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Abstract

Decades of public and industrial research were motivated by having a realistic virtual

representation of our world and algorithms able to understand its semantics. From

the first CAD software to modern deep learning techniques such as recent neural

radiance fields, researchers and engineers have perfected 3D algorithms.

Nowadays many of the technologies we are using daily are 3D aware. They can

be found in our smart-phones, in our cars, at the hospital, and in many other

places. Recent advances use neural network techniques to perform tasks ranging

from shape recognition, shape generation, to shape representation. In this thesis,

we focus on the latest and we aim to represent the surfaces of 3D shapes using

deformable elements. Many works from recent years have inspired this thesis. The

most important is AtlasNet, a neural network architecture that learns how to deform

a set of square patches to reconstruct the surface of any given shape in a “papier

maché” like approach. We chose to start this thesis from AtlasNet, building upon

its design to extend the philosophy of this approach to new tasks such as element

discovery and joint shape collection parameterization. Our work was motivated by

a range of industrial 3D-related challenges such as generating 3D representation,

texturing, and many more.

This thesis presents two main technical contributions. The first one is to rep-

resent a collection of objects by a set of joint deformable elements that we call

elementary structures. We designed these elementary structures to learn and rep-

resent consistent and meaningful parts of the objects in the collection. They are

similar to primitives. We propose two models of elementary structures : (i) patch

deformation and (ii) point leaning. The first learns parametric surfaces that enable
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us to generate a continuous surface representation of the collection of shapes. The

second learns a parametric set of points not constrained by topology, allowing us

to generate more complex and interpretable elementary structures. An adjustment

module learns to position and deform the elementary structures to reconstruct

any shape of the collection. Using the elementary structures and the adjustment

modules, we can generate an accurate reconstruction that preserves correspondences

between shapes. The shape of those elements can evolve during training from a

simple initialization to more complex shapes that describe the semantic part of the

collection. This reconstruction strategy enables us to understand the underlying

parts that best describe the collection’s objects. We see it as an analysis-by-synthesis

strategy.

The second technical contribution of this thesis builds upon elementary structures

to learn a parameterization of a single shape or a collection’s shapes. We combine

the best features of the point learning and patch deformation modules in order

to build a method that generates continuous surfaces not constrained by topology.

This representation is conceptually similar to an atlas, i.e., a set of compatible

homeomorphisms between a 3D shape and a 2D domain. We created a pipeline

whose components mimic the defining elements of atlases. Namely, we learn a 2D

domain homeomorphic to the surface, a parameterization which maps it to the

surface and a chart which maps on it the surface. We show that we can merge the

continuous surface aspect of the patch deformation modules and the flexibility of

the point learning modules by representing the 2D domain as a probability density

function. Our pipeline can represent several shapes using a single joint 2D domain

while producing a joint atlas representation of a collection’s shapes. Our method

could allow using existing parameterization techniques such as texture mapping,

displacement, roughness, ambient occlusion, height maps and many more on a

collection of shapes.
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Both methods presented in this thesis improve the reconstruction quality as mea-

sured on benchmarks with shapes of our collection and improved the coherence of

the reconstruction.

Keywords : Deep learning, neural network, differentiable geometry, atlas, shape

parameterization, primitive.
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Résumé

Plusieurs décennies de recherches publiques et industrielles ont été motivées par

le fait de disposer d’une représentation virtuelle réaliste de notre monde et d’avoir

des algorithmes capables d’en comprendre sa sémantique. Des premiers logiciels de

CAO aux techniques modernes d’apprentissage profond telles que les récents champs

neuronaux de radiance, chercheurs et ingénieurs se sont efforcés de perfectionner les

algorithmes 3D.

Aujourd’hui, de nombreuses technologies que nous utilisons au quotidien sont basées

sur la 3D. On les trouve dans nos smartphones, dans nos voitures, à l’hôpital et

dans de nombreux autres endroits. Les progrès récents en la matiere utilisent des

techniques de réseaux de neuronnes profonds pour effectuer des tâches allant de la

reconnaissance de formes et la génération de formes à la représentation de formes.

Dans cette thèse, nous nous concentrons sur cette dernière et nous cherchons à

représenter la surface de formes 3D en utilisant des éléments déformables. De

nombreux travaux de ces dernières années ont inspiré cette thèse. Le plus important

est AtlasNet, une architecture de réseau de neurones profond qui apprend à déformer

un ensemble de patchs carrés pour reconstruire la surface d’une forme donnée ; une

approche similaire au "papier maché". Nous avons choisi de construire cette thèse à

partir de ce travail. Nous nous sommes appuyé sur cette approche et nous avons

étendu sa philosophie à de nouvelles tâches telles que la découverte d’éléments et la

paramétrisation de collections de formes conjointes. Ces travaux ont été motivés par

une série de défis technologiques liés à la 3D, tels que la génération de représentations

3D, le texturage de modèle 3D et bien d’autres encore.

La première contribution technique de cette thèse est de représenter une collec-

tion d’objets par un ensemble conjoint d’éléments déformables que nous appelons
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structures élémentaires. Ces structures élémentaires sont conçues pour apprendre

et représenter une partie cohérente et significative des objets de la collection. Elles

peuvent être considérées comme des primitives des représentations existantes. Au

cours de l’apprentissage, la forme de ces structures élémentaires peut évoluer d’une

simple initialisation à des formes plus complexes qui décrivent la partie séman-

tique de la collection. Nous proposons deux modèles de structures élémentaires

: (i) module de déformation de patch et (ii) module d’apprentissage de points. Le

premier apprend des surfaces paramétriques qui nous permettent de générer une

représentation surfacique continue de la collection de formes. Le second apprend un

ensemble paramétrique de points qui ne sont pas contraints par la topologie, ce qui

nous permet de générer des structures élémentaires plus complexes et interprétables.

Un module d’ajustement apprend à positionner et déformer les structures élémen-

taires afin de reconstruire chaque forme de la collection. En utilisant les structures

élémentaires et les modules d’ajustement à l’unisson, nous sommes capables de

générer une reconstruction précise qui préserve les correspondances entre les formes.

Initialement, cette stratégie de reconstruction nous permet de comprendre les parties

sous-jacentes qui décrivent le mieux les objets de la collection, et peut être comprise

comme une stratégie d’analyse par synthèse.

La deuxième contribution technique de cette thèse s’appuie sur des structures

élémentaires pour apprendre une représentation en deux dimensions d’une forme

unique ou d’une collection de formes. Nous combinons les meilleures caractéristiques

des modules d’apprentissage de points et de déformation de patchs, c’est-à-dire

que nous voulons une méthode qui génère des surfaces continues non contraintes

par la topologie. Cette représentation est conceptuellement similaire à un atlas,

c’est-à-dire un ensemble d’homéomorphisme avec raccords entre une forme 3D et un

domaine 2D. Nous avons créé un pipeline dont les composants imitent les éléments de

définition des atlas, à savoir, pour une surface donnée, un domaine 2D homéomorphe



viii

à la surface, une paramétrisation qui fait correspondre le domaine 2D à la surface

et une carte qui fait correspondre la surface au domaine 2D. Nous montrons que

nous pouvons fusionner l’aspect surfacique continu des modules de déformation de

patchs et la flexibilité des modules d’apprentissage de points en représentant le

domaine 2D comme une fonction de densité de probabilité. Notre pipeline peut

représenter plusieurs formes à l’aide d’un seul domaine 2D conjoint, produisant

ainsi une représentation atlasique conjointe d’une collection de formes. Puisque

la méthode préserve les correspondances entre les formes de la collection, notre

méthode pourrait permettre d’utiliser des techniques de paramétrisation existantes

simultanément sur toute la collection. CCelles-ci étant, par exemple, l’application

de texture, ou de détail, la rugosité, l’occlusion ambiante et bien d’autres.

Mot clés : Apprentissage profond, réseau de neurone, géométrie différenciable,

atlas, paramétrisation de formes, primitives.
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CHAPTER 1

Introduction

1.1 Goals

The goal of this thesis is (i) to improve the accuracy and the consistency of deep

learning techniques for surface parameterization; (ii) to develop more interpretable

representations of object surfaces.

Improving the accuracy and consistency of deep surface parameteriza-

tion. For decades, the research community has proposed various methods of shape

parameterization, i,e., mapping a 2D domain to the surface of a shape, see Figure

1.1a. With the recent democratization of neural networks, many works propose new

approaches relying on deep learning techniques to produce surface parameterizations

[Groueix et al., 2018b, Yang et al., 2018a, Bednarik et al., 2020]. Such deep learning

methods have the advantage of parameterizing several shapes simultaneously. Con-

sistency of parameterizations is one of the main aspects of these works. A consistent

mapping is indeed able to generate the correspondences between shape surfaces.

1
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2D domain Intermediate mapped surface Final surface reconstruction

(a) Example of a parameterization of a torus.. [Gu, 2003].

Interpretable elements Reconstruction with the elements

(b) Interpretable surface elements. See Chapter 3 for more details.

Figure 1.1: Goals. The goal of this thesis is to learn accurate surface parameteriza-

tion using a set of interpretable learned deformable elements

With correspondence between two parameterized shape surfaces, any point of the 2D

domain maps to the corresponding points of the surfaces. In this thesis, we aim to

build upon such methods. We focused our work in particular on AtlasNet [Groueix

et al., 2018b] to generate more accurate and consistent shape parameterizations.

AtlasNet is a neural network that produces a parameterization of any given shape

surface by a set of square patches. We present a detailed description of AtlasNet

in Section 2.4.3. It generates accurate results but has several downsides, mainly

the consistency of the mappings and design restrictions. Leveraging the ability
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of neural networks to learn the shape of our elementary surfaces, we propose to

replace parts of the design of AtlasNet with new modules to improve accuracy and

correspondences.

Interpretable surface elements. We also aim at generating interpretable surfaces

elements for representing shape collections. Figure 1.1b illustrates this idea. Many

works nowadays use neural networks and complex architectures to solve problems

and focus mainly on improving performances on different metrics and benchmarks.

Often, increasing performances come at the cost of over-complicated architecture

or design choice lacking interpretability. Having an interpretable representation is

a general and important challenge for deep learning approaches beyond 3D data.

While having an accurate representation is one of our goal, we believe that for

specific tasks, like the ones tackled in this thesis, having an interpretable design is

desirable. To that end, one objectif of this thesis is in to developed accurate and

especially interpretable approaches.

1.2 Motivations

Since the beginning of the digitization of our world, professionals and day-to-day

users have been thriving on 3D data. Many artists have shifted their previous analog

tasks to digital 3D ones. The first animated movie, Fantasmagorie by Emile Cohl

(1908), was drawn by hand one frame at a time. Today CGI (Computer Graphics

Imagery) artists generate entire films or video games using 3D graphics software.

Other professionals such as engineers or architects went from handcrafting wooden

or clay prototypes to 3D modeling software. The academic and industrial research

on 3D geometry created the bedrock of many industrial processes. In recent years,

the democratization of 3D software like Unity/Unreal or Blender enables anyone to

work on complex 3D digital data. In this context, the thesis is motivated by several

industrial applications in the creative industries and other aspects of our digital

world.
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Texture color Normals

Details Shadows

Rendered texture

parameterization

(a) Rendering

Adding details Details transfer to a collection

(b) Transferring details

Discovered elements 3D scene

(c) Discovering elements

Figure 1.2: Motivations, The motivations of this thesis range from parameterization

techniques for rendering, transferring details from a shape to a collection, and

discovering recurrent elements in an unlabeled 3D scene. 1.2a textured from [Kat,

2022], 1.2b airplanes from Shapenet [Chang et al., 2015a] to 1.2c scene from historical

data from [Ico, 2022].
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CGI artist tools for creative industry: A 3D artist aims to reconstruct aspects

of our world within computer software. From natural images to sketches, they

use inspirations combined with their knowledge of the tools to generate animation,

photo-realistic reconstruction, video game characters, and many more. One of the

main processes is the 3D model generation depends on the style, historical context,

or realism. To that end, the artist uses shape parameterization in many steps like

the geometry, the details refinement, or the texturing process before rendering (cf

Figure 1.2a).

Editing multiple 3D objects at the same time Some CGI applications in film

or video games industries handle hundreds of similar 3D models during specific tasks

such as background generation or crowded rendering. The most common practice is

to reuse and copy-past a few dozens of distinct models since it would take simply

too much time to process every single 3D model individually. In this thesis, we

aim at developing an approach that would allow a collection of 3D models to be

represented by a single joint parameterization. This could enable a scenario where

artists use techniques like the ones seen in Figure 1.2a (texture mapping, normal

mapping, shadows) to edit entire collection of 3D models instantly and without

having to edit every model independently (see Figure 1.2b).

Keeping a virtual trace of our word: With the democratization of drones

and remote sensors over the last years, scanning historical monuments at any given

time have become possible. Because of the uncertainty of the coming decades

(global warming, wars, disasters), we need more digital representations of our world.

During this thesis, the architects in charge of rebuilding Notre Dame de Paris

after its destruction in 2019 used such scans. Another French company, ICONEM,

was mandated by UNESCO to scan historical and architectural monuments for

preservation purposes. They produced, for instance, several detailed reconstructions

of monuments in Alep, Syria, that were destroyed by ISIS soon after. Today these
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scans are the only traces we have left and will be used to preserve historical heritage

for the next generations. Such scans contain billions of unlabeled data points. Many

historians spend a significant amount of time understanding the scans. We could

imagine using the methods developed in this thesis to discover recurrent shape

elements across the scans, similar to a clustering technique (cf Figure 1.2c) that

could help historians or other professionals studying these scenes.

1.3 Context

The development of parameterization techniques over the years solved many issues

in the creative industry. For decades the CGI artist has used such techniques

for several tasks ranging from generating 3D models, editing details, texturing,

and rendering while creating films or video games. With the rise of 3D data over

the last decade, more and more professionals have faced issues initially related to

the creative industry. Thus, parameterization techniques have become ever more

popular. Today, with the democratization of deep learning approaches and 3D

computer vision algorithms, professionals have new powerful tools that enable them

to solve new problems. Recently, many approaches have leveraged deep learning to

solve parameterization problems. With the new methods, handling a collection of

shapes have become easier. We argue that the most important of these methods

is AtlasNet by Groueix et al. [Groueix et al., 2018b]. This method uses a set of

parametric functions represented by neural networks aiming to deform a set of 2D

dimensional surface elements to reconstruct the surface of a given shape. Designed

for single-view reconstruction, meaning generating a 3D representation from an

input image, AtlasNet introduced deep learning for the task of parameterization of

shape surfaces to a pure 3D pipeline like the ones developed in this thesis.
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1.4 Challenges

In this section we discuss the main challenges we faced during this thesis, namely

the lack of annotated data and difficulty of making neural network approaches

interpretable.

Lack of annotated training dataset The simplest approach to a lot of Deep

Learning problems is supervised learning. In this case, we have a vast collection of

data and all the ground truth annotations to train a network. Given an input, we

know without ambiguity what the results should be. In this thesis, it was not the

case. Thus, the concept of ground truth itself is not well defined in our case since

there is no clear solution for most of the problems we want to solve. For instance in

chapter 4, we want to learn a parameterization of a surface’s shape. The example in

Figure 1.3a illustrates the ambiguity of the solutions to this problem and the fact

that there are multiple “correct” parameterizations of a surface shape. In Chapter 3

we aim to reconstruct an object using deformable surface elements. In this case there

are again several possible solutions. The issue is illustrated in Figure 1.3b. Hence

for the parts of our design where we cannot define a ground truth, we cannot have

supervision. The methods developed in this thesis rely on point coordinates samples

on the shape surface. But to train our method, we needed specific data annotations

such as normal coordinate or correspondence ground truth points to improve the

consistency and reconstruction accuracy. Thus, we needed benchmarks of the 3D

model with annotations which are challenging to get since such annotations are hard

to generate automatically and often require human supervision (cf Figure 1.3c).

Making deep learning interpretable. If one has the choice between an in-

terpretable model and another better in terms of performance while being much

more complex and cryptic to understand, the interpretable model is often the better

solution. In particular, we cannot simply trust a complex system that we do not
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(a) Three different 2 domains that can be used to parameterize a cube

e1 e2

e2 e1

(b) Two decompositions of a mug using two elements e1 and e2

(c) Correspondence annotation [Bogo et al., 2014]

Figure 1.3: Lack of annotated training data. In this thesis we face lack of

annotation, either because there are multiple correct solutions and annotations or

because the annotation required manual annotation.
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truly understand to design drugs or control the autopilot of our cars and airplanes.

There is a reason why we are using a proof management system for a critical aspect

of industrial software instead of using a deep learning approach. Knowing this,

we believe further research towards interpretability will improve the level of trust

regarding deep learning and the process that leads to a result. To train a neural

network, one needs to define a set of design constraints such as the energy function,

the data types fed to the pipeline, and several hyperparameters like the number of

layers. Those choices are usually hand-made carefully by experienced researchers

and engineers. They define how the network performs. For every task, there is a

set of optimal variables. Often the more complex the design and variables are, the

better the model performs. Having an interpretable deep learning model allows us

to understand better the processes and details of the neural network architecture.

For some applications, it is critical to understand how a model produces a given

result. The main issue regarding interpretability is that it is not natural for a neural

network. They often represent the data in a parameter space too complex for any of

us to understand. When a feature space of more than a thousand feature elements

describes an input, it is hard to understand which feature corresponds to what

and how one feature element impacts the results. There have been many works

trying to understand feature representation or make them more interpretable. Many

generative neural networks approach like [Karras et al., 2017] aimed to control the

generation process of random faces by a set of features, but it is not clear that any

of them influences a specific characteristic of generated faces such as hair color or

face geometry and gender (cf Figure 1.4).

1.5 Contributions

In this section we list the main contributions of this thesis. First we proposed

novel approaches to learn a shape representation using a set of deformable elements.
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Figure 1.4: Interpretability of the features, each slider controls the generative

process of faces but they are not interpretable [Karras et al., 2017]

Second, we propose various methods to control the deformations in order to improve

the intepretability of the representations.

Shape representation using deformable surfacic elements. In this thesis

we propose three representations of deformable elements. Table 1.1 summarize the

following paragraph and Figure 1.5 illustrates the three different approaches.

(i) Our patch deformation approach learns parametric surfaces that enable us

to generate continuous surface shapes. It maps a fixed 2D domain, a two

dimensional unit square, to a more complex surface. This mapping is modeled

as a neural network which takes as input the coordinates of the point samples

on the 2D domain and generates a set coordinates. This method is restricted

by the topology of the initial 2D domain meaning that we can only learn

surface shape elements homeomorphic to a plane.

(ii) Our point learning approach learns a set of points with no notion of topology

or surface hence allowing us to generate more complex elementary structures.

The points are initialized randomly on a two dimensional unit square and

we treat their spatial coordinate as network parameters which are optimised

during the training. They overall yield more accurate results than the patch

deformation modules but the surfacic aspect of the elementary structures is

lost with this approach.
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(i)

Learned deformation

(ii)
Learned points

(iii)

Learned probability density

INITIAL ELEMENTS LEARNED ELEMENTS

2D gaussian

Figure 1.5: Deformable surfacic elements. (i) patch deformation - (ii) point

learning - (iii) probability distribution function

Flexible topology Surfacic representation
Patch deformation no yes
Point learning yes no
Probability density yes yes

Table 1.1: Deformable elements representation recapitulation.

(iii) Our probability distribution function (PDF) learns a set of surface element

in dimension two by composing a set of Gaussians with a learnable two

dimensional mean and a fixed standard deviation. Like in the point learning

approach, the means of the Gaussians are treated as parameters of the network

and are optimized. By thresholding the PDF we can generate a set of dimension

two surface elements with learned topology. This combines the best of the

patch deformation and point learning approaches since this approach enables
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Parameterization

LEARNED SURFACE ELEMENTS SURFACE RECONSTRUCTION

Figure 1.6: The adjustment modules position the elementary shape surfaces.

us to have a surfacic representation with no topological constraints while being

limited in the number of Gaussians.

Regularisation of the deformable elements shapes In this thesis, we train

our neural network architectures to learn surface elements while generating a repre-

sentation of shape surfaces. In order to learn meaningful and interpretable elements,

we added additional constraints to their shapes. These constraints are applied

mainly to the parameterization modules that map the learned surface elements onto

the target shape surface.

(i) We use a set of linear functions to parameterize our learned surface elements.

Their weights are predicted using an MLP which only takes as input a feature

representation of the target shape surfaces generally extracted using a PointNet

module [Qi et al., 2017a, Qi et al., 2017b] and generates a 3x3 coefficient

matrix and 1x3 intercept. We then use the set of the learned linear functions

to map the surface elements onto the target surface. They enable us to learn

more interpretable and meaningful surface elements while having the lowest

reconstruction accuracy of the methods we propose.
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(ii) We also use a set of non-linear parametric functions represented using an

MLP which takes as input a set of points sampled on our elementary surfaces

and feature representation similar to the linear approaches to predict a set

of point coordinates on the target surface. Overall, the MLP yields a better

reconstruction metric-wise but learned surfaces element lack interpretability. To

solve this issue, we can add additional constraints, such as normal coordinates

and additional regularization of the weight of the MLP making the parametric

functions as much isometric as possible. This allows us to control the shape

of the 2D domain by forcing two subsets of the target surface with opposite

normals and similar spatial coordinates to be parameterized by two distinct

regions of the 2D domain.

1.6 Thesis outline

This thesis is organised as follows:

Chapter 2 In Chapter 2 we cover the background of this thesis by providing an

overview of deep learning, then of the different shape representations, and finally we

focus on prior methods performing shape reconstruction and shape paramerization

using atlases and primitive.

Chapter 3 This chapter introduces our new shape representation based on de-

formable primitives that we called elementary structures. We first explain how

our network learns the shape of those deformable elements. We then explain how

it adjusts them with respect to each other in order to reconstruct shapes of the

collection on which it it is trained. We empirically compare our representation with

other 3D representations on the tasks of shape reconstruction on the ShapeNet

[Chang et al., 2015a] and SURREAL [Varol et al., 2017] benchmark and on the task

of predicting shape correspondences on the FAUST benchmark [Bogo et al., 2014].
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In particular, we show that elementary structures yield better reconstruction and

correspondences while learning interpretable elements describing categories they has

been trained on.

Chapter 4 In this chapter we develop the idea of generating joint surface atlases of

a collection of shapes. We first explain how we model the three constituent elements

of the atlas: a chart-mapping, a parameterization and a two dimensional domain. We

then explain how these elements can be learned jointly for a collection of shapes and

how such modelization is able to answer the limitations of the elementary structures.

We perform a qualitative and quantitative ablation study of the different training

parameters and features and empirically compare our representation with prior work

on the task of shape reconstruction on the SHREC [Giorgi et al., 2007] benchmarks

and the shapes from [Williams et al., 2019]. Especially, we show that our joint atlas

representation yeilds better correspondance results while being much closer than

the previous work to be a proper atlas, i.e., one that defines an homeomorphism

between 3D shape and a 2D domain.

Chapter 5 This chapter summarizes the contributions of the thesis and suggests

some directions of future work.
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1.7 Publications list

The work presented in this thesis have been described in two papers:

• Learning elementary structures for 3d shape generation and matching - Theo

Deprelle, Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan Rus-

sell, and Mathieu Aubry. Advances in Neural Information Processing Systems

32 (NeurIPS 2019)

• Learning Joint Surface Atlases - Théo Deprelle, Thibault Groueix, Noam

Aigerman, Vladimir G. Kim, Mathieu Aubry. arXiv preprint arXiv:2206.06273

(2022)

The source code are available:

• http://imagine.enpc.fr/deprellt/atlasnet2

• https://imagine.enpc.fr/deprellt/joint-surface/

https://imagine.enpc.fr/~deprellt/atlasnet2
https://imagine.enpc.fr/~deprellt/joint-surface
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CHAPTER 2

Related work

2.1 Deep Learning

A detailed presentation of deep learning is out of the scope of this thesis. Instead,

in this section, we give a short historical perspective of the technique and then list

the key elements used across this thesis.

2.1.1 Historical perspective

Neural network theory emerged in the 50s with the first models such as the Perceptron

from Rosenblatt [Rosenblatt, 1958]. From the 50s onwards, the scientific community

set up the pillars on which the entire deep learning community relies on today; from

the first version of continuous backpropagation introduced by Henry J. Kelley [Kelley,

1960] to the original deep convolutional neural network (CNN) architecture brought

in by Fukushima [Fukushima, 1988] to finally the first practical demonstration

of backpropagation on an MLP developed by Lecun [LeCun et al., 1998]. Before

the 2010s, the community faced technical limitations and lacked computing power.

17
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Neural networks are complex systems relying on reasonably simple and parallelizable

operations. With the rise of the Graphics Processing Unit (GPU), chips designed to

handle lots of parallelizable numerical operations, such technical limitations have

dramaticly reduced. In 2012, Krizhevsky et al. [Krizhevsky et al., 2012] were the

first to leverage the parallelizable computing power of the GPUs to train a neural

network. Then open source libraries such as Torch, Caffe, Keras, Lua, Pytorch

[Paszke et al., 2019], or TensorFlow [Abadi et al., 2015] were developed and simplified

the development of the process.

2.1.2 Data collection

In deep learning, the most popular paradigm is to train the model on a large amount

of data, such as the classification dataset ImageNet [Deng et al., 2009], to generalize

on an unseen test dataset. Some of the approaches developed in this thesis follow

this paradigm. For instance, we trained our models on a large scale 3D data such as

ShapeNet [Chang et al., 2015a] and SURREAL [Varol et al., 2017] and then evaluate

on unseen objects. In most of this thesis, we chose a different paradigm. We use

neural networks in a pure optimization setup where we are not interested in the

generalization of the model anymore but rather in the performances of the model

on a given smaller dataset.

2.1.3 Loss function

Given a dataset, we define a loss function as a metric measuring how well the

model performs. With shape generation, for example, the loss function will measure

how far the generated shape is from the actual target. Most loss functions used in

our works measure the distance between two sets of coordinates. If we know the

ground truth in advance, we used supervised loss functions like the L2 norm on the
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coordinates. On the contrary, where the ground truth is not well defined, we work

with unsupervised loss functions such as the Chamfer distance or the Earth Mover

Distance on the coordinates.

2.1.4 Neural networks

The neural networks in this thesis are Multi layer Perceptrons (MLP), modeled

after the first preceptron from Rosenblatt [Rosenblatt, 1958]. An MLP alternates

linear and non-parameterized non-linear operations. We optimize the parameters

of the linear layer to minimize the loss, and we mainly use the rectified linear

activation unit (ReLU) for the non-parameterized non-linear ones. We also include

several other modules in the network parameters list. The most important are the

parameters we introduced to define our learnable surface elements. We also add

the shape codes of the auto-decoder modules [Kingma and Welling, 2013] of the

architecture in Chapter 4.

2.1.5 Optimization

A neural network can include millions of parameters. They are typically randomly

initialized. The losses are non-convex functions of the parameters. To minimize the

loss, they are thus optimized with variant stochastic gradient descent approaches

[Robbins and Monro, 1951] such as RSMprop [Tieleman et al., 2012], and Adam

[Kingma and Ba, 2014]. In this thesis, we use the implementation of the Adam

optimizer from the Pytorch library [Paszke et al., 2019]. This optimization is often

referred to as the training of the network or the learning of its parameters.
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(a) Point cloud. [Liu et al., 2020] (b) Mesh. [Potamias et al., 2022]

(c) Voxels. [Song et al., 2017] (d) Implicit functions. [Peng et al., 2020]

(e) Primitives. [Paschalidou et al., 2019a]

Figure 2.1: 3D shape representations. The five shape representation the most

related to this thesis are the surface representation (point cloud and mesh), the

volumetric representations (voxels and implicit functions) and the primitive repre-

sentations.
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2.2 3-dimensional shape representations

In this section, we discuss one of the main questions of this thesis: How should

we represent 3D data? We will give a brief overview of volumetric, surface, and

primitive-based representations. These representations are the most related to our

work. Examples of different representations can be found in Figure 2.1

2.2.1 Volumetric representation

Voxels. The equivalent of the image pixel in 3D is called voxel (cf Figure 2.1c).

While the pixels in two-dimension correspond to a 2D grid, in 3D, we can use a

grid where each cell, called a voxel, contains volumetric information about the

shape. Voxels can represent shapes, signed distance function, occupancy, material,

and many more. Storing the values of the voxels requires a lot of memory. The

octree representation, introduced in 1982 by Meagher [Meagher, 1982] tries to

solve this issue by merging voxels into larger ones. The voxel representation has

been used in medical application [Ashburner and Friston, 2000, Norman et al.,

2006, Ashburner and Friston, 2005], object detection [Maturana and Scherer, 2015],

and shape reconstruction [Wang et al., 2017, Riegler et al., 2017]. Recent methods

use neural network with voxels e.g. [Maturana and Scherer, 2015, Wang et al., 2017]

and octree e.g. [Riegler et al., 2017, Tatarchenko et al., 2017, Häne et al., 2017]

representation.

Implicit function Implicit functions are another volumetric description of 3D

shapes (cf Figure 2.1d). Where voxels are a discrete volumic representation, implicit

functions are continuous. They use a function f that can be defined for every point

x ∈ R3. In most of the cases it determines occupancy, that is whether x is inside or

outside of a shape. It describes the concept of occupancy. Given Ω a subset of R3

and a distance metric d, the signed distance function can be defined by :
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f(x) =


d(x, ∂Ω) if x ∈ Ω

−d(x, ∂Ω) if x ∈ Ωc

, (2.1)

where ∂Ω denotes the boundary of Ω and d(x, ∂Ω) = inf
y∈∂Ω

d(x, y) for any x ∈ R3

with inf denoting the infimum. Recent work uses signed distance function for shape

reconstruction [Park et al., 2019, Mescheder et al., 2019] or 3D rendering [Mildenhall

et al., 2020].

2.2.2 Surfacic representation

Point clouds Many acquisition sensors produce a set of points to represent a

surface. For example, LiDAR uses lasers which emit a pulse of light that will bounce

off surrounding object surfaces and return to the sensor. In this case, a discrete set

of 3D coordinates represents a scanned surface (cf Figure 2.1a). Large real-world

datasets thus often use this representation. For example, in ScanNet [Dai et al.,

2017] Dai et al. used infrared scanners to generate a large dataset of point clouds

of indoor scenes. Additional information such as color [Luo et al., 2015], normals

[Serafin and Grisetti, 2015] and semantic [Landrieu and Simonovsky, 2018] can also

be associated with the data points. PointNet [Qi et al., 2017a, Qi et al., 2017b]

introduced a deep learning-based method to extract and condense information from a

point cloud into a feature vector that can be used as the output of many other neural

networks. Recent works use point clouds for task ranging from scene reconstruction

[Fan et al., 2017, Wang et al., 2019], shape correspondences [Groueix et al., 2018c],

semantic segmentation [Hackel et al., 2017], etc.

Meshes The continuous aspect of a surface is lost with a descrete point cloud.

To better represent a surface, one can use a mesh (cf Figure 2.1b). Meshes are

constituted of a point cloud (vertices), a set of connections (edges) between the
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Figure 2.2: CAD model generation. Many CAD model are generated using a

combination of simple shapes often referred to as primitives. [Giesecke et al., 2016]

points, and a set of polygons (the faces), often triangles, formed by three vertices.

They are vastly used in the creative industry by the CGI artist, and many research

have been done on this subject. Recent work like ShapeNet [Chang et al., 2015a] or

ABC [Koch et al., 2019] built large-scale mesh datasets that are used daily by the

community. Most recent point-cloud-based methods used the vertices of a mesh and

are able to generate meshes at inference [Groueix et al., 2018b, Park et al., 2019].

Other applications use parametric mesh surface to represent an object. This, as well

as several applications such as parameterization and UV-mapping, will be discussed

in details in details in Section 2.4.

2.3 Representing shapes with primitives

With the democratization of CAD models, many professionals started to generate

3D shapes by combining simple primitive shapes. Figure 2.2 illustrates this process.
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Yet, this representation is not new and was one of the oldest computer vision tasks.

The primitive representation has several advantages. The most important one is

interpretability. They were introduced by the "block world" hypothesis of [Roberts,

1963]. Primitives are a simplified, non-realistic, and interpretable representation of

the world. Recently, many works have tried to fit primitives into other representations.

In this section, we will list four different approaches for primitives fitting. We will

discuss stochastic approaches, Hough-like voting methods, clustering methods, and

recent neural network approaches. Examples of those methods can be found in

Figure 2.3.

2.3.1 Stochastic approaches.

Several approaches use stochastic methods to estimate the position and parameters

of the primitives model. Most of them are consensus-based and rely heavily on the

RANSAC algorithm introduced by Fishler et al. [Fischler and Bolles, 1981]. Other

variants such as [Matas and Chum, 2004, Rousseeuw, 1984, Torr and Zisserman,

2000, Chum and Matas, 2005] were developed over the years. For example Schnabel

et al. [Schnabel et al., 2007] (see Figure 2.3a) detects planes, spheres, cylinders,

cones and tori given a point cloud with normal annotations.

2.3.2 Hough-like voting approaches.

Other methods represent the primitives in a parameter spaces and use Hough-like

voting methods to detect them. Initially designed for line detection in 1962 by

Hough [Hough, 1962], the method was extended to more complex primitives in 2D

and 3D by Barallard in 1981 [Ballard, 1981] or cylinder by Rabbani et al. [Rabbani

and Van Den Heuvel, 2005] (see Figure 2.3b). Other methods improve the efficiency

[Xu et al., 1990], the memory footprint [Kiryati et al., 1991] and voting procedure

[Fernandes and Oliveira, 2008] of the Hough-like approaches.
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(a) [Schnabel et al., 2007]

(c) [Yan et al., 2012]

(b) [Rabbani and Van Den Heuvel, 2005]

(d) [Tulsiani et al., 2017a]

Figure 2.3: Primitive fitting. Many works of the last decades aim to fit primitive

to various kind of data.

2.3.3 Clustering-based approaches.

Another way to tackle the primitive fitting task is to cluster the point into groups

that will be each represented by a primitive afterward. The most popular clustering

methods are K-Means [Lloyd, 1982] and Mean sift [Fukunaga and Hostetler, 1975].

Once detected, each cluster of points can be represented by a primitive. Yan

et al. estimated quadratic surface [Yan et al., 2012] from mesh representation

and Woodford et al [Woodford et al., 2012] used such clustering algorithms to fit

geometric primitive to large real-world point clouds (see Figure 2.3c).
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2.3.4 Neural network-based approaches.

Neural networks can be trained to predict accurately the position and dimension

parameters of a set of given primitives to reconstruct a target shape. Several methods

use cuboids with reinforcement learning [Tulsiani et al., 2017a] (see Figure 2.3d) or

recurrent neural network [Zhang et al., 2020]. More complex superquadrics shapes

can be used as well [Paschalidou et al., 2019a]. [Huang et al., 2021] manipulates

primitives with an adversarial loss. HPNet [Yan et al., 2021] segment points into

patch primitives. [Li et al., 2019] supervised the fitting of a varying number of

geometric primitives to 3D point clouds using neural networks. In [Mo et al., 2019],

the authors perform a hierarchical semantic segmentation using learned primitives.

2.4 Surface parameterization

Parameterizing a surface, i.e. a mapping of a surface on the 2D Euclidien plane

to a 3D surface, as many applications like applying a 2D texture image on a 3D

shape or finding correspondences between shapes. Those are common problems of

many professionals in the creative industry and many other fields. In this section we

will first explain relevant differentiable geometry terminilogy, then how the classical

approaches use shape parameterization, followed by how recent methods used neural

networks, and we will finish by listing a few example of their applications.

2.4.1 Differentiable geometry terminology

In this section we explain the concepts of atlas, chart, parameterization, first

fundamental form and finally discuss different type of regularisation. Atlases and

shape parameterization are vast research subjects and we encourage the readers

to dive into the two following surveys [Floater and Hormann, 2005, Sheffer et al.,

2007b] in order to find a broader explanation of the concepts.
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S

S1

φ1

ψ1(S1)

(S1, ψ1)

Figure 2.4: Charts & parameterization of a manifold A subset S1 of 2D-

manifold S is mapped in 2D using a chart (S1, ψ1).

2D-Manifold The term surface is technically less specific but is often used syn-

onymously for a 2D-manifold. A 2D-manifold is a topological space with the same

local topological properties as the Euclidean geometry plane.

Charts & parameterization of a manifold. A chart is a homeomorphic function

ψi that map an open subset Si of a 2D-manifold S onto a Euclidian space. That

is to say that a chart is continuous, bijective and that it has an inverse continuous

function φi so that ψi ◦ φi is the identity function. Charts are usually define by a

set pair (Si, ψi). In this thesis they are generally defined by functions from R3 to R2.

The inverse mapping φi of a chart is called a parameterization. Figure 2.4 illustrates

these concepts.

Atlases In this thesis we use atlases to map a 2D-manifold S to a 2D domain. An

atlas A is defined by an indexed family of charts such as

A = {(Si, ψi) : i ∈ I} , (2.2)
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with

S =
⋃
i∈I
Si . (2.3)

Note that the subsets Si can overlap and are associated to open subsets in the

mathematical definitions. In this thesis, we use atlases with a slightly different

meaning, considering closed and non-overlapping sets Si.

Tangent plane. Let us consider the parametric subset Si defined by the param-

eterization ϕi(u, v) of the (u, v) coordinates subset of R2 referred as a 2D domain.

For every points of Si,

xu = ∂φi
∂u

and xv = ∂φi
∂v

, (2.4)

are the tangent vectors; the tangent plane is defined by the local basis (xu,xv) and

every tangent vector can be expressed as a linear combination of both vectors.

First fundamental form. Let four real coefficients a, b, c, d in R, then the inner

product of two tangent vectors

v1 = axu + bxv v2 = cxu + dxv (2.5)

can be written as :

I(v1,v2) = I(axu + bxv, cxu + dxv) (2.6)

= ac⟨xu,xu⟩ + (ad+ bc)⟨xu,xv⟩ + bd⟨xv,xv⟩ . (2.7)

The values

E = ⟨xu,xu⟩, F = ⟨xu,xv⟩ G = ⟨xv,xv⟩ (2.8)

are called the coefficients of the first fundamental form. The matrix
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S

f(S)f

(u, v)

φ(u, v)
f ◦ φ(u, v)

φ f ◦ φ

Figure 2.5: Deformation and parameterization of a 2D-manifold. We define

the notation corresponding to the deformation of a 2D-manifold S by a deformation

function f and how a joint parameterization between S and f(S) can be achieved.

I =
(
E F
F G

)
(2.9)

is often referred to as the first fundamental form itself. For two vectors v1 and v2

on the tangent plane :

I(v1,v2) = vT1

(
E F
F G

)
v2 . (2.10)

Regularisation We can use the first fundamental form to express many properties

of a 2D-manifold such as curvatures, area, and distortion. Let us assume that

we deform a manifold S to another one f(S), the deformation being defined by a

homeomorphism f and that we have a parameterization φ mapping a 2D domain

to the first manifold S. We can define the parameterization f ◦ φ of f(S) so that

every origin points on S and image points on f(S) have the same coordinates (u, v)

on the 2D domain see Figure 2.5. We can use the first fundamental form I(φ) and

I(f ◦ φ) to control the distortion of the deformation induced by f :

• Isometric deformation. The deformation f is a length preserving defor-



2.4. Surface parameterization 30

S∗S{p,T }

f

f−1

Figure 2.6: Piecewise linear mapping. [Floater and Hormann, 2005]

mation, or isometric deformation if the length of any arc of S is equal to its

image of f(S). In this case the two first fundamental forms are equal

I(φ) = I(f ◦ φ) . (2.11)

• Conformal mapping. The mapping is said to be conformal if any given

angle between pair of arc on S is equal to its image on f(S). In this case the

coefficient of the first fundamental form are proportional

I(φ) = α(u, v) I(f ◦ φ) with α(u, v) ∈ R, α(u, v) ̸= 0 . (2.12)

Discrete paramaterization The most common way to approximate in a discrete

way a surface S is to use a triangular mesh S{p,T }. We can characterize it by a set

of 3D vertices p and a set of index triplets T with

p = {pi ∈ R3 : 1 ≤ i ≤ N} , (2.13)

and
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T = {Tj = (v1
j , v

2
j , v

3
j ) : 1 ≤ j ≤ M, ∀i ∈ {1, 2, 3} 1 ≤ vij ≤ N} , (2.14)

where each Tj defines a triangle composed of three vertices, and N and M are the

number of vertices and triplets of indexes of the mesh. Given a mesh the task of

parameterization corresponds to finding a domain S∗ ⊂ R2 and a piecewise linear

mapping f : S∗ 7→ S{p,T } of every triangle of the mesh. This mapping can be entirely

defined by the mapping f−1(p) ∈ S∗ of the vertices p of the mesh. Figure 2.6

illustrate this process. S∗ is often called a UV-map.

2.4.2 Classical approaches for surface parameterization

In this subsection, we will discuss mesh parameterization. The task is to map

the faces of a mesh to a 2D domain. The parameterization is a piece-wise linear

function from 2D to 3D. It maps every 2D face to its corresponding face on the

mesh. The parameterization aims to produce a bijection (invertible mapping) such

that each point of the planar domain corresponds to a single point on the mesh.

The sum of the angles around a mesh vertex is always equal to 2π in 2D and can

vary in 3D. Thus, the parameterization introduced some distortion. Minimizing

distortion or controlling it is one of the main problems the research community

has spent time trying to solve, and it is still an open problem. We will discuss

several parameterization techniques. We will start with the early parameterization

that ignores distortion, then the ones minimizing the angular distortion, followed

by the ones focusing on stretch distortion, and we will finish with the methods

introducing cuts to reduce distortion. Initially thought for texture mapping, mesh

parameterization application became broader over the last decade. We will discuss

several applications in subsection 2.4.4.
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Parameterization without distortion regularisation Tutte [Tutte, 1963]

introduced a method to generate generic graph embedding that can be extended to

meshes. The first step of this method maps the boundary vertices of a surface to

the planar plane, and the position of the rest of the vertices are obtained by solving

a linear system that do not generate bijectivity. The circle packing theorem [Rodin

and Sullivan, 1987, Collins and Stephenson, 2003] gives another way to produce

planar embedding constituted of a collection of circles whose centers correspond to

the vertices embedded in two dimensions. Two circles are tangent iff an edge exists

between their corresponding vertices on the mesh. The two dimensional embedding

mesh is obtain by connecting the center of the circles. This method has intersesting

properties such as bijectivity and uniqueness of the solution under some constraints.

Conformal regularisation Riemann’s theorem [Do Carmo, 2016] says that for

any given differentiable surface, a mapping with zero angular distortion exists. Since

meshes are surface approximations it is likely to produce planar parameterization

with minimal angular distortion. Building upon Tutte’s approach [Tutte, 1963],

several works [Eck et al., 1995, Floater, 1997, Floater, 2003] change the weight in

the linear system in order to generate conformal embedding. The most popular

weights are harmonic or cotangent [Eck et al., 1995, Pinkall and Polthier, 1993a].

Initially non-bijective, such embedding can be under specific contitions such as the

Delaunay criterion proven to be bijective [Kharevych et al., 2006]. Shape-preserving

parameterization [Floater, 1997, Guskov, 2004] are also by nature bijective and are

another way to tackle conformal parameterization. The mean-values parameterization

introduced by Floater [Floater, 1997] is another minimal angular distortion technique

that guaranties bijectivity. All previous methods relying on Tutte’s approach [Tutte,

1963] perform poorly when the mesh has non-convex boundaries. Several methods

propose to add part of the boundaries to the linear system. For example [Lee

et al., 2002, Kós and Várady, 2003, Zhang et al., 2005] use Floater [Floater, 1997]
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approaches with free-boundary specifications. Others such as LSC [Lévy et al., 2002]

or DCP [Desbrun et al., 2002] opted for free-boundaries harmonic parameterizations

by only fixing two vertices to avoid degenerate solutions. Other methods such

as MIPS [Hormann and Greiner, 2000, Hormann et al., 1999] start with a fixed-

boundary harmonic solution and optimize the position of the vertices one by one in

a manner that ensures bijectivity. Instead of defining the embedding by the vertices

coordinates like all the previous methods, ABF approaches [Sheffer and De Sturler,

2000, Sheffer and de Sturler, 2001, Sheffer et al., 2005] parameterization rely on the

angle of the faces on the plane. They constrain the parameterization to guarantee no

flipped faces, but those methods are weak to overlaps. With additional constraints

[Zayer et al., 2005] ABF can be proven bijective.

Isometric regularisation Unlike the conformal mappings, parameterization

with zero stretch only exists for developable surfaces. For the rest, the isometric

regularization can only reduce the isometric distortion. The earlier approaches

complexity make the optimisation difficult [Bennis et al., 1991, Lévy and Mallet,

1998, Maillot et al., 1993]. Following methods like [Sander et al., 2001] introduced

stretch metrics and use similar approaches to MIPS [Hormann and Greiner, 2000,

Hormann et al., 1999] where one starts with a shape-preserving parameterization

[Floater, 1997] and moves vertices around to reduce the stretch of the 2D triangulation

faces while enforcing bijectivity. Others [Zigelman et al., 2002, Zhou et al., 2004] used

methods based on geodesic distance (length of the minimal path between two points

that follow the object surface) but tend to produce non-bijective parameterization

for complex surfaces.

Mesh segmentation and seams The close surfaces or the ones with a genus

greater than zero need to be unfolded first and then parameterized. For this, one

needs to introduce cuts that are also referred to as seams. Using seams allows

reducing the overall distortion of the parameterization for all kinds of metrics used
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Figure 2.7: Unfolding and cuts of a 3D mesh

to measure the distortion. After “cutting” the shape, each patch can be mapped in

2-dimension using a family of chart functions (one per patch). Figure 2.7 illustrates

this. In this process, finding the least number of cuts and the shortest ones while

keeping to minimize the distortion is essential. Several methods approach the

problem using mesh segmentation. For instance [Cohen-Steiner et al., 2004, Garland

et al., 2001, Maillot et al., 1993, Sander et al., 2001, Sander et al., 2003], try to

decompose the mesh into near planar patches easy to parameterize with minimal

distortion. Those methods tend to produce a large number of charts. Other methods

tackle the mesh segmentation with more complex surface decomposition by using

mean curvature [Lévy et al., 2002], region growing base methods [Julius et al., 2005],

spectral analysis [Zhou et al., 2004] or graph analysis [Zhang et al., 2005]. It is

also possible to cut the mesh without segmenting it into parts. It generally yields a

shorter seams length. The cuts can be generated by hand [Piponi and Borshukov,

2000], detected during the parameterization optimization using a distortion threshold

[McCartney et al., 1999, Sorkine et al., 2002], computed from an existing shape-

preserving parameterization [Gu et al., 2002], or selected on region of interest

found using differentiable geometry techniques such as Gaussian curvature [Sheffer,
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Figure 2.8: Parameterization-mapping. AtlasNet parameterization architecture

mapping a set of 2D patch in 3D. Image courtesy of [Groueix et al., 2018b].

2002, Sheffer and Hart, 2002].

2.4.3 AtlasNet and Deep surface parameterization

In this subsection, we discuss AtlasNet and the other atlas-like approaches for deep

shape parameterization. These works used a neural network to learn a family of

parameterization mapping for a set of 2D domains to generate an object surface.

AtlasNet [Groueix et al., 2018b] and FoldingNet [Yang et al., 2018a] were the first

methods to propose deep surface parameterization. Both methods use a set of unit

square patches, and they define a collection of continuous parametric functions

that deform and position those patches in 3D in a “papier maché”-like approach

illustrated in Figure 2.8. These mapping functions are MLPs that take as input the

coordinates of 2D points sampled on the patches and a shape code extracted by a

PointNet module [Qi et al., 2017a], and they output 3D point spatial coordinates.

After being trained on a large collection of 3D shapes such as [Chang et al., 2015a],

the two methods can generate a parameterization to reconstruct any given shape.

They can also produce meshes by mapping the vertices of dense triangularization

of the square patches in 3D while keeping the two-dimensional edges information.

While the shape reconstruction is accurate, such methods often produce various

overlaps between the images of the patches in 3D, which mean they do not produce
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bijective mappings. Other parameterization approaches build upon AtlasNet and

FoldingNet. In Deep Geometric Prior [Williams et al., 2019] the authors showed

that bijective parameterization could also be optimized on individual shapes. Deng

et al. [Deng et al., 2020] improve the global arrangement of the different parts of

the parameterization via a normal-aware reconstruction loss and a stitching loss

to reduce the overall overlap. Finally, DSR [Bednarik et al., 2020] regularizes the

smoothness of the reconstructed surface by optimizing conformal energy based on

the Jacobians of the mappings and introduces an area-preserving loss so that the

patch reconstructs the shape with minimal overlap.

2.4.4 Applications

Initially designed for texture mapping and uv-mapping [Bennis et al., 1991, Maillot

et al., 1993, Lévy, 2001] (see Figure 2.9), the parameterization of shape have become

in the last decades a more generic tool with several other applications such as details

generation, morphing of shapes, mesh completion and mesh editing.

Generating rendering details

While meshes have shown benefits for approximating a surface, they come with

smoothness and details issues when rendered. Typically, the normal orientations are

one of the most important aspect for rendering shadows, and without any additional

work the faces of the mesh will be seen flat when rendered since normals are constant

across each one of them. Several works like [Blinn, 1978, Sheffer et al., 2005] propose

to use texture mapping methods to add a perturbation of the normal orientations

during the rendering. It yields a more realistic rendering while preserving the

geometry of the mesh.
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(a) Texture mapping. [Lévy, 2001] (b) Normal maps. [Commons, 2005]

(c) Remeshing. [Alliez et al., 2008] (d) Mesh editing. [Biermann et al., 2002]

Figure 2.9: Applications of parameterization : (a) a mesh is textured using an

Mandrill image texture, (b) a target mesh on the left is reconstructed on the right

using a normal map and a low resolution mesh in the middle, (c) the left mesh is

re-meshed using a uniform triangularisation, (d) a detail in the middle is inserted

to the left mesh to produce the one on the right.

Mesh completion

Some mesh scans can have missing data or holes from the acquisition process. Many

works have used parameterization techniques to fill the voids by using a planar patch

mapped onto the mesh [Lévy, 2003]. Other have to use the parameterization of

specific human templates as a piece of prior knowledge to fill the gaps of human

mesh [Allen et al., 2003a, Anguelov et al., 2005], and other works such as [Kraevoy

and Sheffer, 2005] developed approaches that use more generic template shapes.
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Mesh editing

Many works have developed methods leveraging parameterization to modify the

geometry of a mesh locally. Local adjustments are usually stored like a texture

and mapped onto the mesh using parameterization [Pedersen, 1995, Praun et al.,

2000, Soler et al., 2002, Turk, 2001, Wei and Levoy, 2001, Ying et al., 2001].

[Biermann et al., 2002] have used a shared map between two surfaces to copy-past

local detail from one shape to another. Other works [Lévy et al., 2002, Sorkine and

Alexa, 2007] use local parameterization of the region of interest on two meshes and

overlap the parameterizations.

Remeshing

For a given continuous surface, there is not a single mesh representation. Depending

on the task, one would like a denser, sparser, or more uniform triangulation. In some

works, a parameterization of the given mesh is generated, and a different triangulation

with the desired characteristics is mapped back onto the surface using the generated

parameterization. The most used triangulations are planar and regular grids [Gu

et al., 2002], regular subdivision of the faces [Guskov et al., 2000, Khodakovsky

et al., 2003, Lee et al., 2000] and Delauney triangulation [Desbrun et al., 2002].

More details of the techniques can be found in this survey [Alliez et al., 2008].



CHAPTER 3

Learning elementary structures for 3d shape

generation and matching

Abstract

We propose to represent shapes as the deformation and combination of learnable elementary

3D structures, which are primitives resulting from training over a collection of shapes. We

demonstrate that the learned elementary 3D structures lead to clear improvements in 3D

shape generation and matching. More precisely, we present two complementary approaches

for learning elementary structures: (i) patch deformation learning and (ii) point translation

learning. Both approaches can be extended to abstract structures of higher dimensions for

improved results. We evaluate our method on two tasks: reconstructing ShapeNet objects

and estimating dense correspondences between human scans (FAUST inter challenge). We

show 16% improvement over surface deformation approaches for shape reconstruction and

outperform FAUST inter and intra challenge state of the art by 2% and 7%, respectively.

39
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3.1 Introduction

Current surface-parametric approaches for generating a surface or aligning two

surfaces, such as AtlasNet [Groueix et al., 2018b] and 3D-CODED [Groueix et al.,

2018a], rely on alignment of one or more shape primitives to a target shape. The shape

primitives can be a set of patches or a sphere, as in AtlasNet, or a human template

shape, as in 3D-CODED. These approaches could easily be extended to other

parametric shapes, such as blocks [Roberts, 1963], generalized cylinders [Binford,

1971], or modern shape abstractions [Li et al., 2017, Sharma et al., 2018, Tulsiani

et al., 2017b]. While surface-parametric approaches have achieved state-of-the-art

results for (single-view) shape reconstruction [Groueix et al., 2018b] and 3D shape

correspondences [Groueix et al., 2018a], they rely on hand-chosen parametric shape

primitives tuned for the target shape collection and task. In this chapter, we ask –

what is the right set of primitives to represent a collection of diverse shapes?

To address this question, we seek to go beyond manually choosing shape primitives

and automatically learn what we call “learnable elementary structures” from a

shape collection, which can be used for shape reconstruction and matching. The

ability to automatically learn elementary structures allows the shape generator to

find a better set of primitives for a shape collection and target task. We find that

learned elementary structures correspond to recurrent parts among 3D objects. For

example, in Figure 4.1, we show automatically learned elementary structures roughly

corresponding to the tail, wing, and reactor of an airplane. Moreover, we find that

learning the elementary structures leads to an improvement in shape reconstruction

and correspondence accuracy.

We explore two approaches for learning elementary structures – patch deformation

learning and point translation learning. For patch deformation learning, similar to

AtlasNet [Groueix et al., 2018b], we start from a surface element, such as a 2D

square, and deform it into the learned structure using a multi-layer perceptron
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[Rosenblatt, 1958]. This approach has the advantage that the learned elementary

structures are continuous surfaces. Its key difference with respect to AtlasNet is that

the deformations, and thus the elementary structures, are common to all shapes.

For point translation learning, starting from a fixed set of points, we optimize their

position to reconstruct the target objects. The drawback of this approach is that

it does not produce a continuous surface – only a finite set of points. However,

this approach is more flexible since it can, for example, change the topology of the

structure.

We show how to deform and combine our learnable elementary structures to explain

a given 3D shape. At inference, given the learned elementary structures, we learn

to position the structures by adjustment – a linear (projective) transformation will

lead to maximum interpretability, while a complex transformation parameterized by

a multi-layer perceptron will make our approaches generalizations of prior shape

reconstruction methods [Groueix et al., 2018b, Groueix et al., 2018a] using optimized

instead of manually defined templates. Moreover, such representation allows for

disentanglement of the structure’s shape and pose. We include structure learning

in a deep architecture that unifies shape abstraction and deep surface deformation

approaches.

We demonstrate that our architecture leads to improvements for 3D shape generation

and matching – 16% relative improvement over AtlasNet for generic object shape

reconstruction and 7% and 2% over 3D-CODED for human shape matching on Faust

[Bogo et al., 2014] Intra and Inter challenges, respectively, achieving state of the art

for the latter task. Our code is available on our project webpage1

1http://imagine.enpc.fr/ deprellt/atlasnet2

http://imagine.enpc.fr/~deprellt/atlasnet2
http://imagine.enpc.fr/~deprellt/atlasnet2
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(a) Input target

shapes

(b) Learned elementary struc-

tures

(c) Our reconstructions

Figure 3.1: Problem statement. We seek to automatically learn a set of primitives

(called “learned elementary structures”) for shape reconstruction and matching. (a)

Input target shapes to reconstruct. (b) Learned elementary structures roughly corre-

sponding to the tail, wing, and reactor of airplanes. (c) Our output reconstructions

with learned elementary structures highlighted.

3.2 Related work

Primitive fitting is a classic topic in computer vision [Roberts, 1963], with a large

number of methods targeting parsimonious shape approximations, such as generalized

cylinders[Binford, 1971] and geons [Biederman, 1987]. Efficient fitting of these

primitives attracted a lot of research efforts [Kaiser et al., 2018, Li et al., 2011,

Schnabel et al., 2009, Schnabel et al., 2007]. Since these methods analyze shapes

independently, they are not expected to use the primitives consistently across different

objects, which makes the result unsuitable for discovering a common structure

in a collection of shapes, performing consistent segmentation, or correspondence

estimation. To address these limitations some methods optimize for consistent

primitive fitting over the entire shape collection [Kim et al., 2013], or aim to discover

a consistent set of parts [Golovinskiy and Funkhouser, 2009, Huang et al., 2011, Sidi

et al., 2011]. The resulting optimization problems are usually non-convex, and thus

existing solutions tend to be slow, require heuristics, and are prone to being stuck in
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local optima. Learning-based techniques offer a promising alternative to hand-crafted

heuristics. Zhu et al. [Zou et al., 2017] use a Recurent Neural Network supervised

by a traditional heuristic-based algorithm for cuboid fitting. Tulsiani et al. [Tulsiani

et al., 2017b] use reconstruction loss to predict parameters of the cuboids that

approximate an input shape, and thus do not require any direct supervision. Several

recent techniques, concurrent to our work, extend this approach by using more

complex primitives that can better approximate the surface, such as anisotropic 3D

Gaussians [Genova et al., 2019], categorie specifique morphable model [Kanazawa

et al., 2018] or superquadrics [Paschalidou et al., 2019b]. All of these techniques use

a collection of simple hand-picked parametric primitives. In contrast, we propose to

learn a set of deformable primitives that best approximate a collection of shapes.

One can further improve reconstruction by fitting a diverse set of primitives [Li et al.,

2018] or constructive solid geometry graphs [Sharma et al., 2018]. These methods,

however, usually do not produce consistent fitting across different shapes, and thus

cannot be used to discover common shape structures or inter-shape relationships.

On the other side of the spectrum, instead of simple primitives, some techniques

fit deformable mesh models [Allen et al., 2002, Allen et al., 2003b, Loper et al.,

2015, Zuffi and Black., 2015]. While they can capture complex structures, these

techniques are also prone to being stuck in local optima, due to large number of

degrees of freedom (e.g., mesh vertex coordinates). Neural network architectures

have been used to facilitate the mesh fitting [Groueix et al., 2018a], learning to

predict the deformation of a template to reconstruct unstructured input point cloud.

This approach is sensitive to the choice of the template. We demonstrate that

our method improves the quality of the fitting by learning the structure of the

reference shape. Neural mesh fitting has been also employed for geometrically and

topologically diverse datasets that do not have a natural template. In these cases,

meshed planes or spheres can be deformed into complex 3D structures [Groueix et al.,

2018b, Yang et al., 2018b]. We extend this line of work by proposing a technique
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(a) Points translation

learning module

(b) Patch deformation

learning module

(c) Elementary structures

combination model

Figure 3.2: Approach overview. At training time, we learn (a) translations ti

or (b) deformations di that transform points from the unit square Si into shared

learned elementary structures (c). At evaluation time, we transform each elementary

structure Ei to target shape Z using learned shape-dependent adjustment networks

pi that produce points on the surface of the output shape O.

for learning the base shapes that are further used to approximate the shapes in the

collection. Learning these elementary structures enables us to more accurately and

consistently reconstruct the shapes in the collection.

3.3 Approach

We aim to learn shared elementary structures to reconstruct a set of 3D shapes.

We visualize an overview of our approach in Figure 3.2. We formulate two ways to

learn elementary structures – via patch deformation learning and point translation

learning modules. The elementary structures are learned over the entire training

set and do not depend on the input during testing. At test time, the elementary

structures are deformed by adjustment modules to create the output 3D shape.

These modules take as inputs features computed from the input via an encoder

network and the coordinates of the elementary structure points and output the 3D

coordinates of the deformed primitives.

For the task of 3D shape reconstruction, we assume that we are given a training set Z
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of target shapes Z ∈ Z. Our goal is to reconstruct the target shapes using a set of K

learned elementary structures E1, . . . ,EK , which are deformed via shape-dependent

adjustment modules p1, . . . , pK . We represent each shape by a feature vector f(Z)

computed by a point set encoder f (defined later in this section). Each adjustment

module pk takes as inputs the coordinates of a point in the associated elementary

structure e ∈ Ek and the feature vector of the target shape f(Z) and outputs 3D

coordinates of the corresponding point. The output shape O = p(Z) can thus be

written as the union over learned and adjusted elementary structures,

O = p(Z) =
K⋃
k=1

⋃
e∈Ek

pk(e, f(Z)). (3.1)

If the elementary structures were unit squares or a unit sphere, then this equation

would describe exactly the AtlasNet [Groueix et al., 2018b] model. On the other

hand, the 3D-CODED model [Groueix et al., 2018a] uses an instance of Z as a single

elementary structure. Generalizing these approaches, our goal is to automatically

learn the elementary structures Ek over a shape collection. The intuition behind our

approach is that if the elementary structures Ek have useful shapes to reconstruct

the target, the adjustment pk should be easier to learn and more interpretable.

3.3.1 Learnable elementary structures

For each k ∈ {1, . . . , K}, we start from an initial surface Sk on which we sample

N points to obtain an initial point cloud Sk. We then pass each sampled point

sk,i ∈ Sk for i ∈ {1, . . . , N} through elementary structure learning modules ψk. We

consider two types of elementary structure learning module ψk.

The first type, patch deformation learning module, learns a continuous mapping dk to

obtain deformed points ek,i = dk(sk,i) starting from sampled point sk,i. The intuition

behind the deformation module is that elementary structures Ek should be surface

elements, and can thus be deduced from the transformation of the original surfaces

Sk. Alternatively, we consider a point translation learning module which translates
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independently each of the points sk,i by a learned vector tk,i, ek,i = tk,i + sk,i. This

module thus allows the network to update independently the position of each point

on the surface. The result of either module results in a set of elementary structure

points ek,i = ψk(sk,i), and we write the elementary structure Ek as the union of the

independently deformed or translated points sk,i ∈ Sk.

In Section 3.3.3 we will show that different choices here can be desirable depending

on the application domain.

Dimensionality of the elementary structures. While it is natural to consider

elementary structures as sets of 3D points, we can extend the idea to other dimensions.

We experimented with 2D, 3D, and 10D elementary structures and show that while

they are less interpretable, higher-dimensional structures lead to better shape

reconstruction results.

3.3.2 Architecture details

The following describes more details of our final network.

Shape encoder. We represent the input shape as a point cloud, and we use as

shape encoder a simplified version of the PointNet network [Qi et al., 2017a] used

in [Groueix et al., 2018a, Groueix et al., 2018b]. We represent each 3D point of

the input shape as a 1024 dimensional vector using a multi-layer perceptron with 3

hidden layers of 64, 128 and 1024 neurons and ReLU activations. We then apply

max-pooling over all point features followed by a linear layer, producing a global

shape feature used as input to the adjustment modules.

Patch deformation learning module. The patch deformation learning modules

are continuous-space deformations that we learn as multi-layer perceptrons with 3

hidden layers of 128, 128 and 3 neurons and ReLU activations. This module takes

as input coordinates of points in the initial structures and can compute not only a
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set of points [Groueix et al., 2018b] but the full image of a surface. If this module

is used, we can densely sample points on the generated surface.

Point translation learning module. The point translation learning modules

learn a translation for each of the N points of the associated initial structure. While

this step gives more flexibility than generating points through the patch deformation

learning module, it can only be applied for a fixed number of points, similar to

point-based shape generation [Fan et al., 2017].

Adjustment module. The goal of the adjustment modules pk is to reconstruct

the input shape by positioning each elementary structure. The intuition is that this

adjustment should be relatively simple. However, we can expect the quality of the

reconstruction to increase using more complex adjustment modules. In this chapter,

we consider two cases:

• Linear adjustment: each adjustment module applies an affine transformation to

the corresponding elementary structure. The parameters of this transformation

are predicted by a multi-layer perceptron that takes as input the point cloud

feature vector generated by the encoder. We use three hidden MLP layers

(512, 512, 12), ReLU activation, BatchNorm layers and a hyperbolic tangent

at the last layer for this module.

• MLP adjustment: each adjustment module uses a multi-layer perceptron (MLP)

that takes as inputs the concatenation of the coordinates of a point from the

associated elementary structure and the shape feature predicted by the shape

encoder and outputs 3D coordinates. We use the same architecture as [Groueix

et al., 2018b] for this network to obtain comparable results.

3.3.3 Losses and training

We now discuss two scenarios in which we tested our approach.
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Training with correspondences. In this scenario, we assume point correspon-

dences across all training examples and a common template that we can use as an

initial structure for all shapes. More precisely, we assume that each training shape Z

is represented as an ordered set of N 3D points z1, . . . , zN in consistent locations on

all shapes. Since all shapes are in correspondence, we consider a single elementary

structure S1 (K = 1) and N sampled points on the shape s1,1, . . . , s1,N . We then

train our network to minimize the following squared loss between sampled points

zi on each training shape to reconstructed points starting from sampled template

points s1,i :

Lsup(θ) =
∑
Z∈Z

N∑
i=1

∥zi − p1(ψ1(s1,i), f(Z))∥2 (3.2)

where θ are the parameters of the networks. Note that at inference, we do not

need to know the correspondences of the points in the test shape, since they are

processed by the point set encoder which is invariant to the order of the points.

Instead, the points in the reconstruction shapes will be in correspondence with the

elementary structure and by extension with each other. We use this property to

predict correspondences between test shapes, following the pipeline of [Groueix et al.,

2018a]. Learning the elementary structures is the difference between our approach

and 3D-CODED [Groueix et al., 2018a] in this scenario, which leads to improved

reconstruction and correspondence accuracy.

Training without correspondences. We are also able to train our system when

no correspondence supervision is available during training. In this case, there are

many options for our choice of elementary structures. To be comparable with

AtlasNet [Groueix et al., 2018b], we will assume we have K elementary structures

and that each initial structure Sk is a unit 2D square patch. For a given training

shape Z, we compute the output shape O = p(Z) according to Equation 3.1, and

train our network’s parameters to minimize the symmetric Chamfer distance [Fan
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Single-category training Multi-category training
Airplanes Chairs Airplanes Chairs All

Linear adjustment
AtlasNet [Groueix et al., 2018b] 1.57 4.14 2.22 3.72 3.07
Deformation 1.16 2.76 1.49 2.52 2.26
Points 1.04 2.00 1.35 2.47 2.11
MLP adjustment
AtlasNet [Groueix et al., 2018b] 0.91 1.64 0.81 1.50 1.45
Deformation 0.87 1.56 0.81 1.25 1.43
Points 0.79 1.43 0.71 1.25 1.22

Multi-category training
Points Def.

MLP adjustment
2D 1.28 1.42
3D 1.22 1.43
10D 1.21 1.39
Linear adjustment
2D 2.45 2.75
3D 2.11 2.26
10D 1.66 1.90

Table 3.1: ShapeNet reconstruction. We evaluate variants of our method for

single- and multi-category reconstruction tasks. Left: Linear vs MLP adjustment,

Patch Deformation vs Points Translation with 3D elementary structures. Right:

different template dimensionality and deformation vs points learning modules in

the multi-category setup with MLP-adjustement. We report Chamfer distance

(multiplied by 10−3). AtlasNet uses 10 patch primitives, which is the same as our

approach, without the learned elementary structures.

et al., 2017] between the point clouds p(Z) and Z.

Lunsup(θ) =
∑
Z∈Z

∑
z∈Z

min
k∈{1,...,K}, i∈{1,...,N}

∥z − pk(ψk(sk,i), f(Z))∥2

+
∑
Z∈Z

K∑
k=1

N∑
i=1

min
z∈Z

∥z − pk(ψk(sk,i), f(Z))∥2 (3.3)

where θ are the parameters of the networks. In all of our experiments, we used

K = 10.

Training details. We use the Adam optimizer with a learning rate of 0.001, a

batch size of 16, and batch normalization layers. We train our method using input

point clouds of 2500 points when correspondences are not available and 6800 points

when correspondences are available. When training using only the deformation

modules dk, we resample the initial surfaces Sk at each training step to minimize over-

fitting. At inference time, we sample a regular grid to allow easy mesh generation.

We train our model on an NVIDIA 1080Ti GPU, with a 16 core Intel I7-7820X

CPU (3.6GHz), 126GB RAM and SSD storage. Training takes about 48h for most

experiments. Using the trained models from the official implementation on all
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categories, AtlasNet-25 performance is 1.56 (see also Table 1 in the Atlasnet paper).

Using the released code to train AtlasNet-10 yields an error of 1.55. By adding a

learning rate schedule to the original implementation we decreased this error to 1.45

and report this improved baseline (see Table 1).

In this section, we show qualitative and quantitative results of our approach on the

tasks of shape reconstruction and shape matching.

3.3.4 Generic object shape reconstruction

We evaluate our approach on non-articulated generic 3D object shapes for the task of

shape reconstruction. We use the training setting without correspondences described

in Section 3.3.3.

Dataset, evaluation criteria, baseline. We evaluate on the ShapeNet Core

dataset [Chang et al., 2015b]. For single-category reconstruction, we evaluated over

airplane (5424/1360 train/test shapes) and chair (3248/816) categories. For multi-

category reconstruction, we used 13 categories – airplane, bench, cabinet, car, chair,

monitor, lamp, speaker, firearm, couch, table, cellphone, watercraft (31760/7952).

We report the symmetric Chamfer distance between the reconstructed and target

shapes. All reported Chamfer results are multiplied by 10−3. As a baseline, we

compare against AtlasNet [Groueix et al., 2018b] with ten unit-square primitives.

Single-category shape reconstruction. For our first experiment, we trained sep-

arate networks for the different ShapeNet Core categories. Figure 3.3a demonstrates

learned 2D elementary structures using ten 2D unit squares as initial structures Sk.

In Figure 3.3b, we show shape reconstructions using our points translation learning

module with MLP adjustments. Note the emergence of symmetric and topologically

complex elementary structures.
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(a) Category-specific 2D elementary structures (3 out of 10 structures) learned for chairs

(left) and plane (righ).

(b) Reconstructions using elementary structures with category-specific training.

(c) 2D elementary structure learned from all categories (7 out of 10 structures are shown).

(d) Our reconstructions using 2D elementary structures trained on all categories.

(e) AtlasNet reconstruction using square patch primitives trained on all categories

Figure 3.3: We visualize elementary structures using point learning and MLP

adjustment modules. For all reconstruction results, we show in color the points

corresponding to the visualized 2D primitives. For AtlasNet, the primitives are unit

squares (so we do not show the elementary structures), and we visualize seven of

them for the reconstruction (similarly to our method). Contrary to AtlasNet, our

learned elementary structures have limited overlap in the reconstructions and better

reconstructs the shapes.
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(a) MLP adjustment (b) Linear adjustment

Figure 3.4: Three (out of ten) learned 3D elementary structures learned by the point

translation learning approach when training on all ShapeNet categories.

3.4 Experiments

Multi-class shape reconstruction. We now evaluate how well our method

generalizes when trained on multiple categories, again using 2D elementary structures

with point translation learning module and MLP-adjustements. As in single-category

case, we observe discovery of non-trivial 2D elementary structures (Figure 3.3c)

that are used to accurately reconstruct the shapes (Figure 3.3d), with higher

fidelity than the baseline performance of AtlasNet with ten 2D square patches

(Figure 3.3e). Note how AtlasNet is less faithful to the topology of reconstructed

shapes, incorrectly synthesizing geometry in hollow areas between the back and the

seat. Our quantitative evaluation in Table 3.1 confirms that AtlasNet provides less

accurate reconstructions than our method.

Figure 3.5: 3D elementary structure obtained with point learning when initializing

the training from a template shape (left) or a random set of points (right). See text

for details.
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Linear vs MLP adjustment. We evaluated networks trained in both the single-

and multi-category settings with linear and MLP adjustment modules using 3D

learned elementary structures (Table 3.1 left, Figure 3.4). In all experimental setups,

we observe that the MLP adjustment offers significant quantitative improvements

over restricting the network to use linear transformations of the elementary structures.

This result is expected as linear adjustment allows only limited adaptation of the

elementary structures for each shape. Similar to shape abstraction methods [Tulsiani

et al., 2017b], linear adjustment allows a better intuition of the shape generation

process but limits the reconstruction accuracy. Using MLP adjustments, however,

offers the network more flexibility to faithfully reconstruct the shapes.

Patch deformation vs points translation modules. We compare using patch

deformation vs points translation modules in Table 3.1. The patch deformation

learning module does not allow topological changes and discontinuities in mapping,

and produces inferior results in comparison to points translation learning. On

the other hand, learning patch deformations enables the estimation of the entire

deformation field. Thus one can warp an arbitrary number of points or even tessellate

the domain and warp the entire mesh to generate the polygonal surface, which is

more amenable to tasks such as rendering.

Higher-dimensional structures. We experimented with the dimensionality of

the learned elementary structures. Elementary/Figures 3.3a and 3.3c suggest that

learned 2D elementary structures can capture interesting topological and symmetric

aspects of the data – splitting, for instance, the patch into two identical parts

for the legs of the chairs. note also the variable point density. Similarly, learned

3D elementary structures with linear adjustment and patch deformation learning

modules are shown in Figure 4.1 for the airplane category. Note that they roughly

correspond to meaningful parts, such as wings, tail and reactor. Figure 3.4 shows

3D elementary structures inferred from all ShapeNet categories, where the learned
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Chairs Table
AtlasNet 1.64 4.70
Patch. 1.56 4.82
Point. 1.34 4.45

Table 3.2: Category generalization.

Chamfer distance for networks trained

on chairs and tested on either the

chairs or tables test sets.

Param. Chamfer
AtlasNet 1.8 × 108 1.45
6-layer AN 3.9 × 108 1.35
Patch. 1.8 × 108 1.43
Point. 1.8 × 108 1.22

Table 3.3: Number of parameters.

Impact of number of parameters on

reconstruction chamfer error.

structures include non-trivial elements such as symmetric planes, sharp angles, and

smooth parabolic surfaces. The learned structures are often correspond to consistent

parts in the reconstructions. In our quantitative evaluations (Table 3.1, right) we

found that the results improve with the dimensionality. The improvement diminishes

for higher-dimensional spaces and are more difficult to visualize and interpret.

Consistency in template elementary structures. We experimented with

several initializations of our elementary structures on the ShapeNet plane category.

We used the point translation learning method and a single 3D elementary structure.

In Figure 3.5, we show our results when initializing the elementary structure with

either a plane 3D model (left) or a set of random 3D points sampled uniformly

(right). Notice that the learned 3D elementary structure is similar regardless of the

initial template shape.

Generalization to new categories. To test the generality of our approach, we

trained on the chair category using ten 2D elementary structures and tested on the

table category. As shown in Figure 3.2, point translation learning outperforms both

patch deformation learning and AtlasNet. Figure 3.6 shows qualitatively how the

elementary structures are positioned on chairs and tables. Notice how the chair and
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table legs are reconstructed by the same elementary structures.

Figure 3.6: Elementary structures learned on chairs (left) used to reconstruct chairs

and tables (right).

Number of parameters. In Figure 3.3, we show the number of parameters for

AtlasNet and our method. Our method has less than 1% additional parameters to

learn the elementary structures – 2.0 × 106 and 2.5 × 103 for patch deformation and

point translation, respectively (orders of magnitude smaller than 1.8×108 for the full

network). During inference, our approach has the same complexity as AtlasNet as

the elementary structures are precomputed and remain fixed for all shapes. We also

tried training AtlasNet with six layers (6-layer AN), which significantly increases the

number of parameters. Our approach with points translation learning outperforms

all methods.

3.4.1 Human shape reconstruction and matching

We now evaluate our approach on 3D human shapes for the tasks of shape recon-

struction and matching using the training setup with correspondences described in

Section 3.3.3. For this task, we use a single elementary structure for the human

body using one of the meshes as the initial structure S1. Since we use a single

elementary structure and the shapes are deformable, we only report results using

the MLP-adjustment.

Datasets, evaluation criteria, baselines. We train our method using the

SURREAL dataset [Varol et al., 2017], extended to include some additional bend-

over poses as in 3D-CODED [Groueix et al., 2018a]. We use 229,984 SURREAL
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(a) Learned points (b) Learned deformation (c) Learned deformation

Figure 3.7: Initial shape (left) and learned elementary structure (right) using the

deformation or points learning modules. Notice the similarity between the elementary

structure learned with the different approaches.

meshes of humans in various poses for training and 224 SURREAL meshes to test

reconstruction quality. To evaluate correspondences on real data, we use the FAUST

benchmark [Bogo et al., 2014] consisting of 200 testing scans with ∼ 170k vertices

from the “inter” challenge, including noise and holes which are not present in our

training data. As a baseline, we compared against 3D-CODED [Groueix et al.,

2018a].

Results. Figure 3.7 shows learned elementary structures using deformation or

points translation learning and different initial surfaces. We observe that the learned

templates are inflated, bent, and with their arm and legs in a similar pose, suggesting

a reasonable amount of consistency in the properties of a desirable primitive shape

for this task.

As before, we found that points translation learning provides the best reconstruction

(see SURREAL column in Table 3.4). Both of our approaches also provide lower

reconstruction loss than 3D-CODED.

We used reconstruction to estimate correspondences by finding closest points on

the deformed elementary structure as in 3D-CODED [Groueix et al., 2018a]. We

report correspondence error in the “FAUST” column in Table 3.4. We observe that

deformation learning provides better correspondences than points learning, also

yielding state-of-the-art results and clear improvement over 3D-CODED. This result
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SURREAL [Varol et al., 2017] FAUST [Bogo et al., 2014] Inter | Intra

3D-CODED 1.32 2.64 | 1.747
Deformation 1.44 2.58 | 1.742
Points 1.00 2.71 | 1.626

SURREAL [Varol et al., 2017]
Points Deform.

2D 1.54 6.76
3D 1.00 1.44
10D 1.06 1.18

Table 3.4: Human correspondences and reconstruction. We evaluate different

variants of our method (with deformation vs points translation learning and different

template dimensionality) for surface reconstruction (SURREAL column) and match-

ing (FAUST column). We report Chamfer loss for the former and correspondence

error for the latter (measured by the distance between corresponding points). Results

in the left table are with 3D elementary structures, and the only difference with the

3D-CODED baseline is thus the template/elementary structure learning. The table

on the right shows results with elementary structures of different dimensions.

is not surprising because understanding the deformation field for the entire surface

is more relevant for matching and correspondence problems.

Elementary structure dimension. Similar to generic object reconstruction, we

evaluate with 2D, 3D and 10D elementary structures (Table 3.4, right). Note that

when using the patch deformation learning module we control the output size and

therefore it is easy to map the input 3D template to higher- or lower-dimensional

elementary structure. On the other hand the points translation learning module

does not allow to change dimensionality of the input template. Hence, for 2D

elementary structures we project the 3D template (front-facing human in a T-pose)

to a front plane, and for 10D elementary structures we embed the 3D human into

a hyper-cube, keeping higher dimensions as zero. The difference in performance is

clearer for human reconstruction than for generic object reconstruction, which can
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be related both to the fact that humans are complex with articulations and that we

use a single elementary structure for all human reconstructions.

3.5 Conclusion

We have presented a method to take a collection of training shapes and learned

common elementary structures that can be deformed and composed to consistently

reconstruct arbitrary shapes. We learn consistent structures without explicit point

supervision between shapes and we demonstrate that using our structures for recon-

struction and correspondence tasks results in significant quantitative improvements.

When trained on shape categories, these structures are often interpretable. Moreover,

our deformation learning approach learns elementary structures as the deformation

of continuous surfaces, resulting in output surfaces that can densely sampled and

meshed at test time. Our approach opens up possibilities for other applications,

such as shape morphing and scan completion.
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CHAPTER 4

Learning Joint Surface Atlases

Abstract

This chapter describes new techniques for learning atlas-like representations of 3D surfaces,

i.e. homeomorphic transformations from a 2D domain to surfaces. Compared to prior

work, we propose two major contributions. First, instead of mapping a fixed 2D domain,

such as a set of square patches, to the surface, we learn a continuous 2D domain with

arbitrary topology by optimizing a point sampling distribution represented as a mixture

of Gaussians. Second, we learn consistent mappings in both directions: charts, from the

3D surface to 2D domain, and parametrizations, their inverse. We demonstrate that this

improves the quality of the learned surface representation, as well as its consistency in

a collection of related shapes. It thus leads to improvements for applications such as

correspondence estimation, texture transfer, and consistent UV mapping. As an additional

technical contribution, we outline that, while incorporating normal consistency has clear

benefits, it leads to issues in the optimization, and that these issues can be mitigated using

a simple repulsive regularization. We demonstrate that our contributions provide better

surface representation than existing baselines.

59
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Figure 4.1: From a collection of shapes without annotations, we learn a 2D domain

which can be used to parameterize all shapes, parametrizations (blue) and chart-

mappings (red).

4.1 Introduction

This chapter is concerned with 3D surfaces and their representation as atlases or

UV maps, i.e., their mappings to and from a domain of the 2D Euclidean space.

Surfaces and altases are closely related: surfaces are 2-manifolds embedded in R3

and are defined in topology by the existence of charts, homeomorphic mappings

from the surface to a 2D Euclidian domain. This relation is also central to many

algorithms related to surfaces: on one hand, the computation of UV maps of

meshes is a highly-active research topic: on the other hand, deep learning works

have successfully used atlas-like representation and learn local parametrizations

to represent 3D surfaces [Bednarik et al., 2020, Groueix et al., 2018b]. These

last techniques typically learn to map a fixed sets of 2D squares to 3D, which

can approximate a 3D surface and makes it possible to use the 2D domain to

compute correspondences between predicted surfaces [Bednarik et al., 2021] for

which parametrizations are learned jointly.

While these parametrization-based methods produce rather-accurate 3D surface

reconstructions, they do not lead to a well-defined homeomorphic map between

a 2D domain and the predicted surface, which limits the scope of applications

of these techniques. For examples, when mapping a set of 2D squares to 3D,

AtlasNet [Groueix et al., 2018b] leads to many overlaps, and the chart-mappings
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from 3D to 2D are thus not well defined. The predicted maps from 2D to 3D might

also include large amount of distortion, thus not yielding a good UV map of the

generated 3D surface, and for example preventing using it to define mappings between

different input surfaces. Previous works have attempted to address these limitations

in various ways. Williams et al. [Williams et al., 2019] performs optimization

for a single shape on local neighbourhoods with Earth Mover Distance to obtain

homeomorphic parametrizations and consistent transitions maps, but this leads to an

heavy optimization, with many local parametrizations, and has no obvious extension

to multiple shapes. Rather than enforcing consistency between the mappings of

square patches AtlasNet v2 [Deprelle et al., 2019] attempts to learn the 2D domain,

e.g., by learning the positions of a fixed set of points, but loses the continuous

aspect of the mapping and can still lead to overlapping patches. DSR [Bednarik

et al., 2020] keeps the AtlasNet framework and its intrinsic limitations, but uses

several regularizations to encourage conformal mappings, to minimize the 3D overlap

between the images of the square patches and to prevent patch collapse. However,

it is still limited to square patches and we found it difficult to use on complex

shapes. We argue that the two tasks of parameterizations and charts prediction are

complementary to one another, and that learning the 3D shape(s) reconstruction

should go together with learning a relevant 2D domain. We present an architecture

for such a joint optimization, where we learn the 2D domain by learning a 2D

probability distribution defined as a mixture of Gaussians and from which we sample

points for reconstructing the surface. These sampled points are mapped to 3D

and compared (via chamfer distance) to the target point cloud; similarly, the point

cloud is mapped to 2D and compared to the sampled points. We optimize for

cyclic consistency between the two mappings, as well as for geometric losses such

as isometric regularization. Through experiments, we show that our method is

able to better reconstruct surfaces than existing baselines, in particular leading

to more meaningful parametrizations with fewer artefacts and yielding meaningful
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correspondences between shapes in a collection. Our code is available on our project

webpage1

4.2 Related work

4.2.1 Optimizing charts-mappings for UV parametrization.

Identifying chart is a long-standing problem in geometry processing [Sheffer et al.,

2007a]. Most prior techniques take a 2-manifold input represented as a mesh and

map each point to a 2D domain. These methods typically aim to produce a bijective

mapping [Smith and Schaefer, 2015], while also minimizing some distortion metric

such as Dirichlet [Pinkall and Polthier, 1993b], ARAP [Liu et al., 2008], LSCM [Lévy

et al., 2002], and symmetric Dirichlet [Rabinovich et al., 2017]. Some techniques also

aim to predict consistent chart-mappings for a collection of related shapes, so that

semantically-similar points on different meshes map to the same point in 2D. Doing

so enables many applications such as correspondence estimation [Aigerman et al.,

2015], morphing [Kraevoy and Sheffer, 2004], and texture transfer [Praun et al.,

2001]. Unlike our method, these techniques do not use deep learning and typically

require manual input, such as a sparse set of corresponding points. By using neural

networks to represent the UV map we can learn consistent charts without the user

input or explicit supervision. We can also co-parameterize point clouds without

knowing the underlying mesh. To the best of our knowledge, our work is the first

method to use neural networks to learn consistent chart-mappings.

1https://imagine.enpc.fr/ deprellt/joint-surface/

https://imagine.enpc.fr/~deprellt/joint-surface/
https://imagine.enpc.fr/~deprellt/joint-surface/
https://imagine.enpc.fr/~deprellt/joint-surface/
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4.2.2 Learning surface parameterization for reconstruction.

Previous learning-based techniques for surface parameterization mostly focused

on modeling 2D to 3D map for reconstruction. To learn such a mapping from a

collection of shape, AtlasNet [Groueix et al., 2018b] and FoldingNet [Yang et al.,

2018a] pioneered the idea of using a Multi-Layered Perceptrons (MLP) as a class of

continuous parametric function that embed a 2-manifold into 3D. By conditionning

the MLP on a latent code, and using a large-scale 3D shape repository [Chang et al.,

2015a], AtlasNet [Groueix et al., 2018b] demonstrated the possibility to predict

the surface parameterization from an input mesh, point-cloud or even a single

image. Perhaps surprisingly, Williams et al. [Williams et al., 2019] showed that

parameterization did not necessarily need the regularization brought by learning on

a collection of shapes, and could also be optimized on individual shapes.

Several approaches introduced novel losses to improve the parameterization. Deng

et al. [Deng et al., 2020] improve the global arrangement of the different parts of the

parameterization via a normal-aware reconstruction loss and a stiching loss. In DSR,

Bednarik et al. [Bednarik et al., 2020] regularize the smoothness of the reconstructed

surface by optimizing a conformal energy, based on the Jacobians of the mappings.

Remarkably, having access to analytical jacobians in a higher-order differentiation

procedure opens-up exciting applications. For instance, Bednarik et al. [Bednarik

et al., 2021] achieve temporally coherent parameterizations for each frame in a video

by regularizing the deformation to locally have a constant metric tensor.

Particularly relevant to us is AtlasNet-v2 [Deprelle et al., 2019] which jointly optimize

the shape of the 2D manifold and learns the surface parameterization using two

proposed strategies. The first one consists in learning a deformation of a fixed

template into an elementary structure common to all shapes via an additional

AtlasNet-like MLP. This strategy leads to elementary structures that can easily be

meshed, but have the same topology as the initial template. The second strategy

consists in sampling a fixed set of points on the template and adding them to the
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optimizer. After optimization, the sampled points can form a complex elementary

structure, without topology constraints, but meshing it is not straight-forward. In

this work, we propose a method to combine the best features of both strategies,

namely the ability to learn topologically complex structures and the ability to mesh

them. We achieve this via a novel differentiable layer to sample points from 2D

gaussians with a learnable mean (see Sec. 4.3.3).

Our approach is different from AtlasNet [Groueix et al., 2018b] and its variants [Badki

et al., 2020, Bednarik et al., 2021, Bednarik et al., 2020, Deng et al., 2020, Deprelle

et al., 2019, Pang et al., 2021, Williams et al., 2019] in that: (i) we aim to jointly

learn the surface parametrizations and their inverse functions, the charts-mappings;

(ii) we learn a 2D domain relevant to a family of shapes by optimizing a probability

density function in the 2D Euclidean plane. We also differ in two novel losses that

correctly orient the normals of the reconstructed surface and fix point-collapse in

3D which is a common artifact of AtlasNet-type of approaches.

4.3 Method

4.3.1 Overview.

Given a collection of shapes, our goal is to learn for all shapes surface parame-

terizations with their inverse chart-mappings and a join 2D domain on which the

parametrizations are defined. For simplicity, we first present our approach in the

case of a single shape S: in Section 4.3.2 we explain how to model surface pa-

rameterization and chart-mapping, and introduce our main architectural blocks;

in Section 4.3.3 we explain how we learn the 2D UV domain as a probability dis-

tribution; in section 4.3.4 we discuss our losses. Our pipeline for a single shape

is illustrated in Figure 4.2. Finally, in Section 4.3.5 we explain how to train our

approach jointly on a family of shapes.
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Figure 4.2: Single shape architecture. Given a shape S, we optimize jointly a

2D probability distribution P, a parametrization network, φS and chart-mapping

network ψS . The parameterisation network φS takes as input a point xP ∈ R2

randomly sampled according to the density probability function P to produce the

6D vector (3D point and normal coordinates) φS(xP). The chart-mapping network

ψS takes as input a point xS sampled on the shape S, its normal nS and outputs a

2D points ψS(xS ,nS).

Notations. We use the following notations:

• S : 3D shape of interest

• P : learned probability distribution in 2D

• ϕS : R2 −→ R3 : surface parameterization

• φS : R2 −→ R6 : surface parameterization with normals

• ψS : R6 −→ R2 : chart-mapping

We slightly abuse the brackets notation to indicate sampling a set of M points, e.g.:

• {xS} is a set of M points sampled on S using a uniform probability distribution

• {xP} is a set of M points sampled in R2 according the probability distribution

P
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4.3.2 Parametrization and chart-mapping

We explain the two main components of our architecture for a given shape S, a

chart-mapping ψS and a surface parameterization network φS .

Chart-mapping. We learn a single chart-mapping from the shape S to R2, using

a Multi-Layer Perceptron (MLP) with both point coordinates and normals as input.

We observe that naively learning an R3 to R2 mapping leads to the collapse of thin

surfaces after their mapping to the 2D domain. Indeed, coordinate-based MLPs

are continuous functions and Tancik et. al. [Tancik et al., 2020] showed that they

have a prior to learn smooth functions in the absence of positional encoding. Hence,

two 3D points with very close spatial coordinates but opposite normals tend to be

mapped closely in 2D. For chart-mappings, such smoothness is generally a desirable

feature that should be maintained, but distant normals should be a strong cue to

indicate that points are intrinsically far. To handle thin surfaces, we propose to

learn a mapping ψS from R6 to R2 that takes as input a point xS and its associated

normal nS scaled to have norm α. The parameter α is a hyperparameter of our

approach which controls how much normals contribute to distances compared to the

3D positions of the points.We set it to 0.01 in all our experiments.

Surface parameterization. For a shape S, we seek to learn the inverse function

of the chart-mapping, ψ−1
S : R2 −→ R6. We first use an MLP ϕS : R2 −→ R3 to

parameterize the surface S. The function ϕS maps a point x = (u, v) in R2 into a

point ϕS(x) in R3. The Jacobian Jx of the mapping ϕS is defined at every point x

by:

Jx =
[
Jx,u,Jx,v

]
=
[∂ϕS

∂u (x), ∂ϕS

∂v (x)
]
. (4.1)

The two partial derivatives are trivial to compute with Pytorch auto-differentiation [Paszke

et al., 2019]. The normal n to the parametrizedsurface at ϕS(x) can be computed as

the normalised cross product of Jx,u and Jx,v and scaled by the same hyperparameter
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α used for the chart-mapping ψS :

n = α
Jx,u × Jx,v

∥Jx,u × Jx,v∥
. (4.2)

We define φS : R2 −→ R6 as the concatenation of an output point and its scaled

normal:

φS(x) = [ϕ(x),n] . (4.3)

To summarize, the mapping φS is designed to represent the inverse of the chart-

mapping ψS . However, it is not defined for every point in R2, and in the next section

we focus on identifying the 2D domain for which it is defined.

4.3.3 Learning a 2D domain as a sampling probability dis-

tribution

To parametrize a shape S, we want to define a domain in R2 such that ϕS defines a

bijection from this 2D domain to S. In practice, during training, we want to learn

this domain, sample points inside it, and map them using φS . Instead of handling

explicitly the 2D domain geometry, e.g., points or primitives similar to [Deprelle et al.,

2019], we take a probabilistic approach and learn the parameters of a probability

distribution P from which to sample points. This enables us to easily deal with

topological changes. We now detail how we represent this probability distribution,

learn it, and use it to define a 2D domain.

Modelling 2D sampling probability as a mixture of Gaussians. We sample

2D points according to a probability distribution P which we model as a mixture of

K 2D Gaussians with means µi ∈ R2 for i = 1, ..., K , a fixed standard deviation

σ ∈ R and fixed mixing coefficients equal to 1/K:

P(x) = 1
K

K∑
k=1

N (x|µi, σ) with σ = 1√
K

. (4.4)
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During training, at every iteration, we sample N 2D points {xP} from P, which

are both the input of the parameterisation network φS and the target of the chart-

mapping network ψS .

Learning the Gaussian means. To allow learning the 2D domain, we make

the means µi learnable parameters of the method. To do so, we need to see the

sampled points as differentiable with respect to the µi. We achieve this with

the pathwise gradient estimator from [Kingma and Welling, 2013], also called the

reparameterization trick. This consist in expressing a parameterized random variable

via a parameterized deterministic function of a parameter-free random variable.

For Gaussian Mixture Models (GMM), this simply amounts to sampling a GMM

with zero means and adding the means to the sampled points, i.e., defining each

point xP as the result of the following process: first selecting the id i of a mixture

component using a uniform distribution; then sampling a 2D point xN from a

Gaussian distribution of mean 0 and standard deviation sigma xN ∼ N (0, σ); finally,

defining the point xP as xP = xN + µi, which is trivially differentiable with respect

to µi. Please see Figure 4.5 for examples of learned probability distributions.

From probability distribution to 2D continuous domain. Once the distribu-

tion has been optimized, we simply threshold the probability distribution function

P to obtain a 2D domain. We can then compute a 2D triangulation of the domain,

and use the parameterization network ϕ to obtain a 3D mesh (as can be seen in

Figure 4.3).

4.3.4 Training losses

We now explain the loss function we optimize. We write our loss for a single shape:

Lsingle(φS , ψS , µ) = λ6DL6D + λ2DL2D + λcycleLcycle + λisoLiso + λrepLrep , (4.5)
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where µ = (µ1, ..., µK), the λ are scalar hyper-parameters and the different loss

terms are detailed bellow. To compute distances between two sets of points X and

Y , we base our losses on the Chamfer distance defined as:

Lchamfer(X ,Y) = 1
|X |

∑
x∈X

min
y∈Y

∥x − y∥2 + 1
|Y|

∑
y∈Y

min
x∈X

∥y − x∥2 , (4.6)

where |X | and |Y| are the number of points in X and Y respectively. Our set

of losses is designed to enforce two objectives : (i) ensuring an accurate surface

parameterization φS with low distortion, (ii) ensuring that φS and ψS are indeed

inverse of each other.

Surface parameterization reconstruction loss. The surface parameterization

φS takes as input a set of 2D points {xP} sampled from the probability distribution

P and outputs a set of 6D points (3D points with scaled normals). We minimize

the 6D Chamfer distance between the set of generated points {φS(xP)} and a set of

points {xS} associated to normals {nS} sampled on the target shape S:

L6D(φ, µ) = Lchamfer({φS(xP)}, {xS ,nS}) . (4.7)

Chart-mapping reconstruction loss. We encourage the overall 2D projection

of the shape under ψS and the probability distribution P to be the same. Recall that

ψS takes as input {xS ,nS} (3D points uniformely sanpled on S with scaled normals)

and outputs a set of 2D points {ψS(xS ,nS)}. We simply minimize the Chamfer

distance between the generated 2D points and a set of points {xP} sampled from P :

L2D(ψ, µ) = Lchamfer({ψS(xS ,nS)}, {xP}) . (4.8)

Cycle-consistency loss. We want the two mappings φ and ψ to be inverse of

one another. We encourage this using a cycle-consistency loss on 2D points sampled
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from P and on 3D points sampled uniformly on S with their associated normals:

Lcycle(φ, ψ, µ) = 1
M

∑
x∈{xP }

∥x−ψ◦φ(x)∥2+ 1
M

∑
(x,n)∼{xS ,nS}

∥x−φ◦ψ(x,n)∥2 . (4.9)

Distortion regularization loss. We limit distortion in the parameterization with

an isometric regularization. Given the Jacobian Jx of the transformation ϕ at point

x (Equation 4.1) and I the identity matrix, the isometric loss can be written:

Liso(φS , µ) = 1
M

∑
x∈{xP }

∥JxJTx − I∥ , (4.10)

where the sum is over points sampled according to P. As already observed in

[Bednarik et al., 2021, Groueix et al., 2018a], this type of regularization has the

additional benefit of making the parameterizations more consistent across shapes.

Probability distribution regularization loss. Non-uniform density is a known

failure mode of the Chamfer distance, as shown in Figure 4.5 and also observed

in [Bednarik et al., 2020]. In theory, a loss based on optimal transport like the Earth

Mover distance would be ideal to fix this problem. However, in practice, we ran into

optimisation, training time and parameter tuning issues when using EMD. On the

contrary the Chamfer loss is simple to use and fast to compute. We thus use the

Chamfer loss and introduce a repulsive loss between the Gaussian means defining

the probability distribution P as a regularization:

Lrep(µ) = 1
K2

∑
i,j∈[0,K]

exp(−∥µi − µj∥
σ

) , (4.11)

where σ is the Gaussian standard deviations in the definition of P . We found that

this simple loss lead to much more uniform distributions of points both in the 2D

plane and in the reconstructed shapes.
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4.3.5 Joint learning on a family of shapes.

We now explain how we learn jointly atlases on a collection of N shapes S1, ...,SN .

Since we want to share the 2D domain between the different shapes, we do not

condition the probability distribution P on the shape, and learn a single one for all

shapes. On the contrary, the parametrization and chart-mappings are expected to

depend on the shape. Rather than learning them completely independently for each

shape, we use the auto-decoder framework [Park et al., 2019], where we optimize

for each shape Si feature vectors fψ,i and fφ,i which we use to define respectively

φSi and ψSi . More precisely, we learn jointly for all shapes networks φ and ψ, and

define for each shape Si for all x ∈ R2, φSi(x) = φ(x, fψ,i) and for all x ∈ R6,

ψSi(x) = ψ(x, fψ,i). We then optimize ψ, φ and µ by minimizing the loss:

Lfull(φ, ψ, µ, fψ, fφ) =
N∑
i=1

Lsingle(φSi , ψSi , µ) , (4.12)

where fψ = (fψ,1, ..., fψ,N) and fφ = (fφ,1, ..., fφ,N).

Implementation details. We use latent codes fφ,i and fψ,i of dimension 256. The

architectures we use for φ and ψ are MLP with 5 hidden layers of size 256 and

ReLU activations. We do not use batch normalization layers. P is defined using

K = 10, 000 mixture components. We sample M = 104 points both on the shapes

and according to P at every training iteration. We train with λ6D = 1, λ2D = 10−2,

λcycle = 1/M , λiso = 10−4/M and λrep = 1.

4.4 Experiments

Datasets. We use individually the shapes of Williams et al. [Williams et al.,

2019], which come from five high-resolution scans with over a million points with

associated normals. We generate the manifold meshes from this data using screened

Poisson Surface Reconstruction. The resulting meshes have a variety of geometric
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Figure 4.3: Top: single shape parametrization. On the shapes of [Williams et al.,

2019], we transfer a colored mesh of the learned 2D domain (left) to 3D, which enables

visualizing correspondence and cuts (right). Bottom: co-parameterization. For

’teddy’ and ’cup’ shapes of SHREC [Giorgi et al., 2007], we show the joint sampling

probabilities and 2D domain, and the reconstructions of 4 shapes with 3 different

viewpoints and consistent coloring. Note the quality of the parametrization compared

to patch-based methods [Bednarik et al., 2020, Groueix et al., 2018b]

details and different topologies, providing interesting challenges for atlas-based

representations. The SHREC dataset [Giorgi et al., 2007] contains 400 manifold

meshes with sparse correspondence annotations, which enables us to quantitatively

evaluate the consistency of our joint atlases. For our experiments we selected

categories, ant, teddy, cups and armadillo, aiming for topological and geometric

diversity, and four shapes in each.

Reconstruction Metrics. To evaluate how well our representation matches the

input shape, we report two commonly used metrics: 3D Chamfer Distance and the

Earth Mover’s Distance (EMD). Given two sets of points X and Y with M ′ = 2000
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randomly-sampled points each, we approximate the EMD as:

LEMD(X ,Y) = 1
M ′

∑
xi∈X

∑
yj∈Y

Ci,j∥xi − yj∥2 , (4.13)

where the association matrix C is such that Ci,j = 1 if point xi is mapped to point

yj and Ci,j = 1, and is computed to minimize LEMD via Hungarian Algorithm [Kuhn,

1955]. To evaluate the reconstructions of the normals of the surfaces, we also report

the distances of the normals using the associations given either by the chamfer

distance or the EMD using the spatial coordinates.

Correspondence Metric. Given a pair of shapes S1,S2 and a set of keypoints

pi ∈ S1, we find the corresponding points qi ∈ S2 by compositing the chart-mapping

and parameterization networks: qi = φS2 ◦ ψS1(pi). For the baselines that do not

have a chart-mapping network, we obtain correspondences for each point pi using

the following process: we sample points according to P , map them to S1, select the

one which image by φS1 is closest to pi, and map it to S2 using φS2 . Given M ′′

ground truth correspondences qgt
i for each pi, we measure the L2 loss on the spatial

coordinates as 1
M ′′

∑
i |qi − qgt

i |.

Results and analysis. Qualitative results for individual shapes of Williams

et al. [Williams et al., 2019] are shown in Figure 4.3 (top). Joint atlases for the

SHREC dataset [Giorgi et al., 2007], can be seen for the ’ants’ are in the teaser

Figure 4.1 and for ’cup’ and ’teddy’ in Figure 4.3 (bottom). Note how we manage to

learn continuous 2D domains with complex topology, which we can mesh to obtain

a high quality 3D mesh for the shapes. Also note that compared to the patch-based

approaches we obtain few and meaningful cuts in the parametrization, without any

overlap. Finally, note the consistency in the reconstruction of the different shapes,

which can be visualized by consistent colors transfered from the joint 2D domain to

all shapes.
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[Williams et al., 2019] [Giorgi et al., 2007]
Spatial Normal Spatial Normal Corresp.

Ch. ↓ Emd ↓ Ch. ↓ Emd ↓ Ch. ↓ Emd ↓ Ch. ↓ Emd ↓ L2 ↓
Baselines

(1) ANv1-1 2.3±0.0 5.0±0.1 1.2±0.2 1.2±0.2 2.2±0.0 5.4±0.5 1.1±0.2 1.1±0.2 2.6±0.8
(2) ANv2-1 2.2±0.0 11.1±2.1 1.2±0.1 1.3±0.1 2.0±0.0 7.1±1.4 1.3±0.2 1.3±0.2 1.3±0.1
(3) ANv1-10 2.4±0.0 11.4±0.9 1.1±0.0 1.1±0.0 2.3±0.1 11.1±0.4 1.1±0.1 1.1±0.1 3.5±1.4
(4) ANv2-10 2.2±0.0 11.1±2.1 1.2±0.1 1.3±0.1 2.1±0.0 13.4±0.5 1.0±0.1 1.1±0.1 2.8±1.6
(5) DSR-10 4.3±0.8 18.2±0.8 1.4±0.0 1.2±0.0 3.1±1.1 10.0±2.8 1.3±0.1 1.3±0.1 2.6±1.2

Ours
(6) ϕ 2.2±0.0 15.2±5.9 1.0±0.2 1.1±0.2 2.0±0.0 6.8±0.9 1.1±0.2 1.1±0.2 2.0±0.8
(7) ϕ, n 2.4±0.1 20.3±3.3 0.3±0.0 0.7±0.0 2.1±0.3 13.1±8.0 0.2±0.0 0.5±0.0 1.4±1.1
(8) ϕ, n, r 2.2±0.1 12.9±4.4 0.2±0.1 0.6±0.1 2.0±0.1 9.6±6.6 0.2±0.0 0.4±0.1 2.8±0.9
(9) ϕ, n, r, p 2.3±0.2 13.2±4.0 0.3±0.1 0.6±0.1 2.0±0.0 8.2±2.1 0.2±0.0 0.4±0.0 1.5±1.0

(10) ϕ, ψ, n, r, p 2.6±0.0 5.1±0.1 0.2±0.0 0.5±0.0 2.2±0.0 5.4±0.2 0.2±0.0 0.4±0.0 1.0±1.0
(11) ϕ, ψ, n, r, p, i 2.6±0.2 5.5±1.3 0.2±0.3 0.5±0.2 2.3±0.1 5.9±0.6 0.2±0.0 0.4±0.0 0.8±1.0

Notations n: normal - r: repulsion loss - p: Probability distribution function P - i: Isometric regularisation of φ}

Table 4.1: Comparison and ablation study. We compare our method, suc-

cessively adding its different componenets, to AtlasNet [Groueix et al., 2018b],

AtlasNetV2 [Deprelle et al., 2019] and DSR [Bednarik et al., 2020]. We compute

association between target and reconstructed 3D points using Chamfer distance

and EMD, then report for each association the average distance between the points

coordinates (’Spatial’) and their normals (’Normals’). We also evaluate the quality

of the correspondences when available. All the values are scaled by a factor of 10−2.

Please see text for details.

We report quantitative results in Table ??. To account for randomness in initial-

ization and optimization, we re-run each method four times and report mean and

standard deviation. We report results for three baselines: vanilla AtlasNet [Groueix

et al., 2018b] (rows 1 and 3) which only learns the parameterization network, Atlas-

Net v2-points [Deprelle et al., 2019] (rows 2 and 4) which learns elementary point

structures in the 2D domain, and DSR [Bednarik et al., 2020] (row 5) which uses

several regularisation losses including an isometry loss. We try the first two methods

with 1 and 10 UV patches. We found that methods using a single patch typically

lead to similar Chamfer distances but much lower EMD. We believe that this is

because using a single patch encourages points to be more uniformly distributed on

the surface. We also found that DSR [Bednarik et al., 2020] provided quantitativelty

slightly worse results, which is consistent with what was reported in this chapter

that mainly aims at visual quality.
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Figure 4.4: Impact of the normals and the repulsion loss. Note the variation

of the color-coded normal directions (left) and the variations in the point density

(right).

We evaluate our method by successively adding our different components. We start

(row 6) by only using our parametrization network, learning a fixed set of input

point positions with only 3D Chamfer distance as supervision, similar to AtlasNet

v2 with 1 patch and obtained similar results.

We then add normals to the Chamfer loss (row 7), which unsurprisingly gives a

very strong boost to the normal metrics. Qualitatively, the effect can be seen in

the left part of Figure 4.4 where the orientation of the normals is color-coded for

each point: without the normals in the loss, a significant part of the normals are

back-facing. Adding the normals in the loss however has a second undesired effect

and significantly increases the EMD. This can be understood qualitatively by looking

at the results, where we see greatly varying density of points over the reconstructed

shapes and in the 2D space. We interpret this as the fact that adding normals in

the loss complexifies the loss landscape and adds bad local minima.

To avoid this effect, we add our repulsive regularization to the loss (row 8). We

can see this improves the EMD results without degrading the Chamfer results and

normal consistency. The effect on the points density is also striking qualitatively, as

visualized in the right part of Figure 4.4.

At this point, the parametrization is still only optimized on a set of points. To

recover an interpretation of the parametrization as a continuous mapping of a 2D

domain, we introduce our sampling probability distribution (row 9) which has little
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Target ours w/o iso w/o normals w/o rep.

Figure 4.5: Qualitative ablation results. Given a target cube shape, we show

the probability distribution P learned by our method and three key ablations: not

using the isometric loss, not using the normals, and not using the repulsive loss.

quantitative effect but is crucial to define a continuous 2D mapping.

We can then introduce our chart-mapping, together with the 2D reconstruction and

cycle losses (row 10). It can be seen that beside its theoretical interest and benefits,

it has a clear quantitative impact: both the EMD and the correspondence metrics

are clearly boosted.

Finally, adding the isometric regularization (row 11) provides a small additional

boost in term of correspondence quality, i.e., consistency between different jointly

learned atlases.

Note that all of our regularization losses remain necessary to the success of our

method, as can be visualized qualitatively in Figure 4.5, where we use our architecture

to learn the reconstruction of a simple cube and visualize the learned 2D sampling

distribution. Without the normal loss, we observe a concentration of the density on

edges, an equivalent of point collapse described in [Bednarik et al., 2020]. Without

the repulsion loss, the density is concentrated on a single face. Without the isometry

loss, the shape of the cube is highly distorded. FWith our full method the net of

the cube is clear and the point density relatively uniform.
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4.5 Conclusion

We propose a novel technique for representing a shape or a collection of shapes,

with two key differences with respect to prior work on atlas-like representations.

First, we joinlty learn two maps, a parameterization and a chart-mapping. Second,

we learn the 2D domain on which the parametrization is defined. This makes our

representation much closer than previous works to be a proper atlas, i.e., one that

defines an homeomorphism between 3D shape and a 2D domain. It also enables

co-parameterization, where homeomorphisms are learned between several shapes

and a single 2D domain, which can have applications for consistent texturing and

correspondence estimation. We further offer other technical contributions, such as

learning the 2D domain by optimizing a sampling probability distribution, analyzing

the effect of incorporating normals in the optimization, and introducing a repulsive

loss to have a more even point distribution. We believe our work is an important

step towards learning consistent atlases and it will inspire future work on further

improving quality of atlases, such as modeling transition maps, minimizing seams,

and distortion.

Acknowledgments Thanks to F. Darmon, R. Loiseau, E. Vincent for their feedbacks

on the manuscript; E. Shechtman , D. Picard, Y. Siglidis and G. Ponimatkin for inspir-

ing discussions; and B. George for code suggestions; This work was partly supported

by ANR project EnHerit ANR-17-CE23-0008, Labex Bézout, gifts from Adobe to

École des Ponts and HPC resources from GENCI-IDRIS (2021-AD011011937R1).



4.5. Conclusion 78



CHAPTER 5

Conclusion

5.1 Summary of the contributions

We proposed several approaches using deformable elements for surface representations

and used it to develop more interpretable model of shape generation.

• In chapter 3 we introduced elementary structures that are learned on a

collection of shape. We proposed two models of elementary structures : (i)

patch deformation module and (ii) point learning module. The first learns

parametric surfaces that enable to generate continuous surfacic representation

of the collection of shapes. The second learns a parametric set of points

which are not constrained by topology hence allowing us to generate more

complex elementary structures. Our approaches improved the quality of the

reconstruction of the ShapeNet dataset [Chang et al., 2015a] and pushed futher

the state of the art of shape correspondences on the Faust benchmark [Bogo

et al., 2014]. We developed several methods as well, to adjust the elementary

structures together in order to reconstruct the target shape surface. Such

79
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adjustment can be seen as continuous mapping functions from the elementary

structure space to R3. They can be continuous non linear mapping defined by

a set of MLPs or linear function whose coefficients and intercepts are predicted

using a different set of MLPs. While the non linear mapping yields overall a

better reconstruction quality, they lack interpretability. On the opposite, the

linear mappings produce more interpretable results with a lower reconstruction

quality.

• In chapter 4 we proposed to learn 2D domain for the parameterization by

representing it it as a probability distribution function. We saw that this

novel approach allows to learn a surfacic representation free of topological

constraints. We modeled the method after atlases and its defining elements,

namely a 2D domain, a parameteriziation and a chart and we propose to learn

them all together. The parameteriziation and chart functions are defined by

continuous non linear functions defined as MLPs. We showed that learning

the chart improves the parameterization by reducing the number of overlaps

and by improving the consistency. This method enables to push further the

quality of the parameterization techniques and atlas-net approaches [Groueix

et al., 2018b, Williams et al., 2019, Bednarik et al., 2020].

5.2 Future work

On elementary structures In Chapter 3 we detailed a method to learn elemen-

tary structures to generate accurate, meaningful, and interpretable shape surface

reconstruction. They were introduced to replace the hard coded 2D domain repre-

sentation of AtlasNet [Groueix et al., 2018b] pipeline. Yet, several other elements are

still hard coded that could be replaced and learned instead. In particular, the fact

that we use a fixed set of elementary structures and that we cannot use one of them

multiple times is a limitation of the approach. Having a model that can learn a set of
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interpretable elementary structures and pick from them, potentially multiple times,

to reconstruct a given shape is an interesting direction for future work. Monier et al.

developed this idea [Monnier et al., 2021] on an image generation task but it is yet

to be done on a 3D pipeline.

On joint surface parameterization The pipeline we described in Chapter 4 was

initially thought of as a UV-map generation technique where a collection of meshes

were to be parameterized by a single 2D domain. For joint texturing purposes or any

other parameterization-related task, the learned parameterization function needs

to be as close as possible to a bijection. In practice, this was not the case, and we

observed several issues regarding cuts, triangle overlap, and overall distortion that

did not meet the quality standard of classical approaches. Many of the problems we

faced came from the fact that MLPs are by definition continuous and that we need

a discreet linear mapping to represent a mesh triangulation of a shaped surface in

2D. For instance, two vertices with similar 3D coordinates that are separated by

a cut will be mapped far away on the 2D domain. Such mapping is particularly

hard to learn with a neural network. In our case, it introduced many overlaps and

flipped faces. We understand that representing a chart function using an MLP or

any continuous function from 3D to 2D is difficult. While in theory learning a model

to predict a chart and a UV-map of a given mesh is interesting, it is not clear that

the quality of such a parameterization technique will ever match one of the methods

that parameterize a single shape surface. After this thesis, the question remains

unanswered and we believe it could be another interesting research topic.
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