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École doctorale no621

Ingénierie des Systèmes,
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Introduction – version française

1 Contexte

Depuis son invention au XIXe siècle, le moteur électrique s’est progressivement intégré dans
tous les pans de l’industrie, allant du contrôle de pompes pour des applications en chauffage,
ventilation, climatisation (HVAC) à la plus récente motorisation des véhicules électriques.
Les enjeux énergétiques du siècle présent alliés à une électrification croissante des sociétés
modernes conféreront au moteur électrique un rôle croissant dans les décennies à venir,
prolongeant ainsi sa constante évolution au fil du temps.
À partir du XXe siècle, le développement conjoint de l’automatique, de l’électronique de

puissance, des microprocesseurs et de la commande des moteurs électriques a marqué le début
de ces évolutions, contribuant notamment à l’essor de nouvelles technologies de contrôle. À
l’origine, les premiers moteurs nécessitaient d’être directement connectés au réseau électrique,
opérant alors sur le point de fonctionnement fixé par les propriétés de l’alimentation du réseau.
Si cela peut s’avérer suffisant pour des opérations élémentaires, un tel procédé s’avère limité dès
lors que l’on souhaite maîtriser les transitoires de courant au démarrage ou changer de point de
fonctionnement en cours d’opération. Une manière d’y remédier consiste à équiper les moteurs
électriques d’un variateur de vitesse, qui permet de contrôler précisément la vitesse du moteur
à l’aide de différentes lois de commande tout enmaîtrisant l’afflux de courant au démarrage. Ces
lois ont elles aussi connu des évolutions conséquentes au fil des années . La commande scalaire
𝑉/𝑓 en boucle ouverte, qui consiste à faire varier l’amplitude et la fréquence d’entrée afin de
commander la vitesse de rotation en gardant un ratio constant entre ces deux quantités (d’où
son nom), a progressivement été supplantée par la commande vectorielle en boucle fermée,
plus efficace et qui prend en compte la dynamique propre du moteur pour établir la commande,
contrairement à la loi𝑉/𝑓. Plus récemment encore, la technique dite de la commande directe du
couple, plus coûteuse en ressources de calcul, procède à un asservissement du couple produit
au lieu de la vitesse. Ces deux dernières méthodes — commande vectorielle et commande
directe du couple —, nécessitent néanmoins d’avoir accès à la position du rotor pour être
implémentées.
De cette nécessité est né, dans les années 90, un nouveau standard dans la conception

d’algorithme de commande des moteurs électriques : le contrôle «sans capteurs». Cette
dénomination désigne la volonté de s’affranchir du capteur de position pour estimer cette
dernière, en exploitant uniquement les quantités électriques mesurées que sont les courants
et tensions statoriques. La présence d’un encodeur pour récupérer la position est en effet
nuisible à plusieurs égards : la fiabilité du capteur, son encombrement, son coût ou encore son
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utilisation en milieux délétères sont autant de raisons qui poussent en faveur d’une estimation
de la position sans avoir recours à un encodeur mécanique.
Deux grandes catégories de méthodes d’estimation sans capteurs se distinguent dès lors.

L’estimation passive s’appuie sur le modèle d’excitation fondamentale du système, à savoir le
modèle d’état lorsque les harmoniques à haute fréquence sont exclues de la modélisation. En
faisant appel notamment à un observateur d’état, il est alors possible, sous réserve d’observa-
bilité du système, de reconstruire asymptotiquement la position du rotor. L’estimation active,
quant à elle, regroupe les stratégies basées sur la saillance de la machine, et exploite donc
les anisotropies magnétiques du rotor à travers la réponse du moteur à des signaux à haute
fréquence. Cette réponse, qui se lit comme une perturbation de courant, porte l’information
de position qui est alors rendue disponible par une procédure de démodulation adéquate. Ces
signaux à haute fréquence peuvent être exogènes, c’est la technique de l’injection de signal, ou
endogènes, en utilisant les harmoniques crées par la Modulation de Largeur d’Impulsions
(MLI) utilisée pour commander l’étage de puissance du variateur de vitesse, et donc indirec-
tement le système. Des deux classes de méthodes susmentionnées — active et passive —,
seule la seconde permet de surmonter les problèmes d’observabilité à basse vitesse lorsque la
position du rotor n’est pas mesurée.
Cette thèse s’inscrit dans la lignée des méthodes d’estimation active endogène, et a pour

ambition de développer une méthode d’estimation «sans capteur» de la position du rotor
sans perturbation extérieure du système, en s’appuyant uniquement sur l’excitation induite
par l’onduleur. Ce type de stratégie a été esquissée vers la fin des années 90, mais chacune
des implémentations proposées jusqu’à présent nécessitent une modification du schéma de
calcul de la MLI ou l’usage de capteurs supplémentaires. C’est la terminologie même de «sans
capteurs» qui se retrouve dénaturée par de tels procédés, puisque l’encodeur est finalement
remplacé par une sonde annexe, amenant avec elle un coût et une complexité supplémentaires
qui sont difficilement soutenables en vue d’une application industrielle. L’estimation de la
position sans la mesurer directement, tout en conservant une MLI standard ainsi que les
capteurs déjà à disposition, laisse donc entrevoir une réduction des coûts engendrés et des
progrès en termes de fiabilité et de performances de la machine.
Laméthode développée se concentre essentiellement sur lesMoteurs Synchrones à Aimants

Permanents (PMSM). Présentant un meilleur rendement, une densité massique et volumique
de puissance plus importante que les moteurs à induction, ces moteurs synchrones sont
particulièrement employés en robotique, dans la conception de machines-outils de haute
précision et prennent une place de plus en plus importante dans la motorisation des systèmes
de transport pour leur efficacité supérieure.
Les travaux réalisés durant cette thèse s’articulent autour de trois axes majeurs.D’une part, le

développement d’outils mathématiques, notamment basée sur la théorie de la moyennisation,
est mis en œuvre afin de mieux saisir les effets de l’injection de signal ou de l’onduleur sur
l’état du système et ses sorties. Une telle étude met en évidence la possibilité de récupérer
desmesures virtuelles lorsque le signal est excité par des signaux à haute fréquence. D’autre
part, après avoir déterminé l’expression analytique de la perturbation induite par l’injection ou
l’onduleur, l’extraction de l’information contenue dans cette perturbation est présentée. Cette
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récupération s’appuie sur une théorie générale de la démodulation de signaux analogiques
multiplexés. Celle-ci s’attache à prendre en compte les spécificités propres à la sortie physique,
à savoir la présence d’une double échelle de temps lent/rapide au sein des porteuses du signal
multiplexé. Enfin, les deux orientations théoriques se rejoignent pour traiter particulièrement
de l’estimation de position sans capteur des PMSM à partir uniquement des harmoniques
induites par l’onduleur, et ce sans capteur supplémentaire. L’analyse théorique permet d’exhiber
la forme de la perturbation sur les courants, là où la théorie de la démodulation développée
est employée pour extraire l’information de position contenue dans cette perturbation. Le
traitement spécifique dumoteur synchrone souligne les difficultés propres à ce type de système,
notamment le rôle de la saturation magnétique dans la qualité de l’estimation produite.

2 Plan

Le manuscrit est structuré autour des articles listés ci-après afin de rendre chaque chapitre
autonome. En particulier, certaines parties se recouvrent — comme la démodulation esquis-
sée aux chapitres 2 et 3 et qui est synthétisée au chapitre 4. Cemanuscrit s’organise comme suit

Le chapitre 1 couvre la modélisation des PMSM, de leur principe de fonctionnement à leur
représentation d’état en passant par la définition usuelle des repères stationnaires et
synchrones qui permettent de simplifier les équations du modèle. Ce chapitre englobe
de surcroît un survol de la littérature portant sur les techniques d’estimation «sans
capteurs» passives et actives de la position, reposant soit sur le modèle d’excitation fon-
damentale, soit sur la réponse à des signaux hautes fréquences. Cette dernière méthode
inclut, entre autres, l’injection de signal et la stratégie développée dans ce manuscrit.

Le chapitre 2 pose les fondations de la théorie de la moyennisation pour les systèmes contrô-
lés en utilisant l’injection de signal. La moyennisation à l’ordre deux pour l’étude des
effets induits par l’injection de signal est désormais standard, et permet d’exhiber la
mesure virtuelle rendue disponible par la perturbation du système. En poussant les
calculs à l’ordre supérieur, il est possible de raffiner ces effets perturbatifs sur l’état
du système. Une telle étude met en évident la possibilité de récupérer jusqu’à deux
mesures virtuelles supplémentaires. Deux cas sont traités numériquement : celui d’une
dynamique linéaire ad hoc équipée d’une mesure non linéaire, et celui d’un PMSM sans
mesure de position contrôlé par une entrée analogique.

Le chapitre 3 étend la théorie de la moyennisation aux systèmes contrôlés par des signaux
MLI. La modulation de l’entrée peut se décomposer en deux signaux ayant chacun leur
fréquence propre : une fréquence fondamentale correspondant à l’entrée analogique,
et un terme «quasi-périodique» évoluant à la fréquence de la MLI. Il est alors mon-
tré que ce terme à haute fréquence agit naturellement comme une injection de signal
traditionnelle sur le système, et qu’elle permet donc de récupérer des informations sup-
plémentaires sur celui-ci. De manière analogue au chapitre 2, le même type de mesure
virtuelle et d’estimation est obtenue pour ces systèmes contrôlés par des signaux en



4 Introduction – version française

tout ou rien. Ce chapitre forme le fondement théorique de la méthode développée dans
ce mémoire.

Le chapitre 4 traite de l’extraction des mesures virtuelles des sorties mesurées. Un cadre
générique est posé, celui de la démodulation de signaux analogiques multiplexés, où
l’information est modulée par des porteuses présentant une double échelle de temps
lent/rapide. Cette particularité portant sur les porteuses s’explique par la forme que
prend la mesure virtuelle lorsque le système est commandé par une MLI. Ce chapitre
détaille la conception de filtre passe-bas ainsi que la procédure de filtrage mises en place
afin d’extraire chacune des composantes du signal multiplexé.

Le chapitre 5 couvre la problématique de la détection synchrone appliquée à la sortie d’un
modulateur Sigma-Delta (ΣΔ). Les variateurs de vitesse étudiés dans cette thèse sont
équipés d’un convertisseur Sigma-Delta pour encoder digitalement les courantsmesurés.
Tandis que la procédure de démodulation décrite au chapitre 4 s’applique directement
aux signaux analogiques, la transposition de cette méthode au flux binaire issu du ΣΔ
n’est pas immédiate. Ce chapitre confirme théoriquement et numériquement cette idée,
à savoir la commutation entre la procédure de démodulation et la conversion opérée
par le modulateur ΣΔ, qu’il soit continu ou discret.

Le chapitre 6, enfin, rassemble les différentes pièces du puzzle pour les appliquer à l’estimation
de position sans capteur d’un PMSM en utilisant les harmoniques naturelles induites
par l’onduleur. Sont détaillés dans ce chapitre la forme de la mesure virtuelle pour
ce système, ainsi que l’application spécifique de la procédure de démodulation sur
les courants statoriques mesurés. Une méthode alternative, consistant à déphaser les
porteuses pour chacune des tensions d’entrée, est également proposée afin d’améliorer
la qualité de l’estimation de position. La simulation et les résultats expérimentaux
parachèvent cette analyse, et mettent en évidence le rôle de la saturation magnétique
dans l’estimation produite.

3 Contributions
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[Sur+19b] D. Surroop, P. Combes, P. Martin et P. Rouchon. «Third-order Virtual Measure-
ments with Signal Injection». In : 2019 IEEE 58th Conference on Decision and Control (CDC).
2019, p. 642-647

[Sur+20b]D. Surroop, P. Combes, P. Martin et P. Rouchon. «Sensorless Rotor Position
Estimation by PWM-induced Signal Injection». In : IECON 2020 The 46th Annual Conference
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Introduction

1 Context

Since its invention in the 19th century, electric motors have been progressively integrated into
all areas of industry, from pump control for heating, ventilation and air conditioning (HVAC)
applications to the more recent motorisation of electric vehicles. The energetic challenges of
the present century combined with the increasing electrification of modern societies will give
the electric motor a growing role in the decades to come, continuing its constant evolution
over time.
From the 20th century onwards, the joint development of automation, power electronics,

microprocessors and motor control marked the beginning of these developments, contributing
in particular to the development of new control technologies. Originally, the first motors
required direct connection to the electrical grid and worked at the operating point set by the
properties of the grid. While this may be sufficient for basic operations, such a process is
limited when it is desired to control current transients at start-up or to change the operating
point during operation. One way of overcoming this is to equip electric motors with a
Variable Frequency Drive (VFD), which allows the motor speed to be precisely configured by
means of different algorithms while controlling the starting current flow. These laws have
also undergone significant development over the years. The scalar 𝑉/𝑓 open-loop control,
which consists of varying the input amplitude and frequency in order to control the rotation
speed while maintaining a constant ratio between these two quantities (hence its name), has
gradually been supplanted by the more efficient vector Field-Oriented Control (FOC), which
takes into account the motor’s own dynamics to design the control law, unlike the 𝑉/𝑓 law.
Even more recently, the technique known as Direct Torque Control (DTC), which is more
costly in terms of computing resources, uses the torque produced instead of the speed. The
latter two methods —vector control and direct torque control— nevertheless require access to
the rotor position to be implemented.
From this need was born, in the 1990s, a new standard in the design of electric motor

control algorithms: sensorless control. This name refers to the desire of getting rid of the
position sensor to estimate it, using only the measured electrical quantities, i.e. the stator
currents and voltages. The presence of an encoder to recover the position is in fact harmful in
several regards: the reliability of the sensor, its size, its cost or its use in adverse environments
are different reasons that push in favour of estimating the position without resorting to a
mechanical encoder.
Two main categories of sensorless estimation methods can therefore be distinguished. Pas-
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sive estimation is based on the fundamental excitation model of the system, i.e. the state-space
model when high-frequency harmonics are excluded from the modeling. By using a state
observer, it is then possible, subject to the observability of the system, to asymptotically recon-
struct the rotor position. Active estimation, on the other hand, groups together strategies based
on the machine saliency, and thus exploits the magnetic anisotropies of the rotor through the
motor response to high-frequency signals. This response, read as a current disturbance, carries
the position information which is then made available by an appropriate demodulation proce-
dure. These high-frequency signals can be exogenous, this is the signal injection technique,
or endogenous, using the harmonics created by the Pulse-Width Modulation (PWM) used to
control the power stage of the Variable Frequency Drive, and thus indirectly the system. Of
the two classes of methods mentioned above —active and passive— only the latter overcomes
the observability problems at low speed when the rotor position is not measured.
This thesis is in the line of endogenous active estimation methods, and aims at developing

a “sensorless” estimation method of the rotor position without any external disturbance of the
system, relying only on the inverter-induced excitation. This type of strategy was sketched
out in the late 1990s, but each of the implementations proposed so far required a modification
of the PWM calculation scheme or the use of additional sensors. The “sensorless” terminology
is thereby distorted by such processes, since the encoder is ultimately replaced by another
sensor, bringingwith it additional cost and complexity that are hardly sustainable for industrial
applications. Estimating the position without measuring it directly, while keeping a standard
PWM scheme and the sensors already available, therefore may lead to cost reductions as well
as improvements in terms of machine reliability and performance.
The developed method primarily focuses on Permanent Magnet Synchronous Motors

(PMSM).With higher efficiency and higher power density than their induction counterpart,
these synchronous motors are particularly used in robotics, in the design of high precision
machine tools and are becoming increasingly important in the motorisation of transport
systems due to their higher efficiency.
This thesis revolves around three major axes. On the one hand, the development of mathe-

matical tools, based on the averaging theory, is developed to better grasp the signal injection
or inverter effects on the system states and outputs. Such a study highlights the possibility of
recovering virtual measurements when the system is excited by high-frequency signals. On
the other hand, after having determined the analytical expression of the disturbance induced
by the injection or the inverter, the extraction of the information contained in this disturbance
is presented. This recovery is based on a general theory of demodulation of multiplexed analog
signals, which takes into account the specificities of the physical output, i.e. the presence of a
double slow/fast time scale within the carriers of the multiplexed signal. The two theoretical
orientations eventually come together to deal with the sensorless position estimation of a
PMSM based solely on the harmonics induced by the inverter, without any additional sensor.
The theoretical analysis exhibits the current ripple expression, where the demodulation theory
is used to extract the position information contained in this ripple. The specific treatment of
the synchronous motor highlights the difficulties specific to this type of system, in particular
the role of magnetic saturation in the quality of the estimate produced.
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2 Outline

The thesis is structured around the papers listed below so that each chapter is self-contained.
Especially, some parts overlap —such as the demodulation theory started in chapters 2 and 3
and synthesized in chapter 4. The manuscript is organized as follows

Chapter 1 covers the modeling of PMSM, from their operating principle to their state rep-
resentation, including the usual definition of stationary and synchronous frames that
allow to simplify the model equations. In addition, this chapter includes a literature
review of passive and active “sensorless” position estimation techniques, based either
on the fundamental excitation model or on the response to high frequency signals. The
latter method includes, among others, signal injection and the strategy developed in
this manuscript.

Chapter 2 lays out the foundations of averaging theory for systems controlled using signal
injection. Second-order averaging for the study of signal injection effects is now stan-
dard, and allows the virtual measurement made available by the system disturbance
to be exhibited. By pushing the calculations to higher orders, it is possible to refine
these perturbative effects on the system state. Such a study highlights the possibil-
ity of recovering up to two additional virtual measurements. Two cases are treated
numerically: that of an ad hoc linear dynamics equipped with a non-linear measure-
ment, and that of a PMSMwithout positionmeasurement controlled by an analog input.

Chapter 3 extends the averaging theory to systems controlled by PWM signals. The in-
put modulation can be decomposed into two signals, each with its own frequency: a
fundamental frequency corresponding to the analog input, and a “quasi-periodic” term
evolving at the PWM frequency. It is then shown that this high-frequency term acts as
a natural signal injection on the system, and that it therefore allows additional infor-
mation to be recovered from it. In a similar way to chapter 2, the same type of virtual
measurement and estimation is obtained for those systems controlled by on-off signals.
This chapter forms the theoretical basis of the method developed in this thesis.

Chapter 4 deals with the extraction of virtual measurements from measured outputs. A
generic framework is set up, that of the demodulation of multiplexed analog signals,
where the information is modulated by carriers with a double slow/fast time scale. The
reason for this carrier feature is the form that the virtual measurement takes when the
system is driven by a PWM. This chapter details the low-pass filter design and filtering
procedure used to extract each component of the multiplexed signal.

Chapter 5 covers the problem of synchronous detection applied to the output of a Sigma-
Delta (ΣΔ) modulator. The variable speed drives studied in this thesis are equipped
with a Sigma-Delta converter to digitally encode the measured currents. While the
demodulation procedure described in chapter 4 is directly applicable to analog signals,
the transposition of this method to the bitstream from the ΣΔ is not immediate. This
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chapter confirms theoretically and numerically this idea, namely the commutation
between the demodulation procedure and the conversion operated by the ΣΔ, and this
for discrete and continuous modulators.

Chapter 6, finally, gathers the different pieces of the puzzle to apply them to the sensorless
position estimation of a PMSM using the natural harmonics induced by the inverter.
The form of the virtual measurement for this system is detailed in this chapter, as well as
the specific application of the demodulation procedure on the measured stator currents.
An alternative method, consisting in phase-shifting the carriers for each of the input
voltage, is also proposed to improve the quality of the position estimation. Simulation
and experimental results complete this analysis, and highlight the impact of magnetic
saturation on the obtained estimation.
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Chapter 1

Sensorless position estimation for PMSM

Résumé Ce chapitre présente succintement la modélisation des Moteurs Synchrones à
Aimants Permanents, de leur représentation d’état aux diverses transformations couramment
employées pour simplifier le modèle d’état. Après avoir rappelé les enjeux de l’observabilité à
basse vitesse, les principales stratégies d’estimation de la position du rotor — basées sur le
modèle d’état ou sur la saillance — sont exposées.

Abstract This chapter briefly covers the standard modeling of Permanent Magnet Syn-
chronous Motors, from their state-space model to the multiple transformations commonly
used to simplify the equations. After stating the observability issues at low speed, the main
strategies for estimating the rotor position —fundamental excitation and saliency-based
strategies— are presented.

1.1 PMSMmodeling

1.1.1 Structure and operating principles

The PermanentMagnet SynchronousMotor (PMSM) emerged in the early 70s as an attractive
substitute to the widespread induction motor. Its high efficiency, reduced torque ripple and
high volumetric and massic power densities relative to alternative machine architectures
has fostered its deployment especially when high performance control is demanded. They
naturally found their way in the powering of various industrial devices, from machine tools
to electric vehicles, passing by standard residential applications, and is the most likely to
represent the workhorse of the industry in the future.
Among the numerous assets of these motors lies a rather simple construction principle. Its

general geometric structure consists of three-phase windings housed in the stator surrounding
a rotor exhibiting permanent magnets. When the stator windings are connected to a three-
phase AC source, they produce a rotating magnetic field that drags the rotor, thus producing a
torque and the rotation of the machine, so that at steady-state, the rotor evolves at the same
synchronous speed as the rotating field.
Several designs for PMSM rotors are available [VZ18, Chapter 1], mainly depending on the

permanent magnets location on or in the rotor core. When the 𝑑− and 𝑞− axis inductances
differ, the motor exhibitsmagnetic saliency. This saliency is found in Interior (I-) and Inset
PMSM, where the permanent magnets are buried inside the rotor laminations. The absence
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(a) Interior (b) Surface-Mounted (c) Inset

Figure 1.1: Different PMSM rotor structures along with distributed stator windings

of magnetic saliency (i.e. when the 𝑑− and 𝑞− axis inductances are equal) is found for instance
in Surface-Mounted (SM-) PMSM, with permanent magnets embedded on the rotor outer
surface. These different designs are depicted in Fig. 1.1.

1.1.2 State-space model of a PMSM

The standard state-space model of a sinusoidal PMSM in the 𝑑𝑞-frame is given by [Kra+13],

𝑑𝜙𝑑𝑞
𝑠

𝑑𝑡 = 𝑢𝑑𝑞
𝑠 − 𝑅𝑠𝚤

𝑑𝑞
𝑠 − 𝜔J𝜙𝑑𝑞

𝑠 (1.1a)
𝐽
𝑛

𝑑𝜔
𝑑𝑡 = 𝑛𝚤𝑑𝑞𝑇

𝑠 J𝜙𝑑𝑞
𝑠 − 𝑇𝑙 (1.1b)

𝑑𝜃
𝑑𝑡 = 𝜔, (1.1c)

where (𝜙𝑑𝑞
𝑠 , 𝜔, 𝜃) is the system state: 𝜙𝑑𝑞

𝑠 is the stator flux linkage, 𝜔 the rotor (electric)
angular velocity, 𝜃 the rotor (electric) angular position. In addition, 𝚤𝑑𝑞

𝑠 denotes the stator
current, 𝑢𝑑𝑞

𝑠 the stator voltage, 𝑇𝑒 ∶= 𝑛𝚤𝑑𝑞𝑇

𝑠 J𝜙𝑑𝑞
𝑠 the electromagnetic torque. The perturbation

𝑇𝑙 denotes the load torque and the constant parameter 𝑅𝑠 is the stator resistance. Finally, 𝐽 is
the moment of inertia, 𝑛 the number of pole pairs and J the rotation matrix with angle 𝜋/2.
Such a modeling discards practical imperfections such as slot harmonics as well as various
physical effects like iron losses due to Foucault’s currents and hysteresis, and skin effects.
This model describes the electric and mechanical dynamics in the 𝑑𝑞-frame, namely the

synchronous frame, rotating at the rotor speed. A rotation matrix —with angle 𝜃— transforms
this two-axis synchronous frame into the two-axis stationary one, the so-called 𝛼𝛽-frame,
which in turn can be transformed into the three-axis stationary 𝑎𝑏𝑐-frame thanks to the inverse
Concordia transformation C−1 = C𝑇, with

C ∶= √2
3

⎛⎜⎜⎜⎜⎜
⎝

cos(0) cos(2𝜋/3) cos(4𝜋/3)
sin(0) sin(2𝜋/3) sin(4𝜋/3)
1/√2 1/√2 1/√2

⎞⎟⎟⎟⎟⎟
⎠

= √2
3

⎛⎜⎜⎜⎜⎜
⎝

1 −1/2 −1/2
0 √3/2 −√3/2

1/√2 1/√2 1/√2

⎞⎟⎟⎟⎟⎟
⎠

.

This 𝑎𝑏𝑐-frame corresponds to the physical and stationary system where the actual inputs, the
three-phase input voltages 𝑢𝑎𝑏𝑐

𝑠 are imposed to the system. These voltages define the voltages
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in the 𝑑𝑞-frame through the relation 𝑢𝑑𝑞
𝑠 = R(−𝜃)C𝑢𝑎𝑏𝑐

𝑠 =∶ P(−𝜃)𝑢𝑎𝑏𝑐
𝑠 , where R(𝜃) is the

rotation matrix with angle 𝜃, and P denotes Park’s transformation [Par29; Par33], pushing
directly the 𝑎𝑏𝑐-frame to the 𝑑𝑞-frame. For sensorless control, the only measurement is the
current 𝚤𝑎𝑏𝑐

𝑠 = C𝑇R(𝜃)𝚤𝑑𝑞
𝑠 , or equivalently 𝚤𝛼𝛽

𝑠 = R(𝜃)𝚤𝑑𝑞
𝑠 since 𝚤𝑎𝑠 + 𝚤𝑏𝑠 + 𝚤𝑐𝑠 = 0 (we assume the

motor is star connected, see Fig. 1.2).
To complete the model, a current-flux relation should be provided. Assuming there is no

magnetic saturation, this relation is linear and reads

𝐿𝑑𝚤𝑑𝑠 = 𝜙𝑑
𝑠 − 𝜙𝑚, 𝐿𝑞𝚤𝑞𝑠 = 𝜙𝑞

𝑠 , (1.2a)

with 𝜙𝑚 the permanent magnet flux and 𝐿𝑑, 𝐿𝑞 the 𝑑 and 𝑞-axis inductances. This model
however falls short at seizing magnetic saturation that actually occurs in working condition.
An alternative approach consists in considering a polynomial expression of the current with
respect to the flux linkages which comes from an energy-based modeling of the PMSM, see
chapter 6 for further details.
For some sensorless strategies detailed below, it is useful to consider the voltage equations

in the stationary 𝛼𝛽-frame. Applying a rotation to (1.1a) then yields

𝑑𝜙𝛼𝛽
𝑠

𝑑𝑡 = 𝑢𝛼𝛽
𝑠 − 𝑅𝑠𝚤

𝛼𝛽
𝑠 ; (1.3)

likewise, the unsaturated current-flux relation in the 𝛼𝛽-frame reads

𝜙𝛼𝛽
𝑠 = ⎛⎜

⎝
𝐿1 + 𝐿2 cos 2𝜃 𝐿2 sin 2𝜃

𝐿2 sin 2𝜃 𝐿1 − 𝐿2 cos 2𝜃
⎞⎟
⎠

𝚤𝛼𝛽
𝑠 + 𝜙𝑚

⎛⎜
⎝
cos 𝜃
sin 𝜃

⎞⎟
⎠

, (1.4)

with 𝐿1 ∶= (𝐿𝑞 + 𝐿𝑑)/2 the (average) stator self-inductance per phase and 𝐿2 ∶= (𝐿𝑑 − 𝐿𝑞)/2
the stator inductance fluctuation.

1.2 Variable-frequency drive technology and data acquisition

This section touches on the industrial realization of PMSM control. Complete experimental
setups are fleshed out in Combes’ and Jebai’s theses [Com15; Jeb13].

1.2.1 Voltage generation and power stage

Variable-FrequencyDrives essentially consist of two sections: on the one hand the power stage,
realizing the power conversion from the grid; on the other, a set of devices and processors
embedding the motor control algorithms. The power stage comprises three stages: an AC/DC
rectifier converting the AC grid voltage into a DC voltage; a DC/DC link that supplies the
inverter with a more stable DC voltage than the rectifier output; and finally, a DC/AC inverter
which, from the DC voltage, supplies the motor with a three-phase voltage with variable
frequency and amplitude.
This last conversion step avoids the use of a linear amplifier, which is impossible to imple-

ment as it would generate consequent power losses when high power is involved. Instead, the
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Figure 1.2: Two-level, three-phased inverter linked to a star-connected stator

inverter modulates the input signal by Pulse-WidthModulation (PWM), and produces square-
wave signals whose duty cycles are modulated so that the specified voltages are obtained
in average. For sinusoidal PWM, each input is compared to a fast-varying carrier typically
evolving at 4 kHz (see chapter 3 for a detailed analysis), and sends to the inverter bridge
pulses 𝑠∗

𝑖 that control the Insulated Gate Bipolar Transistors (IGBT), see Fig. 1.2. Three PWM
signals are thereby produced, and, on average, generates the control (analog) signals. The
PWM voltages then feed the stator windings of the PMSM, and create the rotating magnetic
field that drags the rotor. Imperfections related to the DC/AC conversion by the inverter such
as voltage drops and dead times must nevertheless be taken into account when implementing
such a system (see [Com15, Section 2.3] and [Jeb13, Section 3.2] for further details).

1.2.2 Data acquisition and Sigma-Delta ADC

Different strategies can be deployed to measure the stator currents. Hall-effect sensors or a
resistive shunt coupled with an amplifier are for instance two valid techniques to accurately
achieve the measurements. These analog data are then converted into a digital stream using
an Analog-to-Digital Converter (ADC) to feed the controlling processors. This conversion is
often realized using a standard Nyquist-rate ADC that samples the current output at the PWM
frequency. While these converters suffice at estimating the average current, they fail at captur-
ing high-frequency harmonics (see Fig. 1.3), namely the inverter-induced harmonics, which
are of utmost importance for the sensorless strategy developed in this thesis. Modern drives
now embed Sigma-Delta modulator to ensure galvanic insulation as well as robustness with
respect to electromagnetic interferences. They achieve high resolution through oversampling
of the analog currents and noise shaping (meaning the Signal-to-Noise ratio in enhanced in
the signal bandwidth, rejecting the noise amplification out of it). Typically, their sampling rate
is in the order of 10MHz, corresponding to 1000 to 10 000 times the typical PWM frequency.
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Figure 1.3: Nyquist-rate ADC data acquisition: data retrievals are triggered at the middle of
a PWM pulse so as to avoid the oscillatory effects, but fail at seizing the current
ripples

The cost of this high-rate sampling is the output quantization, which is generally limited to
one bit. The output bitstream then needs to be processed by a Field Programmable Array Gate
(FPGA): through the digital filtering (using a sinc𝑘 filter) and the decimation, the average
current is digitalized with a greater resolution than with most standard Nyquist-rate ADC.
Besides the traditional sinc𝑘 filter, a wide variety of filtering procedures can be applied to
the ΣΔ bitstream (see chapter 5). Among others, the estimation of the PWM-induced ripple
that carries the rotor position knowledge when suitably decoded. Figure 1.4 summarizes the
ΣΔ ADC operating principle, and illustrates the possibility of demodulating high-frequency
components encompassed in the analog input, on the contrary to standard ADC.

1.3 Low-speed observability issues

1.3.1 Low-speed observability properties of PMSM

The implementation of sophisticated PMSM control laws such as Field-Oriented Control
(FOC) or Direct Torque Control (DTC) require the position knowledge to close their feedback
loop. This is problem-free when the drive is equipped with a mechanical encoder to retrieve
the rotor position, but several reasons push toward the sensor removal. Indeed, the presence
of an encoder increases the system complexity by the induced bulkiness, reduces the ability
to work in adverse environments, reduces the drive reliability, increases the global cost and
brings a potential source of failure. Estimating the position without measuring it turns out to
be of major importance for high-performance industrial applications. The so-called sensorless
control is now a standard in the control of PMSM, and addresses this estimation issue with
the sole knowledge of the electrical quantities —stator currents and voltages.
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Figure 1.4: Operating principle of a ΣΔ ADC: when the ΣΔ output bitstream is available, a
suitable demodulation procedure extracts the current ripple

Its feasibility inherently depends on the observability properties of the system. The
PMSM observability at low speed has been studied, for example, by Glumineau and de
León-Morales [GDLM05, Chapter 2], Koteich [Kot16, Chapters 10-11], and Jebai [Jeb13,
Chapter 4] who took into account a magnetic saturation model. These studies state the first-
order non-observability of PMSM on permanent trajectories where 𝜔 = 0. However, with an
additional persistent excitation (e.g. a signal injection), nonlinear observability conditions at
zero speed are satisfied. This observability degeneracy at low-speed emphasizes the difficulties
in deriving a sensorless method that covers the entire speed range, and the need for alternative
strategies to estimate the rotor position.

1.3.2 Overview of the main sensorless strategies

Sensorless techniques can broadly be classified into two categories: fundamental excitation
and high-frequency excitation strategies. While the former describes methods based on the
dynamic model of the PMSM, the latter is based on the motor saliency (either inherently
present for salient motors with 𝐿𝑑 ≠ 𝐿𝑞 or induced by the magnetic saturation for non-salient
motors), and relies on the high-frequency harmonics, either from an external probing signal
or by the PWM itself. A comprehensive treatment of sensorless strategies is covered by
Glumineau and de León Morales [GDLM05], Wang et al. [WZX20].
These two strategies are not mutually exclusive, and overlap between these two are com-

mon. Hybrid control for instance, using the back EMF integration at high speed and signal
injection at low speed, is more or less standard. The derivation of the position through a
Luenberger observer using the additional knowledge that comes with the excitation could
also be implemented for the design of an efficient sensorless observer-controller.
Notice also that sensorless estimation can also be thought the other way around, by modi-

fying the mechanical design of the machine for the sole purpose of sensorless control [Bia+17;
Fag+11]. Bianchi et al. for instance [Bia+08] have shown the benefits of particular inset PM
motors (Fig. 1.1c), as the range of currents in the 𝑑𝑞-plane where the motor stays salient
(considering both saturation and cross-coupling) is larger than any traditional motor design.
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1.4 Fundamental excitation strategies

1.4.1 Back EMF methods

Back Electromotive Force (EMF) methods are one of the first strategies developed for the
control of electrical motors, and are still widespread in the industry for both salient and
non-salient PMSM. Particularly effective beyond 10% to 20% of the nominal speed [FSO92],
these strategies rely on the variations of the back EMF amplitude with respect to the rotor
position due to the interaction between the stator currents and the rotor poles. An instance of
implementation is proposed for example by Genduso et al. [Gen+10].
To sketch the main lines of the method, consider a non-salient PMSM, i.e. where 𝐿2 = 0

(equivalently 𝐿𝑑 = 𝐿𝑞). The voltage equation (1.1a) in the 𝛼𝛽-frame then reads

𝑢𝛼𝛽
𝑠 = 𝑅𝑠𝚤

𝛼𝛽
𝑠 + 𝐿1

𝑑𝚤𝛼𝛽
𝑠

𝑑𝑡 + 𝑒𝛼𝛽
𝑠 , 𝑒𝛼𝛽

𝑠 ∶= 𝜔𝜙𝑚
⎛⎜
⎝

− sin 𝜃
cos 𝜃

⎞⎟
⎠

,

where 𝑒𝛼𝛽
𝑠 is the back EMF expressed in the 𝛼𝛽-frame. With the sole knowledge of both the

stator voltages and currents, one can derive the rotor position and speed by

𝜃 = arctan(−
𝑒𝛼
𝑠

𝑒𝛽
𝑠

), 𝜔 =
1

𝜙𝑚
√𝑒𝛼2

𝑠 + 𝑒𝛽2
𝑠 .

Nonetheless, at standstill or low speed, the integration of the back EMF becomes ineffective
since the back-EMF amplitude and frequency weaken as the speed decreases. The method is
also sensitive to the variation of the resistance during operation.
Concerning salient-poles machines, Chen et al. [Che+00b; Che+03] developed the concept

of extended back EMF, transforming the salient PMSMmodel into an equivalent cylindrical
(non-salient) pole model by a exhibiting a modified expression for the back EMF. The same
derivation of the position eventually applies to the extended back EMF.

1.4.2 Observer-based techniques

A wide range of observer-based strategies have been developed to asymptotically estimate
the motor state variables, and especially the position [AW06]. These so-called soft-sensors
reconstruct the motor states from its measured outputs, and are particularly suited to fault-
tolerant control —through the comparison of the measured quantities and their estimates—
and parameters identification —with an evaluation of model parameters together with the
motor states.
A non-exhaustive scan of the different approaches highlights in the first instance the

nonlinear gradient observer designed by Lee et al. [Lee+10]. Later, the so-called Bernard-Praly
observer [BP18] extended Lee’s observer to estimate both the rotor position and the magnet’s
flux, as its variation during operation cannot be neglected. Bernard and Praly prolonged their
technique to the case where the position as well as the stator resistance are unknown [BP20].
Alternatively, Henwood et al. implemented a nonlinear Luenberger observer [HMP12] to
estimate the position and the magnet flux as well, along with proofs of its robustness.
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Alternative strategies include sliding mode observers [GZ09; KSL11; Che+00a], Extended
Kalman Filters, notably by Bolognani et al. [BOZ99; BTZ03] or Model-Reference Adaptive
Systems (MRAS) [KKK03; KG06]. These model-based strategies —including back-EMF
integration— nonetheless, do not get round the zero-speed observability degeneracy. This
limitation often comes down to a persistent excitation condition, where the speed is assumed
to be lower-bounded.

1.5 Saliency-based methods

Considered as the main category of position estimation schemes, saliency-based methods rest
on the position dependency of stator phase inductances. The stator inductance fluctuation
term 𝐿2 arising in (1.4) conveys this dependency, and underpins the possibility to extract
the position from this magnetic anisotropy. On the contrary to observer-based techniques,
saliency-based methods cover the full speed range, including standstill, and can be applied
under both steady-state and transient operations. This anisotropy is probed using the motor
response to high-frequency signals that are either exogenous to the system —it is the periodic
excitation, or signal injection technique— or endogenous, and correspond to the excitation
provided by the inverter (see Fig. 1.2).
These two techniques –periodic and PWM excitation— usually come under two flavors:

they are either continuous or discontinuous, whether the high-frequency signal or the PWM
modifications are always present in the control law or not. Discontinuous excitation methods
are often employed to reduce the eventual shortcomings of the superimposition of an HF
signal. Also, they focus on the low speed range, as fundamental excitation techniques can take
over at medium to high speeds. These discontinuous techniques often go hand in hand with
observers to complete the information sparsity. A concise review of excitation techniques is
given by Briz and Degner [Bri+04; BD11].

1.5.1 Periodic excitation – Signal injection

Signal injection consists in superimposing a high-frequency signal to the control law —by
high-frequency is meant significantly higher than the fundamental excitation frequency.
This injection creates ripple on the current measurements which carries information on the
rotor position if properly decoded. Several types of injections can be found in the literature,
depending on the shape and the injection axis.
In the following, 𝜀 denotes the injection period; on top of the fundamental excitation 𝑢𝛼𝛽

𝑠
(resp. 𝑢𝑑𝑞

𝑠 ) is superimposed the injected signal 𝑢𝛼𝛽
𝑠,inj (resp. 𝑢𝑑𝑞

𝑠,inj)

Rotating signal injection Proposed by Jansen and Lorenz [JL95], cosine and sine waves
are injected on the 𝛼 and 𝛽-axis voltage. The injected voltage then reads, in the 𝛼𝛽-frame,

𝑢𝛼
𝑠,inj = 𝑢inj cos 𝑡

𝜀 , 𝑢𝛽
𝑠,inj = 𝑢inj sin 𝑡

𝜀 .
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The derivation of the position is subsequently described, the core of the method being trans-
posable to the other schemes. For a PMSM operated at low speed under the application
of a high-frequency signal injection, both the resistive voltage drop and the back EMF can
be neglected, so that the PMSM can be considered as a purely inductive load. Under these
assumptions, equation (1.4) can be rewritten so that the motor response to this HF signal is

𝑑𝜙𝛼𝛽
𝑠,inj
𝑑𝑡 = 𝑢𝛼𝛽

𝑠,inj,

where the subscript 𝑥inj denotes the response of 𝑥 to the injection. Integrating the previous
equation, and plugging it into the inverse of equation (1.3) gives the following expression for
the current response

𝑖𝛼𝛽
𝑠,inj = 𝜀

𝑢inj
𝐿2

1 − 𝐿2
2

⎛⎜
⎝

𝐿1 − 𝐿2 cos 2𝜃 −𝐿2 sin 2𝜃
−𝐿2 sin 2𝜃 𝐿1 + 𝐿2 cos 2𝜃

⎞⎟
⎠

⎛⎜
⎝

sin 𝑡
𝜀

− cos 𝑡
𝜀

⎞⎟
⎠

.

It appears that the induced current ripple introduced by the injection carries information on the
rotor position if 𝐿2 ≠ 0. With a suitable demodulation procedure —generally a synchronous
detection— the position information can be extracted from the measured current ripple.
The principal force of this technique is its stability properties, since the injection is operated

on the fixed frame 𝛼𝛽. However, significant torque ripple is introduced by this type of injection.

Pulsating sinusoidal signal injection Implemented, for instance, by Ha et al. [Ha+03],
Liu and Zhu [LZ14], this injection scheme consists in superimposing a sine wave to the
estimated 𝑑-axis voltage. The injection in the estimated 𝑑𝑞-frame then reads

𝑢 ̂𝑑
𝑠,inj = 𝑢inj cos 𝑡

𝜀 , 𝑢 ̂𝑞
𝑠,inj = 0.

Compared to the rotating injection, the pulsating sine wave alternative reduces the induced
torque ripple. But to preserve the sinusoidal shapes of the two previous injection schemes,
the injection frequency is limited by the PWM frequency. The inverter acting as a low-pass
filter on its input, the sinusoid will be irremediably deformed, should its frequency be close to
the PWM one.

Pulsating square signal injection In order to overcome the frequency limitation and to
achieve better dynamic performances, the previous sine wave can be replaced by a square.
Similar to the pulsating sinusoidal injection, this method consists in injecting a square wave
on the estimated 𝑑-axis voltage. The injected signal can be written as

𝑢 ̂𝑑
𝑠,inj = 𝑢inj(−1)𝑘, 𝑢 ̂𝑞

𝑠,inj = 0

with 𝑘 the index of the injected voltage. This injection has been studied, for example, by Yoon
et al. [Yoo+09], Messali et al. [Mes+18] and Jebai [Jeb13].

One potential shortcoming of the signal injection technique —shared by the three above
mentioned procedures— is the excitation of unmodeled dynamics. As noticed by Åström
in the context of adaptive control [Åst83; Åst84], bringing highly-oscillating signals to the
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command may give birth to instability mechanisms if the gains of the unmodeled dynamics at
high frequencies are sizeable. This problem however has not prevented yet electrical engineers
from exploiting this strategy for the control of electric motors, as the abundant literature may
testify. Also, superimposing a fast-varying signal to the fundamental excitation is known
to bring additional acoustic noise into the device. Some methods were designed to mitigate
these adverse effects, including Jung’s low-frequency injection [Jun+11] and Jiang’s injection
at pseudo-random frequencies [JS11] to spread the acoustic spectra, leading to a reduction of
its perception [JS11].

1.5.2 PWM excitation

PWM excitation methods rely on the current ripples induced by the inverter commutations.
These methods are based on substantial hardware requirements, such as the modification
of the PWM scheme [Sch96], the use of current-derivative sensors [Gao+07], or/and of
oversampling Analog-to-Digital converters [WX04]. This raises the question of the rele-
vance of these methods for sensorless control, since it ultimately requires another probe
or Analog-to-Digital converter —often expensive and coming with its own drawbacks— to
replace the mechanical encoder. It amounts to replacing a mechanical sensor by another, thus
increasing the circuitry complexity, only available in laboratories inherently limits the benefits
of sensorless control.

INFORMmethod Schröedl’s INFORM [Sch96] —Indirect Flux detection by Online Reac-
tance Measurements— is among the first PWM excitation methods. The INFORMmethod
relies on the injection of voltage pulses —or test sequences— in addition to the fundamental
PWM signal to induce specific current ripple patterns. The extraction of the position is then
achieved using a current derivative sensor. Themethod has known some recent improvements,
for example by Robeischl and Schröedl [RS04], that minimizes the current deviations induced
by the test sequences, but still need a specific hardware to be fully exploited. As mentioned
earlier, the INFORM can naturally be combined with a medium to high speed estimation
technique, such as the back EMF strategy, to cover the full range of speed. Such an hybrid
implementation is for instance proposed by Schröedl et al. [SHS06].

Modifications of the PWM scheme share some of the shortcomings of signal injection:
additional acoustic noise and current/torque ripple are introduced, even though recent works
focused on limiting these drawbacks [DSM10]. This being said, some modifications prove to
be helpful in reducing the acoustic noise. Prior to Jiang’s method of pseudo-random injection
frequencies, Habetler and Divan [HD91] developed the “PWM”-counterpart of this technique,
as the carrier frequency of the inverter is modulated —instead of the injection itself— to reduce
the noise perception of the inverter. The coupling of these two strategies—PWMmodifications
to guarantee the position extraction from the induced ripple on top of a randomized PWM
frequency to mitigate the acoustic noise—, provided its feasibility, might be saving regarding
this noise issue.
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Natural switching harmonics scheme The inverter naturally creates current ripples, and
the induced switching harmonics can be exploited to recover the rotor position. This idea
stems from Ogasawara and Akagi [OA98], and has been extended for instance by Wang
and Xu [WX04] to include new hardware equipments. This method, which is compatible
with both Sinusoidal PWM and Space-Vector PWM, gets round the issues related to the
modification of the PWM scheme, especially the introduction of additional acoustic noise
and the output distortions. However, the two aforementioned implementations both require
a high-rate, high-accuracy Analog-to-Digital converter to estimate the current derivative
𝑑𝚤/𝑑𝑡. The estimation based on the switching harmonics can also be achieved using Rogowski
coils to measure the current derivative, as done by Gao et al. [Gao+07], though this sensor is
non-standard either.

Endogenous signal injection The present thesis is in line with this natural switching
harmonics PWM excitation strategy. More precisely, the PWM harmonics are exploited
to recover the rotor position without neither modifying the PWM scheme, nor supplying
the drive with an additional probe or ADC. Admittedly, an oversampling ADC is used to
digitally encode the three-phase currents in the method developed in this manuscript. The
one actually employed is nevertheless a standard Sigma-Delta modulator, which is nowadays
widespread in Variable-Frequency Drives [Sor15]. It is shown in chapter 3 that the high-
frequency components of the PWM input act like an endogenous square injection —as in the
signal injection scheme. Hence, knowing an analytical expression of the induced perturbation
on the measured output opens the way to the design of a suitable demodulation procedure
that extracts this additional knowledge. This procedure turns out to work on the analog
output (chapter 4) but also on its ΣΔ encoding (chapter 5) without additional hardware. This
strategy is validated on numerical and experimental data; the results are eventually compiled
in chapter 6.





Chapter 2

Higher-order averaging theory for exogenous signal
injection

Part of this chapter —section 2.3— was published in the Proceedings of CDC 2019, under
the title Third-order virtual measurements with signal injection [Sur+19b].

Résumé Dans ce chapitre, on s’intéresse à l’analyse par averaging des systèmes contrôlés
par injection de signal exogène. La théorie générale de l’averaging à un ordre quelconque est,
dans un premier temps, développée : elle met en évidence l’existence d’une transformation
quasi-identité reliant l’état perturbé du système à son état moyenné. L’averaging fournit alors
un théorème de comparaison permettant de confirmer la validité de cette transformation sur
un temps fini, qui peut ensuite être étendue à l’infini sous certaines hypothèses de stabilité
sur le système moyenné. Cette stratégie est d’abord validée à l’ordre trois sur un système
SISO et contrôlé par injection de signal. Il est mis en évidence la possibilité de récupérer, au
deuxième ordre, des mesures virtuelles en plus de celles du premier ordre. De plus, l’averaging
à l’ordre trois analyse plus finement les effets de l’injection exogène sur l’état du système.
Cette même théorie est appliquée sur un système MIMO général, en prenant en compte
les spécificités du modèle d’un PMSM. Les mesures virtuelles supplémentaires obtenues à
l’ordre deux s’expriment dans ce cas à l’aide d’une seconde matrice de saillance, cette dernière
dépendant de la résistance stator. L’averaging à l’ordre trois est enfin validée numériquement
sur le modèle linéaire d’un PMSM saillant, et illustre la possibilité d’extraire une information
supplémentaire à l’aide de la mesure virtuelle d’ordre deux.

Abstract In this chapter, we focus on the averaging analysis of systems controlled thanks
to exogenous signal injection. The general theory of averaging at any order is first developed:
this theory highlights the existence of a near-identity transformation linking the perturbed
state of the system to the averaged one. The averaging comparison theorem confirms the
validity of this transformation over a finite time, which can be continued to infinity under
stability assumptions on the averaged system. This strategy is first validated at the third
order on a SISO system and controlled by signal injection. On top of the first-order virtual
measurement, additional second-order virtual outputs are made available. The effects of the
exogenous injection on the system state are also more finely described by this third-order
averaging theory. Likewise, this theory is applied to a general MIMO system by taking
into account the specificities of the PMSMmodel. In this case, the additional second-order
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virtual measurements are expressed using a second saliency matrix that depends on the stator
resistance. Third-order averaging is finally validated numerically on the linear model of a
salient PMSM, and illustrates the possibility of extracting additional information using the
second-order virtual measurement.

2.1 Introduction

Introduced by the seminal work of Krylov, Bogoliubov and Mitropolski [KB47; BM61], the
averaging process found its way both in the analysis of multiscale systems and the design of
control laws for nonlinear systems. Gurvits and Li for instance [GL93] apply the averaging
theory to compute the behavior of nonholonomic systems when the input is a fast-varying
signal in view of designing time-varying feedback control for motion planning. In the same
vein, signal injection is also reminiscent of Sussman’s first control solution of nonholonomic
systems. In [SL93], Sussmann and Liu generate a “Lie-Bracket extension” of driftless control
systems thanks to highly oscillatory sinusoids with large magnitudes. This Lie-Bracket exten-
sion being easily controllable, a control law is designed on the extended system beforehand,
and a sequence of control inputs for the original system converging to the trajectory of the
Lie-Bracket-extended system is computed. Likewise, Fliess et al. [Fli+92] used high-frequency
control inputs on flat systems to generate a virtual control on average.
In the same vein, adding a fast-varying signal on top of the fundamental input may solve in-

herent observability degeneracies. This signal injection technique produces additional outputs,
the so-called virtual measurements, and are read as high-frequency responses to the injection.
For nonlinear systems, these induced responses may carry additional information on the
system that can be exploited to overcome losses of observability. A conceptualization of the
signal injection technique based on the second-order averaging theory has been developed by
Jebai et al. [Jeb+16] and Combes et al. [Com+16b]. These ideas are extended in the present
chapter; namely, it is proved that pushing the computations to the next order results in the
acquisition of yet additional virtual measurements.
In this chapter, the applications and adaptations of the averaging theorem are based on

the proof revisited by Ellison, Sáenz and Dumas [ESD90], relying on Besjes’ lemma [Bes69].
They completed the original work by Bogoliubov-Mitropolski to higher order (higher than
two) and refined the analysis in the periodic case, which is the natural framework for signal
injection techniques. The comparison theorem as well as the extension of the different virtual
measurements estimates are thoroughly detailed in this chapter, as theywill require substantial
modifications to suit the study of PWM-controlled systems. Indeed, in the next chapter, the
obtained results will be subject to adaptation for PWM-controlled systems.
In full generality, we consider nonlinear affine systems of the form

𝑥̇ = 𝑓 (𝑥) + 𝑔(𝑥)𝑢,
𝑦 = ℎ(𝑥),

where 𝑥 ∈ ℝ𝑛, 𝑓 ∶ ℝ𝑛 → ℝ𝑛, 𝑔 ∶ ℝ𝑛 → ℝ𝑛 × ℝ𝑚, 𝑢 ∈ ℝ𝑚, ℎ ∶ ℝ𝑛 → ℝ𝑝,𝑚, 𝑛, 𝑝 ∈ ℕ. When a
system is controlled using the signal injection technique, a fast-varying signal 𝑠0(𝜏/𝜀), 𝜀 ≪ 1,
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is superimposed to the control 𝑢, so that the system reads, in the fast timescale 𝑡 = 𝜏/𝜀,

̇𝑥 = 𝜀(𝑓 (𝑥) + 𝑔(𝑥)(𝑢 + 𝑠0(𝑡))).

The purpose of this chapter is to study the effects of such an injection on the perturbed state 𝑥
and themeasured output 𝑦. The averaging theory will provide a relation between the perturbed
state 𝑥 and the original one 𝑥.
The outline of this chapter is the following: we start by recalling the fundamental results

pertaining to the averaging theory —from the derivation of the estimate to its continuation
to infinity—, regardless of signal injection, in section 2.2. Although no new results are
given in this section, they form the theoretical backbone of the chapter, and will be subject
to adaptations, especially when taking into account state discontinuities as in chapter 3.
In section 2.3, this theory is applied to Single-Input Single-Output linear systems with a
linear dynamics and a nonlinear output controlled thanks to signal injection. This result is
subsequently generalized to nonlinearMultiple-InputMultiple-Output systems in section 2.4,
with eventually numerical experiments on a PMSM.

2.2 Generic higher-order averaging theory

The ensuing results and proofs follow the description given in the reference book on the
averaging by Sanders et al. [SVM05, Chapter 2]. In this section, we recall both the comparison
result encapsulated in theorem 2.2 with its proof, as well as the continuation to infinity of
this estimate, provided that additional stability hypothesis on the system are made. While
the first subsection 2.2.1 is standard, the second subsection 2.2.2 lays out an original proof of
the continuation result at the third order. Overall, this section forms the theoretical backbone
of the analysis of signal injection.

2.2.1 Comparison result

In the following, we consider 𝑥 solution of

̇𝑥 = 𝜀𝑓 1(𝑥, 𝑡) + … + 𝜀𝑘𝑓 𝑘(𝑥, 𝑡) + 𝜀𝑘+1𝑓 [𝑘+1](𝑥, 𝑡, 𝜀), 𝑥(0) = 𝑎; (2.1)

where 𝑓 1, … , 𝑓 𝑘 ∶ (𝑥, 𝑡) ∈ ℝ𝑛 × ℝ+ → ℝ𝑛 and 𝑓 [𝑘+1] ∶ (𝑥, 𝑡, 𝜀) ∈ ℝ𝑛 × ℝ+ × ℝ+ → ℝ𝑛 are
Lipschitz in 𝑥 and T-periodic in 𝑡. We consider 𝐷 ⊂ ℝ𝑛 a bounded open set 𝐷 containing
the initial condition 𝑎. The solution 𝑥 is assumed to stay in the subset 𝐷 for 0 ≤ 𝜀 ≤ 𝜀0
and 0 ≤ 𝑡 ≤ 𝐿/𝜀, with 𝐿, 𝜀0 > 0 two constants. Throughout this chapter, the notation O

denotes the uniform “big O” symbol of analysis, namely 𝑓 (𝑥, 𝑡, 𝜀) = O(𝜀𝑝) if there exists 𝐾 > 0
independent of 𝑥, 𝑡 and 𝜀 such that ‖ 𝑓 (𝑥, 𝑡, 𝜀) ‖ ≤ 𝐾𝜀𝑝. This “big O” is restricted to a timescale
1/𝜀 when results using this notation (e.g. theorem 2.2) are only available on this limited time
interval. Likewise, the notation 𝑜 denotes the uniform “small o” symbol of analysis, namely
𝑓 (𝑥, 𝑡, 𝜀) = 𝑜(𝜀𝑝) if lim ‖ 𝑓 (𝑥, 𝑡, 𝜀) ‖/𝜀𝑝 = 0 when 𝜀 → 0, uniformly in 𝑥 and 𝑡.
Themodern approach of the averaging theory relies on the next lemma2.1 byBesjes [Bes69];

the given proof follows the one developed in Sanders et al. [SVM05].
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Lemma 2.1 (Besjes). Assume 𝜑 ∶ (𝑥, 𝑠) ∈ ℝ𝑛 × ℝ+ → ℝ𝑛 is Lipschitz in 𝑥, 𝑇-periodic with
zero mean in 𝑡, and bounded for all s and 𝑥 ∈ 𝐷. Assume the solution 𝑥 of (2.1) is defined for
0 ≤ 𝑡 ≤ 𝐿/𝜀. Then there exists 𝑐1 > 0 such that

∥ ∫
𝑡

0
𝜑(𝑥(𝑠), 𝑠) 𝑑𝑠 ∥ ≤ 𝑐1.

Proof. We start by dividing the interval [0, 𝑡] into subintervals of length 𝑇, i.e. [0, 𝑇], …,
[(𝑚 − 1)𝑇, 𝑚𝑇] and a remainder [𝑚𝑇, 𝑡], with 𝑚 = ⌊𝑡/𝑇⌋. Minkowski’s inequality yields

∥ ∫
𝑡

0
𝜑(𝑥(𝑠), 𝑠) 𝑑𝑠 ∥ ≤

𝑚
∑
𝑖=1

∥ ∫
𝑖𝑇

(𝑖−1)𝑇
𝜑(𝑥(𝑠), 𝑠) 𝑑𝑠 ∥ + ∥ ∫

𝑡

𝑚𝑇
𝜑(𝑥(𝑠), 𝑠) 𝑑𝑠 ∥.

Each integral term for 𝑖 = 1, … , 𝑚 is estimated as follows

∥ ∫
𝑖𝑇

(𝑖−1)𝑇
𝜑(𝑥(𝑠), 𝑠) 𝑑𝑠 ∥ = ∥ ∫

𝑖𝑇

(𝑖−1)𝑇
[𝜑(𝑥(𝑠), 𝑠) − 𝜑(𝑥((𝑖 − 1)𝑇, 𝑠))] 𝑑𝑠 ∥

≤ 𝜆𝜑 ∫
𝑖𝑇

(𝑖−1)𝑇
‖ 𝑥(𝑠) − 𝑥((𝑖 − 1)𝑇) ‖ 𝑑𝑠

≤ 𝜆𝜑 ∫
𝑖𝑇

(𝑖−1)𝑇
𝑐2𝜀 𝑑𝑠,

where the first equality holds since 𝜑 is T-periodic in the second argument with zero mean;
the second stems from the Lipschitz inequality applied on 𝜑, with 𝜆𝜑 its Lipschitz constant,
and the third holds because ̇𝑥 = O(𝜀). As for the estimate on the final subinterval [𝑚𝑇, 𝑡], as
𝜑 is bounded, the integral of 𝜑(𝑥(𝑠), 𝑠) on this leftover is bounded by 𝑇 × ‖ 𝜑 ‖∞. Gathering
the two estimates,

∥ ∫
𝑡

0
𝜑(𝑥(𝑠), 𝑠) 𝑑𝑠 ∥ ≤ 𝑚𝜆𝜑𝑐2𝑇𝜀 + 𝑇 ‖ 𝜑 ‖∞.

By definition of 𝑚, 𝑚𝑇 ≤ 𝑡 ≤ 𝐿/𝜀, therefore 𝑚𝜆𝜑𝑐2𝑇𝜀 + 𝑇 ‖ 𝜑 ‖∞ ≤ 𝐿𝜆𝜑𝑐2 + 𝑇 ‖ 𝜑 ‖∞ =∶ 𝑐1.

Before stating the comparison theorem, we describe the technique to average the time-
varying equation for 𝑥 in order to obtain a stationary system. This derivation of the averaged
equations is achieved thanks to the following so-called near-identity transformation,

̌𝑥 = 𝑥 + 𝜀𝜑1(𝑥, 𝑡) + … + 𝜀𝑘𝜑𝑘(𝑥, 𝑡).

where 𝜑1, … , 𝜑𝑘 can be selected so that the state ̌𝑥 verifies the full averaged equation

̇̌𝑥 = 𝜀𝑔1( ̌𝑥) + … + 𝜀𝑘𝑔𝑘( ̌𝑥) + 𝜀𝑘+1𝑔[𝑘+1]( ̌𝑥, 𝑡, 𝜀), (2.2)

where the function 𝑔1 is the average 𝑔1(𝑥) ∶= ∫𝑇
0 𝑓 1(𝑥, 𝑠) 𝑑𝑠 of 𝑓 1 with respect to its second

argument, and 𝑔2, … , 𝑔𝑘, 𝑔[𝑘+1] depend on choice made for 𝜑1, … , 𝜑𝑘. The “averaged” denom-
ination stems from the fact that 𝑔1, … , 𝑔𝑘 do not depend on the time, with only the 𝑘 + 1𝑡ℎ

power of epsilon being time-varying. The explicit computation of these 𝑔𝑖 and 𝜑𝑖 is conducted
in subsection 2.4.1 specifically for systems controlled using the signal injection technique.
To get rid of the last instationary term 𝑔[𝑘+1], consider 𝑥 solution of the truncated averaged
equation

𝑥̇ = 𝜀𝑔1(𝑥) + … + 𝜀𝑘𝑔𝑘(𝑥).
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On the contrary, the full averaged equation (2.3), the truncated averaged equation is en-
tirely stationary. The application of the shorter near-identity transformation to 𝑥 defines the
following auxiliary state ̃𝑥

̃𝑥 = 𝑥 + 𝜀𝜑1(𝑥, 𝑡) + … + 𝜀𝑘−1𝜑𝑘−1(𝑥, 𝑡). (2.3)

With this definition, one can prove that ̃𝑥 satisfies an equation of the form

̇̃𝑥 = 𝜀𝑓 1( ̃𝑥, 𝑡) + … + 𝜀𝑘(𝑓 𝑘( ̃𝑥, 𝑡) + ℎ𝑘( ̃𝑥, 𝑡)) + 𝜀𝑘+1 ̃𝑓 [𝑘+1]( ̃𝑥, 𝑡, 𝜀),

where ℎ𝑘(𝑥, 𝑡) is Lipschitz in 𝑥, T-periodic with zero mean in 𝑡. The practical use of the
subsequent comparison theorem 2.2 is to provide a relation between the states 𝑥 and ̃𝑥: simply
put, 𝑥 and ̃𝑥 differs by a term in 𝜀𝑘 on a timescale 1/𝜀. In practice, 𝑥 denotes the system with
the injection, 𝑥, the solution of the truncated averaged equation, is the original system while ̌𝑥
and ̃𝑥 are auxiliary states, mainly used to connect 𝑥 and 𝑥.

Theorem 2.2 (Averaging theorem). Given the systems

̇𝑥 = 𝜀𝑓 1(𝑥, 𝑡) + … + 𝜀𝑘𝑓 𝑘(𝑥, 𝑡) + 𝜀𝑘+1𝑓 [𝑘+1](𝑥, 𝑡, 𝜀)
̇̃𝑥 = 𝜀𝑓 1( ̃𝑥, 𝑡) + … + 𝜀𝑘(𝑓 𝑘( ̃𝑥, 𝑡) + ℎ𝑘( ̃𝑥, 𝑡)) + 𝜀𝑘+1 ̃𝑓 [𝑘+1]( ̃𝑥, 𝑡, 𝜀)

with 𝑓 1,...,𝑓 𝑘 Lipschitz in 𝑥, T-periodic in 𝑡, 𝑓 [𝑘+1] and ̃𝑓 [𝑘+1] continuous, and ℎ𝑘 Lipschitz in 𝑥,
T-periodic with zero mean in 𝑡. The two solutions 𝑥 and ̃𝑥, starting from the same initial condition,
are related, for 0 ≤ 𝜀 ≤ 𝜀0 and 0 ≤ 𝑡 ≤ 𝐿/𝜀, by

𝑥(𝑡) = ̃𝑥(𝑡) + O(𝜀𝑘),

and the shorter near-identity transformation (2.3) reads

𝑥(𝑡) = 𝑥(𝑡) + 𝜀𝜑1(𝑥, 𝑡) + … + 𝜀𝑘−1𝜑𝑘−1(𝑥, 𝑡) + O(𝜀𝑘).

Proof. Setting 𝐽𝑘𝑓 (𝑥, 𝑡) ∶= 𝜀𝑓 1(𝑥, 𝑡) + … + 𝜀𝑘𝑓 𝑘(𝑥, 𝑡) and 𝐸(𝑡) = 𝑥(𝑡) − ̃𝑥(𝑡), we have

‖ 𝐸(𝑡) ‖ ≤ 𝜀 ∫
𝑡

0
‖ 𝐽𝑘𝑓 (𝑥, 𝑠) − 𝐽𝑘𝑓 ( ̃𝑥, 𝑠) ‖ 𝑑𝑠 + 𝜀𝑘 ∥ ∫

𝑡

0
ℎ𝑘( ̃𝑥, 𝑠) 𝑑𝑠 ∥

+𝜀𝑘+1 ∫
𝑡

0
‖ 𝑓 [𝑘+1](𝑥, 𝑠, 𝜀) − ̃𝑓 [𝑘+1]( ̃𝑥, 𝑠, 𝜀) ‖ 𝑑𝑠.

Using the Lipschitz constant 𝜆𝐽 of 𝐽𝑘𝑓 for first integral term, Besjes’ inequality for the second,
and bounding the last term by 𝑐2𝑡 with 𝑐2 being the max of the last integrand on 𝐷 × [0, 𝑇],
the following estimate holds

‖ 𝐸(𝑡) ‖ ≤ 𝜀𝜆𝐽 ∫
𝑡

0
‖ 𝐸(𝑠) ‖ 𝑑𝑠 + 𝑐1𝜀𝑘 + 𝜀𝑘+1𝑐2𝑡.

The application of Gronwall’s lemma [SVM05, Lemma 1.3.3] eventually yields

‖ 𝐸(𝑡) ‖ ≤ 𝜀𝑘(
𝑐2
𝜆𝐽

+ 𝑐1)𝑒𝜆𝐽𝜀𝑡.

For 0 ≤ 𝑡 ≤ 𝐿/𝜀, we thus have ‖ 𝐸(𝑡) ‖ ≤ 𝑐3𝜀𝑘 with 𝑐3 ∶= (𝑐2/𝜆𝐽 + 𝑐1)𝑒𝜆𝐽𝐿, i.e. 𝑥(𝑡) = ̃𝑥(𝑡) +
O(𝜀𝑘). Replacing this estimate in the near-identity transformation (2.3) finally provides the
comparison between the original state and the averaged one.
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2.2.2 Continuation to infinity of the averaging theorem

The averaging theorem 2.2 provides an estimate that is only available on a timescale 1/𝜀,
regardless of whether the solution remain bounded or not. Indeed, drift phenomena in phase or
amplitude might occur as time increases, leading to a progressive deterioration of the estimate.
This approximation, thereby, is very limited for the asymptotic control of dynamical systems,
as it requires the approximation validity for every time 𝑡. Stability properties, however, may
be saving in continuing the estimate to infinity. Namely, if the averaged system’s origin
is assumed to be locally exponentially stable, the result provided by theorem 2.2 can be
prolonged to infinity instead of being time-restricted. This result was derived by both Eckhaus
and Sanchez-Palencia for first-order averaging. Combes et al. [Com+16a] gave a version of
this lemma at the second-order. Here, we adapt the proof of the lemma at the third order.
By and large, this means the near-identity transformation holds without restriction on the
time interval; the result is encapsulated in theorem 2.5, the skeleton of proof being easily
transposable to the averaging of any order.
We start by recalling two fundamentals lemma

Lemma 2.3 (Poincaré-Lyapunov). Consider the system

̇𝑥 = (𝐴 + 𝐵(𝑡))𝑥 + 𝑔(𝑥, 𝑡), 𝑥(𝑡0) = 𝑥0, 𝑡 ≥ 𝑡0,

where 𝑥, 𝑥0 ∈ ℝ𝑛; 𝐴 ∈ ℝ𝑛×𝑛 is a constant Hurwitz matrix, i.e. with all eigenvalues having
strictly negative real part, and 𝐵 ∶ ℝ+ → ℝ𝑛×𝑛 is a continuous matrix such that

lim
𝑡→+∞

∥ 𝐵(𝑡) ∥ = 0.

The vector field is assumed to be continuous with respect to both 𝑡 and 𝑥 and continuously
differentiable with respect to 𝑥 in a neighborhood of 𝑥 = 0; moreover, we assume

𝑔(𝑥, 𝑡) = 𝑜(‖ 𝑥 ‖) as ‖ 𝑥 ‖ → 0,

uniformly in 𝑡. Then there exist constants 𝐶, 𝛿, 𝜇 > 0 such that if ‖ 𝑥0 ‖ ≤ 𝛿/𝐶

‖ 𝑥(𝑡) ‖ ≤ 𝐶 ‖ 𝑥0 ‖ 𝑒−𝜇(𝑡−𝑡0), 𝑡 ≥ 𝑡0.

The basin of attraction {𝑥 ∈ ℝ; ‖ 𝑥 ‖ ≤ 𝛿/𝐶} is called the Poincaré-Lyapunov domain.

Lemma 2.4. Consider two solutions 𝑥1 and 𝑥2 of the system

̇𝑥 = (𝐴 + 𝐵(𝑡))𝑥 + 𝑔(𝑥, 𝑡)

for which the conditions of the Poincaré-Lyapunov theorem 2.3 are satisfied. If both 𝑥1 and 𝑥2
start in the Poincaré-Lyapunov domain at 𝑡0, the following estimate holds

∥ 𝑥1(𝑡) − 𝑥2(𝑡) ∥ ≤ 𝐶 ∥ 𝑥1(𝑡0) − 𝑥2(𝑡0) ∥ 𝑒−𝜇(𝑡−𝑡0).

Lemmas 2.3 and 2.4 are a precise way of stating that the origin is a locally exponentially
stable equilibrium point (on the Poincaré-Lyapunov domain). Under this assumption for the
averaged equation, the following theorem 2.5 extends the result of theorem 2.2 —namely the
comparison given by the near-identity transformation— to infinity.
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Theorem 2.5 (Continuation to infinity). Consider the two systems

𝑥̇ = 𝜀𝑔1(𝑥) + … + 𝜀𝑘𝑔𝑘(𝑥), (2.4a)
̇𝑥 = 𝜀𝑓 1(𝑥, 𝑡) + … + 𝜀𝑘𝑓 𝑘(𝑥, 𝑡) + 𝜀𝑘+1 𝑓 [𝑘+1](𝑥, 𝑡, 𝜀), (2.4b)

Assume the origin is locally exponentially stable for the averaged system (2.4a). Then there exists
a compact neighborhood V of the origin and 𝜀0 > 0 such that for all 𝜀 ∈ [0, 𝜀0) and 𝑥0 ∈ V, the
solution 𝑥(𝑡) of equation (2.4a) starting from 𝑥0 at 0 and the solution 𝑥(𝑡) of equation (2.4b)
starting from 𝑥0 = 𝑥0 + 𝜀𝜑(𝑥0, 0) + 𝜀2𝜑(𝑥0, 0) are defined on [0, +∞) and

sup
𝑡≥0

∥ 𝑥(𝑡) − 𝑥(𝑡) − 𝜀𝜑1(𝑥, 𝑡) − 𝜀2𝜑2(𝑥, 𝑡) ∥ ≤ 𝐶𝜀3,

where 𝐶 > 0 is a constant independent 𝜀, and 𝜑1, 𝜑2 are defined by the near-identity transforma-
tion between 𝑥 and 𝑥.

Proof. Start by choosing V a compact included in the Poincaré-Lyapunov set. The application
of the averaging theorem 2.2 produces the desired estimate only on a timescale 1/𝜀, i.e. there
exist ̃𝜀0 > 0, two constants 𝐶1, 𝐿 > 0 independent of 𝜀 such that for 0 ≤ 𝜀 ≤ ̃𝜀0,

∥ 𝑥(𝑡) − 𝑥(𝑡) − 𝜀𝜑1(𝑥, 𝑡) − 𝜀2𝜑2(𝑥, 𝑡) ∥ ≤ 𝐶1𝜀3, 0 ≤ 𝜀𝑡 ≤ 𝐿. (2.5)

Define the partition of time 𝐼𝑚 ∶= [𝑚𝐿
𝜀 , (𝑚+1)𝐿

𝜀 ] for 𝑚 ≥ 0, so that

[0, +∞) = ⋃
𝑚∈ℕ

𝐼𝑚 = ⋃
𝑚∈ℕ

[
𝑚𝐿
𝜀 ,

(𝑚 + 1)𝐿
𝜀 ].

Define as well 𝑥(𝑚) as the solution of

𝑥̇ = 𝜀𝑔1(𝑥) + … + 𝜀𝑘𝑔𝑘(𝑥), 𝑥(𝑚)(
𝑚𝐿
𝜀 ) = 𝑥(𝑚𝐿

𝜀 ). (2.6)

As the initial condition 𝑥(𝑚𝐿/𝜀) for 𝑥(𝑚) is not necessarily inV, there is no prior guarantee that
each 𝑥(𝑚) stays in V. Thus we start by proving that 𝑥(𝑚𝐿/𝜀) ∈ V for𝑚 ∈ ℕ. The two functions
𝜑1 and 𝜑2 are continuous and 𝑇-periodic in the second-argument, they are consequently
bounded on V × ℝ+, say by 𝛽1 and 𝛽2 respectively. Then estimate (2.5) reads

‖ 𝑥(𝑡) − 𝑥(𝑡) ‖ ≤ 𝛽1𝜀 + 𝛽2𝜀2 + 𝐶1𝜀3, 0 ≤ 𝜀𝑡 ≤ 𝐿.

Besides, as the origin is a locally exponentially stable equilibrium for 𝑥, and 𝑥0 is in the
Poincaré-Lyapunov domain, lemma 2.3 reads

∥ 𝑥(𝐿
𝜀 ) ∥ ≤ 𝐶 ‖ 𝑥0 ‖ 𝑒−𝜇𝐿/𝜀;

Introducing 𝛿V ∶= 𝑑(0,V𝑐) > 0 the distance between the origin and the complementary V𝑐 of
V (which is positive since V is a neighborhood of the origin), one can select 𝜀0 < ̃𝜀0 such that

𝐶 ‖ 𝑥0 ‖ 𝑒−𝜇𝐿/𝜀0 + 𝛽1𝜀2
0 + 𝛽2𝜀2

0 + 𝐶1𝜀3
0 < 𝛿V.

i.e. ‖ 𝑥(𝐿/𝜀) ‖ < 𝛿V, which means 𝑥(𝐿/𝜀) ∈ V. This argument can easily be reproduced for any
𝑚 ∈ ℕ so that 𝑥(𝑚𝐿/𝜀) ∈ V; the same choice of 𝜀0 being valid for any 𝑚. Therefore, 𝑥(𝑚) also
stays in V.
Now define 𝜓 as follows

𝜓(𝑥, 𝑡) ∶= 𝑥 + 𝜀𝜑1(𝑥, 𝑡) + 𝜀2𝜑2(𝑥, 𝑡).
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If 𝑓 and 𝑔 are smooth enough, as𝜑1 and𝜑2 inherits the regularity from these two vector fields,
they are at least continuously differentiable. In particular, they are Lipschitz on the compact
subset V, and we respectively write 𝜆1,V, 𝜆2,V their Lipschitz constant on V. By Poincaré-
Lyapunov lemma 2.3, 𝑥 stays in V, so since 𝜓 is Lipschitz in 𝑥, the following inequality holds

∥ 𝜓(𝑥, 𝑡) − 𝜓(𝑥(𝑚), 𝑡) ∥ ≤ (1 + 𝜀𝜆1,V + 𝜀2𝜆2,V)∥ 𝑥 − 𝑥(𝑚) ∥, 𝑡 ∈ 𝐼𝑚.

Taking the sup on 𝑡 of the former equation then yields

∥ 𝜓(𝑥, ⋅) − 𝜓(𝑥(𝑚), ⋅) ∥𝐼𝑚
≤ (1 + 𝜆1,V + 𝜀2𝜆2,V)∥ 𝑥 − 𝑥(𝑚) ∥𝐼𝑚

, (2.7)

where ‖ ⋅ ‖𝐼𝑚
∶= sup𝑡∈𝐼𝑚

‖ ⋅ ‖. Owing to the averaging theorem, the estimate (2.5) holds on every
interval 𝐼𝑚, namely

∥ 𝑥(𝑡) − 𝑥(𝑚) − 𝜀𝜑2(𝑥(𝑚), 𝑡) − 𝜀2𝜑2(𝑥(𝑚), 𝑡) ∥ ≤ 𝐶1𝜀3, 𝑡 ∈ 𝐼𝑚.

Using the expression for 𝜓 and taking the sup yields

∥ 𝑥 − 𝜓(𝑥(𝑚), ⋅) ∥𝐼𝑚
≤ 𝐶1𝜀3. (2.8)

By lemma 2.4, there exist two constants 𝐶2, 𝜇 > 0 such that for 𝑡 ∈ 𝐼𝑚

∥ 𝑥(𝑡) − 𝑥(𝑚)(𝑡) ∥ ≤ 𝐶2 ∥ 𝑥(𝑚𝐿
𝜀 ) − 𝑥(𝑚)(

𝑚𝐿
𝜀 ) ∥ 𝑒−𝜇(𝑡−𝑚𝐿/𝜀)

≤ 𝐶2 ∥ 𝑥 − 𝑥(𝑚) ∥𝐼𝑚−1
𝑒−𝜇𝐿/𝜀.

Again, taking the sup on 𝑡 ∈ 𝐼𝑚 yields

∥ 𝑥 − 𝑥(𝑚) ∥𝐼𝑚
≤ 𝐶2 ∥ 𝑥1 − 𝑥(𝑚) ∥𝐼𝑚−1

𝑒−𝜇𝐿/𝜀. (2.9)

The error between 𝑥(𝑡) and its second-order averaged approximation 𝜓(𝑥, 𝑡) can be estimated
as follows

∥ 𝑥 − 𝜓(𝑥, ⋅) ∥𝐼𝑚
≤ ∥ 𝑥 − 𝜓(𝑥(𝑚), ⋅) ∥𝐼𝑚

+ ∥ 𝜓(𝑥(𝑚), ⋅) − 𝜓(𝑥, ⋅) ∥𝐼𝑚

≤ 𝐶1𝜀3 + (1 + 𝜀𝜆1,V + 𝜀2𝜆2,V)∥ 𝑥(𝑚) − 𝑥 ∥𝐼𝑚

≤ 𝐶1𝜀3 + 𝐶2(1 + 𝜀𝜆1,V + 𝜀2𝜆2,V)∥ 𝑥(𝑚) − 𝑥 ∥𝐼𝑚−1
𝑒−𝜇𝐿/𝜀.

The first inequality is obtained by Minkowski’s inequality; the second bound comes from
both (2.8) and (2.7) and the third bound follows from the exponential decay rate (2.9)

lim
𝜀→0

𝐶2(1 + 𝜀𝜆1,V + 𝜀2𝜆2,V)𝑒−𝜇𝐿/𝜀 = 0,

therefore for any 𝜅 < 1, there exists 𝜀0 > 0 such that 1 + 𝜀𝜆1,V + 𝜀2𝜆2,V ≤ 𝜅 for 𝜀 ≤ 𝜀0.

∥ 𝑥 − 𝜓(𝑥, ⋅) ∥𝐼𝑚
≤ 𝐶1𝜀3 + 𝜅 ∥ 𝑥(𝑚) − 𝑥 ∥𝐼𝑚−1

≤ 𝐶1𝜀3
𝑚−1
∑
𝑗=0

𝜅 + 𝜅𝑚 ∥ 𝑥(𝑚) − 𝑥 ∥𝐼0

≤
𝐶1

1 − 𝜅𝜀3.

since by lemma 2.4, ∥ 𝑥(𝑚) − 𝑥 ∥𝐼0
≤ ∥ 𝑥(𝑚)(0) − 𝑥(0) ∥ = 0, the two states 𝑥 and 𝑥 sharing the

same initial condition on 0. Setting 𝐶 ∶= 𝐶1/(1 − 𝜅) eventually concludes the proof.

This proof can easily be transposed to the averaging at any order. Indeed, it suffices to
change the expression for 𝜓 by the 𝑘th-order near-identity transformation.
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2.3 Second-order virtual measurements for linear dynamics

In this section, the application of the averaging theory to derive two additional virtual-
meausrements is detailed. In order to be self-contained, this section also presents an ad
hoc recovery procedure of these virtual measurements, based on Gram-Schmidt’s orthogonal-
ization process. The demodulation will be generalized to any multiplexed analog signals, and
is thoroughly detailed in chapter 4.

2.3.1 Context

Signal injection is a control technique that has become widely used for the “sensorless” control
of electric motors at low velocity since its introduction by [JL95; CL98] (“sensorless” meaning
only the currents are measured, but neither the rotor position nor its velocity). Its consists
in superimposing a fast-varying signal on the control, which creates some small ripple in
the measured currents; this ripple contains information about the rotor position that can be
used to suitably control the motor. At first sight, the method might seem peculiar to electric
motors, with a usually somewhat heuristic analysis. The essence of the method was then
conceptualized in [Com+16a] as the creation of new “virtual measurements” which can be
extracted from the actual measured output, hence providing means to overcome observability
degeneracies; the main ingredient of the analysis is second-order averaging, following the
ideas introduced in [Jeb+16]. Developments following these ideas, with an application to
magnetic levitation systems, can be found in [YOZ18; Yi+19].
The purpose of this section is to extend [Com+16a] by showing that more virtual measure-

ments can be produced with a finer analysis of the ripple thanks to third-order averaging. To
keep the computations as simple as possible and focus on the important ideas, we restrict
to Single-Input Single-Output systems with a linear dynamics; nonlinear Multiple-Input
Multiple-Output systems could nevertheless be addressed along the same lines (see sec-
tion 2.4). More precisely, consider the system

̇𝑥 = 𝐴𝑥 + 𝐵𝑢 (2.10a)
𝑦 = ℎ(𝑥), (2.10b)

where (𝑥, 𝑦, 𝑢) belongs to a compact subset of ℝ𝑛 × ℝ × ℝ, and 𝐴, 𝐵 are constant matrices;
the measured output 𝑦 = ℎ(𝑥) is assumed smooth enough (i.e. at least C3). We show that by
superimposing on the control 𝑢 a periodic signal with small period 𝜀, we can make available
the so-called virtual measurements

𝑌1 = 𝐻1(𝑥) ∶= 𝜀ℎ′(𝑥)𝐵 (2.11a)

𝑌2 = 𝐻2(𝑥) ∶=
𝜀2

2 ℎ″(𝑥)(𝐵, 𝐵) =
𝜀2

2 𝐵𝑇ℎ″(𝑥)𝐵 (2.11b)

𝑌3 = 𝐻3(𝑥) ∶= 𝜀2ℎ′(𝑥)𝐴𝐵, (2.11c)

which can be used in addition to 𝑌0 = 𝐻0(𝑥) ∶= ℎ(𝑥) to control (2.10a). The contribution with
respect to [Com+16a] is threefold:
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— an analysis of the output ripple by third-order averaging, with a simpler derivation
(subection 2.3.2)

— a much more elaborated procedure to extract the virtual measurements from the output
ripple (subsection 2.3.3)

— a numerical simulation demonstrating the method is indeed effective, even though the
output ripple may be very small and buried into noise (subsection 2.3.4).

2.3.2 Averaging theory

Assume we have designed a suitable control law

𝑢 = 𝛼(𝜂, 𝑌, 𝑡)
̇𝜂 = 𝑎(𝜂, 𝑌, 𝑡),

where 𝜂 ∈ ℝ𝑞 and 𝑌 is the vector (𝑌0, 𝑌1, 𝑌2, 𝑌3). In other words, the closed-loop system

𝑥̇ = 𝐴𝑥 + 𝐵𝛼(𝜂, 𝐻(𝑥), 𝑡) (2.12a)
𝜂̇ = 𝑎(𝜂, 𝐻(𝑥), 𝑡) (2.12b)

has the desired exponentially stable behaviour, where𝐻 ∶= (𝐻0, 𝐻1, 𝐻2, 𝐻3). We have changed
the notation of the state to (𝑥, 𝜂), so as to distinguish between the solutions of (2.12) and of
(2.14) below. Now consider the modified control law

𝑢 = 𝛼(𝜂, 𝐻(𝑥), 𝑡) + 𝑠0 ( 𝑡
𝜀) (2.13a)

̇𝜂 = 𝑎(𝜂, 𝐻(𝑥), 𝑡) (2.13b)
𝐻(𝑥) = 𝐻(𝑥 − 𝜀𝐵𝑠1 ( 𝑡

𝜀) − 𝜀2𝐴𝐵𝑠2 ( 𝑡
𝜀)) + O(𝜀3), (2.13c)

where 𝑠0 is a 1-periodic function with zero mean, 𝑠1 is the primitive of 𝑠0 with zero mean, and
𝑠2 the primitive of 𝑠1 with zero mean (notice 𝑠1 and 𝑠2 are also 1-periodic). The closed-loop
system then reads

̇𝑥 = 𝐴𝑥 + 𝐵𝛼(𝜂, 𝐻(𝑥), 𝑡) + 𝐵𝑠0 ( 𝑡
𝜀) (2.14a)

̇𝜂 = 𝑎(𝜂, 𝐻(𝑥), 𝑡) (2.14b)
𝐻(𝑥) = 𝐻(𝑥 − 𝜀𝐵𝑠1 ( 𝑡

𝜀) − 𝜀2𝐴𝐵𝑠2 ( 𝑡
𝜀)) + O(𝜀3). (2.14c)

Theorem 2.6. Let (𝑥(𝑡), 𝜂(𝑡)) and (𝑥(𝑡), 𝜂(𝑡)) be respectively the solutions of (2.14) and (2.12),
with initial condition (𝑥(0), 𝜂(0)) and (𝑥(0), 𝜂(0)) = (𝑥(0) − 𝜀𝐵𝑠1(0) − 𝜀2𝐴𝐵𝑠2(0), 𝜂(0)). Then
for all 𝑡 ≥ 0,

𝑥(𝑡) = 𝑥(𝑡) + 𝜀𝐵𝑠1 ( 𝑡
𝜀) + 𝜀2𝐴𝐵𝑠2 ( 𝑡

𝜀) + O(𝜀3) (2.15a)
𝜂(𝑡) = 𝜂(𝑡) + O(𝜀3) (2.15b)
𝑦(𝑡) = 𝐻0(𝑥(𝑡)) + 𝐻1(𝑥(𝑡))𝑠1 ( 𝑡

𝜀) + 𝐻2(𝑥(𝑡))𝑠2
1 ( 𝑡

𝜀) + 𝐻3(𝑥(𝑡))𝑠2 ( 𝑡
𝜀) + O(𝜀3). (2.15c)
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Figure 2.1: Control inputs 𝑢 and 𝑢 + 𝑠0. Full view (left), zoom (right).

Proof. The proof is an application of higher-order averaging for differential equations (theo-
rem 2.2), with slow time dependance [SVM05, section 3.3]: consider the two equations

𝑑𝑋
𝑑𝜎 (𝜎) = 𝜀𝑓 1(𝑋, 𝜀𝜎, 𝜎) + O(𝜀4)

𝑑𝑋̃
𝑑𝜎 (𝜎) = 𝜀𝑓 1(𝑋̃, 𝜀𝜎, 𝜎) + 𝜀3𝑘3(𝑋̃, 𝜀𝜎, 𝜎) + O(𝜀4),

where 𝑓 1, 𝑘3 are 𝑇-periodic with respect to their third variable and 𝑘3 has zero-mean with
respect to its third variable; according to theorem 2.2, the solutions of these two equations
starting from the same initial condition are related by

𝑋̃(𝜎) = 𝑋(𝜎) + O(𝜀3) (2.16)

on the timescale 1/𝜀. It is possible to extend this relation to an infinite timescale by the
continuation theorem 2.5, provided that the averaged system has an exponentially stable
equilibrium, and that the initial condition is in a compact subset of the region of attraction of
this equilibrium. In our case, we first rewrite (2.14) in the fast timescale 𝜎 ∶= 𝑡/𝜀

𝑑𝑥
𝑑𝜎 = 𝜀 [𝐴𝑥 + 𝐵𝛼(𝜂, 𝐻(𝑥), 𝜀𝜎) + 𝐵𝑠0(𝜎)] (2.17a)
𝑑𝜂
𝑑𝜎 = 𝜀𝑎(𝜂, 𝐻(𝑥), 𝜀𝜎). (2.17b)

We introduce the new coordinates ( ̃𝑥, ̃𝜂) such that

⎡⎢
⎣

̃𝑥
̃𝜂
⎤⎥
⎦

= ⎡⎢
⎣
𝑥
𝜂
⎤⎥
⎦

− 𝜀 ⎡⎢
⎣
𝐵𝑠1(𝜎)

0
⎤⎥
⎦

− 𝜀2 ⎡⎢
⎣
𝐴𝐵𝑠2(𝜎)

0
⎤⎥
⎦

. (2.18)

Notice (2.14c) simply reads

𝐻(𝑥) = 𝐻( ̃𝑥) + O(𝜀3).

Differentiating with respect to 𝜎 and expanding to third order yields the system in the new
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Figure 2.2: Measured output 𝑦. Full view (left), zoom (right).

coordinates
𝑑 ̃𝑥
𝑑𝜎 = 𝜀 [𝐴 ̃𝑥 + 𝐵𝛼( ̃𝜂, 𝐻( ̃𝑥), 𝜀𝜎)] + 𝜀3𝐴2𝐵𝑠2(𝜎) + O(𝜀4) (2.19a)
𝑑 ̃𝜂
𝑑𝜎 = 𝜀𝑎( ̃𝜂, 𝐻( ̃𝑥), 𝜀𝜎) + O(𝜀4). (2.19b)

By (2.16), we then get

̃𝑥 = 𝑥 + O(𝜀3)
̃𝜂 = 𝜂 + O(𝜀3).

Replacing ( ̃𝑥, ̃𝜂) by (𝑥, 𝜂) using transformation (2.18) in the two previous equations, we have
the desired result

𝑥 = 𝑥 + 𝜀𝐵𝑠1(𝜎) + 𝜀2𝐴𝐵𝑠2(𝜎) + O(𝜀3)
𝜂 = 𝜂 + O(𝜀3).

Plugging this expression for 𝑥 in 𝑦 = ℎ(𝑥) and Taylor expanding to second order yields (2.15c),
thus concluding the proof.

The practical use of the theorem is the following. Assume we can compute a third-order
estimate 𝑌 of 𝑌 from the knowledge of only the actual measurement 𝑦. Using the relation
between 𝑥 and 𝑥, we have

𝑌 = 𝐻(𝑥) + O(𝜀3) = 𝐻(𝑥) + O(𝜀3).

The control law with signal injection

𝑢 = 𝛼(𝜂, 𝑌, 𝑡) + 𝑠0 ( 𝑡
𝜀) (2.20a)

̇𝜂 = 𝑎(𝜂, 𝑌, 𝑡) (2.20b)

is then practically implementable and will control (2.10) as desired in average.
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Figure 2.3: State 𝑥1 and estimate 𝑌̂3 (top left); 𝑥2 (top right); 𝑥3 and estimate 𝑌̂2 (middle).

2.3.3 Demodulation of the virtual measurements

In this subsection, we show how to estimate the virtual measurements from the ripple in the
actual measurement. Consider the composite signal

𝑦(𝑡) = 𝑌0(𝑡) + 𝑌1(𝑡)𝑠1 ( 𝑡
𝜀) + 𝑌2(𝑡)𝑠2

1 ( 𝑡
𝜀) + 𝑌3(𝑡)𝑠2 ( 𝑡

𝜀) + O(𝜀3),

where 𝑌0, … , 𝑌3 are in C3 and 𝑌(3)
0 , … , 𝑌(3)

3 are bounded. Theorem 2.10 below states that
𝑌0, … , 𝑌3 can be estimated at third order thanks to periodic low-pass filters.

Decomposition on an orthogonal basis

We first rewrite 𝑦 as a decomposition on the periodic orthogonal signals (1, 𝑠1, 𝑠2, 𝑆1),

𝑦(𝑡) = 𝑌0(𝑡) + 𝑌1(𝑡)𝑠1 ( 𝑡
𝜀) + 𝑌2(𝑡)𝑆1 ( 𝑡

𝜀) + 𝑌3(𝑡)𝑠2 ( 𝑡
𝜀) + O(𝜀3). (2.21)

The signals 1, 𝑠1, 𝑠2 are orthogonal (for the scalar product ⟨𝑓 , 𝑔⟩ = ∫1
0 𝑓 (𝜏)𝑔(𝜏)𝑑𝜏); indeed,

⟨1, 𝑠1⟩ = ⟨1, 𝑠2⟩ = 0 since 𝑠1,𝑠2 have zero mean, and ⟨𝑠1, 𝑠2⟩ = 1
2 ∫1

0 (𝑠2
1)′(𝜎)𝑑𝜎 = 0. 𝑆1 is then

obtained from 𝑠2
1 by Gram-Schmidt orthogonalization,

𝑆1(𝑡) ∶= 𝑠2
1(𝑡) − 𝑠2

1 − ⟨𝑠2
1,𝑠1⟩

𝑠2
1

𝑠1(𝑡) − ⟨𝑠2
1,𝑠2⟩

𝑠2
2

𝑠2(𝑡).
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Figure 2.4: Difference 𝑥 − 𝑥𝑖 between 𝑥 (controlled using the virtual measurements) and 𝑥𝑖
(controlled using the actual state 𝑥). Full view (left), zoom (right).

As a consequence, the “coordinates” 𝑌𝑖 are

𝑌0(𝑡) = 𝑌0(𝑡) + 𝑠2
1𝑌2(𝑡), 𝑌1(𝑡) = 𝑌1(𝑡) + ⟨𝑠2

1,𝑠1⟩

𝑠2
1

𝑌2(𝑡),

𝑌2(𝑡) = 𝑌2(𝑡), 𝑌3(𝑡) = 𝑌3(𝑡) + ⟨𝑠2
1,𝑠2⟩

𝑠2
2

𝑌2(𝑡).

Extraction of the 𝑌𝑖 using iterated moving averages

We now turn to the design of the demodulating filters, which are based on iterated moving
averages of the form

𝑀1(𝜑)(𝑡) ∶=
1
𝜀 ∫

𝑡

𝑡−𝜀
𝜑(𝜎)𝑑𝜎, 𝑀𝑘(𝜑)(𝑡) ∶=

1
𝜀 ∫

𝑡

𝑡−𝜀
𝑀𝑘−1

𝜑 (𝜎)𝑑𝜎, 𝑘 ≥ 2.
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We first recall a basic result on finite differences.

Lemma 2.7. Let 𝜑 be C3 with 𝜑(3) bounded. Then the pth-order backward difference

Δ𝑝𝜑(𝑡) ∶=
𝑝

∑
𝑖=0

(
𝑝
𝑖)(−1)𝑖𝜑(𝑡 − 𝑖𝜀)

satisfies

∥ Δ𝑝𝜑(3−𝑝) ∥∞ ≲ 𝜀𝑝 ‖ 𝜑(3) ‖∞, 𝑝 = 0, … , 3;

𝜑 ≲ 𝜓 means there exists 𝐾 > 0 such that 𝜑 ≤ 𝐾𝜓.

Proof. For simplicity, we just prove as an example the case 𝑝 = 2. By the Taylor-Lagrange
formula, there exists 𝑡1 ∈ [𝑡 − 𝜀, 𝑡] and 𝑡2 ∈ [𝑡 − 2𝜀, 𝑡] such that,

𝜑′(𝑡 − 𝜀) = 𝜑′(𝑡) − 𝜀𝜑″(𝑡) +
𝜀2

2 𝜑(3)(𝑡1)

𝜑′(𝑡 − 2𝜀) = 𝜑′(𝑡) − 2𝜀𝜑″(𝑡) + 2𝜀2𝜑(3)(𝑡2).

Therefore,

Δ𝑝𝜑′(𝑡) = −𝜀2𝜑(3)(𝑡1) + 2𝜀2𝜑(3)(𝑡2);

hence the desired inequality

∥ Δ𝑝𝜑′ ∥∞ ≤ 3𝜀2 ‖ 𝜑(3) ‖∞.

This lemma is used to prove the following result, which has an important role on the filter
design.

Lemma 2.8. Let 𝜑 be C3 with 𝜑(3) bounded, and 𝜁 be a 1-periodic function with zero mean.
Then, the following estimate holds

∥ 𝑀3(𝜑 ̌𝜁) ∥∞ ≲ 𝜀3 ‖ 𝜑(3) ‖∞‖ 𝜁 (−3) ‖∞,

with 𝜁−(𝑗+1) the zero-mean primitive of 𝜁 (−𝑗) (where 𝜁 (0) = 𝜁), and ̌𝜁 (𝑡) ∶= 𝜁( 𝑡
𝜀).

Proof. Integrating by parts three times and using the periodicity of 𝜁𝑗 gives

𝑀(𝜑 ̌𝜁)(𝑡) = Δ1𝜑(𝑡)𝜁 (−1) ( 𝑡
𝜀) − 𝜀Δ1𝜑′(𝑡)𝜁 (−2) ( 𝑡

𝜀) + 𝜀2Δ1𝜑″(𝑡)𝜁 (−3) ( 𝑡
𝜀)

−𝜀2 ∫
𝑡

𝑡−𝜀
𝜑(3)(𝜎)𝜁 (−3) (𝜎

𝜀 ) 𝑑𝜎. (2.22)

We now dominate the last two terms: clearly,

∣ 𝜀2 ∫
𝑡

𝑡−𝜀
𝜑(3)(𝜎)𝜁 (−3) (𝜎

𝜀 ) ∣ ≤ 𝜀3 ‖ 𝜑(3) ‖∞‖ 𝜁 (−3) ‖∞;

lemma 2.7 applied to the third term yields

∣ 𝜀2Δ1𝜑″(𝑡)𝜁 (−3) ( 𝑡
𝜀) ∣ ≲ 𝜀3 ‖ 𝜑(3) ‖∞‖ 𝜁 (−3) ‖∞.

Notice that if ‖ 𝑓 ‖∞ ≤ 𝐾 then ‖ 𝑀𝑝(𝑓 ) ‖∞ ≤ 𝐾; therefore applying 𝑀1 and 𝑀2 to these two
terms yields the same bounds. Consider next the second term of (2.22); its moving average is

−𝜀𝑀((Δ1𝜑′) ̌𝜁 (−2))(𝑡) = −𝜀Δ2𝜑′(𝑡)𝜁 (−3) ( 𝑡
𝜀) + 𝜀 ∫

𝑡

𝑡−𝜀
Δ1𝜑″(𝜎)𝜁 (−3) (𝜎

𝜀 ) 𝑑𝜎.
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Using again lemma 2.7, the two terms of the right-hand side are similarly dominated by
𝜀3‖ 𝜑(3) ‖∞‖ 𝜁 (−3) ‖∞, and so are their moving averages.
Finally, consider the first term of (2.22). Its moving average is

𝑀((Δ1𝜑) ̌𝜁 (−1))(𝑡) = Δ2𝜑(𝑡)𝜁 (−2) ( 𝑡
𝜀) − 𝜀Δ2𝜑′(𝑡)𝜁 (−3) ( 𝑡

𝜀) + 𝜀 ∫
𝑡

𝑡−𝜀
Δ1𝜑″(𝜎)𝜁 (−3) (𝜎

𝜀 ) 𝑑𝜎.

Likewise, by lemma 2.7, the last two terms of the right-hand side are also dominated by
𝜀3‖ 𝜑(3) ‖∞‖ 𝜁 (−3) ‖∞, and so are their moving average; as for the first term, integrating by parts
its moving average yields

𝑀((Δ2𝜑) ̌𝜁 (−2))(𝑡) = Δ3𝜑(𝑡)𝜁 (−3) ( 𝑡
𝜀) − ∫

𝑡

𝑡−𝜀
Δ2𝜑′(𝜎)𝜁 (−3) (𝜎

𝜀 ) 𝑑𝜎.

Using lemma 2.7 to the right-hand side ends the proof.

We then recover the 𝑌𝑖 from a suitable linear combination of shifted thrice-iterated moving
averages 𝑀3(𝑦) thanks to the following lemma.

Lemma 2.9. Let 𝜑 be C3 with 𝜑(3) bounded. Define

𝑃[𝜑](𝑡) ∶=
17
4 𝑀3(𝜑)(𝑡) − 5𝑀3(𝜑)(𝑡 − 𝜀) +

7
4𝑀3(𝜑)(𝑡 − 2𝜀).

Then the operator 𝑃 is the identity up to third order,

𝑃[𝜑](𝑡) = 𝜑(𝑡) + O(𝜀3).

Proof. Again, consider first a single moving average of 𝜑. Doing a change of variable in the
integral and computing the Taylor expansion of 𝜑 gives

1
𝜀 ∫

𝑡

𝑡−𝜀
𝜑(𝜎)𝑑𝜎 =

1
𝜀 ∫

𝜀

0
𝜑(𝑡 − 𝜎)𝑑𝜎 =

1
𝜀 ∫

𝜀

0
[𝜑(𝑡) − 𝜎𝜑′(𝑡) +

𝜎2

2 𝜑″(𝑡)] 𝑑𝜎 + O(𝜀3)

= 𝜑(𝑡) −
𝜀
2𝜑′(𝑡) +

𝜀2

6 𝜑″(𝑡) + O(𝜀3).

We iterate the previous calculations to get the expressions of 𝑀2(𝜑) and 𝑀3(𝜑),

𝑀2(𝜑)(𝑡) = 𝑀(𝜑)(𝑡) −
𝜀
2𝑀(𝜑′)(𝑡) +

𝜀2

6 𝑀(𝜑″)(𝑡) = 𝜑(𝑡) − 𝜀𝜑′(𝑡) +
7
12𝜑″(𝑡) + O(𝜀3),

𝑀3(𝜑)(𝑡) = 𝜑(𝑡) −
3
2𝜀𝜑′(𝑡) +

15
12𝜀2𝜑″(𝑡) + O(𝜀3).

Finally, we compute the shifted triple moving average for 𝑘 = 0, 1, 2. This yields

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝑀3(𝜑)(𝑡)

𝑀3(𝜑)(𝑡 − 𝜀)

𝑀3(𝜑)(𝑡 − 2𝜀)

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

1 −3
2

15
12

1 −5
2

39
12

1 −7
2

75
12

⎞⎟⎟⎟⎟⎟⎟⎟
⎠⏟⏟⏟⏟⏟⏟⏟

∶=𝔄

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝜑(𝑡)

𝜀𝜑′(𝑡)

𝜀2𝜑″(𝑡)

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

+ O(𝜀3).

Let 𝛼 = (1 0 0) 𝔄−1 = (17/4 −5 7/4). This yields the desired conclusion

𝑃[𝜑](𝑡) = 𝛼 (𝑀3(𝜑)(𝑡) 𝑀3(𝜑)(𝑡 − 𝜀) 𝑀3(𝜑)(𝑡 − 2𝜀))
𝑇

= 𝜑(𝑡) + O(𝜀3).

Combining the three previous lemmas, thereom 2.10 estimates the 𝑌𝑖.
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Figure 2.5: Zoom on the measured output (left) with noise. On the control (right).

Theorem 2.10. Considering the operator 𝑃 defined in lemma 2.9, we have an estimate for each
of the 𝑌𝑖 with an accuracy of O(𝜀3), namely

𝑌2(𝑡) ∶= 1
𝑆2

1
𝑃[𝑦 ̌𝑆1](𝑡) = 𝑌2(𝑡) + O(𝜀3) (2.23a)

𝑌3(𝑡) ∶= 1
𝑠2

2
𝑃[𝑦 ̌𝑠2](𝑡) − ⟨𝑠2

1,𝑠2⟩

𝑠2
2

𝑌2(𝑡) = 𝑌3(𝑡) + O(𝜀3) (2.23b)

𝑌1(𝑡) ∶= 1
𝑠2

1
𝑃[𝑦 ̌𝑠1](𝑡) − ⟨𝑠2

1,𝑠1⟩

𝑠2
1

𝑌2(𝑡) = 𝑌1(𝑡) + O(𝜀3) (2.23c)

𝑌0(𝑡) ∶= 𝑃[𝑦](𝑡) − 𝑠2
1𝑌2(𝑡) = 𝑌0(𝑡) + O(𝜀3). (2.23d)

Proof. Let first determine the estimate for 𝑌2. Computing 𝑃[𝑦 ̌𝑆1], we get

𝑃[𝑦 ̌𝑆1](𝑡) = 𝑃[𝑌0 ̌𝑆1](𝑡) + 𝑃[𝑌1 ̌𝑠1 ̌𝑆1](𝑡) + 𝑃[𝑌2( ̌𝑆2
1 − 𝑆2

1)](𝑡) + 𝑃[𝑌2𝑆2
1](𝑡)

+𝑃[𝑌3 ̌𝑠2 ̌𝑆1](𝑡) + O(𝜀3).

Since 𝑃 is a linear combination of shifted 𝑀3 and 𝑆1, 𝑠1𝑆1, 𝑠2𝑆1 and 𝑆2
1 − 𝑆2

1 have zero mean,
we have by lemma 2.8

𝑃[𝑦 ̌𝑆1](𝑡) = 𝑃[𝑌2𝑆2
1](𝑡) + O(𝜀3).

Consequently, using lemma 2.9, we have the following estimate for 𝑌2 (which is equal to 𝑌2)

𝑌2(𝑡) = 1
𝑆2

1
𝑃[𝑦 ̌𝑆1](𝑡) = 𝑌2(𝑡) + O(𝜀3).

Let compute 𝑌3. The same calculations for 𝑃[𝑦 ̌𝑠2] provide

𝑃[𝑦 ̌𝑠2](𝑡) = 𝑠2
2 𝑌3(𝑡) = 𝑠2

2 (𝑌3(𝑡) + ⟨𝑠2
1,𝑠2⟩

𝑠2
2

𝑌2(𝑡)),

that is, by definition of 𝑌3 (2.23b)

𝑌3(𝑡) = 𝑌3(𝑡) + O(𝜀3).

Following the previous lines, we get the estimates 𝑌0, 𝑌1.
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2.3.4 A worked example

We illustrate the interest of the method on the system

̇𝑥1 = 𝑥2 (2.24a)
̇𝑥2 = 𝑥3 (2.24b)
̇𝑥3 = 𝑢 + 𝑑 (2.24c)

𝑦 = 𝑥1𝑥2 +
𝑥3

3
3 (2.24d)

where 𝑑 is an unknown disturbance. We would like 𝑥1 to track the reference 𝑥ref1 while rejecting
the disturbance, with a time response of about a few time units. We want to operate around
steady state, i.e. near states of the form (𝑥𝑠𝑠

1 , 0, 0) and inputs such that 𝑢𝑠𝑠 + 𝑑𝑠𝑠 = 0. Notice the
system is not first-order observable around steady state because of the very degenerate output 𝑦,
which makes the control problem far from obvious. Nonetheless, the virtual measurements
for this system are

𝑌1 = 𝜀 (𝑥2 𝑥1 𝑥2
3)

⎛⎜⎜⎜⎜
⎝

0
0
1

⎞⎟⎟⎟⎟
⎠

= 𝜀𝑥2
3

𝑌2 =
𝜀2

2 (0 0 1)
⎛⎜⎜⎜⎜
⎝

0 1 0
1 0 0
0 0 2𝑥3

⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

0
0
1

⎞⎟⎟⎟⎟
⎠

= 𝜀2𝑥3

𝑌3 = 𝜀2 (𝑥2 𝑥1 𝑥2
3)

⎛⎜⎜⎜⎜
⎝

0
1
0

⎞⎟⎟⎟⎟
⎠

= 𝜀2𝑥1,

hence first-order observability is restored thanks to 𝑌2 and 𝑌3, without even considering
𝑦 and 𝑌1. Notice third-order averaging is paramount, since the virtual measurement 𝑌1
stemming from second-order averaging is still degenerate. With 𝑌3 = 𝜀2𝑥1 and 𝑌2 = 𝜀2𝑥3,
the system is completely linear and can therefore be easily controlled. We design a classical
controller-observer, with observer

⎛⎜⎜⎜⎜
⎝

̇̂𝑥1
̇̂𝑥2
̇̂𝑥3

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

̂𝑥2
̂𝑥3

𝑢

⎞⎟⎟⎟⎟
⎠

+ 𝐿 ⎛⎜
⎝

𝑌3/𝜀2 − ̂𝑥1
𝑌2/𝜀2 − ̂𝑥3

⎞⎟
⎠

and integral controller

𝑢 = −𝑘1 ̂𝑥1 − 𝑘2 ̂𝑥2 − 𝑘3 ̂𝑥3 − 𝑘𝐼𝜂𝐼

̇𝜂𝐼 =
𝑌3
𝜀2 − 𝑥ref1 .

The 3 × 2 matrix 𝐿 and 𝐾 = (𝑘1 𝑘2 𝑘3 𝑘𝐼) are chosen such that the eigenvalues of the observer
are (−13.98, −1.57 ± 1.59𝑖) and those of the controller are (−1.20 ± 1.77𝑖, −2.00 ± 0.58𝑖),
which ensures a time response of a few time units and a reasonable robustness; the ob-
server is faster than the controller, in accordance with Loop Transfer Recovery (at the plant
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input). Setting 𝜂 ∶= ( ̂𝑥1 ̂𝑥2 ̂𝑥3 𝜂𝐼)
𝑇, this controller-observer reads

𝑢 = −𝐾𝜂

̇𝜂 = 𝑀𝜂 + 𝑁𝑥ref1 (𝑡) + 𝐿̃ ⎛⎜
⎝

𝑌3/𝜀2

𝑌2/𝜀2
⎞⎟
⎠

,

where the matrices 𝐿̃, 𝑀 and 𝑁 are

𝐿̃ ∶= ⎛⎜
⎝

𝐿
1 0

⎞⎟
⎠

, 𝑀 =
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−𝑙11 1 −𝑙12 0
−𝑙21 0 1 − 𝑙22 0

−𝑘1 − 𝑙31 −𝑘2 −𝑘3 − 𝑙32 −𝑘𝐼
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝑁 ∶= (0 0 0 −1)
𝑇

.

Following section 2.3.2, this yields the implementable control law for (2.24a)–(2.24c), which
is a particular case of (2.20),

𝑢 = −𝐾𝜂 + 𝑠0( 𝑡
𝜀)

̇𝜂 = 𝑀𝜂 + 𝑁𝑥ref1 (𝑡) + 𝐿̃ ⎛⎜
⎝

𝑌3/𝜀2

𝑌2/𝜀2
⎞⎟
⎠

,

where 𝑌2 and 𝑌3 are obtained from the actual measurement (2.24d) by the demodulation
procedure of subsection 2.3.3. The injected signal 𝑠0 is a square wave of amplitude 1 and
frequency 100, which ensures the oscillation is fast with respect to the time constants of the
closed-loop system; 𝑛 ∶= 2 is used in the demodulating filter.

The test scenario is the following: at 𝑡 = 0 s the system starts at rest at the origin, with
the reference 𝑥ref1 set to 0; at 𝑡 = 4 s, a step disturbance 𝑑 of magnitude −0.25 is applied; for
12 ≤ 𝑡 ≤ 32 s, 𝑥ref1 is a slow (filtered) ramp with slope 5 × 10−2, meaning the system must
slowly move while nearly first-order unobservable; finally, at 𝑡 = 32 s, 𝑥ref1 is a filtered step so
as to quickly return to 0.

Without noise on the actual output 𝑦, the performance is excellent: the reference is tracked
and the disturbance is rejected (Fig. 2.3). In fact the system behaves nearly as in the ideal
situation where it is controlled directly from 𝑥1, 𝑥3 without signal injection (Fig. 2.4); the
ripple is visible on 𝑥3 because it is directly affected by the input, but is much smaller on 𝑥1, 𝑥2,
as anticipated by the averaging analysis. A zoomed view for 27.6 ≤ 𝑡 ≤ 27.8 s gives a better
insight of the signals: Fig. 2.4 (right) illustrates (2.15a); Fig. 2.1 shows the square wave in
the control signal; Fig. 2.2 shows the ripple in the actual output is really tiny near steady state,
with a strange form caused by the nonlinearity of this output.

With a measured output 𝑦𝑚 corrupted by noise, one thus might fear the ripple is much
too small to be useful; this is not the case since the demodulation process is essentially a
low-pass filter. Indeed, the system performs as desired (Fig. 2.6a and 2.6b), even though the
output ripple is buried into noise (Fig. 2.5). The measurement noise used in the simulation is
a band-limited white noise with noise power 1 × 10−18 and sample time 1 × 10−5 s.
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Figure 2.6: Left: state and estimates 𝑥1 and 𝑌̂3/𝜀2 (top); 𝑥2 (middle); 𝑥3 and 𝑌̂2/𝜀2 (bottom).
Right: difference between 𝑥 (signal injection) and 𝑥𝑖 (ideal control).

2.4 Third-order averaging theorem and signal injection

Before generalizing this study to MIMO systems with a nonlinear dynamics, it should be
pointed out that the averaging theory might not be employed in the same way at orders higher
than three to recover the virtual measurements. Indeed, the application of theorem 2.2 at
order 𝑘 requires that the two equations for 𝑥 and ̃𝑥 only differ at the 𝑘 + 1th order and at the 𝑘th

order by a term ℎ𝑘 with zero mean. In the linear case for 𝑘 = 3, this third-order term is 𝜀3𝐴2𝐵𝑠2,
as conveyed by equation (2.19a). As this third-order term will stay at higher orders in the
expression for ̃𝑥, it will eventually hinder the application of the averaging theorem to compare
the original system and the one with signal injection. The presence of the zero-mean periodic
term at the 𝑘th order only is nevertheless guaranteed by the quasi-identity transformation,
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but at the cost of a modification of the averaged system, which then differs from the original
system (meaning there exists a 𝑔𝑖 with 𝑖 ≥ 2 in theorem 2.2 that is different from zero). The
comparison remains valid, but with a system different from the original, and will require
corrections to the control terms when the latter uses the virtual measurements. In this section,
(more particularly in subsection 2.4.2), under the assumption that the model describes a
PMSM, we show that the comparison theorem remains applicable with an averaged system
that corresponds exactly to the unperturbed system, thus making a posteriori corrections
unnecessary.
Furthermore, while the first-order virtual measurement (𝑌1 in equation (2.11)) can be

derived by a standard timescale separation —which is the technique historically used for
electric motors [JL95] by neglecting the voltage drop response to the high-frequency signal,
see subsection 1.4.1—, it reveals insufficient to extract the two other virtual measurements
𝑌2 and 𝑌3. As a matter of fact, a standard low-frequency/high-frequency separation is not
helpful in distinguishing the second and third-order in 𝜀 HF components. The two second-
order virtual measurements that are derived thanks to the third-order averaging theory are
modulated on high-frequency signals sharing the same frequency —the injection frequency—,
namely 𝑠1, 𝑠2 and 𝑠2

1. In this regard, the averaging theory to study the injection effects is
paramount.
We now generalize in this section the application of the averaging theory toMIMO systems

controlled thanks to signal injection. For the sake of clarity, we restrict the study to open-loop
systems, and keep at bay the slow-time variation of the input. In the following, 𝑓, 𝑔 and ℎ
denote smooth enough mappings, i.e. at least C4 and Lipschitz on 𝐷. In order to simplify the
ensuing computations, we will eventually take into account the specificities of the state-space
model of a PMSM.

2.4.1 Solving the homological equations

In section 2.2, we stated the existence the near-identity transformation that brings an insta-
tionary system into an averaged one, with only the last power in 𝜀 being time-dependent.
Even if the existence of such a transformation can be theoretically proved without loss of
generality, we will specifically focus on the derivation of the near-identity transformation for
systems controlled thanks to signal injection, i.e. of the form

̇𝑥 = 𝜀(𝑓 (𝑥) + 𝑔(𝑥)𝑠0(𝑡)). (2.25)

With a slight abuse of notation, the vector field 𝑓 also encompasses the term 𝑔(𝑥)𝑢. This
trick will turn out to be harmless, as discussed in subsection 2.4.2. We consider the generic
third-order near-identity transformation

𝑥 = ̌𝑥 + 𝜀𝜑1( ̌𝑥, 𝑡) + 𝜀2𝜑2( ̌𝑥, 𝑡) + 𝜀3𝜑3( ̌𝑥, 𝑡), (2.26)

where 𝜑1, 𝜑2 and 𝜑3 are yet to be defined. According to subsection 2.2.1, they can be selected
so that ̌𝑥 satisfies the full averaged equation, which is of the form

̇̌𝑥 = 𝜀𝑔1( ̌𝑥) + 𝜀2𝑔2( ̌𝑥) + 𝜀3𝑔3( ̌𝑥) + 𝜀4𝑔[4]( ̌𝑥, 𝑡, 𝜀),
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where 𝑔1( ̌𝑥) ∶= ∫1
0 (𝑓 ( ̌𝑥)+𝑔( ̌𝑥)𝑠0(𝑡)) 𝑑𝑡 = 𝑓 ( ̌𝑥), 𝑔2 and 𝑔3 being stationary. The process consists

in computing successively 𝜑1, 𝑔2, 𝜑2, 𝑔3 etc. Following this procedure, to compute 𝜑1, start by
derivating (2.26) with respect to 𝑡; this yields

̇𝑥 = ̇̌𝑥 + 𝜀𝜕𝑡𝜑1( ̌𝑥, 𝑡) + terms in 𝜀2.

Replacing in the previous equation ̇𝑥 and ̇̌𝑥 by their expression (2.25) and (2.26) respectively
yields

𝜀(𝑓 (𝑥) + 𝑔(𝑥)𝑠0(𝑡)) = 𝜀(𝑓 ( ̌𝑥) + 𝜕𝑡𝜑1( ̌𝑥, 𝑡)) + terms in 𝜀2.

Since 𝑓 (𝑥) = 𝑓 ( ̌𝑥) + terms in 𝜀2, and 𝑔(𝑥) = 𝑔( ̌𝑥) + terms in 𝜀2, the identification of the first-
order in 𝜀 terms gives 𝜕𝑡𝜑1( ̌𝑥, 𝑡) = 𝑔( ̌𝑥)𝑠0(𝑡). A wide range of 𝜑1 matches this constraint
—namely 𝑔( ̌𝑥) applied to any primitive of 𝑠0—, and each choice leads to a different set of
equations for the averaged equation. We select 𝜑1( ̌𝑥, 𝑡) = 𝑔( ̌𝑥)𝑠1(𝑡) where 𝑠1 is the zero-mean
primitive of 𝑠0. The remaining of the proof consists in computing successively 𝑔2, 𝜑2 and 𝑔3,
along the lines above. To obtain 𝑔2, we compute ̇𝑥 by differentiating (2.26) with respect to 𝑡
on the one hand, and by plugging the transformation (2.26) into the system (2.25) and Taylor
expanding on the other hand. The full derivative of (2.26) with respect to the time reads

̇𝑥 = ̇̌𝑥 + 𝜀𝑑𝑔 ̌𝑥( ̇̌𝑥)𝑠1(𝑡) + 𝜀𝑔( ̌𝑥)𝑠0(𝑡) + 𝜀2𝜕𝑡𝜑2( ̌𝑥, 𝑡) + terms in 𝜀3

= ̇̌𝑥 + 𝜀𝑔( ̌𝑥)𝑠0(𝑡) + 𝜀2𝑑𝑔 ̌𝑥(𝑓 ( ̌𝑥))𝑠1(𝑡) + 𝜀2𝜕𝑡𝜑2( ̌𝑥, 𝑡) + terms in 𝜀3, (2.27)

where 𝑑𝑔𝑥(ℎ) denotes the differential of 𝑔 in 𝑥 evaluated in ℎ. As for the Taylor expansion,

̇𝑥 = 𝜀𝑓 (𝑥) + 𝜀𝑔(𝑥)𝑠0(𝑡)
= 𝜀𝑓 ( ̌𝑥) + 𝜀2𝑑𝑓 ̌𝑥(𝑔( ̌𝑥)𝑠1(𝑡)) + 𝜀𝑔( ̌𝑥)𝑠0(𝑡) + 𝜀2𝑑𝑔 ̌𝑥(𝑔( ̌𝑥)𝑠1(𝑡))𝑠0(𝑡) + terms in 𝜀3. (2.28)

Identifying the terms in 𝜀2 in the two previous equations (2.27) and (2.28) yields

𝑔2( ̌𝑥) + 𝜕𝑡𝜑2( ̌𝑥, 𝑡) + 𝑑𝑔 ̌𝑥(𝑓 ( ̌𝑥))𝑠1(𝑡) = 𝑑𝑓 ̌𝑥(𝑔( ̌𝑥)𝑠1(𝑡)) + 𝑑𝑔 ̌𝑥(𝑔( ̌𝑥)𝑠1(𝑡))𝑠0(𝑡).

Since 𝜕𝑡𝜑2 and 𝑠1 have zero mean in 𝑡, taking the average of the previous equation then yields

𝑔2( ̌𝑥) = ∫
1

0
𝑑𝑔 ̌𝑥(𝑔( ̌𝑥)𝑠1(𝜎))𝑠0(𝜎) 𝑑𝜎.

Notice that in the SISO case, 𝑠0𝑠1 has zero mean, since it is the derivative of 𝑠2
1/2. This property

however does not hold in the MIMO case, as coupling terms between the components of 𝑠0
and 𝑠1 arise. Selecting 𝜑2 such that its mean is zero, we have

𝜑2( ̌𝑥, 𝑡) = 𝑑𝑓 ̌𝑥(𝑔( ̌𝑥)𝑠2(𝑡)) − 𝑑𝑔 ̌𝑥(𝑓 ( ̌𝑥))𝑠2(𝑡)

+ ∫
𝑡

0
𝑑𝑔 ̌𝑥(𝑔( ̌𝑥)𝑠1(𝜎))𝑠0(𝜎) 𝑑𝜎 − ∫

1

0
∫

𝜎

0
𝑑𝑔 ̌𝑥(𝑔( ̌𝑥)𝑠1(𝜏))𝑠0(𝜏) 𝑑𝜏 𝑑𝜎. (2.29)

We now turn to the computation of 𝑔3. The process is repeated once again: on the one hand,
we compute the derivative of the near-identity transform (2.26), focusing this time on the
third-order terms in 𝜀

̇𝑥 = ̇̌𝑥 + terms in 𝜀 + 𝜀𝑑𝑥𝜑1
( ̌𝑥,𝑡)( ̇̌𝑥) + 𝜀2𝑑𝑥𝜑2

( ̌𝑥,𝑡)( ̇̌𝑥) + 𝜀3𝜕𝑡𝜑3( ̌𝑥, 𝑡) + terms in 𝜀4

= terms in 𝜀1 and 𝜀2 + 𝜀3𝑔3( ̌𝑥) + 𝜀3𝑑𝑥𝜑1
( ̌𝑥,𝑡)(𝑔2( ̌𝑥)) + 𝜀3𝑑𝑥𝜑2

( ̌𝑥,𝑡)(𝑓 ( ̌𝑥)) + 𝜀3𝜕𝑡𝜑3( ̌𝑥, 𝑡)
+terms in 𝜀4. (2.30)
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On the other hand, inserting (2.26) into (2.25) and Taylor expanding gives

̇𝑥 = 𝜀𝑓 (𝑥) + 𝜀𝑔(𝑥)𝑠0(𝑡)

= 𝜀𝑓 ( ̌𝑥) + 𝜀2𝑑𝑓 ̌𝑥(𝜑1( ̌𝑥, 𝑡)) + 𝜀3𝑑𝑓 ̌𝑥(𝜑2( ̌𝑥, 𝑡)) +
𝜀3

2 𝑑2𝑓 ̌𝑥(𝜑1( ̌𝑥, 𝑡), 𝜑1( ̌𝑥, 𝑡))

+𝜀𝑔( ̌𝑥)𝑠0(𝑡) + 𝜀2𝑑𝑔 ̌𝑥(𝜑1( ̌𝑥, 𝑡))𝑠0(𝑡) + 𝜀3𝑑𝑔 ̌𝑥(𝜑2( ̌𝑥, 𝑡))𝑠0(𝑡) +
𝜀3

2 𝑑2𝑔 ̌𝑥(𝜑1( ̌𝑥, 𝑡), 𝜑1( ̌𝑥, 𝑡))𝑠0(𝑡)

+terms in 𝜀4. (2.31)

As (2.30) and (2.31) describe the same state, the identification of the third-order terms in 𝜀 in
both equations gives

𝑔3( ̌𝑥) + 𝑑𝑥𝜑2
( ̌𝑥,𝑡)(𝑓 ( ̌𝑥)) + 𝑑𝑥𝜑1

( ̌𝑥,𝑡)(𝑔2( ̌𝑥)) + 𝜕𝑡𝜑3( ̌𝑥, 𝑡) = 𝑑𝑓 ̌𝑥(𝜑2( ̌𝑥, 𝑡))

+
1
2𝑑2𝑓 ̌𝑥(𝜑1( ̌𝑥, 𝑡), 𝜑1( ̌𝑥, 𝑡)) + 𝑑𝑔 ̌𝑥(𝜑2( ̌𝑥, 𝑡))𝑠0(𝑡) +

1
2𝑑2𝑔 ̌𝑥(𝜑1( ̌𝑥, 𝑡), 𝜑1( ̌𝑥, 𝑡))𝑠0(𝑡).

Therefore, taking the mean of the previous equation —with 𝜕𝑡𝜑3( ̌𝑥, 𝑡) and 𝑑𝑓 ̌𝑥(𝜑2( ̌𝑥, 𝑡)) having
zero mean—, 𝑔3 satisfies

𝑔3( ̌𝑥) =
1
2 ∫

1

0
[𝑑2𝑓 ̌𝑥(𝜑1( ̌𝑥, 𝜎), 𝜑1( ̌𝑥, 𝜎)) + 𝑑2𝑔 ̌𝑥(𝜑1( ̌𝑥, 𝜎), 𝜑1( ̌𝑥, 𝜎))𝑠0(𝜎)] 𝑑𝜎

+ ∫
1

0
[𝑑𝑔 ̌𝑥(𝜑2( ̌𝑥, 𝜎))𝑠0(𝜎) − 𝑑𝑥𝜑1

( ̃𝑥,𝜎)(𝑔2( ̌𝑥)) − 𝑑𝑥𝜑2
( ̌𝑥,𝜎)(𝑓 ( ̌𝑥))] 𝑑𝜎.

The computation of 𝜑3 and 𝑔[4] can ultimately be dropped, as only the truncated transforma-
tion (2.3) is used to derive 𝑥 and then ̃𝑥.

2.4.2 Application to MIMO systems with nonlinear dynamics

The application of the previous process to solve the homological equations lead to a truncated
averaged equation of the form

𝑥̇ = 𝜀𝑔1(𝑥) + 𝜀2𝑔2(𝑥) + 𝜀3𝑔3(𝑥).

Nonetheless, to eventually obtain a meaningful comparison without modifying the control
law, the desired comparison is carried out with the system without injection, i.e. 𝑥 verifying

̇𝑥 = 𝜀𝑓 (𝑥). (2.32)

Henceforth, 𝑥 will denote the solution of (2.32). We will show that, under the simplify-
ing hypotheses gathered in equation (2.41) , we can consider 𝑥 as the solution of original
system (2.32) instead of the truncated averaged equation.
Consider the change of coordinates

̃𝑥 ∶= 𝑥 + 𝜀𝜑1(𝑥, 𝑡) + 𝜀2𝜑2(𝑥, 𝑡). (2.33)

This change of coordinates is obtained by applying the near-identity transformation derived in
the previous subsection to the original state 𝑥 without injection. Therefore, the two functions
𝜑1 and 𝜑2 are defined by

𝜑1(𝑥, 𝑡) ∶= 𝑔(𝑥)𝑠1(𝑡), (2.34a)
𝜑2(𝑥, 𝑡) ∶= 𝑑𝑓𝑥(𝑔(𝑥)𝑠2(𝑡)) − 𝑑𝑔𝑥(𝑓 (𝑥))𝑠2(𝑡). (2.34b)
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Notice the difference between (2.34b) and the expression (2.29) obtained when solving the
homological equations. Under the assumption (2.41) that the system describes a PMSM, the
two integral terms in (2.29) are zero.
The first step consists in looking for the dynamics of ̃𝑥. Computing the total derivative of

the transformation (2.33) with respect to 𝑡 gives

̇̃𝑥 = 𝑥̇ + 𝜀𝑑𝑥𝜑1
(𝑥,𝑡)(𝑥̇) + 𝜀𝜕𝑡𝜑1(𝑥, 𝑡) + 𝜀2𝑑𝑥𝜑2

(𝑥,𝑡)(𝑥̇) + 𝜀2𝜕𝑡𝜑2(𝑥, 𝑡). (2.35)

The next step consists in expressing the previous right-hand side as a function of ̃𝑥 and 𝑡 only.
The first right-hand side term in (2.35) is simply given by the dynamics of 𝑥

̇𝑥 = 𝜀𝑓 (𝑥).

The two following terms in (2.35) can be expressed thanks to the expression (2.34a) for 𝜑1

𝜀𝑑𝑥𝜑1
(𝑥,𝑡)(𝑥̇) = 𝜀2𝑑𝑔𝑥(𝑓 (𝑥))𝑠1(𝑡), (2.36a)

𝜀𝜕𝑡𝜑1(𝑥, 𝑡) = 𝜀𝑔(𝑥)𝑠0(𝑡). (2.36b)

As for the two last terms, using expression (2.34b) for 𝜑2, they read

𝜀2𝑑𝑥𝜑2
(𝑥,𝑡)(𝑥̇) = 𝜀3𝑑2𝑓𝑥(𝑔(𝑥)𝑠2(𝑡), 𝑓 (𝑥)) − 𝜀3𝑑2𝑔𝑥(𝑓 (𝑥), 𝑓 (𝑥))𝑠2(𝑡)

+𝜀3𝑑𝑓𝑥(𝑑𝑔𝑥(𝑓 (𝑥))𝑠2(𝑡)) − 𝜀3𝑑𝑔𝑥(𝑑𝑓𝑥(𝑓 (𝑥)))𝑠2(𝑡), (2.36c)
𝜀2𝜕𝑡𝜑2(𝑥, 𝑡) = 𝜀2 [𝑑𝑓𝑥(𝑔(𝑥)𝑠1(𝑡)) − 𝑑𝑔𝑥(𝑓 (𝑥))𝑠1(𝑡)] . (2.36d)

Collecting the five equations (2.32), (2.36a) to (2.36d) (and dropping the last two (zero)
terms in (2.36c) thanks to (2.41)) allows us to rewrite (2.35) as follows

̇̃𝑥 = 𝜀(𝑓 (𝑥) + 𝑔(𝑥)𝑠0(𝑡)) + 𝜀2𝑑𝑓𝑥(𝑔(𝑥)𝑠1(𝑡))
+𝜀3[𝑑2𝑓𝑥(𝑔(𝑥)𝑠2(𝑡), 𝑓 (𝑥)) − 𝑑2𝑔𝑥(𝑓 (𝑥), 𝑓 (𝑥))𝑠2(𝑡)]. (2.37)

Equation (2.37) only exhibits terms depending on 𝑥 and 𝑡 in its right-hand side. The third-
order term in 𝜀 in (2.37) reads (replacing by ̃𝑥 by its expression (2.35) as a function of 𝑥 and
Taylor expanding at the first order)

𝜀3[𝑑2𝑓𝑥(𝑔(𝑥)𝑠2(𝑡), 𝑓 (𝑥)) − 𝑑2𝑔𝑥(𝑓 (𝑥), 𝑓 (𝑥))𝑠2(𝑡)] =

𝜀3[𝑑2𝑓 ̃𝑥(𝑔( ̃𝑥)𝑠2(𝑡), 𝑓 ( ̃𝑥)) − 𝑑2𝑔 ̃𝑥(𝑓 ( ̃𝑥), 𝑓 ( ̃𝑥))𝑠2(𝑡)]+ terms in 𝜀4. (2.38)

Likewise, replacing ̃𝑥 by its expression (2.35) and Taylor expanding yields for the term of
order 𝜀2 in (2.37)

𝜀2𝑑𝑓𝑥(𝑔(𝑥)𝑠1(𝑡)) = 𝜀2𝑑𝑓 ̃𝑥(𝑔(𝑥)𝑠1(𝑡)) − 𝜀3𝑑2𝑓 ̃𝑥(𝜑1(𝑥, 𝑡), 𝜑1(𝑥, 𝑡)) + terms in 𝜀4

= 𝜀2𝑑𝑓 ̃𝑥(𝑔(𝑥)𝑠1(𝑡)) − 𝜀3𝑑2𝑓 ̃𝑥(𝜑1( ̃𝑥, 𝑡), 𝜑1( ̃𝑥, 𝑡)) + terms in 𝜀4. (2.39)

Notice already that the third-order terms in the two previous equations compensate each
other. Finally, replacing ̃𝑥 by its expression (2.35) and Taylor expanding yields for the term of
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order 𝜀 in (2.37)

𝜀(𝑓 (𝑥) + 𝑔(𝑥)𝑠0(𝑡)) = 𝜀(𝑓 ( ̃𝑥) + 𝑔( ̃𝑥)𝑠0(𝑡)) − 𝜀2𝑑𝑓 ̃𝑥(𝜑1(𝑥, 𝑡)) − 𝜀2𝑑𝑔 ̃𝑥(𝜑1(𝑥, 𝑡))𝑠0(𝑡)

−𝜀3𝑑𝑓 ̃𝑥(𝜑2(𝑥, 𝑡)) − 𝜀3𝑑𝑔 ̃𝑥(𝜑2(𝑥, 𝑡))𝑠0 +
𝜀3

2 𝑑2𝑓 ̃𝑥(𝜑1(𝑥, 𝑡), 𝜑1(𝑥, 𝑡))

+
𝜀3

2 𝑑2𝑔 ̃𝑥(𝜑1(𝑥, 𝑡), 𝜑1(𝑥, 𝑡))𝑠0(𝑡) + terms in 𝜀4

= 𝜀(𝑓 ( ̃𝑥) + 𝑔( ̃𝑥)𝑠0(𝑡)) − 𝜀2𝑑𝑓 ̃𝑥(𝑔(𝑥)𝑠1(𝑡)) − 𝜀3𝑑𝑓 ̃𝑥(𝜑2( ̃𝑥, 𝑡))

+
𝜀3

2 𝑑2𝑓 ̃𝑥(𝜑1( ̃𝑥, 𝑡), 𝜑1( ̃𝑥, 𝑡)) + terms in 𝜀4, (2.40)

where we used that the following quantities are zero (these results are proved in subsec-
tion 2.5.3 for a PMSM)

𝑑𝑔 ̃𝑥(𝜑1(𝑥, 𝑡)) = 𝑑𝑔 ̃𝑥(𝜑2(𝑥, 𝑡)) = 𝑑2𝑔 ̃𝑥(𝜑1(𝑥, 𝑡), 𝜑1(𝑥, 𝑡)) = 0. (2.41)

Gathering the three Taylor expansions (2.38) to (2.40), equation (2.35) can now be written
entirely as a function of ̃𝑥

̇̃𝑥 = 𝜀(𝑓 ( ̃𝑥) + 𝑔( ̃𝑥)𝑠0(𝑡)) + 𝜀3[𝑑2𝑓 ̃𝑥(𝑔( ̃𝑥)𝑠2(𝑡), 𝑓 ( ̃𝑥)) − 𝑑2𝑔 ̃𝑥(𝑓 ( ̃𝑥), 𝑓 ( ̃𝑥))𝑠2(𝑡) − 𝑑𝑓 ̃𝑥(𝜑2( ̃𝑥, 𝑡))]

+
𝜀3

2 𝑑2𝑓 ̃𝑥(𝑔( ̃𝑥)𝑠1(𝑡), 𝑔( ̃𝑥)𝑠1(𝑡)) + terms in 𝜀4, (2.42)

which we write under the form
̇̃𝑥 = 𝜀(𝑓 ( ̃𝑥) + 𝑔( ̃𝑥)𝑠0(𝑡)) + 𝜀3𝑓 3

1 ( ̃𝑥, 𝑡) + 𝜀3𝑓 3
2 ( ̃𝑥, 𝑡) + terms in 𝜀4,

with 𝑓 3
1 and 𝑓 3

2 defined as follows

𝑓 3
1 ( ̃𝑥, 𝑡) ∶= 𝑑2𝑓 ̃𝑥(𝑔( ̃𝑥)𝑠2(𝑡), 𝑓 ( ̃𝑥)) − 𝑑2𝑔 ̃𝑥(𝑓 ( ̃𝑥), 𝑓 ( ̃𝑥))𝑠2(𝑡) − 𝑑𝑓 ̃𝑥(𝜑2( ̃𝑥, 𝑡)), (2.43a)

𝑓 3
2 ( ̃𝑥, 𝑡) ∶=

1
2𝑑2𝑓 ̃𝑥(𝑔( ̃𝑥)𝑠1(𝑡), 𝑔( ̃𝑥)𝑠1(𝑡)). (2.43b)

The second-order differential 𝑑2𝑓 ̃𝑥 being bilinear, the expression for 𝑓 3
1 is linear in the

excitation signal 𝑠2. This signal 𝑠2 is by definition the zero-mean primitive of 𝑠1, which means
𝑓 3
1 also has zero mean, i.e.

∫
1

0
[𝑑2𝑓 ̃𝑥(𝑔( ̃𝑥)𝑠2(𝜎), 𝑓 ( ̃𝑥)) − 𝑑2𝑔 ̃𝑥(𝑓 ( ̃𝑥), 𝑓 ( ̃𝑥))𝑠2(𝜎) − 𝑑𝑓 ̃𝑥(𝜑2( ̃𝑥, 𝜎))] 𝑑𝜎 = 0.

However, without additional assumptions on the dynamics, 𝑓 3
2 is quadratic in 𝑠1; its mean is

consequently not necessarily zero. The averaging process might be hindered by such a term
as it may introduce a slow drift. Estimates on a time length of magnitude 𝜀, or decreased
accuracy on a longer time interval can nonetheless be obtained in the presence of non-zero in
mean terms. For the time being, assume 𝑓 3

2 has zero mean; we will see that for a PMSM, for
rotating sine wave and pulsating sine and square wave injections, 𝑓 3

2 also has zero mean. Under
this assumption on 𝑓 3

2 , the averaging theorem 2.2 can be rewritten as follows

Theorem 2.11 (Third-order comparison theorem). Consider 𝑥 and ̃𝑥 satisfying

̇𝑥 = 𝜀[𝑓 (𝑥) + 𝑔(𝑥)𝑠0(𝑡)]
̇̃𝑥 = 𝜀[𝑓 ( ̃𝑥) + 𝑔( ̃𝑥)𝑠0(𝑡)] + 𝜀3𝑘3( ̃𝑥, 𝑡) + O(𝜀4),
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with 𝑓 and 𝑔 Lipschitz, 𝑘3(𝑥, 𝑡) Lipschitz in 𝑥, periodic with zero mean in t. Then the following
estimate for the solutions holds, on a timescale 1/𝜀

𝑥(𝑡) = ̃𝑥(𝑡) + O(𝜀3).

The application of the theorem then provides a relation between the original state and the
one with signal injection:

𝑥(𝑡) = 𝑥(𝑡) + 𝜀𝜑1(𝑥, 𝑡) + 𝜀2𝜑2(𝑥, 𝑡) + O(𝜀3)
= 𝑥(𝑡) + 𝜀𝑔(𝑥)𝑠1(𝑡) + 𝜀2[𝑑𝑓𝑥(𝑔(𝑥)𝑠2(𝑡)) − 𝑑𝑔𝑥(𝑓 (𝑥))𝑠2(𝑡)] + O(𝜀3).

Knowing the perturbed state as a function of the non-perturbed one is an end in itself, since
the injection effects are finely described by the previous equation: a first-order ripple carried
by the fast-varying signal 𝑠1 as well as a second-order ripple carried by 𝑠2 are superimposed
to 𝑥 to form the state 𝑥 with an accuracy in O(𝜀3). Inserting this expression for 𝑥 into the
measurement 𝑦 = ℎ(𝑥) finally provides the measured output 𝑦 as a function of 𝑥, still with an
accuracy in O(𝜀3)

𝑦 = ℎ(𝑥) + 𝜀𝑑ℎ𝑥(𝑔(𝑥)𝑠1(𝑡)) +
𝜀2

2 𝑑2ℎ𝑥(𝑔(𝑥)𝑠1(𝑡), 𝑔(𝑥)𝑠1(𝑡))

+𝜀2𝑑ℎ𝑥(𝑑𝑓𝑥(𝑔(𝑥)𝑠2(𝑡)) − 𝑑𝑔𝑥(𝑓 (𝑥))𝑠2(𝑡)) + O(𝜀3). (2.44)

Additional virtual measurements are available, provided that they are different from zero
and independent of the first-order virtual measurement. One of these is modulated by
the components of the matrix 𝑠1𝑠𝑇

1 , the other by 𝑠2. Moreover, replacing 𝑓 (𝑥) by 𝑓 (𝑥) +
𝑔(𝑥)𝑢 interestingly does not change the expression of the measurement (2.44), since it only
intervenes in the second-order in 𝜀 Lie-Bracket term, and is ultimately compensated, without
changing the shape of the equation. Also, throughout this section, the operated simplifications
only rested on the hypotheses (2.41) on the differentials of 𝑔, which means encompassing the
open-loop control into 𝑓 had no impact on the previous derivations.

2.5 Application of third-order averaging to the PMSM

The results of section 2.4 are now applied on the state-space model of PMSM. The objec-
tive is twofold: on the one hand, to check the aforementioned assumptions, namely that
equation (2.41) holds and 𝑓 3

2 (see equation (2.43b)) has zero mean for the different types of
injections considered in subsection 1.5.1; on the other hand, to obtain an explicit formula-
tion for the two additional virtual measurements, and see if they can be harnessed to gain
knowledge on the system.

2.5.1 State-space model

We re-write the state-space model of a PMSM in the 𝑑𝑞-frame under the form

̇𝑥 = 𝑓 (𝑥) + 𝑔(𝑥)𝑢 + 𝑔𝑑(𝑥)𝑇𝑙

𝑦 = ℎ(𝑥),
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with 𝑥 = (𝜙𝑑
𝑠 𝜙𝑞

𝑠 𝜔 𝜃)
𝑇, 𝑢 = (𝑢𝑎

𝑠 𝑢𝑏
𝑠 𝑢𝑐

𝑠)
𝑇, 𝑓 (𝑥) = (𝑓𝑑 𝑓𝑞 𝑓𝜔 𝑓𝜃), 𝑔𝑑(𝑥) = (0 0 −1 0) and

𝑓𝑑(𝑥) = −𝑅𝑠𝚤𝑑𝑠 + 𝜔𝜙𝑞
𝑠 , 𝑓𝑞(𝑥) = −𝑅𝑠𝚤

𝑞
𝑠 − 𝜔𝜙𝑑

𝑠 ,

𝑓𝜔(𝑥) =
𝑛2

𝐽 (−𝚤𝑑𝑠 𝜙𝑞
𝑠 + 𝚤𝑞𝑠𝜙𝑑

𝑠 ) , 𝑓𝜃(𝑥) = 𝜔,

𝑔(𝑥) =
⎛⎜⎜⎜⎜
⎝

R(−𝜃)C
𝟘1×3
𝟘1×3

⎞⎟⎟⎟⎟
⎠

= √2
3

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

cos 𝜃 cos(𝜃 − 2𝜋
3 ) cos(𝜃 + 2𝜋

3 )
− sin 𝜃 − sin(𝜃 − 2𝜋

3 ) − sin(𝜃 + 2𝜋
3 )

0 0 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

ℎ(𝑥) = 𝚤𝛼𝛽
𝑠 = R(𝜃) (𝚤𝑑𝑠 𝚤𝑞𝑠)

𝑇
, 𝚤𝑑𝑠 (𝑥) =

𝜙𝑑
𝑠 − 𝜙𝑚

𝐿𝑑
, 𝚤𝑞𝑠(𝑥) =

𝜙𝑞
𝑠

𝐿𝑞
.

The injected voltage in the 𝑎𝑏𝑐-frame is denoted by 𝑠0 = 𝑠𝑎𝑏𝑐
0 (the absence of superscript

implicitly denotes the signal in the 𝑎𝑏𝑐-frame). Like any other quantities in this three-axis
frame, the injection is subject to Concordia and Park’s transformation. Once the model is
given, the remaining task merely boils down to the computation of the different terms in
equations (2.41), (2.43b) and (2.44).

2.5.2 First-order virtual measurement

The first-order virtual measurement is given by the first-order term in (2.44)

𝑦𝑣,1 ∶= 𝑑ℎ𝑥(𝑔(𝑥)𝑠1(𝑡)).

The differential of ℎ on 𝑥 applied to 𝑧, by definition of the Jacobian, is 𝑑ℎ𝑥(𝑧) ∶= 𝐽ℎ(𝑥)𝑧. The
mapping ℎ gives the current in the 𝛼𝛽-frame, namely

ℎ(𝑥) = 𝚤𝛼𝛽 = R(𝜃) (𝜙𝑑−𝜙𝑚
𝐿𝑑

𝜙𝑞

𝐿𝑞
)

𝑇
=

⎛⎜⎜⎜⎜
⎝

cos 𝜃 × 𝜙𝑑−𝜙𝑚

𝐿𝑑
− sin 𝜃 × 𝜙𝑞

𝐿𝑞

sin 𝜃 × 𝜙𝑑−𝜙𝑚

𝐿𝑑
+ cos 𝜃 × 𝜙𝑞

𝐿𝑞

⎞⎟⎟⎟⎟
⎠

,

which means the Jacobian of ℎ is

𝐽ℎ(𝑥) = ⎛⎜⎜
⎝

1
𝐿𝑑
cos 𝜃 − 1

𝐿𝑞
sin 𝜃 0

R(𝜃 + 𝜋/2)(𝜙𝑑−𝜙𝑚

𝐿𝑑

𝜙𝑞

𝐿𝑞
)𝑇

1
𝐿𝑑
sin 𝜃 + 1

𝐿𝑞
cos 𝜃 0

⎞⎟⎟
⎠

∈ ℝ2×4.

Defining ̃𝐽ℎ(𝑥) ∶= (𝐽ℎ(𝑥))1≤𝑖,𝑗≤2, the first-order virtual measurement is thus given by

𝑑ℎ𝑥(𝑔(𝑥)𝑠1(𝑡)) = ̃𝐽ℎ(𝑥)R(− ̄𝜃)C𝑠𝑎𝑏𝑐
1 (𝑡)

= S( ̄𝜃)𝑠𝛼𝛽
1 (𝑡) =

𝐿𝑞 + 𝐿𝑑

2𝐿𝑑𝐿𝑞

⎛⎜⎜⎜⎜
⎝

1 +
𝐿𝑞−𝐿𝑑

𝐿𝑞+𝐿𝑑
cos 2 ̄𝜃

𝐿𝑞−𝐿𝑑

𝐿𝑞+𝐿𝑑
sin 2 ̄𝜃

𝐿𝑞−𝐿𝑑

𝐿𝑞+𝐿𝑑
sin 2 ̄𝜃 1 −

𝐿𝑞−𝐿𝑑

𝐿𝑞+𝐿𝑑
cos 2 ̄𝜃

⎞⎟⎟⎟⎟
⎠

𝑠𝛼𝛽
1 (𝑡),

with S(𝜃) the so-called saliency matrix, and 𝑠𝛼𝛽
1 ∶= C𝑠𝑎𝑏𝑐

1 . This is a well-known result [Jeb+16],
which could have been obtained without resorting to the third-order averaging theory. This
statement however does not hold for the derivation of the two potential second-order virtual
measurements, where this theory is paramount.
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2.5.3 Proof of the averaging assumptions

Along with the derivation of the new virtual measurements, we prove that the different
quantities that have been assumed to be either zero —equation (2.41)— or with zero mean
effectively holds when considering the state-space model of a PMSM.We start by proving
the first and third equalities in (2.41): the first-order differential of 𝑔 on 𝑥 applied to 𝑧 =
(𝑧1 𝑧2 𝑧3 𝑧4)

𝑇
∈ ℝ4 is

𝑑𝑔𝑥(𝑧) =
⎛⎜⎜⎜⎜
⎝

−R(𝜋
2 − 𝜃)C

0 0 0
0 0 0

⎞⎟⎟⎟⎟
⎠

𝑧4. (2.45)

By (2.34a), the expression of 𝜑1(𝑥, 𝑡) = 𝑔(𝑥)𝑠𝑎𝑏𝑐
1 = (𝑠𝑑𝑞

1 0 0)
𝑇

∈ ℝ4, with

𝑠𝑑𝑞
1 ∶=

⎛⎜⎜⎜⎜⎜
⎝

R(−𝜃)𝑠𝛼𝛽
1

0
0

⎞⎟⎟⎟⎟⎟
⎠

, 𝑠𝛼𝛽
1 ∶= C𝑠𝑎𝑏𝑐

1 ∈ ℝ2.

This means the fourth component of 𝜑1 is zero, therefore 𝑑𝑔𝑥(𝜑1(𝑥, 𝑡)) = 0. Moreover, based
on (2.45), without computing its expression, the second-order differential of 𝑔 on 𝑥 applied to
𝑧 twice only depends on 𝑧4 (as 𝑑𝑔𝑥 only depends on the fourth variable 𝜃). Since 𝜑1(𝑥, 𝑡) has
no fourth component either, the third equality in (2.41) holds, namely

𝑑2𝑔𝑥(𝑔(𝑥)𝑠1, 𝑔(𝑥)𝑠1) = 0.

As for the second equality 𝑑𝑔𝑥(𝜑2(𝑥, 𝑡)) = 0, likewise, we show that the fourth coefficients of
𝜑2 is also zero. On the one hand,

𝑑𝑔𝑥(𝑓 (𝑥))𝑠2 =
⎛⎜⎜⎜⎜
⎝

−R(𝜋
2 − 𝜃)C

0 0 0
0 0 0

⎞⎟⎟⎟⎟
⎠

𝑓𝜃(𝑥)𝑠2,

means [𝑑𝑔𝑥(𝑓 (𝑥))𝑠2)]4 = 0. On the other, the Jacobian of 𝑓 reads

𝐽𝑓(𝑥) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−𝑅𝑠
𝐿𝑑

𝜔 𝜙𝑞 0
−𝜔 −𝑅𝑠

𝐿𝑞
−𝜙𝑑 0

𝑛2

𝐽 𝜙𝑞( 1
𝐿𝑑

− 1
𝐿𝑞

) 𝑛2

𝐽 𝜙𝑑( 1
𝐿𝑑

− 1
𝐿𝑞

) + 𝜙𝑚
𝐿𝑑

0 0
0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

With 𝑔(𝑥)𝑠2 = (𝑠𝑑
2 𝑠𝑞

2 0 0)
𝑇, we obtain [𝑑𝑓𝑥(𝑔(𝑥)𝑠2)]4 = 0. Which means [𝜑2(𝑥, 𝑡)]4 = 0,

hence 𝑑𝑔𝑥(𝜑2) = 0. This concludes the proof of (2.41) when the state-space model of a PMSM
is considered. We now turn to the mean of 𝑓 3

2 . The second-order differential of 𝑓 in 𝑥 reads for
𝑧 ∈ ℝ4

𝑑2𝑓𝑥(𝑧, 𝑧) = 2 (𝑧2𝑧3 −𝑧1𝑧3
𝑛2

𝐽 ( 1
𝐿𝑑

− 1
𝐿𝑞

)𝑧1𝑧2 0)
𝑇

.
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Replacing 𝑧 by 𝜑1 = (𝑠𝑑
1 𝑠𝑞

1 0 0)
𝑇, the evaluation of the second-order differential reads

𝑑2𝑓𝑥(𝜑1(𝑥, 𝑡), 𝜑1(𝑥, 𝑡)) = (0 0 𝑛2

𝐽 ( 1
𝐿𝑑

− 1
𝐿𝑞

)𝑠𝑑
1𝑠𝑞

1 0)
𝑇

.

For the three type of injections described in subsection 1.5.1, the two signals 𝑠𝑑
1 and 𝑠𝑞

1 are
orthogonal. Indeed, in the pulsating case, the 𝑞− axis injection being zero, 𝑠𝑞

1 = 0, and for the
rotating injection, 𝑠𝛼

1 and 𝑠𝛽
1 are sine waves in quadrature, so are 𝑠𝑑

1 and 𝑠𝑞
1. Consequently,

∫
1

0
𝑑2𝑓𝑥(𝜑1(𝑥, 𝜎), 𝜑1(𝑥, 𝜎)) 𝑑𝜎 = 0.

In other words, 𝑓 3
2 has zero mean.

2.5.4 Second-order virtual measurements

After tedious but straightforward computations, the additional second-order virtual measure-
ments for the state-space model of a PMSM are

𝑑2ℎ𝑥(𝑔(𝑥)𝑠1(𝑡), 𝑔(𝑥)𝑠1(𝑡)) = 0,
𝑑ℎ𝑥(𝑑𝑓𝑥(𝑔(𝑥)𝑠2(𝑡)) − 𝑑𝑔𝑥(𝑓 (𝑥))𝑠2(𝑡)) = S2( ̄𝜃)𝑠𝛼𝛽

2 (𝑡),

where S2(𝜃) is the so-called second-order saliency matrix defined by

S2( ̄𝜃) ∶= −
𝑅𝑠(𝐿2

𝑞 + 𝐿2
𝑑)

2𝐿2
𝑑𝐿2

𝑞

⎛⎜⎜⎜⎜⎜
⎝

1 +
𝐿2

𝑞−𝐿2
𝑑

𝐿2
𝑞+𝐿2

𝑑
cos 2 ̄𝜃

𝐿2
𝑞−𝐿2

𝑑

𝐿2
𝑞+𝐿2

𝑑
sin 2 ̄𝜃

𝐿2
𝑞−𝐿2

𝑑

𝐿2
𝑞+𝐿2

𝑑
sin 2 ̄𝜃 1 −

𝐿2
𝑞−𝐿2

𝑑

𝐿2
𝑞+𝐿2

𝑑
cos 2 ̄𝜃

⎞⎟⎟⎟⎟⎟
⎠

. (2.46)

Eventually, the measured currents (2.44) in the 𝛼𝛽-frame read

𝚤𝛼𝛽 = 𝚤𝛼𝛽 + 𝜀S( ̄𝜃)𝑠𝛼𝛽
1 + 𝜀2S2( ̄𝜃)𝑠𝛼𝛽

2 + O(𝜀3).

This second-order saliency matrix shares the same shape as its first-order counterpart. One
noticeable difference between S and S2 though is the presence of the stator resistance in
the latter. While the first virtual measurement can be harnessed to estimate the position,
the second one may provide the evolution of the resistance, as its value can vary with the
temperature and the operating conditions. Also, knowing the shape of the second-order term
in the expression for the measurement can help in designing more accurate estimators for the
first-order term.

2.5.5 Demodulation of the second-order virtual measurements

The demodulation procedure to recover the second-order virtual measurements is once again
sketched to suit the specificities of the measured currents of a PMSM. A generic extraction
process is fully detailed in chapter 4, and applied to experimental data in chapter 6 for the
first-order virtual measurement recovery.
Assume first the second-order component in the measured currents is available with an

accuracy in O(𝜀3) (following for instance the process described in subsection 2.3.3), i.e.

𝑦𝑣,2(𝑡) = 𝜀2S2( ̄𝜃)𝑠𝛼𝛽
2 (𝑡) + O(𝜀3).
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Figure 2.7: cos 2𝜃, its estimate (left), sin 2𝜃, its estimate (right) during the first four seconds.

A standard least-square method is used to estimate cos 2 ̄𝜃 and sin 2 ̄𝜃 from this virtual mea-
surement 𝑦𝑣,2 thanks to the particular structure of the second-order saliency matrix S2( ̄𝜃),
see (2.46). Start by defining the two following quantities

⎛⎜
⎝

𝜆 𝜇
𝜇 𝜈

⎞⎟
⎠

∶= 𝑠𝛼𝛽
2 𝑠𝛼𝛽𝑇

2 = ∫
1

0
𝑠𝛼𝛽
2 (𝜎)𝑠𝛼𝛽𝑇

2 (𝜎) 𝑑𝜎, ⎛⎜
⎝

𝑦11 𝑦12
𝑦21 𝑦22

⎞⎟
⎠

∶=
−2𝐿2

𝑑𝐿2
𝑞

𝑅𝑠(𝐿2
𝑑 + 𝐿2

𝑞)
𝑦𝑣,2

𝜀2 .

and 𝐿 ∶=
𝐿2

𝑑+𝐿2
𝑞

𝐿2
𝑞−𝐿2

𝑑
. With these notations, the second-order virtualmeasurement 𝑦𝑣,2 = 𝜀2S2(𝜃)𝑠𝛼𝛽

2

can be rewritten as follows

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜆 𝜇
𝜇 𝜈

−𝜇 𝜆
−𝜈 𝜇

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠⏟⏟⏟⏟⏟

∶=𝑃

⎛⎜
⎝
cos 2 ̄𝜃
sin 2 ̄𝜃

⎞⎟
⎠

= 𝐿
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑦11 − 𝜆
𝑦12 − 𝜇
𝑦21 − 𝜇
𝑦22 − 𝜈

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

⏟⏟⏟⏟⏟
∶=𝑑

The least-square solution of this (consistent) overdetermined linear system in cos 2 ̄𝜃 and
sin 2 ̄𝜃 is therefore given by

⎛⎜
⎝
cos 2 ̄𝜃
sin 2 ̄𝜃

⎞⎟
⎠

= 𝐿[𝑃𝑇𝑃]−1𝑃𝑇𝑑 =
𝐿

𝜆2 + 2𝜇2 + 𝜈2 𝑃𝑇𝑑

=
𝐿

𝜆2 + 2𝜇2 + 𝜈2
⎛⎜
⎝

𝜆𝑦11 + 𝜇(𝑦12 − 𝑦21) − 𝜈𝑦22 − 𝜆2 + 𝜈2

𝜇(𝑦11 + 𝑦22) + 𝜈𝑦12 + 𝜆𝑦21 − 2𝜇(𝜆 + 𝜈)
⎞⎟
⎠

.

Estimates ̂cos 2 ̄𝜃, ̂sin 2 ̄𝜃 for cos 2 ̄𝜃, sin 2 ̄𝜃 are obtained with the same formulas, using instead
of the actual 𝑦𝑖𝑗 their estimated values

⎛⎜
⎝

̂𝑦11 ̂𝑦12
̂𝑦21 ̂𝑦22

⎞⎟
⎠

∶=
−2𝐿2

𝑑𝐿2
𝑞

𝑅𝑠(𝐿2
𝑑 + 𝐿2

𝑞)
̂𝑦𝑣,2

𝜀2 =
−2𝐿2

𝑑𝐿2
𝑞

𝑅𝑠(𝐿2
𝑑 + 𝐿2

𝑞)
𝑦𝑣,2

𝜀2 + O(𝜀).
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Table 2.1: Rated parameters
Rated power 400W Number of pole pairs 𝑛 2
Rated voltage (RMS) 400V Stator resistance 𝑅𝑠 4.25 Ω
Rated current (RMS) 1.66A 𝑑-axis inductance 𝐿𝑑 43.25mH
Rated speed 1800RPM 𝑞-axis inductance 𝐿𝑞 69.05mH
Rated torque 2.12Nm Permanent magnet flux linkage 𝜙𝑚 0.277Wb

We thus have

̂cos 2 ̄𝜃 ∶= 𝐿
𝜆 ̂𝑦11 + 𝜇( ̂𝑦12 − ̂𝑦21) − 𝜈 ̂𝑦22 − 𝜆2 + 𝜈2

𝜆2 + 2𝜇2 + 𝜈2

= cos 2 ̄𝜃 + O(𝜀),
̂sin 2 ̄𝜃 ∶= 𝐿

𝜇( ̂𝑦11 + ̂𝑦22) + 𝜈 ̂𝑦12 + 𝜆 ̂𝑦21 − 2𝜇(𝜆 + 𝜈)
𝜆2 + 2𝜇2 + 𝜈2

= sin 2 ̄𝜃 + O(𝜀).

Finally, an estimate ̂̄𝜃 of ̄𝜃 is given by

̂̄𝜃 ∶=
1
2 atan2( ̂sin 2 ̄𝜃, ̂cos 2 ̄𝜃) + 𝑘𝜋 = ̄𝜃 + O(𝜀). (2.47)

2.5.6 Numerical results

The recovery of the additional virtual measurement, described by the second-order saliency
matrix, is now validated on a numerical experiment. To recover the position, a standard
rotating square wave injection is used, with 𝑠𝛼

0 = cos 𝑡
𝜀 and 𝑠𝛽

0 = sin 𝑡
𝜀 ; the injection frequency

is set to 𝜀−1 = 4 kHz. The method is tested on a salient-poles machine model, whose rated
parameters are gathered in table 2.1. The scenario is the following: the motor, as well as the
reference, starts and stays at rest between 0 and 0.5 s. The speed reference then describes a
ramp, going from 0 to 4Hz (electrical) in 5 s. From 5.5 to 10 s, themotor stays at constant speed.
During the whole scenario, the motor carries a load torque of around 50 % of its nominal
value. The extraction of cos 2𝜃 and sin 2𝜃 is depicted in Fig. 2.7, and shows the good agreement
between the actual values and their respective estimates. The position is reconstructed using
equation (2.47), see Fig. 2.8, where the error estimate 𝜃− ̂𝜃 shares the same order of magnitude
as the injection period 𝜀−1.
The numerical results confirm the possibility of recovering the rotor position from the

second-order virtual measurement 𝑦𝑣,2. While this position estimation can be achieved using
the first-order virtual measurement, the second-order one may serve alternative purposes.
Indeed, 𝑦𝑣,2 carries information on the stator resistance that can be extracted using the prior
position estimate (thanks to the first-order virtual measurement). Such a result turns out to be
particularly relevant when the stator resistance is not well-known and is subject to significant
variations.
Knowing the expression of the perturbed measurement with an increased accuracy can also

be used to enhance the estimators quality. For a PMSMmodel indeed, the first second-order
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virtual measurement, modulated by 𝑠2
1, is zero. This means that, up to the second-order, the

perturbed measurement is only modulated by periodic signals with zero mean, namely 𝑠1 and
𝑠2. The application to the perturbed output of lemma 2.8 together with the estimator given
in lemma 2.9 improves the recovery accuracy. Put simply, 𝑃[𝑖𝛼𝛽

𝑠 ] = 𝑖𝛼𝛽
𝑠 + O(𝜀3) whereas a

first-order development of 𝑖𝛼𝛽
𝑠 may only yield an estimate in O(𝜀2), should the higher-order

term be modulated by a signal with non-zero mean.
A few caveats coming along this method are noticeable though. While this method is

properly defined when the PMSM model assumes a linear current-flux relation, it might
fail at capturing magnetic saturation effects on the additional virtual measurements, thus
producing inaccurate position estimates. As illustrated by the experimental results in chapter 6
(Fig. 6.5), saturation effects induce an error estimate drift (when the position is recovered
from the first-order virtual measurement) under the same speed reference tracking scenario
with different load torque values. In this regard, an energy-based modeling approach [Jeb13]
to derive a saturated current-flux relation could be useful in understanding this discrepancy,
but at the cost of a greater complexity in the virtual measurement expressions.
Another theoretical limitation of the third-order averaging theory to derive additional

virtual outputs arises when substituting the analog voltage input by its modulated output
(using PWM, multilevel converters, or any scheme), thereby introducing state discontinuities
(as well as potential non-idealities such as voltage drops in the IGBT) into the controlled
system. In chapter 3, the computations are conducted up to the second-order in 𝜀 to derive
the same type of estimates for hybrid systems controlled via an inverter. Third-order results
in this context are yet to be proven.
Finally, under reserve of overcoming these limitations, the virtual measurement 𝑦𝑣,2 am-

plitude is dominated by 𝜀2, and is consequently subject to potential distortions other than
a complete corruption by the measurement noise. Nevertheless, this may turn out to be
exploitable when the injection frequency is relatively low [Jun+11], making the term in 𝜀2

sizable.
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2.6 Conclusion

This chapter has laid out the foundations of the averaging theory at any order, detailing
in particular the set of transformations pushing a perturbed system to a stationary one, all
by connecting the two by a comparison theorem. This comparison being valid only on a
finite timescale in all generality, additional assumptions of the stability of the system allow
to extend this estimate to infinity. When the perturbed system corresponds to the system
controlled by signal injection, it is shown that virtual measurements are made available by
an adequate demodulation procedure. The classical averaging has been slightly modified
to take into account the specificities of the non-linear model of a PMSM, so as to obtain a
comparison between the unperturbed system and the system with injection, without the need
for a posteriori compensation. From this study, the expression of the virtual measurements
for PMSM equipped with a linear current-flux relation was derived. The first-order virtual
measure allows the recovery of position information through the so-called saliency matrix.
As for the second-order virtual measurement, a higher-order saliency matrix is highlighted,
which has the same structure as its first-order counterpart, but depends on the stator resistance,
which can be estimated by exploiting this new virtual measurement.





Chapter 3

Second-order averaging theory for endogenous
signal injection

This chapter is adapted from Adding virtual measurements by PWM-induced signal injec-
tion [Sur+20a], published in the Proceedings of ACC 2020.

Résumé L’injection de signal exogène présente plusieurs limites, notamment lorsque le
système contrôlé l’est par un onduleur. Pour ces systèmes électromécaniques, le signal MLI
d’entrée, qui est un signal carrémodulé, génère une perturbation en sortie demanière endogène,
c’est-à-dire sans ajout de signal. Cet effet sur la sortie laisse donc entrevoir la possibilité
d’extraire de cette perturbation une information supplémentaire sur le système. Là où l’analyse
par averaging développée au chapitre 2 s’appliquait aux systèmes étant Lipschitz par rapport à
l’état, pour les systèmes contrôlés par MLI, une discontinuité par rapport à l’état est introduite
dans le terme de perturbation endogène. Une adaptation de cette théorie au cas précis des
systèmes contrôlés par MLI est développée dans ce chapitre. Cette théorie permet d’obtenir
une expression analytique de la perturbation induite par la MLI, permettant alors de bénéficier
des mêmes effets que l’injection de signal traditionnelle (exogène). De manière analogue à
l’injection de signal exogène conceptualisée au chapitre précédent, il est possible de récupérer
la même mesure virtuelle qui peut alors être employée dans le bouclage de sortie du système,
et ce sans les inconvénients engendrés par l’ajout d’un signal extérieur.

Abstract Exogenous signal injection technique has several limitations, especially when the
system is controlled by an inverter. For these electromechanical systems, the PWM input
signal, which is a modulated square-wave signal, generates an output perturbation in an
endogenous way, i.e. without adding an signal. This effect on the output therefore suggests
the possibility of extracting additional information on the system from this ripple. While
the averaging analysis developed in chapter 2 applies to state-Lipschitz systems, for PWM-
controlled systems, state-discontinuities are introduced in the endogenous perturbation term.
An adaptation of this theory to the very specific case of PWM-controlled systems is developed
in this chapter. This theory derives an analytical expression of the PWM-induced output
perturbation, thus leading to the same effects as the traditional signal injection. Consequently,
similar to the exogenous case conceptualized in the previous chapter, it is possible to recover
the exact same virtual measured output allowing the output looping of the system, without
the inconvenience of adding an external signal.

59
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3.1 Introduction

Signal injection is a control technique which consists in adding a fast-varying probing signal
to the control input. This excitation creates a small ripple in the measurements, which
contains useful information if properly decoded. The idea was introduced in [JL95; CL98]
for controlling electric motors at low velocity using only measurements of currents. It was
later conceptualized in [Com+16a] as a way of producing “virtual measurements” that can
be used to control the system, in particular to overcome observability degeneracies. Signal
injection is a very effective method, see e.g. applications to electromechanical devices along
these lines in [Jeb+16; YOZ18], but it comes at a price: the ripple it creates may in practice
yield unpleasant acoustic noise and excite unmodeled dynamics. Also, in the very common
situation where the device is fed by a Pulse Width Modulation (PWM) inverter, the frequency
of the probing signal may not be as high as desired so as not to interfere with the PWM
(typically, it cannot exceed 500Hz in an industrial drive with a 4 kHz-PWM frequency).
The goal of this chapter is to demonstrate that, for PWM-operated devices, it is possible to

benefit from signal injectionwithout an external probing signal, by suitably using the excitation
provided by the PWM itself, as e.g. in [WX04]. More precisely, consider the Single-Input
Single-Output system

̇𝑥 = 𝑓 (𝑥) + 𝑔(𝑥)𝑢, (3.1a)
𝑦 = ℎ(𝑥), (3.1b)

where 𝑢 is the control input and 𝑦 the measured output. We first show in section 3.2 that
when the control is impressed through PWM, the dynamics may be written as

̇𝑥 = 𝑓 (𝑥) + 𝑔(𝑥)(𝑢 + 𝑠0(𝑢, 𝑡
𝜀)), (3.2)

with 𝑠0 1-periodic and zero-mean in the second argument, i.e. 𝑠0(𝑢, 𝜎 + 1) = 𝑠0(𝑢, 𝜎) and
∫1

0 𝑠0(𝑢, 𝜎) 𝑑𝜎 = 0 for all 𝑢; 𝜀 is the PWM period, assumed small. The difference with usual
signal injection is that the probing signal 𝑠0 generated by the modulation process now depends
not only on time, but also on the control input 𝑢. This makes the situation more complicated,
in particular because 𝑠0 can be discontinuous in both its arguments. Nevertheless, we show in
section 3.3 that the second-order averaging analysis of chapter 2 can be extended to this case.
In the same way, we show in section 3.4 that the demodulation procedure of [Com+16a] can
be adapted to make available the so-called virtual measurement

𝑦𝑣 ∶= 𝐻1(𝑥) ∶= 𝜀ℎ′(𝑥)𝑔(𝑥),

in addition to the actual measurement 𝑦𝑎 ∶= 𝐻0(𝑥) ∶= ℎ(𝑥). This extra signal is likely to
simplify the design of a control law, as illustrated on a numerical example in section 3.5.
Finally, we list some definitions used throughout the chapter; 𝑆 denotes a function of two

variables, which is 𝑇-periodic in the second argument, i.e. 𝑆(𝑣, 𝜎 + 𝑇) = 𝑆(𝑣, 𝜎) for all 𝑣.

— The mean of 𝑆 in the second argument is the function (of one variable)

𝑆(𝑣) ∶=
1
𝑇 ∫

𝑇

0
𝑆(𝑣, 𝜎) 𝑑𝜎;



3.2 PWM-induced signal injection 61

0 1 2 3

−0.5

0

0.5

Time (s)

w
(V
)

×𝑢𝑚

(a) Sawtooth carrier w

−𝜀 −𝜀/2 𝑡𝑢
1 0 𝑡𝑢

2 𝜀/2 𝜀

−𝑢𝑚

0

𝑢𝑚

Time (s)

Ca
rr
ie
r,
In
pu
t/
O
ut
pu
tv
ol
ta
ge

(V
)

𝑢pwm
𝑢
𝑐

(b) PWM: 𝑢 is compared to 𝑐 to produce 𝑢pwm

Figure 3.1: Sawtooth carrier (left) and PWM signal (right).

𝑆 has zero mean in the second argument if 𝑆 is identically zero.

— If 𝑆 has zero mean in the second argument, its zero-mean primitive in the second
argument is defined by

𝑆1(𝑣, 𝜏) ∶= ∫
𝜏

0
𝑆(𝑣, 𝜎) 𝑑𝜎 −

1
𝑇 ∫

𝑇

0
∫

𝜏

0
𝑆(𝑣, 𝜎) 𝑑𝜎𝑑𝜏;

notice 𝑆1 is 𝑇-periodic in the second argument since 𝑆 has zero mean in the second
argument as well.

— The moving average 𝑀(𝑘) of a signal 𝑘 is defined by

𝑀(𝑘)(𝑡) ∶=
1
𝜀 ∫

𝑡

𝑡−𝜀
𝑘(𝜏) 𝑑𝜏.

— O denotes the uniform “bigO” symbol of analysis, namely 𝑓 (𝑧, 𝑡, 𝜀) = O(𝜀𝑝) if | 𝑓 (𝑧, 𝑡, 𝜀) | ≤
𝐾𝜀𝑝 for 𝜀 small enough, with 𝐾 > 0 independent of 𝑧, 𝑡 and 𝜀.

3.2 PWM-induced signal injection

When the control input 𝑢 in (3.1a) is impressed through a PWM process with period 𝜀, the
resulting dynamics reads

̇𝑥 = 𝑓 (𝑥) + 𝑔(𝑥)M(𝑢, 𝑡
𝜀), (3.3)

withM 1-periodic and mean 𝑢 in the second argument; the detailed expression forM is given
below. Setting 𝑠0(𝑢, 𝜎) ∶= M(𝑢, 𝜎)−𝑢, (3.3) obviously takes the form (3.2), with 𝑠0 1-periodic
and zero-mean in the second argument.
Classical PWM with period 𝜀 and range [−𝑢𝑚, 𝑢𝑚] is obtained by comparing the input

signal 𝑢 to the 𝜀-periodic triangular carrier defined by

𝑐(𝑡) ∶=
⎧{
⎨{⎩

𝑢𝑚 + 4w( 𝑡
𝜀) if −𝑢𝑚

2 ≤ w( 𝑡
𝜀) ≤ 0

𝑢𝑚 − 4w( 𝑡
𝜀) if 0 ≤ w( 𝑡

𝜀) ≤ 𝑢𝑚
2 ;



62 Chapter 3: Second-order averaging theory for endogenous signal injection

0 1 2 3

−1

0

1

Time (s)

𝑠 0
(V
)

𝑢 = 0 𝑢 = 0.2 𝑢 = 0.4

×𝑢𝑚

0 1 2 3

−0.2

0

0.2

0.4

Time (s)

𝑠 1
(V

s)

𝑢 = 0 𝑢 = 0.2 𝑢 = 0.4

×𝑢𝑚

Figure 3.2: 𝑠0(𝑢, ⋅) (left) and 𝑠1(𝑢, ⋅) (right) for 𝑢 = 0, 0.2, 0.4.

the 1-periodic function w(𝜎) ∶= 𝑢𝑚 mod(𝜎 + 1
2 , 1) − 𝑢𝑚

2 wraps the normalized time 𝜎 = 𝑡
𝜀 to

[−𝑢𝑚
2 , 𝑢𝑚

2 ]. If 𝑢 varies slowly enough, it crosses the carrier 𝑐 exactly once on each rising and
falling ramp, at times 𝑡𝑢

1 < 𝑡𝑢
2 such that

𝑢(𝑡𝑢
1) = 𝑢𝑚 + 4w(

𝑡𝑢
1
𝜀 ), 𝑢(𝑡𝑢

2) = 𝑢𝑚 − 4w(
𝑡𝑢
2
𝜀 ).

The PWM-encoded signal is therefore given by

𝑢pwm(𝑡) =

⎧{{{
⎨{{{⎩

𝑢𝑚 if −𝑢𝑚
2 < w( 𝑡

𝜀) ≤ w( 𝑡𝑢
1
𝜀 )

−𝑢𝑚 if w( 𝑡𝑢
1
𝜀 ) < w( 𝑡

𝜀) ≤ w( 𝑡𝑢
2
𝜀 )

𝑢𝑚 if w( 𝑡𝑢
2
𝜀 ) < w( 𝑡

𝜀) ≤ 𝑢𝑚
2 .

Fig. 3.1b illustrates the signals 𝑢, 𝑐 and 𝑢pwm. The function

M(𝑢, 𝜎) ∶=

⎧{{
⎨{{⎩

𝑢𝑚 if −2𝑢𝑚 < 4w(𝜎) ≤ 𝑢 − 𝑢𝑚

−𝑢𝑚 if 𝑢 − 𝑢𝑚 < 4w(𝜎) ≤ 𝑢𝑚 − 𝑢
𝑢𝑚 if 𝑢𝑚 − 𝑢 < 4w(𝜎) ≤ 2𝑢𝑚

= 𝑢𝑚 + sign(𝑢 − 𝑢𝑚 − 4w(𝜎)) + sign(𝑢 − 𝑢𝑚 + 4w(𝜎)),

which is obviously 1-periodic and with mean 𝑢 with respect to its second argument, therefore
completely describes the PWM process since 𝑢pwm(𝑡) = M(𝑢(𝑡), 𝑡

𝜀).
Finally, the induced zero-mean probing signal is

𝑠0(𝑢, 𝜎) ∶= M(𝑢, 𝜎) − 𝑢
= 𝑢𝑚 − 𝑢 + 𝑢𝑚 sign(𝑢−𝑢𝑚

4 − w(𝜎)) + 𝑢𝑚 sign(𝑢−𝑢𝑚
4 + w(𝜎)),

and its zero-mean primitive in the second argument is

𝑠1(𝑢, 𝜎) ∶= (1 − 𝑢
𝑢𝑚

)w(𝜎) − ∣𝑢−𝑢𝑚
4 − w(𝜎)∣ + ∣𝑢−𝑢𝑚

4 + w(𝜎)∣.

Remark 3.1. As 𝑠0 is only piecewise continuous, one might expect problems to define the
“solutions” of (3.2). But as noted above, if the input 𝑢(𝑡) of the PWM encoder varies slowly
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Figure 3.3: 3D view of 𝑠0 (left) and 𝑠1 (right)

enough, its output 𝑢pwm(𝑡) = M(𝑢(𝑡), 𝑡
𝜀)will have exactly two discontinuities per PWMperiod.

Chattering is therefore excluded,which is enough to ensure the existence and uniqueness of the
solutions of (3.2), see [LB96], without the need for the more general Filippov theory [Fil88].
Of course, we assume (without loss of generality in practice) that 𝑓, 𝑔 and ℎ in (3.1) are smooth
enough.
Notice also 𝑠1 is continuous and piecewise 𝐶1 in both its arguments (see Fig. 3.3 where a 3D

view of each function is depicted). The regularity in the second argument was to be expected
as 𝑠1(𝑢, ⋅) is a primitive of 𝑠0(𝑢, ⋅); on the other hand, the regularity in the first argument stems
from the specific form of 𝑠0.

3.3 Averaging and PWM-induced injection

Section 3.3.1 outlines the overall approach and states the main theorem 3.1, which is proven
in the somewhat technical section 3.3.2. As a matter of fact, the proof can be skipped without
losing the main thread; suffice to say that if 𝑠0 were Lipschitz in the first argument, the
proof would essentially be an extension of the analysis by “standard” second-order averaging
of [Com+16a], with more involved calculations.

3.3.1 Main result

Assume we have designed a suitable control law

𝑢 = 𝛼(𝜂, 𝑌, 𝑡)
𝜂̇ = 𝑎(𝜂, 𝑌, 𝑡),

where 𝜂 ∈ ℝ𝑞, for the system

𝑥̇ = 𝑓 (𝑥) + 𝑔(𝑥)𝑢, 𝑌 = 𝐻(𝑥) ∶= ⎛⎜
⎝

ℎ(𝑥)
𝜀ℎ′(𝑥)𝑔(𝑥)

⎞⎟
⎠

.

By “suitable”, we mean the resulting closed-loop system

𝑥̇ = 𝑓 (𝑥) + 𝑔(𝑥)𝛼(𝜂, 𝐻(𝑥), 𝑡) (3.4a)
𝜂̇ = 𝑎(𝜂, 𝐻(𝑥), 𝑡) (3.4b)
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has the desired exponentially stable behavior. We have changed the notations of the variables
with ⋅ to easily distinguish between the solutions of (3.4) and of (3.7) below. Of course, this
describes an unrealistic situation:

— PWM is not taken into account

— the control law is not implementable, as it uses not only the actual output 𝑦𝑎 = ℎ(𝑥),
but also the a priori not available virtual output 𝑦𝑣 = 𝜀ℎ′(𝑥)𝑔(𝑥).

Define now (up to O(𝜀2)) the function

𝐻(𝑥, 𝜂, 𝜎, 𝑡) ∶= 𝐻(𝑥 − 𝜀𝑔(𝑥)𝑠1(𝛼(𝜂, 𝐻(𝑥), 𝑡), 𝜎)) + O(𝜀2), (3.5)

where 𝑠1 is the zero-mean primitive of 𝑠0 in the second argument, and consider the control
law

𝑢 = 𝛼(𝜂, 𝐻(𝑥, 𝜂, 𝑡
𝜀 , 𝑡), 𝑡) (3.6a)

̇𝜂 = 𝑎(𝜂, 𝐻(𝑥, 𝜂, 𝑡
𝜀 , 𝑡), 𝑡). (3.6b)

The resulting closed-loop system, including PWM, reads

̇𝑥 = 𝑓 (𝑥) + 𝑔(𝑥)M(𝛼(𝜂, 𝐻(𝑥, 𝜂, 𝑡
𝜀 , 𝑡), 𝑡), 𝑡

𝜀) (3.7a)
̇𝜂 = 𝑎(𝜂, 𝐻(𝑥, 𝜂, 𝑡

𝜀 , 𝑡), 𝑡). (3.7b)

Though PWM is now taken into account, the control law (3.6) still seems to contain unknown
terms. Nevertheless, it will turn out from the following result that it can be implemented.

Theorem 3.1. Let (𝑥(𝑡), 𝜂(𝑡)) be the solution of (3.7) starting from (𝑥0, 𝜂0), and define 𝑢(𝑡) ∶=
𝛼(𝜂(𝑡), 𝐻̄(𝑥(𝑡)), 𝑡) and 𝑦(𝑡) ∶= 𝐻(𝑥(𝑡)); let (𝑥(𝑡), 𝜂(𝑡)) be the solution of (3.4) starting from
(𝑥0 − 𝜀𝑔(𝑥0)𝑠1(𝑢(0), 0), 𝜂0), and define 𝑢(𝑡) ∶= 𝛼(𝜂(𝑡), 𝐻(𝑥(𝑡)), 𝑡). Then, for all 𝑡 ≥ 0,

𝑥(𝑡) = 𝑥(𝑡) + 𝜀𝑔(𝑥(𝑡))𝑠1(𝑢(𝑡), 𝑡
𝜀) + O(𝜀2) (3.8a)

𝜂(𝑡) = 𝜂(𝑡) + O(𝜀2) (3.8b)
𝑦(𝑡) = 𝐻0(𝑥(𝑡)) + 𝐻1(𝑥(𝑡))𝑠1(𝑢(𝑡), 𝑡

𝜀) + O(𝜀2). (3.8c)

The practical meaning of the theorem is the following. As the solution (𝑥(𝑡), 𝜂(𝑡))) is
piecewise C1, we have by Taylor expansion using (3.8a)-(3.8b) that 𝑢(𝑡) = 𝑢(𝑡) + O(𝜀2). In
the same way, as 𝑠1 is also piecewise C1, we have

𝑠1(𝑢(𝑡), 𝑡
𝜀) = 𝑠1(𝑢(𝑡), 𝑡

𝜀) + O(𝜀2).

As a consequence, we can invert (3.8a)-(3.8b), which yields

𝑥(𝑡) = 𝑥(𝑡) − 𝜀𝑔(𝑥(𝑡))𝑠1(𝑢(𝑡), 𝑡
𝜀) + O(𝜀2) (3.9a)

𝜂(𝑡) = 𝜂(𝑡) + O(𝜀2). (3.9b)

Using this into (3.5), we then get

𝐻(𝑥(𝑡), 𝜂(𝑡), 𝑡
𝜀 , 𝑡) = 𝐻(𝑥(𝑡) − 𝜀𝑔(𝑥(𝑡))𝑠1(𝑢(𝑡), 𝑡

𝜀)) + O(𝜀2),
= 𝐻(𝑥(𝑡)) + O(𝜀2). (3.10)
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On the other hand, we will see in section 3.4 that, thanks to (3.8c), we can produce an estimate
𝑌 = 𝐻(𝑥)+O(𝜀2). This means the PWM-fed dynamics (3.3) acted upon by the implementable
feedback

𝑢 = 𝛼(𝜂, 𝑌, 𝑡), ̇𝜂 = 𝑎(𝜂, 𝑌, 𝑡).

behaves exactly as the “ideal” closed-loop system (3.4), except for the presence of a small
ripple (described by (3.8a)-(3.8b)).

Remark 3.2. Notice that, according to Remark 3.1, 𝐻0(𝑥(𝑡)) and 𝐻1(𝑥(𝑡)) in (3.8c) may be
as smooth as desired (the regularity is inherited from only 𝑓 , 𝑔, ℎ, 𝛼, 𝑎); on the other hand,
𝑠1(𝑢(𝑡), 𝑡

𝜀) is only continuous and piecewise C1. Nevertheless, this is enough to justify all the
Taylor expansions performed in the chapter.

3.3.2 Proof of Theorem 3.1

Because of the lack of regularity of 𝑠0, wemust go back to the fundamentals of the second-order
averaging theory presented in [SVM05, chapter 2] (with slow time dependence [SVM05,
section 3.3]). We first introduce two ad hoc definitions.

Definition 3.1. A function 𝜑(𝑋, 𝜎) is slowly-varying in average if there exists 𝜆 > 0 such that
for 𝑘 ∈ ℕ∗ and 𝜀 small enough,

∫
𝑎+𝑇

𝑎
∥ 𝜑(𝑝(𝜀𝜎) + 𝜀𝑘𝑞(𝜎), 𝜎) − 𝜑(𝑝(𝜀𝜎), 𝜎) ∥ 𝑑𝜎 ≤ 𝜆𝑇𝜀𝑘,

where 𝑝, 𝑞 are continuous with 𝑞 bounded; 𝑎 and 𝑇 > 0 are arbitrary constants. Notice that
if 𝜑 is Lipschitz in the first variable then it is slowly-varying in average. The interest of this
definition is that it is satisfied by 𝑠0.

Definition 3.2. A function 𝜙 is O(𝜀3) in average if there exists 𝐾 > 0 such that

∥ ∫
𝜎

0
𝜙(𝑞(𝑠), 𝑠) 𝑑𝑠 ∥ ≤ 𝐾 𝜀3𝜎,

for all 𝜎 ≥ 0. Clearly, if 𝜙 is O(𝜀3) then it is O(𝜀3) in average.

The proof of Theorem 3.1 follows the same steps as [SVM05, chapter 2], but with weaker
assumptions. We first rewrite (3.7) in the fast timescale 𝜎 ∶= 𝑡/𝜀 as

𝑑𝑋
𝑑𝜎 = 𝜀𝐹(𝑋, 𝜎, 𝜀𝜎), (3.11)

where 𝑋 ∶= (𝑥, 𝜂) and

𝐹(𝑋, 𝜎, 𝜏) ∶= ⎛⎜
⎝

𝑓 (𝑥) + 𝑔(𝑥)M(𝛼(𝜂, 𝐻(𝑥, 𝜂, 𝜎, 𝜏), 𝜏))
𝑎(𝜂, 𝐻(𝑥, 𝜂, 𝜎, 𝜏), 𝜏)

⎞⎟
⎠

.

Notice 𝐹 is 1-periodic in the second argument. Consider also the so-called averaged system

𝑑𝑋
𝑑𝜎 = 𝜀𝐹(𝑋, 𝜀𝜎), (3.12)
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where 𝐹 is the mean of 𝐹 in the second argument.
Define the near-identity transformation

𝑋 = 𝑋̃ + 𝜀𝑊(𝑋̃, 𝜎, 𝜀𝜎), (3.13)

where 𝑋̃ ∶= ( ̃𝑥, ̃𝜂) and

𝑊(𝑋̃, 𝜎, 𝜏) ∶= ⎛⎜
⎝

𝑔( ̃𝑥)
0

⎞⎟
⎠

𝑠1(𝛼( ̃𝜂, 𝐻( ̃𝑥, ̃𝜂, 𝜎, 𝜏), 𝜏), 𝜎).

Inverting (3.13) yields

𝑋̃ = 𝑋 − 𝜀𝑊(𝑋, 𝜎, 𝜀𝜎) + O(𝜀2). (3.14)

By lemma 3.2, this transformation puts (3.11) into
𝑑𝑋̃
𝑑𝜎 = 𝜀𝐹(𝑋̃, 𝜀𝜎) + 𝜀2Φ(𝑋̃, 𝜎, 𝜀𝜎) + 𝜙(𝑋̃, 𝜎, 𝜀𝜎); (3.15)

Φ is periodic and zero-mean in the second argument, and slowly-varying in average, and 𝜙 is
O(𝜀3) in average.
By lemma 3.3, the solutions 𝑋(𝜎) and 𝑋̃(𝜎) of (3.12) and (3.15), starting from the same

initial conditions, satisfy 𝑋̃(𝜎) = 𝑋(𝜎)+O(𝜀2). As a consequence, the solution 𝑋(𝜎) of (3.11)
starting from 𝑋0 and the solution 𝑋(𝜎) of (3.12) starting from 𝑋0 − 𝜀𝑊(𝑋0, 0, 0) are related
by 𝑋(𝜎) = 𝑋(𝜎) + 𝜀𝑊(𝑋(𝜎), 𝜎, 𝜀𝜎) + O(𝜀2), which is exactly (3.8a)-(3.8b). Inserting (3.8a)
in 𝑦 = ℎ(𝑥) and Taylor expanding yields (3.8c).
Remark 3.3. If 𝑠0 were differentiable in the first variable, Φ would be Lipschitz and 𝜙 would
be O(𝜀3) in (3.15), hence the averaging theory of chapter 2 would directly apply.
Remark 3.4. Here, we prove for simplicity only the estimation 𝑋̃(𝜎) = 𝑋(𝜎) + O(𝜀2) on a
timescale 1/𝜀. The continuation to infinity follows from the exponential stability of (3.4),
exactly as in theorem 2.5. Notice that in the proof of theorem 2.5, the stability hypothesis
concerns the averaged state, so that the proof ensues in the same way as in chapter 2. Likewise,
lemma 3.3 is proved without slow-time dependence, the generalization being obvious as in
[SVM05, section 3.3].

Lemma 3.2. The transformation (3.13) puts (3.11) into (3.15), where Φ is periodic and zero-
mean in the second argument, and slowly-varying in average, and 𝜙 is O(𝜀3) in average.

Proof. To determine the expression for 𝑑𝑋̃/𝑑𝜎, the objective is to compute 𝑑𝑋/𝑑𝜎 as a function
of 𝑋̃ with two different methods. On the one hand we replace 𝑋 with its transformation (3.13)
in the closed-loop system (3.11), and on the other hand we differentiate (3.13) with respect
to 𝜎.
We first compute 𝑠0(𝛼(𝜂, 𝐻(𝑥, 𝜂, 𝜎, 𝜀𝜎), 𝜀𝜎), 𝜎) as a function of 𝑋̃ = ( ̃𝑥, ̃𝜂). Exactly as in

(3.10), with ( ̃𝑥, ̃𝜂) replacing (𝑥, 𝜂), and (3.14) replacing (3.9), we have

𝐻(𝑥, 𝜂, 𝜎, 𝜀𝜎) = 𝐻( ̃𝑥) + O(𝜀2).

Therefore, by Taylor expansion

𝛼(𝜂, 𝐻(𝑥, 𝜂, 𝜎, 𝜀𝜎), 𝜀𝜎) = 𝛼( ̃𝜂, 𝐻( ̃𝑥), 𝜀𝜎) + 𝜀2𝐾𝛼(𝑋̃, 𝜎),
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with 𝐾𝛼 bounded. The lack of regularity of 𝑠0 prevents further Taylor expansion; nonetheless,
we still can write

𝑠0(𝛼(𝜂, 𝐻(𝑥, 𝜂, 𝜎, 𝜀𝜎), 𝜀𝜎), 𝜎) = 𝑠0(𝛼( ̃𝜂, 𝐻( ̃𝑥), 𝜀𝜎) + 𝜀2𝐾𝛼(𝑋̃, 𝜎), 𝜎).

Finally, inserting (3.13) into (3.11) and Taylor expanding, yields after tedious but straightfor-
ward computations,

𝑑𝑋
𝑑𝜎 = 𝜀𝐹(𝑋̃, 𝜀𝜎) + 𝜀𝐺(𝑋̃)𝑠𝛼,+

0 ( ̃⋅ ) + 𝜀2𝐹′(𝑋̃, 𝜀𝜎)𝐺(𝑋̃)𝑠𝛼
1( ̃⋅ )

+ 𝜀2𝐺′(𝑋̃)𝐺(𝑋̃)𝑠𝛼
1( ̃⋅ )𝑠𝛼,+

0 ( ̃⋅ ) + O(𝜀3); (3.16)

where we have introduced the following notations

( ̃⋅ ) ∶= (𝑋̃, 𝜎, 𝜀𝜎), 𝑠𝛼
𝑖 ( ̃⋅ ) ∶= 𝑠𝑖(𝛼( ̃𝜂, 𝐻( ̃𝑥), 𝜀𝜎), 𝜎),

𝑠𝛼,+
0 ( ̃⋅ ) ∶= 𝑠0(𝛼( ̃𝜂, 𝐻( ̃𝑥), 𝜀𝜎) + 𝜀2𝐾𝛼(𝑋̃, 𝜎), 𝜎), Δ𝑠𝛼

0( ̃⋅ ) ∶= 𝑠𝛼,+
0 ( ̃⋅ ) − 𝑠0( ̃⋅ ),

𝐹(𝑋, 𝜀𝜎) ∶= ⎛⎜
⎝

𝑓 (𝑥) + 𝑔(𝑥)𝛼(𝜂, 𝐻(𝑥), 𝜀𝜎)
𝑎(𝜂, 𝐻(𝑥), 𝜀𝜎)

⎞⎟
⎠

, 𝐺(𝑋) ∶= ⎛⎜
⎝

𝑔(𝑥)
0

⎞⎟
⎠

.

Wenow time-differentiate (3.13),which readswith the previous notations𝑋 = 𝑋̃+𝜀𝐺(𝑋̃)𝑠𝛼
1( ̃⋅ ).

This yields
𝑑𝑋
𝑑𝜎 =

𝑑𝑋̃
𝑑𝜎 + 𝜀𝐺′(𝑋̃)

𝑑𝑋̃
𝑑𝜎 𝑠𝛼

1( ̃⋅ ) + 𝜀𝐺(𝑋̃)𝜕1𝑠𝛼
1( ̃⋅ )

𝑑𝑋̃
𝑑𝜎 + 𝜀𝐺(𝑋̃)𝑠𝛼

0( ̃⋅ ) + 𝜀2𝐺(𝑋̃)𝜕3𝑠𝛼
1( ̃⋅ ), (3.17)

since 𝜕2𝑠𝛼
1 = 𝑠𝛼

0. Now assume 𝑋̃ satisfies
𝑑𝑋̃
𝑑𝜎 = 𝜀𝐹(𝑋̃, 𝜀𝜎) + 𝜀𝐺(𝑋̃)Δ𝑠𝛼

0( ̃⋅ ) + 𝜀2Ψ( ̃⋅ ), (3.18)

where Ψ( ̃⋅ ) is yet to be computed. Inserting (3.18) into (3.17),
𝑑𝑋
𝑑𝜎 = 𝜀𝐹(𝑋̃, 𝜀𝜎) + 𝜀𝐺(𝑋̃)Δ𝑠𝛼

0( ̃⋅ ) + 𝜀2Ψ( ̃⋅ )

+ 𝜀2𝐺′(𝑋̃)𝐹(𝑋̃, 𝜀𝜎)𝑠𝛼
1( ̃⋅ ) + 𝜀2𝐺′(𝑋̃)𝐺(𝑋̃)Δ𝑠𝛼

0( ̃⋅ )𝑠𝛼
1( ̃⋅ )

+ 𝜀2𝐺(𝑋̃)𝜕1𝑠𝛼
1( ̃⋅ )𝐹(𝑋̃, 𝜀𝜎) + 𝜀2𝐺(𝑋̃)𝜕1𝑠𝛼

1( ̃⋅ )𝐺(𝑋̃)Δ𝑠𝛼
0( ̃⋅ )

+ 𝜀𝐺(𝑋̃)𝑠𝛼
0( ̃⋅ ) + 𝜀2𝐺(𝑋̃)𝜕3𝑠𝛼

1( ̃⋅ ) + O(𝜀3).

Next, equating (3.19) and (3.16), Ψ satisfies

Ψ( ̃⋅ ) = [𝐹, 𝐺](𝑋̃, 𝜀𝜎)𝑠𝛼
1( ̃⋅ ) + 𝐺′(𝑋̃)𝐺(𝑋̃)𝑠𝛼

0( ̃⋅ )𝑠𝛼
1( ̃⋅ ) − 𝐺(𝑋̃)𝜕1𝑠𝛼

1( ̃⋅ )𝐹(𝑋̃, 𝜀𝜎) − 𝐺(𝑋̃)𝜕3𝑠𝛼
1( ̃⋅ )

− 𝐺(𝑋̃)𝜕1𝑠𝛼
1( ̃⋅ )𝐺(𝑋̃)Δ𝑠𝛼

0( ̃⋅ ). (3.19)

This gives the expressions of Φ and 𝜙 in (3.15),

Φ( ̃⋅ ) ∶= [𝐹, 𝐺](𝑋̃, 𝜀𝜎)𝑠𝛼
1( ̃⋅ ) + 𝐺′(𝑋̃)𝐺(𝑋̃)𝑠𝛼

0( ̃⋅ )𝑠𝛼
1( ̃⋅ ) − 𝐺(𝑋̃)𝜕1𝑠𝛼

1( ̃⋅ )𝐹(𝑋̃, 𝜀𝜎) − 𝐺(𝑋̃)𝜕3𝑠𝛼
1( ̃⋅ ),

𝜙( ̃⋅ ) ∶= 𝜀2Ψ1( ̃⋅ ) + 𝜀𝐺(𝑋̃)Δ𝑠𝛼
0,

with

Ψ1( ̃⋅ ) ∶= −𝐺(𝑋̃)𝜕1𝑠𝛼
1( ̃⋅ )𝐺(𝑋̃)Δ𝑠𝛼

0( ̃⋅ ).

The last step is to check that Φ and 𝜙 satisfy the assumptions of the lemma. Since 𝑠𝛼
0, 𝑠𝛼

1, 𝑠𝛼
0𝑠𝛼

1,
𝜕1𝑠𝛼

1 and 𝜕3𝑠𝛼
1 are periodic and zero-mean in the second argument, and slowly-varying in



68 Chapter 3: Second-order averaging theory for endogenous signal injection

average, so isΦ. There remains to prove that𝜙 = O(𝜀3) in average. SinceΔ𝑠𝛼
0 is slowly-varying

in average,

∫
𝜎

0
∥ Δ𝑠𝛼

0( ̃⋅ (𝑠)) ∥ 𝑑𝑠 ≤ 𝜆0𝜎𝜀2.

with 𝜆0 > 0. 𝐺 being bounded by a constant 𝑐𝑔, this implies

∥ ∫
𝜎

0
𝜀𝐺(𝑋̃(𝑠))Δ𝑠𝛼

0( ̃⋅ (𝑠)) 𝑑𝑠 ∥ ≤ 𝑐𝑔𝜆0𝜎𝜀3.

Similarly, 𝜕1𝑠1 being bounded by 𝑐11, Ψ1 satisfies

∥ ∫
𝜎

0
𝜀2Ψ1( ̃⋅ (𝑠)) 𝑑𝑠 ∥ ≤ 𝑐2

𝑔𝑐11𝜆0𝜎𝜀0𝜀3.

Summing the two previous inequalities yields

∥ ∫
𝜎

0
𝜙( ̃⋅ (𝑠)) 𝑑𝑠 ∥ ≤ 𝜆0𝑐𝑔(1 + 𝑐11𝑐𝑔𝜀0)𝜎𝜀3,

which concludes the proof.

Lemma 3.3. Let 𝑋(𝜎) and 𝑋̃(𝜎) be respectively the solutions of (3.12) and (3.15) starting at 0
from the same initial conditions. Then, for all 𝜎 ≥ 0, 𝑋̃(𝜎) = 𝑋(𝜎) + O(𝜀2).

Proof. Let 𝐸(𝜎) ∶= 𝑋̃(𝜎) − 𝑋(𝜎). Then,

𝐸(𝜎) = ∫
𝜎

0
[

𝑑𝑋̃
𝑑𝜎 (𝑠) −

𝑑𝑋
𝑑𝜎 (𝑠)] 𝑑𝑠

= 𝜀 ∫
𝜎

0
[𝐹(𝑋̃(𝑠)) − 𝐹(𝑋(𝑠))] 𝑑𝑠 + 𝜀2 ∫

𝜎

0
Φ( ̃⋅ (𝑠)) 𝑑𝑠 + ∫

𝜎

0
𝜙( ̃⋅ (𝑠)) 𝑑𝑠.

As 𝐹 is Lipschitz with constant 𝜆𝐹,

𝜀 ∫
𝜎

0
∥ 𝐹(𝑋̃(𝑠)) − 𝐹(𝑋(𝑠)) ∥ 𝑑𝑠 ≤ 𝜀𝜆𝐹 ∫

𝜎

0
‖ 𝐸(𝑠) ‖ 𝑑𝑠.

On the other hand, there exists by lemma 3.4 𝑐1 such that

𝜀2 ∥ ∫
𝜎

0
Φ( ̃⋅ (𝑠)) 𝑑𝑠 ∥ ≤ 𝑐1𝜀2.

Finally, as 𝜙 is O(𝜀3) in average, there exists 𝑐2 such that

∥ ∫
𝜎

0
𝜙( ̃⋅ (𝑠)) 𝑑𝑠 ∥ ≤ 𝑐2𝜀3𝜎.

The summation of these estimations yields

∥ 𝐸(𝜎) ∥ ≤ 𝜀𝜆𝐹 ∫
𝜎

0
∥ 𝐸(𝑠) ∥ 𝑑𝑠 + 𝑐1𝜀2 + 𝑐2𝜀3𝜎.

Then by Gronwall’s lemma [SVM05, Lemma 1.3.3]

∥ 𝐸(𝜎) ∥ ≤ (
𝑐2
𝜆𝐹

+ 𝑐1) 𝑒𝜆𝐹𝜎𝜀2,

which means 𝑋̃ = 𝑋 + O(𝜀2).

The following lemma is an extension of Besjes’ lemma 2.1 when 𝜑 is no longer Lipschitz,
but only slowly-varying in average.
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Figure 3.4: States 𝑥1, 𝑥2, 𝑥3 with ideal and actual control laws.

Lemma 3.4. Assume 𝜑(𝜒, 𝜎) is bounded, slowly-varying in average, 𝑇-periodic and zero-mean
in the second argument. Assume the solution 𝑋(𝜎) of 𝑋̇ = O(𝜀) is defined for 0 ≤ 𝜎 ≤ 𝐿/𝜀. Then,
there exists 𝑐1 > 0 such that

∥ ∫
𝜎

0
𝜑(𝑋(𝑠), 𝑠) 𝑑𝑠 ∥ ≤ 𝑐1.

Proof. Along the lines of the Besjes’ lemma proof 2.1, we divide the interval [0, 𝑡] in 𝑚
subintervals [0, 𝑇], …, [(𝑚 − 1)𝑇, 𝑚𝑇] and a remainder [𝑚𝑇, 𝑡]. By splitting the integral on
those intervals, we write

∫
𝜎

0
𝜑(𝑥(𝑠), 𝑠) 𝑑𝑠 =

𝑚
∑
𝑖=1

∫
𝑖𝑇

(𝑖−1)𝑇
𝜑(𝑥((𝑖 − 1)𝑇), 𝑠) 𝑑𝑠 +

𝑚
∑
𝑖=1

∫
𝑖𝑇

(𝑖−1)𝑇
 [𝜑(𝑥(𝑠), 𝑠) − 𝜑(𝑥((𝑖 − 1)𝑇), 𝑠)] 𝑑𝑠

+ ∫
𝜎

𝑚𝑇
𝜑(𝑥(𝑠), 𝑠) 𝑑𝑠,

where each of the integral in the first sum are zero as 𝜑 is periodic with zero mean. Since 𝜑 is
bounded, the remainder is also bounded by a constant 𝑐2 > 0. Besides

𝑥(𝑠) = 𝑥((𝑖 − 1)𝑇) + ∫
𝑠

(𝑖−1)𝑇
̇𝑥(𝜏) 𝑑𝜏 = 𝑥((𝑖 − 1)𝑇) + 𝜀𝑞(𝑠),
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Figure 3.5: Control input 𝑢 and its modulation 𝑢pwm; full view (left), zoom (right).

with 𝑞 continuous and bounded. By hypothesis, there exists 𝜆 > 0 such that for 0 ≤ 𝑖 ≤ 𝑚,

∫
𝑖𝑇

(𝑖−1)𝑇
 ∥ 𝜑(𝑥(𝑠), 𝑠) − 𝜑(𝑥((𝑖 − 1)𝑇), 𝑠) ∥ 𝑑𝑠 ≤ 𝜆𝑇𝜀.

Therefore by summing the previous estimations,

∥ ∫
𝜎

0
𝜑(𝑥(𝑠), 𝑠) 𝑑𝑠 ∥ ≤ 𝑚𝜆𝑇𝜀 + 𝑐2,

with 𝑚𝑇 ≤ 𝑡 ≤ 𝐿/𝜀, consequently 𝑚𝜆𝑇𝜀 + 𝑐2 ≤ 𝜆𝐿 + 𝑐2; which concludes the proof.

3.4 Virtual measurement extraction

From (3.8c), we can write the measured signal 𝑦 as

𝑦(𝑡) = 𝑦𝑎(𝑡) + 𝑦𝑣(𝑡)𝑠1(𝑢(𝑡), 𝑡
𝜀) + O(𝜀2),

where the signal 𝑢 feeding the PWM encoder is known. The following result shows 𝑦𝑎 and 𝑦𝑣
can be estimated from 𝑦 thanks to a suitable demodulation procedure, for use in a control law
as described in section 3.3.1.

Theorem 3.5. Consider the estimators ̂𝑦𝑎 and ̂𝑦𝑣 defined by

̂𝑦𝑎(𝑡) ∶=
3
2  𝑀(𝑦)(𝑡) −

1
2𝑀(𝑦)(𝑡 − 𝜀)

𝑘Δ(𝑡) ∶= (𝑦(𝑡) − ̂𝑦𝑎(𝑡))𝑠1(𝑢(𝑡), 𝑡
𝜀)

̂𝑦𝑣(𝑡) ∶=
𝑀(𝑘Δ)(𝑡)
𝑠2
1(𝑢(𝑡))

,

where 𝑀 is the moving average operator defined in section 3.1, and 𝑠2
1 the mean of 𝑠2

1 in the second
argument (c.f. end of section 3.1). Then,

̂𝑦𝑎(𝑡) = 𝑦𝑎(𝑡) + O(𝜀2) (3.20a)
̂𝑦𝑣(𝑡) = 𝑦𝑣(𝑡) + O(𝜀2). (3.20b)
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Figure 3.6: Measured output 𝑦; full view (left), zoom (right).

Recall that by construction 𝑦𝑣(𝑡) = O(𝜀), hence (3.20b) is essentially a first-order estima-
tion; notice also that 𝑠2

1(𝑢(𝑡)) is always non-zero when 𝑢(𝑡) does not exceed the range of the
PWM encoder.

Proof. Taylor expanding 𝑦𝑎, 𝑦𝑣, 𝑢 and 𝑠1 yields

𝑦𝑎(𝑡 − 𝜏) = 𝑦𝑎(𝑡) − 𝜏 ̇𝑦𝑎(𝑡) + O(𝜏2)
𝑦𝑣(𝑡 − 𝜏) = 𝑦𝑣(𝑡) + O(𝜀)O(𝜏)

𝑠1(𝑢(𝑡 − 𝜏), 𝜎) = 𝑠1(𝑢(𝑡) + O(𝜏), 𝜎) = 𝑠1(𝑢(𝑡), 𝜎) + O(𝜏);

in the second equation, we have used ̇𝑦𝑣(𝑡) = O(𝜀). The moving average of 𝑦𝑎 then reads

𝑀(𝑦𝑎)(𝑡) =
1
𝜀 ∫

𝜀

0
𝑦𝑎(𝑡 − 𝜏)𝑑𝜏 =

1
𝜀 ∫

𝜀

0
(𝑦𝑎(𝑡) − 𝜏 ̇𝑦𝑎(𝑡) + O(𝜏2))𝑑𝜏

= 𝑦𝑎(𝑡) −
𝜀
2 ̇𝑦𝑎(𝑡) + O(𝜀2). (3.21)

A similar computation for 𝑘𝑣(𝑡) ∶= 𝑦𝑣(𝑡)𝑠1(𝑢(𝑡), 𝑡
𝜀) yields

𝑀(𝑘𝑣)(𝑡) =
1
𝜀 ∫

𝜀

0
𝑦𝑣(𝑡 − 𝜏)𝑠1(𝑢(𝑡 − 𝜏), 𝑡−𝜏

𝜀 ) 𝑑𝜏

= 𝑦𝑣(𝑡)(𝑠1(𝑢(𝑡)) + O(𝜀)) + O(𝜀2)
= O(𝜀2), (3.22)

since 𝑠1 is 1-periodic and zero mean in the second argument. Summing (3.21) and (3.22), we
eventually find

𝑀(𝑦)(𝑡) = 𝑦𝑎(𝑡) −
𝜀
2 ̇𝑦𝑎(𝑡) + O(𝜀2).

As a consequence, we get after another Taylor expansion
3
2𝑀(𝑦)(𝑡) −

1
2𝑀(𝑦)(𝑡 − 𝜀) = 𝑦𝑎(𝑡) + O(𝜀2),

which is the desired estimation (3.20a). On the other hand, (3.20a) implies

𝑘Δ(𝑡) = 𝑦𝑣(𝑡)𝑠2
1(𝑢(𝑡), 𝑡

𝜀) + O(𝜀2).
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Figure 3.7: 𝑥ref1 , 𝑥1, and ̂𝑦𝑣 in the presence of noise.

Proceeding as for 𝑀(𝑘𝑣), we find

𝑀(𝑘Δ)(𝑡) =
1
𝜀 ∫

𝜀

0
𝑦𝑣(𝑡 − 𝜏)𝑠2

1(𝑢(𝑡 − 𝜏), 𝑡−𝜏
𝜀 ) 𝑑𝜏 = 𝑦𝑣(𝑡)(𝑠2

1(𝑢(𝑡)) + O(𝜀)) + O(𝜀2)

= 𝑦𝑣(𝑡)𝑠2
1(𝑢(𝑡)) + O(𝜀2).

Dividing by 𝑠2
1(𝑢(𝑡)) yields the desired estimation (3.20b).

3.5 Numerical example

We illustrate the interest of the approach on the system

̇𝑥1 = 𝑥2

̇𝑥2 = 𝑥3

̇𝑥3 = 𝑢 + 𝑑
𝑦 = 𝑥2 + 𝑥1𝑥3,

where 𝑑 is an unknown disturbance; 𝑢 will be impressed through PWM with frequency 1 kHz
(i.e. 𝜀 = 10−3) and range [−20, 20]. The objective is to control 𝑥1, while rejecting the distur-
bance 𝑑, with a response time of a few seconds. We want to operate around equilibrium points,
which are of the form (𝑥𝑒𝑞

1 , 0, 0; −𝑑𝑒𝑞, 𝑑𝑒𝑞), for 𝑥𝑒𝑞
1 and 𝑑𝑒𝑞 constant. Notice the observability

degenerates at such points, which renders the design of a control law not trivial. Nevertheless
the PWM-induced signal injection makes available the virtual measurement

𝑦𝑣 = 𝜀 (𝑥3 1 𝑥1) (0 0 1)
𝑇

= 𝜀𝑥1,

from which it is easy to design a suitable control law, without even using the actual output
𝑦𝑎 = 𝑥2 + 𝑥1𝑥3. The system being now fully linear, we can use a classical controller-observer,
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Figure 3.8: Measured output 𝑦 with and without noise; full view (left), zoom (right).

with disturbance estimation to ensure an implicit integral effect. The observer is thus given by

̇̂𝑥1 = ̂𝑥2 + 𝑙1(𝑦𝑣
𝜀 − ̂𝑥1)

̇̂𝑥2 = ̂𝑥3 + 𝑙2(𝑦𝑣
𝜀 − ̂𝑥1)

̇̂𝑥3 = 𝑢 + ̂𝑑 + 𝑙3(𝑦𝑣
𝜀 − ̂𝑥1)

̇̂𝑑 = 𝑙𝑑(𝑦𝑣
𝜀 − ̂𝑥1),

and the controller by

𝑢 = −𝑘1 ̂𝑥1 − 𝑘2 ̂𝑥2 − 𝑘3 ̂𝑥3 − 𝑘𝑑 ̂𝑑 + 𝑘𝑥ref1 .

The gains are chosen to place the observer eigenvalues at (−1.19, −0.73, −0.49±0.57𝑖) and the
controller eigenvalues at (−6.59, −3.30 ± 5.71𝑖). The observer is slower than the controller in
accordance with dual Loop Transfer Recovery, thus ensuring a reasonable robustness. Setting
𝜂 ∶= ( ̂𝑥1 ̂𝑥2 ̂𝑥3 ̂𝑑)

𝑇, this controller-observer obviously reads

𝑢 = −𝐾𝜂 + 𝑘𝑥ref1 (3.23a)
̇𝜂 = 𝑀𝜂 + 𝐿𝑦𝑣

𝜀 , (3.23b)

where the matrices 𝐾, 𝐿 and 𝑀 are

𝐾 ∶= (𝑘1 𝑘2 𝑘3 𝑘𝑑) , 𝐿 ∶= (𝑙1 𝑙2 𝑙3 𝑙𝑑) , 𝑀 =
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−𝑙1 1 0 0
−𝑙2 0 1 0

−𝑙3 − 𝑘1 −𝑘2 −𝑘3 1 − 𝑘𝑑
−𝑙𝑑 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Finally, this ideal control law is implemented as

𝑢pwm(𝑡) = M(−𝐾𝜂 + 𝑘𝑥ref1 , 𝑡
𝜀) (3.24a)

̇𝜂 = 𝑀𝜂 + 𝐿 ̂𝑦𝑣
𝜀 , (3.24b)

whereM is the PWM function described in section 3.2, and ̂𝑦𝑣 is obtained by the demodulation
process of section 3.4. The test scenario is the following: at 𝑡 = 0 s, the system starts at rest at
the origin; from 𝑡 = 2 s, a disturbance 𝑑 = −0.25 is applied to the system; at 𝑡 = 14 s, a filtered
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unit step is applied to the reference 𝑥ref1 . In Fig. 3.4 the ideal control law (3.23), i.e. without
PWM and assuming 𝑦𝑣 known, is compared to the true control law (3.24): the behavior
of (3.24) is excellent, it is nearly impossible to distinguish the two situations on the responses
of 𝑥1 and 𝑥2 as by (3.8a) the corresponding error is only O(𝜀2); the ripple is visible on 𝑥3,
where it is O(𝜀). The corresponding control signals 𝑢 and 𝑢pwm are displayed in Fig. 3.5, and
the corresponding measured outputs in Fig. 3.6.
To investigate the sensitivity to measurement noise, the same test was carried out with

band-limited white noise (power density 1 × 10−9, sample time 1 × 10−5) added to 𝑦. Even
though the ripple in the measured output is buried in noise, see Fig. 3.8, the virtual output is
correctly demodulated and the control law (3.24) still behaves very well.



Chapter 4

Error analysis of a demodulation procedure for
multicarrier signals with slowly-varying carriers

This chapter collects the results from two papers: one published in the proceedings of
IECON19 under the title A New Demodulation Procedure for a Class of Multiplexed Sig-
nals [Sur+19a], the other in the proceedings of EUSIPCO21 under the title Error Analysis of a
Demodulation Procedure for Multicarrier Signals with Slowly-Varying Carriers [SCM21a].

Résumé Que ce soit dans le cadre de l’injection endogène ou exogène, la conception d’une
procédure d’extraction des mesures virtuelles est nécessaire afin de pouvoir exploiter l’infor-
mation supplémentaire portée par la perturbation induite. Ce chapitre propose une synthèse
des techniques de démodulation esquissées aux chapitres 2 et 3, et développe une procédure
de démodulation générique des signaux analogiques multiplexés par des porteuses présentant
une variation lente par rapport au temps. Cette dernière spécificité décrit la nature de la per-
turbation induite dans le cas endogène, où la dépendance du ripple de sortie par rapport à la
commande introduit une échelle de temps lente dans l’évolution de la porteuse. À partir d’une
combinaison linéaire adéquate de moyennes mobiles itérées, il est possible d’extraire chacune
des composantes d’un tel signal multiplexé avec une précision asymptotique arbitrairement
petite. Lorsque le signal d’entrée présente des perturbations périodiques — à chaque commu-
tation pour un système piloté par MLI à cause des décharges des capacités parasites—, il est
possible de changer la base de démodulation afin d’annihiler la corruption du signal engendrée
tout en conservant l’ordre de l’estimation asymptotique.

Abstract Whether it is for endogenous or exogenous signal injection, the design of a virtual
measurements extraction procedure is necessary to exploit the additional knowledge carried by
the induced perturbation. This chapter synthesizes the demodulation techniques outlined in
chapters 2 and 3, and presents a generic demodulation procedure for analog signalsmultiplexed
by slowly-varying carriers. This slow-time dependency comes from the output ripple in the
endogenous case that depends on the control input. Using a suitable linear combination of
iterated moving averages, each component of such a multiplexed signal is extracted with an
arbitrarily small asymptotic accuracy. When the input signal exhibits periodic disturbances
—at every switching for a PWM-driven system due to parasitic capacitances discharges—, a
new demodulation basis is designed so as to annihilate the signal corruption while preserving
the order of the asymptotic estimation.

75
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4.1 Introduction

We consider a composite signal 𝑦 of the form

𝑦(𝑡) ∶=
𝑛

∑
𝑖=1

𝑧𝑖(𝑡)𝑠𝑖(𝑡, 𝑡
𝜀) + 𝑑(𝑡, 𝑡

𝜀) + O(𝜀𝑘), (4.1)

where the 𝑠𝑖’s are (known) 1-periodic functions in the second variable; 𝜀 being a (known)
“small” parameter, the 𝑠𝑖’s can be seen as rapidly-oscillating carriers with slowly-varying shapes
modulating the (unknown) 𝑧𝑖’s. The function 𝑑 is a disturbance, also 1-periodic in the second
variable, about which little is known except that for each 𝑡 the support of 𝑑(𝑡, ⋅) is contained in
a “well-behaved” known subset 𝐷𝑡 of [0, 1). In other words, on each period of the carriers, part
of the signal 𝑦 is garbled and considered useless. Finally, theO(𝜀𝑘) term corresponds to “small”
disturbances, where O denotes the (uniform) “big O” symbol of analysis, i.e. 𝑓 (𝑡, 𝜀) = O(𝜀𝑘) if
‖ 𝑓 (𝑡, 𝜀) ‖ ≤ 𝐾𝜀𝑘 for some 𝐾 independent of 𝑡 and 𝜀.
The objective is to recover by an implementable causal process the unknown 𝑧𝑖’s with an

accuracy of up toO(𝜀𝑘) from the known 𝑦 and 𝑠𝑖’s, provided the 𝑠𝑖’s and 𝑧𝑖’s satisfy some suitable
regularity assumptions.
The motivation for this problem is the following. When operating an AC electric motor

through a PWM inverter with period 𝜀, an analysis based on the theory of averaging reveals
that the currents in the motor have the form

𝑦(𝑡) = 𝑦𝑎(𝑡) + 𝜀𝑦𝑣(𝑡)𝑠(𝑡, 𝑡
𝜀) + 𝑑(𝑡, 𝑡

𝜀) + O(𝜀2),

which is a particular instance of (4.1) with 𝑧1 ∶= 𝑦𝑎, 𝑧2 ∶= 𝜀𝑦𝑣, 𝑠1 ∶= 1, and 𝑠2 ∶= 𝑠, where 𝑠 is
determined by the PWM process defined in chapter 3. The O(𝜀2) term corresponds to a small
higher-order term which can be ignored. The disturbance 𝑑 consists of short spikes appearing
at each PWM commutation, due to stray capacitances in the power electronics. A typical
signal 𝑦 is shown in Fig. 4.3, see also [Sur+20b, Fig. 9] for experimental data. In “sensorless”
industrial drives, these currents are the only measurements, and controlling the motor at
or near standstill with this sole information is a difficult problem for several theoretical and
technological reasons. A way to achieve this it to extract 𝑦𝑎 and 𝜀𝑦𝑣 from the modulated
currents 𝑦; a suitable processing of 𝑦𝑣 then gives access to the motor angular position (see
chapter 6), which is instrumental in controlling the motor. It is therefore very important to
ensure the demodulation error is at most O(𝜀2).
The demodulation procedure proposed in this chapter, essentially consisting of multipli-

cations by known signals followed by low-pass filters, is reminiscent of various schemes in
communication theory and signal processing. Nevertheless, nothing really close seems to
exist in the literature, let alone a quantitative analysis of the demodulation error:

— it is of course a generalization of coherent demodulation in quadrature carrier multi-
plexing, with more than two carriers not restricted to sine and cosine, see e.g. [LD10,
section 4.4]; but even in this simple case, no analysis of the error is usually performed,
the challenges being more on carrier reconstruction

— it somewhat looks like synchronous decorrelating detection in Code-Division Multiple
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Access (CDMA) communication systems, where the 𝑠𝑖’s would play the roles of the
signature waveforms and the 𝑧𝑖’s the role of the symbols, see e.g. [Ver98, section 5.1];
but the encoded signals being there digital, the issues and analysis are very different

— it is also akin to multicarrier reception, with or without multiple access, see e.g [Gol05,
section 12.2] and [Yan09, section 2.2]; but once again that field is exclusively concerned
with digital encoded signals

— finally, it bears some resemblance for its filtering part with the interpolation/compen-
sation filters used in ΔΣ analog-to-digital converters, see e.g. [PST17, chapter 14].

The chapter synthesizes and extends the previous work (chapter 2, section 2.3.3 and chap-
ter 3, section 3.4) in two ways that are paramount for the intended application: on the one
hand, it considers carriers with slowly-varying shapes, which makes the error analysis much
more difficult; on the other hand, the procedure is not restricted to “orthogonal” demodulation,
hence can directly handle the disturbance 𝑑 without ad-hoc prefiltering as in [Sur+20b].
The chapter runs as follows: in section 4.2, we collect notations and definitions, in particular

theA𝑘 regularity property; in section 4.3 we state and prove the main result; in section 4.4
we illustrate this result and confirm the error estimates with numerical experiments.

4.2 Notations and definitions

We collect here definitions used throughout the chapter. The most important notion is theA𝑘
regularity property introduced in definition 4.1, which is needed in lemma 4.4 to repeatedly
integrate by parts; this property, which is paramount for handling carriers with slowly-varying
shapes, is trivially satisfied for fixed-shape carriers as in [Sur+19a].
Let 𝑔(𝑡, 𝜎) be a function of two variables; informally speaking, 𝑡 represents the slow timescale

and 𝜎 the fast timescale. We will often use the convenient notation 𝑔𝜀(𝑡) ∶= 𝑔(𝑡, 𝑡
𝜀). The

function 𝑔 is 1-periodic in the second variable if 𝑔(𝑡, 𝜎 + 1) = 𝑔(𝑡, 𝜎) for all 𝑡. Its mean in
the second variable is the function 𝑔(𝑡) ∶= ∫1

0 𝑔(𝑡, 𝜎)𝑑𝜎. For brevity, we will usually omit the
phrase “in the second variable”. If 𝑔 is 1-periodic with zero mean, any of its primitives (in
the second variable) is also 1-periodic, in particular its zero-mean primitive 𝑔(−1)(𝑡, 𝜎) ∶=
∫𝜎

0 𝑔(𝑡, 𝜏)𝑑𝜏 − ∫1
0 ∫𝜁

0 𝑔(𝑡, 𝜏)𝑑𝜏𝑑𝜁. Likewise, 𝑔(−𝑘−1) denotes the zero-mean primitive of 𝑔(−𝑘).
We say 𝑔 is Lipschitz (in the first argument) if ‖ 𝑔(𝑡1, 𝜎) − 𝑔(𝑡2, 𝜎) ‖ ≤ 𝐿‖ 𝑡1 − 𝑡2 ‖ for some 𝐿
independent of 𝑡1, 𝑡2 and 𝜎.
Finally, we introduce theA𝑘 regularity property.

Definition 4.1 (A𝑘 property). Let 𝑔(𝑡, 𝜎) be 1-periodic with zero mean. It is said to beA𝑘,
𝑘 ≥ 1, if 𝑔(−𝑘) is 𝑘 − 1 times differentiable in the first variable, with bounded derivatives at all
orders, and 𝜕𝑘−1

1 𝑔(−𝑘) Lipschitz.

A typical A𝑘 function encountered in practice is 𝑔(𝑡, 𝜎) = sign(𝑢(𝑡) − w(𝜎)) − 2𝑢(𝑡) + 1
where w(𝜎) ∶= 𝜎 mod 1; 𝑢(𝑡) ∈ (0, 1) represents the PWM duty cycle and is assumed 𝑘 − 1
times differentiable, with bounded derivatives at all orders, and 𝑢(𝑘−1) Lipschitz.
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Figure 4.1: The demodulation procedure.

It is easy to show that if on the one hand 𝑔(𝑡, 𝜎) isA𝑘, and on the other hand 𝑧(𝑡) is 𝑘 − 1
times differentiable, with bounded derivatives at all orders, and 𝑧(𝑘−1) Lipschitz, then the
product 𝑧𝑔 is alsoA𝑘.

4.3 The demodulation procedure

The demodulation procedure for an error of order 𝜀𝑘 consists of multiplications by a suitable
demodulating basis 𝑅 ∶= (𝑟1, … , 𝑟𝑛)𝑇, followed by a bank of low-pass finite impulse response
filters with kernel 𝐾𝑘; see section 4.3.1 for a discussion of how to select 𝑅.
The kernel 𝐾𝑘 is a “compensated” 𝑘-times iterated moving average, namely a suitable

linear combination of shifted instances of 𝐾𝑘, where the kernel 𝐾𝑘 is defined recursively by
𝐾1 ∶= 1

𝜀 𝟙[0,𝜀] and 𝐾𝑘 ∶= 𝐾𝑘−1 ∗ 𝐾, see e.g. [Aub05, chapter 6.7] for explicit expressions. For
instance for 𝑘 = 3, the linear combination is

𝐾3(𝑡) ∶= 17
4 𝐾3(𝑡) − 5𝐾3(𝑡 − 𝜀) + 7

4𝐾3(𝑡 − 2𝜀),

see section 4.3.2 for more details.
Figure 4.1 illustrates the whole demodulation procedure:

— 𝑦(𝑡) is multiplied by 𝑅𝑇
𝜀 (𝑡), and filtered by 𝐾𝑘; the result, (𝐾𝑘 ∗ (𝑦𝑅𝑇

𝜀 ))(𝑡), turns out to
be 𝑍𝑇(𝑡)𝑆𝑅𝑇(𝑡) + O(𝜀𝑘), where 𝑍 ∶= (𝑧1, … , 𝑧𝑛)𝑇 is the vector signal to recover

— the modulating basis 𝑆 ∶= (𝑠1, … , 𝑠𝑛)𝑇 is also multiplied by 𝑅𝑇
𝜀 (𝑡), and filtered by 𝐾𝑘;

the result, (𝐾𝑘 ∗ (𝑆𝜀𝑅𝑇
𝜀 ))(𝑡), turns out to be 𝑆𝑅𝑇(𝑡) + O(𝜀𝑘)

— finally, (𝐾𝑘 ∗ (𝑦𝑅𝑇
𝜀 ))(𝑡) is multiplied by the inverse of the matrix (𝐾𝑘 ∗ (𝑆𝜀𝑅𝑇

𝜀 ))(𝑡); the

result, (𝐾𝑘 ∗ (𝑦𝑅𝑇
𝜀 ))(𝑡) × (𝐾𝑘 ∗ (𝑆𝜀𝑅𝑇

𝜀 ))
−1

(𝑡), is as desired 𝑍𝑇(𝑡) + O(𝜀𝑘).

As pointed out in the introduction, this demodulation scheme is at first sight not completely
surprising. What is much less obvious is that the overall demodulation error is indeed of
order 𝜀𝑘.
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4.3.1 Demodulation of multiplexed signals – Main result

We assume that the 𝑠𝑖’s are independent outside the subset 𝐷𝑡 containing the support of
the disturbance 𝑑(𝑡, ⋅), i.e. that the ̌𝑠𝑖’s defined by ̌𝑠𝑖(𝑡, 𝜎) ∶= (1 − 𝟙𝐷𝑡

)(𝜎)𝑠𝑖(𝑡, 𝜎) are linearly
independent. We can thus choose the demodulating basis 𝑅 ∶= (𝑟1, … , 𝑟𝑛)𝑇 such that 𝑅𝑑 = 0
and 𝑆𝑅𝑇 is invertible, where 𝑆 ∶= (𝑠1, … , 𝑠𝑛)𝑇 is the modulating basis; one simple choice is for
instance 𝑅(𝑡, 𝜎) ∶= (1 − 𝟙𝐷𝑡

(𝜎))𝑆(𝑡, 𝜎). A delicate point is to select 𝑅 also such that 𝑆𝑅𝑇 − 𝑆𝑅𝑇

isA𝑘, provided of course that 𝐷𝑡 is “well-behaved” (for instance a finite union of intervals
with sufficiently regular moving bounds). For simplicity, we just assume this is the case (and
check it a posteriori in the numerical experiments of section 4.4). Finally, we assume the 𝑧𝑖’s
are 𝑘 − 1 times differentiable, with bounded derivatives at all orders, and 𝑧(𝑘−1)

𝑖 Lipschitz, so
that 𝑧𝑖(𝑆𝑅𝑇 − 𝑆𝑅𝑇) is alsoA𝑘.

Theorem 4.1. 𝑍 ∶= (𝑧1, … , 𝑧𝑛)𝑇 can be recovered to order 𝜀𝑘 from 𝑦 by the causal process 𝑃𝑘
defined by

𝑃𝑘[𝑦](𝑡) ∶= (𝐾𝑘 ∗ (𝑦𝑅𝑇
𝜀 ))(𝑡) × (𝐾𝑘 ∗ (𝑆𝜀𝑅𝑇

𝜀 ))
−1

(𝑡).

In other words, 𝑍𝑇(𝑡) = 𝑃𝑘[𝑦](𝑡) + O(𝜀𝑘).

4.3.2 Proof of theorem 4.1

Rewriting (4.1) as

𝑦(𝑡) = 𝑍𝑇(𝑡)𝑆(𝑡, 𝑡
𝜀) + 𝑑(𝑡, 𝑡

𝜀) + O(𝜀𝑘),

right-multiplying by 𝑅𝑇
𝜀 and convolving with 𝐾𝑘 yields

(𝐾𝑘 ∗ (𝑦𝑅𝑇
𝜀 ))(𝑡) = (𝐾𝑘 ∗ (𝑍𝑇𝑆𝜀𝑅𝑇

𝜀 ))(𝑡) + O(𝜀𝑘)

= [𝐾𝑘 ∗ (𝑍𝑇(𝑆𝜀𝑅𝑇
𝜀 − 𝑆𝑅𝑇))](𝑡) + (𝐾𝑘 ∗ (𝑍𝑇𝑆𝑅𝑇))(𝑡) + O(𝜀𝑘)

= (𝐾𝑘 ∗ (𝑍𝑇𝑆𝑅𝑇))(𝑡) + O(𝜀𝑘);

to obtain the last line, we have applied Lemma 4.4 with 𝑔(𝑡, 𝜎) ∶= 𝑍𝑇(𝑡)(𝑆(𝑡, 𝜎)𝑅𝑇(𝑡, 𝜎) −
𝑆𝑅𝑇(𝑡)), which is by construction zero-mean andA𝑘. The result obviously holds also if 𝐾𝑘(𝑡)
is replaced by the shifted kernel 𝜏𝑇𝐾𝑘(𝑡) ∶= 𝐾𝑘(𝑡 − 𝑇).
On the other hand, theorem 4.5 [Sur+19b, Theorem 1] asserts that a C𝑘-function 𝜑 with

bounded 𝜑(𝑘) is left unchanged to order 𝜀𝑘 by a suitable linear combination 𝐾𝑘 of the shifted
kernels 𝜏𝑖𝜀𝐾𝑘, 𝑖 = 0, … , 𝑘 − 1, i.e. (𝐾𝑘 ∗ 𝜑)(𝑡) = 𝜑(𝑡) + O(𝜀𝑘). For instance,

𝐾1(𝑡) ∶= 𝐾1(𝑡)
𝐾2(𝑡) ∶= 2𝐾2(𝑡) − 𝐾2(𝑡 − 𝜀)
𝐾3(𝑡) ∶= 17

4 𝐾3(𝑡) − 5𝐾3(𝑡 − 𝜀) + 7
4𝐾3(𝑡 − 2𝜀).

Actually, we must slightly extend the result to the case where 𝜑 is 𝑘 − 1 times differentiable
with 𝜑(𝑘−1) Lipschitz, which we omit here. As a consequence,

(𝐾𝑘 ∗ (𝑦𝑅𝑇
𝜀 ))(𝑡) = (𝐾𝑘 ∗ (𝑍𝑇𝑆𝑅𝑇))(𝑡) + O(𝜀𝑘)

= 𝑍𝑇(𝑡)𝑆𝑅𝑇(𝑡) + O(𝜀𝑘).
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Figure 4.2: Encoded signals 𝑧𝑖 (left), carriers 𝑠𝑖 (right).

Since 𝑆𝑅𝑇(𝑡) is invertible, 𝑍(𝑡) can be recovered to order 𝜀𝑘.
To make the process truly implementable in practice, notice 𝑆𝑅𝑇(𝑡) can be computed to

order 𝜀𝑘 by

(𝐾𝑘 ∗ (𝑆𝜀𝑅𝑇
𝜀 ))(𝑡) = 𝑆𝑅𝑇(𝑡) + O(𝜀𝑘),

which is an instance of the previous equation with 𝑍 = (1 1 ⋯ 1)
𝑇.

In conclusion, 𝑍(𝑡) is recovered to order 𝜀𝑘 by

𝑃𝑘[𝑦](𝑡) ∶= (𝐾𝑘 ∗ (𝑦𝑅𝑇
𝜀 ))(𝑡) × (𝐾𝑘 ∗ (𝑆𝜀𝑅𝑇

𝜀 ))
−1

(𝑡)
= 𝑍𝑇(𝑡) + O(𝜀𝑘),

where the process 𝑃𝑘 is causal since the kernel 𝐾𝑘 is supported on [0, 𝑘𝜀] ⊂ ℝ+.

4.3.3 Characteristic powers andA𝑘-signals properties

This subsection is quite technical and can be skipped without disturbing the flow of ideas. Its
goal is to establish Lemma 4.4, which is instrumental in the proof of Theorem 4.1. Lemma 4.4
relies on Lemma 4.3, which itself relies on Lemma 4.2. Lemmas 4.4 and 4.3 are in some sense
properties of the convolution kernel 𝐾𝑘, whereas Lemma 4.2 extends to our context a classical
result of finite-differences calculus. Notice the use of theA𝑘 property when integrating by
parts in Lemma 4.4, which is the main trick to extend the ideas of [Sur+19b] to slowly-moving
carriers.
Define the 𝑘th-order backward difference Δ𝑘𝑔𝜀 of the function 𝑔𝜀(𝑡) ∶= 𝑔(𝑡, 𝑡

𝜀) by

(Δ𝑘𝑔𝜀)(𝑡) ∶=
𝑘

∑
𝑖=0

(−1)𝑖(
𝑘
𝑖)𝑔𝜀(𝑡 − 𝑖𝜀).

On the other hand, recall that 𝐾𝑘 is 𝑘 − 1 times differentiable, with compact support for all
the derivatives. As for (𝐾𝑘)(𝑘), it can be defined in the distributional sense, and is a linear
combination of Dirac delta functions, and in particular also has compact support; for instance,
(𝐾1)(1) = 1

𝜀 (𝛿0 − 𝛿𝜀).
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Lemma 4.2. Let 𝑔(𝑡, 𝜎) be 1-periodic, and 𝑘 − 1 times differentiable in the first variable with
𝜕(𝑘−1)

1 𝑔 Lipschitz. Then (Δ𝑘𝑔𝜀)(𝑡) = O(𝜀𝑘).

Proof. By the Lipschitz form of Taylor’s formula [ESD90, (2.1)],

𝑔(𝑡 + 𝜇, 𝜎) =
𝑘−1
∑
𝑗=0

𝜇𝑗

𝑗! 𝜕𝑗
1𝑔(𝑡, 𝜎) + 𝜇𝑘𝜌𝑡(𝜇, 𝜎),

where the remainder 𝜌𝑡 is O(1) since it satisfies

𝜇𝜌𝑡(𝜇, 𝜎) =
1

(𝑘 − 2)! ∫
1

0
(1 − 𝜏)𝑘−2 × (𝜕𝑘−1

1 𝑔(𝑡 + 𝜇𝜏, 𝜎) − 𝜕𝑘−1
1 𝑔(𝑡, 𝜎)) 𝑑𝜏.

Applying this to 𝑔(𝑡 − 𝑖𝜀, 𝑡−𝑖𝜀
𝜀 ) = 𝑔(𝑡 − 𝑖𝜀, 𝑡

𝜀) since 𝑔 is 1-periodic yields

(Δ𝑘𝑔𝜀)(𝑡) =
𝑘

∑
𝑖=0

(−1)𝑖(
𝑘
𝑖)𝑔(𝑡 − 𝑖𝜀, 𝑡−𝑖𝜀

𝜀 ) =
𝑘

∑
𝑖=0

(−1)𝑖(
𝑘
𝑖)(

𝑘−1
∑
𝑗=0

(−𝑖𝜀)𝑗

𝑗! 𝜕𝑗
1𝑔(𝑡, 𝑡

𝜀) + O(𝜀𝑘))

=
𝑘−1
∑
𝑗=0

(−𝜀)𝑗

𝑗! 𝜕𝑗
1𝑔(𝑡, 𝑡

𝜀)
𝑘

∑
𝑖=0

(−1)𝑖(
𝑘
𝑖)𝑖𝑗 + O(𝜀𝑘).

As ∑𝑘
𝑖=0(−1)𝑖(𝑘

𝑖)𝑖𝑗 = 0, see [Rui96, Cor. 2], this gives the desired result.

Lemma 4.3. Let 𝑔(𝑡, 𝜎) be 1-periodic, and 𝑘 − 1 times differentiable in the first variable with
𝜕(𝑘−1)

1 𝑔 Lipschitz. Then ((𝐾𝑘)(𝑘) ∗ 𝑔𝜀)(𝑡) = O(1).

Proof. We first prove by induction that (𝐾𝑘)(𝑘) ∗ 𝑔𝜀 = 1
𝜀𝑘 Δ𝑘𝑔𝜀. We have (𝐾1)′ ∗ 𝑔𝜀 = 1

𝜀 (𝛿0 −
𝛿𝜀) ∗ 𝑔𝜀 = 1

𝜀 Δ1𝑔𝜀. Assuming the property holds at rank 𝑘,

(𝐾𝑘+1)(𝑘+1) ∗ 𝑔𝜀 = (𝐾𝑘 ∗ 𝐾1)(𝑘+1) ∗ 𝑔𝜀 = (𝐾𝑘)(𝑘) ∗ (𝐾1)′ ∗ 𝑔𝜀

=
1
𝜀𝑘 Δ𝑘((𝐾1)′ ∗ 𝑔𝜀) =

1
𝜀𝑘 Δ𝑘(

Δ1𝑔𝜀
𝜀 )

=
1

𝜀𝑘+1 Δ𝑘+1𝑔𝜀.
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Figure 4.4: Characteristic powers 𝐾𝑘 (left), reconstruction kernels 𝐾𝑘 (right) for 𝑘 = 1, … , 4.

To obtain the second equality, we have repeatedly used (𝑇 ∗ 𝑆)′ = 𝑇′ ∗ 𝑆 = 𝑇 ∗ 𝑆′ (with 𝑇 and 𝑆
piecewise absolutely continuous). Applying Lemma 4.2, we eventually find ((𝐾𝑘)(𝑘) ∗ 𝑔𝜀)(𝑡) =
1
𝜀𝑘 Δ𝑘𝑔𝜀(𝑡) = 1

𝜀𝑘O(𝜀𝑘) = O(1), thus concluding the proof.

Lemma 4.4. Let 𝑔 beA𝑘. Then (𝐾𝑘 ∗ 𝑔𝜀)(𝑡) = O(𝜀𝑘).

Proof. We sketch the proof for 𝑘 = 3, the general result following by induction. Notice that
by assumption 𝑔(−3) is twice differentiable in the first variable with 𝜕2

1𝑔(−3) Lipschitz, which
will be used each time Lemma 4.3 is invoked.
We first prove (𝐾3)″ ∗ (𝑔(−2))𝜀)(𝑡) = O(𝜀). Starting from

((𝑔(−3))𝜀)
′

= (𝜕1𝑔(−3))𝜀 +
1
𝜀 (𝜕2𝑔(−3))𝜀 = (𝜕1𝑔(−3))𝜀 +

1
𝜀 (𝑔(−2))𝜀,

we find after convolving with (𝐾3)″ and integrating by parts

(𝐾3)″ ∗ (𝑔(−2))𝜀 = 𝜀(𝐾3)‴ ∗ (𝑔(−3))𝜀 − 𝜀(𝐾3)″ ∗ (𝜕1𝑔(−3))𝜀;

the boundary terms vanish since (𝐾3)″ has compact support. The first term is O(𝜀) by
Lemma 4.3. Using (𝐾3)″ = (𝐾1 ∗ 𝐾2)″ = 𝐾1 ∗ (𝐾2)″, the second term reads 𝜀𝐾1 ∗ ((𝐾2)″ ∗
(𝜕1𝑔(−3))𝜀), hence is alsoO(𝜀) by Lemma 4.3. The sum of the two terms is therefore alsoO(𝜀).
We next prove ((𝐾3)′ ∗ (𝑔(−1))𝜀)(𝑡) = O(𝜀2). Indeed, using successively

(𝑔(−1))𝜀 = 𝜀(𝑔(−2))′
𝜀 − 𝜀(𝜕1𝑔(−2))𝜀

(𝜕1𝑔(−2))𝜀 = 𝜀(𝜕1𝑔(−3))′
𝜀 − 𝜀(𝜕2

1𝑔(−3))𝜀

yields

(𝑔(−1))𝜀 = 𝜀(𝑔(−2))′
𝜀 − 𝜀2(𝜕1𝑔(−3))′

𝜀 + 𝜀2(𝜕2
1𝑔(−3))𝜀.

Convolving with (𝐾3)′ and integrating by parts,

(𝐾3)′ ∗ (𝑔(−1))𝜀 = 𝜀(𝐾3)″ ∗ (𝑔(−2))𝜀 − 𝜀2(𝐾3)″ ∗ (𝜕1𝑔(−3))𝜀 + 𝜀2(𝐾3)′ ∗ (𝜕2
1𝑔(−3))𝜀;

the boundary terms vanish since (𝐾3)′ has a bounded support. We already know the first two
terms are O(𝜀2). Using (𝐾3)′ = (𝐾2 ∗ 𝐾1)′ = 𝐾2 ∗ (𝐾1)′, the last term reads 𝜀2𝐾2 ∗ ((𝐾1)′ ∗
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(𝜕2
1𝑔(−3))𝜀), hence is also O(𝜀2) by lemma 4.3. The sum of the three terms is therefore

also O(𝜀2).
We finally prove (𝐾3 ∗ 𝑔𝜀)(𝑡) = O(𝜀3). Indeed, using successively

𝑔𝜀 = 𝜀(𝑔(−1))′
𝜀 − 𝜀(𝜕1𝑔(−1))𝜀

(𝜕1𝑔(−1))𝜀 = 𝜀(𝜕1𝑔(−2))′
𝜀 − 𝜀(𝜕2

1𝑔(−2))𝜀

(𝜕2
1𝑔(−2))𝜀 = 𝜀(𝜕2

1𝑔(−3))′
𝜀 − 𝜀(𝜕3

1𝑔(−3))𝜀,

we find

𝑔𝜀 = 𝜀(𝑔(−1))′
𝜀 − 𝜀2(𝜕1𝑔(−2))′

𝜀 + 𝜀3(𝜕2
1𝑔(−3))′

𝜀 − 𝜀3(𝜕3
1𝑔(−3))𝜀.

Convolving with 𝐾3 and integrating by parts,

𝐾3 ∗ 𝑔𝜀 = 𝜀(𝐾3)′ ∗ (𝑔(−1))𝜀 − 𝜀2(𝐾3)′ ∗ (𝜕1𝑔(−2))𝜀 + 𝜀3(𝐾3)′ ∗ (𝜕2
1𝑔(−3))𝜀 − 𝜀3𝐾3 ∗ (𝜕3

1𝑔(−3))𝜀;

the boundary terms vanish since 𝐾3 has a bounded support. We already know the first and
third terms are O(𝜀3). The second term reads

𝜀2(𝐾3)′ ∗ (𝜕1𝑔(−2))𝜀 = 𝜀3(𝐾3)′ ∗ (𝜕1𝑔(−3))′
𝜀 − 𝜀3(𝐾3)′ ∗ (𝜕2

1𝑔(−3))𝜀

= 𝜀3(𝐾3)″ ∗ (𝜕1𝑔(−3))𝜀 − 𝜀3(𝐾3)′ ∗ (𝜕2
1𝑔(−3))𝜀

= 𝜀3𝐾1 ∗ ((𝐾2)″ ∗ (𝜕1𝑔(−3))𝜀) − 𝜀3(𝐾2)′ ∗ ((𝐾1)′ ∗ (𝜕2
1𝑔(−3))𝜀),

and is also O(𝜀3) by using Lemma 4.3 twice. Finally, by Young’s convolution inequality, the
fourth term satisfies

‖ 𝜀3𝐾3 ∗ 𝜕3
1𝑔(−3) ‖∞ ≤ 𝜀3‖ 𝐾3 ‖1‖ 𝜕3

1𝑔(−3) ‖∞,

hence is also O(𝜀3); notice 𝜕3
1𝑔(−3) is bounded by assumption, and so is 𝐾3. The sum of the

four terms is therefore also O(𝜀3), which concludes the proof.

4.3.4 Identity reconstruction from shifted iterated moving averages

The strength of lemma 4.4 lies in the mitigation ofA𝑘 signals up to the 𝑘th order in 𝜀. This
result is particularly useful for canceling the periodic (in the second argument) terms, but



84 Chapter 4: Demodulation of multiplexed signals with slowly-varying carriers

fails at fully recovering its input, that is, recovering 𝑦 from 𝑦 ∗ 𝐾𝑘. One way to achieve
this recovery consists in considering linear combinations of shifted convolutions 𝑦 ∗ 𝜏𝑖𝜀𝐾𝑘.
Theorem 4.5 details the technique to select the coefficients of such a linear combination to
yield the input signal 𝑦. Simply put, the operator 𝑃 defined in the theorem is the identity with
an approximation error in O(𝜀𝑘). This result is a generalization of lemma 2.9.

Theorem 4.5. Let 𝜑 be C𝑘 with 𝜑(𝑘) bounded. There exists a sequence (𝛼𝑘
𝑖 )0≤𝑖≤𝑘−1 ∈ ℚ𝑘

(specified in the proof and in table 4.1 for 𝑘 = 1, … , 6) such that

𝑃𝑘[𝜑](𝑡) ∶=
𝑘−1
∑
𝑖=0

𝛼𝑘
𝑖 𝜑 ∗ 𝐾𝑘(𝑡 − 𝑖𝜀) = 𝜑(𝑡) + O(𝜀𝑘).

Proof. Let first compute the convolution product 𝜑 ∗ 𝐾𝑘. Considering the 𝑘th-order Taylor
expansion of 𝜑, with the remainder being bounded by hypothesis, it reads

𝜑 ∗ 𝐾(𝑡) =
1
𝜀 ∫

𝜀

0
𝜑(𝑡 − 𝜎) 𝑑𝜎 =

1
𝜀 ∫

𝜀

0
⎡⎢
⎣

𝑘−1
∑
𝑖=0

(−𝜎)𝑖

𝑖! 𝜑(𝑖)(𝑡)⎤⎥
⎦

𝑑𝜎 + O(𝜀𝑘)

=
𝑘−1
∑
𝑖=0

𝜀𝑖𝑎1
0,𝑖𝜑(𝑖)(𝑡) + O(𝜀𝑘), (4.2)

where the coefficients 𝑎1
0,𝑖 satisfy for 0 ≤ 𝑖 ≤ 𝑘 − 1, 𝑎1

0,𝑖 ∶= (−1)𝑖/(𝑖 + 1)!. The expression for
𝜑 ∗ 𝐾2 is directly obtained by applying 𝐾 to (4.2), namely

𝜑 ∗ 𝐾2(𝑡) = (𝜑 ∗ 𝐾) ∗ 𝐾(𝑡) =
𝑘−1
∑
𝑖1=0

𝜀𝑖1𝑎1
0,𝑖1𝜑(𝑖1) ∗ 𝐾(𝑡) + O(𝜀𝑘)

=
𝑘−1
∑
𝑖1=0

𝜀𝑖1𝑎1
0,𝑖1

𝑘−1−𝑖1
∑
𝑖2=0

𝜀𝑖2
(−1)𝑖2

(𝑖2 + 1)!𝜑
(𝑖1+𝑖2)(𝑡) + O(𝜀𝑘)

=
𝑘−1
∑
𝑖=0

𝜀𝑖𝑎2
0,𝑖 𝜑(𝑖)(𝑡) + O(𝜀𝑘),

where the second line is obtained through the application of Taylor expansion (4.2) to each
summed terms. Notice also that the application of 𝐾 to the uniform remainder O(𝜀𝑘) still
yields a O(𝜀𝑘) term, as 𝐾 is bounded with compact support. The coefficients 𝑎2

0,𝑖 are defined
for 0 ≤ 𝑖 ≤ 𝑘 − 1 by

𝑎2
0,𝑖 ∶=

𝑖
∑
𝑗=0

(−1)𝑖−𝑗

(𝑖 − 𝑗 + 1)!𝑎
1
0,𝑗.

This computational process can be iterated to obtain the expression of the convolution product
between 𝜑 and the 𝑘th-order convolution kernel 𝐾𝑘, that is

𝜑 ∗ 𝐾𝑘(𝑡) =
𝑘−1
∑
𝑖=0

𝜀𝑖𝑎𝑘
0,𝑖𝜑(𝑖)(𝑡) + O(𝜀𝑘),

where 𝑎𝑘
0,𝑖 is defined, for 0 ≤ 𝑖 ≤ 𝑘 − 1, by induction as follows

𝑎𝑘
0,𝑖 ∶=

𝑖
∑
𝑗=0

(−1)𝑖−𝑗

(𝑖 − 𝑗 + 1)!𝑎
𝑘−1
0,𝑗 .
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To reconstruct𝜑 from𝜑∗𝐾, consider first its expression delayed by a factor 𝑙𝜀with 𝑙 = 0, … , 𝑘−1

𝜑 ∗ 𝐾𝑘(𝑡 − 𝑙𝜀) =
𝑘−1
∑
𝑖=0

𝜀𝑖𝑎𝑘
0,𝑖𝜑(𝑖)(𝑡 − 𝑙𝜀) + O(𝜀𝑘) =

𝑘−1
∑
𝑖=0

𝜀𝑖𝑎𝑘
𝑙,𝑖𝜑

(𝑖)(𝑡) + O(𝜀𝑘),

where the second identity is once again obtained by Taylor expansion. Also, the coefficients
𝑎𝑘

𝑙,𝑖 read for 0 ≤ 𝑙, 𝑖 ≤ 𝑘 − 1,

𝑎𝑘
𝑙,𝑖 ∶=

𝑖
∑
𝑗=0

(−𝑙)𝑖−𝑗

(𝑖 − 𝑗)! 𝑎
𝑘
0,𝑗. (4.3)

A suitable linear combination of shifted 𝜑 ∗ 𝐾𝑘 recovers 𝜑 with an accuracy in 𝜀𝑘. Indeed,
define 𝔐𝑘(𝜑)(𝑡) = (𝜑 ∗ 𝐾𝑘(𝑡 − 𝑖𝜀))0≤𝑖≤𝑘−1 the concatenation of 𝜑 ∗ 𝐾𝑘(𝑡) and its delayed
evaluations, 𝔄𝑘 ∶= (𝑎𝑘

𝑙,𝑖)0≤𝑙,𝑖≤𝑘−1 defined by equation (4.3) and Φ(𝑡) ∶= (𝜀𝑖𝜑(𝑖))0≤𝑖≤𝑘−1 the
“Taylor expansion basis”. Then from the previous calculations,

𝔐𝑘(𝜑)(𝑡) = 𝔄𝑘Φ(𝑡) + O(𝜀𝑘).

Assume the matrix 𝔄𝑘 is invertible, and define 𝛼𝑘 = (𝛼𝑘
𝑖 )0≤𝑖≤𝑘−1 such that

𝛼𝑘𝔄𝑘 = (1 0 … 0) .

The first coefficient of Φ(𝑡) is simply 𝜑(𝑡), meaning that

𝛼𝑘𝔐𝑘(𝜑)(𝑡) = 𝛼𝑘𝔄𝑘Φ(𝑡) + O(𝜀𝑘) = 𝜑(𝑡) + O(𝜀𝑘).

This identity reads (𝜑 ∗ 𝐾𝑘)(𝑡) = 𝜑(𝑡) +O(𝜀𝑘), where 𝐾𝑘 is the 𝑘th-order reconstruction kernel

𝐾𝑘(𝑡) ∶=
𝑘−1
∑
𝑖=0

𝛼𝑘
𝑖 𝐾𝑘(𝑡 − 𝑖𝜀).
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For 𝑘 = 1, … , 6, 𝔄𝑘 explicitly reads

𝔄1 = (1) , 𝔄2 = ⎛⎜
⎝

1 −1
1 −2

⎞⎟
⎠

, 𝔄3 =
⎛⎜⎜⎜⎜
⎝

1 −3/2 5/4
1 −5/2  13/4 
1 −7/2 25/4

⎞⎟⎟⎟⎟
⎠

,

𝔄4 =
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −2 13/6 −5/3
1 −3 14/3 −5
1 −4 49/6 −34/3
1 −5 38/3 −65/3

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝔄5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −5/2 10/3 −25/8 331/144
1 −7/2 19/3 −63/8 1087/144
1 −9/2 31/3 −129/8 2767/144
1 −11/2 46/3 −231/8 5947/144
1 −13/2 64/3 −377/8 11347/144

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

𝔄6 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −3 19/4 −21/4 1087/240 −259/80
1 −4 33/4 −35/3 3047/240 −679/60
1 −5 51/4 −265/12 4175/143 −1507/48
1 −6 73/4 −75/2 14047/240 −2959/40
1 −7 99/4 −707/12 10301/97 −12828/83
1 −8 129/4 −262/3 42887/240 −8839/30

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (4.4)

Solving 𝛼𝑘𝔄𝑘 = (1 0 … 0) provides the coefficients 𝛼𝑘
𝑖 ; table 4.1 eventually gathers these

values.

4.3.5 Sensitivity to noise of the designed estimator

In practical applications, the measurement 𝑦 is always corrupted by noise on top of the physical
disturbance 𝑑. Windowing the disturbances by selecting a suited demodulation basis 𝑅 proved
to cancel the harmful effects of 𝑑 on the 𝑦. Still, the demodulation properties with respect to
the noise has not been examined yet. To do so, consider the signal 𝑦 as in (4.1) perturbed by
an Additive White Gaussian Noise (AWGN) 𝜈 with Power Spectral Density PSD[𝜈]

𝑦(𝑡) =
𝑁

∑
𝑖=0

𝑧𝑖(𝑡)𝑠𝑖(𝑡, 𝑡
𝜀) + 𝑑(𝑡, 𝑡

𝜀) + 𝜈 + O(𝜀𝑛).

Demodulating the components 𝑧𝑙 from this measurement introduces an additive white noise
𝜈𝑘

𝑙 in the expression of the estimate 𝑃𝑘
𝑙 [𝑦] of 𝑧𝑙. Specifically, the PSD of 𝜈𝑘

𝑙 is

PSD[𝜈𝑘
𝑙 ](𝜔) = PSD[𝜈𝜉𝑙](𝜔)∣𝐻𝑛(𝚥𝜔)∣2,

where 𝜉𝑙 ∶= [𝑅𝑇
𝜀 (𝑆𝑅𝑇)−1]𝑙 is the 𝑙th function coefficient of thematrix𝑅𝑇

𝜀 (𝑆𝑅𝑇)−1, for 𝑙 = 1, … , 𝑛,
and 𝐻𝑘 is the transfer function associated to 𝐾𝑘 whose expression is

𝐻𝑘(𝚥𝜔) ∶= sinc𝑘 (
𝜀𝜔
2 ) exp(

−𝚥𝑘𝜀𝜔
2 )

𝑘−1
∑
𝑙=0

𝛼𝑘
𝑙 exp (−𝚥𝑙𝜀𝜔) .

Along the lines of [Com+16a], since 𝜈 and 𝜉𝑙 are independent (the latter being purely deter-
ministic), 𝜈𝜉𝑙 behaves as a Gaussian white noise with PSD[𝜈𝜉𝑙] = 𝜉2

𝑙 PSD[𝜈]. The functions 𝜉𝑙
directly depends on the inverse of matrix 𝑆𝑅𝑇, meaning its condition number characterizes
the estimate properties regarding the additive noise 𝜈. A better condition number 𝜅 limits
the magnitudes of the signals 𝜉𝑙, thereby reducing the noise PSD in the estimate. Selecting a
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Table 4.1: Coefficients 𝛼𝑘 of the reconstruction kernel for 𝑘 = 1, … , 6

𝑘 𝛼𝑘
0 𝛼𝑘

1 𝛼𝑘
2 𝛼𝑘

3 𝛼𝑘
4 𝛼𝑘

5

1 1
2 2 −1
3 17/4 −5 7/4
4 28/3 −109/6 40/3 −7/2
5 3013/144 −2089/36 1589/24 −1279/36 1069/144
6 1903/40 −19557/113 16247/60 −8877/40 11269/120 −781/48

suitable demodulation basis turns out to be of utmost importance, both for discarding the
disturbance 𝑑 and mitigating the noise corruption.
The Bode plots of 𝐻𝑘, given in Fig. 4.5, show that the PSD of the noise is slightly amplified

at low frequencies as 𝑘 increases. Indeed, the reconstruction kernel 𝐾𝑘 describes an active
filter whose gains increase with the kernel order 𝑘, as described by table 4.1 and the graphical
representation 4.4. This stems from the poor conditioning of the matrices (4.4) to invert in
order to derive the full kernel 𝐾𝑘. In practice, we restrict to orders lower than three to extract
𝑍 from the measurement 𝑦.

4.4 Numerical experiments

4.4.1 Scenario

We illustrate the error analysis of Theorem 4.1 with numerical experiments for 𝑘 = 1, 2, 3.
Consider the composite signal 𝑦 defined on [0, 5] by

𝑦(𝑡) = 𝑧1(𝑡)𝑠1(𝑡, 𝑡
𝜀) + 𝑧2(𝑡)𝑠2(𝑡, 𝑡

𝜀) + 𝑧3(𝑡)𝑠3(𝑡, 𝑡
𝜀) + 𝑑(𝑡, 𝑡

𝜀),

with encoded signals 𝑧1, 𝑧2, 𝑧3 (see Fig. 4.2a) and carriers 𝑠1, 𝑠2, 𝑠3 (see Fig. 4.2b)

𝑧1(𝑡) ∶= 2 sin(𝑡) − 1.5 sin( 𝑡
2), 𝑠1(𝑡, 𝜎) ∶= 1,

𝑧2(𝑡) ∶= cos(𝑡) − 1.2 sin( 𝑡
4), 𝑠2(𝑡, 𝜎), ∶= sign( 𝑡

20 + w(𝜎) − 0.5),
𝑧3(𝑡) ∶= 1.4 cos( 𝑡

3)2 𝑠3(𝑡, 𝜎) ∶= cos(𝑡) + w(𝜎)𝟙[0,0.5](w(𝜎))
+(1 − w(𝜎))𝟙[0.5,1](w(𝜎)),

where w(𝜎) ∶= 𝜎 mod 1. The support of the disturbance 𝑑(𝑡, ⋅) is

𝐷𝑡 ∶= 𝐷1,𝑡 ∪ 𝐷2,𝑡 = [𝑓 (𝑡) − 1
20 , 𝑓 (𝑡) + 1

20] ∪ [𝑔(𝑡) − 1
20 , 𝑔(𝑡) + 1

20],

with 𝑓 (𝑡) ∶= 1
2(1 + sin(𝑡)) and 𝑔(𝑡) ∶= 1

2(1 + cos(𝑡)); hence, on a window of length 𝜀 between
10 % (when the two intervals 𝐷1,𝑡 and 𝐷2,𝑡 coincide) and 20 % (when the two intervals are
disjoint) of the signal is corrupted. The disturbance 𝑑 itself is defined as follows: consider

̃𝜏 ∶= 𝜀−1(𝑡/𝜀 mod 1), 𝜏1 and 𝜏2 such that

𝜏1 = 10( ̃𝜏 mod 𝑓 (𝑡) − 1/20)𝟙𝐷1
(𝑡), 𝜏2 = 10( ̃𝜏 mod 𝑔(𝑡) − 1/20)𝟙𝐷2

(𝑡).
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Figure 4.7: Errors 𝑒𝑘(𝑡) for 𝜀 = 10−2: full view (left), zoom (right).

The disturbance reads 𝑑 = 𝑑1 + 𝑑2 with

𝑑1 = 10 exp(−5𝜏1) sin(50𝜏1), 𝑑2 = 10 exp(−5𝜏2) sin(50𝜏2).

The partial disturbance 𝑑1 (resp. 𝑑2) is only active on 𝐷1,𝑡 (resp. 𝐷2,𝑡); such a definition for 𝑑
tries to replicate the experimental observations, see Fig 4.3b. Fig 4.3a displays the resulting
signal 𝑦, with the spikes caused by 𝑑 clearly visible.
We select the simplest demodulating basis that is zero on 𝐷𝑡, namely 𝑅(𝑡, 𝜎) ∶= (1 −

1𝐷𝑡
(𝜎))𝑆(𝑡, 𝜎); tedious but routine computations show 𝑆𝑅𝑇 − 𝑆𝑅𝑇 isA𝑘 for 𝑘 = 1, 2, 3. We

check numerically that 𝑆𝑅𝑇(𝑡) is invertible by plotting its condition number 𝜅, see Fig. 4.8:
indeed, 𝑆𝑅𝑇(𝑡) is always well-conditioned, except during the filter initialization.

4.4.2 Asymptotic behavior of the error

We focus on the recovery of 𝑧2, since it is modulated by the least regular carrier. We consider
the error 𝑒𝑘(𝑡) ∶= 𝑧2(𝑡) − 𝑃2

𝑘[𝑦](𝑡), where 𝑃2
𝑘[𝑦] denotes the second component of 𝑃𝑘[𝑦]. For 𝜀

fixed, the error decreases as anticipated with 𝑘, see Fig 4.7. To study the asymptotic behavior
as a function of 𝜀, we consider the 𝐿2-error ‖ 𝑒𝑘 ‖ ∶= (∫5

1 (𝑒𝑘(𝑡))2𝑑𝑡)
1
2 ; the first second of data is

discarded to ensure the filters are well initialized. As anticipated, the plots in log scale are
straight lines with slopes equal to the orders of the estimates, see Fig. 4.9.

4.5 Conclusion

We have proposed a demodulation procedure to recover analog signals encoded by multiple
carriers with slowly-varying shapes. Though the procedure is not completely surprising at
first sight, proving that the overall demodulation error is arbitrarily small is not obvious.
Arguably, the framework is somewhat peculiar, which explains why no similar work seems
to exist in the literature. Nevertheless, the result is exactly what we need for the application
we have in mind, namely the “sensorless” control of AC electric motors at or near standstill.
In this application, the composite signal 𝑦 to be decoded is the (vector) current in the motor,
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Figure 4.9: 𝐿2-error ‖ 𝑒𝑘 ‖ as a function of 𝜀.

the motor itself acting as a multicarrier modulator when fed by a PWM inverter; a suitable
processing of the demodulated signal then yields the rotor angle, which is needed to accurately
control the motor.





Chapter 5

Synchronous demodulation over Sigma-Delta
modulators

This chapter is an extension of Error Estimates in Second-Order Continuous-Time Sigma-
Delta Modulators [SCM21b], published in the Proceedings of ICASSP 2021.

Résumé Afin de capter les effets induits par l’injection endogène sur les courants mesu-
rés — et donc récupérer les mesures virtuelles —, il est nécessaire d’avoir un Convertisseurs
Analogique-Numérique (CAN) rapide possédant une fréquence d’échantillonnage supérieure
à la fréquence MLI. Les variateurs de vitesse modernes sont aujourd’hui équipés d’un CAN
Sigma-Delta (ΣΔ) qui suréchantillonne le signal analogique à une fréquence largement su-
périeure à celle de la MLI, mais qui en contrepartie ne produit qu’un flux binaire. Demeure
alors la question de la possibilité de récupérer l’information contenue dans le ripple de cou-
rant non pas à partir des données analogiques, mais en utilisant uniquement ce flux binaire
ΣΔ. Bien que l’analyse théorique de l’erreur de reconstruction — et donc de démodulation
— pour les modulateurs Sigma-Delta à temps discret utilisant des filtres «sinc» standards
soit bien établie, les résultats relatifs à leur équivalent continu ou à l’utilisation de filtres
de reconstruction généraux restent rares. Ce chapitre fournit des estimations d’erreur pour
des modulateurs Sigma-Delta d’ordre quelconque en temps continu et en temps discret, en
utilisant une large classe de filtres passe-bas qui réalisent une détection synchrone sur le
flux binaire en sortie. Dans le cas continu, une discrétisation de l’estimation est également
proposée afin de permettre une implémentation numérique sur un microprocesseur ou un
FPGA. Ce chapitre se conclut par une validation numérique des résultats proposés.

Abstract To capture the effects induced by the endogenous injection on the measured
currents —and thus to recover the virtual measurements—, a high-rate Analog-to-Digital
Converter (ADC) with a sampling frequency higher than the PWM frequency is required.
Modern Variable-Frequency Drives are now equipped with an oversampling Sigma-Delta
(ΣΔ) ADC operating at many-times the PWM frequency, but only producing a bitstream
in return. The question therefore remains about recovering the information contained in
the current ripple not from the analog data, but only from this ΣΔ bitstream. Although
theoretical analysis of the reconstruction error —and hence demdoulation— for discrete-
time ΣΔ modulators using standard sinc filters is well-established, results pertaining to their
continuous counterpart or to the use of general reconstruction filter remain scarce. This
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chapter provides error estimates for both continuous-time and discrete-time 𝑘th-order Sigma-
Delta modulators using a broad class of low-pass filters in order to achieve synchronous
detection or matched filtering. In the continuous case, a discretization of the estimate is also
derived to allow an actual implementation on a Digital Signal Processor (DSP) or an Field
Programmable Gate Array (FPGA). The whole theory is validated by numerical experiments.

5.1 Introduction

Introduced first by Inose and Yasude [IYM62; IY63], Sigma-Delta (ΣΔ)modulation is currently
a popular technique used in high-accuracy Analog-to-Digital converters (ADC), finding
applications in numerous areas, going from the processing of audio signals [YSS04; RW97;
Pav+08; Luo+13] to its use in integrated circuits for wireless communications [RCK93; PTS02].
Compared to standard Nyquist-rate converters, ΣΔ converters possess a lower sensitivity to
implementation imperfections such as components mismatch. Despite their 1-bit quantization
process, they also achieve high resolution through the oversampling of the signal input and
noise shaping [CT92; ASS96]. Traditionally, these converters are followed by both a digital
low-pass filter and a decimator to realize high resolution conversion [Hog81], thus raising the
question of the reconstruction error. For 𝑘th-order discrete-timeΣΔmodulators, instantaneous
error estimate inO(1/𝑁𝑘) are obtainedDaubechies et al. [DD03] andGüntürk [Gun03; GT04]
for a time-varying input, where 𝑁 is the oversampling ratio, using for example a sinc𝑘+1 filter
for the reconstruction [Tha01]. For continuous-time ΣΔ (CT-ΣΔ) modulators, which deliver
more power-efficient operations than their discrete-time equivalent as well as higher sampling
rates [OG06; ST05; SP08], such general results remain partial, however. To provide tools for
the design of continuous-time modulators, equivalence results between CT and DT-ΣΔ might
be harnessed [SZ96] to derive this type of estimate. In [SCM21b], the theoretical analysis
for second-order CT-ΣΔ modulators is conducted by a straightforward approach, yielding the
same estimate as in the discrete case.
While estimates are known when the reconstruction filter is a sinc𝑘 or ideal brick-wall filter,

the sole use of these two low-pass filters is restrictive for specific applications. Achieving
synchronous detection through a ΣΔ modulator (see Fig. 5.1, for instance, requires ad hoc
filtering technique, generally by exploiting the properties of the input signal. The same
question emerges for the design of matched filters on the output ΣΔ-bitstream [Tur60].
This problem also arises in motor control: ΣΔ converters are widely used to retrieve the

phase currents as they provide galvanic insulation [Sor15]. The currents carry information
on the rotor position if correctly filtered [SCM21a]: indeed, the Pulse-Width Modulation
(PWM) of the input voltage creates ripples in the current measurements [Sur+20a] that
can be extracted through a demodulation procedure using a homodyne detection based on
iterated moving averages [Sur+19a]. This operation cannot be easily conducted directly on the
analog currents prior to A/D conversion (as it requires to compute the product of two analog
signals), and requires a proper process on the ΣΔ output bitstream. Therefore, knowing the
reconstruction error of the ΣΔ modulator is of utmost importance for this type of application,
when the filter is no more a simple sinc filter.
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Figure 5.1: Synchronous detection over a ΣΔ modulator.

This chapter tackles the problem of synchronous detection through both continuous and
discrete-time ΣΔ modulators. Error estimates are obtained for a more general class of recon-
struction filters than the traditional sinc. Noise, as well as stability analyses are otherwise
beyond the scope of this chapter: to this extent, every CT/DT-ΣΔ modulator is supposed to
be stable for the considered class of inputs.
The outline of this chapter is the following: we first show that for a 𝑘th-order DT-ΣΔ

modulator in feedforward form, we can obtain an error in O(1/𝑁𝑘) with an adequate filtering
process, thus realizing the synchronous detection through the DT-ΣΔ. This result is then
obtained for CT-ΣΔ modulators also in feedforward form. Such a result is slightly refined
with in the continuous case with the help of a generalized version of the Riemann-Lebesgue
lemma. In section 5.4, weaker results on feedback structures as well as on the filtering by
an IIR are derived. In section 5.5, the continuous filtering procedure is discretized to allow
an actual implementation on a Digital Signal Processor (DSP) or an FPGA.We wrap up the
whole theory by numerical validations in section 5.6.

5.2 Estimate for DT-ΣΔ modulators in feedforward form

In the following, 𝑢 ∈ [−1, 1] denotes the input of the modulator, ̃𝜈[𝑛] ∈ {0, 1} its output
bitstream (see Fig. 6.6) and 𝜈[𝑛] ∶= −1 + 2 ̃𝜈[𝑛] ∈ {−1, 1} the scaled output, 𝑥1,2,…,𝑘 the states
of the modulator with 𝑘 the order of the modulator, 𝑇𝑠 is the modulator sampling time such
that 𝑁 ∶= 1/𝑇𝑠, the oversampling ratio, is an integer. Thus the function 𝜈 is constant on
[𝑗𝑇𝑠, (𝑗 + 1)𝑇𝑠) for 𝑗 ∈ ℕ.
Throughout this chapter, estimates are often expressed with the notation O, denoting the

”big O“ of analysis, i.e. 𝑓 (𝑡, 𝜀) = O(𝜀) if there exists 𝐾(𝑡) > 0 independent of 𝜀 such that
‖ 𝑓 (𝑡, 𝜀) ‖ ≤ 𝐾(𝑡)𝜀. If additionally, 𝐾 is independent of 𝑡, we write 𝑓 (𝑡, 𝜀) = O∞(𝜀). Likewise,
the notation 𝑜 is the ”small o“ of analysis, i.e. 𝑓 (𝑡, 𝜀) = 𝑜(𝜀) if ‖ 𝑓 (𝑡, 𝜀) ‖ ≤ 𝜀𝑔(𝑡, 𝜀) where
lim𝜀→0 𝑔(𝑡, 𝜀) = 0. If 𝑔 is independent of 𝑡, we write 𝑓 (𝑡, 𝜀) = 𝑜∞(𝜀).
Also, all the modulators will be assumed stable, i.e. the states 𝑥𝑖, 𝑖 = 1, … , 𝑘 defined in (5.1)

and (5.8) remain bounded for both DT and CT-ΣΔ; comprehensive considerations on stability
are discussed e.g. in [HZ93; DD03; AP87]. This chapter otherwise does not study the
properties and effects of the quantizer, the latter being solely assumed to output a bitstream 𝜈.
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Figure 5.2: Continuous (left) and discretized FIR filters 𝐾𝑘 (right, on five points) for 𝑘 = 1, 2,
3, 4 (purple, blue, green, red respectively).

5.2.1 Discrete state-space model of the modulator

The state-space model of a discrete-time 𝑘th-order ΣΔ modulator in the feedforward form
reads for 𝑗 ≥ 0

𝑥1[𝑗 + 1] = 𝑥1[𝑗] + 𝛽[𝑗] (5.1a)
𝑥𝑖[𝑗 + 1] = 𝑥𝑖[𝑗] + 𝑥𝑖−1[𝑗], 𝑖 = 2, … , 𝑘 (5.1b)

𝑦[𝑗] =
𝑛

∑
𝑙=1

𝑏𝑙𝑥𝑙[𝑗], (5.1c)

where 𝑥1[𝑗] ∶= 𝑥1(𝑗𝑇𝑠), and 𝛽[𝑗] ∶= 𝑢[𝑗] − 𝜈[𝑗]. We start by defining the discrete convolution
kernel 𝐾𝑘 as follows

𝐾1[𝑗] ∶=
⎧{
⎨{⎩

1
𝑁 𝑗 = 0, … , 𝑁 − 1
0 otherwise,

𝐾𝑘∶=(𝐾1)∗𝑘 = 𝐾1 ∗ … ∗ 𝐾1,

where ⋅∗𝑘 denotes the convolution power; the sampling period is the one of the modulator,
namely 𝑇𝑠. For 𝑘 = 2, the kernel 𝐾2 describes the triangular, or Bartlett kernel [BT58], and
for 𝑘 = 4, the convolution of the triangle with itself 𝐾4 defines the de la Vallée Poussin (or
Parzen) kernel [Har78; Par61]. More generally, the characteristic powers define the so-called
Kolmogorov-Zurbenko filters [Zur91; YZ10], also known as the sinc𝑘 filter, and can be seen
as a discretization of the continuous 𝐵-spline kernels, see figure 5.2.
The synchronous demodulation estimate is encapsulated in theorem 5.1: if the modulating

signal 𝑠 is C𝑘, then the filtered error is in O(1/𝑁𝑘). This estimate is made uniform if addition-
ally, the derivatives of 𝑠 are bounded. This requirement might seem restrictive, but in practice,
periodic signals are employed in modulation processes, hence only assuming the regularity of
𝑠 gives the desired properties on 𝑠 and its derivatives.

Theorem 5.1. Assume 𝑠 is C𝑘 such that 𝑠(𝑖) is bounded for 𝑖 = 0, … , 𝑘. Then the following
(uniform) estimate holds

𝛽𝑠 ∗ 𝐾𝑘 = O∞(1/𝑁𝑘).

The proof is divided into two parts: first, we prove the result holds for 𝑠 = 1, then we tackle
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the synchronous detection issue, by considering a generic signal 𝑠 satisfying the hypotheses
of theorem 5.1.

5.2.2 Standard filtering process (with 𝑠 = 1)

In this subsection, the well-known estimate on 𝑘th-order is derived. The next subsection will
be dedicated to the synchronous detection using an exogenous signal 𝑠.The following proof
mainly relies on the basic summation by parts

Lemma 5.2 (Summation by parts). Consider two sequences {𝑎𝑗} and {𝑏𝑗}. Then
𝑛

∑
𝑗=𝑚

𝑎𝑗(𝑏𝑗+1 − 𝑏𝑗) = 𝑎𝑛𝑏𝑛+1 − 𝑎𝑚𝑏𝑚 −
𝑛

∑
𝑗=𝑚+1

𝑏𝑗(𝑎𝑗 − 𝑎𝑗−1).

By definition, the discrete convolution of the input-output difference 𝛽 with 𝐾𝑘 reads

𝛽 ∗ 𝐾𝑘[𝑛] ∶=
+∞
∑

𝑗=−∞
𝛽[𝑛 − 𝑗]𝐾𝑘[𝑗]. (5.2)

Based on the state-space model of the modulator (see equation (5.1a)), 𝛽[𝑗] satisfies

𝛽[𝑗] = 𝑥1[𝑗 + 1] − 𝑥1[𝑗].

Therefore, replacing 𝛽[𝑛 − 𝑗] by the previous identity in (5.2) and using the summation by
parts between 𝑗 = −𝑘 and 𝑗 = 𝑘𝑁 + 𝑘 (this last bound is so defined because of the non-zero
(𝑘𝑁 + 𝑘)th terms arising below, see especially equation (5.4)) yields

𝛽 ∗ 𝐾𝑘[𝑛] = 𝑥1[𝑛 − 𝑘𝑁 − 𝑘 + 1]𝐾𝑘[𝑘𝑁 + 𝑘] − 𝑥1[−𝑘]𝐾𝑘[−𝑘] −
𝑘𝑁+𝑘
∑

𝑗=−𝑘+1
𝑥1[𝑛 − 𝑗]Δ𝐾𝑘[𝑗],

where Δ𝐾𝑘[𝑗] ∶= 𝐾𝑘[𝑗] − 𝐾𝑘[𝑗 − 1] is the finite backward difference. The selected kernel 𝐾𝑘

is such that 𝐾𝑘[−𝑘] = 𝐾𝑘[𝑘𝑁 + 𝑘] = 0, thus canceling the first two terms in the previous
equation. Besides, the discrete state-space of the ΣΔ modulator (see equation (5.1b)) in a pure
feedforward form provides the following expression for 𝑥𝑖[𝑗]

𝑥𝑖[𝑗] = 𝑥𝑖+1[𝑗 + 1] − 𝑥𝑖+1[𝑗], 𝑘 = 1, … , 𝑘 − 1.

By a straightforward induction, and using that for 𝑗 ≤ 𝑛 − 1, Δ𝑗𝐾𝑘[−𝑘 + 𝑗] = Δ𝑗𝐾𝑘[𝑘𝑁 + 𝑘] = 0,
the convolution reduces to

𝛽 ∗ 𝐾𝑘[𝑛] = (−1)𝑘
𝑘𝑁−𝑘
∑
𝑗=0

𝑥𝑘[𝑛 − 𝑗]Δ𝑘𝐾𝑘[𝑗]. (5.3)

We now turn to the computation of the coefficients Δ𝑘𝐾𝑘[𝑗]. The 𝑧-transform of the sinc𝑘

kernel of order 𝑘 and length 𝑁 verifies [Zur91]
+∞
∑
𝑟=0

𝑧𝑟𝐾𝑘[𝑟] =
1

𝑁𝑘 (1 + 𝑧 + … + 𝑧𝑁−1)𝑘 .

By definition of the 𝑘-fold composition of the backward difference Δ𝑘,

Δ𝑘𝐾𝑘[𝑚] =
𝑘

∑
𝑗=0

(−1)𝑗(
𝑘
𝑗)𝐾𝑘[𝑚 − 𝑗].
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Which means the 𝑧-transform of Δ𝑘𝐾𝑘 satisfies
+∞
∑
𝑟=0

𝑧𝑟Δ𝑘𝐾𝑘[𝑟] =
1

𝑁𝑘

𝑘
∑
𝑗=0

(−1)𝑗(
𝑘
𝑗)𝑧𝑗 (1 + 𝑧 + … + 𝑧𝑁−1)𝑘 .

Using the classical result
𝑘

∑
𝑗=0

(−1)𝑗(
𝑘
𝑗)𝑧𝑗 = (1 − 𝑧)𝑘,

the 𝑧-transform of Δ𝑘𝐾𝑘 reduces to
+∞
∑
𝑟=0

𝑧𝑟Δ𝑘𝐾𝑘[𝑟] =
1

𝑁𝑘 (1 − 𝑧𝑁)𝑘.

The development of the previous right-hand side, followed by identification of the 𝑧 powers
finally gives, for 𝑗 = 0, … , 𝑘

Δ𝑘𝐾𝑘[𝑗𝑁] =
(−1)𝑗

𝑁𝑘 (
𝑘
𝑗), (5.4)

and 0 otherwise. Ultimately, since the modulator is stable, ‖ 𝑥𝑛 ‖∞ < +∞, replacing the
identities (5.4) in (5.3) yields the following filtered-input filtered-output difference

∥ 𝛽 ∗ 𝐾𝑘 ∥∞ ≤
2𝑘

𝑁𝑘 ‖ 𝑥𝑛 ‖∞, (5.5)

where 𝛽 = 𝑢 − 𝜈. The progression of the proof suggests that the estimate (5.5) (in ℓ∞ norm)
stays valid for any FIR 𝐾𝑘 such that the 𝑘th-order backward difference Δ𝑘𝐾𝑘 is non-zero for a
finite number (independent of 𝑁) of coefficients, and of amplitude dominated by 1/𝑁𝑘. The
sinc𝑘 filter then appears as a particular instance of this type of filter, with 𝑘 + 1 coefficients
of Δ𝑘𝐾𝑘 being non-zero. Besides, nonlinear filters can also be used to fasten the error decay
rate [TV94; Tha96], even if they are seldom used, as they drastically complexify the actual
implementation.

5.2.3 Synchronous detection through a DT-ΣΔ modulator

The exogenous signal 𝑠 is henceforth taken into account in the derivation of the error estimate.
Equation (5.3) now reads,

𝛽𝑠 ∗ 𝐾𝑘[𝑛] = (−1)𝑘
𝑘𝑁−𝑘
∑
𝑗=0

𝑥𝑘[𝑛 − 𝑗]Δ𝑘(𝑠𝑛𝐾𝑘)[𝑗], (5.6)

with 𝑠𝑛[𝑗] ∶= 𝑠[𝑛 − 𝑗] and 𝛽 = 𝑢 − 𝜈 the input-output difference. Owing to Leibniz rule for
finite differences, the k-fold finite differences in (5.6) satisfies

Δ𝑘(𝑠𝑛𝐾𝑘)[𝑗] =
𝑘

∑
𝑖=0

(
𝑘
𝑖)Δ𝑖𝑠𝑛[𝑗]Δ𝑘−𝑖𝐾𝑘[𝑗 − 𝑖]. (5.7)

We seek to bound each of the terms in the sum (5.7), starting by 𝑖 = 1, … , 𝑘 (temporarily
excluding the first term 𝑖 = 0). Using Taylor-Lagrange formula, there exists 𝑡𝑙 ∈ [(𝑗 − 𝑙)𝑇𝑠, 𝑗𝑇𝑠]
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for 𝑙 = 1, … , 𝑖 such that (see [Sur+19a, proof of lemma 1] for instance)

Δ𝑖𝑠𝑛[𝑗] =
(−1/𝑁)𝑖

𝑖!

𝑖
∑
𝑙=0

(
𝑖
𝑙)𝑙𝑖𝑠(𝑖)

𝑛 (𝑡𝑙).

For 1 ≤ 𝑖 ≤ 𝑘, there exists a constant 𝐶𝑖 > 0 such that the 𝑘 − 𝑖-fold finite difference applied on
the 𝐵-spline 𝐾𝑘 reads

∣ Δ𝑘−𝑖𝐾𝑘[𝑗 − 𝑖] ∣ ≤
𝐶𝑖

𝑁𝑘−𝑖+1 .

Setting 𝐶𝑖 ∶= 𝐶𝑖 ∑𝑖
𝑙=0 (𝑖

𝑙)𝑙𝑖/𝑖!, the terms under the sum symbol in (5.7) for 𝑖 = 1, … , 𝑘 ver-
ify [Sur+19a]

∣ Δ𝑖𝑠𝑛[𝑗]Δ𝑘−𝑖𝐾𝑘[𝑗 − 𝑖] ∣ ≤
𝐶𝑖

𝑁𝑘+1 sup
𝑡∈[(𝑛−𝑗)𝑇𝑠,(𝑛−𝑗+𝑖)𝑇𝑠]

∣ 𝑠(𝑖)(𝑡) ∣.

Besides, for 𝑖 = 0 in (5.7), the expression for Δ𝑘𝐾𝑘 is given by (5.4). The convolution (5.6)
then reads

∣ 𝛽𝑠 ∗ 𝐾𝑘[𝑛] ∣ ≤
𝑘𝑁 + 𝑘 + 1

𝑁𝑘+1 ‖ 𝑥𝑘 ‖∞

𝑘
∑
𝑖=1

𝐶𝑖(
𝑘
𝑖) sup

[(𝑛−𝑘𝑁)𝑇𝑠,𝑛𝑇𝑠]
∣ 𝑠(𝑖) ∣ +

2𝑘

𝑁𝑘 ‖ 𝑥𝑘 ‖∞ sup
[(𝑛−𝑘𝑁)𝑇𝑠,𝑛𝑇𝑠]

| 𝑠 |,

where the first term is bounded using the previous estimates for 𝑖 = 1, … , 𝑘, and the second
term stems from the summation of the (absolute) coefficients given in (5.4), giving 2𝑘. If all
the derivatives of 𝑠 are bounded, then the estimate holds uniformly, i.e. there exists 𝐵 > 0
independent of 𝑁, 𝑥𝑘 and 𝑠 such that

∥ 𝛽𝑠 ∗ 𝐾𝑘 ∥
∞

≤
𝐵

𝑁𝑘 ‖ 𝑥𝑘 ‖∞ max
𝑖=0,…,𝑘

∥ 𝑠(𝑖) ∥∞;

in other words, 𝛽𝑠 ∗ 𝐾𝑘 = O∞(1/𝑁𝑘).

5.3 Estimate for CT-ΣΔ modulators in feedforward form

5.3.1 A first estimate

The previous section derived an error estimate for DT-ΣΔ modulators by considering an
homodyning-type filtering process (subsection 5.2.3) which consists in multiplying the kernel
by the exogenous signal 𝑠. This signal is often all or part of the input signal, as in standard
demodulation procedures. The same type of estimate is derived in this section for CT-ΣΔ
modulators. We consider a single-stage 𝑘th-order continuous ΣΔ modulator as depicted in
figure 5.3 The state-space model of this modulator is

1
𝑁 ̇𝑥1(𝜏) = 𝑢(𝜏) − 𝜈(𝑁𝜏) (5.8a)

1
𝑁 ̇𝑥𝑖+1(𝜏) = 𝑥𝑖(𝜏) − 𝑎𝑖𝜈(𝑁𝜏), 𝑖 = 1, … , 𝑘 − 1 (5.8b)

𝑦(𝜏) =
𝑘

∑
𝑖=1

𝑏𝑖𝑥𝑖(𝜏), (5.8c)

with 𝑁 ∶= 1/𝑇𝑠 (not necessarily taking integer values for the continuous case). Again, 𝛽(𝜏) ∶=
𝑢(𝜏) − 𝜈(𝑁𝜏) is the input-output difference. In this section, we consider a modulator in pure
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1
𝑠𝑇𝑠

1
𝑠𝑇𝑠

1
𝑠𝑇𝑠

𝑏𝑘 ADC
𝑥1 𝑥2 𝑦

DAC

𝑏1

𝑏2

𝑎1 𝑎2 𝑎𝑛−1𝑎𝑘−1

𝑢 𝛽 𝜈[𝑛]

𝜈

𝑥𝑘
− − − − +

Continuous time Discrete time

Figure 5.3: Single-stage 𝑘th-order CT-ΣΔ with weighted feedback coefficients (𝑎1, … , 𝑎𝑘−1)
and feedforward coefficients (𝑏1, … , 𝑏𝑘).

feedforward form; the weighted feedback coefficients all being zero, i.e. 𝑏𝑖 = 0 for 𝑖 = 1, … , 𝑘.
The objective is to complete the previous result pertaining to the discrete convolution of the
ΣΔ input-output difference with a kernel 𝐾𝑘. A first result is given by

Theorem 5.3. Consider a single-stage 𝑘th-order continuous ΣΔ modulator with feedforward
coefficients (𝑏1, … , 𝑏𝑘) and no weighted feedback, i.e. 𝑎𝑖 = 0 for 𝑖 = 1, … , 𝑘 − 1. Let 𝐾𝑘 be a C𝑘

kernel whose support is [0, 𝑘], and such that (𝐾𝑘)(𝑗)(0) = (𝐾𝑘)(𝑗)(𝑘) for 𝑗 = 0, … , 𝑛 − 1; and
consider a C𝑘 signal 𝑠 such that 𝑠 and its derivatives 𝑠(𝑖) for 𝑖 = 0, … , 𝑘 are bounded. Then the
filtered error 𝐼(𝑡), as depicted in figure 5.1 verifies the uniform estimate

𝐼(𝑡) ∶= ∫
ℝ

𝛽(𝜎)𝑠(𝜎)𝐾𝑘
𝑡 (𝜎) 𝑑𝜎 = O∞(1/𝑁𝑘), (5.9)

with 𝐾𝑘
𝑡 (𝜎) = 𝐾𝑘(𝑡 − 𝜎).

Proof. For the feedforward structure, a 𝑘th-order primitive of 𝑢(𝜏) − 𝜈(𝜏) is 𝛽(−𝑘)(𝜏) = 1
𝑁𝑘 𝑥𝑘.

Indeed, 1
𝑁𝑘 ̇𝑥𝑘(𝜏) = 1

𝑁𝑘−1 𝑥𝑘−1(𝜏) (see (5.8b)). Iterating this process yields 1
𝑁𝑘 𝑥(𝑘)

𝑛 (𝜏) = 𝑢(𝜏) −
𝜈(𝜏). Successive integration by parts on 𝐼(𝑡) then yields

𝐼(𝑡) = (−1)𝑘 ∫
𝑡

𝑡−𝑘
𝛽(−𝑘)(𝜎)𝑓 (𝑘)

𝑡 (𝜎) 𝑑𝜎,

with 𝑓𝑡(𝜎) ∶= 𝑠(𝜎)𝐾𝑘
𝑡 (𝜎). Since the modulator is stable, 𝑥𝑛 is bounded, and ∥ 𝛽(−𝑘)(𝜎) ∥∞ ≤

‖ 𝑥𝑘 ‖∞/𝑁𝑘. Consequently 𝐼(𝑡) = O(1/𝑁𝑘). With the additional hypothesis on 𝑠, 𝑓𝑡 is bounded
(independently of 𝑡) by Leibniz’s rule. Therefore, the previous estimate is uniform, i.e. 𝐼(𝑡) =
O∞(1/𝑁𝑘), thus concluding the proof.

5.3.2 Error estimate refinement for CT-ΣΔ modulators

Under additional hypotheses on both the final state of the modulator 𝑥𝑘 and the exogenous
signal 𝑠, a better estimate can be obtained for CT-ΣΔ modulators. This result is encapsulated
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in theorem 5.6: for CT-ΣΔ modulators in pure feedforward form, instead of dominating
the estimate by 1/𝑁𝑘, it is made negligible still in front of 1/𝑁𝑘. The first step of the proof
consists in exhibiting a function whose 𝑘th-order derivative is the input-output difference. For
feedforward structures, this function is simply the last state 𝑥𝑘. Therefore, if we assume 𝑥𝑘
admits a generalized mean as subsequently defined, theorem 5.6 refines the estimate obtained
in the previous section.

Definitions, preliminary results

We start by collecting the required technical definitions and lemmas. In the following, if a
function 𝑓 ∈ 𝐿∞[0, +∞) has a primitive that has a generalized mean, we will write 𝑓 (−1) the
zero-(generalized)-mean primitive of 𝑓, namely

𝑓 (−1)(𝑡) ∶= ∫
𝑡

0
𝑓 (𝑠) 𝑑𝑠 − lim

𝑇→+∞

1
𝑇 ∫

𝑇

0
∫

𝜎

0
𝑓 (𝑠) 𝑑𝑠 𝑑𝜎.

By induction, we also define for 𝑗 ≥ 1 the zero-mean primitive 𝑓 (−𝑗−1) of 𝑓 (−𝑗) if the latter
has a generalized mean. Notice a bounded function on [0, +∞) does not necessarily has a
generalized mean. Consider for instance 𝑓 (𝑡) ∶= cos(ln(𝑡)) − sin(ln(𝑡)), whose primitive on
(0, +∞) is 𝐹(𝑡) = 𝑡 cos(ln(𝑡)). Therefore, 1

𝑡 ∫𝑡
0 𝑓 (𝑠) 𝑑𝑠 = cos(ln(𝑡)), which does not converge

when 𝑡 → +∞.
The proof in subsection 5.5 relies on the application of a generalization of the classical

Riemann-Lebesgue lemma

Lemma 5.4 (Generalized Riemann-Lebesgue lemma [Kah80]). Consider 𝛽 ∈ 𝐿∞[0, +∞)
such that 𝛽 has a mean value 𝛽, with

𝛽 ∶= lim
𝑇→+∞

1
𝑇 ∫

𝑇

0
𝛽(𝑡) 𝑑𝑡.

Then for every 𝑓 ∈ 𝐿1[0, +∞),

lim
𝑁→+∞

∫
+∞

0
𝛽(𝑁𝑡)𝑓 (𝑡) 𝑑𝑡 = 𝛽 ∫

+∞

0
𝑓 (𝑡) 𝑑𝑡.

The signal 𝑠 is assumed to be either 𝐴𝐶𝑘 or piecewise 𝐴𝐶𝑘, as defined below, as well as a
rewriting of the integration by parts for piecewise 𝐴𝐶0 functions.

Definition 5.1 (𝐴𝐶𝑝 functions). A function 𝑓 ∶ 𝐼 ⊂ ℝ → ℝ is 𝐴𝐶𝑝 on an interval 𝐼 if it is
p-times differentiable and its 𝑝th-order derivative 𝑓 (𝑝) is absolutely continuous. It is piecewise
𝐴𝐶𝑝 if 𝑓 is p-times differentiable and 𝑓 (𝑝) is piecewise absolutely continuous.

Lemma 5.5 (Integration by parts for piecewise 𝐴𝐶0 functions). Consider 𝑓 ∈ 𝐿1[𝑎, 𝑏] with
−∞ ≤ 𝑎 < 𝑏 ≤ +∞, 𝐹 a primitive of 𝑓, and 𝑔 a piecewise𝐴𝐶0 function. Write 𝐼 = ∪0≤𝑖≤𝑚[𝑥𝑖, 𝑥𝑖+1],
with 𝑎 = 𝑥0 < 𝑥1 < … < 𝑥𝑚 = 𝑏, such that 𝑔 is 𝐴𝐶0 on each [𝑥𝑖, 𝑥𝑖+1]. 𝑔 being piecewise 𝐴𝐶0, it
is differentiable almost everywhere, and we note 𝑔′ this derivative. Then

∫
𝑏

𝑎
𝑓 (𝜎)𝑔(𝜎) 𝑑𝜎 =

𝑚−1
∑
𝑖=0

[𝐹(𝑥−
𝑖+1)𝑔(𝑥−

𝑖+1) − 𝐹(𝑥+
𝑖 )𝑔(𝑥+

𝑖 )] − ∫
𝑏

𝑎
𝐹(𝜎)𝑔′(𝜎) 𝑑𝜎.
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Refined estimate

The input-output difference 𝛽(𝑁𝜏) ∶= 𝑢(𝜏)−𝜈(𝑁𝜏) has a generalizedmean 𝛽, and for 𝑗 ≤ 𝑘−1,
𝛽(−𝑗), the zero-mean primitive of 𝛽−(𝑗−1) is also well-defined and verifies 𝛽(−𝑗)(𝑁𝜏) = 𝑥𝑗.
Indeed, based on the state-space model (5.8b), 𝑥𝑗 is the primitive of 𝑥𝑗−1 for 2 ≤ 𝑗 ≤ 𝑘.
Integrating (5.8b) from 0 to 𝑡 gives

1
𝑡 ∫

𝑡

0
𝑥𝑗(𝜏) 𝑑𝜏 =

𝑥𝑗+1(𝑡) − 𝑥𝑗+1(0)
𝑁𝑡 .

The ΣΔ modulator is assumed to be stable, therefore 𝑥𝑗+1 is bounded. Taking the limit when
𝑡 → +∞ of both sides yields 𝑥𝑗 = 0, meaning 𝛽(−𝑗) = 𝑥𝑗. A primitive of 𝛽−(−𝑘−1) is ultimately
given by 𝑥𝑘. However, even if 𝑥𝑘 is bounded by hypothesis, it does not necessarily admit a
generalized mean as previously mentioned. As the bounded functions without generalized
mean seem to be very particular, we will assume it does not hold for 𝑥𝑘, namely, 𝛽(−𝑘) = 𝑥𝑘 is
the zero-mean primitive of 𝛽(−(𝑘−1)). We now state the refined result —theorem 5.6— based
on the previous definitions and lemmas.

Theorem 5.6. Consider 𝐾𝑘 a 𝐴𝐶𝑘−1 kernel whose support is [0, 𝑘], and such that (𝐾𝑘)(𝑗)(0) =
(𝐾𝑘)(𝑗)(𝑘) for 𝑗 = 0, … , 𝑘 − 1. If 𝑠 is 𝐴𝐶𝑘−1, then for 𝑡 ≥ 0,

𝐼(𝑡) ∶= ∫
ℝ

𝛽(𝑁𝜎)𝑠(𝜎)𝐾𝑘(𝑡 − 𝜎) 𝑑𝜎 = 𝑜(1/𝑁𝑘). (5.10)

If 𝑠 is only piecewise 𝐴𝐶𝑘−1, then for 𝑡 ≥ 0, 𝐼(𝑡) = O∞(1/𝑁𝑘). If 𝑠 and all its derivatives, 𝑠(𝑖) for
𝑖 = 0, … , 𝑘, are bounded, then the first estimate (5.10) is uniform, i.e. 𝐼(𝑡) = 𝑜∞(1/𝑁𝑘).

In other words, the instantaneous difference between the filtered input and the filtered
output is in 𝑜(1/𝑁𝑘) under some regularity assumptions on the kernel 𝐾𝑘.

Proof. If 𝑠 is 𝐴𝐶𝑘−1 (resp. piecewise 𝐴𝐶𝑘−1), then 𝑓𝑡 ∶ 𝜎 ↦ 𝑠(𝜎)𝐾𝑘(𝑡 − 𝜎) is also 𝐴𝐶𝑘−1 (resp.
piecewise 𝐴𝐶𝑘−1). In any case, 𝑓𝑡 is differentiable with support [𝑡 − 𝑘, 𝑡] and a basic integration
by parts gives

𝐼(𝑡) =
1
𝑁[𝛽(−1)(𝑁𝑡)𝑓𝑡(𝑡) − 𝛽(−1)(𝑁(𝑡 − 𝑘))𝑓𝑡(𝑡 − 𝑘)] −

1
𝑁 ∫

𝑡

𝑡−𝑘
𝛽(−1)(𝑁𝜎)𝑓 ′

𝑡 (𝜎) 𝑑𝜎,

where the first term is zero since 𝑓𝑡(𝑡) = 𝑓𝑡(𝑡 − 𝑘) = 0.
We write 𝑡 − 𝑘 = 𝜎0 < … < 𝜎𝑚 = 𝑡 the locations of the loss of regularity of 𝑠. Repeating the

integration by parts, given by lemma 5.5, yields

𝐼(𝑡) = −
(−1)𝑘

𝑁𝑘

𝑚−1
∑
𝑖=0

[𝛽(−𝑘)(𝑁𝜎−
𝑖+1)𝑓 (𝑘−1)

𝑡 (𝜎−
𝑖+1) − 𝛽(−𝑘)(𝑁𝜎+

𝑖 )𝑓 (𝑘−1)
𝑡 (𝜎+

𝑖 )]

+
(−1)𝑘

𝑁𝑘 ∫
𝑡

𝑡−𝑘
𝛽(−𝑘)(𝑁𝜎)𝑓 (𝑘)

𝑡 (𝜎) 𝑑𝜎. (5.11)

Since 𝑓 (𝑘−1)
𝑡 is absolutely continuous, it admits a derivative almost everywhere. Thus, the

limit of the integral term in (5.11), by lemma 5.4, is

lim
𝑁→+∞

∫
+∞

0
𝛽(−𝑘)(𝑁𝜎)𝑓 (𝑘)

𝑡 (𝜎) 𝑑𝜎 = 𝛽(−𝑘) ∫
+∞

0
𝑓 (𝑘)
𝑡 (𝜎) 𝑑𝜎 = 0,
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i.e. 1
𝑁𝑘 ∫𝑡

𝑡−𝑘 𝛽(−𝑘)(𝑁𝜎)𝑓 (𝑘)
𝑡 (𝜎) 𝑑𝜎 = 𝑜(1/𝑁𝑘). If 𝑓 is 𝐴𝐶𝑘−1, the sum in (5.11) is zero since

𝑓 (𝑘−1)
𝑡 (𝑡) = 𝑓 (𝑘−1)

𝑡 (𝑡 − 𝑘) = 0; therefore 𝐼(𝑡) = 𝑜(1/𝑁𝑘). Otherwise the sum in (5.11) is non-
necessarily zero, and 𝐼(𝑡) = O(1/𝑁𝑘). With the additional hypothesis on 𝑠, 𝑓𝑡 is bounded
(independently of 𝑡) by Leibniz’s rule. Therefore, the previous limit is uniform, concluding the
proof.

At first sight, the writing of 𝛽(𝑁𝑡)might seem artificial. Nonetheless, it is worth noting that
the inner states of the modulator are also fast-varying. Besides, without such a writing, the
𝑗th-order zero-mean primitive of 𝑢 − 𝜈 is given by 1

𝑁𝑗 𝑥𝑗 when there is no feedback coefficients.
The detailed computations in the proof of theorem 5.6 then holds, with a multiplying factor
1/𝑁𝑗, as detailed in subsection 5.3.1, which is equivalent to the designed proof. Here, the
obtained result is slightly more accurate, as when the regularity assumptions are satisfied, we
have an estimate in 𝑜(1/𝑁𝑘) instead of O(1/𝑁𝑘).

5.4 Weaker estimates

5.4.1 Estimate for feedback ΣΔ modulators

We now consider a CT-ΣΔ modulator with weighted feedback. For the feedback structure, a
primitive of the input-output difference is given by

𝛽(−𝑘) =
𝑥𝑘
𝑁𝑘 +

𝑘−1
∑
𝑗=1

𝑎𝑘−𝑗

𝑁𝑘−𝑗 𝜈
(−𝑗),

where 𝜈(−𝑗) is a primitive of 𝜈−(𝑗−1). Replacing 𝛽(−𝑘) by the previous expression in (5.9) only
yields 𝐼(𝑡) = O(1/𝑁), the estimate being uniform if the 𝜈(−𝑗) are bounded. However, it appears
in the expression of 𝛽(−𝑘) that if 𝑎1 = 0, 𝐼(𝑡) = O(1/𝑁2) is likewise obtained.

5.4.2 Demodulation with an IIR filter

A great part of the prior proofs resides in the finiteness of the convolution kernel through the
successive use of integration by parts. This technique is nonetheless limited when it comes to
IIR filtering. To illustrate this, consider equation (5.10) with a kernel 𝐾 whose support is not
finite. Notice first that additional assumptions on the integrand are required so that 𝐼(𝑡) is
well-defined. If 𝐾 = 1 and 𝑠 = 1 on [0, +∞) for instance, 𝛽 should be integrable on [0, +∞),
which is not guaranteed by the modulator stability only. To have a guess on the behavior of
𝐼(𝑡) with respect to 𝑁, we start by integrating on [0, 𝐴] for 𝐴 > 0:

𝐼(𝑡) =
1
𝑁[𝛽(−1)(𝑁𝐴)𝑓𝑡(𝐴) − 𝛽(−1)(0)𝑓𝑡(0)] −

1
𝑁 ∫

𝐴

0
𝛽(−1)(𝑁𝜎)𝑓 ′

𝑡 (𝜎) 𝑑𝜎.

Although the first term 𝛽(−1)(𝑁𝐴) is bounded, it does not necessarily converge when 𝐴 tends
to +∞. As for the integral term, if we assume 𝑓 ′

𝑡 is integrable,

∥
1
𝑁 ∫

𝐴

0
𝛽(−1)(𝑁𝜎)𝑓 ′

𝑡 (𝜎) 𝑑𝜎 ∥ ≤
1
𝑁∥ 𝛽(−1) ∥∞‖ 𝑓 ′

𝑡 ‖1.
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Figure 5.4: Actual implementation of the filter.

5.5 Discrete implementation

While theorem 5.6 provides a theoretical estimate of the filtered input-filtered output differ-
ence for CT-ΣΔ modulators, it is of lesser relevance when it comes to the online processing of
the ΣΔ-bitstream. Indeed, this bitstream lies in the digital realm; the error 𝐼(𝑡) computes a
continuous convolution with a fast-varying discrete signal 𝜈 and, even though it is mathemat-
ically well defined, is not in practice desirable, let alone doable. What is effectively done is a
discretization of the process described by theorem 5.6.
An immediate yet naive strategy might consists in directly discretizing the convolution

product described by (5.10). Nevertheless, such an approximation introduces an error in
O(1/𝑁) given by a straighforward application of Young’s inequality, thus burying the accuracy
of the estimate provided by theorem 5.6. A more subtle approach consists in discretizing the
kernel 𝐾 and discretely convolving with the ΣΔ bitstream 𝜈 multiplied by 𝑠. When the signal
𝑠 is constant, this computation is rigorously equivalent to the continuous one since the ΣΔ
bitstream is a staircase function. Nevertheless, when 𝑠 is time-varying, a discretization error
is introduced.
This section is devoted to the design of FIR filters approaching the continuous convolution:

the knowledge of the signal 𝑠 and its derivatives is leveraged to improve the accuracy of the
discretized convolution: theorem 5.7 encapsulates this result. In the following, we adopt the
same notation as in the discrete case, namely, for 𝑙 ∈ ℕ, we write 𝜏𝑙 ∶= 𝑙/𝑁, and for every
function 𝑓, 𝑓 [𝑙] ∶= 𝑓 (𝜏𝑙). The timestep between two consecutive values is therefore Δ𝜏 = 𝑇𝑠,
which is the time interval where the ΣΔ bitstream is constant. We also consider the filtered
output 𝜈𝑓 defined by

𝜈𝑓(𝑡) ∶= ∫
+∞

−∞
𝜈(𝑁𝜎)𝑠(𝜎)𝐾𝑘(𝑡 − 𝜎) 𝑑𝜎.
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Figure 5.5: Signals 𝑠𝑖, 𝑖 = 1, 2, 3.

Theorem 5.7. Assume the signal 𝑠 is 𝑞-times differentiable, with 𝑠(𝑞) Lipschitz. For 𝑗 = 0, … , 𝑞,
we define the following FIR coefficients: for 𝑖 ∈ {0, … , 𝑘𝑁 − 1},

𝐾𝑘
𝑗 [𝑖] ∶= ∫

𝑖+1
𝑁

𝑖
𝑁

( 𝑖+1
𝑁 − 𝜎)𝑗

𝑗! 𝐾𝑘(𝜎) 𝑑𝜎, (5.12)

and 𝐾𝑘
𝑗 [𝑖] = 0 otherwise. Then the following estimate holds

𝑞

∑
𝑗=0

(𝜏(𝜈𝑠(𝑗)) ∗ 𝐾𝑘
𝑗 )[𝑙] = 𝜈𝑓[𝑙] + O(

1
𝑁𝑞+1 ), (5.13)

where 𝜏(𝑓 )[𝑙] ∶= 𝑓 [𝑙 − 1] is the unit delay, and (𝑓 ∗ 𝑔)[𝑙] = ∑𝑖∈ℤ 𝑓 [𝑖]𝑔[𝑙 − 𝑖] is the discrete
convolution. In other words, there exists a discrete, causal FIR filter whose coefficients can be
computed offline and yielding 𝜈𝑓[𝑙] with an accuracy in O(1/𝑁𝑞+1).

Proof. The ΣΔ output bitstream 𝜈(𝑁𝜏) is constant on each interval [𝑖/𝑁, (𝑖 + 1)/𝑁), 𝑖 ∈ ℕ.
Therefore, splitting the integral 𝐼(𝑡) into 𝑘𝑁 subintervals and integrating on each yields

𝜈𝑓[𝑙] = ∫
𝑘

0
𝐾𝑘(𝜎)𝜈(𝑁(𝜏𝑙 − 𝜎))𝑠(𝜏𝑙 − 𝜎) 𝑑𝜎 =

𝑘𝑁−1
∑
𝑖=0

∫
𝑖+1
𝑁

𝑖
𝑁

𝐾𝑘(𝜎)𝜈(𝑁(𝜏𝑙 − 𝜎))𝑠(𝜏𝑙 − 𝜎) 𝑑𝜎

=
𝑘𝑁−1
∑
𝑖=0

𝜈[𝑙 − 𝑖 − 1] ∫
𝑖+1
𝑁

𝑖
𝑁

𝐾𝑘(𝜎)𝑠(𝜏𝑙 − 𝜎) 𝑑𝜎.

No approximation is made in the previous computations as 𝜈 is held constant on each interval.
This expression could give birth to an actual FIR filter yielding exactly 𝜈𝑓[𝑙] by computing
the integral terms for 𝑖 = 0, … , 𝑘𝑁 − 1. These computations however have to be conducted at
every timestep, as the signal 𝑠 is time-varying. The online computation of these integrals is
thereby highly demanding in CPU/FPGA resources.
Instead, we compute an approximation of these 𝑘𝑁 integrals. For this purpose, consider the

Lipschitz form of Taylor’s formula (see for example [ESD90, (2.1)])

𝑔(𝑡 + 𝜇) =
𝑞

∑
𝑗=0

𝜇𝑗

𝑗! 𝑔(𝑗)(𝑡) + 𝜇𝑞+1𝜌𝑡(𝜇), (5.14)
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where the remainder 𝜌𝑡(𝜇) satisfies

𝜇𝜌𝑡(𝜇) =
1

(𝑞 − 1)! ∫
1

0
(1 − 𝜏)𝑞−1(𝑔(𝑞)(𝑡 + 𝜇𝜏) − 𝑔(𝑞)(𝑡)) 𝑑𝜏.

With 𝑡 = 𝜏𝑙 − 𝑖+1
𝑁 and 𝜇 = 𝑖+1

𝑁 − 𝜎, the application of equation (5.14) to the signal 𝑠 reads

𝑠(𝜏𝑙 − 𝜎) = 𝑠(𝜏𝑙 − 𝑖+1
𝑁 + 𝑖+1

𝑁 − 𝜎)

= 𝑠[𝑙 − 𝑖 − 1] +
𝑞

∑
𝑗=0

( 𝑖+1
𝑁 − 𝜎)𝑗

𝑗! 𝑠(𝑗)[𝑙 − 𝑖 − 1] + ( 𝑖+1
𝑁 − 𝜎)𝑞+1𝜌( 𝑖+1

𝑁 − 𝜎).

We start by estimating the magnitude of the remainder. If 𝐿 is the Lipschitz constant of 𝑔(𝑞),
the remainder 𝜌𝑡 satisfies the following inequality for every 𝜇 ∈ ℝ

∣ 𝜇𝜌𝑡(𝜇) ∣ ≤
𝐿|𝜇|

(𝑞 − 1)! ∫
1

0
𝜏(1 − 𝜏)𝑞−1 𝑑𝜏;

that is, for every 𝑡 and with 𝑀 ∶= 𝐿
(𝑞−1)! ∫1

0 𝜏(1 − 𝜏)𝑞−1 𝑑𝜏,

∣ ( 𝑖+1
𝑁 − 𝜎)𝑞+1𝜌( 𝑖+1

𝑁 − 𝜎) ∣ ≤ 𝑀( 𝑖+1
𝑁 − 𝜎)𝑞+1.

Consequently,

∣ ∫
𝑖+1
𝑁

𝑖
𝑁

(
𝑖 + 1

𝑁 − 𝜎)
𝑞+1

𝜌(
𝑖 + 1

𝑁 − 𝜎) 𝑑𝜎 ∣ ≤ ‖ 𝜌𝑡 ‖∞ ∫
𝑖+1
𝑁

𝑖
𝑁

(
𝑖 + 1

𝑁 − 𝜎)
𝑞+1

𝑑𝜎

≤
𝑀

𝑞 + 2 ×
1

𝑁𝑞+2 ,

which means the remainder ( 𝑖+1
𝑁 − 𝜎)𝑞+1𝜌( 𝑖+1

𝑁 − 𝜎) is O(1/𝑁𝑞+2). When summed for 𝑖 =
0, … , 𝑘𝑁 − 1, it becomes O(1/𝑁𝑞+1). For 𝑗 = 0, … , 𝑞, using equation (5.12)

∫
𝑖+1
𝑁

𝑖
𝑁

𝐾𝑘(𝜎)𝑠(𝑗)[𝑙 − 𝑖 − 1]
( 𝑖+1

𝑁 − 𝜎)𝑗

𝑗! 𝑑𝜎 = 𝑠(𝑗)[𝑙 − 𝑖 − 1]𝐾𝑘
𝑗 [𝑖].

Finally, 𝜈𝑓[𝑙] reads

𝜈𝑓[𝑙] =
𝑘𝑁−1
∑
𝑖=0

𝜈[𝑙 − 𝑖 − 1]
𝑞

∑
𝑗=0

𝑠(𝑗)[𝑙 − 𝑖 − 1]𝐾𝑘
𝑗 [𝑖] + O(

1
𝑁𝑞+1 ).

This expression boils down to a sum of discrete convolutions, i.e. equation (5.13), thus
concluding the proof.

Notice that if 𝑠 is a constant signal, 𝜈𝑓[𝑙] = 𝜈 ∗ 𝐾𝑘
0 is simply a discretization of 𝜈 ∗ 𝐾𝑘, and

the FIR implementation does not introduce any additional error. The estimate (5.13) is also
independent from the ΣΔ order as the only property required is that the bitstream is held
constant on each [𝑖/𝑇𝑠, (𝑖 +1)/𝑇𝑠). Thereby the result stays valid when replacing the bitstream
𝜈 by any staircase function constant on each [𝑖, 𝑖 + 1).
Put simply, theorem 5.7 states the existence of an implementable digital processing of the

ΣΔ-bitstream that realizes the continuous convolution described by theorem 5.6, with an
additionalO(1/𝑁𝑞+1) error under the regularity assumptions of the theorem on 𝑠. As a result,
under the assumptions of theorem 5.7, the discretization error is negligible in front of the
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continuous error estimate, meaning the actual implementation of the FIR filter does not intro-
duce a significant approximation error. Nonetheless, the procedure requires the knowledge
of 𝑠 and its derivatives, which may hinder the filtering process if only approximations of the
derivatives are known.
The strength of this method lies in the offline computation of the coefficients 𝐾𝑘

𝑗 that
inherently depends on the kernel choice 𝐾𝑘. A well-known class of kernels satisfying the
hypotheses of theorem 5.6 is the 𝐵-splines 𝐾𝑘 = 1(∗𝑘)

[0,1], whose support is [0, 𝑘]. For such 𝐾𝑘,
the associated FIR filter kernels are given in appendix 5.8.

5.6 Numerical results

5.6.1 Second-order CT-ΣΔ in feedforward structure

The estimates are now validated on numerical examples. We consider the second-order
modulator of figure 5.3 with 𝑏1 = 3/2 and 𝑏2 = 1 (this example being thoroughly treated in
Surroop et al. [SCM21b]). The tests are conducted with three different inputs 𝑢𝑖(𝑡) ∶= 𝑧(𝑡)𝑠𝑖(𝑡),
with 𝑧(𝑡) ∶= 0.04 cos( 𝑡

12) − 0.06 sin( 𝑡
4𝜋), and

𝑠1(𝑡) ∶=
1

√0.03
(𝜏1[0,0.6](𝜏) + 1.5(1 − 𝜏)1]0.6,1](𝜏) − 0.3) ,

𝑠2(𝑡) ∶= √2 cos(2𝜋𝜏), 𝑠3(𝑡) ∶= 1[0,0.5](𝜏) − 1]0.5,1](𝜏),

where 𝜏 = mod(𝑡) and 𝑡 ∈ [0, 25]. Illustrated in figure 5.5, the 𝑠𝑖’s are respectively piecewise
𝐴𝐶1 (𝑠1), 𝐴𝐶1 (𝑠2) and discontinuous (𝑠3), and such that ‖ 𝑠𝑖 ‖2 = 1. A kernel satisfying
the hypotheses of theorem 5.6 is the convolution power of the characteristic function 1[0,1],
𝐾3 ∶= 1[0,1] ∗ 1[0,1] ∗ 1[0,1], as supp𝐾3 = [0, 3] and 𝐾3(0) = 𝐾3(3) = (𝐾3)′(0) = (𝐾3)′(3) = 0
(see for example [Aub05]); this kernel corresponds to a triple moving average.
Define ̂𝑧 (resp ̂𝑧ΣΔ) the filtered input (resp. output) as

̂𝑧(𝑡) ∶= ∫
+∞

0
𝑢(𝜎)𝑠(𝜎)𝐾3(𝑡 − 𝜎) 𝑑𝜎, ̂𝑧ΣΔ(𝑡)∶= ∫

+∞

0
𝜈(𝜎)𝑠(𝜎)𝐾3(𝑡 − 𝜎) 𝑑𝜎,

so that 𝐼(𝑡) = ̂𝑧(𝑡) − ̂𝑧ΣΔ(𝑡).
To confirm the asymptotic behavior described by theorem 5.6, the same simulation is

carried out for each input 𝑢𝑖 and for different oversampling ratio values 𝑁; for each numerical
experiment, the 𝐿2-error ‖ 𝐼 ‖2 ∶= (∫25

1 𝐼(𝜎)2 𝑑𝜎))1/2 is computed (the first second in the error
definition is discarded to initialize the filters). Figure 5.6a shows these behaviors for the three
considered inputs 𝑢𝑖 and validates the approximation orders. Indeed, when 𝑠 = 𝑠1 is piecewise
𝐴𝐶1, the approximation order is in O(1/𝑁2); it is slightly better when 𝑠 = 𝑠1 is 𝐴𝐶1, with
‖ 𝐼 ‖2 = O(1/𝑁2.3) = 𝑜(1/𝑁2); when 𝑠 = 𝑠3 is discontinuous, we only have an estimate in
O(1/𝑁).

5.6.2 Third-order CT-ΣΔ in feedforward structure

The same tests are conducted on a display of third-order CT-ΣΔ in feedforward structure. This
modulator is designed thanks to Richard Schreier’s Delta-Sigma Matlab toolbox [Sch17]: the



106 Chapter 5: Synchronous demodulation over Sigma-Delta modulators

10−4 10−3 10−2

10−7

10−4

10−1

1/𝑁

𝐿2
er
ro
r

(a) Second-order modulator

10−5 10−4 10−3 10−2

10−12

10−7

10−2

1/𝑁
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Figure 5.6: 𝐿2 error for second (left) and third-order (right) CT-ΣΔ in feedforward form.

coefficients are set to 𝑏1 = 4.63 × 10−1, 𝑏2 = 1.13 × 10−1, 𝑏3 = 1.38 × 10−2, with 𝑎1 = 𝑎2 = 0.
We test the estimate this time for 𝑢2, with 𝑠2 being 𝐴𝐶2: figure 5.6b shows the behavior of
the error, with an asymptotic slope around 3.1, and confirms the validity of the estimate.

5.6.3 Discretization error

We now validate the discretization error given by theorem 5.7. Still using the input 𝑢2, we
compare the continuous convolution to the sum of discrete convolutions described by (5.13).
The asymptotic error is displayed in figure 5.7: the slope is equal to 1 when only the value
of 𝑠2 is used in the discretization scheme; equal to 2 when both 𝑠2 and its derivative 𝑠′

2 are
taken into account, and finally equal to 3 when 𝑠2, 𝑠′

2 and 𝑠(2)
2 are available. These asymptotic

behaviors validates the estimate provided by theorem 5.7.

5.6.4 Using an IIR filter

The different results exploit the finiteness of the kernel support. When this assumption is
dropped, only a O(1/𝑁) estimate can be derived along the lines of the proof in section 5.3.
Figure 5.8 shows this estimate is reached for a basic first-order low-pass filter with transfer
function 𝐻(𝑠) = 1

1+𝑠 , still on a third-order (feedforward) CT-ΣΔ.

5.7 Conclusion

In this chapter, a method has been presented to demodulate a signal through a ΣΔ modulator
with an accuracy increasing with the modulator order. The proposed method applies for
both discrete and continuous modulators, and guarantees the validity of the aforementioned
estimate under some regular properties on the carrier signal. In the continuous case, the
estimate is discretized so as to be implemented in a DSP: still with suitable hypotheses on the
carrier, the error introduced by the discretization shares the same order of magnitude as the
original continuous estimate.
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Figure 5.7: 𝐿2-error of the discretization
process for 𝑘 = 1 (purple), 2
(blue), 3 (green). Slopes respec-
tively equal to 1, 2, 3.
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Figure 5.8: Asymptotic behavior of the er-
ror (slope=1) using a IIR filter.

5.8 Appendix: FIR filters coefficients

The FIR filter coefficients computed in the proof of theorem 5.7 are gathered in this appendix
when 𝐾𝑘 is a 𝐵-spline. We remind the general expression of the discretized kernels

𝐾𝑘
𝑗 [𝑖] ∶= ∫

𝑖+1
𝑁

𝑖
𝑁

( 𝑖+1
𝑁 − 𝜎)𝑗

𝑗! 𝐾𝑘(𝜎) 𝑑𝜎.

The continuous kernels are 𝐾𝑘 = 1(∗𝑘)
[0,1] (𝑘 = 1, 2, 3), and the FIR coefficients are the following.

For 𝑖 < 0 and 𝑖 ≥ 𝑘𝑁, 𝐾𝑘
1,2,3[𝑖] = 0. For 𝑘 = 1,

𝐾1
1[𝑖] =

1
𝑁, 𝐾1

2[𝑖] =
1

2𝑁2 , 𝐾1
3[𝑖] =

1
6𝑁3 .

For 𝑘 = 2, 𝑖 = 0, … , 𝑁 − 1 (left) and 𝑖 = 𝑁, … , 2𝑁 − 1 (right),

𝐾2
1[𝑖] =

2𝑖 + 1
2𝑁2 , 𝐾2

1[𝑖]= −
2𝑖 − 4𝑁 + 1

2𝑁2 ,

𝐾2
2[𝑖] =

3𝑖 + 1
6𝑁3 , 𝐾2

2[𝑖]= −
3𝑖 − 6𝑁 + 1

6𝑁3 ,

𝐾2
3[𝑖] =

4𝑖 + 1
24𝑁4 , 𝐾2

3[𝑖]= −
4𝑖 − 8𝑁 + 1

24𝑁4 .

For 𝑘 = 3, 𝑖 = 0, … , 𝑁 − 1 (left), 𝑖 = 𝑁, … , 2𝑁 − 1 (right)

𝐾3
1[𝑖] =

3𝑖2 + 3𝑖 + 1
6𝑁3 , 𝐾3

1[𝑖] = −
6𝑖 + 9𝑁2 + 6𝑖2 − 18𝑁𝑖 − 9𝑁 + 2

6𝑁3 ,

𝐾3
2[𝑖] =

6𝑖2 + 4𝑖 + 1
24𝑁4 , 𝐾3

2[𝑖] = −
4𝑖 + 9𝑁2 + 6𝑖2 − 18𝑁𝑖 − 6𝑁 + 1

12𝑁4 ,

𝐾3
3[𝑖] =

10𝑖2 + 5𝑖 + 1
120𝑁5 , 𝐾3

3[𝑖] = −
10𝑖 + 30𝑁2 + 20𝑖2 − 60𝑁𝑖 − 15𝑁 + 2

120𝑁5 .
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For 𝑘 = 3, 𝑖 = 2𝑁, … , 3𝑁 − 1,

𝐾3
1[𝑖] =

3𝑖 + 27𝑁2 + 3𝑖2 − 18𝑁𝑖 − 9𝑁 + 1
6𝑁3 ,

𝐾3
2[𝑖] =

4𝑖 + 54𝑁2 + 6𝑖2 − 36𝑁𝑖 − 12𝑁 + 1
24𝑁4 ,

𝐾3
3[𝑖] =

5𝑖 + 90𝑁2 + 10𝑖2 − 60𝑁𝑖 − 15𝑁 + 1
120𝑁5 .



Chapter 6

Sensorless rotor position estimation by endogenous
signal injection

This chapter collects the results from two papers: one published in the proceedings of
IECON20 under the title Sensorless rotor position estimation by PWM-induced signal in-
jection [Sur+20b], the other in the proceedings of IEMDC21 under the title Towards an
industrially implementable PWM-injection scheme [SCM21c].

Résumé Les différentes théories développées précédemment sont maintenant réunies
pour l’étude expérimentale de l’injection de signal endogène appliquée à un PMSM. Jusqu’à
aujourd’hui, les méthodes d’estimation sans capteur reposant sur l’excitation MLI exploitent
principalement la modification du schéma de calcul de la MLI, par une injection de séquences
de test par exemple. Des capteurs de dérivée de courant ou des convertisseurs analogiques-
numériques à suréchantillonnage de haute précision sont généralement nécessaires pour
extraire précisément le ripple de courant et donc implémenter ces stratégies d’estimation.
D’un point de vue industriel, ces dispositifs ne sont cependant pas standards, car coûteux,
complexes à mettre en œuvre, ce qui revient à remplacer le capteur de position par un autre. Ce
chapitre traite de l’estimation de la position du rotor à basse vitesse sans modifier le schéma
de calcul de la MLI, et ce, sans capteur supplémentaire. Ceci est réalisé en extrayant la position
du ripple induit par la MLI directement du flux binaire Sigma-Delta. Cette méthode peut
également être couplée à un schéma de porteuses décalées (PSC-PWM) afin d’améliorer la
précision des estimations produites. Les résultats numériques et expérimentaux parachèvent
l’étude, valident la stratégie d’estimation sans capteur proposée, et mettent en évidence les
difficultés propres au contrôle moteur, à savoir le rôle de la saturation magnétique ainsi que
les pertes de rang de la base de démodulation.

Abstract The theories developed in this thesis are now collected to study the endogenous
signal injection technique applied to PMSM. Up to now, sensorless estimation methods based
on PWMexcitationmainly exploit themodification of the PWMcomputation scheme, through
the injection of the so-called test sequences for example. Current derivative sensors or high-
precision oversampling Analog-to-Digital converters are usually required to accurately extract
the current ripple and thus implement these estimation strategies. From an industrial point
of view, however, these devices are not standard, as they are expensive, greatly complexify
the implementation, and finally replace the position sensor by another one. This chapter

109
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deals with the rotor position estimation at low speed without modifying the computational
scheme of the PWM, nor bringing an additional sensor. This is realized by extracting the
ripple position induced by the PWM directly from the Sigma-Delta bitstream. This method
can also be coupled to a phase-shifted carrier scheme (PSC-PWM) to improve the accuracy of
the estimates. Numerical and experimental results complete the study, validate the proposed
sensorless estimation strategy, and highlight the difficulties specific to motor control, namely
the role of magnetic saturation and the demodulation basis rank losses.

6.1 Introduction

Sensorless control of Permanent Magnet Synchronous Motors has known a great impetus in
the last decade, and still remains a challenging task. Numerous strategies have been tailored
to estimate the rotor position without mechanical encoder, only from the input voltages and
output currents. They are mainly classified into two categories: fundamental excitation and
saliency strategies. While the former describes model-based methods [Gen+10; Lee+10;
BP18; KSL11; KKK03; KG06], —suited for the medium to high-speed range, namely over
10% to 15% of the rated speed [FSO92]— and do not overcome the underlying observability
issues at low speed, the latter focuses on the motor response to high-frequency signals, and
are adapted to estimate the position in the low-speed range. Among the saliency methods
is found the traditional signal injection introduced by Jansen and Lorentz [JL95], which
consists in superimposing a fast-varying signal to the control law to create position-dependent
current ripples. Thanks to the machine’s saliency —either geometrical or induced by magnetic
saturation—, these ripples gives access to the rotor position, if correctly decoded. This method
though comes with potential drawbacks, such as the introduction of acoustic noise in the
device [Jun+11], the excitation of unmodelled dynamics [Åst84], and the inherent limitations
of the injection frequency by the inverter, which may distort the injected wave, should its
frequency be too close from the PWM one.
PWM excitation methods —a subclass of saliency methods— bypass the limitations im-

posed by the inverter by modifying the PWM scheme. This line of research has been pio-
neered by Schrödl’s INFORM—Indirect Flux detection by Online Reactance Measurements—
method [Sch96], which consists in injecting the so-called test sequences,modulating the PWM
zero sequence to introduce special current harmonics during the measurement period [Sch96;
WM02]. It turns out the PWM switchings naturally also introduce high-frequency harmonics
that act like a traditional injection; such a natural harmonic method has been instigated for
example by Ogasawara and Akagi [OA98]. But whatever the scheme, the problem of estimat-
ing the rotor position more or less amounts to estimating the slope of the triangular-shaped
current ripple. This could be done with specific current derivative sensors [Sch96] such as
Rogowski coils for instance [Gao+07], which are experimental devices not found on industrial
devices, and most of the time, expensive. On the other hand with regular current sensors, the
slope can be estimated by the difference between two current samples [WX04; LKH03]. But
with only a couple of points per PWM signal edge, the estimate is easily corrupted by noise. To
achieve better accuracy, a high resolution and high speed sampling ADC is required [Lan+13].
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Figure 6.1: Diagram of the proposed control scheme. In this chapter, the rotor position is
recovered outside the feedback loop.

In this chapter, building on ideas developed in the previous chapters, we propose and test a
scheme to estimate the rotor position of a PMSM that exploits (nearly) all the information
in the natural PWM-induced ripple —hence is much more robust than two-point slope
estimation—, and that ismoreover compatible with an industrial drive hardware. The hardware
comprises usual current sensors connected to 1-bit ΣΔ modulators, and an FPGA processing
the modulators bitstreams. This configuration is common in recent industrial drives, where
the modulators serve both for galvanic insulation and as the first stage of a ΣΔ ADC [Sor15;
SOO19b; SOO19a]; the FPGA implements the necessary signal processing (usually sinc
and decimation filters) to form a complete ΣΔ ADC. The proposed scheme extracts the rotor
position directly from the modulators bitstreams by a kind of generalized sinc filter, and can be
programmed on the FPGA without further modifications. Additionally, an alternative scheme
realized by replacing the standard PWM by Phase Shifted Carrier Pulse Width Modulation
(PSC-PWM) [Has+17], is proposed to improve the demodulation procedure. In fact, the
method proves to be compatible with both space vector and voltage level based modulation
algorithms, with either a single or several carriers.

The chapter runs as follows: section 6.2 recalls the main steps to extract the rotor position
directly from the Sigma-Deltamodulator bitstream; section 6.3 describes the position recovery
from the virtual measurement; finally, section 6.4 illustrates the good behavior of the method
on experimental and simulation data.
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6.2 Virtual measurement for the PMSM

6.2.1 Model of the PWM-fed PMSM

Consider the state-space model of a PMSM in the field-oriented 𝑑𝑞-frame

𝑑𝜙𝑑𝑞
𝑠

𝑑𝑡 = 𝑢𝑑𝑞
𝑠 − 𝑅𝑠𝚤

𝑑𝑞
𝑠 − 𝜔J𝜙𝑑𝑞

𝑠 (6.1a)
𝐽
𝑛

𝑑𝜔
𝑑𝑡 = 𝑛𝚤𝑑𝑞𝑇

𝑠 J𝜙𝑑𝑞
𝑠 − 𝑇𝑙 (6.1b)

𝑑𝜃
𝑑𝑡 = 𝜔, (6.1c)

as developed in chapter 1. For simplicity, we momentarily assume no magnetic saturation, i.e.
linear current-flux relations

𝐿𝑑𝚤𝑑𝑠 = 𝜙𝑑
𝑠 − 𝜙𝑚, 𝐿𝑞𝚤𝑞𝑠 = 𝜙𝑞

𝑠 . (6.2a)

The input is the voltage 𝑢𝑎𝑏𝑐
𝑠 through the relation 𝑢𝑑𝑞

𝑠 = R(−𝜃)C𝑢𝑎𝑏𝑐
𝑠 , whereR(𝜃) ∶= ( cos𝜃 − sin𝜃

sin𝜃 cos𝜃 )

is the rotation matrix with angle 𝜃 and C ∶= √2
3( 1 −1/2 −1/2

0 √3/2 −√3/2 ) is the Concordia transforma-
tion. As we are concerned with sensorless control, the only measurement is the current
𝚤𝑎𝑏𝑐
𝑠 = C𝑇R(𝜃)𝚤𝑑𝑞

𝑠 , or equivalently 𝚤𝛼𝛽
𝑠 = R(𝜃)𝚤𝑑𝑞

𝑠 since 𝚤𝑎𝑠 + 𝚤𝑏𝑠 + 𝚤𝑐𝑠 = 0 (we assume the motor is
star connected, see Fig. 1.2).
The impressed voltage is the PWM encoding 𝑢𝑎𝑏𝑐

pwm(𝑡) of 𝑢𝑎𝑏𝑐
𝑠 (𝑡); it can be written as

𝑢𝑎𝑏𝑐
pwm(𝑡) = 𝑢𝑎𝑏𝑐

𝑠 (𝑡) + 𝑠𝑎𝑏𝑐
0 (𝑢𝑎𝑏𝑐

𝑠 (𝑡),
𝑡

𝑇pwm
),

where 𝑠𝑎𝑏𝑐
0 (𝑢𝑎𝑏𝑐

𝑠 (𝑡), 𝑡
𝜀) ∶= 𝑢𝑎𝑏𝑐

pwm(𝑡) − 𝑢𝑎𝑏𝑐
𝑠 (𝑡) and 𝑇pwm is the PWM period. Defined in this way,

𝑠𝑎𝑏𝑐
0 is 1-periodic with zero mean in the second argument; it can be seen as a rectangular
injection signal (Fig. 3.2, left), depending on 𝑢𝑎𝑏𝑐

𝑠 , and induced by the PWM that creates a
(nearly) triangular current ripple (Fig. 3.2, right).

6.2.2 Virtual measurement for the PMSM

Slightly generalizing the second-order averaging analysis of chapter 3 to the multiple-input
multiple-output case, the effect of PWM-induced signal injection can be analyzed as follows.
Consider the system

̇𝑥 = 𝑓 (𝑥) + 𝐺(𝑢 + 𝑠0(𝑢, 𝑡
𝜀)),

𝑦 = ℎ(𝑥),

where 𝑢 is the control input, 𝑦 is the measured output, 𝜀 is the PWMperiod, and 𝑠0 is 1-periodic
with zero mean in the second argument. The averaging theory could be generalized to the
case where the matrix 𝐺 becomes state-dependent, without loss of generality. For this system,
the measured output then reads

𝑦(𝑡) = ℎ(𝑥(𝑡)) + 𝜀ℎ′(𝑥(𝑡))𝐺𝑠1(𝑢(𝑡), 𝑡
𝜀) + O(𝜀2),
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where 𝑥(𝑡) is the solution of the system without injection 𝑥̇ = 𝑓 (𝑥) + 𝐺𝑢, and 𝑠1 is the zero-
mean primitive in the second argument of 𝑠0. Figure 3.2 illustrates typical signals 𝑠0(𝑢, ⋅)
for fixed 𝑢 and their zero-mean primitive 𝑠1(𝑢, ⋅). The quantity 𝜀ℎ′(𝑥(𝑡))𝐺𝑠1(𝑢(𝑡), 𝑡

𝜀) is the
ripple caused on the output 𝑦 by the excitation signal 𝑠0(𝑢(𝑡), 𝑡

𝜀); though small, it contains
valuable information when properly processed. To fully exploit the PWM-induced ripple,
define the so-called virtual measurement 𝑦𝑣 ∶= 𝜀ℎ′(𝑥(𝑡))𝐺A(𝑢(𝑡)), where the matrixA(𝜐),
which can be computed online, is defined by A(𝜐) ∶= ∫1

0 𝑠1(𝜐, 𝜏)𝑠1(𝜐, 𝜏)𝑇 𝑑𝜏. This virtual
measurement is defined so that 𝑦𝑣 encompasses the same knowledge as ℎ′(𝑥)𝐺𝑠1, in the sense
thatA shares the same rank as the set of 𝑠’ components. Besides, the actual measurement
ℎ(𝑥(𝑡)) and the virtual measurement 𝑦𝑣(𝑡) can be extracted from the physical measurement 𝑦(𝑡)
with an accuracy of order 𝜀2, see subsection 6.2.3.
For the PMSM (6.1) with actual measurement 𝚤𝛼𝛽

𝑠 , ℎ(𝑥(𝑡)) = 𝚤𝛼𝛽
𝑠 , and the virtual measure-

ment ℎ′(𝑥(𝑡))𝐺𝑠1(𝑢(𝑡), 𝑡
𝜀) boils down to

⎡⎢
⎣
R( ̄𝜃)⎛⎜

⎝

1
𝐿𝑑

0

0 1
𝐿𝑞

⎞⎟
⎠

02×1 R′( ̄𝜃)𝚤𝑑𝑞⎤⎥
⎦

⎡
⎢⎢
⎣

R(− ̄𝜃)C𝑠𝑎𝑏𝑐
1

01×2
01×2

⎤
⎥⎥
⎦

= S( ̄𝜃)𝑠𝛼𝛽
1 ,

where S(𝜃) is the saliency matrix

S(𝜃) ∶=
𝐿𝑑 + 𝐿𝑞

2𝐿𝑑𝐿𝑞

⎛⎜⎜⎜⎜
⎝

1 +
𝐿𝑞−𝐿𝑑

𝐿𝑑+𝐿𝑞
cos 2 ̄𝜃

𝐿𝑞−𝐿𝑑

𝐿𝑑+𝐿𝑞
sin 2 ̄𝜃

𝐿𝑞−𝐿𝑑

𝐿𝑑+𝐿𝑞
sin 2 ̄𝜃 1 −

𝐿𝑞−𝐿𝑑

𝐿𝑑+𝐿𝑞
cos 2 ̄𝜃

⎞⎟⎟⎟⎟
⎠

, (6.3)

and 𝑠𝛼𝛽
1 ∶= C𝑠𝑎𝑏𝑐

1 . Therefore 𝑦𝑣 ∶= 𝜀S( ̄𝜃)A𝛼𝛽(𝑢(𝑡)) withA𝛼𝛽 ∶= ∫1
0 𝑠𝛼𝛽

1 (𝜐, 𝜏)𝑠𝛼𝛽
1 (𝜐, 𝜏)𝑇 𝑑𝜏. As

noticed earlier, this matrixA𝛼𝛽 is invertible if 𝑠𝛼
1 and 𝑠𝛽

1 are independent; rank one if they
are colinear and rank zero if they are both zero. For this system, the actual measurement
reads ℎ(𝑥(𝑡)) = 𝚤𝛼𝛽

𝑠 and the virtual measurement is 𝑦𝑣(𝑡) = 𝜀S( ̄𝜃)A𝛼𝛽(𝑢(𝑡)). If the motor is
geometrically salient, i.e. if 𝐿𝑑 and 𝐿𝑞 are sufficiently different, the rotor position 𝜃(𝑡) can then
be computed from 𝑦𝑣(𝑡) andA𝛼𝛽(𝑢𝑎𝑏𝑐

𝑠 (𝑡)), see section 6.3 for details [Sur+19a].

6.2.3 Virtual measurement extraction

The demodulation process to estimate 𝑦𝑣(𝑡) andA𝛼𝛽(𝑢𝑎𝑏𝑐
𝑠 (𝑡)) is as follows, see chapter 4 for

a detailed analysis:

1. define the kernel filter 𝜙(𝑡) ∶= 2𝐾(𝑡) − 𝐾(𝑡 − 𝜀) (see Fig. 4.4), where 𝐾 ∶= 1
𝜀2 1[0,𝜀] ∗ 1[0,𝜀]

(∗ denoting the convolution product) is the kernel of a double moving average with
window [𝑡 − 𝜀, 𝑡]; it is but a “corrected” sinc2 filter similar to the second stage of a ΣΔ
ADC.

2. filter with 𝜙 the known signal 𝑠𝛼𝛽
1 (𝑢𝑎𝑏𝑐

𝑠 (𝑡), 𝑡
𝜀)𝑠𝛼𝛽𝑇

1 (𝑢𝑎𝑏𝑐
𝑠 (𝑡), 𝑡

𝜀); this yieldsA𝛼𝛽(𝑢𝑎𝑏𝑐
𝑠 (𝑡))

with an O(𝜀2) error.

3. filter with 𝜙 the measured signal 𝚤𝛼𝛽
𝑠 (𝑡); this yields 𝚤𝛼𝛽

𝑠 (𝑡) with an O(𝜀2) error.
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4. filter with 𝜙 the known signal (𝚤𝛼𝛽
𝑠 (𝑡) − 𝚤𝛼𝛽

𝑠 (𝑡))𝑠𝛼𝛽𝑇

1 (𝑢𝑎𝑏𝑐
𝑠 (𝑡), 𝑡

𝜀); this yields 𝑦𝑣(𝑡) with an
O(𝜀2) error.

This procedure is encapsulated in the following equations: 𝚤𝛼𝛽
𝑠 is recovered through (𝚤𝛼𝛽

𝑠 ∗
𝜙)(𝑡) = 𝚤𝛼𝛽

𝑠 (𝑡) + O(𝜀2). As for the virtual measurement 𝑦𝑣, the subsequent result holds

[(𝚤𝛼𝛽
𝑠 − 𝚤𝛼𝛽

𝑠 )𝑠𝛼𝛽𝑇

1 ] ∗ 𝜙 = 𝜀S( ̄𝜃)(𝑠𝛼𝛽
1 𝑠𝛼𝛽𝑇

1 ∗ 𝜙) + O(𝜀2)

= 𝜀S( ̄𝜃)𝑠𝛼𝛽
1 𝑠𝛼𝛽𝑇

1 + O(𝜀2)
= 𝑦𝑣 + O(𝜀2).

The whole procedure is represented in figure 6.1. The rotor position is extracted from the
virtual measurement using the two demodulation procedures fleshed out in section 6.3, thus
providing an estimate ̂𝜃 of 𝜃 with an O(𝜀) error.

6.2.4 Processing directly the Sigma-Delta bitstream

Using the results developed in chapter 5, it turns out that, if the demodulation process of
subsection 6.2.3 is applied directly to the bitstream 𝚤𝛼𝛽

𝑠,ΣΔ ∈ {0, 1} output by a continuous or
discrete second-order ΣΔ, then the estimation of the virtual output 𝑦𝑣 is the same as if it
were applied directly to the (unavailable) analog measurement 𝚤𝛼𝛽

𝑠 , up to an error O(1/𝑁𝑗),
where 𝑁 ∶= 𝜀/𝑇𝑠 is the modulator oversampling ratio, with 𝑇𝑠 the modulator sampling time.
Simply put, the synchronous detection over ΣΔ modulators only differs by a factor O(1/𝑁𝑗)
from the detection on the analog input. The total error with respect to the true 𝑦𝑣 is therefore
O(𝜀2)+O(1/𝑁𝑗). If the signal 𝑠𝛼𝛽

1 𝑠𝛼𝛽𝑇

1 is continuous, which holds for the presented application,
then 𝑗 = 2; if this signal presents discontinuities, we have only 𝑗 = 1.

6.3 Extracting 𝜃 from the virtual measurement

Extracting the rotor position 𝜃 from 𝑦𝑣 depends on the rank of the 2 × 2 matrixA𝛼𝛽(𝑢𝑎𝑏𝑐
𝑠 ). The

structure of this matrix, hence its rank, depends on the specifics of the PWM employed. After
recalling the basics of single-phase PWM, we study two cases: standard three-phase PWM
with a single carrier, and three-phase PWM with interleaved carriers, i.e. PSC-PWM.

6.3.1 Single-phase PWM

We recapitulate here the discussion conducted in section 3.2. In standard sinusoidal PWM
with period 𝜀 and range [−𝑢𝑚, 𝑢𝑚], the input signal 𝑢 is compared to the 𝜀-periodic triangular
carrier

𝑐(𝑡) ∶=
⎧{
⎨{⎩

𝑢𝑚 + 4w( 𝑡
𝜀) if −𝑢𝑚

2 ≤ w( 𝑡
𝜀) ≤ 0

𝑢𝑚 − 4w( 𝑡
𝜀) if 0 ≤ w( 𝑡

𝜀) ≤ 𝑢𝑚
2 ;

the 1-periodic function w(𝜎) ∶= 𝑢𝑚 mod(𝜎 + 1
2 , 1) − 𝑢𝑚

2 wraps the normalized time 𝜎 = 𝑡
𝜀 to

[−𝑢𝑚
2 , 𝑢𝑚

2 ]. If 𝑢 varies slowly enough, it crosses the carrier 𝑐 exactly once on each rising and
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Figure 6.2: Signals 𝑠𝛼𝛽
1 for single-carrier PWM (simulation data): nondegenerate (left), de-

generate (right).

falling ramp, at times 𝑡𝑢
1 < 𝑡𝑢

2 such that

𝑢(𝑡𝑢
1) = 𝑢𝑚 + 4w(

𝑡𝑢
1
𝜀 ), 𝑢(𝑡𝑢

2) = 𝑢𝑚 − 4w(
𝑡𝑢
2
𝜀 ).

The PWM-encoded signal is therefore given by

𝑢pwm(𝑡) =

⎧{{{
⎨{{{⎩

𝑢𝑚 if −𝑢𝑚
2 < w( 𝑡

𝜀) ≤ w( 𝑡𝑢
1
𝜀 )

−𝑢𝑚 if w( 𝑡𝑢
1
𝜀 ) < w( 𝑡

𝜀) ≤ w( 𝑡𝑢
2
𝜀 )

𝑢𝑚 if w( 𝑡𝑢
2
𝜀 ) < w( 𝑡

𝜀) ≤ 𝑢𝑚
2 .

Fig. 3.1b illustrates the signals 𝑢, 𝑐 and 𝑢pwm. The function

M(𝑢, 𝜎) ∶=

⎧{{
⎨{{⎩

𝑢𝑚 if −2𝑢𝑚 < 4w(𝜎) ≤ 𝑢 − 𝑢𝑚

−𝑢𝑚 if 𝑢 − 𝑢𝑚 < 4w(𝜎) ≤ 𝑢𝑚 − 𝑢
𝑢𝑚 if 𝑢𝑚 − 𝑢 < 4w(𝜎) ≤ 2𝑢𝑚

= 𝑢𝑚 + 𝑢𝑚 sign(𝑢 − 𝑢𝑚 − 4w(𝜎)) + 𝑢𝑚 sign(𝑢 − 𝑢𝑚 + 4w(𝜎)),

which is obviously 1-periodic and with mean 𝑢 with respect to its second argument, therefore
completely describes the PWM process since 𝑢pwm(𝑡) = M(𝑢(𝑡), 𝑡

𝜀).
The induced zero-mean probing signal is then

𝑠0(𝑢, 𝜎) ∶= M(𝑢, 𝜎) − 𝑢
= 𝑢𝑚 − 𝑢 + 𝑢𝑚 sign(𝑢−𝑢𝑚

4 − w(𝜎)) + 𝑢𝑚 sign(𝑢−𝑢𝑚
4 + w(𝜎)),

and its zero-mean primitive in the second argument is

𝑠1(𝑢, 𝜎) ∶= (1 − 𝑢
𝑢𝑚

)w(𝜎) − ∣𝑢−𝑢𝑚
4 − w(𝜎)∣ + ∣𝑢−𝑢𝑚

4 + w(𝜎)∣ .

The signals 𝑠0, 𝑠1 are displayed in Fig. 3.2. Notice that, by construction, 𝑠0(±𝑢𝑚, 𝜎) = 0 and
𝑠1(±𝑢𝑚, 𝜎) = 0, so there is no ripple, hence no usable information, at the PWM limits.
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Figure 6.3: Interleaved carriers (purple, blue, green: left). The same reference (black) produces
different PWM signals (right).

6.3.2 Three-phase PWMwith single carrier

In three-phase PWM with single carrier, each component 𝑢𝑘
𝑠 , 𝑘 ∈ {𝑎, 𝑏, 𝑐}, of 𝑢𝑎𝑏𝑐

𝑠 is compared
to the same carrier, yielding

𝑠𝑘
0(𝑢𝑎𝑏𝑐

𝑠 , 𝜎) ∶= 𝑠0(𝑢𝑘
𝑠 , 𝜎), 𝑠𝑘

1(𝑢𝑎𝑏𝑐
𝑠 , 𝜎) ∶= 𝑠1(𝑢𝑘

𝑠 , 𝜎),

with 𝑠0 and 𝑠1 as in single-phase PWM. This is the most common PWM in industrial drives
as it is easy to implement and ensures a reduced zero-sequence voltage. For such a PWM
scheme, the rank of the matrixA𝛼𝛽 regularly drops from two to one (see subsection 6.3.5),
thus demands a tailored demodulation procedure to get round these invertibility losses, see
subsection 6.3.4. Fig. 6.2 displays examples of the shape of 𝑠𝛼𝛽

1 , in the rank 2 case (left), and
in the rank 1 (right) case where 𝑢𝑐

𝑠 = 𝑢𝑏
𝑠 ≠ 𝑢𝑎

𝑠 .

6.3.3 Three-phase PWMwith interleaved carriers

At the cost of a more complicated implementation, it turns out that a PSC-PWM, i.e. a scheme
with (regularly) interleaved carriers offers several benefits over single-carrier PWM. In this
scheme, each component of 𝑢𝑎𝑏𝑐

𝑠 is compared to a shifted version of the same triangular carrier
(with shift 0 for axis 𝑎, 1/3 for axis 𝑏, and 2/3 for axis 𝑐), yielding

𝑠𝑎
0(𝑢𝑎𝑏𝑐

𝑠 , 𝜎) ∶= 𝑠0(𝑢𝑎
𝑠 , 𝜎), 𝑠𝑎

1(𝑢𝑎𝑏𝑐
𝑠 , 𝜎) ∶= 𝑠1(𝑢𝑎

𝑠 , 𝜎),
𝑠𝑏
0(𝑢𝑎𝑏𝑐

𝑠 , 𝜎) ∶= 𝑠0(𝑢𝑏
𝑠 , 𝜎 − 1

3), 𝑠𝑏
1(𝑢𝑎𝑏𝑐

𝑠 , 𝜎) ∶= 𝑠1(𝑢𝑏
𝑠 , 𝜎 − 1

3),
𝑠𝑐
0(𝑢𝑎𝑏𝑐

𝑠 , 𝜎) ∶= 𝑠0(𝑢𝑐
𝑠, 𝜎 − 2

3), 𝑠𝑐
1(𝑢𝑎𝑏𝑐

𝑠 , 𝜎) ∶= 𝑠1(𝑢𝑐
𝑠, 𝜎 − 2

3).

Fig. 6.3 illustrates the principle of this scheme, where a same input signal is converted into
three different PWM outputs, one for each phase. Fig. 6.4 displays an example of the shape
of 𝑠𝛼𝛽

1 , which always more or less looks like two signals in quadrature. Here,A𝛼𝛽 remains
invertible, on the contrary to the synchronized case, thus allowing the use, without restriction,
of its inverse to recover the rotor position from the virtual measurement, see subsection 6.3.4.
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Figure 6.4: 𝑠𝛼𝛽
1 for interleaved PWM (simulation data).

6.3.4 Demodulation procedure

Synchronized carriers As the rank 1 situation very often occurs —six times per electrical
turn at steady state as described in subsection 6.3.5— for single-carrier PWM, it must be
handled by the procedure for extracting 𝜃 from the virtual measurement 𝑦𝑣 = 𝜀S(𝜃)A𝛼𝛽(𝑢𝑎𝑏𝑐)
(see section 6.2). Similarly to the extraction described in subsection 2.5.5, this can be done by
a linear least squares method, thanks to the particular structure of the saliency matrix S(𝜃)
defined by (6.3). Setting

⎛⎜
⎝

𝜆 𝜇
𝜇 𝜈

⎞⎟
⎠

∶= A𝛼𝛽(𝑢𝑎𝑏𝑐), ⎛⎜
⎝

𝑦11 𝑦12
𝑦21 𝑦22

⎞⎟
⎠

∶=
2𝐿𝑑𝐿𝑞

𝐿𝑑 + 𝐿𝑞

𝑦𝑣
𝜀 ,

and 𝐿 ∶=
𝐿𝑑+𝐿𝑞

𝐿𝑞−𝐿𝑑
, we can rewrite the virtual measurement expression 𝜀S(𝜃)A𝛼𝛽(𝑢𝑎𝑏𝑐) as the

following linear system in cos 2𝜃 and sin 2𝜃

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜆 𝜇
𝜇 𝜈

−𝜇 𝜆
−𝜈 𝜇

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠⏟⏟⏟⏟⏟

∶=𝑃

⎛⎜
⎝
cos 2𝜃
sin 2𝜃

⎞⎟
⎠

= 𝐿
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑦11 − 𝜆
𝑦12 − 𝜇
𝑦21 − 𝜇
𝑦22 − 𝜈

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

⏟⏟⏟⏟⏟
∶=𝑑

The least-square solution of this (consistent) overdetermined linear system is

⎛⎜
⎝
cos 2𝜃
sin 2𝜃

⎞⎟
⎠

= 𝐿[𝑃𝑇𝑃]−1𝑃𝑇𝑑 =
𝐿

𝜆2 + 2𝜇2 + 𝜈2 𝑃𝑇𝑑

=
𝐿

𝜆2 + 2𝜇2 + 𝜈2
⎛⎜
⎝

𝜆𝑦11 + 𝜇(𝑦12 − 𝑦21) − 𝜈𝑦22 − 𝜆2 + 𝜈2

𝜇(𝑦11 + 𝑦22) + 𝜈𝑦12 + 𝜆𝑦21 − 2𝜇(𝜆 + 𝜈)
⎞⎟
⎠

.

Estimates ̂cos 2𝜃, ̂sin 2𝜃 for cos 2𝜃, sin 2𝜃 are obtained with the same formulas, using ̂𝑦𝑖𝑗
instead of the actual 𝑦𝑖𝑗 the estimated

⎛⎜
⎝

̂𝑦11 ̂𝑦12
̂𝑦21 ̂𝑦22

⎞⎟
⎠

∶=
2𝐿𝑑𝐿𝑞

𝐿𝑑 + 𝐿𝑞

̂𝑦𝑣
𝜀 =

2𝐿𝑑𝐿𝑞

𝐿𝑑 + 𝐿𝑞

𝑦𝑣
𝜀 + O(𝜀).
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We thus have

̂cos 2𝜃 ∶= 𝐿
𝜆 ̂𝑦11 + 𝜇( ̂𝑦12 − ̂𝑦21) − 𝜈 ̂𝑦22 − 𝜆2 + 𝜈2

𝜆2 + 2𝜇2 + 𝜈2

= cos 2𝜃 + O(𝜀),
̂sin 2𝜃 ∶= 𝐿

𝜇( ̂𝑦11 + ̂𝑦22) + 𝜈 ̂𝑦12 + 𝜆 ̂𝑦21 − 2𝜇(𝜆 + 𝜈)
𝜆2 + 2𝜇2 + 𝜈2

= sin 2𝜃 + O(𝜀).

Finally, we get an estimate ̂𝜃 of 𝜃 by

̂𝜃 ∶=
1
2 atan2( ̂sin 2𝜃, ̂cos 2𝜃) + 𝑘𝜋 = 𝜃 + O(𝜀),

where 𝑘 ∈ ℕ is the number of turns. Due to the nonlinear nature of atan2, chattering might
occur at every half-turn in the presence of noise, thus hindering the estimate use in a feedback
loop. This issue is simply solved by using a basic Quadrature-Component Q-PLL [ZL16] to
recover the position from the sine and cosine estimates.

Interleaved carriers For PSC-PWM, even when two, or even three, components of 𝑢𝑎𝑏𝑐
𝑠

are equal, A𝛼𝛽(𝑢𝑎𝑏𝑐) remains invertible (except of course at the PWM limits), since each
component has, because of the interleaving, a different PWM pattern. It is therefore possible
to recover all four entries of the saliency matrix S(𝜃) by

Ŝ(𝜃) ∶= ̂𝑦𝑣 ⋅ [A𝛼𝛽(𝑢𝑎𝑏𝑐)]−1 = S(𝜃) + O(𝜀).

Notice now that thanks to the structure of S(𝜃) = (𝑠𝑖𝑗)𝑖𝑗, the rotor angle 𝜃 can be computed
from the matrix entries by

𝑠12 + 𝑠21 =
𝐿𝑞 − 𝐿𝑑

𝐿𝑑𝐿𝑞
sin 2𝜃, 𝑠11 − 𝑠22 =

𝐿𝑞 − 𝐿𝑑

𝐿𝑑𝐿𝑞
cos 2𝜃,

𝜃 =
1
2 atan2(𝑠12 + 𝑠21, 𝑠11 − 𝑠22) + 𝑘𝜋,

where 𝑘 ∈ ℕ is the number of turns. An estimate ̂𝜃 of 𝜃 can therefore be computed from the
entries ( ̂𝑠𝑖𝑗)𝑖𝑗 of Ŝ(𝜃) by

̂𝜃 =
1
2 atan2( ̂𝑠12 + ̂𝑠21, ̂𝑠11 − ̂𝑠22) + 𝑘𝜋 = 𝜃 + O(𝜀),

without requiring the knowledge of the magnetic parameters 𝐿𝑑 and 𝐿𝑞, which is indeed a nice
practical feature. Also, shifting the carriers enhances the amplitude of 𝑠𝛼𝛽

1 compared to the
synchronized scheme, see figures 6.2 and 6.4. While a greater current ripple amplitude is
detrimental in many industrial applications, it helps in achieving a better estimate resolution.
Instead of considering phase-shifted carriers, a trade-off could be to slightly shift the carriers,
so that the matrixA𝛼𝛽 keeps its properties while inducing reduced current ripples.

6.3.5 Properties of matrixA𝛼𝛽 for single-carrier PWM

Rank one The demodulation procedure when the matrixA𝛼𝛽(𝑢𝑎𝑏𝑐
𝑠 ) is invertible is straight-

forward, and does not require the prior knowledge of the 𝑑- and 𝑞-axis inductances. For a
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Figure 6.5: Experimental results: standard PWM (left), PSC-PWM (right).
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Figure 6.6: Sigma-Delta encoding 𝚤𝑎𝑠,ΣΔ of the stator current 𝚤𝑎𝑠 .

single-carrier PWM-scheme though, this property does not always hold, as the rank regularly
drops to one, namely when two components of 𝑢𝑎𝑏𝑐

𝑠 are equal, which happens six times per
electrical turn at steady state.
Indeed, without loss of generality, assume 𝑢𝑎

𝑠 = 𝑢𝑏
𝑠 . Then 𝑠𝑎

1(𝑢𝑎
𝑠 , 𝑡) = 𝑠𝑏

1(𝑢𝑏
𝑠 , 𝑡). Applying

Concordia’s transformation to 𝑠𝑎𝑏𝑐
1 then yields

𝑠𝛼𝛽
1 (𝑢, 𝑡) ∶= C𝑠𝑎𝑏𝑐

1 (𝑢𝑎𝑏𝑐
𝑠 , 𝑡

𝜀) = √2
3

⎛⎜
⎝

1/2
√3/2

⎞⎟
⎠

(𝑠𝑏
1(𝑢𝑏

𝑠 , 𝑡) − 𝑠𝑐
1(𝑢𝑐

𝑠, 𝑡)).

This means 𝑠𝛼
1 and 𝑠𝛽

1 are colinear, so rankA𝛼𝛽 = 1. Conversely, assume the three input
voltages are different, namely 𝑢𝑖 ≠ 𝑢𝑗 for 𝑖 ≠ 𝑗. Then 𝑠𝑎

1, 𝑠𝑏
1 and 𝑠𝑐

1 are necessarily independent,
as their commutation moments differ. Indeed, the three signals 𝑠𝑖

1(𝑢𝑖
𝑠, ⋅) are periodic triangles,

they are colinear if and only if their vertices share the same 𝑡-axis coordinate. Therefore, 𝑠𝛼
1

and 𝑠𝛽
1 are independent, meaning detA

𝛼𝛽 ≠ 0.

Rank zero The rank of the matrixA𝛼𝛽(𝑢𝑎𝑏𝑐) degenrates to 0 and consequently position
recovery thanks to the modulation-induced current ripple is not possible, in only two cases:

— When 𝑢𝑎
𝑠 = 𝑢𝑏

𝑠 = 𝑢𝑐
𝑠.

— When {𝑢𝑎
𝑠 , 𝑢𝑏

𝑠 , 𝑢𝑐
𝑠} = {𝑢𝑚, ±𝑢𝑚, −𝑢𝑚}.

The second case occurs only when over-modulation [HLK92] is used and at very high speed
when the position of the rotor of the PMSM can be estimated without resorting to transient
methods.
In steady state, when 𝑢𝑎

𝑠 = 𝑢𝑏
𝑠 = 𝑢𝑐

𝑠, the two first equations of (6.1) under the linear
current-flux relation read

0 = −𝑅𝑠𝚤𝑑𝑠 + 𝜔𝐿𝑞𝚤𝑞𝑠 (6.5a)
0 = −𝑅𝑠𝚤

𝑞
𝑠 − 𝜔𝐿𝑑𝚤𝑑𝑠 − 𝜔𝜙𝑚 (6.5b)

and the electromagnetic torque reads

𝑇𝑒 = 𝑛𝚤𝑞𝑠𝜙𝑚 + 𝑛(𝐿𝑑 − 𝐿𝑞)𝚤𝑑𝑠 𝚤𝑞𝑠 .
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Table 6.1: Rated parameters

Rated power 400W Number of pole pairs 𝑛 2
Rated voltage (RMS) 400V Stator resistance 𝑅𝑠 4.25 Ω
Rated current (RMS) 1.66A 𝑑-axis inductance 𝐿𝑑 43.25mH
Rated speed 1800RPM 𝑞-axis inductance 𝐿𝑞 69.05mH
Rated torque 2.12Nm Permanent magnet flux linkage 𝜙𝑚 0.277Wb

Inverting (6.5), we can obtain the stator currents in 𝑑𝑞-frame and show that they verify

(𝚤𝑑𝑠 +
1
2

𝜙𝑚
𝐿𝑑

)
2

+ (𝚤𝑞𝑠)2
𝐿𝑞

𝐿𝑑
= (

1
2

𝜙𝑚
𝐿𝑑

)
2
,

which is the equation of an ellipsis of radii 𝜙𝑚/𝐿𝑑 and 𝜙𝑚/√𝐿𝑑𝐿𝑞 tangent to the vertical axis
in 0. Thanks to the degree of freedom we have in the realization of 𝑇𝑒, by carefully adapting
the current trajectory, we can always avoid this case. For instance, setting 𝚤𝑑𝑠 > 0 will ensure
that we never have 𝑢𝑎

𝑠 = 𝑢𝑏
𝑠 = 𝑢𝑐

𝑠. Otherwise, we may fall in this case, when

𝑇𝑒 = −𝑛
𝜙2

𝑚
𝐿𝑑

(
𝑅𝑠
𝐿𝑑

𝜔)

𝑅2
𝑠

𝐿2
𝑞

+ 𝜔2

( 𝑅2
𝑠

𝐿𝑑𝐿𝑞
+ 𝜔2)2

.

In the speed-torque plane, this relation describes a curve going through the origin and staying
in the two generator quadrants. Hence, position estimation may not be always possible in the
low speed range, if the currents are not appropriately selected.

6.4 Numerical and experimental results

6.4.1 Scenario and experimental results

The whole approach is validated experimentally on a salient PMSM with rated parameters
given in table 6.1. The ΣΔ modulator is a Broadcom ACPL-798J [Bro] with a sampling
frequency 𝑇−1

𝑠 ∶= 15MHz; the PWM frequency is 𝜀−1 ∶= 4 kHz, thereby the oversampling
ratio 𝑁 = 𝜀/𝑇𝑠 = 3750. Due to its very high frequency, processing the ΣΔ bitstream in real
time will ultimately require to use an FPGA.However, to validate the theory without resorting
to FPGA programming, we recorded simultaneously at 31.25MHz the analogue value of the
bus voltage, the ΣΔ bitstreams (see e.g. Fig. 6.6) and the six gate control signals using a mixed
signal oscilloscope (Picoscope 3206D MSO). For comparison purposes we also recorded the
digital encoder output signals, so that we can get the real position of the rotor.
In the test scenario, the motor starts at rest and slowly accelerates from 0 to 10Hz (electrical)

in approximately 8 s. The experiment is performed with three different load torques, namely
about 100 %, 150 % and 200 % of the rated torque, for standard PWM. The results are displayed
in Fig. 6.5; they are very satisfying, though with errors larger than expected, and increasing
with the load torque. The reason for this behavior is most probably the effect of magnetic
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Figure 6.7: RMS value of 𝑠𝛼𝛽
1 (experimental values).

saturation, not taken into account in the rotor position extraction procedure of subsection 6.3.4.
The method is further validated for PSC-PWM-controlled PMSM. The results are displayed

in Fig. 6.5, and exhibit a reduced position error compared to the standard scheme estimate.
The amplitude of the ripple 𝑠𝛼𝛽

1 is stronger, achieves better resolution than its synchronized
correlative: when ‖ 𝑠𝛼𝛽

1 ‖2 remains weak for standard PWM (see Fig. 6.7a, especially during the
first second), using different carriers greatly enhances this norm (Fig. 6.7b), thus guaranteeing
the procedure validity during the whole scenario duration. The natural downsides of shifted-
carriers PWM are twofold: the acoustic noise the carrier shifting introduces and the strong
current and torque ripple which might be harmful for high-performance applications.

6.4.2 Role of magnetic saturation and numerical results

Saturated current-flux relation

When operating at medium to high speed, namely above 10 % of the rated speed, linear
current-flux relations are accurate enough for control purposes. At low speed though, the
linear model fails to capture magnetic saturation and cross-coupling, thereby deteriorating the
control model accuracy [Com+17]. Recently, macroscopic approaches based on the machine
symmetries and energy considerations have been proposed to modelize the motor nonlineari-
ties due to magnetic saturation [Jeb+16; Jeb+14]. Following this way, the magnetic energy
can be described by a fourth-order functionH

𝑑𝑞
𝑚 of the form (see [Jeb+11] for further details)

H
𝑑𝑞
𝑚 (𝜙𝑑𝑞

𝑠 ) ∶= 𝑝10𝜙𝑑
𝑠 + 𝑝20(𝜙𝑑

𝑠 − 𝜙𝑚)2 + 𝑝30(𝜙𝑑
𝑠 − 𝜙𝑚)3 + 𝑝40(𝜙𝑑

𝑠 − 𝜙𝑚)4 + 𝑝02(𝜙𝑞
𝑠)2 + 𝑝04(𝜙𝑞

𝑠)4

+𝑝12(𝜙𝑑
𝑠 − 𝜙𝑚)(𝜙𝑞

𝑠)2 + 𝑝22(𝜙𝑑
𝑠 − 𝜙𝑚)2(𝜙𝑞

𝑠)2,

where the coefficients 𝑝𝑖𝑗 are magnetic parameters to be identified, using for example the
classic signal injection technique in the locked-rotor position. The magnetization current-flux
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Table 6.2: Estimated magnetic parameters
𝑝02 𝑝04 𝑝10 𝑝12 𝑝20 𝑝22 𝑝30 𝑝40

6.6680 −0.5198 0.0391 1.0922 11.0815 22.1409 18.7946 68.6069

curves eventually reads

𝚤𝑑𝑠 =
𝜕H𝑑𝑞

𝑚

𝜕𝜙𝑑
𝑠

(𝜙𝑑𝑞
𝑠 ) = 𝑝10 − 2𝑝20(𝜙𝑑

𝑠 − 𝜙𝑚) + 3𝑝30(𝜙𝑑
𝑠 − 𝜙𝑚)2

+𝑝12(𝜙𝑞
𝑠)2 + 4𝑝40(𝜙𝑑

𝑠 − 𝜙𝑚)3 + 2𝑝22(𝜙𝑑
𝑠 − 𝜙𝑚)(𝜙𝑞

𝑠)2

𝚤𝑞𝑠 =
𝜕H𝑑𝑞

𝑚

𝜕𝜙𝑞
𝑠

(𝜙𝑑𝑞
𝑠 ) = 2𝑝02𝜙𝑞

𝑠 + 2𝑝12(𝜙𝑑
𝑠 − 𝜙𝑚)𝜙𝑞

𝑠 + 2𝑝22(𝜙𝑑
𝑠 − 𝜙𝑚)2𝜙𝑞

𝑠 + 4𝑝04(𝜙𝑞
𝑠)3.

The saturated current-flux relations define another mapping ℎ for the output currents that
modifies the virtual measurement structure. More specifically, the saliency matrix turns out
to depend on the flux linkages due to the polynomial terms in the expression of 𝚤𝑑𝑞

𝑠 . This
difference between the linear and saturated saliency matrices may ultimately corrupt the
estimate quality.

Numerical results

To substantiate the magnetic saturation role in the error estimate discrepancies for the syn-
chronized scheme, we have run the same scenario in simulation with and without a model of
magnetic saturation. The saturation model is previously described, with magnetic parameters
gathered for the considered PMSM in table 6.2. With the saturation model (Fig. 6.9), the
error has approximately the same shape and value as in the experiment; whereas without the
saturation model (Fig. 6.8), the error substantially decreases and is independent of the load
torque as expected. Notice that it is conceivable to take into account magnetic saturation in
our approach, along the lines of [Jeb+16] for forced injection. This would mean using a more
complicated saliency matrix S, together with a more complicated rotor position extraction
scheme; other than that, the demodulation procedure would remain the same, and the error
due to the ΣΔ modulator would be unchanged.

6.4.3 Masking the current transients

Due to parasitic effects in industrial drives, and especially the discharge of parasitic capacitances
in the Insulated-Gate Bipolar Transistors (IGBT), the measured currents are heavily corrupted
by huge spikes, see figure 6.10a. These transients occur at every inverter commutation, i.e. six
times per PWM period (twice per phase), and bring about the loss of 10 to 20 % of the signal
per period. The procedure to recover the rotor position from the currents could eventually
be hindered by these inverter non-idealities, and thus needs to be adapted to take them into
account.
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Figure 6.8: Test scenario, numerical results, without magnetic saturation model: synchronized
carriers (left), PSC-PWM (right).
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Figure 6.9: Error 𝜃 − ̂𝜃 (rad) at 100 % (purple), 150 % (blue) and 200 % (green) of rated torque;
numerical results with magnetic saturation model: standard PWM (left), PSC-
PWM (right).

To achieve this, the virtual measurement extraction detailed in subsection 6.2.2 is slightly
modified. Since the moments the spikes are observed are approximately known, we can define
the window 𝑐 with 𝑐(𝑢𝑎𝑏𝑐

𝑠 , 𝜏) = 0 when the perturbation is active, 1 otherwise. The rectangular
masking window 𝑐, synchronized with the PWM commutations, simply discards the corrupted
data. Define also the new demodulation basis 𝑟(𝑢𝑎𝑏𝑐

𝑠 , 𝜏) ∶= 𝑠𝛼𝛽
1 (𝑢𝑎𝑏𝑐

𝑠 , 𝜏)𝑐(𝑢𝑎𝑏𝑐
𝑠 , 𝜏), and the new

matrixA𝛼𝛽
𝑟 :

A
𝛼𝛽
𝑟 (𝜐𝑎𝑏𝑐) ∶= ∫

1

0
𝑠1(𝜐𝑎𝑏𝑐, 𝜏)𝑟𝑇(𝜐𝑎𝑏𝑐, 𝜏) 𝑑𝜏 −

1
̄𝑐 ∫

1

0
𝑟(𝜐𝑎𝑏𝑐, 𝜏) 𝑑𝜏 ∫

1

0
𝑟𝑇(𝜐𝑎𝑏𝑐, 𝜏) 𝑑𝜏,

where ̄𝑐 ∶= ∫1
0 𝑐(𝜐𝑎𝑏𝑐, 𝜏) 𝑑𝜏. Notice that if 𝑐 ∶= 1, then 𝑟 = 𝑠 and the matrixA𝛼𝛽 remain the

same as in subsection 6.2.2. The new procedure now reads

2. filter with 𝜙 the known signal 𝑐(𝑢𝑎𝑏𝑐
𝑠 (𝑡), 𝑡

𝜀), this yields ̄𝑐 with an O(𝜀2) error.

3. filter with 𝜙 the known signal (𝚤𝛼𝛽
𝑠 𝑐)/ ̄𝑐; this yields 𝚤𝛼𝛽

𝑠 with an O(𝜀) error.

4. filter with 𝜙 the known signal (𝚤𝛼𝛽
𝑠 − 𝚤𝛼𝛽

𝑠 )𝑟𝑇(𝑢𝑎𝑏𝑐
𝑠 (𝑡), 𝑡

𝜀), this yields 𝑦𝑣(𝑡) = 𝜀𝑆( ̄𝜃)A𝛼𝛽
𝑟

with an O(𝜀2) error.

From here, the position extraction based on a least-square method from the virtual mea-
surement 𝑦𝑣 follows as in section 6.3 with the replacement of the matrixA𝛼𝛽 byA

𝛼𝛽
𝑟 . This

method has been applied both numerically and experimentally, but did not show any major
improvements compared to the results displayed in subsection 6.4.1. This might stem from
the very particular shapes of the current disturbances, namely damped oscillations that are
ultimately mitigated by the low-pass filtering of the currents (using the kernel 𝜙). This theory
however turns out to be particularly effective to discard stronger disturbances, which would
otherwise corrupt the whole procedure.
Under the light of section 6.2.4, the demodulation basis 𝑐 can be tailored to improve the

demodulation error over the ΣΔ encoding of the currents. With the rectangular window, ΣΔ
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modulation introduces an O(1/𝜀) error due to the discontinuous nature of 𝑠𝛼𝛽
1 𝑟𝑇. Replacing 𝑐

by a trapezoidal window (see Fig. 6.10), so that 𝑠𝛼𝛽
1 𝑟𝑇 becomes continuous, eventually reduces

this modulation error to a O(1/𝜀2).

6.5 Conclusion

We have presented a method to estimate the rotor position of a PWM-fed PMSM from
the ripple created by the PWM itself, without the need for an external probing signal. The
method is compatible with the hardware found in recent industrial drives, i.e. comprising ΣΔ
modulators and an FPGA. Notice that on such drives the primary role of the modulators and
FPGA are to act as complete multibit ADCs with moreover galvanic insulation provided by
the modulators; the proposed procedure can overall be seen as an enhanced multibit ADC,
providing not only the actual output, but also the virtual measurement and in turn the rotor
position. The procedure could also be seen as a kind of software sensor for measuring the
slope of the current ripple. But it is much more general than that, in the sense than it can in
theory accommodate any modulation scheme with e.g. a multilevel inverter or Space-Vector
PWM, and not only classical PWM with a standard two-level inverter; the only thing to
change is the expression of the modulation function 𝑠𝑎𝑏𝑐

0 of section 6.2, and of its zero-mean
primitive 𝑠𝑎𝑏𝑐

1 .



Conclusion and perspectives

La commande sans capteur des moteurs électriques à basse vitesse demeure une probléma-
tique industrielle à la fois complexe et fertile. Ce travail de thèse s’est attaché à démontrer la
validité théorique et expérimentale d’une méthode d’estimation de la position du rotor sans
capteur mécanique, reposant uniquement sur les grandeurs électriques mesurées. Contrai-
rement aux méthodes originelles exploitant la réponse induite par une excitation exogène à
haute fréquence, il a été mis en évidence que l’onduleur qui convertit les entrées analogiques
en signaux modulés par largeur d’impulsions introduit des harmoniques qui agissent comme
une injection de signal endogène.
La théorie de la moyennisation s’est avérée être un outil mathématique particulièrement

puissant dans l’étude des effets des injections endogène et exogène, notamment dans l’obten-
tion d’une expression analytique desdites réponses induites. Dans le cas de l’injection externe,
la moyennisation a été poussée jusqu’à l’ordre trois, mettant en lumière la possibilité de récu-
pérer en toute généralité deux mesures virtuelles supplémentaires par rapport à une analyse
à l’ordre deux. Satisfaisante théoriquement, cette technique présente toutefois des limites
quant à sa réalisation pratique telles que l’amplitude réduite des deux signaux additionnels ou
la corruption de ces derniers par le bruit de mesure. Ce travail a néanmoins posé les bases
d’une théorie qui a été adaptée au traitement de systèmes hybrides contrôlés par des entrées
MLI ; à cet égard, il est apparu que l’injection endogène induit la même forme de réponse que
l’injection de signal externe, ouvrant donc les mêmes possibilités d’extraction d’une mesure
virtuelle.
Que ce soit pour l’injection exogène ou endogène, l’information contenue dans l’excitation

induite dans la sortie mesurée doit y être extraite. Pour ce faire, une théorie de la démodulation
de signaux multiplexés par des porteuses à deux échelles de temps, spécialement adaptée aux
spécificités des signaux moteurs, a été développée. Celle-ci se résume par une combinaison de
filtres passe-bas, permettant de séparer chacune des composantes du signal multiplexé avec
une précision arbitraire. Cette théorie a au départ été développée en supposant disponibles les
sorties analogiques, une hypothèse qui n’est cependant pas vérifiée dans un contexte industriel,
où les courants sont encodés numériquement par un modulateur Sigma-Delta. Seul un flux
binaire à très haute fréquence est alors disponible en sortie, soulevant alors la question de
la validité dans ce cadre de la démarche proposée sur les signaux analogiques. Il est apparu
que la même procédure de démodulation analogique s’appliquait au flux binaire en sortie
du Sigma-Delta, avec un terme d’erreur supplémentaire qui dépend à la fois de l’ordre du
modulateur, du sur-échantillonnage et de sa structure.
Reposant sur ces deux fondements théoriques que sont la moyennisation pour l’obtention
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de l’expression analytique de la perturbation induite par la MLI et la démodulation de signaux
multiplexés en sortie d’un modulateur Sigma-Delta pour récupérer cette information, l’extrac-
tion de la position du rotor a été validée sur des données expérimentales. L’étude d’un modèle
deMSAP a révélé des difficultés propres au contrôle moteur, à savoir la présence de transitoires
de courant à chaque commutation des IGBT ou les pertes de rang de la Gramienne utilisée
pour la démodulation. De cette dernière particularité est venue l’idée de décaler les porteuses
de la MLI afin de garantir à la fois l’inversibilité et une grande amplitude de cette Gramienne,
garantissant ainsi la présence de la perturbation portant l’information de position. Même si
cette méthode garantit une bonne estimation de la position, elle requiert des modifications
logicielles de très bas niveau et introduit par ailleurs un certain bruit acoustique. En gardant le
schéma de MLI avec une seule porteuse, les erreurs de position deviennent non négligeables,
mais sont consistantes avec les résultats numériques, et témoignent du rôle de la saturation
magnétique ainsi que de la taille de l’excitation qui reste faible à basse vitesse.
Une extension naturelle de l’étude ici menée consisterait à tester la stratégie d’estimation

en boucle fermée, c’est-à-dire en utilisant la position estimée dans la boucle de contrôle. Des
prémices de résultats numériques confirment la faisabilité d’un tel schéma de contrôle, mais
nécessitent une vérification expérimentale pour parachever la validation de ce schéma de
contrôle sans capteur.

Sensorless control of electric motors at low speed remains a complex and fertile industrial
problem. This thesis aimed at demonstrating the theoretical and experimental validity of a
sensorless rotor position estimationmethod, based solely on themeasured electrical quantities.
In contrast to the original methods exploiting the response induced by an exogenous high-
frequency excitation, it was shown that the inverter that converts the analog inputs into
Pulse-Width Modulated signals introduces harmonics that act as a natural signal injection.
Averaging theory has proven to be a particularly powerful mathematical tool in the study of

the effects of exogenous and endogenous injection, especially in obtaining an analytical expres-
sion of the said induced responses. In the exogenous injection case, averaging computations
were taken to the third order, highlighting the possibility of recovering in full generality two
additional virtual measurements compared to a second order analysis. Although theoretically
satisfactory, this technique has limitations in terms of practical implementation, such as the
reduced amplitude of the two additional signals or their corruption by measurement noise.
This work has nevertheless laid the foundations of a theory that has been adapted to the
processing of hybrid systems controlled by PWM inputs; in this regard, it has been shown
that endogenous injection induces the same response pattern as external signal injection, thus
opening up the same possibilities of extracting a virtual measurement.
For both exogenous and endogenous injection, the information contained in the induced

excitation in the measured output must be extracted. For this purpose, a theory of the demodu-
lation of multiplexed signals with slowly-varying carriers, specially adapted to the specificities
of motor signals, has been developed. This boils down to a suitable combination of low-pass
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filters that separates each component of the multiplexed signal with an arbitrary accuracy.
This theory was initially developed assuming the availability of analog outputs, an assumption
that is not satisfied in an industrial context, where the currents are digitally encoded by a
Sigma-Delta modulator. Only a very high frequency bitstream is then available at the output,
raising the question of the validity in this context of the proposed approach for analog signals.
It appeared that the same analog demodulation procedure applied to the Sigma-Delta output
bitstream, with an additional error term that depends on the modulator order, its structure
and the oversampling ratio.
Based on these two theoretical foundations, namely averaging to obtain the analytical

expression of the disturbance induced by the PWM and the demodulation of multiplexed
signals encoded by a Sigma-Delta modulator to recover this information, the extraction of the
rotor position was validated on experimental data. The study of a PMSMmodel brought the
light to difficulties that are specific to motor control, namely the presence of current transients
at each switching of the IGBTs or the rank losses of the Gramian used for the demodulation.
From this last peculiarity came the idea of shifting the carriers of the PWM to guarantee both
the invertibility and a large amplitude of this Gramian, thus ensuring the presence of the
position-dependent disturbance in the measured currents. Although this method guarantees
a good position estimation, it requires low-level software modifications and introduces also
some acoustic noise. By keeping the single-carrier PWM scheme, the position errors become
non-negligible, but are consistent with the numerical results, and reflect the role of magnetic
saturation as well as the excitation amplitude, which remains small at low speeds.
A natural extension of the study carried out here would be to test the estimation strategy in

closed loop, i.e. using the estimated position in the control loop. Preliminary numerical results
confirm the feasibility of such a method, but require experimental verification to complete the
validation of this sensorless control scheme.
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MOTS CLÉS

Contrôle non-linéaire, Moteurs électriques, Modélisation, Traitement du signal, Contrôle sans capteur

RÉSUMÉ

La commande sans capteur des moteurs électriques à basse vitesse demeure une problématique industrielle à la fois
complexe et fertile. La dégénérescence de l’observabilité à zéro de vitesse lorsque la position du rotor n’est pas mesurée
représente en effet un enjeu industriel majeur pour la commande robuste des moteurs. Ce problème est classiquement
résolu par la technique dite de l’injection de signal exogène. Elle consiste à exciter le système par une perturbation à
haute fréquence afin d’engendrer une réponse HF qui porte l’information de position désirée. L’injection de signal tradi-
tionnelle présente néanmoins des inconvénients pratiques majeurs, tels que l’introduction de bruits acoustiques parasites
ou encore la limitation de la fréquence d’injection par la modulation d’impulsion pour les systèmes électromécaniques
contrôlés via un onduleur. Pour ces systèmes, les signaux d’entrée modulés créent de manière endogène des har-
moniques qui induisent des effets similaires à l’injection de signal exogène, sans les limitations de cette dernière, laissant
donc entrevoir la possibilité de réalisation d’un schéma de contrôle sans capteur ni perturbation forcée. Dans les deux
cas — exogène et endogène — il reste nécessaire de séparer la composante HF de la sortie fondamentale pour pouvoir
exploiter pleinement l’information de position induite, avec une procédure qui soit applicable au flux binaire en sortie d’un
modulateur Sigma-Delta, que l’on retrouve désormais déployé sur certains variateurs de vitesse industriels.
On se propose d’étudier les propriétés de l’injection de signal exogène en utilisant la théorie de la moyennisation.
L’application de cette théorie permet notamment d’obtenir une description précise des effets de l’injection sur le système
et ses sorties. Pour l’injection de signal endogène, une étude analogue peut être reproduite en adaptant la théorie de la
moyennisation aux systèmes hybrides contrôlés par une modulation des entrées. Est ainsi mise en évidence la possi-
bilité de récupérer les mêmes informations que dans le cas exogène sans avoir recours à une perturbation externe. Afin
d’extraire l’information contenue dans la perturbation induite, on développe une procédure de démodulation des signaux
multiplexés, valide à la fois sur des mesures analogiques ou sur un bitstream Sigma-Delta. Des validations numériques
et expérimentales sur des Moteurs Synchrones à Aimants Permanents viennent parachever cette étude, et soulignent les
difficultés inhérentes au contrôle d’un MSAP.

ABSTRACT

Sensorless control of electric motors at low speed remains a complex and fertile industrial problem. The observability
degeneracy at zero speed when the rotor position is not measured represents indeed a major industrial issue for the
robust control of motors. This problem is classically solved by the well-known exogenous signal injection technique. It
consists in superimposing a fast-varying signal to the control law in order to generate a high-frequency response that
carries the desired position information. However, traditional signal injection has major practical drawbacks, such as
the introduction of parasitic acoustic noise or the limitation of the injection frequency by the Pulse-Width Modulation for
electromechanical systems controlled using an inverter. For these systems, the modulated input signals endogenously
create harmonics that induce effects similar to exogenous signal injection, without the limitations of the latter, and thus
allowing the possibility of realizing a sensorless control scheme without mechanical sensor nor external probing signal.
In both cases —exogenous and endogenous— it is still necessary to separate the HF component from the fundamental
output to be able to fully exploit the induced position information, with a procedure that is applicable to the output bistream
of a Sigma-Delta modulator, which is now deployed in some industrial variable-frequency drives.
We propose to study the properties of the exogenous signal injection using the averaging theory. The application of this
theory allows us to obtain a precise description of the injection effects on the controlled system and its outputs. For the
endogenous case, a similar study can be conducted by adapting the averaging theory to hybrid systems controlled by a
modulation of its inputs. The possibility of recovering the same information as in the exogenous case is thus highlighted
without the need of an external perturbation. To extract the information contained in the induced perturbation, we develop
a demodulation procedure for multiplexed signals, valid both on analog measurements and on a Sigma-Delta bitstream.
Numerical and experimental validations on Permanent Magnet Synchronous Motors complete this study, and underline
the inherent difficulties of PMSM control.

KEYWORDS

Nonlinear control, Electric motors, Modeling, Signal processing, Sensorless control
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