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Abstract 
Atopic dermatitis (AD) is a common chronic disease affecting up to 20% of young children, depending 

on countries, and around 10% of adults globally. It manifests as dry, itchy and sometimes cracked skin 

lesions on the face and body. Despite efficient immunotherapy treatments for the most severe forms 

of the disease, the complex mechanisms involved are still incompletely understood and improvements 

can be made regarding management strategies for milder forms. AD involves diverse interacting 

factors such as impaired skin barrier function, exacerbated inflammation, and microbiome dysbiosis, 

making it challenging to develop adequate in vitro models. 

A computational approach allows the aggregation of current pathophysiology knowledge, 

facilitates the visualization of the phenomena involved, and enables the prediction of certain behaviors 

of the system under specific conditions. First, we introduce an agent-based model of the epidermis, 

able to represent aspects of atopic skin such as skin barrier dysfunction and microbiome dysbiosis. By 

integrating enzymatic reactions contributing to the desquamation process, into an existing agent-

based model of the epidermis at the cellular level, we can study the impact of skin surface pH on the 

epidermal structure and function. The model predicts that an elevation of skin surface pH above 

physiologic levels accelerates the desquamation process through its action on serine proteases. This 

results in a significant reduction of the skin’s capacity to retain water, and increases its permeability to 

external penetration, including irritants. This skin barrier impairment further leads to a more intense 

inflammatory reaction under conditions of high skin surface pH, compared to physiologic pH levels.  

Next, we introduce a mathematical model of the microbiome, based on ordinary differential 

equations, with 2 types of bacteria populations (skin commensals and opportunistic pathogens) to 

study the mechanisms driving the dominance of one population over the other. On the time scale of 

the experiments, the model predicts that certain changes of the environment, like the elevation of skin 

surface pH from physiologic levels, create favorable conditions for the emergence and colonization of 

the skin by opportunistic pathogens. Interestingly, for certain parameter values, a meta-stable state 

settled at around 2 days following the introduction of bacteria in the model, is followed by a reversed 

stable state after 300 hours. 

Finally, we integrate the mathematical model of the microbiome into the agent-based model. 

Special consideration is taken regarding the timescales of the processes described and their location 

in the epidermis. The resulting model is used to study how the constant surface cells renewal impacts 

the microbiome kinetics. This work provides additional evidence that skin surface pH, serine proteases 

and skin microbiome could be interesting therapeutic targets for AD maintenance therapy.   
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Résumé 
La dermatite atopique (DA) est une maladie chronique affectant jusqu’à 20% des jeunes 

enfants, en fonction des pays, et environ 10% des adultes dans le monde. Elle se traduit par une 

sécheresse cutanée, d’intenses démangeaisons et la formation de lésions. Malgré des traitements 

efficaces à base d’anticorps monoclonaux pour les formes les plus sévères, les mécanismes complexes 

impliqués sont encore mal compris et des progrès restent à faire pour soulager les formes plus légères 

de cette maladie. Divers facteurs contribuent à la DA tels qu’une fonction barrière réduite, une 

inflammation cutanée exacerbée et un déséquilibre du microbiome. Cette multiplicité de facteurs et 

leur lien étroit rendent difficile le développement des malades in vitro. L’approche computationnelle 

permet de rassembler les connaissances actuelles sur la maladie et de prédire le comportement du 

système sous certaines conditions, tout en facilitant la visualisation des phénomènes impliqués. 

L’objectif de cette thèse est de développer un modèle computationnel de l’épiderme, 

intégrant plusieurs éléments clés de la pathophysiologie de la DA : le disfonctionnement de la barrière 

cutanée, l’inflammation et le déséquilibre du microbiome. Nous nous concentrons sur la peau non 

lésionnelle et cherchons à répondre aux questions suivantes : 

1) Peut-on mettre en évidence, grâce à un modèle computationnel, l’impact de l’élévation 

du pH cutané sur la fonction barrière de la peau, via son action sur les kallicréines ? 

2) Peut-on identifier des facteurs contribuant à l’équilibre ou au déséquilibre du microbiome 

en utilisant la modélisation ? 

3) Est-il possible d’étudier l’impact de la nature dynamique de la peau sur l’évolution du 

microbiome grâce à un modèle à agent ? 

 

Pour répondre à la première question, nous introduisons un modèle multi-échelles 

combinant deux modèles préexistants. Le premier est un modèle multi-agents récapitulant la 

structure dynamique de l’épiderme et intégrant la fonction barrière de la peau ainsi que la 

perméation d’une substance à travers l’épiderme. Le second modèle décrit les interactions 

moléculaires des kallicréines et de leur inhibiteur LEKTI (Lympho-Epithelial Kazal-Type related 

Inhibitor) grâce à un système d’équations différentielles ordinaires (EDO). Dans la peau saine, 

les kallicréines contribuent au renouvellement des cellules de la peau en dégradant les 

protéines assurant la cohésion entre les cellules de la strate carnée. Leur activité est fortement 

dépendante du pH et augmente avec celui-ci. Or, une augmentation du pH cutané a été 
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observé chez le personnes atteintes de dermatite atopique. Combiner ces deux modèles nous 

permet donc de mieux comprendre les conséquences de l’augmentation du pH sur la barrière 

cutanée. 

Le modèle multi-échelles obtenu prédit que l’élévation du pH accélère le processus de 

desquamation à travers son action sur les kallicréines. Ceci conduit à un affaiblissement 

significatif de la capacité de la peau à retenir l’eau ainsi qu’à une perméabilité accrue aux 

substances irritantes provenant de l’extérieur. Le modèle prédit également une inflammation 

plus intense lorsque le pH cutané est plus élevé que son niveau physiologique. 

 

Dans un deuxième temps, nous introduisons un modèle mathématique du microbiome 

cutané pour répondre à notre deuxième question de recherche. Ce modèle, basé sur des EDO, 

considère 2 types de populations bactériennes (les espèces commensales et les pathogènes 

opportunistes) afin d’étudier les mécanismes responsables de la prédominance d’une 

population sur l’autre. Certaines maladies de peau, telles que la DA, ont en effet été associées 

à une perte de diversité du microbiome, au profit de la surcroissance d’une espèce pathogène 

(Staphylococcus aureus dans le cas de la DA). Notre modèle prend en compte un des 

mécanismes de défense de la peau contre les pathogènes : les peptides antimicrobiens (PAM). 

Nous considérons également, sur la base d’observations expérimentales, la production de 

PAM par les bactéries commensales. 

Notre modèle se compose initialement de 3 variables et 13 paramètres. En utilisant 

des données expérimentales, que l’on suppose correspondre aux états stables de notre 

modèle, nous parvenons à identifier la valeur de certains paramètres et à établir des relations 

mathématiques permettant de calculer la valeur d’autres paramètres en fonction de ceux 

restants. Cette méthode nous permet de réduire l’espace paramétrique de 13 à 5, facilitant 

l’analyse du modèle. Sur une échelle de temps similaire à celle des expériences, le modèle 

prédit que certaines modifications de l’environnement, telles que l’augmentation du pH, 

créent des conditions favorables pour l’émergence et la colonisation de la peau par des 

pathogènes opportunistes. 

De façon surprenante, pour certaines valeurs de paramètres, un état qui apparaissait 

stable sur l’échelle de temps des expériences (50 heures), se réveille être métastable et glisser 
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progressivement jusqu’à basculer vers un état inverse après environ 13 jours. Cette 

observation nous conduit à s’interroger sur l’hypothèse communément utilisée en 

biomathématiques selon laquelle les observations et mesures expérimentales correspondent 

aux états stables des modèles. 

 

Pour finir, nous intégrons notre modèle EDO du microbiome dans le modèle multi-

agents de l’épiderme pour répondre à notre dernière question de recherche. L’organisation 

en couches successives de l’épiderme est le résultat d’un équilibre dynamique. Les cellules 

basales prolifèrent et créent de nouvelles cellules qui montent progressivement vers la 

surface, les cellules perdent petit à petit leur adhésion aux cellules voisines et sont 

desquamées. Le microbiome étant situé à la surface de l’épiderme, il est donc confronté au 

renouvellement et à la disparition constante de son environnement. L’intégration de notre 

modèle EDO du microbiome dans le modèle multi-agents permet d’étudier l’impact de la 

structure dynamique de la peau sur la croissance bactérienne. 

Notre modèle prédit que la desquamation est une limitation forte pour les populations 

bactériennes, les empêchant d’atteindre les concentrations observées précédemment dans le 

modèle EDO. De plus, le basculement métastable est absent ou fortement retardé dans notre 

nouveau modèle hybride EDO/multi-agents. Ceci souligne la valeur ajoutée de ce type de 

modèle hybride, permettant d’étudier les dynamiques de populations exposées à un 

environnement changeant. 

 

Pour conclure, le travail présenté dans cette thèse constitue une bonne base de départ 

pour l’implémentation d’un modèle de la DA dynamique et intégratif. Notre modèle a permis 

de faire des prédictions pertinentes tout en soulevant des questions intéressantes d’un point 

de vue biologique ainsi que pour la modélisation. 
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Chapter I - Introduction 
I.1.  Atopic dermatitis: a complex skin disease 

I.1.1. The epidermis dynamic structure and function 

Skin is one of the largest organs of the human body. It is located at the interface with 

the environment, and its main function is to protect us from external aggressions such as 

irritant substances, pollution or UV-light, and dehydration. As expected, the outer layer, the 

epidermis, plays the most significant role in this barrier function (Proksch, Brandner, and 

Jensen 2008). The epidermis can be divided into 4 layers: stratum basale, stratum spinosum, 

stratum granulosum and stratum corneum (SC). The overall epidermal structure is the result 

of dynamic homeostasis. The epidermal cells, called keratinocytes, are constantly moving 

towards the surface, the top cells being desquamated and replaced by inner cells. Therefore, 

the different epidermal layers correspond to the successive cellular differentiation states, 

from basal to corneal (Moreci and Lechler 2020). 

 

The upper layer differs from the others because it is composed of flattened, dead cells, 

the corneocytes. These cells lose their nucleus when differentiating from the granular to the 

corneal state, meaning that they cannot have any synthetic activity. However, there is 

enzymatic activity in this layer, enabling the breakdown of proteins, control of pH, control of 

microbial growth, etc. The corneocytes are surrounded by a lipid matrix and linked together 

through crosslinked protein structures named corneodesmosomes (Pouillot et al. 2008; 

Matsui and Amagai 2015).  

 

Desquamation is regulated by kallikreins (KLKs), which are serine protease enzymes 

responsible for cleaving corneodesmosomes to ensure proper corneocyte desquamation 

(Eissa and Diamandis 2008). They are secreted at the interface between stratum granulosum 

and stratum corneum as inactive precursors and are activated by irreversible proteolysis. The 

activity of KLKs is further regulated by Lympho-epithelial Kazal-type related inhibitor (LEKTI), 

by direct interaction. LEKTI is a protease inhibitor (the protein encoded by the SPINK5 gene) 
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that binds directly to activated KLK, ensuing its inhibition (Meyer-Hoffert, Wu, and Schröder 

2009). 

 

I.1.2. Atopic Dermatitis pathophysiology 

Atopic dermatitis (AD) is a very common skin disease affecting a significant proportion 

of the population, ranging from 2.5 to 20% of children depending on countries and around 

10% of adults globally (Bylund et al. 2020). The typical onset of atopic dermatitis usually occurs 

in early childhood, around the age of three to six months. Although in some cases the disease 

clears up at adolescence, it can also persist until or even appear during adulthood (Abuabara 

et al. 2018). AD is characterized by itchy, red, swollen and cracked skin, which can cause sleep 

disturbance and therefore affect the patient's quality of life (Drucker et al. 2017).  The exact 

cause of the disease remains incompletely understood but seems to be a combination of an 

unfavorable genetic predisposition and aggravating environmental factors. The importance of 

the genetic aspect has been underlined by the fact that the strongest risk factor for AD is 

parent history of atopy (Apfelbacher, Diepgen, and Schmitt 2011). The genetic factors can be 

divided into two groups: the first one related to skin barrier function and the second one 

linked to an exacerbated inflammation. 

 

The most important genetic mutation relating to AD identified so far is the mutation 

on the FLG gene, involved in the production of the filaggrin, an essential protein for the barrier 

function (Palmer et al. 2006; Morar et al. 2007). The resulting loss of function of filaggrin leads 

to a reduced capacity of the skin to retain water (Kezic et al. 2008). It is also thought to 

contribute to the elevation of pH observed in AD skin (Jungersted et al. 2010; Eberlein-König 

et al. 2000). The skin pH is an important regulator of the epidermal homeostasis through its 

action on the enzymatic activity at a molecular scale. The activity of KLK on corneocyte 

adhesion is increased following pH elevation, which might lead to barrier impairment 

(Brattsand et al. 2005).  

 

The other category of genetic factors predisposing to AD concerns an exacerbated 

inflammation. Inflammatory molecules such as cytokines, are overly expressed in AD skin, 
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especially on lesions (Mu and Zhang 2020). The action of these inflammatory molecules is 

triple: i) down regulation of filaggrin, further damaging the barrier (Howell et al. 2007), ii) 

increased sensitivity to allergens via the stimulation of specific antibodies (immunoglobulin E) 

(Weidinger et al. 2018), iii) down regulation of antimicrobial peptides (AMPs) (Mu and Zhang 

2020; Nomura et al. 2003). AMPs constitute the innate immunity of the epidermis and its first 

line of defense against invading pathogens. A significant decrease in expression of certain 

AMPs has been observed in AD skin (McGirt and Beck 2006). Overall, the genetic alterations 

linked to AD seem to create an increased vulnerability to external aggressions. 

 

The impaired barrier function characteristic of AD allows an easier permeation of 

external irritants and allergens into the skin (Halling-Overgaard et al. 2017), leading to further 

inflammation. Moreover, the combination of an elevated skin surface pH and a reduced 

production of AMPs may explain the susceptibility of AD patients for bacterial infections, as 

both acidic pH and AMPs significantly limit bacterial growth (Fluhr and Elias 2002; Malik et al. 

2016; Pazgier et al. 2006). AD skin has long been correlated with an alteration of the cutaneous 

microbiome composition, also called dysbiosis, due to its colonization by Staphylococcus 

aureus (S. aureus), especially on lesions, correlated with disease severity (Leyden, Marples, 

and Kligman 1974; Kong et al. 2012; Geoghegan, Irvine, and Foster 2018; Totté et al. 2016). 

The toxins produced by S. aureus act as superantigens, stimulating the already exacerbated 

inflammation and further damaging the barrier (Geoghegan, Irvine, and Foster 2018). In 

addition to the AMPs produced by the keratinocytes, some of the commensal bacteria of the 

microbiome also contribute to the defense against opportunistic pathogens like S. aureus. For 

instance, it has been shown that several members of the Staphylococcus genus, such as S. 

hominis or S. lugdunensis, produce l-antibiotics or bacterial AMPs targeted against S. aureus 

(Zipperer et al. 2016; Nakatsuji et al. 2017). Therefore, there is a necessity to investigate the 

community dynamics within the microbiome and its interactions with the skin to design 

treatment strategies for AD. 
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Altogether, the current knowledge of AD pathophysiology reveals a very complex 

disease, with several interconnected factors, both genetic and environmental. It includes 

molecular and cellular mechanisms having repercussion at the tissue scale, as well as changes 

at tissue scale impacting the cellular and molecular behaviors. 

 

 

I.2. Research questions 

The aim of this thesis is to develop a computational model of the epidermis, integrating 

several key elements of AD pathophysiology: skin barrier integrity, inflammation, and 

microbiome dysbiosis. The focus will be on non-lesional skin, and the following research 

questions will be investigated: 

 

1) Can we demonstrate the impact of pH elevation on the skin barrier function, through 

its action on KLK activity, using a computational model? 

 

2) Can we identify factors contributing to microbiome balance or dysbiosis through 

modelling? 

 

3) Can we investigate the impact of the epidermis dynamic nature on microbiome 

kinetics, using an agent-based model? 

 

I.3. Multiscale mathematical modelling approaches of AD 

To answer these questions, multifactorial mechanisms involving different scales need 

to be considered, ranging from molecular interactions to cellular interactions, tissue formation 

and microbiome population dynamics. The pH acts on molecular interactions that have 

consequences at the tissue scale. The microbiome kinetics can be studied at the population 

scale first to identify factors of interest. However, it is also important to consider how the 

constant renewal of surface cells might impact the microbiome balance. Therefore, a hybrid 
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modelling approach based on both ordinary differential equations (ODE) and multi-agent 

modelling formalisms seems particularly well-suited to investigate AD pathophysiology. 

 

I.3.1. Computational mechanistic model based on ordinary differential 

equations 

ODE have long been used to model the dynamics of biological processes or population 

dynamics (Malthus 1798). This type of model can be called mechanistic when they are based 

on causal relations and concrete interactions responsible for the observed system behavior. 

The main assumption of ODE based models is that the interacting entities are homogeneously 

distributed in the environment of interest. To overcome this constraint, it is common to divide 

an heterogenous environment into several homogeneous compartments with defined 

boundary conditions (transitions) between them. ODE based models are usually focused on 

one scale (at the molecular, cellular or tissue level), and can be associated to build multiscale 

models. Once provided with kinetic parameter values, the ODE-based mechanistic models 

define the continuous dynamics of the system and can be used to simulate the dynamic 

behavior of system over time. 

 

Over the years, several research groups worked towards the development of 

computational or mathematical models of AD-related mechanisms, using different 

methodologies. The most common is the one based on ODE. Nakaoka et al. (Nakaoka et al. 

2016) introduced two models combining ODE and delay differential equations. The first one 

described the interplay between barrier, immune response, and bacterial infection, in the 

absence of competition with other species. The second one focused on the interactions of one 

harmful and one beneficial population of bacteria exposed to cytokines. 

 

A group from the Imperial College London started from an ODE model of KLK activity 

and regulation (Tanaka, Ono, and Harrington 2011), progressively updated to integrate more 

mechanisms, such as the skin barrier integrity, environmental stress, and immune 

dysregulation (Domínguez-Hüttinger et al. 2013; 2017). This model was used to predict the 
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optimal treatment strategy, combining corticosteroid and emollient, on individual virtual 

patient cohorts (Christodoulides et al. 2017). More recently, quantitative system 

pharmacology (QSP) modelling was implemented to investigate the relationship between 

cytokines and AD pathogenesis and reproduced reported clinical efficacies of 9 drugs (Miyano, 

Irvine, and Tanaka 2021). In 2022, the same group published another QSP model including S. 

aureus interactions with other Staphylococcus to optimize S. aureus-targeted therapies 

(Miyano, Irvine, and Tanaka 2022) and introduced EzcemaPred, a computational framework 

for personalized prediction of AD severity dynamics (Hurault et al. 2022). AD has also been 

studied using a PetriNet model (Polak et al. 2017), with a focus on Langerhans cells, and 

pathway enrichment analysis (Subramanian, Singh, and Jere 2018). 

 

While providing useful insights and predictions, the mathematical model cited above 

fail to account for the dynamic nature of the self-regenerating and continuously differentiating 

epidermal tissue, the structural alterations that can occur, and the spatial localization of the 

reactions involved.  

 

I.3.2. Multi-agent systems 

The agent-based approach allows the explicit consideration of the spatial localization 

of mechanisms, as well as the dynamic self-structuration of the system, with a continuous flow 

of cells from the epidermal base to the skin surface. In this type of model, the agent, usually 

the cell, is given a set of behavior rules on how to interact with the environment and its 

neighbors. An interesting aspect of agent-based model is to observe, during a simulation, 

properties at the tissue level resulting from the behavior rules encoded at the cellular level. 

ODE-based models can be integrated to such agent-based models to account for phenomena 

at varying special and temporal scales (e.g. to describe molecular interactions happening 

within an agent-cell). 

 

The capacity of agent-based model to recapitulate the self-assembly of the epidermis 

and its dynamic renewal and differentiation make it a particularly relevant tool to study the 

epidermal physiology. Several agent-based models of the epidermis have been published. Due 
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to the dynamic and self-structuring nature of this type of models, they have been used in the 

study of wound healing (Sun et al. 2009; Adra et al. 2010; Wang et al. 2019). A Japanese group 

from Hokkaido University developed a 3D agent-based model of the epidermis integrating the 

calcium dynamics involved in cellular differentiation and a desquamation process based on 

KLK activity on corneodesmosomes (Y. Kobayashi et al. 2016; 2018; Ohno et al. 2021). 

Recently, they investigated how the deformability of the dermis affects the overall epidermal 

structure (Ohno et al. 2021). 

 

For this thesis, we build on an existing 2D agent-based model of adult epidermis 

described by Stamatas et al. (Stamatas et al. 2021). This model was itself based on the 3D 

agent-based model of Sütterlin et al. (Sütterlin et al. 2017). The choice to go from 3D to 2D 

was made mainly to facilitate simulations, as simulating the 3D model is more time-consuming 

and requires more computing power. The model from Stamatas et al. recapitulates the 

dynamic epidermis structure, with proliferation, differentiation and desquamation of the 

keratinocytes, and the permeation of a topically applied substance as measured in vivo. It also 

includes a barrier to water exchange between neighboring cells and to water loss at the 

surface depending on the water gradient and the amount of lipids and tight junctions 

(Sütterlin et al. 2017). It is developed using the modelling and simulation platform EPISIM 

(Sütterlin et al. 2013). To answer our research questions, new modules will be added to the 

existing agent-based model by (Sütterlin et al. 2017; Stamatas et al. 2021). 

 

I.4. Thesis outline 

In Chapter II, the pH influence on epidermis structure and function is investigated 

through the integration of the pH-dependent KLK-LEKTI interactions in an existing agent-based 

model of the epidermis. This model enables to study how changes on the molecular scale 

impact global tissue properties, such as the thickness of the different layers or the skin 

capacity to retain water. 
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In Chapter III an ODE model describing the interactions of 2 types of bacterial 

populations, one commensal and one opportunistic pathogen, and the skin, is introduced. This 

population model is used to study how certain changes in the environmental conditions, such 

as an elevation of pH, can facilitate the skin colonization by the pathogenic population. The 

commonly used steady-state assumption is also questioned in this chapter, following the 

observation of a quasi-stability phenomenon. 

 

In Chapter IV the ODE model of the microbiome introduced in Chapter III is integrated 

into the agent-based model described in Chapter II. The resulting hybrid model enables the 

study of the impact of surface cells constant renewal on the microbiome kinetics. It highlights 

both the added value of combining an ODE population model with an agent-based one, and 

the necessity to have a good understanding of the ODE system’s behavior to dissect the 

complex dynamics observed during the agent-based simulations. 

 

Finally, we conclude on the results achieved so far and perspectives for future work. 

 

Chapter II reproduces content from a paper submitted to Experimental Dermatology 

and Chapter III corresponds to a conference paper for the International Conference on 

Computational Methods in Systems Biology 2022, to be presented in September.  
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Chapter II - Modeling pH elevation and its 
impact on skin barrier function and 
inflammation 

 

II.1. Introduction 

The acidic pH at the surface of healthy skin contributes to its protection against 

invading pathogens (Proksch 2018). Above all, skin surface pH is a central regulator of SC 

homeostasis through its action on enzymatic activity (Proksch 2018). Under physiologic 

conditions, the serine protease enzymes, like KLK, ensure epidermal renewal via the 

degradation of corneodesmosomes that link together the corneocytes, eventually leading to 

desquamation (Évora et al. 2021). The activity of the several types of KLK present in the SC 

(KLK5, KLK7, KLK14),  is highly sensitive to pH, increasing in less acidic environments (Brattsand 

et al. 2005). 

 

Skin surface pH is thought to play an important role in the compromised skin barrier 

related to AD. Indeed, an elevation of skin surface pH has been observed in patients with AD 

(Eberlein-König et al. 2000). In certain cases this increase can be partly explained by a mutation 

of the FLG gene coding for filaggrin, eventually leading to a faulty production of natural 

moisturizing factors (NMF), some of which act as pH buffers (Kezic et al. 2008).  Although FLG 

mutation has been identified as a major risk factor for AD, it is not the only factor influencing 

skin surface pH, keeping in mind that the proportion of FLG mutation carriers among AD 

patients varies between 14.2 and 56% depending on the study (Irvine 2007).  

 

The role of elevated pH in the pathogenesis of AD has been investigated with a murine 

model (Jang et al. 2016), and skin surface pH was identified as a key therapeutic target to 

improve the skin condition and control AD symptoms. Nevertheless, the mechanisms and 

effects of a change in pH remain incompletely understood. The role of pH and more broadly, 
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the interaction between skin barrier and inflammation has been previously studied with 

several ODE models (Tanaka, Ono, and Harrington 2011; Domínguez-Hüttinger et al. 2013; 

Nakaoka et al. 2016). While providing interesting insights, these approaches overlook the 

dynamic nature of skin structure and heterogeneous distribution of the different reactions 

throughout the epidermis. 

 

In the present work we introduce a dynamic agent-based computational model of the 

epidermis, integrating the interaction of KLK with LEKTI, to demonstrate that an increase in 

skin surface pH alone, through the LEKTI-KLK mechanism, is sufficient to compromise the skin 

barrier, facilitating external irritant penetration and triggering skin inflammation. 

 

II.2. Agent-based model extension 

For this work, we build on the agent-based model of adult epidermis described by 

Stamatas et al. (Stamatas et al. 2021). This model is developed using the modeling and 

simulation platform EPISIM (Sütterlin et al. 2013). It recapitulates the epidermis structure and 

the permeation of a topically applied substance as measured in vivo. The substance is 

exchanged between neighboring agents according to the concentration gradient, weighted by 

a coefficient, called inter-agent exchange rate, taking values between 0 and 1, combining 

partition between aqueous and lipidic phase, and diffusion. One agent represents the cell and 

its lipid surroundings. The different compositions of the SC and the viable epidermis (VE) are 

translated into two different inter-agent exchange rates. Using depth profiles measured in 

vivo with Raman spectroscopy, the model has been calibrated to reproduce the observed 

behavior of specific compounds, by adjusting the values of the inter agent exchange rates. 

The model proposed by Stamatas et al. (Stamatas et al. 2021) also includes a barrier to 

water exchange between neighboring cells and to water loss at the surface depending on the 

water gradient and the amount of lipids and tight junctions (Sütterlin et al. 2017). Tight 

junctions are produced in the stratum granulosum (SG) and retained upon differentiation to 

SC cells. Lipids are released at the interface of SG and SC. 
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In this model, the role of KLK is only considered indirectly through the decay of 

corneocyte-corneocyte adhesion forces. In order to study the impact of a change in pH, the 

KLK activity has to be added in the agent-based model more directly. 

 

II.2.1. KLK-LEKTI module 

The ODE model described by Tanaka et al. (Tanaka, Ono, and Harrington 2011) is 

adapted to focus only on the interactions of KLK with its inhibitor LEKTI. This model is then 

translated into an SBML (Systems Biology Markup Language) model (Finney et al. 2004) using 

the BIOCHAM software (Calzone, Fages, and Soliman 2006) to handle the differences in 

timescales (Table II.2.1). BIOCHAM also allows to check for the well-formedness and strictness 

conditions of the model, as defined by Fages et al. (Fages, Gay, and Soliman 2015). These 

conditions guarantee, among other things, the positivity of the system. The EPISIM platform 

then provides a method to integrate SBML models into the agent-based one, mapping the 

timescales (Sütterlin et al. 2013). In our case, the mapping is done so that the SBML model 

describing KLK activity has reached steady state over the course of one simulation step of the 

agent-based model. 

The pH influence on KLK activity is translated into two sets of parameters as described 

by Tanaka et al. (Tanaka, Ono, and Harrington 2011), representing healthy skin with an acidic 

pH (around 4.5) and compromised skin with a less acidic pH (around 6.5) (Table II.2.2). We 

selected one pH value in the physiological range according to Proksch (Proksch 2018) and one 

above to represent a compromised skin barrier condition. To facilitate comparisons we 

followed the choice of pH values used by Tanaka et al.(Tanaka, Ono, and Harrington 2011). 

When integrating the KLK-LEKTI module into the agent-based model, the location of 

the reactions has to be taken into account. Biologically KLK and LEKTI are released at the 

interface of SG and SC, together with the lamellar bodies, a process that we call corneocytes 

maturation. Consequently, in the agent-based model, the LEKTI-KLK module is only active in 

the mature corneocytes, meaning those which have released all their lamellar bodies. 

The cleaving action of active KLK (KLK*) on corneodesmosomes is modeled as a decay 

of adhesion forces, proportional to the amount of KLK*. When the corneocyte-corneocyte 

adhesion goes below a certain threshold, the cell is desquamated and removed from the 
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simulation. The action of KLK* on adhesion forces is normalized to the quantity of KLK* at 

steady state produced with the set of parameter values corresponding to physiological pH. 

This ensures that the resulting adhesion decay, with the physiological pH parameter values, is 

equal to the adhesion decay rate of the original agent-based model of the epidermis, therefore 

preserving the previously validated epidermal structure (Stamatas et al. 2021; Sütterlin et al. 

2017). In other words, if the amount of KLK* in an agent is superior to the quantity of KLK* at 

steady state with the physiological pH set of parameter values, the adhesion decay will be 

faster than the original decay rate, and inversely. 

 

Table II.2.1: ODEs adapted from Tanaka et al. (Tanaka, Ono, and Harrington 2011) and the 

corresponding reactions defined using BIOCHAM. MA=Mass action law kinetics; KLKa=active 

KLK 

ODE Reactions 

𝑑 𝐾𝐿𝐾

𝑑𝑡
= −𝑘

𝐾𝐿𝐾∗ 𝐾𝐿𝐾

𝐾𝐿𝐾∗ +  𝐶𝐾
−  𝛿𝐾 𝐾𝐿𝐾 +𝑚𝐾 

𝑑 𝐾𝐿𝐾∗

𝑑𝑡
= 𝑘

𝐾𝐿𝐾∗ 𝐾𝐿𝐾

𝐾𝐿𝐾∗ +  𝐶𝐾
−  𝑘𝑎 𝐾𝐿𝐾∗ 𝐿𝐸𝐾𝑇𝐼

+ 𝑘𝑑  𝐿𝐸𝐾𝑇𝐼. 𝐾𝐿𝐾 −  𝛿𝐾∗ 𝐾𝐿𝐾
∗ 

𝑑 𝐿𝐸𝐾𝑇𝐼

𝑑𝑡
= − 𝑘𝑎 𝐾𝐿𝐾∗ 𝐿𝐸𝐾𝑇𝐼 + 𝑘𝑑𝐿𝐸𝐾𝑇𝐼. 𝐾𝐿𝐾

−  𝛿𝐿 𝐿𝐸𝐾𝑇𝐼 + 𝑚𝐿 

𝑑 𝐿𝐸𝐾𝑇𝐼. 𝐾𝐿𝐾

𝑑𝑡
=  𝑘𝑎 𝐾𝐿𝐾∗ 𝐿𝐸𝐾𝑇𝐼 − 𝑘𝑑  𝐿𝐸𝐾𝑇𝐼. 𝐾𝐿𝐾

−  𝛿𝐿𝐾 𝐿𝐸𝐾𝑇𝐼. 𝐾𝐿𝐾 

MA(mk) for _ => KLK 

MA(ml) for _ => LEKTI 

MA(dk) for KLK => _ 

MA(dka) for KLKa => _ 

MA(dl) for LEKTI => _ 

MA(dlk) for LEKTI.KLK => _ 

MA(ka) for KLKa + LEKTI => LEKTI.KLK 

MA(kd) for LEKTI.KLK => LEKTI + KLKa 

k KLKa KLK/(Ck + KLKa) for KLK + KLKa => 2 KLKa 
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Table II.2.2 : KLK-LEKTI module: Parameter descriptions and values from Tanaka et al. 
(Tanaka, Ono, and Harrington 2011) 

Parameter Description Value 

𝑘 KLK activation rate 
10 (pH 4.5) 
50 (pH 6.5) 

𝑘𝑎 LEKTI-KLK* association rate 
1 (pH 4.5) 
3 (pH 6.5) 

𝑘𝑑 LEKTI-KLK* dissociation rate 
1 (pH 4.5) 

0.0025 (pH 6.5) 

𝛿𝐾 KLK degradation rate 1 

𝛿𝐾∗ KLK* degradation rate 1 

𝛿𝐿 LEKTI degradation rate 0.5 

𝛿𝐿𝐾 LEKTI-KLK* degradation rate 1 

𝐶𝐾 Half-saturation of KLK activation 50 

𝑚𝐾 Basal production rate for KLK 10 

𝑚𝐿 Basal production rate for LEKTI 1 

  

 

II.2.2. Inflammation Module 

The inflammation module developed in this work represents the release of 

inflammatory molecules, such as cytokines, subsequently to the penetration of an irritant 

through the epidermis. The inflammatory reaction only begins when the irritant crosses the 

SC, as the corneocytes lost their nucleus when differentiating and cannot have any synthetic 

activity. Once the concentration of irritant around a cell of the VE rises above a certain 

threshold irritation_threshold the cell starts producing inflammatory molecules ([IM]) 

according to: 

𝑑[𝐼𝑀]

𝑑𝑡
=  𝑝𝑖 + 𝑑𝑖 [𝐼𝑀] 
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When the irritant concentration is lower than irritation_threshold, the cell no longer 

produces inflammatory cytokines (𝑝𝑖 = 0) but their degradation persists. The value for the 

irritation_threshold is set to 0.1 so that a release of cytokines would be observed for both pH 

conditions, given the concentration of irritant applied at the surface equal to 1, selected for 

demonstration purpose. A threshold value set too high, results in no cytokine release in both 

pH conditions. On the contrary, lowering the threshold leads to a higher response for both 

skin conditions, even though the comparison will remain qualitatively the same. The 

parameters 𝑝𝑖 and 𝑑𝑖 control the kinetics and magnitude of the inflammation. For 

inflammatory molecules to be produced, the value of 𝑝𝑖 needs to be higher than the one of 

𝑑𝑖. To allow the ability to examine the dynamic changes in IM concentration within the time 

frame defined by the model, the values of 𝑝𝑖 and 𝑑𝑖 are set to 2 and 0.005 respectively. The 

model robustness to variations of these parameter values is discussed in the Results section 

of this Chapter. Finally, the inflammatory cytokines are exchanged between neighboring cells 

according to the concentration gradient. 

 

II.3. Simulations 

The simulations are done on a fully built and stable epidermis starting after 5000 

simulation steps. Then the SBML model of KLK activity is switched on, and we let the model 

accommodate for another 500 steps to get stable thickness of the SC. The irritant is applied 

topically with a surface concentration of 1, inter-agent exchange rate equal to 0.58 in SC, and 

0.29 in the VE. 

Depending on the scenario tested, the irritant is either removed after 50 simulation 

steps (corresponding to 25 hours in real time) to simulate the application of a patch of irritant 

substance, or continuously applied until the end of the simulation. In both cases during the 

application, the surface concentration of the irritant is constant, simulating the application of 

a patch on the skin. 

Simulations of the two models (physiological and less acidic pH) are compared in terms 

of model emerging properties, that is properties resulting from the agents’ interactions, not 

directly encoded in the model. More specifically, we look at the thicknesses of different skin 
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layers, the total amount of irritant permeated in the SC and VE, the resistance to water 

transport, water loss at skin surface and total amount of inflammatory cytokines produced. 

 

II.3.1. Simulated water loss at the surface and resistance to water transport 

The simulated water loss at the skin surface is computed as the average of the 

waterflow_surface parameter over all surface cells. This parameter value is proportional the 

intracellular water content, the ratio of exposed cell surface area, the barrier properties of the 

cell depending on tight junctions and lipids, and evaporation rate. The resulting value for 

water loss at the skin surface and the simulated water depth profile are then used to compute 

the depth-dependent resistance to waterflow according to the method described by MDA van 

Logtestijn et al. (Logtestijn et al. 2015). 

 

II.4. Results 

II.4.1. Model overview 

To study the impact of skin surface pH on skin barrier and inflammation, we introduce 

an agent-based model of the epidermis (Figure II.4-1). This model builds on a previously 

presented model that considers explicitly keratinocyte proliferation, differentiation, and 

desquamation processes and can recapitulate skin structure, water barrier function, and 

penetration kinetics of an external substance introduced at the skin surface at a given time of 

the simulation (Stamatas et al. 2021). This model is modified here by the introduction of KLK 

production, auto-activation (KLK*), and inhibition by LEKTI, processes which affect the rate of 

corneocyte desquamation at the skin surface (Deraison et al. 2007; Eissa and Diamandis 2008). 

The mathematical model first described by Tanaka et al. (Tanaka, Ono, and Harrington 2011) 

is adapted and integrated at the agent-level programming of the corneocytes, present only in 

the SC. This modification of the original agent-based model does not disturb the stability of 

the system and preserves the epidermal structure at skin surface pH of 4.5 (Figure II.4-2). 
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The computational model highlights two coexisting mechanisms, both of which are 

able to lead to increased desquamation. Figure II.4-3 shows that an increase in pH, affects the 

values of several parameters, resulting in higher KLK* concentration at steady-state and 

eventually leading to increased corneodesmosomes degradation and faster desquamation. 

This process is inhibited by LEKTI. A threshold effect can be observed in the presence of LEKTI 

concentration sufficient to form a complex with all available KLK*, completely preventing 

corneodesmosomes degradation. The model can be used to simulate the effect of impaired 

LEKTI production due to genetic mutations on SPINK5 (the gene encoding for the LEKTI 

protein). Such mutations are sometimes present on AD patients (Nishio et al. 2003) . SPINK5 

mutations result in loss of function of LEKTI and can be simulated in the model as a decrease 

of the 𝑚𝐿 parameter, representing the basal production of LEKTI by keratinocytes. Figure II.4-3 

illustrates that at a given skin pH, the decrease of LEKTI production results in an increase of 

KLK* concentration at steady-state, again leading to higher rate of corneocyte desquamation. 

 

The agent-based model also allows for the simulation of permeation of a topically 

applied substance, as described by Stamatas et al. (Stamatas et al. 2021). Here, we consider 

that the externally applied substance is an irritant, which can trigger skin inflammation 

depending on its concentration. The irritant is introduced in the model at the skin surface at 

a given time. It then diffuses through the epidermis following its concentration gradient. At 

the junction between the SC and the VE the inter-agent exchange rate is adjusted to reflect 

the compositional difference of the two layers (lipophilic SC compared to hydrophilic VE). 

Finally, the release of inflammatory molecules by keratinocytes in the VE is introduced in the 

model. This release is triggered when the irritant concentration inside the agent rises above a 

pre-defined threshold, simulating the release of inflammatory cytokines from cellular stores, 

which is the case for interleukin (IL)-1 for example. 

 

This quantitative model aims at providing qualitative predictions about the impact of 

skin pH elevation, considering that all other influencing factors remain equal. We do not 

pretend to make precise quantitative predictions because this would require calibrating our 

model accurately using in vivo data that we do not have. The values of inflammation 

parameters were chosen only as example demonstrating the dynamics of the inflammatory 
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reaction at two skin surface pH conditions (physiological and less acidic pH). A more precise 

simulation would require experimental data of irritant-induced inflammatory reaction. 

Unfortunately, there is a lack of available in vivo studies involving molecules that act as 

irritants without interfering with other skin functions. Overall, the agent-based model 

provided here integrates a refined desquamation process, permeation of an irritant substance 

and acute inflammation, in a dynamic and spatially discrete way. It enables to investigate the 

impact of a change in skin pH at tissue level through the study of the system’s emerging 

properties. These are properties that were not directly coded but rather emerge from the 

interactions of agents. 

To study the robustness of these emerging properties to variations of the pH-

dependent parameter values, a sensitivity analysis is conducted with simultaneous variations 

of 20% of the parameters 𝑘, 𝑘𝑎 and 𝑘𝑑 around their nominal values, which corresponds to the 

variability usually observed in skin clinical measurements (Figure II.4-4). The variation of lower 

values of 𝑘 is limited to 7%, since lower values lead to 𝐾𝐿𝐾∗ = 0 and infinite growth of the 

SC. This highlights the crucial role played by KLK in epidermis structure homeostasis. 
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Figure II.4-1: Graphical representation of the agent-based model and spatial distribution of the 

modules: barrier function, LEKTI-KLK interactions and desquamation process, irritant permeation, 

and acute inflammation. (I) The water flows from the bottom of the epidermis to the surface according 

to its gradient. It is restrained towards the surface by the skin barrier, composed of tight junctions (in 

the SG and SC) and lipids (in the SC) (Sütterlin et al. 2017). (II) KLK and its inhibitor, LEKTI are released 

at the interface of SG and SC and interact in the SC. KLK self-activates into KLK*, which can then either 

form a complex with LEKTI or contribute to the desquamation process by degrading corneocyte-

corneocyte adhesion. (III) The irritant substance is introduced at the surface and diffuses through the 

epidermis according to its concentration gradient and the inter-agent exchange rates specific to the SC 

or the VE, reflecting the compositional difference of the two layers (lipophilic SC compared to 

hydrophilic VE) (Stamatas et al. 2021). (IV) When the intra-cellular irritant concentration of VE cells 

rises above a pre-defined threshold, it triggers the release of inflammatory cytokines.  The cells are 

colored according to their differentiation status on the left part (dark blue for stem cells, light blue for 

transient amplifying cells, light green for basal cells, light pink for spinous cells, dark pink for granular 

cells, and tan for corneocytes), the intra-cellular irritant concentration in the middle (the greener, the 

higher the irritant concentration), and the intra-cellular inflammatory cytokines concentration on the 

right (the redder, the higher the inflammatory cytokines concentration). VE: viable epidermis, SC: 

stratum corneum, SG: stratum granulosum, SS: stratum spinosum, SB: stratum basale, KLK: kallikreins, 

KLK*: active kallikreins, LEKTI: Lympho-Epithelial Kazal-Type-related Inhibitor. 
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Figure II.4-2: The addition of the KLK-LEKTI module preserves the overall structure. Simulated 

epidermal structure with (A) the validated agent-based model of adult epidermis described by 

Stamatas et al. (Stamatas et al. 2021) and (B) the new agent-based model with the addition 

of the KLK-LEKTI module, at skin surface pH of 4.5. 
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Table II.4.1: Sets of parameter values reflecting pH variation, obtained with linear 

interpolation based on the two sets of parameters described by (Tanaka, Ono, and 

Harrington 2011) 

pH 4.5 5.5 6.5 7.5 

𝑘 10 30 50 70 

𝑘𝑎 1 2 3 4 

𝑘𝑑 1 0.04 0.0025 0.0001 

Figure II.4-3: Effect of pH and LEKTI inhibition on desquamation. The amount of KLK* at 

steady state increases with pH, represented by different colors according to the legend, for 

a given basal production of LEKTI by keratinocytes, 𝑚𝐿. The model also predicts the complete 

inhibition of KLK* by LEKTI when  𝑚𝐿 gets above a certain value, that increases together with 

pH. The steady state amount of KLK* directly affects the loss of corneocyte-corneocyte 

adhesion and thus desquamation. The dots correspond to the steady-state quantity of KLK* 

predicted by the model for each value of  𝑚𝐿 and with four sets of parameter values 

reflecting four values of pH (Table II.4.1). KLK*: active kallikreins, LEKTI: Lympho-Epithelial 

Kazal-Type-related Inhibitor, AU: arbitrary units. 
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Figure II.4-4: Difference diagram for parameter value changes. We studied the model 

robustness to small variations of pH-dependent parameter values of the LEKTI-KLK module: 𝑘, 

𝑘𝑎 and 𝑘𝑑. All the other parameter values were kept unchanged. The model was simulated 

using variations of 20% around the standard parameter values (Table II.2.2), except for the 

lowest value of 𝑘, which was limited to 7% since higher changes were leading to KLK*=0 at 

steady state. We then looked at how these parameter values variations impacted the model 

behavior through several properties of interest: resistance to water flow, total amount of 

permeated substance in the viable epidermis (VE), stratum corneum (SC) thickness, water loss 

at the surface and peak of inflammatory cytokines in VE. We compared simulations with 

variations of the parameter values to the model behavior with the original set of parameter 

values (either pH 4.5 or pH 6.5). For all the properties of interest, the difference between their 

values at pH 4.5 and 6.5 was robustly positive or negative (i.e their distribution is not crossing 

the zero line). It indicates that the two pH conditions are well separated and that the model is 

robust to pH-dependent parameter values variations. 
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II.4.2. Impact on epidermal structure 

Increased skin surface pH (and subsequent increase in KLK activity) has an immediate 

effect on the SC thickness (Figure II.4-5). KLK*, through its action of degrading 

corneodesmosomes, directly affects corneocyte adhesion and therefore the desquamation 

rate. The simulations demonstrate that increased KLK activity results in thinner SC by about 

18% (Table II.4.2). The model also predicts a thinning of the VE by about 6% (Table II.4.2). This 

observation can be explained by the alteration of the calcium gradient controlling the 

differentiation process, consequently to SC thinning. This in turn results in weakening of the 

skin barrier function in both directions: outside-in (irritant permeation) and inside-out (water 

loss). 

 

Table II.4.2 : Predicted properties of the system for the two conditions: physiologic pH (4.5) 

and less acidic pH (6.5). VE: viable epidermis, SC: stratum corneum, AU: arbitrary unit 

 SC thickness 

(µm) 

VE thickness 

(µm) 

water loss at skin 

surface (AU) 

total substance in VE 

/ thickness (AU) 

total substance in SC 

/ thickness (AU) 

total cytokines at inflammation 

peak in VE (AU) 

Physiologic pH 

(4.5) 
17 85 1.1 0.54 9.1 5.5 E3 

Less acidic pH 

(6.5) 
14 80 1.2 0.64 7.9 7.9 E3 

% difference -18% -6% +9% +19% -13% +44% 

 

 

II.4.3. Weakening on the skin barrier function  

The skin’s capacity to retain water is assessed in the model by two parameters: water 

loss at skin surface and resistance to water flow. At skin surface pH of 6.5, the water loss at 

the skin surface measured in silico is about 9% higher compared to a more physiologic 

condition of pH 4.5 (Table II.4.2). Moreover, Figure II.4-5 shows a decrease in resistance to 

water flow, particularly in the lower part of the SC. In the deeper section of the SC (depth 0.5-

1), the 2 resistance profiles are similar since the water content at the interface between SC 
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and VE remains the same in both pH conditions. These observations are in agreement with 

clinically reported results concerning changes in water transport through the SC following lipid 

removal, tape stripping or comparing AD to healthy skin (Logtestijn et al. 2016). 

 

To evaluate the strength of the outside-in barrier, topical application of an external 

substance is simulated. Figure II.4-5 shows the kinetics of the total substance amount that 

permeated in the VE. At a less acidic pH, the simulation predicts faster substance penetration 

and higher total permeated quantity at steady state compared to the physiological pH 

condition.  
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Figure II.4-5: The increase of skin surface pH results in the thinning of SC, with subsequent weakening 

of skin barrier function in both directions, inside-out and outside-in. (A) The graphical output of the 

model for the two pH conditions (4.5 on the left and 6.5 on the right) show that the overall layered 

structure of the epidermis is preserved in both cases, while the SC is thinner for the less acidic pH 

condition. The cells are colored according to their differentiation status: dark blue for stem cells, light 

blue for transient amplifying cells, light green for basal cells, light pink for spinous cells, dark pink for 

granular cells, and tan for corneocytes. (B) The decrease in resistance to water flow (indicated with the 

black arrow) predicted for the less acidic pH condition (red) indicates a reduced capacity to retain water 

compared to the more physiologic pH condition (blue). The profiles are averaged over depth and time, 

and the x-axis is shown as the depth normalized to the SC thickness for easier comparison between the 

two pH conditions. The ribbon represents the SD of the resistance profile over time. (C) The model 

predicts both faster permeation (indicated by a steeper slope) and higher amount of irritant substance 

permeating in the VE with a less acidic pH (red), indicating a higher permeability of the epidermis to 

irritants, compared to the pH condition of 4.5 (blue). VE: viable epidermis, SC: stratum corneum 
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II.4.4. Resulting skin inflammation 

The impaired outside-in barrier function can have direct consequences on the release 

of inflammatory cytokines. Figure II.4-6 shows the simulated production of inflammatory 

cytokines resulting from the permeation of an irritant into the epidermis, following continuous 

irritant exposure at the skin surface for 24 hours. At the peak of inflammation, the same 

amount of irritant applied at the surface induces a significant increase in the concentration of 

inflammatory cytokines when skin pH is set at 6.5 compared to 4.5. Note that the production 

of inflammatory cytokines also starts earlier in the compromised skin model compared to 

healthy skin. 

 

The robustness of the inflammation-related predictions of the model was assessed by 

simulating the model with variations of 𝑝𝑖, 𝑑𝑖 and irritation_threshold values. The influence of 

each of these parameters was tested independently by simulating the model for healthy and 

compromised skin, with variations of 20% around the parameter nominal value (𝑝𝑖 = 2 , 𝑑𝑖 =

0.005, irritation_threshold =  0.1), while the other two parameters remained unchanged. For 

each set of parameter values, the difference in the peak of inflammatory molecules in the VE 

between the compromised and the healthy conditions (Δ𝐼𝑀(𝑝𝐻 6.5– 𝑝𝐻 4.5)) was computed. 

Table II.4.3 recapitulates the average, standard-deviation, and coefficient of variation of 

Δ𝐼𝑀(𝑝𝐻 6.5– 𝑝𝐻 4.5) for each parameter. Δ𝐼𝑀(𝑝𝐻 6.5– 𝑝𝐻 4.5) is positive for all parameters 

and the coefficient of variations are relatively small, meaning that the model robustly predicts 

an increased production of cytokines with a less acidic pH. 
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Figure II.4-6: Impaired skin barrier function at higher pH causes a more intense 

inflammatory reaction. (A) The model predicts that, the same amount of irritant applied at 

the surface at t=0 and for 24 hours, permeates in higher quantity in the VE and therefore 

induces the production of more inflammatory cytokines with a skin surface pH of 6.5 

compared to 4.5. The release of inflammatory cytokines also starts earlier with skin pH set to 

6.5 (t= 10) compared to the more physiological pH condition of 4.5 (t=23). The evolution of 

the total quantity of irritant and inflammatory cytokines in VE are shown with solid and 

dotted line respectively. They are colored according to the pH condition and normalized to 

the peaks of irritant and inflammatory cytokines with pH of 4.5. (B) Graphical output of the 

skin inflammation peak for both pH conditions: 4.5 on the left and 6.5 on the right. The cells 

are colored according to their concentration in inflammatory cytokines: the redder, the 

higher the concentration. VE: viable epidermis.  
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Table II.4.3 : Robustness of the inflammatory molecules-related model predictions to 

variations of the inflammation module parameter values 

Parameter 
Average 

Δ𝐼𝑀(𝑝𝐻 6.5– 𝑝𝐻 4.5) 

Standard-Deviation 

Δ𝐼𝑀(𝑝𝐻 6.5– 𝑝𝐻 4.5) 

Coefficient of variation 

Δ𝐼𝑀(𝑝𝐻 6.5– 𝑝𝐻 4.5) 

irritation_threshold 2616 47.4 0.018 

𝒑𝒊 2089 338.3 0.162 

𝒅𝒊 2293 477.2 0.208 

 

 

II.5. Discussion 

While the model introduced here clearly demonstrates the effects of skin pH elevation 

that are relevant to AD (increased water-loss, higher permeability to irritants and more 

intense inflammation), it could be further developed to include additional aspects of AD 

pathology, including the involvement of microbiome dysbiosis (Paller et al. 2019), the role of 

allergens (Friedmann 1998), or a more complex inflammation pathway involving specific 

cytokines (IL-4, IL-13, IL-33 (Gandhi et al. 2016; Seltmann et al. 2015)) and Th2 cells. Moreover, 

the model can also be further developed to include aspects of AD lesional skin, like 

keratinocytes hyperproliferation, reduced secretion of lamellar granules (therefore less KLK), 

and SC hyperkeratosis (Igawa et al. 2017). The latter phenomenon however could be 

countered by an increased KLK expression stimulated by Th2 cytokines (Morizane et al. 2012). 

The integration of these additional modules in the model would necessarily require data, 

preferably measured in vivo, that currently do not exist. 

 

In our qualitative model, the parameter values related to the inflammatory reaction 

were selected arbitrarily due to the lack of in vivo data involving irritants that trigger skin 

inflammation without disrupting skin barrier function. For example, surfactants like sodium 

lauryl sulphate (SLS) are disturbing skin lipid content and organization, effects that would need 
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to be considered in the simulation separately. As presented in our previous work (Stamatas et 

al. 2021), experimentally determined concentration profiles would be required for tuning the 

permeation parameters of an externally applied substance. If this substance is a skin irritant, 

this can be technically challenging. Furthermore, it is difficult to track quantitatively the 

production of inflammatory molecules in vivo. Nevertheless, parameter values related to the 

inflammatory reaction are shared by both pH conditions tested in this model, meaning that 

the qualitative comparison between them will remain the same. Due to the predicted 

alteration of the epidermal structure, the irritant substance will reach the VE sooner and in 

higher amounts, inducing a higher inflammatory response, regardless of the values given to 

these parameters. 

 

Inflammation is a very complex physiological process involving different molecular 

cascades and activation sequences of several different cell types. In the present work we only 

considered the initial events of such an inflammatory cascade. In the future it is conceptually 

feasible to integrate in the model further downstream aspects of skin inflammation, for 

example to investigate the key role played by Th2 cells in AD. Additionally, several studies 

have demonstrated that besides their activity on corneodesmosomes, certain kallikreins like 

KLK5 and KLK14, are able to activate proteinase-activated receptor-2 (PAR2) (Stefansson et al. 

2008; Briot et al. 2009). PAR2 is a transmembrane receptor present in keratinocytes that 

downregulates the lamellar bodies secretion (Hachem et al. 2006) and triggers a 

proinflammatory and proallergic pathway upon activation (Briot et al. 2009). Integrating this 

influence of KLK on barrier formation and inflammation in the model would increase our 

understanding of the extent of KLK impact on epidermis homeostasis. 

 

In this work we modeled the effects of a skin pH value as a constant within the SC. This 

approximation resulted in reasonable results, however a more detailed model would consider 

that pH actually follows a gradient in the SC, from neutral pH at the interface with SG to acidic 

at the skin surface (Hanson et al. 2002). As discussed earlier, the enzymatic reactions involving 

KLK and LEKTI are highly sensitive to pH (Deraison et al. 2007). In that case both the inhibition 

of KLK by LEKTI and the cleaving of corneodesmosomes by active KLK would be depth 

dependent. Additionally, the impact of pH on skin barrier, is not limited to its action on 
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enzymatic activity. A recent study has shown that a more neutral pH prevents the right 

formation of the SC lipid structure, leading to even more water loss (Nováčková et al. 2021). 

Such effects would go in the same direction, namely that pH elevation leads to barrier 

impairment, and further support our conclusions.  



 

44 

 

Chapter III - Skin Microbiome Model: 
Stability versus Meta-stability 

 

III.1. Introduction 

Located at the interface between the organism and the surrounding environment, the 

skin constitutes the first line of defense against external threats, including irritants and 

pathogens. In order to control potential colonization of the skin surface by pathogens, the 

epidermal cells, called keratinocytes, produce AMPs (Pazgier et al. 2006). The physiologically 

acidic skin surface pH also helps to control the growth of bacterial populations (Proksch 2018; 

Korting et al. 1990). Another contributor to the defense against pathogen colonization are 

commensal bacteria in the community of microorganisms living on the skin, commonly 

referred to as the skin microbiome. Over the past decade, several studies have highlighted the 

key role played by such commensal bacterial species defending against invading pathogens, 

as well as their contribution to the regulation of the immune system (Lai et al. 2009; Cogen, 

Yamasaki, Muto, et al. 2010; Lai et al. 2010; Kong 2011; Belkaid and Segre 2014; Byrd, Belkaid, 

and Segre 2018). 

 

Alterations in the composition of the skin microbiome resulting in a dominance by a 

pathogenic species, also called dysbiosis, have been associated with skin conditions such as 

acne or AD (Leyden et al. 1975; Kong et al. 2012). In the case of AD, the patient skin is often 

colonized by S. aureus, especially on the lesions (Kong et al. 2012). Treatment strategies 

targeting non-specific elimination of cutaneous microflora, such as bleach baths, have shown 

conflicting results regarding their capacity to reduce the disease severity (Chopra et al. 2017). 

On the other hand, treatments involving introduction of commensal species, like 

Staphylococcus hominis (Nakatsuji et al. 2021) on the skin surface appear promising. 

Accordingly, the interactions between the commensal populations, pathogens and skin cells 

seem at the heart of maintaining microbiome balance. There is therefore a necessity to 

investigate further those interactions and the drivers of dominance of one population over 
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others. Unfortunately, it is challenging to perform in vitro experiments involving more than 

one or two different species, even more so on skin explants or skin equivalents.  

 

Mathematical models of population dynamics have been developed and used for more 

than two hundred years (Malthus 1798). Here, we introduce a model based on ODE, describing 

the interactions of a population of commensal species with one of opportunistic pathogens 

and the skin cells. We study the factors influencing the dominance of one population over the 

other on a microbiologically relevant timescale of a couple of days corresponding to biological 

experimental data. More specifically, we identify constraining relationships on the parameter 

values, based on published experimental data (Nakatsuji et al. 2017; Kohda et al. 2021), 

corresponding to special cases of our model, allowing us to reduce the parametric dimension 

of our model from 13 to 5 parameters. Interestingly, we observe in the reduced model a 

phenomenon of meta-stability (Tognoli and Kelso 2014; Radulescu et al. 2015), also called 

quasi-stability, in which the seemingly stable state reached after 30 hours following the 

initiation of the experiment, is followed after 300 hours by a reversed stable state. On the 

time scale of the experiments, we show that certain changes in the environment, like an 

elevation of skin surface pH, create favorable conditions for the emergence and colonization 

of the skin by the opportunistic pathogen population. Such predictions can help identify 

potential therapeutic strategies for the treatment of skin conditions involving microbiome 

dysbiosis and underscore the importance of meta-stable states in the real biological processes 

at their different time scales. 

 

III.2. Initial ODE model with 13 parameters 

The model built in this paper considers two types of bacterial populations. The first 

population, 𝑆𝑐, regroups commensal bacteria species having an overall beneficial effect for 

the skin, and the second population, 𝑆𝑝, represents opportunistic pathogens. The differential 

equations for both bacterial populations are based on the common logistic growth model 

(Zwietering et al. 1990), considering non-explicitly the limitations in food and space. The 

limited resources are included in the parameters 𝐾𝑠𝑐and 𝐾𝑠𝑝, representing the optimum 

concentration of the populations in a given environment, considering the available resources. 
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The bactericidal effect of AMPs produced by skin cells, 𝐴𝑚𝑝ℎ, on 𝑆𝑝 is included with a 

Hill function. This type of highly non-linear functions have been used previously to model the 

effect of antibiotics on bacterial populations (Meredith et al. 2015). For the sake of simplicity, 

the AMPs produced by skin cells is introduced as a constant parameter, [𝐴𝑚𝑝ℎ] , in the model. 

It represents the average concentration of these AMPs among surface cells, under given 

human genetic background and environmental conditions. 

Several studies revealed that commensal bacterial populations, like S. epidermidis or 

S. hominis, are also able to produce AMPs targeted against opportunistic pathogens, such as 

S. aureus (Nakatsuji et al. 2017; Cogen, Yamasaki, Sanchez, et al. 2010). For these reasons, we 

introduce in the model AMPs of bacterial origin, 𝐴𝑚𝑝𝑏, acting similarly to 𝐴𝑚𝑝ℎ on the 

pathogenic population 𝑆𝑝. 𝐴𝑚𝑝𝑏 is produced at rate 𝑘𝑐 by 𝑆𝑐, and degraded at rate 𝑑𝑎. 

Furthermore, we include a defense mechanism of 𝑆𝑝 against 𝑆𝑐 with a direct killing effect.  

Altogether, this gives us the following ODE system with 3 variables and 13 parameters, 

all taking non-negative values: 

 

{
 
 
 

 
 
 

𝑑[𝑆𝑐]

𝑑𝑡
= (𝑟𝑠𝑐 (1 −

[𝑆𝑐]

𝐾𝑠𝑐
) −

𝑑𝑠𝑐[𝑆𝑝]

𝐶1 + [𝑆𝑝]
) [𝑆𝑐]

𝑑[𝑆𝑝]

𝑑𝑡
= (𝑟𝑠𝑝 (1 −

[𝑆𝑝]

𝐾𝑠𝑝
) −

𝑑𝑠𝑝𝑏[𝐴𝑚𝑝𝑏]

𝐶𝑎𝑏 + [𝐴𝑚𝑝𝑏]
−

𝑑𝑠𝑝ℎ[𝐴𝑚𝑝ℎ]

𝐶𝑎ℎ + [𝐴𝑚𝑝ℎ]
) [𝑆𝑝]

𝑑[𝐴𝑚𝑝𝑏]

𝑑𝑡
= 𝑘𝑐[𝑆𝑐] − 𝑑𝑎 [𝐴𝑚𝑝𝑏] 

                 

( 1 ) 

 

The model is illustrated on Figure III.2-1 and Table III.2.1 recapitulates the variables 

and the parameters with their unit. Such a model cannot be solved analytically. Furthermore, 

the use of optimization algorithms to infer the 13 parameter values from data resulted in 

many valid sets of parameter values. Therefore, it is clearly necessary to restrict the number 

of parameters by identifying some of them, to be able to analyze the model. 
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Table III.2.1: List of the parameters and variables of our mathematical model with their 

units. CFU = Colony forming unit, AU = Arbitrary Unit, ASU = Arbitrary Surface Unit 

Variables Interpretation (unit) 

[𝑆𝑐] Surface apparent concentration of 𝑆𝑐 (𝐶𝐹𝑈. 𝐴𝑆𝑈−1) 

[𝑆𝑝] Surface apparent concentration of 𝑆𝑝 (𝐶𝐹𝑈. 𝐴𝑆𝑈−1) 

[𝐴𝑚𝑝𝑏] Concentration of 𝐴𝑚𝑝𝑏 (𝐴𝑈. 𝐴𝑆𝑈−1) 

Parameter Interpretation (unit) 

𝑟𝑠𝑐  Growth rate of 𝑆𝑐 (ℎ−1) 

𝑟𝑠𝑝 Growth rate of 𝑆𝑝, (ℎ−1) 

𝐾𝑠𝑐  Optimum concentration of 𝑆𝑐 (𝐶𝐹𝑈. 𝐴𝑆𝑈−1) 

𝐾𝑠𝑝 Optimum concentration of 𝑆𝑝 (𝐶𝐹𝑈. 𝐴𝑆𝑈−1 ) 

𝑑𝑠𝑐  Maximal killing rate of 𝑆𝑐 by 𝑆𝑝 (ℎ−1) 

𝐶1 Concentration of 𝑆𝑝 inducing half the maximum killing rate 𝑑𝑠𝑐  (𝐶𝐹𝑈. 𝐴𝑆𝑈−1) 

𝑑𝑠𝑝𝑏 Maximal killing rate of 𝑆𝑝 by 𝐴𝑚𝑝𝑏, (ℎ−1) 

𝐶𝑎𝑏 Concentration of 𝐴𝑚𝑝𝑏 inducing half the maximum killing rate 𝑑𝑠𝑝𝑏 (𝐴𝑈. 𝐴𝑆𝑈−1) 

𝑑𝑠𝑝ℎ Maximal killing rate of 𝑆𝑝 by 𝐴𝑚𝑝ℎ, (ℎ−1) 

𝐶𝑎ℎ Concentration of 𝐴𝑚𝑝ℎ inducing half the maximum killing rate 𝑑𝑠𝑝ℎ (𝐴𝑈. 𝐴𝑆𝑈−1) 

[𝐴𝑚𝑝ℎ] Concentration of AMPs produced by the skin cells (𝐴𝑈. 𝐴𝑆𝑈−1) 

𝑘𝑐 Production rate of 𝐴𝑚𝑝𝑏 by 𝑆𝑐 (𝐴𝑈. ℎ−1. 𝐶𝐹𝑈−1) 

𝑑𝑎 Degradation rate of 𝐴𝑚𝑝𝑏 (𝐴𝑈. ℎ−1) 

Figure III.2-1: Model overview, green arrow representing production and red T-lines 

representing killing effect. 
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III.3. Parameter space reduction by steady-state reasoning 

The amount of quantitative experimental data available for the model calibration is 

very limited due to the difficulty of carrying out experiments involving co-cultures of different 

bacterial species, because of their different food requirements. Most of the published work 

focuses on single species or on measuring the relative abundances of species living on the skin, 

which is highly variable between individuals and skin sites (Grice et al. 2009). In the case of AD 

specifically, S. aureus is considered pathogenic and S. epidermidis commensal (Geoghegan, 

Irvine, and Foster 2018; Koh, Ong, and Common 2021). Published data exist however for those 

species which we can use to constrain the parameter values of the model. 

 

Two series of in vitro of experiments are considered (Nakatsuji et al. 2017; Kohda et al. 

2021). While in vitro cultures, even on epidermal equivalent, do not entirely capture the native 

growth of bacteria on human skin, since they necessarily abstract from certain interactions 

within the microbiome and with the skin, they provide useful quantitative data that would be 

very difficult to measure in vivo.  

In the first experiment (Kohda et al. 2021), mono-cultures and co-cultures of S. 

epidermidis and S. aureus were allowed to develop on a 3D epidermal equivalent. Table III.3.1 

recapitulates the population sizes of the two species measured after 48 hours of incubation. 

Kohda et al. also performed another co-culture experiment where S. epidermidis was 

inoculated 4 hours prior to S. aureus in the media. This data is not used here as it requires 

additional manipulation to match the situation represented by the model. However, it would 

be interesting to use it in the future for model validation. 

 

Table III.3.1: Experimental data from Kohda et. al (Kohda et al. 2021) used for identifying 

parameter values. 

 S. epidermidis 
(CFU/well) 

S. aureus 
(CFU/well) 

Mono-cultures 4.108 ± 7.107 3.109 ± 4.108 

Co-cultures 1.108 ± 3.107 1.109 ± 8.107 
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In the second experiment (Nakatsuji et al. 2017) the impact of several concentrations 

of human (LL-37) and bacterial (Sh-lantibiotics) AMPs on S. aureus survival was studied. The 

experiments were performed in vitro, in culture medium, and the S. aureus population size 

was measured after 24 hours of incubation. Table III.3.2 summarizes the experimental 

observations from (Nakatsuji et al. 2017) used here. 

 

Table III.3.2: Experimental data from Nakatsuji et. al (Nakatsuji et al. 2017) used for 

identifying parameter relations. 

Sh-lantibiotics 

(𝛍𝑴) 

LL-37 

(𝛍𝑴) 

S. aureus 

(CFU/mL) 

0 4 109 

0 8 6.105 

0.32 0 5.108 

0.64 0 3.103 

 

III.3.1. Parameter values inferred from mono-culture experiment data 

We consider first the monocultures experiments from Kohda et al. (Kohda et al. 2021), 

representing the simplest experimental conditions. S. epidermis is a representative of the 

commensal population 𝑆𝑐, and S. aureus of the pathogenic one, 𝑆𝑝.  

 

Since the two species are not interacting, the set of equations simplifies to: 

{
 
 

 
 𝑑[𝑆𝑐]

𝑑𝑡
= (𝑟𝑠𝑐 (1 −

[𝑆𝑐]

𝐾𝑠𝑐
)) [𝑆𝑐]

𝑑[𝑆𝑝]

𝑑𝑡
= (𝑟𝑠𝑝 (1 −

[𝑆𝑝]

𝐾𝑠𝑝
)) [𝑆𝑝]

 

( 2 ) 
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At steady state, the population concentrations are either zero, or equal to their 

optimum capacities (𝐾𝑠𝑐 or 𝐾𝑠𝑝) when the initial population concentration is non-zero. Given 

the rapid growth of bacterial population, the experimental measurements done after 45 hours 

of incubation can be considered as corresponding to a steady state, which gives: 

 

𝐾𝑠𝑐 = 4.10
8 𝐶𝐹𝑈. 𝐴𝑆𝑈−1     ( 3 ) 

𝐾𝑠𝑝 = 3.10
9 𝐶𝐹𝑈. 𝐴𝑆𝑈−1     ( 4 ) 

 

III.3.2. Parameter relations inferred from experimental data on AMP 

The experimental conditions of Nakatsuji et al. (Nakatsuji et al. 2017) correspond to 

the special case where there is no commensal bacteria alive in the environment, only the 

bacterial AMPs, in addition to those produced by the skin cells. Our system of equations then 

reduces to: 

𝑑[𝑆𝑝]

𝑑𝑡
= (𝑟𝑠𝑝 (1 −

[𝑆𝑝]

𝐾𝑠𝑝
) −

𝑑𝑠𝑝𝑏[𝐴𝑚𝑝𝑏]

𝐶𝑎𝑏 + [𝐴𝑚𝑝𝑏]
−

𝑑𝑠𝑝ℎ[𝐴𝑚𝑝ℎ]

𝐶𝑎ℎ + [𝐴𝑚𝑝ℎ]
) [𝑆𝑝] 

  ( 5 ) 

The concentrations in LL-37 and Sh-lantibiotics, translated in our model into [𝐴𝑚𝑝ℎ] 

and [𝐴𝑚𝑝𝑏] respectively, are part of the experimental settings. Therefore, we consider them 

as constants over time. At steady state, we get: 

[𝑆𝑝]
∗
= 0 𝑜𝑟 [𝑆𝑝]

∗
= 𝐾𝑠𝑝 (1 −

𝑑𝑠𝑝𝑏[𝐴𝑚𝑝𝑏]

𝑟𝑠𝑝(𝐶𝑎𝑏 + [𝐴𝑚𝑝𝑏])
−

𝑑𝑠𝑝ℎ[𝐴𝑚𝑝ℎ]

𝑟𝑠𝑝(𝐶𝑎ℎ + [𝐴𝑚𝑝ℎ])
) 

( 6 ) 

 

Let us first focus on the special case where no Sh-lantibiotics were introduced in the 

media, translating into [𝐴𝑚𝑝𝑏] = 0 in our model. We consider again that the biological 

observations after 24 hours of incubation correspond to steady-state and substitute the 

experimental values measured: 

([𝐴𝑚𝑝ℎ] = 4 μ𝑀 ; [𝑆𝑝]
∗
= 109 CFU), and ([𝐴𝑚𝑝ℎ] = 8 μ𝑀 ; [𝑆𝑝]

∗
= 6.105 CFU), 
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together with the values of 𝐾𝑠𝑐 and 𝐾𝑠𝑝 (from (3) and (4)) in (6), to obtain the following 

equations:  

{
 
 

 
 
𝑑𝑠𝑝ℎ
𝑟𝑠𝑝

=
4 + 𝐶𝑎ℎ
6

𝑑𝑠𝑝ℎ
𝑟𝑠𝑝

=
(104 − 2)(𝐶𝑎ℎ + 8)

8.104

 

( 7 ) 

which reduce to 𝐶𝑎ℎ = 8 and 
𝑑𝑠𝑝ℎ

𝑟𝑠𝑝
= 2. 

Following the same method with the experimental conditions without any LL-37 (i.e. 

[𝐴𝑚𝑝ℎ] = 0) and using two data points: 

([𝐴𝑚𝑝𝑏] = 0.32 ; [𝑆𝑝]
∗
= 5.108 CFU) and ([𝐴𝑚𝑝𝑏] = 0.64 μ𝑀; [𝑆𝑝]

∗
= 3.103 CFU), 

we get 𝐶𝑎𝑏 = 0.16 and  
𝑑𝑠𝑝𝑏

𝑟𝑠𝑝
=

5

4
. 

 

It is notable that the maximum killing rates of 𝑆𝑝 by 𝐴𝑚𝑝𝑏 and 𝐴𝑚𝑝ℎ are both 

proportional to 𝑆𝑝 growth rate. Interestingly, such proportional relation has been observed 

experimentally between the killing rate of Escherichia coli by an antibiotic and the bacterial 

growth rate (Tuomanen et al. 1986). 

 

To be consistent with the ranges of Sh-lantibiotics concentrations described in 

Nakatsuji et al. (Nakatsuji et al. 2017), [𝐴𝑚𝑝𝑏] should take positive values below 10. Given 

that [𝐴𝑚𝑝𝑏]
∗ =

𝑘𝑐[𝑆𝑐]
∗

𝑑𝑎
  at steady-state, and that 𝐾𝑠𝑐 = 4.10

8 CFU is the upper bound for [𝑆𝑐]
∗, 

we obtain the following constraint: 

𝑘𝑐
𝑑𝑎
≤

1

4.107
 

( 8 ) 
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III.3.3. Parameter relations inferred from co-culture data 

The initial model described earlier is representative of the experimental settings of the 

co-culture conditions described in Kohda et al. (Kohda et al. 2021). At steady state, the system 

(1) gives: 

[𝑆𝑐]
∗ = 0 𝑜𝑟 [𝑆𝑐]

∗ = 𝐾𝑠𝑐 (1 −
𝑑𝑠𝑐[𝑆𝑝]

∗

𝑟𝑠𝑐(𝐶1 + [𝑆𝑝]
∗
)
) 

( 9 ) 

[𝑆𝑝]
∗
= 0 𝑜𝑟 [𝑆𝑝]

∗
= 𝐾𝑠𝑝 (1 −

𝑑𝑠𝑝𝑏[𝐴𝑚𝑝𝑏]

𝑟𝑠𝑝(𝐶𝑎𝑏 + [𝐴𝑚𝑝𝑏])
−

𝑑𝑠𝑝ℎ[𝐴𝑚𝑝ℎ]

𝑟𝑠𝑝(𝐶𝑎ℎ + [𝐴𝑚𝑝ℎ])
) 

( 10 ) 

[𝐴𝑚𝑝𝑏]
∗ =

𝑘𝑐[𝑆𝑐]
∗

𝑑𝑎
 

( 11 ) 

 

Considering that what is observed experimentally after 48 hours of incubation is at 

steady-state, one can replace [𝑆𝑐]
∗ and [𝑆𝑝]

∗
 with the experimental data point (S. epidermidis 

= 108 CFU; S.aureus= 109 CFU) in (9) and (10) to get the following parameter relation: 

𝑑𝑠𝑐
𝑟𝑠𝑐

=
3

4.109
𝐶1 +

3

4
 

( 12 ) 

2

3
𝑟𝑠𝑝 =

𝑑𝑠𝑝ℎ[𝐴𝑚𝑝ℎ]

𝐶𝑎ℎ + [𝐴𝑚𝑝ℎ]
+

108𝑑𝑠𝑝𝑏𝑘𝑐
𝑑𝑎𝐶𝑎𝑏 + 10

8𝑘𝑐
 

( 13 ) 

By integrating the values found for 𝐶𝑎ℎ and 𝐶𝑎𝑏, and the relations involving 𝑑𝑠𝑝ℎ and 

𝑑𝑠𝑝𝑏 into (13), we end up with: 

𝑑𝑎 = 10
8𝑘𝑐  

56 + 31[𝐴𝑚𝑝ℎ]

2.56 (4 − [𝐴𝑚𝑝ℎ])
 𝑤𝑖𝑡ℎ  [𝐴𝑚𝑝ℎ] < 4 

( 14 ) 
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III.4. Reduced parameter space with 5 parameters 

Using the previously mentioned experimental data, and assuming they represent 

steady state conditions of the initial model (1), we have reduced the parametric dimension of 

the model from 13 to 5. Specifically, out of the original 13 parameters, we could define the 

values of 4 of them, and derive 4 functional dependencies from the values of the remaining 

parameters, as summarized in Table III.4.1. 

In our skin microbiome model (1), the parameters that remain unknown are thus: 

• 𝑟𝑠𝑐, the growth rate of 𝑆𝑐 which can reasonably take values between 0 and 2 ℎ−1  

following (Czock and Keller 2007; Campion, McNamara, and Evans 2005); 

• 𝑟𝑠𝑝, the growth rate of 𝑆𝑝, taking similar values in the interval between 0 and 2 ℎ−1; 

• 𝐶1, the concentration of 𝑆𝑝 that induces half the maximum killing rate 𝑑𝑠𝑐 (in AU) and 

is thus bounded by the optimum concentration of 𝑆𝑝, i.e. 𝐾𝑠𝑝 = 3.10
9𝐴𝑈; 

• 𝑘𝑐, the production rate of [𝐴𝑚𝑝𝑏] which, as a bacterial production, generally takes 

values between 0 and 0.1 𝐴𝑈. ℎ−1. 𝐶𝐹𝑈−1; 

• [𝐴𝑚𝑝ℎ], the concentration in 𝐴𝑈. 𝐴𝑆𝑈−1 of AMPs produced by skin cells between 0 

and 4 (equation 14). 

 

The resulting system is the following: 

{
 
 
 

 
 
 

𝑑[𝑆𝑐]

𝑑𝑡
= 𝑟𝑠𝑐 [𝑆𝑐] (1 − 

[𝑆𝑐]

4.108
− 
3

4
 
(10−9𝐶1 + 1)[𝑆𝑝]

𝐶1 + [𝑆𝑝]
)

𝑑[𝑆𝑝]

𝑑𝑡
= 𝑟𝑠𝑝[𝑆𝑝] (1 − 

[𝑆𝑝]

3.109
− 

5 [𝐴𝑚𝑝𝑏]

0.64 + 4 [𝐴𝑚𝑝𝑏]
− 

2 [𝐴𝑚𝑝ℎ]

8 + [𝐴𝑚𝑝ℎ]
)

𝑑[𝐴𝑚𝑝𝑏]

𝑑𝑡
= 𝑘𝑐 ([𝑆𝑐] − 10

8[𝐴𝑚𝑝𝑏]
56 + 31 [𝐴𝑚𝑝ℎ]

2.56 (4 − [𝐴𝑚𝑝ℎ])
)

 

 

The following simulations and analyses are performed using the Biocham Software (Calzone, 

Fages, and Soliman 2006), and the corresponding notebook can be found in annex of this 

manuscript. 
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Table III.4.1: Summary of the parameter relations embedded in the reduced model. 

Parameter Value or relation to other parameters 

𝐾𝑠𝑐  4.108 

𝐾𝑠𝑝 3.109 

𝐶𝑎ℎ 8 

𝐶𝑎𝑏 0.16 

𝑑𝑠𝑝ℎ 2 𝑟𝑠𝑝 

𝑑𝑠𝑝𝑏 
5

4
 𝑟𝑠𝑝 

𝑑𝑠𝑐  𝑟𝑠𝑐 (
3

4.109
 𝐶1 +

3

4
) 

𝑑𝑎 108𝑘𝑐  
56 + 31[𝐴𝑚𝑝ℎ]

2.56 (4 − [𝐴𝑚𝑝ℎ])
 𝑤𝑖𝑡ℎ   [𝐴𝑚𝑝ℎ] < 4 

 

III.4.1. Simulations at the time scale of the experiments 

In order to reproduce what was observed by Kohda et. al (Kohda et al. 2021) in the co-

culture experiment, that is a dominant pathogenic population after 50 hours which can thus 

be considered as dysbiosis in our skin microbiome model, it is sufficient to fix a relatively low 

concentration of Amp produced by the skin cells, i.e. 𝐴𝑚𝑝ℎℎ = 1.5, and some fixed values for 

the four other parameters chosen in their intervals described above. Among a continuum of 

possible solutions, we chose 𝑟𝑠𝑐 = 0.5,  𝑟𝑠𝑝 = 1, 𝐶1 = 5.10
6,  𝑘𝑐 = 0.01. 

 

The doses of S. epidermidis and S. aureus applied at the surface of the 3D epidermal 

equivalent at the beginning of the experiment (105𝐶𝐹𝑈/𝑚𝐿 and 103𝐶𝐹𝑈/𝑚𝐿 respectively) 

are used as the initial concentrations for [𝑆𝑐] and [𝑆𝑝] respectively. 

 

Figure III.4-1 shows the result of a numerical simulation of our model with those 

parameters which are in accordance with the co-culture experiments of Kohda et. al and 

reproduce a consistent qualitative behavior (Kohda et al. 2021). The evolution of bacterial 
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populations is shown on a linear scale here, since the model was historically built with 

normalized linear variables before the introduction of experimental data described in the 

previous section. Simulations with logarithmic scale are shown in section III.4.3. 

 

Our model can also be used to reproduce what is considered a balanced microbiome, 

corresponding to the commensal population being significantly more abundant than the 

pathogenic one (Kong et al. 2012). This requires modifying some parameter values to 

represent a less virulent pathogenic population, closer to the physiological context, given that 

the experiments from Kohda et. al (Kohda et al. 2021) were performed using a virulent 

methicillin-resistant S. aureus strain. 

 

We chose 𝑟𝑠𝑝 = 0.5, 𝐶1 = 2.10
8 and a higher production of AMPs by the skin cells, 

[𝐴𝑚𝑝ℎ] = 3, to compensate for feedback loops or stimuli that might be missing in the 3D 

epidermal equivalent used. Figure III.4-2 shows a simulation trace obtained under those 

conditions which clearly indicates the dominance of the non-pathogenic population under 

those conditions. 

Figure III.4-1: Numerical simulation of the reduced ODE model over 50 hours, with initial 

conditions [𝑆𝑐] = 10
5,  [𝑆𝑝] = 10

3,  [𝐴𝑚𝑝𝑏] = 0 and parameter values [𝐴𝑚𝑝ℎ] = 1.5,  𝑟𝑠𝑐 =

0.5,  𝑟𝑠𝑝 = 1, 𝐶1 = 5.10
6,  𝑘𝑐 = 0.01 to fit Kohda et al. co-culture data (53) (Table III.3.1). 
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III.4.2. Parameter sensitivity and robustness analyses 

Since the previous simulations rely on some choices of values for the unknown 

parameters, it is important to evaluate the robustness of the predictions of our model by 

performing an analysis of sensitivity to the parameter values. This is possible in Biocham by 

specifying the property of interest in quantitative temporal logic (Rizk et al. 2011). The 

interesting property here is the stabilization at the time scale of the experiments around 48 

hours of the bacterial population sizes to the values given by simulation (Figure III.4-2). Here 

we use the temporal logic formula: 

𝐹 (𝑇𝑖𝑚𝑒 == 40 ∧ 𝑁𝑆𝑐 = 𝑥1 ∧ 𝑁𝑆𝑝 = 𝑦1 ∧ 𝐹(𝐺(𝑁𝑆𝑐 = 𝑥2 ∧ 𝑁𝑆𝑝 = 𝑦2))) 

and objective values equal to 1 for the free variables 𝑥1, 𝑥2, 𝑦1, 𝑦2, to express that the 

normalized variables 𝑁𝑆𝑐 and 𝑁𝑆𝑝, i.e. current values of [𝑆𝑐] and [𝑆𝑝] divided by their 

expected value at steady state, respectively 108 and 109 in the pathogenic case of Kohda et 

al. experiments, is reached (F, finally) at time around 40 and finally at the end of the time 

horizon (FG) of 50 hours. On a given simulation trace, the free variables of the formula have a 

validity domain (here fixed values) which is used to define a continuous degree of satisfaction 

of the property as a distance to the objective values, and a robustness degree by sampling 

Figure III.4-2: Numerical simulation of the reduced ODE model over 50 hours, with initial 

conditions [𝑆𝑐] = 10
5,  [𝑆𝑝] = 10

3,  [𝐴𝑚𝑝𝑏] = 0 and parameter values 𝑟𝑠𝑐 = 𝑟𝑠𝑝 = 0.5,  𝐶1 =

2.108,  𝑘𝑐 = 0.01,  [𝐴𝑚𝑝ℎ] = 3. 
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with a normal distribution the parameter values around their nominal values (Rizk et al. 2011). 

The robustness degree is defined as the mean satisfaction degree, with respect to variations 

of the parameter values. 

 

The sensitivity analysis (Table III.4.2) reveals that the dominance of the commensal 

population is highly sensitive to variations of the initial concentration of the pathogen. To a 

lesser extent, the dominant population is also sensitive to the growth rates (𝑟𝑠𝑐 and 𝑟𝑠𝑝) and 

the concentration of human AMPs ([𝐴𝑚𝑝ℎ]). On the other hand, 𝐶1 and 𝑘𝑐 do not seem to 

affect the relative proportions of the bacterial populations. 

 

Table III.4.2: Sensitivity of the model to variations of the parameters and initial 

concentrations for the property of reaching the same values at time 40 and time horizon 50 as 

in Figure III.4-2. 

Parameter Coefficient of variation Robustness degree 

𝑟𝑠𝑐  0.1 0.74 

𝑟𝑠𝑝 0.1 0.67 

𝐶1 10 0.95 

𝑘𝑐 0.1 0.95 

[𝐴𝑚𝑝ℎ] 0.1 0.62 

[𝑆𝑝]0
 10 0.16 

[𝑆𝑐]0 10 0.57 

(𝑟𝑠𝑐 , 𝑟𝑠𝑝) 0.1 0.64 

([𝑆𝑐]0, [𝑆𝑝]0
) 10 0.34 
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III.4.3. Meta-stability revealed by simulation on a long timescale 

Interestingly, by extending the simulation time horizon to a longer time scale of 500 

hours, one can observe a meta-stability phenomenon, shown in Figure III.4-3. The seemingly 

stable state observed in Figure III.4-2 at the relevant time scale of 50 hours of the experiments, 

is thus not a mathematical steady state, but a meta-stable state, also called quasi-stable state, 

that slowly evolves, with 
𝑑[𝑆𝑐]

𝑑𝑡
≠ 0 and 

𝑑[𝑆𝑝]

𝑑𝑡
≠ 0, towards a true stable state of the model 

reached around 300 hours in which the population density are reversed. 

 

The 𝑆𝑐 population almost reaches its optimum capacity 𝐾𝑠𝑐 after approximately 30 

hours and stays relatively stable for around 100 hours more, that is over 4 days, which can 

reasonably be considered stable on the microbiological time scale. Meanwhile, the 𝑆𝑝 

population is kept at a low concentration compared to 𝑆𝑐, even though it is continuously 

increasing and eventually leading to its overtake of 𝑆𝑐. This continuous increase of 𝑆𝑝 can be 

seen more clearly with a logarithmic scale (Figure III.4-4). By varying the parameters values, it 

appears that this meta-stability phenomenon emerges above a threshold value of 2.5 for 

[𝐴𝑚𝑝ℎ], that is for almost half of its possible values (see sectionIII.3). More generally, the 

metastability phenomenon observed here is probably due to the difference in magnitude 

between parameters (𝐶1 = 2.10
8) and variables ([𝑆𝑝]~10

5 on the short timescale), causing a 

phenomenon that was neglectable at first to become dominant after a certain period of time. 

 

That phenomenon of meta-stability, also called quasi-stability, is a classical notion of 

dynamical systems theory, particularly well-studied in the case of oscillatory systems for which 

analytical solutions exist, and as models of brain activity (Tognoli and Kelso 2014). It is worth 

noting that it has also been considered in the computational systems biology community with 

respect to model reduction methods based on the identification of different regimes 

corresponding to different preponderant terms of the ODEs, for which simplified dynamics 

can be defined, and chained within a hybrid automaton (Radulescu et al. 2015). 
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More generally, this raises the question of the existence and importance of meta-

stability in real biological processes, as well as the validity of the steady state assumptions 

made in mathematical modeling methods to fit the models to the observed experimental data. 

 

 

Figure III.4-3: Numerical simulation of the reduced ODE model on a longer time scale of 500 

hours, with the same initial concentrations and parameter values as in Figure III.4-2, showing 

an inversion of the dominant bacterial population after 220 hours. 

Figure III.4-4: Numerical simulation of the reduced ODE model on a longer time scale of 500 

hours with a logarithmic scale, with the same initial concentrations and parameter values as 

in Figure III.4-2, showing an inversion of the dominant bacterial population after 220 hours. 
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III.5. Results on conditions favoring the pathogenic population 

Whether the dysbiosis observed in AD is the cause or the result of the disease is unclear 

(T. Kobayashi et al. 2015; Koh, Ong, and Common 2021). Infants developing AD do not 

necessarily have more S. aureus present on their skin prior to the onset of the disease 

compared to the healthy group (Kennedy et al. 2017). This suggests that atopic skin has some 

characteristics enabling the dominance of S. aureus over the other species of the microbiome. 

To test this hypothesis, we investigate two changes of the skin properties observed in AD 

patients (skin surface pH elevation (Eberlein-König et al. 2000) and reduced production of 

AMPs (Ong et al. 2002)) and their impact on the dominant species at steady-state. More 

specifically, we study the behavior of the system following the introduction of a pathogen and 

whether the pathogen will colonize the media depending on the initial concentrations of the 

bacterial populations and the particular skin properties mentioned before. 

 

III.5.1. Skin surface pH elevation 

According to Proksch (Proksch 2018), the physiological range for skin surface pH is 4.1-

5.8. However, in certain skin conditions, like AD, an elevation of this pH has been observed. 

Dasgupta et al. studied in vitro the influence of pH on the growth rates of S. aureus and S. 

epidermidis (Dasgupta et al. 2020). Their experimental results show that, when the pH is 

increased from 5 to 6.5, the growth rate of S.epidermidis is multiplied by 1.8, whereas the one 

of S.aureus is multiplied by more than 4 (Table III.5.1). 

 

Their data can be used to select values for the growth rates 𝑟𝑠𝑐 and 𝑟𝑠𝑝 in our model, 

corresponding to healthy skin with a skin surface pH of 5 and compromised skin with a pH of 

6.5. Because the experiments from Dasgupta et al. were performed in vitro and the bacterial 

population sizes measured with optical density (OD) instead of CFU, the growth rates cannot 

be directly translated into 𝑟𝑠𝑐 and 𝑟𝑠𝑝. We use 𝑟𝑠𝑐 = 0.5 as the reference value for the 

commensal growth rate at pH 5, following on from previous simulation (Figure III.4-2). 

Maintaining the ratio between the two population growth rates at pH 5 and the multiplying 
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factors following the pH elevation from Dasgupta et al. experimental data, we can define two 

sets of values for 𝑟𝑠𝑐 and 𝑟𝑠𝑝: 

 

skin surface pH of 5   ⇒              𝑟𝑠𝑐 = 0.5,  𝑟𝑠𝑝 = 0.3 

skin surface pH of 6.5   ⇒              𝑟𝑠𝑐 = 0.9,  𝑟𝑠𝑝 = 1.3 

 

Table III.5.1: Experimental data from Dasgupta et. al (Dasgupta et al. 2020) showing the 

influence of pH on growth rates of S. epidermidis and S. aureus. 

pH 
Growth rate ( 𝚫OD/hour) 

S. aureus S. epidermidis 

5 0.03 0.05 

5.5 0.04 0.07 

6 0.09 0.08 

6.5 0.13 0.09 

7 0.14 0.10 

 

Considering the healthy skin scenario with a skin surface pH of 5, the influence of the 

bacterial populations’ initial concentrations on the dominant species after 50 hours is evaluate 

using the temporal logic formula: 

𝐹 (𝑇𝑖𝑚𝑒 == 40 ∧ ([𝑆𝑐] > 𝑢1 ∗ [𝑆𝑝]) ∧ 𝐹 (𝐺([𝑆𝑐] > 𝑢2 ∗ [𝑆𝑝]))) 

where 𝑢1 and 𝑢2 are free variables representing the abundance factors between both 

populations, evaluated at 𝑇𝑖𝑚𝑒 =  40 and at the last time point of the trace respectively (F 

stands for finally and G for globally at all future time points), i.e., at the time horizon of the 

experiments of 50 hours. 
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When given with an objective value, e.g. 𝑢1 = 10, the distance between that value 

and the validity domain of the formula, i.e. the set of values for 𝑢1 that satisfy the formula, 

provides a violation degree which is used to evaluate the satisfaction degree of the property.  

 

Here, we evaluate how much the temporal formula: 

 𝐹 (𝑇𝑖𝑚𝑒 == 40 ∧ ([𝑆𝑐] > 𝑢1 ∗ [𝑆𝑝]) ∧ 𝐹 (𝐺([𝑆𝑐] > 𝑢2 ∗ [𝑆𝑝]))), 𝑢1 → 10,   𝑢2 → 10, 

is satisfied given variations of the initial concentrations of two populations. The model predicts 

that, under the healthy skin condition, the commensal population will always dominate after 

50 hours, except when introduced at a relatively low concentration (< 2.104) while the initial 

concentration of the pathogenic population is high (> 5.105) (Figure III.5-1).  

 

The model predicts a higher vulnerability of the skin regarding invading pathogens with 

an elevated skin surface pH. When evaluating the same temporal formula with growth rates 

values corresponding to a skin surface pH of 6.5, we observe that even when the initial 

concentration of commensal is high (> 107), the pathogenic population is able to colonize the 

skin when introduced at a concentration as low as 3.104 (Figure III.5-2). Such predictions 

highlight the protective effect of the skin surface acidic pH against the invasion of pathogenic 

bacteria. 
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Figure III.5-1: Landscape of satisfaction degree of the temporal formula corresponding to 

healthy skin with a skin surface pH of 5 (𝒓𝒔𝒄 = 𝟎. 𝟓 and 𝒓𝒔𝒑 = 𝟎. 𝟑). The x and y axis represent 

variations of the initial quantities of [𝑆𝑝] and [𝑆𝑐] respectively. The color coding corresponds 

to the satisfaction degree of the temporal logic formula. Values used for the other parameters: 

𝐶1 = 2.10
8 , 𝑘𝑐 = 0.01 , [𝐴𝑚𝑝ℎ] = 3. 
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III.5.2. Reduced production of skin AMPs 

As mentioned before, human keratinocytes constitutively produce AMPs as a defense 

against pathogens. In atopic dermatitis, the expression of AMPs is dysregulated, leading to 

lower concentration levels of AMPs in the epidermis (Nakatsuji et al. 2017). Similarly, to the 

analysis done for skin surface pH, our model can be used to study how skin microbiome reacts 

to modulation of the AMPs production by the skin cells. 

Two situations are considered: an impaired production of AMPs by the skin cells 

([𝐴𝑚𝑝ℎ] = 0.5) and a higher concentration with [𝐴𝑚𝑝ℎ] = 3. Using the same methodology 

as in the case of skin surface pH, the temporal logic formula 𝐹 (𝑇𝑖𝑚𝑒 == 40 ∧

Figure III.5-2: Landscape of satisfaction degree of the temporal formula corresponding to 

compromised skin with a skin surface pH of 6.5 (𝒓𝒔𝒄 = 𝟎. 𝟗 and 𝒓𝒔𝒑 = 𝟏. 𝟑). The x and y axis 

represent variations of the initial quantities of [𝑆𝑝] and [𝑆𝑐] respectively. The color coding 

corresponds to the satisfaction degree of the temporal logic formula. Values used for the other 

parameters: 𝐶1 = 2.10
8 , 𝑘𝑐 = 0.01 , [𝐴𝑚𝑝ℎ] = 3. 



 

65 

 

([𝑆𝑐] > 𝑢1 ∗ [𝑆𝑝]) ∧ 𝐹 (𝐺([𝑆𝑐] > 𝑢2 ∗ [𝑆𝑝]))), 𝑢1 → 10,   𝑢2 → 10, is evaluated for 

variations of the initial concentrations of both populations for [𝐴𝑚𝑝ℎ] = 0.5 and [𝐴𝑚𝑝ℎ] =

3 (Figure III.5-3). 

 

 

Figure III.5-3: Landscape of satisfaction degree of the healthy condition formula with a low 

concentration of human AMPs on the upper graph ([𝑨𝒎𝒑𝒉] = 𝟎. 𝟓) and a high 

concentration at the bottom ([𝑨𝒎𝒑𝒉] = 𝟑). The x and y axis represent variations of the initial 

quantities of [𝑆𝑝] and [𝑆𝑐] respectively. The color coding corresponds to the satisfaction 

degree of the temporal logic formula. Values used for the other parameters: 𝑟𝑠𝑐 = 𝑟𝑠𝑝 = 0.5, 

𝐶1 = 2.10
8, 𝑘𝑐 = 0.01. 
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The model predicts a slightly protective effect of 𝐴𝑚𝑝ℎ regarding the colonization of 

the skin by a pathogenic population, for low initial concentrations. However, when both 

populations are introduced in high concentrations, the increase of [𝐴𝑚𝑝ℎ] appears to have 

the opposite effect of facilitating the colonization by the pathogenic population. This 

mitigated effect might be due to the presence of [𝐴𝑚𝑝ℎ] in the constraint related to the 

degradation rate of [𝐴𝑚𝑝𝑏] (equation 14) and deserves further investigation. 

 

III.6. Discussion 

Based on the few available experimental data, a method based on steady-state 

assumption was introduced to identify parameter values and define parameters as functions 

of others. This process already enabled a significant reduction of the parametric dimension of 

the model. To further calibrate the model, and improve its analysis, this approach could be 

combined with other methods for parameter inference. Optimization algorithms or parameter 

value search with temporal logic could be apply on the sub models representative of the 

experimental conditions. The use of several methods could help to exploit the entirety of the 

experimental data, such as the delayed introduction of S. aureus in the media presented by 

Kohda et al.(Kohda et al. 2021), and the dose-response curves of S. aureus survival exposed 

simultaneously to LL-37 and l-antibiotics (Nakatsuji et al. 2017). Moreover, the observation of 

metastability and timescale consideration might be indicators to find alternative methods to 

overcome the steady-state assumption, even though this assumption is biologically relevant 

when studying bacterial populations. 

 

Because of the difficulty to obtain quantitative in vivo data related to the microbiome 

and even more to the AMPs, the parameter inference was achieved using in vitro experiments 

data. These data were assumed to be representative of the bacterial populations’ behavior on 

the human skin. The influence of this assumption could be assessed by a robustness analysis 

of the model behavior following variations of the 8 parameters inferred using in vitro data. 

Even though it is reasonable to think that the qualitative behavior of the system will be 

preserved, further investigations focusing on the main differences between in vitro and in vivo 

could be recommended. 
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The unexpected, and not necessarily desired, metastability phenomenon observed 

under certain parametric conditions, brings food for thoughts on two different aspects. First, 

reconciliate the steady-state assumptions made during the parameter inference step with the 

resulting system’s behavior on the timescale of this experiment. This could be done by 

defining additional constraints on the growth rates, to impose the stability of both bacterial 

population under 50 hours of simulation. This could be challenging to solve mathematically 

but could be achieved empirically, using temporal logic with a long time-horizon. On the other 

hand, from a modelling point of view, it is worth investigating what is causing the appearance 

of this metastability phenomenon.  
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Chapter IV - Connecting and integrating 
the modules in the Agent-Based Model 
 

IV.1. Introduction 

The structure of the epidermis is the result of a dynamic homeostasis, from 

proliferation at the basal layer to desquamation at the surface. This dynamic nature is likely 

to affect the bacteria community living on the skin surface. The cutaneous microbiome is 

indeed in close interaction with the skin cells, known to influence its population composition. 

For instance, different cutaneous microbiome compositions have been associated with 

distinct skin sites (oily, moist, dry, etc.) (Byrd, Belkaid, and Segre 2018). 

 

Commensal bacteria are not only taking advantage of the resources provided by the 

skin. Some commensal species such as Staphylococcus hominis, contribute to the defense 

against invading pathogens by producing AMPs, acting in synergy with the AMPs produced by 

keratinocytes (Nakatsuji et al. 2017). The progress made in the omics fields enables the study 

of the microbiome in more details, even though the cutaneous microbiome remains less 

understood than that of the gut. In an effort to better understand the factors influencing the 

microbiome balance, it seems important to study the impact of the continuous removal and 

renewal of the surface cells on which the bacteria are growing. 

 

The interactions between skin commensal and pathogens have already been studied 

with computational models. Nakaoka et al. introduced a model combining ODE and delayed 

differential equations to look at the competition dynamic between 2 populations of bacteria 

exposed to cytokines (Nakaoka et al. 2016). Miyano et al. designed a QSP model including the 

interactions between S. aureus and coagulase negative Staphylococcus to evaluate AD 

treatment strategies targeting specifically S. aureus (Miyano, Irvine, and Tanaka 2022). 

Although these models provided interesting insights and predictions regarding the 
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microbiome balance, they did not consider the potential impact of surface cell renewal on 

bacterial growth.  

Agent-based models appear as a relevant tool to investigate this aspect due to their 

capacity to recapitulate the dynamic homeostasis of the epidermis. In this chapter, we 

integrate the ODE model introduced in Chapter III into the agent-based model of the 

epidermis described in Chapter II. This hybrid model is used to study how the corneocytes 

desquamation and renewal impact microbiome kinetics. 

 

IV.2. From ODE to agent-based 

The agent-based model and ODE formalisms are compatible and can be combined. 

However, working at the agent- level, as opposed to the averaged population level, brings up 

several specificities that need to be considered carefully during the integration process. This 

section focuses on these aspects and how they were solved in this model. 

 

IV.2.1. Location 

The focus of this model is the bacteria population living on the surface of the skin. The 

microbiome present in hair follicles is not considered, as the agent-based model used here 

represents only the inter-follicular region of the epidermis. Moreover, the bacteria 

penetrating the skin barrier during an infection are also neglected as a first approach. 

Therefore, the microbiome model introduced in Chapter III is implemented only for the 

surface cells of the agent-based model. 

 

IV.2.2. Discretization of time and space 

Given the size difference between corneocytes and bacteria, it is reasonable to 

consider that the bacteria only interact with other bacteria located on the same surface cell. 

The movement from one cell to another will be discussed below (section IV.2.4). 

Consequently, the microbiome model described in Chapter III is implemented at the agent 

level, for the surface cells. 
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The agent-based model developed in EPISIM is synchronous, meaning that the time is 

discretized in simulation steps at which the agents evolve, based on their behavior rules. 

Therefore, the microbiome ODE system, defined in section III.2, needs to be adapted to this 

specific consideration of time. 

 

Unlike the KLK-LEKTI system describing reactions happening in a matter of seconds, 

the timescale of the microbiome model is coherent with the agent-based one. The 

phenomenon involved are studied over hours or days. It is possible to transform the ODE 

system from section III.2 into a recurrence relation: 

 

{
  
 

  
 𝑆𝑐𝑛 = 𝑆𝑐𝑛−1 +

1

2
 𝑆𝑐𝑛−1 (𝑟𝑠𝑐 (1 −

𝑆𝑐𝑛−1
𝐾𝑠𝑐

) −
𝑑𝑠𝑐  𝑆𝑝𝑛−1
𝐶1 + 𝑆𝑝𝑛−1

)

𝑆𝑝𝑛 = 𝑆𝑝𝑛−1 +
1

2
 𝑆𝑝𝑛−1 (𝑟𝑠𝑝 (1 −

𝑆𝑝𝑛−1
𝐾𝑠𝑝

) −
𝑑𝑠𝑝𝑏 𝐴𝑀𝑃𝑏𝑛−1
𝐶𝑎𝑏 + 𝐴𝑀𝑃𝑏𝑛−1

−
𝑑𝑠𝑝ℎ 𝐴𝑀𝑃ℎ

𝐶𝑎ℎ + 𝐴𝑀𝑃ℎ
)

𝐴𝑀𝑃𝑏𝑛= 𝐴𝑀𝑃𝑏𝑛−1 +
1

2
 (𝑘𝑐𝑆𝑐𝑛−1 − 𝑑𝑎𝐴𝑀𝑃𝑏𝑛)

 

( 15) 

where 𝑋𝑛−1 and 𝑋𝑛 represent the concentrations of the variable 𝑋 on one agent at the 

previous and current step respectively. To match the time unit of the original ODE model 

(hour) to the agent-based time unit (one simulation step = 30min), a 
1

2
 factor is added to the 

recurrence relation. The degradation of 𝐴𝑀𝑃𝑏 at step 𝑛 depends on its concentration at the 

same step, to avoid approximation errors and negative values. The 𝐴𝑀𝑃𝑏 recurrence equation 

can be simplified to: 

𝐴𝑀𝑃𝑏𝑛 =
2 𝐴𝑀𝑃𝑏𝑛−1 + 𝑘𝑐𝑆𝑐𝑛−1

2 +  𝑑𝑎
 

( 16) 
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The following recurrence system can then be implemented on each surface cell of the model: 

{
  
 

  
 𝑆𝑐𝑛 = 𝑆𝑐𝑛−1 +

1

2
 𝑆𝑐𝑛−1 (𝑟𝑠𝑐 (1 −

𝑆𝑐𝑛−1
𝐾𝑠𝑐

) −
𝑑𝑠𝑐  𝑆𝑝𝑛−1
𝐶1 + 𝑆𝑝𝑛−1

)

𝑆𝑝𝑛 = 𝑆𝑝𝑛−1 +
1

2
 𝑆𝑝𝑛−1 (𝑟𝑠𝑝 (1 −

𝑆𝑝𝑛−1
𝐾𝑠𝑝

) −
𝑑𝑠𝑝𝑏 𝐴𝑀𝑃𝑏𝑛−1
𝐶𝑎𝑏 + 𝐴𝑀𝑃𝑏𝑛−1

−
𝑑𝑠𝑝ℎ 𝐴𝑀𝑃ℎ

𝐶𝑎ℎ + 𝐴𝑀𝑃ℎ
)

𝐴𝑀𝑃𝑏𝑛=
2 𝐴𝑀𝑃𝑏𝑛−1 + 𝑘𝑐𝑆𝑐𝑛−1

2 +  𝑑𝑎

 

( 17) 

The system’s behavior observed with the original ODE model is preserved with the recurrence 

relation (Figure IV.2-1). 

 

Figure IV.2-1: Comparison of the microbiome kinetics with the recurrence relation and the 

ODE numerical integration. The concentrations relations of 𝑆𝑐 and 𝑆𝑝 are shown in blue and 

orange respectively, with lines for the result of the ODE numerical integration with the lsoda 

function in R, and with dots or triangle for the recurrence relation. The time unit is ½ hour, 

corresponding to one simulation step in the agent-based model. Parameter values used: 𝑟𝑠𝑐 =

𝑟𝑠𝑝 = 0.5 ; 𝑘𝑐 = 0.01 ; 𝐶1 = 2.10
8 ; [𝐴𝑀𝑃ℎ]  =  3 ; [𝑆𝑐](𝑡 = 0) = 10

5 ; [𝑆𝑝](𝑡 = 0) = 10
3 ; 

[𝐴𝑀𝑃𝑏](𝑡 = 0) = 0 
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IV.2.3. Model initialization 

At the beginning of an EPISIM simulation, only the stem cells of the stratum basale are 

present. The epidermis is gradually built from them and the dynamic homeostasis structure is 

reached after approximatively 5000 simulations steps. For this thesis, we focus on the 

perturbations of this homeostatic epidermis in the context of AD. Therefore, the bacteria 

model is only activated at epidermal homeostasis, with a user-controlled Boolean function. 

 

The bacteria populations 𝑆𝑐 and 𝑆𝑝 are initialized to user-defined values [𝑆𝑐]𝑖𝑛𝑖𝑡 and 

[𝑆𝑝]𝑖𝑛𝑖𝑡 respectively, usually the initial concentrations used in the ODE model introduced in 

the previous chapter. It means that every cell reaching the surface is immediately colonized 

by 𝑆𝑐𝑖𝑛𝑖𝑡 and 𝑆𝑝𝑖𝑛𝑖𝑡 concentrations of the commensal population 𝑆𝑐 and the opportunistic 

pathogen 𝑆𝑝 respectively. Similarly to the ODE model simulations, the bacterial AMPs are 

initialized to 0. These initial values can be changed during a simulation if needed. With this 

approach, the user has control over the model initialization and can compare the simulation 

results with the analysis of the original ODE system. However, this approach assumes an 

arbitrary colonization of new surface cells, independently of their surroundings. 

 

IV.2.4. Bacteria mobility and 𝑨𝑴𝑷𝒃 diffusion  

As discussed in section IV.2.2, the bacteria are considered to interact only with the 

population located on the same surface cell in the model. However, biologically, the skin 

surface constitutes an open environment on which bacteria can move freely. In the model, it 

is translated by a proportion popMouv of each bacteria population moving to the neighboring 

surface cells, independently of the bacteria concentrations on the receiving cells. It is 

implemented using EPISIM Send() function, described by Sütterlin et al. (Sütterlin et al. 2009). 

This function equally distributes the amount of the variable (here the bacterial population) 

among the neighboring agents, checking that the variable amount does not go below or above 

the defined minimum or maximum value of the variable, for the sending and receiving agent 

respectively. In the event that the amount to be exchanged exceeds the variable limits, the 

amount effectively exchanged corresponds to the maximum variable amount respecting the 

constraints from both the sending and receiving agents. 
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The exchange of 𝐴𝑀𝑃𝑏 between neighboring cells is implemented as a molecular 

diffusion, similarly to what is described in section II.2.2 for inflammatory molecules. At each 

step, 𝐴𝑀𝑃𝑏 diffuses to neighboring surface cells based on the concentration gradient and a 

diffusion coefficient amp_diff. This process is also implemented with the Send() function from 

(Sütterlin et al. 2009). 

 

IV.2.5. Microbiome module overview  

Figure IV.2-2 shows a screenshot of the microbiome module implementation in EPISIM 

Modeller (Sütterlin et al. 2013; 2009). It recapitulates the modelling choices described above, 

regarding the location of the reactions, time discretization, exchange with neighbors, and 

model initialization. This module is integrated in the global cellular workflow including the 

previously existing modules such as cell differentiation, desquamation, substance permeation, 

water flow from (Sütterlin et al. 2017; Stamatas et al. 2021), as well as the other modules 

developed during this thesis: inflammation and KLK-LEKTI interactions. 
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Figure IV.2-2: Screenshot of the microbiome module implementation in EPISIM Modeller 

(Sütterlin et al. 2013; 2009) 1) When the user considers the epidermis to be stable, that is to 

say when the thickness of the different layers are stable (usually after 5000 simulation steps), 

they turn the homeostasis Boolean function to True (T), triggering the activation of bacterial 

interactions 2) When the epidermis has not reached homeostasis yet, or when the agent is not 

at the surface [𝑆𝑐], [𝑆𝑝] and [𝐴𝑀𝑃𝑏] are initialized to fixed user-defined values. 3) The values 

for certain parameters are computed according to the relations defined in section III.4 4) If the 

agent is at the surface, the bacterial populations interact and the new concentrations are 

computed following the recurrence relations defined in section IV.2.2. 5) If the agent has 

surface neighbors, a proportion popMouv of each bacterial population moves to these 

neighboring surface cells. The agent also exchanges [𝐴𝑀𝑃𝑏] according to the concentration 

gradient and a diffusion coefficient with its surface neighbors. 
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IV.3. Simulations of the microbiome kinetics in the agent-based model 

The ODE population model introduced in Chapter III is adapted to be integrated in the 

agent-based model of the epidermis described in Chapter II. This gives the opportunity to 

study the impact of the epidermis dynamic nature on the microbiome kinetics and balance. 

All simulations are done on a fully built and stable epidermis after 5000 simulations steps. The 

homeostasis Boolean switch is set to True at step 5000.  

 

IV.3.1. Comparison with the ODE model 

First, the agent-based model is simulated with the microbiome-related parameter 

values corresponding to Figure III.4-2 with the original ODE model. To better isolate the effect 

of surface cells desquamation on the microbiome kinetics, popMouv and ampb_diff are 

temporarily set to 0. 

 

Two main differences can be observed when comparing the microbiome kinetics in the 

agent-based model (Figure IV.3-1 A and Figure IV.3-2 A) to the original ODE model (Figure 

IV.3-1 B and Figure IV.3-2 B). The most obvious is the disappearance of the quasi-stability 

phenomenon observed with the ODE model. The reversed stable state reached around 300 

hours (equivalent to 600 simulations steps) seems to be completely absent in the agent-based 

model, even when simulated over 2000 steps. The other difference that can be noted concerns 

the concentration level reached by 𝑆𝑐 and 𝐴𝑀𝑃𝑏. On the quasi-stable state of the ODE model, 

[𝑆𝑐] and [𝐴𝑀𝑃𝑏] stabilize around 4.108 and 0.07 AU respectively. However, in the agent-based 

model, the average [𝑆𝑐] and [𝐴𝑀𝑃𝑏] over all surface cells oscillate around significantly lower 

values. 

 

A possible explanation for the latter is that what is observed is an average between 

cells that have just reached the surface, and cells that have been at the surface for several 

time steps. This results in a discrepancy of the bacterial population kinetics among the surface 

cells. The other possible contributing factor, which can also explain the disappearance of the 

quasi-stability phenomenon, is that the desquamation process limits bacterial growth in time. 
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Indeed, when a surface cell is desquamated, its bacterial population is removed from the 

simulation together with the cell. 

The desquamation process in this model is taken from the multi-agent model from 

(Sütterlin et al. 2017), except for the addition of KLK* impact on cell-to-cell adhesion decay 

(see II.2.1). The decision for a cell to be desquamated is controlled by a stochastic process 

based on the progressive loss of adhesion its neighbors. Given that in the model the adhesion 

loss process is deterministic and constant, the stochasticity of how long a cell remains at the 

surface results from the time it takes for the cell to reach the surface. This period depends on 

the stochastic cellular movement. Therefore, a corneocyte moving slowly to the surface, will 

have lost a significant proportion of its adhesion to its neighbors when reaching the surface, 

and will be desquamated quickly. 

 

To confirm this hypothesis, the microbiome kinetics of single surface cells was 

observed with the model, using the same parameter values as for Figure IV.3-1 and Figure 

IV.3-2. During the simulation, the microbiome kinetics of a randomly selected single surface 

cell are observed (Figure IV.3-3). When this cell is desquamated, the model randomly selects 

another surface cell for the observation and so on. For the moment, there is no straight 

forward way of selecting a cell that has just reached the surface, therefore the kinetics are 

often caught partway through. Nevertheless, it is still helpful to dissect the average behavior 

of Figure IV.3-1 and Figure IV.3-2 on the single-cell scale. 

 

Figure IV.3-3 clearly highlights the impact of desquamation on microbiome kinetics. 

The commensal population barely has time to reach its quasi-stable state before 

desquamation. Likewise, the cells do not stay at the surface long enough for the opportunistic 

pathogens to outgrow the commensals. This confirms the explanation for the disappearance 

of the quasi-stability and the long-term steady-state observed with the original ODE model. 
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Figure IV.3-1: Comparison of the average bacterial populations kinetics at the skin surface 

in the agent-based model (A) with the ODE model’s behavior (B). The concentration of the 

commensal population 𝑆𝑐, and the opportunistic pathogen one 𝑆𝑝 are shown in blue and 

orange respectively. The time unit is ½ hour, corresponding to 1 simulation step. The 

corresponding kinetics of [𝐴𝑀𝑃𝑏] are shown in Figure IV.3-2. Parameter values used for both 

the agent-based and the ODE model :  𝑟𝑠𝑐 = 𝑟𝑠𝑝 = 0.5 ; 𝑘𝑐 = 0.01; 𝐶1 = 2.10
8 ; [𝐴𝑀𝑃ℎ] = 3; 

[𝑆𝑐]𝑖𝑛𝑖𝑡 = 10
5; [𝑆𝑝]𝑖𝑛𝑖𝑡 = 10

3; [𝐴𝑀𝑃𝑏]𝑖𝑛𝑖𝑡 = 0. Parameter values specific to the agent-based 

model: popMouv = 0 ; amp_diff = 0 
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Figure IV.3-2: Comparison of the average AMPb kinetics at the skin surface in the agent-

based model (A) with the ODE model’s behavior (B). The time unit is ½ hour, corresponding 

to 1 simulation step. The corresponding bacterial population kinetics are shown in Figure 

IV.3-1. Parameter values used for both the agent-based and the ODE model :  𝑟𝑠𝑐 = 𝑟𝑠𝑝 = 0.5 ; 

𝑘𝑐 = 0.01; 𝐶1 = 2.10
8 ; [𝐴𝑀𝑃ℎ] = 3; [𝑆𝑐]𝑖𝑛𝑖𝑡 = 10

5; [𝑆𝑝]𝑖𝑛𝑖𝑡 = 10
3; [𝐴𝑀𝑃𝑏]𝑖𝑛𝑖𝑡 = 0. 

Parameter values specific to the agent-based model: popMouv = 0 ; amp_diff = 0 
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Figure IV.3-3 : Microbiome kinetics on individual surface cells. The evolution of the 

commensal population [𝑆𝑐] and the opportunistic pathogen [𝑆𝑝] on single surface cells of the 

agent-based model are displayed on A) and B) respectively. Each color corresponds to the 

trajectory observed on one randomly selected surface cell. The time unit is a simulation step, 

representing 30 minutes. Parameter values used : 𝑟𝑠𝑐 = 𝑟𝑠𝑝 = 0.5 ; 𝑘𝑐 = 0.01; 𝐶1 = 2.10
8 ; 

[𝐴𝑀𝑃ℎ] = 3; [𝑆𝑐]𝑖𝑛𝑖𝑡 = 10
5; [𝑆𝑝]𝑖𝑛𝑖𝑡 = 10

3; [𝐴𝑀𝑃𝑏]𝑖𝑛𝑖𝑡 = 0; popMouv = 0 ; amp_diff = 0. 
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IV.3.2.  Impact of bacterial mobility on microbiome balance 

Now that the impact of desquamation on microbiome kinetics has been established, 

we shift the focus on the influence of bacterial mobility on microbiome balance. Simulations 

of the agent-based model with the same parameter values as Figure IV.3-1 and Figure IV.3-2, 

with different values of popMouv are shown on Figure IV.3-4 and Figure IV.3-5. With 1% of 

each bacterial population moving to neighboring surface cells each step (Figure IV.3-4), the 

metastable switch still does not appear. However, it can be noticed that the variance of 

oscillation is reduced compared to Figure IV.3-1 A. This suggests that, thanks to the higher 

rates of bacterial movement, newly arisen surface cells reach the short time-scale quasi-stable 

state faster. The average commensal population over all surface cells is therefore more stable 

and less driven down due to low values, coming from the newly arisen surface cells. 

 

Interestingly, increasing popMouv to 0.1 leads to the reemergence of the longer time-

scale steady-state observed with the original ODE model (Figure IV.3-5). It takes approximately 

1600 simulations steps (corresponding to 800 hours) for the pathogenic population to 

outgrow the commensal, globally. It appears that this level of bacterial mobility enables a 

proportion of the pathogenic population to survive longer than the cells average residence 

time at the surface. Then, once the pathogenic population becomes dominant, the newly 

arisen surface cells receive a significant amount of [𝑆𝑝] through bacterial mobility, which 

ensures a maintained pathogen dominance. 

In contrast, high popMouv values seem to be detrimental to the opportunistic 

pathogen population (Figure IV.3-6). The bacterial mobility was gradually increased during one 

simulation. 𝑆𝑝 becomes the most abundant population after around 1700 simulations steps. 

However, as the popMouv values increase, the average [𝑆𝑝]  over the skin surface undergoes 

a stepwise decrease, in accordance with the popMouv value. This suggests that high bacterial 

mobility slows down the overall population growth. It can also be noticed that the commensal 

population does not seem to be affected as much as the pathogenic one by a higher popMouv 

value. 
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Figure IV.3-4: Simulations of the average surface bacterial population kinetics (A) and 

[𝑨𝑴𝑷𝒃] evolution (B) of the agent-based model popMouv = 0.01. The time unit is one 

simulation step, corresponding to 30 minutes. Other parameter values used: 𝑟𝑠𝑐 = 𝑟𝑠𝑝 = 0.5 ; 

𝑘𝑐 = 0.01; 𝐶1 = 2.10
8 ; [𝐴𝑀𝑃ℎ] = 3; [𝑆𝑐]𝑖𝑛𝑖𝑡 = 10

5; [𝑆𝑝]𝑖𝑛𝑖𝑡 = 10
3; [𝐴𝑀𝑃𝑏]𝑖𝑛𝑖𝑡 = 0; 

amp_diff = 0. 
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Figure IV.3-5: Simulations of the average surface bacterial population kinetics (A) and 

[𝑨𝑴𝑷𝒃] evolution (B) of the agent-based model with popMouv = 0.1. The time unit is one 

simulation step, corresponding to 30 minutes. Other parameter values used: 𝑟𝑠𝑐 = 𝑟𝑠𝑝 = 0.5 ; 

𝑘𝑐 = 0.01; 𝐶1 = 2.10
8 ; [𝐴𝑀𝑃ℎ] = 3; [𝑆𝑐]𝑖𝑛𝑖𝑡 = 10

5; [𝑆𝑝]𝑖𝑛𝑖𝑡 = 10
3; [𝐴𝑀𝑃𝑏]𝑖𝑛𝑖𝑡 = 0; 

amp_diff = 0. 



 

83 

 

 

 

IV.3.3. Impact of 𝑨𝑴𝑷𝒃 diffusion 

So far, in order to analyze the effect of bacterial mobility separately, the diffusion 

coefficient of 𝐴𝑀𝑃𝑏 was set to 0. The focus will now shift to how amp_diff values impact the 

microbiome balance. The value of popMouv is thus temporarily set to 0. 

 

Figure IV.3-6: Variation of the bacterial mobility during one simulation. The average 

concentrations of 𝑆𝑐 and 𝑆𝑝 are shown in blue and orange respectively. The value of popMouv 

used at a particular time point in the simulation is indicated with colors on the y-axis. The time 

unit is one simulation step, corresponding to 30 minutes. Other parameter values used: 𝑟𝑠𝑐 =

𝑟𝑠𝑝 = 0.5 ; 𝑘𝑐 = 0.01; 𝐶1 = 2.10
8 ; [𝐴𝑀𝑃ℎ] = 3; [𝑆𝑐]𝑖𝑛𝑖𝑡 = 10

5; [𝑆𝑝]𝑖𝑛𝑖𝑡 = 10
3; 

[𝐴𝑀𝑃𝑏]𝑖𝑛𝑖𝑡 = 0; amp_diff = 0. 
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Similarly to what was done for popMouv, the value of amp_diff was progressively 

increased during one simulation (Figure IV.3-7). Looking at the resulting microbiome kinetics, 

it appears that the value of amp_diff has no influence on the microbiome balance, under these 

conditions. 

 

 

 

Figure IV.3-7: Variation of the AMPb diffusion during one simulation. The average 

concentrations of 𝑆𝑐 and 𝑆𝑝 are shown in blue and orange respectively. The value of amp_diff 

used at a particular time point in the simulation is indicated with colors on the y-axis. The time 

unit is one simulation step, corresponding to 30 minutes. Other parameter values used: 𝑟𝑠𝑐 =

𝑟𝑠𝑝 = 0.5 ; 𝑘𝑐 = 0.01; 𝐶1 = 2.10
8 ; [𝐴𝑀𝑃ℎ] = 3; [𝑆𝑐]𝑖𝑛𝑖𝑡 = 10

5; [𝑆𝑝]𝑖𝑛𝑖𝑡 = 10
3; 

[𝐴𝑀𝑃𝑏]𝑖𝑛𝑖𝑡 = 0; popMouv = 0. 
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IV.3.4. Behavior of the system with bacterial mobility and 𝑨𝑴𝑷𝒃 diffusion 

Following the analysis done in the previous sections, the values of popMouv and 

amp_diff are both fixed to 0.1. The simulation results for the average surface values are shown 

on Figure IV.3-8, and the single-cell kinetics on Figure IV.3-9. The dynamics of the microbial 

population on a single corneocyte can help us understand the emergence of the pathologic 

population on the long term. For the first 1000 steps approximately, the commensal 

population is dominant and quickly grows from its initial concentration (105) to a relatively 

stable state below 4.108 AU. After a thousand steps, cell 1 (and probably others that are not 

shown) represented in pink in Figure IV.3-9 A-B stays at the surface long enough for the 

pathogenic population to emerge. A transition phase can be seen between 1000 and 1500 

steps after the simulation start. During this phase, there are cells on which the commensal 

population is still dominant (cell 2) and cells where the pathogenic population is emerging (cell 

3). Thanks to the bacterial mobility, the pathogenic population colonizes neighboring as well 

as newly arriving surface cells, maintaining its dominance on the long-time horizon. 

 

The model was also tested with parameter values that did not result in quasi-stability 

with the original ODE model (Figure IV.3-10 and Figure IV.3-11). The model behavior observed 

with the ODE model is overall reproduced in the agent-based model. Notably, the average 

surface [𝑆𝑝] reaches higher level in the agent-based model. This is due to bacterial mobility, 

which increases the microbial concentration on single-cells beyond the steady-state value 

observed with the ODE model (Figure IV.3-12). 
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Figure IV.3-8: Simulation of the system including bacterial mobility and [𝑨𝑴𝑷𝒃] diffusion. 

Evolution of the average concentrations of bacterial populations (A) and [𝐴𝑀𝑃𝑏] (B) at the 

surface with popMouv =0.1 and amp_diff=0.1. The time unit is a simulation step, representing 

30 minutes. The associated single-cell trajectories are shown in Figure IV.3-9. Parameter values 

used : 𝑟𝑠𝑐 = 𝑟𝑠𝑝 = 0.5 ; 𝑘𝑐 = 0.01; 𝐶1 = 2.10
8 ; [𝐴𝑀𝑃ℎ] = 3; [𝑆𝑐]𝑖𝑛𝑖𝑡 = 10

5; [𝑆𝑝]𝑖𝑛𝑖𝑡 = 10
3; 

[𝐴𝑀𝑃𝑏]𝑖𝑛𝑖𝑡 = 0 
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Figure IV.3-9: Microbiome kinetics on individual surface cells considering bacterial mobility 

and [𝑨𝑴𝑷𝒃] diffusion. The single cell trajectories of the commensal population [𝑆𝑐] and the 

oportunistic pathogen [𝑆𝑝] on single surface cells, with popMouv =0.1 and amp_diff=0.1, are 

shown in (A) and (B) respectively. Each color corresponds to the trajectory observed on one 

randomly selected surface cell. The time unit is a simulation step, representing 30 minutes. The 

numbers indicate the trajectories of bacterial populations on the 3 surface cells of interest 

mentioned in section IV.3.4. Parameter values used : 𝑟𝑠𝑐 = 𝑟𝑠𝑝 = 0.5 ; 𝑘𝑐 = 0.01; 𝐶1 = 2.10
8 ; 

[𝐴𝑀𝑃ℎ] = 3; [𝑆𝑐]𝑖𝑛𝑖𝑡 = 10
5; [𝑆𝑝]𝑖𝑛𝑖𝑡 = 10

3; [𝐴𝑀𝑃𝑏]𝑖𝑛𝑖𝑡 = 0 
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Figure IV.3-10: Simulation of the microbiome kinetics in the agent-based model including 

bacterial mobility and [𝑨𝑴𝑷𝒃] diffusion (A) compared to the ODE model (B). The 

concentration of the commensal population 𝑆𝑐, and the opportunistic pathogen one 𝑆𝑝 are 

shown in blue and orange respectively. The time unit is ½ hour, corresponding to 1 simulation 

step. The corresponding kinetics of [𝐴𝑀𝑃𝑏] are shown in Figure IV.3-11.Parameter values used 

for both the agent-based and the ODE model :  𝑟𝑠𝑐 = 0.5 ; 𝑟𝑠𝑝 = 1; 𝑘𝑐 = 0.01; 𝐶1 = 5.10
6 ; 

[𝐴𝑀𝑃ℎ] = 1.5; [𝑆𝑐]𝑖𝑛𝑖𝑡 = 10
5; [𝑆𝑝]𝑖𝑛𝑖𝑡 = 10

3; [𝐴𝑀𝑃𝑏]𝑖𝑛𝑖𝑡 = 0. Parameter values specific to 

the agent-based model : popMouv = 0.1 ; amp_diff = 0.1 
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Figure IV.3-11: Simulation of the AMPb kinetics in the agent-based model including bacterial 

mobility and [𝑨𝑴𝑷𝒃] diffusion (A) compared to the ODE model (B). The time unit is ½ hour, 

corresponding to 1 simulation step. The corresponding bacterial populations kinetics are 

shown in Figure IV.3-10.Parameter values used for both the agent-based and the ODE model :  

𝑟𝑠𝑐 = 0.5 ; 𝑟𝑠𝑝 = 1; 𝑘𝑐 = 0.01; 𝐶1 = 5.10
6 ; [𝐴𝑀𝑃ℎ] = 1.5; [𝑆𝑐]𝑖𝑛𝑖𝑡 = 10

5; [𝑆𝑝]𝑖𝑛𝑖𝑡 = 10
3; 

[𝐴𝑀𝑃𝑏]𝑖𝑛𝑖𝑡 = 0. Parameter values specific to the agent-based model: popMouv = 0.1; 

amp_diff = 0.1 
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Figure IV.3-12:  Microbiome kinetics on individual surface cells considering bacterial mobility 

and [𝑨𝑴𝑷𝒃] diffusion, corresponding to the average kinetics from Figure IV.3-10. The single 

cell trajectories of the commensal population [𝑆𝑐] and the oportunistic pathogen [𝑆𝑝] on single 

surface cells, with popMouv =0.1 and amp_diff=0.1, are shown in (A) and (B) respectively. Each 

color corresponds to the trajectory observed on one randomly selected surface cell. The time 

unit is a simulation step, representing 30 minutes. 𝑟𝑠𝑐 = 0.5 ; 𝑟𝑠𝑝 = 1; 𝑘𝑐 = 0.01; 𝐶1 = 5.10
6 ; 

[𝐴𝑀𝑃ℎ] = 1.5; [𝑆𝑐]𝑖𝑛𝑖𝑡 = 10
5; [𝑆𝑝]𝑖𝑛𝑖𝑡 = 10

3; [𝐴𝑀𝑃𝑏]𝑖𝑛𝑖𝑡 = 0. 
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IV.4. Host-microbiome interactions 

Integrating a model of 2 competitive bacterial populations into an agent-based model 

already provides interesting insights on how the dynamic nature of the epidermis might 

influence the microbiome balance. To go towards a more integrative model of atopic 

dermatitis, it would be relevant to connect this simple model of microbiome evolution with 

the epidermal barrier function and inflammatory reaction. This section discusses potential 

ways to implement the interactions between the different phenomenon and some early 

developments explored. 

 

IV.4.1. AMPs 

As a first approach, the human AMPs, were implemented as a user-defined constant, 

AMPs, contributing to the killing of the pathogen population 𝑆𝑝. Even though it is reasonable 

to consider [𝐴𝑚𝑝ℎ] constant at the surface given stable genetic background and 

environmental conditions, a more realistic approach would take into account the kinetics of 

AMPs production by the keratinocytes. Only the cells of the viable epidermis are capable of 

synthetic activity. However, enzymatic activity is still possible within the SC (Pouillot et al. 

2008). Therefore, a possible recurrence reaction for [𝐴𝑚𝑝ℎ] kinetics could be: 

 

[𝐴𝑚𝑝ℎ]𝑛 = [𝐴𝑚𝑝ℎ]𝑛−1 + 𝑝𝑎ℎ[𝐴𝑚𝑝ℎ]𝑛−1 − 𝑑𝑎ℎ[𝐴𝑚𝑝ℎ]𝑛 

 

Where [𝐴𝑚𝑝ℎ]𝑛, [𝐴𝑚𝑝ℎ]𝑛−1, represent the intracellular concentration of 𝐴𝑚𝑝ℎ at the 

current and previous simulation step respectively. The production rate would be set to 0 for 

cells of the SC. Similarly, to the discretization strategy chosen for 𝐴𝑚𝑝𝑏 in section IV.2.2, the 

degradation rate 𝑑𝑎ℎ is applied to the concentration of 𝐴𝑚𝑝ℎ at the current step. 

The recurrence relation can be reduced to the following geometric progression: 

 

[𝐴𝑚𝑝ℎ]𝑛 =
1 +  𝑝𝑎ℎ

1 +  𝑑𝑎ℎ
[𝐴𝑚𝑝ℎ]𝑛−1 
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Assuming 𝑝𝑎ℎ  >  𝑑𝑎ℎ, the concentration of 𝐴𝑚𝑝ℎ will increase gradually in the viable 

epidermis. Once the keratinocyte differentiates into a corneocyte and loses the synthetic 

capacity, [𝐴𝑚𝑝ℎ] will converge to 0. Therefore, the value of 𝑑𝑎ℎ needs to be selected so that 

there is still some [𝐴𝑚𝑝ℎ] present when the agent reaches the surface and interacts with the 

bacteria. 

 

The AMPs produced by the keratinocytes would also be brought to the surface through 

a gradient-based diffusion process. At each time step, the agents would exchange [𝐴𝑚𝑝ℎ] 

with their neighbors, proportionally to the concentration gradient and a diffusion coefficient 

amph_diff. Variations of 𝑝𝑎ℎ and 𝑑𝑎ℎ will be used to model the reduced level of AMPs 

observed in AD skin.  

 

IV.4.2. Bacterial metabolites  

Several studies suggest that some species of the microbiome influence the skin 

metabolism. Commensals such as S. epidermidis, stimulate the production of ceramides 

(Zheng et al. 2022), or produce anti-inflammatory molecules (Yu et al. 2019). On the other 

side, pathogens such as S. aureus stimulate the inflammatory reaction (Laborel-Préneron et 

al. 2015). All the mechanisms previously mentioned either happen or are initialized in the 

viable epidermis, below the SC. As stated before, the bacteria rarely permeate through SC 

barrier outside of an infection. This implies the existence of a mechanism allowing bacteria to 

act on cells of the viable epidermis from the surface. 

 

In the agent-based model, a production of population-specific metabolites could be 

implemented, proportionally to the population sizes. The bacterial metabolites will then 

diffuse through the skin in a gradient-dependent manner, to reach the viable epidermis. Once 

in the viable epidermis, the bacterial metabolites could influence the production or 

degradation of human AMPs or trigger the production of inflammatory molecules. 
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IV.4.3. Amino acids  

A recent multi-omics analysis on skin, combining microbiome and metabolome data, 

revealed the existence of three major clusters, associating bacterial genus with metabolic 

pathways (P.-F. Roux, Oddos, and Stamatas 2022). One of these three clusters regroups 

several genera, including Staphylococcus, with sugars, amino acids (AA), peptides and vitamin 

B6. This correlation could be implemented in the agent-based, with some simplification 

assumption, considering that the bacterial populations described in the microbiome module 

belong to the Staphylococcus genus. 

 

The effect of AA could be implemented as a ratio RAA influencing the growth rates of 

both populations, although the exact nature of this positive correlation remains unclear: 

 

{
  
 

  
 𝑆𝑐𝑛 = 𝑆𝑐𝑛−1 +

1

2
 𝑆𝑐𝑛−1 (𝑟𝑠𝑐 (𝑅𝐴𝐴 −

𝑆𝑐𝑛−1
𝐾𝑠𝑐

) −
𝑑𝑠𝑐 𝑆𝑝𝑛−1
𝐶1 + 𝑆𝑝𝑛−1

)

𝑆𝑝𝑛 = 𝑆𝑝𝑛−1 +
1

2
 𝑆𝑝𝑛−1 (𝑟𝑠𝑝 (𝑅𝐴𝐴 −

𝑆𝑝𝑛−1
𝐾𝑠𝑝

) −
𝑑𝑠𝑝𝑏 𝐴𝑀𝑃𝑏𝑛−1
𝐶𝑎𝑏 + 𝐴𝑀𝑃𝑏𝑛−1

−
𝑑𝑠𝑝ℎ 𝐴𝑀𝑃ℎ

𝐶𝑎ℎ + 𝐴𝑀𝑃ℎ
)

𝐴𝑀𝑃𝑏𝑛=
2 𝐴𝑀𝑃𝑏𝑛−1 + 𝑘𝑐𝑆𝑐𝑛−1

2 +  𝑑𝑎

 

( 18) 

𝑅𝐴𝐴 equal to 1 would correspond to ideal growth conditions for the bacterial 

populations. 

 

It has been established that filaggrin breakdown products are responsible for 70% of 

the AA present in the SC (Scott, Harding, and Barrett 1982). As a first approach, it seems 

reasonable to consider filaggrin as the unique direct source of AA production in the model. 

Filaggrin is already present in the agent-based model and contributes to the differentiation of 

granulosum cells into corneocytes. However, filaggrin breakdown was not implemented in the 

model described by Stamatas et al. (Stamatas et al. 2021). 
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The following recurrence relations describe the degradation of filaggrin into AA in each 

SC cell, at each step: 

[𝑓𝑖𝑙𝑎𝑔]𝑛 = [𝑓𝑖𝑙𝑎𝑔]𝑛−1 − 𝑑𝑓𝑖𝑙𝑎𝑔 

[𝐴𝐴]𝑛 = [𝐴𝐴]𝑛−1 + 𝐶𝐴𝐴𝑑𝑓𝑖𝑙𝑎𝑔 

where [𝑋]𝑛 and [𝑋]𝑛−1 represent the concentrations of the variable 𝑋 at the current and 

previous step respectively. 𝑑𝑓𝑖𝑙𝑎𝑔 corresponds to the breakdown rate of filaggrin and 𝐶𝐴𝐴 is a 

scaling factor between filaggrin and AA. 

 

Clinical data of AA concentration according to skin depth measured with Raman 

spectroscopy were used to calibrate the model and define parameter values (Nikolovski et al. 

2008). The fit of simulated AA profile to clinical data is shown of Figure IV.4-1.  

 

The computation of RAA based on the intracellular [AA] is still to be defined. Given the 

complexity brought by the agent-based model, it would be relevant to study how the addition 

of RAA impacts the microbiome model separately, before implementing it in EPISIM. This 

correlation between AA and bacterial growth would be interesting to study, especially in the 

context of AD, where filaggrin and AA levels are significantly lower compared to healthy skin. 
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Figure IV.4-1: Simulated amino-acids (AA) profile in the stratum corneum (SC) compared to 

clinical data. The baseline quantity of AA in the cells is set to 60, 𝐶𝐴𝐴 = 5 and 𝑑𝑓𝑖𝑙𝑎𝑔 = 0.035. 

The clinical data were measured in vivo with Raman spectroscopy on 14 adults (103). 
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IV.5. Discussion 

The multi-agent model of the epidermis integrating the microbiome kinetics module 

predicts that the constant renewal of surface cells significantly affects bacterial growth, acting 

as a time-limiting factor. A high bacterial mobility also seems to impact negatively the 

pathogenic population and to a lesser extent, the commensal one. This would be an 

interesting aspect to investigate further, although it would be challenging to test in vitro. 

Further investigation on the computational model is warranted, to ensure the robustness of 

this observation to the modelling choices made. 

 

The quasi-stability phenomenon observed on the long timescale in the original ODE 

system can be reproduced by the agent-based model, provided that bacterial mobility values 

are sufficiently high. Under those conditions, the inverse steady state appears after the 

equivalent of 30 to 40 days (compared to approximately 12 days with the ODE model) of 

simulation. The biological relevance of such a long-time horizon may be challenged, as it is 

unlikely that the skin would be exposed to the exact same environment for 30 days.  

 

The implementation of host-microbiome interactions is still at an early stage. Several 

mechanisms could be included to allow for a more accurate modulization of microbiome 

dysbiosis on the skin surface. For instance, positive impact of the commensal population on 

the lipid and AMPs production could be implemented. Similarly, the contribution of the 

pathogenic population to the AD vicious circle of exacerbating inflammation and damaging 

the skin barrier, is also an important aspect to consider. 
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Chapter V - Conclusions and Perspectives 
 

V.1. Conclusions about our hybrid multiscale computational model of 

AD 

To answer our first research question on the influence of pH elevation on epidermis 

structure and function, we introduced a hybrid multiscale model. It combines a pre-existing 

ODE model describing the interactions between KLK and its inhibitor LEKTI at molecular scale, 

with an agent-based model of the epidermis. The molecular interactions, happening on a short 

timescale, impact the cellular scale through their action on corneocyte adhesion, 

subsequently affecting global tissue properties on a longer timescale. 

This hybrid multiscale model enabled us to better understand and visualize the role 

played by skin surface pH on the skin barrier function. By simulating two scenarios differing 

only in terms of KLK activity level, our model illustrates the key role played by pH on the 

barrier. An increase of KLK activity alone, due to a less acidic pH, is sufficient to affect 

significantly both the skin capacity to retain water and its permeability to irritant. Moreover, 

this alteration of the skin barrier function can result in a more intense inflammatory reaction. 

The effects highlighted here can begin to explain the propensity to irritation and dryness 

observed in AD or irritant contact dermatitis related to an elevation of skin pH. 

 

The second component of our computational model of AD concerns the microbiome. 

The objective of this research was the identification of conditions which might favor or inhibit 

the emergence of pathogenic populations in the skin microbiome. Such analyses can lead to 

insights about potential treatment strategies aiming at restoring a balanced microbiome. 

We have developed a simple ODE model of skin microbiome with 3 variables and 13 

parameters which were reduced to 5 parameters by using published data from the literature 

and steady state reasoning on the observations made in the biological experiments. Our 

bacterial population model is generic in the sense that we did not consider the peculiarities of 
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some specific bacterial populations, but on some general formulas of adversary population 

dynamics and influence factors.  

Perhaps surprisingly, we also showed that this simple model exhibits a meta-stability 

phenomenon, over a large range of biologically relevant parameter values, revealed by 

allowing the simulation to continue for times one order of magnitude longer than the reported 

experimental times. This observation questions the existence and importance of meta-

stability phenomena in real biological processes. It needs to be noted that an important 

assumption made in building the mathematical model was that the experimental data used to 

fit the model parameters correspond to “stable” states of the mathematical model. 

 

Finally, by combining the hybrid multiscale model with our bacterial population 

dynamic ODE system, we introduced the first multi-agent model of the epidermis including 

microbiome kinetics. This model is used to study how the constant renewal of surface cells 

impacts the microbiome balance. It predicts that the desquamation process poses an 

important constraint on bacterial growth, that can delay or even prevent the emergence of 

the opportunistic pathogen population dominance, under certain conditions. The model also 

predicts a detrimental effect of high bacterial mobility, requiring further investigation.  

The presence of the metastability phenomenon observed during the ODE model study, 

depends on a certain level of bacterial mobility on surface cells in the multi-agent model. 

Furthermore, the emergence of the true mathematical steady state is significantly delayed in 

the dynamic model of the epidermis, questioning even further its biological relevance. 

However, it is worth noticing that, a few cells staying long enough at the surface to reach the 

mathematical steady state are sufficient to induced a sustained switch of the overall surface 

microbiome. 

This work highlights the added value that hybrid models can bring in the study of 

complex systems. The combination of agent-based modelling with ODE system enables the 

simulation of population kinetics combined with dynamic structure. Moreover, it shows the 

value of studying the ODE model’s behavior independently prior to its integration in the agent-

based model. It facilitates greatly the analysis of the global behaviors observed when 

simulating the agent-based model. 
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Altogether, the computational model presented here provides a good baseline to the 

implementation of a dynamic integrative model of the epidermis representative of AD skin. 

Our hybrid model already enabled relevant predictions and raised interesting questions at the 

biological as well as the computational aspect. 

 

V.2. Perspectives for future work 

More aspects of the complex AD pathophysiology could be investigated as additional 

modules on the hybrid multiscale model introduced here. 

First, the study of how molecular mechanisms might affect the epidermis structure and 

function could be advanced. As mentioned previously, some cytokines which are overly 

expressed in AD, are downregulating filaggrin, contributing to the barrier dysfunction. This 

phenomenon could be implemented in the model by introducing in the model parameters and 

functions relating to cytokine production and effect on filaggrin in the granulosum layer. This 

may affect the cell differentiation processes in the model, since a certain amount of filaggrin 

is necessary to trigger the cornification of granular cells. Eventually, consequences on the 

formation and the quality of the skin barrier function could be expected, as well as potential 

structural disorganization of the SC. 

Moreover, integrating the altered lipids and ceramides expression observed in AD skin 

could be considered in our multi-agent model. The water exchanged between neighboring 

cells is directly dependent on the lipid concentration, which can enable the study of the impact 

of altered lipid expression on the skin capacity to retain water. 

 The role of pH could be investigated further by implementing it as a gradient in the 

SC, instead of considering it as constant. The parameters for the KLK-LEKTI module could then 

be computed according to this gradient. The gradient from neutral to acidic would result in 

the successive activation and inhibition of KLK. 

 

The microbiome model could be improved by the addition of a synergy mechanism 

between the commensal bacterial and the human AMPs against the pathogenic population, 

or the stimulation of keratinocyte production of AMPs by the commensal population. This 
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would reinforce the role played by AMPs on microbiome balance, an important mechanism in 

the context of AD. The AMP degradation by the pathogenic population could also be 

considered. 

Host-microbiome interactions is an active area of research where much remains to be 

understood. Part of it could be investigated with computational models, such as the one 

presented here. For instance, it would be interesting to study the opposite effects that 

commensal and pathogens seem to have on skin barrier and inflammation. Commensals such 

S. epidermidis produce anti-inflammatory molecules, whereas pathogens such as S. aureus 

exacerbate the inflammation process by producing superantigens. Implementing these kinds 

of mechanisms in our model will give a new dimension to the study of microbiome balance 

with specific consequences on skin physiology. 

 

We demonstrated with the hybrid model that surface cell desquamation has a 

significant impact on microbiome kinetics. Therefore, it would be relevant to study further this 

phenomenon in infant skin, especially as AD affects primarily children. Indeed, infant skin 

differs from that of the adult, both structurally and physiologically, with a continuously 

maturing barrier function and higher proliferation rates of basal cells, among other things. 

This higher proliferation is associated with higher desquamation rates of surface cells, which 

would then impact bacterial growth. This hypothesis could be tested by implementing our 

ODE model of microbiome into the agent-based model of infant epidermis described by 

Stamatas et al. (Stamatas et al. 2021). 

 

On the modeling methodology aspects, the metastability phenomenon observed with 

the ODE model is worth further investigation. Given that the metastable state turns out to be 

dominating in the hybrid agent-based model, it would be useful to be able to compute it 

mathematically and study it, like we usually do with steady states. “What is causing 

metastability?”, “Can we mathematically define conditions when it will be observed or not?”, 

are examples of questions that could be the subject of future research. 
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The agent-based formalism could be exploited even further to introduce cell-to-cell 

variability in the model parameters. Instead of defining parameter values common for all 

agents, the parameter values will be defined at the agent level, following a probability 

distribution. This will introduce more stochasticity in the model, which will be coherent with 

the variability observed in biology in general. 

 

Finally, when the interactions between skin barrier inflammation and microbiome are 

more thoroughly implemented in the model, it will be possible to assess the relative impact 

of each of these factors on AD. This type of model could be used to identify potential strategies 

to compensate one aspect or improve the symptoms in the long term. For instance, it would 

be useful to know if the enhancement of the commensal population with prebiotics or 

probiotics will be sufficient to break the vicious cycle characteristic of AD and recover 

microbiome balance.  
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Biocham Notebook – Simulations and analyses of the ODE model of skin 

microbiome 

 

 



ODE Model of Skin Microbiome

companion Biocham notebook associated to the article

Stability versus Meta-stability in a Model of Skin Microbiome

Eléa Thibault Greugny(1,2), Georgios N. Stamatas(1), and François Fages(2)

1 Johnson & Johnson Santé Beauté France, Issy-les-Moulineaux, France

2 Inria Saclay, Lifeware Team, Palaiseau, France

In [1]: clear_model.

set_units(time, hours).

set_units(substance, CFU).

set_units(volume, ASU).


Out[1]:

In [2]: da*Ab for Ab=>_.

kc*Sc for Sc=>Ab+Sc.

rsp*Sp for Sp=>2*Sp.

rsc*Sc for Sc=>2*Sc.

rsp*Sp^2/Ksp for Sp=>_.

rsc*Sc^2/Ksc for Sc=>_.

dspb*Ab*Sp/(Cab+Ab) for Ab+Sp=>Ab.

dsph*Ah*Sp/(Cah+Ah) for Sp=>_.

dsc*Sp*Sc/(C1+Sp) for Sp+Sc=>Sp.


Out[2]:

In [3]: parameter(Ksc=4e8,Ksp=3e9,Cab=0.16,Cah=8).

function dsc = rsc*((3*C1/4e9) + 3/4).

function dspb = 5*rsp/4 .

function dsph = 2*rsp.

function da = 1e8*kc*(56 + 31*Ah)/(2.56*(4-Ah)).


Out[3]:

In [4]: present(Sp,sp0).

present(Sc,sc0).

present(Ab,0).


Out[4]:



Ab*da for Ab=>_.

Sc*kc for Sc=>Ab+Sc.

Sp*rsp for Sp=>2*Sp.

Sc*rsc for Sc=>2*Sc.

Sp^2/Ksp*rsp for Sp=>_.

Sc^2/Ksc*rsc for Sc=>_.

Ab*Sp*dspb/(Ab+Cab) for Ab+Sp=>Ab.

Ah*Sp*dsph/(Ah+Cah) for Sp=>_.

Sc*Sp*dsc/(C1+Sp) for Sc+Sp=>Sp.

initial_state(Sp=sp0).

initial_state(Sc=sc0).

initial_state(Ab=0).

parameter(
  Ksc = 400000000.0,

  Ksp = 3000000000.0,

  Cab = 0.16,

  Cah = 8

).

function(

  dsc = rsc*(3*C1/4000000000.0+3/4),

  dspb = 5*rsp/4,

  dsph = 2*rsp,

  da = 100000000.0*kc*(56+31*Ah)/(2.56*(4-Ah))

).


Reproducing Kohda et al. (2021) coculture
experimental data

In [5]: list_model.


Out[5]:

In [6]: parameter(sp0 = 1e3, sc0 = 1e5).

draw_influences.

Out[6]:



Parameter values reproducing the experimental results showing

stabilization at 40-50 hours of Sc=1e8 and Sp=1e9

with initial conditions Sp(0)=1e3 and Sc(0)=1e5

2022-06-17 07:22:57.297 xcodebuild[2032:10721] Requested but did not find exte
nsion point with identifier Xcode.IDEKit.ExtensionSentinelHostApplications for 
extension Xcode.DebuggerFoundation.AppExtensionHosts.watchOS of plug-in com.ap
ple.dt.IDEWatchSupportCore

2022-06-17 07:22:57.298 xcodebuild[2032:10721] Requested but did not find exte
nsion point with identifier Xcode.IDEKit.ExtensionPointIdentifierToBundleIdent
ifier for extension Xcode.DebuggerFoundation.AppExtensionToBundleIdentifierMa
p.watchOS of plug-in com.apple.dt.IDEWatchSupportCore


In [7]: option(time:50).

function normSc = Sc*1e-8.

function normSp = Sp*1e-9.



parameter(sp0 = 1e3, sc0 = 1e5).


Out[7]:

In [8]: parameter(rsc=0.5,rsp=1,C1=5e6,kc=0.01,Ah=1.5).


Out[8]:

In [9]: option(show:{Sp, Sc}).

numerical_simulation.
plot.


Out[9]:

https://bokeh.org/


x1=0.996937/\y1=0.990333/\x2=0.999163/\y2=1.00058


 

 

 

0.989911


Robustness of the result with respect to variations of rsc, kc, Ah
parameter values

with coefficient of variation 0.1, 1, 10.
(robustness as mean satisfaction degree of the

behaviour specification).

x1=0.996937/\y1=0.990333/\x2=0.999163/\y2=1.00058


 

 

 

0.989911


 

 

 

Time: 7.62 s

Robustness degree: 0.873042


 

 

 


In [10]: validity_domain(F(Time==40 /\ normSc = x1 /\ normSp = y1 /\ F(G(normSc = x2 /\

Out[10]:

In [11]: satisfaction_degree(

    F(Time==40 /\ normSc = x1 /\ normSp = y1 /\ F(G(normSc = x2 /\ normSp = y2
    [x1 -> 1, x2 -> 1, y1 -> 1, y2 -> 1]

).


Out[11]:

In [12]: validity_domain(F(Time==40 /\ normSc = x1 /\ normSp = y1 /\ F(G(normSc = x2 /\

Out[12]:

In [13]: satisfaction_degree(

    F(Time==40 /\ normSc = x1 /\ normSp = y1 /\ F(G(normSc = x2 /\ normSp = y2
    [x1 -> 1, x2 -> 1, y1 -> 1, y2 -> 1]

).


Out[13]:

In [14]: seed(1).

robustness(F(Time==40 /\ normSc = x1 /\ normSp = y1 /\ F(G(normSc = x2 /\ norm
    [rsc, kc, Ah], 

    [x1 -> 1, x2 -> 1, y1 -> 1, y2 -> 1],

    robustness_coeff_var:0.1).


Out[14]:

In [15]: seed(1).

robustness(F(Time==40 /\ normSc = x1 /\ normSp = y1 /\ F(G(normSc = x2 /\ norm
    [rsc, kc, Ah], 

    [x1 -> 1, x2 -> 1, y1 -> 1, y2 -> 1],

    robustness_coeff_var:1).


Out[15]:



Time: 6.14 s

Robustness degree: 0.416083


 

 

 

Time: 5.728 s

Robustness degree: 0.771204


 

 

 

Time: 6.674 s

Robustness degree: 0.327892


Conditions of healthy microbiome balance
Parameter values reproducing a healthy skin microbiome

stabilizing at 40-50 hours with inverse balance with order of magnitude Sc=1e8, Sp=1e5

starting from Sp(0)=1e3 and Sc(0)=1e5

parameter(
  Ksc = 400000000.0,

  Ksp = 3000000000.0,

  Cab = 0.16,

  Cah = 8,
  sp0 = 1000.0,

  sc0 = 100000.0,

  rsc = 0.5,

  rsp = 0.5,


In [16]: seed(1).

robustness(F(Time==40 /\ normSc = x1 /\ normSp = y1 /\ F(G(normSc = x2 /\ norm
    [rsc, kc, Ah], 

    [x1 -> 1, x2 -> 1, y1 -> 1, y2 -> 1],

    robustness_coeff_var:10).


Out[16]:

In [17]: seed(1).

robustness(F(Time==40 /\ normSc = x1 /\ normSp = y1 /\ F(G(normSc = x2 /\ norm
    [rsc, kc, Ah], 

    [x1 -> 1, x2 -> 1, y1 -> 1, y2 -> 1],

    robustness_coeff_var:100).


Out[17]:

In [18]: parameter(sp0 =1e3, sc0=1e5).

function safeSc = Sc*1e-8.

function safeSp = Sp*1e-5.


Out[18]:

In [19]: parameter(rsc=0.5,rsp=0.5,C1=2e8,kc=0.01,Ah=3).


Out[19]:

In [20]: list_parameters.

Out[20]:



  C1 = 200000000.0,

  kc = 0.01,

  Ah = 3

).


x1=3.99838/\y1=0.947149/\x2=3.99763/\y2=1.42024


 

0.946372


Sensitivity to parameter values

 

Time: 5.233 s

Robustness degree: 0.594962


 


In [21]: numerical_simulation.
plot.


Out[21]:

In [22]: validity_domain(F(Time==40 /\ safeSc = x1 /\ safeSp = y1 /\ F(G(safeSc = x2 /\

Out[22]:

In [23]: satisfaction_degree(F(Time==40 /\ safeSc = x1 /\ safeSp = y1 /\ F(G(safeSc = x
[x1 -> 4, x2 -> 4, y1 -> 1, y2 -> 1.4]).


Out[23]:

In [24]: robustness(F(Time==40 /\ safeSc = x1 /\ safeSp = y1 /\ F(G(safeSc = x2 /\ safe
    [rsc],[x1 -> 4, x2 -> 4, y1 -> 1, y2 -> 1.4], robustness_coeff_var: 0.2).


Out[24]:

In [25]: robustness(F(Time==40 /\ safeSc = x1 /\ safeSp = y1 /\ F(G(safeSc = x2 /\ safe
    [rsp],[x1 -> 4, x2 -> 4, y1 -> 1, y2 -> 1.4], robustness_coeff_var: 0.2).


Out[25]:

https://bokeh.org/


Time: 5.45 s

Robustness degree: 0.524697


 

Time: 5.117 s

Robustness degree: 0.946408


 

Time: 5.284 s

Robustness degree: 0.946185


 

Time: 4.983 s

Robustness degree: 0.476586


 

Time: 5.516 s

Robustness degree: 0.161896


 

Time: 4.57 s

Robustness degree: 0.567383


Global sensitivity to some parameter pairs

 

Time: 3.702 s

Robustness degree: 0.519691


 

Time: 4.1 s

Robustness degree: 0.340808


Metastability Revealed on a Long Time Scale

In [26]: robustness(F(Time==40 /\ safeSc = x1 /\ safeSp = y1 /\ F(G(safeSc = x2 /\ safe
    [C1],[x1 -> 4, x2 -> 4, y1 -> 1, y2 -> 1.4], robustness_coeff_var: 10).


Out[26]:

In [27]: robustness(F(Time==40 /\ safeSc = x1 /\ safeSp = y1 /\ F(G(safeSc = x2 /\ safe
    [kc],[x1 -> 4, x2 -> 4, y1 -> 1, y2 -> 1.4], robustness_coeff_var: 1.0).


Out[27]:

In [28]: robustness(F(Time==40 /\ safeSc = x1 /\ safeSp = y1 /\ F(G(safeSc = x2 /\ safe
    [Ah],[x1 -> 4, x2 -> 4, y1 -> 1, y2 -> 1.4], robustness_coeff_var: 0.2).


Out[28]:

In [29]: robustness(F(Time==40 /\ safeSc = x1 /\ safeSp = y1 /\ F(G(safeSc = x2 /\ safe
    [sp0],[x1 -> 4, x2 -> 4, y1 -> 1, y2 -> 1.4], robustness_coeff_var: 10).


Out[29]:

In [30]: robustness(F(Time==40 /\ safeSc = x1 /\ safeSp = y1 /\ F(G(safeSc = x2 /\ safe
    [sc0],[x1 -> 4, x2 -> 4, y1 -> 1, y2 -> 1.4], robustness_coeff_var: 10).


Out[30]:

In [31]: robustness(F(Time==40 /\ safeSc = x1 /\ safeSp = y1 /\ F(G(safeSc = x2 /\ safe
    [rsc,rsp],[x1 -> 4, x2 -> 4, y1 -> 1, y2 -> 1.4], robustness_coeff_var: 0

Out[31]:

In [32]: robustness(F(Time==40 /\ safeSc = x1 /\ safeSp = y1 /\ F(G(safeSc = x2 /\ safe
    [sc0,sp0],[x1 -> 4, x2 -> 4, y1 -> 1, y2 -> 1.4], robustness_coeff_var: 10

Out[32]:



The previous seemingly stable state on the 50 hours time scale of the experiments is in fact

a metastable state which is reversed after 200 hours.

t=209.522


This phenomenon appears above a threshold value for Ah>2.5 on a longer time scale

In [33]: option(time:500).


Out[33]:

In [34]: numerical_simulation.
plot.


Out[34]:

In [35]: validity_domain(F(Time=t /\ Sp==Sc)).


Out[35]:

In [36]: parameter(Ah=2.5).

numerical_simulation(time:1e5).

plot.


https://bokeh.org/


t=6067.17


Comparing 2 pH conditions on healthy
condition

Low pH (around 5) - healthy skin

Out[36]:

In [37]: validity_domain(F(Time=t /\ Sp==Sc)).


Out[37]:

In [38]: parameter(Ah=2.49).

numerical_simulation(time:1e10).

plot.


Out[38]:

https://bokeh.org/
https://bokeh.org/


20447.400000


Timeout set to 600000

In [39]: option(time:50).

parameter(rsc=0.5,rsp=0.3,C1=2e8,kc=0.01,Ah=3).

parameter(sc0=1e5, sp0=1e3).


Out[39]:

In [40]: numerical_simulation.
plot.

satisfaction_degree(F(Time==40 /\ (Sc > u1*Sp) /\ F(G(Sc > u2*Sp))),[u1 -> 10

Out[40]:

In [10]: %timeout 600000


Out[10]:

In [42]: scan_parameters(F(Time==40 /\ (Sc > u1*Sp) /\ F(G(Sc > u2*Sp))),

    (1e5 <= sp0 <= 1e6), (1e3 <= sc0 <= 5e4), [u1 -> 10, u2 -> 10], resolution

https://bokeh.org/


 

Time: 3178.45 s

Mean satisfaction (robustness): 0.600085, standard deviation: 0.654062

Maximum satisfaction: 1.000000

Best solutions found with 100000.000000<=sp0<=1000000.000000, 1000.000000<=sc0
<=50000.000000


Higher pH (around 6.5) - compromised skin

Out[42]:

In [43]: parameter(rsc=0.9,rsp=1.3,C1=2e8,kc=0.01,Ah=3).

parameter(sc0=1e5, sp0=1e3).


Out[43]:

In [44]: numerical_simulation.
plot.

satisfaction_degree(F(Time==40 /\ (Sc > u1*Sp) /\ F(G(Sc > u2*Sp))),[u1 -> 10



17.876800


 

 

Time: 3.227 s

Stopping reason: Fitness: function value -9.38e-01 <= stopFitness (1.00e-04)

Best satisfaction degree: 16.005285

[0] parameter(sp0=22778.239766146624)

[1] parameter(sc0=29330926.381110094)


 

Time: 2939.596 s

Mean satisfaction (robustness): 0.389989, standard deviation: 0.602861

Maximum satisfaction: 1.000000

Best solutions found with 10000.000000<=sp0<=84482.758621, 10000000.000000<=sc
0<=100000000.000000


Comparing AMP production level by the skin

Low production of AMPs (Ah = 0.5)

Out[44]:

In [45]: search_parameters(F(Time==40 /\ (Sc > u1*Sp) /\ F(G(Sc > u2*Sp))),

    [1e4 <= sp0 <= 1e6, 1e3 <= sc0 <= 1e8], [u1 -> 10, u2 -> 10], cmaes_log_no
    cmaes_init_center: yes).


Out[45]:

In [46]: scan_parameters(F(Time==40 /\ (Sc > u1*Sp) /\ F(G(Sc > u2*Sp))),

    (1e4 <= sp0 <= 1e5), (1e7 <= sc0 <= 1e8), [u1 -> 10, u2 -> 10], resolution

Out[46]:

https://bokeh.org/


2138.560000


In [11]: parameter(rsc=0.5,rsp=0.5,C1=2e8,kc=0.01,Ah=0.5).

parameter(sc0=1e5, sp0=1e3).


Out[11]:

In [12]: numerical_simulation.
plot.

satisfaction_degree(F(Time==40 /\ (Sc > u1*Sp) /\ F(G(Sc > u2*Sp))),[u1 -> 10

Out[12]:

In [13]: scan_parameters(F(Time==40 /\ (Sc > u1*Sp) /\ F(G(Sc > u2*Sp))),

    (1e4 <= sp0 <= 5e5), (1e4 <= sc0 <= 1e6), [u1 -> 10, u2 -> 10], resolution

https://bokeh.org/


 

Time: 3267.186 s

Mean satisfaction (robustness): 0.477428, standard deviation: 0.646201

Maximum satisfaction: 1.000000

Best solutions found with 10000.000000<=sp0<=500000.000000, 10000.000000<=sc0<
=1000000.000000


High production of AMPs (Ah = 3)

Out[13]:

In [14]: parameter(rsc=0.5,rsp=0.5,C1=2e8,kc=0.01,Ah=3).

parameter(sp0=1e3,sc0=1e5).


Out[14]:

In [15]: numerical_simulation.
plot.

satisfaction_degree(F(Time==40 /\ (Sc > u1*Sp) /\ F(G(Sc > u2*Sp))),[u1 -> 10



2805.760000


 

Time: 3204.896 s

Mean satisfaction (robustness): 0.449891, standard deviation: 0.626255

Maximum satisfaction: 1.000000

Best solutions found with 10000.000000<=sp0<=466206.896552, 10000.000000<=sc0<
=1000000.000000


Out[15]:

In [16]: scan_parameters(F(Time==40 /\ (Sc > u1*Sp) /\ F(G(Sc > u2*Sp))),

    (1e4 <= sp0 <= 5e5), (1e4 <= sc0 <= 1e6), [u1 -> 10, u2 -> 10], resolution

Out[16]:

In [ ]: 


https://bokeh.org/
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Résumé : La dermatite atopique (DA) est une 

maladie chronique affectant jusqu’à 20% des 

jeunes enfants, en fonction des pays, et environ 

10% des adultes dans le monde. Elle se traduit 

par une sécheresse cutanée, d’intenses 

démangeaisons et la formation de lésions. 

Malgré des traitements efficaces à base 

d’anticorps monoclonaux pour les formes les 

plus sévères, les mécanismes complexes 

impliqués sont encore mal compris et des progrès 

restent à faire pour soulager les formes plus 

légères de cette maladie. Divers facteurs 

contribuent à la DA tels qu’une fonction barrière 

réduite, une inflammation cutanée exacerbée et 

un déséquilibre du microbiome. Cette 

multiplicité de facteurs et leur lien étroit rendent 

difficile le développement des malades in vitro. 

 L’approche computationnelle permet de 

rassembler les connaissances actuelles sur la 

maladie et de prédire le comportement du 

système sous certaines conditions, tout en 

facilitant la visualisation des phénomènes 

impliqués. Tout d’abord, nous introduisons un 

modèle à agent de l’épiderme capable de 

représenter certains aspects de la DA tels que le 

dysfonctionnement de la barrière cutanée, et le 

déséquilibre du microbiome. En intégrant les 

réactions enzymatiques contribuant au processus 

de desquamation dans un modèle à agent de 

l’épiderme existant, il est possible d’étudier 

l’impact du pH de la peau sur la structure et la 

fonction de l’épiderme. 

 

 Dans un deuxième temps, nous 

présenterons un modèle basé sur des équations 

différentielles ordinaires, décrivant les 

interactions de 2 types de populations 

bactériennes (les espèces commensales et les 

pathogènes opportunistes) afin d’étudier les 

mécanismes responsables de la prédominance 

d’une population sur l’autre. Sur une échelle de 

temps similaire à celle des expériences, le 

modèle prédit que certaines modifications de 

l’environnement, telles que l’augmentation du 

pH, créent des conditions favorables pour 

l’émergence et la colonisation de la peau par des 

pathogènes opportunistes. De façon surprenante, 

pour certaines valeurs de paramètres, un état 

méta-stable, atteint après l’équivalent de 2 jours 

suivant l’introduction des bactéries dans le 

modèle, est suivi par un état stable inverse après 

environ 300 heures. 

 Enfin, nous intégrons le modèle 

mathématique du microbiome dans le modèle à 

agents. Une attention particulière est portée sur 

l’échelle de temps des processus décrits ainsi que 

sur leur localisation dans l’épiderme. Le modèle 

ainsi obtenu est utilisé pour étudier l’impact du 

renouvellement constant des cellules de surface 

sur la dynamique du microbiome. Ce travail 

apporte des preuves supplémentaires de la 

pertinence de considérer le pH cutané, les 

protéases sérines et le microbiome comme de 

potentiels leviers pour le traitement de la DA. 
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Abstract: Atopic dermatitis (AD) is a common 

chronic disease affecting up to 20% of young 

children, depending on countries, and around 

10% of adults globally. It manifests as dry, itchy 

and sometimes cracked skin lesions on the face 

and body. Despite efficient immunotherapy 

treatments for the most severe forms of the 

disease, the complex mechanisms involved are 

still incompletely understood and improvements 

can be made regarding management strategies 

for milder forms. AD involves diverse 

interacting factors such as impaired skin barrier 

function, exacerbated inflammation, and 

microbiome dysbiosis, making it challenging to 

develop adequate in vitro models. 

 A computational approach allows the 

aggregation of current pathophysiology 

knowledge, facilitates the visualization of the 

phenomena involved, and enables the prediction 

of certain behaviors of the system under specific 

conditions. First, we introduce an agent-based 

model of the epidermis, able to represent aspects 

of atopic skin such as skin barrier dysfunction 

and microbiome dysbiosis. By integrating 

enzymatic reactions contributing to the 

desquamation process, into an existing agent-

based model of the epidermis at the cellular 

level, we can study the impact of skin surface 

pH on the epidermal structure and function. The 

model predicts that an elevation of skin surface 

pH above physiologic levels accelerates the 

desquamation process through its action on 

serine proteases. This results in a significant 

reduction of the skin’s capacity to retain water, 

and increases its permeability to external 

penetration, including irritants. This skin barrier 

impairment further leads to a more intense 

inflammatory reaction under conditions of high 

skin surface pH, compared to physiologic pH 

levels. 

 

 Next, we introduce a mathematical 

model of the microbiome, based on ordinary 

differential equations, with 2 types of bacteria 

populations (skin commensals and opportunistic 

pathogens) to study the mechanisms driving the 

dominance of one population over the other. On 

the time scale of the experiments, the model 

predicts that certain changes of the environment, 

like the elevation of skin surface pH from 

physiologic levels, create favorable conditions 

for the emergence and colonization of the skin 

by opportunistic pathogens. Interestingly, for 

certain parameter values, a meta-stable state 

settled at around 2 days following the 

introduction of bacteria in the model, is followed 

by a reversed stable state after 300 hours. 

 Finally, we integrate the mathematical 

model of the microbiome into the agent-based 

model. Special consideration is taken regarding 

the timescales of the processes described and 

their location in the epidermis. The resulting 

model is used to study how the constant surface 

cells renewal impacts the microbiome kinetics. 

This work provides additional evidence that skin 

surface pH, serine proteases and skin 

microbiome could be interesting therapeutic 

targets for AD maintenance therapy. 
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