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Résumé : Dans de nombreuses situations réelles, 

nous devons prendre des décisions précoces sans 

avoir une connaissance complète du problème. Le 

problème auquel sont confrontés les décideurs est 

que, généralement, plus la décision est retardée, 

plus le résultat probable est clair, mais aussi plus le 

coût sera élevé, car des décisions précoces 

permettent de mieux se préparer. Ce compromis 

précocité-précision est principalement présent dans 

le problème de la classification précoce des séries 

temporelles (ECTS). Un framework générique 

sensible aux coûts a été présenté pour résoudre ce 

problème, et une nouvelle implémentation a été 

proposée. Cependant, ce problème souffre de 

multiples limitations identifiées lors de cette thèse. 

Deux limites ont été abordées. La première est 

l'irrévocabilité des décisions. Un nouvel algorithme à  

régime révocable a été proposé pour modifier la 

décision prise en cas de réception de nouvelles 

mesures de la série remettant en cause l'ancienne 

décision. La deuxième limite est que l'ECTS est 

limité à des séries chronologiques de longueur 

finie et une seule étiquette associée à la série 

chronologique complète. Le nouvel algorithme 

proposé est capable de traiter des séries 

chronologiques sans limites temporelles et où 

différents événements surviennent, 

éventuellement de longueurs différentes, chacun 

avec son étiquette de classe. Enfin, un problème 

général sous le nom de ML-EDM (prise de 

décision précoce basée sur l'apprentissage 

machine) a été formalisé et dix défis ont été 

proposés à la communauté scientifique pour des 

recherches plus approfondies. 

 

 

Title : From the early classification of time series to machine learning-based early decision-making 
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Abstract : In numerous real-world situations, we 

have to make early decisions without complete 

knowledge of the problem. The issue facing the 

decision makers is that, usually, the longer the 

decision is delayed, the clearer the likely outcome, 

but also the higher the cost that will be incurred if 

only because earlier decisions allow one to be better 

prepared. This earliness-accuracy trade-off is mainly 

involved in the Early Classification of Time Series 

(ECTS) problem. A generic cost-sensitive framework 

has been presented to solve this problem, and a 

novel implementation has been proposed. However, 

the ECTS problem suffers from multiple limitations 

identified in this thesis. Two limitations have been 

tackled. The first one is the irrevocability of  

decisions. A novel revocable regime algorithm has 

been proposed to change the decision taken in 

case of receipt of new measurements of the series 

that question the old decision. The second 

limitation is that ECTS is limited to time series with 

finite length and a single label associated with the 

complete time series. The novel proposed 

algorithm is capable of dealing with time series 

with no time bounds and where different events 

arise, possibly of different lengths, each with its 

class label. Finally, a generic problem under the 

name ML-EDM (machine learning-based early 

decision-making) with the rest of the ECTS 

limitations have been suggested to the scientific 

community for further research. 

 



 

Résumé de la thèse 

 

Dans de nombreuses situations réelles, nous devons prendre des 

décisions précoces sans avoir une connaissance complète du 

problème. Le problème auquel sont confrontés les décideurs est que, 

généralement, plus la décision est retardée, plus le résultat probable 

est clair, mais aussi plus le coût sera élevé, car des décisions précoces 

permettent de mieux se préparer. Ce compromis précocité-précision 

est principalement présent dans le problème de la classification 

précoce des séries temporelles (ECTS). Nous présentons un critère 

d'optimisation qui prend en compte à la fois le coût de mauvaise 

classification et le coût du retardement de la décision. Sur la base de 

ce critère d'optimisation, nous avons dérivé une famille d'algorithmes 

non myopes qui tentent d'anticiper le gain d'information futur 

attendu en équilibre avec le coût de l'attente, C’est-à-dire que les 

décisions prises sont basées sur ce qui peut se passer dans le futur. 

Dans une classe d'algorithmes, non supervisés, les attentes utilisent le 

regroupement de séries temporelles, tandis que dans une deuxième 

classe, basée sur la supervision, les séries temporelles sont 

regroupées en fonction Des expérimentaions approfondies sur des 

ensembles de données réelles en utilisant une large gamme de 

fonctions de coût d’attente montrent que les algorithmes présentés 

sont capables de résoudre le compromis entre la précocité et la 

précision, avec la partition supervisée. Les approches supervisées 

basées sur des partitions s'en sortent mieux que celles non 

supervisées basées sur des partitions. En outre, toutes ces méthodes 

sont plus performantes dans une grande variété de conditions 

qu'une méthode de l'état de l'art basée sur une stratégie stratégie 

myopique qui est reconnue comme étant très compétitive. De plus, 

nos expériences montrent que la caractéristique non-myopique des 

approches proposées explique en grande partie les performances 

obtenues. Cependant, Le problème de la classification précoce des 

séries temporelles souffre de multiples limitations identifiées lors de 

cette thèse.  

 



 

 

Deux limites ont été abordées. La première est l'irrévocabilité des 

décisions. Dans le problème de l’ECTS une fois la décision prise, le 

processus de collecte de nouvelles mesures est terminé, et une 

étiquette de classe est prédite. Dans le régime révocable nous 

continuons à recevoir de nouvelles mesures même si une étiquette 

de classe a été prédite. Dans de nombreuses situations, cependant, il 

est possible de prendre une décision puis de décider de la modifier 

après avoir obtenu de nouvelles informations. Le changement peut 

être coûteux mais néanmoins justifié car il semble susceptible de 

conduire à un résultat bien meilleur. C'est le cas, par exemple, 

lorsqu'un événement en plein air est annulé en raison d'un 

changement radical des prévisions météorologiques, ou lorsqu'un 

médecin révise ce qui semble maintenant être un mauvais diagnostic.  

Le problème consiste maintenant à identifier les séquences de 

décision optimales compte tenu d'une série de mesures entrantes et 

des différents coûts existants. L'impact d'une telle stratégie 

intelligente révocable pourrait avoir sur l'entretien des prévisions, les 

unités de soins intensifs, les voitures autonomes et bien d'autres 

domaines d'application où des décisions doivent être prises en 

optimisant les coûts des décisions erronées et des retards . Nous 

avons proposé un nouvel algorithme à  régime révocable pour 

modifier la décision prise en cas de réception de nouvelles mesures 

de la série remettant en cause l'ancienne décision. Dans cet 

algorithme, nous introduisons le coût de changement de décision ou 

de révocation. L’objectif étant de modéliser le coût de révocation aux 

instants futurs. L’intuition est si une décision est susceptible de 

changer dans le futur, il vaut mieux la changer le plus tôt possible. 

 La deuxième limite est que l'ECTS est limité à des séries 

chronologiques de longueur finie et une seule étiquette associée à la 

série chronologique complète. Dans le nouveau setting ECOTS que 

nous présentons, pendant un temps indéfini, de nouvelles mesures 

sont reçues à chaque pas de temps, et la série temporelle entrante 

consiste en de multiples morceaux ayant des étiquettes de classe 

différentes. Lors de la phase de test, l'utilisateur ne sait pas quand 

une partie spécifique avec une classe différente commence et quand 

elle se termine, contrairement au problème classique de l'ECTS où 

l'utilisateur sait que la série temporelle entrante se termine à un 



 

 

certain moment et où une seule étiquette de classe est associée à la 

série temporelle complète. Nous définissons correctement le 

problème ECOTS et, ensuite, nous présentons une méthodologie 

pour adapter toute approche ECTS au problème ECOTS. En 

conséquence, nous montrons i) comment le rôle des classificateurs 

doit être repensé et transformé ; ii) comment le compromis entre la 

précision et l'exactitude se traduit dans le nouveau scénario et ce que 

devient le système de déclenchement des décisions. Parmi la grande 

variété d'applications que cette nouvelle approche ouvre, nous 

développons un cas d'utilisation de maintenance prédictive qui 

optimise les temps de déclenchement des alarmes, démontrant ainsi 

la puissance de cette nouvelle approche. 

Finalement, nous proposons des directions de recherche pour 

étendre l'ECTS à un problème plus générique que nous appelons 

Prise de décision précoce basée sur l'apprentissage automatique 

(ML-EDM). Nous avons proposé dix défis proposés afin de 

développer des approches ML-EDM pour un large éventail de 

problèmes. Certains d'entre eux ont été abordés dans cette thèse, le 

reste est laissé à la communauté scientifique pour de futures 

recherches. Ces défis sont regroupés en différentes catégories, 

notamment les tâches d'apprentissage, les types de données, la prise 

de décision précoce en ligne et les décisions révocables. Ensuite, 

quelques exemples d'applications des techniques ML-EDM sont 

fournis. Enfin, nous concluons avec les perspectives de 

développement du domaine ML-EDM dans les années à venir. 
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is capable of dealing with time series with no time bounds and where different events
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ŷt ∈ Y Predicted class label at time stamp t.
DT The set of all possible sequences of class labels o f maximum length T.
Dopen

train = {(xi, yi)}m
i=1 Training set of open time series, labeled for each timestamp.

η ∈ Z Prediction horizon.
w Window size.
x(t−w,t) = ⟨xt−w, . . . , xt⟩ Subsequence of time series x between t− w and t.
ηm Minimal prediction horizon.
ηM Maximal prediction horizon.
G Set of groups of time series.
gk ∈ G Group of time series.
gt

k ∈ G Group of time series at timestamp t.
Dℓ Sequence of ℓ predictions.





1

Chapter 1

Introduction

In numerous real situations, we have to make early decisions in the absence of
complete knowledge of the problem at hand. For example, such decisions are necessary
for medicine (Mathukia et al., 2015) when a physician must make a diagnosis, possibly
leading to an urgent surgical operation, before having the results of all scheduled
medical tests. Another example is Eisenhower, in June 1944, having to decide when
to launch the landing on the French coast (Eisenhower, 1944). He had an imperfect
knowledge of the weather conditions. The longer he waited, the more precise they
became, allowing for a more informed decision: to launch the landing today or wait
for another day, but the more difficult it became to ensure that all arrangements
would be met and that the enemy remained unaware of the danger.

In such situations, the issue facing the decision-makers is that most of the time, the
longer the decision is delayed, the clearer is the likely outcome (e.g., the critical or not
critical state of the patient) but also the higher the cost that will be incurred if only
because decisions taken earlier allow one to be better prepared. In everyday life, we
thus seek to decide at the moment that seems to be the best compromise between the
earliness and the accuracy of our decision.

This earliness vs. accuracy dilemma is a key part of many decision-making scenar-
ios and is especially involved in the problem of Early Classification of Time Series
(ECTS). However, as we will see, it takes place in a larger perspective.

1.1 Early Classification of Time Series: a particular case

This section defines the problem of early classification of time series, and a set of
identified limitations are presented.

1.1.1 Problem setting

The ECTS problem consists in finding the optimal time to trigger the class prediction
of an input finite-length time series observed over time. As successive measurements
provide more and more information about the incoming time series, ECTS algorithms
aim to optimize online the trade-off between the earliness and the accuracy of their
decisions.

More formally, the individuals considered are time series of finite length T. At
testing time, the measurements of the incoming time series are received over time,
and the history of measurements available at time t is denoted by xt = ⟨x1, . . . , xt⟩.
It is assumed that each time series can be ascribed to some class y ∈ Y , and the task
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is to predict the class of each incoming time series as early as possible because a time-
increasing cost must be paid when the decision is triggered. In the ECTS problem, a
single decision is triggered for each incoming time series, which is irrevocable and
final. An ECTS approach is generally made of two main components (see Figure 1.1):

• (i) an hypothesis1 h ∈ H capable of predicting the class y ∈ Y of the incoming
series at any time, such that h(xt) = ŷ, ∀t ∈ [1, T].

• (ii) a triggering strategy capable of making decisions at the right moments,
denoted by Trigger.

Both the hypothesis and the triggering strategy are learned in batch mode (i.e.,
offline), using a training set made of complete time series with their associated labels.

FIGURE 1.1: General schema of ECTS approaches, with a special case
illustrating the early classification of normal vs suspicious account

from time series network data

1.1.2 Limitations of the ECTS problem

While ECTS covers a wide range of applications, it does not exhaust all cases where
a Machine Learning model can be applied on data acquired over time, and where
the trade-off between the earliness and the accuracy of decisions must be optimized.
Indeed, ECTS, as defined above, is limited to:

• a classification problem.

• an available training set which contains completely and properly labeled time
series.

• a decision deadline T that is finite, fixed and known.

• only one decision for each incoming time series.

• decisions that once made can never be reconsidered.

• fixed decision costs which do not depend on the triggering time and the deci-
sions made.

1An hypothesis is a candidate model which approximates the concept P(y|xt).



1.2. Thesis story 3

1.2 Thesis story

In summary, the primary purpose of this thesis is to question the assumptions
of the ECTS problem listed in 1.1.2, identify the main challenges of the field,
propose solutions to some of them and finally formalize an extension of ECTS
towards a more generic problem, that we call Machine Learning based Early
Decision-Making (ML-EDM), for which an official Github page has been created:
http://www.github.com/ML-EDM/

In this thesis, the main focus is put on the triggering strategy described in Section
1.1.1. Developping novel time series classification algorithms is out of the scope of
this thesis, we hypothesize that the time series classifier is supposed to be trained
independently and given by the user.

In the following, we highlight in a chronological order an overview of the crucial
questions of this thesis, provided with some response elements that will be detailed
later in the next chapters.

Could the state of the art of ECTS be improved? How to evaluate ECTS
approaches?

The approaches developed in the literature can be divided into cost-based ones and
the ones that make implicit assumptions about the cost of delay. In this thesis, we
claim that costs are essential for the decision-making process, especially the cost of
misclassification (cost of a false positive and a false negative in the case of binary
classification) and the cost of delaying the decision. These costs depend on the
application domain, and the user should provide them as prior information. The
ECONOMY -K method presented in (Dachraoui, Bondu, and Cornuéjols, 2015) has
the merit of taking into account explicitly these costs in the decision process. In
this thesis, we show that this method could be extended to a general framework for
ECTS, and we propose a novel approach that implements this framework. Extensive
experiments on a benchmark of 45 datasets from different domain areas show the
superiority of the proposed method ECONOMY-γ over the state of the art of the field.
Researchers in the literature used to evaluate ECTS approaches, by computing earli-
ness and accuracy independently. We propose the average cost incurred while using
an ECTS approach as the evaluation criterion. More details are presented in Chapter 3.

In the following, the questions concern the limitations of the ECTS problem that have
been addressed in this thesis.

If decisions could be revocable, what would be, if needed, the optimal
moment to revoke a decision?

Until now, the ECTS problem has been dealt with by considering only irrevocable
decisions. This new setting is slightly different and addresses this limitation; the
decision can be revoked at any time when new measurements arrive and question
the validity of the last decision taken. It is a challenging problem since the algorithm
should deal with the stability-reactivity dilemma and the accuracy-earliness one.
It should be able to revoke decisions only if it improves the performance. In this
thesis, in order to formalize and tackle this problem, we propose a new cost-based
framework and derive two new approaches from it. The first approach does not

http://www.github.com/ML-EDM/
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explicitly consider the cost of changing decisions, while the second does. Extensive
experiments are conducted to evaluate these approaches on a large benchmark of
real datasets. The empirical results obtained convincingly show (i) that the ability to
revoke decisions significantly improves performance over the irrevocable regime and
(ii) that taking into account the cost of changing decisions brings even better results
in general. More details are presented in Chapter 4.

If time series were open (indefinite length), and labeled in portions, how to
optimize online the accuracy-earliness tradeoff?

FIGURE 1.2: Example of a part of an open time series where events of
possibly different lengths are here labeled with ‘0s’ and ‘1s’.

This scenario addresses two limitations of ECTS, which are i) time series are of
finite length; ii) one unique label is associated with the complete time series. In this
thesis, for the first time, we investigate such a trade-off when events of different
classes occur in a streaming fashion, with no predefined end. In the Early Classification
in Open Time Series problem (ECOTS), the task is to predict events, i.e., their class
and time interval, at the moment that optimizes the accuracy vs. earliness trade-off.
Interestingly, we find that ECTS algorithms can sensibly be adapted in a principled
way to this new problem. We illustrate our methodology by transforming two state-
of-the-art ECTS algorithms for the ECOTS scenario. More details are presented in
Chapter 5.

Can we define a more generic problem than ECTS?

In this thesis, we claim that the earliness-accuracy trade-off is involved in a larger
perspective than the one defined in ECTS. It takes place whenever a machine learning
model is used on data acquired over time, and a decision should be taken as soon
as possible. We propose a new problem that we call Machine Learning based Early
Decision-Making (ML-EDM) that defines rigorously the learning task of a trigger
system in a generic setting as well as its positioning to classical decision-making
problems in the literature. More details are presented in Chapter 6.

What are the promising challenges that the scientific community needs to
tackle in order to develop ML-EDM approaches?

At the end of this thesis, a particular effort has been made to identify the main
challenges that the community needs to overcome in order to open the path to more
applications. In the following, a list of the proposed challenges is given in Table 1.1.
Some of the challenges were addressed in this thesis, and the other ones are left to
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the scientific community for future work. The challenges are detailed in Chapter 6
with their associated practical implications.

ML-EDM challenges Addressed
#1: Extending non-myopia to unsupervised approaches
#2: Addressing other supervised learning tasks
#3: Early weakly supervised learning (WSL)
#4: Data type agnostic ML-EDM Chapter 3
#5: Online predictions to be located in time Chapter 5
#6: Online accuracy vs. earliness trade-off Chapter 5
#7: Management of non-stationarity in ML-EDM
#8: Reactivity vs. stability dilemma for revocable decisions Chapter 4
#9: Non-myopia to revocation risk Chapter 4
#10: Scheduling strategy and time-dependent decision costs

TABLE 1.1: Overview of the challenges identified

#1: We have shown in this thesis that non-myopic approaches have enormous
potential in early classification of time series, the next step would be to extend them
to the unsupervised setting. This would open the path to more industrial applications
since supervised data is always difficult and costly to acquire.

#2 and #3: The idea is to extend existing approaches that consider the cost of
delaying a decision for classification towards approaches in new settings, namely
regression, time series forecasting, or weakly supervised learning.

#4: We argue that triggering models should be data type agnostic in order to deal
with any type of data that is enriched over time.

#5: Develop algorithms that can trigger decisions located in the future or the past.
For example, predict the state of the machine as soon as possible during the following
week.

#6: The compromise between accuracy and earliness should be optimized in more
generic scenarios, and not only in the setting of ECTS.

#7: Streaming environments evolve over time; thus, managing stationarity would
be of a great benefit to deploy ML-EDM models into production.

#8: On the one hand, the algorithm needs to be reactive by changing its decision
promptly when necessary. On the other hand, it is required to provide stable decisions
over time by avoiding excessively frequent and undue changes.

#9: A critical challenge is to estimate the future information gain by considering the
risk of revocation. Specifically, a decision that will probably be revoked afterward
should be delayed due to this risk. Conversely, a decision which promises to be
sustainable should be anticipated.



6 Chapter 1. Introduction

#10: We might think of a scheduling strategy which depends on the decision made
and the decision time. Such a scheduling strategy is helpful in applications where the
actions to be performed after a decision can be adapted to a time budget available to
perform them.

1.3 List of publications

• Early classification of time series. Y Achenchabe, A Bondu, A Cornuéjols, A
Dachraoui - Machine Learning, 2021. (Chapter 3)

• Early Classification of Time Series: Cost-based multiclass Algorithms. PE Zafar,
Y Achenchabe, A Bondu, A Cornuéjols, V Lemaire - IEEE 8th International
Conference on Data Science and Advanced Analytics (DSAA), 2021. (Chapter
3)

• Early and Revocable Time Series Classification. Y Achenchabe, A Bondu, A
Cornuéjols, V Lemaire - International Joint Conference on Neural Networks
(IJCNN), 2022. (Chapter 4)

• When to Classify Events in Open Time Series. Y Achenchabe, A Bondu, A
Cornuéjols, V Lemaire - The 14th Asian Conference on Machine Learning
ACML, 2022. (Chapter 5)

• Open challenges for Machine Learning based Early Decision-Making research.
A Bondu, Y Achenchabe, A Bifet, F Clérot, A Cornuéjols, J Gama, G Hébrail, V
Lemaire, PF Marteau - SIGKDD explorations journal, 2022. (Chapter 6)

The rest of the thesis is organized as follows, Chapter 2 presents some background
material and an overview of the state of the art of classification and early classification
of time series methods. In Chapter 3 the problem of ECTS is studied in-depth, and
a novel method is proposed and performs better than the best method of state
of the art on a benchmark of 45 datasets. Chapter 4 deals with the irrevocability
limitation of ECTS, a novel algorithm that models the risk of revocation is proposed
and assessed on a benchmark of datasets. In Chapter 5, two other limitations of
ECTS are dealt with. In fact, ECTS deals only with finite length time series, and
only one single label is assigned to the entire time series. A novel algorithm which
solves the trade-off between earliness and accuracy is proposed under this new
setting. In Chapter 6, a more generic problem is formalized and called Machine
Learning based Early decision-making (ML-EDM). It extends the ECTS problem to
more challenging decision-making problems. A list of 10 challenges is suggested to
the scientific community for further research. Chapter 7 summarizes the work done
in this thesis and gives research directions for future work.
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Chapter 2

Background and State of the art

Abstract

This chapter defines the necessary background to understand the rest of the
thesis. Moreover, an overview of time series classification methods is given.
In addition a detailed review of state of the art approaches of the problem of
early classification of time series (ECTS) is presented.

Some parts of the state of the art have been published in a journal paper:

• Early classification of time series. Y Achenchabe, A Bondu, A Cornuéjols, A
Dachraoui - Machine Learning, 2021
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Introduction

This chapter briefly presents Machine learning which is the core learning framework
used in this thesis. Then, it is applied on time series, in the form of a supervised
learning problem. Some basic notions about time series are defined for the reader
and can be skipped for experts in this research area. Afterwards, an overview of time
series classification methods is presented, and finally a detailed review of the state of
the art of early classification of time series approaches is discussed.

Machine learning framework

Machine learning, as defined in (Barber, 2012) is the study of data-driven methods
capable of mimicking, understanding, and aiding human and biological information
processing tasks. In this pursuit, many related issues arise, such as how to compress,
interpret and process data. Often these methods are not necessarily directed to
mimicking human processing directly but rather to enhance it, such as predicting the
stock market or retrieving information rapidly. Probability theory is essential since our
limited data and understanding of the problem force us to address uncertainty. In the
broadest sense, Machine Learning and related fields aim to learn valuable information
about the environment within which the agent operates. Machine Learning is also
closely allied with Artificial Intelligence, with Machine Learning emphasizing using
data to drive and adapt the model.

Most problems can be formalized as following: i) learning a predictive model; ii)
we observe an input x; iii) we make a prediction ŷ; iv) we evaluate the prediction
with respect to the true outcome.

Then we have two spaces: X the input space, and Y the outcome space.

More formally, let us start with some definitions:

Definition 2.0.1. Hypothesis function
A hypothesis or prediction function gets input x ∈ X and produces a label ŷ ∈ Y .

h :
{X → Y

x 7→ h(x) = ŷ

Definition 2.0.2. Loss function
A loss function evaluates a prediction with respect to the true label.

l :
{Y × Y → R

(ŷ, y) 7→ l(ŷ, y)

We assume that there is a data generating distribution PX×Y , from which samples
are drawn independently from the same distribution (i.i.d). The hypothesis function is
meant to do well on average, which means that the loss function associated with it is
small. It is called the risk.

Definition 2.0.3. Risk
The risk of a hypothesis function h is the expected loss of h on a new sample (x,y) drawn from
PX×Y .

l :
{H → R

h 7→ R(h) = E[l(h(x), y)]
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Remark. This expectation can not be computed because PX×Y is unknown.

Definition 2.0.4. Bayes hypothesis function
A Bayes hypothesis function h∗ : X → Y is the function that achieves the minimal risk
among all possible functions h∗ = Argminh∈HR(h).

Remark. This function is the target function since it is the best hypothesis function we can
produce.

However, we can not compute the risk, since we do not know PX×Y . But we can
estimate it if we have access to a training dataset {(x1, y1), . . . , (xm, ym)} of samples that
are drawn i.i.d from PX×Y .

Definition 2.0.5. Empirical risk
The empirical risk of h with respect to {(x1, y1), . . . , (xm, ym)} of samples that are drawn i.i.d
from PX×Y is:

R̂m(h) =
1
m

m

∑
i=1

l(h(xi), yi)

and by the strong law of large numbers limm→∞ R̂m(h) = R(h) almost surely.

Definition 2.0.6. Empirical risk minimizer
A hypothesis ĥ is an empirical risk minimizer if:

ĥ = Argminh∈HR̂m(h)

Then, the goal of machine learning approaches is to find the empirical risk mini-
mizer. They only differ in how they define the hypothesis spaceH.

Time series classification (TSC)

Time series data are ubiquitous (Eamonn, 2006). In domains as diverse as finance,
entertainment, transportation, and health care, we observe a fundamental shift from
parsimonious, infrequent measurement to nearly continuous monitoring and record-
ing. Rapid advances in diverse sensing technologies, ranging from remote sensors to
wearables and social sensing, are generating rapid growth in the size and complexity
of time series archives, one of the most famous being the UCR archive (Chen et al.,
2015).

Definition 2.0.7. Time series
A time series xt = ⟨x1, . . . , xt⟩ is a collection of t observations made sequentially over time,
where xi(1≤i≤t) belong to some input domain.

Dealing with time series data is challenging for many reasons. First, databases
are extensive. Consequently, the need for efficient algorithms that deal with large
databases is essential. Second, the similarity is subjective, which means that its
definition depends on the user and the application domain. Third, dealing with
real-time series data involves handling different data formats, sampling rates, and
missing values.

All the essential tasks that the time series mining community is dealing with
require similarity matching, namely clustering (Liao, 2005), classification (Abanda,
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FIGURE 2.1: Grouping of time series classification approaches by
discriminatory features
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Mori, and Lozano, 2019), motif discovery (Torkamani and Lohweg, 2017) and rule
discovery (Das et al., 1998).

In a very influential paper (Anthony Bagnall et al., 2017), the authors proposed
a nice way to group time series classification approaches. It is done by the type of
discriminatory features the algorithm is attempting to find, as shown in Figure 2.1.
First, approaches that compare time series as vectors or using a distance measure,
namely euclidean distance or DTW already explained above, or weighted dynamic
time warping proposed in (Y.-S. Jeong, M. K. Jeong, and Omitaomu, 2011) or time
warp edit (Marteau, 2008) (TWE), move-split-merge (MSM) (Stefan, Athitsos, and
Das, 2012), complexity invariant distance (CID) (Batista et al., 2014).

Then, other approaches use time series intervals instead of the whole time series,
for example, in a problem that involves classifying an electric device as either a
kettle, microwave, or toaster based on a daily usage profile. Toasters are used more
frequently in the morning and microwaves in the evening. Consequently, there are
large areas of redundant information in each instance, as shown in Figure 2.2. Some
interval approaches include time series forest (TSF) (Deng et al., 2013), time series bag
of features (TSBF) (Baydogan, Runger, and Tuv, 2013), learned pattern similarity (LPS)
(Baydogan and Runger, 2016).

Shapelet based approaches consider that one or more patterns within a series define
a class, but their location is irrelevant. Shapelets are subsequences that are highly
discriminative for a certain class. This idea has been presented in (Ye and Eamonn
Keogh, 2011) and finds shapelets through enumerating all possible candidates, then
uses the best shapelet as the splitting criterion at each node of a decision tree. This
work has been improved later in (Rakthanmanon and Keogh, 2011), (Hills et al., 2014)
and (Grabocka et al., 2014).

While shapelet based approaches find a single phase independent pattern that
differentiates classes, Dictionary based approaches, however, look for the relative
frequency of patterns that distinguishes the classes. In this type of problems, the
shapelet approach will fail because it looks for the closest single match in each series,
not the number of repetitions. This idea has been developed in (J. Lin, Khade, and
Y. Li, 2012), (Senin and Malinchik, 2013) and (Schäfer, 2015).

FIGURE 2.2: Time series where interval methods should do better than
whole series methods (Anthony Bagnall et al., 2017)
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Early classification of time series (ECTS)

Let us start with a classical business problem, customer churn, which is the rate at
which customers stop doing business with an entity and is expressed as the percent-
age of service subscribers who discontinue their subscriptions within a given time
period. Classically, this problem is solved without taking into account the temporal
aspect of the data. In other words, the customers are ranked according to the prob-
ability that they are going to churn, and people at the top of the list are contacted
during a campaign retention. However, the earlier the actions, the more efficient
they are likely to be, detecting churners early enough would be beneficial in order
to convince them to stay before they take their final decision. Thus, churn detection
can be approached as a timely decision making problem, where customer data is
acquired over time, and a decision to contact the customer can be taken at any time
according to his behavior. For instance, (Óskarsdóttir et al., 2018) exploit customer’s
social circle to early detect potential churners using telecommunication data.
This problem is not restricted to numerical continuous time series but also covers
image and text data-based problems, (Mocaër, Anquetil, and Kulpa, 2021) worked
on early recognition of handwritten gestures since it is of great importance for the
coexistence of direct manipulation (zooming, scrolling) and real gestures like symbols
in interactive context. (Ebihara et al., 2020) proposed NMNIST dataset which contains
videos with 20 frames of MNIST (LeCun et al., 1998) handwritten digits buried with
noise at the first frame, gradually denoised towards the last frame, and the main
goal is to classify the digit number as soon as possible. Timely decisions are also
crucial in the agricultural domain; it plays a significant role in providing food security,
preventing famine, and determining policies for sustainable agriculture. Namely,
(Rußwurm, Tavenard, et al., 2019) used satellite images for early detection of crop
types.

In natural language processing, the problem of early rumor detection (K. Zhou
et al., 2019), (Yahui Liu, Jin, and Shen, 2019) has attracted attention because a
successfully-detected malicious rumor can still cause significant damage if it is not
detected in a timely manner. (R. Singh et al., 2019) enable online platforms to actively
look for signs of antisocial behavior and intervene before it gets out of control, namely,
preventing situations that can lead to someone committing suicide. Applications
were also imagined in Astronomy, where (Muthukrishna et al., 2019) uses early classi-
fication on astronomical time series in order to identify transients from within a day
of the initial alert, to the whole lifetime of a light curve. In Engineering (Nath et al.,
2020) claim that structural rotor fault is the root cause of most rotating machinery
issues and still the least addressed faults in rotor faults diagnosis. They propose an
early classification method to detect this type of fault as early as possible and improve
diagnosis. In the medical domain, (Zhao et al., 2019) proposed a method that predicts
whether a patient should be transferred into intensive care units. The timing of this
prediction is critical since it is a matter of life and death since the survival rate for
patients is improved if they get treated carefully and adequately in time.

Formally, in the problem of early classification of time series, we suppose that mea-
surements are made available over time in a time series which, at time t, is xt =
⟨x1, . . . , xt⟩ where xt is the current measurement and the xi(1≤i≤t) belong to some
input domain (e.g. temperature and blood pressure of a patient). We suppose fur-
thermore that each time series can be ascribed to some class y ∈ Y (e.g., patient who
needs a surgical operation or not). The task is to predict the class of an incoming time
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series as early as possible because a cost is incurred at the time of the decision, where
the cost function increases with time.

If the measurements in a time series are supposed independently and identically
distributed (i.i.d.) according to a distribution of unknown “parameter” θ, then the
relevant framework is the one of sequential decision making and optimal statistical de-
cisions (Berger, 1985; DeGroot, 2005). In this setting, the problem is to determine as
soon as possible whether the measurements have been generated by a distribution
of parameter θ0 (hypothesis H0) or of parameter θ1 (hypothesis H1) with θ0 ̸= θ1.
One technique especially has gained a wide exposition: Sequential Probability Ra-
tio Test (SPRT) invented by (Wald and Wolfowitz, 1948). The log-likelihood ratio

Rt = log P(⟨xi
1,...,xi

t⟩ | y=1)
P(⟨xi

1,...,xi
t⟩ | y=0)

is computed and compared with two thresholds that are set
according to the required error of the first kind (false positive error) and error of the
second kind (false negative error) as shown in Figure 2.3. It has been proved that when
measurements are acquired from independently and identically distributed data,
SPRT minimizes the required measurements to achieve the required false positive
rate and false negative rate. Extensions to non-stationary distributions have been put
forward in (Yu Liu and X. R. Li, 2013; Novikov, 2008).

FIGURE 2.3: SPRT algorithm: the log-likelihood ratio is computed and
compared to two predefined thresholds (Ebihara et al., 2020).

However, in the early classification of time series problem, the i.i.d assumption
does not hold because sequential measurements are usually highly correlated. To
compensate for this weaker assumption, it is assumed that a labeled training set
exists made of time series of finite length T: xi

T = ⟨x1
i, . . . , xT

i⟩ together with
their corresponding labels, Dtrain = {(xi

T, yi)}1≤i≤m. Each measurement xi
j can be

multivariate.
In the test phase, the scenario goes as follows. At each time step t < T, a new

measurement xt is collected, and a decision has to be made as whether to make a
prediction now or to defer the decision to some future time step. When t = T, a
decision is forced.

The problem of deciding online whether a prediction and the attendant actions,
should be made or if it should be delayed, can be cast in the LUPI framework
(Vapnik and Vashist, 2009). In the following, we examine previous works on the early
classification problem in this light.

To the best of our knowledge, (Alonso González and Diez, 2004) is the earliest
paper explicitly mentioning “classification when only part of the series are presented
to the classifier”, and the main thrust of it is to show how the boosting method can be
employed to the classification of incomplete time series.
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For many researchers, the question to solve is can we classify an incomplete times
series while ensuring some minimum probability threshold that the same decision would be
made on the complete input? To answer this question, several approaches have been
put forward.

One is to assume that the time series are generated i.i.d. according to some
probability distribution, and to estimate the parameters of the class distributions
from the training set. Once p(xT|xt) the conditional probability of the complete time
series xT given an incomplete realization xt is estimated, it becomes possible to derive
guarantees of the form:

p
(
hT(xT) = y|xt

)
=

∫

xT s.t. hT(xT)=y
p(xT|xt) dxT ≥ ϵ

where xT is a random variable associated with the complete times series, ϵ is a
confidence threshold, and hT(·) is a classifier learnt over the training set Dtrain of
complete times series. At each time step t, p(hT(xT) = y|xt) is evaluated and the
prediction is triggered if this term becomes greater than some predefined threshold.
(Anderson et al., 2012; Parrish et al., 2013) present this method and propose ways
to make the required estimations, in particular the mean and the covariance of the
complete training data, when the time series are generated by Gaussian processes. It
so far applies only with linear and quadratic classifiers.

A set of approaches do not make assumptions about the form of the underly-
ing distributions on the time series. For instance, (Ebihara et al., 2020) proposed
SPRT-TANDEM inspired from the famous Wald’s SPRT algorithm discussed at the
beginning of this section. The main goal is to overcome the i.i.d assumption of the
SPRT algorithm that prevents its application to the early classification of time series.
The authors propose to approximate the log-likelihood ratio (LLR) as an N-th order
Markov process, the log-likelihood ration is expressed as follows using the Bayes
theorem:

log
P(⟨xi

1, . . . , xi
t⟩ | y = −1)

P(⟨xi
1, . . . , xi

t⟩ | y = +1)
=

t

∑
s=N+1

log
P(⟨y = −1 | xi

s−N , . . . , xi
s⟩)

P(⟨y = +1 | xi
s−N , . . . , xi

s⟩)

−
t

∑
s=N+2

log
P(⟨y = −1 | xi

s−N , . . . , xi
s−1⟩)

P(⟨y = +1 | xi
s−N , . . . , xi

s−1⟩)

+ log
p(y = −1)
p(y = +1)

A novel deep neural network architecture was developed in order to compute the
first two terms of the equation above, while the last term can be seen as a bias term,
which is chosen by the user according to the distribution of the dataset at hand, or it
could be left as a flat prior. The parameter N can be optimized using hyper-parameter
tuning algorithms. During the testing phase, this algorithm works exactly like the
classical SPRT algorithm. Once the approximated LLR is computed, it is compared to
user predefined thresholds in order to trigger a decision to classify the time series
as y = +1 or y = −1. Extension to multi-class problems has been presented in
(Miyagawa and Ebihara, 2021).

A set of approaches are based on the concept of minimum prediction length (MPL)
presented for the first time in (Xing, Pei, and Philip, 2009). The key idea is to learn
a timestamp from which the prediction about the class of the incoming time series
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becomes stable, which corresponds to a prefix of time series, this type of approaches
is also called prefix based approaches in the literature.
First, let us introduce some notations. For a time series x and a training set Dtrain,
let us consider NNl(x) = ArgMinx′∈Dtrain{dist(xl , x′ l))} to be the set of the nearest
neighbors of x in Dtrain, and RNNl(x) = {x′ ∈ Dtrain|x ∈ NNl(x′)} is the set of
reverse nearest neighbors, consequently if there exists a timestamp l0 ≤ T such
that RNNl0(x) = RNNl0+1(x) = · · · = RNNT(x) then l0 could be used to make
prediction early at l0 without loss in prediction accuracy because any time series
x′ ∈ D which means that a time series that have x as nearest neighbor at T has also
x as nearest neighbor at l0, thus early prediction can be made at l0 without loss of
expected accuracy. The formal definition given in the original paper (Xing, Pei, and
Philip, 2009) is the following:

Definition 2.0.8. Minimum prediction length (MPL) of a time series
For a time series x, and a training dataset Dtrain the minimum prediction length (MPL) of x
MPL(x) = k if

1. ∀l such that k ≤ l ≤ T, RNNl(x) = RNNT(x) ̸= ∅.

2. RNNk−1(x) ̸= RNNT(x).

Specifically if RNNT(x) = ∅ then MPL(x) = T.

The first simple method to perform early classification of time series starts during
the training phase by computing the MPL for each time series in the training dataset.
In the testing phase, a decision to classify the incoming time series is triggered at
timestamp t if a time series in NNt(x) has an MPL at most t, and the dominating class
in this set is returned. Otherwise, the decision is delayed. The main drawback of this
1NN early classification method is that it may overfit the training dataset because
the MPL is computed using the RNN, which may consider a few time series. The
method called ECTS presented in (Xing, Pei, and Philip, 2009) addresses this issue
by finding the MPL for a cluster of similar time series instead of a single time series.
Before giving the formal definition of the MPL of a cluster, the authors introduce a
couple of notions. A discriminative cluster is a cluster where time series carry the same
label, and it could be used for classification. The reverse nearest neighbor of a cluster
S is the union of all clusters except S. A cluster S is called 1NN consistent if for each
time series x in S, the 1NN of x also belongs to S. The formal definition as proposed
by the authors is the following:

Definition 2.0.9. Minimum prediction length (MPL) of a cluster
For a discriminative cluster S, and a training dataset Dtrain the minimum prediction length
(MPL) of S MPL(S) = k if

1. ∀l such that k ≤ l ≤ T, RNNl(S) = RNNT(S).

2. S is 1NN consistent in space Rl .

3. for l = k-1 (1) and (2) are not satisfied.

During training the nearest neighbors for each time series in T in all prefix spaces
are computed, they are used later while performing agglomerative hierarchical clus-
tering method to cluster the training data set in full length space. For each discrimi-
native subcluster S, using the pre-computed 1NN information in the prefix spaces,
the 1NN consistency of S is checked and the stability of RNNl(S) for l < T in the
value l descending order until MPL(S) S is determined.
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The ECDIRE method has been proposed later in (Mori, Alexander Mendiburu,
Eamonn Keogh, et al., 2017) in order to learn the MPL using the classifier’s posterior
probabilities. During the training phase, a collection of classifiers is learned for
each time stamp by truncating the time series, in order to assign a class label to the
complete but still unknown time series while having an incomplete time series as
input. Then for each class label c, a timestamp from which it is safe to predict c
is learned as shown in Figure 2.4. A prediction is considered safe when it reaches
the percentage of accuracy of the classifiers that has the complete knowledge of the
time series, and this ratio is given by the user. The second step consists of learning
thresholds for each class label and time stamp. The others proposed to take the
minimum of the distance between the first and second largest probabilities evaluated
only on correctly classified time series. During the prediction phase, only safe class
labels will be considered. In other words, if the classifier assigns a class label before
the time stamp from which it is safe to consider this class label, it is not taken into
account, and the decision would be to gather more data. Otherwise, if the predicted
class is safe, then the second step is to check if it is reliable enough, which means that
the difference between the first and the second largest probabilities is higher than the
learned threshold.

The MPL-based approaches presented above make an implicit assumption about
the cost of delay. In fact, the cost of delay is implicitly considered low, as in (Mori,
Alexander Mendiburu, Eamonn Keogh, et al., 2017) the algorithm waits until a safe
time stamp is reached to predict a specific class. Moreover, we argue that the eariness-
accuracy tradeoff is a key part of decision-making, and it is not modeled explicitly in
these approaches. In addition, they are myopic. In other words, they only decide if
the current timestamp is the right moment to trigger a decision to classify the input
time series. Myopic algorithms give no information about when the alarm will be
triggered in the future.

FIGURE 2.4: MPL for each class and reliability thresholds (Mori,
Alexander Mendiburu, Eamonn Keogh, et al., 2017).

Another line of research is concerned with finding good descriptors of the time
series, especially on their starting subsequences, so that early predictions can be
reliable because they would be based on relevant similarities on the time series.
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We start by giving an overview of the concept of Shapelets introduced in (Ye and
Eamonn Keogh, 2009, 2011).

Definition 2.0.10. Shapelet
Shapelets are time series subsequences which are in some sense maximally representative of a
class. A shapelet is denoted as f = (s, δ, c), where s is the time series subsequence, δ is the
threshold distance that should be exceeded to predict class label c.

In other words, it is an extracted contiguous part of a time series. This part is
highly discriminative regarding a class. This concept has many advantages. First,
it improves drastically the space and time complexity of the k-nearest neighbors
algorithm, because instead of having to store the entire time series dataset in order to
look for the nearest neighbor at the test phase, only shapelets will be stored. Second,
shapelets are interpretable, which enriches understanding of the data to be analyzed.
Third, shapelets are local features, which may be more efficient than global features
methods in some applications. The question now is how to choose the shapelet
among the candidates? The answer was given in (Ye and Eamonn Keogh, 2009),
shortly, the shapelet is the subsequence that maximizes the information gain.

FIGURE 2.5: Shapelet based methods .

More formally, let us present some definitions that would be useful for the rest of
the chapter.

Definition 2.0.11. Entropy
let us consider Dtrain as a time series dataset, which contains two classes c1 and c2 with
proportions p(c1) and p(c2) respectively, then the entropy of the dataset D is defined as:

E(D) = −p(c1)log(c1)− p(c2)log(c2)

Definition 2.0.12. Information gain
let us consider D as a time series dataset. After splitting D into D1 and D2 such that
D = D1 ∪D2, the information gain is defined as

IG(D1,D2) = E(D)− r(D1)E(D1)− r(D2)E(D2)

where r(D1) is the ratio of the time series of D1 in D.

Definition 2.0.13. Best matching distance (BMD) (Xing, Pei, P. S. Yu, et al., 2011)
For a local shapelet f = (s,?,c) and a time series x such that the length of s is less than the
length of t, the BMD between f and x is:

BMD( f , x) = mins′⊂x,len(s′)=len(s) dist(s, s′)
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The distance between the candidate subsequence and every time series in D will
be computed. It corresponds to the best matching location in the time series for the
candidate subsequence then these distances are sorted, and a distance threshold is
selected in order to maximize information gain. Finally, the candidate subsequence
with the maximum gain is chosen as the shapelet for D.

Various methods in the ECTS literature used shapelets in order to solve the problem
of early classification of time series. The key idea is to extract shapelets during the
training phase as done in time series classification. Then, during the testing phase,
measurements are gathered sequentially. The objective would be to detect shapelets
as soon as possible in the incoming incomplete time series.

To the best of our knowledge, (Xing, Pei, P. S. Yu, et al., 2011) is the first to deal
with extracting interpretable shapelets for the early classification on time series. The
motivation behind this paper is to provide shapelets as interpretable features as they
are essential for critical applications, namely in the medical domain. The authors
propose a method called EDSC that consists of two main steps, feature extraction and
feature selection.

For the feature extraction part, the algorithm extracts all subsequences of a given
minimum and maximum lengths, and for each subsequence, a robust distance thresh-
old is learned. The authors proposed multiple methods to learn it, first, the most
simple one is to set a precision threshold, for example, 95% precision, and choose
a distance threshold that can achieve a precision above the precision threshold. If
multiple distance thresholds meet the requirement, the largest one can be picked
since this enables the local shapelet to cover more training data. The second way of
learning the distance threshold is based on kernel density estimation (KDE) (Marzio
and Taylor, 2005). It is used on the list of the computed BMDs to estimate the proba-
bility density functions of the target class and the non-target classes, and then set the
distance threshold so that for all time series that fit in this distance range, at every the
probability density of belonging to the target class passes a probability threshold.

For the feature selection phase, the authors proposed to rank candidate shapelets
according to a utility function defined in their paper as following:

Definition 2.0.14. Utility

let f = (s,δ,c) a shapelet, the utility of f is defined as:

Utility( f ) =
2× Precision( f )×WRecall( f )

Precision( f ) + WRecall( f )

where the WRecall is based on earliest match length that takes into account earliness

Top shapelets that cover the entire datasets are selected, finally time series are
early classified based on the closest matching shapelet.

In (G. He, Duan, G. Zhou, et al., 2014), authors propose a similar method called
MCFEC, the novelty consists of proposing a generalized extended F-measure (GEFM
for short) to evaluate the quality of shapelets in terms of the recall, precision and
earliness as following:
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Definition 2.0.15. GEFM

let f = (s,δ,c) a shapelet, the GEFM of f is defined as:

GEFM( f ) =
1

w0
Earliness( f ) +

w1
Precision( f ) +

w2
Recall( f )

(Ghalwash and Obradovic, 2012) extends the concept of shapelets to the mul-
tivariate case, and a vector of thresholds for each dimension is learned. (Y.-F. Lin
et al., 2015) takes this work a step further by proposing a framework called REACT
that incorporates categorical attributes in multivariate time series. Unlike previously
described approaches, (Wang et al., 2016) presents an approach called EA-ConvNets
that uses a convolutional neural network to learn shapelets from a training data set
instead of extracting them using hand-crafted rules. It takes as input an incomplete
time series and outputs the class label of the time series. This framework consists
of 3 main stages: First, early awareness, which consists of stochastically choosing a
truncation point for each time series in the training set. Technically it is done using
a geometric distribution because of its exponential decay property. Second, a deep
convolutional feature extractor is used to identify shapelet-based features using 1D
convolution operation, in addition to average and max pooling operations. Third, a
final classifier followed by a softmax operation which minimizes the cross-entropy
loss. The whole architecture is shown in Figure 2.6. However, this framework does
not solve the problem of early classification completely. In fact, it does not determine
the time stamp at which it is possible to classify an incoming time series.

FIGURE 2.6: EA-ConvNets architecture (Wang et al., 2016)

(Ghalwash, Radosavljevic, and Obradovic, 2014) introduce MEDSC-U which is an
improved version of EDSC method by providing uncertainty quantification. The idea
is to modify the selection and classification steps in EDSC in order to obtain more
discriminative shapelets and capture a robust uncertainty estimate. For the pruning
phase, a list of equal-performance shapelets is extracted, and it is longer than the one
extracted in the classical method because, with a longer list, the uncertainty would
be better estimated. For the classification phase, at each time step, uncertainty is
computed for each class based on the matched shapelets with the incomplete time
series at hand. The decision to classify the time series is triggered when a predefined
level of uncertainty is reached, and the class that has minimum uncertainty is chosen.

The Shapelet-based approaches presented above have the same limitations as
MPL-based ones. Algorithms are also designed in order to obtain a minimal accuracy
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defined by the user. Some metrics (e.g. GEFM) that incorporate earliness and accuracy
at the same time are proposed, and optimized during training, which is a way to
deal with the ealiness-accuracy tradeoff, however these approaches do not model
this compromise explicitly in the decision criterion. Moreover, all these approaches
are myopic.

Another set of approaches considered the trade-off between earliness and accuracy.
(Dachraoui, Bondu, and Cornuéjols, 2015), for the first time, the problem of early
classification of time series is cast as the optimization of a loss function which com-
bines the expected cost of misclassification at the time of decision plus the cost of
having delayed the decision thus far. Besides the fact that this optimization criterion
is well-founded, it also permits applying the LUPI framework because the expected
costs for an incoming subsequence xt can be estimated for future time steps and thus
a non-myopic decision procedure can be used. This approach will be explained in
details in the next chapter.
The merit of (Mori, Alexander Mendiburu, Dasgupta, et al., 2017) is to recognize
that the earliness vs. accuracy trade-off depends on each domain and dataset and
that it must therefore be expressed as a single optimization criterion. The authors
expressed this criterion as a cost function that depends on the chosen stopping rule
of the following form:

Triggerγ (ht(xt)) =

{
0 if γ1 p1 + γ2 p2 + γ3

t
T ≤ 0

1 otherwise
(2.1)

where p1 is the largest posterior probability estimated by the classifier ht: p1 =
ArgMaxy∈Y ( p̂(y|xt)), p2 is the difference between the two largest posterior proba-
bilities, defined as | p̂(y = 1|xt) − p̂(y = 0|xt)| in the case of binary classification
problems, and where the last term t

T represents the proportion of the incoming time
series that is visible at time t, γ1, γ2, γ3 are hyperparameters in [−1, 1] to be optimized
according to a cost function of the form:

CF(x, Triggerγ) = ∑
(xT ,y)∈D

(α Cm(Triggerγ|y) + (1− α)Cd(Triggerγ)) (2.2)

With α, the parameter which controls the trade-off between earliness and accuracy,
Cm is the cost of misclassification, and Cd is the cost of delay. This contrasts with
approaches whereby the decision is made solely on the basis of a given confidence
threshold that should be attained. However, the optimization criterion put forward is
heuristic, supposes that the cost of delaying a decision is linear in time, and involves
a complex setup. Most importantly, again, it is a myopic procedure which does
not consider the foreseeable future. The same authors formulated the problem in
(Mori, Alexander Mendiburu, Miranda, et al., 2019) as a multi-objective optimization
problem. The key idea is instead of finding one optimal trigger function Triggerγ∗ , the
algorithm will find a set {Triggerγ1

, Triggerγ2
, . . . , Triggerγn}, which will provide non-

dominated results in accuracy and earliness. For this, the cost of misclassification,
as well as the cost of delaying the decision, will be considered in the following
optimization problem:

minγ(Cm(Triggerγ), Cd(Triggerγ)) (2.3)
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This algorithm provides multiple solutions to the user instead of manually choos-
ing the parameter α that controls the trade-off between earliness and accuracy. For
all these apparent shortcomings, this method has been found to be quite effective,
beating most competing methods in extensive experiments. This is why it is used as a
reference method for comparison in this thesis, as is also done in (Rußwurm, Lefevre,
et al., 2019) which compares several techniques for early classification of time series.

The trade-off between earliness and accuracy has also been considered in (Shekhar
et al., 2021), this approach is called Benefitter and the key idea is to consider at each
time step benefits instead of costs already considered in approaches described before.
This approach considers a target variable called benefit, which is the overall value of
outputting a certain label at a certain time t given as:

bene f it(t) = S(t)−M (2.4)

with S(t) = (L− t)× s is the savings made at time t, M is the misclassification cost,
L is the length of the monitoring period, and s is the saving per unit of time. The
authors distinguish two problems: Outcome classification and Type classification.
On one hand, in outcome classification, labels encode the outcome observed at the
end of the monitoring period (e.g., survival or death). In such cases, predicting the
normal outcome does not change anything and is considered as a default state. For
example, predicting the survival of a monitored patient in a hospital or that a machine
is working normally in a factory does not lead to any real savings or costs. On the
other hand, in type classification, labels encode the generation process of time series,
for example, predicting the type of a bird from audio recordings. In such cases, the
prediction of any label at a given time has an associated cost of misclassification and
cost of delay (or savings for earliness). In order to solve the classification problem,
authors have access to a training dataset Dtrain = {(xi, yi)}i=1...m where x is a time
series with a length Li and yi is the corresponding label. The main idea of this

FIGURE 2.7: Benefitter in real-time (Shekhar et al., 2021)

approach is to transform this classification problem into a supervised regression
problem, where the target variable benefit is predicted at each time step using an
LSTM regressor. This model is trained on a new dataset constructed from Dtrain. For
each time series xi in D, we extract a set of subsequences {(xi

t, bit)}t=1...Li of time
series of increasing length with the corresponding benefit bit computed as described
in Equation 2.4. In real-time, as shown in Figure 2.7 measurements of time series
become available over time. At each time step, we gather a new measurement, and
the regressor predicts the benefit at the current time step using the incomplete time
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series at hand, if the benefit is positive then an early decision is taken. Otherwise, the
decision is delayed. This approach is considered as a myopic approach, because it
only looks at the current time step without considering if the future holds a better
benefit.

(Rußwurm, Lefevre, et al., 2019) proposed a trainable deep learning framework
for early classification of time series that can be fine-tuned end-to-end using standard
gradient back-propagation. First, it learns a fixed length hidden representation
ht using an LSTM or a 1D-convolutional shapelet model. The authors assumed
that this hidden representation is likely to encode information about whether to
stop at the current prediction or wait for more observations. Second, from this
assumption, they proposed to use this information to produce a stopping decision
probability δt so that at classification time, for each timestamp t, the decision about
performing classification or waiting for more measurements is drawn from a Bernoulli
distribution of parameter δt. In order to optimize the accuracy-earliness trade-off
they proposed the following overall cost function :

L(xt, y; α) =
T

∑
t=0

P(t)(αLc(xt, y) + (1− α)Le(t))

which contains Lc the cost of misclassification, Le the cost of delaying the decision and
P(t) the probability of making the decision at timestamp t. This gives larger gradients
for time stamps when the decision is more likely to happen. The authors used a
two-phase training procedure. They first pre-train the model purely for accuracy with
a logistic regression loss and then fine-tune it end-to-end for accuracy and earliness.

The methods described above model the earliness-accuracy tradeoff, in addition,
the cost of misclassification as well as the cost of delay are taken into account explicitly,
which makes these methods cost sensitive. However, the only method that is non-
myopic is the ECONOMY approach.

Another set of approaches focused on applying deep learning and reinforcement
learning to the problem of early classification of time series.

Reinforcement learning (RL) aims at learning to solve a decision-making problem
through trial and error. A transition occur from state st ∈ S to state st+1 ∈ S under an
action a ∈ A chosen by a policy π : S → A, consequently rewards rt = r(st, a) ∈ R

are associated with those transitions. At each timestamp the goal of the agent is to
maximize its long term reward which is ∑∞

k=0 γkrt+k with γ ∈ [0, 1] is a discount factor
valuing more immediate rewards. In the RL literature, two functions are defined,
the State value function, which is the expected reward that the agent can hope to get
while starting at state s ∈ S and following its policy π: Vπ(st) = Eπ[∑∞

k=0 γkrt+k|st]
and the Action value function which is the expected reward that the agent can hope
to get while starting at state s ∈ S , picking action at and then following its policy
Qπ(st, at) = Eπ[∑∞

k=0 γkrt+k|st, at] = Eπ[rt + γQπ(st+1, at+1)|st, at]. The optimal
policy can be obtained from the action value function, the optimal one is defined as
Q∗π(s, a) = maxπQπ(s, a) then the optimal policy is π∗(s) = argmaxa∈AQ∗π(s, a).

(Martinez, Perrin, et al., 2018) approached the problem of early classification as
a sequential decision-making problem in the framework of reinforcement learning.
The state st at time step t is the visible part of the incomplete time series at hand, the
set of actions A = {wait,∪y∈Y predict y}, an episode ends when the partial sequence
is fully completed, or when the agent predicts a class label, and finally the rewards
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are chosen in order to learn a policy that solves the accuracy-earliness trade-off. The
authors proposed a reward of +1 when the agent predicts the right label, -1 if it
predicts the wrong label, and an increasing waiting cost if it decides to wait for more
measurements. A deep neural network was proposed to estimate the state-value
function, which allows selecting the optimal policy, the one that maximizes the state-
value function. To take advantage of the recent success in representation learning and
reinforcement learning, (Hartvigsen et al., 2019) proposed a method called EARLIEST
(Early and Adaptive Recurrent Label ESTimator). It is composed of a deep network
consisting of three sub-networks: First, a recurrent neural network generating low
dimensional vector representation of the sequence in input, whatever its length is.
Second a discriminator network learns from the hidden representation to predict class
labels of input time series. Third, a controller network is a reinforcement learning
agent that decides whether to predict class label or delay the decision at each time
step. This approach was tested on a benchmark of 7 datasets and versus 3 baselines.
However, unfortunately, it was not tested against state-of-the-art approaches. The
authors extended this framework in (Hartvigsen et al., 2020) to the multi-label early
classification problem.

The reinforcement learning framework is very general. It uses immediate and
delayed rewards. As shown in this section, there is in principle no obstacle to apply
reinforcement learning to the learning of a good triggering strategy. However, if used
directly, the generality of RL is paid for by a need for a large number of “experiments”.
In addition, the state space is continuous in the case of the ECTS problem, thus an
interpolating functions must be used in order to represent the values such as vπ(s) and
this entails the choice of a family of functions and setting their associated parameters.

Another approach, the one favored in the current literature for ECTS (Achenchabe,
Bondu, and Cornuéjols, 2021), is to choose functions for representing the expected
values of decision times, and thus providing a ground for the triggering strategy. This
has the merit of incorporating prior knowledge of the trade-off between earliness
and accuracy, at the cost of making modeling choices that may bias the method of
estimating the expected future cost.

The respective performances, merits and limits of both approaches should be
studied empirically by a comparison of RL based ECTS approaches, such as (Mar-
tinez, Ramasso, et al., 2020), with approaches that explicitly exploit the form of the
optimization criterion designed for ECTS as in (Achenchabe, Bondu, and Cornuéjols,
2021).

In the rest of this thesis, the ECONOMY approach will be studied in depth for its
interesting properties discussed while comparing the state of the art methods. It will
be used as a core component for the proposed algorithms and adapted for new online
scenarios.
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Chapter 3

Early classification of time series

Abstract

An increasing number of applications require to recognize the class of an in-
coming time series as quickly as possible without unduly compromising the
accuracy of the prediction. In this chapter, we put forward a new optimization
criterion which takes into account both the cost of misclassification and the
cost of delaying the decision. Based on this optimization criterion, we derived
a family of non-myopic algorithms which try to anticipate the expected future
gain in information in balance with the cost of waiting. In one class of algo-
rithms, unsupervised-based, the expectations use the clustering of time series,
while in a second class, supervised-based, time series are grouped according
to the confidence level of the classifier used to label them. Extensive experi-
ments carried out on real datasets using a large range of delay cost functions
show that the presented algorithms are able to solve the earliness vs. accuracy
trade-off, with the supervised partition based approaches faring better than
the unsupervised partition based ones. In addition, all these methods perform
better in a wide variety of conditions than a state of the art method based on a
myopic strategy which is recognized as being very competitive. Furthermore,
our experiments show that the non-myopic feature of the proposed approaches
explains in large part the obtained performances.

The content of this chapter has been published as a journal paper as well as a
conference paper:

• Early classification of time series. Y Achenchabe, A Bondu, A Cornuéjols, A
Dachraoui - Machine Learning, 2021

• Early Classification of Time Series: Cost-based multiclass Algorithms PE Zafar, Y
Achenchabe, A Bondu, A Cornuéjols, V Lemaire - IEEE 8th International
Conference on Data Science and Advanced Analytics (DSAA), 2021
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3.1 Introduction

In emergency wards of hospitals (Mathukia et al., 2015), in control rooms of national
or international electrical power grids (Dachraoui, Bondu, and Cornuejols, 2013),
in government councils assessing emergency situations, in all kinds of contexts, it
is essential to make timely decisions in absence of complete knowledge of the true
outcome (e.g. should the patient undergo a risky surgical operation?). The issue
facing the decision makers is that, usually, the longer the decision is delayed, the
clearer is the likely outcome (e.g. the critical or not critical state of the patient) but,
also, the higher the cost that will be incurred if only because earlier decisions allow
one to be better prepared. How to optimize online the tradeoff between the earliness
and the accuracy of the decision is the object of the early classification of time series
problem and this is what is addressed in this chapter.

In the previous chapter, we have presented the state-of-the-art of early classification
of time series approaches. In this chapter, we will dive deep into the ECONOMY

approach for the following reasons:

• It formalizes explicitly the tradeoff between earliness and accuracy.

• It is well founded and takes into account the cost of misclassification and the
cost of delay.

• It is the only non-myopic approach in the literature, in other words, the trigger
system may even predict what will be the best time in the future to perform the
classification of the incoming time series.

Overall, the early classification of time series (ECTS) problem can be seen as
involving two components (see Figure 3.1):

• A classifier1 that takes as an input a given incomplete time series, and produces
a probabilistic estimation of associated class as an output.

• A trigger model which decides whether to make the prediction at the current
time t or to wait for at least one more measurement xt+1.

The example illustrated in Figure 3.1 is the early classification of a potential sus-
picious account in a given platform. The objective is to trigger as soon as possible a
potential suspicious activity associated with an account, this could be for example, a
potential hacker, or a fake account in social media platforms.

The work presented in this chapter takes the earliness versus accuracy trade-off at
face value in the spirit of (Dachraoui, Bondu, and Cornuéjols, 2015) and formalizes it
in a generic way. We extend this previous work as a generic framework for the early
classification of time series. Furthermore, this previous work described a method
based on the clustering algorithm K-means. However, the use of an unsupervised
approach to capture the relevant groups of time series leaves important information
aside. This is why, we propose here to resort to supervised techniques in order
to get better prediction performance. Interestingly, we claim that the problem of
deciding online whether a prediction, and the attendant actions, should be made, or if

1Developping novel time series classification algorithms is out of the scope of this thesis
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FIGURE 3.1: General schema of ECTS approaches

it should be delayed, can be cast in the LUPI (Learning Under Privileged Information)
framework (Vapnik and Vashist, 2009). During the learning phase, the learner has
access to the full knowledge about the training time series in addition to their class,
while at testing time, only the incoming, and incomplete, time series is known. And
decisions as whether to wait for additional measurements or not have to be made
from this incomplete knowledge. The resulting optimization criterion can be used in
a non-myopic procedure where estimates of future costs can be compared to the cost
incurred if the decision was made at the current time.

The second objective of this chapter is to design efficient optimization algorithms
which implement the presented framework. We define a set of design choices that
allow the categorization of possible non-myopic approaches (see Table 3.1). This
enables us to define three novel algorithms by varying these choices. They are
then carefully evaluated and compared in experiments in order to identify the best
approach. In addition, the three proposed non-myopic approaches outperform the
best known approach in the literature (Mori, Alexander Mendiburu, Dasgupta, et al.,
2017) evaluated on the same collection of datasets proposed by the authors.

The rest of the chapter is organized as follows. The following section reformulates
in a generic way the cost-based formalism leading to an optimization criterion. Then,
Section 3.3 presents the new methods that allow finer estimations of this criterion.
These methods vary depending on how they take advantage of the training set of
complete time series to estimate future costs of decision. This gives rise to a set
of questions as what are the characteristics that most drive the performance up.
Section 3.4 highlights some key ideas to extend ECONOMY -γ to deal with multi-class
classification problems. Then Section 3.5 presents experiments and results for binary
classification problems, while Section 3.6 is reserved for multi-class classification
problems. Finally, Section 3.7 concludes by underlying the main findings of this
research and by discussing directions for future works.
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3.2 ECONOMY framework

Classifying time series with as little measurements as possible implies optimizing a
trade-off. The less data is available for classification, the lower is the attainable accu-
racy in general. But waiting for more data implies incurring higher delay costs. There
is therefore an optimization problem to be solved involving both the classification
accuracy, which translates into a misclassification cost, and the cost associated with
gathering measurements. In the framework of online classification, this optimization
problem becomes an online sequential decision making problem, where at each new
time step, and a corresponding new piece of data, the system must decide whether
to output a label for the incoming time series or to wait for more measurements. If
the decision is made solely on the basis of the currently available information, the
approach is myopic. On the other hand, if the decision involves some sort of predic-
tion about the expected value of the optimization criterion in the future, the approach
is non-myopic. This is what is allowed by the LUPI framework. Such a perspective
was presented in (Dachraoui, Bondu, and Cornuéjols, 2015). We generalize it in this
section and lay the ground for three novel cost-based optimization criteria that are
the object of this chapter.

This approach assumes that the user provides two cost functions and a collection
of classifiers {ht(xt)}t∈[1,T] capable of predicting at any moment ŷ the class label of
the complete time series xT from the incomplete time series xt given as input:

• Cm(ŷ|y) : Y × Y → R is the misclassification cost function that defines the cost of
predicting ŷ when the true class is y.

• Cd(t) : R→ R is the delay cost function which is non decreasing over time.

Both of these costs are expressed in the same unit (e.g. in dollars) and convey the
characteristics of the application domain as known by experts.

The expected cost of a decision (i.e. triggering the classification of the time series
at hand) at time step t, when xt is the incoming time series, can be expressed as:

f (xt) = E t [Cm|xt] + Cd(t)

= ∑
(y,ŷ)∈Y2

Pt(ŷ, y|xt)Cm(ŷ|y) + Cd(t)

= ∑
y∈Y

Pt(y|xt) ∑
ŷ∈Y

Pt(ŷ|y, xt)Cm(ŷ|y) + Cd(t)

(3.1)

The expectation comes both from the misclassification probability Pt(ŷ|y, xt)
which can be estimated by the confusion matrix of the classifier ht(·) applied at
time t, and the posterior probability of each class given the input incomplete time
series estimate Pt(y|xt).

If the input time series was fully observed, this cost could be computed for all time
steps t ∈ {1, . . . , T}, and the optimal time t∗ for triggering the classifier’s prediction
would be:

t∗ = ArgMin
t∈{1,...,T}

f (xt) (3.2)

But of course, this would defeat the whole purpose of early classification, as one
would have to observe the entire time series before knowing what would have been
the optimal decision time. Then, instead of waiting until the entire time series is
known, at each time t, one could “look into the future” and guess what will be the
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best decision time. And if the estimated best decision time matches the current time
step t, then the decision must be made. For the incoming time series xt, the expected
cost at τ time steps in the future is:

fτ(xt) = ∑
y∈Y

Pt+τ(y|xt) ∑
ŷ∈Y

Pt+τ(ŷ|y, xt)Cm(ŷ|y) + Cd(t + τ) (3.3)

τ∗ = ArgMin
τ∈{0,...,T−t}

fτ(xt) (3.4)

and if τ∗ = 0 the decision is instantly requested, and t̂∗ = t denotes the trigger time.
The problem now is how to estimate Pt+τ(ŷ|y, xt) and Pt+τ(y|xt) from the knowledge of
xt. Can the LUPI framework help? Yes it can. The cost-based formalism proposed
(Dachraoui, Bondu, and Cornuéjols, 2015) which consists in learning typical clusters
of time series from the training set, and then in predicting the likely continuations of
xt with regard to these groups (see Figure 3.2).

0 t T

xt

xj

FIGURE 3.2: The incoming time series xt is viewed as a member of or
close to some group(s) of times series, and this is used to guess the

“envelope” of its foreseeable futures.

Let us note gk the k-th typical groups of time series, Equation (3.1) then can be
re-expressed as:

f (xt) ≈ ∑
gk∈G

Pt(gk|xt) ∑
y∈Y

Pt(y|gk) ∑
ŷ∈Y

Pt(ŷ|y, gk)Cm(ŷ|y) + Cd(t) (3.5)

And similarly, for Equation (3.3):

fτ(xt) ≈ ∑
gk∈G

Pt+τ(gk|xt) ∑
y∈Y

Pt+τ(y|gk) ∑
ŷ∈Y

Pt+τ(ŷ|y, gk)Cm(ŷ|y) + Cd(t + τ) (3.6)

Equation (3.6) can be easily interpreted by splitting it into two parts. The first
term Pt+τ(gk|xt) estimates the posterior probabilities of each group given xt. The next
term expresses the expectations of the cost of misclassification over future possible
continuations of xt. Namely, the second term Pt+τ(y|gk) corresponds to the prior
probabilities of class values within each group assumed to be constant ∀t ∈ [1, T].
And the third term Pt+τ(ŷ|y, gk) estimates the probabilities of misclassification within
each group, at time step t + τ. The terms Cm(ŷ|y) and Cd(t + τ) are the cost functions
expressing properties of the domain of application.

In this general framework, several choices can be made to implement this opti-
mization criteria. Foremost is the determination of relevant groups gk of time series
from the complete training set Dtrain. In what follows, we propose four different
alternatives to anticipate the expected future misclassification costs.
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3.3 Implementation

This section presents three novel non-myopic approaches to solve cost-based opti-
mization problem. These are three ways of Learning Using Privileged Information
(LUPI) and therefore being able to foresee likeliest future values for the optimization
criterion. The characteristics of these approaches are summarized in Table 3.1.

Approaches Partition type Partitions number Anticipation type

ECONOMY-K (Dachraoui,

Bondu, and Cornuéjols, 2015)

Unsupervised
(K-means)

1 partition of full-length
time series.

Weak model: the contin-
uations of time series are
used in the groups.

ECONOMY-MULTI-K Unsupervised
(K-means)

T partitions correspond-
ing to the different time
steps.

Weak model: the contin-
uations of time series are
used in the groups.

ECONOMY-γ-LITE (binary

classification)

Supervised: quantiles of
the classifiers confidence
levels are used

T partitions correspond-
ing to the different time
steps.

Weak model: the contin-
uations of time series are
used in the groups.

ECONOMY-γ (binary

classification)

Supervised: quantiles of
the classifiers’ confidence
levels are used

T partitions correspond-
ing to the different time
steps.

Markov Chain technique
is used to anticipate miss-
ing measurements.

TABLE 3.1: Overview of the design choices of the different approaches:
each approach differing from the previous one by only one design

choice.

The three proposed approaches seek to better extract information about the fore-
seeable future of incoming time series so as to offer a better basis for deciding whether
to label the time series at the current time step or to wait for more measurements. As
can be seen from Table 3.1, each proposed approach can be viewed as an incremen-
tal modification of a previous method, from ECONOMY-K presented in (Dachraoui,
Bondu, and Cornuéjols, 2015) to ECONOMY-γ.

Where ECONOMY-K is computing partitions of the time series based on the
complete training time series, through a clustering process, ECONOMY-MULTI-K
partitions incomplete times series for each time step in order to increase adaptiveness
to the incoming and incomplete time series (see Section 3.3.2). Both methods do not
use the labels of the time series in order to compute the partitions.

By contrast, both ECONOMY-γ-LITE and ECONOMY-γ use the labels in order to
predict the likely future of the incoming time series. ECONOMY-γ-LITE uses the
level of confidence of the classifier at time t on the incoming xt in order to define
groups of time series (see Section 3.3.3), whereas ECONOMY-γ uses Markov chains
in order to anticipate the likely future measurements on the time series (see Section
3.3.4). The following implementations of ECONOMY-γ-LITE and of ECONOMY-γ only
accommodate binary classification tasks, but extensions to multi-class problems are
presented later in Section 3.4.

The number of groups K is a hyper-parameter shared by all of these approaches.
In practice, it can be tuned using cross validation as detailed in Section 3.5.4. An
open-source code is available for full reproducibility of the experiments presented in
this chapter: https://github.com/YoussefAch/Economy. The following sub-sections
provide the main operating principles and key ideas for each ECONOMY approach.

3.3.1 ECONOMY-K

ECONOMY-K has been introduced in (Dachraoui, Bondu, and Cornuéjols, 2015). The
idea is to first identify groups gk of times series using a clustering algorithm on

https://github.com/YoussefAch/Economy
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the training set, here K-means with Euclidean distance. Then, given an incoming
time series xt, the memberships P(gk|xt) are estimated using a logistic function of
a distance between xt and the centers of the clusters gk. In order to estimate the
terms Pt(ŷ|y, gk) of the confusion matrix for each time step t ∈ [1, T], a collection of
classifiers {ht}t∈{1,...,T} is learned using training sets Dt

train of time series truncated to
their first t measurements.

In the end, implementing the ECONOMY-K approach relies on the following
choices:

• A distance function for K-means.

• A distance between an incomplete time series and cluster’s center.

As explained in Section 3.2, Equation (3.6) is used to estimate the cost of deciding
for future time steps t + τ (0 ≤ τ ≤ T − t), and if τ∗ given by Equation (5.4) is equal
to zero or t = T, then a decision is triggered, otherwise a new measurement xt+1 is
made, and the decision mechanism is called again.

Algorithm 1 Learn ECONOMY-K
Input: K: number of groups

1: build the groups gk by using K-means on a set of full-length time series Dtrain
2: for all t ∈ 1, . . . , T do
3: learn a classifier ht(·) from a set of truncated time series Dt

train
4: for all gk ∈ G do
5: estimate the confusion matrix of ht(·) in the group gk
6: end for
7: end for

Algorithm 1 provides the pseudo-code which summarizes the learning stage
of the ECONOMY-K approach. The next sections describe the algorithms 2, 3 and
4 emphasizing for each of them the single difference with the previous algorithm
presented (see the italicized bold line in each algorithm).

Algorithm 2 Learn ECONOMY-MULTI-K
Input: K: number of groups

1: for all t ∈ 1, . . . , T do
2: build the groups gt

k by using K-means on a set of truncated time series Dt
train

3: learn a classifier ht(·) from a set of truncated time series Dt
train

4: for all gk ∈ G do
5: estimate the confusion matrix of ht(·) in the group gk
6: end for
7: end for

3.3.2 ECONOMY-MULTI-K

Instead of grouping time series using their full-length descriptions, an alternative
consists in computing the clusters gt

k for each time step t using training sets Dt
train

of truncated time series from the training set Dtrain (see line 2 of Algorithm 2). In-
deed, clustering time series on the fly, at each time step, may allow for a increased
adaptiveness to the specifics of the the beginning of the time series. The term P(gk|xt)
in Equation 3.6 then becomes P(gt

k|xt). The cost of potential future decisions is now
estimated based on the terms Pt+τ(ŷ|y, gt

k).
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3.3.3 ECONOMY-γ-LITE

In the previous approaches, the confusion matrix with the term Pt+τ(ŷ|y, gk) in
Equation (3.6), is computed using time series in gk and potentially aggregates all
confidence levels of ht+τ, corresponding to all possible values of the conditional
probability p(y = 1|xt+τ). If this confusion matrix was instead computed over time
series that share approximately the same confidence level in their classification, the
estimation of future decision costs could be much more precise. This is the motivation
behind the algorithms ECONOMY-γ and ECONOMY-γ-LITE.

In these methods, the groups gt
k are obtained by stratifying the time series by confi-

dence levels2 of ht (see line 3 of Algorithm 3). At each time step t, the confidence level
p(ht(xt) = 1) of the classifier can take a value in [0, 1]. Examining the confidence lev-
els for all time series in the validation set Dt

val truncated to the first t observations, we
can discretize the interval [0, 1] into K equal frequency intervals, denoted {I1

t , . . . , IK
t }.

For instance, if K = 5, and |Dt
val | = 1000, the intervals I1

t = [0, 0.30[, I2
t = [0.30, 0.45[,

I3
t = [0.45, 0.58[, I4

t = [0.58, 0.83[, I5
t = [0.83, 1] could each correspond to 200 training

time series.
Given an incoming time series xt, the classifier ht is used to get an estimate of

p(y = 1|xt) and determine the group gt
k to which xt belongs. The algorithm is the

same as ECONOMY-MULTI-K, only with the groups gt
k obtained in a supervised way

by leveraging the information about the membership to the classes.
One can notice that, in addition to the expected gain in performance due to a

more informed grouping of time series than in the clustering-based approaches, this
method as well as ECONOMY-γ, does not require (i) the choice of a distance function
for K-means, nor (ii) the determination of another distance between an incomplete
time series xt and a cluster of full-length time series, and finally (iii) neither the choice
of a membership function in order to estimate P(gk|xt). The approach is therefore
much simpler to implement.

t t + 1 t + 2 t + ⌧ � 1 t + ⌧

p(ht(xt) = 1)

xt

�t =

0
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0
1
0
0
0
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0.3
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. . . . . 
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FIGURE 3.3: ECONOMY-γ, computing the probability distribution
p(γt+τ |γt). Here ht(xt) falls in the second confidence level interval.
Given a supposed learned transition matrix Mt+1

t , the next vector of
confidence levels will be (0.15, 0.3, 0.3, 0.2, 0.05)⊤.

2This restricts these methods to binary classification problems.
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Algorithm 3 Learn ECONOMY-γ-LITE

Input: K: number of groups
1: for all t ∈ 1, . . . , T do
2: learn a classifier ht(·) from a set of truncated time series Dt

train
3: build the groups gt

k by discretizing the confidence level of ht(·) into K intervals
4: for all gk ∈ G do
5: estimate the confusion matrix of ht(·) in the group gk
6: end for
7: end for

3.3.4 ECONOMY-γ

ECONOMY-γ uses the ECONOMY-γ-LITE principle to assign an incoming time series xt
to a given group gt

k, but it tries to get better estimates of the future terms Pt+τ(ŷ|y, gt
k)

of the confusion matrices by replacing gt
k by a projection gt+τ

k into the future as a
probability distribution over the confidence intervals of ht+τ.

Let us call γt = (γ1
t , . . . , γK

t )
⊤ the real-value vector of K components γi

t, where
each of the components is the probability p(ht(xt) ∈ Ii

t). For instance, in Figure 3.3,
γt = (0, 1, 0, 0, 0)⊤, all components are zero except γ2

t = 1.
We would like to compute the vectors γt+τ (0 < τ ≤ T − t) consisting of the

components:

γ
j
t+τ = p(ht+τ(xt+τ) ∈ I j

t+τ) (3.7)

In ECONOMY-γ, we propose to estimate γ
j
t+τ by using the K × K transitions

matrices {Mt′+1
t′ }t′∈{1,...,T−1} from γt′ to γt′+1 (see line 4 of Algorithm 4) where each

component of the matrix is estimated by:

mi,j = p( ht′+1(xt′+1) ∈ I j
t′+1 | ht′(xt′) ∈ Ii

t′ ) (3.8)

given a validation set of time series. At time step t, and from γt it then becomes
possible to compute γt+τ by:

γt+τ = γt
⊤

τ−1

∏
s=0

Mt+s+1
t+s (3.9)

Like in Equation (3.6), the future expected costs of decision are estimated through:

fτ(xt) =
K

∑
j=1

γ
j
t+τ

︸ ︷︷ ︸
(1)

∑
y∈Y

P(y|I j
t+τ) ∑

ŷ∈Y
Pt+τ(ŷ|y, I j

t+τ)

︸ ︷︷ ︸
(2)

Cm(ŷ|y) + Cd(t + τ) (3.10)

(1): for all confidence intervals I j
t+τ of ht+τ

(2): probability of misclassification when ht+τ(xt+τ) ∈ I j
t+τ

Again, a decision is triggered at time t̂∗ = t, if τ∗ = ArgMinτ∈{0,...,T−t} fτ(xt) is
found to be 0.

3.3.5 Complexity analysis

We provide here an analysis of the computational complexities of the proposed
algorithms, first in relation to the learning stage, and then with regard to the inference
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Algorithm 4 Learn ECONOMY-γ
Input: K: number of groups

1: for all t ∈ 1, . . . , T do
2: learn a classifier ht(·) from a set of truncated time series Dt

train
3: build the groups gt

k by discretizing the confidence level of ht(·) into K intervals
4: estimate the transition matrix Mt+1

t
5: end for

phase.
These complexities are expressed in a generic way, i.e. regardless of the classifier

(of complexity denoted Learn) and clustering (Clustering) algorithms used. The single
difference between two successive algorithms is underlined using bold letters in the
following expressions that relate to the learning phase.

ECO-K: O(T.Learn + Clustering + T.|Dtrain|.Predict + |Y|.K.|Dtrain|)

ECO-MULTI-K: O(T.Learn + T.Clustering + T.|Dtrain|.Predict + |Y|.K.|Dtrain|)

ECO-γ-LITE: O(T.Learn+T.|Dtrain|.log(|Dtrain|))+T.|Dtrain|.Predict+ |Y|.K.|Dtrain|)

ECO-γ: O(T.Learn+T.|Dtrain|.log(|Dtrain|))+T.|Dtrain|.Predict+ |Y|.K.|Dtrain|+
|Dtrain|2.K2)

ECONOMY-K learns a collection of T classifiers and build a partition of full-length
time series using a Clustering algorithm with a O(T.Learn + Clustering) complexity.
Then, confusion matrices are computed with a O(T.|Dtrain|.Predict) complexity and
the prior probability for each class in each group is computed with aO(|Y|.K.|Dtrain|)
complexity.

ECONOMY-MULTI-K has almost the same complexity and only differs by comput-
ing T different partitions.

ECONOMY-γ-LITE discretizes the outputs of the classifiers by sorting time series
according to their confidence level with a O(T.|Dtrain|.log(|Dtrain|)) complexity.

Finally, ECONOMY-γ adds the estimation of the transition matrices computed
with a O(|Dtrain|2.K2) complexity.

During the inference phase, a new measurement is received at each time step and
the future costs must be estimated. All the approaches carry out this estimate in a
O(T.|Y|2.K) complexity, except ECONOMY-γ that uses a matrix-vector product for
transition matrix to estimate future costs with a O(T.|Y|2.K + K2) time complexity.

3.4 Extending ECONOMY-γ to multi-class problems

While ECONOMY−γ algorithm summarized an incoming time series xt as a sequence
of scalars ⟨p(h1(x1) = 1, . . . , p(ht(xt) = 1⟩ in order to estimate the likely future of xt
as used in Equation 3.10, the extension to the multi-class problem requires using a
more complex summary. Now, instead of having one scalar by time stamp, we must
do with a vector of |Y| real values: < p(ht(xt) = 1), ..., p(ht(xt) = |Y|) > for each time
stamp, where Y is the set of classes.

In this section, we propose two leads to adapt ECONOMY-γ to multi-class prob-
lems:

• Using a confidence score that aggregates the |Y| probabilities estimated by the
classifier into a scalar value.
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• Using a clustering algorithm in the vector space formed by the |Y| probabilities
as in (Lemaire, Clérot, and Creff, 2015; Lemaire, Ismaili, et al., 2020; Zhdanov,
2019).

3.4.1 Confidence scores aggregating probabilities

A first way to adapt ECONOMY-γ is to use a confidence score which aggregates the
output vector of probabilities of the classifiers into a single scalar value: Confidence:
RK → R. The algorithm 4 is then slightly modified, replacing only line 3 by a
new step, i.e. discretizing the output range of the Confidence() function into K equal
frequency intervals. To do this, this function is applied to the time series of the
validation set Dt

val . The obtained intervals are used as the states of the Markov
Chain, and the rest of Algorithm 4 remains unchanged. This section presents the four
approaches we propose, which use different confidence scores.

i) The ECO-γ-entropy approach uses the Shannon’s entropy function to compute a
confidence score with Confidence(p1, ..., p|Y|) = −∑|Y|i=1 pi log(pi), where
pi = p(ht(xt) = i). For each validation example, the entropy value is estimated based
on the conditional probabilities of the classes. A high entropy indicates scattered
probability values, which corresponds to an uncertain prediction. By contrast, low
probabilities on all classes except one which is dominant lead to a low entropy value
which corresponds to a highly confident prediction.

ii) The ECO-γ-gini approach exploits the gini impurity index in a very similar way as
the entropy approach. Gini index is defined as Confidence(p1, ..., p|Y|) = 1−∑K−1

i=0 p2
i .

This score behaves the same way as the entropy function for the different case
scenarios, and it is computationally less expensive than the entropy score.

iii) The ECO-γ-margins approach uses the function Confidence(p1, ..., p|Y|) = pi − pj
where pi is the maximum conditional probability and pj the second largest, with
pi ≥ pj. This margin score is commonly used as a confidence score in active learning
strategies (Balcan, Broder, and T. Zhang, 2007; Desreumaux and Lemaire, 2020). A
large margin corresponds to a high confidence level in the prediction. Conversely, if
the two highest probabilities are close, the margin is low and this corresponds to an
uncertain prediction.

iv) The ECO-γ-max approach focuses only on the maximum probability estimated
by the classifier by taking Confidence(p1, ..., p|Y|) = max1≤i≤|Y| pi. Since ∑|Y|i=1 pi = 1,
a high maximum probability value implies low values for the other probabilities.
Conversely, an important value of the maximum probability correspond to a confident
prediction. This confidence score is less sophisticated than the margin one, since it
cannot differentiate the cases where the two largest probabilities are close or not. It is
thus interesting to see how it behaves nonetheless.

These four approaches differ only in the confidence scores they use. One objective
of the second part of experiments (Section 3.6) is to compare them and to identify the
confidence score that leads to the best performance.

3.4.2 Clustering

Another way to extend the ECONOMY-γ approach to multiclass problems is to use
clustering methods on the outputs of the classifiers such as to form a set G of groups.
At time t, for the classifier ht, the output vector < p(ht(xt) = 1), . . . , p(ht(xt) =
|Y|) > belongs to the vector space R|Y|, and each validation example of Dval can
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be represented by a point in this vector space whose coordinates correspond to
the conditional probabilities estimated by the classifier at time t. Moreover, these
points belong to a sub-variety of R|Y| which is a hyperplane defined by the equation

∑|Y|i=1 p(ht(xt) = i) = 1, i.e. the estimated probabilities over all class values must sum
to 1. The use of a clustering algorithm can identify dense groups belonging to this
hyperplane, and which differ by their confidence level on (all or part of) the classes.
This section presents two approaches using a clustering algorithm.

i) The ECO-γ-Kmeans approach directly applies the K-means algorithm3 on the
validation examples which are defined as probability vectors in R|Y|. Line 3 of
Algorithm 4 is replaced by: cluster the time series of Dval into K clusters (which
correspond to the groups G).

ii) The ECO-γ-Kmeans-cal approach is a variant that includes a pre-processing step
consisting in calibrating the probabilities provided by the classifiers before using the
K-means algorithm. In this approach, the probabilities p(ht(xt) = i) estimated by the
classifier are replaced by their normalized rank, in a similar way to isotonic calibration
(Flach, 2016). Intuitively, this calibration seems to be required to prevent the K-means
algorithm from misidentifying dense groups due to biases in the calibration of the
classifiers ht (1 ≤ t ≤ T).

3.5 Experiments on binary classification problems

3.5.1 Goal of the experiments

The approaches presented all rely on the estimation of the best decision time according
to a cost-based criterion which expresses the expected misclassification cost for future
time steps plus a delay cost. This is the basis of these non-myopic strategies.

A first set of questions regards the importance and impact of the various de-
sign choices that distinguish the four ECONOMY algorithms (see first part of the
experiments in Section 3.5.5):

1. Time series are partitioned in an unsupervised way for ECONOMY-K and
ECONOMY-MULTI-K and in a supervised mode for ECONOMY-γ-LITE and
ECONOMY-γ. Is one approach better than the other?

2. On a finer grain, is it better to cluster series using their full-length descriptions
as in ECONOMY-K or on their truncated description at each time step t as in
ECONOMY-multi-K?

3. Is it useful to try to have a more precise anticipation of the future of the incoming
time series as is done in ECONOMY-γ compared with the simpler albeit coarser
approach of ECONOMY-γ-LITE?

4. How distant the cost incurred is from the ideal optimal cost that one would
have paid if one had known the whole series and therefore the best decision
time? This is akin to a regret for not having a perfect a posteriori knowledge.

A second set of questions is whether developing non-myopic approaches brings
performance gains compared to state of the art approaches that are myopic?

3 We used the K-means algorithm provided with the L2 norm, and with 10 random initializations
using Kmeans++ (Arthur and Vassilvitskii, 2007).
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The second part of experiments (Section 3.5.5), therefore, compares the best
ECONOMY approach with (Mori, Alexander Mendiburu, Dasgupta, et al., 2017) which
has state of the art performance, as confirmed by a recent paper (Rußwurm, Lefevre,
et al., 2019).

Our experiments are designed to answer these two sets of questions. This is
why in Section 3.5.3, two different collections of datasets are used in the experiments
dedicated to each set of questions.

3.5.2 Evaluation criterion

In order to compare the methods, it is important to consider a criterion which ex-
presses its worth for the final user. We define a new evaluation criterion used in our
experiments both to optimize K on a validation set and to evaluate the early classifi-
cation approaches on a test set. In actual use, ultimately, the value of employing an
early classification method corresponds to the average cost that is incurred using it.
For a given dataset Dval , it is defined as follows:

AvgCost(Dval) =
1
|Dval | ∑

(xT ,y)∈Dval

(
Cm (ht̂∗(xt̂∗)|y) + Cd(t̂∗)

)
(3.11)

where t̂∗ is the decision time chosen by the method as the one optimizing the trade-off
between earliness and accuracy. In our experiments, AvgCost is evaluated for each
dataset and for each early classification method. Statistical tests allow us to detect
significant difference in performance.

3.5.3 Datasets

Two distinct collections of datasets are used in our experiments.

The datasets for the comparison of the ECONOMY approaches:
With respect to the first set of questions presented in Section 3.5.1, about the role of the
various design choices, one cannot easily measure differences of performance if the
datasets only include time series that are easy to classify very early or that are hard to
classify even when the whole series are known. Indeed, if this happens, all methods
either decide early to output a label or wait until the end, and their performances are
almost indistinguishable. In order, then, to be able to measure differences between
the various online decision methods, we excluded datasets with these characteristics.

All the selected datasets come from the UEA & UCR Time Series Classification
Repository4. First, we removed potentially correlated datasets since it is important
to select only independent datasets for the use of statistical tests. We identified
almost identical dataset names and sizes. For instance, the datasets “Ford A” and
“Ford B” contain the same number of time series with the same length. In this
case, we keep only one dataset chosen at random. Then, we learned a collection
of classifiers for the remaining datasets and manually removed those for which the
successive classifiers did not improve their quality over time. More specifically,
we plotted the Cohen’s kappa score (Cohen, 1960) for each possible lengths of the
input time series. We removed the datasets with low and almost constant quality
of classifiers over time. Please note that the removed datasets are overwhelmingly
the smallest, as the low number of training examples generally leads to poor quality

4Available at : http://www.timeseriesclassification.com

http://www.timeseriesclassification.com
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classifiers. The 34 selected datasets and their description are available at https:
//tinyurl.com/ycmbxurq. Additional experiment results on a 45 datasets benchmark
used in (Mori, Alexander Mendiburu, Miranda, et al., 2019) are reported in Appendix
B and shows similar results.

The datasets for comparisons with the state of the art methods:
In order to be able to make direct comparison with the method described in (Mori,
Alexander Mendiburu, Dasgupta, et al., 2017) we use the same datasets as they did.
This benchmark consists of 45 datasets of variable sizes that come from a variety
of application areas. This collection of datasets has also been used in (Schäfer and
Leser, 2020) and (Mori, Alexander Mendiburu, Miranda, et al., 2019), making our
experiences easily comparable to previous works.

Dataset preparation: First, the training and test sets were merged for each dataset
to overcome the possibly unbalanced or biased split of the original data files. The
remaining datasets were then transformed into binary classes since ECONOMY-γ and
ECONOMY-γ-LITE are limited to binary classification. This was done by retaining
the majority class and merging all the others. In order to reduce the computation
time of the experiments and to compare datasets with time series of different lengths,
we trained a classifier every 5% of the total length of the time series, instead of one
classifier per time step, as done in (Mori, Alexander Mendiburu, Dasgupta, et al.,
2017). Furthermore, for each dataset and for each possible length (i.e 5%, 10%, 15%
... of the total length), we extracted 60 features5 from the corresponding truncated
time series in order to train the associated classifiers. To do this, we used the Time
Series Feature Extraction Library (Barandas et al., 2020), which automatically extracts
features on the statistical, temporal and spectral domains.

3.5.4 Experimental protocol

The datasets were divided by uniformly selecting 70% of the examples for the training
set and using the remaining 30% for the test set. Furthermore, the training sets were
divided into three disjoint subsets as follows: (subset a) 40% for training the various
classifiers {ht}t∈{1,...,T}; (subset b) 40% for learning the meta parameters; (subset c)
20% to optimize the number of groups in G.
(subset a) Learning the collection of classifiers: for each dataset, the classifiers corre-
sponding to the possible lengths of the input time series (i.e. every 5% of the total
length) were learned. The XGboost Python library 6 was used, keeping the default
values for the hyper-parameters.
(subset b) Learning the meta-parameters: they were learned for each ECONOMY ap-
proach, except the parameter K which is optimized using (subset c). For instance, a
meta-model learned by the ECONOMY-γ approach consists of: (i) the discretization
into K intervals of the confidence level for each classifier (one for each possible length),
and (ii) the transition matrices between a time step to the next one (i.e. every 5% of
the time series length).
(subset c) Optimizing the number of groups K: the ECONOMY algorithms were trained
by varying the number of groups between 1 to 20 and evaluated by the AvgCost(.)

5More details are available in: https://docs.google.com/spreadsheets/d/13u7L_5IX3XxFuq_
SnbOZF1dXQfcBB0wR3PXhvevhPYA/

6XGBoost is available in: https://xgboost.readthedocs.io

https://tinyurl.com/ycmbxurq
https://tinyurl.com/ycmbxurq
https://docs.google.com/spreadsheets/d/13u7L_5IX3XxFuq_SnbOZF1dXQfcBB0wR3PXhvevhPYA/
https://docs.google.com/spreadsheets/d/13u7L_5IX3XxFuq_SnbOZF1dXQfcBB0wR3PXhvevhPYA/
https://xgboost.readthedocs.io
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criterion which represents the average cost actually paid by the user (see Equation
(5.5)). The value of K which minimizes the AvgCost(.) criterion has been kept.

Costs setting: the misclassification cost was set in the same way for all datasets:
Cm(ŷ|y) = 1 if ŷ ̸= y, and = 0 otherwise. The delay cost Cd(t) is provided by the
domain experts in actual use case. In the absence of this knowledge, we define it as a
linear function of time, with coefficient, or slope, α:

Cd(t) = α× t
T

(3.12)

The larger the α coefficient, the more costly it is to wait for more measurements in
the incoming time series. The delay cost Cd(t) is obviously of paramount importance
to control the best decision time. If α is very low, it does not hurt to wait for the whole
time series to be known and t∗ = T. If, on the contrary, α is very high, the gain in
misclassification cost obtained thanks to more observations cannot compensate for
the increase of the delay cost, and it is better to make a decision at the beginning of
the observations. Our experiments were run over a three ranges of values of α: low
time cost with α ∈ [1e-04, 2e-04, 4e-04, 8e-04, 1e-03, 3e-03, 5e-03, 8e-03]; medium time
cost with α ∈ [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09]; high time cost with α ∈
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0].

3.5.5 Results and analysis

This section presents the results of the experiments aimed at identifying the best
design choices for the ECONOMY approaches (see Section 3.5.3).

Comparison of the ECONOMY approaches with a non adaptive baseline

As a first sanity test, it is interesting to see if the ECONOMY algorithms do indeed
adapt the decision time to the incoming time series, or if they treat them all the same.
In order to perform this test, each of the ECONOMY approaches is run once in its
adaptive mode, and once made unable to adapt by forcing the number of groups
K = 1 (there is thus no difference made between the series).

FIGURE 3.4: Success of adapting the trigger times - Wilcoxon signed-
rank test results for different values of α: black dotes indicate success

and circles failures.

The ECONOMY approaches are trained on the 34 selected datasets by varying
the value of α, and then, evaluated on the test sets using the AvgCost criterion. The
Wilcoxon signed-rank test is used to assess whether the observed performance gap is
significant. Figure 3.4 presents the results of the Wilcoxon signed-rank test for each
ECONOMY approach, applied over the 34 datasets by varying the values of α.
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In the range α ∈ [0.0001, 0.01], ECONOMY-MULTI-K is the only approach that
succeed in adapting its trigger times. By contrast, in the range α ∈ [0.02, 0.1], it
appears that the ECONOMY approaches actually succeed in adapting their trigger
times, with the exception of ECONOMY-MULTI-K which fails this test one-third of the
time and behaves rather erratically when α varies.

At the end, these approaches succeed in improving performance by adapting
their trigger times, differing in their range of success.

Comparison of the ECONOMY approaches

(a) Comparison with respect to the average decision cost
The AvgCost criterion was evaluated on the 34 test sets, and α was adjusted for each
dataset in order to reveal the greatest differences in performance between the best and
worst approach (see Table 3.2 for more details). The Nemenyi test (Nemenyi, 1962)
was used to rank the different ECONOMY approaches in terms of average decision
cost. The Nemenyi test consists of two successive steps. First, the Friedman test is
applied to the average decision cost of competing approaches to determine whether
their overall performance is similar. If not, the post-hoc test is applied to determine
groups of approaches whose overall performance is significantly different from that
of the other groups.

(A) (B)

FIGURE 3.5: Evaluation based on AvgCost: (a) Nemenyi test applied
to the 34 datasets; (b) pairwise comparison using the Wilcoxon signed-
rank test, with black squares identifying non-significant comparisons.

Figure 3.5 (a) reports the results of the Nemenyi test, shows two groups of methods
of which the performances are significantly different. Specifically, the ECONOMY-
γ and ECONOMY-γ-LITE methods exhibit much better average decision costs than
ECONOMY-K and ECONOMY-MULTI-K.

Figure 3.5 (b) shows pairwise comparison using the Wilcoxon signed-rank test
between the approaches. The small black squares identify pairs of approaches that do
not differ significantly in performance. It is thus apparent that ECONOMY-γ performs
significantly better than ECONOMY-γ-LITE.

Figure 3.7 shows the mean of the AvgCost computed over 34 datasets for ECONOMY-
γ and ECONOMY-K. The superiority of ECONOMY-γ is confirmed over a whole range
of α values. In addition, the perfect cost is the cost paid by the user at the first time
stamp where the label is predicted correctly. No other method can do better than
the perfect one. Furthermore, Figure 3.7 shows that there is still a large margin to
improve those methods towards the perfect one.
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(A) (B)

(C) (D)

FIGURE 3.6: Earliness (a, b) and predictive performance (c, d) compar-
ison of the ECONOMY approaches.

(b) Comparison with respect to the earliness of the decision time
In the following, the earliness of early classification approaches is evaluated using
the median of the trigger times normalized by the length of the series, defined
by earliness = med{t̂∗}/T (see Table 3.2). Figure 3.6a shows that ECONOMY-γ,
on average, triggers its decision earlier than the competing methods, followed by
ECONOMY-γ-LITE. Furthermore, according to the Wilcoxon signed-rank test, this
difference is significant compared to the other ECONOMY approaches (Figure 3.6b).

Figure 3.8 shows a clear decreasing tendency of the average decision moment for
both methods when α gets large, which is expected since methods must decide earlier
when delay cost gets large. ECONOMY-γ decides earlier on average than ECONOMY-K
with a large margin, until α = 0.3 where the two methods are close to each other
with slightly earlier predictions for ECONOMY-K. The standard deviation decreases
as α gets high since decisions become more straightforward. When the delay cost is
very high, methods try to decide as early as possible without caring too much about
adapting to the measurements.

(c) Comparison with respect to the predictive performance of the algorithms
The predictive performance is evaluated using the Cohen’s kappa score (Cohen, 1960)
computed at t̂∗, since this criterion properly manages unbalanced datasets (see Table
3.2). Again, the ECONOMY-γ and ECONOMY-γ-LITE dominate in terms of predictive
performance, but here the difference is not statistically significant.

(d) Pareto curves when varying the α coefficient controlling the delay cost
In Figure 3.9, the coordinates of each point are given by the average Kappa score and
the average earliness obtained over the 34 datasets when the delay cost α is chosen
in the range [10−4, 1], and the Pareto curve is drawn for each of the approaches.
The result is strikingly clear. For each value of α, ECONOMY-γ dominates all others
approaches, even if ECONOMY-γ-LITE is not far behind. The ECONOMY-K and
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FIGURE 3.7: The mean of the AvgCost computed over 34 datasets for
ECONOMY-γ and ECONOMY-K and the perfect cost which is the best

an approach can do

ECONOMY-MULTI-K approaches yield much weaker results and are indistinguishable
from each other.

(e) Comparing decision moments distribution

Figure 3.10 shows that ECONOMY-γ makes earlier decisions compared to ECONOMY-
K even when the α parameter (delay cost) is small. For high delay costs, ECONOMY-K
tends to be very early, with a distribution that seems to be less spread than ECONOMY-
γ. In other words, ECONOMY-γ is more capable of adapting its decision moment for
high delay costs than ECONOMY-K. These two points could explain the performance
superiority of ECONOMY-γ. Similar Figures to Figure 3.10 for other values of α are
given in Appendix B.

(f) Sensitivity of the number of groups chosen Figure 3.11 shows that the average
of the number of groups is overall stable with respect to the α parameter, with a slight
increasing tendency for high values of α for ECONOMY-γ, this might be interpreted
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as the method trying to adapt its decision moment more when delay cost is high, this
behavior has also been noticed in Figure 3.10 in the form of a more spread distribution
of decision moments for high delay costs.

(h) Comparison with the best possible performance
The approaches presented are able to adapt their decision time t̂∗ to the characteristics
of the time series and to perform well in terms of average decision costs AvgCost, but

FIGURE 3.8: The average optimal decision moment chosen by
ECONOMY-γ and ECONOMY-K with one standard deviation.

FIGURE 3.9: Average Earliness vs. Average Kappa score obtain over the
34 datasets by varying the slope of the time cost, such as α ∈ [10−4, 1].
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(A) α=0.001 (B) α=0.001

(C) α=0.01 (D) α=0.01

(E) α=0.1 (F) α=0.1

(G) α=1 (H) α=1

FIGURE 3.10: The distribution of decision moments for ECONOMY-γ
(left column) and ECONOMY-K (right column)
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FIGURE 3.11: The average optimal number of groups chosen by
ECONOMY-γ and ECONOMY-K with one standard deviation.

to what extent these results differ from the optimal ones AvgCost∗ computable after
the entire time series is known? For each dataset, ∆cost = |AvgCost− AvgCost∗| was
computed. Figure B.15 shows that ECONOMY-γ provides the best online decisions
compared to the optimal ones, on average, followed by ECONOMY-γ-LITE. According
to the Wilcoxon signed-rank test, this difference is significant compared to the other
ECONOMY approaches (Figure B.15b).

(A) (B)

FIGURE 3.12: Evaluation of the quality of online decisions based on
∆cost.

From all these results, several conclusions can be drawn.

1. The ECONOMY approaches that partition the time series using the learned
classifiers (supervised-based methods) perform significantly better than those
which exploit the K-means algorithm (unsupervised-based methods).
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2. For the unsupervised approaches, partitioning the time series on full-length
time series (ECONOMY-K), or on truncated ones (ECONOMY-MULTI-K) does not
significantly affect the performances.

3. Regarding the supervised methods, using a more sophisticated anticipation
mechanism of the incoming time series as done by ECONOMY-γ is profitable
and allows it to beat the less sophisticated ECONOMY-γ-LITE method

Comparing ECONOMY-γ and the state of the art

This section compares ECONOMY-γ to the state of the art approach (Mori, Alexander
Mendiburu, Dasgupta, et al., 2017) and investigates the effects of the non-myopic
property on its performance.

Comparing the performances An important question is whether it is worth consid-
ering explicitly, in a single optimization criterion, earliness and accuracy, as in the
ECONOMY approaches, and furthermore to adopt a non-myopic strategy with the
modeling and computational costs involved. To assess this, we compared the ECON-
OMY methods with a competing algorithm, called SR presented in (Mori, Alexander
Mendiburu, Dasgupta, et al., 2017) which is claimed to dominate all other algorithms
over 45 benchmark datasets. The SR algorithm uses a trigger function to decide if
the current prediction is reliable (output 1) or if it is preferable to wait for more data
(output 0). Among several triggered functions, all of a heuristic nature, the most
effective is:

Trigger (ht(xt)) =

{
0 if γ1 p1 + γ2 p2 + γ3

t
T ≤ 0

1 otherwise
(3.13)

where p1 is the largest posterior probability estimated by the classifier ht: p1 =
ArgMaxy∈Y ( p̂(y|xt)), p2 is the difference between the two largest posterior proba-
bilities, defined as | p̂(y = 1|xt) − p̂(y = 0|xt)| in the case of binary classification
problems, and where the last term t

T represents the proportion of the incoming time
series that is visible at time t.

The parameters γ1, γ2, γ3 are real values in [−1, 1] to be optimized. In our ex-
periments, these parameters were tuned using a grid-search over the set of values
[−1,−0.95,−0.90, ..., 0, 0.05, ..., 0.90, 0.95, 1] in order to minimize the criterion AvgCost.
The optimization was carried out for all possible time cost functions with a slope
α ∈ [10−4, 1].

(A) (B)

FIGURE 3.13: SR vs. ECONOMY-γ: evaluation based on AvgCost.
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After training, the AvgCost criterion was evaluated on the 45 test sets, and α
was adjusted for each dataset in order to find the most favorable setting for the SR
algorithm, namely one maximizing AvgCostSR − AvgCostEco−γ.

Figure 3.13a reports the results of the Nemenyi test and demonstrates that even in
these situations favoring the SR algorithm, ECONOMY-γ reaches significantly better
performances. The Wilcoxon signed-rank test presented in Figure 3.13b reinforces
this conclusion.

FIGURE 3.14: MORI vs. ECONOMY approaches : evaluation based on
AvgCost using the Wilcoxon signed-rank test, for different values of α:
“+” indicate success of ECONOMY approaches and “◦” insignificant

difference in performance.

We also carried out the Wilcoxon signed-rank test to compare the SR approach
with the four ECONOMY approaches, for each value of α ∈ [10−4, 1]. The results
(see Figure 3.16) shows forcibly that the ECONOMY approaches perform signifi-
cantly better than the SR approach, regardless of the value of α; except for α ∈
{10−4, 2.10−4, 4.10−4} where this difference is not significant.

Measuring the effect of the non-myopic property of ECONOMY One important
feature that differentiates the ECONOMY approaches from the state of the art methods
is being non-myopic. Where standard methods decide whether to make a prediction
at the current time based only on currently available information, the Economy
algorithms look at future instants in order to predict the best decision time.

This section presents experiments aimed at answering the following question: Is
it better to be non-myopic for an online decision system?

To answer this question, four myopic versions of the proposed ECONOMY ap-
proaches were implemented by limiting the horizon to only one measurement in the
future, instead of looking at all the future time steps. The experiments performed
with these myopic approaches are similar to those described in Section 3.5.5. The
results are reported in Figure 3.15.

Figure 3.15a reports the results of the Nemenyi test between the myopic ECONOMY

approaches and the SR approach of (Mori, Alexander Mendiburu, Dasgupta, et al.,
2017). They are cast in the same group. Moreover, the Wilcoxon signed-rank test
presented in Figure 3.15b shows that there is no statistical significant difference in
performance. Consequently, it appears that the non-myopic feature is a key property
required to obtain better results.
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TABLE 3.2: Details of experimental results for each dataset.
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(A) (B)

FIGURE 3.15: Evaluation of the myopic version of Economy approaches
and SR approach based on AvgCost: (a) Nemenyi test applied to the
45 datasets; (b) pairwise comparison using the Wilcoxon signed-rank

test, with black squares identifying non-significant comparisons.

3.6 Experiments on multi-class classification problems

All the methods presented extend the ECONOMY-γ technique to multiclass problems,
except ECO-K which is natively adapted to multiclass problems.

The first question that our experiments aim at answering is whether the proposed
multi-class approaches bring significant performance gains compared to the state of
the art approaches especially in case of multi-class classification problems7.

The second question concerns the different ways to extend ECONOMY-γ to multi-
class problems:

1. Is it a good idea to aggregate the probabilities estimated by the classifier into
a scalar value? Or is it better to form the groups without aggregating these
probabilities and using a clustering algorithm over the outputs of the classifier?

2. For the approaches which aggregate the estimated probabilities, which univari-
ate confidence score leads to the best performances ?

Section 3.6.3 presents the obtained results.

3.6.1 Datasets

In order to be able to make direct comparisons with (Mori, Alexander Mendiburu,
Dasgupta, et al., 2017) we use the same datasets as they did. This benchmark consists
of 45 datasets of variable sizes that come from a variety of application areas. This
collection of datasets has also been used in (Schäfer and Leser, 2020) and (Mori,
Alexander Mendiburu, Miranda, et al., 2019), making our experiences easily compa-
rable to previous works. We keep the 33 datasets for which the number of classes is
greater than two, which is appropriate for multiclass problems.

In order to reduce the computation time of the experiments and to compare
datasets with time series of different lengths, we trained a classifier every 5% of
the total length of the time series, instead of one classifier per time step, as done in
(Mori, Alexander Mendiburu, Dasgupta, et al., 2017). Furthermore, for each dataset
and for each possible length (i.e 5%, 10%, ... of the total length), we extracted 60
features8 from the corresponding truncated time series in order to train the associated

7 Note: This was already demonstrated in the case of binary classification in Section 3.5 by comparing
the ECONOMY family of algorithms with (Mori, Alexander Mendiburu, Dasgupta, et al., 2017) which is
currently the best performing myopic approach, as confirmed by a recent paper (Rußwurm, Lefevre,
et al., 2019)

8 More details are available in: https://cutt.ly/jvaKejI

https://cutt.ly/jvaKejI
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classifiers. To do this, we used the Time Series Feature Extraction Library (Barandas
et al., 2020), which automatically extracts features on the statistical, temporal and
spectral domains.

3.6.2 Experimental protocol

The datasets were divided by uniformly selecting 70% of the examples for the training
set and using the remaining 30% for the test set. Then, the training sets were divided
into three disjoint subsets as follows:

• 40% for training the collection of classifiers {ht}t∈{1,...,T} using the Python XG-
boost library9 with the default values of the hyper-parameters;

• 40% for learning the meta-parameters of the proposed approaches, which
consists of: (i) the discretization of the confidence score into K intervals for each
classifier, and (ii) the transition matrices between a time step to the next one (i.e.
every 5% of the time series length);

• 20% to optimize the number of groups K: all the approaches were trained by
varying the number of groups between 1 to 10, and evaluated by AvgCost(.)
(see Equation 5.5). In order to manage datasets with a large number of classes,
the values K ∈ {|Y|, 2|Y|} are also evaluated. The value which minimizes the
AvgCost(.) criterion has been kept.

Costs setting: the misclassification cost was set in the same way for all datasets:
Cm(ŷ|y) = 1 if ŷ ̸= y, and = 0 otherwise. The delay cost Cd(t) is provided by the
domain experts in actual use cases. In the absence of this knowledge, we define it as
a linear function of time, with coefficient, or slope, α:

Cd(t) = α× t
T

(3.14)

The range of values used for α is {0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.

3.6.3 Results and analysis

First, our experiments compare the performance of the proposed approaches with
the state of the art.

The SR approach is a very strong competitor. It was demonstrated in (Mori, Alexan-
der Mendiburu, Dasgupta, et al., 2017) to dominate all other algorithms in the litera-
ture over a benchmark with numerous datasets. In this algorithm, a trigger function
is used to decide if the current prediction is reliable (output 1) or if it is better to wait
for other measures (output 0):

Trigger (ht(xt)) =

{
0 if γ1 p1 + γ2 p2 + γ3

t
T ≤ 0

1 otherwise
(3.15)

where p1 is the largest conditional probability estimated by the classifier ht, p2 is the
difference between the two largest probabilities and t

T represents the proportion of
the incoming time series that is visible at time t.

9 XGBoost is available in: https://xgboost.readthedocs.io

https://xgboost.readthedocs.io
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The parameters γ1, γ2, γ3 are real values in [−1, 1] to be optimized. In our experi-
ments, these parameters were tuned for each value of α ∈ [10−3, 1] by minimizing the
value of AvgCost thanks to a grid-search on the values [−1,−0.90, ..., 0, 0.1, ..., 0.90, 1].

After training, the AvgCost criterion was evaluated on the 33 test sets for all values
of α, both for the SR algorithm and for the proposed approaches. Then, Wilcoxon
signed-rank tests were carried out to compare the SR approach with the six proposed
variants of the ECONOMY approach, for each value of α ∈ [10−3, 1]. The results are
presented in Figure 3.16, which shows that all the ECONOMY approaches perform
significantly better than the SR approach, whatever the value of α.

FIGURE 3.16: SR vs. ECONOMY approaches: the evaluation is based
on AvgCost using the Wilcoxon signed-rank test, for different values
of α. The symbol “+” indicates that all ECONOMY approaches win
over the SR method. It is remarkable that the table only contains “‘+”.

A similar result was obtained in Section 3.5 in the case of binary classification
problems. Figure 1 shows that the dominance of the Economy approaches is still
verified for multiclass problems and confirms that the design choices of the proposed
approaches are reasonable.

At this point, it remains to identify the best approach among those proposed, i.e.,
identify the best way to extend ECONOMY-γ to multiclass problems.

For this purpose, we compare each ECONOMY approach to all others and for all
values of α, using the Wilcoxon signed-rank test (as in Figure 3.16). This comparison
is reported in Table 3.3, where the second column counts the number of significant
wins of each approach against all others; the third column counts the number of
significant defeats;the fourth column reports the number of non-significant differences
in performance; and, finally, the fifth column corresponds to the difference between
the number of wins and the number of defeats.

Table 3.3 shows that the best performances are achieved by the ECO-γ-max and
ECO-γ-gini approaches, when considering all the values of α. Actually, these two
approaches have no significant defeats and have a large number of wins.

Surprisingly, the performance gap between the ECO-γ-gini and ECO-γ-entropy
approaches is important. Even if these two confidence scores are mathematically very
close, they do not produce exactly the same ranking of the examples and therefore
the groups resulting from the discretization of these confidence scores are different.

At the other end of the spectrum, the ECO-γ-Kmeans and ECO-γ-Kmeans-cal
approaches are the worst performing ones, which shows that the most promising
lead to adapt ECONOMY-γ to the multiclass problems is to aggregate the classifier
outputs into a confidence score.
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TABLE 3.3: ECONOMY approaches comparison using Wilcoxon signed-
rank test: significant wins / defeats of each approach (against all the

other) counted for all α, based onthe AvgCost criterion.

Algorithm wins defeats ties balance
ECO-γ-max 16 0 56 +16
ECO-γ-gini 16 0 56 +16
ECO-γ-entropy 9 6 57 +3
ECO-K 8 4 60 4
ECO-γ-margins 1 9 62 -8
ECO-γ-Kmeans-cal 0 15 57 -15
ECO-γ-Kmeans 0 16 56 -16

Table 3.3 provides the ranking of the different approaches by their performance
level, but this result is aggregated for all α values. The rest of the results presented
in this section study the impact of the delay cost Cd(t) on the ranking of these
approaches.

In our experiments, the proposed ECONOMY approaches are not distinguishable
for the large majority of the cases where α > 0.4 (see Appendix B). Thus, we choose
here to show detailed results for three representative cases, which correspond to
α ∈ {0.01, 0.1, 0.3}. The same results are available in Appendix B for the other α
values.

(A) (B)

FIGURE 3.17: Comparison of ECONOMY approaches for α = 0.01 using
(a) Nemenyi and (b) Wilcoxon signed-rank tests.

Figure 3.17 (a) shows the Nemenyi test (Nemenyi, 1962) applied for α = 0.01.
This test consists of two successive steps. First, the Friedman test is applied to the
AvgCost obtained by the competing approaches to determine whether their overall
performance is similar. If not, the post-hoc test is applied to determine groups of
approaches whose overall performance is significantly different from that of the other
groups. In this case, the Nemenyi test is not able to show a significant difference,
since all approaches belong to the same group.

Figure 3.17 (b) shows pairwise comparison using the Wilcoxon signed-rank test
between the approaches. The small black squares identify pairs of approaches that
do not differ significantly in performance. It appears that: (i) ECO-γ-Kmeans is
dominated by ECO-K, ECO-γ-entropy, ECO-γ-gini and ECO-γ-max; (ii) the ECO-γ-
Kmeans-cal is dominated only by ECO-K. These results confirm the bad ranking of
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clustering based approaches observed in Table 3.3.

(A) (B)

FIGURE 3.18: Comparison of ECONOMY approaches for α = 0.1 using
(a) Nemenyi and (b) Wilcoxon signed-rank tests

Figure 3.18 (a) plots the Nemenyi test for α = 0.1, and shows that: (i) ECO-γ-max is
significantly better than ECO-K, ECO-γ-Kmeans and ECO-γ-margins; (ii) ECO-γ-gini
and ECO-γ-entropy are significantly better than ECO-γ-Kmeans and ECO-γ-margins.
The Wilcoxon tests in Figure 3.18 (b) confirm these results, except for ECO-γ-max that
is not significantly better than ECO-K.

(A) (B)

FIGURE 3.19: Comparison of ECONOMY approaches for α = 0.3 using
(a) Nemenyi and (b) Wilcoxon signed-rank tests

Figure 3.19 shows the same plots for a higher delay cost set by α = 0.3. In this
case, the approaches ECO-γ-gini and ECO-γ-max remain at the top of the ranking,
and these two methods are significantly better than all the other ones except ECO-K,
considering the Wilcoxon signed-rank tests.

Finally, these results based on statistical tests are in line with the results of Table 3.3,
and show that the two approaches and are consistently in the top group. Henceforth,
the following results compare the competing approaches by varying α in a more fine-
grained way, and by evaluating both their: (i) earliness; and (ii) predictive performance.

For a given dataset and a given value of α ∈ [10−3, 1], the earliness is evaluated
using the median of the trigger times t̂∗ normalized by the length of the series, defined
as: Earliness = med{t̂∗}/T. On the other hand, the predictive performance is evaluated
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FIGURE 3.20: Average Earliness vs. Average Kappa score obtain
over the 33 datasets by varying the slope of the time cost, such as

α ∈ [10−3, 1].
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using the Cohen’s Kappa score (Cohen, 1960) computed at the time of decision t̂∗,
since this criterion properly manages imbalanced datasets.

In Figure 3.20, the coordinates of each point are given by the average Earliness
and the average Kappa score obtained over the 33 used datasets when the delay cost
α is chosen in the range [10−3, 1]. The Pareto curve is then drawn for each of the
competing approaches. Two distinct groups of approaches can be identified in this
figure: (i) the top group consists of the , , approaches; (ii) the second group includes the
other approaches, , ECO-γ-Kmeans-cal, and . The top group dominates the second group
on both Earliness and Kappa criteria, i.e. two curves belonging to the different groups
do not intersect. In contrast, the approaches within each group can not be clearly
distinguished, since the curves in the same group cross each other. Furthermore,
it can be noticed that for α ≥ 0.4 the curves of the two groups are very close to
each other (see the lower left part of Figure 3.20), which is consistent with previous
Wilcoxon signed-rank tests that failed to significantly distinguish the performance of
the competing approaches based on the AvgCost criterion.

3.7 Perspectives and future work

An increasing number of applications require the ability to recognize the class of
an incoming time series as quickly as possible without unduly compromising the
accuracy of the prediction. In this chapter, we reformulated in a generic way an
optimization criterion put forward in (Dachraoui, Bondu, and Cornuéjols, 2015)
which takes into account both the cost of misclassification and the cost of delaying
the decision.

This generic framework has been technically declined, leading to the design of
three new “non-myopic” algorithms - i.e. able to anticipate the expected future
gain in information in balance with the cost of waiting. In one class of algorithms,
unsupervised-based, the expectations use the clustering of time series, while in a
second class, supervised-based, time series are grouped according to the confidence
level of the classifier used to label them.

We have defined a new evaluation criterion that represents the average cost
incurred when the method is applied over a set of labelled time series. This criterion
makes it possible to evaluate both earliness and predictive performance as a single
objective, with respect to the ground truth. It offers a well-grounded framework
widely applicable for the comparison of methods.

Extensive experiments carried out on real datasets using a large range of delay
cost functions show that the presented algorithms are able to satisfactorily solve
the earliness vs. accuracy trade-off, with the supervised partition based approaches
generally faring better than the unsupervised partition based ones. In addition, all
these methods perform better in a wide variety of conditions than the state of the art
competitive method of (Mori, Alexander Mendiburu, Dasgupta, et al., 2017). The non-
myopic feature of the ECONOMY approaches is required for this good achievement.
We have shown that the non-myopic property of the ECONOMY approaches plays a
key role for these good performances.

Given the merit of the novel approach ECONOMY-γ, we proposed two leads to
extend it to multi-class problems: (i) by using a confidence score that aggregates the
probabilities estimated by the classifier into a scalar value; (ii) by using a clustering
algorithm in the vector space formed by the estimated probabilities. The first lead has
resulted in several competing approaches that used entropy, Gini index, margins, and
maximum probability as confidence scores. In addition, we proposed two approaches
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derived from the second lead which used the K-means algorithm on the probabilities
estimated by the classifier, with an optional calibration step. Extensive experiments
on 33 datasets of multiclass classification problems allowed us to compare the perfor-
mance of the six proposed approaches to the state-of-the-art method (Mori, Alexander
Mendiburu, Dasgupta, et al., 2017). Our experiments show that: (i) all proposed
methods perform significantly better than the state of the art method; and (ii) the
best way to extend ECONOMY-γ to multi-class problems is to use a confidence score,
either the Gini index or the maximum probability.

Non-myopic approaches have shown a great potential in dealing with the early
classification of time series as a supervised learning problem. The next step is to
extend them to the unsupervised setting. This will open the path to more applications
where it is very costly to label samples. Other techniques than Markov chains could
be used to estimate the groups for future time steps for ECONOMY-γ, for example
modeling it as a supervised learning problem.

While ECTS covers a wide range of applications, it has some limitations. Namely,
decisions are irrevocable. Once a decision is taken, it is final, and measurements are
not acquired anymore. In the next chapter, this ECTS problem will be extended to a
new problem that we call Early and Revocable time series classification. The motivation
behind this extension is to make possible the use of ECTS techniques in applications
where the decision could be changed if the new measurements confirm a wrong
decision taken in the past.
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Chapter 4

Early and Revocable time series
classification

Abstract

While the early classification of time series in the irrevocable regime has been
addressed in several papers in the last few years, we do not know of similar
works for the revocable regime. Nevertheless, our work on a large set of datasets
and a broad spectrum of misclassification, delay, and revision costs, shows
that intelligently identifying revocation instants can yield significant gains.
Indeed, even with state-of-the-art early classification methods, there exist
situations where additional knowledge of the unfolding time series warrants
to change decisions, even in the face of increasing delay cost and additional
cost of decision changes. We thus found that, depending on these relative costs,
between 3% to 8% of the times series would benefit if changes of decision are
made. Furthermore, a revocable strategy that considers the cost of changing
decisions almost always beats a naive yet non-myopic revocable strategy that
changes decisions without considering the decision change cost.

The content of this chapter has been published as a conference paper:

• Early and Revocable Time Series Classification, Y Achenchabe, A Bondu, A Cor-
nuéjols, V Lemaire - 2022 International Joint Conference on Neural Networks
(IJCNN)



58 Chapter 4. Early and Revocable time series classification

4.1 Introduction

In the previous chapter, we presented the problem of early classification of time series,
with a particular focus on ECONOMY approach. We put forward a general framework
for the ECTS problem, and implemented it using a novel approach based on the clas-
sifier’s confidence. Extensive experiments were conducted to show the significance
of the new approach.

In this chapter, we focus only on one limitation of ECTS that has been mentioned
in the introduction chapter, which is that decisions in ECTS are irrevocable. Once
a decision is taken, the process of gathering new measurements is terminated, and
a class label is predicted. Figure 4.1 illustrates the changes in the procedure, which
consist of receiving new measurements even if a class label has been predicted. In
many situations, however, one can make a decision and then decide to change it after
some new pieces of information become available. The change may be costly but still
warranted because it seems likely to lead to a much better outcome. This can be the
case for instance when an outdoor event is canceled due to a dramatic change in the
weather forecast, or when a doctor revises what now seems a misdiagnosis.

FIGURE 4.1: General schema of Early and Revocable time series classi-
fication approaches

The problem now is identifying the optimal decision sequences given an incoming
series of measurements and the various existing costs.

The impact of such an intelligent revocable strategy could have on prediction
maintenance, intensive care units, autonomous cars, and many more application
domains where decisions have to be made optimizing costs of mistaken decisions
and delay costs is quite significant.

The contribution of this chapter is threefold. First, it formalizes the optimization
problem associated with the revocable regime for the early classification problem.
Second, it proposes two approaches to tackle this problem, and we introduced an
extended notion of non-myopia. Both approaches are non-myopic in that, to make
their decisions, they take into account expectancies of the cost likely to incur in the
foreseeable future:

1. The first approach is conventionally non-myopic, in the sense that it is only aware
of the delay and misclassification costs: it is ready to revoke a decision as soon
as this seems reasonable, without considering the cost of changing the decision.
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2. The second approach is non-myopic of second order, as it estimates the future
expected cost of a decision by taking into account the risk of revocation itself,
which is not trivial. Specifically, a decision that will probably be revoked
afterward should be delayed due to this risk. Conversely, a decision that
promises to be sustainable should be anticipated.

Third, extensive experiments are presented and show that it is better to be able to
revise decisions than to implement an irrevocable decision strategy. In addition, it is
worth considering the non-myopic of second order approach.

More formally, we assume that there exists a data set Dtrain = {(xi
T, yi)}1≤i≤m

of complete time series xT = ⟨x1, . . . , xT⟩ each of which is associated with a label
y ∈ Y (e.g. patient who needs a surgical operation or patient who does not). The
measurements xi (1 ≤ i ≤ T) belong to some input space X and can be univariate as
well as multivariate. At each time step t, the decision-maker gets to know the time
series measured so far: xt = ⟨x1, . . . , xt⟩ and must decide either to make a prediction
ŷt about the class of the incoming time series or to postpone the decision.

In the irrevocable regime (Chapter 3), once a decision has been taken, it cannot be
changed and the decision-maker endures a cost which is the sum of the misclassifi-
cation cost Cm(ŷt|y) plus the cost of having delayed the decision until time t: Cd(t).
Whereas, in the revocable regime, the decision-maker can change its prediction several
times before the time limit T. Let us call Dℓ, the sequence of the ℓ successive pre-
dictions ⟨ŷt1 , . . . , ŷtℓ⟩made at times t1, . . . , tℓ in the time interval [1, T]. It is assumed
that each decision change from ŷti to ŷti+1 entails a cost Ccd(ŷti+1 |ŷti) that is greater or
equal to 0.

This chapter is organized as follows. Section 4.2 presents the problem of early
and revocable classification, and a novel algorithm to solve this problem, Section 4.3
discusses the intuitions behind the origin of the costs, this would help the user to set
them. The novel approach is evaluated through extensive experiments in Section 4.4.
Perspectives and future work are discussed in Section 5.5.

4.2 A new framework for revocable decisions

Suppose that while the measurements xt about time series xT unfold from time t = 1
to t = T, the decision-maker can change its mind as many times as it sees fit and ends
up triggering a sequence of predictions Dℓ = ⟨ŷt1 , . . . , ŷtℓ⟩ about the class of the input
time series. The final cost incurred will be:

g(Dℓ|xT, y) = Cm (ŷtℓ |y) + Cd(tℓ) +
ℓ−1

∑
i=1

ŷti ,ŷti+1∈Dℓ

Ccd(ŷti+1 |ŷti) (4.1)

where tℓ is the timestamp of the last change of decision yielding the prediction
ŷtℓ = htℓ(xtℓ).

Formally, the problem is now to find a sequence of decisions D⋆ ∈ DT that
minimizes Equation 4.1:

D⋆ = ArgMin
D∈DT

g(D|xT, y) (4.2)

where DT is the set of all possible sequences of maximum length T.
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Non-myopia of second order: When, at time t, only a partial knowledge xt is available
about the incoming time series. A sequence of decisions Dk = ⟨ŷt1 , . . . , ŷtk⟩ has been
taken so far, and the question is to see if changing the last decision ŷtk now, at time t, is
favorable, because it would bring a better expected cost, and it would not seem better
to postpone such a possible change to a later time t + τ. Note that this is where second
order considerations enter the optimization problem. In order to decide if now is a
good time to change decision, one has to look if another change of decision is likely
to happen in the future, at any time t + τ (see the term Pt+τ(ŷ|ŷtk , xt) of Equation 4.4).

The cost of adding a new decision at time t + τ, can be estimated as:

f rev
τ (Dk, t + τ | xt) = E t+τ

(ŷ,y)∈Y2 [Cm(ŷ|y)|xt] +
k−1

∑
i=1

ŷti ,ŷti+1∈Dk

Ccd(ŷti+1 |ŷti)

︸ ︷︷ ︸
cost of past changes

+ E t+τ
ŷ∈Y [Ccd(ŷ|ŷtk)|xt]

︸ ︷︷ ︸
expected value at t + τ

+Cd(t + τ)

(4.3)

The expected cost of changing decision is defined as follows for (1 ≤ τ ≤ T − t):

E t+τ
ŷ∈Y [Ccd(ŷ|ŷtk)|xt] = ∑

ŷ∈Y
Pt+τ(ŷ|ŷtk , xt)Ccd(ŷ|ŷtk) (4.4)

Given that the notation Dk+1 is used to denote the sequence of decisions
⟨ŷt1 , . . . , ŷtk , ŷt⟩, with ŷt = h(xt), the criterion for changing decision at time t becomes:

criterion =





ŷt ̸= ŷtk

and ArgMin
τ∈{0,...,T−t}

f rev
τ (Dk, t + τ | xt) = 0

and f rev
τ=0(Dk+1, t | xt) < f rev

τ=0(Dk, tk | xt)

(4.5)

A decision is thus taken at time t only if:

• (i) the current prediction ŷt would differ from the last one ŷtk .

• (ii) if it seems that now is the best time to make a new decision.

• (iii) if the estimated cost with the new prediction would be less than the engaged
one with the previous decision.

An interesting case occurs when changing decision is costless:
∀y, y′ ∈ Y × Y , Ccd(y|y′) = 0. Equation 4.3 becomes:

f rev
τ (Dk, t̃ | xt) = E t+τ

ŷ∈Y [Cm(ŷ|y)| xt] + Cd(t̃) (4.6)

Then, the strategy is to change decision when the gain in the expected misclassification
cost with a new decision offsets the increased delay cost.

Now a question is: what would be the optimal sequence of decisions?
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Theorem: [Optimal sequence of decisions] Let us assume that ∀(y, y′) ∈ Y2,
Ccd(y|y′) > 0. Then, for any time series xT of class y, the optimal sequence of decision
is reduced to a one decision sequence where the optimal time1 t⋆ is defined by:
t⋆ = ArgMin1≤t≤T

{
Cm(ŷt|y) + Cd(t)

}
.

Proof: Let Dk = ⟨ŷt1 , . . . , ŷtk⟩ be a sequence of decisions taken at times {t1, . . . , tk}.
Then the cost paid at time T is: ∑k−1

i=1 Ccd(ŷti+1 |ŷti) + Cm(ŷtk |y) + Cd(tk) which cannot
be less than: Cm(ŷt⋆ |y) + Cd(t⋆).

Theorem 4.2 shows that it is better to make the optimal decision at the right time
rather than revoking a decision since this can only lead to sub-optimal sequences
of decisions. However, in practice, the ground truth y is unknown, and it may be
unavoidable to make a first decision, because it seems the optimal time to do so, only
to find later that it should be changed.
It must be noted that the criterion (Eq. 4.2) does not specify how and when to
make the first prediction ŷt1 . Since a decision is mandatory in the framework of
decision making, we assume that a “no decision” is associated with an infinite cost:
f rev
τ (∅ | xt) = +∞, forcing a decision before T, according to the non-myopic strategy

defined by fτ(xt) in its irrevocable regime.
One goal of our research is to evaluate the added value of explicitly taking into

account the cost of the changes of decision with respect to a revocable strategy which
would not. Accordingly, we implemented two algorithms, based on the ECONOMY-γ
algorithm presented in Chapter 3.

1. The first one is named ECO-REV-CU for cost unaware (as in Equation 4.6).

2. The second is named ECO-REV-CA for cost aware (as in Equation 4.3).

A generic algorithmic implementation of the revocable decision-making criterion
as defined in Equation 4.2 is presented in Algorithm 5.

Algorithm 5 GENERIC REVOCABLE REGIME ALGORITHM

Input: K: number of groups
1: decisions←⟨ŷt1⟩
2: tprev ←t1
3: for all t= t1+1. . . T do
4: τ⋆ ←ArgMinτ∈{0...T−t} f rev

τ (decisions , t + τ| xt)
5: costnew ←frev

τ=0(decisions , t + τ∗| xt)
6: costprev ←frev

τ=0(decisions , tprev| xt)
7: if ŷt ̸= ŷtprev

and τ∗ = 0 and costnew < costprev then
8: tprev = t
9: decisions←decisions ∪ ŷt

10: end if
11: end for
12: return decisions

Complexity Analysis
We present here the time complexity of the two proposed algorithms. First, let us
define some notations:

• Learn(m): time complexity for learning a single classifier;

1Actually several optimum may occur at different times, and then any one of them can be chosen.
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• Predict: time complexity of inference phase of a classifier on a time series;

• Partitioning: time complexity for partitioning a set of time series;

• K: number of groups in the data partition;

• m: number of time series within the dataset.

The training stage consists of multiple steps: (i) learning a classifier for each
timestamp, in a O(T.Learn(m)) complexity; (ii) partitioning the training set, in
O(Partitioning); (iii) computing predictions for all examples in the training set at
each timestamp in order to compute confusion matrices, O(T.m.Predict); (iv) the
prior of each class in each group must be computed in O(|Y|.K.m); (v) The expected
cost of decision changes is computed for all future timestamps at each timestamp
(T2 in complexity) according to Eq.4.3 which results in a complexity of O(|Y|2.T2.K)
Finally, the overall time complexity of ECO-REV-CU isO(T.Learn(m) + Partitioning +
T.m.Predict+ |Y|.K.m) and ECO-REV-CA isO(T.Learn(m)+ Partitioning+T.m.Predict+
|Y|.K.m + |Y|2.T2.K).

For the testing part, the time complexity of estimating the cost expectancy of future
time step is similar to the irrevocable regime which is O(T2.|Y|2.K) as presented in
Chapter 3. Taking into account the final decision and the intermediate predictions of
the classifiers, this complexity becomes O(Predict.T2.|Y|2.K).

4.3 Origin of the costs

Early classification of time series approaches aim to trigger decisions at the right
time, by reaching a good trade-off between the earliness and the accuracy of their
decisions. To achieve this, a balance must be found between penalizing late decisions
and penalizing prediction errors. Decision costs are key to make this antagonistic
trade-off choice, as they allow us to evaluate the cost of waiting for new measures vs.
the cost of making a decision now. The objective of this section is to understand the
origins of these costs.

Figure 4.2 describes a binary ECTS problem, where the actions to be performed
depend on the predicted class and are described by two Directed Acyclic Graphs (DAG).
These DAGs characterize the sequence and the relationships between the unit tasks
which compose them (e.g. task 1 must be completed before starting task 2). Here, the
DAGs of tasks are fixed, they do not depend on the decision time.

The total cost of a decision can be decomposed by:

(i) the delay cost, denoted by Cd, which reflects the need to execute the DAG
of actions corresponding to the new decision in a constrained time, and in a
parallel way.

(ii) the decision cost, which corresponds to the consequences of a bad decision, or
the gains of a good decision (denoted by Cm).

(iii) the revocation cost, which is the cumulative cost of the mistakenly performed
tasks belonging to the DAG of previously made bad decisions, and which are
not reusable for the new decision (denoted by Ccd).

These costs need to be expressed in the same unit, because they are summed up in
order to reflect the quality of the decisions made and their timing.
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FIGURE 4.2: DAGs of tasks to be performed after the triggering of a
decision.
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The delay cost

It represents the cost of postponing a decision. In the particular case of ECTS problems,
the delay cost is present in all the works described in scientific literature. But it can be
explicitly defined as in (Achenchabe, Bondu, and Cornuéjols, 2021; Mori, Mendiburu,
et al., 2015), or implicitly as in most approaches. For instance, the authors in (Xing,
Pei, and Philip, 2009) trigger all the decisions at the minimum prediction length, which
correspond to the early moment such that no prediction differs from those applied to
the full-length training time series (based on a KNN classifier). This approach thus
implicitly assumes that the delay cost is very low, by favoring the accuracy of decisions
at the expense of their earliness. In (Mori, Alexander Mendiburu, Miranda, et al.,
2019), the authors propose to model the trade-off between earliness and accuracy as a
multi-objective criterion and explore the Pareto front of multiple dominant solutions.
This approach is useful in applications where earliness and accuracy can not be
evaluated in a commensurable way, and it provides a collection of optimal solutions
each corresponding to a particular value of the delay cost.

For a better understanding, let us examine what happens once a decision is
triggered in the simple ECTS problem. Figure 4.3 represents a classifier and a triggering
strategy. At each time step t ∈ [0, T], the classifier predicts the conditional distribution
P(y|xt) based on the input incomplete time series xt = ⟨x0, x1, . . . , xt⟩. Then, the
triggering strategy either decides to postpone the decision until a new measurement
xt+1 is available, or to trigger the decision by predicting the class value. In this first
scenario, let us consider that triggering a decision at time t implies performing a
given task (namely α or β) which depends on the predicted class (respectively A or B).

FIGURE 4.3: Tasks to be performed after the triggering of a decision.

Given that this task (α or β) must be completed before the deadline T, the problem
is to determine how the cost of performing this task evolves depending on the trigger
time t. In practice, the delay cost takes the form of a parametric function (e.g., a
constant (Xing, Pei, and Philip, 2009), linear (Achenchabe, Bondu, and Cornuéjols,
2021) or exponential (Beibel, 2000) function), whose form characterizes the additional
cost to delay the execution of the tasks.

A constant cost, one where there is no penalty associated with delaying the decision,
would mean that these tasks are achievable in an arbitrarily short time T − t < ϵ. In
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practice, an irreducible amount of time is needed to perform the tasks using a single
worker. To reduce this time, the tasks need to be parallelized using several workers,
incurring an extra-cost when building the global result from sub-tasks. Formally, a
constant delay cost would mean that the tasks are infinitely parallelizable, i.e. they
can be divided into independent and arbitrarily small sub-tasks, and that there is no
extra-cost in building the global result.

More generally, the delay cost is necessarily an increasing function (monotonic or
piecewise) depending on the time remaining before the decision deadline, and it may
depend on the decision made (i.e. the predicted label). In addition, it should tend to
+∞ when the time remaining to perform these tasks T− t tends to zero (Beibel, 2000).
For example, this delay cost may be modeled by 1/(T − t)σ, with a single parameter
σ which influences the increase in cost when (T − t)→ 0.

The decision cost

Taking into account the decision cost is a very common feature in the literature,
particularly in the field of cost-sensitve learning (Elkan, 2001). These techniques take
as input a function Cm(ŷ|y) : Y ×Y → R which defines the cost of predicting ŷ when
the true class is y. The aim is to learn a classifier which minimizes these costs on new
data.

The revocation cost

By contrast, the study of the revocation cost is very limited in the literature. To our
knowledge, The work presented in this chapter is the only one that considers this
problem, and this work shows that assigning a cost to decision changes is a first lead
to manage the reactivity vs. stability dilemma, and to design non-myopic to revocation
risk approaches (i.e. discussed later in challenges #8 and #9 in Chapter 6). The origin
of this cost can be explained in the light of the tasks to be performed once a decision
is triggered (see Figure 4.2). For instance, let us consider the first decision noted by
(A, t̂1), in which the system predicts at time t̂1 that the input time series belongs to
the class A. This decision is then revoked in favor of a new decision (B, t̂2). The
cost of changing this decision, denoted by Ccd(B|A), can be defined as the cost of the
actions already performed between t̂1 and t̂2 which turn out to be useless for the new
decision, i.e. which cannot be reused in the DAG of tasks corresponding to the new
predicted class B. In order to define the costs of decision changes, it is necessary to
identify the common tasks between the DAGs of the different classes and to evaluate
their execution time. In addition, if these tasks are not perishable, the entire sequence
of the past decisions must be taken into account to identify the already completed
tasks which are now useful for the achievement of the current DAG of tasks.

4.4 Experiments

The experiments aim at measuring the true added value of a revocable strategy.
Specifically, the question is twofold. First, does such a strategy recognize useful
changes of decisions: those that increase the performance? Second, does it pay off to
implement a revocable strategy that takes into account the costs of changing decisions
by comparison to a naive one that would not consider these costs? In the following,
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we report results obtained on 34 datasets (see Section 4.4.2) for a whole range of
values for the delay cost Cd and the cost incurred if changing decision Ccd.

4.4.1 Implementation choices

In our experiments, the ECO-REV-CU algorithm is simply the ECONOMY-γ algorithm
allowed to be reiterated after each decision. It thus does not take into account the costs
associated with changing decisions, whereas ECO-REV-CA does. More technically,
ECO-REV-CA approximates E t+τ

ŷ∈Y [Ccd(ŷ|ŷtk)|xt] in Equation 4.4 by using the groups
of time series, denoted by G:

E t+τ
ŷ∈Y [Ccd(ŷ|ŷtk)|xt] ≈ ∑

gk∈G
P(gk|xt)E

t+τ
ŷ∈Y [Ccd(ŷ|ŷtk)|gk]

= ∑
gk∈G

P(gk|xt) ∑
ŷ∈Y

Pt+τ(ŷ|ŷtk , xt)Ccd(ŷ|ŷtk)
(4.7)

Then, the probability Pt+τ(ŷ|ŷtk , gk) entering in the term E t+τ
ŷ∈Y [Ccd(ŷ|ŷtk)|gk] is esti-

mated in a frequentist way as the proportion of time series predicted to belong to ŷtk

at time tk, and for which the classifier changed its decision at time t + τ by predicting
the class ŷ.

4.4.2 Data and feature extraction

Experiments will be restricted to binary classification problems, and in order to be
able to directly compare our results with those reported in Chapter 3, we chose to use
the same 34 datasets that are taken from the UEA & UCR Time Series Classification
Repository2 (A. Bagnall et al., 2017). It is important to note that the revocable frame-
work presented here could as well accommodate multi-class classification problems.

Each training set is built with 70% of the examples randomly uniformly selected,
while the remaining 30% are used as test set (note that in each dataset, all time series
have the same length). In addition, each training set is divided into three disjoint
subsets: (i) 40% for training the Xgboost chenxgboost2016classi f iers{ht}t∈{1,...,T} that
are the base classifiers used in the ECONOMY-γ method, which offer a good trade-off
between computing time and accuracy; (ii) 40% for estimating the probabilities in
f rev
τ and fτ; and (iii) the remaining 20% for optimizing the number of groups |G| in

ECONOMY-γ which is its only hyper-parameter.
In order to give equal weight to all data sets in the comparison, it is important

that they offer the same number of opportunities for decision changes. This is why
the instants for potential changes are sampled every n% of the length of the times
series in each data set (in our case, n= 5%). For each possible length, 60 features on
the statistical, temporal and spectral domains are extracted using the Time Series
Feature Extraction Library tsfel, and are used for training the classifiers {ht}t∈{1,...,T}.

4.4.3 The evaluation criterion

The cost incurred using an early classification system on a time series xT is the sum
of three costs, the cost of misclassification, the delay cost incurred at the time of the

2Available at: http://www.timeseriesclassification.com
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last decision, and the sum of the costs associated with all changes of decision if any:

Cost(xT) = Cm(htl (xtl )|y) + Cd(tl) +
|Dl |−1

∑
i=1

Ccd(ŷi+1|ŷi) (4.8)

In order to evaluate a method, we compute its mean performance on the test set
T :

AvgCost(T ) =
1
|T |

|T |
∑
i=1

Cost(xi
T) (4.9)

4.4.4 Description of the experiments

In our experiments, we compared three algorithms: ECONOMY-γ which is an irrevo-
cable decision-maker, ECO-REV-CU which is the revocable version of ECONOMY-γ
but unaware of the costs of changing decision, and ECO-REV-CA which is aware of
these changing costs. We are thus able to measure the added-value of the revocable
strategy (ECO-REV-CU vs. ECONOMY-γ) and the added-value of being aware of the
costs of changing decision (ECO-REV-CA vs. ECO-REV-CU).

For a given application, the various costs, relative to misclassifications, delays and
changes of decision, must be provided by the domain expert3. For our experiments,
we explored the performance of the three methods on a wide range of cost values:

• The misclassification cost was set to Cm(ŷ|y) = 1 if ŷ ̸= y, and = 0 if not.

• The delay cost was assumed to be linear with a positive slope: Cd = α × t
T

starting from very low α = { 0.0001, 0.00025, 0.0005, 0.00075}, to low α = {0.001,
0.0025, 0.005, 0.0075}, to medium values α = {0.01, 0.025, 0.05 ,0.075} and to high
values α = {0.1, 0.25, 0.5, 0.75, 1}.

• The cost of changing decision was set to Ccd(ŷ1|ŷ2) = β if ŷ1 ̸= ŷ2, and = 0
otherwise. The parameter β being taken in the same set of values as α4

The AvgCost criterion defined in Equation 5.5 was evaluated on the 34 test sets
for all cost values, and the Wilcoxon signed-rank test was performed for all the range
of cost values, in order to assess whether the observed performance gap between
methods is significant (“+” and “-”) or not (“◦”).

4.4.5 Results and analysis

Before comparing the methods, it is important to measure the proportion of time
series that offer useful opportunities for revocable decisions. Those are the ones
where the first decision taken by an irrevocable strategy, here ECONOMY-γ, turns
out not to be optimal. For the 34 datasets under study, it turns out that (i) for a low
delay cost Cd = 0.0025× t

T only 3% of the first decisions can be usefully revoked; (ii)
for a medium delay cost Cd = 0.025× t

T this percentage rises to 3.6%; and (iii) for a
high delay cost Cd = 0.5× t

T this percentage reaches 8%. These figures show that, for
these datasets and this range of cost values, opportunities for a revocable strategy
to overcome an irrevocable one seem seldom. (see (Eco-rev, 2021) for a complete
detailed analysis over all the 34 datasets and all couples of values (Ccd, Cd)).

3 For instance, for condition of septic shock, every hour delay in antibiotic treatment leads to 8%
increase in the risk of mortality (Khoshnevisan and Chi, 2021a)

4 α and β were chosen in a very large spectrum of values so as not biasing the results.
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However, the first lesson is that both revocable methods ECO-REV-CU and ECO-
REV-CA get significantly better results than the irrevocable method ECONOMY-γ on a
wide range of delay cost Cd and decision change cost values β (see Figures B.13(a)
and B.13(b)). The second lesson is that it pays off to use a strategy which takes into
account the costs of changing decision. Indeed, ECO-REV-CA beats ECONOMY-γ on a
wider range of conditions than ECO-REV-CU.

Both revocable strategies fail to overcome the irrevocable one, ECONOMY-γ, when
β is large (i.e. more than 0.1), and then ECO-REV-CU fails more often than ECO-REV-CA.
This behavior is not surprising since, when it is very costly to delay a decision, the
best strategy is generally to make a very early decision and not to revise it afterwards.

FIGURE 4.4: Average Earliness vs. Average Kappa score obtained over
all the 34 datasets for β = 0.05 and by varying the slope α of the delay
cost. The reader may find the same behavior for other β values in the

(Eco-rev, 2021)

Figure B.13(c) shows the results of the Wilcoxon signed-rank test between the two
revocable strategies. It appears that the cost aware approach ECO-REV-CA performs
significantly better than the cost unaware approach ECO-REV-CU, for almost one
third of the pairs of values (α, β). As the slope of the delay cost α grows, ECO-REV-
CA becomes significantly better than ECO-REV-CU for an increasing larger range
of values for β. This means that when the delay cost is rather high, it pays off to
use a revocable strategy that takes into account the cost of changing decision. In
addition, the Friedman test (Nemenyi, 1962) shows that ECO-REV-CA is on average
better ranked than ECO-REV-CU in 96% of pairs (α, β). (Further details are available
in (Eco-rev, 2021)).

In order to get a global view of the merits of each method, we have drawn Pareto
curves (see Figure 4.4) with respect to the average Cohen’s kappa score (Cohen, 1960)
and the average earliness, which is defined as the mean of the last triggering times
normalized by the length of the series earliness = Avg{tℓ/T}. These two quantities
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(a)

(b)

(c)

FIGURE 4.5: (a) ECO-REV-CU vs. ECONOMY-γ; (b) ECO-REV-CA vs.
ECONOMY-γ; (c) ECO-REV-CA vs. ECO-REV-CU. Wilcoxon signed-rank
test applied on the AvgCost criterion over the 34 test sets, for a range of
couples of values α and β, with “+” indicating a significant success of
the first approach, “◦” an insignificant difference and “−” indicating a

significant failure of the first approach.
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are averaged over the 34 datasets by varying α in the range of values defined in
Section 4.4.4, and for β = 0.05. The Pareto curves confirm that (i) the baseline
irrevocable ECONOMY-γ method is dominated by the two revocable strategies; (ii)
and ECO-REV-CA dominates ECO-REV-CU. More finely, it is apparent that, as the slope
α of the delay cost increases, from 0.00025 to 1, all methods first maintain a high
kappa, before being unable to maintain it as they are forced to make decisions too
early. Still, the ECO-REV-CA algorithm is the one that best resists.

Overall, our experiments show the interest of using revocable strategies for the
early classification of time series in a wide range of delay and change of decision
costs.

4.5 Perspectives and future work

Until now, the problem of early classification of time series was addressed by trigger-
ing irrevocable decisions. In other words, once a decision to classify the incoming
time series is taken, the process of acquiring new measurements is stopped, and
this process ends by outputting the class prediction. For the first time, this chapter
defines the revocable regime of this problem, which is a more generic problem, where
new measurements are still acquired even if a prediction is triggered, and multiple
decisions are allowed to be taken. The notion of second order non-myopia has been
introduced as well as its corresponding optimization problem. Two versions of an
algorithm have been implemented, one which takes into account the cost of changing
the decision and the second which does not. Extensive experiments have shown
that the algorithm which explicitly takes into account the cost of changing decisions,
significantly overcomes the algorithm that does not. In addition, both proposed
algorithms outperform the irrevocable scheme. The potential impact of these results
on applications such as predictive maintenance, intensive care units or autonomous
vehicles, to name a few, is noteworthy.

For future work, more limitations of the ECTS problem should be explored, for
example, extending the revocable setting to open time series with indefinite length
and different labels for each portion instead of a single label for the whole time series.
In the work presented in this chapter, decisions are supposed not to affect the true
label, and another scenario is to consider early outcome classification where decisions
taken can affect the final outcome (i.e. true label), namely in medical applications, if
we try to predict the patient death, actions taken by the doctor could change the final
result.

In the next chapter, new hypotheses of the classical problem of early classification
will be relaxed. The first limitation is that labels are associated with the full-length
time series. Second, time series are of finite length. This new setting is challenging
since it changes the problem drastically. A novel algorithm to solve this problem
while optimizing the earliness-accuracy trade-off will be presented.
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Chapter 5

Early classification in open time
series

Abstract

In numerous applications, for instance in predictive maintenance, there is a
pression to predict events ahead of time with as much accuracy as possible
while not delaying the decision unduly. This translates in the optimization
of a trade-off between earliness and accuracy of the decisions, that has been
the subject of research for time series of finite length and with a unique label.
And this has led to powerful algorithms for Early Classification of Time Series
(ECTS). This chapter, for the first time, investigates such a trade-off when
events of different classes occur in a streaming fashion, with no predefined end.
In the Early Classification in Open Time Series problem (ECOTS), the task is to
predict events, i.e. their class and time interval, at the moment that optimizes
the accuracy vs. earliness trade-off. Interestingly, we find that ECTS algorithms
can be sensibly adapted in a principled way to this new problem. We illustrate
our methodology by transforming two state-of-the-art ECTS algorithms for
the ECOTS scenario. Among the wide variety of applications that this new
approach opens up, we develop here a predictive maintenance use case that
optimizes alarm triggering times, thus demonstrating the power of this new
approach.

The content of this chapter has been submitted to a conference chapter:

• When to Classify Events in Open Time Series. Y Achenchabe, A Bondu, A
Cornuéjols, V Lemaire - The 14th Asian Conference on Machine Learning
ACML, 2022.
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5.1 Introduction

In intensive care units (Shekhar et al., 2021), in control rooms of electrical power
grids (Dachraoui, Bondu, and Cornuejols, 2013), in government councils assessing
emergencies, in many kinds of contexts, it is essential to make timely decisions in
absence of complete knowledge of the true outcome. The issue facing the decision-
makers is that, usually, the longer the decision is delayed, the clearer is the likely
outcome (e.g. whether the patient is critical or not) but, also, the higher the cost that
will be incurred if only because earlier decisions allow one to be better prepared.
Formally, this problem translates into optimizing online the trade-off between the
earliness and the accuracy of the decision. Early Classification of Time Series (ECTS)
deals with time series of finite length and a single decision per time series.

In the previous chapter, we have dealt with the first limitation of the ECTS problem,
which consists of the irrevocability of decisions. We have proposed a novel algorithm
that considers the cost of revision or what we call the cost of changing a decision.
Experiments showed that it is better to be able to revise decisions than to implement
an irrevocable decision strategy. In addition, it is worth considering the non-myopic
of second order approach.

While the ECTS framework is well suited to some real-world problems, it suffers
from some limitations that will be tackled in this chapter:

1. Labels are associated with the full-length time series: it means that we know
that all measurements acquired belong to the same class label, and the start and
the end are clearly defined.

2. Time series are of finite length: decisions should be made before a specific
deadline which is the maximal length of the time series.

FIGURE 5.1: Example of a part of an open time series where events of
possibly different lengths are here labeled with ‘0s’ and ‘1s’.

Applications abound where the measurements come in an open time series with
no time bounds and where different events arise, possibly of different lengths, each
with its own class (see Figure 5.1). In this setting, the Early Classification of these
events in an Open Time Series (ECOTS) raises three issues if one wants to adapt the
ECTS approach.

1. What should the classifiers in ECOTS do? In the ECTS framework, they take
incomplete time series xt as input and make prediction about the class of the
associated complete, but still unknown, time series xT. But, in ECOTS, the
notion of complete time series does not make sense anymore.
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2. How to solve the earliness-accuracy trade-off in the ECOTS setting? In the ECTS
framework, the start and length of time series are known which allows one to
measure the earliness. But how to define it in ECOTS?

3. How to build the training sets in the framework of ECOTS where there are no
more individual time series with their associated class, but open time series
with events of different classes and durations?

FIGURE 5.2: General schema of ECOTS approaches

The ECOTS procedure is illustrated in Figure 5.2. For an indefinite amount of
time, new measurements are received at each timestamp, and the incoming time
series consists of multiple chunks having different class labels. At testing phase, the
user has not the knowledge about when a specific portion with different class starts
and when it ends, contrarily to the classical problem of ECTS where the user knows
that the incoming time series ends at a certain moment as well as only one class label
is associated with the complete time series.

The goal of this chapter is, first, to define properly the ECOTS problem and,
second, to present a methodology to adapt any ECTS approach to it by answering the
three questions raised above. As a result, we show i) how the role of the classifiers
must be thought anew and transformed; ii) how the earliness-accuracy trade-off
translates to the new scenario and what the decision triggering system becomes. We
illustrate our methodology by transforming two state-of-the-art ECTS algorithms for
the ECOTS scenario. Among the wide variety of applications that this new approach
opens up, we develop here a predictive maintenance use case that optimizes alarm
triggering times, thus demonstrating the power of this new approach.

In order to avoid confusion, it is important to note that the data stream literature
(Silva et al., 2013) focuses on classification of incoming data points at fixed horizon
under memory constraints and evolving properties of data. Whereas, in this chap-
ter, we focus on identifying the optimal moment of the classification, the one that
optimizes the earliness-accuracy trade-off in a stationary environment.

The chapter is organized as follows. Section 5.2 formally draws a parallel between
the ECTS problem and the ECOTS one, leading to a generic approach capable of
transposing any ECTS algorithm into an ECOTS one. We then show, in Section
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5.3, how to adapt these methods to the ECOTS problem, before comparing their
performances on experiments in Section 5.4. The conclusion, in Section 5.5, underlines
what has been performed in this work, and provides directions for future research.

5.2 ECOTS in the perspective of ECTS

This section defines the ECTS and ECOTS problems in turn, and presents our pro-
posed methodology to adapt any ECTS approach to solve the ECOTS problem.

5.2.1 The ECTS problem

In the ECTS setting, each classifier ht (1 ≤ t ≤ T) is learned from the truncated
training time series up to time t: {(xj

t, yj)}(1≤j≤m) (see Figure 5.3). It is expected that
the accuracy of the classifiers grows as t increases from the first time step t = 1 to the
last one t = T.

xt T

y

t0

FIGURE 5.3: In the ECTS setting, the classifier ht sees the incoming
time series xt and predicts a label ŷ of the complete time series xT of

true class y.

The problem, given an incoming time series, is to choose a time t for which the
expected cost of misclassification Cm(ŷ|y), where ŷ = ht(xt) and y is the true class,
plus the delay cost Cd(t), is minimal. Formally, the combined expected cost is given
by:

f (xt) = E t

(ŷ,y)∈Y2
[Cm(ŷ|y)|xt] + Cd(t)

= ∑
y∈Y

Pt(y|xt) ∑
ŷ∈Y

Pt(ŷ|y, xt)Cm(ŷ|y) + Cd(t)
(5.1)

where E t
(ŷ,y)∈Y2 [] is the expectancy at time t, over the variables y and ŷ. Pt(y|xt)

is the probability of the class y given an incomplete time series xt, and Pt(ŷ|y, xt) is
the probability that the classifier ht makes the prediction ŷ given xt as input while y
would be its true label.

The objective of the trigger function is to identify the best time t⋆ for triggering
the decision while receiving online the measurements of the time series, the one that
minimizes Equation 5.1.

5.2.2 The ECOTS problem

In this chapter, contiguous instants with the same label are called chunks or events
(see Figure 5.1). In the ECOTS scenario, we suppose that we have a training data set
of m labeled chunks {(xj, yj)}(1≤j≤m) coming from an open time series, where each xj

has length lxj , and where yj is the corresponding label. The ECOTS problem consists
in predicting as soon as possible these events, i.e. their class label and time limits.
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5.2.3 Proposed transposition of ECTS approaches into ECOTS ones

We propose to simplify the ECOTS problem by considering point-wise predictions
instead of predicting whole chunks (i.e. class and time limits), that is to make
independent predictions of the labels associated with each single timestamp tp in the
open time series. From such predictions, chunks could be reconstituted, for instance
by gluing time stamps with the same predicted class.

We posit that the unfolding time series is observed over a finite time interval
which depends on the present time t. In the following, we will use the term time
window and note it x(t−w,t) at time t when its size is w (w past measurements are
available at time t).

Then, the target time stamp tp can be in the future (tp > t), for example if there
are warning signs that a machine will break down, or in the past (tp < t) if it was
necessary to wait until tp was in the observation time window to be able to identify its
class, as it can happen during a computer attack for example. Therefore, at any time t,
for a target timestamp tp, the transposed ECOTS problem is to decide whether t is the
best time for the prediction ŷtp , the class associated with tp, or whether to postpone
this decision to the next time step t + 1, which will bring a new measurement.

It is expected that, as the window of observation x(t−w,t) comes closer to tp, with
increasing t, it is easier to make a reliable prediction about its class, but, at the same
time, the cost of delaying prediction increases. (See Figure 5.4). Note that we assume
that there is a maximal value ηM for the horizon, above which no precursor signal
can be detected, and a minimal one ηm after which it is no longer useful to detect the
event.

t + 2 tpt + 2� w

x(t+2�w,t+2)

x(t+1�w,t+1)

t + 1� w tpt + 1

tpt� w

x(t�w,t)

tp tp � ⌘mtp � ⌘m � w

⌘m

ytp

⌘M

⌘M � 1

⌘M � 2

t = tp � ⌘M

FIGURE 5.4: The fixed point in time where to make a prediction is tp,
of true label ytp . As the measurements become available from tp − ηM
to tp − ηm, different classifiers hη come into play with an advancing
sliding window and a diminishing horizon. The triggering system

selects the best time to make a prediction ŷtp .

We now turn to the three questions raised in the introduction.
1- In the classical ECTS problem (see Section 5.2.1 and Figure 5.3), each classifier ht
observes a time series xt that is increasingly large as t approaches the time limit T. In
the ECOTS setting, as we propose to see it, by contrast, each classifier hη observes
a sliding window x(t−w,t) of the same number w of observations. And each one
makes a prediction about the class of the time tp positioned at a given horizon η
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(positive or negative) from t (see Figure 5.4). Given a maximal horizon ηM > 0, the
first classifier that can make a prediction about a time tp is hηM viewing the window
x(tp−ηM−w,tp−ηM). And the last classifier is hηm viewing the window x(tp−ηm−w,tp−ηm).
Thus, instead of having a set of classifiers ht (1 ≤ t ≤ T) as in the ECTS setting, we
now have a set of classifiers hη (ηm ≤ η ≤ ηM) with various horizons. (See Figure
5.4).

2- The second question to solve is to adapt the earliness-accuracy trade-off to the
ECOTS problem. In the proposed transposition, the gain of information over time
is due to a time window x(t−w,t) that gets closer to the target timestamp tp, and no
longer to additional measurement gathered over time as in ECTS. In addition, the
single prediction triggered for each time series in ECTS is replaced by a prediction for
each possible target timestamp in the open time series. These two essential but easy
to carry out modifications allow to transpose most of the ECTS approaches, since the
optimization criterion they use for their triggering strategy can remain essentially the
same. As a proof of concept, in Section 5.3, we show how two state of the art methods
for ECTS can be adapted to the ECOTS problem.

3- In the proposed approach, the values of the window size w, and of the bounds ηm
and ηM of the horizon have to be chosen from a training set. But which training set?

In the ECOTS problem, it is assumed that the relationship between the symptoms
of an event and the event itself are stationary over time (e.g. a given malfunction
of a machine keeps the same telltale signs and the same characteristics whenever
its appearance in time. Or the symptoms associated with a patient who should
undergo an urgent heart operation stay the same, fortunately for the doctors, and
for their training). From this property, in the same way as doctors can be trained
using independent episodes in an hospital history about heart attacks, it is possible
to use subsequences of the open time series, as long as they are independent, to build
training datasets in order to learn the classifiers hη (see Section 5.4.1).

5.3 Adapting two state-of-the art ECTS approaches

In Section 5.2.3, we have shown how to translate an ECTS problem into an ECOTS
one by modifying the definition and purpose of the classifiers. In the following, we
demonstrate how the triggering strategy used in ECTS can be adapted to deal with
ECOTS. For this, we consider one of the best performing myopic strategies known
to date, described in (Mori, Alexander Mendiburu, Dasgupta, et al., 2017) and the
best non-myopic approach in the literature: the ECONOMY-γ strategy described in
Chapter 3. The first one relies ultimately on confidence criteria, while the second one
explicitly optimizes the accuracy versus delay cost trade-off.

5.3.1 The SR approach

The SR approach (Mori, Alexander Mendiburu, Dasgupta, et al., 2017) uses a trigger-
model which involves 3 parameters (γ1, γ2, γ3) in order to decide if the current
prediction is reliable (output 1) or if it is preferable to wait for more data (output 0):

Triggerγ
(
hη(xt)

)
=

{
0 if γ1 p1 + γ2 p2 + γ3

t
T ≤ 0

1 otherwise
(5.2)

where p1 is the largest posterior probability estimated by the classifier hη , p2 is
the difference between the two largest posterior probabilities, and the last term t

T
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represents the proportion of the incoming time series that is visible at time t. The
parameters γ1, γ2, γ3 are real values in [−1, 1] to be optimized using training data.

Algorithm 6 Adapted SR approach in the ECOTS scenario
Input: t: current moment.

tp: target that belongs to [t+ηm, t+ηM].
w, ηm, ηM: window size, minimum and maximum horizon.

1: for all η = tp − t, . . . , ηm (step=-1) do
2: sliding_window = x(tp−η−w,tp−η) # sliding window: adds new measurement and

deletes the first one.
3: compute A = γ1 p1 + γ2 p2 + γ3

ηM−η
ηM−ηm

using the updated sliding window.
4: if A > 0 or η == ηm then

return η
5: end if
6: end for

In the ECOTS problem, the trigger function for a target at horizon η = tp − t
becomes:

Triggerγ
(

hη(x(t−w,t)

)
=

{
0 if γ1 p1 + γ2 p2 + γ3

ηM−η
ηM−ηm

≤ 0

1 otherwise

The last term of Equation (5.2) is replaced by ηM−η
ηM−ηm

, which represents the relative
position of the current horizon η in the considered range of horizons [ηm, ηM]. Algo-
rithm 6 highlights the adapted procedure of the SR approach to choose the optimal
horizon for a given target tp.

5.3.2 The ECONOMY-γ approach

ECONOMY-γ is a non-myopic cost-based approach (Chapter 3), which is capable of
estimating the expected cost of making a prediction for any time t + τ (1 ≤ τ ≤ T− t)
in the future, defined as:

fτ(xt) = E t+τ
(ŷ,y)∈Y2 [Cm(ŷ|y)|xt] + Cd(t + τ)

= ∑
y∈Y

Pt+τ(y|xt) ∑
ŷ∈Y

Pt+τ(ŷ|y, xt)Cm(ŷ|y) + Cd(t + τ) (5.3)

In practice, the terms Pt+τ(ŷ|y, xt) and Pt+τ(y|xt) are not tractable. A partitioning
of the training data into K groups gk ∈ G (see Chapter 3) is required to make them
computable, yielding the following approximation:

fτ(xt) ≈ ∑
gk∈G

Pt+τ(gk|xt) ∑
y∈Y

Pt+τ(y|gk) ∑
ŷ∈Y

Pt+τ(ŷ|y, gk)Cm(ŷ|y) + Cd(t + τ)

The optimal decision time, at time t, is thus estimated to be:

τ⋆ = ArgMin
τ∈{0,...,T−t}

fτ(xt) (5.4)

The idea is to estimate the cost of a decision for all future time steps, up until t = T,
based on the current knowledge about the incoming time series xt. The decision
is postponed unless τ∗ = 0, that is when it is expected that there will be no better
trade-off in the future. If so, the prediction ht(xt) is returned and the classification
process is terminated. Otherwise, the decision is postponed to the next time step, and
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Eq. (5.4) is computed again, this time with xt+1 as input. The process goes on until a
decision is made or t = T at which point a prediction is forced.

Algorithm 7 Adapted ECONOMY approach in the ECOTS scenario
Input: t: current moment.

tp: target that belongs to [t+ηm, t+ηM].
w, ηm, ηM: window size, minimum and maximum horizon.

1: for all η = tp − t, . . . , ηm do
2: compute fη(x(t−w+1,t))
3: end for
4: η⋆ = ArgMinηm≤η≤tp−t fη(x(t−w+1,t))

5: if η⋆ == tp-t or tp − t == ηm then
6: return η⋆

7: end if

In ECOTS, as time t increases, the task is to label each time step tp as it appears
in the span of the horizon: [t + ηm, t + ηM] (see Figure 5.4). While in Equation (5.3),
the term E t+τ

(ŷ,y)∈Y2 [Cm(ŷ|y)|xt] involves the calculation of the confusion matrices for
future time steps t + τ knowing the current incoming time series xt, the adaptation
to ECOTS requires that the confusion matrices are now computed for the various
horizons from ηm to ηM and then used to estimate the cost of decision for each horizon
η:

fη(x(t−w,t)) = E
η

(ŷ,y)∈Y2 [Cm(ŷ|y)|x(t−w,t)] + Cd(η)

and the best horizon:
η⋆ = ArgMin

ηm≤η≤tp−t
fη(x(t−w,t))

The decision to classify the data point tp is triggered at time t either because
t + η⋆ = tp (i.e. corresponding to the optimal cost) or when tp = t + ηm (i.e. it is not
possible to wait any longer), see Algorithm 7 for more details.

The cost of delay Cd(t), which is an increasing function of t in ECTS is a decreasing
function Cd(η) of the horizon η in ECOTS. Indeed, as the target that we want to label
approaches (η decreasing), the cost of the decision increases.

Note that the time and space complexities of the ECONOMY-γ approach adapted
to ECOTS are the same than in the original approach. In the ECTS setting, at testing
phase, computing the cost at each timestep is in O(T2) at worst case, and in ECOTS
setting is in O((ηM − ηm)2).

5.4 Experiments

We have proposed a principled method to adapt any ECTS approach into an ECOTS
one (see Sections 5.2 and 5.3). The aim of the experiments is to validate that the
adaptation of the SR and ECONOMY-γ approaches is efficient in the ECOTS setting.
In addition, we illustrate the applicability of the proposed approaches for predictive
maintenance using real data from the industrial domain.

This section aims at answering the following questions:
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1. How efficient is the proposed framework for adapting any ECTS approach to
the ECOTS problem compared to baseline algorithms designed for the ECOTS
problem?

2. How do these approaches behave when the delay cost increases, and when the
misclassification cost becomes very imbalanced?

3. How these approaches adapt their decision time to the observed data?

Our source code is shared for full reproducibility of the experiments Github. This
also allows interested researchers to extend the experiments to other open time series
datasets.

5.4.1 Experimental protocol

Data description:

We use an open real dataset (data, 2020) from one of the Schwan’s factories. It contains
100 multivariate time series corresponding to 100 machines monitored over time for
a period of 1 year (January 2015 to January 2016) with measurements collected every
hour. Each time series is a multi-dimensional data table whose rows indicate the
temporal domain and columns include telemetry features (pressure, rotation, voltage
and vibration), 5 Boolean columns encoding different types of device errors which
are premises correlated with a future failure and a last column which indicates the
presence or absence of a failure (the variable to be predicted). This makes 8761 rows
and 10 columns for each machine. The whole dataset contains 3919 errors and 761
failures for a total number 876,100 timestamps. This dataset is extremely imbalanced
with 0.08% of timestamps associated with the abnormal class (i.e. failure). There is on
average 7 failures per time series, with a minimum of 0 and a maximum of 19 failures
per machine during the observed year.

Problem statement:

Traditionally, the problem of predictive maintenance is solved by fixing a horizon
for predictions (e.g. if a technician needs at least 12 hours to take preventive actions
before the machine fails actually, then a fixed horizon would be chosen as η =12
hours). Our goal is to use the ECOTS approaches to make this horizon adaptive to the
observable part of the time series at hand.

Evaluation criterion:

Ultimately, the value of using an early classification method is defined by the average
cost incurred using it, as in Chapter 3. Given an open time series S (e.g. a machine
monitored over a year), observed on a finite time interval of sufficient length N. This
time period is composed of time stamps t ∈ [1, N], labeled by the class yt. As time
increases from 1 to N, the ECOTS system makes predictions for each time step t: ŷt
while the true class is yt. In addition, for each t ∈ [1, N], the prediction is made using
a classifier hηt⋆ corresponding to the triggering horizon ηt⋆ , thus incurring a delay
cost Cd(ηt⋆). Hence, the formula:

AvgCost(S) =
1
N

N

∑
t=1

(
Cm(ŷt|yt) + Cd(ηt⋆)

)
(5.5)
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Computing the costs in the experiments:

In real applications, the decision costs would be provided by domain experts. In
order to study the behavior of the different ECOTS algorithms, a large range of values
has been considered for the misclassification and the delay costs.

The cost of misclassification: Since we deal with a predictive maintenance problem, we
make the assumption that the cost of missing a failure is much higher than the cost of
sending the technical team. We thus consider four different misclassification costs

Cm =

[
TN FN
FP TP

]
, by varying the importance of false negatives:

C(1)
m =

[
0 1
1 0

]
, C(2)

m =

[
0 10
1 0

]
, C(3)

m =

[
0 100
1 0

]
, C(4)

m =

[
0 1000
1 0

]
.

The cost of delaying decision: The delay cost Cd(η) is provided by the domain experts
for an actual use case, and could be of any form. In our experiments, we set it as a
linear function of horizon, with coefficient, or slope, α: Cd(η) = α× ηM−η

ηM−ηm
. The larger

α, the higher the cost of postponing the decision and the greater the incentive to make
prediction for large horizons η. When α is very high, the gain in misclassification cost
by waiting to be closer to the target cannot compensate for the increase of the delay
cost, and it is better to make a decision early on, that is for large horizons, close to
ηM. If, on the contrary, α is very low compared to the misclassification cost, it does
not hurt to wait until the target tp is close to the sliding window x(tp−η−w,tp−η). Our
experiments were run over a large range of values of α ∈[0.001, 0.01, 0.1, 1, 10, 100,
1000].

Training the collection of classifiers and ECOTS algorithms

Data split and extraction: We splitted the set of time series into four parts: 50% for
training the classifiers, 20% for testing the ECOTS algorithms, 15% for validating
the ECOTS algorithms and 15% for estimating the confusion matrices. This split is
the same as in Chapter 3. Subsequences of size w were extracted from the training
open time series by doing the following steps: (i) time stamps tp, aka targets, were
set within the time series, spaced with w + ηM time units in order to avoid overlaps
between samples; (ii) ηM − ηm subsequences of size w were extracted around each
target, each one dedicated to the training of the classifier hη (see Figure 5.4).
Choice of the parameters w, ηm, ηM: These parameters depend on the problem that
is being solved and the data associated with it. One of the key ingredients of early
classification methods is the information gain measured by the AUC. Generally, the
expected cost of misclassification decreases as the target being classified gets closer
to the sliding window. A window size of w = 10 has been chosen to study the
behavior of the ECOTS problems, since it shows a significant information gain over
various horizons using AUC. We refer the reader to the supplementary material
for AUC curves as a function of horizon with different sliding window sizes. They
exhibit equivalent information gain curves, which means that this dataset is not
very sensitive to the choice of w. The parameter ηM can be chosen according to the
AUC, for our experiments we have chosen ηM = 50 as the AUC reaches 0.5 which
corresponds to the random model, while, for ηm, we chose the end of the sliding
window: ηm = −w.
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Training the collection of classifiers: As mentioned in Section 5.2.2, a set of classifiers hη

for different horizons η such that (ηm ≤ η ≤ ηM) has to be trained. Extracted features1

from sliding windows include simple statistics: min, max, mean, median and the count
of each type of errors. For our experiments, we trained XGboost models by fine
tuning parameters within the following grid of values2: min chlid weight ∈ [1, 5, 10],
gamma ∈ [0.5, 1, 1.5, 2, 5], subsample ∈ [0.6, 0.8, 1], colsample by tree ∈ [0.6, 0.8, 1], max
depth ∈ [3, 4, 5, 10]. The parameter scalePosWeight is set to the the ratio of positive
examples over negative ones in order to take into account the fact that the dataset is
imbalanced. The combination of parameters that minimize the total cost3 is chosen
on a validation set (20% of the set used for training the classifiers), then the model
is learned on the whole training set. For a fair comparison, the same collection of
classifiers is used for all ECOTS algorithms.

ECOTS algorithms: The competing approaches considered in this paper are described
below as well as their optimized hyper-parameters.

• Late baseline: the last classifier in the collection h̃ηm is used. This is the last time
that a prediction can be made.

• Early baseline: the first classifier in the collection h̃ηM is used. This corresponds
to the earliest possible prediction with the largest horizon in the future.

• Confidence-based Classifiers (CC): for a fixed target tp, this method takes a
decision as soon as the confidence of the classifier regarding the class of interest
exceeds a given threshold, optimized as a meta-parameter for each value of α
using validation set. If this never happens, then tp = t + ηm and the prediction
is forced using h̃ηm .

• Economy-γ (see Section 5.3.2): for each value of α, the number of groups K
used in the method is optimized in the range [1,5] using a validation set.

• SR (see Section 5.3.1): for each value of α, the parameters γ1, γ2 and γ3 were
optimized in the range [−1,−0.5, 0, 0.5, 1]3 using a validation set.

Note that the “late” and the “early” baselines are not adaptive, while the “Confidence-
based” method adapts its decisions to the current input. One goal of the experiments
is to compare these methods with ones that have been translated from the ECTS
framework: Economy-γ and SR.

5.4.2 Results and analysis

In this section, detailed answers to the questions raised in the introduction of Section
5.4 are given, supported by numerical results.
Efficiency of the proposed framework: In Figure 5.5, one can note interesting patterns
for the four matrices of misclassication costs and the large range of values of α and
therefore of delay cost functions. When the cost of delaying decision is high (α ≥ 10),
the optimal strategy is to make predictions immediately (i.e. the “early” baseline), for
the largest value of the horizon ηM. When the delay cost is low, (α ≤ 0.01), taking late

1Reproducible using our source code available on Github.
2The interested reader can refer to the official documentation for more details: https://xgboost.

readthedocs.io/en/stable/
3Given the cost of false positives and false negatives, the total cost is computed on a validation set as

the sum over wrongly predicted samples weighted by the corresponding cost.

https://xgboost.readthedocs.io/en/stable/
https://xgboost.readthedocs.io/en/stable/
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(A) C(1)
m =

[
0 1
1 0

]
(B) C(1)

m =

[
0 1
1 0

]

(C) C(2)
m =

[
0 10
1 0

]
(D) C(2)

m =

[
0 10
1 0

]

(E) C(3)
m =

[
0 100
1 0

]
(F) C(3)

m =

[
0 100
1 0

]

(G) C(4)
m =

[
0 1000
1 0

]
(H) C(4)

m =

[
0 1000
1 0

]

FIGURE 5.5: AvgCost of ECOTS algorithms computed on the test set
for different values of the α parameter of the delay cost (x-axis), and

for different values of misclassification cost.
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decisions is a good strategy even though it is not optimal (i.e. the “late” baseline). It
is apparent that the CC method essentially switches from one baseline strategy to the
other one as α increases, and therefore seems to realize the best of the two strategies
adaptively.

At the same time, both methods “imported” from ECTS: Economy-γ and SR,
noticeably overcome CC. They are able to better control the horizon of decision when
α is low, thus achieving significantly better performance (see more on this in the
discussion below on the ability to adapt the triggering times), and they perform as
well as the competitors for high values of α. In particular, this shows that the often
preferred, almost by default, confidence-based methods (e.g. CC) are being overtaken
by more formally based methods translated from ECTS.

The experimentation on this dataset taken from a predictive maintenance problem,
leads to the conclusion that the adapted Economy-γ and SR methods seem to be
specially interesting under a wide range of conditions.
Effect of the delay and misclassification costs: In all the situations corresponding to the
subfigures of Figure 5.5, the average cost sharply increases when the delay cost
become very high (note the logarithmic scale on the x-axis). Indeed, decisions have to
be made early so as to avoid high delay costs, but this is at the price of false positives
and negatives which may incur high cost, specially for the C(3

m and C(4)
m cost matrices.

FIGURE 5.6: Distribution of the decision moments for ECONOMY-γ,
SR and CC algorithms, for α = 0.001 and α = 0.1 both for C(2)

m =[
0 10
1 0

]
.

Ability to adapt the triggering moment according to observed data: In order to better
understand the properties of the adaptive approaches, we show in Figure 5.6 the
distribution of the decision moments of the three methods: ECONOMY-γ, CC and
SR. We have chosen the scenario Cm = C(2)

m (The method behaves similarly for other
values of Cm = C(.)

m and additional figures are given in the supplementary material).
One immediate finding is that both ECONOMY-γ and SR are more ready to consider
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intermediate horizons of prediction than CC. For α = 0.1, SR is more prone to spread
its decision horizons than ECONOMY-γ, which shows how this efficient approach
adapts the horizon. It may explain its superior performance in this instance. More
Figures with different values of α and the cost of misclassification are available in the
Appendix D.

5.5 Perspectives and future work

In this chapter, we formally defined for the first time in the literature the problem
of early classification in open time series (ECOTS). We have provided a generic and
well-grounded methodology that allows the adaptation of early classification of time
series (ECTS) approaches to the ECOTS problem. This recipe specifies how to translate
the earliness-accuracy trade-off, how to modify the decision triggering system and
what the classifiers become in the new setting.

We have illustrated our methodology by adapting two state-of-the-art ECTS algo-
rithms to the ECOTS scenario and demonstrated the value of the resulting algorithms
by applying them to a real-world dataset related to predictive maintenance. Exper-
iments attest to the ability of the new ECOTS algorithms to seek the best trade-off
between the earliness and the accuracy of the decisions when events unfold over
open time series.

Our work paves the way for a wealth of applications where measurements are
made over long periods of time, and decisions about upcoming events need to be
triggered as early, but also as accurately, as possible. This includes applications
in healthcare, predictive maintenance, autonomous driving, and decision aid in
agriculture, to name a few.

For future work, it would be interesting for the scientific community to build a
reference benchmark composed of an extensive collection of datasets from various
application domains. This would allow comparing ECOTS approaches in a meaning-
ful way, using statistical tests to compare competing approaches. Furthermore, The
revocable algorithm detailed in Chapter 4 can be used in the ECOTS setting to revoke
decisions that have been made. The adaptation seems trivial using the methodology
proposed in this chapter. Another line of research concerns the evaluation criterion
proposed in this chapter, which is very simplistic. It evaluates each timestamp inde-
pendently of the other ones. However, a more meaningful way to evaluate ECOTS
approaches is to do it by chunk.

In the next chapter, a generic problem that incorporates the future research direc-
tions listed above will be defined, and a list of challenges will be presented to the
community for further research.
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Chapter 6

Challenges and uses cases of
ML-EDM

Abstract

We started by studying in-depth the early classification of time series problem
(ECTS) in Chapter 3. The first limitation of ECTS has been tackled in Chapter 4,
which is the irrevocability of decisions. Then in Chapter 5 early classification
of time series with indefinite length and having different labels per portion
has been addressed. In this chapter, we have taken a step back and thought
about a more general problem, called Machine Learning based Early Decision
Making (ML-EDM), which consists in optimizing the decision times of models
in a wide range of settings where data is collected over time. After defining
the ML-EDM problem, ten open problems are identified and proposed to the
scientific community to further research in this area. These open problems
have important application perspectives, discussed in this chapter.

The content of this chapter has been submitted as journal paper:

• Open challenges for Machine Learning based Early Decision-Making research.
A Bondu, Y Achenchabe, A Bifet, F Clérot, A Cornuéjols, J Gama, G Hébrail, V
Lemaire, PF Marteau - SIGKDD explorations journal, 2022.
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6.1 Introduction

In the previous chapters, we started by studying in-depth the early classification
of time series problem (ECTS) in Chapter 3. The first limitation of ECTS has been
tackled in Chapter 4, which is the irrevocability of decisions. Then in Chapter 5 early
classification of time series with indefinite length and having different labels per
portion has been addressed.

In this chapter, we propose research directions for extending ECTS toward a more
generic problem that we call Machine Learning based Early Decision-Making (ML-EDM).
Ten challenges are proposed in order to develop ML-EDM approaches for a wide
range of problems. Some of them have been addressed in this thesis, the rest is left to
the scientific community for further research. These challenges are grouped into differ-
ent categories, including learning tasks, types of data, online early decision-making,
and revocable decisions. Then, some examples of applications of the ML-EDM tech-
niques are provided. At last, we conclude with perspectives for the development of
the ML-EDM field in the coming years.

The rest of the chapter is organized as follows. Section 6.2 first defines the ML-EDM
problem, shows how a triggering strategy can be learned, and positions ML-EDM
with respect to Reinforcement Learning. A series of ten challenges is then proposed
in order to develop ML-EDM approaches for a wide range of problems. Section 6.3
considers a variety of learning tasks, and Section 6.4, a variety of data types. Section 6.5
gives some leads to address the problem of online ML-EDM. Section 6.6 extends ML-
EDM to revocable decisions. Section 6.8 gives an overview on the proposed challenges,
and makes a synthesis of long and short term application perspectives. Then, Section
6.9 provides some examples of applications of the ML-EDM techniques. At last, Section
6.10 concludes with perspectives for the development of the ML-EDM field in the
coming years.

6.2 Definition of ML-EDM

This section defines what ML-EDM is by answering the following questions:

• A- What is an early decision?

• B- How to learn a triggering strategy from training data?

• C- Can a triggering strategy be learned by Reinforcement Learning?

Question A - What is an early decision?

Basically, Early Decision Making consists in: (i) observing pieces of information
over time ; (ii) deciding when to make a decision ; and (iii) making the decision itself.
In the following, increasingly complex decision-making problems are considered in
order to progressively lead to a general definition of ML-EDM.

Two types of problems can be distinguished (Hansson, 1994). Decision-making
under ignorance refers to a category of problems where the set of possible outcomes is
known, but no information about their probabilities is available. By contrast, decision-
making under uncertainty deals with problems where the probabilities of the possible
outcomes are known, or partially known.
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Optimal Stopping Problem (Shepp, 1969) is a canonical case of interest, where the
decision to make is simply to stop receiving new pieces of information. More for-
mally, {Xi} is a sequence of random variables observed successively, whose joint
distribution is known. Let {ri} be a sequence of reward functions, such that ri is a
function of the observed values x1, . . . , xi. The objective is to maximize the reward,
deciding after observing the value of the random variable Xi, either to stop and accept
the reward ri, or to observe the value of the next random variable Xi+1. A number of
optimal stopping problems have been extensively studied in the literature, such as:

• The Shepp’s urn (Shepp, 1969) which is filled with a known number of $1 bills,
and a known number of anti-bills of -$1. Here, the reward is the sum of the bills
gathered until the end of the game. The objective is to maximize our payoff by
stopping to draw objects in this urn at the best time.

• The secretary problem (Ferguson, 1989) consists in selecting the largest possible
value (which is unknown), among a sequence of values of known size observed
in a uniform random order. At each step the choice is, either to stop and keep
the last observed value, or to continue.

These two problems involve decision making under uncertainty, since the system
under study is perfectly known and the probability of the possible outcomes can
be estimated. For instance, in the Shepp’s urn the probability of getting a bill or
an anti-bill in the next draw is available, since the content of the urn is known at
any time. In the secretary problem, the rank of the last value among the previously
observed values approximates the rank in the entire set of values, since the observed
values constitute a uniform sample of all values.

As in Early Decision Making problem, Shepp’s urn and the secretary problem
imply a trade-off between early and accurate decisions.

On the one hand, there is a time pressure which pushes to trigger early decisions.
In a Shepp’s urn, the number of objects is finite and if all of them are drawn, our
payoff is bad, i.e. equal to the number of bills minus the number of anti-bills. In the
secretary problem, the number of values is known. The more values are observed,
the less future opportunity remains to select a high value.

On the other hand, there is a gain of information (about what’s left in the urn) over
time which tends to delay the decisions. In the Shepp’s urn problem, the sample
of already drawn objects grows over time, which provides useful information to be
compared to the known quantities of bills and anti-bills. For the secretary’s problem,
the sample of already drawn values grows over time, and the last observed value can
be compared to this sample.

From here on, the decision-making problems presented in the following are part of
supervised learning. A set of labeled examples, which takes different forms depending
on the problem, is assumed to be available.

The ECTS problem can be considered as a particular instance of optimal stopping,
where the decision to be made consists in: (i) stopping receiving new measurements
; and (ii) predicting the class of the incoming time series. The hypothesis h ∈ H is
assumed to be available, allowing to predict the class y ∈ Y of the incoming series at
any time, such that h(xt) = ŷ. In this case, the reward function r(xt, t, ŷ, y) depends
on the observed measurements xt = ⟨x1, . . . , xt⟩ ; the decision time t ; the predicted
class ŷ ; and the true class y. The following loss function can be defined:

L(h(xt), t, y) = Lprediction (h(xt), y) + Ldelay(t) (6.1)
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where Lprediction(.) is the cost of making a potentially bad prediction which can
be expressed as a cost matrix, and Ldelay(t) is a monotonically increasing function of
t representing the cost of delaying the decision until t1. The best decision time t∗ is
given by the optimal triggering strategy Trigger∗ defined as:

Trigger∗ (.) =
{

1 if t = t∗ = Argmint∈[1,T]L(h(xt), t, y)
0 otherwise

(6.2)

where the decision is forced at t = T if it was not taken before.

Here, the trade-off between early and accurate decisions takes the following form.
On the one hand, the delay cost Ldelay(t) incurred in making a decision urges to make
an early decision. On the other hand, the cost of making a bad prediction Lprediction is
assumed to decrease over time, as the description of the incoming time series becomes
richer. This decision making problem is under uncertainty, since the hypothesis h is
capable of estimating the distribution of the possible outcomes P(y|xt), at any time.

In practice, ECTS approaches trigger decisions at t̂, hopefully the closest as pos-
sible to the optimal time t∗, at least in terms of cost: L(h(xt̂), t̂, y)− L(h(xt⋆), t⋆, y)
must be small. Triggering such a decision is an online optimization problem, since t̂
must be chosen based on a partial description xt of the incoming time series xT (with
t ≤ T), and the reward function can be defined as:

r(xt, t, h(xt), y) =
{ −L(h(xt), t, y) if t = t̂ or t = T

0 otherwise
(6.3)

where the risk equals to 0 when no decision is made, given that the decision is forced
at t = T resulting in an important risk due to the delay cost.

In the rest of this section, and for readability reasons, the deadline T is still
considered as finite and known, as in the ECTS problem. In Section 6.6, another
setting is studied where T is indeterminate, i.e. where the successive measurements
are observed as a data stream.

Early decisions to be located in time constitute a more challenging problem, which
consists of both making a decision for each incoming time series, but also predicting
a time period associated with the decision. For example, maintenance operations on
hydroelectric dam turbines can only be performed when the electricity demand is
at a low enough level. There are therefore periods where maintenance is possible
and periods where this is not desirable. The objective here is to determine as early
as possible whether and during which period it will be possible to shut down the
turbines, within the day (if [1, T] corresponds to one day). In this case, the ground
truth (y, (s, e)) consists of a class y ∈ Y, associated with a certain time period [s, e],
defined by a start timestamp s ∈ [1, T] and a end timestamp e ∈ [s, T].

At testing time, the objective is twofold: triggering the decision as early as possible,
while also predicting the associated time period [s, e]. Let us consider a decision
denoted by (h(xt̂), (ŝ, ê)), where h(xt̂) is the class predicted at t̂ (the triggering time),
and [ŝ, ê] is the associated predicted time period. The loss function L has to be
redefined as a function of the following parameters:

1Note that the delay cost Ldelay(t) could depend on the class y of the time series. For instance, in the
emergency department in a hospital, the cost of delaying a decision when there is internal bleeding is
not the same as the one in case of gastroenteritis, where the early symptoms could look the same. Here,
for reasons of readability, we make Ldelay depend only on t.
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L


(h(xt̂), (ŝ, ê))︸ ︷︷ ︸

predictions

, t̂︸︷︷︸
triggering time

, (y, (s, e))︸ ︷︷ ︸
ground truth


 (6.4)

The loss function L needs to be specified further, depending on the considered
application. In general, this loss function should account for two aspects: (i) the
quality of the predictions ; (ii) the time overlap between the decisions made and the
true decisions. For example, Figure 6.1 shows a situation where the decision made is
correct, since the predicted class (see the second line) matches the ground truth (see
the first line). But these two decisions do not coincide exactly in time, as the predicted
time period is earlier than the ground truth.

FIGURE 6.1: Example of a time-lagged decision.

By extension, ML-EDM considers multiple early decisions to be located in time (i.e.
in the time period [1, T]) which is necessary in numerous applications. For example,
consider a set of servers used to trade on a stock exchange platform (where [1, T]
corresponds to the platform’s hours of operation during the day). For each server, key
performance indices (e.g., CPU, RAM, network) are recorded over time. The ground
truth consists of a sequence of states (e.g., overload or nominal) associated with the
corresponding time periods. In this application, the task is to detect overload periods
as early as possible.

Thus, in this problem, the true decisions {yi, (si, ei)}kx
i=1 consists of a sequence of

varying length kx, which is specific to each individual x. Each element of this sequence
is a decision to be located in time, which consists of a class yi ∈ Y associated with
a certain time period [si, ei]. For a given individual x, the time periods {(si, ei)}kx

i=1
constitute a time partition, each interval [si, ei] being associated with the true class yi
(e.g. in predictive monitoring, this time partition would correspond to the successive
states, up or down, of a given device).

Here, the online optimization problem to be addressed is more complex than
the previous one, since it consists in triggering a sequence of decisions as soon as
possible, without knowing the number of true decisions kx, and also ignoring the time
periods associated with each true decision. Let us consider that a ML-EDM approach
triggers a sequence of decisions {h(xt̂i′

), (ŝi′ , êi′)}k̂x
i′=1 ; where k̂x is the number of

decisions made ; where {t̂i′}k̂x
i′=1 represents the associated triggering times ; and

where {(ŝi′ , êi′)}k̂x
i′=1 represents the predicted time periods associated to the decisions

which forms a partition of the time period [1, T]. In the scenario of multiple early
decisions to be located in time, a loss function LL needs to be defined as a function of the
following parameters:

LL


{h(xt̂i′

), (ŝi′ , êi′)}k̂x
i′=1︸ ︷︷ ︸

predictions

, {t̂i′}k̂x
i′=1︸ ︷︷ ︸

triggering times

, {yi, (si, ei)}kx
i=1︸ ︷︷ ︸

ground truth


 (6.5)
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This equation shows the loss function used to evaluate an approach after the
deadline T, when predictions have been taken for all instants in the time period [1, T].
The loss function LL can be expressed in many different ways, depending on the
application considered. In practice, mapping rules need to be defined to match the
decisions made to the true ones (see Section 6.2.1).

Note that the problem of making predictions for all instants in [1, T] points to the
issue as whether decisions made can be revoked, or not, before T. In case decisions
are irrevocable, once a decision has been made, let us say (y, (s, e)), then it is no longer
possible to change the prediction of the class for all times t ∈ (s, e). This renders
the optimization problem dependent upon previous decisions, and it becomes more
constraining for application cases. Revocable decision are studied in Section 6.6.

One of the major issues of ML-EDM is to make the time periods associated
with the decisions taken {(ŝi′ , êi′)}k̂x

i′=1 coincide with those associated with the true
decisions {(si, ei)}kx

i=1. In this respect, two situations can be distinguished which have

an important impact on the triggering times {t̂i′}k̂x
i′=1:

• In the case of a decision making problem under ignorance, the occurrence of
the next true decision is independent of data observed before it occurs. For
example, in a predictive monitoring application, this means that there is no
premise in data correlated to future failures. In this case, the triggering times t̂i′

will all happen after si, that is the beginning of the time period associated with
the corresponding true decision (a situation where t̂i′ > si is called a negative
prediction horizon).

• In the case of a decision making problem under uncertainty, data observed at the
current time xt may provide useful information to predict the occurrence of the
next true decision. The partition of true decisions {(si, ei)}kx

i=1 is generated by a
stochastic process which can be modeled conditionally to the observed data (as
in (Frazier and Angela, 2007) which deals with a stochastic decision deadline).
In a predictive monitoring application, this means that observed data include
premises which are correlated to future failures. The triggering moments t̂i′ can
then be located before si (a situation where t̂i′ < si is called a positive prediction
horizon).

ML-EDM aims at designing approaches which correctly manage both situations, i.e.
decision making under ignorance or uncertainty, without being informed about it. If
the observed data contains useful information for predicting the timing of the next
true decision, the approach should be able to exploit it. If not, the approach should
still perform properly by triggering decisions under negative prediction horizons.

The deadline T after which decisions are forced is an important component, that
takes different forms depending on the problem. In the simple case of ECTS, only
one decision needs to be made before the incoming time series is complete. Thus,
the deadline T is defined as the maximum size of the input series, which is known in
advance during training. By contrast, in the more complex case of ML-EDM where
multiple decisions to be located in time must be taken, the deadline T is defined as a
maximum delay allowed to detect the start of a true decision (i.e. a bound on negative
decision horizons). In practice, two situations can be distinguished:

• Some applications do not support the absence of decision, and the entire considered
time period must be partitioned by the successive decisions. This is the case for
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instance when moderating content on social networks, where discussions are
continuously going on between users and where each part of these discussions
must be classified as appropriate or not (see Section 6.9.4). In this case, no
decision is not allowed, and all decisions are subject to the cost Ldelay and thus
constrained by the deadline T.

• By contrast, in some applications, a nominal operating state exists which is almost
permanent, and for which there is no decision deadline. This is for instance the
case in predictive maintenance applications, where there is no urgency or even
a deadline to detect the absence of failure. In this case, the delay cost Ldelay and
also the deadline T apply only to the other decisions (e.g. failures categorized
by severity level) excluding the nominal state.

At the end, ML-EDM aims to develop approaches which allow for easy adaptation
to all cases, whether the deadline T is applicable to all decisions, or whether there
exists a nominal operation state which bypasses this deadline.

Question B - How to learn a triggering strategy from data?

As a summary, this section shows that learning a triggering strategy follows the
usual general principles of Machine Learning approach, with the particularity to con-
sider time-sensitive loss functions (i.e. which depend on when decisions are triggered,
as in Equations 6.1, 6.4 and 6.5).

In practice, the optimal triggering strategy is not available and it must be approx-
imated by a learned function, such as Triggerγ ≈ Trigger∗, where γ ∈ Γ is a set of
parameters to be optimized within the space of parameters Γ of a chosen family of
triggering strategies.

In addition, the hypothesis h is supposed to be learned previously during the
training phase, making the system capable of predicting y at any time t ∈ [1, T]. This
hypothesis is defined by a set of parameters θ ∈ Θ.

To illustrate what a triggering strategy is, let us consider an example from the
ECTS literature. The SR approach, described in (Mori, Alexander Mendiburu, Das-
gupta, et al., 2017), involves 3 parameters (γ1, γ2, γ3) to decide if the current predic-
tion h(xt) must be chosen (output 1) or if it is preferable to wait for more data (output
0):

Triggerγ (h(xt)) =

{
0 if γ1 p1 + γ2 p2 + γ3

t
T ≤ 0

1 otherwise
(6.6)

where p1 is the largest posterior probability estimated by h, p2 is the difference
between the two largest posterior probabilities, and the last term t

T represents the
proportion of the incoming time series that is visible at time t. The parameters
γ1, γ2, γ3 are real values in [−1, 1] to be optimized, as described more generally in the
following.

In the simple case of ECTS, a single decision has to be made for each time series
x ∈ X (see Equation 6.1). Thus, the risk associated with any triggering strategy
Triggerγ belonging to any family Γ, is defined as follows, given the previously learned
hypothesis hθ within the family Θ:

R(Triggerγ|hθ) = E
X,Y

[
L(hθ(xt̂), t̂, y)

]
(6.7)
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where t̂ is determined by γ, the parameters of the triggering strategy.
Similarly, the risk can be defined in the more complex case of multiple early

decisions to be located in time. Let Tpart be the set of all possible partitions of the time
domain [1, T], having a varying number of time intervals k. The risk can be defined
as:

R(Triggerγ|hθ) = E
X,Tpart,Yk

[
LL({hθ(xt̂i′

), (ŝi′ , êi′)}, {t̂i′}, {yi, (si, ei)})
]

(6.8)

where {t̂i′} and {(ŝi′ , êi′)} are determined by γ, and given hθ . In Equation 6.8, the risk
is an expectancy on three random variables, drawing triplets from the join distribution
P(x, {(si, ei)}, {yi}). The first element corresponds to the input data2, which is an
individual x ∈ X. The two other consist of the ground truth, which is composed of:
(i) a partition of the time domain {(si, ei)} ∈ Tpart with a particular number of time
intervals, denoted by k ∈ [1, T] ; (ii) and a set of class labels {yi} ∈ Yk for each time
interval.

Now, the objective is to approximate the optimal triggering strategy Trigger∗ by
finding γ∗ ∈ Γ which minimizes the risk, such that:

γ∗ = Argminγ∈ΓR(Triggerγ|hθ) (6.9)

The joint distribution P(x, {(si, ei)}, {yi}) is unknown, thus Equation 6.8 can not be
calculated ; however a training set S which samples this distribution is supposed
to be available. The risk can be approximated by the empirical risk calculated on the
training set S = {xj, {yj

i , (s
j
i , ej

i)}}j∈[1,n],i∈kxj
, as follows:

Remp(Triggerγ|hθ) =
1
n

n

∑
j=1
LL

(
{h(xj

t̂i′
), (ŝj

i′ , êj
i′)}, {t̂i′ j}, {yj

i , (s
j
i , ej

i)}
)

(6.10)

where t̂i′ j is the triggering time of the i-th made decision of the j-th individual.

At the end, training a ML-EDM approach can be viewed as a two-step Machine
Learning problem: (i) first, the hypothesis hθ must be learned in order to predict the
most appropriate decision hθ(xt), at any time t ∈ [1, T] ; (ii) second, the best triggering
strategy defined by γ∗ must be learned, given the hypothesis hθ and given the family
Γ, such that:

γ∗ = Argminγ∈ΓRemp(Triggerγ|hθ) (6.11)

Question C - Can a triggering strategy be learned by Reinforcement Learning?

To sum up, this section shows that learning a triggering strategy of a ECTS approach
can be cast as a Reinforcement Learning (RL) problem, with rewards well chosen,
and it might be expected that provided with sufficient training, RL learning may end
up with a good approximation of an efficient decision function.

2Notice that the notation x ∈ X in Equations 6.7 and 6.8 is an abuse that we use use to simplify
our purpose. In all mathematical rigor, the measurements observed successively constitute a family of
time-indexed random variables x = (xt)t∈[1,T]. This stochastic process x is not generated as commonly
by a distribution, but by a filtration F = (Ft)t∈[1,T] which is defined as a collection of nested σ-algebras
(Klenke, 2013) allowing to consider time dependencies. Therefore, the distribution P(x, {(si, ei)}, {yi})
should also be re-written as a filtration.
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Reinforcement learning (Sutton and Barto, 2018) aims at learning a function,
called a policy π, from states to actions: π : S → A. Rewards can be associated with
transitions from states st ∈ S to states st+1 ∈ S under an action a ∈ A. Rewards are
classically denoted r(st, a, st+1) ∈ R. In all generality, the result of an action a in state
st may be non deterministic and one among a set (or space) of states. The optimal
policy π⋆ is the one that maximizes the expected gain from any state st ∈ S . This
gain, denoted Rt starting from the sate st, is defined as a function of the rewards from
that state (e.g. a discounted sum of the rewards received). In order to learn a policy,
value functions can be considered, such as the state-value function vπ(s) classically
defined as:

vπ(st)
.
= Eπ[Rt | st] = ∑

a∈A
π(a|st) ∑

st+1,r
p(st+1, r | st, a)

[
r(st, a, st+1) + γ vπ(st+1)

]

(6.12)

where Eπ[·] denotes the expected value of a random variable given that the agent
follows the policy π and t is any time step. In the case of a non deterministic policy,
π(a|st) denotes the probability of choosing action a in state st and p(st+1, r | st, a) the
probability of reaching state st+1 and receiving the reward r given that the action a
has been chosen in state st. And γ is a discounting factor: γ < 1.

In our case, the agent aims to learn a triggering strategy given the previously
learned classifier hθ , and the state st = (t, xt) is the current time t and the observed
data at current time. The instantaneous reward r(st, a) only depends on the current
state st and the action taken a (i.e. prediction now, or postponed to a later time).
Finally, the discounted factor γ, usually present in RL for reasons of convergence over
infinite episodes, is equal to 1 in our case, since we always deal with finite episodes
with forced decisions after a maximum delay. So that the equation (6.12) simplifies to:

vπ(st) = ∑
a∈A

π(a|st) r(st, a) + vπ(st+1)

when, during learning, the agent takes a decision, it updates the value of the state st
using:

vπ(st) = r(st, a) + vπ(st+1)

where st+1 is the state after having taken the action a in state st.
As the equation above shows, the core observation in RL is that the value function

for a state st (i.e. an estimation of the expected gain from that state) is related to the
value function of states st+1 that may be reached from st. In that way, information
gathered further down a followed path can be back-propagated to previous states
thus allowing increasingly better decisions from those states to be made.

For instance, in game playing, rewards may happen both during play (e.g. the
player just lost a pawn) and at the end of the game (e.g. the player is chess mate).
Similarly, one could cast the ECTS problem as a RL problem where, at each time
step, the “player” is in state st = (t, h(xtk), xt) and should choose between mak-
ing a prediction (e.g. h(xt)) with an associated reward: rt = −L(h(xt), t, y) =
−Lprediction (h(xt), y) −Ldelay(t) or postpone the decision, with no immediate asso-
ciated reward, that is rt = 0. If no decision has been made before the term of the
episode (e.g. when t = T) a decision is forced (see Figure 6.2). Provided with enough
time series to train on, and sufficient training in the form of “playing” these time
series, a reinforcement learning agent may end up with a policy π̂ that approximates
a good early triggering strategy, one that would converge over time, after a very large
number of “plays” on the training time series, to the optimal decision function π⋆
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prediction h(xt) no prediction

rt = 0

st+1 = (t + 1, h(xtk
),xt+1)

st = (t, h(xtk
),xt)

rt = �L(h(xt), t, y)

End

Forced decision
at time T if not taken before

rt+1 = �L(h(xt+1), t + 1, y)

rt+2 = �L(h(xt+2), y + 2, y)

rT = �L(h(xT ), T, y) = �
�
Lprediction (h(xT ), y) + Ldelay(T )

�

FIGURE 6.2: A part of a ECTS “game” when learning an optimal policy
while “playing” a training time series. When a prediction is made, the
game stops, otherwise it continues until a prediction is made or the

term of the episode is reached.
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(See Equations 6.2 and 6.11 ).

The RL framework is very general. It uses immediate and delayed rewards. As
shown in this section, there is in principle no obstacle to apply RL to the learning
of a good triggering strategy. However, if used directly, the generality of RL is paid
for by a need for a large number of “experiments”. In addition, the state space is
continuous in the case of the ECTS problem, thus an interpolating functions must be
used in order to represent the values such as vπ(s) and this entails the choice of a
family of functions and setting their associated parameters. Another approach, the
one favored in the current literature for ECTS (Achenchabe, Bondu, and Cornuéjols,
2021), is to choose functions for representing the expected values of decision times,
and thus providing a ground for the triggering strategy.

This has the merit of incorporating prior knowledge of the trade-off between
earliness and accuracy, at the cost of making modelling choices that may bias the
method of estimating the expected future cost.

6.2.1 In practice, how to define the loss function ?

The loss function LL in Equation 6.5 can be expressed in many different ways, de-
pending on the application considered. In practice, mapping rules need to be defined
to match the decisions made to the true ones. In Equation 6.5, the purpose is to map
the indices i′ to i, considering that the number of decisions made may be different
than it should be (k̂x ̸= kx). In particular, these rules address the following questions:
(i) how long should we wait before considering that a true decision has been missed?
(see a rule example in Figure 6.3) (ii) when the number of decisions made is too large,
how to identify the undue decisions? (e.g. Figure 6.4) (iii) what is the minimum time
overlap between a decision made and the corresponding true one? (e.g. Figure 6.5)
And of course, these mapping rules are specific to each application.

FIGURE 6.3: Maximum delay after which a decision is considered as
missed.

FIGURE 6.4: A decision is undue if no true decision exists in the time
interval.

In its general form, the loss function LL should involve several decision costs
mentioned below. Their origin is further detailed in Chapter 4. For the moment, let
us consider that the following costs are fixed, deterministic, and given as input to an
ML-EDM approach:
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FIGURE 6.5: Minimum overlap to consider that a decision is not
missed.

• a prediction cost Lprediction,

• a delay cost Ldelay,

• a time overlap cost Loverlap,

• a cost of missing the decision Lmissing,

• a cost of an extra and undue decision Ldelete.

As in the ECTS problem, the prediction cost Lprediction accounts for a potentially bad
prediction and it can be expressed as a cost matrix. The delay cost Ldelay depends
on the trigger time t̂i′ and the time period associated to the i-th true decision [si, ei].
Figure 6.6 gives an example where a delay cost is paid since the triggering time (see
the green vertical line) is located after the beginning of the period associated with the
decision. The overlap cost Loverlap accounts that the predicted periods {(ŝi′ , êi′)}k̂x

i′=1

might not coincide temporally with the periods of the true decisions {(si, ei)}kx
i=1.

For instance in Figure 6.7, the decisions made (shown in the second line) are out of
sync with the truth decisions (see the first line), which results in four overlapping
periods. The interested reader may refer to (Tatbul et al., 2018) which addresses the
evaluation of models by considering such temporal overlap. Finally, the costs of
missing a decision Lmissing and making an additional undue one Ldelete account that
the number of decisions made can be different than it should be (k̂x ̸= kx). Figure 6.8
shows a situation where the first anomaly (represented by the class 1) is not detected,
incurring a missing cost, and where a false detection occurs at the end leading to a
delete cost.

FIGURE 6.6: Example of paid delay cost.

6.2.2 In practice, how to evaluate a ML-EDM approach?

In some applications, decision costs are available as prior knowledge. It is the case for
instance in (Khoshnevisan and Chi, 2021b), where the objective is to detect as early as
possible patients suffering from septic shock, and where the cost of delaying decisions
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FIGURE 6.7: Example of paid overlap cost.

FIGURE 6.8: Example of a missing decision and an extra undue one.

is perfectly known. When available, decision costs are of great help in evaluating ML-
EDM approaches. Indeed, each decision made can be evaluated by the amount of
costs actually incurred, considering: (i) the triggering moment ; (ii) the ground truth ;
(iii) and the value of the decision costs (i.e. Ldelay, Lprediction, and Lrevoke).

In the particular case of ECTS problem, a cost-based evaluation criterion is pro-
posed in Chapter 3 called AvgCost, which simply corresponds to the empirical risk
calculated on a set of test individuals S as following:

AvgCost(S) = ∑
(xT ,y)∈S

L(h(xt∗), t∗, y)

= ∑
(xT ,y)∈S

Lprediction (h(xt∗), y) + Ldelay(t∗)
(6.13)

where t∗ is the triggering moment predicted for x. AvgCost can also be interpreted
as the average cost paid by the user on a particular set of examples, and this quantity
should be minimized.

In the case of early and revocable time series classification (see chapter 4), multiple
decisions to classify the time series at hand are taken between timestamp 1 and T, the
cost of revocation is added to Eq. 6.13 and becomes:

AvgCost(S) = ∑
(xT ,y)∈S

[Lprediction

(
h(xt∗last

), y
)

+ Ldelay(t∗last)

+Lrevoke

(
{(h(xt̂i

), t̂i)}i∈[1,Dx]

)
]

(6.14)

where t∗last = tDx is the moment of the last decision. Furthermore, the loss of
revocation is the sum of the multiple costs of decisions changes, the ideal situation
is to have the less possible decision changes per time series, in order to guarantee a
stable decision making algorithm.

Lrevoke

(
{(h(xt̂i

), t̂i)}i∈[1,Dx]

)
=

Dx−1

∑
i=1

Ccd(h(xt̂i+1
)|h(xt̂i

))
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In the case of dealing with open time series (Chapter 5), we proposed to evaluate
decisions for each timestamp, the cost of delay becomes the cost of horizon.

In cases where decision costs are unavailable, a multi-criteria evaluation can be
considered to take into account the different costs. For instance, in (Mori, Alexander
Mendiburu, Miranda, et al., 2019), the earliness and accuracy of decisions are evaluated
separately, and the Pareto optimal front is made up of the dominant approaches
considering both criteria.

In the more general case of ML-EDM where multiple early decisions have to be
made, a cost-based evaluation requires more prior knowledge. Indeed, mapping
rules would have to be defined in order to match the triggered decisions with the
true ones, the cost of overlap Loverlap between predicted and true time periods, as
well as the costs of missing a decision Lmissing and triggering an undue one Ldelete
(see Equation 6.5 in Section 6.2 and Figures 6.3 to 6.8).

The respective performances, merits and limits of both approaches should be
studied empirically by a comparison of RL based ECTS approaches, such as (Mar-
tinez, Ramasso, et al., 2020), with approaches that explicitly exploit the form of the
optimization criterion designed for ECTS as in (Achenchabe, Bondu, and Cornuéjols,
2021).

6.3 Learning tasks

The formal definition of ML-EDM provided in Section 6.2 involves the ground truth.
However, in many applications, it is extremely hard or costly to obtain, especially
in the case of anomaly detection (e.g. fraud, cyber-attacks, predictive maintenance).
In these application domains, there are several issues: (i) labels can be extremely
expensive to obtain as they each require an examination from an expert ; (ii) the labels
provided by experts can be uncertain ; and (iii) the class of anomalous observations
is often poorly represented and drifts over time. For example, cyber-attack tech-
niques are very diverse and change with time. Faced with these difficulties, anomaly
detection is often addressed using unsupervised approaches, by assuming that the
anomalies are outliers. In this case, the problem comes down to modeling the normal
behavior of the system, if possible using historical data that are cleaned of anomalies.
Then, it is necessary to define the notion of outlier to be able to assign an eccentricity
score to the new observations. Note that this type of modeling can be considered as
a first step to manage non-stationarity, since in this case the stationarity assumption
only concerns the normal behavior of the system (this assumption could be removed
in future work).

Challenge #1: extending non-myopia to unsupervised approaches
An unsupervised ML-EDM problem could be to decide, as soon as possible, whether
a partially observed time series ⟨x1, x2, . . . , xt⟩ will be an outlier (or not) when fully
observed at time T. In this case, the accuracy vs. earliness trade-off still exists.

On the one hand, an early detection is inaccurate by nature because the outlier
series is unreliably detected, based on few observed measurements. On the other
hand, delaying the detection of anomalies can be very costly. For instance, a cyber-
attack which is not detected immediately gives time to the hackers to exploit the
security issue found.

The non-myopic property has shown a big potential in the ECTS problem under
the supervised setting. An approach is non-myopic if it takes into account the
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information about the future to make the current decision, it does not only decide if
the current moment is the optimal one to trigger a decision, but also estimates when
in the future the decision is going to be optimal.

Designing ML-EDM approaches to tackle unsupervised learning tasks is challeng-
ing in several respects: (i) learning a triggering strategy with the goal of achieving a
good trade-off between earliness and accuracy of its decisions cannot be achieved
in the Machine Learning framework and should be formalized in another way ; (ii)
developing unsupervised non-myopic approaches is very difficult, as the training set
does not contain anomalous series, thus the triggering strategy cannot learn from
their continuations.

The extension of ML-EDM both to online scenarios (discussed later in Section
6.5) and to unsupervised tasks is of particular interest, because combined they would
enable a new generation of monitoring systems (Abellan-Nebot and Subirón, 2010) to
be developed. In this case, the learning task would consist in detecting online the
start and end of the outlier chunks: (i) without requiring labels to learn the model ;
(ii) by considering the trade-off between accuracy and earliness to trigger the decisions
at the right time.

Challenge #2: addressing other supervised learning tasks
The formal description of ML-EDM proposed is generic, in the sense that the type
of the target variable y can easily be changed. By definition, the ECTS approaches
in the literature are limited to classification problems, but they could naturally be
extended to other supervised learning tasks. For instance, predicting a numerical
target variable from a time series is a problem known as Time Series Extrinsic Regression
(TSER)(Tan et al., 2021). In some domains, TSER approaches are very useful and
allow applications such as the prediction of the daily energy consumption of a house,
based on the last week’s consumption, temperature and humidity measurements.
Early TSER would consist of predicting the value of the numerical target variable as
soon as possible, while ensuring proper reliability. Another example of a supervised
task for which ML-EDM approaches could be developed is time series forecasting
(Chatfield, 2000). Basically, a forecasting model aims to predict the next measurements
of a time series up to a horizon ν, Y = ⟨xt+1, xt+2, . . . , xt+ν⟩ from the recent past
measurements X = ⟨xt−w, . . . , xt−1, xt⟩. Using a forecasting model, in a an online
and early way, would consist of adapting the forecast horizon t + ν according to the
observed values in X, by modeling the trade-off between the accuracy and the earliness
of these predicted values.

The ML-EDM problem should also be adapted to semi-supervised learning, which
is of great help when the ground truth is only partially available. More generally,
the collected ground truth may be imperfect for various practical reasons, such as
the labeling cost, the availability of experts, the difficulty of defining each label with
certainty, etc. This problem has recently gained attention in the literature through the
field of Weakly Supervised Learning (WSL) (Z.-H. Zhou, 2018) which aims to list these
problems and provide solutions.

As detailed in (Nodet, Lemaire, Bondu, Cornuéjols, and Ouorou, 2021), the
collected labels may suffer from three main deficiencies: (i) inaccuracy ; (ii) non-
adaptability ; (iii) or even incompleteness. More precisely:

i) Inaccuracy of labels is commonly modeled as noise: the probability distribution
that a label is corrupted may be uniform (i.e. completely at random), may
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depend on the class value (i.e. at random), or even it may depend on the
instance by varying in the input space (i.e. not at random);

ii) Non-adaptability of labels gathers a variety of situations, such as Transfert Learn-
ing (Zhuang et al., 2020) and Multi-instance Learning (Carbonneau et al., 2018),
where the training labels may be available in another target domain or a sub-
domain (i.e. proxy domain), the labels may come from a slightly different
concept than the one to be learned (i.e. proxy labels), or labels can be associated
with individuals defined in a slightly different way (i.e proxy individual) ;

iii) Incompleteness of labels is related to partially labelled training sets. The objective
is to use the entire training set, including the unlabeled examples, to achieve
better classification performance than learning a classifier only from labeled
examples. Active Learning (Settles, 2009), Semi-Supervised Learning (Seeger,
2000), Positive Unlabeled Learning (Bekker and Davis, 2020), Self-Training
(Ennaji, Mammass, El Yassa, et al., 2012) and Co-training (Blum and Mitchell,
1998) are suitable techniques for this situation.

Challenge #3: early weakly-supervised learning
The extension of ML-EDM to weakly-supervised learning is an interesting challenge,
as it would allow to better address applications where the ground truth has cor-
ruptions or is incomplete (which includes semi-supervised learning). However, the
weakly-supervised learning is a very large domain with many types of supervision
deficiencies to be studied. From a practical point of view, the priority is probably to
extend ML-EDM to label noise, and more specifically to bi-quality learning (Nodet,
Lemaire, Bondu, and Cornuéjols, 2020), where the model is trained from two training
sets: (i) one trusted with few labels ; (ii) the other, untrusted, with a large number of
potentially corrupted labels. This would allow interesting applications, such as in
cyber security where few labels are investigated by an expert, and the majority of
labels are provided by rule-based systems. The major difficulty in designing bi-quality
learning ML-EDM approaches is to learn a triggering strategy from these two training
sets, which models the compromise between accuracy and earliness in a robust way to
label noise. Another interesting avenue would be to adapt Active Learning (Settles,
2009) approaches to ML-EDM, with the goal of labeling examples which improve
both accuracy and earliness of the decisions. Such approaches would be particularly
helpful when early decisions have to be made, and when labeling examples is very
costly as, again, it is the case in cyber security applications.

6.4 Types of data

The ML-EDM definition involves measurements (i.e. scalar values) acquired over
time. However, this is only for reasons of simplicity of exposition. Ideally, ML-EDM
approaches should be data type agnostic, i.e. they should operate for any data type as
long as measurements are made over time and decisions are online.

Below, we outline data types that are present in applications where ML-EDM
could be used.

i) Multivariate time series consist of successive measurements each containing
more than one numerical value. More formally, a multivariate time series of
length t is defined as xt = ⟨(x1

1 . . . xk
1), . . . , (x1

t . . . xk
t )⟩, where k is the number

of numerical values composing each time-indexed vector. For example, the
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data from an accelerometer can be represented by a multivariate time series
composed of the three variables representing the accelerations along the X, Y,
and Z axes.

ii) More complex signals exist, such as video streams which involve higher dimen-
sionality. Typically, a video stream is composed of frames, i.e. the measurements
are images. Each time-indexed frame can be considered as a signal that is in-
dexed by the position (x, y) of the pixels. The values of this multi-indexed
signal are the pixel, defined by four values which encode the RGB components
and the luminance of each pixel. Each time-indexed frame can be considered as
a 2D signal composed of 3 channels which describe the RGB components. In
addition, video streams could be multimedia when they include speech and
transcript (text or sign language translation).

iii) Data streams is another type of data which can contain both numeric and categor-
ical variables (Bifet et al., 2018). Successive measurements, also called tuples, are
received in an uncontrolled order and speed. For example, an Internet of Things
(IOT) device such as a connected security camera may send measurements in an
irregular flow. These measurements may be composed of categorical variables
such as an alarm type, and numerical variables such as a signal encoding a
short video sequence.

iv) Another type of data is evolving graphs which consist of graphs whose structure
changes over time (Latouche and Rossi, 2015). A typical example of an evolving
graph is the one which represents the social network of the customers of a
telecom provider (i.e. the nodes of the graph) and their interactions through
the phone network (i.e. the edges of the graph). A new customer may appear,
leading to the creation of a new node in the graph ; or two customers may meet
in real life and initiate phone calls resulting in the creation of new edges in the
graph. Several types of learning tasks can be considered, such as predicting the
next changes in the graph structure, or the classification of parts of the graph
(e.g. nodes, edges, sub-graphs).

v) Successive snapshots of relational data (Džeroski, 2009) should be consider to
design new ML-EDM approaches. More precisely, relational data consists of a
collection of tables having logical connections between them. (e.g. in a relational
database system, two tables can be linked together by a foreign key). Generally,
raw data stored in information systems can be represented by this type of
data, which makes relational data a very widespread data type. For instance,
consider that the customers of a company are described in a main table, each
row containing the information about a particular customer. The contracts
subscribed by the customers can be represented by a secondary table, linked to
the main table with a one to many relationship.

Like other types, relational data can evolve over time: (i) the connections
between tables can change; (ii) as well as the structure of the tables; (iii) or even
the values of the information stored in the tables.

vi) Text is another widespread type of data. There are many application cases
where text data is collected over time, and a decision has to be made at a certain
moment. For example, this is the case of an e-mail exchange to sell a second-
hand car, where the seller realizes after several exchanges that it is most likely a
scam.
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An application example is the moderation of social networking platforms, with
early deletion of inappropriate contents and automatic closure of fraudulent
accounts (see Section 6.9.4). In the Machine-Learning literature, there is little
work which considers early decision on texts (Y. He et al., 2018; Xia, Xuan, and
J. Yu, 2020) even though this is likely a future application area of considerable
interest, and the development of ML-EDM methods would enable to optimize
the time of decision making for text data.

Challenge #4: data type agnostic ML-EDM
Ideally, the new developed ML-EDM approaches should be data type agnostic, i.e. they
should operate for any data type presented above. To do so, a pivotal format needs
to be defined in order to learn the triggering strategies in a generic way. For instance,
each learning example could be characterized by a series of T predictions indexed
by time (corresponding to the output of the learned hypothesis h(xt) for each time
step t ∈ [1, T]), as well as by {yi, (si, ei)}kx

i=1 the ground truth composed of the true
decisions to be made over time for this individual. In the particular case of ECTS,
some approaches can easily be adapted to become agnostic to data type (Achenchabe,
Bondu, and Cornuéjols, 2021; Mori, Alexander Mendiburu, Eamonn Keogh, et al.,
2017; Mori, Alexander Mendiburu, Miranda, et al., 2019). In contrast, others have been
designed to be very specific to time series (Ghalwash, Radosavljevic, and Obradovic,
2014; G. He, Duan, R. Peng, et al., 2015; Xing, Pei, and Philip, 2009; Xing, Pei, P. S. Yu,
et al., 2011), especially with the search of features (e.g. shapelets) occurring early in
the time series and helping to discriminate between classes. More generally, future
work in ML-EDM should definitely promote data type agnostic approaches, to allow
the use of these techniques in a wide range of application conditions.

6.5 Online Early Decision Making

In the specific case of Early Classification of Time Series (ECTS), an important limi-
tation is that the training time series: (i) have the same length T ; (ii) correspond to
different i.i.d individuals ; (iii) have a label which characterizes the whole time period
of length T. There are obviously applications where this formulation of the prob-
lem is relevant (Alipour-Fanid et al., 2019; Dachraoui, Bondu, and Cornuejols, 2013;
Fahrenkrog-Petersen et al., 2019; Gupta et al., 2020; Loyola et al., 2017; Rußwurm,
Tavenard, et al., 2019; Sharma and Kumar Singh, 2020; Teinemaa et al., 2018), espe-
cially in cases where the start and end of the time series are naturally defined (e.g. a
day of trading takes place from 9:30am to 4pm, during the opening hours of the stock
exchange).

The development of online ML-EDM approaches could overcome these limitations
and enable a new range of applications. For this purpose, let us consider that the
input measurements are observed without interruption, in the form of a data stream
(Joao Gama, 2012). In the case of a classification problem, an online ML-EDM approach
would consist in identifying chunks in the input data stream (i.e. fixed time-windows
defined by their start and end timestamps) and categorizing them according to a
predefined set of classes. For example, in a predictive maintenance scenario (Ran
et al., 2019) such an approach would operate on a continuous basis to detect periods
of system malfunction as soon as possible.

Challenge #5: online and early predictions to be located in time
In the case of a classification problem, the training data consist of the measurements ob-
served from the stream during the training period, denoted by x = ⟨x1, x2, . . . , x|x|⟩,
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FIGURE 6.9: Example of a data stream labeled by chunks over a time
period

associated with their labels y = ⟨y1, y2, . . . , y|x|⟩. A labeled chunk is formed by the
consecutive measurements, between the timestamps ta and tb, if their labels share
the same value (i.e. if {yi}i∈[ta,tb] is a singleton). As shown in Figure 6.9, the data
stream defined over the training period is labeled by chunks of variable size. For
example, these chunks could represent the periods of failure and nominal operation
in a predictive maintenance scenario. During the deployment phase, the model is
applied online on a data stream whose measurements are observed progressively
over time. This model is expected to provide predictions located in time, since it needs
to predict the beginning and the end of each chunk, associated with the predicted class
which characterizes the state of the system during this chunk.

Challenge #6: online accuracy vs. earliness trade-off
Designing online ML-EDM approaches requires redefining the accuracy vs. earliness
trade-off for online decisions. The main issue is that a data stream is of indeterminate
length: (i) its beginning may be too old to be considered explicitly, or can even be
indeterminate ; (ii) its end is never reached, since it is constantly postponed by the
new measurements that arrive. In the particular case of ECTS, it is precisely the fact
that the input series has a maximum length T, known in advance, that leads to force
triggering the decision when the current time t becomes close to the deadline T.

The rest of this paragraph presents an example of adapting the accuracy vs. earliness
trade-off to online decisions, which is a summary of the work presented in Chapter 5.

Let us consider a predictive maintenance problem for which a classifier has been
trained in batch in order to detect the beginning and the end of abnormal chunks (see
Figure 6.10). The prediction of the classifier focuses on a fixed timestamp s and the
question is to determine if this timestamp corresponds (or not) to the beginning of
an abnormal section. The input features used by the classifier are extracted from a
sliding window xt = ⟨xt−w, . . . , xt−1, xt⟩ of length w. As shown in Figure 6.10, the
sliding window xt moves over time as it gets closer to s. At first, the timestamp s is
located in the future (s > t). Making a good prediction is difficult since the potentially
anomalous part of the stream is not yet visible in xt. In this case, the classifier has to
detect the early signs of an anomaly. Then, the timestamp s enters the xt window (at
time t = 4). The prediction becomes easier to perform, since a part of the potentially
abnormal chunk is visible in xt. The last possible moment to trigger the decision is
reached when the timestamp s is getting ready to exit the sliding window xt.

Finally, the accuracy vs. earliness trade-off occurs as follows: (i) on the one hand,
the accuracy of the decisions increases over time due to the classification task that
becomes easier as the xt window shifts ; (ii) on the other hand, predictive maintenance
applications require early decisions which allow to anticipate breakdowns, or at least
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to detect it early. Ultimately, this proposal consists of changing the definition of what
is predicted as normal or abnormal. Here, the observation to be scored is no longer
a time series of finite length, but a particular measurement of the input data stream
identified by its timestamp. This proposal only partially addresses the problem, as
the predictions for each timestamp would have to be consolidated in order to predict
the start and end of each chunk. There are certainly other ways to adapt the accuracy
vs. earliness trade-off to online decisions that would be valuable to investigate.

FIGURE 6.10: Illustration of the earliness vs. accuracy trade-off for
online decisions

Challenge #7: management of non-stationarity in ML-EDM
It is not always realistic to assume stationarity of the data. In practice, data collected
from a stream may suffer from several types of drifts: (i) the distribution of the
measurements within the sliding window xt can vary over time, this is called covariate-
shift (Quiñonero-Candela et al., 2009); (ii) the prior distribution of the classes P(y)
can be subject to such drifts; (iii) and the concept to be learned P(y|x) can also change
when concept drift occurs (Joao Gama, 2010).

To manage these non-stationarities, a first family of approaches maintains a
decision model trained using a sliding window of most recent examples. This is a
blind approach, in the sense that there is no explicit drift detection. The main problem
is deciding the appropriate window size.

A second family of approaches, explicitly detects the drifts (João Gama et al., 2014;
Lemaire, Salperwyck, and Bondu, 2014) and triggers actions when necessary, such
as re-training the model from scratch, or using a collection of models in the case of
ensembles. In this case, detecting concept drift can be considered as similar to the
anomaly detection problem, and ML-EDM approaches could be used to tackle it in
future work. A popular idea is to train the decision model using a growing window
while data is stationary, and shrink the window when a drift is detected. This kind
of approaches can easily be adapted to online ML-EDM, since they decouple model
training and non-stationarity management.

In the case of incremental concept drift, a third family of approaches consists in
continuously adapting the model by training it online from recent data. This kind of
adaptive approach is much more challenging to adapt to online ML-EDM. Indeed, as
in ML-EDM problems (see Figure 4.3), two kinds of models are used: (i) the predictive
model(s), which can categorize the input data stream at any time ; (ii) the triggering
strategy which makes the decisions at the appropriate time. The main challenge in
developing adaptive drift management methods for the online ML-EDM problem
is that the parameters of the predictive models and of the triggering strategy must be
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updated jointly. These two kinds of models are highly dependent: updating the
parameters of one has an impact on the optimal parameters of the other.

By contrast, in standard ML-EDM approaches which operate in batch mode, the
parameters of the predictive models are first optimized, and then the parameters of
the triggering strategy are optimized in turn given the parameters of the classifiers
(see paragraph B in Section 6.2). This two-step Machine Learning scheme is definitely
not valid for managing drift online (Krempl et al., 2014). Adaptive drift management
for the online ML-EDM problem has not yet been addressed in the literature and
constitutes an interesting research direction. In drift detection systems, there is a trade-
off between fast detection and the number of false alarms. Moreover, in problems
where the target (e.g. the labels) is not always available or available with a delay
requires unsupervised or semi-supervised drift detection mechanisms. The ML-EDM
framework, improving the compromise between earliness and accuracy, can provide
new approaches for drift detection.

6.6 Revocable decisions

In many situations, one can take a decision and then decide to change it after some
new pieces of information become available. The change may be burdensome but
nevertheless justified because it seems likely to lead to a much better outcome. This
can be the case when a doctor revises what now seems a misdiagnosis.

Similarly, ML-EDM should be extended to consider such a revocation mechanism.
In the classical ML-EDM problem, a prediction h(xt̂) cannot be changed once the
decision is triggered at time t̂ ≤ T. Whereas, the extension of ECTS to revocable
decisions (see Chapter 4) allows a prediction to be modified several times before the
deadline T. On the one hand, the revocation of a decision generates a higher delay
cost Ldelay, as well as a cost of changing the decision Lrevoke. On the other hand, new
data observed in the meantime provide information that makes the prediction more
reliable, thus tending to decrease the misclassification cost Lprediction. Ultimately, the
main issue is to identify the appropriate decisions to revoke, in order to minimize the
global cost.

Such an extension to revocable decisions could be of great interest: (i) in applica-
tions where the cost of changing decisions is low, i.e. the DAGs associated with each
possible decision share reusable tasks (see Chapter 4) ; (ii) in applications involving
online early decision making (see Chapter 5). There are many use cases where the
need to revoke decisions appears clearly. For instance, the emergency stop system of
an autonomous car brakes as soon as an obstacle is suspected on the highway, and
releases the brake when it realizes, as it gets closer, that the suspected obstacle is a
false positive (e.g. a dark spot on the road).

Developing ML-EDM approaches capable of appropriately revoking its decisions
involves solving the two following challenges:

Challenge #8:
reactivity vs. stability dilemma for revocable decisions
The first issue is to ensure that a decision change is driven by the information provided
by the recently acquired measurements, and not caused by the inability of the system
to produce a stable decision over time. This problem is not trivial. On the one
hand, the system needs to be reactive by changing its decision promptly when
necessary. On the other hand, the system is required to provide stable decisions over
time by avoiding excessively frequent and undue changes. Thus, a trade-off exists
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between the reactivity of the system and its stability over time. To our knowledge,
the work presented in Chapter 4 is only one that uses such a cost of decision change
(Achenchabe, Bondu, Cornuéjols, and Lemaire, 2022a), in order to penalize revocation
of too many decisions. The reactivity vs. stability dilemma of revocable decisions is
understudied in the literature, and it would be interesting for the scientific community
to work on this question.

Challenge #9: extending non-myopia to revocation risk
Non-myopic ML-EDM approaches are capable of estimating the information gain
that will be provided by future measurements, based on the currently visible ones.
In other words, these approaches are able to predict the reliability improvement
of a decision in the future. Thus, a decision is triggered when the expected gain in
miss-classification cost at the next time steps does not compensate the cost of delaying
the decision (Chapter 3). In the case of revocable decisions, an important challenge is
to estimate the future information gain by taking into account the risk of revocation
itself. Specifically, a decision that will probably be revoked afterward should be
delayed due to this risk. Conversely, a decision which promises to be sustainable
should be anticipated. Designing non-myopic to revocation risk approaches could be an
important step forward to (i) optimize the first trigger moment, and (ii) reduce the
number of undue decision changes. The approach proposed in Chapter 4 constitutes
a first step in this direction, by assigning a cost to decision changes and considering
it in the expectation of future costs. To the best of our knowledge, this is the only
approach which provides this interesting property. It is not clear whether alternative
methods are possible. This is an interesting topic for further studies by the scientific
community.

6.7 Origin of the decision costs

Figure 6.11 describes a binary ECTS problem, where the actions to be performed
depend on the predicted class and are described by two Directed Acyclic Graphs (DAG).
These DAGs characterize the sequence and the relationships between the unit tasks
which compose them (e.g. task 1 must be completed before starting task 2). Here, the
DAGs of tasks are fixed, they do not depend on the decision time.

The total cost of a decision can be decomposed by:

(i) the delay cost, denoted by Ldelay, which reflects the need to execute the DAG
of actions corresponding to the new decision in a constrained time, and in a
parallel way (already detailed in Section ??);

(ii) the decision cost, which corresponds to the consequences of a bad decision, or
the gains of a good decision (denoted by Lprediction).

(iii) the revocation cost, which is the cumulative cost of the mistakenly performed
tasks belonging to the DAG of previously made bad decisions, and which are
not reusable for the new decision (denoted by Lrevoke) ;

When expressed in the same unit, these different types of costs can be summed up
in order to reflect the quality of the decisions made, and their timing. Thus, Equation
6.1 becomes:
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FIGURE 6.11: DAGs of tasks to be performed after the triggering of a
decision.
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L(h(xt), t, y) =

(i)︷ ︸︸ ︷
Ldelay(t) +

(ii)︷ ︸︸ ︷
Lprediction (h(xt), y)

+ Lrevoke

(
h(xt)|{(h(xt̂i

), t̂i)}i∈[1,Dx
t ]

)

︸ ︷︷ ︸
(iii)

(6.15)

where {(h(xt̂i
), t̂i)}i∈[1,Dx

t ]
represents the sequence of the previously made decisions

and their associated triggering time, with t̂i < t, ∀i ∈ [1, Dx
t ].

Term (ii): Taking into account the decision cost is a very common feature in the
literature, particularly in the field of cost-sensitve learning (Elkan, 2001). These
techniques take as input a function Lprediction(ŷ|y) : Y × Y → R which defines the
cost of predicting ŷ when the true class is y. The aim is to learn a classifier which
minimizes these costs on new data.

Term (iii): By contrast, the study of the revocation cost is very limited in the literature.
To our knowledge, (Achenchabe, Bondu, Cornuéjols, and Lemaire, 2022a) is the only
one article article that considers this problem, and this work shows that assigning a
cost to decision changes is a first lead to manage the reactivity vs. stability dilemma, and
to design non-myopic to revocation risk approaches (i.e. discussed later in challenges
#8 and #9). The origin of this cost can be explained in the light of the tasks to be
performed once a decision is triggered (see Figure 6.11). For instance, let us consider
the first decision noted by (A, t̂1), in which the system predicts at time t̂1 that the
input time series belongs to the class A. This decision is then revoked in favor of a new
decision (B, t̂2). The cost of changing this decision, denoted by Lrevoke((B, t̂2)|(A, t̂1)),
can be defined as the cost of the actions already performed between t̂1 and t̂2 which
turn out to be useless for the new decision, i.e. which cannot be reused in the DAG
of tasks corresponding to the new predicted class B. In order to define the costs
of decision changes, it is necessary to identify the common tasks between the DAGs
of the different classes and to evaluate their execution time. In addition, the entire
sequence of the past decisions must be taken into account to identify the already
completed tasks which are now useful for the achievement of the current DAG of
tasks. For instance, the cost Lrevoke((A, t̂3)|{(A, t̂1), (B, t̂2)}) can be reduced by the
tasks executed between t̂1 and t̂2, if these tasks are not perishable, i.e. the results are
identical to those that would be obtained by re-executing these tasks at t̂3.

Challenge #10: scheduling strategy and time-dependent decision costs
In this thesis, the DAGs of tasks are supposed to be fixed, i.e. not depending on the
decision time. However, a different problem could be considered (see Figure 6.12)
where the DAGs of tasks are generated by a scheduling strategy depending on: (i)
the decision made ; (ii) and the decision time. Such a scheduling strategy is useful
in applications where the actions to be performed after a decision can be adapted
to a time budget available to perform them. Two situations may occur: (i) ideally,
a decision is triggered early enough to allow the scheduling strategy to generate a
complete DAG of tasks which is optimal given the decision made (as in Figure 6.11) ;
(ii) on the contrary, in the case of a too late decision, the scheduling strategy needs to
build the DAG so that it can be achieved in the remaining time (e.g. by parallelizing
some tasks, by changing or removing some of them). For instance, when flying an
airplane, the tasks to be performed for an emergency landing are not the same as for



6.7. Origin of the decision costs 109

a normal landing, and there is a range of situations with different emergency level,
and therefore corresponding to different time budgets.

FIGURE 6.12: DAG of tasks to be performed after the triggering of a
decision, generated by a scheduling strategy.

Such a time-dependent scheduling strategy radically transforms the ML-EDM
problem and the way it can be formulated. In particular, the triggering and scheduling
strategies become mutually dependent:

1. Decision costs depend on the generated DAG of tasks: all the previously discussed
costs result from the structure of the DAG to be performed conditionally to the
decision made: (i) the relationships between the tasks ; (ii) their execution time ;
(iii) the conditions of their reuse when they are common to several DAGs. Since
the structure of the DAG to be performed now depends on the decision time,
the decision costs can no longer be considered as fixed, and they are available
only after scheduling.

2. The optimal decision time depends on the cost values: on the other hand, the trig-
gering strategy aims to optimize the decision time based on the cost values. As
described in Equation 6.11, the triggering strategy is learned by minimizing the
empirical risk, which is itself estimated using a loss function based on the costs.

Finding an optimal triggering strategy when the scheduling strategy is itself
time-dependent makes ML-EDM a quite difficult challenge as the scheduling strategy
is only known through its interactions with the triggering strategy. In this case,
Reinforcement Learning seems to be a possible option to address the problem. The
scheduling strategy could then be considered as part of the environment, and a
contributor to the reward signal by determining the decision costs for each decision
taken at a particular time. However, this line of attack remains to be investigated in
order to assess its merit.

In many applications, fortunately, the implementation of a scheduling strategy is
much simpler, especially when the variation of decision costs over time is known in
advance (or modeled, and thus are partially known). We will place ourselves under
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this assumption in the rest of this chapter. The preceding remarks are reminders that
if considered in all its complexity, ML-EDM becomes a very difficult problem. As we
will see below, addressing the case where the costs are assumed to be time dependent
but with a known form, already offers interesting challenges and corresponds to a
variety of applications.

6.8 Overview on challenges

This section provides an overview of the previously presented challenges, indicating
references which address part of these challenges (see the second column of Table
6.1), and summarizing the main prospects for applications in the short and long term
(see the last column of Table 6.1). Table 6.1 organizes the proposed challenges by
category, using colors to identify: (i) those related to changing the learning task ; (ii)
those related to online ML-EDM ; (iii) and those related to revocable decisions.
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6.9 Usecases

ML-EDM approaches can be applied to a wide range of applications, such as cyber se-
curity (Zoppi et al., 2021), medicine (Khoshnevisan and Chi, 2021b), surgery (Samuel
and Cuzzolin, 2021). This section develops some key use cases and identifies possible
advances in near future, if the proposed challenges are met.

6.9.1 Early classification of fetal heart rates

There are no precise figures on the number of deaths in childbirth due to poor
oxygenation. According to the Portuguese Directorate-General for Health, the number
of children who died due to hypoxia in 2013 was 192 fetuses. This is a critical example
where making informed early decisions is critical, literally meaning a difference
between life and death. Cardiotocography techniques are used to assess fetal well-
being through continuous monitoring of fetal heart rate and uterine contractions
(Luzietti et al., 1999).

Fetal well-being results from the normal functioning of the transfer of maternal
blood to the placenta and, through its proper functioning, the transfer of oxygen
present in maternal blood to fetal blood (P., 2015). Labor is a potentially threatening
situation to fetal well-being, as strong uterine contractions stop the flow of maternal
blood to the placenta, compromising fetal oxygenation (P., 2015).

Hypoxia, resulting from lack of oxygen, represents a large part of unsuccessful
deliveries. In addition, more than 50% of deliveries with poor outcome are caused by
failure to recognize fetal heart rate patterns (Chinnasamy, Muthusamy, and Gopal,
2013).

In this field, ML-EDM techniques could be of great help to detect the early warning
signs of complications during childbirth. This application can be addressed as an
ECTS problem, as a fetal heart rate signal constitutes a time series. The goal there
is twofold: (i) classifying the birth outcome before having access to complete time-
series ; (ii) optimizing the triggering moment, when this prediction is made. The
extension of ECTS techniques to revocable decisions would be very relevant (see
challenges #8 and #9) allowing for active monitoring of the children’s well-being on a
continuous basis, until delivery. In addition, two particular aspects need to be taken
into account in developing an efficient approach: (i) the prediction cost Lprediction is
highly asymmetrical since a false negative can mean the death of the baby or the
mother; (ii) the deadline T which represents the moment of delivery is uncertain and
varying. Thus, the deadline T corresponds to the occurrence of an event (i.e. the
birth ) which can be modeled as random variable as in (Frazier and Angela, 2007;
Kochenderfer, 2015).

6.9.2 Digital twin in production systems

Digital Twin (DT) is an important active concept in the area of Industry 4.0. With the
development of low cost sensors and efficient IoT communication facilities, almost
all production systems are now equipped with several sensors enabling real time
monitoring and helping in decisions about maintenance, or when failures occur.
Production systems with sensors coupled with computers are also called cyber-
physical systems (CBS). In this section, we consider digital twins (DT) of cyber-
physical systems (CBS) which are in operation.

The main digital twin applications (Fuller et al., 2020) are related to smart cities,
manufacturing, healthcare and industry. The role of the DT is thus to use the data
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streams coming from the sensors of the CBS in order to constantly calibrate sim-
ulation models of different components of the system. Indeed, this offers several
opportunities, namely (1) detection of anomalies when the system deviates from the
simulation model ; (2) diagnostic of dysfunctions when they occur ; (3) exploration of
different scenarios for system evolution in case of dysfunction ; (4) recommendation
for repair actions.

These approaches were, for instance, well illustrated in the European H2020
project MAYA (see http://www.maya-euproject.com/).

Effective maintenance management methods are vital, and industries seek to min-
imize the number of operational failures, reduce their operational costs, and increase
their productivity. In this context, The availability of large volume of data coming
from sensors of a CBS makes the use of Machine Learning techniques, supervised or
unsupervised, very appealing. Typical unsupervised ML approaches are related to
anomaly detection (Ruff et al., 2021) where an alarm should be triggered when the
behavior of the CBS differs from normal running. Typical supervised ML approaches
in the context of manufacturing and industry are related to predictive maintenance
(Carvalho et al., 2019; Ran et al., 2019), where classification models are used to predict
categories that correspond to possible failures. Predictive Maintenance (PdM) is a
data-driven approach that emerged in Industry 4.0 as a prominent field of research.
It uses statistical analysis, Machine Learning (ML) models, and Deep Learning (DL)
solutions for modeling complex systems behavior, identifying trends and predicting
failures.

In both anomaly detection and predictive maintenance, ML models need to be
updated continuously with incoming new data, and their outputs are used by oper-
ators for decision making. Consequently, DT’s using machine learning models can
benefit from early decisions and ML-EDM techniques. The multiple early decision
to be located in time concept introduced in Section 6.2 is particularly relevant in this
context, since maintenance operations often imply several periods of time.

We review below some challenges of the chapter in light of this domain. Challenge
#1 (extending non-myopia to unsupervised approaches) is relevant, since an efficient
anomaly detection system requires unsupervised approaches which can be combined
with physics-based simulations of the different components. Challenge #2 (other
supervised tasks) is also appropriate since both classification and regression problems
appear (e.g. breakdown occurrence, prediction of energy consumption).

Regarding challenge #3 (weakly supervised learning), the main problem is not that
training data is of poor quality but that interesting data (e.g. failures) are often rare,
leading to the need for data augmentation using simulation. Of course Challenge
#4 (data type agnostic) is especially relevant for DT’s, since a system is always
composed of several heterogeneous components with many sensors generating data
of heterogeneous type, for instance tabular data, multivariate time series, images,
audio signals such vibrations, possibly videos, ...). In this situation, the update of one
component or one or several sensors would be much easier and cheaper if ML-EDM
were data type agnostic. DT’s operating at a system level leads to complex prediction
models and complex decisions since the different components operate differently but
in interaction (cf. challenge #5). The ability to manage non-stationarity (cf. challenge
#7) is obviously central in DT’s: aging and wearing of equipment lead to covariate
and concept drifts which must be taken into account. Moreover, prediction models
may need to be recalibrated after maintenance operations.

http://www.maya-euproject.com/
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Scenario exploration in manufacturing digital twins

As mentioned above, one interesting characteristic of Digital Twins (DT’s) is their
ability to anticipate possible evolution of the system using current observation and
running simulation models. For instance in (Gabor et al., 2016), a software archi-
tecture framework is defined which enables information exchanges between the
cyber-physical system and simulation models which are part of the DT. This enables
simulations of possible evolution of the CBS if such simulations can be operated in
real-time. In (Lugaresi and Matta, 2018), a review of Real-Time Simulation (RTS)
models is proposed and describes several approaches for RTS, usually based on
Discrete Event Simulation (DES). As reported in this chapter, there are still research
challenges in RTS for manufacturing (data management, adaptability, model genera-
tion, validation, reactiveness) but some solutions exist. In (Lugaresi, Travaglini, and
Matta, 2019), a LEGO toy demonstrator has been developed to prove this concept.

Consequently, one can consider that in manufacturing, Digital Twins will soon
have the ability to run in real-time simulations of the evolution of the system, based
on Discrete Event Simulation models. These simulations provide different possible
outcomes of the system with associated probabilities: typically what an ML-EDM
expects as input in a non-myopic decision perspective. This case is closely related to
the problems addressed in challenge #10 (scheduling strategy and time-dependent
decision costs), since the time needed to run simulations is similar to the time budget
of a scheduling strategy (cf. Figure 6.12).

6.9.3 Predictive Maintenance of Metro Trains

Advances in networking, machine learning, data analytics, and robotics are allowing
vast improvements on industrial processes. Predictive maintenance, in particular, is
one technique with high impact in today’s industry. Over the years different main-
tenance strategies have been developed. Three main approaches can be identified:
(i) Corrective maintenance: when an equipment is run until failure. This simplest of
method almost always leads to high (unexpected) downtime and thus potentially to
critical situations that entail great costs for companies. (ii) Preventive maintenance: It is
based on planning regular replacement of components and/or equipment. Historical
failure data and/or the data provided by the equipment manufacturer is used. Al-
though this approach prevents unexpected shutdown, it usually entails unnecessary
additional costs and an increased unexploited lifetime. (iii) Predictive maintenance:
It uses direct monitoring of the mechanical condition and other parameters that can
determine the operating conditions over time in order to accurately predict the arrival
of a breakdown. There are now tools that can process real-time data acquired from
different equipment parts to predict any sign of failure.

Data-driven predictive maintenance (PdM) monitors the mechanical conditions
or other health indicators of the equipment, and uses advanced statistical or Machine
Learning methods to detect operating patterns and dynamically identify operating
conditions.

Predictive maintenance of metro trains offers a lot of opportunities for ML-EDM
to improve the quality of service of public transportation. Clearly, anomaly detection
can be addressed using unsupervised techniques, which in turn implies challenge
#1. The data collected on the operations of metro trains can be of various types:
multi-variate series, feedback from the drivers or the maintenance agents, and so on,
which relate to challenge #4. Of course, challenges #5 and #6 on online predictions
with location in time are implied as well. Finally, even though once an alert has been
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raised and predictive operations have been scheduled, it is rare that the decisions
can be revoked, this is nonetheless an issue that can be considered when further data
may lead to a reassessment of the situation (see challenge #8 and #9).

6.9.4 Social networks: societal and psychological risks

Online social networking platforms are more popular than ever. They are now used
daily and have become an important part of our lives. They radically transform the
way we communicate with each other. However, this transformation comes with
many problems on both sides, for users and platforms alike.

For example, Fake news spread widely during the covid pandemic, which had an
impact on the spread of the virus itself. (Ajao, Bhowmik, and Zargari, 2019) tackled
this problem as a binary classification problem where classes are “fake" and “real"
news, by using fact checking techniques. Fake accounts are also considered a major
problem for these platforms, as they are among the main culprits in spreading false
information. For instance, (Aydin, Mehmet, and Salur, 2018; Y. Elyusufi, Z. Elyusufi,
et al., 2019; Fire et al., 2014; N. Singh et al., 2018) use Machine Learning techniques
to detect these fake account based on interactions between users. Fake accounts
can also be used for harassment and propagating hate speech, which can induce
major psychological risks (Watanabe, Bouazizi, and Ohtsuki, 2018). The detection of
depression and risk of suicide has been addressed using Machine Learning techniques
in (Castillo-Sánchez et al., 2020; Islam et al., 2018).

Decisions taken by Machine Learning models to prevent such societal and psy-
chological risks on social networks are clearly time-sensitive:

• Fake news must be detected as early as possible to limit its spread, and thus its
harmful consequences on society. For example, (X. Zhou et al., 2020) focuses
on early detection of fake news from the press before it is expressed on social
media, and (Yang Liu and Wu, 2020) proposes a deep learning model that
achieves an accuracy of more than 90% within 5 minutes of the beginning of
the propagation of a fake news and before it is retweeted 50 times.

• The early detection of fake users has also been studied in recent work. For
example, (Breuer, Eilat, and Weinsberg, 2020) proposes a graph-based approach
which uses network connectivity to detect fake users as early as possible.

• Likewise, Detecting as early as possible depressed or potential suicidal users is
very critical for prevention. This problem has also been addressed under the
perspective of early classification in (Leiva and Freire, 2017).

The development of the ML-EDM domain is an opportunity to go further in
these applications. In particular, it would be very useful to develop unsupervised
and weakly supervised ML-EDM approaches (see challenges #1 and #3). In this
application area, ground truth is often unavailable or corrupted. Typically, users
rarely declare on social networks their depressive state or their suicidal thoughts
; and if they do, this information is not reliable due to obvious social biases. In
the case of social networks, Training data is very complex and consists of multiple
sources: streams of texts, a large graph evolving over time etc. Therefore, it would be
particularly beneficial to develop ML-EDM approaches which are agnostic to data
types (see challenge #4). In the scenario where the user’s state is monitored in a
streaming fashion, and where the goal is to identify their state changes as soon as
possible, the development of online ML-EDM approaches seems to be very desirable
(see challenges #8 and #9).
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6.9.5 Autonomous vehicle

An autonomous vehicle is defined in (Thrun, 2010) as capable of sensing its environ-
ment and navigating safely without human input.

In order to achieve this ambitious goal, it is necessary to combine advanced
technologies from many fields such as: (i) electronics and sensors ; (ii) software engi-
neering ; (iii) telecommunication ; (iv) computer security ; (v) information processing.

Five levels of vehicle automation have been defined (Milakis, Van Arem, and Van
Wee, 2017) as intermediate goals toward full automation: in level 1, most functions
are controlled by the driver ; in level 2, at least one driver assistance system is
implemented ; in level 3, the driver is able to delegate safety critical functions to
the vehicle ; in level 4, the vehicle is fully autonomous, but not in all driving scenarios ;
in level 5, the vehicle is fully autonomous, with performance equal to that of a human
driver in all driving scenarios. The development of a fully autonomous vehicle
(levels 4 or 5) requires a complex software architecture, which operates numerous
functional components (Serban, Poll, and Visser, 2018). More precisely, three classes
of components have been identified, corresponding to different levels of control:

i) Operational components, which implement basic vehicle control such that lateral
and longitudinal vehicle motion, monitoring of the driving environment by
detecting objects and events, identification of the vehicle’s condition and its
position in the environment ;

ii) Tactical components, which plan and execute vehicle maneuvers and prepare
appropriate responses to incoming events, e.g. trajectory control, lane change,
obstacle avoidance, emergency braking, visibility improvement by adapting
lighting to environmental conditions;

iii) Strategic components, which determine the general itinerary according to the
driver’s preferences and the traffic conditions, based on a maps database and a
path planning algorithm.

Given the high complexity of the tasks to be automated, Machine Learning ap-
proaches have become an essential element in the design of autonomous vehicles
(Ma et al., 2020). Machine learning is therefore used in the development of different
classes of components:

i) Operational components are the most developed in the literature, and can be
classified as follows: (1) mediated perception approaches are mostly based on deep
learning techniques (Fagnant and Kockelman, 2015; John et al., 2015) and aim to
detect a wide variety of objects, such as obstacles, road signs, lanes and traffic
lights ; (2) direct perception (Bojarski, Del Testa, et al., 2016; Bojarski, Yeres, et al.,
2017) consists of end-to-end approaches, which aim to directly manage vehicle
controls (e.g., gas pedal, brake, steering wheel) without explicitly dealing with
location and mapping ; (3) localization approaches (Alcantarilla et al., 2018;
Vishnukumar et al., 2017) aim to characterize similarities and discrepancies
between the environment observed from sensor data, and a priori maps, in
order to accurately locate the vehicle and identify potential obstacles.

ii) Tactical components are mostly developed to automate vehicle maneuvers using
Machine Learning techniques, such as : (1) advanced scenarios of automated
parking, as free space recognition, pedestrian detection during the operation
(Heimberger et al., 2017) ; (2) car-following improvement by predicting the
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trajectories of other human-drivers (Gong and Du, 2018) taking into account
road conditions to increase safety (L. Li, Ota, and Dong, 2018) ; (3) trajectory
planning including obstacle avoidance [27], self-driving in urban environment
(Sales et al., 2014) and at high speed (Al-Hasan and Vachtsevanos, 2002), sliding
control improvement (Akermi, Chouraqui, and Boudaa, 2020).

An autonomous vehicle is an extremely complex system, which must react safely,
and in real time, to the vagaries of its environment. The decisions made by the
Machine Learning based components (presented above) are definitely time-sensitive.
In this case, reaching a good compromise between earliness and accuracy of these
decisions is critical. On the one hand, early detection of an obstacle facilitates the
planning of a safe evasive trajectory and perceived as such by the passengers. On the
other hand, false positives can be generated by too early and not enough accurate
detections, causing unnecessary or even dangerous trajectory changes.

Considering the earliness vs. accuracy compromise is an emerging and important is-
sue in research for autonomous vehicles. In particular, cooperative perception (Kim et al.,
2015) has been developed to extend the perceptual range of a connected autonomous
vehicle, by sharing real-time information with other surrounding vehicles.

In this scenario, the vehicles’ situational awareness is improved, allowing for
smoother and safer maneuvers, such as early lane changes or early emergency braking.
In some ways, cooperative perception improves both the earliness and accuracy of
decisions by extending the vehicles’ perceptual capability.

The development of the ML-EDM field could make it easier to design fully au-
tonomous vehicles. Indeed, the ability of these approaches to make non-myopic
decisions is an advantage to make self-driving more fluid and safe.

An experienced driver is capable of anticipating what is going to happen on the
road: he is able to build a mental picture of the situations that are likely to occur in a
few seconds. A non-myopic ML-EDM approach would be able to identify probable
continuations of an observed situation on the road, based on related situations en-
countered in the training data and their continuations(e.g., if a balloon crosses the
road, it is probable that a child will run behind).

Most of the challenges presented in this chapter are relevant for the autonomous
vehicle. Indeed, training data is very complex in this case, and consists of multiple
sources: video, radar, lidar, sensors etc. In addition, training data may change over
time, for example with the arrival of a new types of sensors on a next generation of car.
It is therefore important to develop ML-EDM approaches which are agnostic to data
types (see challenge #4). In the case of self-driving, Ground truth contained in the
training data includes both the actions to be performed (e.g., emergency braking) and
the timing of these actions (e.g., triggering this action 3 seconds before the potential
impact). It would be very useful and probably possible to develop ML-EDM methods
which learn the evolution of decision costs over time, underlying self-driving (see
challenge #10). In the case of autonomous vehicles, sensor data is continuously
observed, so it is essential to design online ML-EDM approaches (see challenges #5
and #6), and driving actions must definitely be revocable (see challenges #8 and #9).
For example, an emergency brake must not be carried out to the end, if there are
finally no obstacles in the way.

6.10 Perspectives and future work

This chapter aims to define the field of ML-EDM, and proposes ten challenges to
the scientific community to further research in this area. In particular, ML-EDM has
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been defined and positioned with respect to related fields, such as machine learning
and reinforcement learning. Three challenges have been presented in relation to the
learning task at hand: extending ML-EDM to unsupervised learning (challenge #1),
to regression tasks (challenge #2) and to weakly-supervised learning (challenge #3).
The development of data type agnostic ML-EDM approaches has been singled out
as an important direction of research to extend the domains of application, yielding
challenge #4. Extending ML-EDM to the online scenario has also been recognized as
important too which raises three challenges (challenge #5, #6 and #7). Being able to
revoke decisions properly is significant as well in many applications and raises two
challenges (#8 and #9). The origin of the different costs involved in the optimization
of decision times has been discussed, leading to a last challenge (challenge #10) to
extend the ML-EDM problem to cases where these costs vary over time. Finally, a
range of application areas for which ML-EMD could lead to significant progress in the
near future have been described, such as anomaly detection, predictive maintenance,
patient health monitoring, self-driving vehicles.

The overall objective of this chapter is to define a new field of investigation, and to
propose research avenues in order to generate interest from the scientific community.
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TABLE 6.1: Overview of the proposed challenges by category: in blue
those related to the learning task, in green those related to online ML-
EDM, in yellow those related to revoking decisions, and in white the

others.
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Chapter 7

Conclusion

7.1 Summary

The point of entry in this thesis was the early classification of time series (ECTS) problem,
studied in Chapter 3 where two antagonist concepts are at stake. In time-critical
applications, on the one hand, the sooner the time series is classified, the more re-
warding it is. On the other hand, an early classification is more likely to be inaccurate.
This is called the earliness vs accuracy dilemma. However, this trade-off has been
formalized for the specific case of ECTS, where time series are of fixed-length T,
with a single irrevocable decision, in a supervised learning setting where labeled
training data assigns a single label for each time series. The decision irrevocability
limitation has been addressed in Chapter 4. In many applications, namely, monitoring
in predictive maintenance or medical applications, measurements of an individual
come in a streaming fashion, and time series are of indefinite undetermined length,
with portions of variable size with potentially different labels. This scenario has been
addressed in Chapter 5. Finally, in Chapter 6, we proposed a more generic problem
that we called Machine Learning based Early decision-making (ML-EDM). It extends the
ECTS problem to more challenging decision-making problems. A list of 10 challenges
is proposed to the scientific community for further research.

7.2 Identified challenges

At this thesis’s last semester, a particular effort has been made to identify the main
challenges the community needs to overcome to open the path to more applications.
In the following, a list of the proposed challenges is given in Table 7.1.

Some of them have already been addressed in this thesis, without exhaustively
exploring these questions. Challenge #4 was addressed in Chapter 3, as the proposed
approach is data type agnostic. Challenge #5, and #6 were addressed in Chapter 5
as the individual considered is a fixed timestamp; however, it would be interesting
to solve this problem while considering chunks of time series as described in the
definition of ML-EDM in Chapter 6. Challenges #8 and #9 were addressed for time
series of fixed-length and a single true label. Adapting the work done in Chapter 5 to
the revocable setting is trivial.

The rest of the challenges were not addressed in this thesis, and are left to the
community as research directions.
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ML-EDM challenges Addressed
#1: Extending non-myopia to unsupervised approaches
#2: Addressing other supervised learning tasks
#3: Early weakly supervised learning (WSL)
#4: Data type agnostic ML-EDM Chapter 3
#5: Online predictions to be located in time Chapter 5
#6: Online accuracy vs. earliness trade-off Chapter 5
#7: Management of non-stationarity in ML-EDM
#8: Reactivity vs. stability dilemma for revocable decisions Chapter 4
#9: Non-myopia to revocation risk Chapter 4
#10: Scheduling strategy and time-dependent decision costs

TABLE 7.1: Overview of the challenges identified

7.3 Contributions

More specifically, here is a summary of the contributions of this thesis.

In chapter 3 the problem of early classification of time series is studied in depth,
the main contribution of this chapter is presenting a general framework for the ECTS
problem and implementing three novel methods. Extensive experiments on a bench-
mark of 45 datasets from different domain areas show the superiority of the proposed
method ECONOMY-γ over the state of the art of the field. The second contribution
consists in claiming that the cost of delay as well as the cost of misclassification
depends on the application area and must be specified in advance by the user, and a
new evaluation criterion based on these costs is proposed.

In chapter 4 our contribution is to extend the classical ECTS problem by overcoming
one of its limitations, which is decisions are irrevocable. We rigorously define the
early and revocable time series classification problem, introduce a the cost of decision
change, the origin of the costs introduced in this thesis are discussed as well. We
propose a new framework which models the risk of revocation, and is capable of
revoking decisions already taken at the optimal moment based on new acquired
measurements. Two novel algorithms are proposed, experiments show that these two
algorithms have superior performance than the irrevocable regime, which confirms
the utility of the framework.

In chapter 5 In the same spirit of chapter 4, two limitations of ECTS are tackled: i)
Labels are associated with the full-length time series; ii) time series are of finite length.
Our contribution lies in defining this problem and proposing a new algorithm which
deals with these limitations, the earliness-accuracy trade-off is also transcribed from
ECTS to this new problem that we call ECOTS. Numerical results on a predictive
maintenance dataset show promising result in favor of the new approach compared
to a classical approach.

In chapter 6 our contribution is to push even more the limits of ECTS towards
a generic problem that we call ML-EDM where a Machine Learning model can be
applied on data acquired over time, and where the trade-off between the earliness
and the accuracy of decisions must be optimized in different scenarios. challenges
and use cases are proposed to the community for further research.
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7.4 Limitations and Future work

Chapter 6 as a whole aims to propose new research directions for the scientific
community for future research in this area. In this section, key ideas will be given to
tackling the challenges detailed in the cited chapter.

ML-EDM approaches are limited to supervised classification problems. It is
a critical limitation that prevents these approaches from being applied to many
applications where labels are very costly to obtain, or when they are available, but too
noisy to deal with using classical supervised learning approaches. Three challenges
have been proposed to extend these approaches to other learning tasks: (challenge
#1) to unsupervised learning, (challenge #2) to regression tasks and (challenge #3) to
weakly-supervised learning.

Let us focus on challenge #1, in order to extend the ECONOMY ’s non-myopic
property to the unsupervised setting, the first issue to overcome is the collection of
classifiers which is trained in a supervised way. An unsupervised algorithm should
replace this collection. Then, ECONOMY approach is cost-sensitive, the expected
misclassification cost for future time steps is based on confusion matrices, which can
not be computed without ground truth labels. The new approach should be capable
of estimating the expected misclassification cost of deciding in the future time steps
in a fully unsupervised way.

Extending ML-EDM approach to regression tasks can have practical implications.
Namely, the prediction of the daily energy consumption of a house, based on historical
consumption, temperature and humidity measurements. This consists of predicting
the value of the numerical target variable as soon as possible, while ensuring proper
reliability. A simple approach to do this extension, is considering the regression task
as a classification task using space discretization. This is the simplest way to deal
with this problem. However, the user must choose the number of splits in the output
space.

The extension of ML-EDM to weakly-supervised learning (WSL) is an interesting
challenge, as it would allow to better address applications where the ground truth
has corruptions or is incomplete (which includes semi-supervised learning). A simple
naive idea is to apply WSL algorithms on the classification model and the triggering
model.

Then, the second set of challenges is related to online ML-EDM have been pro-
posed. The aim of Challenge #5 is to develop algorithms that can trigger decisions
located in the future or the past. For example, predict the state of the machine as
soon as possible during the following week. Challenge #6 proposes to deal with
the compromise between accuracy and earliness in other scenarios, and not only
in the setting of ECTS. Challenge #7 suggests dealing with the non-stationarity of
streaming environments, which significantly benefits deploying ML-EDM models
into production.

Chapter 5 proposes a first step into dealing with Challenge #5, and #6. Predictions
are located in time, made for the past or future time stamps, while optimizing
online the earliness-accuracy trade-off in a new scenario, where time series are open
(with no predefined length) and multiple labels, each for a different portion of time.
However, each decision is associated with a timestamp, and decisions are considered
independent, which is a naive assumption since decisions are time-dependent. This
work can be extended for the scenario where the classifier’s predictions are associated
with a period of time instead of a single time stamp. It would require more user
parameters to be chosen. For example, one could imagine a discretization of the time
axis in different portions for which the user defines the length. Then the ML-EDM
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approach predicts the class label for each portion while optimizing the earliness-
accuracy trade-off. The work presented in Chapter 5 corresponds to the case where
all portion lengths are equal to 1.

Challenge #7 has not been dealt with in this thesis. However, it is essential in
order to deploy ML-EDM into production. Streaming environments evolve over
time. Consequently, this impacts ML-EDM approaches because they become obsolete
over time in the presence of concept drift. Literature that deals with non-stationary
environments can be applied to ML-EDM approaches. Multiple questions can be
raised: i) How to update the classification model and the triggering model? ii) When
to update these models?

Challenge #10 is the hardest one to deal with since it changes how the ML-EDM
problem was formulated in chapter 6. Costs in this new setting are generated by a
scheduling strategy, they depend on the decision made as well as its timing. Future
work should be conducted to explore this research direction using reinforcement
learning techniques as a starting point.
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Appendix A

Appendix of Chapter 2

In the following, two widely used similarity measures are defined.

Definition A.0.1. Euclidean distance
Given two time series xt and yt, the euclidean distance between them is:

d(xt, yt) =

√√√√ t

∑
i=1

(xi − yi)2

The euclidean distance is the most intuitive similarity measure. However, if we try
to use it naively between two raw time series, we may get very unintuitive results. The
reason is that this distance is very sensitive to distortions. They should be removed
from data for a more meaningful comparison. Multiple techniques were developed
to deal with this problem, offset translation which consists of subtracting from the
time series its mean before computing the distance, amplitude scaling which is a
normalization technique that divides by the standard deviation of the time series after
subtracting its mean, removing linear trend, which consists of fitting the best straight
line to the time series, then subtract that line from the time series. Smoothing which
consists of removing noise by averaging each data point value with its neighbors.

Another well-known similarity measure for time series is Dynamic Time Warping
(DTW). It was first introduced in (Bellman and Kalaba, 1959) and then extensively
developed for many application areas, including handwriting and online signature
matching, sign language recognition, gestures recognition, data mining, time series
clustering, and many other areas.

As explained in (Senin, 2008), the DTW algorithm is extremely efficient in mini-
mizing the effects of shifting and distortion in time that we have already discussed.
It allows elastic transformation of time series to detect similar shapes with different
phases. Given two time series xm = ⟨x1, . . . , xt⟩ and yn = ⟨y1, . . . , yt⟩ represented
by the sequences of values, DTW yields optimal solution in the O(m.n) time. However,
data sequences should be sampled at equidistant points in time (but this problem can
be resolved by re-sampling).

Figure A.1 shows the difference in matching between euclidean distance and
dynamic time warping, this elastic matching allows one to compute the distance
between portions with different phases.

Now the question is how to compute DTW. The procedure is straightforward.
However, it is heavily costly compared to Euclidean distance. First a distance matrix
of size m× n should be computed between xm and yn. The algorithm in Figure A.2
shows from line 5 to 7 the initialization of the first column. From lines 8 to 10 the
initialization of the first row,c(i, j) in this simple case is the is the absolute value of the
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FIGURE A.1: Euclidean distance and DTW matching on the same
couple of time series (taken from (Eamonn, 2006))

difference between the xi and yj added to the last distance computed. In the general
case as shown from lines 11 to 14, the value computed is the distance between the
two points added to the minimum of 3 cases: i) moving only in the time series x; ii)
moving only in the time series y; iii) moving in both. This procedure is applied until
the matrix is fully computed, then the warping path (i.e., the best matching distance
between x and y) is computed according to the procedure described in Figure A.3.
In simple terms, the procedure starts at the end of both time series which is position
(m, n), then it looks backward for the minimum distance until it reaches position
(0, 0).

FIGURE A.2: Distance matrix computation (Senin, 2008)
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FIGURE A.3: DTW path from (Senin, 2008)
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Appendix B

Appendix of chapter 3

B.1 Distribution of decision moments and post optimal deci-
sion moments for all values of α

B.1.1 ECONOMY-γ
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FIGURE B.1: The distribution of decision moments (left column)
and post optimal moments (right column) for ECONOMY-γ with

α ∈ {0.0001, 0.0002, 0.0004, 0.0008, 0.001}



B.1. Distribution of decision moments and post optimal decision moments for all
values of α
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FIGURE B.2: The distribution of decision moments (left column)
and post optimal moments (right column) for ECONOMY-γ with

α ∈ {0.003, 0.005, 0.008, 0.01, 0.02}
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FIGURE B.3: The distribution of decision moments (left column)
and post optimal moments (right column) for ECONOMY-γ with

α ∈ {0.03, 0.04, 0.05, 0.06, 0.07}



B.1. Distribution of decision moments and post optimal decision moments for all
values of α

131

FIGURE B.4: The distribution of decision moments (left column)
and post optimal moments (right column) for ECONOMY-γ with

α ∈ {0.4, 0.5, 0.6, 0.7, 0.8}
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FIGURE B.5: The distribution of decision moments (left column)
and post optimal moments (right column) for ECONOMY-γ with

α ∈ {0.9, 1}



B.1. Distribution of decision moments and post optimal decision moments for all
values of α
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B.1.2 ECONOMY-K



134 Appendix B. Appendix of chapter 3

FIGURE B.6: The distribution of decision moments (left column)
and post optimal moments (right column) for ECONOMY-K with

α ∈ {0.0001, 0.0002, 0.0004, 0.0008, 0.001}



B.1. Distribution of decision moments and post optimal decision moments for all
values of α
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FIGURE B.7: The distribution of decision moments (left column)
and post optimal moments (right column) for ECONOMY-K with

α ∈ {0.003, 0.005, 0.008, 0.01, 0.02}
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FIGURE B.8: The distribution of decision moments (left column)
and post optimal moments (right column) for ECONOMY-K with

α ∈ {0.03, 0.04, 0.05, 0.06, 0.07}



B.1. Distribution of decision moments and post optimal decision moments for all
values of α
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FIGURE B.9: The distribution of decision moments (left column)
and post optimal moments (right column) for ECONOMY-K with

α ∈ {0.4, 0.5, 0.6, 0.7, 0.8}
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FIGURE B.10: The distribution of decision moments (left column)
and post optimal moments (right column) for ECONOMY-K with α ∈

{0.9, 1}
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B.2 Additional experiments

Similar experiments as the ones described in Section 3.5 but performed on the 45
datasets benchmark proposed by (Mori, Alexander Mendiburu, Dasgupta, et al.,
2017).

FIGURE B.11: Success of adapting the trigger times - Wilcoxon signed-
rank test results for different values of α: black dotes indicate success

and circles failures.

(A) (B)

FIGURE B.12: Evaluation based on AvgCost: (a) Nemenyi test applied
to the 45 datasets; (b) pairwise comparison using the Wilcoxon signed-
rank test, with black squares identifying non-significant comparisons.
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(A) (B)

(C) (D)

FIGURE B.13: Earliness (a, b) and predictive performance (c, d) com-
parison of the ECONOMY approaches.

FIGURE B.14: Average Earliness vs. Average Kappa score obtain over
the 45 datasets by varying the slope of the time cost, such as α ∈

[10−4, 1].
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(A) (B)

FIGURE B.15: Evaluation of the quality of online decisions based on
∆cost.

B.3 Additional results for multi-class classification problems

B.3.1 Nemenyi & Wilcoxon results for all α

Below are presented the full results obtained for the 33 datasets from Mori, Alexander
Mendiburu, Dasgupta, et al., 2017 with more than 2 classes.

(A) (B)

FIGURE B.16: Comparison of ECONOMY approaches for α = 0.001
using (a) Nemenyi and (b) Wilcoxon signed-rank tests

(A) (B)

FIGURE B.17: Comparison of ECONOMY approaches for α = 0.01 using
(a) Nemenyi and (b) Wilcoxon signed-rank tests
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(A) (B)

FIGURE B.18: Comparison of ECONOMY approaches for α = 0.1 using
(a) Nemenyi and (b) Wilcoxon signed-rank tests

(A) (B)

FIGURE B.19: Comparison of ECONOMY approaches for α = 0.2 using
(a) Nemenyi and (b) Wilcoxon signed-rank tests

(A) (B)

FIGURE B.20: Comparison of ECONOMY approaches for α = 0.3 using
(a) Nemenyi and (b) Wilcoxon signed-rank tests
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(A) (B)

FIGURE B.21: Comparison of ECONOMY approaches for α = 0.4 using
(a) Nemenyi and (b) Wilcoxon signed-rank tests

(A) (B)

FIGURE B.22: Comparison of ECONOMY approaches for α = 0.5 using
(a) Nemenyi and (b) Wilcoxon signed-rank tests

(A) (B)

FIGURE B.23: Comparison of ECONOMY approaches for α = 0.6 using
(a) Nemenyi and (b) Wilcoxon signed-rank tests
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(A) (B)

FIGURE B.24: Comparison of ECONOMY approaches for α = 0.7 using
(a) Nemenyi and (b) Wilcoxon signed-rank tests

(A) (B)

FIGURE B.25: Comparison of ECONOMY approaches for α = 0.8 using
(a) Nemenyi and (b) Wilcoxon signed-rank tests

(A) (B)

FIGURE B.26: Comparison of ECONOMY approaches for α = 0.9 using
(a) Nemenyi and (b) Wilcoxon signed-rank tests
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(A) (B)

FIGURE B.27: Comparison of ECONOMY approaches for α = 1 using (a)
Nemenyi and (b) Wilcoxon signed-rank tests
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Appendix C

Appendix of chapter 4

This appendix gives further details on experiments presented in Chapter 4, Section
C.1 shows that the percentage of samples for which a revocation is useful is relatively
low, that demonstrates that the tackled problem is hard, then Section C.2 presents
results of the Friedmann test comparing the two proposed approaches, Section C.3
shows the pareto curves for additional values of β and finally experiments on multi-
class classification problems are presented in Section C.4.

C.1 Percentage of samples for which a revocation is useful

This section aims to check if the cost paid by the user can be improved by revoking
the decision made by the irrevocable regime, statistics on results of ECONOMY-γ were
computed. Figure C.6 shows the percentage of samples for which the score paid by
the user can be improved by revoking the decision of ECONOMY-γ for each dataset
and α value.

These statistics show that decisions can be successfully revoked on very few sam-
ples which makes the early and revocable time series classification problem difficult
to solve, because the algorithm needs to identify those samples using incomplete
knowledge of the time series in order to revoke the decision on them and keep the
decision of the irrevocable regime on the other samples.
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FIGURE C.1: Percentage of samples for which the score paid by the
user can be improved by revoking the decision of ECONOMY-γ. Each

column represent a different value of α in ascending order.
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C.2 Average ranking using the Friedman test

FIGURE C.2: ECO-REV-CA vs. ECO-REV-CU: Average ranking based on
AvgCost using the Friedman test, for different values of α and β: “+”
indicates ECO-REV-CA having a better average rank than ECO-REV-CA,

and “−” indicates the opposite .

In our paper, we used Wilcoxon signed-rank test to compare the two proposed
approaches (see Section 5). In addition, Figure C.2 uses the Friedman test and shows
that ECO-REV-CA has better average rank than ECO-REV-CU in 96% of cases.

C.3 Average Earliness vs. Average Kappa for different values
of β

This section presents the pareto curve for additional values of β, we notice that the
same order holds for all values of β except for β=0.75 and β=1 where ECO-REV-CA

becomes worse than ECONOMY-γ, however ECO-REV-CU still performs better.
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FIGURE C.3: Average Earliness vs. Average Kappa score obtained over
the 34 datasets by varying α of the delay cost.



C.3. Average Earliness vs. Average Kappa for different values of β 151

FIGURE C.4: Average Earliness vs. Average Kappa score obtained over
the 34 datasets by varying α of the delay cost.
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FIGURE C.5: Average Earliness vs. Average Kappa score obtained over
the 34 datasets by varying α of the delay cost.
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C.4 Experiments on multi-class early and revocable classifica-
tion problems

This section gives two simple implementation examples of the ECONOMY frame-
work, in the case of multi-class problems and revocable decisions.

FIGURE C.6: ECO-REV-CA-γ VS. ECO-REV-CA-K: Wilcoxon
signed-rank test applied on the AvgCost criterion over the 22 test
sets, for a range of couples of values α and β, with “+” indicating a
significant success of the first approach, “◦” an insignificant difference

and “−” indicating a significant failure of the first approach.

ECONOMY-γ is by design limited to binary early classification problems. The
reason behind this limitation is that the partitioning of time series in the training set
is done by discretising the confidence level of the classifiers regarding the positive
class. We propose a new method ECONOMY-γ-MC which handles multi-class early
classification problems. The intuition behind this method is that time series with
similar uncertainty level of classifiers belong to the same group. In fact, instead of
discretising the confidence level of the classifiers to the positive class, we propose
to discretise the uncertainty of the classifier. This uncertainty is measured using the
relative entropy function. The mechanism of predicting the groups at future time
steps using Markov chain remains unchanged compared to ECONOMY-γ.

ECONOMY-K partition time series using the clustering algorithm K-means. This
approach can deal by design with multi-class classification problems. ECONOMY-
K and ECONOMY-γ-MC are used to implement early and revocable framework
described in our paper. Experiments were performed on 22 datasets chosen at
random from the UAE-UCR archive to compare performance of these two revocable
strategies called respectively ECO-REV-CA-K and ECO-REV-CA-γ. Results of
Wilcoxon signed-rank test applied on the AvgCost criterion are shown in Figure C.6.
Further detailed results focusing on AvgCost are presented in Table 1 and Table 2.
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REV-CA-γ and ECO-REV-CA-K given a fixed value of β = 0.01
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TABLE C.2: AvgCost for every dataset in the 22 benchmark for ECO-
REV-CA-γ and ECO-REV-CA-K given a fixed value of β = 0.01
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Appendix D

Appendix of chapter 5

D.1 The distribution of decision moments
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FIGURE D.1: The distribution of decision moments when C(1)
m =[

0 1
1 0

]
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FIGURE D.2: The distribution of decision moments when C(2)
m =[

0 10
1 0

]



160 Appendix D. Appendix of chapter 5

FIGURE D.3: The distribution of decision moments when C(3)
m =[

0 100
1 0

]
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FIGURE D.4: The distribution of decision moments when C(4)
m =[

0 1000
1 0

]
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