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Simona Rota Nodari Rapportrice
Professeure, Université Côte d’Azur
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Résumé

La simulation moléculaire et le calcul de structures électroniques sont des outils fondamentaux utilisés
en chimie, physique de la matière condensée, biologie moléculaire, science des matériaux, nanosciences. . .
La théorie de la fonctionnelle de densité (DFT) est aujourd’hui une des méthodes les plus utilisées, car
elle offre un bon compromis entre efficacité et précision. Il s’agit d’un problème formidable qui nécessite
toute une hiérarchie de choix entraînant un certain nombre d’approximations et d’erreurs associées :
choix du modèle, choix de la base de discrétisation, choix des solveurs, erreur de troncature, erreur
numérique. . . Cette thèse traite certains de ces problèmes, du point de vue de l’analyse numérique, et
porte une attention particulière à la simulation de cristaux et autres systèmes périodiques avec DFTK,
un récent logiciel de DFT en Julia.

Les premiers chapitres de ce manuscrit concernent l’analyse asymptotique d’algorithmes utilisés en
calcul de structures électroniques et l’estimation d’erreurs. Dans le premier chapitre, nous analysons et
comparons la structure algébrique de deux classes d’algorithmes : les algorithmes de minimisation directe
et les algorithmes de champ auto-cohérent. Ce cadre commun permet de dériver des taux de convergence
asymptotiques pour ces algorithmes et nous analysons leur dépendance en fonction du trou spectral et
d’autres propriétés du problème. Le second chapitre tire profit de la structure algébrique étudiée dans le
premier chapitre pour proposer des estimateurs d’erreur pour les équations de Kohn–Sham : le caractère
non linéaire de ces équations rend difficile l’obtention de tels estimateurs et la stratégie proposée dans
cette thèse consiste à linéariser les équations de Kohn–Sham pour obtenir une relation entre l’erreur
et le résidu, que l’on peut ensuite inverser de façon efficace, sous des approximations raisonnables. En
particulier, cette méthode est utilisée pour obtenir des estimateurs sur des quantités d’intérêt comme les
forces interatomiques, dont la dérivation faisait défaut jusqu’à présent. Un autre chapitre est consacré à
la conception et l’implémentation de méthodes de calculs pour les propriétés de réponse des matériaux,
dans l’objectif de les rendre plus stables et rapides. Nous y décrivons un cadre commun, dans lequel
entre la plupart des méthodes existantes dans la littérature et justifions son intérêt par une analyse de
stabilité. Nous proposons également une nouvelle méthode de résolution de l’équation de Sternheimer,
pierre centrale du calcul de réponse, qui réduit de façon significative le temps de calcul.

Le reste de ce manuscrit est composé de travaux menés en parallèle de la première partie. Un
chapitre traite de la régularité des solutions d’équations de Schrödinger périodiques. Nous y étendons
des résultats antérieurs au cas de potentiels analytiques et prouvons (dans le cas linéaire) la convergence
exponentielle avec la taille de la base de discrétisation. Enfin, dans le dernier chapitre, fruit de travaux
menés pendant l’école d’été du CEMRACS 2021, nous proposons des critères généraux pour construire
des bases atomiques localisées optimales en chimie quantique.





Summary

Molecular simulation and electronic structure calculation are fundamental tools used in chemistry,
solid-state physics, molecular biology, materials science, nanosciences. . . Density functional theory (DFT)
is one of the most widely used methods nowadays, as it offers a good compromise between efficiency and
accuracy. It is a formidable problem that requires a whole hierarchy of choices, which lead to a number
of approximations and associated errors: choice of model, choice of discretization basis, choice of solvers,
truncation error, numerical error. . . This thesis deals with some of these problems, from a numerical
analysis point of view, and pays particular attention to the simulation of crystals and other periodic
systems with DFTK, a recent DFT software in Julia.

The first chapters of this manuscript concern the asymptotic analysis of algorithms used in electronic
structure calculation and error estimation. In the first chapter, we analyse and compare the algebraic
structure of two classes of algorithms: direct minimization algorithms and self-consistent field algorithms.
This common framework allows us to derive asymptotic convergence rates for these algorithms and we
analyse their dependence on the spectral gap and other properties of the problem. The second chapter
takes advantage of the algebraic structure studied in the first chapter to propose error estimators for the
Kohn–Sham equations: the nonlinear nature of these equations makes it difficult to obtain such estimators
and the strategy proposed in this thesis consists in linearizing the Kohn–Sham equations to obtain a
relation between the error and the residual, which can then be efficiently inverted, under reasonable
approximations. In particular, this method is used to obtain estimators for quantities of interest such as
interatomic forces, the derivation of which has been lacking until now. Another chapter is devoted to the
design and implementation of methods for calculating the response properties of materials, with the aim
of making them more stable and fast. We describe a common framework, in which most of the existing
methods in the literature fit, and justify its interest by a stability analysis. We also propose a new method
for solving the Sternheimer equation (the cornerstone of response calculations) which significantly reduces
the computational time.

The rest of this manuscript is composed of works carried out in parallel to the first part. One chapter
deals with the regularity of solutions to periodic Schrödinger equations. We extend previous results
to the case of analytic potentials and prove (in the linear case) the exponential convergence with the
size of the discretization basis. Finally, in the last chapter, resulting from works carried out during the
CEMRACS 2021 summer school, we propose general criteria for constructing optimal localized atomic
bases in quantum chemistry.
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Résumé détaillé

Un peu d’histoire

Traditionnellement, les mathématiques appliquées ont joué un rôle fondamental dans les sciences
de l’ingénieur, telles que la dynamique des fluides, la mécanique ou l’électromagnétisme. En effet, les
méthodes numériques sous-jacentes ont été analysées en profondeur et reposent sur des bases théoriques
rigoureuses. Par exemple, la méthode des éléments finis (FEM), inventée au milieu du 20e siècle par
des ingénieurs, a ensuite été considérablement améliorée avec l’aide de mathématicien·ne·s appliqué·e·s et
elle n’en serait pas au stade actuel sans l’intervention des mathématiques. Cependant, pour des raisons
historiques, cela a rarement été le cas en chimie computationnelle, en physique des solides ou en science
des matériaux.

Cela est quelque peu surprenant car les problèmes mathématiques dérivés de l’équation de Schrödinger,
pierre angulaire de nombreux modèles dans ces domaines, sont souvent des problèmes aux valeurs propres
qui doivent être discrétisés pour que des solutions numériques puissent être calculées. Bien que la dis-
crétisation des problèmes aux valeurs propres (éventuellement non linéaires) soit un sujet bien établi en
mathématiques appliquées, il existe peu d’interactions avec la chimie computationnelle, la physique des
solides et la science des matériaux dans la littérature. Le tableau suivant montre le nombre d’occurrences
sur les bases de données Google Scholar et MathSciNet, pour les mots-clés “Navier–Stokes” et “density
functional theory” :

Mot-clé: Google Scholar MathSciNet
“Navier–Stokes” 955,000 11,744
“density functional theory” 1,900,000 227

Table 1 – “Navier–Stokes” vs “density functional theory”, au 1er Janvier 2022.

Si l’on considère ces données comme une mesure de la pertinence de ces deux domaines de recherche,
il apparaît qu’il existe une déconnexion au niveau des tendances entre la communauté scientifique et son
sous-ensemble de mathématicien·ne·s. Outre les chiffres impressionnants de Google Scholar, l’importance
de la chimie computationnelle et du calcul de structures électroniques est confirmée par le fait que Kohn
et Pople ont reçu le prix Nobel de chimie en 1998 pour leur contribution à la théorie de la fonctionnelle de
densité (“density functional theory”, DFT) et que les travaux fondateurs sur les méthodes multiéchelles
(modèles de champ de force QM/MM) de Karplus, Levitt et Warshel ont été récompensés par le même prix
en 2013. Aujourd’hui, la chimie computationnelle est pleinement considérée comme un troisième pilier
de la chimie, aux côtés de la chimie expérimentale et théorique. Comme autre indicateur de l’importance
de la DFT dans la science moderne, 12 des 100 articles les plus cités s’y réfèrent. En particulier, deux
d’entre eux sont dans le top 10 et consistent en des “recettes techniques sur lesquelles sont construites
les méthodes et logiciels de DFT les plus populaires” (parmi les articles du Web of Science de Thomson
Reuter, de 1900 à 2014 [195]). Comme cela a été le cas dans le passé pour la FEM, le domaine du calcul de
structures électroniques a bénéficié ces vingt dernières années du travail de mathématicien·ne·s du monde
entier, qui ont analysé les méthodes existantes et développé des outils mathématiques pour améliorer les
aspects numériques du calcul de structures électroniques et de la chimie quantique. Cette thèse vise à
contribuer à ces améliorations.
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x Résumé détaillé

Description détaillée des chapitres

Chapitre 1

Le premier chapitre a vocation à introduire les concepts nécessaires à la compréhension de ce manuscrit.
Après une brève introduction historique et une présentation du contexte général dans les Sections 1.1
et 1.2, nous présentons dans la Section 1.3 le cadre mathématique nécessaire au calcul de l’état fonda-
mental de systèmes moléculaires généraux, avec un accent particulier sur la DFT de Kohn–Sham. Il est
volontairement bref par souci de clarté et lae lecteur·rice intéressé·e est invité·e à consulter les références
fournies pour plus de détails sur les différents sujets, en particulier les ouvrages suivants : [29, 42, 133].
Dans la Section 1.4, nous nous concentrons sur le cadre de la DFT en ondes planes, qui utilise une dis-
crétisation en modes de Fourier des objets que nous étudions. Nous introduisons également dans cette
section des approximations utiles pour la DFT en ondes planes : l’approximation dite des pseudopo-
tentiels, qui a motivé les résultats du Chapitre 5, et l’échantillonnage de la zone de Brillouin pour les
opérateurs périodiques de type Schrödinger. Ces concepts sont utiles pour comprendre les systèmes que
nous étudions dans cette thèse : la plupart des simulations portent sur des systèmes cristallins, qui ont
une structure périodique intrinsèque qui se prête bien à la discrétisation en ondes planes. Ces simulations
sont réalisées avec le paquet Julia DFTK, que nous présentons dans la Section 1.4.4.

Source: Wikipedia Commons

Figure 1 – Exemples de matériaux étudiés dans cette thèse et ayant une structure périodique : (haut) un morceau
de cristal de chlorure de sodium, communément appelé sel, et sa structure cristalline – les atomes de sodium sont
en violet et les atomes de chlore en vert –, (bas) un morceau de cristal de silicium purifié, un système simple pour
tester les méthodes numériques, et sa structure cristalline.

Dans la Section 1.5, nous décrivons la résolution des équations découlant des sections précédentes, en
mettant l’accent sur deux classes d’algorithmes : les algorithmes de minimisation directe et les algorithmes
de champ auto-cohérent. Nous présentons ensuite les résultats du Chapitre 2, où ces deux classes sont
analysées et comparées. Dans la Section 1.6, nous passons en revue la littérature existante sur les
estimations d’erreur pour les simulations numériques et le calcul de structures électroniques. Ensuite,
nous discutons les résultats du Chapitre 3, où des estimateurs d’erreurs sont développés dans le cadre
de la DFT en ondes planes. Enfin, nous considérons dans la Section 1.7 le cadre de la DFPT (“density
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functional perturbation theory”), qui a pour objectif de calculer les dérivées de la densité électronique
de l’état fondamental par rapport à des perturbations externes, et nous présentons les contributions du
Chapitre 4.

Enfin, nous soulignons que le Chapitre 6 est le résultat d’un projet mené à l’école d’été du CEMRACS
20212. Bien qu’il soit lié à la chimie quantique, ce chapitre traite de l’optimisation de bases, qui n’est pas
du ressort de la DFT en ondes planes. Il n’est donc pas mentionné dans le chapitre introductif puisqu’il
est relativement auto-contenu.

Chapitre 2

Dans le Chapitre 2, nous étudions des problèmes de minimisation exprimés de façon générale sous la
forme suivante :

min
P∈MNel

E(P ),

où
MNel =

{
P ∈ H, P = PT , Tr(P ) = Nel, P

2 = P
}
.

H = RNb×Nb est muni du produit scalaire de Frobenius ⟨A,B⟩F = Tr(ATB), l’extension au cas des matri-
ces complexes étant immédiate. De plus,MNel est une variété Riemannienne, dont les éléments sont ap-
pelés en chimie quantique des matrices densités, difféomorphe à la variété de Grassmann Grass(Nel, Nb) :
nous définissons alors TPMNel , le plan tangent à MNel au point P . Ce cadre convient parfaitement au
calcul de l’état fondamental d’un système moléculaire ou cristallin pour des modèles de type Kohn–Sham
DFT, tel que décrit dans le Chapitre 1 : ici, Nel correspond aux nombres d’électrons du système étudié
et Nb à la taille de la base de discrétisation choisie.

Nous supposons par ailleurs que la fonctionnelle E est suffisamment régulière et qu’il existe un mini-
mum non dégénéré P∗ : il existe une constante η > 0 telle que

E(P ) ⩾ E(P∗) + η∥P − P∗∥2
F pour P dans un voisinage de P∗.

Nous dérivons alors des conditions d’optimalité du premier et second ordre :

• La condition du premier ordre s’écrit ΠP∗H(P∗) = 0, où H(P ) = ∇E(P ) est l’Hamiltonien du
système et ΠP la projection orthogonale sur TPMNel .

• La condition du second ordre est obtenue par linéarisation et s’écrit

∀ X ∈ TP∗MNel , ⟨X, (Ω∗ + K∗)X⟩F ⩾ η∥X∥
2
F,

où K∗ = ΠP∗∇2E(P∗)ΠP∗ est l’Hessienne de l’énergie projetée sur TP∗MNel et

∀ X ∈ TP∗MNel , Ω∗X = −[P∗, [H(P∗), X]]

représente l’influence de la courbure de MNel . Cet opérateur est étudié de façon plus approfondie
dans le Chapitre 2 et cette condition traduit la non dégénérescence du minimiseur P∗. En effet,
pour un problème d’optimisation sans contraintes et non dégénéré, la condition du second ordre
se lit dans le caractère défini positif de l’Hessienne de la fonction objectif. Cette condition est ici
modifiée par les contraintes.

À l’aide de ces deux conditions, nous étudions la convergence des plus simples représentants de deux
classes distinctes d’algorithmes : les algorithmes de minimisation directe (représentés par une simple
descente de gradient projetée) et les algorithmes de champ auto-cohérent (représentés par un algorithme
SCF – “Self-consistent field” – amorti), où des problèmes aux valeurs propres sont successivement résolus
jusqu’à convergence. La première classe d’algorithmes est basée sur une minimisation directe de l’énergie
sur la variété MNel : il s’agit d’une descente de gradient contrainte à rester sur la variété à l’aide d’un

2http://smai.emath.fr/cemracs/cemracs21/

http://smai.emath.fr/cemracs/cemracs21/
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opérateur de rétraction R. La seconde classe d’algorithmes est basée sur l’interprétation des équations
d’Euler–Lagrange du problème de minimisation, qui s’écrivent sous la forme suivante :

H(P∗)ϕn = εnϕn, ε1 ⩽ · · · ⩽ εNel

ϕ∗
nϕm = δnm,

P∗ =
Nel∑
n=1

ϕnϕ
∗
n ∈MNel ,

où, à nouveau, H(P ) = ∇E(P ). Il s’agit d’un problème aux valeurs propres non linéaire de par la nature
auto-cohérente de ces équations : pour construire l’opérateur H(P∗) que l’on souhaite diagonaliser, il
faut déjà connaître ses vecteurs propres afin de pouvoir construire la matrice densité P∗. L’algorithme
SCF amorti est alors obtenu en introduisant un paramètre de damping dans un algorithme de point fixe
standard. Ces deux classes d’algorithmes sont brièvement présentées ci-dessous.

Algorithme – Descente de gradient projetée
Data: P 0 ∈MNel

while convergence non atteinte do
P k+1 = R

(
P k − βΠPk

(
∇E(P k)

))
;

end

Algorithme – SCF amorti
Data: P 0 ∈MNel

while convergence non atteinte do

résoudre
{
H(P k)ϕkn = εknϕ

k
n, ε

k
1 ⩽ · · · ⩽ εkNel

< εkNel+1
(ϕkn)∗ϕkm = δnm,

;

P̃ k =
Nel∑
n=1

ϕkn
(
ϕkn
)∗;

P k+1 = R
(
P k + βΠPk

(
P̃ k − P k

))
;

end

MNel

TPkMNel

−∇E(P k)

ΠPk(−∇E(P k))

•P k+1

R

P k
•

MNel

TPkMNel

P̃ k•

P k • P k+1
•R

Figure 2 – Représentation graphique de la descente de gradient projetée (gauche) et du SCF amorti (droite).

Nous montrons en particulier dans ce chapitre deux théorèmes décrivant la convergence de ces deux
méthodes :

Théorème 1. Sous les bonnes hypothèses, si P 0 ∈ MNel est suffisamment proche de P∗, la descente de
gradient projetée converge linéairement vers P∗ pour β > 0 assez petit, avec comme taux de convergence
asymptotique r(1− βJgrad) où Jgrad = Ω∗ + K∗.

Théorème 2. Sous les bonnes hypothèses, pour β > 0 assez petit et P 0 ∈ MNel suffisamment proche
de P∗, le SCF amorti converge vers P∗, avec comme taux de convergence asymptotique r(1− βJSCF) où
JSCF = 1 + Ω−1

∗ K∗.
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La convergence de ces algorithmes dépend donc respectivement du rayon spectral r de l’opérateur
1 − βJ où J = Jgrad = Ω∗ + K∗ pour la descente de gradient et J = JSCF = 1 + Ω−1

∗ K∗ pour le SCF
amorti. On notera en particulier que l’inversibilité de Ω∗ nécessite l’existence d’un gap strictement positif
entre la plus haute valeur propre occupée et la plus basse valeur propre non occupée de l’Hamiltonien
auto-cohérent H(P∗) (cette hypothèse transparait d’ailleurs dans la description de l’algorithme afin de
pouvoir définir de façon unique P̃ k étant donnée P k). On remarque alors immédiatement que plus ce
gap est petit, plus difficile sera la convergence des algorithmes de type SCF : il s’agit là d’un problème
classique rencontré par les chimistes, que nous sommes en mesure de quantifier mathématiquement. Ces
résultats permettent alors une meilleure compréhension du problème de minimisation initial et créent des
liens entre deux méthodes a priori complètement différentes. En guise de conclusion, cette comparaison
systématique aide à discuter de la pertinence d’une méthode ou l’autre en fonction de la situation.

Chapitre 3

Dans ce chapitre, nous nous intéressons à l’estimation de l’erreur de discrétisation pour l’approximation
numérique de problèmes de calcul de structures électroniques. Pour cela, nous utilisons une approche
basée sur la linéarisation des équations de Kohn–Sham discrètes effectuée dans le Chapitre 2. Pour sim-
plifier, cette approche peut être vue de la façon suivante : supposons que nous cherchions x ∈ Rn tel que
f(x) = 0, pour une fonction non linéaire f : Rn → Rn (le résidu). Au voisinage d’une solution x∗, on
peut écrire f(x) ≈ f ′(x)(x − x∗) et alors, si f ′(x) est inversible, nous obtenons la relation erreur-résidu
suivante :

x− x∗ ≈ f ′(x)−1f(x).
Lae lecteur·rice attentif·ve notera que c’est cette relation même qui est utilisée dans l’algorithme de New-
ton. Supposons maintenant que l’on veuille calculer une quantité d’intérêt (QoI) A(x∗), où A : Rn → R
est une fonction de classe C1 (par exemple l’énergie, une composante des forces interatomiques, de la
densité. . . ), nous obtenons alors l’approximation suivante, où le membre de droite est calculable sans
connaissance de la solution exacte x∗,

A(x)−A(x∗) ≈ ∇A(x) ·
(
f ′(x)−1f(x)

)
.

Cela donne alors une première estimation (naïve) de l’erreur :

|A(x)−A(x∗)| ⩽ |∇A(x)|
∥∥f ′(x)−1∥∥

op|f(x)|,

où |·| est une norme quelconque de Rn, et ∥·∥op la norme d’opérateur associée sur Rn×n (notons que
∇A(x) ∈ Rn et f ′(x) ∈ Rn×n). En étendant cette approche aux problèmes qui nous intéressent, nous
rencontrons plusieurs difficultés qui ont mené à plusieurs résultats, que nous résumons brièvement ici.

Premièrement, dans le cas du calcul de structures électroniques, la présence de contraintes et de
dégénérescences donne naissance à des problèmes dont la structure n’est pas facilement transcrite sous la
forme présentée ci-dessus. Pour remédier à ce premier obstacle, nous utilisons le cadre géométrique mis
en place dans le Chapitre 2 afin d’identifier le bon analogue de la Jacobienne f ′(x). En effet, nous avons
prouvé que l’opérateur Ω∗ + K∗ est la Jacobienne du résidu R : P 7→ ΠPH(P ), qui s’annule en P = P∗.
Notre approche est donc basée sur l’approximation

P − P∗ ≈ (Ω∗ + K∗)−1
R(P ),

où Ω∗ + K∗ joue le rôle de f ′ dans le cadre général, P∗ est une solution de référence (idéalement exacte,
mais en pratique obtenue avec une discrétisation très fine) et P est une solution approchée, obtenue
avec une discrétisation plus grossière. Il s’avère que cette approximation est très bonne, même pour
des discrétisations très grossières, mais elle n’est pas utilisable en pratique à cause du coût prohibitif de
l’inversion de Ω∗ + K∗ dans l’espace de référence.

Ensuite, le choix d’une norme appropriée n’est pas évident dans ce contexte. En général, pour des
problèmes impliquant des EDPs, il est naturel de se tourner vers des normes de Sobolev avec les bons
exposants afin de faire de la Jacobienne un opérateur borné entre les espaces fonctionnels associés. Dans ce
chapitre, nous explorons différents choix de normes et leur influence sur les estimées d’erreur. Cependant,
dans notre cas, les bornes naïves∣∣∇A(x) ·

(
f ′(x)−1f(x)

)∣∣ ⩽ |∇A(x)|
∥∥f ′(x)−1∥∥

op|f(x)|,
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où A représente les forces interatomiques, sont largement sous-optimales (de plus de cinq ordres de
magnitude), même avec des normes de Sobolev appropriées. Nous montrons alors que cela est dû, dans
le cas de la DFT en ondes planes, au fait que l’erreur de discrétisation est principalement supportée
par les hautes fréquences alors que ∇A est surtout supporté par les basses fréquences pour les forces
interatomiques.

Nous suivons alors naturellement une autre idée, qui consiste à remplacer l’erreur par le résidu, cor-
rectement préconditionné. Cela présente l’avantage d’être une quantité facilement accessible en pratique,
au prix de remplacer les bornes d’erreurs par des approximations du type de celles décrites plus haut.
Cela abouti à des estimations raisonnables de l’erreur sur les QoI qui nous intéressent, mais qui ne sont ni
des bornes supérieures systématiques, ni asymptotiquement valides. Ce second point est de nouveau dû
au fait que l’erreur et le résidu préconditionné diffèrent essentiellement sur les basses fréquences. Nous
proposons alors une approche basée sur un complément de Schur entre les hautes et basses fréquences
afin d’approcher l’inverse de Ω∗ + K∗. Cela améliore de façon systématique l’estimation de l’erreur
de discrétisation sur les basses fréquences, à partir de laquelle nous pouvons estimer l’erreur sur A à
un coût raisonnable : la Jacobienne Ω∗ + K∗ ne doit plus être inversée que sur les basses fréquences
(au lieu de l’espace tout entier), les hautes fréquences étant approchées à l’aide d’un préconditionneur
cinétique (diagonal en ondes planes). Les deux parties sont enfin couplées à l’aide d’un complément de
Schur, ce qui donne une estimation de l’erreur pour un coût limité : l’inversion de la Jacobienne sur les
basses fréquences a un coût du même ordre de grandeur que les algorithmes SCF utilisés pour obtenir
l’approximation P dans l’espace grossier.

Chapitre 4

Dans les Chapitres 2 et 3, nous avons étudié des algorithmes de calcul d’états fondamentaux ainsi que
les erreurs de discrétisation associées. Nous avons également pu nous intéresser aux forces interatomiques
qui, grâce au théorème de Hellmann–Feynman, ne requièrent que la connaissance de l’état fondamental
pour être calculées. En revanche, de nombreuses quantités d’intérêt, telles que la polarisabilité, la sus-
ceptibilité magnétique, les spectres de phonons. . . , requièrent le calcul de dérivées de l’état fondamental
par rapport à certains paramètres. Plus récemment, l’utilisation du machine-learning en DFT nécessite
également des dérivées par rapport aux paramètres des modèles. En pratique, ces dérivées sont calculées
grâce à la théorie des perturbations, un cadre aussi connu sous le nom de DFPT (“density functional
perturbation theory”) en chimie.

Dans ce chapitre, nous introduisons donc dans un premier temps le cadre nécessaire à la DFPT, en
particulier l’introduction d’une température numérique lorsque l’on souhaite travailler avec des systèmes
métalliques. Nous rappelons ensuite les différents résultats existants, obtenus en général à l’aide de la
théorie des perturbations au premier ordre, et nous présentons l’équation de Sternheimer, pierre angulaire
du calcul de réponses en DFT. Nous montrons que différents choix de jauges sont possibles, sans altérer
le résultat final, mais dont le choix peut être déterminant pour la stabilité et la robustesse des méthodes
numériques sous-jacentes. Après une revue des techniques utilisées en pratique, nous proposons un cadre
commun dans lequel celles-ci rentrent et nous analysons leur stabilité numérique. Enfin, nous proposons
une nouvelle approche dans la résolution de l’équation de Sternheimer qui, à l’aide d’un complément de
Schur, tire profit des états d’énergies non occupés, mais calculés au préalable, afin d’améliorer la robustesse
des solveurs linéaires utilisés. En particulier, nous montrons comment nous parvenons à gagner plus de
40% de temps de calcul sur des systèmes connus pour être numériquement difficiles.

Chapitre 5

Le Chapitre 5 est dédié à l’étude de la régularité des solutions d’équations de type Schrödinger,
linéaires et non linéaires, avec des potentiels analytiques (i.e. dont l’extension analytique est une fonction
entière). L’étude menée dans ce chapitre est motivée par l’approximation dites des pseudopotentiels,
introduite dans le Chapitre 1.

Nous étudions donc dans ce chapitre la régularité de solutions d’équations de la forme −∆u+ V u+
g(u) = f ou −∆u + V u + g(u) = λu où les données V , g et f sont analytiques et les conséquences sur
l’analyse a priori de l’erreur de discrétisation en ondes planes. Le cas du problème aux valeurs propres
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avec des potentiels ayant une régularité de Sobolev donnée a déjà été étudié dans [31]. En particulier, il
a été prouvé, dans le cas tridimensionnel et pour une certaine classe de non linéarités, que si le potentiel
V appartient à un espace de Sobolev périodique d’exposant s > 3/2, alors les solutions u sont dans
l’espace de Sobolev périodique d’exposant s + 2. Des taux de convergence polynomiaux (et optimaux)
sont également dérivés dans tous les espaces de Sobolev de coefficients −s < r < s + 2. Dans le cas
de potentiels analytiques, on s’attend à une convergence exponentielle de l’erreur de discrétisation et les
taux polynomiaux mentionnés précédemment, même s’ils sont valides, ne semblent pas optimaux. Le but
de ce chapitre est donc de quantifier cette convergence.

Pour des raisons pédagogiques, nous travaillons avec des équations de Schrödinger unidimensionnelles,
linéaires ou non linéaires, car (i) visualiser des extensions analytiques dans le plan complexe de fonctions
initialement définies sur Rd est plus facile quand d = 1, et (ii) détecter des taux de convergence expo-
nentiels est plus facile avec des simulations numériques unidimensionnelles. Nous introduisons dans ce
chapitre les espaces fonctionnels (HA)A>0 composés des fonctions 2π-periodiques sur l’axe réel admettant
une extension analytique sur la bande R + i(−A,A), avec une norme ∥·∥A, et nous prouvons, dans le cas
linéaire, le théorème suivant.

Théorème 3. Soient B > 0 et V ∈ HB à valeurs réelles et telle que V ⩾ 1 sur R. Alors, pour tout
0 < A < B et f ∈ HA, l’unique solution u de −∆u+V u = f est dans HA. De plus, nous avons l’inégalité
suivante

∃ C > 0 indépendante de f telle que ∥u∥A ⩽ C∥f∥A.
Par conséquent, si V et f sont entières, alors u l’est aussi.

Un résultat similaire peut être prouvé pour le problème aux valeurs propres{
−∆u+ V u = λu,

∥u∥ = 1,

dans le sens où, si V ∈ HB , alors u ∈ HA pour tout 0 < A < B. Une conséquence directe de ces
résultats est que l’erreur de discrétisation en ondes planes (i.e. l’erreur entre la solution exacte et une
solution variationnelle ayant des modes de Fourier à support fini) converge plus vite que n’importe quelle
exponentielle si les données du problème sont entières.

Cependant, dans le cas non linéaire, de tels résultats ne sont en général plus vrais : nous mettons en
avant dans ce chapitre un contre-exemple basé sur une équation de Gross–Pitaevskii unidimensionnelle
et pour laquelle nous montrons, en utilisant une combinaison d’outils théoriques et numériques, que les
solutions de

−ε∆uε + uε + u3
ε = µ sin, ε ⩾ 0,

ne sont pas entières, même si le terme source et la non linéarité le sont.

Chapitre 6

Ce dernier chapitre est un peu différent des autres, car il ne traite pas directement de DFT en ondes
planes. Il traite néanmoins toujours de chimie quantique. En effet, nous nous intéressons pour finir
à la construction de bases atomiques optimales. Après un court passage en revue des différentes (et
nombreuses) bases existantes, nous proposons une première méthode de construction de bases optimales
pour des critères d’optimisation généraux. L’objectif sous-jacent à ce chapitre est la construction de
bases atomiques, optimales pour un critère, qui peuvent être systématiquement raffinées afin d’améliorer
la précision des résultats. Nous traitons et analysons cette approche pour deux critères en particulier, l’un
basé sur la matrice densité et l’autre sur l’énergie du fondamental, pour un modèle jouet qui correspond
à une version simplifiée et unidimensionnelle de la dissociation d’une molécule diatomique.
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2 Chapter 1 – Introduction

1.1 Historical overview

Traditionally, applied mathematics has played a fundamental role in computational engineering sci-
ences, such as computational fluid dynamics, mechanics or electromagnetism. The underlying numerical
methods have been thoroughly analysed and stand on rigorous theoretical foundations. For instance, the
Finite Elements Method (FEM) was invented in the middle of the 20th century by engineers but then
substantially improved jointly with applied mathematicians and it would not be at the present stage
without the intervention of mathematics. However, because of historical reasons, it has rarely been the
case in computational chemistry, solid-state physics or materials science.

This is somewhat surprising since the mathematical problems derived from the Schrödinger equation,
which is the cornerstone for many models in these fields, are often eigenvalue problems that need to be
discretized for numerical solutions to be computed. Although the discretization of (possibly nonlinear)
eigenvalue problems is a well-established topic in applied mathematics, little interaction with computa-
tional chemistry, solid-state physics and materials science exists in the literature. The following table
shows the number of hits on the databases Google Scholar and MathSciNet, for the keywords “Navier–
Stokes” and “density functional theory”:

Keyword: Google Scholar MathSciNet
“Navier–Stokes” 955,000 11,744
“density functional theory” 1,900,000 227

Table 1.1 – “Navier–Stokes” vs “density functional theory”, as of January 1st, 2022.

If we assume this data to be a measure of relevance of these two fields of research, it appears that there
is a disconnect in trends between the scientific community and its subset of mathematicians. Besides the
impressive numbers in Google Scholar, the relevance of computational chemistry and electronic structure
is further substantiated by the fact that Kohn and Pople were awarded the Nobel Prize in chemistry in
1998 for their contribution to the density functional theory (DFT) and the seminal work on multiscale
methods (QM/MM force field models) of Karplus, Levitt and Warshel has been recognized with the same
award in 2013. Nowadays, computational chemistry is fully regarded as a third pillar in chemistry, besides
experimental and theoretical chemistry. As an indicator of the importance of DFT in modern science, 12
among the most cited 100 articles relate to it. In particular, 2 of them are in the top 10 and consist in
“technical recipes on which the most popular DFT methods and software packages are built” (among the
papers in Thomson Reuter’s Web of Science, from 1900 to 2014 [195]). As has been the case in the past
for the FEM, the field of electronic structure calculation benefited in the last twenty years from the work
of mathematicians all over the world, who analysed the existing methods and developed mathematical
tools to improve the computational aspects of electronic structure and quantum chemistry. This thesis
aims to contribute to these improvements.

1.2 General organization and context

This introductory chapter is organized as follows. In Section 1.3, we present the general mathematical
framework required to compute the ground-state of general molecular systems, with a particular focus on
Kohn–Sham DFT. It is intentionally brief for the sake of clarity and the interested reader is advised to
consult the provided references for more details on the different topics, in particular the books [29, 42, 133].
In Section 1.4, we focus on the framework of plane-wave DFT, which uses a Fourier discretization of the
objects we study. We also introduce in this section useful approximations for plane-wave DFT: the
pseudopotential approximation, which motivated the results from Chapter 5, and the sampling of the
Brillouin zone for periodic Schrödinger-like operators. These concepts are useful for understanding the
systems we study in this thesis: most of the simulations deal with crystalline systems, that have an
intrinsic periodic structure, well suited for plane-wave discretization. These simulations are realized with
the DFTK Julia package, which we present in Section 1.4.4.
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Source: Wikipedia Commons

Figure 1.1 – Examples of materials that are of interest in this thesis and have a periodic structure: (top) a piece
of sodium chloride crystal, commonly known as salt, and its crystalline structure – sodium atoms are in purple
and chlorine atoms are in green –, (bottom) a piece of purified silicon crystal, a simple system to test numerical
methods, and its diamond cubic crystal structure.

In Section 1.5, we describe the resolution of the equations arising from the previous sections, with
a particular focus on two classes of algorithms: direct minimization algorithms and self-consistent field
algorithms. We then present the results from Chapter 2, where these two classes are analysed and
compared. In Section 1.6, we review the existing literature on error estimates for numerical simulations
and electronic structure theory. Then, we discuss the results from Chapter 3, where practical error
estimates are derived for plane-wave Kohn–Sham DFT. Finally, we consider in Section 1.7 the framework
of density functional perturbation theory, which aims at computing the derivatives of the ground-state
density with respect to external perturbations, and present the contributions from Chapter 4.

Finally, we should emphasize that Chapter 6 is the result of a project conducted at the CEMRACS
2021 summer school1. While it is related to quantum chemistry, it deals with basis optimization, which
is out of the scope of plane-wave DFT. We therefore chose not to mention it in this introduction as it is
more or less self-contained.

1.3 Mathematical framework of electronic structure theory

1.3.1 The quantum many-body problem

All the models studied in this manuscript are based on the solution of a standard problem in quantum
chemistry: we seek to determine the ground-state, i.e. the one with the lowest energy, of a given molecular
system. The models we are going to present are suitable for describing isolated systems, such as molecules.
We then present in Section 1.4 how to adapt them to periodic systems, such as crystals.

1http://smai.emath.fr/cemracs/cemracs21/

http://smai.emath.fr/cemracs/cemracs21/
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The models that we are going to use are ab initio, which means that they are derived directly from
the Schrödinger equation and only contain fundamental constants of physics. We work in the scope of the
Born–Oppenheimer approximation, of which a precise description is given in [42, Appendix A], so that
the nuclei are considered as point-like classical particles. We also ignore for simplicity the spin degrees
of freedom. Finally, as it is usual in quantum chemistry, we use atomic units, i.e.

me = 1, e = 1, ℏ = 1, 1
4πε0

= 1, (1.3.1)

where me is the mass of an electron, e the elementary charge, ℏ the reduced Planck constant and ε0 the
dielectric permittivity of the vacuum. In this framework, a molecular system is composed of:

• Nnuc nuclei, considered as point charges, with position rk ∈ R3 and charge zk, for 1 ⩽ k ⩽ Nnuc.
The positions of these particles are considered here as fixed.

• Nel electrons described as quantum particles with wave-function Ψ that belongs to the Hilbert space

Nel⊗
n=1

L2(R3,C) ≃ L2(R3Nel ,C). (1.3.2)

Physically, |Ψ(r1, . . . , rNel)|
2 represent the probability density of finding the electrons in a given

configuration (r1, . . . , rNel): it therefore integrates to 1 over R3Nel . In addition, due to the fermionic
nature of electrons, the Pauli principle states that the electronic wave-function is an antisymmetric
function of the positions:

Ψ
(
rp(1), . . . , rp(Nel)

)
= σ(p)Ψ(r1, . . . , rNel) (1.3.3)

for any permutation p of the indices, σ(p) being the parity of p. Note that the antisymmetry
relation implies in particular that Ψ(. . . , rn, . . . , rn, . . .) = 0, i.e. two electrons cannot occupy the
same quantum state2.

The nuclei positions being fixed, finding the ground-state energy of the system reduces to the resolution
of the minimization problem

inf
{
⟨Ψ, HeΨ⟩L2(R3Nel ,C), Ψ ∈ He, ∥Ψ∥L2 = 1

}
, (1.3.4)

where

He =
Nel∑
n=1
−1

2∆rn
−

Nel∑
n=1

Nnuc∑
k=1

zk
|rn − rk|

+
∑

1⩽n<m⩽Nel

1
|rn − rm|

, (1.3.5)

and

He =
{

Ψ ∈
Nel⊗
n=1

L2(R3,C),
ˆ
R3Nel

|∇Ψ|2 < +∞
}

(1.3.6)

is the form domain of the Hamiltonian He, which is composed of three different terms:

• − 1
2 ∆rn represents the kinetic energy of the electron n and the condition

ˆ
R3Nel

|∇Ψ|2 < +∞ ensures
finiteness of the kinetic energy;

• the second sum represents the Coulomb interaction between electrons of charge −1 and nuclei of
charge zk;

• the last term corresponds to the Coulomb interaction between electrons.

The total energy of the system is then recovered by adding the (constant) energy of the interactions
between nuclei.

2On the contrary, a bosonic quantum state can be occupied by several bosons at the same time.
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The minimization problem (1.3.4), together with the time dependent Schrödinger equation

i∂Ψ
∂t

= HeΨ (1.3.7)

and its perturbations by an external field can be used to model any molecular system and to derive
its subsequent macroscopic properties. However, the wave-function Ψ belongs to the space L2(R3Nel):
trying to solve directly such equations would yield numerical methods with degrees of freedom that
scale exponentially with the number of electrons. This difficulty has a deep physical origin: each electron
interacts with every other electrons through the Coulomb interaction and it is not possible to describe the
state of one of them without knowing the states of all the others. To give a better idea of this entanglement
issue, let us imagine that we want to compute the wave-function of a simple system, e.g. the caffeine
molecule C8H10N4O2. It is composed of 24 nuclei and 102 electrons, yielding a partial differential equation
in dimension 3× 102 for the electrons only. Trying to solve it for instance with the FEM would require
at least 2306 > 1092 degrees of freedom, which is not even a conceivable quantity (the number of atoms
in the universe is estimated to 1080). There is thus a real need to develop and study approximations of
the “true” Schrödinger equation, as recognized already by Dirac [65], and we now present some of them.

The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations much
too complicated to be soluble. It therefore becomes desirable that approximate
practical methods of applying quantum mechanics should be developed, which
can lead to an explanation of the main features of complex atomic systems
without too much computation.

Dirac (1929)

Remark 1.1 (Spin). In chemistry, it is fundamental to take spin into account, which is an intrinsic
component of particles (just as mass or electric charge) and has important theoretical and practical
implications. Mathematically, this amounts to consider antisymmetric elements of the Hilbert space

Nel⊗
n=1

L2(R3 × {|↑⟩, |↓⟩},C) (1.3.8)

where |↑⟩ and |↓⟩ respectively stand for spin up and spin down. Most of the numerical simulations
presented in this manuscript are performed with spinless or closed-shell (i.e. every quantum state is
doubly occupied) molecular systems, so that taking into account spins is not an issue: they can be easily
incorporated in practice and remarks like this one will be made when details about the spins are needed.

1.3.2 Approximation models

There are three main families of approximation methods in electronic structure calculation:

• Wave-functions methods are based on approximating the wave-function Ψ by wave-functions of
specific forms, most of the time led by physical intuition from simpler systems. Among these
methods, we can cite the Hartree–Fock method, which is a variational approximation that we detail
below, or more sophisticated ones like the Configuration Interaction or Coupled Cluster methods
(see [95] for more details).

• Quantum Monte–Carlo methods use Monte–Carlo probabilistic algorithms to overcome the curse
of dimensionality mentioned above by using the links between partial differential equations and
stochastic differential equations via the Feynman–Kac formula. This type of method will not be
further explored and we refer the interested reader to [88].

• Density functional theory takes as main object of interest the electronic density

ρ(r) = Nel

ˆ
R3(Nel−1)

|Ψ(r, r2, . . . , rNel)|
2dr2 . . . drNel , (1.3.9)
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which is a nonnegative function of r ∈ R3 only (and not R3Nel), integrating to Nel. It then
reformulates the minimization problem (1.3.4) into a problem on ρ only, going from 3Nel degrees
of freedom to 3, independently of the number of electrons. This gain is however compensated by a
nonlinearization of the problem, with unknown functionals that require approximations. The most
famous DFT method is the Kohn–Sham DFT [116], detailed below, as it offers a good compromise
between accuracy and computational efficiency.

Hartree–Fock method

The Hartree–Fock (HF) method consists in a variational approximation of the minimization prob-
lem (1.3.4) in which we restrict the minimization space {Ψ ∈ He, ∥Ψ∥L2 = 1} to the space of Slater
determinants, i.e. functions of the form

Ψ(r1, . . . , rNel) = 1√
Nel!

∣∣∣∣∣∣∣
ϕ1(r1) · · · ϕ1(rNel)

...
. . .

...
ϕNel(r1) · · · ϕNel(rNel)

∣∣∣∣∣∣∣, (1.3.10)

which we write in short Ψ = Slater(Φ) for Φ = (ϕn)1⩽n⩽Nel , where the (ϕn)1⩽n⩽Nel are orthonormal in
L2(R3,C) and are called molecular orbitals. Such a function belongs to He if and only if each ϕn belongs
to the Sobolev space H1(R3,C).

The origin of the Hartree–Fock model comes from the fact that it is exact for noninteracting systems
of electrons. Indeed, let us consider the Hamiltonian

H̃e =
Nel∑
n=1
−1

2∆rn
+ V (rn) (1.3.11)

where V represents the Coulomb interaction with the nuclei and we have neglected the electron-electron
interaction. Then the ground-state of H̃e is Ψ = Slater(Φ), with energy ⟨Ψ, H̃eΨ⟩ =

∑Nel
n=1 εn, where

Φ = (ϕn)1⩽n⩽Nel and (εn, ϕn)n∈N are eigenstates of H̃e. This operator has infinitely many eigenstates,
with negative nondecreasing eigenvalues (ε1 ⩽ ε2 ⩽ ε3 ⩽ · · · ) accumulating in zero, and positive contin-
uous spectrum. In particular, the Nel lowest energy states are successively occupied and a lower energy
cannot be reached because of the fermionic nature of electrons, which prevents them from filling all
together the lowest energy level. This is known in chemistry as the Aufbau principle, see page 10.

Remark 1.2 (Spectral theory). The above example shows the importance of studying the spectral
properties of Schrödinger operators, in particular the one-body Hamiltonians of the form −∆ + V . Such
properties will not be presented here in a systematic manner, but they will be widely used and we refer
to [128] for a recent textbook (in French) on the topic. For English readers, we refer to [61].

To derive the Hartree–Fock model, we simply plug the ansatz (1.3.10) in (1.3.4). To this end, we
introduce two sets:

• the set of molecular orbitals

WNel =
{

Φ = (ϕn)1⩽n⩽Nel , ϕn ∈ H1(R3,C),
ˆ
R3
ϕ∗
nϕm = δnm, 1 ⩽ n,m ⩽ Nel

}
; (1.3.12)

• the set of Slater determinants

SNel = {Ψ ∈ He, ∃ Φ = (ϕn)1⩽n⩽Nel ∈ WNel , Ψ = Slater(Φ)}. (1.3.13)

With this formalism, the Hartree–Fock approximation of problem (1.3.4) can be rewritten as

inf
{
⟨Ψ, HeΨ⟩L2 , Ψ ∈ SNel

}
. (1.3.14)

Let Φ = (ϕn)1⩽n⩽Nel
∈ WNel and Ψ ∈ SNel be its Slater determinant. After some standard computations

[42, Section 1.3], one gets
⟨Ψ, HeΨ⟩L2 = EHF(Φ), (1.3.15)
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where

EHF(Φ) =
Nel∑
n=1

ˆ
R3

1
2 |∇ϕn|

2 +
ˆ
R3
ρΦV + 1

2

ˆ
R3×R3

ρΦ(r)ρΦ(r′)
|r − r′|

drdr′

− 1
2

ˆ
R3×R3

|γΦ(r, r′)|2

|r − r′|
drdr′,

(1.3.16)

with ρΦ =
Nel∑
n=1
|ϕn|2 the electronic density and γΦ(r, r′) =

Nel∑
n=1

ϕn(r)ϕ∗
n(r′) the density matrix of order 1.

We have, in order:

•

Nel∑
n=1

ˆ
R3

1
2 |∇ϕn|

2: the kinetic energy of the orbitals;

•

ˆ
R3
ρΦV : the interaction of the electrons with the nuclei, which generate the Coulomb potential

V (r) = −
Nnuc∑
k=1

zk
|r − rk|

; (1.3.17)

•
1
2

ˆ
R3×R3

ρΦ(r)ρΦ(r′)
|r − r′|

drdr′: the Hartree term, that can be seen as the classical Coulomb energy of

the density ρΦ;

•
1
2

ˆ
R3×R3

|γΦ(r, r′)|2

|r − r′|
drdr′: the exchange term, which can be understood for Nel = 1 as it exactly

compensates the interaction of an electron with itself in the Hartree term.

Therefore, we can rewrite the Hartree–Fock problem in its simplest form:

EHF
∗ = inf

{
EHF(Φ), Φ ∈ WNel

}
. (1.3.18)

Note that if E∗ is the solution to problem (1.3.4), then EHF
∗ is an approximation from above of E∗. The

difference between these two energies is called the correlation energy and more sophisticated ab initio
models compute an approximation of this energy to improve the result. Such methods are called post-
Hartree–Fock and we can cite among the most used ones: the Configuration Interaction method, the
Coupled Cluster or the multi-configuration methods. The interested reader is referred to [42, Section
6.2.7] or [95, Chapter 5] for more details. Mathematically, a proof of the existence of solutions to the
Hartree–Fock minimization problem can be found in [132, 135].

Remark 1.3 (Spin). As mentioned in Remark 1.1, we omitted here the spin degrees of freedom, describing
actually what is known as the spinless Hartree–Fock model (there is no spin associated to the orbitals).
The restricted Hartree–Fock model, in which every orbital is doubly occupied, has a form similar to
(1.3.12), (1.3.16), (1.3.18) except that: Nel = 2Np where Np represents the number of electron pairs,
ρΦ = 2

∑Np
n=1|ϕn|

2 and the prefactor in front of the kinetic term is 1 (instead of 1/2) while the one
in front of the exchange term is 1/4 (instead of 1/2). Similar classes of methods exists and allow for
more freedom on the spins, such as unrestricted Hartree–Fock models, that are better suited to describe
open-shell systems.

Kohn–Sham density functional theory

The first theoretical works on DFT date back to Hohenberg and Kohn [104]. We present here the
approach from Levy [126, 127] and Lieb [131], which is based on the following, simple but powerful,
statement: the electronic ground-state energy and density of a molecular system with Nel electrons can
be obtained by solving the minimization problem

inf
{
F (ρ) +

ˆ
R3
ρV, ρ ⩾ 0, √ρ ∈ H1(R3,R),

ˆ
R3
ρ = Nel

}
, (1.3.19)
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where V is the potential generated by the nuclei and F is a universal functional of the electronic density
ρ, in the sense that it does not depend on V . For every such ρ, F (ρ) can be defined as

F (ρ) = inf
{〈

Ψ, H0
e Ψ
〉

L2 , Ψ ∈ He, ∥Ψ∥L2 = 1,

ρ = Nel

ˆ
R3(Nel−1)

|Ψ(·, r2, . . . , rNel)|
2dr2 . . . drNel

}
,

(1.3.20)

where H0
e is the Hamiltonian He defined in (1.3.6) with the potential V generated by the nuclei set to 0.

F is known as the Levy–Lieb functional.

For the moment, the computation of the ground-state energy is still exact: no approximations have
been made. Nonetheless, there is no known explicit formulation for the density functional F , which
makes it untractable in practice. The very essence of DFT therefore lies in the approximation of the
universal functional F . The first approximation was actually proposed in the 30s by Thomas and Fermi,
long before the theoretical ground laid by Hohenberg and Kohn. It is inspired from the behaviour of
homogeneous electron gases and it suggests for F the following form:

FTF(ρ) = CTF

ˆ
R3
ρ5/3︸ ︷︷ ︸

kinetic energy

+1
2 D(ρ, ρ)︸ ︷︷ ︸

Coulomb interaction

. (1.3.21)

Here, CTF is a universal nonempirical constant and D(ρ, ρ′) denotes the classical Coulomb interaction
energy

D(ρ, ρ′) =
ˆ
R3×R3

ρ(r)ρ′(r′)
|r − r′|

drdr′. (1.3.22)

From this first simple model, more sophisticated models were proposed, among which we can mention:

• the Thomas–Fermi–von Weizsäcker (TFW) model

FTFW(ρ) = CW

ˆ
R3
|∇√ρ|2 + CTF

ˆ
R3
ρ5/3 + 1

2D(ρ, ρ); (1.3.23)

• the Thomas–Fermi–Dirac–von Weizsäcker model

FTFDW(ρ) = CW

ˆ
R3
|∇√ρ|2 + CTF

ˆ
R3
ρ5/3 − CD

ˆ
R3
ρ4/3 + 1

2D(ρ, ρ). (1.3.24)

Thomas–Fermi (TF) type models are not widely used nowadays as more sophisticated models have been
introduced since then. However, they are still interesting from a mathematical point of view because they
have a simpler structure than Hartree–Fock or Kohn–Sham models and present interesting mathematical
properties (e.g. they only depend on the density ρ, the functional F is a convex function of the density
ρ for the TF and TFW models). See for instance [17, 48, 130, 135] for mathematical insights on such
models, [31, 210] for their numerical analysis, and references therein.

Kohn–Sham (KS) DFT explicitly includes in the density functional the minimal kinetic energy of a
cloud of noninteracting electrons and the Hartree term of Coulomb interaction of a cloud of electrons.
What is left is called the exchange-correlation energy. Thus, it divides the functional F into three different
parts:

• the kinetic energy term T (ρ) = inf
{
Nel∑
n=1

ˆ
R3

1
2 |∇ϕn|

2
, Φ = (ϕn)1⩽n⩽Nel ∈ WNel , ρΦ = ρ

}
;

• the Hartree term 1
2D(ρ, ρ);

• the exchange-correlation term Exc(ρ).
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The functional F then reads
F (ρ) = T (ρ) + 1

2D(ρ, ρ) + Exc(ρ) (1.3.25)

where the unknown contributions to the universal functional F are all gathered in the exchange-correlation
energy Exc, which usually accounts for 10% of the total energy. In this setting, we can write the KS-DFT
model as a minimization problem with the following form:

EKS
∗ = inf

{
EKS(Φ), Φ ∈ WNel

}
, (1.3.26)

where

EKS(Φ) =
Nel∑
n=1

ˆ
R3

1
2 |∇ϕn|

2 +
ˆ
R3
ρΦV + 1

2

ˆ
R3×R3

ρΦ(r)ρΦ(r′)
|r − r′|

drdr′ + Exc(ρΦ), (1.3.27)

with ρΦ(r) =
Nel∑
n=1
|ϕn(r)|2 the density associated to the molecular orbitals Φ. The quality of Kohn–Sham

models lies in the approximation of the exchange-correlation energy Exc. In the Hartree–Fock model
(1.3.16), the correlation is absent from Exc(ρ) where only the exchange term appears to balance the
interaction of electrons with themselves. In Kohn–Sham DFT, both are mixed to take into account the
correlation energy and several ways to approximate this energy exist.

The simplest model is the reduced Hartree–Fock (rHF) model, for which Exc = 0. This model is of
a form similar to the Hartree–Fock model, but without the correction to compensate the self-interaction
of electrons. This can lead to wrong predictions that do not agree with the experiment, see page 11. A
more accurate KS-DFT model is given by the local density approximation (LDA), introduced by Kohn
and Sham in 1965 [116] and still commonly used nowadays, in which the exchange-correlation functional
is of the form

Exc(ρ) =
ˆ
R3
exc(ρ(r))dr, (1.3.28)

where exc : R+ → R is the exchange-correlation energy of a homogeneous electron gas of density ρ. The
simplest LDA functional, the Xα functional [186], is extrapolated from homogeneous electron gases and
thus uses the same additional term than the TFDW model:

exc(ρ(r)) = −CDρ(r)4/3, CD = 3
4

(
3
π

)1/3
. (1.3.29)

There exist other ways to approximate the exchange-correlation functional, for instance the General-
ized Gradient Approximation (GGA) in which a correction using the gradient of the electronic density is
added:

Exc(ρ) =
ˆ
R3
exc(ρ(r),∇ρ(r))dr. (1.3.30)

There is a full spectrum of exchange-correlation functionals, going from the Hartree world to the chemical
accuracy. This spectrum is sometimes known as “Jacob’s ladder”, LDA and GGA being the first rungs of
the ladder. The interest reader is referred to [192] for a recent review of the topic, accessible to chemists
and physicists as well as mathematicians. Let us also mention that the mathematical properties of LDA
and GGA KS-DFT, in particular the existence of minimizers, are analysed for instance in [5].

Kohn–Sham and Hartree–Fock equations

We now have all the tools to introduce the Kohn–Sham equations, a cornerstone of DFT. Writing the
Euler–Lagrange equations of problem (1.3.26) yields that

∀ i = 1, . . . , Nel, HρΦϕn =
Nel∑
j=1

εnmϕm, (1.3.31)

where εnm is the Lagrange multiplier associated to the constraint ⟨ϕn, ϕm⟩L2 = δnm and

Hρ = −1
2∆ + V +

(
ρ ⋆

1
| · |

)
+ Vxc(ρ) (1.3.32)
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is the self-consistent Hamiltonian generated by the density ρ. The term ρ ⋆ 1
|·| is also known as the

Hartree potential VH(ρ), which solves the Poisson equation −∆VH(ρ) = 4πρ on R3. Vxc(ρ) = dExc
dρ (ρ)

is the exchange-correlation potential, defined as the gradient of the exchange-correlation energy. The
Kohn–Sham energy EKS(Φ) is actually invariant by unitary rotation: for any unitary matrix U of order
Nel, ρΦU = ρΦ and thus EKS(ΦU) = EKS(Φ), where (ΦU)n =

∑Nel
m=1 ϕmUmn. The matrix (εnm)1⩽n,m⩽Nel

being Hermitian, we can diagonalize it and rotate Φ in (1.3.31) to obtain an equivalent eigenvalue problem

∀ n,m = 1, . . . , Nel, HρΦϕn = εnϕn, ⟨ϕn, ϕm⟩L2 = δnm, ρΦ =
Nel∑
n=1
|ϕn|2, (1.3.33)

known as the Kohn–Sham equations. These equations are of uttermost importance: they translate, in a
condensed form, the self-consistent nature of DFT as the Hamiltonian HρΦ depends on its eigenvectors
ϕn through the density ρΦ. The self-consistency in DFT is for instance well described in [202]. It can
also be seen from a mean-field theory point of view: the electrons behave as noninteracting particles in
the mean-field potential they create all together.

The Hartree–Fock equations are derived similarly. Writing the Euler–Lagrange equations of problem
(1.3.18) yields, after diagonalization of the Lagrange multipliers matrix,

∀ n,m = 1, . . . , Nel, HΦϕn = εnϕn, ⟨ϕn, ϕm⟩L2 = δnm, (1.3.34)

where the Fock operator HΦ is defined as

(HΦ)ϕ(r) = −1
2∆ϕ(r) + V (r)ϕ(r) +

(
ρΦ ⋆

1
| · |

)
(r)ϕ(r)−

ˆ
R3

γΦ(r, r′)
|r − r′|

ϕ(r′)dr′,

with ρΦ and γΦ defined in (1.3.16).

Aufbau principle

The Aufbau principle (Aufbauprinzip, “building-up principle” in German) states that, in the ground-
state of a molecular system, electrons fill energy levels in order, from the bottom up. This principle
justifies in particular the empirical construction rules of elementary chemistry, such as the Klechkowski
or the Madelung rules. The Aufbau principle is always satisfied for the Hartree–Fock model (this is due
to the variational principle and the specific form of EHF, see [42, Chapter 5] or [32, Section 22]). As
a consequence, the eigenvalues εn in (1.3.34) correspond to the Nel lowest eigenvalues of HΦ. For the
Kohn–Sham model however, it is not known if it holds. It does in practice for most systems and it is
always satisfied for the extended Kohn–Sham model where the orbitals are allowed to have fractional
occupation numbers, see [32, Section 15] for more details. When, in addition, we have εNel+1 > εNel , we
say that the strong Aufbau principle is satisfied. The Aufbau principle is of high interest in practice as
it gives, for most systems, an accurate heuristic for choosing the occupied eigenvalues along iterations of
self-consistent field algorithms, see Section 1.5.

Density matrices formulations

The formulations we presented above rely on the molecular orbitals (ϕn)1⩽n⩽Nel or the electronic
density ρ, which have a clear physical meaning. However, one will notice that if a set Φ of orbitals
minimizes the Hartree–Fock or Kohn–Sham energy, any unitary rotation of these orbital yields the same
energy (the Slater determinant and the density remain unchanged) and there is thus no uniqueness of
the solutions. A way to overcome this issue is to use density matrices and density operators of order 1.
Indeed, given a set of orthonormal orbitals Φ = (ϕn)1⩽n⩽Nel , let γΦ be the orthogonal projector of rank
Nel defined by

γΦ =
Nel∑
n=1

ϕn⟨ϕn, ·⟩L2 . (1.3.35)



1.3. Mathematical framework of electronic structure theory 11

Using Dirac bra-ket notation, such a projector can be written as

γΦ =
Nel∑
n=1
|ϕn⟩⟨ϕn|. (1.3.36)

γΦ is the density operator of order 1 associated to Φ, with kernel the density matrix of order 1, still
denoted by γΦ,

γΦ(r, r′) =
Nel∑
n=1

ϕn(r)ϕ∗
n(r′). (1.3.37)

One can then show that, with E being either EHF or EKS,

E(Φ) = Ẽ(γΦ) = Tr(hγΦ) + Enl(γΦ), (1.3.38)

where

• Tr stands for the trace of an operator (a good introduction to trace-class operators can be found in
[172, Chapter 6]);

• h = −1
2∆ + V is the core Hamiltonian of the system;

• Enl depends on the chosen model:

• for the Hartree–Fock model, Enl(γ) = 1
2 Tr(A(γ)γ) where for every ϕ ∈ H1(R3,C) and r ∈ R3,

(A(γ)ϕ)(r) =
(
ργ ⋆

1
| · |

)
(r)ϕ(r)−

ˆ
R3

γ(r, r′)
|r − r′|

ϕ(r′)dr′, (1.3.39)

ργ(r) = γ(r, r) being the electronic density associated to γ;
• for the KS-DFT model, Enl(γ) depends on the choice of the exchange-correlation functional.

Thus, we can look at the Hartree–Fock problem (1.3.18) or the Kohn–Sham problem (1.3.26) in the
density matrices formulation by solving the minimization problem

inf
{
Ẽ(γ), γ ∈ PNel

}
, (1.3.40)

where

PNel = {γΦ, Φ ∈ WNel}
=
{
γ ∈ S1

(
L2(R3,C)

)
, Ran (γ) ⊂ H1(R3,C), γ2 = γ∗ = γ, Tr(γ) = Nel

}
,

(1.3.41)

with S1
(
L2(R3,C)

)
the set of trace-class operators on the space L2(R3,C).

Limits of the present models

In this section, we presented some of the most famous models used in electronic structure theory, all
of them being accurate in their own range of systems. We try to gather here the main limits of these
models. First, the TF-type models are limited to the description of homogeneous electron gases. They
are still of interest for their mathematical properties, in particular convexity for TF and TFW, and are
nowadays more used as starting points for more sophisticated models. Then comes the rHF model, which
is of high interest mathematically as it is a KS-DFT model with a convex functional F , which is not the
case in general. Contrary to TF-type models, the rHF model reproduces qualitatively some properties
such as the shell structure, but also leads to wrong qualitative results: for instance, in the rHF model,
the H− ion (two electrons, one proton) has a higher energy than that of the atom H and a free electron,
leading to the wrong conclusion that the ion is not stable. Third, LDA and Hartree–Fock give satisfying
quantitative results for static properties of many materials or molecules. From a mathematical point of
view, these methods are a step above the first two models in terms of complexity as we loose convexity
of the energy functional.
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To describe more complex properties or materials, there are several solutions. For most materials,
using advanced DFT functionals (sometimes with empirical data, therefore losing the ab initio aspect of
the model) is sufficient in general. Dynamical properties, such as excited states, are intrinsically out of
the scope of DFT, which focuses on the computation of ground-states. However, various models using
ground-state DFT calculations as a starting point exist and allow for the computation of excitation
energies and other dynamical properties (see for instance GW methods [7] or time-dependent DFT [27]).
Some effects, such as dispersion, can be hard to describe with ab initio DFT, but a mixing of DFT
and semi-empirical methods can help to obtain good numerical simulations. Let us also mention that
another intrinsic limit of Hartree–Fock and KS-DFT with approximate exchange-correlation functionals
is reached with strongly correlated materials. Such materials often have partially filled d or f orbitals,
making it difficult to approximate the interaction of electrons with one-body or local description: each
electron has a complex interaction with the others, which cannot be efficiently described with standard
mean-field approximations. One significant example is given by the so-called Mott insulators [62, 152],
which are expected to be good conductors according to standard DFT, but turn out to be insulators.

1.4 Plane-wave density functional theory

Now that the mathematical framework is set up and that we have introduced some of the most
representative models, we present in this section some of the numerical tools that will be used in this
manuscript to solve these equations on computers. As most of the numerical examples provided in the
following chapters are concerned with DFT for crystals, we will focus in this section on the periodic
KS-DFT equations, discretized with plane-wave bases, and detail the main approximations we use. Note
that this is easily transposable to other models, such as the Hartree–Fock model we presented, as well
as molecules, by using a large enough periodic cell to neglect the interaction of the molecule with its
periodic neighbours.

A perfect crystal is a physical structure described by a specific disposition of atoms in a unit cell that
is repeated periodically. Such a system is described by a Bravais lattice, defined for a (nonnecessarily
orthonormal) basis (a1,a2,a3) of R3 as R = Za1 + Za2 + Za3, with unit cell Ω = [0, 1)a1 + [0, 1)a2 +
[0, 1)a3 and reciprocal lattice R∗ = Zb1 +Zb2 +Zb3 with ai ·bj = 2πδij . We describe here the formalism
of the Kohn–Sham equations with periodic boundary conditions, for a system with Nel electron in the
unit cell Ω. This model is somewhat artificial, but simpler than the more physical model of periodic
Kohn–Sham equations for an infinite crystal with Nel electrons per unit cell (see Section 1.4.3).

We consider the following periodic functional space, endowed with its usual inner products,

L2
#(R3,C) =

{
f ∈ L2

loc(R3,C), f is R-periodic
}
, (1.4.1)

where a function f is said to be R-periodic if for any x ∈ R3 and R ∈ R, f(x + R) = f(x). An
orthonormal basis of L2

#(R3,C) is given by the family (eG)G∈R∗ where

∀ r ∈ R3, eG(r) = 1√
|Ω|

eiG·r. (1.4.2)

Then, we define the periodic Sobolev spaces of order s ∈ R,

Hs
#(R3,C) =

{
f ∈ L2

#(R3,C),
∑

G∈R∗

(
1 + |G|2

)s∣∣∣f̂G

∣∣∣2 < +∞
}
, (1.4.3)

where f̂G = ⟨eG, f⟩L2
#

is the Fourier coefficient of f with wave-vector G ∈ R∗. In this setting, the
Kohn–Sham equations (1.3.33), with periodic boundary conditions and assuming the Aufbau principle,
read: find ϕ1, . . . , ϕNel ∈ H1

#(R3,C) such that
HρΦϕn = εnϕn, ε1 ⩽ · · · ⩽ εNel ,

⟨ϕn, ϕm⟩L2
#

= δnm, n,m = 1, . . . , Nel,

ρΦ =
Nel∑
n=1
|ϕn|2,

(1.4.4)
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where Hρ = − 1
2 ∆+V +VH(ρ)+Vxc(ρ). Here, the Hartree potential VH(ρ) is the unique zero-mean solution

to the periodic Poisson equation −∆VH(ρ) = 4π
(
ρ−

ffl
Ω ρ
)

and the exchange-correlation potential Vxc(ρ)
depends on the chosen approximation of the exchange-correlation energy potential.

1.4.1 Plane-wave discretization

The plane-wave discretization method is a specific Galerkin approximation, which takes as variational
approximation space

XNb = Span
{
eG, G ∈ R∗,

1
2 |G|

2 ⩽ Ecut

}
, (1.4.5)

where Nb is the dimension of the space, linked to the cut-off energy Ecut. Denoting by ΠNb the L2
#-

projection operator onto XNb , we then solve the discrete problem: find ϕ1, . . . , ϕNel ∈ XNb such that
ΠNbHρΦΠNbϕn = εnϕn, ε1 ⩽ · · · ⩽ εNel ,

⟨ϕn, ϕm⟩L2
#

= δnm, n,m = 1, . . . , Nel,

ρΦ =
Nel∑
n=1
|ϕn|2.

(1.4.6)

The components of the core Hamiltonian matrix can be computed explicitly as

[H0]GG′ = ⟨eG, heG′⟩L2
#

= |G|
2

2 δGG′ + ⟨eG, V eG′⟩L2
#
. (1.4.7)

Regarding the other terms of the Hamiltonian, the Hartree potential is obtained by solving the Poisson
equation −∆VH(ρ) = 4π

(
ρ−

ffl
Ω ρ
)

which, given a density ρ, is exactly solved in plane-wave bases and
allows for an exact computation of the Hartree energy. The exchange-correlation energy cannot be
computed exactly and requires to be approximated with quadrature rules to compute integrals. This
discretization method for the Kohn–Sham equations has been analysed for instance in [31].

Using such a discretization method has several consequences, some of which we mention here. In the
Fourier space, the Laplace operator is diagonal, which makes its application to a function of XNb , as well
as the application of its inverse, immediate. The Laplace operator being the higher-order derivative of the
Hamiltonian, using it as a preconditioner is thus a standard practice in plane-wave DFT. This is also used
for instance in [38, 69], where the authors propose a post-processing of the Kohn–Sham equations based
on a plane-wave discretization method which relies heavily on this property. Note also that computing
the density ρ generated by orbitals in XNb requires real-space products, i.e. convolution of their Fourier
coefficients. This can be avoided by using bigger Cartesian grids that contains all the G + G′ for |G|,
|G′| ⩽

√
2Ecut. Finally, the orthogonality constraints imply that the orbitals oscillate rapidly close to

the nuclei. This in turn requires a lot of Fourier modes to have accurate approximations. Similarly,
exact orbitals usually have cusps (the 1s orbital of Hydrogen behaves like e−|r|), which are difficult to
approximate using plane-waves because of the link between the regularity of a function and the fast
decay of its Fourier coefficients: the less regular the orbital, the slower the convergence of the plane-wave
approximation. With methods like FEM, this can be dealt with by placing the atoms on the vertices of
the mesh where there is only a continuity constraint. This trick is not possible any more for plane-wave
discretizations and another way to overcome this issue is, for instance, to use pseudopotentials.

1.4.2 Pseudopotential approximation – Results from Chapter 5

General overview

Pseudopotentials have been introduced (i) to remove the cusps that appear at the nuclei positions
and (ii) to deal only with the valence electrons by treating the core electrons as frozen. This is justified
as only valence electrons are strongly affected by the chemical environment and interact with electrons of
other atoms or molecules. This approach allows to reduce the number of electrons explicitly taken into
account.
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In pseudopotentials methods, the Coulomb and exchange-correlation potentials generated by the core
electrons are replaced by fixed, smoother approximations of the original operators. This results into
smoother orbitals, that can be well approximated by plane-wave methods, at the price of an additional
approximation made by the way the pseudopotentials have been built. A whole zoology of pseudopoten-
tials exists, whose description is out of the scope of this manuscript, and we refer the interested reader
to [67] for a detailed overview of pseudopotentials. Let us however mention a specific class of pseudopo-
tentials, known as norm-conserving pseudopotentials, first introduced in [191] and then improved in [87].
These pseudopotentials are built such that the actual atomic orbital and the pseudo orbital, seen as radial
functions, behave similarly above some radial cut-off . This is enforced by imposing preservation of the
norm and some continuity conditions between the core and valence regions, see Figure 1.2. In [114], the
authors introduced a specific form for these pseudopotentials, which replace the (local) Coulomb potential
V by two contributions, one local term Vloc (a multiplicative operator) and one nonlocal term Vnloc (a
finite rank operator), gathering together the contributions from the nuclei and the core electrons. This
is known as the Kleinmann–Bylander form of pseudopotentials, where the core Hamiltonian h reads

h = −1
2∆ + Vloc + Vnloc. (1.4.8)

The interest of such a form is that the nonlocal contribution being of finite rank, it can be easily applied
to (discrete) orbitals. Let us finally mention two specific pseudopotentials that are of interested in
this manuscript: Troullier–Martins (TM) pseudopotentials [193] and Goedecker–Teter–Hutter (GTH)
pseudopotentials [79, 91].

Source: Wikipedia Commons

Figure 1.2 – Representation of the pseudopotential approximation: the core electrons are considered as frozen.
Note that the pseudo wave-function (or orbital) matches with the actual, all electrons, wave-function outside of
some cut-off radius, and that continuity conditions are imposed between the two regions.

Results from Chapter 5

The choice of pseudopotentials results into local and nonlocal functions of different regularities. As
expected, the rate of convergence of the plane-wave discretization method is directly linked to the regu-
larities of these functions. Indeed, this impacts the regularity of the solutions, which in turn impacts the
rate of convergence of their plane-wave approximations: if u ∈ Hs

#(R,C), then ∥u−ΠNu∥Hr
#

goes to 0
as N−(s−r) for any 0 ⩽ r < s. As a consequence, we expect that the more regular the pseudopotentials,
the faster the convergence of the plane-wave discretization method.

The a priori error analysis of the plane-wave discretization of the periodic Kohn–Sham equations was
performed in [31] for pseudopotentials with Sobolev regularity. It was proved in particular, for the LDA
exchange-correlation functional (1.3.28), that if the local part of the pseudopotential and the range of the
nonlocal part are in the periodic Sobolev space of order s > 3/2, then the Kohn–Sham orbitals ϕn and
the density ρΦ are in the periodic Sobolev space of order s + 2, and (optimal) polynomial convergence
rates were obtained in any Sobolev spaces of order r with −s < r < s + 2. In addition, as for linear
second-order elliptic eigenproblems, the error on the eigenvalues converges to zero as the square of the
error on the eigenfunctions evaluated in H1-norm. The analysis in [31] covers for example the case of TM
pseudopotentials, for which s = 7

2−ε. On the other hand, these estimates are not sharp in the case of GTH
pseudopotentials, for which the local and nonlocal contributions are periodic sums of Gaussian-polynomial
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functions, and therefore have entire continuations to the whole complex plane. Such pseudopotentials
are implemented in different DFT software, such as BigDFT [170], Quantum Espresso [78] or Abinit
[84, 175], as well as DFTK, a recent electronic structure package in the Julia language [19, 101] (see
Section 1.4.4).

We investigate this case in Chapter 5. While it has been known for a long time (see e.g. [18, 76, 163] and
references therein for a historical overview or [21, 92] for more recent developments) that the solutions to
elliptic equations on Rd with real-analytic data have an analytic continuation in a complex neighbourhood
of Rd, the size of this neighbourhood is a priori unknown. As already mentioned in the periodic case
we are considering, the latter directly impacts the decay rate of the Fourier coefficients of the solution,
hence the convergence rate of the plane-wave discretization method. For pedagogical reasons, we work
in this chapter with one dimensional linear or nonlinear Schrödinger equations, because (i) it is easier
to visualize analytic or entire continuations of functions originally defined on the real space Rd when
d = 1, and (ii) exponential convergence rates of plane-wave discretization methods are easier to spot in
1D numerical simulations. We introduce a hierarchy of spaces (HA)A>0 of complex-valued 2π-periodic
functions on the real line having analytic continuations to the strip R + i(−A,A), with norm ∥·∥A, and
we prove the following theorem.

Theorem 1.1. Let B > 0 and V ∈ HB be real-valued and such that V ⩾ 1 on R. Then, for all 0 < A < B
and f ∈ HA, the unique solution u of −∆u+V u = f is in HA. Moreover, we have the following estimate

∃ C > 0 independent of f such that ∥u∥A ⩽ C∥f∥A.

As a consequence, if V and f are entire, then so is u.

A similar result holds for the eigenvalue problem{
−∆u+ V u = λu,

∥u∥ = 1,
(1.4.9)

in the sense that if V ∈ HB , then u ∈ HA for any 0 < A < B. A direct consequence of these results is
that the error between the variational solution in XNb and the exact solution converges faster than any
exponential if the inputs of the problem are entire, which plays in favour of GTH pseudopotentials with
plane-wave discretization for linear problems.

However, such results are not true in general for nonlinear models, and we exhibit in Chapter 5
a counter-example based on a 1D Gross–Pitaevskii equation, where we show, using a combination of
analytical and numerical tools, that the solution to

−ε∆uε + uε + u3
ε = µ sin, ε ⩾ 0, (1.4.10)

is not entire, even though the source term is.

1.4.3 Brillouin zone sampling

The periodic setting we described in this section is somewhat artificial. In practice, it is more relevant
to consider the (more realistic) case of the periodic Kohn–Sham equations for an infinite crystal with Nel
electrons per unit cell, which we briefly introduce here. This formalism leads to the study of R-periodic
Schrödinger-like operators, whose spectral properties can be deduced from Bloch theory. We introduce
to this end the first Brillouin zone B which is the Voronoï cell of the reciprocal lattice R∗ containing 0
(called the Γ-point in solid-state physics).

Bloch theory decomposes the Kohn–Sham Hamiltonian Hρ, seen as an R-periodic Schrödinger-like
operator, into its Bloch fibers Hρ,k. The framework is then similar to what we described before, except
that each Hamiltonian Hρ,k needs to be treated separately. The Hamiltonians Hρ,k are operators on
L2

#(R3,C) with domain H2
#(R3,C) defined for any wave-vector k in R3 by

Hρ,k = 1
2(−i∇+ k)2 + V + VH(ρ) + Vxc(ρ). (1.4.11)
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Source: Wikipedia Commons

Figure 1.3 – Unit cell of the FCC silicon crystal (left) and its first Brillouin zone in moments space (right).

Hρ,k is bounded below with compact resolvent for every k ∈ R3. Its spectrum is therefore composed of
a nondecreasing sequence of eigenvalues (εnk)n∈N diverging to +∞: there exists some εk ∈ R such that

σ(Hρ,k) = {εnk, n ∈ N} ⊂ [εk,+∞). (1.4.12)

Note that for any n ∈ N, k 7→ εnk is Lipschitz continuous and R∗-periodic. The (purely continuous)
spectrum of Hρ can then be computed as the union of the (purely discrete) spectra of Hρ,k for every
k ∈ B

σ(Hρ) =
⋃

k∈B

σ(Hρ,k). (1.4.13)

If we denote by unk the associated eigenfunctions, then the ground-state density ρ can then be computed
as

ρ(r) =
 

B

Nel∑
n=1
|unk(r)|2dk. (1.4.14)

For more details on the Bloch theory, we refer for instance to [171, Section XIII.16] for general proofs of
the statements we made.

We now introduce an important quantity in solid-state physics, known as the Fermi level εF. It
represents the highest energy attainable for electrons without violating the charge neutrality of the unit
cell. Mathematically, it can be obtained implicitly through

 
B

+∞∑
n=1

1{εnk⩽εF}dk = Nel. (1.4.15)

The Fermi level describes the electronic properties of materials: if it lies within a gap between two bands
of the spectrum of Hρ, the material is an insulator (or a semiconductor) whereas if it lies in a band of the
spectrum of Hρ, the material is a metal (Figure 1.4). For insulators, the Fermi level separates between
occupied and virtual states, see Figure 1.5 (left).

Of course, it is not possible in practice to span the full Brillouin zone B or any continuous path in it.
Instead, one usually considers a supercell ΩNcell composed of Ncell = L1 ×L2 ×L3 copies of the unit cell
Ω (that is Li copies in direction i) and containing NcellNel electrons, as well as a finite subset BNcell ⊂ B
made of the Ncell wave-vectors of B that are compatible with the periodic boundary conditions on ΩNcell .
The generalized eigenfunctions of the periodic operator Hρ can then be taken as the Bloch waves

ϕnk(r) = 1√
Ncell

eik·runk(r),

that have ΩNcell periodicity for k ∈ BNcell , and satisfy
´

ΩNcell
|ϕnk|2 = 1. An approximation of the

ground-state density can then be recovered as

ρ(r) ≈
∑

k∈BNcell

Nel∑
n=1
|ϕnk(r)|2.
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ε1k

σ(Hρ)B
k

ε2k

ε3k

εF → insulator

εF → metal

Source: Laurent Vidal

Figure 1.4 – Band diagram and characterization of insulators and metals depending on the location of the Fermi
level εF in the spectrum of Hρ. Note that the ordering has not been conserved (ε2k goes over ε3k) so that the
eigenvalues are actually analytic. When the order is conserved, k 7→ εnk is analytic outside of crossings but only
Lipschitz continuous at crossings.
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Source: plots generated with DFTK

Figure 1.5 – Band structures of silicon (left) and magnesium (right). Silicon is a semiconductor and there is
a clear gap between the first four bands (which are thus occupied) and the others. This is not the case for
magnesium, which is a metal. The discontinuity in the band diagram of magnesium is due to a discontinuity in
the Brillouin zone path.

In practice, not all k-points need to be used. Physical symmetries can be exploited to reduce the total
number of k-points to a smaller amount of weighted irreducible k-points to make computations faster.
DFT calculations with k-points discretizations can also very easily be parallelized: computations can be
done for separate k-points on different processes, which only need to communicate to compute quantities
such as the density ρ or the Fermi level.

Using a discretization of the Brillouin zone introduces an error when it comes to recover quantities of
interest from the Bloch fibers of the Hamiltonian. Numerically, Monkhorst and Pack observed in [150]
that the uniform discretization of the Brillouin zone B into BNcell led to small errors for insulators and
semiconductors, which is why this is a widely used discretization of the Brillouin zone, but it is not
an easy task to quantify this error rigorously: for more insight on Brillouin zone, we refer to [80] for a
mathematical study in the framework of the reduced Hartree–Fock model for insulators, or [39] for an
extension to metallic systems.

1.4.4 DFTK: the Density Functional ToolKit

Most of the numerical results presented in this manuscript have been obtained with DFTK [101], a
Julia package for plane-wave DFT available at https://dftk.org/ and which has been actively
developed since 2019, mainly by Antoine Levitt and Michael F. Herbst. While many efficient DFT

https://dftk.org/
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codes have already been developed for decades, such as BigDFT [170], Quantum Espresso [78], Abinit
[84, 175] or VASP [117], they do not allow for enough flexibility when it comes to the implementation of
novel numerical methods. DFTK has been designed to overcome this issue, by allowing simulations from
simple 1D toy models well suited for rigorous mathematical analysis to relevant physical systems up to
1, 000 electrons. With such a flexibility in the range of systems it supports, DFTK is at the intersection
between numerical analysis, high-performance computing and materials simulations, allowing for efficient
collaborations between researchers from these fields. DFTK has been presented at JuliaCon 2021 [101]
and some of the algorithms implemented were recently published [98, 99].

DFTK currently performs plane-wave simulations of periodic systems with GTH [79, 91] pseudopo-
tentials and already supports a sizeable feature sets: 1D, 2D and 3D problems, different DFT models
(standard LDA but also PBE exchange-correlation functionals [160]) and algorithms, Monkhorst–Pack
uniform discretization of the Brillouin zone, MPI parallelism, custom analytic potentials, interface with
established packages such as ASE [103] or pymatgen [157], numerical error control [GK2, 100], . . . Cod-
ing with DFTK also follows the physical description of the systems we aim at simulating, see Figure 1.6
for an example of a code which computes the ground-state of the FCC silicon crystal.

� �
using DFTK

# define the periodic lattice
a = 10.26 # silicon lattice constant in Bohr
lattice = a / 2 * [[0 1 1.];

[1 0 1.];
[1 1 0.]]

# load silicon information
Si = ElementPsp(:Si, psp=load_psp("hgh/lda/Si-q4"))
# define the atoms that make up the crystal and their positions
atoms = [Si, Si]
positions = [ones(3)/8, -ones(3)/8]

# use a DFT model with LDA exchange-correlation functional
model = model_LDA(lattice, atoms, positions)
# build the plane-wave basis
basis = PlaneWaveBasis(model; Ecut=15, kgrid=[4, 4, 4])
# solve the KS-DFT equations
scfres = self_consistent_field(basis, tol=1e-8)
# post-process to plot the band diagram
plot_bandstructure(scfres)� �

Figure 1.6 – Julia code to compute, with DFTK, the ground-state of the FCC silicon crystal and generate
Figure 1.5 (left). Notice how the different parameters we introduced up to now are set up.

Source: Michael F. Herbst https://dftk.org

Being written in the Julia language, DFTK is also fully composable with the underlying ecosystem.
For instance, it natively supports arbitrary floating point precision. On more advanced topics, Automatic
Differentiation (AD) [86] is currently being implemented, for both forward and backward modes, using
the Julia packages that deal with AD. Specific differentiation rules were implemented to make the
computations faster: for instance, results from Chapter 2 and Chapter 4 were used to implemented directly
the differentiation of the solution of the Kohn–Sham equations without requiring to differentiate through
the full numerical solver of these equations. This work highly benefited of the interdisciplinary nature of
DFTK as it results from collaboration between chemists, mathematicians and computer scientists. To the

https://dftk.org
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best of our knowledge, such an implementation of AD for DFT is only present in DFTK at the moment
and it has been presented at JuliaCon 2022. Let us also mention that, recently, GPU calculations with
DFTK have started to be investigated.

1.5 Computing the ground-state

1.5.1 General setting

In the previous sections, we presented the mathematical background of electronic structure calculation
along with some models that were introduced, in their continuous and discrete forms, to approximate
the ground-state of the electronic Schrödinger equation. This section is dedicated to the description of
some algorithms that solve these models by converging to a fixed-point of (1.3.33). After choosing a
discretization method (e.g. plane-wave or FEM) with an orthonormal basis, we discretize (1.3.38) into
the following constrained minimization problem:

inf{E(P ), P ∈MNel}, with E(P ) = Tr(H0P ) + Enl(P ), (1.5.1)

where H0 is the discrete core Hamiltonian matrix and Enl : MNel → R describes the interaction of the
electrons with themselves, accordingly to the chosen model (for instance Hartree–Fock or KS-DFT). The
discrete equivalent MNel of PNel in (1.3.40) is

MNel =
{
P ∈ CNb×Nb , P = P ∗, Tr(P ) = Nel, P

2 = P
}
. (1.5.2)

It is diffeomorphic to the Grassmann manifold Grass(Nel, Nb) [1] and, in particular, matrices in MNel

have eigenvalues 0 or 1. MNel is a smooth manifold, its tangent space is defined for P ∈MNel by

TPMNel =
{
X ∈ CNb×Nb

herm , PX +XP = X, Tr(X) = 0
}
, (1.5.3)

and we call ΠP the orthogonal projection operator onto TPMNel for the Frobenius inner product. De-
noting by H(P ) = ∇E(P ) = H0 + ∇Enl(P ) the Hamiltonian matrix, one immediately gets that the
first-order condition satisfied by a solution P∗ to (1.5.1) is ΠP∗H(P∗) = 0, which is equivalent to
[H(P∗), P∗] = H(P∗)P∗ − P∗H(P∗) = 0. The minimization problem (1.5.1) is compact but noncon-
vex: there exists at least one minimizer, but the minimizer might not be unique, and local minima might
not be global ones.

Finally, we recall that, in plane-wave, finite differences or finite elements electronic structure calcula-
tion codes, the size Nb of the discretized space is in practice much larger than the number Nel of electrons.
Therefore, it is not practical to store and manipulate the (dense) matrix P . Instead, these algorithms
work on the discrete version of the orbitals (ϕn)1⩽n⩽Nel introduced in (1.3.33). The density matrix P is
then recovered as

P =
Nel∑
n=1

ϕnϕ
∗
n. (1.5.4)

All the algorithms below are presented for the sake of clarity in the density matrix framework but, in
practice, they are expressed in a way that avoids ever forming the density matrix [203]. Moreover, all
the algorithms we mention are iterative solvers so that they are almost systematically improved by using
preconditioning. Finding the best preconditioner, i.e. a good compromise between cost and efficiency, is an
entire research field by itself but, in the particular case of plane-wave DFT, using a kinetic preconditioner
is usually the default solution: the kinetic operator − 1

2 ∆ is diagonal in Fourier modes, which makes its
inverse almost free in comparison to other operations such as matrix-vector products, and often yields
satisfying results.

1.5.2 Direct minimization algorithms

A first class of algorithms solves the minimization problem (1.5.1) by a direct minimization of the
energy on the constraint manifold MNel . They read, in their simplest form, as Algorithm 1.1 (see
Figure 1.7 for a schematic view).
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Algorithm 1.1 – Projected gradient descent
Data: P 0 ∈MNel

while convergence not reached do
P k+1 = R

(
P k − βΠPk

(
∇E(P k)

))
;

end

Here, R is called the retraction and is used to ensure that the density matrix stays on the manifold
MNel . β is a free parameter that represents the step size in the opposite direction of the gradient at
each iteration and can be chosen fixed or adapted to each iteration by performing efficient linesearches
to minimize the energy in the gradient direction.

MNel

TPkMNel

−∇E(P k)

ΠPk(−∇E(P k))

•P k+1

R

P k
•

Figure 1.7 – Schematic view of the projected gradient descent algorithm.

This method is barely used in practice but its simplicity makes it of mathematical interest. The
minimization set MNel being diffeomorphic to the Grassmann manifold Grass(Nel, Nb), it is naturally
equipped with the structure of a Riemannian manifold, allowing for the use of Riemann optimization
algorithms [1, 4, 72]. More sophisticated methods have also been developed, among which we can mention
Gradient-type [3, 57, 151, 184, 196, 207], and Newton-type [11, 49, 209] methods.

1.5.3 Self-consistent field algorithms

A second class of algorithms, known as self-consistent field (SCF) methods, is based on the interpre-
tation of problem (1.5.1) as a nonlinear eigenvalue problem, similarly to (1.3.33),

H(P )ϕn = εnϕn, ε1 ⩽ · · · ⩽ εNel

ϕ∗
nϕm = δnm,

P =
Nel∑
n=1

ϕnϕ
∗
n,

(1.5.5)

where H(P ) = H0 + ∇Enl(P ) is the Hamiltonian matrix. The simplest version works, in its original
version [146, 176], as follows: if P k is the current iterate of the algorithm, P k+1 is found by solving the
eigenproblem

H(P k)ϕkn = εknϕ
k
n, (ϕkn)∗ϕkm = δnm (1.5.6)

with the εkn sorted in nondecreasing order, and building P k+1, assuming the strong Aufbau principle, as

P k+1 =
Nel∑
n=1

ϕkn(ϕkn)∗. (1.5.7)

Physically, this method (known as the Roothaan algorithm in the literature) can be seen as generating
a first mean-field, computing the orbitals of the electrons in this mean-field, update the mean-field and
iterate, until convergence. This is this aspect of the problem which makes it nonlinear, and it suggests
fixed-point-like iterations where we successively solve eigenproblems until self-consistency is reached. SCF
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algorithms can also be improved using preconditioners for the eigenproblem solved at each iteration. The
kinetic preconditioner mentioned above is usually sufficient for this part of the algorithm. This basic
procedure converges for systems where the nonlinearity is weak, but fails to converge otherwise (see [41]
for a comprehensive mathematical analysis of this behaviour when the functional E is a sum of a linear
and a quadratic term in P , which is the case for the Hartree–Fock model, see also [124]).

A solution to overcome this convergence issue is to use a damped version of this algorithm, presented
in Algorithm 1.2 and represented in Figure 1.8. Note that it assumes the strong Aufbau principle to hold
and uses the same retraction R than in Algorithm 1.1.

Algorithm 1.2 – Damped SCF algorithm
Data: P 0 ∈MNel

while convergence not reached do

solve
{
H(P k)ϕkn = εknϕ

k
n, ε

k
1 ⩽ · · · ⩽ εkNel

< εkNel+1
(ϕkn)∗ϕkm = δnm,

;

P̃ k =
Nel∑
n=1

ϕkn
(
ϕkn
)∗;

P k+1 = R
(
P k + βΠPk

(
P̃ k − P k

))
;

end

MNel

TPkMNel

P̃ k•

P k • P k+1
•R

Figure 1.8 – Schematic view of the damped SCF algorithm.

Another solution to overcome the convergence issues of the Roothaan algorithm is to mix the iterates to
accelerate convergence, most of the time combined with damping. This gives rise to a variety of SCF-type
algorithms, among which Broyden-like and Anderson-like mixing algorithms [54, 108, 143, 169, 187], the
Direct Inversion in the Iterative Space (DIIS) algorithm [118, 167, 168], the Optimal Damping Algorithm
(ODA) [40], and the Energy-DIIS (EDIIS) algorithm combining the latter two approaches [119] are the
most used nowadays.

1.5.4 Direct minimization or SCF? – Results from Chapter 2

While the convergence of several SCF and direct minimization algorithms has been analysed from a
mathematical point of view (see e.g. [41, 54, 124, 138, 174, 194, 206] and references therein), the two
approaches have not been compared in a systematic way. The purpose of Chapter 2 is to contribute to fill
this gap, by focusing on very simple representatives of each class, namely the projected gradient descent
(Algorithm 1.1) and the damped SCF iteration (Algorithm 1.2). We emphasize that neither of these two
algorithms is a practical choice as is. The SCF iterations should be accelerated (for instance using the
DIIS acceleration technique), and the gradient information in direct minimization methods should rather
be used as part of a quasi-Newton method (such as the L-BFGS algorithm [154]). Depending on the
exact problem at hand, all these methods should also be preconditioned to avoid issues related to small
mesh sizes (which leads to a divergence of the kinetic energy term) and/or large computational domains
(which can lead to a divergence of the Coulomb energy, or the confining potential).

In Chapter 2, we therefore study the minimization problem

min
P∈MNel

E(P ), (1.5.8)
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with
MNel =

{
P ∈ H, P = PT , Tr(P ) = Nel, P

2 = P
}
, (1.5.9)

where H = RNb×Nb is endowed with the Frobenius inner product ⟨A,B⟩F = Tr(ATB), the extension
to complex matrices being immediate. E : H → R is typically of the form (1.5.1). We assume enough
regularity on the functional E and the existence of a nondegenerate minimizer P∗: there exists some
positive constant η such that

E(P ) ⩾ E(P∗) + η∥P − P∗∥2
F for P in a neighbourhood of P∗. (1.5.10)

We then derive first- and second-order optimality conditions:

• The first-order condition reads, as mentioned before, ΠP∗H(P∗) = 0, which is the same as [H(P∗), P∗] = 0,
where H(P ) = ∇E(P ) is the Hamiltonian matrix. This condition traduces that P∗ is a minimizer
on the constraint manifold: the energy cannot be decreased at first-order unless we allow leaving
the manifold MNel .

• The second-order condition is obtained by linearization and reads

∀ X ∈ TP∗MNel , ⟨X, (Ω∗ + K∗)X⟩F ⩾ η∥X∥
2
F, (1.5.11)

where K∗ = ΠP∗∇2E(P∗)ΠP∗ is the Hessian of the energy projected onto TP∗MNel and

∀ X ∈ TP∗MNel , Ω∗X = −[P∗, [H(P∗), X]] (1.5.12)

represents the influence of the curvature ofMNel . This condition translates the nondegeneracy of the
minimizer P∗. Indeed, the second-order optimality of a nondegenerate unconstrained minimization
problem is that the Hessian of the objective function is positive definite. Here this condition is
modified by the constraints. Moreover, Ω∗ has the remarkable property that its smallest eigenvalue
is the gap between the highest occupied and the lowest unoccupied eigenvalues of the self-consistent
Hamiltonian H(P∗). In the linear case, K∗ = 0 and the second-order optimality condition is
therefore equivalent to the strong Aufbau principle. In general, the sign of K∗ is not known and it
is therefore difficult to derive the optimality condition from the strong Aufbau principle. However,
for the reduced Hartree–Fock or the Gross–Pitaevskii models, we have ⟨X,K∗X⟩F ⩾ 0 on TP∗MNel

and the strong Aufbau principle is, in these cases, a sufficient (but not necessary) condition for the
second-order optimality condition.

Using these two optimality conditions, we examine the convergence of two simple representatives in
the classes of direct minimization and SCF algorithms: the gradient descent described in Algorithm 1.1
and the damped SCF described in Algorithm 1.2. Under assumptions that are made precise in Chapter 2,
we then prove the following theorems, which give the convergence rate of the algorithms we consider as
the spectral radius r of some operators.

Theorem 1.2. Under suitable assumptions, if P 0 ∈MNel is close enough to P∗, Algorithm 1.1 linearly
converges to P∗ for β > 0 small enough, with asymptotic rate r(1− βJgrad) where Jgrad = Ω∗ + K∗.

Theorem 1.3. Under suitable assumptions and if the strong Aubfau principle holds, then, for β > 0
small enough and P 0 ∈MNel close enough to P∗, Algorithm 1.2 linearly converges to P∗, with asymptotic
rate r(1− βJSCF) where JSCF = 1 + Ω−1

∗ K∗.

In short, if the step, or damping parameter, β is small enough, then both algorithms converge to P∗
if the initial point is close enough to it. In particular, we find that the convergence rates depend on the
spectral radius of operators (acting on RNb×Nb) of the form 1− βJ , where J = Jgrad = Ω∗ + K∗ for the
gradient descent and J = JSCF = 1 + Ω−1

∗ K∗ for the SCF algorithm (under the additional assumption
that the strong Aufbau principle is satisfied). These results have several consequences, which enable for
a better understanding of the minimization problem (1.5.8).

In the linear case (i.e. Enl = 0), we have that K∗ = 0 and the SCF algorithm converges in one
iteration: we only need to diagonalize the Hamiltonian once because the self-consistency nature of the
problem disappears, which is consistent with JSCF = 1. Regarding the Gradient Descent, we have in
this case Jgrad = Ω∗ and the conditioning of the system is linked to the highest eigenvalue of Ω∗, which
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blows up when the discretization is refined. This is a common issue in numerical linear algebra that one
usually solves by preconditioning. When adding the nonlinear term Enl, the situation is summarized in
Table 1.2. If no link could be drawn a priori between SCF and Gradient Descent, it appears that the
SCF can actually be interpreted as a “matrix splitting” of the Gradient Descent (in linear algebra, a
matrix splitting consists in solving (A+B)x = b by solving (1 +A−1B)x = A−1b). Moreover, while the
Gradient Descent is sensitive to the spectral radius of Ω∗, the SCF seems to be sensitive to the inverse
of the smallest eigenvalue of Ω∗, i.e. the gap. This explains why SCF algorithms struggle to converge for
systems with small gap, a well-known issue in quantum chemistry.

Problem characteristic matrix
Linear eigenvalue problem Ω∗

Damped SCF 1 + Ω−1
∗ K∗

Gradient Descent Ω∗ + K∗

Table 1.2 – Condition matrices of the different problems we consider.

We then consider the following question: In practice, should the SCF or direct minimization class of
algorithms be preferred? The answer depends not only on the convergence rate studied in this chapter,
but also on the cost of each step, and the robustness of the algorithm. We examine two prototypical
situations.

In quantum chemistry using Gaussian basis sets [161] (see also Chapter 6 for more details on basis sets
in quantum chemistry) to solve the Hartree–Fock model or Kohn–Sham DFT using hybrid functionals,
the rate-limiting step is often the computation of the Hamiltonian matrix H(P ). In this case, an iteration
of a gradient descent and a damped SCF algorithm are of roughly equal cost. In most cases, solutions for
isolated molecules satisfy the Aufbau principle, and the damped SCF algorithm, suitably robustified (for
instance using the ODA algorithm) and accelerated (for instance with the DIIS algorithm), converges
reliably and efficiently towards a solution. Direct minimization algorithms are then only useful in the
cases where local or semilocal functionals are used [177] and the Aufbau principle is violated, or when
SCF algorithms tend to converge to saddle points (for instance for computations involving spin).

In condensed-matter physics using plane-wave basis sets to solve Kohn–Sham DFT with local or
semilocal functionals, the matrices P and H are not stored explicitly. Solving the linear eigenproblem is
then done using iterative block eigensolvers, which can be understood as specialized direct minimization
algorithms in the case of a linear energy functional E(P ) = Tr(H0P ). In this case, direct minimization
algorithms effectively merge the two loops of the SCF and linear eigensolver, and should therefore be
more efficient. Another interest of direct minimization algorithms is their robustness, as the choice of
a step size can be made in order to minimize the energy. Despite this, direct minimization algorithms
are rarely used in condensed-matter physics. The main reason seems to be that challenging problems
are often metallic in character, and require the introduction of a finite temperature. Direct minimization
algorithms then need to optimize over the occupations as well as the orbitals, a significantly more complex
task, see for instance [28, 56, 75, 145]. A thorough comparison of the performance and robustness of direct
minimization and self-consistent approach for these systems would be an interesting topic of inquiry. A
number of implementation “tricks” commonly used to accelerate the convergence of iterative eigensolvers
(for instance, using a block size larger than the number of electrons) might also play a big role in
performance comparison for the two classes of algorithms: understanding how to generalize these to
direct minimization would be interesting.

1.6 Estimating the error

One of the main challenges in modern computational chemistry (and, more generally, numerical
simulation of physical systems) is the estimation of the error from the results of numerical simulations:
knowing that the output of the simulation is only an approximation of the real solution, how can we
estimate the actual error we make? Can we also estimate the error we commit on quantities of interest,
such as the energy or the interatomic forces? Some answers to these questions can be found with what
is known as a posteriori error estimates in mathematics. A posteriori estimates differ from a priori
estimates as they should be computable without any knowledge of the actual, continuous or discrete,
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solution, for a cost not significantly more important than that of the computation performed to obtain
the current approximation. They should ideally also be guaranteed, meaning that we can rigorously
prove that they hold under not too strong assumptions. In this section, we briefly describe the state of
the art of a posteriori estimates for linear and nonlinear eigenvalue problems, with a particular focus on
DFT. We then describe the results in Chapter 3, which are a first step towards the estimation of errors
on quantities of interest for nonlinear KS-DFT models.

1.6.1 Sources of error

When trying to estimate the error between the output of a numerical simulation and the actual
solution we are looking for, it is useful to recall that there are different sources of error, each of them
requiring a different approach. We give here a list of the different sources of error that arise in DFT
calculations:

Model error It corresponds to the error made by the choice of the model we use: even before discretizing
and solving the equations, there is already an error due to the modelling choices. In KS-DFT, it
mainly comes from the choice of the exchange-correlation energy functional and pseudopotentials.

Discretization error This error source is due to the transformation of the continuous equations into
discrete ones. In the case of KS-DFT for crystals, it is the error we make by using finite approxi-
mations with Fourier modes and discretized Brillouin zone.

Algorithmic error This is the error made when we stop for instance eigenvalue solvers or SCF algo-
rithms when some convergence threshold is reached.

Numerical error This error is a consequence of floating point arithmetic.

There are of course other sources of error (bugs, hardware failures, . . . ), but these lay out of the scope
of numerical analysis. Knowing the contribution of each sources of error is a crucial step towards more
efficient and robust, adaptive, algorithms: as long as the main source of error is due for instance to the
size of the discretization space, there is no need to choose tight convergence thresholds. Such adaptive
algorithms are nowadays an active field of research, and we mention some recent advances below.

1.6.2 The linear case

For general elliptic linear source problems, efficient a posteriori estimates have been introduced since
the 50s, based for instance on the theory of equilibrated fluxes from Prager and Synge [166] (see [26, 64, 73,
121] and references therein) or on gradient recovery type estimate (see [204] and references therein). When
it comes to estimating the error for eigenvalue problems, the computation of guaranteed error bounds
seems more difficult. Following works from Kato [110], Forsythe [74], Weinberger [201] or Bazley and
Fox [16], several works in the last decades presented estimations of simple eigenvalues. See for instance
[47, 68, 106, 107, 122, 137, 141] and references therein. A posteriori estimates for both eigenvalues
and eigenvectors can also be found in [35] for conforming discretizations and in [36] for a more general
framework, including nonconforming discretizations. See also [153, Chapter 10] for a recent monograph
on the subject. With specific focus on electronic structure calculation, guaranteed error bounds for linear
eigenvalues equations are presented in [100].

However, the above only holds for simple eigenvalues. As degenerate, or near-degenerate, eigenvalues
often appear in practice (in particular in quantum chemistry and related fields due to symmetries), dealing
with multiples eigenvalues is a fundamental task. In [35, 36], the estimates depend on the gap between the
estimated eigenvalue and the surrounding ones, which deteriorates the estimates for (near) degenerate
estimates. A posteriori estimates for clusters of eigenvalues have been proposed for instance in [24]
for Crouzeix–Raviart nonconforming finite elements or in [77] for the discontinuous Galerkin method. A
posteriori error estimates for conforming approximations of eigenvalue clusters of second-order self-adjoint
elliptic operators with compact resolvent have also been derived in [37].
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There is thus a substantial literature on the a posteriori error estimation of linear eigenvalue problems.
For nonlinear problems, the situation is more difficult and we mention below some of the few existing
results.

1.6.3 The nonlinear case

For nonlinear eigenvalue equations, such as the Kohn–Sham model where the Hamiltonian to diag-
onalize depends on the orbitals themselves, no rigorous and certified error bounds are known at the
moment to estimate the discretization error due to the plane-wave approximation. A few results still
exist for simpler models or other discretizations.

The simplest nonlinear equation one can consider in quantum physics is the 1D Gross–Pitaevskii
equation, which is of high interest in the study of Bose–Einstein condensates. It is the particular case of
(1.4.4) with Hρ = −∆ + V + ρ and Nel = 1. It therefore reads,{

−∆ϕ+ V ϕ+ |ϕ|2ϕ = εϕ,

∥ϕ∥L2
#

= 1. (1.6.1)

It is well known that, if V is in Hs
#(R3,C) for s > d/2, then there is a unique, real-valued, positive

solution to the Gross–Pitaevskii equation, which belongs in addition to Hs+2
# (R3,C) (see [30, Section 3

and Appendix]). It also solves the minimization problem

EGP
∗ = min

{
EGP(ψ), ψ ∈ H1

#(R3,C), ∥ψ∥L2
#

= 1
}
, (1.6.2)

where
EGP(ψ) =

ˆ
R3
|∇ψ|2 +

ˆ
R3
V |ψ|2 + 1

2

ˆ
R3
|ψ|4. (1.6.3)

In [70], an error bound is developed, but the computational cost of evaluating this error bound in this
contribution is quite extensive. We also refer to [53], where a posteriori error estimates are developed
for finite elements approximations of a class of nonlinear eigenvalue problems, including the Gross–
Pitaevskii equation. In [34], a rigorous error bound on the Gross–Pitaevskii energy is proposed. It has
the particularity that it is valid at each step of the discrete self-consistent iterations and it can therefore
be used to design an adaptive algorithm which automatically refines the discretization space along the
iterations when the error due to the discretization becomes larger than the error due to the iterative
procedure.

Such adaptive methods have also been developed in the last decade for linear and nonlinear models
with finite elements approximations, see [52, 59, 142, 205] and references therein. In the context of plane-
wave discretization, see [58] for an adaptive method for linear elliptic eigenvalue problems and [136] for
a recent adaptive method for Kohn–Sham models. To refine automatically the discretization space along
the iterations, robust and guaranteed error bounds for Kohn–Sham models are still missing. Most results
are also limited to the estimation of the error on the orbitals or the energy, and no results exist at the
moment on the estimation of the error for quantities that are of practical interest, such as the interatomic
forces. Chapter 3 proposes a first step in these directions; we summarize the main results below.

1.6.4 Practical error estimates for plane-wave KS-DFT – Results from Chap-
ter 3

This chapter focuses on providing practical error estimates for the discretization error of numerical
approximations of electronic structure calculation. To this end, we use a general approach based on a
linearization of the Kohn–Sham equations. It is instructive to start by comparing our approach to those
used in a general context. Assume we want to find x ∈ Rn such that f(x) = 0, for some nonlinear
function f : Rn → Rn (the residual). Near a solution x∗, we have f(x) ≈ f ′(x)(x− x∗), and therefore, if
f ′(x) is invertible, we have the error-residual relationship

x− x∗ ≈ f ′(x)−1f(x). (1.6.4)
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This is the same approximation that leads to the Newton algorithm. Assume now that we want to
compute a real-valued quantity of interest A(x∗), where A : Rn → R is a C1 function (e.g. the energy,
a component of the interatomic forces, of the density, . . . ); then we have the approximate equality with
computable right-hand side:

A(x)−A(x∗) ≈ ∇A(x) ·
(
f ′(x)−1f(x)

)
. (1.6.5)

From here, we obtain the simple first estimate

|A(x)−A(x∗)| ⩽ |∇A(x)|
∥∥f ′(x)−1∥∥

op|f(x)|, (1.6.6)

where |·| is any chosen norm on Rn, and ∥·∥op is the induced operator norm on Rn×n (note that ∇A(x) ∈
Rn and f ′(x) ∈ Rn×n). This approximate bound can be turned into a rigorous one using information on
the second derivatives of f ; see for instance [181]. In extending this approach to Kohn–Sham models, we
encountered various difficulties which led to several findings.

First, the structure of our problem is not easily formulated as above because of the presence of
constraints and degeneracies. We solve this using the geometrical framework of Chapter 2 to identify
the appropriate analogue to the Jacobian f ′(x): we have proved that the operator Ω∗ + K∗ defined in
(1.5.11) is the Jacobian of the residual map R : P 7→ ΠPH(P ), which vanishes at P = P∗. Our approach
therefore relies on the first-order approximation

P − P∗ ≈ (Ω∗ + K∗)−1
R(P ), (1.6.7)

where Ω∗ + K∗ plays the role of f ′ in the general context described above, P∗ is a reference solution in a
large plane-wave reference space (ideally the exact one) and P is an approximate solution from a smaller
variational space. This approximation is found to be actually very good, even for energy cut-offs as small
as 5 hartree, but not suitable in practice as the inversion of Ω∗ + K∗ in the reference space cannot be
performed in a reasonable computational time.

Then, choosing the right norm is not obvious in this context. For problems involving partial differential
equations, it is natural to consider Sobolev-type norms, with the aim of making the Jacobian a bounded
operator between the relevant function spaces. We explore different choices and their impacts on the
error bounds. However, in our case, the naive operator norm inequalities∣∣∇A(x) ·

(
f ′(x)−1f(x)

)∣∣ ⩽ |∇A(x)|
∥∥f ′(x)−1∥∥

op|f(x)|, (1.6.8)

where A represents the interatomic forces, are very often largely suboptimal (by more than five orders
of magnitude), even with appropriate norms, and we quantify this on representative examples. The
reason is that, for plane-wave calculations, the discretization error is mostly made up of high frequency
components, whereas ∇A is mostly supported on low frequencies for interatomic forces. This results into
the bound in (1.6.8) being very suboptimal.

We therefore follow another natural idea which consists in replacing the error by the (easily com-
putable) preconditioned residual to compute estimates similar to (1.6.5), instead of computing upper
bounds. This yields reasonable estimates of the errors on the quantities of interest we investigate, but
they are not systematic upper bounds, nor asymptotically valid. This is again due to the error and
the preconditioned residual differing mainly on low frequencies, making the approximation (1.6.5) not
accurate enough. We then build a Schur complement approach based on a low/high frequency splitting
to approximate the inverse of Ω∗ + K∗. This systematically improves the estimation of the error on
the low frequencies and gives reliable error estimates on A at reasonable cost: the Jacobian Ω∗ + K∗
only needs to be inverted on the low frequencies (instead of the full reference space), the high frequency
components being approximated with a (diagonal) kinetic preconditioner and then coupled through a
Schur complement. This adds a computational work no more expensive than the SCF algorithm used to
compute P .

In short, the main result of Chapter 3 lies in the derivation of an efficient, asymptotically accurate,
way of approximating ∇A(x) ·

(
f ′(x)−1f(x)

)
using the specific structure of the residual f(x) in a plane-

wave discretization, where A represents the interatomic forces of the system (see Figure 1.9). This
approximation can then be used either to approach the actual error A(x)−A(x∗) or to improve A(x) by
computing A(x)−∇A(x) ·

(
f ′(x)−1f(x)

)
, which is a better approximation of A(x∗). This work is a first
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step towards robust and guaranteed error estimates for Kohn–Sham DFT calculations. There are still
limits to it, the main one being the nonguaranteed nature of our estimates, even though their asymptotic
accuracy still allows for practically useful results. They also require defining a “coarse” grid on which the
main SCF calculations are performed and the low frequency components of the error are approximated,
as well as a “fine” grid to perform the Schur splitting on high frequencies. The choice of the good ratio
between these two grids is not an easy task and, at the moment, it is most of the time made empirically.
Note also that the inversion of Ω∗ + K∗ on the low frequency space is only defined for gapped system.
However, it is possible to extend its definition to metallic systems (see for instance [99] or Chapter 4),
making possible the extension of this work to such systems.
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Figure 1.9 – Estimation of the error on the interatomic forces for the FCC silicon crystal, when the plane-
wave cut-off Ecut is increased. Here, dF represents ∇A. (Solid line) The actual error we want to estimate.
(Crosses) The linearization of the error on the forces with the real error P −P∗ matches rapidly. (Triangles) The
linearization with the preconditioned residual M−1R(P ) fails because of the low frequency support of dF (P ).
(Squares) We can recover the low frequency components of the error with a Schur complement, yielding an efficient
approximation of the error F (P ) − F∗.

1.7 Density functional perturbation theory

According to what we described in the previous sections of this introduction, KS-DFT aims at com-
puting the electronic ground-state of a given system of interest. Only few quantities of interest (e.g. the
ground-state density and energy) do not require the computation of derivatives of the ground-state with
respect to external perturbations. The others, such as interatomic forces, (hyper)polarizabilities, mag-
netic susceptibilities, phonons spectra, or transport coefficients, correspond physically to the response
of the ground-state to nuclear positions or external electromagnetic fields, and their mathematical ex-
pressions a priori involve derivatives of the ground-state with respect to these parameters. More recent
applications, such as the design of machine-learned exchange-correlation energy functionals, also require
the computation of derivatives of the ground-state with respect to parameters, such as the ones defining
the exchange-correlation functional [109, 113, 129].

Thanks to the Hellmann–Feynman theorem [96], computing the interatomic forces as the derivative of
the energy with respect to the atomic displacements can be done directly from the ground-state orbitals
(see Chapter 3). However, general quantities of interest are based on more involved types of derivatives
and require the response of the orbitals with respect to an external potential perturbation. This is
usually done via standard first-order perturbation theory, a framework known in the field as density
functional perturbation theory (DFPT) [15, 81, 82, 85], with applications detailed for instance in [14] for
phonons in solid-state physics or in [155] for quantum chemistry. See also [45] for a mathematical analysis
of DFPT within the reduced Hartree–Fock approximation. Although the practical implementation of
first- and higher-order derivatives computed by DFPT in electronic structure calculation software can
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be greatly simplified by Automatic Differentiation techniques [86], the efficiency of the resulting code
crucially depends on the efficiency of a key building block: the computation of the linear response δρ of
the ground-state density to an infinitesimal variation δV of the total Kohn–Sham potential. Achieving
efficient calculations of δρ for metallic systems is the main subject of Chapter 4, and, before presenting
the results of this chapter, we briefly introduce the framework in which we work.

1.7.1 The Kohn–Sham equations at finite temperature

For the sake of clarity, we detail the equations for a periodic system of Nel electrons without interac-
tions, at finite temperature T > 0 and taking spin into account:

Hϕn = εnϕn, ε1 ⩽ ε2 ⩽ · · · , ⟨ϕn, ϕm⟩L2
#

= δnm, ρ(r) =
+∞∑
n=1

fn|ϕn(r)|2,
+∞∑
n=1

fn = Nel, (1.7.1)

where H = − 1
2 ∆ + V . Here, every orbital ϕn has occupation number fn and energy εn. At finite

temperature T > 0, fn is a real number in the interval [0, 2] and we have

fn = f

(
εn − εF

T

)
, (1.7.2)

where f is a fixed analytic smearing function (for instance f(x) = 2/(1 + ex) is twice the Fermi–Dirac
distribution). The Fermi level εF is then uniquely defined by the constraint

∑+∞
n=1 fn = Nel. When T → 0,

f((· − εF)/T )→ 2× 1{·<εF} in the sense of distributions, and only the first Np = Nel/2 energy levels for
which εn < εF are occupied by two electrons of opposite spins (see Figure 1.10): fn = 2 for n ⩽ Np and
fn = 0 for n > Np. The need to introduce a numerical temperature T (usually much higher than the
physical temperature) arises when dealing with the Brillouin zone discretization of metallic systems, see
[39, 125] for more details.
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Figure 1.10 – The occupation numbers fn for T = 0 (left) and T > 0 (right).

Finally, note that only a finite number N of orbitals needs to be computed. At zero temperature,
which is the relevant choice for insulators, N is the number of electron pairs and the N first energy levels
are occupied by two electrons of opposite spins (fn = 2). At finite temperature, which is the right setting
for metals, every orbital has a fractional occupation number fn ∈ [0, 2] but one usually assumes that N
can be chosen so that the orbitals ϕn with n > N have a small enough occupancy to be discarded from
the computations.

1.7.2 Density functional perturbation theory

DFPT aims at computing the response δρ of the ground-state density with respect to an infinitesimal
perturbation of the external potential δV . Denoting by F the potential-to-density map which, given a
potential V , associates the density ρ satisfying (1.7.1), we write ρ = F (V ). Then, we obtain that

δρ = F ′(V ) · δV, (1.7.3)

where F ′(V ) is the derivative of F computed at V . In DFT, this operator is known as the independent-
particle susceptibility operator, denoted by χ0. It maps δV to the first-order variation of the density δρ.
Denoting Amn := ⟨ϕm, Aϕn⟩L2

#
for a given operator A, it holds

δρ(r) = (χ0δV )(r) =
+∞∑
n=1

+∞∑
m=1

fn − fm
εn − εm

ϕ∗
n(r)ϕm(r)(δVmn − δεFδmn), (1.7.4)
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where δmn is the Kronecker delta, δεF is the induced variation in the Fermi level and we use the following
convention

fn − fn
εn − εn

= 1
T
f ′
(
εn − εF

T

)
= f ′

n. (1.7.5)

This formula is formally derived in [14]. We refer also to [44, 98, 125], where this formula is rigourously
proven using contour integrals. Charge conservation leads to

ˆ
Ω
δρ(r)dr = 0 ⇒ δεF =

∑+∞
n=1 f

′
nδVnn∑+∞

n=1 f
′
n

. (1.7.6)

The infinite sums in (1.7.4) make this formula unusable as it stands. However, recalling that in
practice, only a finite number N of orbitals are computed, one can represent δρ using variations of the
occupied orbitals (δϕn)1⩽n⩽N and their occupation numbers (δfn)1⩽n⩽N , along with appropriate ansatz
and gauge choices. Indeed, a formal differentiation of the relation ρ(r) =

∑N
n=1 fn|ϕn(r)|2 yields the

ansatz

δρ(r) =
N∑
n=1

2fn × Re (ϕ∗
n(r)δϕn(r)) + δfn|ϕn(r)|2. (1.7.7)

Due to the rotational invariance of the orbitals, there are different ways of choosing the δϕn’s and δfn’s,
that are all valid as long as the resulting δρ coincides with (1.7.4). A gauge choice therefore has to be
made here. This question is the main subject of Chapter 4, which we detail below, after a short remark
on interacting systems.
Remark 1.4 (Self-consistent response and links with Chapter 2). We briefly mention the case of a system
with interactions: ρ satisfies the fixed-point equation

ρ = F (V + VHxc(ρ)) (1.7.8)

where VHxc(ρ) is the Hartree-exchange-correlation potential. The chain rule yields the implicit equation

δρ = F ′(V + VHxc(ρ)) · (δV +KHxc(ρ)δρ), (1.7.9)

where the Hartree-exchange-correlation kernel KHxc(ρ) is the derivative of the map ρ 7→ VHxc(ρ). It is
directly linked to the second derivative of the Kohn–Sham energy functional, and thus to the operator
K∗ we introduced in Chapter 2 (see Section 1.5.4). In addition, χ0 is also related to −Ω−1

∗ at zero
temperature (see (1.5.11)). This gives a natural extension of Ω∗ for metallic systems, see [98]. The
response of the density to the variation of the total potential is finally computed through

δρ = χ0(δV +KHxc(ρ)δρ) ⇔ δρ = (1− χ0KHxc(ρ))−1
χ0δV, (1.7.10)

where 1− χ0KHxc(ρ) can be proved to be invertible similarly to 1 + Ω−1
∗ K∗. Computing δρ can thus be

done using iterative solvers to invert 1 − χ0KHxc(ρ), which requires efficient and robust applications of
the linear operator χ0, giving another motivation for Chapter 4.

1.7.3 Calculations of response properties for metals – Results from Chapter 4

We propose in Chapter 4 a new approach which splits δϕn into two contributions:

δϕn = δϕPn + δϕQn , (1.7.11)

where, for n ⩽ N , P is the orthogonal projector onto Span (ϕm)1⩽m⩽N , Q = 1− P and

• δϕPn ∈ Ran (P ) = Span (ϕm)1⩽m⩽N are the occupied-occupied contributions, which can be directly
computed via a sum-over-state formula. Note that this contribution vanishes at zero temperature
but, when dealing with finite temperature, gauge choices have to be made;

• δϕQn ∈ Ran (Q) = Span (ϕm)m>N are the unoccupied-occupied contributions. These contributions
cannot be computed similarly to δϕPn but one can show that δϕQn is the unique solution of the
so-called Sternheimer equation [188]:

Q(H − εn)QδϕQn = −QδV ϕn. (1.7.12)

As n ⩽ N , this equation is well-posed but possibly very ill-conditioned for n = N if εN+1 − εN is
too small.
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With regard to the calculation of the first contribution δϕPn , we identify in Chapter 4 that the gauge
choice is based on Γmn = ⟨ϕm, fnδϕn⟩L2

#
for 1 ⩽ n,m ⩽ N . We detail them in Chapter 4 and present

a summary in Figure 1.11. We review in particular the gauge choices made in Quantum Espresso (QE)
[14, 78] and Abinit [84, 175]. We also introduce the minimal gauge, which aims at minimizing the
contributions ⟨ϕm, δϕn⟩L2

#
= Γmn/fn and is implemented by default in DFTK. From (1.7.4), we can see

that the growth of δρ with respect to δV cannot be smaller than that of f ′
n(δVnn − δεF) with respect

to δV , which is of order maxx∈R
1
T |f

′(x)| = 1
2T . This is the intrinsic limit on the conditioning of the

problem and this bound is also achieved by all the gauge choices but the orthogonal one, which is inspired
from the zero temperature case. Indeed, all the gauge choices except the orthogonal one are of the form
Γmn = αmn∆mn with αmn ∈ [0, 1] and

∆mn = fn − fm
εn − εm

δVmn. (1.7.13)

They thus satisfy
|Γmn| ⩽ |∆mn| ⩽ max

x∈R

1
T
|f ′(x)||δVmn| =

1
2T |δVmn|, (1.7.14)

and if we make an error on δV , it is amplified at most by a factor of the order 1
2T .
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Figure 1.11 – Comparing different gauge choices for δVmn = 1 for any m, n. Except the orthogonal gauge, all
contributions Γmn are bounded by maxx∈R

1
T

|f ′(x)| = 1
2T

.

We now detail the computation of δϕQn . The same strategy as the one we used for δϕPn cannot be
applied as this time the ϕm’s for m > N are unknown. However, some of them are. These Nex extra
bands can be divided into two categories:

• some have been discarded because they have a too small occupation number but they are exact
eigenvectors (up to the solver tolerance). This is typically the case for the lower-energy extra states.

• the others (typically the higher-energy extra bands) have not been fully converged but have been
used to enhance the successive diagonalizations of the SCF algorithm. Adding such unconverged
extra bands is also not very expensive when the diagonalizations are performed with block-based
algorithms, such as LOBPCG [115].

This additional information can be used to accelerate the computation of δϕQn as follows. A direct
approach solves the Sternheimer equation

Q(H − εn)QδϕQn = −QδV ϕn, (1.7.15)

with iterative solvers restricted to Ran (Q). However, as we already mentioned, conditioning issues can
arise for n = N if the difference εN+1 − εN is too small. We propose here a new solution to overcome
this issue, based on a Schur complement and the usage of the extra unoccupied states. We assume that
the number of computed bands N + Nex is larger than the number of occupied states N and that we
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trust Φ = (ϕ1, . . . , ϕN ) but not Φ̃ = (ϕ̃N+1, . . . , ϕ̃N+Nex) to be eigenvectors. We assume in addition
that (Φ, Φ̃) forms an orthonormal family and that ⟨Φ̃, HΦ̃⟩L2

#
is a diagonal matrix whose elements,

denoted by Eex = (ε̃n)n=N+1,...,N+Nex , are not all exact eigenvalues. This is for instance the case if the
successive eigenproblems of the SCF are solved with the LOBPCG algorithm [115]. Then, Q(H − εn)Q
can be written in the decomposition Ran (Q) = Ran (T )⊕Ran (R) with T the orthogonal projector onto
Span (ϕ̃m)N<m⩽N+Nex and R = Q− T , as

Q(H − εn)Q =
(
Eex − εn RHT
THR R(H − εn)R

)
(1.7.16)

where εn does not appear in the off diagonal terms because RT = 0. See Figure 1.12 for a graphical
representation.

×× ×××
1

×
N

P

×
N + 1

T R
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Q

×
N +Nex

×××

Figure 1.12 – Graphical representation of the Schur decomposition to solve the Sternheimer equation. P is the
orthogonal projector onto the occupied states. Q is the orthogonal projector onto the unoccupied states, and we
decompose is as the sum of T (extra states which we can use) and R (remaining states).

Therefore, the Sternheimer equation (1.7.15) can be solved via a Schur complement method, where
the inversion of Eex − εn is free because it is a diagonal matrix, and R(H − εn)R is hopefully better
conditioned than Q(H − εn)Q for n = N as εN+Nex+1 − εN > εN+1 − εN . This approach is tested in
Chapter 4 on various systems. It reveals itself to be particularly efficient on the numerically challenging
Heusler compounds: these transition metals behave like a metal on one spin channel and like an insulator
on the other. Response calculations are thus particularly though for such systems. Using the Schur
complement to compute δϕQn in these cases reduces the total number of Hamiltonian applications by
40%. We plot in Figure 1.13 the convergence of the Sternheimer solver, with and without the Schur
complement, for one particular k-point (the behaviour being similar for all the others).
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Figure 1.13 – Resolution of the Sternheimer equation (1.7.15) with and without the Schur complement method
for a particular k-point of Fe2MnAl (each line correspond to the convergence of the solver for a given eigenvalue εn,
n ⩽ N , the slowest one being associated with the highest selected eigenvalue εN ). When solving the Sternheimer
equation for n = N with a direct method, a plateau clearly appears where the solver encounters difficulties to
converge the first eigenvectors because of the small gap εN+1 − εN .

In summary, there are two main contributions in Chapter 4. First, we derive a new common frame-
work for the computation of the response δρ to an infinitesimal perturbation δV at finite temperature.
Relying on the independent-particle susceptibility χ0, we show how δρ can be represented by perturba-
tions of the orbitals δϕn and the occupation numbers δfn. Then, we split δϕn = δϕPn + δϕQn into two
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contributions. We show how the occupied-occupied contributions δϕPn can be explicitly computed with
a sum-over-state formula while ensuring numerical stability. Regarding δϕQn , it can be computed as the
solution of a linear system, called the Sternheimer equation, which is possibly very ill-conditioned at finite
temperature. Using extra information on additional bands that were discarded because of their small
occupation numbers, we propose to improve the resolution of this linear system via a Schur complement
method. This leads to very satisfying results where the number of Hamiltonian applications (which is
the most costly step in the calculation for small to medium-sized systems) is reduced by 40%, even for
numerically challenging systems. We also address in this chapter how to choose appropriately the number
of extra bands, paving the way for future works.
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2.1 Introduction

This chapter is concerned with the convergence behaviour of algorithms to solve the subspace opti-
mization problem

min
{
E(P )

∣∣∣ P ∈ RNb×Nb , P 2 = P = P ∗, Tr(P ) = N
}

(2.1.1)

consisting of optimizing a C2 function E : RNb×Nb → R over the set of rank-N orthogonal projectors P .
Here P ∗ denotes the adjoint (transpose) of P . This problem can also be reformulated as

min
{
E

(
N∑
i=1

ϕiϕ
∗
i

) ∣∣∣∣∣ ϕi ∈ RNb , ϕ∗
iϕj = δij ∀ i, j ∈ {1, . . . , N}

}
, (2.1.2)

using an orthonormal basis (ϕi)i=1,...,N for the subspace Ran (P ). This problem is of interest in a number
of contexts, such as matrix approximation, computer vision [1], and electronic structure theory [32, 95,
133, 134, 144, 179], the latter of which being the main motivation for this work.

Let H(P ) = ∇E(P ). The first-order conditions for problem (2.1.1) is

PH(P )(1− P ) = (1− P )H(P )P = 0.

Up to an appropriate choice for the orthonormal basis (ϕi)i=1,...,N of Ran (P ), this yields

H(P )ϕi = εiϕi, (2.1.3)

which reveals an alternative interpretation of this problem as a nonlinear eigenvector problem (to be
distinguished from nonlinear eigenvalue problems of the form A(ε)ϕ = 0, where A : R → RNb×Nb). In
the case when E(P ) = Tr(H0P ) for a fixed symmetric matrix H0, one recovers the classical eigenvalue
problem H0ϕi = εiϕi. At a minimizer of (2.1.1), the (εi)i=1,...,N are the lowest eigenvalues of H0, counting
multiplicities.

Problems of the form (2.1.1) are found in the Hartree–Fock and Kohn–Sham theories of electronic
structure [95, 144], both approximations of the many-body Schrödinger equation. In this context, the
ϕi are (discretized) orbitals, the projector P is the density matrix, and the energy E(P ) includes lin-
ear contributions from the kinetic and external potential energy of the electrons, as well as nonlinear
terms arising from electron-electron interaction. Another notable problem of this form is the nonlinear
Schrödinger or Gross–Pitaevskii equation for Bose–Einstein condensates [12], where N = 1. In all these
cases, the first-order condition (2.1.3) is interpreted as a self-consistent or mean-field equation: the par-
ticles behave as independent particles in an effective Hamiltonian H(P ) (also known as the Fock matrix)
involving the mean-field they create. In the rest of this chapter, we will work on the formulation (2.1.1)
without specifying E for generality.

The minimization problem (2.1.1) is compact but nonconvex: there exists at least one minimizer, but
the minimizer might not be unique, and local minima might not be global ones. Solving this optimization
problem is of considerable practical interest, and algorithms for doing so date back to the early days of
quantum mechanics [90]. The first introduced and still most popular approach is the self-consistent field
(SCF) method, which, in its original version [146, 176], works as follows: if P k is the current iterate of
the algorithm, P k+1 is found by solving (2.1.3) for the fixed matrix H(P k):

H(P k)ϕki = εki ϕ
k
i , (ϕki )∗ϕkj = δij

with the εki sorted in nondecreasing order, and building P k+1 as

P k+1 =
N∑
i=1

ϕki (ϕki )∗.

This algorithm assumes the Aufbau property, which is that at a minimum P∗ we have P∗ =
∑N
i=1 ϕiϕ

∗
i

with ϕi a system of orthogonal eigenvectors associated with the lowest N eigenvalues of H(P∗). This
property holds for the (spin-unconstrained) Hartree–Fock model [9] and the Gross–Pitaevskii models
without magnetic field [30], usually holds for molecular systems in the Kohn–Sham model, but does not
hold in general for Gross–Pitaevskii models with strong magnetic fields.
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This basic procedure converges for systems where the nonlinearity is weak, but fails to converge
otherwise (see [41] for a comprehensive mathematical analysis of this behaviour when the functional E is
a sum of a linear and a quadratic term in P , which is the case for the Hartree–Fock model). A solution
is to damp this procedure, and mix the iterates to accelerate convergence. This gives rise to a variety of
SCF algorithms, among which Broyden-like and Anderson-like mixing algorithms [108, 143, 169, 187], the
Direct Inversion in the Iterative Space (DIIS) algorithm [118, 167, 168], the Optimal Damping Algorithm
[40] (ODA), and the Energy-DIIS (EDIIS) algorithm combining the latter two approaches [119].

A second class of algorithms solves the minimization problem (2.1.1) directly. The minimization
set {P ∈ RNb×Nb , P 2 = P ∗ = P, TrP = N} is diffeomorphic to the Grassmann manifold of the N -
dimensional vector subspaces of RNb . This set is naturally equipped with the structure of a Riemannian
manifold, and this allows the use of Riemann optimization algorithms [1, 72]. Direct minimization
algorithms are preferred for the Gross–Pitaevskii model with magnetic fields [6, 60, 94, 97], for which the
Aufbau principle is not satisfied in general. Gradient-type [3, 57, 151, 196, 207], Newton-type [11, 49, 209],
and trust-region methods have also been designed to solve (2.1.1) for larger values of N . At the time
of writing, direct minimization algorithms are less popular than SCF algorithms in electronic structure
calculation, where N can be very large, but it is not clear whether this is for sound scientific reasons
or because SCF algorithms have been implemented and optimized for decades in the main production
codes, which has not been the case for direct minimization algorithms.

While the convergence of several SCF and direct minimization algorithms has been analysed from
a mathematical point of view (see e.g. [54, 124, 138, 174, 194, 206] and references therein), the two
approaches have not been compared in a systematic way to our knowledge. The purpose of this chapter
is to contribute to fill this gap, by focusing on very simple representatives of each class, namely the
damped SCF iteration and the gradient descent. We emphasize that neither of these two algorithms
is a practical choice as is. The SCF iteration should be accelerated (for instance using the Anderson
acceleration technique), and the gradient information in direct minimization methods should rather be
used as part of a quasi-Newton method (such as the limited-memory BFGS algorithm [1]). Depending on
the exact problem at hand, all these methods should be preconditioned to avoid issues related to small
mesh sizes (which leads to a divergence of the kinetic energy term) and/or large computational domains
(which can lead to a divergence of the Coulomb energy, or the confining potential). We refer to [203]
for a recent review in the context of the Kohn–Sham equations for solids. Rather, in this chapter, we
aim to focus on the very simplest representative of each general strategy (SCF and direct minimization).
The investigation of these two basic algorithms is informative on the strengths and weaknesses of the two
classes, and is a first step in the analysis of more complex methods.

The chapter is organized as follows. In Section 2.2, we recall some results about optimization on
Grassmann manifolds, in particular the first and second-order optimality conditions, and prove prepara-
tory lemmas. In Section 2.3, we present the two algorithms that are in the scope of this chapter: a
fixed-step gradient descent and a damped SCF algorithm. We prove their local convergence as long as
the step is small enough and we derive convergence rates. We find that the convergence rates depend
on the spectral radius of operators (acting on RNb×Nb) of the form 1 − βJ , with β the fixed step and
J = Ω∗ + K∗ for the gradient descent, J = 1 + Ω−1

∗ K∗ for the SCF algorithm, where the operators Ω∗
and K∗ are specified in the next section. Let us just mention at this stage that the lowest eigenvalue
of Ω∗ is equal to the spectral gap between the N th and (N + 1)st eigenvalues of H(P∗), allowing us to
analyse the convergence rates of the algorithms in terms of natural quantities of the problem. This also
shows that the damped SCF algorithm can be seen as a matrix splitting of the fixed-step gradient descent
algorithm.

In Section 2.4, we compare the two algorithms on several test problems. First, we focus on a toy
model for which we can easily tune the gap and observe some fundamental differences between SCF and
direct minimization algorithms, in agreement with the mathematical results established in Section 2.3.
We also provide an example of chaos in SCF iterations, complementing the results of [41, 124] in the case
of a nonquadratic objective functional E. Then, we analyse a 1D Gross–Pitaevskii model (N = 1) and
its fermionic counterpart for N = 2, for which we investigate the behaviour of the algorithms when the
gap closes. We conclude with an example from electronic structure calculation: a silicon crystal, in the
framework of Kohn–Sham DFT, where we show in particular that accelerated SCF algorithms are less
sensitive to small gaps than the simple damped SCF. Finally, in Section 2.5 we draw conclusions and
outline perspectives for future work.
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2.2 Optimization on Grassmann manifolds

We focus in this chapter on the case of real symmetric matrices, but the study can be easily extended
to complex hermitian matrices. Let H := RNb×Nb

sym be the vector space of Nb×Nb real symmetric matrices
endowed with the Frobenius inner product ⟨A,B⟩F := Tr(AB). Let

M :=
{
P ∈ H

∣∣ P 2 = P
}

and MN :=
{
P ∈ H

∣∣ P 2 = P, Tr(P ) = N
}
.

From a geometrical point of view,M is a compact subset of H with Nb + 1 connected componentsMN ,
N = 0, . . . , Nb, each of them being characterized by the value of Tr(P ), namely the rank of the orthogonal
projector P , and being diffeomorphic to the Grassmann manifold Grass(N,Nb) [1]. From now on, we fix
the number of electrons N and we seek the local minimizers of the problem

min
P∈MN

E(P ), (2.2.1)

where E : H → R is a discretized energy functional, for which some examples are given below.

Example 2.1. As an example, we study a discrete Gross–Pitaevskii model in Section 2.4.4. Other
models from electronic structure can be considered, such as the discretized Hartree–Fock or Kohn–Sham
models, where the energy is of the form

E(P ) := Tr(H0P ) + Enl(P )

with H0 being the core Hamiltonian (representing the kinetic energy and the external potential) and Enl
a nonlinear energy functional depending on the model (representing the interaction between electrons).
For instance, for the Hartree–Fock model,

Enl(P ) := 1
2Tr(G(P )P ) where (G(P ))ij :=

Nb∑
k,l=1

AijklPkl ∀ i, j = 1, . . . , Nb,

with A a symmetric tensor of order 4. For more details on these models or electronic structure in general,
we refer to [32, 134, 179].

In plane-wave, finite differences, finite elements or wavelets electronic structure calculation codes, the
size Nb of the discretized space is in practice much larger than the number N of electrons. Therefore, it
is not practical to store and manipulate the (dense) matrix P . Instead, algorithms work on the orbitals
(ϕi)i=1,...,N introduced in (2.1.3). The density matrix P is then recovered as

P =
N∑
i=1

ϕiϕ
∗
i .

All the results in this chapter are presented in the density matrix framework. However, the algorithms
we study can be expressed in a way that avoids ever forming the density matrix. We refer to [203] for
details.

We will need two assumptions for our results.

Assumption 2.1. The energy functional E : H → R is of class C2 (twice continuously differentiable).

Assumption 2.1 is true for Hartree–Fock models. For Kohn–Sham models, it is true when the density
ρ =

∑N
i=1 |ϕi|2 is uniformly bounded away from zero, which is the case for instance in condensed phase

systems. Most of the results presented in this chapter are local in nature, and therefore this assumption
can be relaxed to local regularity.

Assumption 2.2. P∗ ∈MN is a nondegenerate local minimizer of (2.2.1) in the sense that there exists
some η > 0 such that, for P ∈MN in a neighbourhood of P∗, we have

E(P ) ⩾ E(P∗) + η∥P − P∗∥2
F.
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It is very hard in most practical situations to check this assumption, but it seems to be verified in
practice. Notable exceptions are systems invariant with respect to continuous symmetry groups, in which
case E(P ) = E(P∗) for all P in the orbit of P∗ along the symmetry group. In this case, the assumption
cannot be true, and ∥P − P∗∥F must be replaced by the distance from P to the orbit of P∗. Our results
can be extended to this case up to quotienting H by the symmetry group.

Throughout the chapter, we will use the following notation:

• H(P ) := ∇E(P ) is the gradient, and H∗ := H(P∗);

• K(P ) := ΠP∇2E(P )ΠP is the Hessian projected onto the tangent space at P , and K∗ := K(P∗)
(the projection ΠP is defined below in Proposition 2.1).

2.2.1 First-order condition

To study the first-order optimality conditions, we start by recalling some classical results about the
geometry of the manifold MN .

Proposition 2.1. MN is a smooth real manifold and its tangent space TPMN at P ∈MN is given by

TPMN = {X ∈ H | PX +XP = X, Tr(X) = 0} = {X ∈ H | PXP = (1− P )X(1− P ) = 0}.

The orthogonal projection ΠP on TPMN for the Frobenius inner product is

∀ X ∈ H, ΠP (X) = PX(1− P ) + (1− P )XP = [P, [P,X]], (2.2.2)

where [A,B] := AB −BA.

Proof. The tangent space is given by the kernel of dg(P ) where g(P ) = P 2 − P is the constraint which
defines the manifold. A simple computation shows that

∀ X ∈ H, dg(P )X = PX +XP −X, (2.2.3)

which gives the first definition of the tangent space. The second one follows by multiplying by P or
(1− P ) on the right and the left in dg(P )X = 0 and using that P 2 = P ⇔ P (1− P ) = 0. The equalities
(2.2.2) straightforwardly follow from the decomposition (2.2.4) below.

Using the fact that H = Ran (P ) ⊕ Ran (1 − P ) and the induced decomposition of P ∈ MN and
X ∈ H as

P =
[
IN 0
0 0

]
, X =

[
(X)oo (X)ov
(X)vo (X)vv

]
, (2.2.4)

the projection ΠP is given by

ΠP (X) =
[

0 (X)ov
(X)vo 0

]
.

Here the subscript “o” (resp. “v”) stand for occupied (resp. virtual).

The first-order optimality condition at P∗ is ΠP∗(H∗) = 0, which can be formulated as follows:

First-order optimality condition: P∗H∗(1− P∗) = (1− P∗)H∗P∗ = 0. (2.2.5)

Note that this condition can be rewritten as [H∗, P∗] = 0, showing that H∗ and P∗ can be codiagonalized.
Let (ϕk)1⩽k⩽Nb be an orthonormal basis of eigenvectors of H∗ associated with the eigenvalues (εk)1⩽k⩽Nb

sorted in ascending order. Then P =
∑
i∈I ϕiϕ

∗
i , where I ⊂ {1, . . . , Nb}, |I| = N is the set of occupied

orbitals. The minimizer P∗ is said to satisfy

• the Aufbau principle if I = {1, . . . , N};

• the strong Aufbau principle if I = {1, . . . , N} and if in addition εN < εN+1, in which case P∗ =∑N
i=1 ϕiϕ

∗
i .
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2.2.2 Second-order condition

We derive here the second-order optimality condition from the nondegeneracy of the minimum (As-
sumption 2.2).

Let X ∈ TP∗MN , I be a real interval containing 0 and γ : I → MN be a smooth path such that
γ(0) = P∗ and γ̇(0) = X. An example of a possible γ is given in Section 2.4.1. We expand

E(γ(t)) = E(P∗) + t⟨H∗, X⟩F + t2

2

(
⟨H∗, γ̈(0)⟩F +

〈
X,∇2E(P∗)X

〉
F

)
+ o(t2)

= E(P∗) + t2

2

(
⟨H∗, γ̈(0)⟩F + ⟨X,K∗X⟩F

)
+ o(t2)

as H∗ is orthogonal to TP∗MN at the minimum. Differentiating the relation γ(t)2 = γ(t) at t = 0, we get

P∗γ̈(0) + γ̈(0)P∗ + 2X2 = γ̈(0),

from which we obtain the following two relations on the diagonal blocks of γ̈(0) in the decomposition
(2.2.4):

1
2(γ̈(0))oo = −

(
X2)

oo = −(X)ov(X)vo,
1
2(γ̈(0))vv =

(
X2)

vv = (X)vo(X)ov.

Thus, since (H∗)vo = (H∗)∗
ov = 0 at the minimum, we have

⟨H∗, γ̈(0)⟩F = Tr
([

(H∗)oo 0
0 (H∗)vv

][
(γ̈(0))oo (γ̈(0))ov
(γ̈(0))vo (γ̈(0))vv

])
= 2Tr

(
− (H∗)oo(X)ov(X)vo

)
+ 2Tr

(
(H∗)vv(X)vo(X)ov

)
= 2Tr

(
− (X)vo(H∗)oo(X)ov

)
+ 2Tr

(
(X)ov(H∗)vv(X)vo

)
= Tr

(
X(Ω∗X)

)
,

where the operator Ω∗ : TP∗MN → TP∗MN is defined as

Ω∗X := P∗X(1− P∗)H∗ −H∗P∗X(1− P∗) + sym

=
[

0 (X)ov(H∗)vv − (H∗)oo(X)ov
(H∗)vv(X)vo − (X)vo(H∗)oo 0

]
,

(2.2.6)

where “sym” stands for the transpose of the previous expression. Introducing the operator

Ω∗ + K∗ : TP∗MN → TP∗MN , (2.2.7)

one gets in the end

E(γ(t)) = E(P∗) + t2

2 ⟨X, (Ω∗ + K∗)X⟩F + o(t2).

At the critical point P∗, the second-order expansion of E(γ(t)) only depends on X = γ̇(0), a common
feature in constrained optimization. The operator Ω∗ + K∗ can be interpreted as the Hessian of the
energy on the manifold, or alternatively as the partial Hessian of the Lagrangian on H. The operator Ω∗
represents the influence of the curvature of the manifold on the Hessian of E.

As P∗ is a nondegenerate minimum in the sense of Assumption 2.2, we have the

Second-order optimality condition: ∀ X ∈ TP∗MN , ⟨X, (Ω∗ + K∗)X⟩F ⩾ η∥X∥
2
F. (2.2.8)

Remark 2.1 (Structure of Ω∗ and link with the Aufbau principle). Let P∗ be a nondegenerate minimizer
of (2.2.1) in the sense of Assumption 2.2. Denoting by Akl the component along ϕkϕ∗

l of the matrix A ∈ H,
the operator Ω∗ defined in (2.2.6) can alternatively be defined by

∀ X ∈ TP∗MN , (Ω∗X)ia = (εa − εi)Xia and (Ω∗X)ai = (εa − εi)Xai for i ∈ I, a /∈ I,

where we have used the standard notation in chemistry of using the subscripts i for occupied and a for
virtual orbitals (I is the set of occupied orbitals).
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In the case when E(D) = Tr(HD) for some fixed symmetric matrixH ∈ H (linear eigenvalue problem),
then K∗ = 0 and so (2.2.8) is equivalent to the Aufbau principle. This equivalence does not hold true in
general for nonlinear models: (2.2.8) is independent of the Aufbau principle, and η is unrelated to the
gap ν = mina/∈I εa −maxi∈I εi (equal to the lowest eigenvalue of the operator Ω∗). However, in specific
cases, such as the reduced Hartree–Fock or Gross–Pitaevskii model, where K∗ ⩾ 0, we have η ⩾ ν and a
positive gap is a sufficient (but not necessary) condition for optimality.

Remark 2.2 (Link with the Liouvillian). Another way to understand Ω∗ is to use the Liouvillian LH∗

associated to H∗, which is defined by:

∀ A ∈ H, LH∗A := [H∗, A].

The action of LH∗ has a simple expression in the eigenvector decomposition (εk, ϕk)1⩽k⩽Nb of H∗:

∀ 1 ⩽ k, l ⩽ Nb, LH∗(ϕkϕ∗
l ) = (εk − εl)ϕkϕ∗

l . (2.2.9)

Thus, we have
∀ i ∈ I, a /∈ I, Ω∗(ϕiϕ∗

a + ϕaϕ
∗
i ) = (εa − εi)(ϕiϕ∗

a + ϕaϕ
∗
i ).

Hence, one can easily check that, using again the decomposition (2.2.4), we have

∀ X ∈ TP∗MN , Ω∗X = −[P∗,LH∗X] = −[P∗, [H∗, X]]. (2.2.10)

This definition also provides a canonical way to extend the operator Ω∗, originally defined on TP∗MN ,
to the whole space H.

2.2.3 Fixed-point iterations on a manifold

Finally, we state a general abstract result that we will use to study the convergence of optimization
algorithms on manifolds.

Lemma 2.1. LetM be a smooth finite dimensional Riemannian manifold. Let P∗ ∈M and f : U →M
be a continuously differentiable mapping on a neighbourhood U of P∗ such that f(P∗) = P∗. Let df(P∗) :
TP∗M → TP∗M be the derivative of f at P∗. If df(P∗) verifies r(df(P∗)) < 1 where r(df(P∗)) is the
spectral radius of df(P∗), then, for P 0 close enough to P∗, the fixed-point iteration P k+1 = f(P k) linearly
converges to P∗ with asymptotic rate r(df(P∗)), in the sense that for all θ > 0 there exists Cθ > 0 such
that, for all P 0 close enough to P∗,∥∥P k − P∗

∥∥
F ⩽ Cθ(r(df(P∗)) + θ)k

∥∥P 0 − P∗
∥∥

F.

Proof. We use the notation presented in [148, Chapter 1]. Up to a restriction of U to a smaller
neighbourhood of P∗, there exists a neighbourhood V of 0 in TP∗M and g : V → U a diffeomorphic
parametrization of the manifold such that g(0) = P∗ and dg(0) = Id (take for instance the restriction
to V of the exponential map). Therefore, as f is continuously differentiable, there exists a neighbour-
hood Ṽ ⊂ V of 0 in TP∗M such that F := g−1 ◦ f ◦ g : Ṽ → V is a continuously differentiable map
with fixed-point 0 and dF (0) = df(P∗). As r(dF (0)) = r(df(P∗)) < 1, we can find a neighbourhood
V ′ ⊂ V of 0 in TP∗M such that F is a contraction in V ′ for some norm ∥·∥θ, with contraction fac-
tor r(df(P∗)) + θ, θ > 0 (see [105] for more details). Therefore, we can apply the Banach fixed-point
theorem to F and we get that, for x0 close enough to 0, xk+1 = F (xk) converges to 0. Finally, for
P 0 = g(x0), P k+1 = g(xk+1) = g(F (xk)) = f(g(xk)) = f(P k) converges to P∗ = g(0), with asymptotic
rate r(df(P∗)).

2.3 Algorithms and analysis of convergence

2.3.1 Direct minimization

The gradient descent algorithm consists in following the steepest descent direction with a fixed step
β at each iteration point. As the iterations are constrained to stay on the manifold, we have to
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1. project the gradient on the tangent space with ΠPk to bring the steepest descent line P k − βΠPk

(
∇E(P k)

)
back to the manifold at first-order;

2. retract the steepest descent line defined in the tangent space onto the manifoldMN by a nonlinear
retraction R mapping a neighbourhood of MN in H to MN .

An example of retraction is given in Section 2.4.1 and we will assume that the retraction R satisfies

Assumption 2.3. R : H → H is of class C2 and for all P ∈MN and X ∈ H small enough,

R(P +X) ∈MN and R(P +X) = P + ΠP (X) +O(X2).

These two successive operations are sketched in Figure 2.1 and the gradient descent algorithm is
presented in Algorithm 2.1.

MN

TPkMN

−∇E(P k)

ΠPk(−∇E(P k))

•P k+1

R

P k
•

Figure 2.1 – Projection on the tangent space for the gradient descent, and retraction to the manifold.

Algorithm 2.1 – Gradient descent
Data: P 0 ∈MN

while convergence not reached do
P k+1 := R

(
P k − βΠPk

(
∇E(P k)

))
;

end

At the continuous level, this algorithm can be seen as the discretization of the flow Ṗ = −ΠP∇E(P ).
Note that, by the use of the retraction R and Assumption 2.3, the projection step has no influence on
the convergence of the algorithm for β small. Indeed, by Assumption 2.3,

∀ P ∈MN , R(P − βΠP (∇E(P ))) = P − βΠP (ΠP (∇E(P ))) +O(β2)
= P − βΠP (∇E(P )) +O(β2)

and thus the first-order expansion is the same with or without the projection step. The reason we use
this projection step is that it is convenient to interpret ΠPk∇E(P k) as a residual.

The following theorems state that, for β small enough, Algorithm 2.1 globally converges in the sense
that ΠPk∇E(P k)→ 0 and locally converges in the sense that P k → P∗ if P 0 is close enough to P∗.

Theorem 2.1. Let E : H → R satisfy Assumption 2.1 and R : H → H satisfy Assumption 2.3. There
exists β0 > 0 such that for all 0 < β ⩽ β0 and all P 0 ∈MN , the iterations

P k+1 := R
(
P k − βΠPk

(
∇E(P k)

))
satisfy the following properties:

1. (E(P k))k∈N is a nonincreasing sequence converging to some critical value Ec of E on MN ;
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2. when k goes to infinity, ΠPk∇E(P k)→ 0, ∥P k+1 − P k∥F → 0 and d(P k, Ac)→ 0 where Ac is one
of the connected components of C(Ec) := {P ∈MN |E(P ) = Ec and ΠP (∇E(P )) = 0} .

Proof. As E : H → R and R : H → H are C2, and MN is compact, we can use the expansion of
Assumption 2.3 and obtain that there exists a constant C ∈ R+ such that for all 0 ⩽ β ⩽ 1,

∀ k ∈ N, E(P k+1) ⩽ E(P k)− β
∥∥ΠPk∇E(P k)

∥∥2
F + Cβ2∥∥ΠPk∇E(P k)

∥∥2
F

Therefore, we have for β > 0 small enough,

∀ k ∈ N, E(P k+1) ⩽ E(P k)− β

2
∥∥ΠPk∇E(P k)

∥∥2
F.

This shows that the sequence (E(P k))k∈N is nonincreasing. As E is continuous on the compact setMN ,
(E(P k))k∈N is bounded and hence converges to some Ec ∈ R. Moreover,∑

k∈N

∥∥ΠPk∇E(P k)
∥∥2

F <∞,

which implies that ΠPk∇E(P k)→ 0 when k →∞. It follows that ∥P k+1 − P k∥F → 0 when k →∞.

Let B be the nonempty compact set of accumulation points of (P k)k∈N. By continuity of E and
P 7→ ΠP∇E(P ), it follows that B ⊂ C(Ec). Assuming that d(P k, B) does not go to zero, we can extract
a subsequence at finite distance of B which converges to a point in B, a contradiction. Assume that B
is disconnected: it is then the union of two compact subsets B1 and B2 at positive distance from each
other. Since P k+1−P k → 0, there is an infinite number of points in (P k)k∈N at distance greater or equal
to η > 0 from both B1 and B2, from which we can extract a point in B, a contradiction. It follows that
B is connected, hence the result.

This result implies in particular the convergence of the sequence (P k)k∈N in the generic case where
critical points are isolated. If this is not the case but E and R are analytic, convergence can be shown
following the approach in [124] based on Lojasiewicz inequality.

Theorem 2.2. Let E : H → R satisfy Assumption 2.1 and Assumption 2.2 with P∗ a local minimizer of
(2.2.1). Let R : H → H satisfy Assumption 2.3. Then, if P 0 ∈MN is close enough to P∗, the iterations

P k+1 := R
(
P k − βΠPk

(
∇E(P k)

))
linearly converge to P∗ for β > 0 small enough, with asymptotic rate r(1−βJgrad) where Jgrad := Ω∗+K∗.

Proof. In order to prove convergence, one can apply Lemma 2.1 to the function f :MN →MN defined
by

f(P ) := R(P − βΠP (∇E(P ))),
for which we know by the first-order optimality condition that P∗ is a fixed-point.

We compute explicitly df(P∗) using the second-order optimality condition (2.2.8). To this end, take
X ∈ TP∗MN and a smooth path γ : I →MN defined on a real interval I containing 0 such that γ(0) = P∗
and γ̇(0) = X. We want to expand to the first-order in t the following expression:

f(γ(t)) = R
(
γ(t)− βΠγ(t)(∇E(γ(t)))

)
.

First, we focus on the projection of H(γ(t)) on Tγ(t)MN :

Πγ(t)H(γ(t)) = γ(t)H(γ(t))(1− γ(t)) + sym
= (P∗ + tX)

(
H∗ + t

(
∇2E(P∗)X

))
(1− P∗ − tX) + sym +O(t2)

= t
[
P∗
(
∇2E(P∗)X

)
(1− P∗) + sym

]
+ t
[
XH∗(1− P∗)− P∗H∗X + sym

]
+O(t2)

= t(K∗ + Ω∗)X +O(t2).

Inserting this into the expansion of f(γ(t)), using Assumption 2.3 and the fact that Πγ(t)X = ΠP∗X +O(t2),
gives

f(γ(t)) = R
(
γ(t)− βt(Ω∗ + K∗)X +O(t2)

)
= P∗ + t

(
X − β(Ω∗ + K∗)X

)
+O(t2).
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Therefore,
df(P∗)X =

(
1− β(Ω∗ + K∗)

)
X.

As the second-order optimality condition (2.2.8) shows that Ω∗ + K∗ is positive definite on TP∗MN , for
β small enough, the spectral radius r(df(P∗)) of the derivative df(P∗), is less than 1, which concludes
the proof.

2.3.2 Damped self-consistent field

The damped SCF algorithm is a damped version of the Roothaan algorithm [41, 124] and is presented
in Algorithm 2.2, under the assumption that the strong Aufbau principle is satisfied, and represented in
Figure 2.2. Note that it is well-defined only if εkN < εkN+1 for all k ∈ N. We introduce the nonlinear
operators:

1. A(H) := 1(−∞,εN (H)](H), with εN (H) the lowest N th eigenvalue of H and where we recall that
1(−∞,µ](H) :=

∑
εi⩽µ

ϕiϕ
∗
i , the ϕi’s being orthonormal eigenvectors of H associated to the eigenvalues

εi;

2. Φ(P ) = A(H(P )) or, equivalently, Φ(P ) :=
N∑
i=1

ϕiϕ
∗
i where the ϕi’s are orthonormal eigenvectors

associated to the lowest N eigenvalues of H(P ).

Algorithm 2.2 – Damped SCF algorithm
Data: P 0 ∈MN

while convergence not reached do

solve
{
H(P k)ϕki = εki ϕ

k
i , ε

k
1 ⩽ · · · ⩽ εkN < εkN+1 ⩽ · · · ⩽ εkNb

(ϕki )∗ϕkj = δij ,
;

Φ(P k) :=
N∑
i=1

ϕki
(
ϕki
)∗;

P k+1 := R
(
P k + βΠPk

(
Φ(P k)− P k

))
;

end

MN

TPkMN

Φ(P k)•

P k • P k+1
•R

Figure 2.2 – Retraction for the damped SCF algorithm.

The following theorem states that, under the condition that there is a gap between the smallest N th

and (N + 1)st eigenvalues of the Hamiltonian H∗, Algorithm 2.2 locally converges for β small enough.

Theorem 2.3. Let E : H → R and P∗ ∈ MN satisfy Assumption 2.1 and Assumption 2.2 and
R : H → H satisfy Assumption 2.3. Assume that P∗ satisfies the strong Aufbau principle

Φ(P∗) = P∗ and ν := εN+1 − εN > 0,

where (εi)1⩽i⩽Nb are the eigenvalues of H∗ ranked in nondecreasing order.

Then, for β > 0 small enough and P 0 ∈MN close enough to P∗, the iterations

P k+1 := R
(
P k + βΠPk

(
Φ(P k)− P k

))
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are well-defined and P k linearly converges to P∗, with asymptotic rate r(1−βJSCF) where JSCF := 1+ Ω−1
∗ K∗.

Proof. In order to prove convergence, we apply Lemma 2.1 to the function f :MN →MN defined by

f(P ) := R(P + βΠP (Φ(P )− P )),

for which P∗ is a fixed-point.

First, we compute the derivative of Φ = A ◦H at the minimizer P∗ to get

dΦ(P∗) = dA(H∗)∇2E(P∗).

Now, to compute dA(H∗), note that, as there is a gap εN+1 > εN at the minimum, we can find a
contour C in the complex plane enclosing the lowest N eigenvalues of H∗ (Figure 2.3) such that

A(H∗) = 1
2πi

˛
C

1
z −H∗

dz (2.3.1)

(see [102, 111] for more details on spectral calculus, contour integrals and perturbation theory for functions
of matrices). By continuity, we also have

A(H) = 1
2πi

˛
C

1
z −H

dz

for H in a neighbourhood of H∗.

××× ×
εN

×
εN+1

ν

× ××

C
•

Figure 2.3 – Definition of A and graphical interpretation of the Aufbau principle and the existence of a gap.

Then, one can use the expression (2.3.1) of A and the expansion for H in a neighbourhood of H∗

∀ z ∈ C, 1
z −H

= 1
z −H∗

(H −H∗) 1
z −H∗

+O(∥H −H∗∥2
F )

to get

∀ h ∈ H, dA(H∗)h = 1
2πi

˛
C

1
z −H∗

h
1

z −H∗
dz

=
Nb∑
k=1

Nb∑
l=1

(
1

2πi

˛
C

1
z − εk

hkl
1

z − εl
dz
)
ϕkϕ

∗
l ,

where hkl = ϕ∗
khϕl. Now, let us denote by 1 ⩽ i ⩽ N the occupied orbitals (εi is inside C) and by

N + 1 ⩽ a ⩽ Nb the virtual ones (εa is outside C). Then,

˛
C

1
z − εi

1
z − εa

dz =


1

εi − εa
if 1 ⩽ i ⩽ N < a ⩽ Nb;

0 otherwise.

Thus, the sum becomes

dA(H∗)h =
N∑
i=1

Nb∑
a=N+1

1
εi − εa

(
hiaϕiϕ

∗
a + haiϕaϕ

∗
i

)
= −Ω−1

∗ ΠP∗h,

and we finally get
∀ X ∈ TP∗MN , dΦ(P∗)X = −Ω−1

∗ K∗X.
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Now, we compute the derivative of f at point P∗. Let X ∈ TP∗MN and γ : I →MN a smooth path
defined on a real interval I containing 0 such that γ(0) = P∗ and γ̇(0) = X. First, we expand γ(t) around
0 and Φ around γ(0) = P∗ to obtain

f(γ(t)) = P∗ + tΠP∗((1− β) + βdΦ(P∗))X +O
(
t2
)
.

Thus, for X ∈ TP∗MN ,
df(P∗)X =

(
(1− β)− βΩ−1

∗ K∗
)
X.

To conclude this proof, we compute the spectral radius of

df(P∗) = (1− β)− βΩ−1
∗ K∗ = 1− β

(
1 + Ω−1

∗ K∗
)
.

First, notice that
1 + Ω−1

∗ K∗ = 1 + Ω−1/2
∗

(
Ω−1/2

∗ K∗Ω−1/2
∗

)
Ω1/2

∗

and thus, 1 + Ω−1
∗ K∗ and the symmetric operator 1 + Ω−1/2

∗ K∗Ω−1/2
∗ have the same eigenvalues. More-

over, using the second-order optimality condition (2.2.8), with X = Ω−1/2
∗ Y , we get

∀ Y ∈ TP∗MN ,
〈
Y,
(

1 + Ω−1/2
∗ K∗Ω−1/2

∗

)
Y
〉

F
⩾ η

〈
Y,Ω−1

∗ Y
〉

F

⩾ η

∥Ω∗∥op
∥Y ∥2

F,
(2.3.2)

with ∥Ω∗∥op the operator norm associated to ∥·∥F. Thus, all the eigenvalues of 1+Ω−1/2
∗ K∗Ω−1/2

∗ , hence
of 1 + Ω−1

∗ K, are real and positive. Consequently, for β small enough, the spectral radius r(df(P∗)) is
less than 1 and we conclude by applying Lemma 2.1.

Remark 2.3 (Case when the Aufbau principle is not satisfied). In the case when the minimizer P∗ does
not verify the Aufbau principle, but does satisfy the condition that the eigenvalues of 1 + Ω−1

∗ K∗ are
positive (note that Ω∗ is not positive when the Aufbau principle is not verified, but 1 + Ω−1

∗ K∗ might
still have only positive eigenvalues), the damped SCF still converges locally to P∗ for β > 0 small enough
if we change the way we select the occupied orbitals to build Φ(P ) (in this case, we do not pick those
associated to the smallest N eigenvalues of H(P ), but those corresponding to the occupied orbitals of
P∗).

We conclude this section by proving the local convergence of the nonretracted variant of Algorithm 2.2.

Algorithm 2.3 – Nonretracted damped SCF algorithm
Data: P 0 ∈MN

while convergence not reached do

solve
{
H(P k)ϕki = εki ϕ

k
i , ε

k
1 ⩽ · · · ⩽ εkN < εkN+1 ⩽ · · · ⩽ εkNb

(ϕki )∗(ϕkj ) = δij ,
;

Φ(P k) :=
N∑
i=1

ϕki
(
ϕki
)∗;

P k+1 := P k + βΠPk

(
Φ(P k)− P k

)
;

end

Theorem 2.4. Let E : H → R and P∗ satisfy Assumption 2.1 and Assumption 2.2. Moreover, assume
that

Φ(P∗) = P∗ and ν := εN+1 − εN > 0 (strong Aufbau principle),
where (εi)1⩽i⩽Nb are the eigenvalues of H∗ ranked in nondecreasing order.

Then, for β > 0 small enough and P 0 ∈ H close enough to P∗ and with trace N , the iterations

P k+1 := P k + β
(
Φ(P k)− P k

)
(2.3.3)

are well-defined and P k linearly converges to P∗ ∈ MN , with asymptotic rate max(r(1− βJSCF), 1− β)
where JSCF := 1 + Ω−1

∗ K∗.
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Note that the iterates P k defined by (2.3.3) have trace N but do not lay on the manifold MN in
general.

Proof. The proof follows that of Theorem 2.3. This time, we need to compute the Jacobian matrix of
f : H ∋ P 7→ P + β(Φ(P )− P ) ∈ H at the minimizer P∗ ∈ MN . As we work in the whole space H, the
Jacobian matrix has the form, in the decomposition H = TP∗MN ⊕ (TP∗MN )⊥,

df(P∗) =
[
1− βJSCF ×

0 1− β

]
,

where JSCF = 1+Ω−1
∗ K∗ has been computed in the proof of Theorem 2.3. Hence, this time the algorithm

converges to P∗ ∈MN as long as β is such that max(r(1− βJSCF), 1− β) < 1.

In LDA and GGA Kohn–Sham models [144], the mean-field Hamiltonian H(P ) is actually a function
H̃(ρP ) of the density ρP associated with the density matrix P . Since the map P 7→ ρP is linear, (2.3.3)
can be rewritten as

ρk+1 = (1− β)ρk + βΨ(ρk),
where Ψ(ρ) = ρ

A(H̃(ρ)). We can therefore interpret (2.3.3) as the equivalent density matrix formulation
of this density mixing algorithm.

2.3.3 Comparison

In this section, we proved the local convergence of Algorithm 2.1 and Algorithm 2.2. and we obtained
asymptotic convergence rates. On the tangent space, both Jacobian matrices are of the form 1 − βJ
where J has positive real spectrum and

• for the gradient descent: Jgrad = K∗ + Ω∗, which is self-adjoint for the Frobenius inner product;

• for the damped SCF algorithm if the strong Aufbau principle is satisfied at P∗: JSCF = 1+ Ω−1
∗ K∗,

which is self-adjoint for the inner product ⟨·, ·⟩Ω∗
:= ⟨Ω∗·, ·⟩F.

One can notice that, in the linear regime, the SCF iterations correspond to a matrix splitting of the
gradient iterations. Whether this results in a faster method or not depends not only on the relative
conditioning of the iteration matrices but also on the relative cost of each step.

To have the fastest convergence, we want the eigenvalues of 1−βJ to be as close to 0 as possible. If we
denote by λ1 (resp. λN ) the smallest (resp. largest) eigenvalue of J , the optimal step β∗ is the minimizer
of minβ max{|1− βλ1|, |1− βλN |}, which is given by

β∗ = 2
λ1 + λN

.

Then, the rate of convergence is, with κ := λN/λ1 the spectral condition number of J ,

r = κ− 1
κ+ 1 .

Now, we can evaluate the conditioning of J for the two algorithms:

• for the gradient descent, we have

κ(Jgrad) ⩽
∥Ω∗∥op + ∥K∗∥op

η
, (2.3.4)

where η is the coercivity constant in the nondegeneracy Assumption 2.2. First, the smaller η, the
more difficult the convergence. Note however that there is no relationship in general between η and
the gap ν. Second, the bigger ∥Ω∗∥op = εNb − ε1, the more difficult the convergence. In particular,
for models arising from the discretization of partial differential equations, εNb − ε1 → ∞ when
the discretization is refined. In practice, this issue is solved by preconditioning (see Remark 2.4).
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• for the damped SCF algorithm, a naive bound would be

κ(JSCF) ⩽ ∥Ω∗∥op
1 + ν−1∥K∗∥op

η
.

In this bound the right-hand side diverges when ∥Ω∗∥op →∞ as above, whereas the left-hand side
may actually remain bounded. For instance, under the uniform coercivity assumption [31]

∀ X ∈ TP∗MN , ⟨X, (Ω∗ + K∗)X⟩F ⩾ η̃⟨Ω∗X,X⟩F,

with η̃ independent of Nb (which is often the case in practice), we have

κ(JSCF) ⩽
1 + ν−1∥K∗∥op

η̃
.

In contrast with the bound (2.3.4), we can see that the smaller the gap ν, the slower the convergence.

As a special case, if we consider the case where the Hessian ∇2E ≡ 0, i.e. a linear eigenvalue problem.
Then the SCF algorithm converges in one iteration, which is consistent with JSCF = 1. The gradient
descent with optimal step locally converges with asymptotic rate r = κ−1

κ+1 where κ = εNb −ε1
εN+1−εN

.

The convergence rates we derived in Theorem 2.2 and Theorem 2.3 are consistent with well-known
convergence issues, for instance the failure of the simple damped SCF algorithm to converge for systems
with small gaps [177] (although Section 2.4.5 shows this is not necessarily true for more sophisticated
acceleration methods).

Remark 2.4 (Preconditioning). We discuss here the extension of Theorem 2.2 to the preconditioned
gradient descent:

P k+1 := R
(
P k − βΠPkBΠPk

(
∇E(P k)

))
with B : H → H a symmetric positive definite preconditioner. If we denote by B̃∗ := ΠP∗BΠP∗ its
restriction to the tangent plane, the Jacobian matrix of the gradient becomes 1− βB̃∗(Ω∗ + K∗) where
(Ω∗ + K∗) is positive definite (under Assumption 2.2) and the proof of local convergence for β small
enough follows exactly in the same way, using the positive definiteness of B̃∗ to show that B̃∗(Ω∗ + K∗)
has real positive spectrum. The same analysis holds true for the preconditioned SCF algorithm. In
practice, preconditioning is a crucial tool to accelerate iterations, in particular in order to achieve mesh-
and domain-size independence of the number of iterations for discretized partial differential equations.
However, we are interested here in the intrinsic aspects of each algorithm (direct minimization vs SCF)
and the influence of physical parameters (e.g. the gap ν), so that the study of preconditioned algorithms
is not in the scope of this chapter.

Remark 2.5 (Dielectric operator). In the context of Kohn–Sham density functional theory, the operator(
1 + K∗Ω−1

∗
)−1, the transpose of the inverse of the Jacobian of the simple SCF mapping, is known as

the dielectric operator: it represents the infinitesimal change in the self-consistent Hamiltonian H(P∗) in
response to a change in the energy functional. Our results show that this operator is well-defined and
has real positive spectrum, with no assumption on the sign of Hartree-exchange-correlation kernel K∗,
recovering in an algebraic framework the results of [63, 83] obtained using a different variational principle.

2.4 Numerical tests

We present here some numerical experiments to illustrate our theoretical results, explore their limits
and investigate the global behaviour of the algorithms. First, we start by specifying the retraction R
that we use in our numerical tests. In Section 2.4.2, we use a simple toy model for which we can control
the gap and analytically compute the exact minimizer: this allows us to study the impact of the gap on
the convergence of Algorithm 2.1 and Algorithm 2.2. In Section 2.4.3, we show that simple (nondamped)
SCF iterations can exhibit chaotic behaviour for some nonlinearities. Then, in Section 2.4.4, we report
numerical tests for a 1D Gross–Pitaevskii model (N = 1) and its fermionic version for N = 2. Finally,
in Section 2.4.5, we present results obtained with a more realistic case: silicon in the framework of the
Kohn–Sham DFT.
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2.4.1 The retraction

We choose the following algorithm: for a given symmetric matrix P̃ close to MN with eigendecom-
position P̃ = V D̃V ∗ with D̃ diagonal and V orthogonal, we set the diagonal matrix D as

Dii =
{

1 if D̃ii > 0.5
0 otherwise

.

and R(P̃ ) = V DV ∗. When P̃ is close to MN , its eigenvalues are close to either 0 or 1. Given a contour
C enclosing only the eigenvalues close to 1 , R has the following explicit expression

R(P ) = 1
2πi

˛
C

1
z − P

dz. (2.4.1)

Therefore, it follows from arguments similar to those used in the proof of Theorem 2.3 that R is analytic
and satisfies Assumption 2.3: if X is small enough,

R(P +X) = R(P ) + 1
2πi

˛
C

1
z − P

X
1

z − P
dz + o(X).

Therefore, the Jacobian matrix is

dR(P )X = 1
2πi

˛
C

1
z − P

X
1

z − P
dz

=
Nb∑
k=1

Nb∑
l=1

(
1

2πi

˛
C

1
z − λk

(X)kl
1

z − λl
dz
)
ϕkϕ

∗
l

=
Nb∑
k=1

Nb∑
l=1

(X)kl
(

1
2πi

˛
C

1
z − λk

1
z − λl

dz
)
ϕkϕ

∗
l ,

where (A)kl denotes the coefficient of the operator A along the direction ϕkϕ
∗
l . By denoting by i =

1, . . . , N the occupied state (λi = 1) and a > Nb the virtual ones (λa = 0), we finally get, as the contour
integral is 0 if (k, l) are both occupied or both virtual, with sym being the hermitian conjugate,

dR(P )X =
N∑
i=1

Nb∑
a=N+1

(X)ia
(

1
2πi

˛
C

1
z − λi

1
z − λa

dz
)
ϕiϕ

∗
a + sym

=
N∑
i=1

Nb∑
a=N+1

(X)iaϕiϕ∗
a + sym,

as λi = 1 and λa = 0. Hence, if X ∈ TPMN , then

X =
N∑
i=1

Nb∑
a=N+1

(X)iaϕiϕ∗
a + sym = dR(P )X,

so that we do have dR(P ) = ΠP .

2.4.2 A toy model with tunable spectral gap

We work here in the very simple framework of real density matrices of order 2, i.e. the 2 × 2 real
matrices P such that P ∗ = P , P 2 = P and Tr(P ) = 1. Then, we consider the following energy functional

Eε(P ) := Tr
((

P −
[
1 ε
ε 0

])2
)
,

for parameters ε ⩾ 0. The gradient and Hessian of E are

Hε(P ) = 2
(
P −

[
1 ε
ε 0

])
,

∇2Eε(P ) = 2.
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Simple computations show that the set of rank-1 projectors on R2 can be parameterized as

M1 :=
{
P (a, b) =

[
1− a b
b a

] ∣∣∣∣ a ∈ [0, 1], b = ±
√
a(1− a)

}
.

The eigenvalues of Hε at P (a, b) ∈M1 are ±2
√
a2 + (b− ε)2. The gap is thus ν(a, b) := 4

√
a2 + (b− ε)2.

The case ε = 0

Here, the unique minimum is clearly

P (0, 0) =
[
1 0
0 0

]
∈M1

and the gap is zero. Since ∇2E = 2, this minimum satisfies Assumption 2.2 with η = 2.

The case ε > 0

We compute
Eε(P (a, b)) = 2(a+ ε2 − 2εb),

and therefore
Eε

(
P (a,

√
a(1− a))

)
⩽ Eε

(
P (a,−

√
a(1− a))

)
.

Hence, to compute the minimizer of the energy, we can restrict ourselves to the one-dimensional manifold

P (a) =
[

1− a
√
a− a2

√
a− a2 a

]
with a ∈ [0, 1]. Then, the energy is

Eε(P (a)) = 2
(
a+ ε2 − 2ε

√
a(a− 1)

)
. (2.4.2)

The first-order condition yields

a =
1±

√
1− 4ε2

1+4ε2

2 ,

with the lowest energy achieved at

a(ε) :=
1−

√
1− 4ε2

1+4ε2

2 .

The gap ν(ε) := 4
√
a(ε)2 +

(√
a(ε)(1− a(ε))− ε

)2
goes to 0 monotonically when ε→ 0. In particular,

for ε ≈ 0 we have a(ε) ≈ ε2 and ν(ε) ≈ 4ε2. This model can thus be used to study the influence of the
gap on the convergence of the two algorithms.

Influence of ε on the convergence

We run Algorithm 2.1 and Algorithm 2.2 with fixed β on this system. We start from a random point
on the manifold M. We take as convergence criterion

∥∥P k − P (a(ε))
∥∥

F ⩽ 10−12, and consider the
algorithm has failed if convergence was not achieved after 50, 000 iterations.

On Figure 2.4, we plotted the number of iterations to achieve convergence for each algorithm as
a function of ε (without changing the starting point), for two different values of β: 10−1 and 10−3.
The results confirm the theory we developed in Section 2.3.3: the gap has a strong influence on the
convergence behaviour of the SCF algorithm. Indeed, as the gap decreases, smaller and smaller damping
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parameters must be used, and the number of iterations increases. In fact for this system, 1 + Ω−1
∗ K∗

has a single eigenvalue equal to 1 + 2
ν(ε) ≈ 1 + 1

2ε2 for ε small. Thus, we expect convergence for β < 4ε2,
and therefore a critical εc of ≈ 0.158 for β = 10−1 and 0.0158 for β = 10−3, with a number of iterations
proportional to 1

ε−εc
when ε > εc. The numerical results are in perfect agreement with this prediction.

By contrast, the gradient algorithm is much less affected by the smallness of the gap, and converges in
an essentially constant number of iterations: our prediction for the convergence rate of that method is
r = 1− β(ν(ε) + 2) ≈ 1− 2β for ε small, and therefore a number of iterations for convergence to 10−12

of 124 for β = 10−1 and 1.3× 104 for β = 10−3, again in perfect agreement with the numerical results.
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(b) Number of iterations to reach convergence for both algorithms as a func-
tion of ε for β = 10−3. On the left is a global view of the convergence for
ε ∈ [0, 1] and on the right, we zoom in the neighbourhood of εc.

Figure 2.4 – Comparison of the convergence of both algorithms depending on ε for two different values of the
step β.

2.4.3 Chaos in SCF iterations

We consider in this section another toy model a model inspired from the one proposed in [139, Section
2.1]. Let h ∈ R3×3

sym and J ∈ R3×3 be the matrices defined by

h :=

 1.4299 −0.2839 −0.4056
−0.2839 1.1874 0.2678
−0.4056 0.2678 2.3826

 and J := h−1

and the energy functional Ec1,c2 : RNb×Nb → R defined by

Ec1,c2(P ) = Tr(hP ) + c1

2 ρ
∗
PJρP − c2

3∑
j=1

ρ
4/3
P,j , (2.4.3)

where c1, c2 ∈ R+ are nonnegative real parameter and where the density ρP ∈ R3 associated with the
density matrix P is given by ρP,j = Pjj for j = 1, 2, 3. This model is reminiscent of a Kohn–Sham LDA
model, with h playing the role of the core Hamiltonian, J of the Hartree operator and the third term in
Ec1,c2 of the exchange-correlation energy. We seek the minimizers of Ec1,c2 on M1.

We study the behaviour of the simple SCF (Roothaan) iterations P k = Φ(P k) with initial guess
P 0 = ϕ0ϕ

∗
0 with ϕ0 a random vector of norm 1.

The case c2 = 0

Here, the energy functional is the sum of a linear and a quadratic term. In this case, either (P k)k∈N
converges to a critical point of the problem (in practice a local minimizer), or it has two different accu-
mulation points Podd and Peven, none of them being a critical point, and the iterates oscillates between
the two, in the sense that P 2k+1 → Podd and P 2k → Peven when k →∞ [41, 124]. This is due to the fact



50 Chapter 2 – Convergence analysis of direct minimization and self-consistent iterations

that we have

P 2k+1 = argmin
{
Ẽc1,0(P 2k, P ), P ∈M1

}
,

P 2k+2 = argmin
{
Ẽc1,0(P, P 2k+1), P ∈M1

}
,

with
Ẽc1,0(P, P ′) := 1

2Tr(hP ) + 1
2Tr(hP ′) + c1

2 ρ
∗
PJρ

′
P ,

so that (P 2k, P 2k+1) converges to a minimizer of Ẽc1,0 on M1 ×M1. When c1 is small, the simple SCF
algorithm converges: for c1 = 0, the matrix h has a nondegenerate lowest eigenvalue and the algorithm
converges in one iteration. When the value of c1 increases, we observe numerically a bifurcation at a
critical value c1,∗ ≃ 0.28 after which the algorithm oscillates between two states.

The case c2 = 1

Here the energy is not quadratic, and the previous theory does not apply. In Figure 2.5, we vary c1
and plot the value of ρ1 for the last 40 out of 1,500 SCF iterations. For this case, we still observe that
the algorithm converges for c1 small enough (0 ⩽ c1 < c1,∗ ≃ 1.38), and oscillates between two states
for c1 slightly larger than c1,∗. However, in contrast with the c2 = 0 case, this is followed by a cascade
of cycles of increasing periods, transitioning to a chaotic region, following the “period-doubling route to
chaos” observed for other types of chaotic systems such as the logistic map [190].
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Figure 2.5 – Chaotic behaviour of the simple SCF map for the energy functional Ec1,1 defined by (2.4.3) and
N = 1 as a function of c1. On the left is a global view of the bifurcation and the right is a zoom on part of the
interval on which we observe a chaotic behaviour.

2.4.4 Local convergence for a 1D nonlinear Schrödinger equation

In this section, we present a simple 1D numerical experiment to validate on a more physically relevant
system the sharpness of the convergence rates we derived in the previous section. As the goal here is to
analyse the behaviour of the simplest representative of each class of algorithms when physical parameters
(such as the gap) vary, we chose unpreconditioned algorithms. We consider a discretized 1D Gross–
Pitaevskii model (N = 1) on the torus, and its (nonphysical) fermionic counterpart for N = 2. At the
continuous level, the minimization set is{

γ ∈ L(L2
per), γ2 = γ = γ∗, Tr(γ) = N

}
,

where L(L2
per) is the space of bounded operators on L2

per := {u ∈ L2
loc(R) | u(· − 1) = u(·)}, and the

energy functional is defined as

Eα(γ) = TrL2
per

(
−1

2∆γ
)

+
ˆ 1

0
V ργ + α

2

ˆ 1

0
ρ2
γ ,
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where ργ is the density of the density matrix γ, α ∈ R+ and V is an asymmetric double-well external
potential chosen equal to

V (x) := −C
(

exp
(
−c cos(π(x− 0.20))2

)
+ 2 exp

(
−c cos(π(x+ 0.25))2

))
, (2.4.4)

with c = 30 and C = 20 (Figure 2.6).
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Figure 2.6 – V for c = 30 and C = 20.

The Euler–Lagrange equations of this minimization problem are

γ∗ =
N∑
i=1

(ϕi, ·)L2
per
ϕi, ρ∗ =

N∑
i=1
|ϕi|2, −1

2∆ϕi + V ϕi + αρ∗ϕi = εiϕi,

ˆ 1

0
ϕiϕj = δij . (2.4.5)

We discretize this model using the finite difference method with a uniform grid of step size δ = 1/Nb,
which leads to the finite-dimensional model

inf{Eα(P ), P ∈MN}, (2.4.6)

where

∀ P ∈ H, Eα(P ) := Tr(hP ) + α

2 δ
Nb∑
i=1

(
Pii
δ

)2
, (2.4.7)

the nonzero entries of the matrix h ∈ RNb×Nb being given by

∀ 1 ⩽ i ⩽ Nb, hii = 1
δ2 + V (iδ), hi,i+1 = hi,i−1 = − 1

2δ2 .

where we identify the sites 0 and Nb on the one hand and Nb + 1 and 1 on the other. With this
discretization, the discrete density is then given by ρ(iδ) ≈ ρi := Pii/δ. We compare the fixed-step
gradient descent and damped SCF algorithms (Algorithm 2.1 and Algorithm 2.2) on this problem for
various values of α, using as starting point the ground-state for α = 0. The functional E is smooth. To
check Assumption 2.2 we notice that E is a convex functional of P , so that ∇2E(P ) ⩾ 0. Therefore,
at any local minimizer satisfying the strong Aufbau principle, Ω∗ + K∗ ⩾ Ω∗ ⩾ η > 0 and therefore
Assumption 2.2 is satisfied. In the case where the Aufbau principle is not satisfied, Assumption 2.2 is not
a priori always satisfied, so we check it a posteriori by computing the lowest eigenvalue of Ω∗ + K∗.

We prove in the Appendix the following lemma, which collects some mathematical properties of the
discretized model under consideration. The proof of this lemma, given in the appendix, strongly relies
on the properties of our particular model (one-dimensional difference equation with periodic boundary
conditions and a specific nonlinearity).

Lemma 2.2 (Mathematical properties of (2.4.6)). Let α ∈ R+.

1. For N = 1, the optimization problem (2.4.6) has a unique minimizer P∗. In addition, P∗ can be
written as P∗ = ϕ∗ϕ

∗
∗, with ϕ∗ ∈ RNb , ϕ∗

∗ϕ∗ = 1, and ϕ∗ positive component wise, and P∗ satisfies
the strong Aufbau principle.
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2. For 2 ⩽ N ⩽ Nb, with Nb ̸= 2N if Nb ∈ 4N∗, the relaxed constrained optimization problem

inf{Eα(P ), P ∈ CH(MN )}, (2.4.8)

where CH(MN ) = {P ∈ H, P = P ∗, 0 ⩽ P ⩽ 1, Tr(P ) = N} is the convex hull of MN , has a
unique minimizer P∗. Either P∗ ∈ MN , in which case P∗ is the unique minimizer of (2.4.6) and
satisfies the Aufbau principle, or P∗ /∈ MN , in which case the eigenvalues ε1 ⩽ · · · ⩽ εNb of the
mean field Hamiltonian matrix H∗ = ∇Eα(P∗) satisfy εN−1 < εN = εN+1 < εN+2 and none of the
local minimizers to (2.4.6) satisfies the Aufbau principle.

Note that the unique minimizer P∗ to the relaxed constraint problem (2.4.8) can be computed using
the optimal damping algorithm (ODA) introduced in [40]. As shown in the proof of Lemma 2.2, the only
case when the minimizer P∗ is not unique is the very particular case when Nb ∈ 4N∗, Nb = 2N , and all
the entries [Veff ]i := V (iδ) + αδ−1[P∗]ii of the effective potential are equal. In the rest of this section, we
consider the cases N = 1 and N = 2.

The case N = 1

It follows from Lemma 2.2, Theorem 2.2 and Theorem 2.3 that Algorithm 2.1 and Algorithm 2.2
locally converge to the unique minimizer P∗ as long as β is chosen small enough. The resulting densities,
effective potentials and convergence behaviour of both algorithms are plotted in Figure 2.7 for Nb = 100.
The SCF algorithm converges faster in terms of number of iterations, as a smaller β, hence more steps,
are required for the gradient to converge. This is expected from the large spectral radius of the matrix
h in the absence of preconditioning.

For the gradient algorithm, the convergence rate is consistent with the spectral radius of the Jacobian
matrix 1 − βJgrad. For the damped SCF algorithm with the ground-state of the core Hamiltonian as
starting point, surprisingly, we observe an asymptotic convergence rate slightly faster than that expected
from the spectral radius of the Jacobian matrix 1− βJSCF. Using a random perturbation of the ground-
state of the core Hamiltonian as starting point again gives a convergence rate consistent with the spectral
radius.

The explanation of this effect is to be found in the repartition of the error among the eigenvectors of
JSCF. Since both Ω∗ and K∗ are positive semidefinite operators, the eigenvalues of JSCF = 1 + Ω−1

∗ K∗
are greater than 1, and the convergence for β small is limited by the modes associated with eigenvalues
of JSCF close to 1. These eigenvalues correspond to high eigenvalues of Ω∗, and therefore to highly
oscillatory modes. When the initial guess is chosen as the ground-state of the core Hamiltonian, these
modes are only weakly excited and do not contribute to the observed convergence rate before convergence
is achieved. When the initial guess is randomly perturbed, this effect is not present and the convergence
rate is consistent with the spectral radius. For the gradient algorithm, the rate-limiting modes are
associated with small eigenvalues of Ω∗ + K∗, which are not oscillatory, and this effect is not present
either.
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Figure 2.7 – Convergence of Algorithm 2.1 and Algorithm 2.2 for N = 1, α = 50 and Nb = 100.
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The case N = 2

Since the second-smallest eigenvalue of the matrix h is strictly lower than the third one, for α small
enough, the unique minimizer P∗ of (2.4.8) is on M2 and satisfies the strong Aufbau principle, and both
the gradient descent and SCF algorithm locally converge to P∗. For larger values of α, the two alternatives
of Lemma 2.2 appear. We plot the energy, the density at an arbitrarily chosen point and the eigenvalues
of the solutions P grad and PODA obtained by the gradient and the ODA algorithm as a function of α in
Figure 2.8, evidencing a bifurcation for a critical value of αc ≃ 10, after which these two solutions are
different.
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Figure 2.8 – Bifurcation on the energy, the density and the eigenvalues as a function of α for N = 2, Nb = 40.

For α lower than the critical value αc ≃ 10, PODA
∗ is on the manifold M2 and satisfies the strong

Aufbau principle. The algorithms all converge to this solution: P grad
∗ = P SCF

∗ = PODA
∗ = P∗. However

for α > αc in the range tested, PODA
∗ /∈ M2. A geometrical interpretation of the bifurcation is sketched

on Figure 2.8(d): the level sets of the function Eα are degenerate ellipsoids. Below αc, the intersection of
the nonempty closed convex set CH(M2) with the level set of Eα of lowest energy belongs to M2, while
this is no longer the case beyond αc.

For α > αc, the solutions obtained by the ODA, gradient and SCF algorithm differ, as shown in
Figure 2.9:

• the lowest second and third eigenvalues of H(PODA
∗ ) are degenerate (ε2 = ε3) and PODA

∗ /∈ M2.
More precisely, we have

PODA
∗ = ϕ1ϕ

∗
1 + (1− f)ϕ2ϕ

∗
2 + fϕ3ϕ

∗
3 with H(PODA

∗ )ϕi = εiϕi, ϕ∗
iϕj = δij

with a fractional occupation 0 < f < 1;
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• Algorithm 2.1 and Algorithm 2.2 converge to two different limits P grad
∗ and P SCF

∗ , none of them
satisfying the Aufbau principle:

• P grad
∗ is a local minimizer of Eα onM2, which does not satisfy the Aufbau principle. More pre-

cisely, P grad
∗ is the orthogonal projector on the space generated by the eigenvectors associated

with the lowest first and third eigenvalues of H(P grad
∗ );

• P SCF
∗ satisfies ΠPSCF

∗

(
Φ(P SCF

∗ )− P SCF
∗

)
= 0, but Φ(P SCF

∗ )−P SCF
∗ ̸= 0 and [H(P SCF

∗ ), P SCF
∗ ] ̸= 0.

The iterates are trapped as the search direction is orthogonal to the tangent space (Fig-
ure 2.9(c)). The limit point P SCF

∗ is a spurious stationary state of the SCF iteration which is
not physically relevant, not being a critical point of Eα.
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Figure 2.9 – Results obtained with the gradient descent, damped SCF and ODA algorithm for N = 2, α = 30
and Nb = 100: the limiting points P grad

∗ and P SCF
∗ lay by construction on the manifold M2, while PODA

∗ does
not (it only belongs to its convex hull CH(M2)).

2.4.5 Kohn–Sham density functional theory

We now investigate a more realistic computation: the electronic structure of a silicon crystal using
Kohn–Sham density functional theory (KS-DFT). We used the DFTK.jl code [101], which solves the
equations of KS-DFT in a plane-wave basis under a pseudopotential approximation. All computations be-
low use the local density approximation (LDA) of the exchange-correlation energy [116, 144], Goedecker–
Teter–Hutter (GTH) pseudopotentials [79], a cut-off energy of 30 hartree, and Γ-only Brillouin zone
sampling for simplicity, although the same behaviour was observed with different exchange-correlation
functionals and fine Brillouin zone discretizations. In all cases, the initial guess for the algorithms is a
superposition of atom-centered densities. The DFTK code as well as the script used to produce these
results are available at https://dftk.org/.

We consider the case of silicon in its standard face-centered cubic phase. With the chosen pseu-
dopotentials and without spin polarization, silicon has four occupied orbitals: N = 4. We examine the
convergence of algorithms as a function of the lattice constant a (the size of the computational domain).
In the equilibrium state of silicon (a ≈ 10.26 bohrs), there is a gap of about 0.08 hartree between the

https://dftk.org/
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occupied and virtual states. As the lattice constant a is increased, this gap decreases, until it closes at
a ≈ 11.408 bohrs. We examine the convergence of self-consistent iterations, using both fixed-step damped
density mixing with four values of the mixing parameter β (β = 1 – no damping –, β = 0.5, β = 0.2,
β = 0.1), as well as the self-consistent iteration accelerated with Anderson acceleration (also known as
Pulay’s DIIS method [54, 167, 168]). We plot the convergence of the density residual ∥ρΦ(Pn) − ρPn

∥2 as
a function of the iterations for three values of a, with decreasing gaps.
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Figure 2.10 – Convergence curves of the density residual as a function of the number of iterations k for silicon
with different lattice constants a.

In the first case, with a = 10.26 bohrs, the simple (undamped) SCF method appears to be converging
for almost 20 iterations, but then diverges, until the density residual stabilizes at a positive value, as
predicted in [41] for the Hartree–Fock model. The damped methods appear to converge. For a = 11.2
bohrs, the damping method with β = 0.5 does not converge. When the lattice constant is further
increased to 11.405 bohrs, with a small gap of 4.9× 10−4 hartree, the fixed-step damped SCF iterations
do not converge for the tested values of the damping parameter (β = 1, 0.5, 0.2, 0.1).

When it occurs, the transient behaviour of apparent-convergence before eventual divergence is unusu-
ally long. For instance for β = 1 at a = 10.26 bohrs, the method appears to be converging for almost 20
iterations, up to a reduction in residual of a factor 10−8. In fact, it is consistent with an initial error of
the order of machine precision (about 10−16 here) being amplified at a constant rate. The cause of this
effect appears to be that the divergent modes break the natural inversion symmetry of the crystal in this
particular case: we have checked that the divergence occurs much sooner if we break this symmetry by
perturbing the positions of the atoms around their symmetric positions (at 9 iterations by perturbing the
position of one atom by 10%). In practice, in the symmetric case, one way to overcome this issue is to en-
sure during the algorithm that, at each step, we have a symmetric solution. Note that this phenomenon
is reminiscent of that observed in Figure 2.7, where all the modes were not fully excited, making the
convergence faster than expected.

It is remarkable that the convergent methods (and even the divergent ones before their divergence)
appear to have the exact same slope as with a = 10.26 bohrs. This is consistent with our result: assuming
the main effect of increasing the lattice constant is to decrease the gap, while keeping the lowest eigenvalues
of Ω−1

∗ K∗ constant, then for β small enough the convergence is limited by the lowest, not the highest,
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eigenvalues of this operator.

In all these cases, Anderson acceleration was able to converge to a solution, even in presence of a
very small gap, albeit in an irregular fashion. We attribute this to the well-known fact that, in the linear
regime, Anderson acceleration is equivalent to the GMRES algorithm. Since the GMRES algorithm is a
Krylov method, it is robust to the presence of a large eigenvalue, and achieves convergence even though
the underlying iteration is strongly divergent. This shows a limitation of our theoretical convergence
rates, which do not capture the reduced sensitivity of accelerated methods to a small gap.

2.5 Conclusion

In this chapter, we examined the convergence of two simple representatives in the class of direct
minimization and SCF algorithms. We showed that both algorithms converge locally when the damping
parameter is chosen small enough. We derived their convergence rates; we showed that the damped
SCF algorithm is sensitive to the gap, while the gradient method is sensitive to the spectral radius of
the Hamiltonian. We confirmed these results with numerical experiments. The goal here was not to
propose efficient algorithms, but to analyse the behaviour of the simplest representatives of each class.
However, accelerated algorithms are generally found to follow the trend suggested by our theoretical
results, although we showed that the Anderson-accelerated SCF algorithm was able to converge quickly
even in the presence of a single very small gap.

In practice, should the SCF or direct minimization class of algorithms be preferred? The answer
depends not only on the convergence rate studied in this chapter, but also on the cost of each step, and
the robustness of the algorithm. We examine two prototypical situations.

In quantum chemistry using Gaussian basis sets to solve the Hartree–Fock model or Kohn–Sham
density functional theory using hybrid functionals, the rate-limiting step is often the computation of the
Fock matrix H(P ). In this case, an iteration of a gradient descent and a damped SCF algorithm are
of roughly equal cost. In most cases, solutions for isolated molecules satisfy the Aufbau principle, and
the damped SCF algorithm, suitably robustified (for instance using the ODA algorithm) and accelerated
(for instance with the DIIS algorithm), converges reliably and efficiently towards a solution. Direct
minimization algorithms are then only useful in the cases where local or semilocal functionals are used
[177] and the Aufbau principle is violated, or when SCF algorithms tend to converge to saddle points (for
instance for computations involving spin).

In condensed-matter physics using plane-wave basis sets to solve the Kohn–Sham density functional
theory with local or semilocal functionals, the matrices P and H are not stored explicitly. Solving the
linear eigenproblem is then done using iterative block eigensolvers, which can be understood as specialized
direct minimization algorithms in the case of a linear energy functional E(P ) = Tr(H0P ). In this case,
direct minimization algorithms effectively merge the two loops of the SCF and linear eigensolver, and
should therefore be more efficient. Another interest of direct minimization algorithms is their robustness,
as the choice of a step size can be made in order to minimize the energy, unlike the damped SCF algorithm
where choosing an appropriate damping parameter is often done empirically.

Despite this, direct minimization algorithms are rarely used in condensed-matter physics. The main
reason seems to be that challenging problems are often metallic in character, and require the introduc-
tion of a finite temperature. Direct minimization algorithms then need to optimize over the occupations
as well as the orbitals, a significantly more complex task [28, 75, 145]. A thorough comparison of the
performance and robustness of direct minimization and self-consistent approach for these systems would
be an interesting topic of inquiry. A number of implementation “tricks” commonly used to accelerate the
convergence of iterative eigensolvers (for instance, using a block size larger than the number of eigenvec-
tors sought) might also play a large role in performance comparison for the two classes of algorithms:
understanding how to generalize these to direct minimization would be interesting.

We discussed in Remark 2.4 preconditioning for both direct minimization and SCF algorithms. The
concept of preconditioning for Riemannian optimization problems seems not to have been explored much
in the mathematical literature, except in some specific models and preconditioners (see for instance [13,
208] for the Gross–Pitaevskii model), and a deeper analysis of this would be interesting. In particular, this
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is necessary to extend the convergence theory presented in this chapter to infinite-dimensional settings.

Appendix: proof of Lemma 2.2

For any α ∈ R+ the energy functional Eα is smooth and convex on the nonempty compact convex set
CH(MN ). The set of minimizers to (2.4.8) is therefore nonempty, compact and convex. Let P∗ and P ′

∗
be two minimizers of Eα and let ρ∗ and ρ′

∗ be their densities: ρ∗,i = δ−1(P∗)ii and ρ′
∗,i = δ−1(P ′

∗)ii. For
all θ ∈ [0, 1], we have

Iα = Eα(θP∗ + (1− θ)P ′
∗) = Iα + α

2δ

Nb∑
i=1

(
(θρ∗,i + (1− θ)ρ′

∗,i)2 − (θρ2
∗,i + (1− θ)ρ′

∗,i
2)
)
,

where Iα = Eα(P∗) = Eα(P ′
∗) is the minimum of (2.4.8). Since the function R ∋ x 7→ x2 ∈ R is strictly

convex, we obtain that ρ∗ = ρ′
∗. Therefore, all the minimizers of (2.4.8) share the same density, hence

the same mean-field Hamiltonian matrix H∗. If P∗ is a minimizer of (2.4.8), it satisfies the first-order
optimality condition (Euler inequality)

∀ P ∈ CH(MN ), Tr(H∗(P − P∗)) ⩾ 0,

from which we infer by a classical argument that

P∗ = 1(−∞,µ)(H∗) +Q∗ with 0 ⩽ Q∗ ⩽ 1, Ran (Q∗) ⊂ Ker (H∗ − µ), Tr(P∗) = N, (2.5.1)

for some Fermi level µ ∈ R (the Lagrange multiplier of the constraint Tr(P ) = N). Let ε1 ⩽ · · · ⩽ εNb be
the eigenvalues of H∗, counting multiplicities. If εN < εN+1, then we necessarily have P∗ = 1(−∞,εN ](H∗),
so that (2.4.8) has a unique minimizer, P∗ is onMN and therefore is also the unique minimizer of (2.4.6),
and it satisfies the strong Aufbau principle.

Let us now consider the case when εN = εN+1 =: µ. Since the eigenvalue problem H∗ψ = µψ is a
second-order difference equation

−ψi+1 + 2ψi − ψi−1

2δ2 + Veff,iψi = µψi, 1 ⩽ i ⩽ Nb, (2.5.2)

(here and in the sequel we use the convention that ψ0 = ψNb and ψNb+1 = ψ1) with Veff = V + αρ∗, the
eigenspace Ker (H∗ − µ) is at most of dimension 2. We therefore have εN−1 < εN = εN+1 < εN+2.

Using the variational characterization of the ground-state eigenvalue, we have

ε1 = min
ψ∈RNb , ψ∗ψ=1

ψ∗H∗ψ with ψ∗H∗ψ =
Nb∑
i=1

∣∣∣∣ψi+1 − ψi
δ

∣∣∣∣2 +
Nb∑
i=1

Veff,i|ψi|2. (2.5.3)

Since ||x| − |y|| ⩽ |x− y| for all x, y ∈ R with equality if and only if x and y have the same sign, we infer
from (2.5.3), that all the entries of a ground-state eigenvector of H∗ have the same sign. In particular,
two normalized ground-state eigenvectors of H∗ cannot be orthogonal. This implies that the ground-state
eigenvalue of H∗ is simple, i.e. ε1 < ε2. The first statement of Lemma 2.2 straightforwardly follows from
the results established so far.

To prove the second statement, assume that N ⩾ 2 and that (2.4.8) has two distinct minimizers P∗
and P ′

∗ sharing the same density. In view of (2.5.1), this can only occur if εN = εN+1 =: µ. Using an
orthonormal basis (ϕ, ψ) of Ker (H∗ − µ) consisting of eigenvectors of P∗, we can assume without loss of
generality that

P∗ = 1(−∞,µ)(H∗) + (1− f)ϕϕ∗ + fψψ∗,

P ′
∗ = 1(−∞,µ)(H∗) + (1− a)ϕϕ∗ + aψψ∗ + b(ϕψ∗ + ψϕ∗),

with 0 ⩽ f ⩽ 1, 0 ⩽ a ⩽ 1 and b2 ⩽ a(1 − a). Since P∗ and P ′
∗ have the same density, we have for all

1 ⩽ i ⩽ Nb, (1− f)ϕ2
i + fψ2

i = (1− a)ϕ2
i + aψ2

i + 2bϕiψi , that is (a− f)ϕ2
i − 2bϕiψi − (a− f)ψ2

i = 0.
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If a = f , then b ̸= 0 since P∗ ̸= P ′
∗ by assumption, so that ϕiψi = 0 for all 1 ⩽ i ⩽ Nb. From

(2.5.2), we see that it is not possible to have ψi = ψi+1 = 0 (otherwise, ψ would be identically equal
to zero), and the same holds true for ϕ. Therefore, Nb must be even, and either all the odd entries
of ϕ and all the even entries ψ must vanish, or the other way round. We then infer from (2.5.2) that
this implies that ϕi+2 + ϕi = ψi+2 + ψi = 0 for all 1 ⩽ i ⩽ Nb, and that all the entries of Veff are
equal to µ − δ−2. This implies that Nb ∈ 4N∗ and that the states ϕ and ψ are given by ϕ2i = c(−1)i,
ϕ2i+1 = 0, ψ2i = 0, ψ2i+1 = c′(−1)i for all 1 ⩽ i ⩽ Nb, where c and c′ are normalization constants. By
explicit diagonalization of the matrix H∗ = H(0) + (µ− δ−2)INb one can check that the states ϕ and ψ
are therefore those spanning the two-dimensional space associated to the two-fold degenerate eigenvalues
εNb/2 = ε1+Nb/2 of H∗. This is only possible if N = Nb/2. The case α = f can thus be excluded for
2 ⩽ N ⩽ Nb, with Nb ̸= 2N if Nb ∈ 4N∗.

If a ̸= f , we have for all 1 ⩽ i ⩽ Nb, ϕ2
i − 2γϕiψi − ψ2

i = 0, for γ = b
a−f , and up to replacing ψ

with −ψ, we can assume without loss of generality that γ ⩾ 0. Denoting by C± := γ ±
√

1 + γ2 the
roots of the polynomial x2 − 2γx + 1, with C+C− = −1, we obtain that for each 1 ⩽ i ⩽ Nb, either
ϕi = C+ψi or ϕi = C−ψi. Using the discrete Schrödinger equation (2.5.2) satisfied by both ϕ and ψ, we
see that if ϕi = C+ψi and ϕi+1 = C+ψi+1 for some 1 ⩽ i ⩽ Nb, then ϕ = C+ψ, and likewise if C+ is
replaced by C−. This is impossible since ϕ and ψ are orthonormal. Therefore, we must have ϕ2i = C+ψ2i
and ϕ2i+1 = C−ψ2i+1 (or the other way around), and Nb must be even. Using again (2.5.2), this leads
to ϕi+2 + ϕi = 0 and ψi+2 + ψi = 0 for all 1 ⩽ i ⩽ Nb and therefore, as in the previous case, that
Nb ∈ 4N∗, Nb = 2N , that all the entries of Veff are equal and that ϕ and ψ span the two-dimensional
space associated to the two-fold degenerate eigenvalues εN = εN+1 of H∗.

This proves that for 2 ⩽ N ⩽ Nb, with Nb ̸= 2N if Nb ∈ 4N∗, (2.4.8) has a unique minimizer P∗.
If P∗ ∈ MN , it is of course also the unique minimizer of (2.4.6), and P∗ satisfies the Aufbau principle.
Conversely, if P ′

∗ ∈MN is a local minimizer of (2.4.6) satisfying the Aufbau principle, we have

∀ P ∈ CH(MN ), Tr(H(P ′
∗)(P − P ′

∗)) ⩾ 0,

which means that P ′
∗ is a solution to the Euler inequality for (2.4.8), and therefore a global minimizer

of this convex problem. Since the minimizer P∗ of (2.4.8) is unique, we finally obtain that if P∗ /∈ MN ,
then none of the local minimizers of (2.4.6) satisfies the Aufbau principle.
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Abstract We propose accurate computable error bounds for quantities of interest in plane-wave
electronic structure calculations, in particular ground-state density matrices and energies, and interatomic
forces. These bounds are based on an estimation of the error in terms of the residual of the solved
equations, which is then efficiently approximated with computable terms. After providing coarse bounds
based on an analysis of the inverse Jacobian, we improve on these bounds by solving a linear problem in
a small dimension that involves a Schur complement. We numerically show how accurate these bounds
are on a few representative materials, namely silicon, gallium arsenide and titanium dioxide.
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3.1 Introduction

This chapter focuses on providing practical error estimates for numerical approximations of electronic
structure calculations. Such computations are key in many domains, as they allow for the simulation of
systems at the atomic and molecular scale. They are particularly useful in the fields of chemistry, materials
science, condensed matter physics, or molecular biology. Among the many electronic structure models
available, Kohn–Sham (KS) density functional theory (DFT) [116] with semilocal density functionals is
one of the most used in practice, as it offers a good compromise between accuracy and computational
cost. We will focus on this model in this chapter. Note that the mathematical formulation of this problem
is similar to that of the Hartree–Fock [89] or Gross–Pitaevskii equations [165], so that what we present in
the context of DFT can be easily extended to such contexts. We will focus on plane-wave discretizations
within the pseudopotential approximation, which are most suited for the study of crystals; some (but not
all) of our methodology can be applied in other contexts as well, including the aforementioned Hartree–
Fock or Gross–Pitaevskii models, as well as molecules simulated using plane-wave DFT.

In this field, the first and most crucial problem is the determination of the electronic ground-state of
the system under consideration. Mathematically speaking, this problem is a constrained minimization
problem. Writing the first-order optimality conditions of this problem leads to an eigenvalue problem
that is nonlinear in the eigenvectors. At the continuous level, the unknown is a subspace of dimension
Nel, the number of electrons in the system; this subspace can be conveniently described using either the
orthogonal projector on it (density matrix formalism) or an orthonormal basis of it (orbital formalism).
This problem is well-known in the literature and the interested reader is referred to [GK1] and the
references therein for more information on how it is solved in practice.

Solving this problem numerically requires a number of approximations, so that only an approximation
of the exact solution can be computed. Being able to estimate the error between the exact and the
approximate solutions is crucial, as this information can be used to reduce the high computational cost
of such methods by an optimization of the approximation parameters, and maybe more importantly, to
add error bars to quantities of interest (QoI) calculated from the approximate solution. In our context,
such QoI are typically the ground-state energy of the system and the forces on the atoms in the system,
but may also include any information computable from the Kohn–Sham ground-state.

While such error bounds have been developed already some time ago for boundary value problems,
e.g. in the context of finite element discretization, using in particular a posteriori error estimation [197],
the development of bounds in the context of electronic structure is quite recent, and still incomplete.
Computable and guaranteed error bounds for linear eigenvalue problems have been proposed in the
last decade [35, 36, 37, 47, 137]; we refer to [153, Chapter 10] for a recent monograph on the subject.
Specifically for electronic structure calculations, some of us proposed guaranteed error bounds for linear
eigenvalue equations [100]. For fully self-consistent (nonlinear) eigenvalue equations, an error bound
was proposed for a simplified 1D Gross–Pitaevskii equation in [70]; however the computational cost of
evaluating the error bound in this contribution is quite high. So far, no error bound has been proposed for
the error estimation of general QoI in electronic structure calculations, in particular for the interatomic
forces. This is what we are trying to achieve in this contribution.

In this chapter, we use a general approach based on a linearization of the Kohn–Sham equations. It is
instructive to compare our approach to those used in a general context. Assume we want to find x ∈ Rn
such that f(x) = 0, for some nonlinear function f : Rn → Rn (the residual). Near a solution x∗, we have
f(x) ≈ f ′(x)(x− x∗), and therefore, if f ′(x) is invertible, we have the error-residual relationship

x− x∗ ≈ f ′(x)−1f(x). (3.1.1)

This is the same approximation that leads to the Newton algorithm. Assume now that we want to
compute a real-valued QoI A(x∗), where A : Rn → R is a C1 function (e.g. the energy, a component
of the interatomic forces, of the density, . . . ); then we have the approximate equality with computable
right-hand side:

A(x)−A(x∗) ≈ ∇A(x) ·
(
f ′(x)−1f(x)

)
. (3.1.2)

From here, we obtain the simple first estimate

|A(x)−A(x∗)| ⩽ |∇A(x)|
∥∥f ′(x)−1∥∥

op|f(x)|,
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where |·| is any chosen norm on Rn, and ∥·∥op is the induced operator norms on Rn×n (note that
∇A(x) ∈ Rn and f ′(x) ∈ Rn×n). This approximate bound can be turned into a rigorous one using
information on the second derivatives of f ; see for instance [181].

In extending this approach to Kohn–Sham models, we encounter several difficulties:

• The structure of our problem is not easily formulated as above because of the presence of con-
straints and degeneracies. We solve this using the geometrical framework of [GK1] to identify the
appropriate analogue to the Jacobian f ′(x).

• The computation of the Jacobian and its inverse is prohibitively costly. We use iterative strategies
to keep this cost manageable.

• Choosing the right norm is not obvious in this context. For problems involving partial differential
equations, where f includes partial derivatives, it is natural to consider Sobolev-type norms, with
the aim of making f ′ a bounded operator between the relevant function spaces. We explore different
choices and their impacts on the error bounds.

• The operator norm inequalities∣∣∇A(x) ·
(
f ′(x)−1f(x)

)∣∣ ⩽ |∇A(x)|
∥∥f ′(x)−1∥∥

op|f(x)|

are very often largely suboptimal, even with appropriate norms. We quantify this on representative
examples.

• The structure of the residual f(x) plays an important role. For instance, when x results from a
Galerkin approximation to a partial differential equation, f(x) is orthogonal to the approximation
space. In the context of plane-wave discretizations, this means the residual only contains high-
frequency Fourier components. We demonstrate how this impacts the quality of the above bounds
when A represents the interatomic forces, in which case its derivative mostly acts on low-frequency
components.

The main result of our work therefore lies in the derivation of an efficient, asymptotically accurate,
way of approximating ∇A(x) ·

(
f ′(x)−1f(x)

)
using the specific structure of the residual f(x) in a plane-

wave discretization, where A represents a component of the interatomic forces of the system. This
approximation can then be used either to approach the actual error A(x)−A(x∗) in (3.1.2) or to improve
A(x) by computing A(x) − ∇A(x) ·

(
f ′(x)−1f(x)

)
, which is a better approximation of A(x∗). These

estimates are a new step towards robust and guaranteed a posteriori error estimates for Kohn–Sham
models: this chapter reflects the process that lead to their derivation, by describing the issues raised
when applying natural ideas and how we propose to solve these issues.

Throughout the chapter, we will provide numerical tests to illustrate our results. All these tests are
performed with the DFTK software [101], a recent Julia package solving the Kohn–Sham equations in
the pseudopotential approximation using a plane-wave basis, thus particularly well suited for periodic
systems such as crystals [144]. We are mostly interested in three QoI: the ground-state energy, the
ground-state density, and the interatomic forces, the latter being computed using the Hellmann–Feynman
theorem. We will demonstrate the main points with simulations on a simple system (bulk silicon), then
present results for more complicated systems.

We will be interested in this chapter only in quantifying the discretization error. However, the general
framework we develop can be used also to treat other types of error (such as the ones resulting from
the iterative solution of the underlying minimization problem). We only consider insulating systems at
zero temperature, and do not consider the error due to finite Brillouin zone sampling [39]; extending the
formalism to finite temperature and quantifying the sampling error, particularly for metals, is currently
under investigation, see [99] for a first step in this direction.

The outline of this chapter is as follows. In Section 3.2, we present the mathematical framework
related to the solution of the electronic structure minimization problem, describing in particular objects
related to the tangent space of the constraint manifold. In Section 3.3, we present the Kohn–Sham model
and the numerical framework in which our tests will be performed. In Section 3.4, we propose a first crude
bound of the error between the exact and the numerically computed solution based on a linearization
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argument as well as an operator norm inequality, both for the error on the ground-state density matrix
and on the forces. In Section 3.5, we refine this bound by splitting between low and high frequencies, and
using a Schur complement to refine the error bound on the low frequencies. Finally, in Section 3.6, we
provide numerical simulations on more involved materials systems, namely on a gallium arsenide system
(GaAs) and a titanium dioxide system (TiO2), showing that the proposed bounds work well in those
cases.

3.2 Mathematical framework

In this section, we present the models targeted by our study, as well as the elementary tools of
differential geometry used to derive and compute the error bounds on the QoI.

3.2.1 General framework

The work we present here is valid for a large class of mean-field models including different instances
of Kohn–Sham models, the Hartree–Fock model, and the time-independent Gross–Pitaevskii model and
its various extensions. To study them in a unified way, we use a mathematical framework similar to
the one in [GK1]. To keep the presentation simple, we will work in finite dimension and consider that
the solutions of the problem can be very accurately approximated in a given finite-dimensional space of
(high) dimension N , which we identify with CN . We denote by

⟨x, y⟩ := Re (x∗y)

the ℓ2 inner product of CN , seen as a vector space over R. We equip the R-vector space of square
Hermitian matrices

H := CN ×N
herm

with the Frobenius inner product ⟨A,B⟩F := Re (Tr(A∗B)). Note that although it is important in
applications to allow for complex orbitals and density matrices, the space of Hermitian matrices is not a
vector space over C, and therefore we will always consider vector spaces over R.

The density-matrix formulation of the mean-field model in this reference approximation space reads

min{E(P ), P ∈MN }, where MN :=
{
P ∈ H

∣∣ P 2 = P, Tr(P ) = Nel
}

(3.2.1)

is the manifold of rank-Nel orthogonal projectors (density matrices), and E : H → R is a C2 nonlinear
energy functional. The parameter Nel (with 1 ⩽ Nel ⩽ N ) is a fixed integer depending on the physical
model, and not on its discretization in a finite-dimensional space. For mean-field electronic structure
models, Nel is the number of electrons or electron pairs in the system (hence the notation Nel); in the
standard Gross–Pitaevskii model, Nel = 1. The energy functional E is of the form

E(P ) := Tr(H0P ) + Enl(P ),

where H0 is the linear part of the mean-field Hamiltonian, and Enl a nonlinear contribution depending
on the considered model (see Section 3.3 for the expressions in the Kohn–Sham model). For simplicity
of presentation we will ignore spin in the formalism, but we will include it in the numerical simulations
(see Remark 3.2). The set MN is diffeomorphic to the Grassmann manifold of Nel-dimensional complex
vector subspaces of CN .

Problem (3.2.1) always has a minimizer since it consists in minimizing a continuous function on a
compact set. This minimizer may or may not be unique, depending on the model and/or the physical
system under study. We will not elaborate here on this uniqueness issue, and assume for the sake of
simplicity that (3.2.1) has a unique minimizer, which we denote by P∗.

Besides the ground-state energy E(P∗), we can compute from P∗ various other physical quantities of
interest (QoI), for instance, the electronic density and the interatomic forces. We denote such a QoI by
A∗ = A(P∗).
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We consider the case when N is too large for problem (3.2.1) to be solved completely in the reference
approximation space. To solve problem (3.2.1), we therefore consider a finite-dimensional subspace X of
CN of dimension Nb and solve instead the variational approximation of (3.2.1) in X , namely

min{E(P ), P ∈MN , Ran (P ) ⊂ X}. (3.2.2)

Our goal is then to estimate the errors ∥A(P )−A∗∥ on the QoI A, where P is typically the minimizer
of (3.2.2), given the variational space X , and the norm is specific to the QoI. The latter can be a scalar,
e.g. the ground-state energy, or a finite or infinite dimensional vector, e.g. the interatomic forces, or the
ground-state density.

3.2.2 First-order geometry

The manifold MN is a smooth manifold. Its tangent space TPMN at P ∈MN is given by

TPMN = {X ∈ H | PX +XP = X, Tr(X) = 0}
=
{
X ∈ H

∣∣ PXP = 0, P⊥XP⊥ = 0
}
,

where P⊥ = 1−P is the orthogonal projection on Ran (P )⊥ for the canonical inner product of CN . The
set TPMN is the set of Hermitian matrices that are off-diagonal in the block decomposition induced by

P and P⊥; more explicitly, if P = U

(
INel 0

0 0

)
U∗ for some unitary U ∈ U(N ), then

TPMN =
{
X = U

(
0 Y ∗

Y 0

)
U∗, Y ∈ C(N −Nel)×Nel

}
.

The orthogonal projection ΠP on TPMN for the Frobenius inner product is given by

∀ X ∈ H, ΠP (X) = PXP⊥ + P⊥XP = [P, [P,X]] ∈ TPMN , (3.2.3)

where [A,B] := AB −BA is the commutator of A and B. Linear operators acting on spaces of matrices
are sometimes referred to as super-operators in the physics literature. Throughout this chapter, super-
operators will be written in bold fonts.

The mean-field Hamiltonian is the gradient of the energy at a given point P (again for the Frobenius
inner product):

H(P ) := ∇E(P ) = H0 +∇Enl(P ).
To simplify the notation, we set

H∗ = H(P∗) = ∇E(P∗). (3.2.4)

The first-order optimality condition for (3.2.1) is that ∇E(P∗) is orthogonal to the tangent space TP∗MN ,
which can be written, using (3.2.3) and (3.2.4), as ΠP∗H(P∗) = [P∗, [P∗, H(P∗)]] = 0. This corresponds
to the residual

R(P ) = ΠPH(P ) = [P, [P,H(P )]]

being zero at P∗. The residual function R can be seen as a nonlinear map from H to itself, and its
restriction to MN as a vector field on MN since for all P ∈MN , R(P ) ∈ TPMN .

3.2.3 Second-order geometry

We introduce the super-operators Ω(P ) and K(P ), defined at P ∈MN and acting on H. These oper-
ators were already introduced in [GK1, Section 2.2], but we recall here their definitions for completeness.
To simplify the notation, we will set K∗ := K(P∗), Ω∗ := Ω(P∗).

The super-operator K∗ ∈ L(H) is the Hessian of the energy projected onto the tangent space toMN
at P∗:

K∗ := ΠP∗∇2E(P∗)ΠP∗ = ΠP∗∇2Enl(P∗)ΠP∗ . (3.2.5)
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By construction, TP∗MN is an invariant subspace of K∗. Note that K∗ = 0 for linear eigenvalue problems,
i.e. when Enl = 0.

The super-operator Ω∗ ∈ L(H) is defined by

∀ X ∈ H, Ω∗X = −[P∗, [H∗, X]]. (3.2.6)

The tangent space TP∗MN is also an invariant subspace of Ω∗.

It is shown in [GK1] that the energy of a density matrix P = P∗ + X + O
(
∥X∥2

F

)
∈ MN with

X ∈ TP∗MN is E(P ) = E(P∗)+⟨X, (Ω∗ + K∗)X⟩F +o
(
∥X∥2

F

)
. The restriction of the operator Ω∗ +K∗

to the invariant subspace TP∗MN can therefore be identified with the second-order derivative of E on
the manifold MN . Since P∗ is a minimum, it follows that

Ω∗ + K∗ ⩾ 0 on TP∗MN .

Note that in general, the second-order derivative of a function defined on a smooth manifold is not
an intrinsic object; it depends not only on the tangent structure of the manifold, but also on the chosen
affine connection. However, at the critical point P∗ of E on the manifold, the contributions to the second
derivative due the connection vanish and the second-order derivative becomes intrinsic.

For our purposes, it will be convenient to define this second-order derivative also outside of P∗. Relying
on (3.2.5)–(3.2.6), we define for any P ∈ MN the super-operators Ω(P ) ∈ L(H) and K(P ) ∈ L(H)
through

∀ X ∈ H, Ω(P )X = −[P, [H(P ), X]] and K(P )X = ΠP∇2E(P )ΠPX. (3.2.7)

Both Ω(P ) and K(P ) admit TPMN as an invariant subspace and their restrictions to TPMN are
Hermitian for the Frobenius inner product. The map MN ∋ P 7→ Ω(P ) + K(P ) ∈ L(H) is smooth
and the restriction of Ω(P ) + K(P ) to TPMN provides a computable approximation of the second-order
derivative of E :MN → R in a neighbourhood of P∗ (whatever the choice of the affine connection).

3.2.4 Density matrix and orbitals

The framework we have outlined above is particularly convenient for stating the second-order condi-
tions, but much too expensive computationally as it requires the storage and manipulation of (low-rank)
large matrices. In practice, it is more effective to work directly with orbitals, i.e. write for any P ∈MN

P = ΦΦ∗ =
Nel∑
i=1
|ϕi⟩⟨ϕi| (3.2.8)

where Φ = (ϕ1| · · · |ϕNel) is a collection ofNel orbitals ϕi ∈ CN satisfying Φ∗Φ = INel and Span (ϕ1, . . . , ϕNel) =
Ran (P ), and where we used Dirac’s bra-ket notation: for ϕ, ψ ∈ CN , ⟨ϕ, ψ⟩ = ϕ∗ψ and |ϕ⟩⟨ψ| = ϕψ∗.
Problem (3.2.1) can be reformulated as

min
{
E(ΦΦ∗),Φ ∈ CN ×Nel ,Φ∗Φ = INel

}
.

Note that the orbitals are only defined up to a unitary transform: if U ∈ U(Nel) is a unitary matrix, then
Φ̃ := ΦU and Φ give rise to the same density matrix. This means that the minimizers of this minimization
problem are never isolated, which creates technical difficulties that are not present in the density matrix
formalism.

Let us fix a Φ = (ϕ1| · · · |ϕNel) ∈ CN ×Nel with Φ∗Φ = INel , and consider an element X of the tangent
plane TΦΦ∗MN . By completing Φ to an orthogonal basis and writing out X in this basis, it is easy to
see that the constraints X∗ = X, PXP = 0, P⊥XP⊥ = 0 imply that X can be put in the form
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X =
Nel∑
i=1
|ϕi⟩⟨ξi|+ |ξi⟩⟨ϕi| = ΦΞ∗ + ΞΦ∗ (3.2.9)

where Ξ = (ξ1| · · · |ξNel) ∈ CN ×Nel is a set of orbital variations satisfying Φ∗Ξ = 0. Furthermore,
under this condition, Ξ is unique, so that (3.2.9) establishes a bijection between TΦΦ∗MN and {Ξ ∈
CN ×Nel | Φ∗Ξ = 0}. We will therefore treat equivalently elements of the tangent space TPMN either in
the density matrix representation X or the orbital representation Ξ, writing

Ξ ≃Φ X. (3.2.10)

This orbital representation of P by Φ is more economical computationally, only requiring the storage
and manipulation of orbitals Φ ∈ CN ×Nel satisfying Φ∗Φ = INel . Similarly, the manipulation of objects
X in the tangent plane TΦΦ∗MN is more efficiently done through their orbital variations Ξ ∈ CN ×Nel

satisfying Φ∗Ξ = 0.

All operations on density matrices or their variations can indeed be carried out in this orbital rep-
resentation. For instance, the computation of the energy can be performed efficiently in practice, as
explained in Section 3.3, and the residual at P = ΦΦ∗ also has a nice representation in terms of orbitals:

R(ΦΦ∗) ≃Φ HΦ− Φ(Φ∗HΦ) with H evaluated at ΦΦ∗,

which is easily recognized as similar to the residual of a linear eigenvalue problem.

Likewise, operators on TΦΦ∗MN can be identified in this fashion. For instance,

Ω(ΦΦ∗)(ΦΞ∗ + ΞΦ∗) ≃Φ P⊥(HΞ− Ξ(Φ∗HΦ)) with H evaluated at ΦΦ∗. (3.2.11)

The computation of K can be performed similarly:

K(ΦΦ∗)(ΦΞ∗ + ΞΦ∗) ≃Φ P⊥(δHϕi)i=1,...,Nel with δH = dH
dP (ΦΞ∗ + ΞΦ∗). (3.2.12)

Finally, note that all the numerical results in this chapter are performed using the orbital formalism.

Remark 3.1. Note that the condition that Φ∗Ξ = 0 is not necessary for ΦΞ∗ +ΞΦ∗ to define an element
of TΦΦ∗MN . However, without this gauge condition, Ξ is not unique. This is simply a manifestation
at the infinitesimal level of the noninjectivity of the map Φ 7→ ΦΦ∗ between {Φ ∈ CN ×Nel ,Φ∗Φ = INel}
and MN . Because of this, the derivative Ξ 7→ ΦΞ∗ + ΞΦ∗ is not injective between the tangent spaces
{Ξ ∈ CN ×Nel ,Φ∗Ξ + Ξ∗Φ = 0} and TΦΦ∗MN . In more concrete terms, in the example case where

ϕ1, . . . , ϕNel are the first Nel basis vectors, any element X is of the form
(

0 Z∗

Z 0

)
which can be written

in the form (3.2.9) with Ξ =
(

0
Z

)
. However, such an X can also be written in the form (3.2.9) with

Ξ =
(
A
Z

)
for any anti-hermitian matrix A. The gauge condition Φ∗Ξ = 0 forces A to be zero, making Ξ

unique. In more formal terms, the map Φ 7→ ΦΦ∗ induces a principal bundle structure on the base space
MN (the Grassmann manifold) with total space {Φ ∈ CN ×Nel ,Φ∗Φ = INel} (the Stiefel manifold) and
characteristic fiber U(Nel). This naturally splits the tangent space {Ξ ∈ CN ×Nel ,Φ∗Ξ + Ξ∗Φ = 0} into
the vertical space {ΦA, A anti-hermitian}, and a complementary horizontal space, which we take to be
the orthogonal complement, {Ξ ∈ CN ×Nel | Φ∗Ξ = 0}.

The orbital formalism can be used to give a more concrete interpretation of the first-order optimality
condition R(P∗) = 0. Indeed, this condition can be rewritten as

P∗H∗P
⊥
∗ = 0, P⊥

∗ H∗P∗ = 0,

from which it follows that P∗ and H∗ = H(P∗) can be jointly diagonalized in an orthonormal basis:

H∗ϕ∗n = λ∗nϕ∗n, ⟨ϕ∗m, ϕ∗n⟩ = δmn, P∗ =
Nel∑
n=1
|ϕ∗n⟩⟨ϕ∗n|. (3.2.13)
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In many applications, the orbitals ϕ∗1, . . . , ϕ∗Nel spanning the range of P∗ (see (3.2.13)) are those
corresponding to the lowest Nel eigenvalues of H∗. This is called the Aufbau principle in physics and
chemistry. This principle is always satisfied in the (unrestricted) Hartree–Fock setting, and most of the
times in the Kohn–Sham setting. Under the Aufbau principle, we can assume that the λn’s are ranked in
nondecreasing order. The orbitals ϕi, 1 ⩽ i ⩽ Nel, are called occupied, and the orbitals ϕa, Nel ⩽ a ⩽ N ,
are called virtual (it is customary to label the occupied orbitals by indices i, j, k, l, and virtual orbitals by
indices a, b, c, d). The operator Ω∗ can be written explicitly using the tensor basis ϕ∗m ⊗ ϕ∗n. We have
indeed

Ω∗ =
Nel∑
i=1

N∑
a=Nel+1

(λa − λi)(|ϕ∗i ⊗ ϕ∗a⟩⟨ϕ∗i ⊗ ϕ∗a|+ |ϕ∗a ⊗ ϕ∗i⟩⟨ϕ∗a ⊗ ϕ∗i|),

and it follows that the lowest eigenvalue of the restriction of Ω∗ to TP∗MN is λNel+1 − λNel ⩾ 0. The
operator Ω∗ is therefore positive on TP∗MN , and coercive if there is an energy gap between the Nel

th

and (Nel + 1)st eigenvalues of H∗ (see e.g. [GK1]).

3.2.5 Metrics on the tangent space

The isomorphism between X = ΦΞ∗ + ΞΦ∗ ∈ TΦΦ∗MN and the set of orbital variations Ξ ∈ CN ×Nel

with Φ∗Ξ = 0 is unitary under the Frobenius inner product up to a factor of 2: ∥X∥2
F = 2∥Ξ∥2

F.

In practice, it is often advantageous to work using different inner products. This is in particular the
case for partial differential equations involving unbounded operators, where using Sobolev-type metrics
better respects the natural analytic structure of the problem and therefore allows for better bounds,
compare e.g. the results of (5.34) and (5.35) on Figure 4 in [37]. To that end, consider a metric on CN

given by

⟨ξ1, ξ2⟩T = ⟨ξ1, T ξ2⟩.

Here T is a coercive Hermitian operator on CN representing the metric; for instance, taking T to be a
discretization of the operator 1 −∆ we recover the classical Sobolev H1 norm. A basic problem is that
the projection P⊥ onto the orthogonal complement of Ran (P ) does not necessarily commute with T . As
a result, there are various nonequivalent ways to lift this metric to one on the tangent space TΦΦ∗MN .
We select here the computationally simplest. The operator

M = P⊥T 1/2P⊥T 1/2P⊥ (3.2.14)

is positive definite on the subspace Ran (P )⊥ of CN , and induces a metric ⟨ξ1,Mξ2⟩ on that space.
The point of this formulation is to make it easy to compute M1/2 = P⊥T 1/2P⊥. Note that, since P⊥

and T do not commute, M−1/2 ̸= P⊥T−1/2P⊥. However, P⊥T−1/2P⊥M1/2 is well-conditioned, so
that computing the action of M−1/2 on a vector can be performed efficiently by an iterative algorithm
involving repeated applications of the operators T 1/2 and T−1/2. The same holds for M−1. Furthermore,
practical numerical results are typically not very sensitive to these issues, so that other (nonequivalent)
reasonable alternatives to (3.2.14) yield similar results.

The metric on Ran (P )⊥ immediately induces a metric on TΦΦ∗MN given by, in the orbital represen-
tation associated with Φ,

⟨Ξ1,Ξ2⟩M = Re (Tr(Ξ∗
1MΞ2)) =

Nel∑
i=1

Re (⟨ξ1,i,Mξ2,i⟩),

for Ξ1 = (ξ1,i)1⩽i⩽Nel ,Ξ2 = (ξ2,i)1⩽i⩽Nel . This defines an operator M on TΦΦ∗MN through the rela-
tionship MX ≃Φ (Mξi)1⩽i⩽Nel when X ≃Φ (ξi)1⩽i⩽Nel . Similarly to M , we can compute powers and
inverses of M easily.

This formalism has the disadvantage that the same metric is used for every orbital variation. In prac-
tice this may not be sensible, as different orbitals can correspond to different energy ranges. Therefore
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we slightly modify the above formalism by applying a different metric on each individual orbital varia-
tion, following standard practice used in preconditioners for plane-wave density functional theory [159].
Introducing a family (T1, . . . , TNel) of coercive Hermitian operators on CNel , we set

Mi := P⊥T
1/2
i P⊥T

1/2
i P⊥ and MX ≃Φ (Miξi)1⩽i⩽Nel . (3.2.15)

3.2.6 Correspondence rules

As explained above, the density matrices will be preferred for the mathematical analysis while orbitals
will be used in practice in the numerical simulations. We summarize below the correspondence between
the density matrix and molecular orbital formulations, and the practical way the different operators we
introduced are computed. For a given P ∈ MN and (ϕi)1⩽i⩽Nel the associated set of occupied orbitals,
there holds

P ∈MN ↔ Φ = (ϕ1| · · · |ϕNel) ∈ CN ×Nel s.t. P = ΦΦ∗ (state),

X ∈ TPMN ↔ Ξ ∈ CN ×Nel s.t. Φ∗Ξ = 0 (perturbation),

R(P ) = [P, [P,H(P )]] ↔ (r1| · · · |rNel) = P⊥H(P )Φ (residual),

Ω(P )(X) ↔ P⊥(HΞ− Ξ(Φ∗HΦ)) (see (3.2.11)),

K(P )(X) ↔ P⊥(δHϕi)1⩽i⩽Nel (see (3.2.12)),

M sX ↔ (Ms
i ξi)1⩽i⩽Nel

for s = −1,−1/2, 1/2, 1 (see (3.2.15)).

3.3 The periodic Kohn–Sham problem

3.3.1 The continuous problem

We consider an R-periodic system, R being a Bravais lattice with unit cell Γ and reciprocal lattice
R∗ (the set of vectors G such that G · R ∈ 2πZ for all R ∈ R). For the sake of simplicity, we present
here the formalism for the (artificial) Kohn–Sham model for a finite system of Nel electrons on the unit
cell Γ with periodic boundary conditions. This is distinct from the more physical periodic Kohn–Sham
problem for an infinite crystal with Nel electrons by unit cell, which is usually treated by using the
supercell approach and Bloch theorem. Practical computations are performed for the latter model using
Monkhorst–Pack Brillouin zone sampling [150] (see also [39] for a mathematical analysis of this method).
The mathematical framework is very similar, with additional sums over k points.

At the continuous level, a Kohn–Sham state is described by a density matrix γ, a rank-Nel orthogonal
projector acting on the space L2

# of square integrable periodic functions. Ignoring constant terms mod-
elling interactions between ions (i.e. atomic nuclear and frozen core electrons), the Kohn–Sham energy of
γ is given by EKS(γ) = Tr(h0γ)+EHxc(ργ) (the superscript Hxc stands for Hartree-exchange-correlation),
with

h0 = −1
2∆ + vloc + vnloc, EHxc(ρ) =

ˆ
Γ

(
1
2ρVH(ρ)(x) + exc(ρ(x))

)
dx.

In the above expressions, ργ is the density associated with the trace-class operator γ (formally ργ(x) =
γ(x, x) where γ(x, x′) is the integral kernel of γ), exc : R+ → R a given exchange-correlation energy,
and VH(ρ) the Hartree potential, defined as the unique periodic solution with zero mean of the Poisson
equation −∆VH(ρ) = 4π

(
ρ−

ffl
Γ ρ
)
. In the pseudopotential approximation that we use in our numerical

results, vloc is a local potential given by

∀ x ∈ R3, vloc(x) :=
∑
R∈R

Nat∑
j=1

vjloc(x− (Xj +R)), (3.3.1)
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and vnloc a nonlocal potential in Kleinmann–Bylander [114] form given by

vnloc :=
∑
R∈R

Nat∑
j=1

nproj,j∑
a,b=1

∣∣pja(· − (Xj +R))
〉
Cjab

〈
pjb(· − (Xj +R))

∣∣∣, (3.3.2)

where Nat is the number of atoms in Γ, the Xj ’s are the positions of the atoms inside the unit cell
Γ, vjloc : R3 → R is a local radial potential, nproj,j denotes the number of projectors for atom j, and
the pjab : R3 → C are given smooth functions. We use in particular the Goedecker–Teter–Hutter (GTH)
pseudopotentials [79, 91] whose functional forms for the vjloc and pjab are analytic (vjloc is a radial Gaussian
function multiplied by a radial polynomial, and pjab is a radial Gaussian function multiplied by a solid
spherical harmonics).

The Kohn–Sham Hamiltonian associated to a density matrix γ is given by

hγ = h0 + VH(ργ) + e′
xc(ργ),

where VH(ργ) and e′
xc(ργ) are interpreted as local (multiplication) operators. Similarly, we have

D2
γ(EHxc(ργ)) ·Q = VH(ρQ) + e′′

xc(ργ)ρQ.

Remark 3.2 (Spin). The expressions above are given for a system of “spinless electrons” to accommodate
the simple geometrical formalism of Section 3.2. Real systems (and the numerical simulations we perform
in the following sections) include spin; in this case, the energy is EKS(γ) = 2Tr(h0γ) + EHxc(ργ), where
ργ(x) = 2γ(x, x), ∇EKS(γ) = 2(h0 + VH(ργ) + e′

xc(ργ)) and D2(EKS(γ)) ·Q = 4VH(ρQ) + 4e′′
xc(ργ)ρQ.

3.3.2 Discretization

For each vector G of the reciprocal lattice R∗, we denote by eG the Fourier mode with wave-vector
G:

∀ x ∈ R3, eG(x) := 1√
|Γ|

exp(iG · x)

where |Γ| is the Lebesgue measure of the unit cell Γ. The family (eG)G∈R∗ is an orthonormal basis of L2
#,

the space of locally square integrable R-periodic functions (and an orthogonal basis of the R-periodic
Sobolev space Hs

#, endowed with its usual inner product, for any s ∈ R). In the so-called plane-wave
discretization methods, the Kohn–Sham model is discretized using the finite-dimensional approximation
spaces

XEcut := Span
{
eG, G ∈ R∗

∣∣∣∣ 1
2 |G|

2 ⩽ Ecut

}
,

where Ecut > 0 is a given energy cut-off chosen by the user.

The connection with the formalism introduced in Section 3.2 is the following:

• we choose a large reference energy cut-off Ecut,ref and set

N := dim(XEcut,ref ) = #
{
G ∈ R∗ | 1

2 |G|
2 ⩽ Ecut,ref

}
;

• we identify XEcut,ref with CN by labelling the reciprocal lattice vectors from 1 to N in such a way
that for all 1 ⩽ i < j ⩽ N , |Gi| ⩽ |Gj |;

• the set of rank-Nel orthogonal projectors γ on L2
# such that Ran (γ) ⊂ XEcut,ref can then be identified

with the manifold MN defined in (3.2.1) through the mapping

γ =
N∑

i,j=1
Pij |eGi⟩

〈
eGj

∣∣;
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• the noninteracting Hamiltonian matrix H0 ∈ CN ×N has entries

[H0]ij =
〈
eGi

∣∣h0
∣∣eGj

〉
L2

#
,

and the nonlinear component of the energy Enl : H → R is any C2-extension of the function defined
on MN by

Enl(P ) = EHxc(ρP ) where ρP (x) = |Γ|−1/2
N∑

i,j=1
PijeGj−Gi(x).

The entries of the core Hamiltonian matrix can be computed explicitly:

[H0]ij = |Gi|
2

2 δi,j + [Vloc]ij + [Vnloc]ij

with [Vloc]ij =
〈
eGi

∣∣vloc
∣∣eGj

〉
L2

#
and [Vnloc]ij =

〈
eGi

∣∣vnloc
∣∣eGj

〉
L2

#
,

where the above inner products can be computed exactly through the Fourier transforms of the vjloc and
pjab (known exactly for GTH pseudopotentials). Note also that the density ρP can be expanded on a finite
number of Fourier modes and can therefore be easily stored in memory. Since the Poisson equation is
trivially solvable in the plane-wave basis, this enables the exact computation of the Hartree energy. The
exchange-correlation energy however cannot be computed explicitly, and is approximated using numerical
quadrature. In all the numerical results, we select the parameters of this numerical quadrature such that
it does not affect too much the results, see Remark 3.5.

3.3.3 Forces

The total ground-state energy depends on the atomic positions X = (Xj)1⩽j⩽Nat both explicitly (ion-
ion interaction energy and ion-electron interaction potentials Vloc and Vnloc) and through the fact that
the solution P∗ depends on X:

E(X) = E(X, P∗(X)).

The force acting on atom j is defined as Fj(X) = −∇XjE(X). Because of the Hellman–Feynman theorem,
the term involving the derivative of P∗ with respect to Xj vanishes [144], and the final result is

Fj = −Tr
(
(∇Xj

(Vloc + Vnloc))P∗
)
. (3.3.3)

This involves the partial derivatives of the matrix elements of Vloc + Vnloc with respect to the atomic
positions, which can be computed analytically from (3.3.1) and (3.3.2).

3.3.4 Numerical setup

For all the computations and examples on silicon, we use the DFTK software [101] within the LDA
approximation, with Teter 93 exchange-correlation functional [79] and a 2 × 2 × 2 k-point grid, and a
reference solution computed with Ecut,ref = 125 Ha, to which we compare results obtained with smaller
values of Ecut. We checked that Ecut,ref = 125 Ha was a high enough energy cut-off to have fully converged
results, up to the accuracy we need to test our numerical methods. We use the usual periodic lattice for
the FCC phase of silicon, with lattice constant a = 10.26 bohrs, close to the equilibrium configuration.
All results are expressed in atomic units: energies are in hartree and forces are in hartree/bohr. Note that
the discretization grid of the Brillouin zone is not fine enough to have fully converged results, but is still
sufficient to illustrate our points. Note also that the same results are observed for semilocal functionals,
such as PBE-GGA [160]. Other functionals, such as meta-GGA and hybrid functionals, are out of the
scope of this chapter.

The two atoms of silicon inside a cell are placed at first at their equilibrium positions with fractional co-
ordinates (− 1

8 ,−
1
8 ,−

1
8 ) and ( 1

8 ,
1
8 ,

1
8 ), and then the second one is slightly displaced by 1

20 (0.24,−0.33, 0.12)
to get nonzero interatomic forces.
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The discretized Kohn–Sham equations are solved by a standard SCF procedure. The main computa-
tional bottleneck is the partial diagonalization of the mean-field Hamiltonian at each SCF step. This is
done using an iterative eigenvalue solver, which only requires applying mean-field Hamiltonian matrices
to a set of Nel trial orbitals and simple operations on vectors. In a plane-wave basis set of size Nb, the
former operation can be done efficiently through the use of the fast Fourier transform for a total cost of
O(NelNb(logNb +

∑
j nproj,j)). We refer to [144] for more details. The application of the super-operators

Ω and K to a set of Nel orbital variations (see (3.2.11) and (3.2.12)) involves additional linear algebra
operations, for an additional cost of O(Nel

2(Nb +Nel)).

In this setting, the reference values for the energy is E∗ = −7.838 Ha and the interatomic forces are,
in hartree/bohr,

F∗ =

−0.0656 0.0656
0.0619 −0.0619
−0.0352 0.0352

,
where the first column are the forces acting on the first atom in each direction, and the second column
are the forces acting on the second atom.

3.4 A first error bound using linearization

Now that the mathematical and numerical frameworks are laid down, we turn to the estimation of the
error between the reference solution computed with a large energy cut-off Ecut,ref and approximations
thereof. We first start by deriving a linearization estimate and illustrating numerically its applicability.
We then propose a very coarse bound on the error on the density matrix and the forces, based on the
(expensive) evaluation of an operator norm. We will show in the next section how to improve this bound.

3.4.1 Linearization in the asymptotic regime

We assume that P∗ is a nondegenerate local minimizer of E in the sense that there exists η > 0 such
that Ω∗ + K∗ ⩾ η on the tangent space TP∗MN . This implies in particular that Ω∗ + K∗ is invertible
on the invariant subspace TP∗MN .

Recall that for any trial density matrix P ∈MN , the residual of the problem is

R(P ) = ΠPH(P ) = [P, [P,H(P )]] ∈ TPMN ,

so that R defines a smooth vector field onMN (a section of the tangent bundle TPMN ) which vanishes
at P∗. For P ∈MN in the vicinity of P∗, we have

P − P∗ = ΠP∗(P − P∗) +O
(
∥P − P∗∥2

F

)
= ΠP (P − P∗) +O

(
∥P − P∗∥2

F

)
. (3.4.1)

It follows from the definitions (3.2.5)–(3.2.6) of Ω∗ and K∗ that Ω∗ + K∗ is the Jacobian of the map
P 7→ R(P ) at P∗. Therefore, the optimality condition R(P∗) = 0 and the above expansions yield, for all
P ∈MN close enough to P∗,

R(P ) = (Ω∗ + K∗)ΠP∗(P − P∗) +O
(
∥P − P∗∥2

F

)
= (Ω(P ) + K(P ))ΠP (P − P∗) +O

(
∥P − P∗∥2

F

)
.

(3.4.2)

By continuity, Ω(P ) + K(P ) ⩾ η
2 on the tangent space TPMN for P ∈ MN close enough to P∗, so

that the restriction of the super-operator Ω(P ) + K(P ) to the invariant subspace TPMN is self-adjoint
and invertible. Using again (3.4.1) and the fact that R(P ) ∈ TPMN , we obtain, after inversion of
Ω(P ) + K(P ) on the tangent space,

P − P∗ = ((Ω(P ) + K(P ))|TP MN )−1R(P ) +O
(
∥P − P∗∥2

F

)
. (3.4.3)

This error-residual equation is the analogue in our case of the linearization (3.1.1), which identifies the
super-operator Ω(P ) + K(P ) as the fundamental object in our study.
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Based on this expansion, we can formulate the Newton algorithm to solve the equation R(P∗) = 0:

P k+1 = RPk

(
P k − (Ωk + Kk)−1R(P k)

)
,

where Ωk := Ω(P k)|TPk
MN and Kk := K(P k)|TPk

MN and R is a suitable retraction onMN . A possible
retraction is given in [GK1]. This Newton algorithm is expensive in practice, as it requires to solve
iteratively a linear system; the cost of a Newton step is comparable to that of a full self-consistent field
cycle. It is however a useful theoretical tool, and a starting point for further analysis and approximations.

To check the validity of the linearization (3.4.3), we focus on three quantities of interest: the ground-
state energy, the ground-density density, and the interatomic forces acting on the two atoms in Γ. The
reference values E∗, ρ∗ and F∗ of these QoIs are those obtained with the very large energy cut-off
Ecut,ref = 125 Ha, defining a “fine grid” in real space via the discrete Fourier transform. For Ecut < Ecut,ref
defining a “coarse grid” in real space, we compute two approximations of the three QoIs:

1. ESCF, ρSCF and FSCF denote the approximations obtained from the variational solution of the
Kohn–Sham problem on the coarse grid;

2. ENewton, ρNewton and FNewton denote the ones computed from the Kohn–Sham state obtained by
one Newton step on the fine grid, starting from the variational solution of the Kohn–Sham problem
on the coarse grid: as the SCF is converged on the coarse grid, we perform the Newton step on the
fine grid in order to improve the approximation of P∗. That is, if P is the variational solution on
the coarse grid, P − ((Ω(P ) + K(P ))|TP MN )−1R(P ) is a much better approximation of P∗ (for the
metrics adapted to the chosen three QoIs).

The errors between these approximations and the reference values are plotted in Figure 3.1 as functions
of Ecut. The errors on the ground-state density are measured with the L2

# metric, while the errors on
the forces are measured with the Euclidean metric on R3×2.

For the simple case of a silicon crystal at the LDA level of theory, the linearization works very well,
even for very small values of Ecut’s of the order of 5 Ha. Indeed the Kohn–Sham ground-state obtained
by variational approximation on a coarse grid is significantly improved by one Newton step: the errors
on the QoIs obtained with the latter are orders of magnitude smaller than the ones obtained with the
former.
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Figure 3.1 – Errors for the ground-state energy (hartree), ground-state density and interatomic forces
(hartree/bohr) for Si as a function of Ecut, for both the variational solution of the Kohn–Sham problem on
the coarse grid defined by Ecut (solid line) and the post-processed solution obtained with one Newton step on the
fine grid (dashed line). This shows that the linearization approximation is excellent, even for energy cut-offs as
low as Ecut = 5 Ha.

3.4.2 A simple error bound based on operator norms

From (3.4.3) one can extract an error bound:

∥P − P∗∥ ≈ ∥ΠP (P − P∗)∥
⩽
∥∥((Ω(P ) + K(P ))|TP MN )−1∥∥

op∥R(P )∥ (+ h.o.t.),
(3.4.4)
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where ∥·∥op is the (super-)operator norm associated with the chosen norm ∥·∥ on H. This bound is not
guaranteed, but the results in Figure 3.1 suggest that it is very close to be guaranteed. Guaranteeing
this bound could be done, provided that one could bound the higher-order terms rigorously [181]; this
is an interesting prospect, but lies outside the scope of this chapter. To test the accuracy of this bound
for a specific norm on H, we would need to estimate the corresponding operator norm of the Hermitian
operator ((Ω(P )+K(P ))TP MN )−1 for all the P ’s we are considering. In order to lower the computational
burden, we consider instead the bound

∥P − P∗∥ ⩽
∥∥((Ω∗ + K∗)|TP∗ MN )−1∥∥

op∥R(P )∥ (+ h.o.t.). (3.4.5)

This enables us to compute the operator norm
∥∥((Ω∗ + K∗)|TP∗ MN )−1

∥∥
op only once, instead of computing

it for every P . This is of course not accessible in practice, but we use it here for the sake of numerical
experiment. Moreover, we can consider that the bounds (3.4.4) and (3.4.5) are almost equivalent since the
results obtained in the previous section show that we are in the linear regime even for the lowest values
of Ecut used in practice. The operator (Ω∗ + K∗)|TP∗ MN is Hermitian for the Frobenius inner product
and, thus, the operator norm

∥∥((Ω∗ + K∗)TP∗ MN )−1
∥∥

op corresponding to the Frobenius norm on H is
equal to the inverse of the smallest eigenvalue of (Ω∗ +K∗)|TP∗ MN . Standard iterative eigenvalue solvers
for Hermitian operators can be used to compute this eigenvalue. We use here the LOBPCG algorithm
[115].

We can see on Figure 3.2 (left panel) that when choosing the Frobenius norm on H, the bound
(3.4.5) leads to very crude error estimates: the error is overestimated by several orders of magnitude,
and the bound becomes worse and worse as Ecut increases. This issue is well-known in the analysis of
partial differential equations, where L2-type norms are not the natural ones to measure the error on the
solution or the residual. Instead, for the Kohn–Sham equations and other second-order elliptic problems,
it is more relevant to measure the error P − P∗ in H1-type Sobolev norms (energy norms) and the
residual R(P ) in H−1-type Sobolev norms (dual norms). The linear operator linking the two quantities
(here (Ω(P ) + K(P ))|TP MN ) is then expected to be a bounded isomorphism from the state error to the
residual space for these norms. This suggests adapting the metrics on the tangent space TPMN in which
we measure the error P − P∗ (or more precisely the leading term ΠP (P − P∗)) on the one hand, and
the residual R(P ) on the other hand. Similar considerations lead to the “kinetic energy preconditioning”
used in practical computations [159]. Using the super-operator M on TPMN introduced in (3.2.15) with
Ti the diagonal operator on CN representing the operator − 1

2 ∆+ ti where ti = 1
2∥∇ϕi∥

2
L2

#
(kinetic energy

of the ith orbital), we obtain the bound∥∥∥M1/2ΠP (P − P∗)
∥∥∥

F
⩽
∥∥∥M1/2((Ω(P ) + K(P ))|TP MN )−1M1/2

∥∥∥
op

∥∥∥M−1/2R(P )
∥∥∥

F
. (3.4.6)

Here also, we lower the computational burden by replacing the first term in the RHS∥∥∥M1/2((Ω(P ) + K(P ))|TP MN )−1M1/2
∥∥∥

op

by the asymptotically equal quantity∥∥∥M
1/2
∗ ((Ω∗ + K∗)|TP∗ MN )−1M

1/2
∗

∥∥∥
op
.

The results are shown in Figure 3.2 (central panel). This time, the curves are almost parallel: the gap
does not widen as Ecut increases. However, the bound is still an overestimate by more than one order of
magnitude. This is due to the fact that∥∥∥M

1/2
∗ ((Ω∗ + K∗)|TP∗ MN )−1M

1/2
∗

∥∥∥
op
≈ 14.85

for this system, while the residual R(P ) is supported only on high-frequency Fourier modes, on which the
operator M1/2((Ω(P ) + K(P ))|TP MN )−1M1/2 is close to identity. The latter statement is supported by
Proposition 3.1 in the appendix (see also the result [37, Proposition 5.10] concerning the linear setting).
Thus,

∥∥M−1/2R(P )
∥∥

F is a good approximation of
∥∥M1/2ΠP (P − P∗)

∥∥
F, as shown on Figure 3.2 (central

panel).
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Figure 3.2 – Error bounds for Si based on (3.4.5) and (3.4.6). Left: L2-norm; Center: H1-type norm;
Right: relative error between ΠP (P − P∗) and M−1R(P ). It holds

∥∥((Ω∗ + K∗)|TP∗ MN )−1
∥∥

op
≈ 11.23 and∥∥∥M

1/2
∗ ((Ω∗ + K∗)|TP∗ MN )−1M

1/2
∗

∥∥∥
op

≈ 14.85.

3.4.3 Error bounds on QoIs and applications to interatomic forces

Consider now a quantity of interest characterized by the smooth observable A : MN → G, where G
is a normed vector space (in particular, G = R for real QoIs such as the ground-state energy, G = R3Nat

for interatomic forces, and, e.g., G = L2
# for the ground-state densities). For such a QoI, there holds for

P ∈MN in the vicinity of P∗,

A(P )−A∗ = dA(P ) · (ΠP (P − P∗)) + h.o.t., (3.4.7)

where dA(P ) ∈ L(TPMN ;G) is the derivative of A at P . We thus obtain the bound

∥A(P )−A∗∥G ⩽ ∥dA(P )∥TP MN →G∥ΠP (P − P∗)∥TP MN
(+ h.o.t.) (3.4.8)

for given norms ∥·∥G and ∥·∥TP MN
on G and TPMN respectively, and associated operator norm ∥·∥TP MN →G

on L(TPMN ;G).

Let us start with the simple case of the component of the force on atom j along the direction α due
to the local part of the pseudopotential. Since this QoI is scalar, we have G = R. Using (3.3.3), we get

F loc
j,α(P ) = −Tr

(
∂Vloc

∂Xj,α
P

)
.

Thus (3.4.8) becomes, using the Frobenius norm on TPMN ,

|F loc
j,α(P )− F loc

j,α(P∗)| ⩽
∥∥∥∥ΠP

∂Vloc

∂Xj,α

∥∥∥∥
F
∥ΠP (P − P∗)∥F (+ h.o.t.), (3.4.9)

with
ΠP

∂Vloc

∂Xj,α
≃Φ (1− ΦΦ∗)

(
∂Vloc

∂Xj,α
Φ
)
. (3.4.10)

We plot in Figure 3.3 (left panel) the bound (3.4.9). The latter is pessimistic by more than three orders
of magnitude, and its relative accuracy gets worse and worse as the cut-off energy increases.

The bound (3.4.9) using the operator norm of dA(P ) being very inaccurate, we tested another ap-
proach consisting in using directly (3.4.7) to evaluate the error on the QoI by applying the derivative
dA(P ) to a computable approximation of ΠP (P − P∗). Relying on the results in the previous section
showing that M−1/2R(P ) is a good approximation of M1/2ΠP (P−P∗) in Frobenius norm, it is tempting
to replace ΠP (P − P∗) by M−1R(P ) in (3.4.7) and approximate F (P ) − F∗ by dF (P ) · (M−1R(P )),
this approximation being justified by Figure 3.2 (right panel). Indeed the continuous counterpart of the
asymptotic equivalence between M−1/2R(P ) and M1/2ΠP (P − P∗) for the Frobenius (L2-type) norm
is that the preconditioned residual and the error on the density matrix are asymptotically equivalent in
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Figure 3.3 – Silicon. (Left panel) Inaccurate error bound (3.4.9) for the component of the force on atom
j = 1 along direction α = (1, 0, 0) due to the local part of the pseudopotential. (Right panel) Approximation of
|F (P ) − F∗| obtained by dropping the h.o.t. in the generic formula (3.4.7) and applying the derivative dF (P ) either
to the actual error ΠP (P−P∗) or the preconditioned residual M−1R(P ). The approximation dF (P )·(ΠP (P−P∗))
matches asymptotically the error F (P ) − F∗, validating again the rapid establishment of the linear regime. On
the other hand, the approximation dF (P ) · (M−1R(P )) does not match asymptotically.

H1-type norms, while the derivative of the interatomic forces observable is continuous on H1-type spaces.
This idea is tested in Figure 3.3 (right panel). However, this leads to an underestimation of the error,
although by a small factor. The reason is that even if P −P∗ and M−1R(P ) do match asymptotically for
the suitable norms, this is not the case for dF (P ) · (ΠP (P − P∗)) and dF (P ) · (M−1R(P )) for reasons
made clear in the next section.

Remark 3.3. In our simulations, the computation of dA(P ) · X for X ∈ TPMN is performed by
forward-mode automatic differentiation using the ForwardDiff.jl Julia package [173].

We summarize the results of this section in Figure 3.4, displaying the combination of these bounds:
the successive operator norms result in very inaccurate bounds (from six to eleven orders of magnitude)
for the error on the forces.
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Figure 3.4 – Combination of the error estimate (3.4.8) on the interatomic forces with the error estimate on the
error in L2-type norm (3.4.5) and H1-type norm (3.4.6). The inaccuracy of the bounds accumulates and results
in extremely inaccurate bounds, from six to eleven orders of magnitude.
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3.5 Improved error bounds based on frequencies splitting

3.5.1 Spectral decomposition of the error

In the previous section, we saw that even if ΠP (P −P∗) and M−1R(P ) are asymptotically equivalent
in suitable norms, replacing the former by the latter in (3.4.7) when A = F (interatomic forces) results
in a large error, even in the asymptotic regime.

To analyse this issue, we use the decomposition

XEcut,ref = XEcut ⊕X⊥
Ecut

. (3.5.1)

Since XEcut = Span (eG, |G|2

2 ⩽ Ecut) and X⊥
Ecut

= Span (eG, Ecut <
|G|2

2 ⩽ Ecut,ref), (3.5.1) corresponds
to a low vs high frequency splitting. Using the identification of XEcut,ref ≡ CN introduced in Section 3.3.2,
(3.5.1) boils down to decomposing CN as

CN = X ⊕ X⊥ with X =
(

CNb

0CN −Nb

)
and X⊥ =

(
0CNb

CN −Nb

)
.

Let Φ ∈ CN ×Nel be such that Φ∗Φ = INel and P = ΦΦ∗ ∈ MN . Combining the identification
XEcut,ref ≡ CN described above with the relation (3.2.9) identifying a matrix X of the tangent space
TPMN with a collection Ξ = (ξ1| · · · |ξNel) ∈ CN ×Nel of orbital variations such that Φ∗Ξ = 0, the
decomposition (3.5.1) induces a decomposition of the tangent space TPMN into two orthogonal subspaces
ΠEcutTPMN and Π⊥

Ecut
TPMN (for the Frobenius inner product):

ΠEcut

(
Nel∑
i=1
|ϕi⟩⟨ξi|+ |ξi⟩⟨ϕi|

)
:=

Nel∑
i=1
|ϕi⟩⟨ΠX ξi|+ |ΠX ξi⟩⟨ϕi|,

Π⊥
Ecut

(
Nel∑
i=1
|ϕi⟩⟨ξi|+ |ξi⟩⟨ϕi|

)
:=

Nel∑
i=1
|ϕi⟩

〈
Π⊥

X ξi
∣∣+
∣∣Π⊥

X ξi
〉
⟨ϕi|,

where ΠX is the orthogonal projector on X (for the canonical inner product of CN ) and Π⊥
X = 1− ΠX .

If P solves the minimization problem (3.2.2), we infer from the first-order optimality conditions that the
residual R(P ) is orthogonal to ΠEcutTPMN , meaning that the vectors ri(P ) such that

R(P ) =
Nel∑
i=1
|ϕi⟩⟨ri(P )|+ |ri(P )⟩⟨ϕi|

belong to X⊥. Note that in practice, this is not exactly true for the full Kohn–Sham model because of
the numerical quadrature errors involved in the treatment of the exchange-correlation terms.

Now P−P∗ ≈ ((Ω(P )+K(P ))|TP MN )−1R(P ) contains two components: one in ΠEcutTPMN and one
in Π⊥

Ecut
TPMN . In the high-frequency subspace Π⊥

Ecut
TPMN , the leading term in (Ω(P )+K(P ))|TP MN

comes from the contribution of the Laplacian arising in the Hamiltonian h0, which is well approximated
by the super-operator M . This claim is supported by Proposition 3.1, in which we prove in a simplified
setting that ((Ω(P ) + K(P ))|TP MN )−1Π⊥

Ecut
is asymptotically equivalent to M−1Π⊥

Ecut
.

This is what we observe in Figure 3.5 (central and right panels): if P is the solution to (3.2.2), the
residual R(P ) is supported in Π⊥

Ecut
TPMN (up to numerical quadrature errors). In accordance with

Proposition 3.1, the difference between the error P − P∗ ≈ ΠP (P − P∗) and the preconditioned residual
M−1R(P ) (Figure 3.6) is smaller in Frobenius norm than the preconditioned residual itself. This explains
our observations in Section 3.4.2 that ∥P − P∗∥F is well approximated by

∥∥M−1R(P )
∥∥

F. However, this
does not imply that dF (P ) ·ΠP (P − P∗) is well-approximated by dF (P ) · (M−1R(P )). This is because
the gradients ∇Fj,α(P ) are mostly supported on low frequencies, as illustrated in Figure 3.5 (left panel).
Although the low-frequency contribution to the error ΠP (P −P∗) is of smaller magnitude than the high-
frequency contribution, its contribution to dF (P ) · (ΠP (P − P∗)) is very significant. The fact that the
low-frequency error is not captured at all by the purely high-frequency term M−1R(P ) is responsible for
the poor approximation of the error F (P )− F∗ by dF (P ) · (M−1R(P )).
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Figure 3.5 – Fourier coefficients moduli in the orbital representation ΠP (P−P∗) ≃Φ (ei)1⩽i⩽N and M−1R(P ) ≃Φ
(M−1

i ri)1⩽i⩽N . (Left) Test function (1 − P ) ∂Vloc
∂Xj,α

ϕ1 (see (3.4.10)).
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Figure 3.6 – Fourier coefficients of the difference between the error e1 and the preconditioned residual M−1
1 r1,

where ΠP (P − P∗) ≃Φ (ei)1⩽i⩽N and M−1R(P ) ≃Φ (M−1
i ri)1⩽i⩽N . Low frequencies contribute greatly.

Now that we have understood the reason why it is not possible to approximate the error F (P )−F∗ on
the interatomic forces by the computable term dF (P ) ·(M−1R(P )), we propose in the next section a way
to evaluate this error, based on the linearization (3.4.3) and the frequencies splitting we just introduced.

3.5.2 Improving the error estimation

We now decompose tangent vectors and operators according to the splitting ΠEcutTPMN and Π⊥
Ecut
TPMN ,

which we respectively label by 1 and 2 for simplicity. In this way, the error-residual relationship can be
written in concise form with obvious notation as[

(Ω + K)11 (Ω + K)12
(Ω + K)21 (Ω + K)22

][
P1 − P∗1
P2 − P∗2

]
=
[
R1
R2

]
.

Recall that (Ω(P ) + K(P ))|TP MN is only invertible at high cost as it has a priori nonzero values
on the four components of the operator arising from the low frequencies/high frequencies splitting of
the operator. The computational cost for the inversion is equivalent to performing a Newton step on
the reference grid. But we can make approximations to invert it only on the coarse grid XEcut and
approximate the low frequency error components. In the same spirit as for the perturbation theory based
post-processing method introduced in [38, 69] and the Feshbach–Schur method analysed in [71], we make
the following approximations:

(Ω + K)21 ≈ 0 and (Ω + K)22 ≈M22,

which yields [
(Ω + K)11 (Ω + K)12

0 M22

][
P1 − P∗1
P2 − P∗2

]
=
[
R1
R2

]



3.5. Improved error bounds based on frequencies splitting 79

and therefore

P2 − P∗2 ≈M−1
22 R2, (3.5.2)

P1 − P∗1 ≈ (Ω + K)−1
11 (R1 − (Ω + K)12M−1

22 R2). (3.5.3)

This requires only a single inexpensive computation on the fine grid. The main bottleneck is then to solve
a linear system with operator (Ω + K)11, which is as expensive as a full Newton step on the coarse grid
XEcut . Since R1 = 0 when P is the optimal Galerkin solution on XEcut , we can understand the previous
attempt to replace P − P∗ by M−1R(P ) as (3.5.2). Not neglecting (Ω + K)12 in (3.5.3) gives rise to a
correction on the coarse space also. We denote by RSchur(P ) the new residual

RSchur(P ) =
[
(Ω + K)−1

11 (R1 − (Ω + K)12M−1
22 R2)

M−1
22 R2

]
.

To illustrate the validity of these approximations, we plotted in Figure 3.7 the components of rSchur,
the orbital representation of RSchur. We see that this time, the error is well approximated by (3.5.3) in
the low-frequency space.
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Figure 3.7 – Fourier coefficients of the new residual rSchur,1 and its comparison to the error e1, where ΠP (P −
P∗) ≃Φ (ei)1⩽i⩽N and RSchur(P ) ≃Φ (rSchur,i)1⩽i⩽N . (Left) Components of the modified residual rSchur,1. (Right)
Difference between the error and the new residual: low frequencies are better approximated (compare with
Figure 3.6).

In Figure 3.8, we plot the new estimate dF (P ) · (RSchur(P )) of the error F (P ) − F∗ as well as the
differences

Ferr − F∗ := F (P )− dF (P ) · (ΠP (P − P∗))− F∗,

Fres − F∗ := F (P )− dF (P ) · (M−1R(P ))− F∗,

FSchur − F∗ := F (P )− dF (P ) · (RSchur(P ))− F∗,

in order to have a better estimation of the improvement on the estimation of the error. With the Schur
complement method, the new estimate better matches the error than the crude one simply using the
residual: the accuracy of the estimation is approximately improved by one order of magnitude.

Remark 3.4. The quantity dF (P ) ·(RSchur(P )) does not yield a guaranteed estimator of the error on the
forces as it is obtained after several approximations and is only valid in the asymptotic regime. However,
it can be computed for a cost comparable to the one of performing a SCF step on the same grid and can
be used for two main purposes:

• as an error bound, as the error F (P )−F∗ is reasonably well approximated by dF (P ) · (RSchur(P ));

• as a more precise approximation of the QoI, as the forces Fj(P ) on atom j obtained by a variational
approximation on a coarse grid are improved by the post-processing Fj(P ) 7→ Fj(P ) − dFj(P ) ·
(RSchur(P )).
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Figure 3.8 – (Left) Estimation of the error F (P ) − F∗ with dF (P ) · X where X is either the exact error
ΠP (P − P∗), the preconditioned residual M−1R(P ) or the modified residual RSchur(P ). (Right) Enhancement
of the estimation of the forces by replacing F (P ) with F (P ) − dF (P ) · X where X is either the exact error
ΠP (P − P∗), the preconditioned residual M−1R(P ) or the modified residual RSchur(P ).

3.6 Numerical examples with more complex systems

We perform the same simulations as for silicon, but for more complex systems, namely GaAs and
TiO2. The calculations are still performed within the LDA approximation with GTH pseudopotentials
and Teter 93 exchange-correlation functional, with a 2×2×2 k-point grid to discretize the Brillouin zone,
and the reference solutions are obtained for Ecut,ref = 125 Ha. We describe here the numerical setting
for both systems.

GaAs We use the usual periodic lattice for the FCC phase of GaAs, with lattice constant 10.68 bohrs,
close to but not exactly at the equilibrium configuration in order to get nonzero forces. The Ga atom
is placed at fractional coordinates ( 1

8 ,
1
8 ,

1
8 ) and the As atom at fractional coordinates (− 1

8 ,−
1
8 ,−

1
8 ).

The Ga atom is then displaced by 1
15 (0.24,−0.33, 0.12) to get nonzero forces. In this setting, the

reference values for the energy is E∗ = −8.572 Ha and the interatomic forces are, in hartree/bohr,

F∗ =

−0.0448 0.0448
0.0722 −0.0722
−0.0251 0.0251

,
where the first column are the forces acting on the Ga atom in each direction, and the second
column are the forces acting on the As atom.

TiO2 We use the MP-2657 configuration in the primitive cell from the Materials Project [162]. We apply
the small displacement 1

5 (0.22,−0.28, 0.35) to the equilibrium position of the first Ti atom to get
nonzero forces. In this setting, the reference values for the energy is E∗ = −71.589 Ha and the
interatomic forces are, in hartree/bohr,

F∗ =

−2.88 0.641 3.80 0.753 −1.57 −0.745
3.10 −0.919 −3.09 −1.45 0.800 1.56
0.136 0.403 −0.368 −0.786 0.251 0.364

,
where the first two columns are the forces acting on the two Ti atoms in each direction, and the
other columns are the forces acting on the four O atoms.

We plot in Figure 3.9 the energy, density and forces obtained after a Newton step on the fine grid
starting from the variational solution on the coarse grid given by Ecut, for GaAs and TiO2. The fast
establishment of the asymptotic regime is confirmed for the two new systems as, even for small Ecut’s,
the so-obtained QoIs are orders of magnitude more accurate than the ones obtained by the variational
solution on the coarse grid.

We plot in Figure 3.10 the estimation of the actual error F (P )− F∗ with dF (P ) ·X where X is either
ΠP (P −P∗), R(P ) or RSchur(P ). In Figure 3.11, we plot the improvement of the estimation of the forces
F (P )− dF (P ) ·X where X is either ΠP (P −P∗), R(P ) or RSchur(P ). Just as for silicon, the estimation
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Figure 3.9 – Errors of some QoI as functions of Ecut (reference solution is obtained with Ecut,ref = 125 Ha)
for GaAS and TiO2. Solid lines: errors obtained with the variational solution in the space XEcut . Dashed lines:
errors obtained with one Newton step on the reference grid, starting from the variational solution in the space
XEcut . Left panel: energy (hartree), central panel: discrete L2 norm of the density, right panel: interatomic forces
(hartree/bohr). To be compared with Figure 3.1.

is well improved with the modified residual RSchur. Note that in the GaAs case, there is a plateau for
high Ecut’s. This phenomenon is explained in the remark below.
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Figure 3.10 – Estimation of the error F (P ) −F∗ with dF (P ) ·X where X is either the exact error ΠP (P −P∗),
the preconditioned residual M−1R(P ) or the modified residual RSchur(P ). To be compared with Figure 3.8 (Left).

Remark 3.5. The plateau observed Figure 3.10 and Figure 3.11 for GaAs comes from the numerical
quadrature scheme used to compute the exchange-correlation energy and the corresponding matrix ele-
ments. In fact, we also observed such plateaus for silicon and TiO2 with the default quadrature scheme
of DFTK, but these disappeared by using 8 times as many numerical quadrature points. With this more
accurate numerical quadrature scheme, the plateau for GaAs is lower but still visible. It disappears when
further increasing the number of quadrature points, at the price of longer computations.
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Figure 3.11 – Enhancement of the estimation of the forces by replacing F (P ) with F (P ) − dF (P ) ·X where X
is either the exact error ΠP (P − P∗), the preconditioned residual M−1R(P ) or the modified residual RSchur(P ).
To be compared with Figure 3.8 (Right).

3.7 Conclusion

In this work, we have investigated methods to estimate the error on interatomic forces resulting from
plane-wave discretizations of the Kohn–Sham equations. On the systems we investigated, we find the
following:

• Linearizing the equations around a solution is a good approximation, even for energy cut-offs as
small as 5 hartree (Figure 3.1).

• The naive approach based on the computation of operator norms proves to be extremely inefficient,
overestimating the error by several orders of magnitude. This is the case even when using appro-
priate H1-type norms (Figure 3.4). The reason is that the discretization error is mostly made up of
high frequency components, whereas quantities of interest are mostly supported on low frequencies,
resulting in very suboptimal Cauchy–Schwarz inequalities (Figure 3.5).

• Replacing directly the error by the preconditioned residual yields reasonable estimates of the errors,
but they are not systematic upper bounds (Figure 3.3).

• A Schur approach based on a low/high frequency splitting systematically improves the solution and
gives reliable estimates of the error (Figure 3.8), at the price of more computational work.

Our results validate on realistic test cases and for properties such as interatomic forces the frequency
splitting approach already introduced in [38, 69, 71]. Thanks to the modular nature of DFTK and the use
of automatic differentiation, the implementation of our estimates is relatively simple and convenient. It is
publicly available at https://github.com/gkemlin/paper-forces-estimator. The algorithm
proceeds in two steps: i) the computation of the residual on the fine grid and ii) a linear system solve
involving the Jacobian on the coarse grid. The computational cost of step i) is negligible compared to
that of step ii), which is roughly that of a full self-consistent computation on the coarse grid. Therefore,
for roughly twice the cost of a standard computation, one obtains an accurate approximation of the
discretization error on the interatomic forces (or, equivalently, a better estimate of the latter).

The scope of this work is limited to gapped systems at zero temperature and to the study of the
discretization error. Interesting perspectives for future work include the application of this methodology
to the error resulting from an incomplete self-consistent cycle, and to finite-temperature models, including
metals (see [99] for an extension of the linearized equations to the finite-temperature case).

https://github.com/gkemlin/paper-forces-estimator
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Appendix: Mathematical justification

The purpose of this appendix is to explain mathematically in a simplified setting the observation
in Section 3.4.2 that

∥∥M−1/2ΠPR(P )
∥∥

F was a good approximation of
∥∥M1/2ΠP (P − P∗)

∥∥
F. For this

purpose, we work in a slightly different framework than the one we used in the rest of the chapter, and
consider the infinite-dimensional version of Problem (3.2.1) associated with the periodic Gross–Pitaevskii
model in dimension d ⩽ 3, which reads as

E∗ := min{E(P ), P ∈M∞}, (3.7.1)

with M∞ := {P ∈ S(L2
#) |P 2 = P, Tr(P ) = 1, Ran (P ) ⊂ H1

#} and E(P ) := Tr((−∆ + V )P ) + 1
2
´

Γ ρ
2
P .

Here S(L2
#) denotes the space of self-adjoint operators on L2

#, V a given function of L∞
# , and ρP the

density of P . The condition Ran (P ) ⊂ H1
# ensures that both the linear and nonlinear terms in the energy

functional E(P ) are well-defined and finite. It is convenient to rewrite (3.7.1) in the orbital framework.
Any state P ∈M∞ is rank-1 and such that Ran (P ) ⊂ H1

#. It can therefore be represented by a function
ϕ ∈ H1

# such that ∥ϕ∥L2
#

= 1 through the relation P = |ϕ⟩⟨ϕ| (using Dirac’s notation). The orbital
formulation of problem (3.7.1) reads

E∗ := min{EGP(ϕ), ϕ ∈ H1
#, ∥ϕ∥L2

#
= 1}, (3.7.2)

with EGP(ϕ) :=
´

Γ |∇ϕ|
2 +

´
Γ V |ϕ|

2 + 1
2
´

Γ |ϕ|
4. It is well-known (see e.g. the Appendix of [30]) that the

minimizer of (3.7.1) is unique, and that the set of solutions of (3.7.2) is (eiαϕ∗)α∈R, where (λ∗, ϕ∗) ∈
R×H1

# is the unique solution to {
−∆ϕ∗ + V ϕ∗ + ϕ3

∗ = λ∗ϕ∗,

∥ϕ∗∥L2
#

= 1, ϕ∗ > 0 on Rd. (3.7.3)

We consider the variational approximation of (3.7.1) in the finite dimensional space

XN := Span (eG, |G|2/2 ⩽ N)

corresponding to a plane-wave discretization with energy cut-off Ecut = N . We denote by ΠN the L2
#-

orthogonal projector on XN and by Π⊥
N := 1 − ΠN . For N large enough, the approximate ground-state

PN is unique and can be represented by a unique function ϕN real-valued and positive on R3 (see [30]),
and it holds {

−∆ϕN + ΠN

(
V ϕN − ϕ3

N

)
= λNϕN ,

∥ϕN∥L2
#

= 1,

for some uniquely defined λN ∈ R. In addition, we have ϕ∗ ∈ H2
# and

∥ϕN − ϕ∗∥H2
#
−→
N→∞

0 and |λN − λ∗| −→
N→∞

0. (3.7.4)

Using similar notation as the one used in the rest of the chapter, we introduce the following quantities:

• Π⊥
ϕN

is the orthogonal projector (for the L2
# inner product) onto ϕ⊥

N ;

• AN is the self-adjoint operator on ϕ⊥
N defined by

AN := (ΩN +KN ) (3.7.5)

where ΩN and KN represent, in the orbital framework, the super-operators Ω(PN )|TPN
M∞ and

K(PN )|TPN
M∞ . We have

∀ ψN ∈ ϕ⊥
N , ΩNψN = Π⊥

ϕN

(
−∆ + V + ϕ2

N − λN
)
ψN , (3.7.6)

∀ ψN ∈ ϕ⊥
N , KNψN = Π⊥

ϕN

(
2ϕ2

NψN
)
; (3.7.7)

• M
1/2
N is the restriction of the operator Π⊥

ϕN
(1−∆)1/2Π⊥

ϕN
to the invariant subspace ϕ⊥

N .
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We then have the following result, which justifies in this case the claim made in Section 3.4.2 that
M−1/2M1/2((Ω(P )+K(P ))|TP MN )−1M1/2 is close to identity on the subspace of high-frequency Fourier
modes. It also justifies that ΠP (P − P∗) ≈ M−1R(P ) as M−1/2 is a uniformly bounded operator and
M−1/2R(P ) is high-frequency:

ΠP (P − P∗) ≈M−1/2M1/2((Ω(P ) + K(P ))|TP MN )−1M1/2M−1/2R(P )
≈M−1/2M−1/2R(P ) = M−1R(P ).

Proposition 3.1. We have

lim
N→∞

∥∥∥M1/2
N (ΩN +KN )−1M

1/2
N − IX ⊥

N

∥∥∥
X ⊥

N
→L2

#

= 0.

Proof. Let WN := V + 3ϕ2
N − λN − 1 and W∗ := V + 3ϕ2

∗ − λ∗ − 1. In view of (3.7.4), WN converges to
W∗ in L∞

# when N goes to infinity. It also follows from [30, Lemma 1] that the self-adjoint operator

Ã∗ := −∆ + V + 3ϕ2
∗ − λ∗ = (1−∆) +W∗

= (1−∆)1/2
(

1 + (1−∆)−1/2W∗(1−∆)−1/2
)

(1−∆)1/2

is coercive, hence, by the Lax–Milgram lemma, defines a continuous isomorphism from H1
# to H−1

# . We
denote by Ã−1

∗ its inverse, seen as a bounded operator from H−1
# to H1

#, so that B∗ := (1−∆)1/2Ã−1
∗ (1−

∆)1/2 defines a bounded operator on L2
#.

Using the convergence results (3.7.4) and standard perturbation theory it follows that for N large
enough, the operator BN := (1 −∆)1/2Ã−1

N (1 −∆)1/2, where ÃN := (1 −∆) + WN , is bounded on L2
#

uniformly in N , and that we have

BN =
(

1 + (1−∆)−1/2WN (1−∆)−1/2
)−1

= 1−BN (1−∆)−1/2WN (1−∆)−1/2. (3.7.8)

We now compute the action of the operator M1/2
N A−1

N M
1/2
N : ϕ⊥

N → ϕ⊥
N , relating it to Ã−1

N and BN ,
with AN defined in (3.7.5). Let ξN ∈ X⊥

N . As ϕN ∈ XN , we have X⊥
N ⊂ ϕ⊥

N so that ξN ∈ X⊥
N ⊂ ϕ⊥

N , and
M

1/2
N ξN = (1 −∆)1/2ξN ∈ X⊥

N ⊂ ϕ⊥
N , where we used that XN and X⊥

N are invariant subspaces of the
operator (1−∆)1/2. Let vN := A−1

N M
1/2
N ξN = A−1

N (1−∆)1/2ξN ∈ ϕ⊥
N . Using (3.7.6) and (3.7.7), we get

Π⊥
ϕN

(
−∆ + V + 3ϕ2

N − λN
)
vN = (1−∆)1/2ξN , i.e. Π⊥

ϕN
ÃNvN = (1−∆)1/2ξN ,

and therefore,

ÃNvN = (1−∆)1/2ξN + αNϕN ,

where αN = −

〈
ϕN ,Ã

−1
N

(1−∆)1/2ξN

〉
L2

#〈
ϕN ,Ã

−1
N
ϕN

〉
L2

#

= −
⟨(1−∆)−1/2ϕN ,BNξN⟩L2

#〈
ϕN ,Ã

−1
N
ϕN

〉
L2

#

∈ R is characterized by the constraint

vN ∈ ϕ⊥
N . We thus obtain

vN = Ã−1
N (1−∆)1/2ξN −

〈
(1−∆)−1/2ϕN , BNξN

〉
L2

#〈
ϕN , Ã

−1
N ϕN

〉
L2

#

Ã−1
N ϕN ,
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and therefore, as vN ∈ ϕ⊥
N ,

M
1/2
N A−1

N M
1/2
N ξN − ξN

= M
1/2
N vN − ξN

= Π⊥
ϕN

(1−∆)1/2vN − ξN

= (1−∆)1/2vN −
〈
ϕN , (1−∆)1/2vN

〉
L2

#

ϕN − ξN

= (BN − 1)ξN − ⟨ϕN , BNξN ⟩L2
#
ϕN

−

〈
(1−∆)−1/2ϕN , BNξN

〉
L2

#〈
ϕN , Ã

−1
N ϕN

〉
L2

#

(
(1−∆)1/2Ã−1

N ϕN −
〈
ϕN , (1−∆)1/2Ã−1

N ϕN

〉
L2

#

ϕN

)

= (BN − 1)ξN − ⟨ϕN , BNξN ⟩L2
#
ϕN

−

〈
(1−∆)−1/2ϕN , BNξN

〉
L2

#〈
ϕN , Ã

−1
N ϕN

〉
L2

#

(
BN (1−∆)−1/2ϕN −

〈
ϕN , BN (1−∆)−1/2ϕN

〉
L2

#

ϕN

)

= (BN − 1)ξN − ⟨ϕN , (BN − 1)ξN ⟩L2
#
ϕN

−

〈
(1−∆)−1/2ϕN , (BN − 1)ξN

〉
L2

#〈
ϕN , Ã

−1
N ϕN

〉
L2

#

(
BN (1−∆)−1/2ϕN −

〈
ϕN , BN (1−∆)−1/2ϕN

〉
L2

#

ϕN

)
,

where we used the fact that ξN ∈ X⊥
N , while ϕN and (1−∆)−1/2ϕN belong to XN . Using again (3.7.4)

we obtain that for N large enough,

∥∥∥M1/2
N A−1

N M
1/2
N − IX ⊥

N

∥∥∥
X ⊥

N
→L2

#

= sup
ξN ∈X ⊥

N

∥∥∥M1/2
N A−1

N M
1/2
N ξN − ξN

∥∥∥
L2

#

∥ξN∥L2
#

⩽ C∗
∥∥(BN − 1)Π⊥

N

∥∥
L2

#→L2
#
,

where

C∗ := 3 +
∥ϕ∗∥H−1

#〈
ϕ∗, Ã

−1
∗ ϕ∗

〉
L2

#

× 2∥B∗∥L2
#→L2

#
∥ϕ∗∥H−1

#
.

Finally, using (3.7.8), we have∥∥(BN − 1)Π⊥
N

∥∥
L2

#→L2
#
⩽
∥∥∥BN (1−∆)−1/2WN

∥∥∥
L2

#→L2
#

∥∥∥(1−∆)−1/2Π⊥
N

∥∥∥
L2

#→L2
#

⩽ ∥BN∥L2
#→L2

#
∥WN∥L∞

#
(1 + 2N)−1/2 −→

N→0
0,

since ∥BN∥L2
#→L2

#
and ∥WN∥L∞

#
are uniformly bounded in N . This concludes the proof.
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Abstract Response calculations in density functional theory aim at computing the change in ground-
state density induced by an external perturbation. At finite temperature these are usually performed
by computing variations of orbitals, which involve the iterative solution of potentially badly-conditioned
linear systems, the Sternheimer equations. Since many sets of variations of orbitals yield the same
variation of density matrix this involves a choice of gauge. Taking a numerical analysis point of view
we present the various gauge choices proposed in the literature in a common framework and study their
stability. Beyond existing methods we propose a new approach, based on a Schur complement using
extra orbitals from the self-consistent-field calculations, to improve the stability and efficiency of the
iterative solution of Sternheimer equations. We show the success of this strategy on nontrivial examples
of practical interest, such as Heusler transition metal alloy compounds, where savings of around 40% in
the number of required cost-determining Hamiltonian applications have been achieved.

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2 Mathematical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.1 Periodic Kohn–Sham equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.2 Density functional perturbation theory . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.3 Plane-wave discretization and numerical resolution . . . . . . . . . . . . . . . . 93

4.3 Computing the response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3.1 Practical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3.2 Occupied-occupied contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.3 Computation of unoccupied-occupied contributions employing a Schur comple-

ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.1 Insulators and semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.2 Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4.3 Comparison to shifted Sternheimer approaches . . . . . . . . . . . . . . . . . . 101

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

87

https://arxiv.org/abs/2210.04512
https://arxiv.org/abs/2210.04512


88 Chapter 4 – Numerical stability and efficiency of response property calculations in DFT

4.1 Introduction

Kohn–Sham (KS) density functional theory (DFT) [104, 116] is the most popular approximation to
the electronic many-body problem in quantum chemistry and materials science. It offers a favourable
compromise between accuracy and computational efficiency for a vast majority of molecular systems and
materials. In this work, we focus on KS-DFT approaches aiming at computing electronic ground-state
(GS) properties. Having solved the minimization problem underlying DFT directly yields the ground-
state density and corresponding energy. However, many quantities of interest, such as interatomic forces,
(hyper)polarizabilities, magnetic susceptibilities, phonons spectra, or transport coefficients, correspond
physically to the response of GS quantities to a change in external parameters (e.g. nuclear positions,
electromagnetic fields). As such their mathematical expressions involve derivatives of the obtained GS
solution with respect to these parameters. For example interatomic forces are first-order derivatives of
the GS energy with respect to the atomic positions, and can actually be obtained without computing the
derivatives of the GS density, thanks to the Hellmann–Feynman theorem [96]. On the other hand the
computation of any property corresponding to second- or higher-order derivatives of the GS energy does
require the computation of derivatives of the density. More precisely, it follows from Wigner’s (2n + 1)
theorem that nth-order derivatives of the GS density are required to compute properties corresponding to
(2n)th- and (2n+1)st-derivatives of the KS energy functional. More recent applications, such as the design
of machine-learned exchange-correlation energy functionals, also require the computation of derivatives of
the ground-state with respect to parameters, such as the ones defining the exchange-correlation functional
[109, 113, 129].

Efficient numerical methods for evaluating these derivatives are therefore needed. The application
of generic perturbation theory to the special case of DFT is known as density functional perturbation
theory (DFPT) [15, 81, 82, 85]. See also [155] for applications to quantum chemistry, [14] for applications
to phonon calculations, and [45] for a mathematical analysis of DFPT within the reduced Hartree–Fock
(rHF) approximation (also called the Hartree approximation in the physics literature). Although the
practical implementation of first- and higher-order derivatives computed by DFPT in electronic structure
calculation software can be greatly simplified by Automatic Differentiation techniques [86], the efficiency
of the resulting code crucially depends on the efficiency of a key building block: the computation of the
linear response δρ of the GS density to an infinitesimal variation δV of the total Kohn–Sham potential.

For reasons that will be detailed below, the numerical evaluation of the linear map δV 7→ δρ is not
straightforward, especially for periodic metallic systems. Indeed, DFT calculations for metallic systems
usually require the introduction of a smearing temperature T , a numerical parameter which has nothing
to do with the physical temperature (in practice, its value is often higher than the melting temperature
of the crystal). For the sake of simplicity, let us first consider the case of a periodic simulation cell Ω
containing an even number Nel of electrons in a spin-unpolarized state (see Remark 4.1 for details on
how this formalism allows for the computation of properties of perfect crystals). The Kohn–Sham GS
at finite temperature T > 0 is then described by an L2(Ω)-orthonormal set of orbitals (ϕn)n∈N∗ with
energies (εn)n∈N∗ , which are the eigenmodes of the Kohn–Sham Hamiltonian H associated with the GS
density:

Hϕn = εnϕn,

ˆ
Ω
ϕ∗
m(r)ϕn(r)dr = δmn, ε1 ⩽ ε2 ⩽ ε3 ⩽ · · · ,

together with periodic boundary conditions. The GS density in turn reads

ρ(r) =
+∞∑
n=1

fn|ϕn(r)|2 with fn := f

(
εn − εF

T

)
, (4.1.1)

where f is a smooth occupation function converging to 2 at −∞ and to zero at +∞, e.g. the Fermi–Dirac
smearing function f(x) = 2

1+ex (see Figure 4.1). The Fermi level εF is the Lagrange multiplier of the
neutrality charge constraint: it is the unique real number such that

ˆ
Ω
ρ(r)dr =

+∞∑
n=1

fn =
+∞∑
n=1

f

(
εn − εF

T

)
= Nel.

It follows from perturbation theory that the linear response δρ of the density to an infinitesimal variation
δV of the total Kohn–Sham potential is given by

δρ = χ0δV,
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where χ0 is the independent-particle susceptibility operator (also called noninteracting density response
function). Equivalently, this operator describes the linear response of a system of noninteracting electrons
of density ρ subject to an infinitesimal perturbation δV . It holds (see Section 4.3)

δρ(r) := (χ0δV )(r) =
+∞∑
n=1

+∞∑
m=1

fn − fm
εn − εm

ϕ∗
n(r)ϕm(r)(δVmn − δεFδmn), (4.1.2)

where δVmn := ⟨ϕm, δV ϕn⟩, δεF is the induced variation of the Fermi level εF, and δmn is the Kronecker
symbol. We also use the convention (fn − fn)/(εn − εn) = 1

T f
′( εn−εF

T

)
.

In practice, these equations are discretized on a finite basis set, so that the sums in (4.1.1) and
(4.1.2) become finite. Since the number of basis functions Nb is often very large compared to the number
of electrons in the system, it is very expensive to compute the sums as such. However, in practice it
is possible to restrict to the computation of a number N ≪ Nb of orbitals. These orbitals are then
computed using efficient iterative methods [159].

0

2

×× ×××ε1 ×
εNp

+
εF

× ××× ×××× 0

2

×× ××× ×+
εF

× ××× ××××
f
(
ε−εF
T

)

Figure 4.1 – The occupation numbers fn for T = 0 (left) and T > 0 (right).

For insulating systems, there is a (possibly) large band gap between εNp and εNp+1 which remains
nonzero in the thermodynamic limit of a growing simulation cell. As a result, the calculation can be
done at zero temperature, such that the occupation function f becomes a step function (see Figure 4.1).
The jump from 2 to 0 in the occupations occurs exactly when the lowest Np = Nel/2 energy levels
ε1 ⩽ · · · ⩽ εNp are occupied with an electron pair (two electrons of opposite spin). Thus, fn = 2 for
1 ⩽ n ⩽ Np and fn = 0 for n > Np. As a result, N can be chosen equal to the number of electron pairs Np
without any approximation. In contrast, for metallic systems εNp = εNp+1 = εF in the zero-temperature
thermodynamic limit (more precisely there is a positive density of states at the Fermi level in the limit of
an infinite simulation cell), causing the denominators in the right-hand side of formula (4.1.2) to formally
blow up. Calculations on metallic systems are thus done at finite temperature T > 0, in which case every
orbital has a fractional occupancy fn ∈ (0, 2). However, since from a classical semiclassical approximation
εn tends to infinity as n2/3 as n→∞, and f decays very quickly, one can safely assume that only a finite
number N of orbitals have nonnegligible occupancies. This allows one to avoid computing ϕn for n > N .
Under this approximation, a formal differentiation of (4.1.1) gives

δρ(r) =
N∑
n=1

fn(ϕ∗
n(r)δϕn(r) + δϕ∗

n(r)ϕn(r)) + δfn|ϕn(r)|2. (4.1.3)

However, while the response δρ to a given δV is well-defined by (4.1.2), the set (δϕn, δfn)1⩽n⩽N is
not. Indeed, the Kohn–Sham energy functional being in fact a function of the density matrix γ =∑N
n=1 fn|ϕn⟩⟨ϕn|, any transformation of (δϕn, δfn)1⩽n⩽N leaving invariant the first-order variation

δγ :=
N∑
n=1

δfn|ϕn⟩⟨ϕn|+
N∑
n=1

fn(|ϕn⟩⟨δϕn|+ |δϕn⟩⟨ϕn|) (4.1.4)

of the density matrix is admissible. This gauge freedom can be used to stabilize linear response calcula-
tions or, in the contrary, may lead to numerical instabilities. Denote by P the orthogonal projector onto
Span (ϕn)1⩽n⩽N , the space spanned by the orbitals considered as (partially) occupied, and by Q = 1−P
the orthogonal projector onto the space Span (ϕn)n>N spanned by the orbitals considered as unoccupied.
Then, the linear response of any occupied orbital can be decomposed as δϕn = δϕPn + δϕQn where:

• δϕPn = Pδϕn ∈ Ran (P ) can be directly computed via a sum-over-state formula (explicit decompo-
sition on the basis of (ϕn)n⩽N ). This contribution can be chosen to vanish in the zero-temperature
limit, as in that case P δγ P = 0. At finite temperature, a gauge choice has to be made and several
options have been proposed in the literature;
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• δϕQn = Qδϕn ∈ Ran (Q) is the unique solution of the so-called Sternheimer equation [188]

Q(H − εn)QδϕQn = −QδV ϕn, (4.1.5)

whereH is the Kohn–Sham Hamiltonian of the system. This equation is possibly very ill-conditioned
for n = N if εN+1 − εN is very small.

This chapter addresses these two issues. First, we review and analyse the different gauge choices for
δϕPn proposed in the literature and introduce a new one. We bring all these various gauge choices together
in a new common framework and analyse their performance in terms of numerical stability. Second, for
the contribution δϕQn , we investigate how to improve the conditioning of the linear system (4.1.5), which
is usually solved with iterative solvers and we propose a new approach. This new approach is based on the
fact that, as a byproduct of the iterative computation of the ground state orbitals (ϕn)n⩽N , one usually
obtains relatively good approximations of the following eigenvectors. This information is often discarded
for response calculations; we use them in a Schur complement approach to improve the conditioning of the
iterative solve of the Sternheimer equation. We quantify the improvement of the conditioning obtained by
this new approach and illustrate its efficiency on several metallic systems, from aluminium to transition
metal alloys. We observe a reduction of typically 40% of the number of Hamiltonian applications (the
most costly step of the calculation). The numerical tests have been performed with the DFTK software
[101], a recently developed plane-wave DFT package in Julia allowing for both easy implementation of
novel algorithms and numerical simulations of challenging systems of physical interest. The improvements
suggested in this work are now the default choice in DFTK to solve response problems.

This chapter is organized as follows. In Section 4.2, we review the periodic KS-DFT equations and
the associated approximations. We also present the mathematical formulation of DFPT and we detail
the links between the orbitals’ response δϕn and the ground-state density response δρ for a given external
perturbation, as well as the derivation of the Sternheimer equation (4.1.5). In Section 4.3, we propose a
common framework for different natural gauge choices. Then, with focus on the Sternheimer equation
and the Schur complement, we present the improved resolution to obtain δϕQn . Finally, in Section 4.4,
we perform numerical simulations on relevant physical systems. In the appendix, we propose a strategy
for choosing the number of extra orbitals motivated by a rough convergence analysis of the Sternheimer
equation.

4.2 Mathematical framework

4.2.1 Periodic Kohn–Sham equations

We consider here a simulation cell Ω = [0, 1)a1 +[0, 1)a2 +[0, 1)a3 with periodic boundary conditions,
where (a1,a2,a3) is a nonnecessarily orthonormal basis of R3. We denote by R = Za1 + Za2 + Za3 the
periodic lattice in the position space and by R∗ = Zb1 + Zb2 + Zb3 with ai · bj = 2πδij the reciprocal
lattice. Let us denote by

L2
#(R3,C) := {u ∈ L2

loc(R3,C) | u is R-periodic} (4.2.1)

the Hilbert space of complex-valued R-periodic locally square integrable functions on R3, endowed with
its usual inner product ⟨·, ·⟩ and by Hs

#(R3,C) the R-periodic Sobolev space of order s ∈ R

Hs
#(R3,C) :=

{
u =

∑
G∈R∗

ûGeG,
∑

G∈R∗

(1 + |G|2)s|ûG|2 <∞

}

where eG(r) = eiG·r/
√
|Ω| is the Fourier mode with wave-vector G.

In atomic units, the KS equations for a system of Nel = 2Np spin-unpolarized electrons at finite
temperature read

Hρϕn = εnϕn, ε1 ⩽ ε2 ⩽ · · · , ⟨ϕn, ϕm⟩ = δnm, ρ(r) =
+∞∑
n=1

fn|ϕn(r)|2,
+∞∑
n=1

fn = Nel, (4.2.2)
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where Hρ is the Kohn–Sham Hamiltonian. It is given by

Hρ = −1
2∆ + V + V Hxc

ρ (4.2.3)

where V is the potential generated by the nuclei (or the ionic cores if pseudopotentials are used) of
the system, and V Hxc

ρ (r) = V H
ρ (r) + V xc

ρ (r) is an R-periodic real-valued function depending on ρ. The
Hartree potential V H

ρ is the unique zero-mean solution to the periodic Poisson equation −∆V H
ρ (r) =

4π
(
ρ(r)− 1

|Ω|
´

Ω ρ
)

and the function V xc
ρ is the exchange-correlation potential. Hρ is a self-adjoint

operator on L2
#(R3,C), bounded below and with compact resolvent. Its spectrum is therefore composed

of a nondecreasing sequence of eigenvalues (εn)n∈N∗ converging to +∞. SinceHρ depends on the electronic
density ρ, which in turn depends on the eigenfunctions ϕn, (4.2.2) is a nonlinear eigenproblem, usually
solved with self-consistent field (SCF) algorithms. These algorithms are based on successive partial
diagonalizations of the Hamiltonian Hρn

built from the current iterate ρn. See [GK1, 43, 133] and
references therein for a mathematical presentation of SCF algorithms.

In (4.2.2), the ϕn’s are the Kohn–Sham orbitals, with energy εn and occupation number fn. At finite
temperature T > 0, fn is a real number in the interval [0, 2) and we have

fn = f

(
εn − εF

T

)
, (4.2.4)

where f is a fixed analytic smearing function, which we choose here equal to twice the Fermi–Dirac
function: f(x) = 2/(1 + ex). The Fermi level εF is then uniquely defined by the charge constraint

+∞∑
n=1

fn = Nel. (4.2.5)

When T → 0, f((· − εF)/T ) → 2 × 1{·<εF} almost everywhere, and only the lowest Np = Nel/2 energy
levels for which εn < εF are occupied by two electrons of opposite spins (see Figure 4.1): fn = 2 for
n ⩽ Np and fn = 0 for n > Np.

Remark 4.1 (The case of perfect crystals). Using a finite simulation cell Ω with periodic boundary
conditions is usually the best way to compute the bulk properties of a material in the condensed phase.
Indeed, KS-DFT simulations are limited to, say 103 − 104 electrons, on currently available standard
computer architectures. Simulating in vacuo a small sample of the material containing, say 103 atoms,
would lead to completely wrong results, polluted by surface effects since about half of the atoms would
lay on the sample surface. Periodic boundary conditions are a trick to get rid of surface effects, at the
price of artificial interactions between the sample and its periodic image. In the case of a perfect crystal
with Bravais lattice L and unit cell ω, it is natural to choose a periodic simulation (super)cell Ω = Lω
consisting of L3 unit cells (we then have R = LL). In the absence of spontaneous symmetry breaking, the
KS ground-state density has the same L-translational invariance as the nuclear potential. Using Bloch
theory, the supercell eigenstates ϕn can then be relabelled as ϕn(r) = eik·rujk(r), where ujk now has
cell periodicity, and equations (4.2.2)–(4.2.4) can be rewritten as

Hρ,kujk = εjkujk, ε1k ⩽ ε2k ⩽ · · · , ⟨ujk, uj′k⟩ = δjj′ , (4.2.6)

ρ(r) = 1
L3

∑
k∈GL

+∞∑
j=1

fjk|ujk(r)|2, 1
L3

∑
k∈GL

+∞∑
j=1

fjk = Nel, fjk = f

(
εjk − εF

T

)
(4.2.7)

Hρ,k = 1
2(−i∇+ k)2 + V + V Hxc

ρ , (4.2.8)

where GL = L−1L∗ ∩ ω∗. Here L∗ is the dual lattice of L and ω = R3/L∗ the first Brillouin zone of
the crystal. In the thermodynamic limit L→∞, we obtain the periodic Kohn–Sham equations at finite
temperature

Hρ,kujk = εjkujk, ε1k ⩽ ε2k ⩽ · · · , ⟨ujk, uj′k⟩ = δjj′ , (4.2.9)

ρ(r) =
 
ω∗

+∞∑
j=1

fjk|ujk(r)|2dk,

 
ω∗

+∞∑
j=1

fjkdk = Nel, fjk = f

(
εjk − εF

T

)
. (4.2.10)
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This is a massive reduction in complexity, as now only computations on the unit cell have to be performed.
For metals, the integrand on the Brillouin zone is discontinuous at zero temperature, which makes stan-
dard quadrature methods fail. Introducing a smearing temperature T > 0 allows one to smooth out the
integrand, see [39, 125] for a numerical analysis of the smearing technique. We also refer for instance
to [171, Section XIII.16] for more details on Bloch theory, to [33, 48] for a proof of the thermodynamic
limit for perfect crystals in the rHF setting for both insulators and metals, and to [80] for the numerical
analysis for insulators.

4.2.2 Density functional perturbation theory

We detail in this section the mathematical framework of DFPT. We first rewrite the Kohn–Sham
equations (4.2.2) as the fixed-point equation for the density ρ

F
(
V + V Hxc

ρ

)
= ρ, (4.2.11)

where F is the potential-to-density mapping defined by

F (V )(r) =
+∞∑
n=1

f

(
εn − εF

T

)
|ϕn(r)|2 (4.2.12)

with (εn, ϕn)n∈N∗ an orthonormal basis of eigenmodes of − 1
2 ∆+V and εF defined by (4.2.5). The solution

of (4.2.11) defines a mapping from V to ρ: the purpose of DFPT is to compute its derivative. Let δV0
be a local infinitesimal perturbation, in the sense that it can be represented by a multiplication operator
by a periodic function r 7→ δV0(r). By taking the derivative of (4.2.11) with the chain rule, we obtain
the implicit equation for δρ:

δρ = F ′(V + V Hxc
ρ

)
· (δV0 +KHxc

ρ δρ), (4.2.13)

where the Hartree-exchange-correlation kernelKHxc
ρ is the derivative of the map ρ 7→ V Hxc

ρ and F ′(V + V Hxc
ρ

)
is the derivative of F computed at V + V Hxc

ρ . In the field of DFT calculations, the latter operator is
known as the independent-particle susceptibility operator and is denoted by χ0. This yields the Dyson
equation

δρ = χ0(δV0 +KHxc
ρ δρ) ⇔ δρ =

(
1− χ0K

Hxc
ρ

)−1
χ0δV0. (4.2.14)

This equation is commonly solved by iterative methods, which require efficient and robust computations
of χ0δV for various right-hand sides δV ’s. In the rest of this chapter, we forget about the solution of
(4.2.14) and focus on the computation of the noninteracting response δρ := χ0δV for a given δV .

The operator χ0 maps δV to the first-order variation δρ of the ground-state density of a noninteracting
system of electrons (KHxc = 0). Denoting Amn := ⟨ϕm, Aϕn⟩ for a given operator A, it holds

δρ(r) =
+∞∑
n=1

+∞∑
m=1

fn − fm
εn − εm

ϕ∗
n(r)ϕm(r)(δVmn − δεFδmn), (4.2.15)

where δmn is the Kronecker delta, δεF is the induced variation in the Fermi level and we use the following
convention

fn − fn
εn − εn

= 1
T
f ′
(
εn − εF

T

)
=: f ′

n. (4.2.16)

Charge conservation leads to
ˆ

Ω
δρ(r)dr = 0 ⇒ δεF =

∑+∞
n=1 f

′
nδεn∑+∞

n=1 f
′
n

, (4.2.17)

where δεn := δVnn. We refer to [14] for a physical discussion of this formula, and to [44, 98, 125], where
it is proven rigorously using contour integrals.

Remark 4.2. Similar to the discussion above on the computation of perfect crystal employing Bloch
theory, response computations of perfect crystals can be performed by decomposing δV0 in its Bloch
modes. This allows for the efficient computation of phonon spectral or dielectric functions for instance.

Remark 4.3. We restricted our discussion for simplicity to local potentials, but the formalism can easily
be extended to nonlocal perturbations (such as the ones created by pseudopotentials in the Kleinman-
Bylander form [114]).
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4.2.3 Plane-wave discretization and numerical resolution

In this chapter we are interested in plane-wave DFT calculations of metallic systems. This corresponds
to a specific Galerkin approximation of the Kohn–Sham model using as variational approximation space

XNb := Span
{
eG, G ∈ R∗,

1
2 |G|

2 ⩽ Ecut

}
, (4.2.18)

where Nb denotes the dimension of the discretization space, linked to the cut-off energy Ecut. Denoting
by ΠNb the orthogonal projection onto XNb for the L2

# inner product, we then solve the discrete problem:
find ϕ1, . . . , ϕNb ∈ XNb such that

ΠNbHρΠNbϕn = εnϕn, ε1 ⩽ · · · ⩽ εNb ,

ρ =
∑Nb
n=1 fn|ϕn|

2
,
∑Nb
n=1 fn = Nel, fn = f

(
εn−εF
T

)
,

⟨ϕn, ϕm⟩ = δnm, n,m = 1, . . . , Nb,

(4.2.19)

where Hρ is the Kohn–Sham Hamiltonian (or one of its Bloch fibers). This discretization method for
Kohn–Sham equations has been analysed for instance in [31].

We emphasize again the point that not all Nb eigenpairs need to be computed. At zero temperature,
only the N = Nel/2 lowest energy Kohn–Sham orbitals need to be fully converged as they are the only
occupied ones. At finite temperature, the number of bands with meaningful occupation numbers is
usually higher than the number of electrons, but the fast decay of the occupation numbers allows to
avoid computing all Nb eigenpairs. Determining the number of bands to compute is not easy as, at finite
temperature, we do not know a priori the number of bands that are significantly occupied. A standard
heuristic is to fully converge 20% more bands than the number of electrons pairs during the SCF. For
the response calculation we then select the number N of bands that have occupation numbers above
some numerical threshold. On top of these bands, it is common in DFT calculations to add additional
bands that are not fully converged by the successive eigensolvers. The main advantages of introducing
these bands are: (i) they enhance the diagonalization procedure by increasing the gap between converged
and uncomputed bands and (ii) adding extra bands is not very expensive when the diagonalization is
performed with block-based methods, such as the LOBPCG algorithm [115].

4.3 Computing the response

4.3.1 Practical implementation

Using (4.2.15) as it stands is not possible because of the large sums. One possibility is to represent
δρ through a collection of occupied orbital variations (δϕn)1⩽n⩽N and occupation number variations
(δfn)1⩽n⩽N . One then has to make appropriate ansatz and gauge choices on the links between δρ and
its representation. Differentiating the formula ρ(r) =

∑N
n=1 fn|ϕn(r)|2, one gets

δρ(r) =
N∑
n=1

fn(ϕ∗
n(r)δϕn(r) + δϕ∗

n(r)ϕn(r)) + δfn|ϕn(r)|2. (4.3.1)

Then, for n ⩽ N , we expand fnδϕn into the basis (ϕm)m∈N. Defining

Γmn := ⟨ϕm, fnδϕn⟩, (4.3.2)

yields

∀ 1 ⩽ n ⩽ N, fnδϕn =
N∑
m=1

Γmnϕm + fnδϕ
Q
n (4.3.3)

where δϕQn := Qδϕn and Q is the orthogonal projector onto Span (ϕm)N<m, the space spanned by the
unoccupied orbitals. Plugging (4.3.3) into (4.3.1), we obtain, using symmetry between n and m,

δρ(r) =
N∑

n,m=1
ϕ∗
n(r)ϕm(r)

(
Γmn + Γnm

)
+

N∑
n=1

δfn|ϕn(r)|2 +
N∑
n=1

2fnRe
(
ϕ∗
n(r)δϕQn (r)

)
. (4.3.4)
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A first gauge choice can be made here. Using again the charge conservation, we get

0 =
ˆ

Ω
δρ(r)dr ⇒ 0 =

N∑
n=1

2Re (Γnn) + δfn. (4.3.5)

Given that we adapt δfn accordingly we can thus assume Γnn = 0 for any 1 ⩽ n ⩽ N . We will make this
gauge choice from this point, leaving the constraint

∑N
n=1 δfn = 0 to restrict possible choices of δfn.

We now derive conditions on (Γmn)1⩽n,m⩽N , (δfn)1⩽n⩽N and (δϕQn )1⩽n⩽N so that the ansatz we
made is a valid representation of δρ, that is to say (4.3.4) coincides with (4.2.15). To this end, we rewrite
(4.2.15) as

δρ(r) =
N∑

n,m=1

fn − fm
εn − εm

ϕ∗
n(r)ϕm(r)(δVmn − δεFδmn) +

N∑
n=1

+∞∑
m=N+1

2 fn
εn − εm

Re (ϕ∗
n(r)ϕm(r)δVmn),

(4.3.6)
where the terms fn, fm for which n,m > N + 1 have been neglected because of their small occupation
numbers and we used the symmetry between n and m for the terms with 1 ⩽ n ⩽ N , m > N . From a
term by term comparison between (4.3.4) and (4.3.6), we infer first from the n = m term and the gauge
choice Γnn = 0 that δfn = f ′

n(δVnn − δεF) = f ′
n(δεn − δεF). Note that, thanks to the definition (4.2.17)

of δεF, charge conservation is indeed satisfied. Next, for the first sum to coincide between (4.3.4) and
(4.3.6), we see that the Γmn’s have to satisfy

∀ 1 ⩽ n,m ⩽ N,m ̸= n, Γmn + Γnm = fn − fm
εn − εm

δVmn =: ∆mn. (4.3.7)

Finally, since δϕQn ∈ Span (ϕm)N<m, we deduce from the last sum in (4.3.4) and (4.3.6) that δϕQn can be
computed as the unique solution of the linear system

∀ 1 ⩽ n ⩽ N, Q(Hρ − εn)QδϕQn = −QδV ϕn, (4.3.8)

sometimes known in DFT as the Sternheimer equation [188]. Note that δϕQN can be arbitrarily large,
since εN+1 − εN may be arbitrarily small. However, this does not pose a problem in practice as δϕQN is
multiplied by fN (cf. (4.3.4)), which is very small.

To summarize, the response δρ = χ0δV can be computed as

δρ(r) =
N∑
n=1

2fnRe (ϕ∗
n(r)δϕn(r)) + δfn|ϕn(r)|2. (4.3.9)

Here, δfn = f ′
n(δεn − δεF), and δϕn is separated into two contributions:

∀ 1 ⩽ n ⩽ N, δϕn = δϕPn + δϕQn , (4.3.10)

where (δϕPn , δϕQn ) ∈ Ran (P ) × Ran (Q) with P the orthogonal projector onto Span (ϕm)1⩽m⩽N and
Q = 1− P . These two contributions are computed as follows:

• δϕPn is computed via a sum-over-states m ̸= n:

δϕPn =
N∑

m=1,m ̸=n
Γmnϕm, (4.3.11)

where the Γmn’s satisfy Γmn + Γnm = ∆mn. An additional gauge choice has to be made as
these constraints do not yet define Γnm uniquely. We refer to this term as the occupied-occupied
contribution.

• δϕQn is obtained as the solution of the Sternheimer equation (4.3.8). However, this linear system is
possibly very ill-conditioned if εN+1−εN is small. We refer to this term as the unoccupied-occupied
contribution.

Note that, at zero temperature, δϕPn vanishes so that δϕn = δϕQn ∈ Ran (Q) and only the Sternheimer
equation (4.3.8) needs to be solved. In the next two sections, we detail the practical computation of these
two contributions.
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4.3.2 Occupied-occupied contributions

In this section we discuss possible gauge choices for Γmn to obtain a unique solution to (4.3.7).
Throughout this section we assume m ̸= n and Γnn = 0.

Orthogonal gauge

The orthogonal gauge choice is motivated from the zero temperature setting, where δϕPn = 0 allows
to trivially preserve the orthogonality amongst the computed orbitals ϕn under the perturbation. For
the case involving temperature, we additionally impose

0 = δ⟨ϕm, ϕn⟩ = ⟨ϕm, δϕn⟩+ ⟨δϕm, ϕn⟩, (4.3.12)

and therefore
1
fn

Γmn + 1
fm

Γnm = 0, (4.3.13)

yielding
Γorth
mn = fn

εn − εm
δVmn for m ̸= n. (4.3.14)

As a result fnδϕn features a possibly large contribution Γorth
mn , which is going to be almost compensated

in (4.3.9) by the large contribution Γorth
nm to fnδϕ

∗
n due the requirement to sum to the moderate-size

contribution Γorth
mn + Γorth

nm = ∆mn. This can lead to numerical instabilities because small errors, e.g. due
to the fact that the ϕn’s in (4.3.9) are eigenvectors only up to the solver tolerance, will get amplified by
the Γmn. The next gauge choices provide solutions to this issue.

Simple gauge choice

Possibly the simplest gauge choice is Γsimple
mn = 1

2 ∆mn. Since (∆mn)1⩽n,m⩽N is Hermitian, (4.3.7) is
immediately satisfied.

Quantum Espresso gauge

The DFPT framework presented in [14] and implemented in Quantum Espresso [78] suggests choosing

ΓQE
mn = fFD

(
εn − εm

T

)
∆mn, (4.3.15)

where fFD = 1
2f is the Fermi–Dirac functional. Since fFD(x)+fFD(−x) = 1, we have ΓQE

mn+ΓQE
mn = ∆mn.

Abinit gauge

In the Abinit software [84, 175], the choice is

ΓAb
mn = 1{fn>fm}∆mn. (4.3.16)

Minimal gauge

Motivated by our analysis of the instabilities we suggest minimizing δϕn, that is to ensure Γmn/fn to
stay as small as possible. This leads to the minimization problem

min
N∑

n,m=1,m ̸=n

1
f2
n

|Γmn|2,

s.t. Γmn + Γnm = ∆mn, ∀ 1 ⩽ n,m ⩽ N, m ̸= n.

(4.3.17)
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As the constraint (4.3.7) only couples (n,m) and (m,n), this translates into an uncoupled system of
constrained minimization problems: for 1 ⩽ n,m ⩽ N , m ̸= n, solve

min 1
f2
n

|Γmn|2 + 1
f2
m

∣∣Γnm∣∣2,
s.t. Γmn + Γnm = ∆mn,

(4.3.18)

whose solution is

Γmin
mn = f2

n

f2
n + f2

m

∆mn. (4.3.19)

This gauge choice is implemented by default in the DFTK software [101]. Another gauge choice inspired
from this one would be to directly minimize |Γmn|2 +

∣∣Γnm∣∣2 but it can be shown that this leads to the
simple gauge choice Γsimple

mn = 1
2 ∆mn.

Comparison of gauge choices

From (4.2.15) we can see that the growth of δρ with respect to δV can not be higher than the growth
of ∆mn with respect to δV . The latter is of the order of maxx∈R

1
T |f

′(x)| = 1
2T , which thus provides an

intrinsic limit to the conditioning of the problem. For all gauge choices but the orthogonal one easily
verifies

|Γmn| ⩽ |∆mn| ⩽ max
x∈R

1
T
|f ′(x)||δVmn| =

1
2T |δVmn|. (4.3.20)

If we make an error on δV it is thus at most amplified by a factor of 1
2T . All choices but the orthogonal

one thus manage to stay within the intrinsic conditioning limit, see Figure 4.2.
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Figure 4.2 – Comparison of gauge choices for δVmn = 1. Except the orthogonal gauges, all contributions Γmn

are bounded by 1
2T

.

4.3.3 Computation of unoccupied-occupied contributions employing a Schur
complement

Since the ϕm for m > N are not exactly known, a different approach is needed for obtaining the
contribution δϕQn . Usually one resorts to solving the Sternheimer equation

∀ 1 ⩽ n ⩽ N, Q(Hρ − εn)QδϕQn = −QδV ϕn =: bn (4.3.21)

using iterative schemes restricted to Ran (Q). However, for n = N the difference εN+1 − εN can become
small, which deteriorates conditioning and increases the number of iterations required for convergence.
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We overcome this issue by making use of the Nex extra bands, which are anyway available after the
SCF algorithm has completed. Following Section 4.2.3 the Nex extra bands can be divided into two
categories:

1. Some (usually the lower-energy ones) have been discarded during the response calculation because
they have a too small occupation. Up to the eigensolver tolerance these are exact eigenvectors.

2. The remaining ones have served to accelerate the successive diagonalization steps during the SCF.
These have not yet been fully converged.

In any case these extra bands thus offer (at least) approximate information about some ϕm for m > N ,
which is the underlying reason why the following approach accelerates the computation of δϕQn .

For the sake of clarity, we place ourselves here in the discrete setting: Hρ ∈ CNb×Nb , Φ ∈ CNb×N and
Φ̃ ∈ CNb×Nex . We assume that the number of computed bands N + Nex is larger than the number of
occupied statesN and that we trust Φ = (ϕ1, . . . , ϕN ) but not Φ̃ = (ϕ̃N+1, . . . , ϕ̃N+Nex) to be eigenvectors.
These Nex extra bands consist of both contributions (1) and (2) described at the beginning of this section.
We assume in addition that (Φ, Φ̃) forms an orthonormal family and that Φ̃∗HρΦ̃ is a diagonal matrix
whose elements, denoted by (ε̃n)n=N+1,...,N+Nex , are not necessarily all exact eigenvalues. Note that
Rayleigh–Ritz based iterative methods such as the LOBPCG algorithm fit exactly in this framework. We

×× ×××
1

×
N

P

×
N + 1

T R

× ××× ×

Q

×
N +Nex

×××

Figure 4.3 – Graphical representation of the Schur decomposition to solve the Sternheimer equation. P is the
orthogonal projector onto the occupied states. Q is the orthogonal projector onto the unoccupied states, and we
decompose it as the sum of T (extra states which we can use) and R (remaining states).

decompose
Ran (Q) = Ran (T )⊕ Ran (R), (4.3.22)

where T is the orthogonal projector onto Span (ϕ̃m)N<m⩽N+Nex and R = Q−T is the projector onto the
remaining (uncomputed) states, see Figure 4.3. Then, as δϕQn ∈ Ran (Q), we can decompose

δϕQn = Φ̃αn + δϕRn , (4.3.23)

where αn ∈ CNex and δϕRn ∈ Ran (R). Plugging this into (4.3.21) we get

Q(Hρ − εn)Φ̃αn +Q(Hρ − εn)δϕRn = bn. (4.3.24)

Using a Schur complement we deduce

αn =
(

Φ̃∗(Hρ − εn)Φ̃
)−1(

Φ̃∗bn − Φ̃∗(Hρ − εn)δϕRn
)
. (4.3.25)

Inserting (4.3.25) into (4.3.24) and projecting on Ran (R) yields an equation in δϕRn :

R(Hρ − εn)
[
1− Φ̃

(
Φ̃∗(Hρ − εn)Φ̃

)−1
Φ̃∗(Hρ − εn)

]
RδϕRn

= Rbn −R(Hρ − εn)Φ̃
(

Φ̃∗(Hρ − εn)Φ̃
)−1

Φ̃∗bn.

(4.3.26)

This equation can then be solved for δϕRn with a Conjugate Gradient (CG) method which is enforced
to stay in Ran (R) at each iteration. Afterwards we compute αn from (4.3.25), which yields δϕQn from
(4.3.23). This scheme has been implemented as the default solver for the Sternheimer equation in DFTK.
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4.4 Numerical tests

For all the numerical tests, we use the DFTK software [101], a recent plane-wave DFT package in
Julia. All the codes to run the simulation of this chapter are available online1. The Brillouin zone is
discretized using a uniform Monkhorst–Pack grid [150]. We use the PBE exchange-correlation functional
[160] and GTH pseudopotentials [79, 91]. The other parameters of the calculation will be specified for
each example. In all the tests, we generate a perturbation δV from atomic displacements, with local and
nonlocal contributions. Then, we perform two response calculations: one with the standard approach to
solve directly the Sternheimer equation (4.3.21) to compute δϕQn , the other with the (new) Schur com-
plement approach (4.3.26). Both linear systems are solved using the conjugate gradient (CG) algorithm,
with kinetic energy preconditioning (the linear solver is preconditioned with the inverse Laplacian, which
is diagonal in Fourier representation), and we compare the number of iterations required to converge the
norm of the residual below 10−9. Note that the Sternheimer equation is solved for all N occupied orbitals
and for each k-point.

If T > 0 the contribution δϕPn is nonzero and has been computed using the sum-over-states formula
with the minimal gauge choice (4.3.19). In terms of runtime we expect only negligible differences between
the gauge choices. Moreover, since the time for this contribution is much smaller compared to the time
required to solve the Sternheimer equation, we do not report a detailed performance comparison on this
step in the following.

4.4.1 Insulators and semiconductors
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Figure 4.4 – Number of iterations of the linear solver for the Sternheimer equation for n = N = 4 vs the gap,
with and without the Schur complement (4.3.26).

For insulators and semiconductors the gap between occupied and virtual states is usually large. One
would therefore not expect a large gain from using the Schur complement (4.3.26) when computing
δϕn = δϕQn . However, for distorted semiconductor structures or semiconductors with defects the gap can
be made arbitrarily small, such that one would expect to see the Schur complement approach to be in
the advantage. We test this using an FCC Silicon crystal for which we increase the lattice constant from
10 bohrs to 11.4 bohrs to artificially decrease and eventually close the gap. All calculations have been
performed using a cut-off energy of Ecut = 50 Ha and a single k-point (the Γ-point). In Figure 4.4 we
plot the number of iterations required for the linear solver of the Sternheimer equation to converge, for
n = N = 4. Using the Schur complement the number of iterations stays almost constant even when the
gap decreases. In contrast, with a direct approach, the linear solver requires about 30% more iterations
near the closing gap.

1https://github.com/gkemlin/response-calculations-metals

https://github.com/gkemlin/response-calculations-metals
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4.4.2 Metals

The real advantage of using the Schur complement (4.3.26) instead of directly solving the Sternheimer
equation (4.3.21) becomes apparent when computing response properties for metals at finite temperature.
We use a standard heuristic which suggests to fully converge 20% more bands than the number of electrons
pairs of the system, with 3 additional extra bands that are not converged by the successive eigensolvers
of the SCF. We then select the “occupied” orbitals with an occupation threshold of 10−8. In addition
to the number of iterations, we also compare the cost of the response calculations with and without the
Schur complement (4.3.26). For this we consider the total number of Hamiltonian applications which
was required to compute the response δρ. For the small to medium-sized systems we consider here,
the Hamiltonian-vector-product is the most expensive step in an DFT calculation and thus provides a
representative cost indicator. Notice that both the implementation of the Schur complement and the
direct method require exactly one Hamiltonian application per iteration of the CG. Additionally the
Schur approach requires the computation of Hρϕ̃, which is only a negligible additional cost as this is only
needed once per k-point.

Aluminium

We start by considering an elongated aluminium supercell with 40 atoms. We use a cut-off energy
Ecut = 40 Ha, a temperature T = 10−3 Ha with Fermi–Dirac smearing and a 3× 3× 1 discretization of
the Brillouin zone. To ensure convergence of the SCF iterations we employ the Kerker preconditioner
[112]. Since the system has 120 electrons per unit cell our usual heuristic converges 72 bands up to the
tolerance of the eigensolver accompanied by 3 bands, which are not fully converged.
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Figure 4.5 – Convergence of the Sternheimer solver for three different orbitals for Al40. Each curve represents the
convergence of the CG which solves the Sternheimer equation for one orbital: those with the slowest convergence
are associated to the occupied orbitals with the highest energy.

k-point – coordinate 1− [0, 0, 0] 2− [1/3, 0, 0] 5− [1/3, 1/3, 0]
N 69 58 67

εN+1 − εN 0.0320 0.0134 0.0217
#iterations n = N Schur 48 44 41
#iterations n = N direct 56 83 58

Table 4.1 – Convergence data for k-points 1, 2 and 5 for Al40. Other k-points are not displayed but they all
behave as one of these by symmetry. N is the number of occupied bands, for an occupation threshold of 10−8.

The convergence behaviour when solving the Sternheimer equation for k-points of particular interest
is shown in Table 4.1 and Figure 4.5. As expected, for k-points with a small difference εN+1 − εN , the
Schur complement (4.3.26) brings a noteworthy improvement with roughly 50% fewer iterations required
to achieve convergence. Since the system we consider here has numerous occupied bands – between 60
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and 70 depending on the k-point – most bands already feature a well-conditioned Sternheimer equation.
Considering the cost for computing the total response, the Schur approach therefore overall only achieves
a reduction by 17% in the number of Hamiltonian applications, from about 17, 800 (direct) to 14, 800
(with Schur). However, it should be noted that this improvement essentially comes for free as the extra
bands are anyway provided by the SCF computation as a byproduct.

Heusler system

Next we study the response calculation of Heusler-type transition-metal alloys. We focus mainly on
the Fe2MnAl system but other compounds, such as the Fe2CrGa and CoFeMnGa alloy systems, have
been tested and similar results were obtained. Heusler alloys are of considerable practical interest due
to their rich and unusual magnetic and electronic properties. For instance, Fe2MnAl shows halfmetallic
behaviour: the majority spin channel (denoted by ↑) behaves like a metal whereas the minority spin
channel (denoted by ↓) behaves like an insulator as it has a vanishing density of states at the Fermi
level. See [99], and reference therein, for more details as well as an analysis of the SCF convergence
on such systems. For these systems we use a cut-off Ecut = 45 Ha, a temperature T = 10−2 Ha with
Gaussian smearing and a 13×13×13 discretization of the Brillouin zone. The SCF was converged using a
Kerker preconditioner [112]. Moreover, as we deal with a spin-polarized system, the numerical simulation
slightly differs. The orbitals ϕσ(n,k) and the occupation numbers fσ(n,k) depend on the spin orientation
σ ∈ {↑, ↓} and the fσ(n,k)’s belong to [0, 1) instead of [0, 2). Furthermore we modify the heuristic to
determine the number of bands to be computed: Fe2MnAl has Nel = 50 electrons per unit cell and we
use 25 + 0.2 × 50 = 35 fully converged bands per k-point, complemented by 3 additional bands, which
are not checked for convergence.
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Figure 4.6 – Convergence of the Sternheimer solver for three different orbitals for Fe2MnAl. Each curve repre-
sents the convergence of the CG which solves the Sternheimer equation for one orbital: those with the slowest
convergence are associated to the occupied orbitals with the highest energy.

spin channel ↑ ↓
N 28 26

εN+1 − εN 0.0423 0.0154
#iterations n = N Schur 45 45
#iterations n = N direct 86 103

Table 4.2 – Convergence data for the two spin channels of the k-point with reduced coordinates
[0.385, 0.231, 0.077] for Fe2MnAl. N is the number of occupied bands, for an occupation threshold of 10−8.

We show in Table 4.2 and Figure 4.6 the results for the two spin channels of the k-point with reduced
coordinates [0.385, 0.231, 0.077]. The other k-points behave similarly. Since both channels feature a
small difference εN+1 − εN using the Schur complement (4.3.26) to solve the Sternheimer equation has a
significant impact: for the orbitals with highest energy it reduces the number of iterations by half. For the
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direct approach we notice a plateau where the solver encounters difficulties to converge the Sternheimer
equation for the N -th orbital due to the small gap.
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Figure 4.7 – Histogram of the number of iterations of the CG to solve the Sternheimer equation, with and
without the Schur complement (4.3.26). On the x-axis, the k-point index number: the first 140 (blue ◦) have
spins up, and the last 140 (green ×) have the same coordinates but with spins down. For each of these k-points,
we plot the number of iterations for every occupied band of the k-point.

Unlike the aluminium case the improvements observed for the Heusler alloys are not restricted to
a small number of bands. In Figure 4.7 we contrast the number of iterations required to solve the
Sternheimer equation for every band at every k-point with and without using the Schur complement.
Notice that lattice symmetries allow to reduce the number of explicitly treated k-points to 140 albeit we
are using a 13× 13× 13 k-point grid. In terms of the total number of Hamiltonian applications required
for the response calculation, the Schur complement achieves a reduction by roughly 40%, from around
344, 000 (without Schur) to 208, 000 (with Schur). It should be noted that in this system the standard
heuristic caused a large portion of the available extra bands to be fully converged, thus providing an
ideal setting for the Schur complement approach to be effective. For example for the k-point discussed
in Table 4.2 seven extra bands have been fully converged and an additional three partially. Given the
enormous importance of Heusler systems and the known numerical difficulties for computing response
properties in these systems, our result is encouraging and motivates the development of a more economical
heuristic for choosing the number of converged bands in future work.

4.4.3 Comparison to shifted Sternheimer approaches

In the literature other strategies for computing δρ have been reported. We briefly consider the
approach proposed in [14], where the response is computed as

δρ(r) =
N∑
n=1

2ϕ∗
n(r)δϕn(r)− f ′

nδεF|ϕn(r)|2. (4.4.1)

Instead of splitting δϕn into two contributions, the full δϕn is computed for all n ⩽ N by solving the
shifted Sternheimer equation

(Hρ + S − εn)δϕn = −(fn − Sn)δV ϕn. (4.4.2)
Here S : Ran (P ) → Ran (P ) is a shift operator acting on the space of occupied orbitals, chosen so that
the linear system is nonsingular (for any n ⩽ N , Hρ − εn is not invertible). Then, Sn is chosen for
every n ⩽ N such that δρ from (4.4.1) satisfies (4.2.15). However, as S only acts on Ran (P ), equation
still becomes badly conditioned if εN+1 − εN is too small. This becomes apparent when solving the
shifted Sternheimer equation (4.4.2) for the Fe2MnAl system, see Figure 4.8. For the orbital responses
of the highest-energy occupied bands the CG iterations on the shifted Sternheimer equation converge
very slowly – in contrast to the Schur complement approach (4.3.26) we proposed in this work. In terms
of the number of Hamiltonian applications, the shifted Sternheimer strategy required around 492, 000
applications versus 208, 000 for the Schur complement approach.
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Figure 4.8 – Resolution of the Sternheimer equation for both spin channels of one specific k-point for the Fe2MnAl
system, with the Schur approach (4.3.26) and the shifted approach (4.4.2). Note that for this particular k-point,
the spin ↓ channel has a starting point with already small residual for the highest occupied energy level. This is
due to the term fn appearing in (4.4.2), and the convergence is still slow.

4.5 Conclusion

In density functional theory, the simulation of many physical properties requires the computation of
the response of the ground-state density to an external perturbation. In this work we have reviewed
the standard formalism of such response calculations from the point of view of numerical analysis. We
provided an overview of the possible gauge choices for representing the density response, summarizing
and contrasting the approaches employed by state-of-the-art codes such as Quantum Espresso [78] or
Abinit [175] in a common framework.

Based on our analysis we furthermore suggested two novel approaches for DFT response calcula-
tions. For the occupied-occupied part of the response we developed a gauge choice based on the idea to
maximize numerical stability in the involved sums by minimizing the numerical range of the individual
orbital contributions. For the occupied-unoccupied part of the response we suggested a novel approach
to solving the Sternheimer equation based on a Schur complement. Key idea of this approach is to make
use of the additional (partially) converged bands, which are available as a byproduct from the preceding
self-consistent field (SCF) procedure (which yields the ground-state density). Without additional com-
putational effort this allows to improve the conditioning of the Sternheimer equation and thus accelerate
its convergence. We demonstrated this numerically on a number of practically relevant problems, in-
cluding response calculations on small-gapped semiconductors, elongated metallic slabs or numerically
challenging Heusler alloy systems. Overall the Schur complement approach allowed to obtain a converged
response saving up to 40% in the required Hamiltonian applications – the cost-dominating step in small
to medium-sized DFT problems. For larger systems we similarly expect savings from introducing a Schur
complement technique, even though algorithms commonly employ different trade-offs.

In this work we followed standard heuristics for selecting the number of extra bands to employ in the
SCF calculations and thus the number of additional bands available when solving the response problem.
However, our results emphasize the need for a more robust understanding between the computed number
of bands and the observed rate of convergence. We have provided some initial ideas for such an analysis
in the appendix, but leave a more exhaustive discussion for future work.

Appendix: Choosing the number of extra bands

In this chapter, we saw through various numerical examples that using a Schur complement to com-
pute the unoccupied-occupied contributions to the orbitals’ response improves the convergence of the
Sternheimer equation. In this appendix, we quantify this acceleration and discuss how this idea can be
used to select the number of bands to be computed. Considering the straight convergence curves from
Figures 4.5–4.6 suggest that the convergence of the CG is indeed led by the square root of the condition
number of the system matrix (see [184, Section 9]) when using the Schur complement. Key idea will thus
be to estimate the condition number of the linear system (4.3.26).
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Numerical analysis

To analyse the condition number of the Schur complement, we consider the following specific setting{
Hρϕn = εnϕn, ε1 ⩽ ε2 ⩽ · · ·
⟨ϕn, ϕm⟩ = δnm,

(4.5.1)

where Hρ ∈ CNb×Nb is typically the discretized self-consistent Hamiltonian of the system, at some k-
point. We assume that we have N occupied orbitals that have an occupation number higher than the
threshold we fixed and that we have Nex extra bands, as explained in Section 4.3.3. In summary, we have
at our disposal N + Nex bands in total: Φ = (ϕ1, . . . , ϕN ) are occupied, fully converged bands and the
extra bands Φℓex = (ϕℓN+1, . . . , ϕ

ℓ
N+Nex

) are not necessarily all converged. We added here the exponent ℓ
as we make the following assumptions:

• for any ℓ ∈ N, (Φ,Φℓex) is an orthonormal family;

• for any ℓ ∈ N, (Φℓex)∗HρΦℓex ∈ CNex×Nex is a diagonal matrix whose elements are labelled εℓm :=〈
ϕℓm, Hρϕ

ℓ
m

〉
for N + 1 ⩽ m ⩽ N +Nex;

• as ℓ→ +∞, (ϕℓm, εℓm)→ (ϕm, εm).

All these assumptions are satisfied for instance if the sequence (Φ,Φℓex)l∈N is generated by any Rayleigh–
Ritz based eigensolver (for instance the LOBPCG eigensolver [115]), which is the case by default in DFTK.
For every ℓ, we can thus decompose the plane-wave approximation space H = XNb (with Nb ≫ N +Nex)
in two different ways:

H = Ran (P )⊕ Ran (T )⊕ Ran (R) and H = Ran (P )⊕ Ran (T ℓ)⊕ Ran (Rℓ), (4.5.2)

where

P :=
N∑
n=1

ϕnϕ
∗
n and

{
T :=

∑Nex
n=N+1 ϕnϕ

∗
n, R := 1− P − T

T ℓ :=
∑Nex
n=N+1 ϕ

ℓ
n(ϕℓn)∗, Rℓ := 1− P − T ℓ,

(4.5.3)

are all orthogonal projectors. In these two decompositions, Hρ has the associated block representations:

Hρ =

E 0 0
0 Eex 0

0 0
. . .

 and Hρ =

E 0 0
0 Eℓex RℓHρT

ℓ

0 T ℓHρR
ℓ RℓHρR

ℓ

 (4.5.4)

where E := Diag(ε1, . . . , εn), Eex := Diag(εN+1, . . . , εN+Nex) and Eℓex := Diag(εℓN+1, . . . , ε
ℓ
N+Nex

) are
diagonal matrices. Moreover, note that as Φℓex → Φex, the residuals RℓHρT

ℓ converge to 0.

Now, we fix n ⩽ N and we compute the condition number of the linear system (4.3.26). Enforcing
the CG to stay at each iteration in Ran (Rℓ), this condition number is given by the ratio of the largest
and smallest nonzero eigenvalues of

Hℓ
n +Xℓ

n, (4.5.5)
where

Hℓ
n := Rℓ(Hρ − εn)Rℓ and Xℓ

n = −Rℓ(Hρ − εn)Φℓex(Eℓex − εn)−1(Φℓex)∗(Hρ − εn)Rℓ

= −RℓHρΦℓex(Eℓex − εn)−1(Φℓex)∗HρR
ℓ.

(4.5.6)

Here Eℓex − εn is diagonal and thus explicitly invertible if ℓ is large enough as εℓN+1 → εN+1 > εN ⩾ εn.
We focus for the moment on the smallest nonzero eigenvalue, that is εℓN+Nex+1 − εn. The condition
number being proportional to the inverse of the smallest eigenvalue, we now derive a lower bound of
εℓN+Nex+1 − εn in order to get an upper bound on the condition number of (4.5.5). When ℓ → +∞, we
have Xℓ

n → 0 (as RHρΦex = 0) and Hℓ
n → Hn := R(Hρ − εn)R whose smallest nonzero eigenvalue is

εN+Nex+1− εn. We use next a perturbative approach to effectively approximate the condition number of
(4.5.5).

We use a standard eigenvalue perturbation result, whose proof is recalled for the sake of completeness.
It is directly adapted from the general case of self-adjoint bounded below operators with symmetric
perturbations studied for instance in [71].
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Proposition 4.1. Let N ∈ N, H0,W ∈ CN×N be Hermitian matrices and α ⩾ 0 such that H0 + α > 0.
Then, the eigenvalues of H := H0 +W and H0 satisfy

|νi(H)− νi(H0)| ⩽ (νi(H0) + α)∥W∥H0,α
, (4.5.7)

where ∥W∥H0,α
is the operator norm of (H0+α)−1/2W (H0+α)−1/2 and νi(A) is the i-th lowest eigenvalue

of the matrix A.

Proof. Let u ∈ CN and define v := (H0 + α)1/2u. Then,

|⟨u,Hu⟩ − ⟨u,H0u⟩| = |⟨u,Wu⟩| =
∣∣∣〈v, (H0 + α)−1/2W (H0 + α)−1/2v

〉∣∣∣
⩽ ∥W∥H0,α

⟨v, v⟩ = ∥W∥H0,α
⟨u, (H0 + α)u⟩.

(4.5.8)

Therefore,

(1−∥W∥H0,α
)⟨u,H0u⟩−α∥W∥H0,α

⟨u, u⟩ ⩽ ⟨u,Hu⟩ ⩽ (1+∥W∥H0,α
)⟨u,H0u⟩+α∥W∥H0,α

⟨u, u⟩. (4.5.9)

The min-max theorem then yields for i = 1, . . . , N ,

(1− ∥W∥H0,α
)νi(H0)− α∥W∥H0,α

⩽ νi(H) ⩽ (1 + ∥W∥H0,α
)νi(H0) + α∥W∥H0,α

, (4.5.10)

which gives the desired inequality.

In our case, we can apply this result to

Hℓ
n +Xℓ

n = Hn + (Hℓ
n −Hn) +Xℓ

n, (4.5.11)

with H0 = Hn, W = W ℓ
n := (Hℓ

n−Hn) +Xℓ
n and α = εN+Nex+1− εn > 0. Proposition 4.1 applied to the

(N +Nex + 1)-th eigenvalues then yields

εℓN+Nex+1 − εn ⩾ (εN+Nex+1 − εn)
(

1− 2
∥∥W ℓ

n

∥∥
Hn,εN+Nex+1−εn

)
≈ (εN+Nex+1 − εn), (4.5.12)

where we assume that 2
∥∥W ℓ

n

∥∥
Hn,εN+Nex+1−εn

is small enough to be negligible with respect to 1, which is
the case if the extra states are sufficiently converged. Now, if this bound is valid in theory, in practice we
do not have access to εN+Nex+1 as we work with N +Nex bands only. However, up to loosing sharpness,
we can use that εN+Nex+1 ⩾ εN+Nex where εN+Nex can be estimated using the last extra band. Indeed,
using for instance the Bauer–Fike bound ([100, Theorem 1] or [178]), we obtain

εN+Nex ⩾ εℓN+Nex
−
∥∥rℓN+Nex

∥∥, (4.5.13)

where rℓN+Nex
is the residual associated to the last extra band. Of course, this estimate is not sharp as we

expect the error on the eigenvalue to behave as the square of the residual, but this requires to estimate
the gap to the rest of the spectrum, see for instance the Kato–Temple bound [100, Theorem 2]. In the
end, we have the following lower bound for εℓN+Nex+1 − εn:

εℓN+Nex+1 − εn ⩾
(
εℓN+Nex

− εn −
∥∥rℓN+Nex

∥∥) ≈ εℓN+Nex
− εn, (4.5.14)

where we assume again that
∥∥rℓN+Nex

∥∥ is small enough with respect to εℓN+Nex
− εn.

We can now derive an upper bound on κℓn, the condition number of (4.5.5). It is given by the ratio
of its highest eigenvalue and εℓN+Nex+1 − εn. Since the Laplace operator is the higher-order term in the
Kohn–Sham Hamiltonian, the highest eigenvalue is, as usually in plane-wave simulations, of order Ecut.
With proper kinetic preconditioning, we can assume that its contribution to the condition number of the
linear system is constant with respect to Ecut and n so that, finally,

κℓn ≲
C

εℓN+Nex+1 − εn
≲ C

εℓN+Nex
− εn

. (4.5.15)
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Therefore the condition number is bounded from above by C/(εℓN+Nex
− εn) to first-order. The number

of CG iterations to solve the linear system (4.3.26) with a given accuracy is then proportional to the
square root of the condition number of the matrix (4.5.5) (see [184]):√

κℓn ≲
√

C

εℓN+Nex
− εn

. (4.5.16)

Note that this upper bound is valid provided that the extra bands are converged enough, not necessarily
fully, and proper kinetic preconditioning is employed.

Estimate (4.5.16) leads, as expected, to the qualitative conclusion that the more extra bands we use,
the higher the difference εℓN+Nex

−εn and the faster the convergence. However, note that it is not possible
to evaluate directly the convergence speed as the constant C is a priori unknown, in particular if we use
preconditioners.

An adaptive strategy to choose the number of extra bands

The main bottleneck of (4.5.16) is the estimation of the constant C. However, one can reasonably
assume that this constant does not depend too much on n, so that the ratio between the number of
iterations to reach convergence between the last occupied band (n = N) and the first band (n = 1) can
be estimated by

ξℓNex
:=

√
εℓN+Nex

− ε1

εℓN+Nex
− εN

, (4.5.17)

This ratio can be of interest as (4.5.16) suggests that the Sternheimer solver converges the fastest for
n = 1 and the slowest for n = N .
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Figure 4.9 – Comparison between the ratio ξℓ
Nex (×) and the ratios of the experimental number of iterations

between the first and last occupied bands, with (□) and without (◦) the Schur complement (4.3.26). On the x-axis
is the index of the k-point. [Left] Al40 [Middle] Fe2MnAl spin up channels [Right] Fe2MnAl spin down channels.

We plot in Figure 4.9 the upper bound ξℓNex
as well as the computed ratios between the number of

iterations of the first and last bands for the systems we considered in Section 4.4. These plots show that
ξℓNex

is indeed an upper bound of the actual ratio. This bound does not seem to be sharp however. This
is due to the successive approximations we made to obtain this estimate. Plots in Figure 4.9 also confirm
that if, for every k-point, the ratio of the number of iterations between the first and last occupied bands
is assumed to be an accurate indicator of the efficiency of the Sternheimer solver, then using the Schur
complement (4.3.26) always make this ratio smaller.

If we want the ratio of the number of iterations between the first and the last occupied bands to be
lower than some target ratio ξT (for instance 3), Figure 4.9 suggests that the computable ratio ξℓNex

can
help in choosing the number of extra bands to reach this target ratio. We propose in Algorithm 4.1 an
adaptive algorithm to select the number of extra bands as a post-processing step after termination of
the SCF. The basic idea is that, given the initial output (Φ,Φℓex) with ℓ = 0 of an SCF calculation, one
iterates Φℓex → Φℓ+1

ex where Φℓex gathers the extra bands. At each iteration ℓ, we compute ξℓNex
and check
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if it is below the target ratio. If not, we compute more approximated eigenvectors, that we converge
until the residual

∥∥rℓN+Nex

∥∥ is negligible with respect to εℓN+Nex
− εN , and so on. To generate such a

residual, after adding a random extra band properly orthonormalized, we update the extra bands using
a LOBPCG with tolerance

tol = (εℓN+Nex−1 − εN )/50. (4.5.18)

Note that we use εℓN+Nex−1 instead of εℓN+Nex
: this is done for the sake of simplicity, instead of updating

the tolerance on the fly with εℓN+Nex
changing at each iteration of the LOBPCG.

Algorithm 4.1 – Adaptive choice of the number of extra bands
Data: target ratio ξT , Nex, ℓ, ξℓNex

while ξℓNex
> ξT do

add random extra band ϕnew in the orthogonal of Span (Φ,Φℓex);
Nex ← Nex + 1;
update on the fly the extra bands with tolerance from (4.5.18) using the LOBPCG method;
Φℓ+1

ex ← (Φℓex, ϕnew) and Eℓ+1
ex ← (Φℓ+1

ex )∗HρΦℓ+1
ex ;

ℓ← ℓ+ 1;
compute ξℓNex

with (4.5.17);
end

Numerical tests

We test this strategy on the systems investigated in Section 4.4, with different values for the target
ratio ξT in order to see a noticeable improvement for each system. In practice, we suggest this ratio to
be between 2 and 3.

We first start with the Al40 system. Figure 4.9 [Left] suggests that the default choice of extra bands
already gives satisfying results by reaching a ratio of approximately 2.5 for all k-points but the Γ-point
(for which there is no real issue with the Sternheimer equation, according to Table 4.1). We thus run
Algorithm 4.1 with a smaller target ratio ξT = 2.2. We use as initial value for Nex the default value for
each k-point. Results are plotted in Table 4.3 [Left] and suggests adding 15 extra bands. Running again
the simulations from Section 4.4 with 72 fully converged bands and 18 additional, not fully converged,
bands yields indeed an improvement in the convergence of the CG when solving the Sternheimer equation
with the Schur complement method. Moreover, in Figure 4.10, the ratio ξℓNex

indeed lies below the target
ratio ξT = 2.2, and matches this ratio for the k-points that caused difficulties for the Sternheimer equation
solver to converge. In terms of computational time, the number of Hamiltonian applications to compute
the response has been reduced from ∼ 14, 800 with the default number of extra bands to ∼ 12, 800.
However, running the algorithm required ∼ 3, 400 additional Hamiltonian applications, making the total
amount of Hamiltonian applications higher than that of the Schur approach with the standard heuristic.

Al40, ξT = 2.2 Fe2MnAl, ξT = 2.5

k-point 1 2 5

N 69 58 67
default Nex 6 17 8

suggested Nex 21 29 12
#iterations n = 1 Schur 21 19 18
#iterations n = N Schur 32 36 28

k-point / spin 96 ↑ 96 ↓ 72 ↑ 72 ↓

N 28 26 29 26
default Nex 10 12 9 12

suggested Nex 16 18 17 20
#iterations n = 1 Schur 15 15 15 15
#iterations n = N Schur 36 35 35 35

Table 4.3 – Suggested number of extra bands for Al40 and Fe2MnAl to reach the target ratio ξT , obtained with
Algorithm 4.1 with default Nex as starting point, as well as the number of iterations to reach convergence with
the newly suggested Nex. Note that the ratio between iterations indeed lies below the target ratio ξT .

Similarly, for Fe2MnAl, we run Algorithm 4.1 with target ratio ξT = 2.5 as well as initial value the
default Nex for all the 140 k-points and spin polarizations. We present in Table 4.3 [Right] the output for
both spin polarizations of two particular k-points. The results are similar for the rest of the k-points and
the maximum additional extra bands suggested by the algorithm is 8. We thus run the same simulations
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as in Section 4.4 but this time with 35 fully converged bands and 11 extra, nonnecessarily converged,
bands. We indeed see for these two k-points that the target ratio has been reached, and that the number
of iterations to converge is smaller than for the default choice we made in Table 4.2. In Figure 4.10, we
plot the ratios ξℓNex

as well as the actual ratios and they almost all lie below the target ratio. Contrarily
to Al40, we note however that the actual measured ratios are not always below the indicator ξℓNex

. In
terms of computational time, the number of Hamiltonian applications has been reduced from ∼ 208, 000
with the default choice of Nex to ∼ 179, 000. Again, running the algorithm required ∼ 49, 000 additional
Hamiltonian applications, making it more expensive than using the default number of extra bands.

It appears that Algorithm 4.1 can be used to choose the number of extra bands in order to reach
a given ratio ξT . However, using the algorithm as such is not useful in practice as it requires a too
high number of Hamiltonian applications, making this strategy less interesting than the Schur approach
we proposed with the default choice of extra bands. Strategies to reduce the number of Hamiltonian
applications in order to choose an appropriate number of extra bands will be subject of future work.
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A priori error analysis of linear and
nonlinear periodic Schrödinger

equations with analytic potentials

This chapter is a preliminary version of [GKip1], and is currently in preparation (to be submitted by
the end of 2022):

Eric Cancès, Gaspard Kemlin and Antoine Levitt. A priori analysis of linear and nonlinear periodic
Schrödinger equations with analytic potentials. https://arxiv.org/abs/2206.04954.

Abstract This chapter is concerned with the numerical analysis of linear and nonlinear Schrödinger
equations with analytic potentials. While the regularity of the potential (and the source term when there
is one) automatically conveys to the solution in the linear cases, this is no longer true in general in the
nonlinear case. We also study the rate of convergence of the plane-wave (Fourier) discretization method
for computing numerical approximations of the solution.
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5.1 Introduction

Kohn–Sham density functional theory (KS-DFT) is currently the most popular model in quantum
chemistry and materials science as it offers a good compromise between accuracy and computational
efficiency. KS-DFT aims at computing, for a given configuration of the nuclei of the molecular system
or material of interest, the electronic ground-state energy and density. From the latter, it is possible to
compute the effective forces acting on the nuclei in this configuration, and thus to identify the (meta)stable
equilibrium configurations of the system, or to simulate the dynamics of the molecular system in various
thermodynamic conditions. In materials science applications, computations are commonly done in a
periodic simulation cell, which can be either the unit cell of a crystal (for the special case of perfect
crystals), or a supercell (for all the other cases: crystals with defects, disordered alloys, glassy materials,
liquids...).

We denote by L = Za1 + Za2 + Za3 the periodic lattice, where (a1,a2,a3) is a nonnecessarily
orthonormal basis of R3, and by Ω = [0, 1)a1 + [0, 1)a2 + [0, 1)a3 the simulation cell. Let us denote by

L2
#,L := {u ∈ L2

loc(R3,C) | u is L-periodic}

the Hilbert space of complex-valued L-periodic locally square integrable functions on R3, endowed with
its usual inner product. The KS-DFT equations read

Hρφi = λiφi, (φi, φj)L2
#,L

= δij , ρ(x) =
Np∑
i=1
|φi(x)|2, (5.1.1)

where Hρ is the Kohn–Sham Hamiltonian, a self-adjoint operator on L2
#,L bounded below and with

compact resolvent. The φi’s are the Kohn–Sham orbitals, and the λi’s their energies. Since Hρ depends
on ρ, which in turn depends on the eigenfunctions φi, 1 ⩽ i ⩽ Np, (5.1.1) is a nonlinear eigenproblem.
The parameter Np represents physically the number of valence electron pairs per simulation cell and
ρ the ground-state electronic density. We assume here, and this is the case for most physical systems,
that λ1 ⩽ λ2 ⩽ · · · ⩽ λNp are the lowest Np eigenvalues of Hρ (Aufbau principle). The Kohn–Sham
Hamiltonian with pseudopotentials reads

Hρ = −1
2∆ + Vnl + V Hxc

loc,ρ

where Vnl is a finite-rank self-adjoint operator (the nonlocal part of the pseudopotential), and

V Hxc
loc,ρ(x) = Vloc(x) + VH,ρ(x) + Vxc,ρ(x)

is a periodic real-valued function depending (nonlocally) on ρ. The function Vloc is the local component
of the pseudopotential, the Hartree potential VH,ρ is the unique solution with zero mean to the periodic
Poisson equation

−∆VH,ρ(x) = 4π
(
ρ(x)− 1

|Ω|

ˆ
Ω
ρ

)
,

ˆ
Ω
VH,ρ = 0,

and the function Vxc,ρ, called the exchange-correlation potential, depends on the chosen approximation
of the exchange-correlation energy functional. In the simple Xα model [186], Vxc,ρ(x) = −CDρ(x)1/3,
where CD > 0 is the Dirac constant.

It is not mandatory to use pseudopotentials in KS-DFT calculations. Some software allow for all-
electrons calculations in which the total pseudopotential operator Vnl + Vloc is replaced with a local
potential with Coulomb singularities at the positions of the nuclei. However, most calculations are done
with pseudopotentials, or use the formally similar Projector Augmented Wave (PAW) method [23], for
three reasons: (i) core electrons are barely affected by the chemical environment and can usually be
considered to occupy “frozen states”, (ii) in heavy atoms, core electrons must be dealt with relativistic
quantum models which makes the simulation more expensive from a computational viewpoint, (iii) due to
the Coulomb singularities, all-electron Kohn–Sham orbitals have cusps at the positions of the nuclei and
are therefore only Lipschitz continuous, while the Kohn–Sham orbitals computed with pseudopotentials
are much more regular and can be well approximated with Fourier spectral methods (usually called
plane-wave discretization methods in the field).
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Several methods for constructing pseudopotentials have been proposed in the literature, leading to
local and nonlocal functions of different regularities. As expected, the rate of convergence of the plane-
wave discretization method is directly linked to the regularities of these functions. The a priori error
analysis of this problem was performed in [31] for pseudopotentials with Sobolev regularity. It was proved
in particular, for the simple Xα exchange-correlation functional, but also for the much more popular local
density approximation (LDA) exchange-correlation functional, that if the local and nonlocal part of the
pseudopotential are in the periodic Sobolev space of order s > 3/2, then the Kohn–Sham orbitals φi and
the density ρ are in the periodic Sobolev space of order s + 2, and (optimal) polynomial convergence
rates were obtained in any Sobolev spaces of order r with −s < r < s + 2. In addition, as for linear
second-order elliptic eigenproblems, the error on the eigenvalues converges to zero as the square of the
error on the eigenfunctions evaluated in H1-norm. The analysis in [31] covers for example the case of
Troullier–Martins pseudopotentials [193], for which s = 7

2 − ε. On the other hand, these estimates are
not sharp in the case of Goedecker–Teter–Hutter (GTH) pseudopotentials [79, 91], for which the local
and nonlocal contributions are periodic sums of Gaussian-polynomial functions, and therefore have entire
continuations to the whole complex plane. Such pseudopotentials are implemented in different DFT
software, such as BigDFT [170], Quantum Espresso [78] or Abinit [84, 175], as well as DFTK, a recent
electronic structure package in the Julia language [101].

The purpose of this chapter is to investigate this case. While it has been known for a long time (see
e.g. [18, 76, 163] and references therein for historical insight or [21, 92] for more recent developments)
that the solutions to elliptic equations on Rd with real-analytic data have an analytic continuation in a
complex neighbourhood of Rd, the size of this neighbourhood is a priori unknown. In the periodic case
we are considering, the latter directly impacts the decay rate of the Fourier coefficients of the solution,
hence the convergence rate of the plane-wave discretization method. For pedagogical reasons, we will
work most of the time with one dimensional linear or nonlinear Schrödinger equations, because (i) it is
easier to visualize analytic or entire continuations of functions originally defined on the real space Rd
when d = 1, and (ii) exponential convergence rates of plane-wave discretization methods are easier to
spot in 1D. However, most of our arguments extend to the multidimensional case. In Section 5.2, we
introduce a hierarchy of spaces (HA)A>0 of complex-valued 2π-periodic functions on the real line having
analytic continuations to the strip R + i(−A,A). We then pick a real-valued function V ∈ HB for some
B > 0 and consider the one-dimensional Schrödinger operator H = −∆ + V . A low vs high-frequency
decomposition of the periodic L2 space allows to prove that for all 0 < A < B, the solution u to the linear
equation Hu = f lays in HA whenever f ∈ HA (see Section 5.3.1), and that the eigenfunctions of H are in
HA (see Section 5.3.2). We rely on this result to prove in Section 5.3.3 that the plane-wave discretization
method converges exponentially in this case. We turn in Section 5.4 to the nonlinear setting, where
we expose a counter-example for which we show that such results are not true any more. Finally, we
consider in Section 5.5 the multidimensional case, which is an immediate extension, and its application
to Kohn–Sham models.

5.2 Spaces of analytic functions

Let us first introduce some notation. We denote by L2
#(R,C) the space of square integrable complex-

valued 2π-periodic functions on R, endowed with its natural inner product

(u, v)L2
#

:=
ˆ 2π

0
u(x) v(x) dx,

and by S ′
#(R,C) the space of tempered complex-valued 2π-periodic distributions on R. For each u ∈

S ′
#(R,C), we denote by (ûk)k∈Z the Fourier coefficients of u with the following normalization convention:

∀ u ∈ L2
#(R,C), ∀ k ∈ Z, ûk := (ek, u)L2

#
= 1√

2π

ˆ 2π

0
u(x)e−ikxdx,

where ek(x) := 1√
2π eikx is the L2

#-normalized Fourier mode with wave-vector k ∈ Z. Recall that the
2π-periodic Sobolev spaces are the Hilbert spaces Hs

#(R,C), s ∈ R, defined by

Hs
#(R,C) :=

{
u ∈ L2

#(R,C)

∣∣∣∣∣ ∑
k∈Z

(1 + |k|2)s|ûk|2 <∞
}
, (u, v)Hs

#
:=
∑
k∈Z

(1 + |k|2)s ûk v̂k.
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We will also use the self-explanatory notation Ck#(R,R), Ck#(R,C), Lp#(R,R), Lp#(R,C) for k ∈ N∪ {∞}
and 1 ⩽ p ⩽∞, all these spaces being endowed with their natural norms or topologies. We now introduce,
for any A > 0, the space

HA :=
{
u ∈ L2

#(R,C)

∣∣∣∣∣ ∑
k∈Z

wA(k)|ûk|2 <∞
}

where wA(k) := cosh(2Ak),

endowed with the inner product
(u, v)A :=

∑
k∈Z

wA(k) ûk v̂k.

Note that HA can be canonically identified with the space of analytic functions

H̃A :=

u : ΩA → C analytic

∣∣∣∣∣∣
[−A,A] ∋ y 7→ u(·+ iy) ∈ L2

#(R,C) continuous,ˆ 2π

0

(
|u(x+ iA)|2 + |u(x− iA)|2

)
dx <∞

,
where ΩA := R + i(−A,A) ⊂ C is the horizontal strip of width 2A of the complex plane centered on the
real axis, endowed with the inner product

(u, v)H̃A
= 1

2

(
(u(·+ iA), v(·+ iA))L2

#
+ (u(· − iA), v(· − iA))L2

#

)
.

The canonical unitary mapping HA onto H̃A is the analytic continuation: any function u ∈ HA has a
unique analytic continuation u : ΩA → C given by

∀ z = x+ iy ∈ ΩA, u(z) =
∑
k∈Z

ûk
eikz
√

2π
=
∑
k∈Z

ûk e−ky ek(x).

It can be easily seen that the Fourier coefficients of u(· ± iA) are the Fourier coefficients of u rescaled
by a factor e∓kA and that the function (−A,A) ∋ y 7→ u(· + iy) =

∑
k∈Z ûk e−ky ek(·) ∈ L2

#(R,C) has a
unique continuation to [−A,A] . Therefore,

∥u∥2
H̃A

= 1
2

(
∥u(·+ iA)∥2

L2
#

+ ∥u(· − iA)∥2
L2

#

)
= 1

2

(∑
k∈Z

∣∣ûk e−kA∣∣2 +
∑
k∈Z

∣∣ûk e+kA∣∣2) =
∑
k∈Z

wA(k)|ûk|2 = ∥u∥2
A.

Proposition 5.1. Let B > 0. Then, for all 0 < A < B, the multiplication by a function V ∈ HB defines
a bounded operator on HA.

Proof. Let V ∈ HB . It holds, for all 0 < A < B,

∥V ∥2
L(HA) = sup

u∈HA\{0}

∥V u∥2
A

∥u∥2
A

= sup
u∈HA\{0}

∥V (·+ iA)u(·+ iA)∥2
L2

#
+ ∥V (· − iA)u(· − iA)∥2

L2
#

∥u(·+ iA)∥2
L2

#
+ ∥u(· − iA)∥2

L2
#

⩽ 2 max
{
∥V (·+ iA)∥2

L∞
#
, ∥V (· − iA)∥2

L∞
#

}
.

As the right hand-side is finite for all 0 < A < B, the proposition follows.

5.3 The linear case

5.3.1 The linear elliptic problem

We consider in a first stage the one-dimensional linear elliptic problem

seek u ∈ H2
#(R,C) such that −∆u+ V u = f on R, (5.3.1)
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where V ∈ L2
#(R,R) and f ∈ L2

#(R,C) are given 2π-periodic functions. For simplicity, we assume in this
section that V ⩾ 1, a sufficient condition for the operator −∆ + V to be invertible. It is well-known that
(5.3.1) has a unique solution u satisfying the a priori bounds

∥u∥L2
#
⩽
∥f∥L2

#

α
and ∥u∥H1

#
⩽ ∥f∥H−1

#
, (5.3.2)

where α := λ1(−∆ + V ) ⩾ 1 is the smallest eigenvalue of the self-adjoint operator H = −∆ + V on
L2

#(R,C). By elementary bootstrap arguments, u ∈ Hs+2
# (R,C) whenever V and f are in Hs

#, for any
s ⩾ 0. The following result deals with the case of real-analytic potentials V and right-hand sides f .

Theorem 5.1. Let B > 0 and V ∈ HB be real-valued and such that V ⩾ 1 on R. Then, for all 0 < A < B
and f ∈ HA, the unique solution u of (5.3.1) is in HA. Moreover, we have the following estimate

∃ C > 0 independent of f such that ∥u∥A ⩽ C∥f∥A. (5.3.3)

As a consequence, if V and f are entire, then so is u.

Proof. For N > 0, we consider the decomposition L2
#(R,C) = XN ⊕X⊥

N where

XN := Span(ek, |k| ⩽ N) =
{
u ∈ L2

#(R,C) | ûk = 0, ∀ |k| > N
}
. (5.3.4)

Let ΠN be the orthogonal projector on XN and Π⊥
N := 1 − ΠN the orthogonal projector on X⊥

N . Note
that the restriction of ΠN to the Sobolev space Hs

#(R,C), s > 0, is also the orthogonal projector on XN

for the Hs
# inner product, and that the same property holds for the Hilbert spaces HA.

For a fixed N , we decompose u as u = u1 + u2 with u1 ∈ XN and u2 ∈ X⊥
N . As u1 has compact

Fourier support, it obviously belongs to HA and we have the estimate

∥u1∥A ⩽ ∥u∥L2
#

√
wA(N) ⩽

∥f∥L2
#

α

√
wA(N). (5.3.5)

Let us show that, for N large enough, u2 also belongs to HA. Projecting −∆u + V u = f onto X⊥
N , we

get
T22u2 + V22u2 = f2 − V21u1, (5.3.6)

where T22 is the restriction to the invariant subspaceHA∩X⊥
N of the self-adjoint operator−∆ on L2

#(R,C),
V22 := Π⊥

NVΠ⊥
N ∈ L(HA ∩X⊥

N ), V21 := Π⊥
NVΠN ∈ L(HA ∩XN ,HA ∩X⊥

N ) and f2 := Π⊥
Nf ∈ HA ∩X⊥

N .
The operator T22 is bounded from below by N2 and is therefore invertible with inverse T−1

22 bounded by
N−2 in L(HA ∩X⊥

N ). As f2, V21u1 ∈ HA ∩X⊥
N , we can therefore rewrite (5.3.6) as

(1 + T−1
22 V22)u2 = T−1

22 (f2 − V21u1). (5.3.7)

Since ∥T−1
22 ∥L(HA∩X⊥

N
) ⩽ N−2 and ∥V22∥L(HA∩X⊥

N
) ⩽ ∥V ∥L(HA), the operator (1+T−1

22 V22) ∈ L(HA∩X⊥
N )

is invertible for N large enough and it holds

u2 = (1 + T−1
22 V22)−1T−1

22 (f2 − V21u1) =
(+∞∑
n=0

(−1)n(T−1
22 V22)n

)
T−1

22 (f2 − V21u1). (5.3.8)

Putting things together with Neumann series, we get

∥u2∥A ⩽
∥f2∥A + ∥V21u1∥A
N2 − ∥V ∥L(HA)

⩽
∥f∥A + ∥V ∥L(HA)∥u1∥A

N2 − ∥V ∥L(HA)

⩽ ∥f∥A
N2 − ∥V ∥L(HA)

+ ∥V ∥L(HA)

∥f∥L2
#

α

√
wA(N)

N2 − ∥V ∥L(HA)
,

(5.3.9)

Finally, combining (5.3.5) and (5.3.9) with ∥u∥A ⩽ ∥u1∥A + ∥u2∥A yields the bound on ∥u∥A.

Remark 5.1. If we require in addition that V (·± iB) is not only in L2
#(R,C) but also in L∞

# (R,C), then
the exact same argument as in the proof of Proposition 5.1 yields

∥V ∥L(HB) ⩽ 2 max
{
∥V (·+ iB)∥L∞

#
, ∥V (· − iB)∥L∞

#

}
,

so that f ∈ HB then implies u ∈ HB .
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5.3.2 The linear eigenvalue problem

We now focus on the linear eigenvalue problem,{
−∆u+ V u = λu,

∥u∥L2
#(R,C) = 1, (5.3.10)

where V ∈ HB for some B > 0. Using the same technique as for the proof of Theorem 5.1, we get the
following result.
Theorem 5.2. Let B > 0, V ∈ HB be real-valued, and (u, λ) ∈ H2

#(R,C)×R a normalized eigenmode of
H = −∆ + V , with isolated eigenvalue ( i.e. a solution to (5.3.10)). Then, u is in HA for all 0 < A < B.
Moreover, we have the following estimate

∥u∥A ⩽
(

1 + ∥V ∥L(HA)

)√
wA

(√
∥V ∥L(HA) + λ+ 1

)
.

As a consequence, if V is entire, then so is u.

Proof. Although the proof of Theorem 5.2 follows basically the same lines as the one of Theorem 5.1, we
provide it for the sake of completeness.

Let (u, λ) ∈ H2
#(R,C) × R be a solution to (5.3.10). Using the same notation as in the proof of

Theorem 5.1, we decompose u as u = u1 + u2 with u1 ∈ XN and u2 ∈ X⊥
N , and observe that for N large

enough,
u2 = −(1 + T−1

22 (V22 − λ))−1T−1
22 V21u1,

with ∥∥T−1
22 (V22 − λ)

∥∥
L(HA∩X⊥

N
) ⩽
∥V ∥L(HA) + |λ|

N2 .

Therefore, choosing Nλ =
√
∥V ∥L(HA) + |λ|+ 1, we have∥∥(1 + T−1

22 (V22 − λ))−1T−1
22
∥∥

L(HA∩X⊥
Nλ

) < 1,

which yields
∥u2∥A ⩽ ∥V ∥L(HA)

√
wA(Nλ).

Combining this with ∥u1∥A ⩽
√
wA(Nλ) yields the desired estimate.

5.3.3 Plane-wave approximation of the linear Schrödinger equation

Using XN = Span(ek, |k| ⩽ N) ⊂ H1
#(R,C) as a variational approximation space for (5.3.10), we

obtain the finite-dimensional problem
seek (uN , λN ) ∈ XN × R such that ∥uN∥L2

#(R,C) = 1 and

∀ vN ∈ XN ,

ˆ 2π

0
∇uN · ∇vN +

ˆ 2π

0
V uNvN = λN

ˆ 2π

0
uNvN ,

(5.3.11)

which is equivalent to seeking the eigenpairs of the Hermitian matrix HN ∈ CN ×N
herm , where N = 2⌊N⌋+1,

with entries
[HN ]kk′ := |k|2δkk′ + V̂k−k′ , k, k′ ∈ Z, |k| ⩽ N, |k′| ⩽ N.

The following theorem states that if V ∈ HB for some B > 0, the plane-wave discretization method has
an exponential convergence rate. Note that a similar result holds for the plane-wave approximation of
the linear problem −∆u+ V u = f , whenever f ∈ HA.
Theorem 5.3. Let B > 0, V ∈ HB be real-valued, j ∈ N∗ and 0 < A < B. Let λj the lowest
jth eigenvalue of the self-adjoint operator H = −∆ + V on L2

#(R,C) counting multiplicities, and Ej =
Ker(H−λj) the corresponding eigenspace. For N large enough, we denote by λj,N the lowest jth eigenvalue
of (5.3.11), and by uj,N an associated normalized eigenvector. Then, there exists a constant cj,A ∈ R+
such that

∀ N > 0 s.t. 2⌊N⌋+ 1 ⩾ j, dH1
#

(uj,N , Ej) ⩽ cj,A exp(−AN) and 0 ⩽ λj,N − λj ⩽ cj,A exp(−2AN).
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Proof. First, note that −∆ + V has compact resolvent so that its eigenvalues λj are isolated. Let
0 < A < B and A′ = A+B

2 . We have

∀ v ∈ HA′ , ∥v −ΠNv∥H1
#
⩽ cA,B∥v∥A′e−AN with cA,B :=

(
max
k∈Z

(1 + |k|2)e2A|k|

wA′(k)

)1/2

<∞.

The operator H is self-adjoint on L2
#(R,C) with form domain H1

#(R,C) and it follows from Theorem 5.2
that all the eigenfunctions of the operator H are in HA′ . The result follows from classical arguments on
the variational approximations of the eigenmodes of bounded below self-adjoint operators with compact
resolvent (see e.g. [8, Theorems 8.1 and 8.2]).

5.4 The nonlinear case: a counter-example

In the perspective of studying nonlinear elliptic problems with analytic data, we now consider the
nonlinear periodic elliptic equation with cubic nonlinearity

−ε∆uε + uε + u3
ε = f in H1

#(R,R), (5.4.1)

where ε > 0, and f : R→ R is a real-analytic 2π-periodic function admitting an entire continuation, still
denoted by f , to the complex plane. We will show that, in this particular case, the same kind of results
are not true any more and we provide an estimation of the width of the horizontal analyticity strip of
the solution, which is finite even though the source term f is entire.

The singular limit ε = 0 gives rise to the algebraic equation u0(x)+u0(x)3 = f(x), which has a unique
real solution for each x ∈ R. The latter can be computed by Cardano’s formula: the discriminant of the
cubic equation is

R(x) = −
(
4 + 27f2(x)

)
< 0,

so that

u0(x) = 3

√√√√1
2

(
f(x) +

√
−R(x)

27

)
+ 3

√√√√1
2

(
f(x)−

√
−R(x)

27

)
, (5.4.2)

the other two roots being complex conjugates with nonzero imaginary parts.

In the rest of this section, we will use the function f : x 7→ µ sin(x), for a fixed µ > 0. The analytic
continuation of the function u0 originally defined on R satisfies

u0(z) + u3
0(z) = f(z), (5.4.3)

with
√
· and 3

√
· (used in (5.4.2)) the continuations of the square root and cubic root functions with branch

cut respectively R− and iR. The maximal horizontal strip of the complex plane on which the function
u0(z) is analytic is R + i(−B0, B0) where B0 = arcsinh

(
µ−1

√
4/27

)
> 0 is such that the discriminant

cancels for z = ±iB0. More precisely, the function u0(z) has branching points on the imaginary axis at
z± = ±iB0. It holds u0(z±) = ±i/

√
3, f(z±) = ±i

√
4/27, and R(z±) = 0. The complex number u0(z±)

is the threefold degenerate root of the cubic equation

Z3 + Z − f(z±) = (Z − u0(z±))3 = 0,

and we have ∣∣∣∣du0

dt (tz±)
∣∣∣∣ =

∣∣∣∣∣ df
dt (tz±)

1 + 3( du0
dt (tz±))2

∣∣∣∣∣→∞ when R ∋ t→ 1−.

In particular, although the source term f has an entire continuation, the solution u0 of (5.4.3) does not.

When ε > 0, we can approximate numerically the solution to (5.4.1) with the plane-wave approxima-
tion introduced before. The plots in Figure 5.2 suggest that increasing ε increases the width Bε of the
horizontal analyticity strip of z 7→ uε(z), but does not make it entire. Moreover, we can quantify the
convergence of uε towards u0 on the real axis with the following result.



116 Chapter 5 – A priori error analysis of periodic Schrödinger equations with analytic potentials

Theorem 5.4. We have the following convergence estimates: ∃ C1, C2, C3 > 0 such that, for ε > 0,

∥uε − u0∥L2
#
⩽ C1ε, ∥uε − u0∥H1

#
⩽ C2ε, ∥uε − u0∥H2

#
⩽ C3ε.

Proof. cf. appendix.

In this particular case, we can obtain an upper bound of the value of Bε. Let φε(y) := uε(iy). We
also have f(iy) = µ sin(iy) = iµ sinh(y). Since uε is analytic at z = 0, φε satisfies the second-order ODE:{

εφ′′
ε (y) + φε(y) + φ3

ε(y) = iµ sinh,
φε(0) = uε(0) = 0, φ′

ε(0) = iu′
ε(0),

where u′
ε(0) ∈ R since uε is real-valued on R. Decomposing φε in its real part θε and imaginary part ψε

(i.e. φε = θε + iψε), we see that θε and ψε satisfy the coupled system of ODEs{
εθ′′
ε + θε + θ3

ε − 3θεψ2
ε = 0,

θε(0) = 0, θ′
ε(0) = 0,

{
εψ′′

ε + ψε − ψ3
ε + 3θ2

εψε = µ sinh,
ψε(0) = 0, ψ′

ε(0) = u′
ε(0).

This implies that θε = 0, ψε is odd, and uε remains purely imaginary along the imaginary axis. We
now focus on the ODE satisfied by ψε on R+, which can be rewritten as a first-order ODE on Ψε(y) :=[
ψε(y)
ψ′
ε(y)

]
∈ R2

Ψ′
ε(y) =

[
Ψε,2(y)

ε−1(µ sinh(y)−Ψε,1(y) + Ψ3
ε,1(y)

)], Ψε(0) :=
[

0
u′
ε(0)

]
. (5.4.4)

If we can prove that Ψε blows up at a finite 0 < Yε < ∞, then this will imply that the width Bε of the
horizontal analyticity strip of uε satisfies Bε ⩽ Yε <∞.

In order to estimate Yε, we need comparison theorems for systems of ODEs. We use the following
simplified version of more general results on systems of differential inequalities [199, 200]. In the sequel,
the inequality a ⩾ b for two vectors a, b ∈ Rd means that ai ⩾ bi for all 1 ⩽ i ⩽ d.

Theorem 5.5. Let d ⩾ 1 and G : Rd → Rd be locally Lipschitz and quasimonotone in the sense that for
all X,Z ∈ Rd,

(Zi = Xi and Zj ⩾ Xj for j ̸= i) ⇒ (G(X) ⩽ G(Z)).

Let 0 ⩽ y0 < yM ⩽ +∞ and Φ ∈ C1([y0, yM),Rd) and Ψ ∈ C1([y0, yM),Rd) satisfying respectively the
ODE

Φ′(y) = G(Φ(y)), Φ(y0) ∈ Rd,

and the differential inequality

Ψ′(y) ⩾ G(Ψ(y)), Ψ(y0) = Φ(y0).

Then we have
∀ y ∈ [y0, yM), Ψ(y) ⩾ Φ(y).

Proof. See e.g. [199, p. 112] for a more general result or cf. appendix for the proof of this particular
case.

To apply this result to (5.4.4), we introduce the function Gε : R2 → R2 defined by

∀ X =
[
X1
X2

]
∈ R2, Gε(X) =

[
X2

ε−1(−X1 +X3
1 )

]
,

and the maximal solution Φε to

Φ′
ε(y) = Gε(Φε(y)), Φε(0) =

[
0

u′
ε(0)

]
. (5.4.5)
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Figure 5.1 – Analytic continuation of u0 for µ = 10, for which B0 ≈ 0.0385. (Right) Phase of z 7→ u0(z). A
branching point, in red, appears at the expected position. (Left) Imaginary part of y 7→ u0(iy). A discontinuity
also appears at the expected position.
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Figure 5.2 – (Left) Fourier coefficients of uε. (Right) Logarithm of the ratio of two successive nonzero Fourier
coefficients.
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As sinh(y) ⩾ 0 for all y ⩾ 0, we have

Ψ′
ε(y) ⩾ Gε(Ψε(y)), Ψε(0) = Φε(0).

However, Theorem 5.5 cannot be directly applied as the quasimonotonicity assumption is not satisfied
everywhere in R2: Gε,i(X1, X2) is nondecreasing in X2 for i = 1 but it is not in X1 for i = 2. It is only
the case if X1 is in the domain where x 7→ x3 − x is nondecreasing. Thus, in order to be able to apply
the comparison theorem, we have to show that ψε = (Ψε)1 is in this domain at some y0 and stays in it
for all y ⩾ y0.

To this end, we introduce the set

Xµ =
{

(y, υ) ∈ R2, µ sinh(y)− υ + υ3 ⩾ 0
}
.

This set is such that, if (y, ψε(y)) lies strictly in Xµ, then ψε is locally strictly convex. For y < B0, ψε
might oscillate on both sides of the boundary of Xµ [198]. To make this result more precise, we start by
quoting a general lemma on second-order ODEs, whose proof is given in the appendix.

Lemma 5.1. Let T > 0 and ωε be a solution to the second-order ODE on [0, T ]{
εω′′

ε (t) + α(t)ωε(t) = εβ(t, ωε, ε),
ωε(0) = 0, ω′

ε(0) = O(ε),

where α(t) ⩾ αT > 0 on [0, T ] and ∃ cT > 0 such that

∀ t ∈ [0, T ], z ∈ R, ε > 0, |β(t, z, ε)| ⩽ cT

(
1 + |z|

2

ε

)

and ∣∣∣∣ d
dtβ(t, ωε(t), ε)

∣∣∣∣ ⩽ cT(1 + |ωε(t)ω
′
ε(t)|

ε

)
.

Then, ∃ CT and εT such that

∀ ε ⩽ εT ,
{
∥ωε∥L∞([0,T ]) ⩽ CT ε,
∥ω′

ε∥L∞([0,T ]) ⩽ CT
√
ε.

Proof. cf. appendix.

Recall that, by Theorem 5.4, uε → u0 in H2
#(R). As a consequence, ψε(0) = 0 and ψ′

ε(0) = ψ′
0(0) +

O(ε). Now, we introduce h(z) = z − z3 such that{
εψ′′

ε (y) + h(ψε(y)) = µ sinh(y),
h(ψ0(y)) = µ sinh(y).

Thus, the error ωε(y) := ψε(y)− ψ0(y) satisfies

εω′′
ε (y) = εψ′′

ε (y)− εψ′′
0 (y) = −(h(ψε(y))− h(ψ0(y)))− εψ′′

0 (y)

= −h′(ψ0(y))ωε(y) +
ˆ ψε(y)

ψ0(y)

h′′(s)
2 (ψε(y)− s)ds− εψ′′

0 (y).

By taking T < B0, h′(ψ0(y)) = 1−3|ψ0(y)|2 ⩾ 1−3|ψ0(T )|2 > 0 as B0 is defined such that 1 = 3|ψ0(B)|2.
Thus, Lemma 5.1 can be applied to ωε and we have that

∀ T < B0, ∃ CT > 0, εT > 0 such that ∀ ε ⩽ εT ,
{
∥ψε − ψ0∥L∞([0,T ]) ⩽ CT ε,
∥ψ′

ε − ψ0∥L∞([0,T ]) ⩽ CT
√
ε.

This yields the uniform convergence of ψε and ψ′
ε towards ψ0 and ψ′

0, unfortunately only on compact
subsets [0, T ] of [0, B0), with a constant CT →∞ as T → B0.
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The convergence being valid only on compact subsets [0, T ] ⊂ [0, B0), we cannot deduce properties of
ψε(B0) from those of ψ0(B0). We thus investigated numerically the behaviour of this function for the set
of parameters used in Figure 5.3 (ε = 0.1, µ = 0.5), and observed that 0 < ψε(B0) < 1√

3 and ψ′
ε(B0) > 0.

This numerical observation can be trusted as the ODE satisfied by ψ′
ε on the interval [0, B0] for ε = 0.1

and µ = 0.5 is not stiff. It is therefore easy to solve it numerically with high accuracy with a posteriori
error estimates guaranteeing that ψε(B0) is indeed strictly between 0 and 1√

3 , and ψ′
ε(B0) is positive.

Therefore, given the shape of the set Xµ (see Figure 5.3), ψε is strictly convex on [B0, Yε). It is thus
always above its tangent at y = B0, whose slope is ψ′

ε(B0) > 0. Therefore, for any η > 0, there is yη ⩾ B0
such that ψε(yη) = 1 + η and ψε(y) ⩾ 1 + η > 1 for any y ⩾ yη. We are now ready to compute an upper
bound of Yε with the use of Theorem 5.5, that can be applied as the quasimonotonicity assumption is
now satisfied in the domain of interest. To this end, we rewrite (5.4.5) as

Φ′
ε(y) = Gε(Φε(y)), Φε(yη) =

[
1 + η
ψ′
ε(yη)

]
. (5.4.6)

Theorem 5.5 then yields:
∀ y ⩾ yη, Ψε(y) ⩾ Φε(y).

This leads us to study of the ODE{
εϕ′′

ε = −ϕε + ϕ3
ε

ϕε(yη) = 1 + η, ϕ′
ε(yη) = ψ′

ε(yη) > 0.

We have
ε

2
d
dy (ϕ′

ε)
2 = d

dy

(
−1

2ϕ
2
ε + 1

4ϕ
4
ε

)
,

from which we deduce
ε

2(ϕ′
ε)2 = 1

4ϕ
4
ε −

1
2ϕ

2
ε + C(η),

with

C(η) = −1
4(1 + η)4 + 1

2(1 + η)2 + ε

2(ψ′
ε(yη))2

⩾ −1
4(1 + η)4 + 1

2(1 + η)2 + ε

2(ψ′
ε(y0))2,

where C(η) is computed from the initial conditions at y = yη and B0 < y0 < yη is such that ψε(y0) = 1.
Note that η 7→ − 1

4 (1+η)4+ 1
2 (1+η)2+ ε

2 (ψ′
ε(y0))2 is decreasing on R+

∗ and takes the value 1
4 + ε

2 (ψ′
ε(y0))2 > 1

4
at η = 0. Thus, for η > 0 small enough, C(η) ⩾ 1

4 and we have

ε

2(ϕ′
ε)2 ⩾ 1

4ϕ
4
ε −

1
2ϕ

2
ε + 1

4 = 1
4
(
ϕ2
ε − 1

)2
,

hence
ϕ′
ε ⩾

1√
2ε
(
ϕ2
ε − 1

)
on [yη, Yε).

Finally, we consider the ODE

ξ′
ε,η = 1√

2ε
(ξ2
ε,η − 1), ξε,η(yη) = 1 + η,

whose solution is

ξε,η(y) =
1 + 2

η + exp
(
y−yη√
ε/2

)
1 + 2

η − exp
(
y−yη√
ε/2

) ,
which is defined only up to Yε,η :=

√
ε
2 log

(
1 + 2

η

)
+ yη . Applying again Theorem 5.5, we have that

ϕε(y) ⩾ ξε,η(y) for any y ⩾ yη such that both functions are still finite. Putting everything together, we
obtain that ψε is only defined up to some Yε with B0 < Yε ⩽ Yε,η and that

∀ y ∈ [yη, Yε), ψε(y) ⩾ ξε,η(y). (5.4.7)
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These results are illustrated on Figure 5.3, where we plotted the lower bound ξε,η for ε = 0.1 and η = 0.5.

We can deduce from these investigations that uε is only analytic on a horizontal strip of finite width
of the complex plane although the source term f is an entire function: our results in the linear case are
therefore no longer valid in general in the nonlinear case.
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}
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Figure 5.3 – Description of Xµ for µ = 0.5, along with the plot of ψε and the lower bound ξε,η for ε = 0.1,
η = 0.5. While y < B0, ψε can possibly oscillate around ψ0, but as soon as y ⩾ B0, ψε is strictly convex and has
no other choice than to explode in finite time Yε ⩽ Yε,η, where Yε,η is the explosion time of the lower bound ξε,η.
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5.5 Extension to the multidimensional case with application to
Kohn–Sham models.

The goal of this section is to extend the previous results to the multidimensional case and apply
them to the linear version of the Kohn–Sham equations (5.1.1). To this end, consider a Bravais lattice
L = Za1 + · · · + Zad where a1, . . . ,ad are linearly independent vectors of Rd (d = 3 for KS-DFT). We
denote by Ω = [0, 1)a1 + · · ·+ [0, 1)ad a unit cell, by L∗ the reciprocal lattice, by eG(x) = |Ω|−1/2eiG·x

the Fourier mode with wave-vector G ∈ L∗, and by

Hs
#,L :=

{
u =

∑
G∈L∗

ûGeG ∈ S(Rd,C)

∣∣∣∣∣ ∑
G∈L∗

(1 + |G|2)s|ûG|2 <∞

}
the L-periodic Sobolev spaces endowed with their usual inner products. All the arguments in Sec-
tions 5.3.1-5.3.3 can be extended to the multidimensional case by introducing the Hilbert spaces

HA,L :=
{
u ∈ L2

#,L

∣∣∣∣∣ ∑
G∈L∗

wA,L(G)|ûG|2 <∞

}
, (u, v)A,L :=

∑
G∈L∗

wA,L(G)ûGv̂G,

where wA,L(G) =
d∑

n=1
wA((2π)−1G · an) . Note that the notation wA,L is slightly misleading as the wA,L’s

actually depend on the chosen basis a1, . . . ,ad of the lattice L. Each u ∈ HA,L can be extended to an
analytic function u(z1, . . . , zd) of d complex variables defined on a neighbourhood on Rd, and it holds

∑
G∈L∗

wA,L(G)|ûG|2 = 1
2

d∑
n=1

ˆ
Ω

∣∣u(x + i(2π)−1Aan)
∣∣2 +

∣∣u(x− i(2π)−1Aan)
∣∣2dx.

The extension of Proposition 5.1 follows with the operator norm, for any 0 < A < B,

∀ V ∈ HB,L, ∥V ∥L(HA,L) = max
1⩽n⩽d

∥∥V (·+ i(2π)−1Aan)
∥∥

L∞
#
.

The approximation space XN,L is then defined as

XN,L := Span(eG, G ∈ L∗, |G| ⩽ N),

and the inverse T−1
22,L of the restriction T22,L of the operator −∆ on L2

#,L to the invariant subspace
X⊥
N,L = Span(eG, G ∈ L∗, |G| > N) satisfies

∥ T22,L∥L(X⊥
N,L) = ∥ T22,L∥L(HA,L∩X⊥

N,L) ⩽ N−2.

The proofs of Theorem 5.1, Theorem 5.2 and Theorem 5.3 can thus be straightforwardly adapted to the
multidimensional case.

Lastly, if V ∈ HB,L for some B > 0, the Schrödinger operator H = −∆ + V considered this time
as a Schrödinger operator on L2(Rd,C) with an L-periodic potential, can be decomposed by the Bloch
transform and its Bloch fibers are the self-adjoint operators on L2

#,L with domain H2
#,L and form domain

H1
#,L defined as Hk = (−i∇+ k)2 + V . The following result is concerned with the Bloch eigenmodes of

H.

Theorem 5.6. Let B > 0 and V ∈ HB,L. For each k ∈ Rd, the eigenfunctions of the Bloch fibers
Hk = (−i∇+ k)2 +V of the periodic Schrödinger operator H = −∆ +V are in HA,L for any 0 < A < B.
Let λ1,k ⩽ λ2,k ⩽ · · · be the eigenvalues of Hk counted with multiplicities and ranked in nondecreasing
order, and λ1,k,N ⩽ λ2,k,N ⩽ · · · ⩽ λdL,N ,k,N the eigenvalues of the variational approximation of Hk in
the dL,N -dimensional space

XL,k,N := Span(eG, G ∈ L∗, |G + k| ⩽ N).

Then, for each 0 < A < B and n ∈ N∗, there exists a constant C ∈ R+ such that

0 ⩽ max
k∈Ω∗

(λn,k,N − λn,k) ⩽ Ce−2AN , (5.5.1)

where Ω∗ is the first Brillouin zone ( i.e. the Voronoi cell of the lattice L of Rd containing the origin).
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Proof. It suffices to replace in the proofs of Theorem 5.2 and Theorem 5.3 XN with XL,k,N and T22 with
the restriction T22,L,k of the operator (−i∇+ k)2 to the invariant space X⊥

L,k,N . The latter is invertible
and such that ∥T−1

22,L,k∥L(X⊥
L,k,N

) ⩽ N−2 and ∥T−1
22,L,k∥L(HA,L∩X⊥

L,k,N
) ⩽ N−2.

Appendix

Proof of Theorem 5.4

First, recall that, for all ε > 0,
−εu′′

ε + uε + u3
ε = f (5.5.2)

and that
u0 + u3

0 = f. (5.5.3)

L2-norm convergence By subtracting (5.5.3) to (5.5.2) and adding εu′′
0 to each side, we get

−ε(uε − u0)′′ +
(
1 + u2

ε + u0uε + u2
0
)
(uε − u0) = εu′′

0 .

Multiplying on both sides by (uε − u0) and integrating over [0, 2π] gives

ε

ˆ 2π

0
|(uε − u0)′|2 +

ˆ 2π

0

(
1 + u2

ε + u0uε + u2
0
)
|uε − u0|2 = ε

ˆ 2π

0
u′′

0(uε − u0).

As 1 + a2 + ab + b2 ⩾ 1 for any a, b ∈ R, we finally have (using Cauchy–Schwarz inequality for the
right-hand side)

ε∥(uε − u0)′∥2
L2

#
+ ∥uε − u0∥2

L2
#
⩽ ε∥u′′

0∥L2
#
∥uε − u0∥L2

#
. (5.5.4)

Thus, we have that
∥uε − u0∥L2

#
⩽ C1ε, with C1 = ∥u′′

0∥L2
#
.

H1-norm convergence From (5.5.4), we already have that there exists C > 0 such that

∥(uε − u0)′∥L2
#
⩽ C
√
ε,

which gives the H1 convergence of uε towards u0, but not at the announced rate. However, as we
are working in a 1D setting, this still implies the uniform convergence of uε towards u0. Hence,
supε∥uε∥L∞

#
< +∞. Starting from here, we can introduce wε := u′

ε and differentiate (5.5.3) and
(5.5.2) to get {

−εw′′
ε + (1 + 3u2

ε)wε = f ′;
(1 + 3u2

0)w0 = f ′.

Subtracting both equations yields

−ε(wε − w0)′′(1 + 3u2
ε

)
(wε − w0) = εw′′

0 + 3w0
(
u2

0 − u2
ε

)
.

Multiplying on both sides by (wε − w0) and integrating over [0, 2π] gives

ε

ˆ 2π

0
|(wε − w0)′|2 +

ˆ 2π

0

(
1 + 3u2

ε

)
|wε − w0|2 = ε

ˆ 2π

0
w′′

0 (wε − w0) + 3
ˆ 2π

0
w0
(
u2

0 − u2
ε

)
(wε − w0).

Then, using first that 1 + 3u2
ε ⩾ 1 and then that u2

0 − u2
ε = (u0 − uε)(u0 + uε) along with L∞ and

Cauchy–Schwarz bounds, we have the following inequality:

ε∥(wε − w0)′∥2
L2

#
+ ∥wε − w0∥2

L2
#
⩽ ε∥w′′

0∥L2
#
∥wε − w0∥L2

#
+ 3∥w0∥L∞

#
∥u0 + uε∥L∞

#
∥u0 − uε∥L2

#
∥wε − w0∥L2

#

⩽ ε∥w′′
0∥L2

#
∥wε − w0∥L2

#
+ 6∥w0∥L∞

#
sup
ε′
∥uε′∥L∞

#
∥u0 − uε∥L2

#
∥wε − w0∥L2

#
.

(5.5.5)
Finally, we have

∥uε − u0∥H1
#
⩽ C2ε with C2

2 := C2
1 +

(
∥w′′

0∥
2
L2

#
+ 6C1∥w0∥L∞

#
sup
ε′
∥uε′∥L∞

#

)2
.
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H2-norm convergence Similarly, from (5.5.5), we already have that there exists C > 0 such that

∥(uε − u0)′′∥L2
#
⩽ C
√
ε,

which gives the H2 convergence of uε towards u0, but not at the announced rate. However, as we are
working in a 1D setting, this still implies the H1 convergence and thus the uniform convergence of u′

ε

towards u′
0. Hence, supε∥u′

ε∥L∞
#
< ∞. Starting from here, we can introduce wε := u′′

ε and differentiate
twice (5.5.3) and (5.5.2) to get {

−εw′′
ε + wε + 3(2u′2

ε uε + u2
εu

′′
ε ) = f ′′;

w0 + 3(2u′2
0 u0 + u2

0w0) = f ′.

Subtracting both equations yields

−ε(wε − w0)′′(1 + 3u2
ε

)
(wε − w0) = εw′′

0 + 3w0
(
u2

0 − u2
ε

)
+ 6(u′2

0 − u′2
ε )u0 + 6(u0 − uε)u′2

ε .

Multiplying on both sides by (wε − w0) and integrating over [0, 2π] gives

ε

ˆ 2π

0
|(wε − w0)′|2 +

ˆ 2π

0

(
1 + 3u2

ε

)
|wε − w0|2 = ε

ˆ 2π

0
w′′

0 (wε − w0) + 3
ˆ 2π

0
w0
(
u2

0 − u2
ε

)
(wε − w0)

+ 6
ˆ 2π

0
(u′2

0 − u′2
ε )u0(wε − w0) + 6

ˆ 2π

0
(u0 − uε)u′2

ε (wε − w0)

Then, using first that 1+3u2
ε ⩾ 1 and then that u2

0−u2
ε = (u0−uε)(u0+uε) and u′2

0 −u′2
ε = (u′

0−u′
ε)(u′

0+u′
ε)

along with L∞ and Cauchy–Schwarz bounds, we have the following inequality:

ε∥(wε − w0)′∥2
L2

#
+ ∥wε − w0∥2

L2
#
⩽ ε∥w′′

0∥L2
#
∥wε − w0∥L2

#
+ 3∥w0∥L∞

#
∥u0 + uε∥L∞

#
∥u0 − uε∥L2

#
∥wε − w0∥L2

#

+ 6∥u0∥L∞
#
∥u′

0 + u′
ε∥L∞

#
∥u′

0 − u′
ε∥L2

#
∥wε − w0∥L2

#

+ 6
∥∥u′2

ε

∥∥
L∞

#
∥u0 − uε∥L2

#
∥wε − w0∥L2

#

⩽ ε∥w′′
0∥L2

#
∥wε − w0∥L2

#
+ 6∥w0∥L∞

#
sup
ε′
∥uε′∥L∞

#
∥u0 − uε∥L2

#
∥wε − w0∥L2

#

+ 12∥u0∥L∞
#

sup
ε′
∥u′

ε′∥L∞
#
∥u′

0 − u′
ε∥L2

#
∥wε − w0∥L2

#

+ 6 sup
ε′

∥∥u′2
ε′

∥∥
L∞

#
∥u0 − uε∥L2

#
∥wε − w0∥L2

#

(5.5.6)

Finally, we have
∥uε − u0∥H2

#
⩽ C3ε

with C2
3 := C2

2 +
(
∥w′′

0∥
2
L2

#
+ 6C1

(
∥w0∥L∞

#
sup
ε′
∥uε′∥L∞

#
+ sup

ε′

∥∥u′2
ε′

∥∥
L∞

#

)
+ 12C2∥u0∥L∞

#
sup
ε′
∥u′

ε′∥L∞
#

)2
.

Proof of Theorem 5.5

Let first start by recalling the proof when d = 1. We are thus looking at the system{
w′(t) = g(t, w(t)), w(t0) ∈ R,
v′(t) ⩾ g(t, v(t)), v(t0) = w(t0),

where g : R×R→ R. Note that in this case, we only need x 7→ g(t, x) to be locally Lipschitz and that no
quasimonotonicity assumption is needed as there is only one variable. Let T be such that both solutions
are defined on [t0, T ]. We assume by contradiction that the set {t ∈ (t0, T ], v(t) < w(t)} is not empty.
We can then define its infimum

t∗ := inf{t ∈ (t0, T ], v(t) < w(t)}.
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By continuity of v and w, we then have v(t∗) = w(t∗) and there exists δ > 0 such that v(s) < w(s) on
(t∗, t∗ + δ]. Let us now look at h := w − v. It satisfies

h(t∗) = 0 and h(s) > 0 on (t∗, t∗ + δ].

However, using the local Lipschitz assumption, it holds, for some L > 0,

h′(s) = w′(s)− v′(s) ⩽ g(s, w(s))− g(s, v(s)) ⩽ L|w(s)− v(s)| = Lh(s),

because h(s) ⩾ 0 for s ∈ [t∗, t∗ + δ]. Therefore, by Grönwall’s lemma,

∀ s ∈ [t∗, t∗ + δ], h(s) ⩽ h(t∗) exp(Lδ) = 0,

which leads to a contradiction. The set {t ∈ (t0, T ], v(t) < w(t)} is thus empty and v(t) ⩾ w(t) on [t0, T ].

We now consider the case when d > 1, and present a proof adapted from [199, Chapter 3]. We consider
solutions on [t0, T ] of the differential system{

w′(t) = g(t, w(t)), w(t0) ∈ R,
v′(t) ⩾ g(t, v(t)), v(t0) = w(t0),

where g : R × Rd → Rd is such that g(t, ·) is locally Lipschitz and quasimonotone for any t ∈ R. Let
assume again by contradiction that the set

{t ∈ (t0, T ], ∃ i, vi(t) < wi(t)}

is not empty. Therefore, it has an infimum that we denote by t∗. Using the definition of t∗ and the
continuity of v and w, it holds, for some index i and δ > 0,

vi(t∗) = wi(t∗), vi(s) < wi(s), ∀ s ∈ (t∗, t∗ + δ] and vj(t∗) ⩾ wj(t∗), j ̸= i.

Hence, the quasimonotonicity of g implies in particular that gi(t∗, v(t∗)) ⩾ gi(t∗, w(t∗)). Moreover, for
any s ∈ (0, δ],

vi(t∗ + s)− vi(t∗)
s

⩽ wi(t∗ + s)− wi(t∗)
s

,

which implies, by letting s→ 0, that v′
i(t∗) ⩽ w′

i(t∗). Compiling everything thus yields

gi(t∗, v(t∗)) ⩽ v′
i(t∗) ⩽ w′

i(t∗) = gi(t∗, w(t∗)) ⩽ gi(t∗, v(t∗)). (5.5.7)

Now, two different situations are possible:

• The first case is if v′
i(t∗) > gi(t∗, v(t∗)). This implies that (5.5.7) is false and we reach a contradic-

tion. Thus, t∗ cannot be defined and we have v(t) ⩾ w(t) for any t ∈ [0, T ].

• The second case is if v′
i(t∗) = gi(t∗, v(t∗)) and is more subtle. Let us introduce L, a Lipschitz

constant for g such that
|g(t, v + h)− g(t, v)| ⩽ L|h|, (5.5.8)

for the maximum norm. Note that g being locally Lipschitz in space, L depends on T (which is
fixed) via the upper and lower bounds of the vi’s on [0, T ]. Then, we define

h(t) = (e2Lt, . . . , e2Lt) ∈ Rd.

For any ε > 0, (5.5.8) thus yields

εh′(t) = 2Lεh(t) > g(t, v(t) + εh(t))− g(t, v(t)) ⩾ g(t, v(t) + εh(t))− v′(t),

from which we have v′(t)+εh′(t) > g(t, v(t)+εh(t)). We can thus apply everything that precedes to
the function v+εh: it satisfies the same differential inequality on [0, T ], so the reasoning is valid and
when we reach the case disjunction, this time we have that, for the associated t∗, v′(t∗) + εh′(t∗) >
g(t∗, v(t∗) + εh(t∗)) which is the case that implies a contradiction. Thus, v + εh ⩾ w on [0, T ]. As
ε has been chosen arbitrarily, it holds v(t) ⩾ w(t) for any t ∈ [0, T ].

The theorem then follows with g(t,X) = G(X), Ψ = v and Φ = w.
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Proof of Lemma 5.1

We introduce the path in the complex plane, for t ∈ [0, T ],

xε(t) :=
√
α(t)ωε(t) + i

√
εω′

ε(t).

Then, we have

i
√
εx′
ε(t) =

√
α(t)i

√
εω′

ε(t)− εω′′
ε (t) + i

√
εωε(t)α′(t)
2
√
α(t)

=
√
α(t)i

√
εω′

ε(t) + α(t)ωε(t)− εβ(t, ωε(t), ε) + i
√
εωε(t)α′(t)
2
√
α(t)

=
√
α(t)xε(t) + εγ(t, ωε(t), ε), with γ(t, ωε(t), ε) = −β(t, ωε(t), ε) + iωε(t)α′(t)

2
√
εα(t)

and where, because α(t) ⩾ αT > 0, there exists MT > 0 such that

|γ(t, ωε(t), ε)| =

∣∣∣∣∣β(t, ωε(t), ε) + iωε(t)α′(t)
2
√
εα(t)

∣∣∣∣∣ ⩽MT

(
1 + |ωε(t)|√

ε
+ |ωε(t)|

2

ε

)
.

The constant MT defined here will be used all along the proof and might change implicitly.

Now, we make the following ansatz:

xε(t) = A(t) exp
(
− i√

ε

ˆ t

0

√
α(s)ds

)
,

where A : [0, T ]→ R+ is the modulus of xε(t) and A(0) = |xε(0)| = O(ε3/2). For this ansatz to be valid,
we need

i
√
εx′
ε(t) =

√
α(t)xε(t) + εγ(t, ωε(t), ε)

to be valid. As we have

i
√
εx′
ε(t) = i

√
εA′(t) exp

(
− i√

ε

ˆ t

0

√
α(s)ds

)
+
√
α(t)xε(t),

this implies that A must satisfy

i
√
εA′(t) exp

(
− i√

ε

ˆ t

0

√
α(s)ds

)
= εγ(t, ωε(t), ε) ⇔ A′(t) = γ(t, ωε(t), ε)

√
ε

i exp
(

i√
ε

ˆ t

0

√
α(s)ds

)
.

Direct integration yields

A(t)−A(0) =
√
ε

i

ˆ t

0
B(r)C(r)dr

where
B(r) := γ(r, ωε(r), ε) and C(r) := exp

(
i√
ε

ˆ r

0

√
α(s)ds

)
.

By integrating by parts, we get

A(t)−A(0) =
√
ε

i

(
B(t)D(t)−

ˆ t

0
B′(r)D(r)dr

)
where D(t) =

ˆ t

0
C(r)dr. (5.5.9)

The first term is easy to deal with. Indeed, if we introduce

D̃(r) :=
√
ε

i
√
α(r)

exp
(

i√
ε

ˆ r

0

√
α(s)ds

)
,

then D̃(r) = O(
√
ε) and

D̃′(r) = C(r)− 1
2α(r)3/2

√
ε

i exp
(

i√
ε

ˆ r

0

√
α(s)ds

)
.
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Thus,

D(t) =
ˆ t

0
C(r)dr =

ˆ t

0
D̃′(r) +O(

√
ε) = O(

√
ε).

From (5.5.9) we obtain, with A(0) = O(ε3/2) and |ωε(t)| ⩽ A(t)/√αT ,

A(t) ⩽MT

(
ε3/2 + εγ(t, ωε(t), ε) + ε

ˆ t

0
|B′(r)|dr

)
⩽MT

(
ε3/2 + ε+

√
ε|ωε(t)|+ |ωε(t)|2 + ε

ˆ t

0
|B′(r)|dr

)
⩽MT

(
ε3/2 + ε+

√
εA(t) +A(t)2 + ε

ˆ t

0
|B′(r)|dr

)
⩽MT

(
ε+
√
εA(t) +A(t)2 + ε

ˆ t

0
|B′(r)|dr

)
,

the last inequality being true for ε small enough.

We now focus on B′(r): the assumptions on β and the definition of γ yield

|B′(r)| =
∣∣∣∣ d
dr γ(r, ωε(r), ε)

∣∣∣∣ ⩽MT

(
1 + |ω

′
ε(r)ωε(r)|

ε
+ |ωε(r)|√

ε
+ |ω

′
ε(r)|√
ε

.

)
As |ωε(r)| ⩽ A(r)/√αT and |ω′

ε(r)| ⩽ A(r)/
√
ε, we have

|B′(r)| ⩽MT

(
1 + A(r)2

ε3/2 + A(r)√
ε

+ A(r)
ε

,

)
from which we finally get, for ε small enough,

A(t) ⩽MT

(
ε+
√
εA(t) +A(t)2 +

ˆ t

0

A(r)2
√
ε

+
√
εA(r) +A(r)dr

)
. (5.5.10)

We conclude with a bootstrapping argument. Let assume that A(t) ⩽ CT ε on [0, T ] for some CT > 0.
We are going to show that, for a well chosen CT , we can find εT small enough such that, for all ε ⩽ εT ,
we have indeed A(t) ⩽ CT ε on [0, T ]. If such a bound is true, then (5.5.10) implies that

A(t) ⩽MT

(
ε+ CT ε

3/2 + C2
T ε

2 + 2TCT ε3/2 +
ˆ t

0
A(r)dr

)
⩽ εMT

(
1 + CT

√
ε(1 + CT

√
ε+ 2TCT )

)
+MT

ˆ t

0
A(r)dr.

Thus, by applying the integral form of Grönwall’s lemma, we get that

∀ t ∈ [0, T ], A(t) ⩽ εMT

(
1 + CT

√
ε(1 + CT

√
ε+ 2TCT )

)
exp(TMT ).

Therefore, by choosing for instance CT = 2MT exp(TMT ), we can find εT small enough such that for any
ε ⩽ εT ,

∀ t ∈ [0, T ], A(t) ⩽ CT ε,
which validates the initial assumption. The proof of the lemma follows by recalling that |ωε(t)| ⩽
A(t)/√αT and |ω′

ε(t)| ⩽ A(t)/
√
ε.
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Abstract In this article, we propose general criteria to construct optimal atomic centered basis sets
in quantum chemistry. We focus in particular on two criteria, one based on the ground-state one-body
density matrix of the system and the other based on the ground-state energy. The performance of these
two criteria are then numerically tested and compared on a parametrized eigenvalue problem, which
corresponds to a one-dimensional toy version of the ground-state dissociation of a diatomic molecule.
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6.1 Introduction

In quantum chemistry, a central problem is the computation of the electronic ground-state (GS) of a
given molecular system. For many-electron systems, it is not possible to solve the N -body Schrödinger
equations and most calculations are thus based on variational (e.g. Hartree–Fock) or nonvariational
(e.g. coupled cluster) approximations of the latter, or on Kohn–Sham density functional theory (DFT). For
all these models, the continuous equations (e.g. a nonlinear elliptic eigenvalue problem in the Hartree–Fock
or Kohn–Sham settings) are discretized into a finite-dimensional approximation space. Approximation
spaces constructed from atomic orbitals (AO) basis sets [95, 156] have many advantages and are therefore
the most common choice in the quantum chemistry community. An AO basis set consists of a collection
of functions χ = (χzµ)z∈CE, 1⩽µ⩽nz

where CE is a set of atomic numbers (e.g. CE = {1, . . . , 92} for
the natural chemical elements of the periodic table), nz a positive integer depending on the electronic
shell-structure of the chemical element with atomic number z, and χzµ ∈ H1(R3) a fast decaying function
centered at the origin called an atomic orbital. Consider an atomic configuration ω consisting of M nuclei
with nuclear charges z1, . . . , zM (in atomic units) and positions R1, . . . ,RM in the three dimensional
physical space. If the AO basis set χ is chosen by the user, the (spatial component of the) one-electron
finite-dimensional space in which the chosen electronic structure model of a molecular system with atomic
configuration ω is discretized is

Xω := Span(χz1
1 (· −R1), . . . , χz1

nz1
(· −R1), . . . , χzM

1 (· −RM ), . . . , χzM
nzM

(· −RM )).

The accuracy of the approximation therefore crucially depends on the quality of the AO basis set. The
main advantage of AO basis sets is that only a small number of AO per atoms (typically a dozen) are
necessary to obtain a relatively accurate result on most quantities of interest. This is in sharp contrast
with standard discretization methods used in the simulation of partial differential equations such as finite-
element methods. To make connection with discretization methods used in mechanical and electrical
engineering, AO basis set discretization methods can be considered as spectral methods [46], and share
common features with the modal synthesis method [51, Chapter 7], [50]. A drawback of AO basis sets
is that conditioning quickly blows up when increasing the size of the basis by including polarization and
diffuse basis functions, a problem known as overcompleteness [140]. The numerical errors due to this large
condition number can deteriorate the accuracy of the computed solutions and/or significantly increase
computational times. AO basis sets can therefore not be systematically improved in a straightforward
way.

In the early days, AOs were Slater functions [185], with exponential decay and a cusp at the origin. It
was then realized by Boys [25] in 1950 that it was much more efficient from a computational viewpoint to
use Gaussian-type orbitals (GTO), that are linear combinations of polynomials times Gaussian functions.
Indeed the multi-center overlap, kinetic and Coulomb integrals
ˆ
R3
χza
i (r −Ra)χzb

j (r −Rb) dr,

ˆ
R3
∇χza

i (r −Ra) · ∇χzb
j (r −Rb) dr,

ˆ
R3

χza
i (r −Ra)χzb

j (r −Rb)
|r −Rk|

dr,

ˆ
R3×R3

χza
i (r −Ra)χzb

j (r −Rb)χzc

k (r′ −Rc)χzd

ℓ (r′ −Rd)
|r − r′|

dr dr′,

arising in discretized electronic structure models can then be computed analytically by means of explicit
calculations and recursion formulas.

However, individual Gaussian function poorly describes the cusps of the bound states electronic wave-
functions at nuclear positions. Contracted Gaussians [146], that are linear combinations of Gaussians with
different variances, were quickly introduced as they overcome this deficiency. Several classes of GTO basis
sets have been proposed since the 50s: STO-ng basis sets [93] were built as the contraction of n Gaussians
that fit Clementi STO SCF AOs in an L2 least-squares sense [189]. It was quickly realized that better GTO
basis sets could be obtained by minimizing atomic Hartree–Fock ground-state energy. This approach led
to the split-valence basis sets (e.g. 6-31G) with core and valence orbitals being approximated differently,
developed by Pople et al. [20]. Basis sets better suited for correlated electronic structure methods were
then introduced, notably Atomic Natural Orbitals (ANO) [2] and Dunning basis sets [66]. ANO basis
sets are built by selecting occupied and virtual orbitals from Hartree–Fock and natural orbitals from
correlated computations of atomic systems. Dunning bases provide a (finite) hierarchy of bases obtained
by consistently increasing the number of basis functions corresponding to different angular momenta.
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This optimization strategy yields the so-called correlation consistent cc-pVXZ basis sets, which are, with
their augmented version, still commonly used nowadays.

Mathematical studies proving convergence rates or proposing systematic enrichment of GTO basis sets
are so far quite limited. The approximability of solutions to electronic structure problems by Gaussian
functions was studied in [120], and later on in [182, 183]. An a priori error estimate on the approxima-
tion of Slater-type functions by Hermite and even-tempered Gaussian functions was derived in [10]. A
construction of Gaussian bases combined with wavelets was proposed on a one-dimensional toy model
in [164].

Commonly used Pople and Dunning GTO basis sets were optimized from atomic configuration energies
and Hartree–Fock (and/or natural) atomic orbitals. Let us also mention [55, 180] where system specific
optimization of AO bases has been investigated, however focusing on specific models (e.g. one electron
periodic Hamiltonian) or optimization criteria. In this chapter, we propose a different approach, which
is adaptable to any criterion one might be interested in, and involves molecular configurations. In
Section 6.2, we introduce an abstract mathematical framework for the construction of optimal AO basis
sets, based on the choices of

1. a set of admissible atomic configurations Ω;

2. a probability measure P on Ω;

3. a set of admissible AO basis sets B;

4. a criterion j(χ, ω) quantifying the error between the exact values of the quantities of interest when
the system has atomic configuration ω ∈ Ω – for the continuous model under consideration – and
the ones obtained after discretization in the basis set χ ∈ B.

We also provide examples of possible choices of Ω, P, B, and j. As a proof of concept (Section 6.3),
we apply this strategy to a simple toy model of a 1D homonuclear diatomic “molecule” with two 1D
noninteracting spinless “electrons”, which allows for extremely accurate reference calculations. Finally,
we present numerical results in Section 6.4, where we compare the efficiency of the so-optimized AO bases
compared to AO basis constructed from the occupied and unoccupied orbitals of the isolated “atom”.

6.2 Optimization criteria

We start by formulating the problem of basis set optimization in an abstract setting. The procedure
can be divided into four steps.

First, we select the set Ω of all possible atomic configurations we are a priori interested in. For
instance, depending on the foreseen applications, one can consider the set of all possible finite atomic
configurations containing only hydrogen, nitrogen, carbon, and oxygen atoms, or the set of all possible
periodic arrangements of chemical elements with less than 20 atoms per unit cell.

Second, we equip Ω with a probability measure P in order to allow for different configurations to
have different weights in the optimization procedure. We will see later that our method requires the
computation of very accurate reference solutions for all ω’s in the support of P. For practical reasons we
therefore need to choose P of the form

P =
Nc∑
n=1

βnδωn , (6.2.1)

where {ω1, . . . , ωNc} is a finite (not too large) subset of Ω, δωn
the Dirac mass at ωn, and {β1, . . . , βNc} are

positive weights such that
∑Nc
n=1 βn = 1. Assume that we are solely interested in reproducing accurately

the dissociation curve of the HF (Hydrogen Fluoride) diatomic molecule. Then the set Ω should be
identified with the interval (0,+∞), and a configuration ω ∈ Ω with the H−F interatomic distance
R ∈ (0,+∞), and P should be a probability measure on the interval (0,+∞). The selection of the ωn’s
and βn’s can be done in various ways. An option is to
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i) choose a continuous probability distribution P on (0,+∞) on the basis of chemical arguments,
putting little weight on usually unimportant very small interatomic distances, more weight on
interatomic distances close to the equilibrium distance (d ≃ 0.92 Å), sufficient cumulated weight
on very large interatomic distance to correctly reproduce the dissociation energy, and more or less
weight on intermediate interatomic distances in the range 2− 8 Å, depending on its importance for
the targeted application;

ii) fix the number Nc according to the available computational means;

iii) compute the ωn’s and βn’s using e.g. quantization algorithms [147] possibly based on optimal
transport or clustering algorithms [158].

Third, we select the set B of admissible AO basis sets. Restricting ourselves to the framework of
GTOs, this can be done by choosing, for each chemical element arising in Ω, the number, symmetries,
and contraction patterns of the Gaussian polynomials of the AO associated with this particular element.
In this case, B has the geometry of a convex polyhedron of Rd.

Given an atomic configuration ω ∈ Ω and an AO basis set χ ∈ B, we denote by χω the one-electron
finite-dimensional space obtained by using the AO basis set χ to describe the electronic structure of a
molecular system with atomic configuration ω and an arbitrary number N of electrons.

The fourth and final step consists in choosing a criterion j(χ, ω) quantifying the quality of the results
obtained when using the basis set χ ∈ B to compute the electronic structure of a molecular system with
atomic configuration ω. The choice of the function

j : B × Ω→ R+

depends on the quantity of interest (QoI) to the user, and on the respective weights of these quantities in
the case of multicriteria analyses. For instance, if one focuses on the ground-state energy of the electrically
neutral molecular system, a natural criterion is

jE(χ, ω) := |Eω − Eχω |
2
, (6.2.2)

where Eω is the exact ground-state energy of the neutral system with atomic configuration ω for the
chosen continuous model (e.g. Hartree–Fock, MCSCF, Kohn–Sham B3LYP. . . ) and Eχω the ground-state
energy obtained with the model discretized in the AO basis set χ. Note that the absolute value of the
difference is squared to make jE differentiable. Another possible choice is to use a criterion based on the
one-body reduced density matrices (1-RDM), for instance

jA(χ, ω) := −Tr
(
ΠA
χω
γωΠA

χω
A
)
, (6.2.3)

where A is a given self-adjoint, positive, definite operator on the one-particle state space H with form
domain Q(A), γω the exact ground-state 1-RDM of the neutral system with atomic configuration ω for
the chosen continuous model, and ΠA

χω
: Q(A) → Xω ⊂ H the orthogonal projector on Xω for the inner

product A on Q(A). If A = IH, then Q(A) = H and ΠA
χω

is the orthogonal projector on Xω for the
inner product of H. If A = (1−∆), then Q(A) is the Sobolev space H1(R3), and ΠA

χω
is the orthogonal

projector on Xω for the H1-inner product. Diagonalizing γω as

γω =
∑
j

nω,j |ψω,j⟩⟨ψω,j |, 0 ⩽ nω,j ⩽ 1, ⟨ψω,j |ψω,j′⟩ = δjj′ ,

where the nω,j ’s are the natural occupation numbers (NON) and ψω,j ’s the natural orbitals (NO) for the
chosen continuous model of the neutral system with atomic configuration ω, it holds

jA(χ, ω) = −
∑
j

nω,j∥ΠA
χω
ψω,j∥2

Q(A).

Minimizing jA(χ, ω) thus amounts to maximizing the NON-weighted sum of the Q(A)-norms of Q(A)-
orthogonal projections of the NON on the discretization space Xω. Other criteria may include errors on
molecular properties, or a weighted sum of several elementary criteria, each of them targeting a specific
property. The criterion should be chosen according to the intended application.



6.3. Application to 1D toy model 131

The aggregated criterion to be optimized then reads as an integral over the configuration space Ω
with respect to the probability measure P

J(χ) :=
ˆ

Ω
j(χ, ω)dP(ω), (6.2.4)

and the problem of basis set optimization can be formulated as

find χ0 ∈ argmin
χ∈B

J(χ)

In the following, JE and JA denote the evaluation of the criterion (6.2.4) with j = jE and j = jA
respectively.

Remark 6.1 (Reference solutions). The evaluation of criteria JE and JA hinges on the knowledge of
exact GS energy Eω or 1-RDM γω for ω in the support of P. In practice, these data can be approximated
by very accurate off-line reference computations for a small, wisely chosen, sample of configurations ω.
This is the reason why the probability measure P can only be a finite weighted sum of Dirac distributions,
as defined in (6.2.1).

6.3 Application to 1D toy model

In this section, we focus on a linear one-dimensional toy model, mimicking a homonuclear diatomic
molecule.

6.3.1 Description of the model

Let us consider a system of two 1D point-like “nuclei” and two 1D spinless noninteracting quantum
“electrons”. The one-particle state space is then H = L2(R) and the configuration space Ω = (0,+∞). In
this section, a configuration of Ω will be labelled by the positive real number a > 0 such that the nuclei
are located at −a and a. The one-particle Hamiltonian at configuration a then is

Ha = −1
2

d2

dx2 + Va, (6.3.1)

where Va models the nuclei-electron interaction. We choose Va to be a double-well potential with minima
at −a and +a, defined by

∀ x ∈ R, Va(x) = 1
8a2 + 4(x− a)2(x+ a)2. (6.3.2)

Several considerations led us to define the potential as such. First, Va is designed so that i) each Ha

admits a nondegenerate ground-state of energy Ea, and ii) the function a 7→ Ea has the shape of the
ground-state dissociation curve of a homonuclear diatomic molecule with atoms at −a and +a. Since the
two “electrons” do not interact, the ground-state energy Ea and density matrices γa ∈ G2 are given by

Ea = Tr(Haγa) = min
γ∈G2

Tr(Haγ), (6.3.3)

where
G2 :=

{
γ ∈ L(L2(R)), γ2 = γ = γ∗, Tr(γ) = 2

}
,

L(L2(R)) denoting the space of bounded linear operators on L2(R). The existence and uniqueness of the
solution to problem (6.3.3) can be shown by elementary arguments of functional analysis and spectral
theory that we do not detail here. Second, V0(x) = 1

4x
4 so that (6.3.1) corresponds to the quartic

oscillator, for which we have reference numerical solutions (e.g. [22]). Third, Va behaves like x2/2 around
±a for large values of a and Va(0) ∼ a4/8 → +∞ when a → +∞. Therefore, in the limit a → +∞,
problem (6.3.3) is similar to two decoupled quantum harmonic oscillators centered in −a and +a whose
bound states are all explicitly known. For the sake of illustration, we display in Figure 6.1 the potential
Va for two different values of a.
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Figure 6.1 – x 7→ Va(x) for a = 1 and a = 5.

In practice, it is convenient to compute γa and Ea from the lowest two eigenvalues λa,1 < λa,2 of Ha

and an associated pair (φa,1, φa,2) of orthonormal eigenvectors{
Haφa,i = λa,iφa,i, i = 1, 2
⟨φa,i|φa,j⟩ = δij , i, j = 1, 2,

(6.3.4)

⟨·|·⟩ denoting the L2 inner product. We indeed have

Ea = λa,1 + λa,2 and γa = |φa,1⟩⟨φa,1|+ |φa,2⟩⟨φa,2|. (6.3.5)

The evaluation of criteria JA and JE requires the computation of reference ground-state density
matrices or energies, which amounts to find very accurate solutions of (6.3.4) for the configurations an
in the support of the chosen atomic probability measure

P =
Nc∑
n=1

βnδan
, 0 < a1 < a2 < · · · < aNc , βn > 0,

Nc∑
n=1

βn = 1. (6.3.6)

We chose to compute these reference data using a 3-point finite-difference (FD) scheme on a large enough
interval [−xmax, xmax] discretized into a uniform grid with Ng grid points:

xj = −xmax + jδx, 1 ⩽ j ⩽ Ng, δx = 2xmax

Ng + 1 .

We then impose homogeneous Dirichlet boundary conditions at −xmax and xmax. The parameter xmax
is chosen such that xmax = amax + rmax, where amax = max(supp(P)) and rmax > 0 is is the radius
beyond which atomic densities are zero at machine (double) precision. Note that this numerical scheme
is independent of the configuration a. The FD discretization of problem (6.3.9) gives rise to the eigenvalue
problem {

HFD
a φFDa,i = λFD

a,i φ
FD
a,i i = 1, 2

δx
(
φFD
a,i

)T
φFD
a,j = δij ,

(6.3.7)

where HFD
a ∈ RNg×Ng

sym is a real symmetric matrix of size Ng×Ng, and the reference data are obtained as

EFD
a = λFD

a,1 + λFD
a,2 and PFD

a = φFD
a,1
(
φFD
a,1
)T + φFD

a,2
(
φFD
a,2
)T ∈ RNg×Ng

sym , (6.3.8)

where PFD
a can be interpreted as an approximation of the matrix γa(xj , xj′) containing the values of the

(integral kernel of the) density matrix γa at the grid points.

6.3.2 Variational approximation in AO basis sets

For any given configuration a ∈ R+ and basis χ = {χµ}1⩽µ⩽Nb ∈ B, problem (6.3.4) is solved using
a Galerkin method with the basis χa = {χa,µ}1⩽µ⩽2Nb composed of two copies of the basis χ, the first
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one translated to a, and the second one to −a:

χa,1 = χ1(· − a), . . . , χa,Nb = χNb(· − a), χa,Nb+1 = χ1(·+ a), . . . , χa,2Nb = χNb(·+ a).

Defining the Hamiltonian matrix

Hχ
a =

(〈
χa,µ

∣∣∣∣(−1
2

d2

dx2 + Va

)∣∣∣∣χa,ν〉)
1⩽µ,ν⩽2Nb

and the overlap matrix
Sχa = (⟨χa,µ|χa,ν⟩)1⩽µ,ν⩽2Nb

,

the discretization of problem (6.3.4) in the AO basis set χ then reads as the generalized eigenvalue
problem: find

(
Cχa,i, λ

χ
a,i

)
∈ R2Nb × R, i = 1, 2 such that{

Hχ
aC

χ
a,i = λχa,iS

χ
aC

χ
a,i i = 1, 2(

Cχa,i
)T
SχaC

χ
a,j = δij .

(6.3.9)

The approximation φχa,i of φa,i in the AO basis set χ can then be recovered as the linear combination of
atomic orbitals (LCAO)

∀x ∈ R, φχa,i(x) =
2Nb∑
µ=1

[Cχa,i]µχa,µ(x). (6.3.10)

One way to compare the LCAO ground-state 1-RDM to the reference FD solution PFD
a is to simply

evaluate the former at the grid points xj , which gives rise to the matrix Pχa ∈ RNg×Ng
sym with entries

[Pχa ]jj′ =
2∑
i=1

φχa,i(xj)φ
χ
a,i(xj′).

Due to numerical errors, the matrix Pχa is however not a rank-2 orthogonal projector. We therefore
chose to follow a slightly different route (leading to very similar results). The finite difference grid gives
a reference discrete setting in which any quantity of interest for any configuration and AO basis set
can be expressed. For all a’s, the basis χa is represented by a matrix Xa ∈ RNg×2Nb . For any vectors
Y1, Y2 ∈ RNg , the discrete A inner product simply reads δxY T1 AY2 where the notation A stands for
both the continuous inner product and its finite-difference discretization matrix. We denote by ∥ · ∥A
the associated norm on RNg . Solutions to (6.3.9) are then obtained by approximating respectively the
Hamiltonian and overlap matrix by

Hχ
a ≃ HX

a :=
(
δxXT

a,µH
FD
a Xa,ν

)
1⩽µ,ν⩽2Nb

, Sχa ≃ SXa :=
(
δxXT

a,µXa,ν

)
1⩽µ,ν⩽2Nb

,

and finding (CXa,i, λXa,i) ∈ R2Nb × R, i = 1, 2, such that HX
a C

X
a,i = λXa,iS

X
a C

X
a,i, i = 1, 2

(CXa,i)TSXa CXa,j = δij , i, j = 1, 2,
(6.3.11)

from which we get the discrete approximations

φXa,i = XaC
X
a,i, i = 1, 2. (6.3.12)

Let us gather the coefficients CXa,i into the 2Nb× 2 matrix CXa =
(
CXa,1 |CXa,2

)
. The ground-state density

matrix in the basis χa is approximated by

PXa = φXa,1(φXa,1)T + φXa,2(φXa,2)T =
(
XaC

X
a

)(
XaC

X
a

)T ∈ RNg×Ng
sym . (6.3.13)
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6.3.3 Overcompleteness of Hermite Basis Sets

Before getting into basis set optimization, we introduce the following standard Hermite Basis Set
(HBS), constructed from eigenfunctions of the quantum harmonic oscillator. Those functions are solutions
to the eigenvalue problem

(
− 1

2
d2

dx2 + 1
2x

2
)
hn = εnhn and are explicitly given by

hn(x) = cnpn(x) exp
(
−x

2

2

)
, εn = n+ 1

2 , n ∈ N, (6.3.14)

where pn is the Hermite polynomial of degree n (with the same parity as n) and cn a normalization
constant such that (hn)n∈N forms an orthonormal basis of L2(R). The hn’s are the analogues of the
standard atomic orbitals obtained by solving atomic electronic structure problems. Let us first consider
the AO basis set made of the first Nb Hermite functions

χHBS = {χHBS
µ }1⩽µ⩽Nb = {hn}0⩽n⩽Nb−1.

The overlap matrix for the configuration a then is of the form

Sχ
HBS

a =
(
INb Σa
ΣTa INb

)
where Σa := (⟨hn(· − a)|hm(·+ a)⟩)0⩽n,m⩽Nb−1.

The matrix Σa corresponds to the overlap of functions that are localized at different atomic positions.
It satisfies Σa ≃ 0 when a is large and Σa ≃ INb when a is close to 0, therefore causing conditioning
issues on the overlap matrix Sχ

HBS

a , a phenomenon known as overcompleteness: when a is too small,
the basis functions centered at ±a are almost equal, hence almost linearly dependent in the basis set.
We illustrate this problem by plotting the condition number of the overlap matrix Sχ

HBS

a for different
values of a in Figure 6.2, which indeed blows up for small values of a. This is a well-known issue, and
several methods have been proposed in the literature to cure this phenomenon, such as the standard
canonical orthonormalization procedure [140] or more recent works based on a Cholesky decomposition
of the overlap matrix [123]. Such methods are however not directly related to the optimization procedure
presented in this paper.
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Figure 6.2 – Condition number of the HBS overlap matrix SχHBS
a for different values of a in log-log scale. The

larger the basis set, the faster the condition number blows up for small values of a.

6.3.4 Practical computation of the criterion JA and JE

The rest of this section is dedicated to the rewriting and the computation of criteria JA and JE for
our 1D model in the discrete setting.
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Reference orthonormal basis

In order to avoid potential numerical stability issues, each of the Nb atomic orbital χµ is decomposed
on a given truncated orthonormal basis of L2(R) of size N such that Nb ≪ N ≪ Ng. We choose here
the orthonormal basis introduced in (6.3.14). Hence, the matrix Xa ∈ RNg×2Nb is written as

Xa = BaIR, (6.3.15)

with
Ba =

(
h0(x· − a)| · · · |hN −1(x· − a)|h0(x· + a)| · · · |hN −1(x· + a)

)
∈ RNg×2N ,

and
IR =

(
R 0
0 R

)
∈ R(2N )×(2Nb), (6.3.16)

where R ∈ RN ×Nb gathers the coefficients of the atomic orbitals χµ in the truncated HBS orthonormal
basis. Note that we have duplicated R in IR as we consider the same basis at each position ±a, but
everything that follows can be easily adapted to the case where we would like to optimize the bases
at each position separately (to deal with heteronuclear molecular systems for instance). We moreover
impose that RTR = INb , so that the overlap matrix of Xa, denoted by S(Xa), has the same form as in
Section 6.3.3, that is

S(Xa) := δxXT
a Xa =

(
INb Σa
ΣTa INb

)
, (6.3.17)

where Σa is the overlap between functions localized at +a and functions localized at −a. To avoid any
issues arising from the conditioning of S(Xa), the minimal sampled distance amin should not be taken
too small.

In the following, we detail the computation of each of the two criteria using the matrix R as the main
variable. We will subsequently optimize the criteria JA and JE with respect to R to obtain optimal AO
basis sets. In order to ease the reading of the following computations, every vector of RNg is rescaled by
a factor

√
δx so that for any given Y1, Y2 ∈ RNg the discrete A inner product simply reads Y T1 AY2. The

same holds for overlap matrices: with this convention, S(Xa) = XT
a Xa. The output of the optimization

is then scaled back to its former state by a factor 1/
√
δx to recover the original normalization.

Criterion JA

Let a ∈ R+ be fixed and let SA(Y ) = Y TAY denote the overlap matrix for the A-inner product of
any rectangular matrix Y ∈ RNg×d. Since the columns of Xa[SA(Xa)]− 1

2 are orthonormal for the A
inner product, that is (

Xa[SA(Xa)]− 1
2

)T
A
(
Xa[SA(Xa)]− 1

2

)
= I,

the projection ΠA
Xa

takes the simple form

ΠA
Xa

=
(
Xa[SA(Xa)]− 1

2

)(
Xa[SA(Xa)]− 1

2

)T
A = Xa[SA(Xa)]−1XT

a A. (6.3.18)

Hence, using the cyclicity of the trace and definitions (6.2.3), (6.3.8) and (6.3.18), one has

jA(χ, a) ≃ −Tr
(
PFD
a ΠA

Xa
AΠA

Xa

)
= −Tr

(
PFD
a × (ABaIR)[SA(BaIR)]−1(ABaIR)T

)
= −Tr

(
Moffline
A (a)IR[SA(BaIR)]−1ITR

)
,

where we have collected in the last expression all matrices independent of R into the matrix

Moffline
A (a) = (ABa)TPFD

a ABa ∈ R2N ×2N . (6.3.19)

Then, using the probability measure P in (6.3.6), we get

JA(R) = −
ˆ

Ω
Tr
(
Moffline
A (a)IR[SA(BaIR)]−1ITR

)
dP(a) = −

Nc∑
n=1

βnTr
(
Moffline
A (an)IR[SA(Ban

IR)]−1ITR
)
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and the optimization problem finally writes, with unknown R ∈ RN ×Nb and for a given inner product A

Find Ropt ∈ argmin
R∈RN ×Nb , RTR=INb

JA(R) (6.3.20)

Criterion JE

Let again a ∈ R+ be fixed. We denote by

G(Ng, 2) := {P ∈ RNg×Ng |P 2 = P = PT ,Tr(P ) = 2}

the discrete counterpart of the Grassmann manifold G2, and write ERa (resp.HR
a ) instead of Eχa (resp.Hχ

a ),
so that the dependence in the matrix R appears explicitly. Equation (6.3.3) reads in the discrete setting

ERa = min
P∈G(Ng,2)

Tr
(
PHR

a

)
= min

C∈R2Nb×2

(C)TS(BaIR)C=I2

Tr
(
CCT × (BaIR)THFD

a (BaIR)
)

= Tr
(
CRa (CRa )T × ITRMoffline

E (a)IR
) (6.3.21)

where, as for the previous case, all matrices independent of R have been gathered in the matrix

Moffline
E (a) = BTaH

FD
a Ba, (6.3.22)

and the matrix CRa is solution to the minimization problem

min
CR∈R2Nb×2

(CR)TS(BaIR)CR=I2

Tr
(
CR(CR)T × ITRMoffline

E (a)IR
)

(6.3.23)

and is given in practice by CRa = [S(BaIR)]−
1
2 (ua,1|ua,2) where ua,1 and ua,2 are orthonormal eigenvectors

associated to the lowest two eigenvalues of

[S(BaIR)]−
1
2 IRM

offline
E (a)ITR [S(BaIR)]−

1
2 .

From (6.3.6) and (6.3.21), one can compute

JE(R) =
ˆ

Ω

∣∣EFD
a − ERa

∣∣2 dP(a) =
Nc∑
n=1

βn
∣∣EFD

an
− ERan

∣∣2
and the optimization problem reads

Find Ropt ∈ argmin
R∈RN ×Nb , RTR=INb

JE(R) (6.3.24)

6.4 Numerical results

6.4.1 Numerical setting and first results

Problems (6.3.20) and (6.3.24) are solved by direct minimization algorithms over the Stiefel mani-
fold [1]

St(N , Nb) = {R ∈ RN ×Nb |RTR = INb}.

The explicit computation of the gradients of JA and JE with respect to R is detailed in the Appendix. We
used a L–BFGS algorithm (with tolerance 10−7 on the norm of the projected gradient), as implemented
in the Optim.jl package [149] in the Julia language [19]. As initial guess, we picked the first Nb
Hermite functions introduced in Section 6.3.3.

In this subsection, we choose a probability distribution P supported in the interval I = [1.5, 5] so as
to retain the physics of interest that takes place around the equilibrium configuration a0 ≃ 1.925 and
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all the way to dissociation. In particular amin = 1.5 is taken sufficiently large to avoid the conditioning
issues on the overlap matrices described in Section 6.3.3. More precisely, all the results in this subsection
are obtained with the probability

P = 1
10

10∑
n=1

δan
with an = 1.5 + (n− 1)3.5

9 . (6.4.1)

The quantities Moffline
A (an) and Moffline

E (an) are computed offline beforehand. We will discuss this choice
and consider other probability measures P in Sections 6.4.2 and 6.4.2.

The finite-difference grid is a uniform grid on the interval [−20, 20] discretized into Ng = 1999 points
(δx = 0.02). Finally, we decompose the basis functions to be optimized in the HBS {hn}0⩽n⩽N −1 of
L2(R) of size N = 10. Regarding the choice of the inner product for the first criterion JA, we used the
standard L2(R) and the H1(R) inner products, and denoted by JL2 and JH1 the corresponding. This
translates at the discrete level by choosing A = INg for JL2 and A = INg − ∆ for JH1 where ∆ is the
3-point finite-difference discretization matrix of the 1D Laplace operator. Once obtained, the optimal
bases are used to solve the variational problem (6.3.11) on a much finer sampling of I and their accuracy
is compared to the HBS. The code performing the simulations and plotting the results is available online1.
Also, for the sake of clarity in the plots, Ẽa (resp. ρ̃a) denotes the GS energy (resp. the density) in the
configuration a with a given basis (specified by the context) and Ea (resp. ρa) stands for the reference
energy (resp. density) on the finite difference grid. Note that we write HBS for the (nonoptimized)
Hermite basis set, and L2-OBS, H1-OBS or E-OBS for optimized basis sets with respect to the criterion
JL2 , JH1 , or JE .

Figure 6.3 displays the dissociation curve and the energy difference on the interval I for different values
ofNb, the size of the AO basis set. ForNb = 1, i.e. only one basis function at±a, criterion JE shows better
performance than the criterion JA, regardless of the choice of norm to perform the projections. It also
very closely matches the accuracy of the standard HBS. When Nb becomes larger however, the different
criteria behave in a similar fashion and we observe that they approach the dissociation curve better
than the Hermite basis. Comparing the values of criterion JE for all bases, which directly measures the
distance to the dissociation curve, we see in Table 6.1 that all optimized bases give an increased accuracy
of roughly four orders of magnitude over the interval I for Nb = 4.

In Figure 6.4, we plot the density for a given value of a and the error on the density for different
norms, with varying values of Nb. The error is plotted with respect to three different distances: the
L1-norm, which corresponds to the L2-norm on eigenvectors, the H1-norm of the error on the density,
as it is common to compute the forces

´
R ρ∇aVa with good estimates on the H−1-norm of ∇aVa (see

e.g. [GK2]), and the distance
∥∇√ρ1 −∇

√
ρ2∥L2

(recall that the von-Weizsäcker kinetic energy reads 1
2
´
R |∇
√
ρ|2). We observe similar behaviours between

these different distances. For Nb = 1, both bases obtained with the first criterion behave slightly better
than the standard Hermite basis and the basis computed with the second criterion. For Nb = 3, we
observe again that all optimal bases yield better accuracy than the Hermite basis. Table 6.1 gives the
confirmation that each basis for a given criterion indeed performs better than the other bases for that
particular criterion. As for dissociation curves, we read from the values of JL2 and JH1 that the optimized
bases yield similar results for large Nb, all of them giving lower values than the HBS. Note that the optimal
bases for criterion JL2 and JH1 give similar results for any number of basis functions Nb, so that the L2

and H1 norm optimizations seem equivalent.

In terms of computational time, first note that criterion JH1 is always more expensive to compute than
JL2 as it requires additional matrix-vector products with the matrix A, this having noticeable impact
on the computational time. Second, criterion JE requires less off-line data as it only needs to be given
the reference eigenvalues while criterion JA requires the reference GS eigenvectors (or density matrices).
In addition, the use of orthonormality constraints as detailed in appendix allows one to compute the
gradient of JE at very low cost. In turn, criterion JE is more than twice faster to minimize than criterion
JL2 in our implementation.

Finally, for the sake of completeness, we plot in Figure 6.5 the different basis functions built with each
1https://github.com/gkemlin/1D_basis_optimization

https://github.com/gkemlin/1D_basis_optimization
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criterion for different values of Nb, confirming again the previous observations that the optimal basis
functions are quite close to the standard Hermite basis functions.

The main conclusion of these observations is that, for Nb large enough, there is no real difference
between the proposed criteria. Still, if the bases we built do not seem to be very different from the
standard Hermite basis (Figure 6.5), building optimal bases allows to increase accuracy on the quantities
of interest we focused on by one order of magnitude in average.
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Value of JL2 for the different basis sets Value of JH1 for the different basis sets

Basis Nb = 1 Nb = 2 Nb = 3 Nb = 4

HBS -7.40829 -7.70051 -7.74312 -7.77138
L2-OBS -7.43954 -7.76479 -7.77725 -7.77773
H1-OBS -7.43928 -7.76466 -7.77724 -7.77772
E-OBS -7.39410 -7.76425 -7.77720 -7.77772

Basis Nb = 1 Nb = 2 Nb = 3 Nb = 4

HBS -10.5613 -11.0566 -11.1451 -11.2402
L2-OBS -10.6256 -11.2338 -11.2630 -11.2650
H1-OBS -10.6265 -11.2342 -11.2630 -11.2651
E-OBS -10.5334 -11.2313 -11.2626 -11.2650

Value of JE for the different basis sets

Basis Nb = 1 Nb = 2 Nb = 3 Nb = 4

HBS 3.77956×10−2 3.98301×10−3 1.86537 ×10−3 1.35309×10−4

L2-OBS 6.52016×10−2 2.18282×10−4 1.01365 ×10−6 3.22260×10−8

H1-OBS 6.83537×10−2 2.40548×10−4 1.27251 ×10−6 3.91885×10−8

E-OBS 3.69610×10−2 1.92087×10−4 6.93394 ×10−7 2.54014×10−8

L–BFGS iterations

Basis Nb = 1 Nb = 2 Nb = 3 Nb = 4

L2-OBS 4 13 48 219
H1-OBS 7 17 235 not converged after 500 it
E-OBS 6 19 52 134

Table 6.1 – (Top & Middle) Values of the different criteria for the HBS and optimal bases, for increasing values of
Nb. (Bottom) Number of iterations of L–BFGS required for each criterion to achieve convergence up to requested
tolerance (10−7 on the ℓ2-norm of the gradient).
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Figure 6.3 – Energies for the optimal bases obtained with the different criteria. (Top) Dissociation curve.
(Bottom) Errors on the energy on the range of configuration I = [1.5, 5].
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Figure 6.4 – (Top) Densities for the optimal bases obtained with the different criteria. (Middle) Errors on the
density for different norms with Nb = 1. (Bottom) Error on the density for different norms with Nb = 3.
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Figure 6.5 – Optimal basis functions for different criteria, each of them being optimized for different values of
Nb.
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6.4.2 Influence of numerical parameters

Random starting points

In Section 6.4.1, we used the first Nb Hermite functions as a starting point for the optimization
procedures. We obtain the same solutions if we start from a random matrix R on the Stiefel manifold,
in the sense that the optimal values reached for each criterion are the same, as well as the error plots.
However, the L–BFGS algorithm requires more iterations to converge. The basis functions obtained from
the optimization algorithms are different from those observed in Figure 6.5, but still span the same space
as the variational solutions are equal.

Extrapolating the parameter space I

In Section 6.4.1, we chose a probability measure P supported in the interval [1.5, 5] in order to
avoid conditioning issues. Indeed, taking smaller values of a results in the L–BFGS algorithm having
convergence problems when Nb increases. This phenomenon was observed already for Nb = 3 or Nb = 4
when including a = 1 in the support of P. In practice, this problem can be solved by using preconditioning
or getting rid of overcompleteness by pre-processing the basis χa (e.g. selecting a smaller basis by filtering
out the very small singular values of the original overlap matrix), but for brevity we will not elaborate
further in this direction.

However, once we have computed optimal bases for a reasonable interval I, it is possible to use these
bases to solve the variational problem (6.3.9) and extrapolate the energy and the density to smaller values
of a that are not in the set I. The results are plotted in Figure 6.6. We notice that the quantities of
interest are better approximated on I = [1.5, 5], but for smaller a’s, there is no more gain in accuracy
with respect to the standard HBS.
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Figure 6.6 – Energy and densities error with extrapolation up to a = 0.5, with basis functions optimized on
I = [1.5, 5]

Choice of the probability P

The major drawback of our AO basis optimization lies in the necessity to compute very accurate
reference solutions for all configurations in the support of P. This is not an issue for our 1D toy model
but it can be very time consuming for real systems if the support of P is too large. It is therefore crucial
to reduce as much as possible the support of P.

In this section, we study the influence of the probability measure P on the quality of the optimized
bases. For simplicity, we restrict ourselves to uniform samplings of the interval I = [1.5, 5]. Numerical
tests show that increasing the sample size above the reference sampling with Nc = 10 points used
in Section 6.4.1 (see Eq. (6.4.1)) brings no significant accuracy improvement. Therefore we chose to
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investigate in the following the performance of the optimal AO basis sets obtained with very sparse
sampling. Figure 6.7 pictures the error of approximation of the dissociation curve and densities for
three samplings: first, the two extreme points of the interval I = [1.5, 5]; second, two points around
the equilibrium distance a0 ≃ 1.925 ; third, a single point near the equilibrium distance. All curves are
plotted for a fixed number of basis functions Nb = 3.

It appears that the latter sampling already provides satisfactory accuracy. The criteria JL2 and JH1

are equal to −5 × 10−6 for optimized basis to be compared with −1.8 × 10−3 for standard HBS. Hence
they provide a gain of accuracy in energy of three orders of magnitude over the whole dissociation curve.
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Ẽ

a

∣ ∣ ∣

L2-OBS Error on the energy

HBS
a ∈ {1.5, 5}
a ∈ {1.5, 2.5}
a ∈ {2.5}

2 3 4 5

10−5

10−4

10−3

10−2

a

∣ ∣ ∣E
a
−
Ẽ
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Figure 6.7 – Error plots for probability measures P corresponding to very sparse samplings of the interval
I = [1.5, 5]: i) the two endpoints of I ii) two points near the equilibrium distance and iii) one point near the
equilibrium distance. (Top line) Error on energy. (Bottom line) Error on density in L1 norm. (Left) OBS for
JH1 . (Middle) OBS for JL2 . (Right) OBS for JE . The “a” in legends are the sampled configurations a.

Number of Hilbert basis functions

We now take the same setting as in Section 6.4.1, except that we set N = 5 instead of N = 10.
This provides similar results as those collected in Table 6.1, see Table 6.2. However, the values of the
criteria JA and JE are higher than for N = 10, in particular for Nb = 4, where criterion JA cannot be
optimized further than −10−5, which makes sense as the space over which the optimization algorithms
are performed is smaller. Calculations with N = 15 were also performed: for Nb = 1, 2, 3, the criteria are
slightly improved but for Nb = 4, convergence issues were noticed, due to ill conditioning of the overlap
matrices for a = 1.5 as the number N of functions used to describe the optimal bases is larger.
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Value of JL2 for the different basis sets Value of JH1 for the different basis sets

Basis Nb = 1 Nb = 2 Nb = 3 Nb = 4

HBS -7.40829 -7.70051 -7.74312 -7.77138
L2-OBS -7.43933 -7.76304 -7.77554 -7.77618
H1-OBS -7.43923 -7.76258 -7.77525 -7.77612
E-OBS -7.39401 -7.76259 -7.77545 -7.77615

Basis Nb = 1 Nb = 2 Nb = 3 Nb = 4

HBS -10.5613 -11.0566 -11.1451 -11.2402
L2-OBS -10.6237 -11.2225 -11.2541 -11.2577
H1-OBS -10.6240 -11.2244 -11.2555 -11.2581
E-OBS -10.5328 -11.2234 -11.2547 -11.2580

Value of JE for the different basis sets

Basis Nb = 1 Nb = 2 Nb = 3 Nb = 4

HBS 3.77956×10−2 3.98301×10−3 1.86537 ×10−3 1.35309×10−4

L2-OBS 6.43832×10−2 2.46466×10−4 1.58667 ×10−5 1.01128×10−5

H1-OBS 6.13025×10−2 2.45930×10−4 1.62235 ×10−5 1.00611×10−5

E-OBS 3.69681×10−2 1.30365×10−4 1.41935 ×10−5 9.74560×10−6

Table 6.2 – Value of the different criteria for the different local (optimized and Hermite) bases, with N = 5 and
increasing values of Nb.



6.4. Numerical results 145

Appendix

In this appendix, we will use extensively the two symmetries of the trace: for any matrices M and N
such that MN and NM are defined,

Tr(MN) = Tr(NM) and Tr(MT ) = Tr(M).

Computation of the gradient of JA

Let R,H ∈ RN ×Nb and define IH =
(
H 0
0 H

)
. One has

JA(R+H)− JA(R) = −
ˆ

Ω
Tr
(
Moffline
A (a)

(
2IR[SA(BaIR)]−1ITH + IR

[
d[SA]−1(BaIR) · (BaIH)

]
ITR
))

dP(a)

+O(∥H∥2)
(6.4.2)

Considering that

(M+H)−1−M−1 = −M−1HM−1+O(∥H∥2) and SA(BIR+H)−SA(BaIR) = ITHS
A(B)IR+ITRSA(B)IH+O(∥H∥2),

it follows from the chain rule that

d[SA]−1(BaIR) · (BaIH) = −[SA(BaIR)]−1(ITHSA(Ba)IR + ITRS
A(Ba)IH

)
[SA(BaIR)]−1.

From this computation, we obtain that the integrand in expression (6.4.2) writes for all a

2Tr
(
Moffline
A (a)

[
IR[SA(BaIR)]−1ITH − IR[SA(BaIR)]−1ITHS

A(Ba)IR[SA(BaIR)]−1ITR
])

= 2Tr
(
Moffline
A (a)IR[SA(BaIR)]−1ITH − ITHSA(Ba)IR[SA(BaIR)]−1ITRM

offline
A (a)IR[SA(BaIR)]−1).

(6.4.3)

The idea is now to write the expression (6.4.3) as the inner product of H with a given matrix of
RN ×Nb , which we will identify as the integrand of the gradient of JA. Changing from IH to H imposes to
decompose each matrix by block and to write the trace in (6.4.3) as the sum of traces over the diagonal
blocks. To this end we introduce the superscripts "++", "+−", " −+" and "−−" associated with one of
the four identically shaped blocks of a generic matrix

M =
(
M++ M+−

M−+ M−−

)
. (6.4.4)

Expression (6.4.3) therefore immediately reads

2Tr
(
ITH
[
Moffline
A (a)IR[SA(BaIR)]−1 − SA(Ba)IR[SA(BaIR)]−1ITRM

offline
A (a)IR[SA(BaIR)]−1]︸ ︷︷ ︸

MA(a,R)

)

= 2Tr
(
HT
(
MA(a,R)++ +MA(a,R)−−)). (6.4.5)

One can verify that MA(a,R)++ +MA(a,R)−− is in RN ×Nb and we conclude by identification that

∇JA(R) = −2
ˆ

Ω

(
MA(a,R)++ +MA(a,R)−−)dP(a). (6.4.6)

Computation of the gradient of JE

Let R,H ∈ RN ×Nb and define IH =
(
H 0
0 H

)
. We immediately have that

∇JE(R) = −2
ˆ

Ω
∇Ea(R)(Ea − Ea(R))dP(a), (6.4.7)
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where
Ea(R) = Tr

(
Ca(R)(Ca(R))T ×Ha(R)

)
, (6.4.8)

with Ca(R) defined in Section 6.3.2 and Ha(R) := ITRM
offline
E (a)IR. Therefore, if we define Ea(R,C) =

Tr(CCTHa(R)), then Ea(R) = Ea(R,Ca(R)) and we have, by the chain rule,

∇Ea(R) ·H = ∇REa(R,Ca(R)) ·H +∇CEa(R,Ca(R)) · (dCa(R) ·H).

We now detail the computations of the two gradients of Ea, namely ∇REa and ∇CEa.

Computation of the first gradient ∇REa Using notation (6.4.4), we introduce

Ma := Moffline
E (a) and Σ(H) := ITHMaIR =

(
HTM++

a R HTM+−
a R

HT M−+
a R HTM−−

a R

)
∈ R(2Nb)×(2Nb),

so that, with P = CCT ,

Tr(P [dHa(R) ·H]) = Tr
(
P [Σ(H) + Σ(H)T ]

)
= 2Tr(PΣ(H))

= 2Tr
(
HT
(
M++
a RP++ +M−+

a RP+− +M+−
a RP−+ +M−−

a RP−−)).
In the end,

∇REa(R,C) = 2
(
M++
a R(CCT )++ +M+−

a R(CCT )−+ +M−+
a R(CCT )+− +M−−

a R(CCT )−−) ∈ RN ×Nb .

Computation of the second gradient ∇CEa The Euler–Lagrange equation of the minimization prob-
lem (6.3.21) yields that there exist a symmetric matrix Λa(R) ∈ R2×2 such that

∇CEa(R,Ca(R)) = 2Ha(R) = 2S(BaIR)Ca(R)Λa(R),

where Λa(R) is actually a diagonal matrix whose diagonal is composed of the two lowest eigenvalues of
Ha(R). Moreover, if we differentiate the constraint Ca(R)TS(BaIR)Ca(R) = Id2, we get

Ca(R)TS(BaIR)(dCa(R) ·H) + (dCa(R) ·H)TS(BaIR)Ca(R) = −Ca(R)T (dS(BaIR) ·H)Ca(R),

so that

∇CEa(R,Ca(R)) · (dCa(R) ·H) = 2Tr
(
(S(BaIR)Ca(R)Λa(R))T (dCa(R) ·H)

)
= −Tr

(
(dS(BaIR) ·H)Ca(R)Λa(R)Ca(R)T

)
.

Now, let us recall that
dS(BaIR) ·H = ITHS(Ba)IR + ITRS(Ba)IH .

Thus, by denoting Qa(R) = Ca(R)Λa(R)Ca(R)T , we get that

∇CEa(R,Ca(R)) · (dCa(R) ·H) =− 2Tr
(
HT
(
S(Ba)++RQa(R)++ + S(Ba)+−RQa(R)−+

+ S(Ba)−+RQa(R)+− + S(Ba)−−RQa(R)−−))
which ends the computations of the second gradient.

Final gradient Compiling the computations of the two previous paragraphs, we obtain

∇REa(R) = 2
(
M++
a RPa(R)++ +M+−

a RPa(R)−+ +M−+
a RPa(R)+− +M−−

a RPa(R)−−)
− 2
(
S++
a RQa(R)++ + S+−

a RQa(R)−+ + S−+
a RQa(R)+− + S−−

a RQa(R)−−) (6.4.9)

where Pa(R) = Ca(R)Ca(R)T , Ma = Moffline
A (a), Sa = S(Ba) and Qa(R) = Ca(R)Λa(R)Ca(R)T , and

the gradient of JE is computed with (6.4.7).
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