "increase efficiencies in the electricity distribution networks in the Union and
to ensure close cooperation with transmission system operators and the ENTSO for

2RTE is the unique operator of the whole French transmission system, but other countries such as
Germany are split in geographical areas managed by different TSOs
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Electricity". The French distribution network is mainly operated by Enedis, which is in
charge of around 95% of all lines, while the remaining 5% are under the responsibility of
160 smaller companies [62]. The process of publishing open data regarding the French
distribution network is ongoing [63].

Opportunities and risks

The electrical grid plays a key role in the energy transition as it enables to exploit the full
potential of flexibility solutions. An increase in flexibility at different time scales would
facilitate the integration of weather-driven renewable energy sources while ensuring the
security of supply. Figure 2.6 summarizes the main actions to consider. In addition, the
electrical grid is a central element of both end-use sector coupling (transport, industry,
heating & cooling) and cross-vector integration (electricity, gas and heat networks),
which are beneficial in terms of efficiency, flexibility, reliability and adequacy [64].
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Figure 2.6: Overview of flexibility solutions [65]

Nevertheless, new challenges arise with this increasingly important role of the grid.
Due to the importance of power electronics in inverter-based systems, notably led by the
penetration of renewables [66], additional technical solutions have to be implemented to
ensure the robustness and stability of the grid [67, 68]. Moreover, the energy sector is at
the center of the critical infrastructure interdependencies [69], which means that ensuring
reliable operation of the electrical grid is of utmost importance. Strategic assets have
to be protected against physical threats (natural phenomenon and attacks); the risks
of cyberattacks, which are prevalent because of digitalization, also have to be carefully
mitigated.
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2.2.5 Prospective scenarios

The path towards net-zero emissions in 2050 is uncertain and scenarios at different
geographical scales have been proposed.

Worldwide

The International Energy Agency (IEA) proposes a pathway at the world scale. Power
system data relative to electricity demand, the total capacity and generation by tech-
nology have been published but they are only presented at the global scale (no data for
Europe or France are available).

Europe

Scenarios until 2050 at the European scale with detailed power system data at the
national level have been proposed by the European Commission (EC) and by ENTSOs?.
The European commission proposed a EU Reference Scenario 2020, which has been
developed to be consistent with the EU energy objectives. While the 2020 targets for
greehouses gases have been met, additional efforts will be required to fulfill the 2030
objectives according to projections from the European Energy Agency [70]. ENTSOs
scenarios are declined the Ten-Year Network Development Plans (TYNDP) published
every two-years. The 2020 plans presented three scenarios: "National Trends" is based
on the national energy and climate plans (NECPs) published by member states, the two
other scenarios ("Global Ambition" and "Distributed Energy") are built to be compliant
with the 1.5°C target of the Paris Agreement and the EU’s climate targets for 2030.
These last two scenarios differ in term of technology choices, "Global Ambition" is driven
by centralized generation as opposed to "Distributed Energy", which relies on smaller
generation units and gives a greater role to prosumers (i.e. consumers that actively
manage their consumption based on power system constraints and market conditions).
The IEA, EC and ENTSOs scenarios share two common traits: (i) a progressive increase
in electricity demand due to electrification, (ii) an evolution in the composition of the
electricity mix both in terms of installed capacity and generation (a decrease of fossil
fuels and an increase of renewables).

France

In France, two comprehensive sets of scenarios until 2050 horizon have been published
in fall 2021: one set published by the transmission system operator (RTE), the other by
the agency ecological transition (ADEME). RTE scenarios enable to consider different
shares of renewables and nuclear energy in the electricity mix. The best scenario from
an economic perspective is to deploy renewable energy sources at a faster pace and to
also build new nuclear power plants in order to keep a significant share of dispatchable

3ENTSOs encompasses the European associations for the cooperation of transmission system oper-
ators for electricity (ENTSO-E) and for gas (ENTSOG)
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generation. On the demand side, multiple possible evolutions are explored (energy suffi-
ciency, growing industries, different levels of electrification, low energy efficiency due to
significant rebound effect, hydrogen as key energy vector). For most scenarios, electric-
ity consumption is projected to increase, as electricity would replace fossil fuels in many
applications.

The ADEME scenarios will be broader in scope as they will consider all energy sources
and multidimensionnal analyses (technico-economical and environmental criterias). The
final results are not public yet, especially the conclusions of this study regarding the
power system have not been published as of December 2021. Still, it is interesting to
note the four paths that are explored by ADEME to reach carbon neutrality by 2050. The
first emphasises the importance of reconsidering our consumption habits. The second the
highlights the benefits of stronger cooperation between the public and private sectors,
especially at the scale of regions. The third explore a green growth path relying on
energy efficiency and decarbonized energy. The fourth focus on circular economy, which
would allow to keep most of our consumption habits but with a lower environmental
impact.

Remarks

All of these scenarios indicate that weather will have an increasingly important influence
on power systems. Temperature, wind, solar irradiance and precipitation will impact
both demand and supply (heating and cooling demand, renewable production, water
resources for the operation of nuclear power plants, etc.). The problem is that weather
will become less predictable because of climate change, so oversizing future power systems
might be needed to guarantee resource adequacy.

In any case, there is a general consensus that power systems will have to evolve
significantly and fast. The bottleneck, which limit the extent or speed of the transition
is not clearly identified. But, we know for sure that massive investments are required to
make the proposed transition possible. Financial resources from different streams will
have to be mobilized and a significant share of investment portfolios will have to be
allocated to green solutions to make the transition possible.

2.3 Electricity markets in Europe

2.3.1 Structure of the wholesale electricity market
The value chain of power markets

Electricity is sold and bought on markets at different time frames for a given location.
Having multiple markets respond to different technical use cases (unit commitment,
forecast correction, ...). From a financial perspective, it allows to hedge and to speculate
in order to manage risks and to maximize profits. As a simplified overview, the value
chain of electricity markets is summarized in Table 2.2.
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Electricity markets are also commonly called power markets in the private sector.
To differentiate between power and energy, the terms availability product (MW) and
an activation product (MWh) are sometimes used. When not specified otherwise in the

thesis, we refer to the trading of energy.

Futures and Day—apead Intraday Balancing
forwards auction
Time frame | - Up to several | - Day before - Last hours - Last minutes
years ahead delivery before delivery | before delivery

fluctuations

volumes to be
fed into the grid

- Deliver
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- Buy and sell .
. balance portfolio . volumes
. in advance to - Adjust for

Main .
secure business ) short-term
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against price changes

grid to match
supply and

demand

Table 2.2: Simplified representation of the value chain of power markets [71]

For trading occuring more than a day before electricity delivery, derivatives markets
enable market participants to hedge their position or speculate on price evolution. Base
futures are one of the most common contracts of derivative markets. Such contract
corresponds to a single price for all hours for a longer period (e.g. a month) for a single
location. More complex financial instruments are also proposed on derivative markets
(e.g. options, swaps).

For trading occuring less than 24 hours before electricity delivery, intraday markets
give an opportunity for market participants to trade electricity through auctions or con-
tinuous trading. The MTU can be shorter (e.g. 15 minutes). These markets make it
possible to account for the latest forecast corrections (demand, weather) and sudden
outages. As such, intraday markets are complementary to day-ahead markets and are
becoming increasingly popular, notably due to new uncertainties in power systems. Fi-
nally, balancing markets are activated a few minutes before physical delivery and they
ultimately ensure that supply and demand are matched. For these markets, algorithmic
trading is becoming prevalent.

The above-mentioned markets give an overview of pool-based electricity trading on
exchanges. In addition, over-the-counter (OTC) transactions allows market participants
to buy and sell electricity through standard* or specific® bilateral contracts. These
contracts between two business entities are less transparent and, as such, less prone to
scientific study. Corporate Renewable Power Purchase Agreement (CPPA) are growing

4https://efet.org/standardisation /standard-contracts-gas—power/
Shttps:/ /efet.org/standardisation/specific-contracts/
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fast, mainly due to large companies wanting to procure green energy®’ and the will of
RES producers to hedge their production. As other OTC transactions, we can also
mention RTE’s block exchange service, which allows balancing responsible parties to
trade in order to avoid paying penalties by ensuring that their portfolio is balanced.

The Agency for the Cooperation of Energy Regulators (ACER) publishes the list
of standard energy contracts [72] offered by organized market place (i.e. exchanges of
brokers)®.

Some wholesale energy transactions also occur out of the market. These transactions
organized by public authorities, such as energy regulators, are specifically developed in
response to energy policies. In France, these concern RES and nuclear energy. Historical
RES projects can still benefit from feed-in tariff (i.e. regulated fixed prices regardless of
the demand). Some new projects, such as offshore wind farms, are developed through
tenders where the installed capacity is decided by public policies and the price depends
on investor bids. Regarding nuclear, companies can buy nuclear electricity from EDF
for a fixed price defined by public authorities thanks to the ARENH mechanism (Accés
Régulé a U’Electricité Nucléaire Historique).

Price formation across markets

According to liberal vision advocated by the European Federation of Energy Traders
(EFET) [74], the formation of electricity prices must be seen in light of these multi-
ple markets corresponding to different time frames. Trading is described as a way to
manage risks of imbalance costs that reflect the difference between sell and purchase of
electricity compared to the power uses that are effectively observed. These risks and op-
portunities are progressively arbitraged more than years in advances and until real time.
Trading modalities (markets, time frames, volumes, prices) should be determined by
market participants as long as they are based on commercial, technical and/or economic
assessment. Excessive restrictions or fear of potential sanctions would "harm the ability
of the market to let price spikes materialise and to properly respond to this signal. As
a result, necessary investments in flexible capacity and innovative energy services may
not happen, as associated development and investment cost may never be recovered."

The price observed on day-ahead auction markets is especially interesting as it is
typically unique for a given hour and location and, as such, can serve as a common,
transparent price signal. It is worth noting that this price signal commonly serves as an
indicator for pricing on other markets, such as forward markets (e.g. in [8]).

Shttps://leveltenenergy.com/blog/energy-procurement /corporate-renewable-energy-power-purchase-
agreements-europe/

Thttps:/ /resource-platform.eu/

8Based on [73], the main types of contracts are classified as follows: auction, continuous, forward
style contract, future style contract, option style contract, option on a forward, option on a future,
option on a swap, spread, swap (financial)
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Pan-European spot markets

The creation of an internal energy market in the EU is an ongoing process that leads
to more integration and harmonization. A detailed economic assessment of the Euro-
pean single market in electricity is proposed in [75], in which the impact of institutional
changes on prices, security of supply, the environment, and innovation are notably ex-
amined.

The most notable evolution for spot markets (i.e. day-ahead and intraday markets)
are the creation of pan-European cross zonal Single Day-Ahead Coupling (SDAC) and
Single Intraday Coupling (SIDC) in compliance with the Capacity Allocation and Con-
gestion Management Regulation (CACM Regulation). The goal is to create a single pan
European cross zonal day-ahead electricity market. In order to allow a better use of
power system resources, technical changes are currently implemented such as: (i) using
flow-based capacity calculation to optimize the use of interconnexion, (ii) transitioning
from a Market Time Unit (MTU) of one hour to fifteen minutes in order to promote a
better use of flexibility solutions [76]. The SDAC will be further presented in the next
chapter of this thesis.

Energy transition and market design

Both TSOs [77] and energy regulators [78] question whether the current market condi-
tions and market design will provide the investment signals needed to ensure long-term
security of supply. The reason is that a higher share of RES with low operational costs
risks to depress wholesale electricity prices and push dispatchable assets out of the merit
order, thus making them unprofitable even though some are needed for the security of
supply. Capacity market is the main solution proposed to mitigate this risk.

In the context of the current and future EU power system, effective congestion man-
agement and the adequate provision of ancillary services are recurring topics for which
adapted market solutions are considered [77]. Definitive solutions are not adopted yet,
but local flexibility markets emerge as a complementary solution to these issues [79].
These local markets are meant to compensate for the low spatial granularity inherent
to the zonal market design. Nevertheless, the coexistence of zonal and local markets set
the condition for undesired increase-decrease gaming (inc-dec), where "market parties
anticipate the redispatch market and bid strategically in the zonal market" [80].

2.3.2 Institutions and regulation

Energy trading is facilitated by organized market places. Although power exchanges
operated as monopolies for given geographical areas, they are now in concurrence. For
example, in addition to EPEX Spot, Nordpool and Nasdaq are now operating in the
French market. The list of all market places is maintained by energy regulators [81].
Central counterparties (CCP), also known as clearing houses, are a common and
sometimes even mandatory intermediary of transactions. By acting as both seller and
buyer of all contracts they reduce risks for all market participants and are meant provide
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robustness to the financial system [82, 83, 84]).

Transmission system operators (TSOs) are ultimately in charge of ensuring the se-
curity of supply and they make the physical settlement of transactions possible. Since
trading also occurs across borders, interconnection capacities have to be allocated and
made available for market participants. This effort is coordinated through the Joint
Allocation Office (JAO), which is in charge of the Single Allocation Platform (SAP) for
all European T'SOs. [85]. JAO computations rely on data and insights provided by the
regional security coordinators (RSC)?.

Energy markets are monitored and regulated by National Regulatory Agency (NRAs),
such as the Commission de Régulation de I’Energie (CRE) in France. At the European
level NRAs work together in the Agency for the Cooperation of Energy Regulators
(ACER).

The action of ACER and NRAs on electricity and gas markets is complementary
to more global considerations. The actors of market surveillance are Furopean Secu-
rities and Market Authorities (ESMA) at the EU level and the Autorité des Marchés
Financiers (AMF) at the French level. Aspects related to competition are not under the
responsibility of a single European Agency, but national agency such as the Autorité de
la concurrence, cooperates through the European Competition Network (ECN) [86].

The functioning of markets as prescribed by the EU network codes and guidelines
are explained in detail in [87].

Market participants have to comply with multiple regulations: REMIT (Regulation of
the Wholesale Energy Market Integrity and Transparency EU 1227/2011), EMIR (Euro-
pean Market Infrastructure Regulation EU 648/2012), MAR (Market Abuse Regulation
EU 596 /2014), MIFID II (Markets in Financial Instruments Directive 11 2014/65/EU). ..
[88]. The details of the regulatory requirements are complex [89] and out of the scope
of this thesis. Nevertheless, considering the implications of REMIT, which is dedicated
to energy markets and under the authority of ACER gives interesting insights to un-
derstand the actual functioning of markets and some associated risks. ACER publishes
and updates guidance on REMIT and specify the forbidden behaviors [90]. Sanctions
are imposed in case of market manipulation, insider trading or when obligations are not
met; the list of enforced decisions is also maintained and made public [91].

2.3.3 Market participants

The full list of market participants published by ACER [92] consists of around 15000
entries. As of 2019, 302 market participants are active on EPEX Spot [93]. These
participants have different profiles, as shown in Figure 2.7.

Not all participants are interested in the physical procurement of electricity. In theory,
pure speculation is not necessarily detrimental to the functioning of the market and can
even play a useful role. Speculators also play an active role in the market by taking risky
bets on short- and mid- term price evolutions without being fundamentally interested in

9The RSCs are: Coreso, Transmission System Operator Security Cooperation, Security Coordination
Centre, Nordic RSC, Baltics RSC and Southeast Electricity Network Coordination Center

29



Chapter 2. Energy transition and European Electricity markets

m Utilities M Trading Company

® Municipal and Regional Supplier Aggregator

m Commercial Consumer m Bank and Financial Service Provider
mTSO m Other

Figure 2.7: Market participants on EPEX Spot by category [94]

the underlying commodity. Doing so, they improve market liquidity, contribute to price
discovery and assume risks that other market participants do not wish to take. [95]

With the development of new markets and the increase in temporal granularity, trad-
ing becomes more complex. It is now at least partially automated: 47% of traded volumes
and 65% of the number of trades are executed through application programming inter-
face (API) on EPEX Spot. The share of automated trading, including high-frequency
trading, is rising. This also makes possible to apply machine learning techniques on
electricity markets. EPEX Spot presents the future of power trading as follows: "For
years software specialists have been working on the next big step in the field, which is
the involvement of Artificial Intelligence. This opens the possibility to program soft-
ware to achieve not only a certain goal, such as profit maximisation but to learn how to
achieve this goal. The software acquires knowledge through training and trial-and-error
explorations, it maps complex inputs and is eventually able to plan ahead, to predict
and execute the optimal actions needed to achieve the goals that have been set" [93].
The fact that markets can formally be seen as a game (with an objective, a defined set
of rules, participants, constraints) is an interesting feature for machine learning. These
data-driven methods have proven to achieve better results than humans at certain tasks
and they are improving fast [96, 97]. One issue is that such tools can come with un-
expected strategies that are not transparent [98]. These strategies could have impacts
on traded volumes and price formation, including an increased risk of tacit algorithmic
collusion [99].
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2.4 Conclusions

The energy transition is a necessity that must happen at a global scale and at an accel-
erating rate. The Furopean Union shows determination in promoting policies to guide
this transition. A desirable path towards a sustainable future should not be exclusively
be based on technologies, but also consider other aspects such as energy sufficiency and
social equity. Nevertheless, technology will play a key role, especially low-carbon electric-
ity. The power system will have to significantly evolve in the coming decades under the
impulsion drivers such as renewables, batteries, hydrogen and demand-side management.
The current use of fossil fuel, notably for heating, cooling, and mobility applications, will
have to be replaced; sector coupling will facilitate the decarbonization. Flexibility solu-
tions are also set to play an increasingly important role to reduce carbon intensity and
the power grid will be essential for the integration of these solutions. Different paths
towards net zero for future of power systems have been proposed at worldwide, conti-
nental and national scales; we emphasized how these prospective scenarios converge with
regards to the strategic place given to electrification and renewables.

The pan-European energy market is developed with the intent of facilitating this
transition by structuring energy and financial flows between market participants. The
electricity covers multiple geographical areas and time frames, which enable market par-
ticipants to manage their risks and generate revenues when opportunities arise. Market
coordination is conducted by supra-national institutions at the political and regula-
tory levels as well as by the collaborative works of transmission system operators and
nominated market operators that we presented in this chapter. The profile of market
participants and the evolution of their trading preferences have been examined. We
observed that not all traders are asset-backed and we discussed the growing share of
algotrading in electricity markets. We noted that electricity markets must be carefully
designed to ensure that they are efficient in the short- to mid- term for both consumers
and producers, while also promoting adequate investments for a greener futures. The
actual decoupling between economic growth and environmental damages will have to be
closely monitored and the measures taken should be adapted accordingly.
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Chapter 3. Price formation on day-ahead electricity markets

In the previous chapter, we presented the current state and the expected evolution
of the FEuropean power sector and wholesale electricity markets. Building on this knowl-
edge, we will now study more specifically the day-ahead electricity market: how is it
structured and what are the implications for the price formation mechanism. After hav-
ing considered the rules and theoretical functioning of the European day-ahead market,
we will present the main features of prices that are empirically observed, which reflect
the formation mechanism as well as the trading constraints and strategies of market
participants. Through analyses of historical market prices and modeling of the influence
of price-drivers with purely data-driven models, we will reveal that markets are pre-
dictable to some extent. This understanding of the day-ahead market will lead us to the
next chapter of this thesis on the modeling of electricity prices thanks to a data-driven
structural approach.

3.1 Operation of day-ahead markets

This section described the mechanisms enabling the price formation on the day-ahead
market across Europe and the market conditions needed for an efficient price formation.

3.1.1 Setting prices that maximize social welfare
Market clearing

The supply demand equilibrium is found through a closed auction, also called blind
auction, where market participants submit orders without knowing the bids made by
other exchange members. A basic order to sell or to buy consist of a volume and a
price for a given time and location. In Europe, these locations correspond to bidding
zones and this market design, called zonal, is presented in detail in subsection 3.2.1. In
addition to basic orders, complex orders containing additional constraints can also be
submitted by market participants as described in subsection 3.1.3. All orders are sent to
a nominated electricity market operator (NEMO) one day before physical delivery and
before a deadline called gate closure time (GCT). Then, EUPHEMIA[100], a single price
coupling algorithm, determines which orders are executed and which ones are rejected.
Based on the results of the computation, a market clearing price is defined for each
market time unit, which is currently equal to one hour.

Uniform pricing

All accepted orders are traded at the market clearing price, regardless of the submitted
order price’. This market design is called uniform pricing (or marginal pricing?), as

Ttaly is divided in multiple bidding zones and has a slightly different approach. The supply side
receives money according to the market clearing price in their zone, but all Italian consumers pay the
same price (i.e. the PUN, “Prezzo Unico Nazionale”) based on the weighted average of supply prices in
all Ttalian bidding zones.

2Commission regulation (EU) 2015/1222 (CACM), Article 38
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opposed to pay-as-bid.

Social welfare definition

EUPHEMIA is designed to maximize social welfare, in other words, to maximize the
economic surplus which is the sum of the consumer surplus, the producer surplus, and
the congestion income. The producer and consumer surplus correspond to the difference
between the money market participants were ready to pay or receive based on their
orders, and the actual market clearing price. This means that all executed sell orders
have an order price below the market clearing price. Reciprocally, all executed buy
orders have an order price above the market clearing price. The congestion income
is a function of energy transfers between bidding areas and accounts for the tariff rates
through interconnectors. The congestion income calculation depends on the methodology
adopted to define transfer between bidding areas and if tariffs are implemented. To give
an intuition, a congestion income approximate to the difference between the money paid
by supplier at one end of interconnectors and the money received by the consumers at
the other end.

Merit order

The social welfare maximization objective means that bids are executed according to
the merit order. In the simplified case, for each period and bidding zone, the orders
proposing to sell at the lowest price and to buy at the highest price are accepted and the
total volume of energy exchanged is maximized. In practice, the acceptance of orders
also depends on technical constraints related to the interconnection between bidding
zones and on the existence of order types that reflect additional constraints requested
by market participants regarding the execution of their orders to ensure that they are
feasible and profitable. The merit order is typically represented by the supply curve that
is constructed by sorting all hourly orders of a bidding zone by ascending bidding price.
Reciprocally, the aggregated demand curve is built using the demand orders sorted by
descending price. Although the market participants are initially unaware of the bids
made by others in order to reduce the risk of collusion, the anonymized supply and
demand curves are published after market clearing so that these data can latter be used
to conduct market analyses and to develop models of price forecasts. The market clearing
resulting from the intersection of the supply and the demand curves is schematically
represented in Figure 3.1.

Shorter market time unit

The electricity flows in power systems are varying at a faster pace, due to fluctuations
on the supply side (weather-driven electricity production from renewable energy sources)
and on the demand side (flexibility provided by industrial and residential consumers). A
well-designed market has to account for and reflect these new dynamics. The Capacity
Allocation and Congestion Management regulation (CACM) therefore imposes to reduce
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Figure 3.1: Simplified representation of the market clearing, based on [101]

the market time unit from one hour to fifteen minutes. Shorter time frames enable to
derive benefit from flexible assets that are capable to quickly respond to unexpected
events [102]. The all NEMOs COMMITTEE, with the support of ENTSO-E, is working
on the development of a new scalable version of EUPHEMIA | which would allow for this
change to be implemented.

3.1.2 Impact of marginal costs on the merit order
Bids based on marginal cost

As illustrated on Figure 3.1, supply orders are typically assumed to correspond to pro-
duction from power system assets. The fact that financial transactions on day-ahead
markets correspond to real electricity transfers in the grid increase the relevance of this
assumption®. Nevertheless, a bid in zonal markets does not necessarily correspond to a
specific power plant: for example, power producers can make use of the synergies within a
portfolio (e.g. virtual power plants), and retailers can resell electricity previously bought
in surplus on forward and future markets.

3such transactions for which the commodity is actually traded are said to by "physically settled" as
opposed to financial settlements allowed on other markets

36



3.1. Operation of day-ahead markets

Evolution of the merit order

In a day-ahead market with perfect competition, the rational strategy for market par-
ticipants is to bid according to their short-run marginal cost of production for suppliers,
and to bid based on marginal utility for consumers. While all criteria for an idealized
perfect market competition are never met in practice, the marginal cost remains the
main factor to consider when thinking about electricity price formation.

First of all, it allows us to understand the influence of CO5 price on the power system.
As polluting power plants become more expensive to operate due to higher CO, prices,
the merit order can change: even if the actual extraction and transport cost of coal is
cheaper than the costs for natural gas, a sufficiently high CO4 price will place natural
gas before coal in the merit order, as coal-based production is more emissive.

Moreover, power plants running on fossil fuels can be pushed out of the merit order by
renewable energy sources, regardless of CO, prices. Since renewables have low marginal
costs, they are typically the first technologies in the merit order. This first position
results in a shift of the supply curve to the right, which can make fossil fuels unnecessary
to meet the demand during hours when the share of renewables is significant.

In addition, subsidies of renewables can also impact price formation on day-ahead
markets, especially in the presence of feed-in tariff support schemes. When fixed subsidies
are given for the supply electricity regardless of market conditions, a profitable bidding
strategy is to auction orders at a price equal to the difference between the marginal
cost and the fixed subsidy. In some cases, this difference can even be negative and lead
to market prices below EUR 0 per MWh. Such subsidies paid regardless of electricity
demand could be seen as a form of market distortion (curtailment would sometimes be
more economically suitable under optimal operation). Feed-in-premium are therefore
becoming the preferred solution over feed-in-tariff in Europe. The subsidy correspond-
ing to feed-in-premium is variable and its amount depends on market conditions, thus
encouraging renewable energy producers to better account for price signals.

Uniform pricing with a high share of renewables

As mentioned above, renewable energy sources are characterised by very low operational
costs and, as their share significantly increases, question arise regarding the robustness
of the current market design.

If power plants using fossil fuels are rarely in-the-money due to high operation costs,
they might be unprofitable and become stranded assets. While the phasing-out of fossil
fuel is a goal of the energy transition, the power system in its current state rely on thermal
generation to ensure security of supply. The need for highly emissive dispatchable assets
should be reduced in the future by the deployment of storage and demand-side flexibility,
but this substitution is a long process. The financial issue faced by investors in peak
generation assets when they fail to generate revenues that will cover both the capital
expenditures (CAPEX) and the operational expendities (OPEX) is called the "missing
money problem". It stems from the fact that in energy-only markets, such as the day-
ahead market, producers are paid only for the electricity they supply and not for the
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power capacity they offer to the grid. With energy-only market design, peak generators
need to generate significant revenues during price spikes, which occur occasionally during
scarcity situations. Since the frequency of occurrence and the price amplitude of these
spikes are hard to predict and since no guarantee is given that they will actually cover
the investment costs, energy-only markets risk to not provide sufficient incentives for
investors in peak generation, thus potentially jeopardizing the long-term security of
supply. One proposed solution to ensure security of supply has been to develop capacity
markets in order to generate additional revenues for dispatchable power plants.

In addition, wholesale market prices not set by thermal power plants might even
become a problem for the renewable energy producers. When RES are dominant and in
absence of collusion, the day-ahead market price based on the marginal cost of renewables
might be enough to cover the low OPEX but insufficient to generate enough profits with
regard to their high CAPEX. The fact that, in theory, the more renewables the lower
the day-ahead price is called the "cannibalisation effect'. In addition to subsidies, a
market-based solution has been proposed to ensure additional revenues for renewable
energy producers: the guarantees of origins (GOs). These green certificates prove that
electricity is generated from low-carbon sources and can be sold to B2B customers, which
want to prove to end-consumers or regulators that efforts have been made with regards
to the energy transition.

Conversely, when gas or coal remain oftentimes marginal although most electricity is
generated from low OPEX sources (renewables and/or nuclear), the producer surplus can
be perceived as too big and socially unacceptable. Consumers do not easily understand
nor accept that they have to pay high electricity prices even if most electricity is relatively
cheap to produce, especially since taxes helped to finance the development of these
baseload energy sources. The apparent paradox of the price formation has been criticized
both by citizens and by politicians during the post-covid demand growth when gas prices
surged, notably in Spain due to the high share of renewables in the energy mix and in
France due to the dominance of nuclear power. Temporary remedies have been proposed
to manage the effects of this energy crisis while maintaining the benefits of the European
internal energy market (resource pooling, price signals, ...). For example, the French
government decided to provide stimulus checks to low-income citizens.

3.1.3 Types of market orders

Orders to sell and buy electricity on the day-ahead market must be in a defined price
range. The minimal price is called "price floor" and the maximum value is called "price
cap". These values are set to facilitate the daily resolution of the EUPHEMIA algorithm
in limited time. Nevertheless, the price floor and cap must not impose constraints on
price formation. As of 2021, the floor is set to EUR -500/MWh and the cap is set to
EUR 3000/MWh. Regulatory mechanisms are in place to reevaluate these thresholds
should they be reached too often and thus imposing a limiting factor on price formation.

The simplest maket order consist in indicating a sense (supply or demand), a volume,
a price limit, a market time unit and a bidding zone. In addition, power exchanges offer
the possibility to submit complex orders and block orders.
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For a complex order, a market participant indicates additional conditions that have
to be fulfilled and the hourly orders become interdependent. Two main requirements can
be imposed: a minimum income condition (MIC) and a load gradient condition. The
public description of the EUPHEMIA algorithm [100] describes these requirements with
precision:

"Generally speaking, the Minimum Income economical constraint means that the
amount of money collected by the order in all periods must cover its production costs,
which is defined by a fix term (representing the startup cost of a power plant) and a
variable term multiplied by the total assigned energy (representing the operation cost
per MWh of a power plant). |[...]

Generally speaking, the Load Gradient constraint means that the amount of energy
that is matched by the hourly sub-orders belonging to a Load Gradient order in one
period is limited by the amount of energy that was matched by the hourly sub-orders
in the previous period. There is a maximum increment / decrement allowed (the same
value for all periods)."

Block order is another type that offers the possibility to add a coupling between hours
and to set minimum acceptance ratios. For such orders, the principle is similar in spirit
to the minimum income condition, but instead of imposing a condition on the total daily
revenue, the condition is on volume, where a minimal amount has to be reached for the
order to remain valid.

3.2 Interconnection of day-ahead markets

3.2.1 Bidding zones

Zonal market

Electricity markets can be organized based on one of the two main designs: zonal and
nodal [103].

Zonal pricing, which has been adopted in Europe, sets a unique price for a large area
called a bidding zone (typically a country or a region).

Nodal pricing, also known as locational marginal pricing (LMP), is common in North
America. These markets feature a higher spatial granularity since a price is set for each
bus. As a consequence, transmission constraints are better taken into account and play a
greater role in price formation. Also, in some cases, the market power of a few electricity
producers over a single node can be more significant than it would be over a larger zone
with more competing resources; this market power could impact price formation.

The advantages and disadvantages of zonal and nodal models of energy markets are
discussed more extensively in [104].

Delineation of bidding zones

When market participants buy or sell electricity in a bidding zone, they supply or con-
sume electricity at the location of their choice within an area specified in the submitted
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bid. With regards to the day-ahead market, technical constraints imposed by the elec-
trical grid within a zone are not considered. Bidding zones mainly correspond to a whole
country as shown in Figure 3.2. In some cases, bidding zones can span multiple coun-
tries (e.g. Germany and Luxembourg are in the same bidding zone in order to ensure
sufficient liquidity) or, on the contrary, a country can be split into multiple zones (e.g.
in Sweden to reflect the supply, demand and network heterogeneity within the country).

Figure 3.2: The bidding zone configuration in Europe as of September 2020 [105]

Interconnection of bidding zones

Bidding zones are interdependent as they are physically interconnected by lines and
cables. The interconnection network is expanding across Europe to facilitate resource
pooling, which benefits both the integration of low-carbon energy sources and the security
of supply. The EUPHEMIA algorithm is solved in two-steps in order to account for inter-
zone trading. First, the market clearing is solved for each bidding zone independently
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(doing so also has the advantage of making the process more robust as it allows to
apply fallback procedures when the coupling across Europe fail due to technical issues).
Second, the use of interconnectors is optimized with regards to economic benefits while
accounting for power grid constraints.

Congestion management in zonal markets

Internal network congestions within a bidding zone are problematic for the considered
zone due to the incapacity to deliver electricity as traded. Such congestions are also
problematic for the European system as a whole (e.g. wind production exported from
Denmark to Poland might be hindered by unexpected congestions within the German
power grid).

Even without considering additional investments in interconnection capacity, internal
congestion can be minimized by changing the configuration of bidding zones to account
for actual grid constraints. Nevertheless, defining new bidding zones that would be less
aligned with political borders is a sensitive topic, for example regarding the proposal to
split Germany into multiple zones.

Alternatively, Europe could adopt a nodal market design as implemented in other
countries. Since the spatial granularity is much higher in nodal markets, congestion
management is intrinsically better handled by the market itself. Nodal and zonal mar-
kets both have comparative advantages and drawbacks, but regardless of the benefits
that such design change could provide for Europe, a switch is almost impossible before
the end of this decade since it would imply considerable adaptations in term of regula-
tion, governance, procedures and IT systems. Besides the current development of pilot
projects for local markets that have been discussed in the previous chapter, the main
cross-border relevant remedial actions to handle network congestion are redispatching
and countertrading [106]. As per European regulation [107]: "countertrading’ means a
cross zonal exchange initiated by system operators between two bidding zones to relieve
physical congestion [and] 'redispatching’ means a measure activated by one or several
system operators by altering the generation and/or load pattern in order to change
physical flows in the transmission system and relieve a physical congestion."

3.2.2 Trading between market zones
Margin available for cross-zonal trade (MACZT)

The installed transfer capacity of an interconnector is a static value, but its available
capacity is dynamic as it depends on physical phenomenon, which vary according to
the state of the power system (Kirchhoff’s laws). The precise assessment of this avail-
able capacity is a complex task for transmission system operators since this evaluation
depends on dedicated network models, demand and consumption forecasts, as well as
security margin. Such margin are necessary because of unavoidable forecast deviations,
which are due to uncertainty and contingencies (e.g. sudden outages). Nevertheless, as
explained earlier, the network capacity allocation should not be too conservative in order
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to allow for an efficient use of resources within the internal energy market. This is why
the European legislation imposes that at least 70% of the transmission capacity must be
offered for cross-zonal trade by 2025.

Interconnection capacity has to be acquired through explicit auction, in which market
participants have to actively procure this capacity in addition to trading energy. Alterna-
tively, the allocation can be implicit when the multizone market clearing jointly allocate
energy and transmission capacity to market participants. The allocation method vary
depending on the considered border and time frame. The second option, which ensures
a better overall usage of the available capacity, is a key component of market coupling.
The generalization of market coupling is a central element for the development of the
internal electricity market for the day-ahead time frame.

Cross-border capacity allocation methods

Two main approaches are used to calculate the cross-zonal capacity for the day-ahead
market time frame: available transfer capacity (ATC) and flow-based market coupling
(FBMC). A summary of the methods presented in detail in [108] is proposed thereafter.

The Available Transfer Capacity (ATC) method is performed before the trading of
electricity by market participants in order to evaluate the maximum cross-zonal commer-
cial exchange that can be allowed. A bidding zone is represented by a single node and
the ATC is computed for each link between nodes. ATC computations are performed
independently for each link and the network constraints within a zone are not considered.
These two simplifications do not allow for a precise representation of the grid constraints
and force to adopt overly conservative values in order to ensure secure grid operation.

The Flow-Based Market Coupling (FBMC) method allows to overcome some of the
drawbacks of the ATC method. Bidding zones are modeled more precisely: the main in-
ternal grid constraints are accounted for. Moreover, the joint calculation of capacity for
multiple links gives a more accurate representation of the capacity that is actually avail-
able. FMBC is performed at two stages. The first stage takes place before market clear-
ing, as for ATC, to inform the flow domain of possible use of cross-zonal transmissions
lines and cables. The second stage occurs during market clearing as the optimization
algorithm determines simultaneously the execution of bids and the implicit allocation of
network capacity for market participants (hence the name "market coupling").

3.2.3 Liquidity and price convergence in Europe

A well-functioning market needs to be liquid, which means that electricity can be pur-
chased or sold quickly without significantly impacting the price. High trading volumes
is a condition for liquidity as it indicates that buyers and sellers are interested in trans-
actions through day-ahead markets. In 2019, 1489 TWh have been traded on day-ahead
markets in total in Europe. The distribution of daily volumes for each month of 2019 is
summarized in the boxplot presented in Figure 3.3. We observe variations at the seasonal
and daily timescales, which are due to the evolution of electricity demand throughout
the year.
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Figure 3.3: Monthly traded volumes on day-ahead markets in the EU, 2019 [109]

Market liquidity can be measured with the churn factor, which is a metric of that
gives an indication of the relative ‘size’ of the market compared to its physical size. It
is defined as the overall volume traded through exchanges and brokers expressed as a
multiple of physical consumption. The churn-factors for the day-ahead markets by coun-
try from 2015 to 2019 is given in Figure 3.4. According to the European Union Agency
of the Cooperation of Energy Regulators (ACER), the relatively low churn factors in
some countries can be explained by the prevalence of alternatives to day-ahead markets
to procure electricity: for example, the Regulated Access to Incumbent Nuclear Elec-
tricity (ARENH) in France or the use of Power Purchase Agreements (PPAs) to trade
renewables over the counter in Nordic countries. On the opposite, countries such Ireland,
Northern Ireland and Greece, for which the day-ahead market is the unique solution to
trade electricity in a time frame of a day before delivery have a churn factor close to one.
ACER also notes that the modest year-on-year changes in day-ahead market liquidity
for most countries indicate that these markets are mature.

The actual development of the internal electricity market is not only be assessed
through the lens of liquidity, but also by analyzing the evolution of price convergence
between different market areas. Network expansion, the increase in commercial cross-
zonal capacity and the development of market coupling lead to an improved use of
resources in the internal energy market, which is mechanically reflected in wholesale
prices [110]. The improvement of price convergence can be seen in Figure 3.5: for most
regions, we observe an increase in the number of hours when the prices are similar in all
bidding zones.

Nevertheless, price convergence depends on multiple factors, such as the generation
mix and as well as the level of RES penetration, and might not be significant in all
areas. The market integration should not be assessed from price convergence alone, since
additional technical factors should be accounted for when analyzing these developments
(e.g. internal balancing needs, as in [111]).
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Figure 3.4: Churn factors in major European day-ahead markets, 2015-2019 (The missing
data for DE/AT/LU in 2019 results from the split of this unique bidding zone in two:
Germany-Luxembourg and Austria. "SEM" refers to the Irish Single Energy Market)
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Figure 3.5: Price convergence on European day-ahead markets [110]. Central-East Eu-
rope (CEE): the Czech Republic, Hungary, Poland and Slovakia; Central-West Europe
(CWE): Austria, Belgium, France, Germany/Luxembourg and the Netherlands; U re-
gion: the Republic of Ireland and the United Kingdom; Nordic region: Denmark, Fin-
land, Norway and Sweden; South-West Europe (SWE): France, Portugal and Spain
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3.3 Stylized facts of electricity prices

3.3.1 Predictability of prices on day-ahead markets

Time series of hourly electricity prices on day-ahead markets display typical features
that are well documented in the scientific literature [112, 113, 114].

Finding reliable patterns is essential as it empirically confirms that prices are not
chaotic. The inherent constraints imposed by the physics of power system, the deter-
ministic price formation mechanism of the market clearing, and the decisions of market
participants based on sound economic reasoning lead to the emergence of relatively pre-
dictable wholesale prices. Nevertheless, the forecast precision is necessarily limited by
the fact that wholesale prices ultimately depend on stochastic trading decisions; neither
the information considered by market participants nor their decision processes can be
perfectly anticipated.

Moreover, the specificity of electricity as a commodity (difficulty to store it at scale,
low elasticity of the demand, grid-based delivery, etc.) and the specificity of the electricity
market (oligopolistic supply-side, strategic importance of electricity for nations, etc.)
imply that dedicated models should be developed in order to accurately capture these
particularities.

Analyses of time series of prices reveal a dependency of a market outcome on the
prices observed during other time steps. These analyses can then be completed by
considering the influence of price-drivers on market outcome. These two kinds of analyses
are presented at the beginning of this section. Thereafter, a last subsection introduces
key concepts for modeling of electricity prices. The main steps used to model prices
are presented through the examples of statistical and machine learning models, then the
benefits and limits of such purely data-driven approaches are discussed.

The phenomena are illustrated thanks to data related to the French market for the
four-year period spanning from 2015 to 2018. The corresponding time series of hourly
prices on day-ahead market is shown in Figure 3.6.

3.3.2 Time series analysis of prices
Volatility

Electricity prices are very volatile compared to the price of other commodities, which
means that they vary a lot over time. The variation of prices from one market time unit
to the next is called 'return'. A return can be defined as an absolute or as a relative
variation of prices. Volatility is statistical indicator of the dispersion of returns over
a defined period. High volatility indicates that there is an interest in analysing the
evolution of prices with a high time granularity and to go beyond aggregated measures
(mean, median, etc.). These price variations generate risks and opportunities for market
participants.
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Figure 3.6: Hourly electricity prices on the French day-ahead market

Multiseasonnal price patterns

Wholesale electricity prices display periodicity at three timescales: daily, weekly and
yearly as shown in Figure 3.7. The patterns of prices reflect the underlying periodicity
of power system conditions.

At the daily timescale, the demand variations are due to habits throughout the day
(waking-up, commuting, work, cooking, sleep, etc.), the supply variations are due to
weather patterns (peak solar production in midday, fast ramping up of flexible production
assets around diner, etc.). Another interesting aspect to consider at this timescale is the
impact of gate closure time. Since all bids must be submitted before a single deadline
for all hours of the next day, the latest demand and supply forecasts are more uncertain
for the hours at the end of the day than at the beginning. Market participants might
have to adjust their bidding according to the confidence they have in the forecasts and
the way they manage imbalance risks.

At the weekly timescale, the variations are mainly due to the alternation between
workdays and week-end. This not only impact the consumption habits, but also some
production processes which ramp-up at the beginning of the week and ramp-down before
the week-end.

Finally, at the yearly time scale, the price variations can be mainly attributed to
changes in weather (heating, cooling, solar and wind production, hydro stock, etc.). We
also note that the availability of generation units is not constant throughout the year
since maintenance of nuclear power plants are typically scheduled during summer when
demand is lower.
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Figure 3.7: Boxplots of electricity prices on the French day-ahead market for the period
2015-2018 as a function of the hour, the day of the week, and the month

Spikes and mean-reversion

Power systems are built to ensure security of supply throughout the year. Consequently,
they can appear oversized most of the time and electricity is provided by baseload units.
Nevertheless, scarcity situations occur occasionally due to outages, extreme weather of
events or any other kind of disruptive events. Although such situations generally do
not last for more than a few hours, this new supply-demand equilibrium can still put
the power system under stress. This stress is typically signaled by price spikes that
significantly and abruptly raise the value of electricity. Spikes, as opposed to jumps,
imply that prices quickly decrease after a short period and return to the usual range
corresponding to the baseload situation. Electricity prices are therefore said to display
mean-reversion.

Negative prices

We previously mentioned that negative wholesale prices can be observed as a consequence
of subsidies for renewables. Another reason that can trigger negative prices is the lack of
flexibility of certain power assets compared to residual demand variations. Power plants
are constrained by upward and downward ramp limits. Fast and recurrent variations
accelerate the aging of assets and can even cause safety issues. Starting and stopping
a generation unit also comes with additional operating costs and technical constraints
(duration of starting or stopping phases, mandatory refractory period between a stop
and a new start). Finally, generation units are designed to operate around an optimal
set point and deviation from this value range decreases conversion efficiency. For all
these reasons, fast variations of power production are sometimes impossible or very
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expensive. As a consequence, it is sometimes economically sensible for power producers
to bid negative prices during some hours, if this ensure them to keep producing instead
of being replaced by low-OPEX units. In addition, negative bids can be due to the
necessity to close a trading position (i.e. too much energy has been bought on long-term
markets and must be sold back).

3.3.3 Analyzing the influence of price drivers

We presented so far the main characteristics of time series of prices and proposed explana-
tions for the causes of these features. Such affirmations can be confirmed by performing
further analyses, which consist in studying the link between price-drivers and market
outcomes. Here, we keep a single dependent variables Through illustrative examples, we
will now highlight how simple studies can reveal the influence that key factors have on
price formation. Three aspects will be considered thereafter: the aggregated demand,
the nature of electricity supply, and the margin of supply capacity with regards to de-
mand. The link between hourly prices and these variables is highlighted by regressions
using the Loess procedure [115] (i.e. locally estimated scatterplot smoothing).

As demand for electricity is still largely price-insensitive and supply capacity does
not vary on short time scales, there is a positive correlation between aggregated demand
and market prices (R? = 27.5%), as shown in Figure 3.8.
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Figure 3.8: Hourly electricity prices on the French day-ahead market as a function of
the forecasted demand for the period 2015-2018. Prices are represented by black dots;
the Loess regression with a 95% confidence interval is represented by a a red line.

As explained in the previous section, the type of resources mobilized to produce elec-
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tricity influence market prices through the merit order effect. The negative correlation
between the share of weather-driven renewable electricity (VRES) production and market
prices is illustrated in Figure 3.9 (R? = 18.7%). For this analysis, we could have chose
to use the forecasted production of VRES instead of the actual production values, but
we chose the latter due to data quality issues with the forecasts for the studied period.
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Figure 3.9: Hourly electricity prices on the French day-ahead market as a function of the
share of demand covered by variable renewable energy (vVRES) for the period 2015-2018.
Prices are represented by black dots; the Loess regression with a 95% confidence interval
is represented by a a red line.

Another way to assess the impact of power system constraints on wholesale prices
is to consider the scarcity of supply capacity with regards to demand. To do so, we
can build a proxy variable called the "supply margin', which is equal to the difference
between the available capacity of dispatchable generation units in a bidding zone and
the aggregated residual demand®. The link between supply margin and electricity prices
is displayed and assessed in Figure 3.10 (R? = 45.1%).

The presented analyses can be expanded by enriching the datasets with additional
factors, which relative influence can also be jointly analyzed. Such analyses are infor-
mative of the link between the state of power system and market prices, and as such
they help to identity price drivers that can be used for modeling endeavors. Models are
complementary to analyses as they allow us not only to study historical data, but also
to generate new time series of prices that can serve various end goals (counterfactual
analyses, forecasts, etc.).

4the residual demand is defined here as the difference between forecasted consumption and the
contribution of weather-driven supply
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Figure 3.10: Hourly electricity prices on the French day-ahead market as a function of
the supply margin for the period 2015-2018. Prices are represented by black dots; the
Loess regression with a 95% confidence interval is represented by a a red line.

3.3.4 Statistical modeling of prices
Modeling prices: key principles

The whole dataset (electricity prices and their drivers) is typically used as a single part
to conduct analyses such as the ones that we presented. However, for modeling studies,
such dataset is typically split in at least two distinct parts. The first part is used for the
so-called "training phase" during which the model parameters are estimated through a
regression between the outcome variable and explanatory variables (which respectively
correspond to electricity prices and price drivers here). Using these estimated parame-
ters and the price drivers from the second part of the dataset, the model can then be
used to simulate prices during the "testing phase'. The quality of the simulation can
be assessed against the observed prices thanks to visualization (plotting both the obser-
vation and simulation) and the use of statistical metrics. This practice contributes to
avoid overfitting and inform us about the predictive value of a model.

To conduct this modeling study, we must now define a train-test split, select explana-
tory variables, chose statistical models and propose metrics to evaluate the simulation.

We propose to assess the forecasting performance of the models on the last year of
the dataset (i.e. 2018) and to use the three remaning years for training (i.e from 2015 to
2017). For the explanatory variables, we keep the price drivers presented in the previous
analyses: forecasted demand, share of vRES and supply margin.

Concerning the models, we propose to compare one of the simplest statistical ap-
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proach used as a naive reference to a supervised machine learning method that is widely
used for forecasting in various fields®. To do so, we will perform multiple linear re-
gressions and random forest regressions, using the implementation in R programming
language (respectively the function 'Im" from the package "stats" v.3.6.1 and the func-
tion "rf" from the package "randomForest" v4.6). The goal is to introduce these models
and to illustrate the performance of such approaches on simplified cases. These two
models will then be applied again as a benchmark in order to evaluate the performance
of our proposed model. The linear model is simply defined in 3.1 where ﬁt, alm. x;,
respectively represent the modeled electricity prices, regression coefficients and regres-
sors. Random forests model consist in multiple decision trees which cannot be simply
represented in a compact equation; the details are presented in [116], where the model is
described as follows: "Random forests are a combination of tree predictors such that each
tree depends on the values of a random vector sampled independently and with the same
distribution for all trees in the forest. The generalization error for forests converges a.s.
to a limit as the number of trees in the forest becomes large. The generalization error
of a forest of tree classifiers depends on the strength of the individual trees in the forest
and the correlation between them. [...]. Internal estimates monitor error, strength, and
correlation and these are used to show the response to increasing the number of features
used in the splitting. Internal estimates are also used to measure variable importance.
These ideas are also applicable to regression."

T
1 .
RMSE = | = §_1j (11, — 11,)? (3.1)

t

In terms of metrics used to verify the quality of simulations on out-of-sample tests,
we primarily consider the root mean square error (RMSE), which assesses the global
forecast accuracy. In addition, to estimate whether the model has accurately captured
the price dynamics (i.e. the hourly variations), we evaluate the difference between the
standard deviation of the observed time series of prices and the simulated one (Asd).
These metrics, which evaluate the performance of the forecast (ﬂt)teT against the ob-
served prices (I1;);er are defined as follows:

1 < -
RMSE =\ | = ; (IT, — II,) (3.2)
Asd = sd((I1;)er) — 5d<<ﬁt)t€T) (3.3)

Simulation results

The results of the simulation for both models are presented in Figure 3.11 and Figure
3.12. We observe than in both cases, prices are underestimated for the second part of

By selecting these two examples, we can evaluate the benefits and drawbacks of adding model
complexity while using the same regressors.
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Chapter 3. Price formation on day-ahead electricity markets

the year. This is likely due to the impact of the increase in gas and CO, prices, which
are not considered among the input variables. This highlight the importance of carefully
selecting price drivers, so additional factors will be considered in the remaining of the
thesis. Due to the limited number of variables chosen for this introductory example,
the forecasting performances are quite similar for both models, as even a simple linear
model succeed in extracting information from the forecasted demand, the share of vRES
and then supply margin. We obtain the same RMSFE in both cases equal to 19.8.
Nevertheless, the machine learning better captures the dynamics than the linear model
(Asd = 3.0 for the linear model and Asd = 2.1). We observe that the random forests
algorithm is especially better at capturing price spike.
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Figure 3.11: Simulation of prices on the French day-ahead market: linear model

We stress the importance to study the results on out-of-sample datasets, since in-
sample predictions can result from an overfit. In this example, we obtained significantly
better performances during training compared to the testing phase, especially with ran-
dom forest (for the linear model: RMSE = 13.6 and Asd = 5.3, for random forest:
RMSE = 6.3 and Asd = 3.2).

We also studied two variations of these models; the metrics obtained out-of-sample
are discussed here. First, to better account for the specificities of prices for each hour
of the day and day of the week, we split the global dataset into 168 independent parts
(corresponding to 24 x 7 hours) in order to train 168 independent models. In practice,
we start by only keeping the hours corresponding to Monday at 1 a.m. to train and test
a model, then we repeat the process of the 167 remaining subsets. The results obtained
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Figure 3.12: Simulation of prices on the French day-ahead market: random forest

with each model are concatenated in order to compute metrics with this reconstructed
testing dataset. Doing this splitting method implies that data are more homogeneous
for each model, but each training dataset is smaller. Overall, we observe a degradation
of the performance compared to the default case, which seems to indicate that the size
of the training dataset plays an important role (for the linear model: RMSE = 18.8 and
Asd = 2.2, for random forest: RMSE = 18.8 and Asd = 3.4). Second, we evaluated the
effect of accounting for additional data by including day-ahead prices of the neighboring
countries to the set of explanatory variables. Since these prices are well correlated to
the French prices, we observed significant performance improvements due to the ability
of statistical models to capture these correlations (for the linear model: RMSE = 5.6

and Asd = 0.1, for random forest: RMSE = 4.3 and Asd = 0.4).

Remarks

As shown in this subsection, even the simplest statistical model and a general purpose
machine learning algorithm are able to extract information from price drivers and can be
useful to predict electricity prices. Alternative statistical and machine learning models,
such as vector auto regression or neural networks, can also be applied and finely tuned,
but such approaches would still not allow to account for the marginal pricing mechanism
of day-ahead markets that reflects the supply-demand equilibrium. As this feature is
important for prospective studies and econometric analyses, we propose in the next
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Chapter 3. Price formation on day-ahead electricity markets

chapter to explore the structural modeling methodology used to study price formation
with a bottom-up approach. Accounting for the main features of the market mechanism
through this modeling approach enables to consider the impact of the evolution of the
electricity mix. Structural models also introduces transparent modeling hypotheses,
which are a source of trust for decision-makers. Still, we recognized the benefits of
statistical approaches and will propose a method to retrieve information from historical
datasets in the framework of structural models.

3.4 Conclusions

The European day-ahead electricity market relies on a complex mechanism to ensure the
maximization of social welfare. A double-blind auction organized by power exchanges en-
ables to set a unique market price for each hour and each bidding zone. The EUPHEMIA
algorithm is responsible for the market clearing across Europe, which determines the ex-
ecuted bids according to the merit order. The construction of the internal energy market
continues in Europe thanks to more harmonization (e.g. Capacity Allocation and Con-
gestion Management regulation), integration (e.g. Single Day-Ahead Coupling), and
adaptations to accommodate for a higher share of renewables (e.g. shortening of the
market time unit). An overview of the key steps of the day-ahead clearing process that
have been presented is illustrated in Figure 3.13.

_ ) Market
.| Timeframe: Participants
| Long-Term —

Timeframe: Day Ahead
Pre-Coupling
11.00 a.m.
CET .
Coupling
Orders
1200am. - GCT = === e e m e m e e e e —m — - == == i - R - — — -
cer (< 12.10am. CET) gl"'“‘pr:;:?n
Order Books | 9
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_ Publication of Market Information
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Figure 3.13: Key steps of the day ahead process (PX: power exchange, MO: market
operator, SO: system operator, GCT: gate closure time, MCO: market coupling operator,
CCP: central counterparty) [117]
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3.4. Conclusions

The internal energy market enables to pool resources across Europe, thus assets
can be used in an efficient fashion. The high level of liquidity and the converge of
prices between various geographical areas are indicators of the good functioning of the
market. Nevertheless, challenges remain: the zonal market design and uniform pricing
have drawbacks that must be addressed by measures complementary to the day-ahead
market. Congestion management, system adequacy, and social acceptability are key
issues for the future of the power system and electricity markets. The evolution of the
cost structure of the electricity mix, which includes renewables with low OPEX and
fossil fuel technologies with higher short-run marginal costs, brings us to reconsider the
benefits and drawbacks of marginal pricing.

The specificity of electricity as a commodity (grid-bound delivery, difficulty to store at
scale, etc.) is the reason for the characteristics of prices on day-ahead markets. Analyzing
the dynamics of electricity prices reveal the existence of a high volatility, of periodicities
at daily, weekly and yearly timescales, of spikes followed by mean-reversion, and of
negative prices. Further analyses confirm the link between the state of the power system
and prices observed on wholesale markets. Statistical and machine learning models can
be used for forecasting, especially for short-term horizons, but they do not allow us to
fully leverage our understanding of electricity markets. Structural models, which reflect
the price formation mechanism using a bottom-up approach, enables to conduct more
detailed studies, therefore they will be the object of the next chapter.
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Chapter 4. Data-driven structural modeling of prices

In the previous chapters, we presented and analyzed key concepts for the model-
ing of prices on day-ahead electricity markets (how these markets work, which factors
influence price formations, how historical data and numerical models can be exploited
to simulate time series of prices, etc.). In this chapter, we explore a new category of
models, called structural or fundamental models, that reflects the real price formation
mechanism (uniform pricing and marginal pricing). To begin with, we discuss methods
proposed in the scientific literature and approaches used by the private sector. Building
on the review of literature, we then propose an innovative approach to leverage data-
driven approaches within this class of optimization models. We analyse the benefits of
the proposed method through a case study, which make use of real historical data. This
chapter gives a detailed presentation of the core methodology, while model extensions
and applications to prospective studies will be explored in the next chapter.

4.1 Literature review

Various approaches have been proposed in the literature to explore the relationship
between energy prices and their drivers [6]. Prices can be simulated directly as a function
of exogenous regressors (e.g. electricity demand, available capacity) employing time
series models, artificial neural networks and regression trees, as presented in the previous
chapter. These purely statistical models rely on observed correlations between variables
and have good forecasting accuracy, especially for short-term horizons [118] when the
power system composition remains the same. Nevertheless, to reflect a structural change
in the system composition, both the supply-demand equilibrium and the associated price
formation mechanism have to be explicitly taken into account in the regression models.

The equilibrium is usually modeled with an economic dispatch or unit commitment
approach, which results in a cost-effective use of production assets to meet demand in
power systems. The optimization solution provides a model for market prices for a given
delivery period, either taking the marginal cost of the most expensive production mean
with non-zero production, or equivalently, using the Lagrange multiplier associated with
the demand constraint [4], also called the shadow price. These types of models are pop-
ular among transmission system operators (e.g. ENTSO-E uses ANTARES), political
institutions (e.g. the European Commission uses METIS) and consulting companies (e.g.
Cornwall Insight uses Plexos). A detailed review of modeling tools is proposed in [119]
and a systematic mapping of power system models in [120]. For these models, generation
units are typically grouped by technology and clustered in market areas, which are inter-
connected to partially model grid constraints. The models are used for long-term studies
regarding system adequacy to estimate future system costs and to assess the potential
benefits of new investments or market design adjustments. Monte Carlo simulations are
used to evaluate the impact of different demand scenarios and meteorological conditions
(temperature, rain, wind speed, solar radiation). However, because the models solve a
global optimization problem they implicitly adopt the view of a unique central operator.
Also, these models require the consideration of numerous techno-economic parameters
that are rarely publicly available and that are hard to collect and estimate precisely (how-
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4.1. Literature review

ever, it is worth noting that the European Commission recently released some datasets
used for METIS). Lastly, these models are generally not designed to simulate market
prices. To our knowledge, their capacity to mimic real price dynamics is not evaluated.
In the case of deviations between simulated and observed prices, the latter are not used
for model tuning.

The equilibrium can also be studied from a multi-agent perspective, where the inter-
actions between owners of different asset portfolios play a key role. Methods to reveal
hidden variables related to bids associated with power supply assets can for example rely
on a Bayesian approach [121] or on inverse optimization approaches [122], [123]. In these
references, real historical data have not been used, but the studies are instead based on
simulated test cases. More generally, this class of models is a popular choice for studying
qualitative issues rather than for simulating long time series of real market prices [6] and,
as such, the objective is usually not to exploit observed market data. Nevertheless, in
nodal markets, more detailed technical and economic data about individual units and
transmission lines can be leveraged through inverse optimization, as in [124], where the
Midcontinent ISO electricity market (MISO) in North America is studied. In [124] learn-
ing from historical data primarily enables to infer information about grid usage, whereas
our main focus is on supply bids.

Alternatively, the system equilibrium can be considered from a more market-oriented
perspective by simulating supply curves [125]. In this case, for a given hour, the supply
curve corresponds to the aggregation of market orders and not only depends on the merit
order (i.e. the ranking of production units according to their short-run marginal cost),
but also on the bidding decisions of market participants. The technical constraints that
would induce temporal coupling, usually present in unit commitment models, are not
included. Merit order models are also used to support business or policy development
(e.g. EMMA developed by Neon Neue Energiedkonomik and Power2Sim developed by
Energy BrainPool). Such models can be classified as fundamental (or structural) models
according to the electricity price forecast taxonomy proposed in [6]. Fundamental models
are used for prospective studies as well as for ex-post analyses (e.g. [126] and [11]). A
survey of structural models is proposed in [5].

For structural models, a key step is supply curve modeling. This is generally obtained
as an aggregation of market orders, but it can also result from a statistical model as in
[127], where the curve is built as a function of a normalized load and observed market
prices. This purely statistical model is then adjusted to account for the evolution of fuel
and emission costs for coal. The X-model presented in [7] and used in [128] proposes
a piecewise model for the supply curve. Each local model is initially associated with a
price level for which a volume of energy is determined through a statistical regression.
Regressors at time ¢ include solar and wind production or planned generation. An
interpolation is used to build the final supply curve. The concept of the X-model has
recently been extended in [129], where the supply and demand curves are considered
jointly in order to reduce computation time and improve accuracy. While these piecewise
models try to mimic the standard merit order approach, they do not include the effects
of availability and production costs. On the contrary, a model inspired by [130] is
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proposed in [8] for coupled electricity markets, where the supply curve is constructed by
stacking sell orders for which the price offers are a function of the supply margin (i.e.
the difference between the total available capacity and the demand) and the production
cost by technology. An objective of the paper by these authors is the analysis of forward
markets, which requires a specific form of price offer that reduces the realism of the day-
ahead price dynamics in simulations. In [131], a clearing market price procedure, which
also includes complex orders, is proposed. The bids are not parametrized and no learning
algorithm is introduced since the case study is based on the Spanish market, where day-
ahead market bids details are disclosed contrary to most European electricity markets.
While the approach is relevant for ex post analyses, it would need to be extended to be
used for prospective studies. In [9], specific attention is given to the variability realism
of simulations. Their model starts with a description of the supply curve per technology
through the short-run marginal cost. Price offers are then reduced in the case of low
demand (reflecting for example must-run constraints) and increased for high demand
(inducing a scarcity rent). The adjustment of bids is still done at the technology level
without considering individual production units. References [10] and [11] also propose to
model hourly prices using the merit order approach at the technology level to realistically
model the price dynamics on the German day-ahead market. Both models make use of
real data and linear regressions. The regressions are used in [10] to adjust the output
of the merit order model to account for effects such as ramp constraints and strategic
bidding, while [11] uses statistics to model the foreign trade balance. These models
employ data to enhance realistic simulations, but they do not propose to directly use
statistical calibration for the supply curve modeling.

4.2 Problem statement

As presented in the literature review above, structural models are beneficial for the
conduct of prospective studies needed to support long-term decisions. By design, these
models aim at capturing the price formation mechanism according to explicit techno-
economic hypotheses, and as such, these models enable to simulate electricity prices
from various scenarios of evolution of the power systems, even if analogous conditions
have not been observed yet. Although purely data-driven approaches (e.g. decision
trees and artificial neural networks used in machine learning) are fundamentally not
robust against major systemic changes and less suitable for such long-term studies, the
benefits that data-driven approaches can bring should not be overlooked, since empirical
verification relying on data from real observations is essential to ensure the validity of the
formulated hypotheses. In order words, exploiting real data ensures that the theory is
coherent with the market phenomena observed in practice. Although multiple solutions
exist to model the full power system and unit constraints in order to perform studies for
long-run simulations, few methodologies have been proposed to extract information from
observed day-ahead prices in order to tune the internal parameters of such models. The
novelty of this approach is that information extracted from in-sample datasets (e.g. past
observations) becomes an integral part of the model, which can be used for out-of-sample
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forecasts (e.g. prospective studies).

In the remaining of this chapter, we propose a structural model in which the supply
curve is constructed with a bottom-up approach. Market orders are associated with
production units and their prices are parametrized, which means that we can leverage
available market and power system data. To develop this joint statistical and optimiza-
tion approach, we introduce a method to simulate hourly electricity prices on day-ahead
markets that meets two objectives: (i) reflect the techno-economic constraints imposed
by the power system that induce the price formation according to the economic theory of
marginal pricing under idealized conditions of perfect competition, and (ii) exploit mar-
ket and power system data to calibrate and evaluate the model so that the simulations
reflect the prices observed in practice. The method is presented and then validated using
data related to the French day-ahead market and power system for the period from 2015
to 2018.

4.3 Methodology

4.3.1 Market clearing with technical constraints

In this section, we present the formulation of the optimization problem that emulates
the market clearing mechanism and integrates power system constraints. The considered
power system is composed of interconnected market areas. No assumptions are made on
the nature of the energy mix.

The link between the technical constraints of the power system and electricity prices
is modeled through a simple economic dispatch including a stock constraint for hydro
power. This constraint introduces a temporal coupling that independently prevents a
resolution for each time step. More technical constraints could be added here, though it
is not the purpose of this chapter to add too much complexity here. For a more complete
formulation and discussion on economic dispatch, see e.g. the review paper [132]. The
formulation could be further extended to a unit commitment as presented in the review
paper [133]. An elastic demand is introduced in the formulation making it closer to
a market clearing with technical constraints than a pure economic dispatch. The cost
function that is optimized depends on the marginal costs 7T£ ;, of production units, and
the marginal utility 771‘7 ; for consumption units. The problem is formulated as a social
welfare maximization, i.e. a maximization of the producer surplus and the consumer
surplus:
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m]gximlze ZZWUL” ZT( Pri) (4.1a)
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la) is the social welfare maximization objective

)
1b) is the power balance constraint

. (
(

 (lc) is the interconnection capacity constraint
(1d) is the consumption unit limits constraint
(

le) is the generating unit limits constraint

o (1f) is the hydro stock constraint

We denote H%c as the Lagrange multiplier associated with the constraint (4.1b). In
the case without temporal coupling, the marginal costs Wf , are simply the sell prices of
market participants and HM ¢ is the result of a market clearing. In a pure market vision,
the set of production units T would be the set of orders rather than a set of production
means. With a technical constraint, such as the hydro stock constraint, the sell price of
hydro is the sum of the marginal cost 7T,}; . and the Lagrange multiplier A/) associated
with the stock constraint (4.1f), also called the value of water. The interest of this kind
of formulation compared to a pure market clearing is that a sell price taking into account
technical constraints is computed internally by the model. In the general case, Lagrange
multipliers associated with all internal technical constraints included in the model can
be allocated to production means, so that we can write the sell price of production unit
i at time t as m, + \/S.

This optimization approach is widely used to simulate market prices from marginal
costs and considering the technical description of the electric system (e.g. availability
of production units, hydro stock constraint, transmission constraints). By construction,
it reflects the day-ahead market clearing mechanism. However, it does not account for
strategic bidding, information asymmetry and market power that can be observed in
practice. In addition, financial aspects can also impact the formation of prices, such as
the existence of multiple markets, which not only allows participants to sell and buy
on the day-ahead market, but makes doing so more interesting for them regarding their
profit expectation and risk management policies.
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4.3.2 Parametrization of marginal costs

The concluding remark of the previous subsection highlights that, in practice, sell prices

are not only influenced by the well-defined techno-economic constraints IC that are

accounted for in Eq. (4.1), but also by strategic decisions of market participants that

impact price formation. The contribution of these other factors is dlelnoted €t;- We finally
~ SE

propose the following additive decomposition of the sell prices 7", which accounts for
the contribution of both A{¢" and e:

~ sell P i
Ty = T+ )‘t,i + € (4.2)

The model’s internal constraints IC' are explicit, so the modeler can directly assess
the effect that adding or removing constraints has on simulated prices (e.g. adding ramp
constraints to the existing ones). The modeler can also easily evaluate the impact of the
limits imposed (e.g. by changing the values of the hydro stock constraint or the maximal
available production capacity constraint). But this approach is not applicable for ¢;;
since it is not practical to quantify a priori the impact on hourly day-ahead prices of
economic factors such as strategic bidding, information asymmetry, market power and
the co-existence of multiple wholesale electricity markets. Using a data-driven approach
on historical time series helps us to empirically quantify the influence of these factors. So,
we propose to build a statistical linear model 7?1;@- for 7 ;+es. ﬁfﬂ- is a marginal cost proxy
that accounts for both an objective short-run marginal cost of production unit 7 (77 ;) and
the influence of strategic factors (e;). The main drivers of these marginal cost proxies
include: fuel prices, emission prices, global supply margins (i.e. the difference between
the available capacity and the demand), and the rank of each production unit within its
production class, and thus we propose the parametrization described in Eq. (4.3). Fuel
and emission prices allow us to account for the evolution of operating costs (OPEX).
The contribution of the margin term reflects an important part of the strategic behavior
that can occur during scarcity situations when market participants add a price premium
to their bids. The rank of a production unit is introduced to reflect the heterogeneity
within a production class since not all units bid the exact same price (e.g. due to various
levels of efficiency and flexibility).

ﬁtpz = Ql(i),0 T (i), F * Freti) + Qetiye - E + ey m - Mi + ey r - Ri (43)
= 0y X

where the parameters of the model are only a function of the production unit class ¢(4):
* Q). - Calibrated parameters by class c(i) for each price driver
o Fie@) - Fuel price at time ¢ for class ¢(4)

e & - Emission price at time ¢

M, - Supply margin at time ¢

e R, - Proxy variable for the rank of production unit i in class ¢(7)
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Since the sell price is obtained by adding /\tIZC to frzi, the price that we propose is also
a statistical model of sell orders. Using the marginal cost proxy within the optimization
problem defined in Eq. (4.1) results in simulating a day-ahead market price that we
denote by ﬂt]‘ic

The market clearing with technical constraints and the parametrization of marginal
costs presented here is directly applicable for markets with zonal pricing. The main ideas
could also be considered for nodal markets, but the approach would have to be adapted to
account for the differences highlighted in the introduction. Here, we succinctly introduce
some points to be considered for this adaptation. Since transmission constraints play
a greater role, an additional price driver could be considered in the formulation of the
marginal cost proxy so that the parameter associated with these restrictions reflects the
impact of congestion observed in practice. Also, due to the lower number of generation
units, the parameter values could be specific for each unit (as opposed to production
classes) in order to better account for bidding strategies. Information retrieved at the
unit level would then be more precise, but the optimization problem might become
unstable due to the high number of variables.

4.3.3 Bias correction

We also introduce a bias correction term f; , to finally obtain the simulated market prices
IT; . studied in this chapter that we define as follows:

~ ~ MC
Ht,z == Ht,z + 5t,z

4.4

=11, +BY, .
where for each region z, B, € R**7 is a parameter, and for each time step t Y; is
the 24 x 7 dimensional vector with Y;[(h,d)] = 1 if hour(t) = h and weekday(t) = d;
otherwise Y;[(h,d)] = 0. This bias correction term is similar in spirit to that proposed
in [10]. However, we made this part less sophisticated because the correction is applied
after the market clearing meaning that it would not be sensitive to technical changes
in the electric system or structural changes in the market rules. This allows us to
account for additional dependencies not represented in this simplified market clearing
formulation (e.g. additional temporal dependencies) in order to simulate price dynamics
more accurately. For further use in prospective applications, we believe this term should
be kept as small as possible.

4.3.4 Estimation algorithm

The parameters of Eq. (4.3) and Eq. (4.4) must be estimated from real data. For a time
step t for which we know that the production unit i*(¢) is marginal, the at-the-money
sell price establishes the simulated market price, which can be rewritten as:

M. = Than(e) + )\ir,?*(t) + B,z

(4.5)
= al(i*(t))Xta’i*(t) + /\1{,%:‘(15) + BLY:
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We start the algorithm with 8, = 0, and ;) = ag(i) as an initial value.

Market Clearing Step From a set of marginal cost proxies we can solve Eq. (4.1).
This leads to an estimation fluz of I, ., and to the identification of marginal production
units. This allows us to group time steps according to the value of the marginal class
c(i*(t)) denoting the associated partition as (7%).cc-

In more detail, this first step of the algorithm consists in simulating prices using the
model with the current values of its parameters. Employing the simulation outcome, we
identify which generation unit is marginal for each of the simulated hours (i.e. the unit
with the highest sell price and a non-zero production value). We can then group time
steps according to the marginal class. For example, if a gas unit is marginal at time Ty, =
{tl, t12, t25, t28} and a nuclear unit is marginal at time Tnuclear = {tg, t4, t117 tQQ, t23}, we
will create groups of hours accordingly. These groups are then used in the next step of
the estimation algorithm.

Parameter update through statistical estimation Residuals II,, — ﬂt,z can be
used to estimate a new value for 3,. Meanwhile, a,, is obtained by a linear regression
of (Xt,i)(t,z')eTcOx 7. on the observed price (th)teTCO. Coming back to the example given
above, in order to determine the values of agqs, we perform the regression only with the
subset of input data corresponding to Ty,s and not with the whole dataset (and similarly
for the other production classes).

Constraints can be added at this regression stage, concerning for example the sign
of coefficients, or values that are known (and not estimated) such as o), which is
directly obtained from the average class emissions. We iterate until a stable RMSE is
obtained.

Interpretation of the algorithm A natural justification of this algorithm comes
from the following decomposition of the RMSE:

1
RMSE? = T ST N (al, Xearwy + NS + BLY: — 11,.)° (4.6)

coeC teTy,

It is important to note that the error here is not just a quadratic function of a and
B. because, when these parameters change, the merit order changes and this affects
the partition (7¢.).cc. In the proposed algorithm, we alternate between two steps. The
first is an estimation of (7¢).cc from the value of @ and 3. It can be interpreted as a
computation of the local linearization of the cost function. In the second, we estimate a
new value for the parameters a and 3, according to this linearization. This shows that
our algorithm is similar to a gradient descent on the cost function.
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4.4 Validating the approach on a case study

We implemented a method following the described approach, with R programming lan-
guage, using data relating to the French market from 2015 to 2018. In our case study, all
production units present in the power system are included in the optimization problem
defined in Eq. (4.1), i.e. we assume that all units participate in the day-ahead market.
There are several reasons for this choice. The first is that our aim is to estimate prices
with a variability reflecting the composition of the whole production system. In addition,
even if only part of the production in the electric system participates in the day-ahead
market, the remaining units that do not participate still influences prices through other
markets that we do not want to model explicitly here. Finally, no public data are avail-
able on the exact composition of the production units participating in the market, while
production unit participation in the electric system is publicly available information.
As we consider a single bidding zone case here, the subscript z will be omitted in this
section. Application to a multizone case would not change the algorithm as it will be
detailed in the next chapter.

4.4.1 Method implementation
Overview

For both training (i.e. the estimation of model parameters) and out-of-sample testing,
considering a whole calendar year allows us to observe simultaneously the daily, weekly
and seasonal variabilities. In addition, this long timescale allows us to observe the effect
of imposing a yearly constraint on the usage of the global hydro stock.

We simulate prices in a single bidding zone and incorporate the effect of the neigh-
boring interconnected zones as additional orders in both the supply and demand curves.
For the numerical application, we use the observed net transfer capacity values as order
quantities (both as Pl to account for the possibility to import and as Lj"** to account
for the possibility to export) and the foreign day-ahead market prices as order prices
(Wi ; and 7@“’ ; respectively for supply and demand). No minimal volumes for import or
export are imposed (i.e. P/ and Ly%™ are equal to 0 MWh).

Figure 4.1 gives an overview of the case study.

Supply

For the orders that constitute the supply curve, we consider the production units of
five production classes: nuclear, fossil gas, fossil hard coal, fossil oil and hydro water
reservoir. FEach order corresponds to a production unit with an installed capacity of over
100 MW. The quantities supplied each hour correspond to the available capacity P,
which varies based on the reported planned and forced outages of the production units.
For each production class, units with a capacity of less than 100 MW are aggregated
into a single order whose quantity only depends on the installed capacity; the potential
unavailabilities are not accounted for. P/ is set to 0 MWh for all units.
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Figure 4.1: Case study overview

In the ENTSO-E taxonomy, hydro is classified according to three subcategories: (i)
run-of-river and poundage, (ii) pumped storage, and (iii) water reservoirs. The hourly
production of run-of-river and poundage, as well as the hourly production and consump-
tion of pumped storage, are among the components which are subtracted from the hourly
day-ahead consumption forecast in order to obtain the aggregated residual demand used
as model input in the case study, as detailed in subsection 4.4.1. For the sell orders
corresponding to supply, we only consider water reservoirs.

The price drivers considered by production class are summarized in Table 4.1. Note
that the variation in uranium prices over the studied period is neglected compared to
the fixed operating costs of nuclear power plants and that the ranks are based on the
nominal power of production units. The rank in our model refers to a proxy variable
indicative of the merit order place of a unit within its production class. This variable is
used to account for differences in short-run marginal costs between units, which are due
to different levels of efficiency and specific operational constraints (the lack of publicly
available information at the unit level motivates the use of a proxy variable). To define
the variable for the rank of production (R;) we consider each production class c(7)
separately and we sort its production units ¢ by ascending order of nominal power P/"**,
then we compute R; by recurrence: Ry = Fj"** and R; = R,_1+F/"**. This construction
is motivated by the fact that we consider large power plants to be more efficient than
smaller ones (especially for the French nuclear power plants for which the nominal power
is correlated to the installation date).
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Production Unit Supply | Fuel | Emission
class ranking | margin | cost cost
(c) (R) M) | (F) (€)
Hydro water reservoir X X
Nuclear X X
Fossil gas X X X X
Fossil hard coal X X X X
Fossil oil X X X X

Table 4.1: Price drivers of marginal cost proxies considered by production class

Parameter estimation

For each class, we initialize o, introduced in Eq. (4.3) to be constant and equal to
an average short-run marginal cost (i.e. the cost associated with the production of ad-
ditional energy output). To avoid over-fitting, we constrain the regression to impose
a sign on the coefficients a., during calibration, so that an increase in fuel cost or a
decrease in supply margin leads to an increase in energy price. We do not calibrate
the parameters a.(;) ¢ associated with emissions and choose instead to rely on data from
RTE, the French transmission system operator. The data used for the estimation of the
parameters associated with the unit ranking, the supply margin and the fuel costs are
presented in subsection 4.4.2. Alternatively, we could have chosen to set the parameters
Q)7 associated with fuel prices using public data, since the parameters correspond
to the average energy conversion efficiency by production class. We chose instead to
estimate the parameters associated with fuel prices in order to mitigate against uncer-
tainty regarding the available data. First, for each class, different values of efficiencies
are published (these values depend on technology, operating points, etc.). Second, the
actual cost of fuel procurement depends on undisclosed hedging strategies of electricity
producers, so this cost can differ from the variable F; .(;), which corresponds to the fuel
price on a specific market and at a specific time. As both the values of fuel costs and
the price parameters (e.g. 45 7) are uncertain, we applied the estimation approach to
set the values of a.(; 7 instead of relying on public data. We note that both a,;) ¢ and
(), can be predefined or estimated depending on modeling choices and the reliability
of available data.

To estimate 3 introduced in Eq. (4.4), we compute the average of the residuals over
the training set by hour and day of the week (i.e. 24x7 offset values) and we then apply
this correction on out-of-sample tests.

Residual demand

We consider an aggregated residual demand for the bidding zone Ly with a price set to
the day-ahead market price cap (i.e. 771‘7 ; is equal to EUR 3,000 per MWh). The price cap
value does not set a market price in this case study as no supply shortage was observed.
Since this residual demand j is always fulfilled in the case study, L ; is equal to L;"*
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for all time steps. For the simulation, we set the value of LZ;-"” to 0 MWh, but the same
results would have been obtained for all values between 0 MWh and L;"*. The demand
L' results from the difference between the day-ahead consumption forecast by RTE and
the contribution of supply assumed to be a price-taker for the studied period and location.
Here, this supply is composed of fatal power production (solar, wind and run-of-river
hydro), co-generation (observed production according to a baseload profile), storage (we
consider only the contribution of pumped-storage hydroelectricity, not batteries, etc.)
and production classes with low installed capacity (biomass). Including storage as a
production unit in the initial optimization problem would not change the algorithm, but
as already mentioned, it is not the objective of this chapter to include complex technical
constraints (model extensions will be explored in the next chapter).

Market clearing

We solve Eq. (4.1) in two steps, which corresponds to dualizing the hydro stock con-
straint. In the first step, we maximize social welfare using the orders for each hour
separately and we obtain a time series of market prices. In the second step, we adjust
the availability of hydro power plants so that they produce only at higher prices within
the limit of the annual hydro stock constraint, then we solve the market clearing anew
as in the first step. This two-step procedure is reproduced at each iteration of the whole
estimation algorithm.

4.4.2 Data

The raw datasets used for the simulation and results analysis are listed in Table 4.2.
The hydro stock S;?de, computed using the dataset "Hourly production by produc-

tion class", is equal to the sum of the hydro water reservoir production over one year.
Two remarks can be made about the datasets:

o The UK National Balancing Point (NBP) was used instead of the French Point
d’échange de gaz (PEG) for gas prices due to data availability, but these prices are
considered to be correlated enough for our modeling purposes.

o All datasets were collected from the web, except Meteo France’s average atmo-
spheric temperatures, which are not open data but available under special con-
ditions for research purposes. However, this dataset is only used here to analyze
simulation errors; therefore, the core approach proposed can be developed and
evaluated using publicly available data only.

Thttps://transparency.entsoe.eu/

https://www.rte-france.com/eco2mix/telecharger-les-indicateurs

3https://www.services-rte.com/

“http://developpement-durable.bsocom.fr

Shttps://www.erce.energy /graph/uk-natural-gas-nbp-spot-price

Shttps://markets.businessinsider.com/commodities /historical-prices/co2-european-emission-
allowances/euro/1.12.2014_1.2.2019
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Dataset Source
Installed capacity by production class
Installed capacity of production units | ENTSO-E transparency platform®
(Prom > 100MW)

Unavailability of production units
(Prom > 100MW)

Prices on day-ahead markets Open Power System Data [134]
Day-ahead consumption forecast
Hourly production by production class | RTE (Eco2Mix platform)?
CO2 emissions by production class
Net Transfer Capacity to and from
neighboring bidding areas (NTC) RTE (Data portal)’

Operating costs by production class RTE/ADEME study [135]
French Ministry for the Ecologi-
cal Transition (PEGASE)?

Import costs of coal and oil in France

Gas market prices ERCE®
CO2 European Emission Allowances Business Insider®
Atmospheric temperature Meteo France

Table 4.2: Data sources for the case study

4.4.3 Results

The simulation results are obtained by out-of-sample testing. To do so, one year is used
for training and then we test over each of the remaining years (we repeat this process
for the four calendar years in the dataset). In this way, each year is used three times
as a testing set. The final result for each year, presented throughout the chapter, is the
average of the ensemble of the three alternative simulations in which this year is used
as a testing set (e.g. using the models trained with the 2015, 2016 and 2017 datasets,
we simulate three distinct time series of prices for 2018 and then we calculate the hourly
average).

Presentation of the simulated time series

The results obtained using the method and data described above are shown in Figure 4.2.
In addition to the model’s output (i.e. time series with hourly resolution), we analyzed
its variability by computing the average prices by day of the week and hour of the day.
The temporal variations appear to be globally captured by the model.

A focus on a period of one month presented in Figure 4.3 gives a more detailed
representation of the dynamics of day-ahead prices.
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Figure 4.2: Time series of prices on the French day-ahead market over four years (top),

average prices by day of the week (bottom-left) and average prices by hour of the day
(bottom-right)
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Figure 4.3: Time series of prices on the French day-ahead market over one month

Evaluation of the simulations

To analyze the results, we first compute the metrics and we obtain RMSE = 10.8

and Asd = 4.9 over the whole test four-year test period. If we limit our analysis to
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the year 2018, we obtain a RMSE = 7.5, which is a significant improvement over the
simple tests performed with linear and random forests models in the previous chapter.
Nevertheless, we observe a deterioration of the performance regarding the estimation of
the price dynamics, especially compared to random forests, as we obtain Asd = 3.6 with
our model.

To go beyond the analysis of metrics, we plot the distribution of our simulated prices
against the distribution of observed prices. The results are displayed with smoothed
density estimates in Figure 4.4. To make the vizualisation clearer, the outliers above
EUR 150/MWh are not displayed. While the prices are correctly modeled on average (the
mean of observed prices is equal to EUR 42.6/MWh and it is equal to EUR 44.0/MWh
for the simulated prices), we observed that the dispersion of prices is underestimated by
our model. So the error measured by Asd is not only stemming from price spikes but
from the whole distribution. In the next chapter, we will explore advanced parameter
estimation techniques to mitigate this effect. The left tail appears to be overestimated;
this could be partially due to the use of the actual production values of weather-driven
renewables instead of using the forecasted values as the market participants would do.
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Figure 4.4: Density plot of prices on the French day-ahead market from 2015 to 2018

Studying residuals, i.e. the difference between observed and simulated prices, is
also indicative of areas of improvement. If we consider the average value of residuals
by month, as shown in Figure 4.5, we observe that simulations tend to overestimate
prices during the first three trimesters of the year, while prices are underestimated from
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October to December. Expanding the model to better capture seasonal variations and
having more differentiated values throughout the year would help to correct the price
distribution effects discussed above. One of the reason for this limitations could be that
residual demand in our model jointly consider consumption and vRES production, while
market participants adapt their bidding strategy depending on the composition of this
residual demand.

o

Residuals (EUR/MWh)

2 3 4 5 6 71 8

Month of the year
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Figure 4.5: Mean of residuals by month from 2015 to 2018

Price offers decomposition

In this subsection, we propose to have a closer look at the simulated price formation.
We consider the modeled hourly orders that the market clearing prices (i.e. the orders
"at-the-money", which correspond to marginal units).

First of all, we analyze how often each production class set market prices. For this
analysis, we consider interconnections as a production class. Hydro water reservoir
are not represented as their contribution is considered in the case study to always be
price-taker, where the hydro stock is strategically used during hours corresponding to
the highest market prices. The relative frequencies of marginality by production class
are summarized in Table 4.3. We observe some expected results: nuclear serves as a
baseload most of the time, interconnections set prices quite often as the true observed
foreign prices are used in the case study are more reliable for than the prices simulated
for the other productions classes, and prices are set by fossil fuels for the remaining 15%
of hours.
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Production class | Marginality frequency
Nuclear 61.2%
Interconnections 23.8%
Fossil gas 8.1%
Fossil hard coal 3.9%
Fossil oil 3.1%

Table 4.3: Frequency of marginality by production class

We can then look into the average decomposition of prices by production class. The
values are summarized in Table 4.4. In order to compare the relative influence of each
factor, we provide the product between the parameter associated with a price driver and
the value of the price driver, so that all values are in EUR/MWh. We observe that the
price of orders from nuclear units are impacted by the variation of supply margin and also
by which unit is last called with the production class. The decomposition of electricity
prices set by gas unit reveal that the operating costs play an important role in price
formation and, as expected, the average order prices are higher than for nuclear. More
surprisingly, the prices for coal and oil seem underestimated, although the estimation of
parameters still reveal important features such as the high dependency of oil price to
the supply margin. The performance of the estimation algorithm might be degraded for
these two productions classes due to the relatively low number of production units in
France and the insufficient amount of hours for which these fossil fuels is marginal in
order to better estimate these values.

Production Intercept Unit Supply | Fuel | Emission || Order
class ranking | margin | cost cost price
Interconnections n.a. n.a. n.a. n.a. n.a. 46.8
Nuclear 89.5 -21.7 -24.6 n.a. n.a. 43.2
Fossil gas 55.5 -0.10 -23.0 21.2 3.95 57.7
Fossil hard coal 32.9 -1.18 -15.3 11.5 8.89 36.8
Fossil oil 89.6 -7.86 -162.0 | 120. 7.23 46.9

Table 4.4: Average contribution of each price driver to in the additive decomposition of
order prices by production class (values in EUR/MWh)

The bias correction term [ partially compensate for the underestimation of prices set
by coal and oil. As we can see in Figure 4.6, this bias correction plays a more important
role during the weekday hours around dinner time, which typically correspond to higher
electricity consumption in France and are associated with a significant ramp of demand.

Model parameters could be better estimated by increasing the size of the training
dataset, but having a longer time horizon would create new challenges for the manage-
ment of hydro stock. We suppose here that a total hydro stock is set initially and can be
used for the duration of the training and testing period. For a longer horizon, additional
considerations would have to be accounted for to handle a dynamic stock that can be
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Figure 4.6: Bias correction by hour of the day and day of the week

filled thanks to precipitations. Another approach for a better estimation of model pa-
rameters would be to add additional constraints on each model parameters, for example
by imposing minimal and maximal values. The risk of doing so would be to have a form
of overfitting, where the modeler imposes too many hypotheses in order to match the
datasets too closely, thus losing the benefits of statistical learning. Nevertheless, the
formulation of the parametrization and methods for a finer estimation of parameters
could be the subject of future work.

Comparison to benchmark

We aim to (i) assess the benefits of the model calibration to estimate the contribution of
statistics to our structural model, and (ii) compare our performance to purely data-driven
methods (i.e. linear regression as a reference for statistical modeling and random forests
as a reference for machine learning modeling). The results are summarized in Figure 4.7.
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We observe that model calibration, which corresponds to our reference case, improves
the performance for our two metrics. Also, when we consider only a basic dataset
consisting of power system data as an input for the statistical and machine learning
models (i.e. excluding information about prices and costs), our calibrated model tends
to perform better. Nevertheless, when considering an extended dataset for calibration,
which includes power system and market data (fuel costs and day-ahead prices in the
neighboring bidding zones), the purely data-driven approaches tend to be better at
exploiting correlations between prices on different markets.

Although purely data-driven approaches perform well in this case study, they are
given only as a reference since they do not fulfill the objectives set in our problem state-
ment, which is to propose a suitable method for prospective studies. As these methods
exploit the outcome of past observed situations and do not intrinsically consider the
price formation mechanism, they are less relevant to study the impact in terms of prices
of long-term scenarios where major system changes are considered. As requirements
for prospective studies, the model must offer the possibility to estimate the potential
consequences of changes in electricity mix or market design. By construction, structural
models are well-suited to integrate the technical constraints imposed by the electricity
mix, and the optimization problem can be extended beyond the current formulation if
needed. Nevertheless, our data-driven approach would not be suitable for scenarios which
radically differ from the training dataset (e.g. in the case of 100% renewable energy).
First of all, in case of radical changes, the behavior of market participants will differ from
the behavior inferred from historical data. In addition, the bias correction term £, . in
Eq. (4.4) reflects a periodicity of spot prices that would also change in case of a major
evolution of the energy mix. Regarding the market design, our model represents the
price formation induced by a zonal double-sided auction market with uniform pricing.
The impact of the design of other electricity markets on the day-ahead market is not
the object of this case study, but it could be the focus of additional analyses under the
current framework. For example, in the case of France, the ARENH mechanism forces
EDF to sell nuclear electricity to competitors in order to mitigate the effect of EDF’s
historical monopoly on the French energy supply (up to 100 TWh of electricity at EUR
42 per MWh from 2015 to 2018). Market participants might want to resell a share of
this energy at a higher price. To do so, they would only have to bid the ARENH price
since the day-ahead market is pay-as-clear (this would correspond to an additional offer
in our model and the availability of nuclear plants would then be reduced accordingly).
Sensitivity analyses can be performed in order to assess how the ARENH price, the total
ARENH volume, or the percentage of ARENH resold could impact prices on the French
day-ahead market.

4.4.4 Discussion
Impact of unexpected events

The occurrence of an unexpected event can influence selling and procurement require-
ments. Here we assess the impact on simulation errors due to temperature anomalies
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Figure 4.7: Performance comparison of benchmarked models

(i.e. the difference between the observed atmospheric temperature and the long-term
average) and the impact of unexpected unavailability of production units. The hourly
temperatures are spatially averaged for the French bidding zone in order to consider a
single representative temperature for each hour. Regarding the production unavailabil-
ity published on the ENTSO-E transparency platform, we distinguish between planned
outages (e.g. maintenance) and forced outages (e.g. plant failure), where only the second
category is considered as being unexpected. The evolution of unavailability is shown in
Figure 4.8.

We perform regressions between the prediction errors of simulated prices on the
out-of-sample dataset and our variables quantifying unexpected events using the Loess
procedure [115] (i.e. locally estimated scatterplot smoothing). For the univariate cases,
a coefficient of determination R? of 0.10% is obtained for the temperature anomalies and
1.23% for the impact of forced outages. In the bivariate case, the coefficient of determi-
nation is not improved compared to considering only forced outages (R? = 1.14%). The
results for forced outages are presented in Figure 4.9.
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Figure 4.8: Unavailability of production units

General remarks

The case study illustrates how the method can be implemented to simulate prices on the
French day-ahead market. The model makes it possible to simulate price dynamics and
calibration improved performance. Exploiting fundamental data proves interesting to
simulate these prices over the long run. We note that the French market is characterized
by a dominance of nuclear power plants operated by a single electricity producer (EDF).
This makes the French case particular and further analyses of other markets could be
the purpose of further work.

Moreover, the model captures the main characteristics of price dynamics but un-
derestimates the prices in case of spikes. The formulation of sell order prices could be
extended to include non-linear price increases in case of limited supply margins. More
generally, the procedure to estimate model parameters can be extended, for example to
consider additional datasets (real supply curves) and to finely tune the importance given
to the dynamics of historical prices during training phase, as we will see in the next
chapter.

Finally, for prospective studies, scenarios could be generated to assess the potential
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impact of the evolution of fundamentals, such as the demand, energy mix or fuel and
emission costs. For the French market, an evolution of the energy mix could be considered
in light of the studies made by RTE to reach carbon neutrality in 2050 rather by mainly
developing nuclear power, or by significantly increasing the share of renewable energy,
or a balanced combination of both. Results for this distant future have to be studied
critically, but analyzing simulated prices during the upcoming transition years leading
to these significant changes can be informative for decision-makers. For detailed studies
at the European level, scenarios could for example be based on the Ten-Year Network
Development Plans (TYNDP) published every two years by ENTSO-E. When using
scenarios, some price-sensitive factors, such as flows in interconnections and storage
usage, should be made part of the optimization problem. The aim here is to ensure
that these variables remain internal to the model and thus become dependent on spot
prices. To do so, multiple bidding zones can be simulated at once in order to compute
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interconnection flows with the model. Moreover, the optimization problem presented
by Eq. (4.1) could be enhanced with additional constraints in order to actively manage
storage assets, so that storage management also becomes internal to the model (such
constraints typically account for capacity, state of charge, efficiency and ramp limits of
storage assets). Such extensions will be explored in the next chapter.

4.5 Conclusions

Long-term simulations of wholesale electricity prices help to support investment and pol-
icy decisions. Structural models of day-ahead markets, which enable to account for both
the price formation mechanism and techno-economic constraints of the power system,
are commonly used in the industry for prospective studies. These models are built upon
theoretical foundations and make it possible to find an optimal price corresponding to the
maximization of social welfare. Nevertheless, empirical testing of models contributes to
verify that the theory reliably accounts for the observations, and data-driven approaches
can help to reduce the gap between theory and practice. While many models devel-
oped for electricity price forecasting are presented in the academic literature, methods
specifically designed for long-term considerations that propose to combine optimization
and statistical approaches are less common. In this chapter, we proposed a model which
meets the aforementioned criteria. Having a bottom-up approach with a high granular-
ity starting from production units for the supply side allows us to introduce a detailed
and modular formulation of the market orders, which is suitable to properly leverage the
power system and market data. We introduced a calibration method of structural model
parameters capable of exploiting real data in a differentiated fashion by considering the
production classes separately. The method has been validated using data relating to the
French market from 2015 to 2018. The global price dynamics, especially the hourly and
weekly variations, has been captured by the calibrated model on out-of-sample tests.
However the amplitude of price spikes is underestimated and could be the focus of fu-
ture work for the more specific formulation of the orders’ prices. The case study shows
that the calibration of parameters using real data improves the accuracy of the simu-
lations. Moreover, the calibrated model reaches performances on historical data that
are close to the ones obtained using purely data-driven methods, while also fulfilling our
requirement regarding the possibility to explicitly model changes in the electricity mix or
market design. In the next chapter, some advanced parameter estimation methods will
be introduced and some limitations of the model with regards to its use for prospective
studies will be mitigated.
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In the previous chapter, we proposed a method to simulate electricity prices on day-
ahead markets. We observed that the method could be improved in two notable ways.
First, further considerations can be given to the estimation algorithm in order to simulate
prices more accurately. Second, the formulation of the market optimization problem itself
can be extended in order to propose a global methodology that mitigates some remaining
limitations with regards to the use of the model for prospective studies. In this chapter,
we will explore and discuss these two extensions of the model.

This validation of the extended model on historical data finally allows us to propose
some applications. More precisely, the model is used to conduct scenario-based prospec-
tive studies regarding possible evolutions of electricity prices; these prospective studies
are the object of the last section of this chapter.

5.1 Further studies of the estimation method

The outcome of the parameter estimation method depends on the way the regression is
performed and the choice of data. We propose three complementary studies to explore
how alternative estimations ultimately impact the final out-of-sample simulation results.
In the first study, we extend the regression by introducing weights, which influence of
the variability of the simulated time series of prices. In the second study, we introduce a
method to create additional synthetic datasets that account for information embedded in
real supply curves. In the third study, we analyze to which extent the initial assumptions
regarding the merit order impact the simulation outcome.

5.1.1 Introducing variability into the cost function

The root mean square error is known to give results that are smoother than observations.
We therefore propose a modification of the cost function that implicitly approaches a
minimization of RMSE, +vyAsd,. We propose to introduce weights (w; »)ter in the cost
function as a variability hyperparameter of the model:

(NI

1 2
RMSE, = T Z Z wiz (Qfy Xir ) + Mo + BLYe — 11, (5.1)

coeC tGTCO

such that the price barycenter is not modified, i.e. so that :

’TL d M. = _ > wdl (5.2)

W
C0| tETcO ZtETcO t,z tETcO

By giving more weight to hours with extreme low or high prices, we thus decrease the
value of Asd,.

We apply this method to our case study and show in Figure 5.1 how tuning the
variability hyperparameter of the model during calibration can effect the out-of-sample
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performance as measured by the RMSE and Asd metrics. This hyperparameter is equal
to the sum of the weights w; introduced in Eq. (5.1), which are added to the minimal
and maximal price values used for estimating the parameters o, for each production
class. We ensure that the weights are added in a balanced way so that the mean price
of the set remains unchanged.

In other words, weights are used during the training phase when we estimate the
a parameters of the sell prices. Let us recall that datasets are split according to the
class of the production unit considered to be marginal. For each production class, when
considering only the relevant time steps according to the marginality criterion, we have
a subset of observed prices and the corresponding explanatory variables. We identify
the time corresponding to the lowest and highest market prices and we assign extra
weights only to these two time steps. We call the sum of added weights the variability
hyperparameter. The weights are shared between these two points so that the average
of observed prices remains unchanged after assigning these new weights.

11.41 o Variability
hyperparameter
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Figure 5.1: Out-of-sample performance for different values of the variability hyperpa-
rameter

We observe in Figure 5.1 that hyperparametrization can help to improve the dynamics
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of the simulation (i.e. the variation of the simulated prices is more similar to the variation
of the observed prices) at the expense of lower global accuracy as measured by the RMSE.

5.1.2 Leveraging information from observed supply curves

The estimation algorithm makes use of observed market prices, implying that only the
price information given by the at-the-money order is exploited for each time step. How-
ever, the supply curves bring valuable information that has not been taken into account
in our method so far. As day-ahead auctions are generally blind (i.e. the identity of
market participants is not made public, and it is not even possible to determine which
of the production units is actually participating in a market), information cannot simply
be retrieved by matching orders to production units. We propose a methodology to
exploit the information contained in observed supply curves &; ., which translates into
an extension of the set of observed prices, called synthetic prices. A small deviation, 4,
is applied to the real market clearing volume V; . in order to generate synthetic prices
nyz so that:

The process is illustrated in Figure 5.2.

Price
4 Demand curve
— Supply curve
Synthetic
marketdearingprlce ‘III.II EEEEEEEEEEEEEEEEEEEEEEEEESR

.

u
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market clearing volume < A "

/_/—I# 1 = Volume
= ] >
] ) —
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market clearing volume market clearing volume
+8%

Figure 5.2: Data augmentation principle to generate synthetic prices from supply curves
Each relative variation ¢ creates a new synthetic dataset used to estimate model

parameters (i.e. the datasets are only used for in-sample training). As we want our
synthetic prices to reflect realistic counterfactual cases, we consider that the relative
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variation of the hourly volumes is caused by the same variation of residual demand.
Consequently, the supply margin M, . is also modified in the synthetic dataset since
it depends on the residual demand. Finally, the synthetic dataset is composed of the
new prices (), )ier, the new residual demand, and the price drivers (X;)ier, where all
variables of X ; remain unchanged except Miz.

We now apply this estimation method to our case study. Due to data availability
issues, we applied the presented technique on the supply curves only for the year 2015.
We tested the performance on the year 2016 where more price spikes are observed. In the
reference case, the spikes are not fully captured, which lead to degraded performances
compared to the other simulated years as measured by our two metrics. As training
sets, we consider 12 additional synthetic years with a relative variation of hourly traded
energy volumes from -3% to +3% by steps of 0.5%. In Figure 5.3, we represent the
performance obtained when averaging the simulated prices for 2016 obtained using the
models trained with different synthetic datasets (e.g. the case "demand variation 1.0%"
is obtained by averaging the outputs obtained with the models trained using the datasets
-1.0%, -0.5%, 0.0%, 0.5% and 1.0%).

Contrary to the results obtained with different variability hyperparameter values, the
data augmentation approach tends to increase the global accuracy at the expense of less
realistic price variations.
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Figure 5.3: Out-of-sample performance for different augmented datasets (training set:
2015, testing set: 2016)

5.1.3 Sensitivity analysis of initial conditions

By initializing the a. parameters to a different value for each production class, we
make assumptions regarding the merit order (i.e. the energy is supplied in priority by
the production class with the lowest cost, then the second lowest, and so on). This
initial choice has an impact on the parameter estimation procedure. The reason is that
the identification of the marginal unit for each hour, which results from the solving of
the market clearing problem, directly depends on the estimated merit order. Thus, we
perform a sensitivity analysis to investigate how alternative hypotheses regarding the
initial merit order affect the final result of the calibration. To do so, we initially assign
five distinct constant prices to our five production classes (i.e. nuclear, hydro, gas, coal
and oil) and consider all possible permutations, then we analyze the initial merit order
for the best decile in terms of RMSE (see Figure 5.4).

The results illustrate that the model initialization should be consistent with common
economic assumptions (e.g. nuclear to constitute a less expensive baseload and oil for
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Figure 5.4: Best initial merit orders (first decile)

more expensive peaks). The place of hydro in the merit order is likely due to the
strategic use of stock during high-price hours. Therefore, the initialization of the merit
order during the training phase must be considered carefully by the modeler.

5.1.4 Discussion

The advanced calibration techniques proposed in this section impact model performance
over the whole test period, but a more detailed analysis of the simulation outcomes reveal
no significant impact during hours corresponding to price spikes. This is likely due to the
linear formulation of the marginal cost proxy: the presented calibration techniques allow
us to vary the importance of the points in the training dataset (hyperparametrization)
or to consider alternative training datasets (data augmentation), without modifying the
marginal cost proxy formulation. Thus, the training phase enables us to estimate param-
eters that provide a relevant compromise that is relevant for most hours, but still under-
perform during price spikes. Additional model extensions regarding the parametrization
of orders, for example by introducing non-linear relationships between price offers and
market drivers (piecewise-linear, quadratic, etc.), could be the subject of future work.
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5.2 Model validation for prospective studies

In this section, our model will be incrementally complexified in order to fulfil additional
requirements for prospective studies.

5.2.1 Non-regression testing

To conduct the remaining studies presented in this chapter, we chose to use Pyomo, a
Python-based optimization modeling language. This framework ensures that the model
can be extended in a robust fashion.

Before considering extensions for the model and its usage, we first want to verify the
results obtained with Pyomo are similar to those previously obtained with R when run-
ning under similar conditions (data and modeling assumptions). As we ultimately want
to extend the model and introduce additional factors, this verification is not performed
through an exact transposition of the R code into Python, but in a way that allows us
to subsequently built upon the verified models.

Two main adjustments are made to ensure that the modeling can be generalized.
First, we chose to preferably make use of ENTSO-E data retrieved from the transparency
platform. Using a common source for all European countries ensures that all considered
countries can be modeled with similar levels of accuracy and that discrepancies between
data sources are kept to a minimum. Second, we do not consider generation units
individually but rather the aggregated availabilities by production types. The main
advantage of using aggregated production types instead of individual production units is
the reduction of the numbers of variables. A drawback of this approach is that differences
between units have to be considered through a alternative mechanism in order to ensure
that the dynamics of time series of day-ahead prices is properly captured. This is why
we now consider a new additive term for the price of a supply order, which is directly
proportional to the energy delivered by a production class.

As illustrated in Figure 5.5, we are able to replicate similar simulation for the price
dynamics. In this illustration, the year 2015 has been chosen for the training dataset and
the test in performed on 2018. Previously, we obtained RMSE = 11.9 (RMSE = 12.2
with R) and Asd = 4.9 (Asd = 2.5 with R). Although the results are not strictly
identical due to differences with regards to model implementation, we consider that the
newly obtained simulations validate the this non-regression test.

When then simulate our reference case to which model extensions will be compared
against. To do so, using the Pyomo model, we train the model using the dataset corre-
sponding to the year 2015 and we test for the years 2016, 2017 and 2018. The results of
the simulation are displayed in Figure 5.6. We obtain RMSE = 13.5 and Asd = 6.6.

5.2.2 Ramp constraints

The dynamics of electricity prices depends on the flexibility of the power system and its
ability to respond to temporal variations. Generation units cannot instantaneously ramp
up production from zero to nominal capacity, nor can they ramp down unconstrained.
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Figure 5.5: Comparison between results obtained in the previous case study with R (left)
and the results obtained under similar conditions with Python (right)
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Figure 5.6: Simulation of French day-ahead prices (reference case)

These limitations are mainly due to thermal and mechanical limits. Thus, the value
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of these limits are specific to each power generation technology and, by extension, the
limits depend on fuel type.

Market participants modulate production as needed and chose to activate the avail-
able flexibilities within their portfolio. While the decisions concern individual power
plants, global effects can be observed when considering the aggregated production by
fuel type as they reflect both economic and technical constraints. By considering histor-
ical data, we can then estimate the maximal ramping up and ramping down capacity.
This estimation has been done using data related to the French power system for the
period 2015-2018. We chose to keep a single representative ramp limit by technology
based on this numerical estimation. To ensure that the model is relevant for prospective
studies in which the installed capacity does not remain constant, we represent these con-
straints as hourly power variation relative to the installed capacity. The obtained values
are summarized in Table 5.1.

Production Ramp limits
class (% of installed capacity per hour)
Hydro 80
Nuclear 20
Gas 85
Coal 65
Oil 50

Table 5.1: Ramp limits by production class

The additional ramp-down and ramp-up constraints are respectively added the the
optimization problem as follows:

—Tf{’iﬁ”" P < P — P V(t,i)e T x I (5.4)
Pri— Py Sl - P V(t,i) e T x I (5.5)

c(i
After running the simulations, we observed that including ramp constraints does not
significantly impact on the simulation outcome: for the out-of-sample test period, we now
obtain a RMSE = 13.4 (RMSE = 13.5 without the ramp constraints) and Asd = 6.8
(Asd = 6.6 without the ramp constraints). This modification alone is thus insufficient
to properly capture the price spikes, as the maximum simulated price change is below
1% (EUR 168.7/MWh without ramp and EUR 169.7/MWh with ramps).

5.2.3 Active storage management

In the case study presented in the previous chapter, the contribution of pumped storage
hydro power plants was assumed to be known. The real aggregated production and
consumption values were subtracted from the demand in order to compute a residual
demand. As the use of such plants depends on market prices, storage management should
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instead be an internal model variable for prospective studies. To do so, the contribution
of pumped hydro storage is not included in the residual demand anymore and additional
constraints are added to the optimization model as follows:

Slevel Slgevlell~C (1 —dy) + S i — S2u gt V(t,k) e T x K (5.6)
Slevel < opas V(t,k) €T x K (5.7)

n < pmas V(t,k) e T x K (5.8)
S"“t < pper V(t,k)e T x K (5.9)

The first constraint correspond to the recursive definition of the stock level Si
for the technology k at time ¢t. The stock level depends on the its value at time ¢t — 1
(including the spontaneous dissipation at each time step by a factor 1 — dk) and of the
input or output flows (Sy}, and S3') corrected by the conversion efficiency (1;" and 7).
The second and third constraints reflect the power limits of the technology. The fourth
constraint reflects its capacity limit in term of energy.

In this study, we only consider the contribution of pumped storage hydro power
plants to grid-scale energy storage. All storage units are aggregated under a single
variable similar to what has been done for production units. Thanks to this problem
formulation, additional technologies (e.g. hydrogen) can easily be added to the model if
needed. The technical parameters used to model the pumped hydro storage for the year
2015 are summarized in Table 5.2.

Variable Value
pmaz 4965 MW
cmar 34755 MWh

d 0
n'm 87%
77out 87%

Table 5.2: Technical constraints for the aggregation of the French pumped hydro power
plants in 2015

Even though this model variant is less reliant on historical data, the out-of-sample
performances are not degraded and the model still performs well (RMSE = 13.5 and
Asd =6.9).

5.2.4 Multi-zone simulation

The final validation test consists in ensuring that the model is also suitable to simulate
prices even when an extended spatial scope is considered. In the case study, the market
prices in neighboring bidding zones were supposed to be known and only the flows
in interconnectors were simulated. Here, we want to simultaneously compute prices in
multiple zones instead. We keep the same train-test split (i.e. 2015 for training and 2016
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to 2018 for the test), but we consider three countries: France, Belgium and Germany.
The time series of prices for these three countries are presented in Figure 5.7. We
still proceed by incrementally adding complexity to the model, which means that ramp
constraints are accounted for and that storage is still actively managed.

This time, we observe significant differences in terms of simulation results. Since we
no longer rely on historical prices for neighboring countries, which are correlated to the
French ones, the performance is globally degraded (RMSE = 17.0) and we observe that
the amplitude of price spikes is even less accurate than before. Nevertheless, in this
case, the model still tend capture the dynamics of prices and the metrics even improves
(Asd = 0.7). The study of the Belgian (RMSE = 23.0, Asd = —0.0) and German
(RMSE = 20.0, Asd = —2.2) cases reveal that the model converges but that additional
work would be needed to improve the performance for extreme values (both for price
spikes and negative prices).
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Figure 5.7: Multizone case: (A) French prices, (B) Belgian prices, (C) German prices
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5.2.5 Discussion

In this section, we explored how the model can be enhanced to be more representative of
the power system constraints and the functioning of the internal European energy mar-
ket. While relying on less historical data tend to decrease forecast accuracy, the overall
dynamics of prices is still captured by the model. The added complexity comes at the
cost of more computation time and additional data requirement. The time required to
generate the model with Pyomo and to solve it is reported in Table 5.3. The simulation
were performed on a laptop with the following hardware characteristics: MacBook Pro
(Retina, 13-inch, Early 2015), processor 3,1 GHz Dual-Core Intel Core i7 and Memory 16
GB 1867 MHz DDR3. In terms of software, the laptop run with macOS Big Sur (v11.4),
Python v3.8.8 was used to implement the model, and the optimization problem was
solved using the solver Mosek v9.2.35. Table 5.3 reveals that adding ramp constraints
to the single zone case increases the computation time by +7%. Then, actively man-
aging storage increase the time by an additional +47%. Finally, simulating two more
bidding zones as for consequence a +263% increase in computation time compared to
the previously simulated case. Thus, this added complexity has an important impact in
terms of computation time and, most importantly, the increase is not proportional to the
number of bidding zones. Solving this problem at scale is not a problem in theory (the
modeling principles are identical for all 34+ bidding zones cases), but properly simulating
all European bidding zones would require to consider alternative computing frameworks,
for example by making use of distributed computing.

Test case Computation time
Single zone (reference case) 39.4 seconds
Ref + Ramp constraints 42.0 seconds
Ref + Ramps + Active storage management 61.6 seconds
Multizone with all constraints 223.4 seconds

Table 5.3: Computing time to generate and solve the optimization problem for different
test cases

The relative performance of the models can be compared by visualizing the distri-
bution of prices (Figure 5.8) and the evaluation metrics (Figure 5.9). These figures
highlights the similarities between the reference case, the case with ramps and the case
with ramps and active storage management. For the multizone case, the greater price
dispersion, which lead to an improvement of the Asd metrics, can interpreted in light of
the fact that units from foreign countries can set the market price so that more variable
prices are simulated.

Some operational constraints of the power system are still not represented in this
version of the model. Scaling down to the generation unit level would allow to include
the start-stop constraints that have an impact on flexibility and thus on price formation.
Nevertheless, achieving to model the correct dependency between time steps at such a fine
granularity might not be achieved in practice and the aggregated ramp constraints can
be considered as a proxy for all temporal constraints. Similarly, further extensions can be
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Figure 5.8: Boxplot: Comparison of the simulated cases

brought to the model with regards to grid operation (reserve, N-x security constraints,
line congestion, etc.). Such extensions would help to bring the model closer to the
representation of flow-based market clearing. Without further modeling tasks, reserve
requirements can be approximated by modulating the values of residual demands and/or
availability of power plants. Conversely, modeling the power grid more accurately would
be more challenging; finding the right level of precision is not straightforward. Not all
lines and cables can be represented due to computing constraints, thus some criteria to
select the critical ones have to be defined. Also, the available capacity of grid assets
depends on decisions taken by TSOs and collecting reliable data about such decisions is
another issue.
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5.3 Model applications

The proposed model can finally be applied to conduct prospective studies. In this section,
we first present the scenario approach, then we run the simulations and discuss the
implications of the price outcomes.

5.3.1 Scenarios for prospective studies
Benefits of the scenario approach

One common approach to forecast the future of power systems relies on generation ex-
pansion planning, which enables to find an optimal path for the development of new
assets under specific constraints and a given time horizon. Although such optimization
models are informative, in practice, the development of power systems does not follow a
globally optimal trajectory as it is driven by multiple forces (decisions of market partici-
pants, policies, etc.). "What if" scenarios constitute an interesting alternative since they
allow us to explore multiple possible futures corresponding to selected hypotheses. By
varying input data in scenarios, uncertainty can also be accounted for thanks to Monte
Carlo simulations (i.e. simulations are repeatedly performed using random sampling
from input datasets). Here, we propose a few illustrative examples in order to highlight
to which extent our modeling approach makes it possible to estimate the evolution of
prices depending on future evolutions of the power system and commodity markets.
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Factors to include in scenarios

Before building scenarios, let us recap the main factors that impact price formation and
are accounted for in our model. We group them in the following categories: supply,
demand, storage, grid and commodity prices. In terms of supply, we account for the
installed capacity and availability for assets using different fuel types. The flexibility
constraints and hydro stock constraints are modeled as well. Regarding demand, or more
precisely, the residual demand, we not only account for the evolution of consumption
but also for the contribution of weather-driven renewables. Concerning storage, we have
shown that various technologies can be modeled, such as pumped-hydro and hydrogen,
each having its own technical characteristics in terms of capacity, power and efficiency.
With regards to the grid, our model contains less details as internal constraints do
not constitute a main price-driver in zonal markets; nevertheless, the interconnection
capacity between bidding zone enables to partially account for grid congestion. Last
but not least, market prices for commodities such as oil, coal, gas and greenhouse gases
emissions are among the factors in our model that influence electricity price formation.

Building a reference scenario

The prospective studies presented in the next section are built according to common
principles shared across all scenarios. We chose a time horizon of one year to account for
seasonal effects. For each scenario, multiple yearly time series are simulated using the
Monte Carlo approach. Two interpretations can be given to these time series: whether as
multiannual simulations by considering a simple concatenation of model outcomes, or as
ensemble forecasts that reflect the uncertainty stemming from the stochastic variables.

Static data Static data, i.e. variables for which the value remains constant over the
one-year period, are derived from the historical datasets (e.g. installed capacity). For
the static model inputs, we take the values for the year 2018 as reference. For the model
parameters, we chose to leverage the whole historical dataset now that the model has
been validated. Thus, we estimated the parameters for each of the four years of our
historical dataset, then we took the average of the four years to run the prospective
simulations.

Time-dependent data To build hourly time series that we can use as input data for
our model, we consider two complementary methods: (i) generating yearly profiles and
(ii) generating stochastic inputs thanks to resampling techniques. In both cases, our
goal is to account for the seasonal variability of the time series. The aggregated national
consumption and the commodity prices are generated using the profile approach. That
is to say, the values are derived from the whole historical dataset by computing the mean
hour by hour, leading us to 8760 different values as we exclude the 29th of February.
For the availability factor of production units and for the load factor of weather-driven
renewables, we chose to rely on the resampling approach. Using this method, we define
a Monte Carlo case by randomly drawing from historical data. Similar to the profile
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approach, we only draw values from the same hour of the year of the historical data.
This sampling operation is repeated multiple times in order to define different cases
within a scenario.

Alternative scenarios For the prospective studies, we propose to first consider the
reference scenario developed with the methodology described above (a scenario comprise
different variants, each corresponding to a Monte Carlo case). Then, we analyse alterna-
tive scenarios derived from the reference case. These alternative scenarios are built by
applying multiplicative or additive factors on chosen variables according to our modeling
hypotheses.

5.3.2 Prospective studies
Reference scenario

For the reference scenario, we consider a increase in electrical demand and installed
renewable capacities for wind and solar, as it is the case for most net zero scenarios.
Compared to 2018, the scenario represents a +20% increase in demand and an increase
of +50% for wind and solar installed capacity. We simulate this scenario with 30 Monte
Carlo cases. As it is not practical to display all simulation outcomes over a period of
one year, we propose to visualize the results for the first week of June and the first week
of December, as show in Figure 5.10 and Figure 5.11. We observe that we still have
all seasonal variabilities (hourly, weekly and yearly) and that the Monte Carlo approach
allow us to represent uncertainty since the different values of prices are obtained for each
hour.

We also compare the distribution of simulated prices to our reference year of 2018.
The comparison is represented in Figure 5.12 in which the mean hourly prices for all
simulation is computed for the distribution. We observe, that our scenario lead to
an overall increase of prices. In the absence of additional storage, the 50% increase
in installed capacity of wind and solar do not put downward pressure on prices due
to the 20% increase in demand. For the 2018 reference year, the share of variable
renewable energy sources (VRES) in the total French electricity consumption was 16.8%
and this value remained similar for the prospective studies with an average share of
vRES equal to 15.7%, which suggests that additional investments efforts in vRES might
be needed to counterbalance the projected increase in electricity demand. In 2018, the
median price was EUR 49.9/MWh, the mean price was EUR 50.2/MWh and a standard
deviation of EUR 18.5/MWh. For our prospective simulation in this reference case, we
obtain: median price equal to EUR 66.5/MWh, mean price equal to EUR 69.8/MWh
and standard deviation equal to EUR 23.7/MWh. We note that the increase variability
stemming from more weather-driven renewables lead to more dispersed prices.
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Figure 5.10: Monte Carlo simulations of prices on the French day-ahead market (reference
prospective scenario, first week of June)
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Figure 5.11: Monte Carlo simulations of prices on the French day-ahead market (reference
prospective scenario, first week of December)
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Alternative scenarios

We study three alternative scenarios that vary from our reference case in order to evaluate
how electricity prices would be impacted by these changes according to our projections.

Case A: Nuclear policies For the first case, we consider the impact of the expected
nuclear policies for Belgium, Germany and France. Thus, in this scenario the installed
nuclear capacity in Belgium and Germany are equal to zero, while the French installed
capacity is increased by 10 GW, which represent six new EPR nuclear reactors.

Case B: Hydrogen deployment For the second case, we consider the deployment
of Hydrogen in Belgium, Germany and France to complement the increase of renewable
capacity (500 MW of Hydrogen per country, with a capacity of 5000 MWh per country).

Case C: High operationg costs For this third case, we consider a tripling of com-
modity costs (oil, coal, gas and COs) in order to evaluate how this would impact elec-
tricity prices.

We represent the simulation results obtained for all these cases alongside the reference
scenario in Figure 5.13 in the form of boxplots in order to compare the outcomes. We
observe that price range of the "Nuclear policies" and "Hydrogen deployment" scenarios
are quite similar to our reference scenario. For the "Nuclear policies" scenario, the median
price increase compared to our reference indicates that overall the additional capacity
appears to be insufficient to curbe prices due to the simultaneous Belgian and German
phase-outs. Regarding the "Hydrogen deployment', we observe no significant impact
on prices. This can be attributed to the techno-economic assumptions taken regarding
storage. We assume operating costs of EUR 20/MWh for pumped-hydro and EUR
50/MWh for hydrogen, while we also consider a round-trip efficiency of 76% for pumped-
hydro as opposed to 40% for hydrogen. Thus, the hydrogen does not play a key role
in price formation according to our simulations. Finally, for the "High operating costs"
scenario, we observe both a increase of the median electricity price and of its dispersion.
But thanks to renewables and nuclear the tripling of fossil fuel and CO, cost is not fully
transposed to electricity prices.

5.3.3 Discussion

In this section, we propose a method to build scenario that account for uncertainty as
well as visualizations to assess the variability of time series of prices and to compare
multiple scenarios.

The simulated prices appear to be credible with regards to our scenarios. Never-
theless, as shown during the validation phase on historical data, it is likely that we
are underestimating the frequency and amplitude of price spikes. Thus, the scenarios
outcome might be too conservative.
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Figure 5.13: Boxplot of French prices on day-ahead markets for the prospective scenarios

Now that a global approach has been proposed to validate our data-driven structural
model and to use with prospective scenarios, future work could focus on expanding the
spatial scope of the simulations or to transpose of these modeling principles to more
established tools. Doing so, and using a simulation hardware with adequate memory
and computing power, studies at the European level could be conducted.

One remaining limitation of the modeling is that renewables are assumed to be price-
taker. Some additional data and insights should be collected to more adequately reflect
biding strategies of renewable energy producers in case of high penetration rate.

5.4 Conclusions

In this chapter, we proposed extensions and final validation steps that prepared our
model in view of being applied to prospective studies.
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5.4. Conclusions

We analyzed how the estimation method for the model parameters can be enhanced
to be finely tuned thanks to the introduction of a new hyperparameter and how we can
account for additional market data. We highlighted that the estimation of parameters
is sensitive to the values used for initialization. We observed that the parametrization
can be further enhanced by introducing non-linear models of order prices.

To make the model better reflects the functioning of the European power system and
market, we made sure to account for the flexibility potential of key technologies, we made
the management of storage assets an internal part of the optimization problem, and we
verified that the model is still operational for multizone simulations. Having mitigated
the main limitations of the model allowed us to propose some applications in the form
of prospective studies.

For the prospective studies, we proposed a method to build scenarios that draw from
historical data in order to keep some realistic operating constraints while also accounting
for uncertainty thanks to Monte Carlo simulations. This modeling strategies enabled us
to consider the impact of policy decisions (nuclear development of phase-out), industrial
development (installation of hydrogen capacities) and market circumstances (high fuel
and COy prices). Throughout the modeling proposed in this thesis, we analyzed key
trends and factors that influence the development of prices on the day-ahead markets.
This led us to formulate a framework that account for the market clearing mechanism and
to reflect on ways to leverage historical data. These reflections and simulation outcomes
gives us indications on possible future development of markets. Nevertheless, it remains
that the electricity market, being a complex adaptative system, is not easily predictable
over long time frames. As a matter of fact, key factors impacting predictability include:
(i) "how well we understand the factors that contribute to it, (ii) how much data is
available, (iii) how similar the future is to the past, and (iv) whether the forecasts can
affect the thing we are trying to forecast." [136] Through the modeling o