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Abstract

A significant part of petroleum, gas, and geothermal reservoirs contain natural fractures
that impact their performance. When these discontinuities fall on the sub-seismic scale, it
is a challenge to incorporate them into numerical models, because the computational costs
of their explicit representation are usually too high. Popular solutions that deal with the
effect of these small-scale fractures are the dual-porosity approaches and classical flow-based
upscaling. However, while the dual-porosity models disregard the geometrical complexity
of real fracture networks, traditional upscaling can not capture the dynamic influence of
the fractures, whose permeabilities change continuously during the reservoir’s productive
life. This thesis is dedicated to the multiscale hydro-mechanical modeling of reservoirs con-
taining complex fracture networks. The adopted multiscale method is an adaptation of the
multi-level Finite Element Method (FEM), which solves both the macroscale and the mi-
croscale numerically and couples them according to the principles of homogenization. The
modification proposed here is called the multi-level Box method because it replaces the FEM
with the Box method, also called the control-volume FEM. Contrary to upscaling techniques,
this method can capture the dynamic influence of the heterogeneities on the large-scale be-
havior without the need of defining equivalent constitutive laws. At the level of the REV, the
fractures are generated stochastically and represented by interface elements. Major modi-
fications were made to an open-source code to make the hydro-mechanical simulation of
elastoplastic fractures possible. A new statistics-based methodology based on the Central
Limit Theorem was proposed to define the REV of random fractured media. Also, two meth-
ods used to impose periodic boundary conditions on periodic and non-periodic meshes were
adapted to domains containing interface elements. The developed tools and methods were
applied to a synthetic case of depletion inspired by a real naturally fractured chalk reservoir.
The multiscale method was able to represent the loss of productivity caused by depletion
and the anisotropic evolution of the pore pressure field.
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Resumo

Uma parte significativa dos reservatórios geotérmicos e de petróleo e gás possuem frat-
uras naturais que impactam sua performance. Quando essas discontituidades se encontram
na escala sub-sísmica, sua incorporação aos modelos numéricos é desafiadora, pois os custos
computacionais de sua representação explícita são geralmente proibitivos. As soluções mais
populares que consideram o efeito dessas fraturas de pequena escala são os modelos de dupla
porosidade e o cálculo de propriedades equivalentes (upscaling). No entanto, enquanto os
modelos de dupla porosidade consideram geometrias muito idealizadas e pouco representa-
tivas de redes de fraturas reais, as técnicas tradicionais de upscaling não são capazes de cap-
turar a influência dinâmica das fraturas, cujas permeabilidades mudam continuamente du-
rante a vida produtiva do reservatório. Esta tese desenvolve métodos e ferramentas computa-
cionais para a modelização multiescala do comportamento hidro-mecânico de reservatórios
contendo redes complexas de fraturas. O método multiescala adotado é uma adaptação do
Médoto dos Elementos Finitos (MEF) multi-nível, em que a microescala e a macroescala são
resolvidas simultaneamente com o FEM e acopladas de acordo com os princípios da homog-
enização. A modificação aqui proposta é denominada método Box multi-nível, pois o MEF
foi substituído pelo método Box. Ao contrário das técnicas convencionais de upscaling, este
método captura os efeitos dinâmicos das heterogeneidades sem a necessidade de definir mod-
elos constitutivos para a macroescala. No nível do Volume Elementar Representativo (VER),
as fraturas são geradas de maneira estocástica e representadas por elementos de interface.
Um programa de código aberto foi estendido para comportar simulações hidromecânicas em
meios fraturados elastoplásticos. Uma nova metodologia estatística baseada no Teorema
do Limite Central para definir o tamanho do VER de meios fraturados estocásticos foi pro-
posta. Além disso, dois métodos para a imposição de condições de contorno periódicas foram
adaptados para meios contendo elementos de interface. Os métodos e ferramentas desen-
volvidos foram aplicados em um caso sintético de depleção de um reservatório inspirado em
um carbonato fraturado real. O método multiescala foi capaz de representar a perda de
produtividade causada pelo fechamento das fraturas e a evolução anisotrópica dos campos
de poropressão.
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Résumé

Une partie importante des réservoirs de pétrole, de gaz et géothermiques contient des
fractures naturelles qui ont un impact sur leur performance. Lorsque ces discontinuités se
situent à l’échelle sub-sismique, leur incorporation aux modèles numériques pose un défi, car
le coût de calcul de leur représentation explicite est généralement trop élevé. Les solutions
populaires qui traitent de l’effet de ces fractures à petite échelle sont les approches à dou-
ble porosité et l’obtention de propriétés constitutives équivalentes par changement d’échelle
(upscaling). Pourtant, alors que les modèles à double porosité ne tiennent pas compte de
la complexité géométrique des réseaux de fractures réels, les techniques traditionnelles de
changement d’échelle ne peuvent pas capturer l’influence dynamique des fractures, dont la
perméabilité change continuellement pendant l’exploitation du réservoir. Cette thèse est
dédiée à la modélisation hydromécanique multi-échelle de réservoirs contenant des réseaux
de fractures complexes. La méthode multi-échelle adoptée est une adaptation de la méth-
ode des éléments finis au carré, qui résout numériquement à la fois la macro-échelle et la
micro-échelle et les couple selon les principes d’homogénéisation. La modification proposée
ici s’appelle la méthode Box multi-niveaux car elle remplace la méthode des éléments finis
par la méthode Box. Contrairement au changement d’échelle conventionnel, cette méthode
permet de capturer l’influence dynamique des hétérogénéités sur le comportement à grande
échelle sans qu’il soit nécessaire de définir des lois constitutives pour la macro-échelle. Au
niveau du Volume Élémentaire Représentatif (VER), les fractures sont générées de manière
stochastique et représentées par des éléments d’interface. Des modifications majeures ont été
apportées à un code open-source pour permettre la simulation hydro-mécanique des milieux
fracturés élastoplastiques. Une nouvelle méthodologie statistique basée sur le théorème de la
limite centrale a été proposée pour définir le VER de milieux fracturés aléatoires. De plus,
deux méthodes utilisées pour imposer des conditions aux limites périodiques sur des mail-
lages périodiques et non-périodiques ont été adaptées aux domaines contenant des éléments
d’interface.
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Chapter 1

Introduction

1.1 Fractured reservoirs
Naturally Fractured Reservoirs (NFR) make up a significant part of the world’s reserves and
production of petroleum and gas (Firoozabadi, 2000; Bourbiaux, 2010). While practically
all hydrocarbon reservoirs contain natural fractures, the concept of NFR is more restrictive,
since it connotes that the fractures have or are expected to have a considerable effect on
the performance during oil production (Nelson, 2001). A sufficiently dense and connected
network of fractures affects important aspects of oil recovery planning such as the production
rates, water breakthrough and the stability of wells.

The term fracture used here refers to any planar discontinuity that occurs in rocks,
except for seismic faults, which have lengths above hundreds of meters and are not in the
scope of this research. In opposition to the geological classifications, which adopt different
terminologies for these discontinuities according to their originating events and stresses, they
are regarded here from an engineering perspective. Thus, they are differentiated by their
geometrical features and hydromechanical properties, which make them either barriers or
preferential paths for fluid flow and planes of weakness for geomechanical analyses.

Reservoir fractures can be identified and characterized by a variety of methods, such as
seismic techniques, well logging, core samples, borehole testing, analysis of outcrops and
aerial photographs. The seismic techniques have a limited resolution and are only able to
capture large discontinuities, while from core samples it may be possible to identify small
cracks. The so-called sub-seismic fractures, whose lengths range from meters to tenths of
meters, are more problematic since they are not identifiable by seismic methods and well
data provide, at most, limited information on them. They are known, however, to have
the potential of being highly influential on reservoirs fluid flow (Matthäi et al., 2007; Lohr
et al., 2008). Additional information on this kind of fracture may be obtained with geological
investigations of outcrop analogues, which are increasingly popular. It is impossible, however,
to remove uncertainties from the characterization of subsurface fracture networks, because
of the lack of data outside the measurement locations, the difficulty in obtaining measures in
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three dimensions and doubts on how well the analogues represent the reservoir conditions, for
example. Thus, geological modeling relies largely on extrapolation and subjective decisions
(Berkowitz, 2002). Nonetheless, with the aid of geostatistical methods, it is possible to build
detailed geological models, which can be calibrated during the reservoirs life.

After a good geological model is available, the predictability of the performance during
recovery depends on the proper modeling and simulation of the reservoir. The impact of
fractures on the global performance of the reservoir is related to a variety of physical phe-
nomena, such as capillarity (Firoozabadi, 2000), anisotropy, localized flow, compaction and
shear failure. Thus, the early identification of fractures and their consideration in the recov-
ery planning can significantly improve the production of fluids. Failing in recognizing the
possible influence of these discontinuities has led to unexpected early water breakthroughs
and causes a reported variability of oil recovery in NFRs (Bourbiaux, 2010).

The scientific, technological and economical importance of reservoir simulations led to
great advancements in the field of flow modeling, including the development of techniques
to scale up the effects of heterogeneities. Despite of the limitations of the geological models,
there is a general recognition that they have a much finer resolution than the conventional
simulators; in fact, their sizes commonly differ by orders of magnitudes (Christie, 1996;
Aarnes, 2004).

Usually, it is only feasible to explicitly represent the existing fractures in numerical models
of reservoirs when the fractures are large faults or when the domain of simulation is restricted
to near-well regions. Otherwise, the computational cost of representing smaller fractures in
large-scale simulations tends to be prohibitive.

Upscaling techniques emerged as the most common way of dealing with the problem of
considering small heterogenities in reservoir simulation. They are part of the broader area
of homogenization methods, which scale up properties from a fine scale to a coarser scale
that is treated as homogeneous. This thesis focuses on a different class of homogenization:
the multiscale methods. Although multiscale approaches have not been extensively explored
for the simulation of reservoirs, they present characteristics that overcome some robustness
issues of upscaling and are more adequate to represent phenomena that are hard to describe
with equivalent constitutive laws.

1.2 Upscaling and multiscale methods
Homogenization methods are used to model heterogeneous media as simpler equivalent ho-
mogeneous media under the assumption that the problem at the large-scale domain happens
on a separate, much bigger scale than the problem at the level of the microstructure. There
are two scales of interest: the macroscale, which is the coarser scale and the microscale,
which is the scale at which the small heterogeneities are described in detail. We present
here two classes of homogenization techniques: upscaling and multiscale methods. In both
cases the homogenization is performed over a domain that must be representative of the
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microscale, which is usually called the Representative Elementary Volume (REV).

1.2.1 Upscaling
Upscaling applied to fractured reservoirs has received distinct early contributions that are
still very popular, such as the sugar cube model (Figure 1.1) by Warren and Root (1963) and
the tensor method to evaluate the permeability of discontinuous media by Oda (1985). Al-
though the term upscaling may refer to a variety of different techniques, it will be used here
as a synonym of calculating homogenized or equivalent properties to be used in large-scale
simulations. The equivalent properties are computed with analytical methods or with nu-
merical experiments on samples where the heterogeneities are explicitly represented. Then,
the large scale problem is solved by considering that the domain is homogeneous and its ma-
terials respect the previously computed equivalent constitutive laws. In reservoir simulation,
most of the efforts are directed to deriving an equivalent permeability, but other fields of
study have advanced a lot in upscaling complex mechanical behavior of fractured domains.

Figure 1.1: The sugar cube geometry assumed in the dual-porosity model by Warren and
Root (1963).

Some researches report the limitations of the traditional upscaling methods. For instance,
Salimi and Bruining (2010) compared the sugar cube model and the equivalent permeability
approach with a more rigorous solution that uses the theory of periodic homogenization.
They showed that the accuracy of both methods depends on the time required to imbibe the
porous matrix with water and the travel time of water in the fracture system. Matthäi et al.
(2007) computed two-phase flow in different fractured media to observe flow patterns and
to upscale relative permeability; the upscaled relative permeabilities were radically different
from those predicted by van Genuchten (Van Genuchten, 1980) or Brooks-Corey (Brooks
and A.T., 1966) functions, which means that a new calibrated equation, dependent on the
fractures geometry, would have to be used in the large-scale simulations. Chen et al. (2003)
observed that traditional upscaling is not very accurate for highly heterogeneous porous
media where the fluids follow tortuous paths and flow is channelized. Although they studied
heterogeneities in porosity, fractures produce the same effects of channelized flow, since they
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form preferential paths for the fluids. Zareidarmyian et al. (2021) compared the fine-scale and
the upscaled solution of water injection in an elastoplastic fractured domain; they concluded
that upscaling may not be capable of accurately representing the preferential direction of
yielding and the pressure fields.

The problems of upscaling can be resumed to lack of robustness. Once an equivalent
property is obtained, the medium is treated as homogeneous. Thus, the information of any
physical interaction that would occur at the scale of the heterogeneities during flow is lost.
Multiscale methods can overcome this limitation, at the cost of additional computational
efforts.

1.2.2 Multiscale
In multiscale methods, both the macroscale and the microscale are solved numerically for
every step of the simulation and are coupled by information that they send to one another.
Figure 1.2 illustrates a multiscale method called multi-level Finite Element Method (FEM)
or finite element squared (FE2). In the FE2, each integration point at the macroscale corre-
sponds to a microscale domain (i.e. a REV), and both are solved with the FEM.

In the multi-level FEM, the strains and hydraulic gradients at the macroscale are imposed
to the REV in the form of essential boundary conditions that are calculated using a local-
ization rule. As for the stresses and fluxes at the integration points of the macroscale, they
are obtained from the averaging of the microscale after the resolution of a boundary-value
problem at the REV scale.

In one-scale simulations, stresses and velocities are defined based on a constitutive law.
Since in multiscale methods these quantities are computed from the simulation of the mi-
croscale, they do not require the definition of any constitutive law for the large-scale. The
constitutive behavior arises naturally from the simulation at the microscale. Also, since the
boundary conditions of the REV problem arise from the macroscale, it is guaranteed that
they are representative of the large-scale problem. And as the microscale is solved at every
step of the problem, the physical phenomena at the level of the heterogeneities are updated
and continuously modify the large scale behavior. For these reasons, multiscale methods are
more robust than upscaling techniques.

The so-called global upscaling techniques (e.g. Chen et al., 2003) also solve both scales
numerically and use the macroscale solution to define the boundary conditions at the mi-
croscale; for this trait, they can be referred to as multiscale (e.g. Aarnes, 2004). Applications
of global upscaling to reservoir simulation showed that the coupled numerical solution of mi-
cro and macroscale yields more accurate results for highly heterogeneous porous media (Chen
et al., 2003) and fractured media (Li et al., 2015). Thus, it is expected that multiscale sim-
ulations also return good results, with the advantage of not requiring assumptions on the
constitutive behavior of the macroscale.
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Figure 1.2: Schematic representation of the FE2 method. The Boundary Value Problems
(BVP) at the macro and microscale are coupled by homogenization and localization rules.

1.3 Hydromechanical coupling in fractured reservoirs
Many notable experimental works have showed that permeability, stiffness and strength of
joints are strongly coupled to the stress-strain conditions of the rock mass (e.g Witherspoon
et al., 1980; Barton et al., 1985; Teufel et al., 1993). Because of this coupling, the fracture
properties change with the stress state, and so they are expected to have a dynamic impact
on the overall behavior of geological structures submitted to time-dependent field variations.
The terms “dynamic behavior” or “dynamic impact” will be used hereinafter to refer to this
temporal change of the constitutive properties of the fractures and should not be confused
with inertial effects.

There are several implications of this dynamic behavior to the performance of sufficiently
fractured reservoirs. For example, the shear mobilization induced by primary or secondary
recovery may compromise well stability and influence the fracture propagation behavior
(Rahman and Rahman, 2013).

Another effect of major importance is the evolution of the fractures permeability during
the reservoir’s productive life. There are at least three important mechanisms related to
this phenomenon. The first one is the loss of permeability induced by depletion, by which
the fractures close progressively and become less permeable as pore pressure decreases. In
reservoirs where the fractures are much more conductive then the intact rock, they are the
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main source of permeability in the early stages of production, so this closure can have a
significant impact on productivity. A second and opposite impact is the elastic opening of
fractures when submitted to pore pressure increases that arise, for example, from stimulation
methods such as the injection of water.

Thirdly, some reservoirs can have their permeability enhanced by shear dilation, which
is the fracture opening induced by shear yielding; in this case, the dilated apertures are
irreversible because the asperities of the fractures surfaces resist to their sliding back. The
geothermal and petroleum industries currently use this mechanism as a stimulation method
for reservoirs; by injecting at the proper pressure, it is possible to provoke the shear dilation of
the fractures without the need of proppants to keep them open, as is the case in conventional
hydraulic fracturing (Rahman et al., 2002). There are also reservoirs where depletion itself
is sufficient to induce differential stresses that will make the fractures slip and dilate (e.g
Teufel and Rhett, 1991).

Considering these impacts, the inclusion of coupled hydromechanics at the level of the
fractures is sometimes beneficial to the predictability of reservoir simulations and to the
efficiency of the recovery plans. This was firstly achieved by adding geomechanics to classical
dual-porosity (sugar-cube) models (e.g. Chen and Teufel, 1997; Bagheri and Settari, 2008),
and then to more complex fracture networks (e.g. de Sousa Junior et al., 2016).

Some researches focus on the comparison of the production forecasts when a dynamic,
i.e. coupled, and a static fracture permeability is considered. Bagheri and Settari (2008)
compared the dual-porosity model with static and dynamic permeabilities for depletion and
injection scenarios. They reported that during depletion the static permeability approach
significantly overestimates the production, while there is a considerable underestimation of
the flux rates during injection. Also, they showed that static permeabilities can not capture
the anisotropic pressure fields that surge when adopting different mechanical parameters
for the distinct fracture sets in the sugar-cube model. de Sousa Junior et al. (2016) made a
similar comparison for three case studies of a limestone reservoir that contains large fractures
represented with an Embedded Discrete Fracture Model (EDFM). Their simulations showed
that considering a geomechanics-sensitive permeability and a shear strength model for the
fractures can significantly alter the forecasts of water breakthrough and oil production.

The role of stress state on the dynamic behavior of the fractures in reservoirs has also
been investigated. It is well acknowledged that the reservoir’s permeability may be damaged
or enhanced depending on the initial stress conditions and the stress path followed during
production. This was demonstrated, for example, in the experiments conducted by Teufel
et al. (1993), for which the evolution of fracture permeability depended strongly on the
imposed ratio between horizontal and vertical stresses. Tao et al. (2011) captured these
effects in their numerical model, which is made of a combination of the Finite Differences
Method (FDM) and the displacement discontinuity method (DDM). Their methodology was
applied to a synthetic case, composed of two regular persistent and perpendicular sets of
fractures. They verified the sensitivity of the decline in production to the fractures stiffness,
as well as the effect of an anisotropic in-situ stress, which induced shear failure, and thus an
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increase in permeability at some of the fractures.
Coupled hydromechanical simulations have also been used to evaluate production strate-

gies in fractured reservoirs. For instance, Gan and Elsworth (2016) studied different plans of
stimulation of a heavily fractured geothermal reservoir; they concluded that the best strat-
egy is to place the injector and producer wells aligned with the major principal stresses, but
the orientation of the fractures also impacts significantly the efficiency of the stimulation.
Bertrand et al. (2020) used the finite element squared method to simulate a fractured coal
reservoir. At the level of the microscale, they model the adsorption-induced shrinkage and
swelling of coal and the consequent changes of apertures in the fractures; as a result, fracture
permeability varies during depletion, and so does the reservoir’s productivity. Their REV is
made of regular and perpendicular sets of elastic fractures.

Most of these studies that apply coupled hydromechanics to fractured reservoirs either use
simple idealized geometries, usually consisting of perpendicular and regular sets of fractures
like in a sugar cube pattern, or represent the fractures explicitly, but are dedicated to large
faults of tenths to hundreds of meters. The integration of smaller fractures that have tenths of
centimeters to meters, with consideration of their real geometry, has not been much explored.
These fractures are usually treated with an equivalent medium (upscaling) approach, which
disregards the evolution of their properties. This simplification is questionable, because
although these fractures are small, they tend to be much more frequent than the larger
ones; so they do not necessarily have a less considerable influence on the reservoir’s overall
behavior.

Some upscaling techniques try to capture the dynamic nature of the properties by defining
the equivalent stiffness and permeability of fractured media as a function of meaningful state
variables such as the mean effective stresses (e.g Daley et al., 2006). However, experimental
and numerical studies show that the evolution of the fracture properties is a result of the
interplay between fracture orientation, mean effective stress and deviatoric stresses. So,
even these more elaborate equivalent properties functions are unlikely to well capture the
complexity of this behavior.

1.4 Description of the problem
Contrary to classical upscaling techniques, multiscale methods can represent the dynamic
hydro-mechanical behavior of the fracture networks while maintaining a high fidelity to the
complexity of their geometries.

For this reason, the main problem that this work explores is: how to apply a multiscale
method like the finite element squared in the simulation of reservoirs containing complex
networks of subseismic fractures. We should approach this problem by making the procedures
of the multiscale modeling as general as possible and taking in consideration well-established
practices in reservoir simulation.

This thesis works on three specific problems that need to be addressed to establish gen-
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eral protocols and methods for the multiscale modeling of reservoirs that have small-scale
fractures. They are:

• Numerical homogenization with the finite element squared usually employs periodic
boundary conditions to homogenize the REV. When the mesh of the domain does
not have symmetrical nodes at the boundaries, as is often the case when fractures are
present, the imposition of this type of periodic boundary condition is not trivial and
requires sophisticated methods. This problem is explored in Chapter 4.

• The size of the REV of stochastic random media has been extensively studied and
conclusions were drawn for individual fracture networks, but there is a lack of mathe-
matically rigorous rules that are general, i.e., could be applied to any fracture network.
This problem is explored in Chapter 5.

• The original finite element squared uses a classical Galerkin formulation. As such, it is
not locally conservative, i.e. it does not conserve mass at the level of the finite elements.
This is a problem in reservoir simulation, because the lack of mass conservation leads
to errors when dealing with saturation fronts and other phenomena that are typical of
the production in reservoirs. For this reason, reservoir simulators usually adopt Finite
Volume (FV) methods or adaptations of the FEM that makes it locally conservative.
This problem is explored in Chapter 6.

Apart from these issues of theoretical and scientific nature, there is another issue con-
cerning the computational tool. We used in this work the version 3.2 of DuMuX (Koch
et al., 2020), an open-source software for solving flow and elastic mechanical problems with
FV methods. The original code already supports flow in fractured media and elastic prob-
lems in non-fractured domains, but it requires extensions and modifications to be used in
the hydro-mechanical multiscale modeling of elastoplastic fractured domains. This problem
is explored in Chapter 3.

1.5 Objectives
The general objective of this thesis is to develop methods and tools for the multiscale mod-
eling of reservoirs that contain sub-seismic fracture networks.

Considering the specific problems described above, the specific objectives of this thesis
are:

• Adapt the open-source software DuMuX 3.2 to support hydro-mechanical coupled prob-
lems on elastic and elastoplatic fractured domains where the fractures are represented
with lower-dimensional interface elements.

• Define general protocols for the definition of the size of the fractured REV and for the
hydromechanical coupling in the simulation of the REV.
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• Define a methodology to impose periodic boundary conditions on periodic and non-
periodic meshes with interface elements.

• Develop a locally conservative multiscale method to be applied in reservoir simulation
by adapting the finite element squared.

• Apply a multiscale method to simulate the production of a reservoir containing a
complex network of subseismic fractures and observe the influence of the evolution of
the fractures permeability on productivity.

1.6 Outline
This thesis is structured in 8 chapters.

Chapter 2 is dedicated to the boundary value problem of the REV. It presents a theo-
retical review on homogenization applied to hydromechanical problems, some of the current
research on the homogenization of fractured rocks and the numerical methods employed to
model the REV.

Chapter 3 presents the open-source code used to perform the simulations in this thesis,
the extensions made to the code and their validation.

Chapter 4 presents the methods used to impose periodic boundary conditions on finite
element meshes containing interface elements.

Chapter 5 proposes a statistics-based methodology to define the geometrical, hydraulic
and mechanical REV of random fractured media.

Chapter 6 presents a method that was entitled multi-level Box, which is an adaption of
the finite element squared, and validates its implementation.

Chapter 7 presents a synthetic case study where the tools and methods developed in the
previous chapters were applied to model the production of a fractured reservoir.

Finally, Chapter 8 contains the conclusions and perspectives of this work.
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Chapter 2

REV of fractured rocks: modeling
and homogenization

In Section 1.2 the upscaling and multiscale methods were presented as techniques to transfer
information between two scales: the microscale and the macroscale. The homogenization
of quantities at the microscale was vaguely said to be obtained from the simulation of a
Representative Elementary Volume (REV), a domain that must follow a few requirements
for the macroscale to be considered homogeneous.

This chapter is dedicated to the boundary value problem of the REV and the theoretical
aspects that it implicates. Firstly, Sections 2.1 and 2.2 present the definition of REV and
some fundamentals of homogenization applied to hydro-mechanical problems. Then, Section
2.3 reviews the current research on the topic of modeling and numerical homogenization of
fractured REVs. Finally, Section 2.4 presents the equations of the problem and the numerical
and computational methods adopted to model the microscale.

2.1 What is a REV ?
The numerical testing of heterogeneous materials is used to study the impact of the mi-
crostructure on their overall behaviour and to homogenize properties for large-scale simula-
tions. The selected equivalent properties must have been obtained from an adequate sample
of the material, that is, a REV.

The REV is usually defined as a domain that is large enough to be statistically rep-
resentative of the material; thus, it must contain a sampling of all of the existing types
of heterogeneity (Kanit et al., 2003). Additionally, when the REV is used to obtain an
equivalent constitutive behavior, this volume should also be large enough for the equivalent
properties or the averaged response not to suffer size effects.

The term averaged response refers to the volume average ⟨.⟩ over a volume V :

⟨·⟩ = 1

V

∫
V

·dV (2.1)
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In the case of the so called periodic media, the concept of REV is replaced by the concept
of unit cell. Periodic media contain a pattern of heterogeneities that repeats itself within a
distance interval called the period. In periodic media, the most appropriate sample is the
unit cell, which is the smallest domain to contain the repeating pattern of heterogeneities
that characterizes the microstrucure. The sugar cube model in Figure 1.1, for example, is a
periodic structure. Figure 2.1 shows the definition of a proper unit cell for a sugar-cube like
bi-dimensional structure.

Figure 2.1: The domain delimited by the dashed red line shows a proper unit cell for a
periodic strucute like the sugar cube model, where the porous matrix is intercepted by
reguarly spaced and perpendicular sets of fractures.

In the case of non-periodic media, it is a standard approach to test increasing sample
sizes and to define the minimum dimensions of the REV as those for which the equivalent
properties seem to stabilize. The REV size for the geometrical and constitutive properties
are not necessarily the same, as will be discussed in the following sections and in Chapter
5. The REV size depends on the physical phenomena at play, so it tends to be different for
different constitutive properties.

A REV is considered adequate for homogenization if separation of scales exists, that
is, if the dimensions of the REV are substantially smaller than the characteristic length
of the macroscale problem. This guarantees that the principles of continuum mechanics
are respected and the homogenized properties can be used to model the macroscale. The
separation of scales solves what Hudson and Harrison (2000) call a paradox in using REVs
to measure stress or any other quantity that is a property of a point, i.e. a sample with
zero volume: if this separation exists, the REV can be treated as a point in the large scale
domain.

The mathematical form of the principle of separation of scales is expressed through the
definition of the scale factor ε:
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ε =
lc
Lc

≪ 1 (2.2)

The length lc is the characteristic length of the REV and Lc is the macroscopic length,
which considers two characteristics: one purely geometrical, related to the spatial dimen-
sions of the macroscopic domain, and one related to the characteristic length of the studied
phenomenon. Usually, this latter is defined in terms of the macroscopic gradient ∂⟨Ψ⟩

∂xi
of the

homogenized variable ⟨Ψ⟩ that describes the phenomenon:

Lc =
⟨Ψ⟩
∂⟨Ψ⟩
∂xi

(2.3)

where xi is a directional component of the coordinate system x at the microscale. Equa-
tion 2.2 then becomes:

ε =
lc
Lc

=
lc

∂⟨Ψ⟩
∂Y

⟨Ψ⟩
≪ 1 (2.4)

The basic principle of the homogenization method described in Figure 1.2 is that quan-
tities such as strains and pressure gradients at a point of the macroscale can be imposed to
the REV to obtain an averaged response in terms of stresses and fluxes. The term lc

∂⟨Ψ⟩
∂Y

in
(2.4) gives an estimation of the variation of ⟨Ψ⟩ inside the REV. If the imposed macroscopic
quantities vary considerably at the microscale, it is hard to set a proper value to be imposed
to the REV and to obtain a reliable averaged response.

For random materials, it follows from (2.4) that the volume average of a property Ψ must
satisfy the stationarity condition (Auriault et al., 2009):∫

V1

ΨdV =

∫
V2

ΨdV (2.5)

where V1 and V2 are two volumes of characteristic dimension lc, taken from the same large-
scale domain and for which the distance between them is of the order of lc. In other words, the
stationarity condition imposes the translational invariance of ⟨Ψ⟩. Note that the fulfillment
of this condition depends both on the size lc, which must be large enough for the averaged
response of both REVs to be approximately the same, and on the gradient ∂⟨Ψ⟩

∂Y
, which can

not be so large that ⟨Ψ⟩ changes significantly with a translation of the order of lc.
The larger the separation of scales is, the better are the results obtained from homoge-

nization; although there is no exact way of estimating a limit value for the scale factor ε, it
is generally considered that homogenization is effective for ε < 0.1 (Auriault et al., 2009).
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2.2 Homogenization of hydro-mechanical properties
This section presents the principles behind the homogenization applied to hydro-mechanical
problems. In what follows, the subscripts M and m will refer to the macroscale and the
microscale, respectively. The position y locates a point on the macroscale’s coordinate
system, and the position x locates a point on the microscale’s coordinate system.

For the problem at the REV to be consistent with the problem at the macroscale, ener-
getic constraints need to be enforced. For the mechanical problem, the classic form of this
constraint is the Hill-Mandel principle, which states:

σM(y, t) : ε̇M (y, t) = ⟨σm(x, t) : ε̇m(x, t)⟩ (2.6)

where σ and ε are the stress and strain tensors, respectively. Equation (2.6) imposes the
energy rate at the macroscale to be equal to the volume average of the microscale’s energy
rate.

The stress tensor at the macroscale σ is the volume average of the stresses at the mi-
croscale:

σM(y, t) = ⟨σm(x, t)⟩ (2.7)

The same applies to the deformation tensor FM , defined here in terms of the displace-
ments at the microscale, um:

FM(y, t) = I +
1

V

∫
V

∇m ⊗ um(x, t)dV (2.8)

where I is the identity tensor and ∇m is the gradient operator vector for the microscale.
The macroscale strain tensor εM is defined as:

εM(y, t) =
1

2
(FM

T + FM)− I (2.9)

The following relationship forms the system that yields the upscaled stress-strain consti-
tutive matrix, CM :

σM(y, t) = CM(y, t) : εM(y, t) (2.10)

For fluid flow problems, the energetic bridge between microscale and macroscale is usually
established by the consistency of the dissipation energy i.e., the specific energy dissipated
by viscous friction, proposed by Indelman and Dagan (1993). This latter considers the flux
at the REV to be stationary. Khoei and Hajiabadi (2018) proposed the following extension
to consider the possibility of non-stationary flow at the microscale:

−(GMα(y, t))
T .vMα(y, t) + pMαΘ̇Mα = ⟨−(∇mpmα(x, t))

T . vmα(x, t) + pmαΘ̇mα⟩ (2.11)
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where the subscript α refers to a fluid phase, p is fluid pressure, G is the macroscale pressure
gradient vector, v is the fluid’s velocity or specific flux and Θ is the fluid’s volumetric content.

The specific flux vMα of the phase α at the macroscale is:

vαM(y, t) = ⟨vαm(x, t)− xΘ̇mα⟩ (2.12)

and the pressure gradient Gα is defined as a function of the pressure pα at the microscale:

GMα(y, t) = ⟨∇mpmα(x, t)⟩ (2.13)

In transient flow problems, the mass flux per unit volume is given by the storage term Υ;
at the macroscale, it is computed from the fields of fluid density ρα and volumetric content
Θα at the microscale:

ΥMα(y, t) = ⟨Υmα(x, t)⟩ = ⟨ρmα(x, t)Θmα(x, t)⟩ (2.14)

Assuming Darcian flow and ignoring gravitational effects, the following relationship can
be established between the homogenized properties and the upscaled permeability tensor
KM :

vαM(y, t) = KMα(y, t) ·GMα(y, t) (2.15)

The homogenized variables presented above are outcomes of the solution of the equilib-
rium of forces and mass conservation equations (presented in Item 2.4.3) at the REV. The
resulting pressures pm and displacements um at the REV can be decomposed in two parts:
the linear components ul and pl related to their gradient at the corresponding point y of the
macroscale, and the fluctuation components p̃ and ũ, which capture their spatial variations
due to the existence of small-scale heterogeneities. Hence, the pressures and displacements
at the microscale can be defined as:

um(x, t) = (FM(y, t)− I) . X + ũ(x, t) = ul(x, t) + ũ(x, t) (2.16)

pmα(x, t) = GMα(y, t) . X + p̃α(x, t) = pl(x, t) + p̃α(x, t) (2.17)

where X denotes the position of point x in reference to an arbitrary reference point of the
REV. Considering (2.8) and (2.13), it can be inferred from (2.16) and (2.17) that the integral
of the fluctuation components over the contour of the REV is null:∫

∂V

ũ(x, t) ⊗ n d∂V = 0 (2.18)

∫
∂V

p̃α(x, t) . n d∂V = 0 (2.19)
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where n is the outward unit outer vector of boundary ∂V . Along with the energy consistency
requirements in (2.6) and (2.11), equations (2.18) and (2.19) constrain the microscale problem
to be used in homogenization-based methods.

2.2.1 Numerical homogenization: boundary conditions
Dormieux et al. (2006) presents analytical solutions for the homogenization of porous ma-
terials with simple geometries. For complex microstructure geometries or highly non-linear
behaviour, Equations 2.10 and 2.15 can be solved numerically by defining a boundary value
problem at the REV scale. The adopted boundary conditions usually fall on one of the three
main categories described below:

(a) Linear Dirichlet boundary conditions

The homogenization of properties with Dirichlet boundary conditions consists in imposing
displacements and pressures at the boundaries for mechanical and flow problems, respec-
tively. To upscale the equivalent constitutive tensors, a set of linearly independent deforma-
tions or pressure gradients must be imposed. The numerical solution of the REV for each
boundary value problem yields the averaged stress σM or the averaged specific flux, vM .

The most common type of Dirichlet boundary conditions used in the upscaling of perme-
ability is the linear pressure configuration proposed by Long et al. (1982), which is illustrated
in Figure 2.2 for 2D problems. It consists in applying, for each pair of opposite boundaries
at a time, an injection pressure at one side and zero pressure at the other; on the other pairs
of opposite boundaries, pressure is an equal linear function of the position, so there is no
pressure gradient in the directions normal to them. The pressures p at the boundaries of the
REV are a function of the imposed constant pressure gradient vector G:

p = G · x (2.20)

If the injection pressure Pinj is applied to a side that is normal to the direction i and the
sides parallel to i have length Li: Gj = Pinj/Li if j = i and Gj = 0 if j ̸= i. From Equation
2.20, it follows that the macroscopic pressure gradient GMα (Equation 2.13) is equal to the
imposed gradient G:

GMα = G (2.21)

A similar configuration of linear displacements can be used to impose a constant dis-
placement gradient tensor F , as illustrated in Figure 2.3, so the displacements u at the
boundaries are defined by:

u = E · x (2.22)
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Figure 2.2: Linear pressure boundary conditions for upscaling in flow problems: imposition
of pressure gradient with respect to directions x (left) and y (right) independently.

where Eij = ∂ui/∂xj. It is thus straightforward to conclude that:

εM =
1

2
(E +E

T
) (2.23)

The displacements in Figure 2.3 are applied in such a way that, at each step of the
upscaling procedure, only one of the components εxx, εyy and γxy of the strain vector assumes
a non-zero value. This allows all the components of the equivalent stiffness tensor to be easily
retrieved.

Figure 2.3: Linear displacement boundary conditions for upscaling in mechanical problems:
imposition of pure compressive strains εxx (a) and εyy (b) and of pure shear strain γxy.
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(b) Neumann boundary conditions

The homogenization of hydro-mechanical properties is also feasible using Neumann boundary
conditions, which means the imposition of stresses and flux at the boundaries.

A common set of flux boundary conditions used for the homogenization of hydraulic
properties are the so-called no-flow boundary conditions (Figure 2.4), on which a specific
flux Qinj is applied to one boundary, while a null flux is imposed to the others, except for
its opposite side. As a consequence, the homogenized macroscale velocity vM is:

vM = Qinj (2.24)

Figure 2.4: No flow boundary conditions for upscaling in flow problems.

Figure 2.5 illustrates commonly adopted sets of linearly independent stressesΣ, for which
the homogenized stress tensor σM is:

σM = Σ (2.25)

The configuration in Figure 2.5 allows the assessment of the influence of each stress
component on the homogenized deformation, and thus the equivalent compliance tensor can
be easily obtained.

(c) Periodic boundary conditions

Consider any two symmetrical points on opposite sides of the REV, like the ones illus-
trated in Figure 2.6. Periodic boundary conditions are imposed by enforcing the fluctuation
of the primary variables to be equal at these points:

p̃(x+) = p̃(x−) (2.26)

ũ(x+) = ũ(x−) (2.27)
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Figure 2.5: Stress boundary conditions for upscaling in mechanical problems.

Figure 2.6: Examples of pairs of symmetric points x− and x+ that are located at opposite
boundaries of the REV; such pairs are mapped to define the periodic boundary conditions.

Considering an imposed macroscopic pressure gradient G and an imposed macroscopic
displacement gradient tensor E, it can be concluded from (2.26) and (2.27) that:

p(x+) = p(x−) +G . (x+ − x−) (2.28)

u(x+) = u(x−) +E . (x+ − x−) (2.29)

As a consequence of the imposition of periodic pressures and displacements, the resulting
flow rates Q and tractions T are anti-periodic, that is:

Q(x+) = −Q(x−) (2.30)

T (x+) = −T (x−) (2.31)

Equations (2.28), (2.29), (2.30) and (2.31) provide additional relationships that make the
solution of the microscale problem unique. Chapter 4 presents in detail the solution of the
REV using periodic boundary conditions and their imposition when non-symmetric mesh
geometries and interface elements are used. As the directly imposed variables are pressure
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gradients and strains, Equations (2.21) and (2.23) apply to periodic boundary conditions.

Appendix A presents a review on how to retrieve the equivalent elastic tensors using the
boundary conditions mentioned above for plane-strain conditions.

These three categories of boundary conditions are widely used and are known to respect
the constraints in Equations (2.6) and (2.11) and (2.18)-(2.19), as was demonstrated, for
example, by Liu and Reina (2016) for mechanics and by Pouya and Fouché (2009) for fluid
percolation.

It was shown that depending on the chosen boundary conditions, either the homogenized
gradients of the essential primary variables (Equations 2.21 and 2.23) or the homogenized
stresses/flux (Equations 2.24 and 2.25) are directly obtained. Their associated homogenized
variables depend on the solution of the boundary-value problem. If the divergence theorem
is applied to Equations 2.7 – 2.13, the volumetric averages of the properties are more easily
taken by accessing the solutions at the boundaries only. For Equations 2.8 and 2.13, the
divergence theorem yields:∫

V

∇am(x)dv =

∫
∂V

am(x) · n(x) d∂V (2.32)

where the variable a is a general representation of fluid pressure or of a directional component
of the displacement vector. For Equations 2.7 and 2.12:∫

V

bm(x)dv =

∫
∂V

(bm(x) · n(x))x d∂V (2.33)

where b is a general representation of boundary forces and specific flux. Equation 2.33 was
proposed by Pouya and Fouché (2009) as a rigorous form of calculating the homogenized
unit flux, in opposition to the initial formulation by Long et al. (1982), who calculated the
flux only at one boundary based on erroneous premises. It can be regarded as a general form
of the multi-boundary upscaling later proposed by Chen et al. (2015), since the former is
valid for any domain shape and the latter assumes a rectangular REV.

It is well acknowledged that the upscaled properties depend on the chosen boundary
conditions. As was demonstrated by Chalon et al. (2004), Pouya and Fouché (2009) and
others, linear Dirichlet boundary conditions provide an upper bound for the permeability
and stiffness tensors, while Neumann boundary conditions give a lower bound for these
properties and periodic boundary conditions provide intermediate values. These differences
are explored in Chapter 4.

As the REV size increases, the differences between the various categories of boundary
value problems tend to zero. The REV size may be defined as the size for which this difference
becomes insignificant; but it is more common to select one type of boundary conditions that
returns conservative estimations. The vast majority of the works on the upscaling of the
mechanical constitutive tensor of fractured rocks uses stress boundary conditions. As for flow
problems, the adequate choice between a lower bound and an upper bound of permeability
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depends on whether high flux rates are alarming or desirable.

2.3 State-of-the-art review
This section reviews some relevant results, concepts, discussions and techniques in the liter-
ature on the homogenization of fractured rocks and on the modeling and definition of their
REV.

The first step to define a proper REV is to guarantee that the volume is statistically ho-
mogeneous with respect to the geometrical patterns of the discontinuities. This is a challenge
that starts on the field, since the geological methods to characterize fracture sets always carry
some uncertainty. The selected geometrical REV can then be used as a reference volume to
study scale effects on the mechanical and hydraulic properties. The homogenization of such
properties has been approached with empirical (e.g Hoek and Brown, 1997) and analytical
(e.g Duncan and Goodman, 1968; Oda, 1985) methods. Although these methods remain
relevant, upscaling with numerical experiments have been used more frequently for relying
on physically consistent models where the geometry and the properties of the fractures are
controllable. For that reason, they are the focus of this review.

2.3.1 Geometrical REV
The definition of a geometrical REV for fractured rocks requires a decision on which param-
eters will be used to quantify geometry. This is not a straightforward task, since fracture
networks can be a complex combination of sets that differ in their geological history and
in the statistical characterization of their various features, such as orientation, spacing and
size. Another important choice is the scale of study. Since rock masses contain disconti-
nuities whose size might range from micrometers to hundreds of meters or even kilometers,
the geometrical REV is surely different if the considered heterogeneities are micro-cracks or
sub-seismic faults, for example. Hence, due to the impossibility of considering all disconti-
nuities, the REV should be representative of those that are relevant to the selected scale. A
consequence of that for numerical modeling is that fractures that are bigger than the scale
of the REV are not accounted for in the homogenization and should be modeled explicitly
in the macroscale.

A variety of geometrical measurements has been used to determine the REV size of rock
masses, such as: average length (e.g. Oda, 1988), average spacing (e.g. Xia et al., 2016),
orientation (e.g. Zhang et al., 2011) and fracture intensity (e.g. Liu et al., 2018). Although
these quantities are frequently analyzed separately, they can be accounted for altogether in
the crack tensor proposed by Oda (1982).

The crack tensor provides an overall measure that considers the density, the size and
the orientation of all the fractures in the REV. Zhang and Einstein (2000) removed the
arbitrary non-dimensionalization of Oda’s formulation and proposed the following equation
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for the crack tensor:

Fij =
1

V

nf∑
k=1

S(k)ni
(k)nj

(k) (2.34)

where V is the volume of the rock mass, S(k) is the area of the kth discontinuity, and n
(k)
i

and n(k)
j are the components of the normal vector of the kth discontinuity with respect to the

directions i, j = x, y, z. In this formulation, the first invariant I1 of Fij has a clear physical
meaning because it corresponds to the fracture intensity:

I1 = Fxx + Fyy + Fzz =
1

V

nf∑
k=1

L(k) (2.35)

where L(k) is the length of the kth fracture. As for the second invariant, it is related to
the orientation of the fractures and can be used to evaluate the degree of anisotropy of the
system (Kulatilake et al., 1993).

An alternative formulation that takes aperture into account was derived by Oda (1985)
to calculate the permeability of fractured media based on the cubic law (Equation 2.68).
The components of this new tensor P are the components of F multiplied by the cube of
the aperture w:

Pij =
1

V

nf∑
k=1

(w(k))3S(k)ni
(k)nj

(k) (2.36)

The selection of a proper size for the geometrical REV guarantees that the relevant
heterogeneity types are well represented, but does not ensure that this volume is sufficient to
represent the average constitutive behavior. Although the pattern of the fractures influences
the behaviour of the rock masses, the geometrical REV may be different from the REVs for
the equivalent hydraulic and mechanical properties.

2.3.2 Mechanical REV and upscaling of mechanical properties
The presence of fractures in rock masses is linked to many relevant mechanical responses,
such as high compressibility, anisotropy and brittle failure. Their impact on the equivalent
constitutive behaviour can be assessed with numerical experiments modeled with continuous
or discrete methods.

Numerical homogenization has been used to assess the elastic parameters, strength and
failure modes of fractured media. Pouya and Ghoreychi (2001) developed a method to obtain
an oriented strength criterion for highly fractured rocks using FEM experiments. Min and
Jing (2003) and Yang et al. (2014) estimated the equivalent elastic compliance tensor and
its associated REV size using the Distinct Element Method (DEM) and FEM, respectively.
Wang et al. (2013) used a DEM model to reproduce the mechanical behavior observed on
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their compression tests on granite, including fracturing events measured via acoustic emis-
sions. Rasmussen et al. (2018) extended the Rigid Body Spring Network (RBSN) method
to reproduce brittle failure and obtained accurate estimations for the elastic and strength
properties of the Lac du Bonnet granite. JianPing et al. (2015) also represented the progres-
sive failure of fractured rocks by implementing a damage evolution model in a FEM code;
they studied the anisotropy and REV size for the equivalent strength. These studies adopt
methods that can be applied to the investigation of any rock mass, but their results are
specific to the tested rocks.

More general rules can be inferred from works that investigate the role of the geometry of
the fractures on the mechanical properties. Kulatilake and co-authors conducted numerical
and laboratory experiments on fractured samples and showed that the elastic parameters
(Kulatilake et al., 1993) and the compression strength (Kulatilake et al., 2001; Wu and
Kulatilake, 2012) are strongly related to the directional components Fii of the fracture tensor.
Other authors also showed that strength has a clear relationship with fracture intensity (e.g
Harthong et al., 2012).

The observed responses can only be considered to reproduce the average behaviour of a
material if the experiment is conducted on a representative sample. Thus, the size of the
mechanical REV is naturally a topic of interest and an important outcome of the homoge-
nization process. Some researchers used one generation of the fractures network to define the
REV as the volume for which the equivalent mechanical properties stabilize (e.g. JianPing
et al., 2015; Yang et al., 2014). In an attempt to account for the stochastic nature of the
fractures, other authors tested multiple samples to define the mechanical REV size based on
the coefficient of variation (COV) of the properties (e.g. Min and Jing, 2003; Esmaieli et al.,
2010; Farahmand et al., 2018). Using a large number of simulations, Loyola et al. (2021)
proposed a general methodology to define the REV size based on the statistical theory of
samples. This methodology is detailed in Chapter 5.

In order to create general rules that avoid numerical simulations, there were also attempts
to define the mechanical REV size as a function of geometrical features such as spacing (e.g.
Chalhoub and Pouya, 2008) and fracture length (Ni et al., 2017). The existing comparisons
between the mechanical and the geometrical REVs could indicate whether the latter can be
consistently used as a close, or at least conservative, estimation of the former. This question
remains unclear since some authors concluded that the geometrical REV is larger (Loyola
et al., 2021), while others concluded the opposite (e.g. Esmaieli et al., 2010; Ni et al., 2017).

2.3.3 Hydraulic REV and upscaling of permeability
Fractures can alter the seepage in porous media by acting either as conductive preferential
paths or by blocking the passage of fluids, if they contain an impermeable material. Since a
basic concern of any percolation problem is to make good estimations of the flow rates, there
is a rich literature on the calculation of equivalent permeabilities for heterogeneous rocks.
Shahbazi et al. (2020) present a comprehensive review of the existing empirical, analytical
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and numerical methods to assess the permeability of fractured media. The numerical tech-
niques consist in solving flow on discrete fracture models and are generally called flow-based
upscaling. An important distinction is made with respect to the imposed boundary condi-
tions; these can be local, when arbitrary boundary conditions are assumed, or global, when
the boundary conditions of the REV are taken from the solution of the large-scale problem.

The upscaled intrinsic permeability of heterogeneous media has been assessed using linear
pressure (e.g. Min et al., 2004a), constant flux (e.g. Matthäi et al., 2007) and periodic
boundary conditions (e.g. Durlofsky, 1991). Since the calculated permeability depends on
the chosen boundary conditions, global upscaling techniques (e.g Chen et al., 2003) were
developed to guarantee that the boundary value problem at the REV scale represents the
conditions in the large-scale simulation.

For multiphase flow, it is often possible to build proper large-scale models with only the
upscaled intrinsic permeability (Durlofsky, 2005). Sometimes, however, it is necessary to
upscale multiphase parameters like relative permeability and capillary pressure. Multiphase
upscaling can be realized using steady-state or dynamic techniques. In the former, time
derivatives are ignored and boundary value problems are solved for different constant values
of capillary pressure or fractional flow to obtain the equivalent relative permeability as a
function of the averaged saturation (Christie, 2001). In contrast, dynamic techniques do not
work with the assumption of capillary or gravity equilibrium (Barker and Dupouy, 1999);
they require transient solutions to compute relative permeability based on the saturation
changes over time.

Flow-based upscaling has been used not only to transfer information for large scale sim-
ulations, but also to investigate how the geometry of the fractures affects permeability. The
idea of defining permeability as a function of the crack tensor was introduced by Oda (1985)
with an analytical approach. Based on that, Panda and Kulatilake (1999) used numerical
experiments to show that there is a strong relationship between directional permeability and
the crack tensor for connected joints; this relation was shown to be a linear function for blocks
containing mainly persistent discontinuities and a power function for blocks containing mi-
nor discontinuities. Kulatilake and Panda (2000) performed more tests on blocks containing
non-persistent discontinuities to confirm this relationship and showed that, when rotating
the test, the directional variations of the permeability and the fracture tensor components
are related.

As the permeability of a fracture depends strongly on its aperture, recent studies assessed
the effects of aperture and its spacial variability on the upscaled permeability of fractured
rock masses. De Dreuzy et al. (2012) observed a reduction of this permeability when the
heterogeneity of the aperture is considered, but concluded that at sufficiently large scales
the fractured medium can be reasonably described by a proper constant aperture. Lei et al.
(2014) considered stress-dependent apertures and observed significant discrepancies with
models where the variability of aperture is ignored; and Bisdom et al. (2016) considered the
variability of aperture within a single fracture and concluded that a unique averaged aperture
can provide a similar upscaled permeability when most fractures contribute to flow.
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Geometry does not whatsoever control flow in fractured media alone. In fact, geomet-
rical aspects should ideally be analyzed within the geomechanical context, since the acting
stresses may dictate the fluid paths and the evolution of permeability, specially for sets
of non-persistent fractures (Lei et al., 2017). For example, Bisdom et al. (2016) showed
that, if the fractures are ideally oriented with respect to the major principal stresses, up-
scaled permeability can be higher than that of blocks containing higher fracture density and
connectivity, but less favorable orientations. Massart and Selvadurai (2012) assessed the
permeability evolution in quasi-brittle materials under shear; cohesive interfaces were em-
ployed at the level of the REV to simulate the evolution of damage, which increases the local
permeability. They observed that the damage is more important on fractures that are par-
allel to the direction of the deviatoric loading and assessed the influence of the confinement
pressure on the evolution of permeability. Several other studies can be found in the state-
of-the-art review by Lei et al. (2017), which is focused on the geomechanical effects on the
flow in fractured media. The existing researches point the orientation of principal stresses,
dilation, crack propagation and the opening and closure of the fractures as factors that alter
the fluid pathways and promote localized flow channels. The equivalent permeability is thus
dependent on mechanical conditions; for instance, it decreases until a residual value when
normal stress increases, and it increases when deviatoric stresses are high enough to provoke
shear dilation (Min et al., 2004b).

Lastly, many works on upscaled permeability inevitably pass through the definition of the
REV’s size. This leads to a deeper question on whether the REV exists, which was addressed
in early publications and remains as a topic of discussion. Clauser (1992) compiled data for
the permeability of fractured rocks on three different scales: laboratory (1 to 10 centimeters),
borehole (1 to 100 meters) and regional (1 to 100 kilometers); they show that permeability
increases by orders of magnitude from laboratory to borehole scale, but this increase does not
seem to hold from borehole scale to regional scale. Based on this, Neuman (1994) proposed
a scaling law for permeability; he defends that statistical homogeneity for log permeability
occurs intermittently over intervals of the scale spectrum; this corroborates what was stated
in section 1.2.1 about the importance of defining a scale of study.

These investigations on the existence of a REV for the permeability of fractured media
advanced with the development of numerical tools. Kulatilake and Panda (2000) affirm that
an equivalent continuum is difficult to obtain for blocks containing persistent discontinuities,
but this task is possible for rocks consisting mainly of minor discontinuities; they obtained
the REV for some blocks in this second category and concluded that its size varies from
10 to 30 times the first invariant of the fracture tensor. Several other works could define a
REV for permeability using deterministic or statistical approaches (e.g. Min et al., 2004a;
Wang et al., 2018). Most of the conclusions were drawn under the assumption of constant
aperture, but Baghbanan and Jing (2007) evaluated the REV size and the existence of a
permeability tensor when heterogeneous aperture is considered. Their results show that, as
the variance of aperture increases, the REV gets significantly larger and it becomes harder
to obtain a proper equivalent permeability tensor.
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2.4 Equations of the problem and simulation methods
As previously seen, numerical upscaling requires the resolution of the physical problem at
the microscale, where it is assumed to be better known. The microscale problem of interest
here is the coupled hydro-mechanical simulation of elastic and elastoplastic fractured media.
The process of modeling the fractured REV involved decisions regarding the discretization
schemes and coupling techniques.

Zero-thickness interface elements were selected to introduce the strong discontinuities in
the problem and the Box method was selected for the discretization of the domain. These
techniques will be presented in the following items; also, this Section presents the equations
that describe the mass conservation of fluids and the equilibrium of momentum, as well as the
resulting weak formulations for the selected discretization scheme. A final item dedicated to
hydro-mechanical coupling presents the terms that couple the flux and mechanical models,
reviews the existing coupling schemes and presents the coupling algorithm adopted in this
work.

2.4.1 Fracture representation: DFNs and Interface Elements
Discrete Fracture Networks (DFNs) are computational models that explicitly represent the
geometrical features of each fracture; they can be created from geological mapping, stochas-
tic generation, geomechanical simulation or a combination of these approaches (Lei et al.,
2017). Fractures are represented as straight lines or curves in 2D domains and as planar
discs or polygons in 3D domains. In the stochastic approach, the geometrical attributes
of each fracture are treated as variables and are randomly generated according to a best-
fit probability distribution for data measured in the field. The location of the fractures is
usually randomly attributed by using a Poisson process to generate their barycenters. Lei
et al. (2017) point out that these assumptions may lead to unrealistic models that disregard
patterns observed in the field such as clustering, curved and irregular fractures.

Discrete and continuous methods can incorporate DFNs to solve hydromechanical prob-
lems. For continuous methods such as the Finite Element Method (FEM), the most common
available techniques to solve models with DFNs are the embedded discontinuity approaches,
nodal enrichment (which is the basis of the extended FEM) and zero-thickness interface
elements, also called lower-dimensional elements. The latter poses a challenge concerning
remeshing when crack propagation is considered, so it is preferred for fixed discontinuities
(Dias-Da-Costa et al., 2010).

Interface elements were introduced by Goodman et al. (1968) to capture strong discon-
tinuities on mechanical elastic problems. Since then, new types of interface elements, as
well as formulations that apply them to hydromechanical analyses (e.g. Segura and Carol,
2008; Pouya, 2015) were developed. Figure 2.7 illustrates triple-nodded interfaces, which are
popular when fluid flow is considered. In hydromechanical simulations, displacements are
evaluated at the top and bottom nodes, while fluid pressure is also evaluated at the middle
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nodes. This allows the consideration of a pressure drop across the matrix-fracture interface
as well as the longitudinal flow through the fracture.

The interface elements are created by duplicating the nodes at edges that contain frac-
tures. The original and clone nodes have the same coordinates, so aperture is not explicitly
represented, but is a property of the element that can be updated as deformations occur.

Figure 2.7: Triple-nodded interface elements for 2D (left) and 3D (right) problems: displace-
ments (u) are computed at the extremities and pressure (pf ) is also evaluated at the middle
nodes.

2.4.2 Box Method
Helmig (1997) proposed the Box method, also called the Control Volume Finite Element
Method, to combine the advantages of the FEM and of the finite volume method (FVM)
to model fluid flow. From the FEM, it inherits the finite-element shape functions and the
geometrical flexibility, since it can be applied on unstructured grids; from the FVM, it
inherits the property of local mass conservation, which means that the mass of the fluids is
conserved at the level of the elements.

The Box method is a type of vertex centered FVM, that is, the control volumes are built
around the nodes of the primary FEM mesh. There are different methodologies to define the
dual mesh; the control volume around a node can be defined by joining the cirscumcentres
of the elements (Voronoi diagrams), by connecting the barycenters of adjacent elements
with straight lines (centroid-dual grid) or by connecting the barycenters of the elements to
the mid-points of their edges (median-dual grid). Figure 2.8 illustrates the median-dual
method, which is the most flexible approach, since it supports different element shapes in
two or three dimensions (Szymkiewicz, 2013). The control volumes (CVs) are constituted of
subcontrolvolumes (SCVs) and are delimited by faces. At the faces, the pressure gradients
are calculated using the finite element shape functions to compute the flux that enters or
leaves the SCV. The configuration of the grid is such that velocity is continuous across the
faces, while this is not true at the boundaries of the finite elements (Geiger et al., 2004); for
that reason, the box method is locally conservative, and as other formulations of this type
it is more accurate and more stable for the solution of flow at saturation fronts than the
classical Galerkin FEM (Helmig, 1997).
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Figure 2.8: Creation of a control volume (in grey) around a node i in the primary mesh.
The hatched area indicates a sub-control volume.

2.4.3 Equations of the problem and discretization
Considering a control volume Bi assigned to a node i, the primary variables a at a point P
with coordinates x are approximated from the nodal values â using the shape functions Nj

as:

ã(x) =
∑
j∈ζi

Nj(x)âj (2.37)

where ã(x) is the approximation of a, ζi is the set of nodes that belong to the finite element
ξ for which P ∈ ξ. Similarly, the gradients of a at P are approximated by:

∇ã(x) =
∑
j∈ζi

âj∇Nj(x) (2.38)

The main procedures for discretization with the box method will be shown for the mass
conservation equation of one fluid phase α:

∂Υα

∂t
+∇ · (ραvα)− qα = 0 (2.39)

where Υα denotes the mass of the fluid per unit volume of the porous medium, and ρα and
vα are the density and the velocity vector of the fluid and qα is a source term. In (2.39), the
first term is called the storage term, the second term is the flux term and the third term is
the source term. The storage term can be further defined by:

∂Υα

∂t
=
∂(ραSαϕ)

∂t
(2.40)
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where Sα is the degree of saturation of phase α and ϕ is the porosity of the medium.
The weak formulation of (2.39) is obtained with a weighted residual method, which means

that the integral of (2.39) multiplied by a weighting function W (x) must be equal to zero:∫
Ω

(
∂Υα

∂t
+∇(ραvα)− qα

)
W (x)dΩ = 0 (2.41)

where Ω is the solution domain discretized in CVs. For the Box method, the weighting
function Wi(x) for a control volume Bi is:

Wi(x) =
{
1, if x ∈ Bi

0, if x /∈ Bi

(2.42)

After applying the Gauss theorem to the divergence operator in (2.41), we arrive at:∫
Ω

∂Υα

∂t
W (x)dΩ−

∫
Ω

ραvα∇W (x)dΩ +

∫
Γ

ραn · vαW (x)dΓ−
∫
Ω

qαW (x)dΩ = 0 (2.43)

where Γ is the boundary of domain Ω and n is the unit vector normal to Γ. From (2.42) it can
be concluded that ∇Wi(x) = 0; thus, (2.43) can be reduced to the final weak formulation:∫

Ω

∂Υα

∂t
W (x)dΩ−

∫
Γ

ραn · vαW (x)dΓ−
∫
Ω

qαW (x)dΩ = 0 (2.44)

It can be observed in (2.44) that the flux is calculated at the boundaries of the control
volume, i.e., the faces. Thus, during a certain time interval, the net volume of fluid that
enters the CV through the faces must be balanced by the variation of fluid stored within the
CV and an eventual source of flux. The integration of the flux term over a control volume
Bi associated to node i is given by:∫

ΓBi

ραn · vαW (x)dΓB1 =
∑
𝟋∈Bi

|𝟋|ρα(fc)n𝟋 · ṽα
(fc) (2.45)

where 𝟋 denotes a face, n𝟋 is the unit outer normal to this face, and fc denotes the face’s
mid-point, where velocity and unit weight are evaluated. And the integral of the storage
term over Bi is approximated by:∫

Ω

∂Υα

∂t
W (x)dΩ =

∑
V ∈Bi

|V |∂Υα
(V )

∂t
=
∑
V ∈Bi

|V | ∂
∂t

(ϕ(V )Sα
(i)ρα

(i)) (2.46)

where V is a sub-control volume, ϕ(V ) is the porosity of V and Sα
(i) and ρα(i) are the fluid’s

saturation and unit weight evaluated at node i.
This concludes the spatial discretization of 2.39 with the Box method, but the problem

also requires discretization in time. Using a finite difference scheme, the solution of Equation
2.39 for a given control volume in a time step of size ∆t that starts at time t assumes the
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following general form:

Υα
t+∆t −Υα

t

∆t
= F (at+θ∆t) = F (θat+∆t + (1− θ)at) with 0 ≤ θ ≤ 1 (2.47)

where the source and flux terms are generalized as a function F of the variables a, which
are evaluated at point t + θ∆t of the time step by interpolating between at and at+∆t.
When θ = 0, the temporal solution scheme is called explicit and the flux is evaluated using
the solution of the previous time step. When θ = 1, the scheme is fully implicit and the
variables are evaluated at the end of the time step. Explicit schemes have the advantage of
not requiring an iterative solution, but they are stable only until a certain time step size;
on the other side, fully implicit schemes are unconditionally stable, but require an iterative
linearization method (Zienkiewicz and Taylor, 2000). Alternatively, one can use partially
implicit schemes, for which 0 < θ < 1. While this type of scheme has been shown to provide
more accurate solutions than fully implicit solutions (Blunt and Rubin, 1992; Zienkiewicz
and Taylor, 2000), they also allow for bigger time steps than the explicit scheme.

2.4.3.1 Formulation for fractures and coupling with the matrix domain

The Box method has been adapted to media containing fractures represented by lower-
dimensional elements. Reichenberger et al. (2006) presented a Box formulation for two-phase
flow in fractured media. Their method captures the possible discontinuity of the saturation
of the non-wetting phase at the matrix-fracture interface, and thus accounts for the transfer
of fluids caused by capillary non-equilibrium. For the pressure of the wetting phase, they
make the common assumption of continuity, which makes their method invalid for blocking
fractures, as was demonstrated in the benchmark applications proposed by Flemisch et al.
(2018). This is a good assumption for a wide range of problems that deal with fractures that
are more conductive than the porous medium; but, if the consideration of blocking fractures
is needed, a simple solution is to use two-nodded or three-nodded interface elements, which
can capture transverse pressure drops.

The mass conservation equation for the fractures is the following:

∂(Υfαw)

∂t
+
∂(ραvlαw)

∂l
− qfα = 0 (2.48)

where l is a local coordinate that is longitudinal to the fracture, Υfα is the fluid mass per
unit volume in the fracture, vlα is the longitudinal component of the velocity of the phase
α, qfα is the source term and w is the fracture’s effective aperture. The storage term can be
defined as:

∂(Υfαw)

∂t
=
∂(ραSαw)

∂t
(2.49)

The spatial discretization of the flux term in 2.48 results in 2.45, with |𝟋| = wZ, being
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Z the out-of-plane width of the face, usually considered equal to unity in bi-dimensional
problems. Note in Figure 2.9 that the normal to a face 𝟋f of the lower-dimensional element
is colinear to the fracture; thus, the dot product n · vα in 2.45 returns vl.

The spatial discretization of the storage term results in:

∫
Ωf

∂(Υfαw)

∂t
W (x)dΩf =

∑
Vf∈Ci

|Vf |
∂Υfα

(Vf )

∂t
=
∑
Vf∈Ci

|Vf |
∂

∂t
(w(Vf )Sα

(i)ρα
(i)) (2.50)

where Ωf is the domain of lower-dimensional elements, Ci is a lower-dimensional control
volume, Vf is a sub-control volume with surface area |Vf | = ZL, where L is the length of
the lower-dimensional element and Z the out-of-plane width.

The introduction of a triple nodded element in the Box method is illustrated in Figure 2.9.
The edges of the bulk elements that coincide with a fracture have their nodes duplicated and
become faces where an exchange flux qc is evaluated; as for the fracture, it is represented by a
lower-dimensional element that contains the middle nodes illustrated in Figure 2.7. The flux
qc accounts for the fluid exchanges between the porous matrix and the fractures. Assuming
Darcian flow, the flux from a face 𝟋 of a bulk control volume Bi to a sub-control volume Vf
of the middle lower-dimensional element is given by:

qc = |𝟋|ρα(fc)nnn𝟋 · ṽ(fc)
α = |𝟋|ρα

kt
µα

nnn𝟋(∇p̃(fc) − ρα
(fc)ggg) (2.51)

where ggg is the gravity vector, kt is the fractures transversal permeability, µα is the fluid’s
viscosity and the pressure gradient ∇p is given by:

∇p̃(fc) =
p̃
(vc)
f − p̃

(fc)
m

0.5w(fc)
nnn𝟋 (2.52)

where fc and vc denote the mid-points of 𝟋 and Vf , w is the facet’s aperture, p is the pressure
and the subscripts m and f refer to the matrix and the facet domains, respectively. For the
matrix domain, qc corresponds to a flux term, since it is evaluated at the CVs faces. For the
facet domain, it is a source term, since it is integrated over a SCV.

2.4.3.2 Formulation of the mechanical problem

Box method can also be applied to discretize the equilibrium equation, given by:

∇ · σ + b = 0 (2.53)

where σ is the total stress tensor and b is the body force vector. The procedure detailed in
this section leads to the following weak formulation for the Box method:∫

Γ

n · σW (x)dΓ +

∫
Ω

bW (x)dΩ = 0 (2.54)
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Figure 2.9: Finite volume discretization for adjacent elements with no fractures (left) and
with a fracture between them (right). The fracture is represented by a lower-dimensional
middle element (facet) and bulk nodes are duplicated to achieve the form of a three-noded
interface element.

Thus, similarly to the velocity in (2.44), the stresses are evaluated at the faces and then
integrated to compute the corresponding forces. For a control volume Bi, (2.54) leads to:∑

F∈Bi

|𝟋|n𝟋 · σ +
∑
V ∈Bi

|V |b = 0 (2.55)

When interface elements are introduced to solve problems in fractured media, a con-
figuration similar to the one illustrated in Figure 2.9 is set, with the exception that the
lower-dimensional middle element is not used. At the faces that coincide with a fracture,
there is an acting traction tc given by:

tc = n · σ′
c
(fc) (2.56)

If the fractures are elastic, the effective stresses σ′
c
(fc) are evaluated at the face’s mid-

point fc and depend on the displacement discontinuities in the following manner:

σc
(fc) =

(
σn
σt

)
=

(
Kn Knt

Knt Kt

)(
[[un]]

[[ut]]

)
(2.57)

where σn is the normal stress, σt is the shear stress, [[un]] and [[ut]] are the normal and shear
displacement jumps across the interface, Kn and Kt are the normal and shear stiffnesses of
the fracture and Knt accounts for the fracture’s dilation. Considering a face 𝟋1 sharing the
evaluated fracture with a face 𝟋2 that belongs to a different bulk element, the displacement
jump vector is given by:
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[[u]] = u(fc1) − u(fc2) (2.58)

where fc1 and fc1 denote the locations of the mid-points of 𝟋1 and 𝟋2, respectively. The
displacements are interpolated at these locations using their nodal values and the finite
element shape functions (Equation 2.38). Note that the Equation 2.57 provides a general
form of coupling two bulk elements when there is a strong discontinuity between them. The
specificity of the Box Method is the location of the evaluation of the displacement jumps
and stresses.

2.4.4 Hydromechanical coupling
The resulting pressure fields from fluid percolation affect the acting stresses and strains on
the domain and vice-versa. To account for this inter-dependency, hydromechanical coupling
can be introduced to the fluid flow and equilibrium problems by adding coupling terms to
Equations (2.39),(2.48) and (2.53).

In the equilibrium equation (2.53), the pressure fields are introduced by means of the
effective stress principle, which, considering tension to be positive and compression to be
negative, is given by:

σ = σ′ − bpδ = C : ε− bpδ (2.59)

for the matrix domain, where σ is the total stress tensor, σ′ is the effective stress tensor, p
is the pore pressure, C is the stiffness constitutive tensor, ε is the matrix strain tensor and
b is the matrix Biot’s coefficient, defined by:

b = 1− Kdr

Ks

(2.60)

where Kdr is the material’s bulk drained modulus and Ks is the bulk modulus of the solid
grains.

For the fracture domain, the effective stress principle can be written as:

σ = σ′ − bfpm = Cf .[[u]]− bfpm (2.61)

where m = (1 0), Cf is the fracture constitutive tensor defined in (2.57) and bf is the
fractures Biot’s coefficient. The second terms in (2.59) and (2.61) are the coupling terms of
the equilbrium equation.

The mechanical effects in the fluid mass conservation manifest in the storage terms (2.40)
and (2.49). For the matrix, the variation in porosity dϕ is a function of the volumetric strain
variation dεv:

dϕ = bdεv +
1

M
dp (2.62)
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The Biot’s modulus M defines the ratio of the fluid volume variations to pore pressure;
it considers the compressibility of the fluid and of the solid grains:

1

M
=

ϕ

Kf

+
b− ϕ0

Ks

(2.63)

where ϕ is the porosity and Kf is the fluid’s bulk modulus.
The first term in (2.62) is related to the deformation of the porous matrix and thus it

depends directly on the displacements of the domain, since:

εv = tr(ε) = tr(
1

2
(∇⊗ u+ (∇⊗ u)T )) (2.64)

For the fractures domain, the aperture variation dw to be considered in (2.49) can simi-
larly be defined as:

dw = bfd[[un]] +
w

Mf

dpf (2.65)

where bf and Mf are the Biot’s coefficient and module for the fractures, dpf is the fracture
pressure variation and d[[un]] is the variation in the normal displacement jump [[un]] across
the discontinuity, which is a component of the vector [[u]]. The Biot’s coefficient and Biot’s
modulus of a discontinuity depend on the roughness of the surface, the stress state and the
filling material, but for clean discontinuities bf can be assumed to be equal to unity and
Mf equal to the inverse of the fluid compressibility multiplied by the aperture (Segura and
Carol, 2008).

The volumetric strains and normal displacement jumps can also be defined in terms of
volumetric stress σv and pore pressure p with the following relationships:

Kdrεv = σv + bp (2.66)

Kn[[un]] = σv + bfpf (2.67)

where the subscript f indicates the fractures domain, Kdr is the drained bulk modulus and
Kn is the fractures normal stiffness. A second type of dependency of the fluid flow on the
mechanics is usually introduced in (2.48) by defining the matrix intrinsic permeability as
a function of the porosity (for example, the well known Kozeny-Karman equation) and the
fractures intrinsic permeability kf as a function of aperture. This latter function is usually
the cubic law:

kf =
w2

12
(2.68)
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2.4.4.1 Coupling strategies

The coupling between the hydraulical and mechanical problems on fractured media is fully
established by relationships (2.59), (2.61), (2.62), (2.64) and (2.65). These terms introduce
displacements to (2.39) and (2.48) and pore pressures to (2.53). The resulting system of
equations can be solved numerically with different coupling strategies, which can be catego-
rized as fully coupled or partially coupled. Figure 2.10 presents the main existing coupling
schemes using the nomenclature that is the most common in reservoir simulation.

Figure 2.10: Coupling strategies used in reservoir simulation.

In a fully coupled approach, the flow and mechanical equations are solved as a monolithic
system, while partially coupled approaches consist in solving them separately and sequen-
tially. Among the partial coupling schemes, a first differentiation can be made regarding
which equation is solved first within a time step. The two main schemes for which geome-
chanics is solved first are the drained split and undrained split. The strategies where flux
is solved first can be generally defined as fixed-strain split and fixed-stress split. The fixed-
strain split and drained split are types of one-coupling, which means that only one of the
equations is influenced by the results of the other. As for the undrained split and the fixed-
stress split, they are types of two-way coupling, where both the mechanical and the flow
equations receive information from one another. The focus of this review are the strategies
where flux is solved first for two main reasons. Firstly, because among the one-way coupling
schemes, the fixed-strain split is the one to be usually employed in reservoir simulation. And
secondly, because the fixed-stress split is more stable and converges faster that the other
coupling schemes(Kim et al., 2011). From now on, the terms one-way coupling and two-way
coupling will be used as synonyms for the fixed-strain and the fixed-stress splits, respectively.

In a one-way coupling scheme, the pore pressures obtained from the flux model are
introduced into the stress equations, but mechanical effects due to the volumetric strains
are not considered in the flux model. The flow chart for one-way coupling is described in
Figure 2.11: for a given time step, the flow equation is solved first (assuming a fixed solid
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skeleton); next, the resulting pore pressures are used to compute stress variations; then, the
equilibrium problem is solved and the solution proceeds to the next time step.

In a two-way coupling or fixed-stress split scheme, both the flow and the geomechanical
models transmit information to each other, as showed in the flow chart of Figure 2.11. The
time step starts by solving the flow equation with consideration of the strains obtained from
the previous solution of the mechanical problem. These strains are used to compute the
storage terms and permeabilities. Then, the resulting pore pressures are used to solve the
equilibrium equation. If this process is done repeatedly within a time-step until a convergence
criterion for the displacements and forces is reached, the process is called an implicit two-way
coupling. If each equation is solved only once for each time step, the two-way coupling is
called explicit.

Figure 2.11: Algorithms of the one-way, explicit two-way and implicit two-way coupling
schemes.

Several studies compare the existing coupling schemes for features such as stability, con-
vergence properties, accuracy and computation time (e.g. Kim et al., 2011; Dean et al., 2013;
Preisig and Prevost, 2011; Beck et al., 2020). The full-coupling is unconditionally stable and
highly accurate (Kim et al., 2011); however, its implementation is more complex, since the
need for an unified simulator for flow and mechanics compromises the modularity of the code
and the derivation of the coupling terms for complex models can be cumbersome. Also, full
coupling may be associated to spurious oscillations when an equal-order approximation is
used for the pressures and displacements, which requires solutions like the use of different
discretization schemes for the coupled problems (Beck et al., 2020).

Kim et al. (2011) made a comprehensive comparative study of the partial coupling ap-
proaches. Using examples of fluid injection and production in elastic media, they showed
that the two-way coupling is unconditionally stable, converges with fewer iterations than
other schemes and is accurate. On the other side, one-way coupling is only conditionally
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stable and the literature on the subject shows that it may fail in providing accurate results
for all steps of the simulation. For example, Preisig and Prevost (2011) showed that the one-
way coupling was not capable of reproducing the analytic solution of the Mandel problem
(Mandel, 1953); and, in the study case of CO2 injection in a reservoir, the one-way coupling
underestimated the lateral extent of the uplift dome by up to 30 %, when compared to a full
coupling. Also using the full coupling as a reference solution, Beck et al. (2020) simulated
the injection of CO2 in a heterogeneous faulted reservoir using implicit and explicit two-way
coupling. The explicit coupling underestimated the pressures close to the injection point
and predicted the arrival of the gas to the fault 50 days later than the full-coupling. On the
other hand, the implicit scheme was shown to converge to the fully coupled solution after a
few iterations.

When it comes to computation time, it is not obvious which coupling strategy is more
efficient. It is common to think of the full coupling as more demanding, since it requires
the solution of a larger system and the time required by conventional solvers is known to
be proportional to the square of the system’s size (Beck et al., 2020). However, as the
full coupling is unconditionally stable, it can be used with bigger time steps than one-way
coupling and explicit schemes to provide a similar or better accuracy. As for the implicit
two-way coupling, it may be slower than fully coupled solutions when convergence is only
reached after a high number of iterations, which can happen if the coupling between the
problems is very strong (Segura and Carol, 2008).

Since the analysis of efficiency also takes accuracy into consideration, one-way coupling
should be avoided or used with caution. As for the full coupling and two-way coupling,
on the other hand, they have similar properties of accuracy and stability, and there is no
general rule to define which one is faster, since this depends on the problem. So, the coupling
strategies used in this work were selected according to what is more convenient in terms of
code implementation and simplicity of the solution algorithms. For the coupled problem
at the REV scale, the two-way coupling or fixed-stress split was selected; the algorithm is
presented below. Regarding the macroscale, a full-coupling is adopted; the solution of this
monolithic system is described in Chapter 7.

2.4.4.2 Fixed-stress split

Using Equations 2.46, 2.47, 2.50, and considering one-phase flow and a fully implicit time
discretization, that is, θ = 1, the general discrete forms of the mass conservation equations
for a time step of size ∆t that starts at time t and finishes at time t+ 1 are:

ϕt+1ρt+1 − ϕtρt

∆t
= F (pt+1) (2.69)

for the matrix domain, and:

wt+1ρt+1 − wtρt

∆t
= F (pf

t+1) (2.70)
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for the fracture domain.
The functions F are a general representation of the flux and source terms combined.

The hydro-mechanical coupling may appear in these terms if the permeabilities and/or fluid
densities are solution-dependent. The subscript f denotes the fracture domain, and although
these equations are presented separately, they are solved altogether and coupled by the
exchange flux in (2.51).

The coupling terms (2.62) and (2.65) are used to update the porosity and aperture
variations at a new iteration k:

dϕk,t =
dpk

M
+ bdεk =

pk,t − pk−1,t

M
+ b(εk,t − εk−1,t) (2.71)

dwk,t =
dpf

k

Mf

+ bfdun
k =

pf
k,t − pf

k−1,t

Mf

+ bf (u
k,t
n − uk−1,t

n ) (2.72)

In a fixed-stress split, the coupled problems are solved sequentially and, since the flux is
solved first, εk,t and uk,tn can not be obtained from the solution of the mechanical problem.
Thus, dεk and dunk are replaced by the predictor estimators d̂εk and ˆdun

k. Using Equations
2.66 and 2.67, these estimators are related to changes in volumetric stress (dσv) and pore-
pressures (dp) by:

Kdrd̂ε
k
= σk

v − σk−1
v + b(pk − pk−1) (2.73)

Kn
ˆdun

k
= σk

v − σk−1
v + bf (pf

k − pf
k−1) (2.74)

The fixed-stress split, as the name suggests, consists in enforcing volumetric total stress
conservation to solve the flux problem, that is, σk

v − σk−1
v = 0. Thus, estimators d̂εk and

ˆdun
k read:

d̂ε
k
=
b(pk − pk−1)

Kdr

(2.75)

ˆdun
k
=
bf (pf

k − pf
k−1)

Kn

(2.76)

and Equations 2.71 and 2.72 become:

ˆdϕk,t = (
1

M
+

b2

Kdr

)(pk,t − pk−1,t) (2.77)

ˆdwk,t = (
1

Mf

+
bf

2

Kn

)(pf
k,t − pf

k−1,t) (2.78)

The adequate bulk modulus Kdr depends on the problem and will determine how effi-
cient is the convergence of the solution (Kim et al., 2011). For one-dimensional poroelastic
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problems, the optimal choice is the uniaxial drained bulk modulus Kdr
(1D):

Kdr
(1D) =

E(1− ν)

(1 + ν)(1− 2ν)
(2.79)

where E is the Young’s modulus and ν is the Poisson’s ratio. For two-dimensional plane
strain problems, the most adequate choice is the bulk drained modulus Kdr

(2D):

Kdr
(2D) =

Kdr
(1D)

2(1− ν)
(2.80)

In elasto-plasticity, if the material is yielded, the tangent modulus Kdr
(ep) is evaluated

from the elastoplastic constitutive matrix Dep (Kim et al., 2011):

1

Kdr
(ep)

=
1

4
1TDep1 (2.81)

where, for plane-strain conditions, Dep has dimensions 3 x 3 and 1 = {1 1 0}. The iterative
nature of the fixed-stress split comes from the difference in the calculated volumetric strains
and apertures between the coupled problems: in the lack of the updated displacements vector,
the flow model uses the predictor estimators, which are then corrected by the solution of
the geomechanical model. The fixed-stress split coupling algorithm for a time step t is the
following:

1. Time step initialization: For the first iteration k = 1, set the previous pressures pk−1,t

and displacements uk−1,t as those from the last time step:

pk−1,t = pt−1, k = 1 (2.82)

uk−1,t = ut−1, k = 1 (2.83)

2. Solve the flow equations by using estimators in (2.77) and (2.78) to update the porosi-
ties ϕflow

k,t and apertures wflow
k,t as:

ϕflow
k,t = ϕflow

k−1,t + ˆdϕk,t (2.84)

wflow
k,t = wflow

k−1,t + ˆdwk,t (2.85)

3. Using the resultant pressures pk,t in the computation of stresses with (2.59) and (2.61),
solve the mechanical problem for the displacements uk,t.

4. Update the volumetric strains εk,t and displacement jumps [[u]]k,t.
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5. Update the porosities ϕmech
k,t and apertures wmech

k,t for the geomechanics model:

ϕmech
k,t = ϕt−1 +

1

M
(pk,t − pt−1) + b(εk,t − εt−1) (2.86)

wmech
k,t =

1

Mf

(pf
k,t − pf

k−1,t) + bf (un
k,t − un

k−1,t) (2.87)

6. Set ϕflow
k,t = ϕmech

k,t. Given a threshold εtol, proceed to the next time step if:

∥pk,t − pk−1,t∥
∥pk,t∥

≤ εtol (2.88)

and

∥uk,t − uk−1,t∥
∥uk,t∥

≤ εtol (2.89)

Otherwise, begin a new iteration k + 1, starting from step 2 .

As the convergence of the displacements and pressures vectors is approached, the dif-
ferences between the calculated porosities and apertures for the flow and mechanics models
vanish to zero and should approach the results of a fully coupled solution.

2.5 Conclusions of the chapter
The REV is a sample that must be large enough to well represent the heterogeneities and
the average constitutive behavior of a material; at the same time, it must be small enough
to respect the principle of separation of scales. The homogenization of the REV is based
on the volume average of the problem’s variables and on the respect of energy consistency
conditions.

The theoretical review of this chapter focused on the geometrical and hydro-mechanical
REVs of fractured media. A useful quantity to verify if the geometry of the fracture network
is properly represented is the crack tensor, which is known to be related to the constitutive
behavior of fractured rock masses; as for the hydro-mechanical properties, they can be as-
sessed by means of numerical experiments, which can be performed using different kinds of
boundary conditions.

In this work, the numerical modeling of the REV aims the solution of two equations:
the equilibrium of momentum and the mass conservation of the fluid. The Box method
was selected to solve these problems, combined with lower-dimensional interface elements to
discretize the fractures. The fixed-stress split was selected to promote the coupling between
both problems; this is a sequential coupling technique known to be accurate and stable,
while it also maintains the flexibility and easy maintenance of codes.
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The computational tool used to perform the simulations is an open-source code to which
major additions were made. The code and its validations are presented in the next chapter.
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Chapter 3

Computational tool: DuMuX 3

DuMuX (Koch et al., 2020) is a free and open-source simulator for flow and transport in
porous media. It is based on the Distributed Unified Numerics Environment (DUNE), a tool-
box for solving partial differential equations with grid-based methods. Both codes are written
in C++. DuMuX possesses a modular design that takes advantage of well-known principles
for objected-oriented design, modern C++ features and generic programming techniques.

Thanks to that, the code is very flexible and easily extensible. The problems are built by
combining the existing modules and the objects are instantiated at compile-time based on
tags defined by the user. For example, a mandatory definition is the spatial discretization
method, which can be a variety of cell-centered schemes and the Box, if the tag BoxModel
is used. As a consequence of this choice, the classes used for the creation of the finite
volume (FV) mesh, the calculation of residuals and other procedures that depend on the
discretization scheme are specialized for the chosen method.

This chapter presents the main features of DuMuX , with focus on solutions with the
Box method. The Box was chosen for its mesh flexibility and for being the only technique
available in DuMuX that can be used to solve mechanical problems. If the Box is used,
the original code allows for the solution of stress-strain problems on domains constituted
of elastic materials. To attain the objectives of this thesis, five major additions were made
to the code: the inclusion (i) of methods to handle elastoplastic analyses, (ii) of strong
discontinuities to geomechanical problems, (iii) of new coupling manager classes that handle
the hydro-mechanical coupling in domains with interfaces, (iv) of new classes to impose
periodic boundary conditions, and (v) an entire new module for multiscale simulations.

3.1 Modules
The original modules in DuMuX handle all the steps for the solution of multi-phase, multi-
component and multi-domain flow and geomechanics, among others. The main dependencies
on DUNE are related to the primary mesh generation, the elements shape functions and the
linear algebra operations. The most relevant modules are described below:

41



• Module IO: contains the classes that manage the instantiating of grid entities (nodes,
elements and boundaries) and handles the creation of output files.

• Module Common: contains geometry-related methods and the definition of properties
that are common to all kind of problems.

• Module Discretization: contains the classes where the FV mesh is created ac-
cording to the selected discretization method. Also, this module manages the grid
variables.

• Module Material: contains the classes that handle the spatial distribution and def-
inition of material properties.

• Module Flux: contains classes used to calculate flux or stress according to a number of
constitutive laws and the chosen discretization method. The sub-module Box includes
a class that computes flux with Darcy’s law (BoxDarcysLaw), a class that computess
stress with the Hooke’s law (HookesLaw) and a class that computes effective stresses
(EffectiveStressLaw).

• Module Material Porous Medium Flow: contains classes that handle the com-
putation of volume residuals for a given CV. Also, it contains the base class for flow
problems.

• Module Geomechanics: contains the classes that handle the computation of force
residuals for a given CV. Also, it contains the base class for geomechanical problems.

• Module Linear: handles the solution of linear systems.

• Module Non Linear: handles the solution of non-linear systems with Newton’s method.

• Module MultiDomain: handles the coupling of multiple domains. The sub-module
Facet is of interest to this thesis. Facet is the designation employed for lower-dimensional
elements that occur at the edges of bulk elements. This sub-module contains classes
that are in charge of the mapping and coupling of the facets and their adjacent bulk
elements. Also, this module handles the assembly of the system for multi-domain
problems. For fractured media, the term multi-domain problem refers to the solution
of two overlapping and coupled domains: the porous matrix domain, with elements of
dimension d and the fractures domain, formed by elements of dimension d − 1 called
facets.

3.1.1 Design of a Multi-Domain Flux Problem
The steps to build a multi-domain flow simulation in DuMuX are illustrated in Figure 3.1.
This workflow is also applicable to the definition of problems containing only one domain if
the steps 6 and 9 are removed; those are specific to multi-domain problems.
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The definition of the model starts by setting a combination of tags for each sub-domain.
Besides the tags for the definition of the spatial discretization method, DuMuX contains
tags to define the type of flow, for example one-phase or two-phase. Several properties are
automatically defined from these tags. The steps 2 and 3 require the user to create classes to
handle the spatial parameters, where constitutive models are defined, and to create classes
to configure the problem, where initial values and boundary conditions are set. DuMuX

allows for boundary conditions and material properties to be solution-dependent.

Figure 3.1: General workflow for the definiton of a flow simulation in DuMuX . The steps in
yellow are specific to multi-domain problems.

The primary mesh (step 4) is created by DUNE dependencies and the FV grid is created
by defining control volumes as illustrated in Figure 2.8, if the Box Method is chosen. A
particularity of the multi-domain problems is the initiation of the coupling mapper (step 6),
which is responsible for tracking the correspondences between bulk elements and their adja-
cent facets and for storing these information. Also, this class is responsible for duplicating
the nodes at the edges of bulk elements that coincide with facets. With this procedure, the
configuration of interfaces that contain facets is similar to the one in Figure 2.7, where the
facets contain the middle nodes of a triple-nodded interface element.

The process used by DuMuX to duplicate nodes is illustrated in Figure 3.2. If the fracture
does not terminate at a boundary of the domain, no new node is created at the tip (a and
b), but only at the intermediary nodes; otherwise the node at the tip is duplicated (c). The
changes in the elements connectivities are illustrated for a node that: (a) is intercepted by
one fracture, (b) is intercepted by several fractures and (c) is at the boundary of the domain.
This separation between two adjacent elements prevents pressure from being continuous
across the edge they used to share. Since the configuration of the CVs is different when two
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bulk elements have a facet between them (Figure 2.9), they are decoupled from each other
and instead are coupled to the facet between them.

Figure 3.2: Duplication of nodes and change of connectivity for surrounding bulk elements
in three possible scenarios: a) one fracture b) several intercepting fractures c) fracture at
the boundary of the domain (Loyola et al., 2021).

The so-called grid variables include the solution of the problem, the gradient of the
shape functions and other variables that are associated to the grid entities. After their
initiation (step 8), multi-domain problems require the Coupling Manager to be set (step 9).
The Coupling Manager couples the grid variables of the facets and the corresponding bulk
elements. At an edge that contains a fracture, the mid-point of a bulk face corresponds to
the mid-point of a sub-control volume of the adjacent facet (Figure 2.9). The variables at
these points are associated by the coupling manager to calculate, using Equation 2.51, the
flux qc (red vector in Figure 2.9) that couples both domains.

The assembly of the system (step 10) includes the assembly of the residual vector and of
the Jacobian matrix using implicit or explicit schemes. The residuals are calculated element
by element and the Jacobian for each subdomain is computed with a classical perturbation
method by using forward, backward or central finite differences. The final system for flow
models in fractured media has size nf + nm, where nf is the number of degrees of freedom
in the facet domain and nm is the number of degrees of freedom in the matrix domain.

The system is solved using the Newton-Raphson method (step 11) and the results can
be written in an output file in VTK format (step 12).
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3.1.2 Extensions to the original code
The extensions made to the original code of version 3.2 of DuMuX incorporate two new
possibilities for geomechanical models: elastoplastic analyses and interface elements.

Elastoplastic analyses:
To include elastoplastic behaviour in the analyses, the following additions are required: a

return function to correct the elastic stress trials; the storage of the previous stress state for
each integration point; functions to calculate stress invariants; a class for plastic parameters
and plastic constitutive models.

For that, the new classes described in Figure 3.3 were created. Some of them inherit from
existing DuMuX classes. The new base classes FVSpatialParamsPlastic and FVSpatialPa
ramsPoroPlastic inherit from the spatial parameters classes for elastic and poroelastic
models. Additionally to the functions that return elastic parameters and models, there are
new functions that return the yield function, the flow function and the normal vectors to the
yield and flow function surfaces. Also, a perfectly plastic isotropic Mohr-Coulomb model was
added as class MohrCoulomb. Both associated and non-associated plastic flow are supported.
For simplicity, this model will be called only Mohr-Coulomb from now on; it is the only
plastic model added to DuMuX so far.

The plasticity-related functions depend on the current stress state. DuMuX does not
store stresses from a previous step to calculate the next one. This functionality was added
by creating the class StressHistoryCache, which inherits from StressVariablesCache, a
class that manages grid variables in elastic problems. The class StressHistoryCache has a
function that allows the stress vector to be stored for each integration point. This update
must be made by the user at the end of each time step. Also, three new classes were added
to calculate stress invariants.

Finally, the template class PlasticCorrection was added to calculate the elastic stress
trials using the existing classes for elastic problems and return them to the yield function, if
necessary, using the new class ReturnAlgorithm. This latter is a template class containing
two specializations; one for the Mohr-Coulomb model, where the two-vector return algorithm
proposed by Crisfield (1987) is implemented, and the other for plastic models that do not
contain singularities, which is empty. So, the current code does not support other models
than Mohr-Coulomb, but can be easily extended to do so. Two new tags that are associated
with the new classes were added for elastoplastic problems: Plastic, which can be used
for purely mechanical problems, and Poroplastic, which incorporates pore pressures in
the calculations of stresses using the effective stress principle. The modifications described
here essentially change the way of calculating force residuals, which are based on corrected
stresses when plasticity-related tags are used. Thus, they mainly affect the step 10 of the
workflow in Figure 3.1.

45



Figure 3.3: Extensions made to the original code DuMuX to account for elastoplastic anal-
yses.

Interface elements for mechanical analyses:
The Multidomain Module does not support mechanical problems. Also, the original cou-

pling manager can not be used in mechanical problems as it is because the intermediary facet
elements are not used to compute displacements (Figure 2.7). Thus, the coupling manager
should couple two bulk elements that share a facet with each other. Also, the system for a
mechanical problem containing interfaces is only the size of the bulk problem, since there are
no variables at the facets. The new implementations that address this issues are illustrated
in Figure 3.4.

The first major change is the creation of a new coupling manager class called InterfaceBu
lkCouplingManager, which couples the variables of two bulk elements that share a facet.
These coupling information is used in the new class BoxFacetCouplingElasticLaw to com-
pute the stresses σc using Equations 2.56–2.58 for faces that coincide with facets.

Also, a new class called GeomechanicsMultiDomainTraits was created to define the size
of the system for geomechanical multi-domain models as equal to the number of degrees of
freedom in the bulk domain only. As a result, system assembly is also different for mechanical
multi-domain problems. So, the classes called GeomechanicsMultiDomainAssembler and
InterfaceBulkBox LocalAssembler were created to assemble the bulk domain system
using the coupling manager. Finally, the tags GeomechanicsBoxFacetCouplingModel and
PoromechanicsBoxFacetCoupli ngModel were created for geomechanical problems with
interfaces.

The class HydroMechCouplingManager (Figure 3.4) promotes the coupling between in-
dependent flux and mechanical problems in multi-domains containing interface elements. It
is responsible for transmitting pore pressures at the faces to the mechanical problem and
passing updated porosities and fracture apertures to the flux problem. This class employs
the fixed-stress split method described in Section 2.4.4.2.
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Figure 3.4: Extensions made to the original code of DuMuX to add interface elements to
geomechanical problems

A final requirement of the microscale problems to be incorporated in a multiscale frame-
work is the imposition of periodic boundary conditions; DuMuX does not contain this option
for multi-domains. So, the class PeriodicManagerBase and its child classes were created
to handle the imposition of periodic boundary conditions on media containing interface ele-
ments; their mathematical foundations will be discussed in detail in Chapter 4. Likewise, a
new module called Multiscale will be presented further on, in Chapter 7.

3.1.3 Validations
This section presents the validations of the new implementations in DuMuX . Apart from the
algorithm for the multiscale solution, which is validated in Chapter 7, there are three major
extensions that need to be verified: geomechanical problems with interface elements; addition
of elastoplasticity, with the implementation of the return algorithm for the Mohr-Coulomb
model; and the fixed-stress split coupling scheme applied to the solution of hydro-mechanical
problems in fractured porous media.

3.1.3.1 Mechanics with fractures: elasticity

The implementation of the elastic model for the fractures and of the system assemblage for
mechanical problems with interface elements was verified against the analytic solution for the
stiffness tensor of fractured media presented in Duncan and Goodman (1968). The tested
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domain is a rock mass containing two perpendicular sets of persistent fractures (Figure 3.5).
By means of tensor rotation, the equivalent elastic tensor can be calculated for different
orientations β of the fractures. Figure 3.5 presents the comparison between the analytical
solution and the numerical results for different angles β and ratios Kt/Kn, where Kn and
Kt are the fractures normal and tangent stiffnesses, respectively. A maximum error of 0.5
% was observed for the ratio of the equivalent Young modulus (E) to the Young modulus of
the intact rock (Er).

Figure 3.5: Validation of the new code for geomechanics with elastic fractures: comparison
between the analytical (lines) and numerical (dots) solutions of E/Er, where E is the equiv-
alent Young modulus of the fractured rock mass and Er is the Young modulus of the intact
rock.

3.1.3.2 Plasticity

A verification of the new implementations required by the so-called Mohr-Coulomb model
is made with the classical problem of a rigid strip footing resting on an elastoplastic soil;
this is a common benchmark because it has an analytical solution and allows the verification
of the return algorithm when the singularities of the yielding surface are crossed. Figure
3.6 illustrates the simulated problem: at the location of the strip footing of half-width
B, a downward vertical displacement of 0.005B is applied in 100 steps. Horizontal and
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vertical displacements are restricted at the lateral and bottom boundaries, respectively. The
mesh contains 225 linear quadrangular elements. Table 3.1 lists the parameters and problem
definitions, which are the ones employed by Sloan (1987). The exact solution for the collapse
pressure is 14.83c, where c is the soil’s cohesion. Figure 3.6 shows the load-deformation
curve obtained in DuMux; the load is the averaged pressure under the footing strip, and it
is normalized by the cohesion. An ultimate load of 14.4c was obtained, which differs from
the exact solution by 3.0 %.

Figure 3.6: Validation of the new module for plasticity: simulation of the problem of a rigid
strip footing on a material that follows the Mohr-Coulomb model (left) and comparison of
the theoretical and calculated collapse pressures (right).

Table 3.1: Simulation parameters and definitions used in the strip footing problem in Figure
3.6.

Quantity Unity Value
Young’s modulus (E) kPa 5200
Poisson’s ratio (ν) - 0.30

Cohesion (c) kPa 5.0
Friction Angle (ϕ) ° 20
Dilation Angle (ψ) ° 20

Half width of the footing (B) m 3
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3.1.3.3 Hydro-mechanical coupling

Matrix

The implementation of the fixed-stress scheme for the hydro-mechanical coupling is first
verified for the matrix domain against two analytic solutions: Terzaghi’s one-dimensional
consolidation and Mandel’s problem (Mandel, 1953). For both cases a convergence criterion
εtol = 0.001 was adopted for the fixed-stress scheme (Equations 2.88 and 2.89).

Figure 3.7 presents the geometry and the boundary conditions of Terzaghi’s problem. On
the upper boundary of the column, a load q is applied; vertical displacements are restrained
at the bottom and horizontal displacements are restrained on the sides, so the problem is
essentially one-dimensional. Drainage is allowed to occur only at the top by the imposition of
a zero pressure boundary condition. At any point of the domain, the initial pore pressure is
P0 = q. The mesh has 20 linear quadrangular finite elements, the total time of the simulation
is 600 s and the time step size is 1 s. The modulus Kdr in (2.75) is equal to Kdr

(1D) (Equation
2.79), which allows a faster convergence for Terzaghi’s problem (Castelletto et al., 2015). The
adopted parameters are described in Table 3.2.

Figure 3.7 compares the analytical and numerical solutions for the pressure distribution
along the y-axis for different non-dimensional time factors Tv, defined by:

Tv =
Cvt

L2
(3.1)

where Cv is the one-dimensional coefficient of consolidation and t is time. Convergence is
reached within two iterations per time step and the maximum error observed for the pore
pressure is 0.1%.

Table 3.2: Simulation parameters and definitions used for the validation of Terzaghi’s prob-
lem.

Hydro-mechanical parameters Problem definitions
Quantity Unity Value Quantity Unity Value

Young’s modulus (E) kPa 1000 q kPa 10.0
Poisson’s ratio (ν) - 0.25 L m 1.0
Permeability (ks) m/s 1.16× 10−5

Biot’s coefficient (b) - 1.0
Biot’s modulus (M) kPa ∞

Mandel’s problem consists in a rectangular domain compressed both at the top and
bottom boundaries by a load q; drainage is allowed to occur at the sides (Figure 3.8). The
initial pore pressure is P0 = −q/3(1 + νu), where νu is the undrained Poisson’s ratio. The
variables of the problem are described in Table 3.3 and are the same as those used by Preisig
and Prevost (2011). Due to the symmetry of the problem, only a quarter of the domain
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Figure 3.7: Scheme of Terzaghi’s one-dimensional consolidation problem (left) and compar-
ison of the analytical solution (lines) and the results from the numerical simulation (dots)
using the fixed-stress split (right).

needs to be simulated. The mesh has 400 linear quadrangular elements and the total time
of the simulation is 1 s, which is divided in 200 steps. The modulus Kdr in (2.75) is equal to
Kdr

2D (Equation 2.80), which allows for convergence to be attained within two iterations per
time step. Figure 3.8 compares the analytical solution for the distribution of the pressure
along the line y = 0.5a and the pressure at the symmetry axis (x = 0), which is the same
for any position y, for different non-dimensional time factors Tv. A maximum error of 1.3%
was observed in the early stages of the simulation.

Table 3.3: Simulation parameters and definitions used for the validation of Mandel’s problem.
Hydro-mechanical parameters Problem definitions

Quantity Unity Value Quantity Unity Value
Young’s modulus (E) kPa 1.0 q kPa 1.0
Poisson’s ratio (ν) - 0 a m 1.0

Undrained Poisson’s ratio (νu) - 0.5 b m 1.0
Permeability (ks) m/s 1.0

Biot’s coefficient (b) - 1.0
Biot’s modulus (M) kPa ∞
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Figure 3.8: Scheme of Mandel’s consolidation problem (top) and comparisons of the analyti-
cal solution (lines) and the results from the numerical simulation (dots) using the fixed-stress
split (bottom). The graph on the left compares the spatial distribution of the normalized
pore pressure at the position 0.5a and the graph on the right compares the normalized pore
pressure history at the symmetry axis (x/b = 0).

Fractured domain

The algorithm for the fixed-stress split was also validated for fractured domains; in
the absence of a closed-form solution, the test proposed by Segura and Carol (2008) and
illustrated in Figure 3.9 was used here for verification. It consists in a two-dimensional
domain with boundary and initial conditions similar to the Terzaghi’s consolidation problem,
but with a vertical fracture in the middle. The mesh contains 400 triangular bulk elements
and 10 lower-dimensional linear elements to represent the fracture. A time step of 0.5 s was
adopted.

Segura and Carol (2008) compared a sequential and a fully coupled scheme to verify
one against the other. The parameters they adopted are described in Table 3.4. Two
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scenarios were simulated: one where the fracture’s permeability is constant and one where
the longitudinal permeability is a function of the aperture by the cubic law (Equation 2.68),
with kl in Table 3.4 being its initial value. It has to be pointed out that they employ for
the flow problem the double-nodded interface element earlier proposed by Segura and Carol
(2004). This element accounts for transverse fluid, but suppresses the middle element of the
triple-nodded interface with the assumption that the pressure at the fracture’s mid-plane is
the average of the pressures at the corresponding opposite matrix nodes. This has proven
to be a good assumption when the transversal conductivity is high, but the comparison
with a triple-nodded element showed significant discrepancies as the transversal conductivity
becomes low and the fracture act as a flow barrier.

Figure 3.9a compares the results for the constant permeability case; the pressures along
the fracture are displayed at the four different times selected by Segura and Carol (2008):
0.0007, 0.0021, 0.0035 and 0.007 days. In their work, these pressures are the average of the
pressures obtained at the matrix faces, while here they are taken directly from the lower-
dimensional elements. The results match very well; since the fracture permeability is very
high, no appreciable differences arise from the use of different interface elements. As the
vertical fracture is very conductive, it would rapidly drain its initial excess pore-pressure;
but since it is much more permeable than the rest of the domain, it constantly receives an
exchange flux from the matrix and act as a preferential path for flow.

The opposite happens when the permeability is assumed to be a function of the aperture.
Already at the early stages of the simulation, the top portion of the fracture closes stops
contributing to the drainage. Figure 3.9b compares the normalized pressures on the fracture
for this scenario. While there is a good overall agreement, the differences are more significant
than in the first scenario, specially during early stages at the top of the fracture, where the
permeability rapidly becomes very low. This is due to the different interface elements;
while the interface element used by Segura and Carol (2008) constrains the pressures on
the fracture to be equal to the average of the pressures at the matrix faces, the results
in DuMux with the triple-nodded interface element show that actually the pressure at the
fracture becomes slightly higher than the pressures at the matrix. Thus, the fracture not
only looses its drainage capacity, but is starts to transfer fluid to the matrix. Although these
small discrepancies exist, they have a clear explanation and the new classes in DuMux were
shown to be capable of handling coupled problems on fractured domains.

Elastoplastic material

Finally, the accuracy of the results obtained with the fixed-stress split was verified for a
hydro-mechanical problem where the material is elastoplatic and follows the Mohr-Coulomb
criterion. This validation was made by comparing the results from DuMux with those ob-
tained using Sigma/W by GeoStudio, a well-known commercial software that solves hydro-
mechanical problems with a fully coupled scheme. The problem is illustrated in Figure 3.10:
it consists in a square of size 0.1 m and initial confinement stress of 200 kPa, which is loaded
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Figure 3.9: Scheme of the consolidation problem on a domain with a vertical fracture by
Segura and Carol (2008) (left) and a) comparison of their results (lines) with the results
obtained in DuMux (dots) for the constant permeability case b) comparison of their results
(lines) with the results obtained in DuMux (dots) when the permeability is a function of
aperture.

Table 3.4: Simulation parameters and definitions used by Segura and Carol (2008) on their
test for the consolidation of a fractured domain.

Hydro-mechanical parameters Problem definitions
Quantity Unity Value Quantity Unity Value

Matrix Young’s modulus (E) kPa 1000 q kPa 10.0
Matrix Poisson’s ratio (ν) - 0.25 L m 1.0
Matrix Permeability (ks) m/s 1.16× 10−5

Matrix Biot’s coefficient (b) - 1.0
Matrix Biot’s modulus (M) kPa ∞

Fracture Normal Stiffness (Kn) kPa/m 20000
Fracture Tangent Stiffness (Kt) kPa/m 1000

Fracture Transversal Permeability (kt) m²/s 1.15× 10−6

Fracture Longitudinal Permeability* (kl) m²/s 1.15× 10−6

Fracture Biot’s coefficient (bf ) - 1.0
Fracture Biot’s modulus (Mf ) kPa ∞

by a vertical displacement that linearly increases from 0 to -0.01 m in 9000 seconds. Table
3.5 presents the problem definitions and input data. In both softwares, the mesh contains
25 quadrangular elements and the adopted time step is 9 s. For the fixed-stress split scheme,
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the estimator in (2.75) is calculated using Kdr
2D (Equation 2.80) for elastic behavior, and

then using Kdr
ep (Equation 2.81) if the current stresses reach the yield surface.

Figure 3.10: Test used to validate the hydro-mechanical coupling when the material is elasto-
plastic and modeled with the Mohr-Coulomb criterion.

Two values of permeability were tested: 1×10−8 m/s and 1×10−9 m/s. Figures 3.11 and
3.12 compare the results for the pore pressure and vertical displacement distributions along
the axis x = 0 and the time evolution of the pore pressure at the lower left corner. There
is a very good match between these results. Also, they show the stress paths of the sample
in terms of mean effective stresses and deviatoric stresses; these were calculated using the
volume averages of the major and minor principal stresses, σ1 and σ3. It can be observed
that the return algorithm is effective and returns the stresses to the Mohr-Coulomb surface
once yielding occurs.

Table 3.5: Simulation parameters and definitions used in the validation problem of Figure
3.10.

Hydro-mechanical parameters Problem definitions
Quantity Unity Value Quantity Unity Value

Young’s modulus (E) kPa 1000 L m 0.1
Poisson’s ratio (ν) - 0.25 uy m -0.01
Permeability (ks) m/s 1× 10−8 ; 1× 10−9 Time s 9000 s

Biot’s coefficient (b) - 1.0
Biot’s modulus (M) kPa ∞

Cohesion (c) kPa 5.0
Friction Angle (ϕ) ° 30
Dilation Angle (ψ) ° 0

3.2 Conclusions of the chapter
The computational tool used to perform the simulations is DuMux, an open-source code to
which major additions were made. These extensions address the following requirements for
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Figure 3.11: Comparison of the results obtained in Sigma/W (lines) and Dumux (dots) for
the poroplastic problem in Figure 3.10 using ks = 1 × 10−8 m/s. The lower right graph
presents the averaged stress path of the sample and the Mohr-Coulomb surface.

a hydro-mechanical multiscale simulation on fractured media that were not present in the
original code:

(a) Elastic and elastoplastic geomechanical problems in media containing interface ele-
ments;

(b) Hydro-mechanical coupling in media containing interface elements;
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Figure 3.12: Comparison of the results obtained in Sigma/W (lines) and Dumux (dots) for
the poroplastic problem in Figure 3.10 using ks = 1 × 10−9 m/s. The lower right graph
presents the averaged stress path of the sample and the Mohr-Coulomb yield surface.

(c) Imposition of periodic boundary conditions on media containing interface elements;

(d) Multiscale simulations.

The additions in (a) and (b) were validated against well-known closed-form solutions or
other verified numerical results. The additions (c) and (d) are verified in Chapters 4 and 7
after the theoretical review on which their algorithms are founded.
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Chapter 4

Imposing periodic boundary
conditions on fractured domains

Works on the application of multiscale methods traditionally use periodic boundary con-
ditions to solve the microscale’s numerical problem (e.g. Özdemir et al., 2008; Feyel and
Chaboche, 2000) even when the material is not periodic, since they are known to provide
a faster convergence for the effective properties as the sample size increases (Terada et al.,
2000; Miehe, 2003).

This chapter presents the methods that were implemented in DuMux to impose periodic
boundary conditions on fractured domains. As it can be seen in Figure 3.4, there are two child
classes dedicated to the periodic boundary conditions; they handle two possible scenarios:
periodic and non-periodic meshes. For both cases, the existence of interface elements required
some adaptions to the original methods.

4.1 Periodicity and stationarity
A material has a periodic geometry when it contains a pattern of heterogeneities that repeats
itself within a distance called the period. In this case, the REV reduces to the unit cell, and
its characteristic length lc (Equation 2.2) is equal to the period.

The theory of periodic homogenization shows that the periodicity of the geometry leads
to the periodicity of the physical quantities. Hence, it is unsurprising that in this case the
imposition of periodic boundary conditions in numerical upscaling problems leads to opti-
mum results. For truly periodic materials, the application of periodic boundary conditions
on one unit cell only yields the final effective properties, while linear Dirichlet and Neumann
boundary conditions require a sample with a certain number of unit cells to converge to this
same result (Svenning et al., 2016).

It may not be as intuitive that the periodic boundary conditions are also useful and
efficient when dealing with random media. As was mentioned in Section 2.1, a proper
REV for random media needs to follow the stationarity condition (Equation 2.5). Auriault
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et al. (2009) show that from a macroscopic point of view periodicity and stationarity are
equivalent because they both lead to the translational invariance of the averaged quantities.
It thus follows that the assumption of periodicity on random media is possible. Although
the structure is not really periodic, if the REV is representative of the average constitutive
behavior, it can be treated as so.

Actually, the imposition of periodic boundary conditions on random media is not only
theoretically logical, but is also known to provide a faster convergence of the mean value
of the equivalent properties. For example, Kanit et al. (2003) showed that the means of
the thermal and elastic properties of random composites do not change significantly with
size when periodic boundary conditions are employed, while linear Dirichlet and Neumann
boundary conditions need larger REVs for those values to stabilize. On the other side,
they observed a higher dispersion for the data obtained with periodic boundary conditions;
thus, they would require a larger REV if a criterion based on the standard deviation of the
properties was to be used. In the context of fractured media, a similar comparison was
made by Svenning et al. (2016), who also demonstrated that the average of effective elastic
properties converge faster for periodic boundary conditions, but did not make any remarks
on their standard deviations.

4.2 Imposition of periodic boundary conditions
As was mentioned in Section 2.2.1, periodic boundary conditions are applied by imposing
relationships between opposite sides of the REV. We divide here the REV boundary Γ into
a positive part Γ+ and a negative part, Γ− (Figure 4.1), so that Γ = Γ+ ∪ Γ−. Either Γ−

or Γ+ can be taken as the dependent boundary for which the variables will be described as
a function of the opposite, independent, sides via Equations (2.26)-(2.31). For convenience,
these equations are recalled below:

p̃(x+) = p̃(x−) (2.26)

ũ(x+) = ũ(x−) (2.27)

p(x+) = p(x−) +G . (x+ − x−) (2.28)

u(x+) = u(x−) +E . (x+ − x−) (2.29)

Q(x+) = −Q(x−) (2.30)

T (x+) = −T (x−) (2.31)
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where p and u are pressure and displacement vectors at a point, the superscript ∼
indicates their fluctuation components, the tensors G and E have their imposed macroscopic
gradients, and Q and T are flux and traction forces, respectively.

In the context of numerical homogenization using a finite element discretization, these
relationships are established between nodes on opposite boundaries of the mesh. Their
enforcement on the system can be done with the Lagrange multiplier method or directly
by constraint eliminations (Nguyen et al., 2012). This latter will be employed here. The
implications of periodicity on the solution of the problem will be shown for the systems of
general forms:

Keu = f (4.1)

Kfp = q (4.2)

where Ke and Kf are the tangent matrices for the mechanical equilibrium and flux problems
respectively, u is the nodal displacements vector, p is the nodal pressures vector, f is the
nodal forces vector and q is the nodal fluxes vector. The displacements and pressure vectors
can be decomposed as:

uT = {ui u+ u− up} (4.3)

pT = {pi p+ p− pp} (4.4)

where the superscript i denotes internal nodes, + and − denote nodes on Γ+ and Γ−,
respectively and p indicates nodes where the variables are prescribed. As a consequence, the
systems in (4.1) and (4.2) can be reorganized as:

Kii
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e Kpp
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 (4.6)

These systems have a solution if, at each node, either the pressures/displacements or the
fluxes/forces are prescribed. However, in the case of periodic boundary conditions, these
quantities are not directly prescribed at the boundaries, but the system becomes solvable
by adding additional relationships between opposite points. These relationships force the
fluctuation parts of the pressure and displacements at opposite nodes to be equal (Equations
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(2.26) and (2.27)), and the forces and fluxes to be equal but opposite in sign (Equations
(2.30) and (2.31)).

Two scenarios will be explored in the following sections. The first one is the imposition
of strong periodic boundary conditions on periodic meshes, that is, meshes where every node
on the boundary has a symmetric corresponding node on the opposite side (Figure 4.1).
Then, the method used here to impose periodic boundary conditions on non-symmetric
mesh geometries will be presented. For both cases, adaptions were made to the original
algorithms to account for the existence of interface elements. They will also be presented
in this Chapter, along with the additions made to DuMuX to allow for the imposition of
periodic boundary conditions on fractured domains in hydro-mechanical analyses.

4.2.1 Strong periodicity
The term strong periodicity means that relationships 2.28, 2.29, 2.30 and 2.31 hold point-wise
on the boundary Γ. The imposition of such constraints require the mesh to be periodic. As
a consequence, in the absence of discontinuities, the mapping between opposite boundaries
is straightforward since each node has one exact correspondent at the opposite side (Figure
4.1).

Figure 4.1: Example of a periodic mesh and definition of boundaries Γ+ and Γ−. Each pair
of symmetrical nodes such as 1 and 2 is constrained to have an equal fluctuation part ã of a
given physical quantity of interest a.

Here, the subscriptsm and s will refer to the master (independent) and slave (dependent)
boundaries Γm and Γs, which can be either Γ− or Γ+. The vector a will refer generally to
the primary variable vectors p and u.

Equations 2.28 and 2.29 define that the difference in the value of a primary variable a
between two opposite points of the REV comes from the imposed macroscopic gradients
only, since their fluctuation part is equal (Equations 2.26 and 2.27). These relationships are
defined for each pair of opposite nodes, providing a mapping that can be organized in matrix
form as:
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TaΓ = [[a]]s (4.7)

The matrix T has dimensions nΓs × nΓ, where nΓs is the number of nodes on Γs and nΓ

is the number of nodes on Γ. The vector aΓ is a vector containing the nodal values of a on
Γ; it has size nΓ and can be decomposed as follows:

aΓ
T = {as am} (4.8)

where as and am contain the nodal values of a on Γs and Γm, respectively. The vector
[[a]]s has size nΓs and contains the jumps in a across opposite boundaries of the REV, which
depend on the imposed macroscopic gradients only. For a slave node on Γs the component
[[a]]s is defined as:

[[a]]s(xs) = as(xs)− am(xm) = {∇Ma · (xs − xm)} (4.9)

where ∇Ma is the imposed macroscopic gradient of a, xs denotes the coordinates of the
slave node on Γs and xm gives the coordinates of its mirror (master) node at the opposite
side of the REV.

If i denotes a node on Γs whose mirror node on Γm is k, the component Tij is given by:

Tij =


1, if j = i

−1, if j = k

0, otherwise
(4.10)

Systems 4.5 and 4.6 are undetermined as they are because both the primary variables and
the right hand side vectors for the nodes on Γ are unknown. The introduction of the periodic
constraints makes the solution unique; this is achieved by: a) adding the lines corresponding
to the dependent or slave nodes to the lines of their master nodes and b) introducing the
constraint (4.8) into the system; although it is possible to remove the slave nodes completely
and condensate the system (e.g Nguyen et al., 2012; Reis and Andrade Pires, 2014), we opt
here to replace the lines of the slave nodes by their corresponding lines in (4.7); this avoids
changes in the way the original code of DuMux sets the system’s size. Also, it is necessary
to prescribe the unknowns of at least one node in the boundary. So, the primary variables
at the lower left corner node are prescribed and, as a consequence of the mesh periodicity,
the primary variables at all the other corner nodes are also prescribed and can be calculated
from their values at the master corner node.

After these manipulations, the systems 4.5 and 4.6 become:
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where Ip is the identity tensor of size equal to the number of corners and u and p are the
vectors of prescribed displacements and pressures, respectively. In the right hand vectors,
the null vectors on the third line come from the sums f s + fm and qs + qm; since boundary
tractions and fluxes are anti-periodic (Equations 2.30 and 2.31), these sums vanish.

Strong periodicity on domains with interface elements

Since opposite boundaries of zero-thickness interface elements have equal coordinates, it
is possible, for non-periodic geometries, that a node on the boundary has more than one
symmetric node on the opposite side of the REV. Thus, the imposition of strong periodicity
on fractured domains needs to consider the three different scenarios illustrated in Figure 4.2,
where the master boundary is considered to be Γ−:

(a) Both the opposite sides have an intercepting interface element at the same position; in
this case, the masters of matrix nodes M1 and M2 are nodes M3 and M4, respectively,
and the master of fracture node F1 is F2;

(b) A node M7 on the dependent side is symmetric to the interface nodes M5, M6 and F3

that intercept the master boundary; in this case, M5 is the only master node. The
primary variables in M6, M7 and F3 are constrained to be a function of M5 according
to (4.8). The fluxes and forces at the slave nodes are distributed to the master node,
so their anti-periodicity leads to: qM5 + qM6 + qM7 + qF3 = 0 and fM5 + fM6 + fM7 = 0.
Note that the fracture node F3 is not used in the mechanical problem.

(c) The nodes M9, M10 and F4 at the dependent boundary are symmetric to a matrix
node M8 only; in this case, the variables at M9, M10 and F4 are equal and are mapped
from M8 via (4.9) and (4.10). The anti-periodicity of fluxes and forces lead to qM8 +

qM9 + qM10 + qF4 = 0 and fM8 + fM9 + fM10 = 0.
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Figure 4.2: Three possible scenarios for periodic meshes containing interface elements: a)
periodic fracture b) fracture on the independent side corresponding to a matrix node on
the dependent side and c) matrix node on the dependent side at the same position than a
fracture on the independent side.

The practical changes of these considerations on systems 4.11 and 4.12 is that there are
interface nodes on the master side that will be treated as slave nodes when building the
system.

Note from cases b) and c) that pressure and displacement discontinuities at the bound-
aries are prevented when the geometry of the fractures is not periodic. The prevention of
displacement discontinuities was reported by Svenning et al. (2016) to significantly overesti-
mate the equivalent stiffness for smaller sizes of the REV. The method that will be presented
in the following section does not prevent discontinuities, so it may be more efficient for non-
periodic fracture geometries, and is specially useful for non-conforming meshes.

4.2.2 Weak periodicity: the mortar method
Although it is possible to generate periodic meshes on non-periodic materials, this task
becomes harder when the geometry of the heterogeneities becomes complex, as is often
the case with DFNs. To gain flexibility in the homogenization of complex microstructures,
several different techniques were developed to impose periodic boundary conditions on non-
periodic meshes. They include the polynominal interpolation method by Nguyen (2014)
and the technique proposed by Larsson et al. (2011a), which is based on an independent
discretization of the boundary tractions to enforce weak periodicity; this latter was adapted
by Svenning et al. (2016) to upscale the mechanical properties of fractured domains.

Another class of technique is the mortar method, which was already well established for
contact problems before it was applied by Reis and Andrade Pires (2014) to the imposition
of periodic boundary conditions; a later work presents a more detailed description of the
implementation of these mortar periodic conditions (Rodrigues Lopes et al., 2021). We will
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first present this method without considering the existence of fractures; then, the modifica-
tions proposed here to incorporate triple-nodded interface elements in the problem will be
detailed.

The mortar method is used to enforce a weak continuity across the interface of non-
conforming meshes, instead of the point-wise continuity that arises naturally from conforming
meshes. This also applies to the imposition of periodicity, which is weak in the sense that
it does not hold point-wise, while the boundary integral of the pressures and displacements
will still result on the imposed macroscopic gradients.

The first step to apply the mortar method is the definition of the non-mortar (dependent)
side and the mortar (independent) side, which can be chosen to be either Γ+ or Γ−. The
subscripts m and n that will be used below refer to the mortar and the non-mortar sides,
respectively.

We consider here a vector a that is a general representation of the pressure and displace-
ment vectors in (4.5) and (4.6) (u and p). The vector a can be decomposed in a vector ai

for the internal nodes and a vector aΓ for the boundary nodes. This latter can be further
decomposed as:

aΓ = {am an} (4.13)

The component a represents either a fluid pressure or a directional displacement. Recall
from (2.16) and (2.17) that a is composed of a linear part al, calculated from the imposed
macroscopic gradients, and a fluctuation part ã, that is:

a = ã+ al (4.14)

We will first work with the imposition of the weak periodicity of ã (Equations (2.26) and
(2.27)), and then will derive constraints in terms of a.

The enforcement of periodic boundary conditions requires the integration domains of
opposite mortar and non-mortar sides to be compatible. Here this is achieved by the con-
struction of virtual integration lines (Reis and Andrade Pires, 2014). As illustrated in Figure
4.3 for bi-dimensional problems, a virtual integration line is built for each pair of opposite
sides of the REV: it contains the projection of all of their nodes.

Consider the functions πn and πm that project variables on the non-mortar and mortar
sides, respectively, on the integration line Γi. The objective of the mortar method is to
enforce weakly a null jump of the variable between the mortar and non-mortar boundaries
by means of the following condition:∫

Γi

(πn(ã
n)− πm(ã

m))ψndΓi = 0 (4.15)

where ψn is a test function contained in the space of non-mortar elements.
The integral (4.15) is computed using the Gaussian quadrature rule. The local coordi-

nates on the virtual line, on the mortar and on the non-mortar sides will be denominated
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Figure 4.3: Construction of the virtual integration lines, in green, for two-dimensional prob-
lems and mapping of an integration point ωp of the virtual line into the mortar and non-
mortar boundaries.

ω, ζ and ξ, respectively. Consider a Gauss point ωp on the integration line that can be
mapped into the local coordinates ξ(ωp) and ζ(ωp) located on the segments δn and δm of the
non-mortar and mortar sides, respectively (Figure 4.3). The mapping functions in (4.15)
assume the following forms at ωp:

πm(ã
m(ωp)) =

∑
j∈dδm

Nm,j(ζ(ωp))ãj (4.16)

πn(ã
n(ωp)) =

∑
j∈dδm

Nn,j(ξ(ωp))ãj (4.17)

where Nm and Nn are the finite element shape functions on the mortar and non-mortar
spaces, respectively and ãj is the value of ã at node j.

Considering its finite element approximation, the mortar condition (4.15) can be written
in matrix form as:

Anãn −Amãm = 0 (4.18)

where:

An
ij =

∑
ωp∈Γi

Mi(ξ(ωp))Nj(ξ(ωp))|Jp|wp (4.19)

Am
ij =

∑
ωp∈Γi

Mi(ξ(ωp))Nj(ζ(ωp))|Jp|wp (4.20)

and M are Lagrange multipliers selected to be the test functions ψn in (4.15), Jp is the
Jacobian matrix evaluated at ωp and wp is the integration weight at ωp.
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The non-mortar variables ãn can then be written in terms of the mortar variables ãm as:

ãn = (An)−1(Amãm) = Aãm (4.21)

where A = (An)−1(Am). There are some possible formulations for the Lagrange multipliers,
but Reis and Andrade Pires (2014) employ the dual shape functions that were originally
incorporated to the mortar method by Wohlmuth (2000); they are presented in Table 4.1
for linear two-dimensional elements. These functions are convenient because they are such
that: ∫

Γn

Mi(ξ)Nj(ξ)dΓn = δij

∫
Γn

Nj(ξ)dΓn (4.22)

which makes An a diagonal matrix, and thus easily inversible. The corner nodes that are
located at non-mortar segments are prescribed to ã = 0. As a consequence, the Lagrange
multipliers need to be adapted for segments that contain these prescribed corner nodes; the
modifications proposed by Rodrigues Lopes et al. (2021) are also presented in Table 4.1.

Table 4.1: Dual functions for the Lagrange multipliers M when linear two-dimensional
elements are employed and ξ ∈ [−1, 1].

Regular equations M1 =
1
2
(1− 3ξ) M2 =

1
2
(1 + 3ξ)

Prescribed corner at ξ = −1 M1 = 0 M2 = 1
Prescribed corner at ξ = 1 M1 = 1 M2 = 0

The coordinates xc of the corner node that joins the two existing non-mortar boundaries
in a bi-dimensional REV can be taken as the reference point to calculate the linear part al
of the variable a as:

al(x) = ∇Ma(x− xc) (4.23)

If the non-mortar boundary is Γ+, this reference point is the upper right corner; if it is
Γ−, this reference point is the lower left corner.

Since the objective here is to solve the vector a = p,u, (4.14) can be inserted into (4.21)
to obtain the following relationship:

an −A(am − am
l )− an

l = 0 (4.24)

or
an −Aam = [[al]]Γ (4.25)

where [[al]]Γ = an
l −Aam

l .
Now consider the force and flux vectors f and q, which will be generally represented by

b. In order to impose the anti-periodicity of these variables (Equations 2.30 and 2.31), the
mortar condition becomes:
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∫
Γi

(πΓn,δi
(bn) + πΓm,δi

(bm))ψndΓi = 0 (4.26)

which results in the following relationship between the mortar and non-mortar flux and force
vectors:

bm +ATbn = 0 (4.27)

The component Aij is a coefficient that will be used to distribute part of the fluxes or
forces at the slave node i to the master node j. Equations 4.25 and 4.27 can be added to
systems (4.6) and (4.5) as constraints that make their solutions unique. Similarly to what
was done in the previous section, the dependent (non-mortar) nodes have their corresponding
lines in the system replaced by (4.25). As for their corresponding master nodes, they have
ATbn added to their lines, so (4.27) is enforced:
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(4.29)

Domains with interface elements

When interface elements exist at the mesh boundaries, some considerations have to be
made about the imposition of periodic boundary conditions using the mortar method.

In the case of the mechanical problem, the method can be applied using the original
formulation described above. The mapping of the integration points on the virtual line
naturally allows for displacement discontinuities when interface elements are present on any
side of the REV. Contrarily to what happens in the strongly periodic case, no enforcement
needs to be made regarding the displacement jumps across the boundary interfaces. The
mapping of master and salve nodes through the virtual integration line naturally causes the
duplicated nodes at a fracture to have different masters, so their primary variables will have
different values.

The case of the flux problem here is different because it uses the middle interface elements
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to evaluate the pressures at the fractures. We propose some adaptions to make it solvable.
The pressure in any fracture node at the boundary is mapped from the mortar matrix

nodes through:

pΓ
f −αpm − [[pf ]]Γ = 0 (4.30)

The subscript f indicates fracture and the superscript Γ indicates that the node is located
on the boundary; α is a matrix of dimensions nf × nm, which are the number of fracture
nodes on the boundary and the number of nodes on the mortar boundary, respectively.

Equation 4.30 will always be used to enforce the pressure at the fracture nodes to be
equal to the average of the pressure at their coupled matrix nodes. This enforcement will
have different implications on α depending on the fracture being on the mortar or on the
non-mortar side, as will be discussed below. Prescribing the fracture to have the average of
the pressure at the matrix nodes was suggested by Segura and Carol (2004) as a resource to
consider transversal pressure jumps across double-nodded interface elements. They showed
that this is a good assumption when the fractures permeability is not so low that they will
act as flow barriers. While they make this enforcement for the entire fractured domain,
here it is used only at the boundary fracture nodes, so its impact on the global solution is
expected to be less significant.

The weak enforcement of the anti-periodicity of fluxes also requires the fluxes at the
boundary fracture nodes to be distributed to the mortar nodes. We define qm

t as the vector
containing the fluxes received by the mortar nodes from the fractures and qf

Γ as the vector
of fluxes at the boundary fracture nodes. They are related by:

qm
t = αTqΓ

f (4.31)

So, for fractured domains containing lower-dimensional interface elements, the anti-
periodicity condition in (4.27) becomes:

qm +ATqn + qm
t = 0 (4.32)

In (4.32) the coefficients in α are used to equally distribute the fluxes in the fracture
among its coupled matrix nodes; if these nodes are on the non-mortar side, this flux ends
up being redistributed to their master nodes.

We continue with the definition of the coefficients in α. In the following, the space Ωf

contains the fracture nodes and the space Ωm,i contains the pair of matrix nodes coupled to
a fracture node i. Two possibilities are considered:

(a) If the fracture node is on the mortar side:

∀i ∈ Ωf ∩ Γm αij =

{
1
2
, if j ∈ Ωm,i

0, otherwise
(4.33)
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(b) If the fracture node is on the non-mortar side, the quantities that would be distributed
to their coupled matrix nodes will actually be distributed to the pertinent mortar nodes
using the coefficients of matrix A in (4.21); so:

∀i ∈ Ωf ∩ Γn αik =
1

2

∑
j∈Ωm,i

Ajk (4.34)

To incorporate these additional considerations in System 4.29, we use the following de-
composition of the pressures at the boundary (pΓ):

pΓ = {pm
b pn

b pΓ
f} (4.35)

where the subscripts b and f denote bulk and fracture, respectively, and the superscripts are
used to identify the location of the nodes. After the imposition of constraints (4.21), (4.27),
(4.30) and (4.32), the system for the flux problem containing lower-dimensional elements
becomes: 
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(4.36)

where
J =

[
Jmi Jmn Jmm Jmf Jmp

]
= Km +ATKn +αTKfb (4.37)

and If is the identity matrix of size the number of boundary fracture nodes and Kfb is
the tangent matrix originally assembled to the boundary fracture nodes, that is, before the
periodicity constraints are added.

4.2.3 Implementation in DuMux

The classes added to DuMux to manage the implementation of the periodic boundary con-
ditions have three main functions that need to be called:

1. The function called setPeriodicMap maps corresponding nodes, in the strongly peri-
odic case, and builds the virtual integration lines and the mapping matrices in (4.21)
and (4.30), in the case of the mortar periodic boundary conditions. This function is
called after the FV mesh is initiated;

2. The function extendJacobianPattern adds new pairs of rows and columns to the
tangent matrices Ke and Kf . The pattern of these matrices is configured to store only
non-zero entries by identifying which nodes depend on each other because of the mesh
connectivity; as the periodic boundary conditions add new dependency relationships
between nodes, this original pattern needs to be extended before changing the system.
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3. The function enforceSystemPeriodicConstraints needs to be called at each itera-
tion after the assembly of the system, so it can be modified by adding the periodicity
and anti-periodicity constraints that form systems (4.12), (4.11), (4.28), (4.29) and
(4.36).

4.3 Verification of the properties of the boundary con-
ditions

A few tests were made in fractured samples to verify the properties of the three types of
boundary conditions mentioned in Section 2.2.1: Neumann, linear Dirichlet and periodic.
The permeability and stiffness tensors were obtained for the unit cell of a periodic fractured
media and for several REVs of random fractured media. The Neumann boundary conditions
are the no-flow restrictions in Figure 2.4 for the flux problem and the constant tractions
in Figure 2.5 for the mechanical problem; the Dirichlet boundary conditions are the linear
pressures in Figure 2.2 for the flux problem and the linear displacements in Figure 2.3 for
the mechanical problems.

4.3.1 Unit cell of periodic media
The fractured domain in Figure 4.4 is assumed to be a unit cell of a periodic media. The
permeability and stiffness tensors were obtained for a grid of 1 x 1 to 40 x 40 unit cells
with Neumann, linear Dirichlet and mortar periodic boundary conditions. In this latter, Γ+

was taken as the mortar boundary, and the upper right corner node was prescribed to zero
pressure and displacements. The mesh employed for one unit cell is presented in Figure 4.4,
as well as one periodic media composed of 5 x 5 cells.

Figure 4.4: Geometry adopted for the experiments on fractured periodic media. On the left
side, the unit cell, with fractures in blue, and its mesh are presented; on the right side, there
is an example of periodic grid containing 5 × 5 unit cells.
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The permeability tensor was obtained for conductive and blocking fractures. In both
cases the permeability of the fractures is equal to 3.5× 10−10 m2; but for the first tests the
matrix permeability is 1.0× 10−15 m2 while it is as high as 1.0× 10−9 m2 in the second ones,
so the fracture will act as a barrier.

Figure 4.5 shows the pressure fields for the unit cells subjected to an injection in the x-
direction with different boundary conditions; this is achieved by imposing a pressure-gradient
in the x-direction for the Dirichlet and periodic boundary conditions and by prescribing a
unit flux in the x-direction for the no-flow boundary conditions.

Figure 4.5: Pressure fields of the fractured unit cell for: a pressure gradient in the x direction
of 1 kPa/m imposed with linear pressure (left) and periodic (center) boundary conditions
and a unit flux of 1e-6 m/s in the x direction imposed with no-flow boundary conditions
(right). The intrinsic permeability is 1.0 × 10−15 m2 for the matrix and 3.5 × 10−10 m2 for
the fractures.

For the periodic boundary conditions, there is a higher localized gradient in the upper
portion of the mortar side that is symmetric to the fracture; this results from the anti-
periodicity of flux, which imposes the flux at the fracture to be equal to the flux at its
opposite matrix node. Indeed, if this cell is repeated periodically, that would be the effect
on the pressure gradient in the vicinity of the tip of a conductive fracture. Because of the
existence of this non-periodic fracture node, the pressure field for the same gradient imposed
with linear Dirichlet boundary conditions is different and overestimates the velocity of the
injection in this fracture. The pressure fields for the no-flow boundary conditions can not
be directly compared because this cell is subjected to a different pressure gradient, but the
symmetric pattern in Figure 4.5 indicates that both fractures at the upstream boundary
have the same effect; this is not the case when looking at the bigger picture, since the
upper fracture node should not have the same drainage capacity for not being periodically
connected to other fracture.

Figure 4.6 shows the pressure fields on the unit cells subjected to a flux in the y-direction
for the blocking fracture case. Again, the linear pressure and no-flow boundary conditions
can not predict the whole picture using one unit cell only, since they divide the media in
three independent blocks as if no connectivity was present between them. The periodic
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boundary conditions are more realistic; they provide smoother pressure gradients, since the
matrix blocks are actually interconnected when the periodic pattern is considered.

Figure 4.6: Pressure fields of the fractured unit cell for: a pressure gradient in the y direction
of 1 kPa/m imposed with linear pressure (left) and periodic (center) boundary conditions
and a unit flux of 1×10−14 m/s in the y direction imposed with no-flow boundary conditions
(right). The intrinsic permeability is 1× 10−5 m2 for the matrix and 3.5× 10−10 m2 for the
fractures.

Following Svenning et al. (2016), we present here the comparison of the constitutive
tensors in terms of their eigenvalues. Figures 4.7 and 4.8 present the largest and smallest
eigenvalues of the permeability tensor when imposing the three types of boundary condi-
tions to grids containing increasing numbers of unit cells. The results agree with what is
theoretically expected, since the periodic boundary conditions result in the final effective
properties for one unit cell, while Dirichlet and Neumann boundary conditions give upper
and lower bounds, respectively; also, these latter eventually converge to the values obtained
with periodic boundary conditions.

Figure 4.7: Smallest and largest eigenvalues of the upscaled permeability tensor K for the
unit cell in subjected to linear pressure, periodic and no flow boundary conditions. The
intrinsic permeability is 1e-15 m2 for the matrix and 3.5e-10 m2 for the fractures.
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Figure 4.8: Smallest and largest eigenvalues of the upscaled permeability tensor K for the
unit cell in Figure 4.4 subjected to linear pressure, periodic and no flow boundary conditions.
The intrinsic permeability is 1e-5 m2 for the matrix and 3.5e-10 m2 for the fractures.

Figure 4.9 presents the smallest and largest eigenvalues for the upscaled stiffness tensor
when using the elastic properties in Table 4.3. As expected, the periodic boundary condi-
tions result in the final effective properties for only one unit cell, while linear displacement
boundary conditions converge from above and constant traction boundary conditions con-
verge from below. The linear displacement boundary conditions force the fractures to have
zero displacement discontinuities at the boundaries; this reduces the fractures potential to
slip under shear, which results in an overstiffness for small numbers of unit cells. In the
case of the constant traction boundary conditions, the absence of displacements restrictions
makes the mobilization of isolated blocks to be overestimated.

Figure 4.9: Smallest and largest eigenvalues of the upscaled stiffness tensorC for the unit cell
in in Figure 4.4 subjected to linear displacements, periodic and constant traction boundary
conditions.
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4.3.2 Random media
The permeability and stiffness tensors were also obtained for 100 generations of the fracture
network described in Table 4.2, which is the same one tested by Yang et al. (2014) to upscale
elastic properties. The parameters of the intact rock and the fractures are described in Table
4.3. Five sizes that range from 4 to 20 m were tested.

Table 4.2: Statistical parameters used to generate the random fractured samples to be tested
with three different boundary conditions: linear Dirichlet, Neumann and periodic. From
Yang et al. (2014).

Dip orientation Length Density
Type Mean Std. Deviation Type Mean(m) Std. Deviation (m) (1/m2)

Set 1 Normal 150 10.0 Normal 4 1 0.16
Set 2 Normal 50 7.0 Normal 3 0.7 0.25

Table 4.3: Elastic properties and permeability for the intact rock and the fractures used to
compare linear Dirichlet, Neumann and periodic boundary conditions.

Intact rock Fracture
E (GPa) ν km(m

2) Kn (GPa/m) Kt (GPa/m) kf (m
2)

50.0 0.25 1.0× 10−14 50.0 10.0 3.5× 10−10

Figure 4.10 shows that the mesh and the geometries are far from being periodic.
A small maximum element area was selected to avoid mesh size effects. As the the mortar

method enforces periodicity weakly, the resultant nodal values at the boundaries are sensitive
to the size of the elements. Also, if the mesh densities at opposite sides are significantly
different, the choice of the mortar and non-mortar boundaries impacts the results. To avoid
these effects, we performed mesh tests on ten random samples. The maximum element area
was selected based on the convergence of the upscaled properties with mesh size. Also, for
the selected mesh size, the upscaled properties were not influenced by the choice of Γ+ or
Γ− to be the mortar size.

In the tests performed on all the one hundred DFNs, the boundary Γ+ was taken as the
mortar side, so the upper right corner node is prescribed to zero pressure and displacements.

Figures 4.11, 4.12, 4.13 and 4.14 show the average value and the COV of the smallest and
largest eigenvalues for the permeability and the stiffness tensors for different REV sizes. For
both the mechanical and hydraulic tests, the same trend repeats: the Neumann, periodic
and Dirichlet boundary conditions provide lower, intermediate and upper bounds for the
average of the properties, respectively. The COVs are also different for smaller sizes, but
they converge to approximately the same value faster than the average properties.
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Figure 4.10: Example of one of the DFNs generated to compare the elastic and permeability
tensors obtained with three types of periodic boundary conditions: linear Dirichlet, Neumann
and mortar periodic. On the right side, the mesh generated for a maximum element area
calibrated after convergence tests.

Figure 4.11: Average eigenvalues of the equivalent permeability tensor K for 100 realizations
of the fracture network describe in Table 4.2 when using linear pressure, periodic and no-flow
boundary conditions.

4.4 Conclusions of the chapter
In this chapter, we presented the methods used to impose periodic boundary conditions in
flow and equilibrium problems on fractured domains. They require the addition of constraints
of periodicity of the primary variables and anti-periodicity of fluxes and forces to the original
systems of equations.

Two methods were implemented to manage the imposition of periodic boundary condi-
tions. The first one requires a periodic mesh to impose a strong periodicity on the domain.
Adaptions were proposed to deal with non-periodic geometries containing interface elements;
they restrain the discontinuities in these cases. The second method is the mortar element
method, which has been recently applied to impose weak periodicity on heterogeneous do-
mains. To our best knowledge this method has not been applied to media containing triple-
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Figure 4.12: Coefficients of variation of the equivalent permeability tensor K for 100 real-
izations of Network 1 when using linear pressure, periodic and no-flow boundary conditions.

Figure 4.13: Average eigenvalues of the equivalent stiffness tensor C for 100 realizations
of Network 1 when using linear displacements, periodic and constant traction boundary
conditions.

nodded interface elements, so we proposed modifications to use them in the flux problem.
These new implementations were applied in the upscaling of elastic properties and per-

meability of periodic and random media. Linear Dirichlet, periodic and Neumann boundary
conditions were compared. The results agree with what is reported in the literature, which
is that the periodic boundary conditions result in an intermediate value for the equiva-
lent properties, while Dirichlet and Neumann boundary conditions provide upper and lower
bounds, respectively. Also, the properties obtained by the different boundary conditions
become closer as the REV size increases.

The periodic boundary conditions are not necessarily more efficient in the sense of re-
quiring smaller REVs. The COVs obtained for the equivalent constitutive tensors converge
to similar values for all the boundary conditions types; so, if a variability-based criterion
such as the COV is to be used, the REV size for the tested DFN would be similar for all
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Figure 4.14: Coefficients of variation of the equivalent permeability tensor C for 100 realiza-
tions of Network 1 when using linear displacements, periodic and constant traction boundary
conditions.

types of boundary conditions.
However, the average values obtained with periodic boundary conditions converge faster

to the final effective average properties. Also, for periodic domains the periodic boundary
conditions do provide more realistic fields of the studied quantities. So, they are more
efficient for the applications that will follow, for which a REV for fractured random media
will be considered to periodically repeat itself in the macroscopic domain.
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Chapter 5

Statistics-based methodology to select
the REV size

Although the fractures measured in the field can be grouped in sets according to their
common features and geological history, their geometries always present a variability. As a
consequence of the stochastic nature of natural fractures, the hydro-mechanical properties
taken from selected samples are also variable, and this should be considered when defining
the REV of naturally fractured reservoirs.

A rigorous definition of the REV of random media should be based on the criterion of
spatial stationarity (Equation 2.5), which means that the local mean of a property must be
invariant for different samples of same size. Of course, the mean value of a property taken
from random media is never really invariant, but it can be considered to be approximately
constant when its variance is low. Thus, both the mean value and standard deviation of the
hydro-mechanical properties are considered to define the REV of fractured media when a
statistical approach is used; the coefficient of variation (COV) is one of the most popular
criteria to define a minimum size.

Most of the existing works that define the REV of fractured media based on the COV
of the equivalent property do not use a large number of samples due to computational
limitations and to the difficulty of automatically generating meshes when complex DFNs
exist. Also, many of the existing results lack generality and draw conclusions for a specific
fracture network measured in the field. Another issue is that the COV does not account for
the uncertainty associated to the number of generated REVs, although the calculated mean
and standard deviations are less reliable as this number gets smaller.

These issues were addressed in the paper entitled General statistics-based methodology
for the determination of the geometrical and mechanical Representative Elementary Volumes
of fractured media, published in the Rock Mechanics and Rock Engineering journal (Loyola
et al., 2021). This work introduced a statistics-based methodology to calculate the geometri-
cal and mechanical REV sizes of fractured media. The methodology uses the Central Limit
Theorem (CLT) to simplify and generalize the procedure of defining the REV based on a
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variability-related criterion.
This chapter is dedicated to the presentation of this methodology and of the results

obtained in Loyola et al. (2021) for the geometrical and mechanical properties of fractured
media. Then, Section 5.5.4 explores the applicability of this methodology to define the REV
for permeability considering two scenarios: constant and variable aperture.

5.1 Sampling of the mean and the Central Limit The-
orem

Consider a variable x that follows a certain probability distribution f(x). In most practical
applications, the true mean µx and the true standard deviation σx of x are unknown and
need to be estimated. For that, a sample Sx must be taken from the population of x, which
can be generally represented as:

Sx = {x1, x2...xn} (5.1)

Note that Sx is a sample of samples: it contains the samples x1...xn, but, at the same
time, it is a sample of the many possible sets of n values that could be taken from the
population. The number n is called its sample size. From now on, the word sample will refer
to a set Sx such as the one in (5.1); the term sample size will refer to the number n of values
of x in Sx and the term component or individual sample will refer to a value such as xi.

The average x and the standard deviation s of the components of Sx provide an estimator
for the true mean value and the standard deviation of x . If various samples Sx of size n are
repeatedly taken, and for each of them the average x is calculated, it is possible to obtain
the distribution f(x). The Central Limit Theorem (CLT), which is the second fundamental
theorem of statistics, states that as n −→ ∞ the distribution f(x) approaches a normal
distribution with mean µx and standard deviation σx , where:

µx = µx (5.2)

σx =
σx√
n

(5.3)

The CLT works when most of the random variables are independent and when important
outliers are not present. It is a powerful theorem because it works for variables that follow
any distribution; thus, even if x follows a distribution that is far from normal and that may
not be described by any known mathematical function, µx will tend to a normal distribution
that is ruled by Equations 5.2 and 5.3. Normality can be observed from a certain sample size.
A general rule of thumb states that when n = 30, a normal distribution can be observed.
However, this size actually depends on the variable’s distribution f(x): it can be much bigger
if f(x) is far from a normal distribution, or significantly smaller if f(x) is nearly normal.
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The CLT does not apply only to the average value, but to any sum Ax of the type:

Ax =
1

T

n∑
i=1

xi (5.4)

where T is an arbitrary scaling parameter. In this case, the distribution f(Ax) tends to be
normal with mean µAx and standard deviation σAx , where:

µAx =
n

T
µx (5.5)

σAx =

√
n

T
σx (5.6)

If Ax is the average value, T = n and Equations 5.5 and 5.6 become Equations 5.2 and
5.3, respectively. Note that Equation 5.3 states that the standard deviation of the sample’s
mean decreases when the sample size increases. This is intuitive, since bigger samples are
expected to generate estimations that are closer to the true mean.

Based on the normality of the distribution of the sample’s mean, the following confidence
interval can be built for the average value x, estimated from N samples Sx:

x± t∗α,nd

s√
N

(5.7)

where t∗α,nd
is the t-value associated to the confidence level α and the number of degrees

of freedom nd, where nd = Nx − 1 and Nx is the number of samples used to estimate the
average. For a degree of confidence α = 0.05, for example, a 95% confidence interval is built
for the calculated average x, which means that there is a 95% chance that the true mean is
inside this interval.

5.2 Sampling theory applied to REVs
A parallel can be drawn between REVs and the concepts presented in the previous section.
The REV of a fractured rock mass can be regarded as a sample of fractures. In this per-
spective, the sample size is then the number of fractures nf in the REV, which in turn is
directly related to the volume V of the REV as:

nf = V

ns∑
s=1

P0
(s) = V P0 (5.8)

where ns is the number of fracture sets, P0
(s) and P0 are the expected fractured density of

the sth set and of the network. The fracture density is the number of fractures per unit
volume/area, depending on the problem being 2D or 3D.

The statistical theory of the sampling of means provides meaningful insights for studies
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on REVs because the REV, by definition, must be representative of the mean constitutive
behavior. Thus, a rigorous choice of the REV must be based on the accuracy of the average
of the homogenized properties. This was acknowledged by several works on fractured rocks
that select the REV based on the COV, which measures variability with respect to the
average.

The existing works on fractured media, however, do not propose any general rule for the
relationship between REV size and variability. Also, although the COV is a logical criterion,
it does not account for the uncertainty related to the number of simulated samples. This
would be an important consideration since the number of simulations may face computational
limitations. For instance, several works on the REV for mechanical properties of fractured
media that use Monte Carlo Simulations (MCS) do not use a large number of realizations:
e.g. Min and Jing (2003) and Esmaieli et al. (2010) used no more than ten simulations per
size to define the REV based on DEM simulations.

In order to account for the number of tested REVs, the COV can be replaced by a
precision error εrel related to the confidence interval in Equation 5.7 which is obtained by:

εrel =
εabs
x

= t∗nd,α
s(V )

x
√
N

(5.9)

The confidence interval of the average was already suggested by Kanit et al. (2003) as a
criterion to select the REV for composites. Note that the standard deviation s is a function
of the volume V . In order to define this function, the authors perform a large number of
simulations for different REV sizes. Then, if a desired error and a number of realizations
N is set, a volume V can be calculated. The REV can be defined as the volume for which
one simulation (N = 1) is required to obtain a desired precision error. If a 95% degree of
confidence is set, this would mean that a REV with the calculated size would have a 95%

chance of returning a value for a property that does not differ from the true mean of this
property by more than the set error. Alternatively, one can impose a volume and calculate
the number of realizations N required to attend the error criterion. This methodology can
be readily applied to fractured media studies, as was done by Caspari et al. (2016). The
methodology suggested in Loyola et al. (2021) simplifies this procedure by taking advantage
of the CLT, as will be explained below.

Consider a property Z of a fractured rock mass. For two different volumes V1 and V2,
Equation 5.2 states that for both volumes the average Z has the same mean value and
Equation 5.3 can be used to establish the following relationship:

σZ(V2) = σZ(V1)

√
nf (V1)

nf (V2)
(5.10)

The standard deviation σZ(Vi) is estimated by s(Vi), which is the standard deviation of
the average Z taken from N REVs of volume Vi. The number of fractures nf corresponds to
the sample size n.
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By replacing the number of fractures in volumes V1 and V2 for (5.8) and considering that
their P0 is approximately the same, (5.10) can be reformulated as:

σZ(V2) = σZ(V1)

√
V1
V2

(5.11)

Equations 5.10 and 5.11 show that it is possible to estimate the standard deviation of Z
associated to any REV size by obtaining sZ for one reference volume (V1) only, given that
this reference volume contains a sample size large enough for Z to follow an approximately
normal distribution.

A first important property for which Equations 5.10 and 5.11 apply is the crack tensor
F in (2.34) and (2.36). All of the components in the fracture tensor, including its first
invariant, are a sum Sf of the form:

Sf =

nf∑
k=1

Y (k)

V
(5.12)

where Y (k) is a variable obtained from the product of geometrical features of the fracture
k such as the normal vector components and area, and V is the volume of the rock mass,
which can be replaced by (5.8) to obtain:

Sf = Fij =

nf∑
k=1

Y (k)P0
(V )

nf

=

nf∑
k=1

X(k)

nf

(5.13)

Thus, each component of the fracture tensor is the average of a variable X that contains
information on the geometry of a fracture and on the density over the domain. As such,
regardless of what the distribution of Y is, the fracture tensor components tend to a normal
distribution, as stated by the CLT, and their mean value and standard deviation can be
estimated by Equations 5.2 and 5.3. Also, Equations 5.10 and 5.11 can be used to predict
the standard deviations of the fracture tensor components for any volume if the standard
deviations for one volume only are known.

There are two main arguments that sustain the idea that the CLT also applies to the
hydromechanical properties. Firstly, these properties are calculated from volumetric averages
of the stresses and strains (Equation 2.10) and of the pressure gradients and fluxes (Equation
2.15), which, for being averages, theoretically follow the CLT.

A second argument is that there is a reported strong relationship between the hydrome-
chanical properties and the fracture tensor. Functions that relate mechanical and hydraulic
properties to the components of the fracture tensor were derived by Oda et al. (1984) and
Oda (1985), for example. As long as these functions are continuous, they should respect the
Delta Method, which is a well known theorem in statistics that states that any differential
function g(Y ) of a variable Y that has a limiting normal distribution also tends to a normal
distribution. The Delta method uses a Taylor expansion truncated at the second term to
calculate the standard deviation of g(Y ), whose limiting normal distribution is the following:
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g(Y ) ≈ N

(
g(µY ), (g

′(µY ))
2σ

2
Y

nY

)
(5.14)

where µY , σY and nY are the mean value, standard deviation and sample size of Y . As the
function g becomes closer to linear and the sample size becomes bigger, the truncated Taylor
expansion is a better estimation for g and its distribution converges faster to (5.14).

According to the Delta method, if the hydro-mechanical properties are a function of
the fracture tensor, they also theoretically tend to a normal distribution. Of course, these
properties depend also on other factors, such as the boundary conditions applied to the
simulated volume, the current state of the sample and other geometrical aspects that are
not captured by the crack tensor. Nonetheless, the following sections will show that the
hypothesis of normality and Equations 5.10–5.11 work well for different DFNs and can be
used to simplify the definition of a REV for fractured media while accounting for its stochastic
nature.

5.3 Methods
This section presents the methodology employed by Loyola et al. (2021) to obtain the geo-
metrical and mechanical REV of two fracture networks. A similar approach was later used in
the present work to estimate the REV for permeability estimation, with the main differences
being the number of tested REVs, a change in the fracture intensity of one of the networks
and the computational tool used to solve the numerical problems. While Loyola et al. (2021)
solved the mechanical problems with a FEM code whose functions were later transferred in
part to DuMuX , the equivalent permeability was calculated in this chapter using the Box
method in DuMuX .

Equations 5.10 and 5.11 were tested for the DFNs used by Yang et al. (2014) and Min
and Jing (2003), which will be hereinafter referred to as Networks 1 and 2, respectively.
Tables 5.1 and 5.2 present the statistical characterization of these networks. For Network
1, the length of the two existing sets follow normal distributions with different means and
standard deviations. As was shown by Loyola et al. (2021), the combination of these two sets
results in an equivalent distribution for the length that is more skewed than a normal one.
As for the lengths in Network 2, they are described by power-laws, which are even further
from normal.

Table 5.1: Statistical parameters for Network 1, from Yang et al. (2014).
Dip orientation Length Density

Type Mean(°) Std. Deviation (°) Type Mean(m) Std. Deviation (m) (1/m2)
Set 1 Normal 150 10.0 Normal 4 1 0.16
Set 2 Normal 50 7.0 Normal 3 0.7 0.25
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Table 5.2: Statistical parameters for Network 2, from Min and Jing (2003). D and k are
coefficients of the power-law and Fisher distributions.

Dip/ Dip direction Length Density
Type Mean(°/ °) k Type Mean(m) D (1/m2)

Set 1 Fisher 8/145 5.9 Fractal 0.92 2.2 4.6
Set 2 Fisher 88/148 9.0 Fractal 0.92 2.2 4.6
Set 3 Fisher 76/21 10.0 Fractal 0.92 2.2 4.6
Set 4 Fisher 69/87 10.0 Fractal 0.92 2.2 4.6

Both works calculated the equivalent elastic tensor for the studied rock masses and ob-
tained the REV size for the elastic properties by progressively reducing the sample’s volume.
A deterministic approach was used for Network 1, while for Network 2 the authors used
MCS to generate 10 statistically equivalent samples. A similar approach is used here, with
the difference that 1000 samples were generated for each tested size. Figure 5.1 shows the
process of generating samples. The stress boundary conditions illustrated in Figure 2.5 were
applied to the rock samples and Equations 2.10, 2.25 and 2.32 were used to obtain the elastic
compliance tensor.

Network 1 was tested for 11 different square REVs with sizes that range from 2 m x 2 m
to 22 m x 22 m. Network 2 was tested for 9 sizes that range from 0.5 m x 0.5 m to 8 m x 8 m.
The DFNs were stochastically generated with a Poisson process in an initial large domain and
increasingly smaller domains were cut out from the original one while maintaining the same
geometrical center. At each size reduction, the fractures whose centers lied outside of the
new domain were removed; those whose centers lied inside the new domain but intersected its
boundaries had their lengths adjusted. The purpose of the removal of these external fractures
is to not consider fractures that would not be generated by an independent Poisson process
at each REV (Loyola et al., 2021) and thus to make the fracture density P0 approximately
equal for all sizes. This eliminates the so-called boundary effects demonstrated by Min
et al. (2004a) and allow for the use of (5.11). Alternatively, if the common approach of not
removing external fractures were used, (5.10) would apply.

Meshes constrained by the DFNs were generated with calls to the software Triangle
(Shewchuk, 1996) at the beginning of each simulation. Figure 5.2 shows an example of a
generated DFN and its correspondent mesh for each study case.

Then, interface elements were created with the procedure illustrated in Figure 3.2 by
calling the open-source code ciGen (Nguyen, 2014), which was modified to duplicate the
nodes only at edges where fractures are present. Not all simulations were successful because
of the precision of the output files of Triangle, which created overlapping nodes for fractures
that were too close from each other. The minimum number of successful simulations was
950 for the 22 m x 22 m REV of Network 1 and 751 for the 8 m x 8 m REV of Network 2.

In the numerical experiments, both the intact rock and the fractures are considered to be
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Figure 5.1: Generation of smaller REVs from bigger ones: geometrical center is maintained,
external fractures are removed and boundary intersections are adjusted.

Figure 5.2: Examples of DFNs and conforming meshes for (a) Network 1 and (b) Network
2.

linear elastic materials. Their properties, which were taken from the reference publications,
are described in Table 5.3.

Table 5.3: Elastic properties for the intact rock and the fractures of both study cases ac-
cording to Yang et al. (2014) and Min and Jing (2003).

Intact rock Fracture
E (GPa) ν Kn (GPa/m) Kt (GPa/m)

Network 1 50.00 0.25 50.00 10.00
Network 2 84.60 0.24 434.00 86.80

5.4 Results for the Geometrical REV
Figures 5.3 and 5.4 show Q-Q plots for the elements of the crack tensor of Networks 1 and
2. It is clear that as the size of the REV increases, the crack tensor approaches a normal
distribution. The 2 m x 2 m REV of Network 1 is severely skewed because its size is smaller
than the average fracture spacing, and thus some of the tested domains did not contain any
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fractures. Figure 5.5 shows the average of the crack tensor components and its first invariant
for the tested sizes.

Figure 5.3: Q-Q plots for the fracture tensor of Network 1.

The smallest sizes for which the averages seems to stabilize are 6 m for Network 1 and 3 m
for Network 2. Also, these are the first sizes to present maximum absolute values of 0.5 and
1.0 for the skewness and kurtosis, respectively, which are commonly used rules of thumb to
attest the normality of a distribution. These criteria are conservative when compared to the
confidence intervals built by Jones (1969) for these parameters. From the densities in Tables
5.1 and 5.2, these sizes have an expected number of fractures of 15 and 166, respectively. As
Network 2 presents a length distribution that is much further from normality than Network
1, it is unsurprising that it requires a larger sample size to lead to approximately normal
distributions of the crack tensor components.

By adopting the sizes of 6 m and 3 m as reference volumes for Network 1 and Network
2, respectively, their standard deviations can be used to predict the standard deviations
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Figure 5.4: Q-Q plots for the fracture tensor of Network 2.

for any other volume using Equation 5.11. Figures 5.6 and 5.7 compare the predicted and
calculated standard deviations. Except for the smaller values, for which the distribution of
the crack tensor can not be considered to follow a normal distribution yet, the predictions
are accurate. Thus, it is proved that if DFNs are generated for a proper reference volume,
this volume can be used to calculate the geometrical REV using the error criterion in (5.9),
with no need to generate fractured samples of different sizes.

Figures 5.6 and 5.7 show the best fit power laws for the standard deviations as a function
of the REV size. By replacing s in (5.9) by the power function aLb and setting N = 1, the
size L of the geometrical REV can be calculated as:

L =

(
x εrel
1.96 a

)1/b

(5.15)

where 1.96 is the t-value corresponding to the number of samples of the reference volume
and to a 95% degree of confidence. If a 10% error is set, the resulting sizes L for the diagonal
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Figure 5.5: Average values of the fracture tensor components for (a) Network 1 and (b)
Network 2.

Figure 5.6: Predicted and calculated curves of the standard deviation of the fracture tensor
components of Network 1 vs REV size. The red dot signalizes the reference volume.

components Fii of the crack tensor and of its first invariant I1 are the ones presented in Table
5.4.
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Figure 5.7: Predicted and calculated curves of the standard deviation of the fracture tensor
components of Network 2 vs REV size. The red dot signalizes the reference volume.

Table 5.4: Calculated geometrical REVs for a 10% error.
Network 1 Network 2

Fxx Fyy I1 Fxx Fyy I1
Size (m) 35.7 37.0 33.7 6.8 6.5 5.6

The diagonal components Fii and the first invariant I1 were chosen for being strongly
related to the mechanical properties, as was discussed in Section 2.3. Based on these quan-
tities and on a 10% error, the geometrical REV size is 37 m for Network 1 and 6.8 meters
for Network 2, which both are the largest values for each network. This means that one
generation of DFNs in volumes with these dimensions are 95% likely to return geometrical
measures that do not dist from their true mean by more than 10%.
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5.5 Results for the Mechanical REV

5.5.1 Results for the elastic properties
Loyola et al. (2021) obtained the equivalent elastic tensor for all of the generated REVs,
which resulted in 11,000 simulations for Network 1 and 9,000 simulations for Network 2.
The focus of the work was the elastic moduli Ex, Ey and Gxy. Their results will be presented
here.

The explanation for why the CLT applies to the elastic moduli was based on their rela-
tionship with the first invariant of the fracture tensor, I1, which is shown in Figures 5.8 and
5.9. A linear fit is a good estimation for this relationship. It is not perfect for two reasons:
firstly, I1 is not the only factor that affects the elastic moduli, which also depend on other
geometrical features, such as the particular intersections between the fractures in each DFN
and on their resulting meshes. For that reason, there is a dispersion of the elastic moduli for
similar values of I1. Also, as was early proved by Kulatilake et al. (1993), a power function
would be an even better fit for these curves. Figures 5.8 and 5.9 show that the ranges of
variation of I1 are short enough for this power function to be treated as approximately linear;
this becomes a better assumption as the REV becomes larger and this range of variation
becomes shorter. As stated before, from the Delta method it is possible to infer that, if I1
follows a normal distribution, so does the elastic moduli. The quasi-linearity of their rela-
tionship indicates that the convergence of the elastic moduli to a normal distribution should
be fast and almost simultaneous to the convergence of the geometrical properties.

Figure 5.8: Equivalent elastic moduli normalized by the elastic moduli of the intact rock, Ei

and Gi, vs first invariant - Network 1.

Figures 5.10 and 5.11 show the QQ-plots for the elastic moduli of the geometrical ref-
erence volumes and Figures 5.12 and 5.13 show their extreme and average values. These
data indicate that for the reference sizes of 6 m for Network 1 and 3 m for Network 2 the
distribution of the elastic moduli are close to normal and their average values become stable.
Thus, they seem to follow the same tendency to normality than the fracture tensor. Table
5.5 compares the skewness of the elastic moduli and of I1 and shows that, for the same size,

91



Figure 5.9: Equivalent elastic moduli normalized by the elastic moduli of the intact rock, Ei

and Gi, vs first invariant - Network 2.

the latter tends to be less skewed and thus closer to normal. This can be explained by the
non-perfect linear relationship between these properties, but yet, the distributions of the
elastic moduli can be considered approximately normal. This is further confirmed by the
accurate predictions made for the standard deviations of the elastic moduli using (5.11), as
shown in Figures 5.14 and 5.15.

Figure 5.10: Q-Q plots for the elastic moduli of the 6 m x 6 m REVs of Network 1.

By setting a 10% error and using the power law fits in Figures 5.14 and 5.15, Equation
5.15 can be used to calculate the mechanical REV sizes for the elastic moduli, resulting in
19.8 m for Network 1 and 5.2 m for Network 2. For both networks, the mechanical REVs
are smaller than the geometrical ones. This suggests that the geometrical REV can be used
as a conservative estimation for the REV of the elastic properties. However, this topic is
controversial because other studies concluded the opposite (e.g. Esmaieli et al., 2010; Ni et al.,
2017), so more DFNs would need to be tested with a large number of experiments before
setting any general rule for the relationship between geometrical and mechanical REVs.

92



Figure 5.11: Q-Q plots for the elastic moduli of the 3 m x 3 m REVs of Network 2.

Figure 5.12: Average, minimum and maximum elastic moduli for Network 1.

Figure 5.13: Average, minimum and maximum elastic moduli for Network 2.

5.5.2 Applicability to non-elastic problems: a preliminary verifi-
cation

The fracture network in a rock mass does not affect only its deformability, but also reduces
its strength and changes its mechanisms of failure. Since predictions concerning shear failure
are of extreme importance to several geomechanical problems, the upscaling of mechanical
properties for large scale simulations usually include the determination of models for the
equivalent strength.

For that reason, Equations 5.10 – 5.11 were tested for their capability of predicting the
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Table 5.5: Skewness of the elastic moduli and the first invariant of the crack tensor of
Networks 1 and 2.

Skewness Network 1 Skewness Network 2
Size I1 Ex Ey Gxy Size I1 Ex Ey Gxy

2 m x 2 m 0.89 0.36 0.43 -0.11 0.5 m x 0.5 m 0.52 0.87 0.94 0.96
4 m x 4 m 0.60 0.49 0.56 0.01 1 m x 1 m 0.25 0.80 0.64 0.77
6 m x 6 m 0.35 0.42 0.50 0.15 2 m x 2 m 0.25 0.43 0.38 0.50
8 m x 8 m 0.14 0.36 0.49 0.30 3 m x 3 m 0.18 0.24 0.31 0.28
10 m x 10 m 0.19 0.20 0.29 0.14 4 m x 4 m 0.16 0.22 0.21 0.13
12 m x 12 m 0.21 0.11 0.19 0.16 5 m x 5 m 0.09 0.17 0.21 0.21
14 m x 14 m 0.18 0.14 0.17 0.10 6 m x 6 m 0.09 0.19 0.14 0.14
16 m x 16 m 0.09 0.19 0.21 0.11 7 m x 7 m 0.04 0.26 0.11 0.19
20 m x 20 m 0.07 0.14 0.19 0.13 8 m x 8 m 0.01 0.27 0.11 0.15
20 m x 20 m 0.00 0.15 0.24 0.22
22 m x 22 m -0.07 0.21 0.29 0.21

Figure 5.14: Predicted and calculated curves of the standard deviation of the elastic moduli
of Network 1 vs REV size. The red dot signalizes the reference volume.

Table 5.6: Calculated mechanical REVs for the elastic moduli for a 10% error.
Network 1 Network 2

Ex Ey Gxy Ex Ey Gxy

Size (m) 18.5 19.8 14.4 5.0 4.9 5.2

standard deviation of the Uniaxial Compression Strength (UCS) of fractured rocks using
the data of two publications: Esmaieli et al. (2010) and Farahmand et al. (2018). It is
likely that the concepts presented above apply, at least partially, to the upscaling of strength
because this property is allegedly related to the fracture tensor by a power function (Wu
and Kulatilake, 2012).
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Figure 5.15: Predicted and calculated curves of the standard deviation of the elastic moduli
of Network 2 vs REV size. The red dot signalizes the reference volume.

Esmaieli et al. (2010) obtained the equivalent UCS for five 3D samples of each tested
size; Farahmand et al. (2018) used 2D samples and considered from three to ten REVs of
each tested size. They also considered fracture propagation by the inclusion of a cohesive
crack model. A summary of their data is presented in Tables 5.7 and 5.8.

Table 5.7: Data for the Uniaxial Compressive Strength in Esmaieli et al. (2010).
Sample size (m) Number of samples Avg. number of fractures Std. Dev. UCS (MPa)

1.5 m x 1.5 m x 3.0 m 5 30.8 42.7
3.5 m x 3.5 m x 7.0 m 5 197.1 17.8
7.0 m x 7.0 m x 14.0 m 5 1214.4 8.9
10.0 m x 10.0 m x 20.0 m 5 152.1 3.6

Table 5.8: Data for the Uniaxial Compressive Strength in Farahmand et al. (2018). The
data was retrieved from Fig.14 of the paper.

Sample size (m) Number of samples Std. Dev. UCS (MPa)
5.0 m x 2.0 m 8 25.6
7.0 m x 2.8 m 7 9.2
8.0 m x 3.2 m 5 6.9
9.0 m x 3.6 m 4 4.6
10.0 m x 4.0 m 3 3.7

Figure 5.16 presents the estimations of the standard deviation of the UCS against the
values obtained by Esmaieli et al. (2010). Also, it presents the confidence intervals for the
standard deviations based on the number of samples in Table 5.7. The estimated standard
deviations are all inside the confidence intervals and are close to those obtained by the DEM
simulations. Since the authors provided the average number of fractures for each tested size,
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Equation 5.10 was used for the predictions. The 3.5 m x 3.5 m x 7.0 m was selected as the
reference volume because it is the first size to contain an average number of fractures that is
safely above the general rule of thumb of minimum sample size of 30 to observe normality.

Figure 5.17 presents the estimated and calculated standard deviations of the UCS of the
rock mass tested by Farahmand et al. (2018). As there is no information on the number
of fractures, Equation 5.11 was used. Figure 5.17 shows that reasonable predictions of the
standard deviation of the first invariant of the fracture tensor I1 can be made from the
REV of dimensions 5 m x 2 m. Since the non-perfect linear relationship between I1 and the
mechanical properties leads the latter further from a normal distribution, the immediately
larger REV of 7 m x 2.8 m was selected as the reference volume for the UCS. Fair predictions
were obtained for the volumes larger than the reference REV. For the 5 m x 2 m domain, the
estimation is inside the interval of confidence, but distant from the value calculated from the
simulations. Besides the small number of samples, this could be explained by the inadequacy
of Equation 5.11, because it assumes different REV sizes to have the same fracture density.
Equal densities are only attainable with the approach used here to remove external fractures
in the generation of the DFNs, which is not a standard procedure in fractured REV studies,
Also, as Farahmand et al. (2018) consider fracture propagation, it is even more likely that
distinct volumes have differences in their fracture density at failure. Anyhow, the results
obtained for the sizes larger than 7 m x 2.8 m are encouraging and tend to show that the
methodology here presented can be extended to non-elastic parameters.

Figure 5.16: Standard deviations of the UCS obtained by Esmaieli et al. (2010) for samples
with sizes L x L x 2L and those predicted with (5.10) from the reference volume with L =
3.5 m. The red dot signalizes the reference size of L.
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Figure 5.17: Standard deviations of I1 and of the UCS obtained by Farahmand et al. (2018)
for samples with sizes L x 0.4 L and those predicted with (5.11). The red dot signalizes the
reference size of L.

5.5.3 Methodology to define the REV size
Based on the results presented above, the following steps were defined by Loyola et al. (2021)
to obtain the geometrical and mechanical REV size for fractured rocks:

[1] Choose a reference volume Select a reference volume that returns approximate
normal distributions for the properties. An initial guess for the reference volume can be
made by using the rule of thumb that defines a minimum sample size of 30; thus, a volume
for which there are at least 30 fractures can be used to generate a large sample of DFNs. If
the obtained distribution for the fracture tensor is approximately normal, the choice of the
geometric reference volume is valid. Since the data for the elastic moduli tends to be more
skewed than the first invariant of the fracture tensor, we recommend the reference volume
of the numerical experiments to be larger than the geometrical reference volume, specially
if the number of REVs to be tested is small. The definition of normality can be made based
on a maximum skewness of 0.5 and maximum kurtosis of 1.0 or by the visual inspection of
the QQ-plots.

[2] Obtain homogenized properties Perform numerical tests on the REVs to obtain
the upscaled properties and their statistical distributions for the reference size.

[3] Predict standard deviations for other sizes Use Equation (5.10) or Equation
(5.11) (if the fracture density does not vary significantly between REV sizes) to calculate the
standard deviations of the upscaled property for any other REV size. Use Equation (5.9) to
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obtain the predicted errors.

[4] Select REV size Set a maximum precision error and select the size of the REV and
the number of simulations N that will be used to estimate the average properties.

A large number of REVs was used so: (i) the distribution of the properties could be
observed and (ii) their standard deviation could be predicted with accuracy. Using the fact
that the standard deviation of a normal variable follows a chi-squared distribution, it is
possible to build a confidence interval for the calculated standard deviations and affirm that
they are 95% likely to not present an error higher than 6%. However, works on fractured
media usually employ a much smaller number of samples. It was shown in Loyola et al.
(2021) that a small set of REVs can be selected for the numerical experiments from a larger
original population of generated DFNs. Sets of 10 and 50 REVs were selected under the
criterion of not returning averages and standard deviations for the fracture tensor elements
that differed by 5% or less from those of the original population. These smaller sets yielded
accurate estimations, and the higher uncertainty attributed to them is already considered in
their higher t-values.

5.5.4 Hydraulic REV
Min et al. (2004a) studied the equivalent permeability for Network 2, described in Table 5.2.
They used 10 realizations for some tested sizes and 50 for others, for which they observed
the distribution of intrinsic permeability.

The strong relationship between permeability and the fracture tensor, which was dis-
cussed in Section 2.3.3, indicates that the methodology presented above could work for the
hydraulic REV as well. When observing the distributions obtained by Min et al. (2004a),
the possibility of applying the CLT for this particular network is even more evident, since
they were shown to be approximately normal. To confirm that, 500 generations of Network
2 were used to upscale permeability using DuMuX . Following Min et al. (2004a), linear
pressure boundary conditions were applied (Figure 2.2). Permeability was calculated using
Equations 2.15, 2.21 and 2.33. Although the authors observed a variability in aperture in
their field measurements, a constant aperture of 65 µm was adopted for the fractures. From
the cubic law, this gives an intrinsic permeability of 3.5× 10−10 m2 for these discontinuities.

There are three main differences between the simulations performed here and those from
the reference study. While Min et al. (2004a) used the DEM, removed isolated fractures and
dead-ends and considered the rock matrix to be impermeable, the experiments here were
simulated with the Box method, without any alteration to the generated DFN and consid-
ering a 1× 10−15 m2 permeability for the rock matrix. This latter avoids a singular matrix
when solving the multi-domain system in DuMuX . For the computation of permeability the
external fractures were not removed, so the applicability of Equation 5.10 is demonstrated.
Also, the fracture densities used for the generation of the DFNs are half the values presented
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in Table 5.2 to assess their effect on the size of the geometrical REV. Because of that, this
fracture network will be referred to as modified Network 2.

Figure 5.18 presents the average values of the components of the fracture and permeability
tensors. The average values of the fracture tensor seem stable for sizes larger than 2 m. The
Q-Q plots in Figure 5.19 confirm that the size of 2 m presents a fairly normal distribution.
For that reason, this was selected as the reference size to predict the standard deviations of
the fracture tensor components. Figure 5.20 shows there is a good agreement between the
predictions and the results obtained from the sample of 500 generations.

Figure 5.18: Average values of the fracture tensor and permeability tensor components as a
function of size - modified Network 2.

Figure 5.19: Q-Q plots for the fracture tensor of the 2 m x 2 m REVs of modified Network
2.

Since the proposed methodology requires the selection of a reference volume for the
upscaled properties without the simulation of various sizes, a first try for the reference
volume for permeability could be the size of 3 m. This follows the recommendation in step
1 of Section 5.5.3 to select a volume bigger than the reference volume for the geometrical
properties. Figure 5.18 shows that the greatest variations in the average permeabilities
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Figure 5.20: Predicted and calculated curves of the fracture tensor components of the mod-
ified Network 2 vs REV size. The red dot signalizes the reference volume.

occur for sizes smaller than 3 m. Thus, 3 m seems to be a size for which the permeability
distributions are nearly stable.

The Q-Q plots in Figure 5.21 show that the permeability components have approximately
normal distributions for the size of 3 m, although there is a more perceptible skewness than
in the data for the fracture tensor components (Figure 5.19).

Kulatilake and Panda (2000) showed that permeability for a direction i is related to the
diagonal component of the fracture tensor that is normal to i. Figure 5.22 shows that for the
studied DFN these relationships are approximately linear, as it occurs for the elastic moduli.
This explains the approximate normality of the permeabilities distributions.

Figure 5.21: Q-Q plots for the permeability tensor of the 2 m x 2 m REVs of modified
Network 2.

Figure 5.23 presents the comparison between the predicted and calculated standard de-
viations of the permeability. The predictions match the results from the simulations satis-
factorily. The average difference between the calculated and predicted standard deviations
is 7.6 % for kxx, 4.9 % for kxy and 5.6 % for kyy.

Using the power-law fits and adopting a 10% precision error, the geometrical and hy-
draulic REV sizes in Table 5.9 were obtained. As expected, the decrease in the fracture
density makes the REV size bigger. The geometrical REV sizes for the components Fxx and

100



Figure 5.22: Equivalent permeability vs fracture tensor components - modified Network 2.

Figure 5.23: Predicted and calculated curves of the permeability tensor components of the
modified Network 2 vs REV size. The red dot signalizes the reference volume.

Fyy are 47% and 60% larger then for a DFN with fracture intensity twice as big (Table 5.4).
The REVs for permeability are significantly larger than those for the geometrical properties;
so, in this case, a choice based only on the geometrical properties would not be conservative.
Since these sizes may be too large to perform efficient simulations or to respect the principle
of separation of scales, an alternative would be to upscale a quantity N of smaller samples
(see Equation 5.9).

Table 5.9: Calculated geometrical and hydraulic REVs for a 10% error.
Modified Network 2

Fxx Fxy Fyy kxx kyy kxy
Size (m) 10.9 23.9 9.6 22.0 52.2 24.5

5.5.4.1 Varying aperture

Several field measurements show that aperture presents a variability within a fracture set
and that it correlates with fracture length. The adoption of a constant aperture is a model
simplification that might provide for proper estimations of the averaged permeability (De
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Dreuzy et al., 2012). However, since the permeability of a fracture depends highly on its
aperture (Equation 2.68 ), this simplification might give erroneous predictions for the fluid
distribution, because it can not consider the possible formation of preferential flow paths that
pass through the wider fractures. From this fact alone it is already possible to infer that if
a variable aperture is considered, the variability of the upscaled permeability is expected to
increase.

Baghbanan and Jing (2007) investigated the size and existence of the REV for the per-
meability of Network 2 (Table 5.2) when the aperture is variable and follows a log-normal
distribution. Three different scenarios were explored: constant aperture, variable aperture
with a distribution independent from the length’s distribution and variable aperture corre-
lated with length. Using 10 DFN generations for each REV size, they could estimate the
COV and average values of the permeability tensor. The upscaled permeabilities when the
aperture is variable were significantly higher than those for constant aperture. Also, while
for the constant aperture case there was a consistent decrease of the COV with size, the data
for variable aperture were more scarred, because of the higher variability of the permeability
and also possibly because of the low number of DFN generations.

The case of variable aperture correlated to length will be tested here for a bigger number
of DFN generations to observe the distribution of the permeability and to test the statistical
methodology proposed above. Fracture aperture w and length l are correlated by truncating
their respective log-normal and power law distributions, as detailed by Baghbanan and Jing
(2007). The resulting correlation relationship is the following:

l =

(
l−D
min +

g(w)− g(wmin)

g(wmax)− g(wmin)
(l−D

max − l−D
min)

)−1/d

(5.16)

where lmin and lmax are the minimum and maximum fracture lengths, respectively; D is the
exponent of the power law distribution in Table 5.2; wmin and wmax are the minimum and
maximum apertures, respectively and the function g(w) is equal to:

g(w) = erf

(
lnh− wlog√

2σwlog

)
(5.17)

where erf is the error function and wlog and σwlog
are the mean and standard deviation of

the log-normal distribution for the fracture aperture. Table 5.10 presents the parameters
used to define the relationships (5.16) and (5.17).

Table 5.10: Parameters used by Baghbanan and Jing (2007) to define the log-normal distri-
bution of the aperture and their correlation with length.

lmin(m) lmax(m) wmin(µm) wmax(µm) wlog(µm) σwlog
(µm)

0.5 250.0 1.0 200.0 65.0 1.0

The fractures lengths vary in a wide range, as it often does in fractured rock masses.
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Due to its power law distribution, the long fractures are rare, which also agrees with usual
field conditions. In fact, for this distribution, 95 % of the fractures have lengths smaller
than 2 m, and the average fracture length is 0.92 m (Baghbanan and Jing, 2007). The rare
fractures that might have a trace-length of tenths or even hundreds of meters are reduced by
the REV size and often become discontinuities that cross the entire REV from one end to an
other. In the case of constant aperture, this big fractures did not produce important outliers
that affected the hypothesis of normality (Figure 5.21) necessary to use Equations 5.10 and
5.11. However, the case of the aperture correlated with length is a good test of the limits
of this methodology. In this scenario, the longer fractures, although not frequent, will not
only have larger trace lengths, but also a much larger aperture, and thus higher permeability
than the others. As a consequence, they have the potential of being outliers in the sense
that they alone might contribute to a significant part of the upscaled permeability. To work
with a problem that is even harder to homogenize, and also to compare the distribution of
the permeability with the constant aperture case, we will use here the modified Network 2,
that is, Network 2 with half the fracture intensity. The tested REV sizes lie between 3 m
and 25 m and 500 DFN generations were used.

Figures 5.24, 5.25 and 5.26 show the distribution of the permeability components kxx,
kxy and kyy and the reference line for a normal distribution for the sizes of 5 m, 11 m and
21 m. In the case of kxx and kyy, the observed distributions are much more skewed than
a normal one, and actually would better fit a log-normal distribution. It can be observed,
however, that there is a slow convergence towards a normal distribution. The distribution
of kxy also starts off far from normal, but converges faster to normality as the size increases.

For comparison purposes, the upscaled permeability was also calculated for 500 gener-
ations of the original Network 2, with fracture intensity of 4.6/m2. Figure 5.27 compares
their distributions of kyy; as expected, the convergence to normality is faster as the fracture
density increases. Since what defines the convergence to normality is basically the sample
size, this confirms that for larger sizes the modified Network 2 should approach a normal one.
Also, this shows how the CLT is theoretically more applicable to larger fracture densities.

Figure 5.24: QQ-plots fot the permeability kxx of the modified Network 2 with variable
aperture for sizes 5 m x 5 m, 11 m x 11 m and 21 m x 21 m.
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Figure 5.25: QQ-plots for the permeability kxy of the modified Network 2 with variable
aperture for sizes 5 m x 5 m, 11 m x 11 m and 21 m x 21 m.

Figure 5.26: QQ-plots for the permeability kyy of the modified Network 2 with variable
aperture for sizes 5 m x 5 m, 11 m x 11 m and 21 m x 21 m.

Having in mind these considerations and the non-normality of most of the tested REV
sizes for modified Network 2, the methodology described in Section 5.5.3 is used anyway to
evaluate the predictability of Equation 5.10.

The first step is to select a reference volume based on the distribution of the crack tensor.
The formulation used here is the one in (2.36), which accounts for the cube of the aperture.
Figure 5.28 shows that the distributions of this crack tensor approach normality as the size
increases. The first size to return a maximum skewness of 0.5 and maximum kurtosis of 1.0
for all the tensor components is 7.0 m. So, this is adopted as the reference REV.

Figure 5.29 shows that the curve of standard deviation versus size can be fairly well
predicted for sizes above 7.0 m, despite of the significant skewness of the permeability distri-
bution. The predictions are not as close to the simulated results as for the constant aperture
case (Figure 5.23), specially for the smaller sizes. Also, as it occurs in the data obtained
by Baghbanan and Jing (2007), there is not a consistent decrease with size of the standard
deviations calculated from the simulations. This might be due to the presence of outliers.
Still, the average difference between the calculated and predicted standard deviations is 8.2
% for kxx, 6.1 % for kxy and 7.2 % for kyy.

These differences are larger than for the constant permeability case, but can still be
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Figure 5.27: Comparison of the QQ-plots for the permeability kyy of modified Network 2
(red), with fracture intensity of 2.3/m², and the original Network 2 (green), with fracture
intensity of 4.6/m². The REV sizes are 3 m x 3 m, 9 m x 9 m and 13 m x 13 m.

considered acceptable.
Table 5.11 presents the calculated hydraulic REVs for modified Network 2 considering a

precision error of 10%. The sizes are significantly larger than those for the constant aperture
case. Hence, a variable aperture makes it harder to obtain a proper REV for homogenization,
i.e. a volume that respects the separation of scales.

Table 5.11: Calculated hydraulic REVs for modified Network 2 with variable aperture con-
sidering a 10% error.

kxx kyy kxy
Size (m) 71.4 143.0 63.9
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Figure 5.28: QQ-plots for the crack tensor P in Equation 2.36 of the modified Network 2
with variable aperture for sizes 3 m x 3 m, and 7 m x 7 m.

Figure 5.29: Predicted and calculated curves of the permeability of the modified Network 2
with variable aperture vs REV size. The red dot signalizes the reference volume.

5.6 Conclusions of the chapter
A proper REV should return a good estimation of the mean constitutive behavior of the
sampled material. For this reason, some works define a REV for random media based on the
precision error of the estimated average values of the equivalent properties. We consider this
criterion to be more adequate than the COV because it accounts for the number of tested
samples.

The process of defining the size of the REV based on a variability-related criterion would
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normally require a considerable number of simulations, since a distribution of the studied
properties would have to be generated for each tested size. It was shown here that the
application of the CLT simplifies this process and makes it general for different DFNs by
means of general equations that predict the standard deviation of a property.

The applicability of these equations was tested for two very different fracture networks
that were previously studied for the size of their REVs. The geometrical REV was defined
based on Oda’s crack tensor, which theoretically has a limiting normal distribution. Be-
cause of their strong correlation with the crack tensor, the distributions of the equivalent
mechanical properties and the intrinsic permeability tend to normal. As a consequence, the
proposed equations could be successfully applied to predict the standard deviation of the
studied properties based on the data for a reference volume only. It was shown that the de-
cay of these standard deviations depends on the sample size only, which can be represented
by the dimensions of the REV or by its average number of fractures.

The last tested scenario was the REV for permeability when the aperture of the fractures
is variable and correlated to their lengths. Because of the existence of occasional very
large and wide fractures that give an important individual contribution to the calculated
permeability, outliers are present. As such, the limits of the applicability of the CLT were
tested. Indeed, the calculated standard deviations were more scarred in this case and the
approximation to a normal distribution was very slow. In fact, except for the larger tested
sizes, a log-normal distribution would be a better fit. Even so, the predicted standard
deviations were reasonable.

Log-normal and normal distributions for permeability are commonly reported in the
literature. For example, Azizmohammadi and Matthäi (2017) studied the permeability of
several DFNs and obtained log-normal distributions for some cases and normal distributions
for others. In the case of the log-normal fits, it is unclear whether the authors didn’t test
sizes that were large enough for normality to be reached or if their limiting distributions were
indeed log-normal. Anyway, a log-normal distribution would not be an impediment for the
use of the methodology presented here. Indeed, it would only require the log-permeability
to be the analyzed property.

About the presence of outliers, they could be removed by selecting a proper scale of
study. If the homogenization of the REV is to be used in a large scale simulation, it would
be desirable to limit the microscale to a certain size of fractures and to explicitly represent
the larger fractures at the macroscale. Here we opted for not setting a maximum length
for the fractures to test the limits of the methodology; for that reason, there were many
persistent wide fractures in the samples.

For one of the networks, we calculated the REV size for the geometrical properties, the
elastic moduli and the permeability. The REV for permeability was the largest and the REV
for the mechanical properties was the smallest. These results showed that it is not always
possible to define a REV size based on the geometrical properties only. Furthermore, and as
expected, the REV for permeability when a variable aperture is considered is significantly
larger than for the same network with constant aperture.
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The REV sizes obtained for the permeability of Network 2 would be hardly viable in a
multiscale simulation because of computational costs. But since the aim of defining a REV
is to obtain a precise average constitutive response, a possible alternative would be to pick
smaller REVs that return equivalent properties that are close to the mean value and mimic
well the behavior of a larger volume, while meeting a chosen error criterion.
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Chapter 6

Multiscale simulation: methods and
implementation

6.1 Multiscale methods
Engineering models often rely on analytical homogenization and on numerical upscaling to
account for small heterogeneities. However, both approaches are limited. Analytical methods
can not deal with complex non-linear phenomena and may require a level of abstraction that
makes the idealized materials very different from the actual ones.

Numerical upscaling does not have the same drawbacks, but it disregards two important
aspects of the materials behaviour. The first one is a possible multi-physics nature, thanks
to which different physical laws may be necessary to describe different scales. This is an
issue because upscaled solutions require a prior assumption on the form of the large-scale
constitutive laws; and sometimes the upscaled response is too complex to fit in any known
model.

The second aspect that upscaling may fail to capture is the state-dependent nature of
the materials behavior. Since there must be a choice on the boundary conditions used in the
numerical experiments, the constitutive properties are obtained only for a limited amount
of scenarios. Even if the boundary value problem at the REV is carefully chosen to well
represent the macroscale, upscaling will hardly be able to capture all the dynamic aspects
of the actual large-scale problem, namely the spatial and time variations in state and the
consequent changes in the constitutive behavior.

Several different multi-scale methods have been developed to surpass these limitations
and make numerical models more robust. We use the term multiscale method to refer to
numerical techniques where multiple scales are solved numerically and coupled to each other
by some sort of transfer of information. They have the following advantages:

• They can capture the small-scale effects at the large-scale without the need of resolving
all of the small-scale features.
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• When using these methods, it is not necessary to formulate a constitutive law for the
macroscale; its behavior arises from the simulation of the microscale.

• The boundary conditions of the microscale problem are dynamic and arise from the
current state at the large-scale.

The most popular multiscale methods used in the field of engineering were originally
formulated with a classical finite-element discretization (e.g. Hou and Wu, 1997; Smit et al.,
1998). Since then, other numerical methods have been used with similar methodologies.
Some works maintain the FEM at the macroscale but use different methods to solve the
microscale (e.g. Wang and Sun, 2019). Others exchange the FEM completely by a more
convenient method. For example, Aarnes (2004) introduced the mixed FEM to the original
formulation by Hou and Wu (1997) with the objective of adding local mass conservation,
which is usually a desired feature in reservoir simulation. Here, we also add local mass
conservation to a multiscale method originally formulated with the classical FEM. However,
the locally conservative method to be used is the Box, and the multi-scale method to be
adapted is the multi-level FEM by Smit et al. (1998).

6.2 Multi-level finite element method
The multi-level finite element method, also called the finite element method squared (FE2),
was first proposed by Smit et al. (1998) and applied to model the mechanical behavior of
non-linear heterogeneous materials. As the name suggests, the method uses the FEM to
solve both the macro and the microscale problems.

In the multi-level finite element method each integration point of the macroscale consists
of a REV or a unit cell for periodic media. Treating the REV as a point implies that its
dimensions should be small enough for separation of scales to exist.

The general algorithm for the solution of a hydro-mechanical problem at the microscale
is the following:

1. Localization: receive the macroscale displacement and pressure gradients and convert
them into consistent boundary conditions.

2. Solve the microscale boundary value problem.

3. Homogenization: return averaged stresses and fluid velocities to the macroscale.

This procedure is nested in the macroscale problem, which is solved with a common iter-
ative method. The difference from a solution with only one-scale is that each computation of
stresses and fluxes at the integration points correspond to a simulation of the REV following
the procedure described above.

Since Smit’s pioneer work, the method has been extended and used in a variety of appli-
cations, including the modeling of elastoplastic (e.g Miehe et al., 1999) and viscoelastoplastic
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(e.g Feyel and Chaboche, 2000; Kouznetsova et al., 2001a) heterogeneous materials, as well
as fracturing media (e.g Wu and Kulatilake, 2012); localization problems were addressed by
Kouznetsova et al. (2004), who proposed a second order multi-level finite element that uses
a higher order approximation of the macroscopic strains.

The method was first used to model coupled phenomena by Özdemir et al. (2008) in the
field of thermo-mechanics. Similar strategies were later applied to hydro-mechanical prob-
lems. For instance, Frey et al. (2013) proposed the use of the method to assess the evolution
of transmissivity properties of cohesive rocks; their microscale model consists of hyperelastic
grains and cohesive interfaces through which a compressible fluid percolates. Their technique
was later applied by Marinelli et al. (2016) to model the consolidation of granular solids.
More recently, Bertrand et al. (2020) used the method to capture the effects of shrinkage
and swelling of fractured coal in the production of gas; in their microscale model, the cleats
are explicitly represented and have a stress-dependent permeability. Hydro-mechanical cou-
pling has also been incorporated to second-order computational homogenization by van den
Eijnden et al. (2016, 2017), who applied the finite element method squared to model the
strain localization during the excavation of a gallery. All of these works assume steady-state
flow at the microscale; this is supposed to be a good hypothesis when separation of scales is
strong enough for the pressure changes to be considered instantaneous at the REV.

Larsson et al. (2009) tested the hypothesis of quasi-stationarity at the microscale for dif-
ferent REV sizes in a heat conduction problem; their results show that the quasi-stationarity
assumption leads to very accurate solutions only when the REV size is between at least 100
and 1000 times smaller than the macroscale characteristic length. They proposed a multi-
level finite element method where the problem at the REV is transient, which was later
extended to consolidation problems (Larsson et al., 2011b). Since then, other approaches
were adopted to consider the microscopic transient terms in hydro-mechanical analyses with
one-phase (Khoei and Hajiabadi, 2018) and multiphase flow (Khoei and Saeedmonir, 2021).

6.3 Equations of the macroscale problem
The hydro-mechanical problem at the macroscale is described by the mechanical equilibrium:

∇ · σM + bM = 0 (6.1)

and the mass conservation equation for one fluid phase:

Υ̇M +∇ · (ραvM)− qM = 0 (6.2)

The subscript M denotes the macroscale, σ is the total stress tensor, b is the body force
vector, M is stored mass of fluid per unit volume, v is the fluid velocity vector and q is a
flux source term.

The terms σM , Υ̇M and vM are outcomes of the homogenization of the REV. They are
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calculated from the volume averages in Equations 2.7, 2.12 and 2.14, which are revisited
below for convenience:

σM(y, t) = ⟨σm(x, t)⟩ (2.7)

vαM(y, t) = ⟨vαm(x, t)− xΘ̇mα⟩ (2.12)

ΥMα(y, t) = ⟨Υmα(x, t)⟩ =
1

V

∫
V

ρmα(x, t)Θmα(x, t)⟩ (2.14)

The macroscale total stresses in (2.7) can be rewritten in terms of the microscale effective
stresses (σ′

m) and pore-pressures (pm):

σM = ⟨σm⟩ = ⟨σ′
m + bmpmδ⟩ (6.3)

where bm is the Biot’s coefficient at the microscale.
Here, the fluid density will be considered to be constant, so the macroscale storage term

in (2.14) becomes:

Υ̇M = ρf Θ̇M (6.4)

For one-phase flow, the volumetric content is equal to the porosity; so, considering (2.62),
(2.14) can be rewritten as:

Θ̇M = ⟨Θ̇m⟩ = ⟨bmε̇vm +
˙pm

Mm

⟩ (6.5)

where εvm and Mm are the microscale’s volumetric strains and Biot’s modulus. Note that
the volumetric strain of a fracture is obtained from the aperture variation in (2.65).

Equations (6.1) and (6.2) will be solved as a monolithic system, that is, with a full-
coupling scheme. Similarly to the microscale problem, the discretization is made with the
Box method. The only difference is that there are no interface elements at the macroscale,
because the fractures are explicitly represented only at the level of the REV.

Since the system formed by (6.1) and (6.2) is non-linear, it will be solved with the Newton-
Raphson scheme. During this iterative process, the macroscale solution vector, composed of
the displacements uM and the pressures pM , is updated as:{

uj+1,t
M

pj+1,t
M

}
=

{
uj,t

M

pj,t
M

}
+

{
duj+1,t

M

dpj+1,t
M

}
(6.6)

where:

(J)j,t
{
duj+1,t

M

dpj+1,t
M

}
=

{
(Ψs

M)j+1,t − (Ψs
M)j,t

(Ψf
M)

j+1,t − (Ψf
M)

j,t

}
(6.7)

The vectors (Ψs
M) and (Ψf

M) store force and flux residuals, respectively, and J is the
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Jacobian matrix, given by:

J =

[∂Ψs
M

∂uM

∂Ψs
M

∂pM

∂Ψf
M

∂uM

∂Ψf
M

∂pM

]
(6.8)

The particularity of the system assemblage in multiscale methods is that ΨM and J

are computed from the solution of the boundary value problem at REV of each integration
point. There are different possible techniques that can be used to compute J ; the strategy
adopted here will be discussed in the following section.

The general algorithm of the multi-level FEM will be adopted in this work. However,
the spatial discretization at both scales is made with the Box. So, it is more adequate to
refer to the multiscale method we use here as multi-level Box from now on.

6.4 Multi-level Box
The main difference between the multi-level Box and the multi-level FEM is the position of
the integration points, and, consequentially, of the REVs. Figure 6.1 indicates these locations
for triangular and quadrangular elements; each mid-point of a face that is not located at the
boundary and each center of a sub-control volume (SCV) of the domain corresponds to a
REV. The REVs are used to compute homogenized stresses and velocities; the REVs at the
center of sub-control volumes are used to compute the homogenized storage term.

6.4.1 Localization
The quantities to be passed from the large-scale to the REV are the pressure gradient vector:

∇MpM =

{
∂pM
∂x
∂pM
∂y

}
(6.9)

the displacements gradient matrix:

∇M ⊗ uM =

[
∂uMx

∂x
∂uMx

∂y
∂uMy

∂x

∂uMy

∂y

]
(6.10)

and the macroscale pressure pM , which is to ensure that the pressure field at the microscale
is compatible with the macroscale. We employ here the following constraint used by (Frey
et al., 2013):

pM = ⟨pm⟩ (6.11)

These variables are all evaluated at the faces and sub-control volumes centers using the
finite element shape functions N . For a REV located at the local coordinates (ξ, η) inside
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Figure 6.1: Location of the REVs in the multi-level Box method: each center of a face and
of a SCV contains a REV. The REV receives the interpolated pressures and gradients at
these locations, and sends homogenized fluxes and stresses to the faces and the homogenized
storage term to the SCV.

an element ζ:

pM ≈
∑
k∈ζ

Nk(ξ, η)p̂M,k (6.12)

∂pM
∂xi

(ξ, η) ≈
∑
k∈ζ

∂Nk

∂xi
(ξ, η)p̂M,k (6.13)

∂uM

∂xi
(ξ, η) ≈

∑
k∈ζ

∂Nk

∂xi
(ξ, η)ûM,k (6.14)

where p̂M,k and ûMj,k are macroscopic nodal values of pressure and displacement at node
k.

Periodic boundary conditions are used to impose (6.9) and (6.10) on the REV. We already
presented in Chapter 4 the procedure to add the periodicity constraints on periodic and non-
periodic meshes containing interface elements.

Only one additional clarification needs to be made about the prescription of displacements
and pressures on the corner nodes. For the mechanical problem the corner nodes have
displacement fluctuations prescribed to zero to prevent rigid body motion, as is usually done
when the mechanical problem is not dynamic. The prescribed pressures, however, need to

114



guarantee that (6.11) is fullfilled. So, we adopt here the same procedure used by Frey et al.
(2013) and Marinelli et al. (2016). It is the following iterative process:

1. Prescribe the master corner node as equal to pM .

2. Solve the flux problem and compute ⟨pm⟩

3. If |pM −⟨pm⟩| is below a tolerance εtol, the flux problem converged; proceed to the next
step.

4. If convergence is not reached, prescribe a correction to the master corner equal to
pM − ⟨pm⟩ and return to step 2.

6.4.2 Homogenization and computation of residuals
The solution of the REV boundary value problem has been detailed in Chapter 2. We recall
that the fluid percolation and mechanical equations are solved sequentially with a two-way
coupling. Darcian flow is assumed for both the fractures and the porous matrix.

After the solution of the REV problem, the homogenized stresses and velocities are
calculated with (6.3) and (2.12); then, they are used to compute the acting forces f𝟋 and
flow rates qF at the corresponding face 𝟋 of the macroscale mesh as:

f𝟋 = n𝟋 · σM |𝟋| (6.15)

q𝟋 = ραn𝟋 · vM |𝟋| (6.16)

where n𝟋 is the unit vector normal to 𝟋. And at the center of a sub-control volume, the
homogenization of the REV returns the average volumetric content (Equation 6.5).

The residuals in a node k are then computed as:

Ψs,k
M =

∑
𝟋∈Bk

f𝟋 + fk (6.17)

Ψf,k
M =

∑
𝟋∈Bk

q𝟋 + qk +
∑
V ∈Bk

ραΘ̇M,V (6.18)

where Bk is the control volume around node k, V is a sub-control volume, fk and qk are
prescribed forces and fluxes at node k.

In the exceptional case of an infinite Biot’s modulus and a Biot’s coefficient constant
and equal to 1.0 in the REV, the REV computations at the sub-control volumes centers
are not necessary. This is because the changes of porosity depend only on the macroscale
displacements in this case, and so the volumetric strains can be directly computed using the
shape functions.
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6.4.3 Computation of the macroscopic Jacobian matrix
Since multiscale methods do not involve any assumption on the form of the macroscale consti-
tutive laws, the macroscale tangent operator needs to be determined numerically. Works that
use the multi-level FEM usually retrieve the Jacobian matrix with a perturbation method
(e.g. Feyel and Chaboche, 2000; Marinelli et al., 2016) or through the static condensation of
the microscale global tangent matrix (e.g. Kouznetsova et al., 2001b; Feyel and Chaboche,
2001; Khoei and Hajiabadi, 2018). The former is used in this work because of its easier
implementation.

DuMux already employs the perturbation method to assemble the tangent matrix using
a finite difference scheme. However, in the original code this is done by perturbing each
primary variable at each node at a time. A solution to reduce the number of perturbations,
and, consequently, of REV simulations, is to perturb directly the values at the integration
point. Feyel and Chaboche (2000), for example, perturbed the components of the strain
vector instead of the nodal displacements. Here, we brought this idea to hydro-mechanical
simulations with the multi-level Box. This means that the quantities evaluated at the faces
and sub-control volumes centers are perturbed, which are: pM (Equation 6.12), ∇MpM
(Equation 6.13) and ∇MuM (Equation 6.14).

By provoking a perturbation εp in a variable a, the following derivatives are calculated
using a forward-difference approximation:

∂f𝟋

∂aM
≈ f𝟋(aM + εp)− f𝟋(aM)

εp
(6.19)

∂q𝟋
∂aM

≈ q𝟋(aM + εp)− q𝟋(aM)

εp
(6.20)

∂Θ̇V

∂aM
≈ Θ̇V (aM + εp)− Θ̇V (aM)

εp
(6.21)

where f𝟋 and q𝟋 are the force vector and mass flux at a face 𝟋, computed from (6.15) and
(6.16), and Θ̇V is the variation in time of the fluid volumetric content, computed from (6.5);
the perturbed variable a is either pM , ∂pM

∂x
, ∂pM

∂y
, ∂uMx

∂x
, ∂uMy

∂y
or ∂uMx

∂y
. Due to symmetry

conditions, derivatives of forces/fluxes with respect to ∂uMy

∂x
are equal to their derivatives

with respect to ∂uMx

∂y
. In brief, for each assemblage of the macroscale tangent matrix there

are six perturbations per REV.
The computation of the perturbed homogenized quantities requires the solution of a

perturbed boundary value problem in the REV. To make this procedure more efficient, the
microscale Jacobian matrix is not updated at each perturbation; so, the tangent matrix
computed at the end of the calculation of the residuals is used. This categorizes the iterative
solution of the perturbed problem as a modified Newton-Raphson. To facilitate convergence,
it is important to ensure that the perturbation is small enough for the tangent matrix to
remain approximately unchanged.
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The derivatives of the residuals in (6.18) and (6.17) with respect to the nodal values are
retrieved from (6.19) and (6.21) with the finite element shape functions as:

∂Ψs,k
M,i

∂uM,j

=
∑
𝟋∈Bk

∂f𝟋,i

∂(∇uM,j)
B(x𝟋) (6.22)

∂Ψs,k
M,i

∂pM

=
∑
𝟋∈Bj

∂f𝟋,i

∂p𝟋
N (x𝟋) +

∂f𝟋,i

∂(∇p𝟋)
B(x𝟋) (6.23)

∂Ψf,k
M,k

∂uM,j

=
∑
𝟋∈Bk

∂q𝟋
∂(∇uM,j)

B(x𝟋) +
∑
V ∈Bk

∂Θ̇V

∂(∇uM,j)
B(xV ) (6.24)

∂Ψf
M,k

∂pM

=
∑
𝟋∈Bk

(
∂q𝟋
∂p𝟋

N (x𝟋) +
∂q𝟋

∂(∇p𝟋)
B(x𝟋)

)
+
∑
V ∈Bk

(
∂Θ̇V

∂pV

N (xV ) +
∂Θ̇V

∂(∇pV )
B(xV )

)
(6.25)

where the superscript k indicates the corresponding node, i, j = x, y, xF and xV denote the
coordinates of the center of a face 𝟋 and a sub-control volume V , respectively, and:

B =

{
∂Nk

∂x
∂Nk

∂y

}
(6.26)

6.4.4 Algorithm
Figure 6.2 presents the general algorithm for the multi-level Box. The assembly of the
system is made element by element, and for each element the components of the residual
and Jacobian matrix are computed one face at a time, and then one sub-control volume at
a time.

Each calculation of fluxes, stresses and storage terms requires a call to the microscale
problem. At the level of the REV, the flux and mechanical equations are solved sequen-
tially. The flux problem involves the localization of the interpolated pressure gradients and
macroscale pressures with the algorithm described in Section 6.4.1. The mechanical problem
involves the localization of the interpolated displacement gradients. It receives the pressures
calculated in the flux problem to solve the equilibrium expressed in terms of effective stresses
and fluid pressure. Then, the resulting displacements are used to update permeabilities and
other strain-dependent parameters. The flux problem is considered to be at steady-state, so
scale separation must exist.

6.4.5 Implementation in DuMux

A new module called Multiscale was added to DuMux to include multiscale simulations
with the multi-level Box method. Its main components are illustrated in Figure 6.3.
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Figure 6.2: General algorithm of the implemented multi-level Box method. Each computa-
tion of stress, flux and storage term corresponds to a REV simulation, where the flux and
mechanical problems are solved sequentially.

Figure 6.3: The new module called Multiscale in DuMux.

The main differences between multiscale simulations and one-scale simulations lie in the
assemblage of the system. To deal with these particularities, the new classes MultiscaleCoup
ledLocalAssembler and MultiscaleCoupledAssembler were created. The original assem-
bly classes in DuMux could not be used because they provoke perturbations in the nodal
variables; the new class for multi-scale analyses updates the Jacobian matrix by perturbing
the variables interpolated at the faces and sub-control volumes center. Also, the original
classes used to compute residuals require a constitutive law to be provided. To overcome
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this, a the new class CoupledHomogenizationLaw was created to calculate residuals. This
is where the REV problem is called and where the homogenized quantities are received to
compute forces, fluxes and storage terms. Finally, the new base class MultiscaleProblem
was created. It is similar to all the other problem classes in DuMux, with the difference that,
instead of receiving an object that contains the definition of constitutive properties, it must
receive an object that belongs to the Microscale class.

The Microscale class must be completely defined by the user and contains two manda-
tory functions: one for initialization, which creates the REV mesh and establishes the map-
pings between nodes necessary to couple different domains and to impose periodic boundary
conditions; and a function that solves the localization boundary value problems and returns
homogenized quantities. The microscale problem contains all the ingredients for a multi-
domain problem described in Section 3.1.1.

6.5 Validation
To verify the accuracy and good implementation of the coupled multi-level Box method, a
Terzaghi-like consolidation problem was simulated. The geometry and boundary conditions
are the same of the validation case described in Figure 3.7 and Table 3.2. However, the
domain now is a fractured medium composed of two persistent and perpendicular sets of
fractures. The fractures have a constant spacing of 5 mm between them. As this is a regular
periodic domain, its REV reduces to the 1 cm unit cell illustrated in Figure 6.4. Periodic
boundary conditions were imposed with the coupling manager for strong periodicity.

The domain was discretized in 10 squares of dimensions 10 cm x 10 cm. So, the macro-
scopic element is 10 times larger than the microscale’s unit cell. The mesh of the unit cell is
shown in Figure 6.4. A reference solution was obtained by solving the same problem with an
explicit representation of all fractures; in this case, the mesh is composed of 1000 unit cells
with the mesh of Figure 6.4. For this reference solution, the fixed-stress split was adopted
to handle the hydro-mechanical coupling.

The minimum time step that can be used depends on the size of the mesh. So, naturally,
the minimum time step for the macroscale problem is larger than that of the reference
solution. For the multiscale simulation, the minimum time step to not provoke spurious
oscillations was 100 s; for the reference solution, this time step is 10 s. The total time of the
simulation is 3000 s.

Table 6.1 describes the material parameters used in this analysis.
Figure 6.5 compares the reference solution with the multiscale solution. A maximum

difference of 8 % was observed in this test. The multiscale solution underestimates the
pressures along the vertical axis. Nonetheless, it is satisfactory, specially when considering
the major differences from the reference solution, which are the mesh and time step sizes
and the assumption of stationarity at the level of the REV.

This loss of accuracy seems reasonable when considering the computation time that was
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Figure 6.4: Consolidation problem used to validate the multi-level Box. On the left, the
macroscale domain, its mesh and boundary conditions. On the right, the fractured unit cell
and its mesh are presented, with fractures in blue.

Table 6.1: Fracture and porous matrix parameters adopted in the validation case of the
multi-level Box, described in Figure 6.4.

Quantity Unity Value
Matrix Young’s modulus (E) kPa 1000
Matrix Poisson’s ratio (ν) - 0.25
Matrix Permeability (ks) m² 1.16× 10−9

Matrix Biot’s coefficient (b) - 1.0
Matrix Biot’s modulus (M) kPa ∞

Fracture Normal Stiffness (Kn) kPa/m 50000
Fracture Tangent Stiffness (Kt) kPa/m 10000

Fracture Permeability (kt) m² 1.0× 10−7

Fracture Biot’s coefficient (bf ) - 1.0
Fracture Biot’s modulus (Mf ) kPa ∞

saved with the multiscale simulation. The multiscale simulation took on average 4.8 s and
three iterations to solve each time step, which results in an average of 1.6 s per time step.
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Figure 6.5: Comparison of the solutions of the consolidation problem in a fractured domain
with the multi-level box and the reference solution with explicit representation of all the
fractures.

As for the reference solution, it took on average 24.3 s and 4 iterations to solve each time
step, that is, 6.1 s per time step.

6.6 Conclusions of the chapter
Multicale methods are more robust than the equivalent property (upscaling) approach be-
cause they do not require the assumption of a constitutive law for the macroscale and the
conditions of the microscale problem do not need to be chosen, but arise from the large-scale
simulation.

We adapted the framework of a multiscale method called the finite element method
squared to create an adaption called the multi-level Box method. The main impact of this
modification is the addition of local mass conservation to the original method. Each center
of a face and of a sub-control volume corresponds to a REV computation where homogenized
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quantities are obtained. The macroscopic Jacobian matrix is computed with a perturbation
method.

The multi-level Box method was implemented in DuMux in a new module called Mul-
tiscale. The implemented algorithm was verified for a consolidation problem in a regular
fractured domain, and despite the assumption of stationary flow at the REV, of the coarser
mesh and of the larger time step, the results agree well with the direct solution of a coupled
transient problem in the fractured domain.
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Chapter 7

Multiscale simulation of a fractured
reservoir: a case study

7.1 Introduction
The tools and methods developed in this thesis will be applied to a case study inspired by
the Ekofisk reservoir, a chalk reservoir located in the North Sea. Despite of having a high
average porosity of 32%, the carbonate in the Ekofisk reservoir has a permeability of only 1
mD. However, well tests indicated that permeability could get as high as 150 mD because
of the existence of conductive fractures. Teufel and Farrell (1990) classified the fractures of
the Ekofisk field in four classes: healed, isolated, stylolite-associated and tectonic. Only the
tectonic fractures form a well connected conductive path for the fluids. These are planar
shear discontinuities that appear sometimes in conjugate pairs. They dip from 65 to 80 and
their orientations are usually aligned with those of large faults that occur in the reservoir
(Toublanc et al., 2005). The average spacing of the tectonic fractures ranges between 15 and
100 cm. In zones of higher intensity, the typical spacing can reach 5 cm. Since they can not
be captured by seismic methods, but are larger than the extracted cores, their lengths are
very uncertain. However, from their average spacing and from investigations of analogues it
is possible to infer that their sizes range from tenths of centimeters to meters (Teufel and
Farrell, 1990).

The tectonic fractures in the Ekofisk field are good candidates for a multiscale analysis.
Firstly, because their dimensions are much smaller than those of the reservoir and also
than the typical size of a cell in a reservoir simulator, which has at least tenths of meters
(Bourbiaux, 2010; Christie, 1996). Secondly, because they are connected and frequent enough
to influence the performance of some regions of the reservoir. And lastly, because this
influence is dynamic and hard to capture with equivalent properties.

In the multi-scale model to be presented, the microscale’s fractures replicate one of the
typical patterns of the tectonic fractures in the Ekofisk reservoir. Also, the initial pore
pressures and stresses were taken from the average values reported by Teufel and Farrell
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(1990). The adoption of this reference case had the sole purpose of building a realistic
synthetic case, with no intention of representing the actual reservoir, which has many other
complexities that are not considered in our simplified model.

7.2 Modeling of the REV

7.2.1 Generation of the DFNs
The orientation, dip and intensities of the tectonic fractures in Ekofisk are relatively well
known thanks to a number of geological studies that were made in the area (Teufel and
Farrell, 1990; Toublanc et al., 2005). However, there is no public information on the ranges of
the lengths of these fractures, or on the statistical distributions of their geometrical features.
So, to generate the DFNs that replicate their typical configuration, we used as a reference
the work by Gutierrez et al. (1994) . They performed mechanical numerical experiments on
representative fractured samples of the Ekofisk chalk; these samples are squared with size
of 2 m. We used their third sample, called “model of a 40% porosity chalk with natural
fractures”, to define a mean fracture intensity and a mean fracture length.

The reference sample is made of conjugate pairs of shear fractures. The lengths of the
dominant shear fractures range between 0.7 m and 1.4 m and their average intensity is of
4 fractures/m². As for their conjugates, they have lengths that vary from 0.13 m to 0.82
m and mean intensity of 2.6 fractures/m². The actual rock probably has tectonic fractures
that are larger than those, as Teufel and Farrell (1990) mentioned that these fractures could
have up to 10 m. However, as fracture lengths usually follow a power-law like distribution,
these largest fractures are probably rare; and since there is no other data on their sizes, we
will stick only to what can be observed in the samples by Gutierrez et al. (1994).

With a notion of the average lengths, intensities and dips (which range from 65° to
80°), it is possible to generate stochastic DFNs if an assumption is made on the statistical
distribution of these features. In the lack of these data, we assume a normal distribution
for the lengths and dips. Since the lengths in the reference models do not vary in large
ranges, they should be well represented by a normal distribution. The standard deviations
of the properties were estimated using the three-sigma rule: based on the fact that 99.7 %
of the values in a normal distribution lie within three standard deviations from the mean,
the standard deviation can be estimated as the size of the range between the maximum and
minimum observed values divided by six. Table 7.1 presents a summary of the geometrical
features used to generate the DFNs. We developed a code to randomly generate the fractures;
their centers were generated with a Poisson process. Then, the meshes were generated with
the open source software Triangle (Shewchuk, 1996), which divides the domain in triangular
finite elements.

Using the distributions in Table 7.1, 100 random generations were performed for 10
different sample sizes that range from 1 m to 10 m. Figure 7.1 shows an example of a 8 m
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Table 7.1: Average and standard deviations of the geometrical features of the DFN used in
the case study. A normal distribution is assumed for the lengths and the dips.

Dominant Set Conjugate Set
Average Std. Deviation Average Std. Deviation

Length (m) 1.05 0.12 0.48 0.12
Dip (°) 72.5 4.2 72.5 4.2

Intensity (1/m2) 4.0 - 2.6 -

sample.

Figure 7.1: Example of one of the generated DFNs that replicate the pattern of the tectonic
fractures in the Ekofisk reservoir. There is a main sub-vertical set of larger fractures, which
are sometimes associated to conjugate smaller fractures.

Figure 7.2 shows the averages of the crack tensor components (Equation 2.34) as a func-
tion of sample size. Since the fractures are almost vertical, the average Fxx, which gives the
projection of the fractures lengths in the y-direction, is much higher than Fyy.

Figure 7.2: Average of the crack tensor components of the DFN used in the study case as a
function of sample size.
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7.2.2 Constitutive models for the fractures and intact rock
The intact rock is considered to be linear elastic and the elastic behavior of the fractures
follows the Barton and Bandis law (Barton et al., 1985), according to which:

Kn =
Kni(

1− un

umax

)2 (7.1)

where Kn is the fractures normal stiffness, Kni is the initial normal stiffness, un is the
normal displacement jump (positive for compression or closure) and umax is the fractures
maximum closure. The fractures tangent stiffness is considered to be constant here, which
is a simplification since this stiffness tends to be damaged when shear failure occurs or when
the fracture opens.

When their elastoplastic behavior is considered, the fractures and the intact rock are
modelled with a perfectly plastic Mohr-Coulomb criterion. Table 7.2 describes the intact
rock and fracture constitutive parameters. The mechanical parameters used in this study
are the same as those adopted by Gutierrez et al. (1994). These authors, however, adopt a
strain-dependent Mohr-Coulomb yield surface with cap for the intact rock.

Gutierrez et al. (1994) obtained the properties of the rock matrix were obtained by fitting
the experimental results on cores taken from the Ekofisk. For the fractures, Table 7.2 presents
directly the initial normal stiffness, tangent stiffness and initial fracture opening. But these
data are calculated from the Joint Roughness Coefficient (JRC) and Joint Compressive
Strength (JCS) with the relationships proposed by Bandis et al. (1983). Gutierrez et al.
(1994) estimated the JRC from tilt tests on fractured cores taken from the Ekofisk reservoir.
JCS was estimated from the unconfined compressive strength of the intact rock, and the
residual friction angle is assumed to be equal to the internal friction angle of the intact rock.

The permeability of the matrix is constant and equal to 1× 10−15 or 1 mD. The perme-
ability of the fractures (kf ) is a function of their aperture following the cubic law:

kf =
w2

12
(7.2)

where w is the fracture’s aperture.

7.2.3 Generation of the initial state
Prior to the multiscale simulations, it is necessary to set the initial stress state of the REV.
According to Teufel and Farrell (1990), the average initial pore pressure in the Ekofisk was
48 MPa and the total overburden stress 62 MPa. Thus, the initial effective vertical stresses
are 14 MPa. As for the horizontal stresses, they are much more uncertain and vary a lot.
In-situ experiments indicate that the initial K0 (ratio of effective horizontal stress to effective
vertical stress) ranged between 0.2 and 0.5. So the effective horizontal stresses range between
2.8 MPa and 7 MPa.
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Table 7.2: Fracture and intact rock parameters adopted in the case study.
Intact rock Fractures

Young’s modulus, E(GPa) 1.4 Initial Normal Stiffness, Kni (GPa/m) 10
Poisson’s ratio, ν 0.2 Initial aperture, w0 (mm) 1.8
Cohesion, c (MPa) 4.1 Tangent Stiffness, Kt (GPa/m) 50
Friction angle, φ (°) 24 Cohesion, cf (MPa) 2
Dilation angle, ψ (°) 0 Friction angle, φf (°) 14
Biot’s coefficient b 1.0 Dilation angle, ψf (°) 14

Permeability, km (m²) 1× 10−15 Biot’s coefficient, bf 1.0
Permeability, kf Function

Minimum aperture, wmin (m) 5× 10−7

Here, the directions x, y and z will refer to the horizontal, vertical and out-of-plane
directions, respectively.Following Gutierrez et al. (1994), an initial K0 of 0.2 was selected,
which means an initial horizontal stress of 2.8 MPa. Plane-strain conditions are assumed.

In order to impose these initial stress conditions to the fractured samples, these latter
were submitted to the loads illustrated in Figure 7.3. This loading was divided in 100 steps
and a fully drained behavior was assumed.

Figure 7.3: Stress boundary conditions used to set the initial stress state of the REVs in the
case study.

Apart from generating the initial distribution of stresses, this procedure also generates
the initial apertures, which in turn define the initial fracture permeabilities and stiffness in
the large-scale simulation. The initial average aperture is 8.2 × 10−5 m and the minimum
aperture is 5.6× 10−5m.

7.2.4 Upscaling of the initial properties and REV size
Gutierrez et al. (1994) used 2 m samples to perform their numerical experiments, but they
did not perform REV studies to define the actual size of the REV or to verify how reliable
are the estimations obtained from the size they selected.
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The methodology described in Chapter 5 was used to define the REV for our replica
of the tectonic fracture network in the Ekofisk field. The first step is to select a reference
volume to perform the upscaling in a sample of REVs. Figure 7.2 shows that the average
geometrical properties stabilize above a size of 4 m, so this was selected as the reference
volume. All 4 m samples were firstly subjected to the loading in Figure 7.3, so their initial
apertures were generated. In any of these samples the initial stress conditions were sufficient
to make neither the fractures nor the intact rock reach the yielding surface. Then, the
equivalent constitutive tensors were obtained. This upscaling was performed by imposing
mortar periodic boundary conditions with the procedure described in Section 4.2.2. The
permeability tensor of the intact rock (ki) is the following:

ki =

[
kxx kxy
kyx kyy

]
=

[
1× 10−15 0

0 1× 10−15

]
m2 (7.3)

And the stiffness tensor Ci of the intact rock is the following:

Ci =

[ C11 C12 C13 C14
C21 C22 C23 C24
C31 C31 C33 C34
C41 C42 C43 C44

]
=

[
1555.6 388.9 388.9 0
388.9 1555.6 388.9 0
388.9 388.9 1555.6 0
0 0 0

]
MPa (7.4)

Figures 7.4 and 7.5 present the QQ-plots for the components of the equivalent perme-
ability and stiffness tensors, k and C for the fractured 4 m samples. In all experiments the
upscaled tensors were symmetrical, so only half of the off-diagonal terms is presented. The
third row and columns of C are not shown because the normal stresses in the direction z are
calculated from the plane-strain assumption, and not upscaled like the other components.

The anisotropic behavior caused by the fractures is clear. Because the main fractures
dip almost vertically, the permeability kyy is one order of magnitude larger than kxx and two
orders of magnitude larger than the permeability of the intact rock. Also, the component kxy
is on average larger than kxx, which means that, in the initial conditions, a pressure gradient
in the x-direction provokes a higher specific flux in the y-direction than in the x-direction.

Figure 7.4: QQ-plots for the equivalent permeability tensor of the 4 m samples generated
for the case study.

Anisotropy also manifests in the equivalent stiffness tensor; the components C14 and C24
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are non-zero, which means that shear strains are associated to normal stress increments and
vice versa. However, their values are insignificant when compared to the other components.
As for the diagonal components, C11 is much more significantly reduced than C22, which
remains very close to the value for the intact rock. As the fractures are nearly vertical, their
apertures suffer larger variations when submitted to a normal stress in the x-direction.

Figure 7.5: QQ-plots for the equivalent stiffness tensor of the 4 m samples generated for the
case study.

Figures 7.4 and 7.5 show that the distribution of the constitutive tensors for the 4 m
samples are nearly normal. So, these data can be used to calculate the REV using Equation
5.10. Table 7.3 shows the minimum sizes calculated for a maximum precision error of 10 %,
a confidence level of 95% and one REV generation (N = 1 in Equation 5.10).

The small sizes obtained for most of the elastic parameters can not be used as the actual
size of the REV, since they are smaller than the average fracture lengths. Also, some are
smaller than the average fracture spacing, which means that random generations of this size
could return samples with no fractures. So, the smallest possible sample that represents
well the fracture network geometry should be selected in this case. Although C14 and C24

returned a minimum size of 8.7 m, they are one to two orders of magnitudes smaller than
the other components, so they are too insignificant to dictate the REV size. The critical
parameter is permeability, which returned a minimum size of 10 m.

In a multiscale simulation, the size of the REV has a big impact on the computation
time. As Equation 5.10 suggests, a reliable estimation of the average permeability can be
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Table 7.3: Calculated REVs for a 10% error and one generation - Case study.
Geometrical

Fxx Fxy Fyy

REV size (m) 5.5 8.8 5.5
Permeability

kxx kxy kyx kyy
REV size (m) 6.1 10.0 10.0 8.6

Elastic Stiffness Tensor
C11 C12 C14 C22 C24 C44

REV size (m) 0.8 0.9 8.7 0.15 8.7 0.35

obtained with either 1 REV of 10 m or from the average of 5 REVs of 2 m, for example.
Since the order of computation time of each system at the REV boundary value problem
is the square of the number of degrees of freedom, it would probably be more efficient to
perform 5 multiscale simulations with a REV of 2 m. So, to minimise the computation time,
we selected the size of 2 m for the REV that will be carried out to the multiscale simulations.

Equation 5.10 presupposes that the N REV generations are random. The process can be
made less random by selecting smaller REVs that are known to return constitutive properties
that are close to the average ones. To be able to have a good notion of the average behavior
of the reservoir with one multiscale simulation only, one sample of 2 m was selected using
the procedure that will be presented hereinafter.

7.2.5 Selection of the REV
Firstly, we obtained the upscaled constitutive tensors of a random 10 m sample to be used
as a reference REV. According to the theory presented in Chapter 5, there is a 95% chance
that this sample will return values that do not dist more than 10% from their true mean.
This is true for the permeability kxy, for which the minimum REV size was the largest; the
size of 10 m is expected to return values that are even closer to the true mean for the other
properties.

Then, a few 2 m samples who had crack tensor components close to those of the reference
REV were tested for their properties. We selected the 2 m sample that returned properties
that were the closest to those of the 10 m sample. Table 7.4 presents the upscaled properties
of both the selected and reference REVs.

Figure 7.2 presents the selected 2 m REV and the mesh used in the multiscale simulations,
which is composed of 736 nodes. This mesh was selected after a test of convergence of the
upscaled properties when using mortar periodic boundary conditions.
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Table 7.4: Properties of the 2 m REV selected for the case study and the reference 10 m
REV.

Crack tensor (1/m)
Fxx Fxy Fyy

10 m REV 5.88 -0.63 0.59
2 m REV 5.35 -0.58 0.57
Difference 9.0% 12.7% 3.4%

Permeability (×10−15 m²)
kxx kxy kyx kyy

10 m REV 3.49 5.03 5.03 24.1
2 m REV 3.34 4.53 4.53 23.6
Difference 4.1% 9.9% 9.9% 2.3%

Elastic Stiffness Tensor (MPa)
C11 C12 C14 C22 C24 C44

10 m REV 1348.5 330.4 13.0 1557.0 13.6 559.6
2 m REV 1399.9 344.2 12.31 1566.3 12.7 568.5
Difference 3.8% 4.3% 5.4% 0.6% 6.7% 1.6%

Figure 7.6: REV of size 2 m that was selected to carry out the multiscale simulations (left)
and its mesh (right).

7.3 Multiscale simulations

7.3.1 Macroscale model
Figure 7.7 describes the synthetic case to be simulated with the multi-level Box method.
The section of the reservoir is 200 m deep and an extension of 600 m is considered. The
displacement restrictions at the bottom suggest that the reservoir is set over a very stiff rock.

The mesh at the reservoir scale is composed of 200 elements of dimensions 30 m x 20 m.
The zone of production in Figure 7.7 indicates a well where the pressure is controlled. The
initial pore pressure in the reservoir is 48 MPa. Two pressures were tested at the production
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zone: 43 MPa and 38MPa. The fluid in the reservoir is incompressible water.

Figure 7.7: Mesh and boundary conditions of the synthetic case study.

7.3.2 Simulation of depletion
Neither the initial load nor the depletion were sufficient to make the rock matrix or the
fractures reach their yielding surface. So, in the simulation of the depletion of the reservoir
their behavior is elastic. For comparison purposes, three types of simulations were performed
for the depletion with a bore hole pressure of 43 MPa. The first scenario is a static case,
where the permeability and normal stiffness of the fractures are considered to be constant
and equal to the initial values in Table 7.4. In a second scenario, the fractures permeability
is dynamic and updated during the simulation with the cubic law (Equation 7.2). The
third case considers both the fractures permeability and stiffness are dynamic; this latter is
updated with the Bartis-Bandis law (Equation 7.1).

Figure 7.8 presents the flux rates and cumulative production for the three scenarios during
one year of production. The use of only the initial properties significantly overestimates the
flux rates. As a result, the predicted cumulative production at the end of one year is also
overestimated by approximately 17%. The comparison between the scenario with dynamic
permeability and stiffness and the scenario with dynamic permeability only shows that the
production is quite sensitive to the fractures normal stiffness.

Figure 7.9 compares the pore pressure distribution of the static and dynamic scenarios
after 100 days of production when the well pressure is 43 MPa. In the static scenario, the
anisotropic permeability of the domain is clear; the pressure distribution is oriented with the
main fracture set of the REV (see Figure 7.6) and favors the flux in the y-direction. However,
the multiscale simulation of the dynamic scenario shows that this tendency changes in the
zones that are reached by significant pore pressure reductions. This happens because, as
the fractures start to close, the anisotropy of the equivalent permeability tensor becomes
progressively less accentuated. The effect of this dynamic behavior is clear near the well,
where the pore pressure distribution is perturbed in comparison with the static case. This
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Figure 7.8: Comparison of the flux rates and cumulative production during one year of
production for three scenarios: constant fracture properties, dynamic fracture permeability
and dynamic fracture permeability and normal stiffness.

effect is more visible when the well pressure is 38 MPa (Figure 7.10).
Figure 7.11 shows this effect at the level of the microscale. The pressure increments

and fracture apertures at the REV of one of the faces of element 60 (indicated as E60 in
Figure 7.7) are compared for 40 and 160 days of production. As the depletion continues,
the upstream fractures close and reach the minimum aperture value of 5 × 10−7 m. As a
result, the distribution of the pressure increments become less influenced by the fractures
sub-vertical orientation.

These changes can be quantitatively evaluated in Figure 7.12, which shows the evolution
of the permeability tensor normalized by its initial values as a function of the pore pressure
variation during depletion. While the off-diagonal terms of the permeability tensor vanish
after a pore pressure variation of -2 MPa, while kxx and kyy decrease to 51 % and 9 %
of their original values, respectively. These values stabilize because of the consideration
of a minimum aperture in the model. Since the reduction in the component kyy is more
significant, the y-direction becomes less of a preferential direction for flow during depletion.
For that reason, the pore pressure fields change as the fractures close.

Figure 7.13 compares the dynamic and static scenarios for the predicted cumulative
volume of water after 200 days of production when the pressure at the well is 43 MPa and
38 MPa. While the use of constant permeability makes this 5 MPa reduction in the well
seem more than twice as effective, the dynamic case shows that the gain in productivity is
less significant, of the order of 67%. This happens because, as the initial well pressure gets
lower, the fractures also close more rapidly and more considerably. Thus, the consideration
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Figure 7.9: Pore pressure distribution in the reservoir after 100 days of production for a) the
static case and b) the dynamic case. The well pressure is 43 MPa.

of dynamic permeabilities when setting the well pressure may also be useful to maintain the
reservoir’s permeability and productivity.

7.3.3 Evaluation of the separation of scales
The accuracy of the results obtained with the multiscale simulations is expected to improve
as the scale separation gets stronger, specially because of the assumption of stationary flow
at the REV. The pressure variations are the driver of the field changes in the reservoir during
depletion. As a consequence, we can evaluate the scale factor in Equation 2.4 by using the
pressure as the characteristic physical quantity Ψ, as was done by Bertrand et al. (2020).

To get conservative results, the most critical pressure gradient will be estimated as the
difference between the pressure in the well and the initial reservoir pressure (48 MPa) divided
by the minimum dimension of the element at the well, which is 20 m. Thus, the critical
pressure gradient is 0.25 MPa/m when the well pressure is 43 MPa and 0.5 MPa/m when
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Figure 7.10: Pore pressure distribution in the reservoir after 100 days of production for a)
the static case and b) the dynamic case. The well pressure is 38 MPa.

the well pressure is 38 MPa. The quantity Ψ in Equation 2.4 will also be estimated, in a
conservative manner, as the well pressure, which is the minimum possible pressure.

Hence, recalling that the characteristic length lc of the REV has been set to 2 m, when
the well pressure is 43 MPa:

ε =
0.25 MPa/m

43 MPa × 2 m = 0.012 (7.5)

and when the well pressure is 38 MPa:

ε =
0.5 MPa/m
38 MPa × 2 m = 0.026 (7.6)

This means that at the REV the imposed pressures can vary up to 1.2% and 2.6% for
the pressures of 43 MPa and 38 MPa, respectively. If the REV was really a point at the
macroscale, this variation would be zero. But the maximum scale parameters obtained in
our simulations are small enough to affirm that a separation of scales exists.
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Figure 7.11: Comparison of the distribution of the pressure increments and of the fracture
apertures (presented in the lower-dimensional elements) after a) 40 days and b) 160 days of
production.

Figure 7.12: Equivalent permeabilities normalized by their initial values as a function of pore
pressure decrease during depletion.

7.4 Points for optimization
While multiscale methods were shown to be an option to incorporate the dynamic behavior
of small fractures, there are two main issues that need to be addressed for them to be
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Figure 7.13: Cumulative production predicted for 200 days of production for the static and
dynamic scenarios for two well pressures: 43 MPa and 38 MPa.

considered as a viable tool in larger scale and more realistic reservoir simulations. The first
issue is related to the computation time, and the second one to the separation of scales.

The resolution of each time step of the multiscale simulation of the reservoir’s depletion
took on average 120 minutes and 3 iterations, that is, on average 40 minutes per iteration.
Clearly, it is very computationally expensive to solve several boundary-values problems nu-
merically at each integration point of the domain, specially in such non-linear problems as
the hydro-mechanical simulation of media where the constitutive properties are solution-
dependent. There are computational resources and numerical strategies that can be used to
optimize this solution and make multiscale simulations more competitive.

The first and most obvious one is the parallelization of the problem. In multiscale
simulations, most of the computation time is spent assembling the system; as in finite-
element based methods this assembly is made element by element, it is simple to divide the
elements among the existing processors so they can assemble different parts of the domain
simultaneously. Parallelization strategies for the finite element method squared have been
proposed by Matsui et al. (2004) and Lopes et al. (2018), for example, to speed up the
computations. The simulations presented here could not be run in parallel because the
multi-domain module of DuMux does not support parallelization. So, this is a first point
for optimization in the implemented code. Another simple strategy that could be tested is
to use a modified Newton-Raphson to solve the large-scale problem, so the assembly of the
system would have to be made only once at each time step.

These strategies would not whatsoever completely solve the problem of computation
time in real reservoir simulations, because these models can have hundreds of thousands to
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millions of cells. So, the multiscale approach should also ideally be used only in regions of
the reservoir where they really can be useful, like the zones where the constitutive behavior
is very dynamic. Hajiabadi and Khoei (2018) have employed this approach to simulate
the consolidation of a fractured domain with a sugar cube microstructure. They used the
finite element method squared in the zones of higher pressure gradient, and the classical
dual-porosity model elsewhere. These results matched well with those obtained using the
multiscale method over the entire domain.

Another possible solution is to associate machine learning to multiscale methods. This
was achieved, for example, by Wang and Sun (2019). They developed a hydro-mechanical
multiscale method where the macroscale is solved with the FEM, the mechanical response
of the REV is solved with the DEM and the hydraulic behavior is obtained from a neural
network trained with data from numerical experiments with the Lattice-Boltzmann method.
So, if a large amount of data is collected by upscaling the constitutive behavior of the frac-
tured REVS in the reservoir with different boundary conditions, machine learning methods
could replace many of the REV computations that are performed to assemble the system.

The respect of the separation of scales is the second issue that needs to be addressed
to make multiscale simulations more applicable to reservoir simulation. While the fractures
tested in this case study have lengths that range from tenths of centimeters to only a few
meters, subseismic fractures can reach even tenths of meters and still be too small to be
explicitly represented in large-scale simulations. At the same time, the REVs for these larger
fractures may not attend a reasonable level of separation of scales. For these cases, it would
be interesting to find approaches that can overcome this limitation. A first solution would be
to drop the assumption of stationarity at the REV and solve the microscale for transient flow.
The comparisons made by Khoei and Hajiabadi (2018) between the multiscale and the direct
solution of a consolidation problem on heterogeneous media showed that introducing dynamic
effects at the REV can significantly improve the solution when the separation of scales is not
strong enough. Of course, this approach requires an extra amount of computational efforts, so
it should be considered along with optimization methods. Ways of surpassing the restrictive
assumption of separation of scales have also been addressed in mechanical problems. They
led to the development of the second order multi-level FEM, to the use of enriched kinematics
at the level of the REV (e.g Feyel, 2003) and to the proposal of relocalization techniques
(e.g Feyel and Chaboche, 2001). These latter refer to the interpolation of quantities from
the REV at the macroscale when the size of the heterogeneities is significant.

Finally, here the random fractured domain was replaced by an equivalent periodic media
for which the unit cell returns good estimations of the average constitutive behavior. The
actual accuracy of the estimated average quantities should be tested, which is only possible
by averaging several multiscale simulations where the REVs at each integration point are
randomly generated. Thus, this is also a very costly task that will be possible if combined
with efficient optimization methods.
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7.5 Conclusions of the chapter
The methods developed in the previous chapters were applied to the modeling of a synthetic
case study. The methodology presented in Chapter 5 was used to perform REV studies on
fractured networks similar to the tectonic fractures in the Ekofisk reservoir. The mortar peri-
odic conditions presented in Chapter 4 were used to upscale the hydro-mechanical properties
and to solve the boundary value problem of the REV in the multiscale simulations.

The multiscale method called multi-level Box method, described in Chapter 7, was used
to simulate the depletion of the reservoir. The results of the multiscale simulation for the
predicted flux rates, cumulative production and pore pressure fields were compared with a
scenario where the hydro-mechanical properties are static. The results showed that static
fracture properties significantly overestimate the predicted flux rates and cumulative pro-
duction, and disregard the evolution of the level of anisotropy in the reservoir.

While the developed multiscale method is a robust tool to consider the dynamic behavior
of the reservoir, the computational costs associated to the application of this technique on
more realistic reservoir simulations may be too high. Thus, optimization techniques should be
developed for complex reservoir models to benefit from the better predictability of multiscale
simulations.

139



Chapter 8

Conclusions and perspectives

8.1 Concluding remarks
Because of the strong hydro-mechanical coupling of their properties, fractures have a dy-
namic impact on the behavior of naturally fractured reservoirs during production. While
sub-seismic fractures may be frequent enough for this influence to be significant, they are
also usually too small to be all explicitly represented in numerical models. Traditional up-
scaling can not consider the geometrical complexity and the state-dependent behavior of
these fracture networks. So, this thesis presented multiscale methods as an alternative to
model the hydro-mechanical behavior of reservoirs containing complex networks of small
fractures. Contributions were made to the different parts of this modeling process.

Much of the complexity of this modeling is at the level of the REV, where the fractures
are generated stochastically and explicitly represented. A first problem that arises because
of this complex geometry is the imposition of periodic boundary conditions, which are usu-
ally preferred in numerical homogenization studies. Chapter 4 approached this issue by
proposing adaptions to the mortar method, which is traditionally used in contact problems
and was recently applied to the imposition of periodic boundary conditions on non-fractured
domains. The mortar periodic boundary conditions were tested for the upscaling of random
and periodic fractured media and were shown to have the theoretically expected properties
when compared to Dirichlet and Neumann boundary conditions.

Another problematic related to the randomness and complexity of the fracture networks
is the definition of the size of the REV. Chapter 5 presented a methodology that uses the
Central Limit Theorem to make this process general and efficient. The geometrical and
hydro-mechanical properties of any fracture network were shown to converge to a normal
distribution if no important outliers are present. Because of that, it is possible to predict
the standard deviation of a property for any REV size from the simulation of one REV size
only. After this prediction, the results can be used to define the REV based on a maximum
tolerated error for the average value. Thus, the ultimate purpose of this methodology is to
have a good estimation of the average constitutive behavior, or at least to quantitatively
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estimate how far off one can be from this true mean by selecting a certain REV size.
After dealing with the REV problem, a contribution was made to the field of multiscale

simulations. Chapter 6 presents an adaption of the multi-level FEM that was called the
multi-level Box method. In this novel approach, the Box method is used to solve both the
macroscale and the microscale. Differently from the multi-level FEM, the multi-level Box
method is locally conservative. As a consequence, it may be advantageous for reservoir
simulations if the method is to be adapted to multi-phase flow problems, for example.

All of these developments resulted in the extension of an existing open-source code,
which can now be used to perform hydro-mechanical multiscale (and, obviously, one-scale)
simulations of elastoplastic fractured media.

The application of the developed techniques to a case study showed that considering the
dynamic behavior of small fractures may be important to correctly predict the performance
of the reservoir. The methods developed here can be readily applied in case studies like this
to assess, in a simplified manner, how production can be optimized considering the interplay
between stress state, the geometry and the coupled constitutive properties of small fractures.
Nonetheless, the introduction of multiscale approaches in complex reservoir simulations still
requires more work. Once these techniques are optimized, the quality of recovery plans and
the predictability of numerical models can benefit from their robustness.

8.2 Perspectives and improvements for future works
The code that was implemented in this thesis can be improved with the following additions:

• Parallelization of the multiscale simulations. This requires low-level changes in DuMux,
whose multi-domain module currently does not support computations in parallel.

• Implementation of more sophisticated constitutive models for the intact rock and for
the fractures.

• Adaptation of the multi-level Box method to multi-phase flow.

Also, to reach a better understanding and applicability of the computational methods
applied here, we envision to work on the following topics:

• Gather a large amount of data from numerical experiments on fractured media to test
the applicability of the Central Limit Theorem to their constitutive properties.

• Explore in details the accuracy of the multi-level Box method by comparing it to the
direct solution of fractured domains. The influence of the size of the REV with respect
to the size of the domain should be evaluated, as well as the limits of the assumption
of stationarity at the REV need to be better understood.
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• Perform multiscale simulations where the REVs at the integration points are randomly
generated. Then, compare the average resulting fields with those of a multiscale sim-
ulation performed with one REV only that well represents the average constitutive
behavior.

• Develop reliable methods to optimize the multiscale methods. The more efficient way
of doing this seems to mix multiscale and one-scale approaches in the same domain,
by using the former only when necessary. For that, proper criteria to turn multiscale
on and off need to be studied and validated.
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Appendix A

Upscaling of the elastic constitutive
tensors

We show here the upscaling of the elastic constitutive tensors for 2D plane-strain conditions
(εz = 0).

A.1 Constant tractions
The imposition of the linearly independent constant tractions in Figure 2.5 allow the direct
calculation of the equivalent elastic compliance tensor. The stress-strain relationship for
linear elastic anisotropic media can be expressed as:

ε = Sσ (A.1)

We consider here the equivalent compliance tensor of a fractured rock mass where the
intact rock has Young modulus Er and Poisson ratio νr. In the two-dimensional space, the
constitutive tensor Sijkl can be expressed in terms of the equivalent elastic moduli as:

Sijkl =


S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44

 =


1
Ex

−νyx
Ey
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Gxy

−νxy
Ex

1
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Gxy

−νxz
Ex

−νyz
Ey

1
Ez

ηz,xy
Gxy

ηxy,x
Ex

ηxy,y
Ey

ηxy,z
Ez

1
Gxy

 (A.2)

where Ei are the elastic moduli, νij are Poisson ratios, ηi,jk are coefficients of mutual inflience
of the first kind and ηij,k are coefficients of mutual influence of the second kind. Considering
that the fractures have strikes in the direction z, they do not affect the deformations in this
direction; thus, Ez = Er, νxz = νyz = νr, and the components S31, S32 and S33 are then
equal to those of the compliance tensor of the intact rock. Also, since the shear stress σxy
does not affect deformations in z, S34 is equal to zero. Considering the symmetry conditions,
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S13 = S31, S23 = S32 and S34 = S43. Hence, there are 7 components of the tensor which are
known a priori because of the assumption of bidimensionality.

For plane-strain conditions, the relationship in (A.1) reduces to:
εx
εy
0
γxy

 =


S11 S12 S13

r S14

S21 S22 S23
r S24

S31
r S32

r S33
r 0

S41 S42 0 S44



σx
σy
σz
τxy

 (A.3)

Three linearly independent boundary conditions are necessary to obtain the unknowns
of the elastic compliance tensor. That means that three boundary-value problems are solved
to obtain S. In this paper, we used the applied stresses illustrated in Figure 2.5, where at
each step only one of the stress components σx, σy and τ xy have non-zero values. So, at
each step one row of S is entirely computed.

The displacement gradients are calculated from the integral boundaries in (2.32). They
are used to calculate strain vector εi.

The stress σz can be calculated from the applied stresses and the properties of the intact
rock as:

σz = −S31
rσx + S32

rσy
S33

r (A.4)

And the tensor components are calculated using (A.4) and the system formed by lines 1,
2 and 4 in (A.3)

If the equivalent stiffness tensor C is desired, one can obtain it by inverting the equivalent
compliance tensor:

C = S−1 (A.5)

The equivalent elastic moduli are obtained by inverting the diagonal terms of S.

A.2 Periodic and linear displacement
Both periodic and linear displacement boundary conditions (Figures 2.3 and 2.6) are used
to impose a macroscopic strain vector ε. They allow the direct computation of the stiffness
tensor C, where: 

σx
σy
σz
τxy

 =


C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33
r C34

C41 C42 C43 C44



εx
εy
0
γxy

 (A.6)

Each component of the strain vector is kept non-zero at a time to compute the columns
1, 2 and 4 of C. The third column, which corresponds to the strain εz = 0, is computed by

157



assuming the component C33 to be equal to the one of the intact rock, that is:

C33 =
Er(1− νr)

(1 + νr)(1− 2νr)
(A.7)

and the off-diagonal terms are obtained from the assumption of symmetry, that is, Cj3 = C3j,
where j = 1, 2, 4.

If the equivalent compliance tensor C is desired, one can obtain it by inverting the
equivalent stiffness tensor:

S = C−1 (A.8)
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