
HAL Id: tel-03942652
https://pastel.hal.science/tel-03942652v1

Submitted on 17 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Effects of a local topographic variation on confined,
non-wetting droplets in a microfluidic channel

Margaux Kerdraon

To cite this version:
Margaux Kerdraon. Effects of a local topographic variation on confined, non-wetting droplets in a
microfluidic channel. Fluid mechanics [physics.class-ph]. Université Paris sciences et lettres, 2018.
English. �NNT : 2018PSLET046�. �tel-03942652�

https://pastel.hal.science/tel-03942652v1
https://hal.archives-ouvertes.fr


 

    

                    

 
 
 
 
 
 
 

THÈSE DE DOCTORAT 
 

de l’Université de recherche Paris Sciences et Lettres   
PSL Research University 

 

 

Préparée à l’École Supérieure de Physique et de Chimie 

Industrielles de la Ville de Paris  

 

 

Industrielles de la ville de Paris 
 

Effects of a local topographic variation on 
confined, non-wetting droplets in a microfluidic channel. 
 

 

 

 

Soutenue par Margaux KERDRAON 
le 09 octobre 2018 
h 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COMPOSITION DU JURY : 

M. Lequeux François 
ESPCI (Paris), Président du jury 

M. Dalnoki-Veress Kari 
McMaster University, Rapporteur  

M. Bodiguel Hugues 
Liphy (Univ. Grenoble), Rapporteur  

Mme Rio Emmanuelle 
Paris Sud Orsay, Examinatrice 

M. Bartolo Denis 
ENS Lyon, Examinateur 
 
Mme Jullien Marie-Caroline 
ESPCI, Directrice de thèse 

Mme Descroix Stéphanie 
Institut Curie, Invitée 

 

 
 
 
 

 

Dirigée par Marie-Caroline JULLIEN 
Et Stéphanie DESCROIX 

 
h 
 

 
Ecole doctorale n°391 

 
SCIENCES MÉCANIQUES, ACOUSTIQUE, ELECTRONIQUE ROBOTIQUE DE 
PARIS 

 

Spécialité  Mécanique  



Contributions

On the droplet deformation study

Albane Théry contributed to the droplet deformation study during her internship. She success-

fully implemented the calculation of the droplet surface minimization and the time reconstruction

of the droplet deformation. Lastly, she carried out all the Surface evolver simulations that are

referred to in this chapter.

On the droplet relaxation study

Joshua D. McGraw contributed to the self-similar analysis of the interface pro�le of the droplet

during the relaxation process and to the model.

Benjamin Dollet contributed to the model of the droplet relaxation within the Brinkman ap-

proximation and helped us to better understand the hydrodynamics in this study.

Aniello Linguori worked on the implementation of a laser to replace the resistances in the

thermomechanical actuation. He showed that the droplet deformation could be induced by a laser

similarly to the heating resistances. These results are not displayed in this report but will likely

be the object of a publication.

Emilien Dilly worked on the model of the droplet deformation induced by both the Marangoni

and the mechanical e�ects. His results helped us to better understand the contribution of both

e�ects on the droplet.

Thomas Robert worked on the merging of droplets with the thermomechanical actuation that

we never managed to prove experimentally. These results are not shown here.

2



Remerciements

Je remercie ...

• Kari Dalnoki-Veress, Hugues Bodiguel, François Lequeux, Emmanuelle Rio et Denis Bartolo

pour la relecture de mon manuscrit et pour leurs commentaires pertinents et constructifs.

L'attention qu'ils ont portée à mes travaux est une grande récompense,

• mes directrices de thèse, Marie-Caroline Jullien et Stéphanie Descroix, pour leur soutien, leur

bienveillance et leur regard critique,

• Joshua McGraw pour sa grande pédagogie. Sa curiosité et sa rigueur scienti�que m'ont

guidée sur une bonne partie de ma thèse,

• Benjamin Dollet pour les échanges que nous avons eu, toujours très enrichissants,

• Albane, Emilien, Thomas et Aniello pour leurs multiples contributions. C'était très plaisant

de travailler avec eux,

• Patrick Tabeling pour son accueil, son ouverture d'esprit et pour toutes les opportunités qu'il

m'a o�ertes,

• Elizabeth Bouchaud pour sa générosité et sa culture. Pouvoir jouer dans son théâtre a été

pour nous une immense chance,

• Guillaume, Oliver et Nawel pour leur patience et leur soutien technique.

En�n, j'ai immensément apprécié évoluer aux côtés de Marc, Alex, Lorène, Pierre, Etienne, Hu-

bert, Benjamin, Elian, Charles, Manon, Joshua, Gustavo, Ilham, Maria, Cécile et Marjan. Leur

créativité, leur humour et leur bonne humeur contagieuse m'ont marquée pour la vie.

Avec une mention très spéciale pour Marine, évidemment...

3



Contents

I Introduction 6

1 Motivations 6

2 General outline 9

3 Overview of the characteristic variables of the studied system 10

4 Introduction to the physics of the studied biphasic system 12

4.1 Surface tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1.1 De�nition of the interfacial tension . . . . . . . . . . . . . . . . . . . . . . . 12

4.1.2 Near a solid boundary: wetting and non-wetting properties . . . . . . . . . 13

4.1.3 Surface active agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 The Laplace pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 The e�ects of con�nement on the geometry of biphasic systems 15

6 Hydrodynamics of biphasic systems 19

6.1 The Navier-Stokes equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.2 Interfacial rheology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.3 Additional pressure gradient in the dynamical meniscus . . . . . . . . . . . . . . . 25

II Materials and Methods - The thermomechanical actuation 30

7 Microfabrication of the thermomechanical device 31

7.1 The PDMS micro�uidic chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.2 Substrate with micro-resistances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.3 Assembly of the device and surface treatment . . . . . . . . . . . . . . . . . . . . . 33

8 Actuation of the thermomechanical device 33

9 Observation set-up 34

10 Generation of mineral oil droplets in water 34

11 Temperature increase in the system 35

12 E�ect of the temperature on the channel topography 39

12.1 In-situ characterization of the channel thermal dilation . . . . . . . . . . . . . . . . 39

12.2 Mechanical pro�lometer measurements . . . . . . . . . . . . . . . . . . . . . . . . . 42

4



13 E�ect of temperature on surface tension: the Marangoni e�ect 44

III Droplet deformation 46

14 State-of-the-art on the droplet break-up 48

15 Experimental observations 50

16 The break-up criteria: experimental check 56

17 The physical mechanisms at play 57

17.0.1 Why might the droplet deform when a gradient of surface tension is estab-

lished at its interface ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

17.0.2 Why might the droplet deform when the channel locally contracts ? . . . . 58

17.0.3 Comparison with a purely mechanical device . . . . . . . . . . . . . . . . . 60

18 Predicting the droplet deformation shape 63

18.1 Surface minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

18.2 Minimization of the droplet surface . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

18.3 Validation of the model: Surface evolver simulations . . . . . . . . . . . . . . . . . 70

19 Predicting the droplet dynamics 72

19.1 Localization of the viscous dissipation in the gutters . . . . . . . . . . . . . . . . . 72

19.2 Power balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

20 Conslusions & Perspectives 80

IV Droplet Relaxation 83

21 Experimental observations 86

21.1 De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

21.2 First temporal regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

21.3 Second temporal regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

22 Model 93

22.1 First attempt: a thin-liquid �lm relaxation . . . . . . . . . . . . . . . . . . . . . . 94

22.2 Meniscus dissipation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

23 Conclusion 108

V Conclusion 109

5



Part I

Introduction

1 Motivations

This PhD work investigates the e�ects of con�nement on the hydrodynamics of micrometric bi-

phasic systems. More precisely, this manuscript studies the response of a micrometric

oil droplet in water, con�ned in a rectangular channel, to a variation of the channel

topography. We believe that this study indirectly �nds applications in petroleum

engineering and in droplet-based micro�uidics that is thriving in biotechnologies.

Petroleum engineering

Petroleum engineering involves three steps of oil extraction [1]. The primary oil

recovery step relies on the oil extraction out of the well bore as the result of the

natural pressure in the reservoir. During this process, only 10 to 20 % of oil is

extracted from the deposit. Then, petroleum engineers proceed to a second oil

extraction step that involves the injection of water or steam to drive the oil out of

the porous rock. After this second process, the average oil recovery rate is comprised

in between 20 to 40 % [2]. Lastly, a third recovery step can be launched that involves

the injection of chemical compounds like surfactants and polymers to match the

viscosities of the water and oil - to decrease capillary instabilities and to improve

the oil mobility - [3, 4]. This third step is very expensive and can only be developed

if the market oil prize is su�ciently high to make the extraction of the last (∼ 60 %)

percent of oil that is trapped pro�table. Given the signi�cant loss of hydrocarbons

that remain trapped in the deposit, the petroleum industry is eager to improve

their understanding of the physical mechanisms that promote oil mobility in the

porous media during these recovery phases. The present study may be of interest

to understand speci�c mechanisms of oil mobility in the second step.

During this second phase, it is known that the interface between oil and water can

destabilize due to the growing of capillary instabilities like viscous �ngering [5, 6], to

fragmentation [7, 8] or to gradients of con�nement [9, 10, 11]. This destabilization

results in the formation of a water/oil emulsions that has to �ow through the con�ned

porous media.
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Droplet-based micro�uidics

Emulsions �owing through pores of the same scale are also present in droplet-based

micro�uidics applications [12, 13]. The micro�uidic �eld has thrived over the last

decades with the promise of miniaturizing chemical and biological assays to reduce

their costs and enhance their throughput [14, 15, 16]. Droplet-based micro�uidics

platforms are composed of a network of micrometric channels in which water-in-oil

droplets are generated [11, 17, 18] and used as biochemical reactors, alternatively

to microtitre plates [19]. These droplets constitute cargoes for reagants and can

be driven to any location of the platform [20, 21, 22]. To trigger the biochemical

assay, the droplets that contain the di�erent components of the reaction, are forced

to merge [23, 24]. In order to synchronize at best the biochemical reactions that are

carried out in micro�uidic devices, the droplets speed needs to be �nely monitored

[25], which requires to investigate the droplet mobility when the latter is con�ned in

a pore/channel. Interestingly, micro�uidic systems made of poly(dimethyl)siloxane

or glass are often used as models to understand the �ow of bi-phasic systems in

porous media as these models are transparent. These ideal systems allow to link

the emulsion �ow pattern to external parameters (pressure drop, dispersed phase

velocity, extracted liquid fraction...).

As a whole, understanding the mobility of two phase systems in micrometer size

channels �nds application in a wide range of domains from micro�uidics applications

up to oil recovery.

To understand the mobility of these emulsions through the pores of the media, many

fundamental studies have developed ideal systems based on a complex network of

channels [26] or on an isolated droplet that moves in a simply modelled-geometry:

in a capillary tube [27] or in a Hele-Shaw cell [28, 29, 30]. To predict the mobility of

the droplet, one has to consider the viscous dissipation that counters the pressure-

driven motion. These studies prove that when the droplet is wetting, this viscous

dissipation is localized near contact lines [31]. When the droplet is non-wetting, this

viscous dissipation is localized near the dynamical meniscus that is de�ned as the

transition region in the between the lubricating �at �lm and the spherical meniscus

of the droplet [32]. Under some conditions, dissipation may also occur in the �at

�lm [33]. The description of this viscous dissipation is complex and results from

the balance between viscous stresses and surface tension, the viscous stresses being

intrinsically dependent on the viscosity ratio in between both phases, the degree of

con�nement [10] and the boundary conditions at the interface [29].

All the ideal systems that are mentioned above (Hele-Shaw cells, capillary tube) do

not capture the genuine geometry of the pores that droplets can encounter in a rocky

soil or in a micro�uidic device. In this manuscript, we want to take a step further
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in the understanding of droplet mobility in tortuous porous media by investigating

the dynamical response of an isolated con�ned droplet to a sudden change in the

topography of an ideal micro�uidic channel. We are interested in predicting the

variation of the droplet shape and the dynamics of the droplet deformation. Our

work is limited to the case of a droplet that is static in the channel. By "static",

we mean that the droplet does not travel in the pore but can be deformed by the

constraints exerted by the channel walls.

In the studied system, the channel topography is modi�ed on demand with a re-

versible thermomechanical actuation [34]. The latter relies on the heating of a

micropatterned resistance that induces a local dilation of the channel walls. A gra-

dient of con�nement is then imposed on the droplet such that the latter deforms on

the length scale of the gradient and a reservoir of water is trapped in the vicinity

of the resistance, see �gure 1 for an illustration. This process is called the droplet

deformation. When the resistance is switched o�, the channel dilation disappears

and the droplet relaxes to its initial plug-like shape. The reservoir of water drains

towards the droplet extremities. This process is called the droplet relaxation.
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2 General outline

This manuscript investigates the e�ects of con�nement on a biphasic system through

the relaxation of a droplet that is initially set out-of-equilibrium by a change in the

channel topography. It is divided into four chapters:

1. The �rst chapter introduces general concepts on the hydrodynamics of biphasic

systems and on the e�ect of con�nement on these systems. In the next chap-

ters, these concepts will be used to understand and to model our experimental

observations.

2. The second chapter describes the experimental set-up and the thermo-mechanical

actuation device. The thermal and the mechanical e�ects that are induced on

the droplet as a result of the heating of a micropatterned resistance are exper-

imentally characterized.

3. The third chapter demonstrates the e�ects of the local modi�cation of the

channel geometry induced by the thermo-mechanical device on the droplet. The

experimental observations show that a localized tilt of only few degrees in the

cavity, giving rise to a deformation of only 15 % of the channel height, can have

striking e�ects on the deformation of the droplet and can even lead to break

up. A model based on the surface minimization of the droplet, that takes into

account the topography of the channel, manages to capture the deformed shape

of the droplet and to predict its break-up. In addition, a power balance between

the viscous dissipation and the capillary-driven motion recovers the dynamics

of the droplet deformation. We show that our model can be reversibly used to

extrapolate the topography of the channel.

4. The last chapter investigates the relaxation of a droplet that has been initially

deformed by a local modi�cation of the channel geometry. The droplet re-

laxation is driven by surface tension and is mediated by viscous dissipation.

Interestingly, the dynamics of the droplet relaxation is very di�erent from the

one of the droplet deformation. A model based on scaling arguments that

takes into account the sublinear viscous dissipation in the droplet menisci al-

lows to capture the dynamical features of the droplet relaxation process. This

last study evidences the critical contribution of the droplet menisci in such a

con�ned geometry.
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3 Overview of the characteristic variables of the studied sys-

tem

In the majority of the experiments described in this work, a mineral oil droplet in

water is con�ned in the rectangular channel of a micro�uidic system. By "con�ned",

we mean that the radius of the uncon�ned droplet at equilibrium, i.e. when the

droplet takes a spherical shape at constant volume, would be much larger than any

of the dimensions of the channel cross section. The channel walls are exposed to

oxygen plasma, rendering the channel surface hydrophilic, such that the droplet is

non-wetting [35]. It means that the droplet interface is always separated from the

walls by a lubricating water �lm. A meniscus runs along the contour of the droplet,

and gutters are formed at the four corners of the channel.

Figure 1 illustrates the droplet geometry and the typical experimental observations

that we consider in this manuscript. The interface has a pocket-type pro�le com-

posed of a reservoir followed by what could be considered as a thin �lm in the

observation plane, and �nally by the menisci at the droplet extremities.

The snapshots shown in �gure 1b, illustrates an example of the droplet relaxation.

The orders of magnitude of the dimensions that describe the system are

1. for the typical length, 10−5 to 10−4 m

2. for the typical velocity 10−5 m.s−1

3. for the interfacial tension, 10−3 N.m−1

4. for the viscosity, 10−3 Pa.s−1

5. the viscosity ratio between the inner and the outer phase is 25.

Figure 1 de�nes the equatorial plane of the droplet, at z = 0, as the "in-plane"

and shows a cross-sectional scheme of the droplet in the plane (y, z). Geometrical

characteristics of the system are illustrated on the �gure; h∞ is the lubricating �lms

thickness, e/2 is the radius of the droplet spherical menisci and δ is the typical size

of the gutters. Lastly, the in-plane distance in between the droplet interface and the

side channel wall is described by the function h(x, t) in the reservoir.
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Figure 1: a) 3D shape of the droplet set out of equilibrium with typical orders of magnitude of

the droplet and channel geometries. b) Snapshot of a droplet relaxation that is typically observed

in the system. The observations are made in the equatorial plane (z = 0) for a frame of reference

located at the center of the channel cross-section. c) Description of the geometry of the droplet in

the rectangular channel in a cross-section plane (y, z) and in an equatorial plane z = 0 de�ned as

the "in-plane". The radius of the droplet meniscus is e/2. The lubricating �lm thickness between

the droplet and the wall is h∞. The interface pro�le of the droplet in the "in-plane" is described

by h(x, t). δ is the typical size of the gutters at the fours corners of the channel.
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4 Introduction to the physics of the studied biphasic system

The studied system, composed of an oil droplet in water, constitutes a biphasic

system. In this section, we introduce some general features of the hydrodynamics

of biphasic systems that build the background of the further interpretation of our

experimental results.

4.1 Surface tension

4.1.1 De�nition of the interfacial tension

A biphasic system is composed of two �uids 1 and 2 that are not miscible. In each of

these �uids, an internal attractive force maintains the cohesion of molecules. At the

interface between 1 and 2, the molecules of �uid 1 are partly surrounded by molecules

of �uid 2 which means that they have lost some of their neighboring molecules (of

�uid 1). As a result, the forces exerted by molecules 1 at the interface are no longer

completely compensated by their neighbors. This absence of compensation is at the

origin of the surface tension that makes the creation of an interface energetically

unfavorable to the system. Indeed, a biphasic system always tends to minimize its

interfacial area given the external constraints that apply on the system (ex: gravity,

pressure, geometrical...). Without any of these constraints, the minimum interface

that can be adopted by a dispersed phase is spheric [36, 37].

The work that is required to add an element of interface dA to a biphasic system,

∂W = γdA, de�nes the value of the surface tension of the system γ. This value

depends on the nature of the forces at play in the �uids (Van der Waals attractions,

hydrogen bonds, etc.) [38]

Example: When oil is poured in a glass of water, mechanical work is added to

the biphasic system and a emulsion composed of oil drops in water is formed (�g.

2a). However, this emulsion is not stable and leads to a separation of phases by a

succession of droplet coalescence (�g. 2b). This �nal con�guration minimizes the

interfacial area between oil and water given the gravity that applies on the system

and the value of the surface tension between both oil and water with the glass. Oil

lays on top of water since it is the less dense phase.
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a) b)

Figure 2: a) Emulsion of oil in water created by the mechanical energy added by the pouring

process. b) Oil laying on top of water in a glass. Copyright @ https://chemistscorner.com.

4.1.2 Near a solid boundary: wetting and non-wetting properties

To determine if a drop of phase 1 surrounded by a �uid 2 wets or not on a solid

surface, we compare the interfacial energy of the wall surrounded by �uid 1 to the

interfacial energy of the wall surrounded by �uid 2. We de�ne γs1 as the surface

tension between �uid 1 and the wall, γs2 between the �uid 2 and the wall and γ12

as the surface tension between 1 and 2.

The spreading parameter de�ned as S = γs1 − γs2 − γ12 compares these quantities.

If S > 0, the liquid 2 wets the wall (con�guration b, �gure 4). On the other hand,

if the S is negative, the presence of a �lm of phase 2 near the wall is more favorable

and the droplet is non-wetting (con�guration a, �gure 4) [36].

Figure 3: a) Fluid 1 wets the wall. b) Fluid 2 wets the wall.

4.1.3 Surface active agents

In order to stabilize an emulsion, surface active agents can be added to the external

phase to stabilize droplets and prevent them from merging. This agent is called

surfactant and is amphiphilic, see �gure 4. The polar head of surfactants is more

stable in the aqueous phases while its aliphatic tail (often made of CH2 radicals) has

more a�nity with oil phases. Surfactants adsorb at the interface between the two

immiscible liquids. When they are adsorbed at the interface, the creation of new

interfaces costs less energy [36]. Thus, surface tension decreases with the concen-

tration of surfactants until it reaches the micellar concentration at which surfactant
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molecules start to form gather in micelles [39, 40]. Beyond this point, surface tension

remains constant as the surfactant concentration increases, see �gure 4.

Figure 4: a) Surfactant con�guration b) Typical evolution of the surface tension with the concen-

tration of surfactants.

At rest, the stability and the thickness of the �lm separating two droplets interfaces

is set by the disjoining pressure stemming from a combination of several repulsive

or attractive potentials [38, 41]. In the DLVO theory the disjoining pressure is de-

composed into structural (Πs), van der Waals (ΠV dW ), and electrostatic interactions

(Πel). When surfactants populate the droplets interfaces, the disjoining pressure in-

creases in the �lms that separate them, playing mostly on the electrostatic repulsion

[42]. The resulting exponential decay of the disjoining pressure with the �lm thick-

ness leads to the existence of a stable �lm between the two interfaces. In section

6.2, we show that surfactants can also signi�cantly a�ect the mobility of liquids near

interfaces.
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In the studied system

The surface active agent that is used is sodium dodecyl sulfate (SDS). SDS

is an anionic molecule that is soluble in the external water phase. SDS is

added to the system to prevent oil droplets from merging. In the majority of

the experiments that are presented in this thesis, the concentration of SDS

is set to a constant equal to [SDS] = 2 cmc= 1.610−2 mol.L−1 at 25◦C. The

molecular structure of SDS is presented in �gure 5.

Figure 5: Sodium Dodecylsulfate structure.[43]

The surface tension in between mineral oil and water mixed with SDS at 2

cmc has been characterized and is equal to γ = 11± 1 mN.m1[44].

4.2 The Laplace pressure

Laplace has shown that the presence of an interface introduces a pressure drop that

is proportional to the surface tension of the biphasic system and to the curvature of

the interface. This pressure drop writes

∆P = γ

(
1

R
+

1

R′

)
= γC (1)

where R and R′ are de�ned as the radii of curvature of the interface in the two

orthogonal planes normal to the interface. C is de�ned as the mean curvature of the

interface [37].

In the absence of external constraints, an mean curvature or a surface tension that

is not constant at a �uid/�uid interface can give rise to a surface stress along the

interface. This surface stress induces "capillary-driven" �ows that are critical in this

study and that are described in the section 6.1.

5 The e�ects of con�nement on the geometry of biphasic sys-

tems

When a non-wetting drop of radius R is squeezed in between two plates separated

by a distance e, the drop adopts at equilibrium, a pancake-like shape. Park and
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Homsy have shown that the mean curvature along the droplet interface is constant

and veri�es [6],[45]:

C =
2

e
+

π

4R
(2)

where R is the equatorial in-plane curvature of the squeezed droplet. The calculation

of C that recovers this expression is complex and is not explained in this manuscript.
If we consider that the radius of the droplet R is much larger that the cavity height

e, the mean curvature simpli�es as C ∼ 2
e
.

When the droplet is static in the cavity, the height of the �at �lm that is separating

the non-wetting droplet from the walls can be calculated by balancing the capillary

pressure in the droplet Pconf ∼ 2γ
e
with the disjoining pressure in the �lm that

accounts for the molecular interactions (electrostatic, Van der Waals and steric)

between the liquid/liquid interface and the solid boundary.

Figure 6 illustrates the evolution of the disjoining pressure as a function of the

distance h between the two interfaces. The equation that balances the capillary

pressure in the droplet with the disjoining pressure in the �lm Πdisj ∼ Pconf gives

a stable solution for the height of the lubrication �lm h∞. This height is typically

tens of nanometers as observed by Huerre et al. with interferometric measurements

[28].
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Figure 6: Evolution of the disjoining pressure P = Πdisj with the thickness of the lubricating �lm:

a) Experimental calibration of P as a function of h with interferometric measurements (see inset

box) b) Typical evolution of the disjoining pressure that combines the electrostatic pressure Pel,

the steric pressure PS and the Van der Waals pressure PV dW . The solution for the �lm thickness

results from the electrostatic contribution to the disjoining pressure [28]. The �gure is adapted

from [41]
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In the studied system

In the rectangular cross-section of the channel, we distinguish the "free"

surfaces from the "con�ned" surfaces. The �rst ones are not con�ned by

a solid boundaries while the second ones are. The "con�ned" surfaces are

typically at the level the lubricating �lms at the top and bottom interfaces

of the droplet as well as the contact �lms at the side walls in the equatorial

plane (the �lm is probably reduced to a line in this plane). The thickness of

these lubricating �lms has been measured for a mineral oil droplet in water

mixed with SDS at 2 cmc and is approximately 20 nm [41].

The "free" surfaces concern all the droplet menisci that are not con�ned by

a wall. They are located in the gutters and at the extremities of the droplet.

Near these menisci, the capillary pressure writes

P = γC, (3)

the mean curvature of the droplet menisci being,

• at the extremities of the droplet,

C =
2

w
+

2

e
(4)

where w is the channel width,

• in the gutters (see �gure 1),

C =
2

e
(5)

When the droplet is deformed, its menisci at the level of the deformation (in

the pocket region) is curved both in the (y, z) and in the (x, y) plane. We

recall that, in this region, h(x, t) de�nes the in-plane distance in between

the droplet interface and the channel wall, see �gure 1. Thus, the mean

curvature of these menisci writes

C =
∂2
xh√

1 + (∂xh)3/2
+

2

e
. (6)

The term ∂2xh√
1+(∂xh)3/2

accounts for the curvature of the menisci in the plane

(x, y) while the term 2
e
accounts for the curvature of the menisci in the plane

(y, z).
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6 Hydrodynamics of biphasic systems

6.1 The Navier-Stokes equation

Our work deals with a biphasic system composed of incompressible newtonian liq-

uids: water and mineral oil. Both phases can be described by the Navier-Stokes

equation coupled to a boundary condition. This equation derives from the Newton's

second law of motion applied to the dynamics of an element of �uid. Per unit of

volume, the Navier-Stokes equation that describes the motion of �uids in each phase

can be written as:

ρ
∂v

∂t
+ ρ(v.∇)v = ρf −∇p+ η∇2v (7)

In this equation, ρ is the density of the liquid, v is the velocity �eld in the liquid, t

is the time, p the pressure in the �uid, η the viscosity and f the external forces that

apply on the liquid per unit of volume. We assume that �uids are incompressible

so, by mass conservation, ∇.v = 0. Boundary counditions are required to solve this

equation and to get the expression of the velocity �eld v(r, t). If we note σ the

tensor of stresses at the interface, the boundary conditions write that

• the velocities projected normally to the interface are equal vo.n = vw.n

• the normal stresses at a curved liquid/liquid interface are discontinuous: ([σ]w.n).n−
([σ]o.n).n = γC

• the tangential stresses at the interface are continuous: ([σ]w.n).t = ([σ]w.n).t

where n is the vector normal to the interface and t is the vector tangential to the

interface, w is the index for the water phase and o is the index for the oil phase. At

the solid boundaries, we de�ne a no-slip condition: v = 0. The normal stresses at

the interface are commonly the pressure and the tangential stresses are typically the

viscous stresses.

Dimensionless parameters

From the Navier-Stokes equation, we can de�ne typical forces that apply on a liquid

element:

• the inertial forces deriving from the term ρ(v.∇)v that is integrated over the

volume of the �uid gives a force that scales as ρU2R2,

• similarly, the term η∇2v gives a viscous force that scales as ηUR,

• the term ∇p gives a capillary force that scales as γR, by considering only the

Laplace pressure and
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• the term ρf times the volume of the liquid gives a volumic force like gravity

that scales as gR3.

To compare all these forces, dimensionless numbers are commonly used:

• the Weber number: We = ρU2R
γ

that compares inertia to surface tension e�ects

• the Reynolds number: Re = ρUR
η

that compares inertia to viscous stresses

• the Bond number: Bo = ρgR2

γ
that compares gravity to capillarity

• the Capillary number: Ca = ηU
γ
that compares viscous stresses to capillarity

Example:

As an illustration, if we consider a rain drop that is falling in the air, we can

compare the orders of magnitude of these forces to extract the physical mechanisms

that prevail in the drop motion. A snapshot of a raining drop during its fall has

been captured by Villermaux et al. [46], see �gure 7. On theses images, we observe

that the 1 mm size drop adopts a large variety of shapes: from a coin to �laments

to the burst in droplets. The water drop falls under the gravity force ∼ ρgR3 while

it is deformed by the drag force that scales as ρU2R2. During its fall, extreme

deformation rates are achieved since capillary forces γR and viscous forces ηUR are

weak compared to the inertial forces applied to millimeter-sized raindrops falling at

several meter per second We = ρU2R
γ
∼ 103 ∗ 10−3 ∗ 102 >> 1 and Re = ρUR

η
∼

103 ∗ 10−3 ∗ 103 >> 1.

Figure 7: Snapshot of falling raindrops captured by Villermaux et al. [46].

After the break-up process, droplets are much smaller (R ↓) such thatWe ↓ and Re ↓.
While droplets are getting smaller and smaller, viscous forces start to compete with

inertial forces (Re ∼ 1). When viscous forces overcome inertia, droplets velocity

obeys ηRU ∼ ρgR3. In this regime, Reyssat et al. [47] have observed that the

diameter of droplets R is around 40 µm and the velocity U decreases down to

hundreds of µm.s−1. As a result, the capillary number that weighs viscous drag

versus capillarity Ca ∼ ηU
γ
∼ 10−310−5102 ∼ 10−6 gets smaller than 1 and droplets

are more spheric.
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In the studied system

In order to estimate which e�ects prevail in our micro-system, we estimate

the value of all the dimensionless numbers that are mentioned above. Know-

ing that in our experiments, the typical length is 10−5 m, the typical velocity

is 10−5 m.s−1, the surface tension equals to 10−2 N.m−1, and the viscosity

is at minimum 10−3 Pa.s−1, we get:

• We = ρU2R
γ
∼ 10310−1010−5

10−2 ∼ 10−10 << 1

• Re = ρUR
η
∼ 10310−510−5

10−3 ∼ 10−4 << 1

• Bo = ρgR2

γ
∼ 1031010−10

10−2 ∼ 10−4 << 1

• Ca = ηU
γ
∼ 10−310−5

10−2 ∼ 10−6 << 1.

As a result, we deduce that inertia and gravity are overwhelmed by viscous

e�ects and capillarity. The dimensionless number that is the most relevant

for the system is thus the capillary number Ca.

Stokes approximation

When viscous and capillary e�ects prevail, the Navier-Stokes equation simpli�es as:

0 = −∇p+ η∆v. (8)

Figure 8: Scheme of a rectangular channel the dimensions of which are w × e× L

In our experiments, droplets are con�ned in the rectangular channel of a micro�uidic

system of dimensions w× e× L where the cavity height e is much smaller than the

typical lengths L and w over which �uids �ow (e <<min(L,w)).

Mass is conserved in the system such that the velocity �eld v veri�es ∂vx
∂x

+ ∂vy
∂y

+ ∂vz
∂z

=

0. Since the length scale in the direction of con�nement z is small relatively to those

in the x − y plane, the component vz is negligible: vz ∼ e/min(L,w)vx,y << vx,y.

Therefore, �ows are considered as nearly parallel in the plane x− y.

In the Stokes equation, the viscous stress writes η∆v where ∆v = ∂2vx,y
∂x2

+ ∂2vx,y
∂y2

+
∂2vx,y
∂z2

. Since e <<min(L,w), vx,y
e2

>> vx,y
L2 and vx,y

e2
>> vx,y

w2 . Thus, the shear stress

reduces to η ∂
2V
∂z2

.
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After all these simpli�cations (called the lubrication approximation), the Stokes

equation writes [37]

η
∂2vx,y
∂z2

= ∇p. (9)

As explained in the last section, the pressure gradient∇p that prevails is the capillary
pressure gradient in the x-direction that writes

∂xp = γ
∂

∂x

(
∂2
xh√

1 + (∂xh)3/2
+

2

e

)
. (10)

We assume that the typical scale of variation of h in the x-direction is L while h

varies from 0 to w along the y-axis. Thus, ∂xh ∼ w/L << 1 and the capillary

pressure gradient simpli�es in the lubrication approximation as

∂xp ∼ γ∂3
xh. (11)

To fully determine the velocity pro�le from the Stokes equation (9), the following

boundary conditions

• v = 0 if we consider no-slip at the channel walls

• ηo ∂v
(o)

∂n
= ηw

∂v(w)

∂n
at the droplet interface

are considered, where (o) identi�es the oil phase and (w) the water phase.

6.2 Interfacial rheology

Up to now, we considered ideal interfaces as no stress is applied to them apart from

the shear stress in both phases. However, a variation of surface tension can set a

stress at the interface. For example, this variation can stem from a thermal gradient

since surface tension is known to vary with temperature. If we consider the thermal

gradient is set along the x-axis, the stress that is generated at the interface writes
dγ
dx

= dγ
dT

dT
dx
. This stress creates �ows from low surface tension to high surface tension

[48] and modi�es the continuity of the viscous stresses at the interface as follows

ηo
∂v(o)

∂n
− ηw

∂v(w)

∂n
=
dγ

dx
(12)

where (o) identi�es the oil phase and (w) the water phase.

A variation of surface tension can also stem a gradient of concentration of the chem-

ical compounds at the interface. For instance, a gradient of surface concentration

of surfactants (Γ) sets a stress dγ
dx

that is equal to dγ
dΓ

dΓ
dx
. This gradient can occur

when the interface is convected by pressure-driven �ows in both phases. To estimate
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the value of dΓ
dx
, one has to compare the adsorption dynamics of surfactants to the

interface with the typical convection time of the interface.

The behavior of surfactants at the interface relies on two mechanisms. First, surfac-

tants di�use through the bulk to reach the subsurface, which is the region near the

interface. Then, the surfactants have to overcome an energetic barrier to adsorb to

the interface [49]. If the time of desorption and adsorption of surfactants is smaller

than the typical convection time of the interface �gure 9a), we can consider that the

surfactants are constantly exchanged between the interface and the bulk. In this

case, the surface concentration of surfactants at the interface is constant. On the

other hand, if the time of desorption of surfactants is much larger than the typical

convection time of the interface �gure 9b), surfactants are advected by the �ow and

end up being unevenly distributed at the interface. The resulting gradient of surfac-

tants surface concentration dΓ
dx

creates a surface stress that counters the convection

[50] and that rigi�es the interface. This stress, known as the Gibbs-Marangoni stress,

can signi�cantly reduce the mean velocity of �ows in both phases [51]. The behav-

ior of surfactants typically depends on their solubility in both phases, from soluble,

to poorly soluble up to non soluble for adsorption/desorption times that are much

greater than the convection time [52]. In the two extreme cases, we say that the

interface is "rigid" (insoluble case) or "mobile" (soluble case).

Remark:

The presence of surfactants at the interface can also induce a surface viscosity (both

in dilatation and in shear). However, this viscosity is disregarded in our experiments

since the surfactant that is used, SDS, is known to add almost no viscosity at

interfaces [53].

23



a) b)

Figure 9: a) Scheme of the behavior of soluble surfactants at an advected interface. The quick

ability of surfactants to populate and depopulate the interface allows to maintain a homogeneous

concentration of agents at the interface. b) Extreme case of insoluble surfactants where the typical

time of desorption is much larger than the time of convection of the surfactants along the interface.

The unability of surfactants to desorb from the interface during its typical time of convection sets

a gradient of surface tension at the interface.
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In the studied system

The variation of surface tension can come from the gradient of temperature

that is imposed in the channel and from a uneven distribution of surfactants

at the interface:

ηo
∂v(o)

∂n
− ηw

∂v(w)

∂n
=
dγ

dT

dT

dx
+
dγ

dΓ

dΓ

dx
(13)

SDS is an anionic surfactant soluble in water. Its adsorption/desorption

typical timescale is around 1 ms which is much smaller than the typical

convection time of �ows in our experiments which is approximately L/U ∼
10−3105 ∼ 100 s. That is why we consider that the interfaces are fully

mobile in the studied system (Γ constant along the interface and no surface

viscosity).

As a conclusion to this section, the tangential stresses at the interface writes

ηo
∂v(o)

∂n
= ηw

∂v(w)

∂n
(14)

when no temperature gradient is imposed at the interface and

ηo
∂v(o)

∂n
− ηw

∂v(w)

∂n
=
dγ

dT

dT

dx
(15)

when a temperature gradient is imposed.

N.B. The e�ect of con�nement on the continuity of viscous stresses at the

interface is discussed in the following section (6.3).

6.3 Additional pressure gradient in the dynamical meniscus

In the previous sections, we wrote that the curvature of the droplet menisci in the

plane (y, z) was constantly equal to e/2. This assumption implies that the curvature

of the menisci is dominated by the Laplace pressure. However, Bretherton has

shown that, when a meniscus is advancing or receding on a solid boundary, its

curvature could be locally modi�ed by the viscous friction in between the meniscus

and the wall. More speci�cally, he has shown that, in the region that separates the

lubrication �lm (I) from the droplet spherical meniscus (II), the viscous shear had

to balance the capillary pressure gradient imposed by this variation of curvature,

see �gure 10, [32]. In this region (III), called the dynamical meniscus, the Stokes

equation writes:

ηo
∂2v

∂2
z

=
∂p

∂y
(16)
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We note H(y) the distance from the wall to the droplet interface such that in the

lubrication approximation, the equation (16) veri�es

ηo
∂2v

∂2
z

= γ∂3
yH (17)

where γ∂3
yH is the capillary pressure gradient in the meniscus. Bretherton �nds

that, in the case of a con�ned non-wetting droplet, the viscous friction associated

with the droplet motion on the wall is sublinear with the droplet velocity and scales

as C2/3
a .

Figure 10: Scheme of the droplet meniscus con�ned near a solid boundary. Hodges et al. de�nes

three regions: the spherical meniscus (II), the dynamical meniscus (III) and the �at �lm (I). The

indexes o and i respectively describe the outer phase and the inner phase. The �lm thickness is

noted h∞ and l∗ de�nes the horizontal extent of the lubrication �lm. In their study, it is the solid

boundary that is pulled at a velocity Ud. r is the half-height of the cavity. The �gure is extracted

from [27].

In a review [33], Cantat estimates the numerical expression of the viscous force that

prevails in the dynamical meniscus of a bubble, see the Appendix page 114. She

shows that the force dependence on the capillary number varies with the boundary

condition that is imposed on the liquid/liquid interface at the level of the dynamical

meniscus.

1. In the case of a stress-free condition

The stress-free condition neglects the viscous coupling in between the droplet

phase and the outer phase. In this case, the interface is fully mobile and its

velocity is set by the viscous dissipation in the outer phase. The boundary

condition writes,

ηo
∂v

∂z
= 0 (18)
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Cantat �nds that the viscous force per unit of length writes f fsf = 3.84γC
2/3
a if

the meniscus is advancing and f rsf = −1.1γC
2/3
a if the meniscus is receding.

Provided that the interface is not rigidied by surface active agents, this condi-

tion is by de�nition true for a bubble/liquid interface since the viscosity of the

bubble is negligible.

2. In the case of a rigid interface

v = 0 at the interface in the bubble frame. Cantat �nds that the viscous

forces per unit of length in the meniscus are f fsl = 3.75γC
2/3
a + 0.47γC

1/3
a

2l
e
and

f rsl = −3.07γC
2/3
a − 0.47γC

1/3
a

2l
e
,

where 2
e
is the radius of the meniscus in region II and l is the horizontal extent

of the dynamical meniscus.

In order to determine the boundary condition that needs to be considered for the

case of a water droplet in oil in the region of the dynamical meniscus, we can rely

on the works of Hodges et al.[27]. They have shown that the boundary condition in

that region depends mostly on the viscosity ratio between the inner phase and the

outer phase λ = ηo
ηw

and the parameter ε ∼ h∞
e
that scales as C2/3

a . Figure 11 recaps

all the boundary conditions that can be encountered in the di�erent regions of the

droplet meniscus, depending on the experimental values of λ and ε.

Figure 11: Table explaining the interface boundary condition in each region of the droplet as a

function of λ and the parameter ε ∼ C2/3
a . By SLIP, Hodges et al. mean that there is a stress-free

condition at the interface. By NO-SLIP, they mean that the boundary velocity is set by the �ow

in the droplet. The �gure is extracted from [27].
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In the studied system, λ = ηo
ηw

= 25 and ε ∼ C
2/3
a ∼ (10−6)2/3 ∼ 10−4.

Therefore, we have 1 << λ << ε−1/2 and the boundary condition is stress-

free in the dynamical mensicus (IIIo) and in the �lm (Io). In the plane

(x, z), this condition writes

ηw
∂v(w)

∂z
= 0 (19)

In the spherical meniscus region of the droplet (IIo), the boundary condition

is de�ned as 'No-Slip' and veri�es

ηw
∂v(w)

∂z
= ηo

∂v(o)

∂z
(20)

In this region, we can assume that the viscous shear lengthscale is approx-

imately the same for the inner and the outer phase and scales as e, the

channel height. However, the viscosity of the inner phase is 25 times more

viscous than the outer phase. Therefore, the boundary condition writes

ηo
∂v(o)

∂z
≈ 0 (21)

In the experiments, we consider that the �ow velocity in the droplet is

almost zero such that v = 0 at the droplet interface in region (II).
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Summary

We study the dynamical behavior of a mineral oil droplet in water mixed

with SDS at 2 cmc. The droplet is con�ned in the rectangular channel of a

micro�uidic channel and does not wet the walls. Given the geometrical and

the physico-chemical characteristics of the experimental system, the droplet

behavior is governed by viscous and capillary e�ects.

In these conditions, the Stokes equation, written in the lubrication approx-

imation, can be invoked to describe the velocity �eld in both phases. The

motion of the droplet is induced by Laplace pressure gradients (≈ γ∂3
xh)

in the equatorial plane (x, y) and can in turn induce a capillary pressure

gradient (≈ γ∂3
zH) in the plane (y, z), along the droplet dynamical menisci

(region III), that are moving normally to the �ows. These regions con-

cern mainly the pocket of the deformed droplet and the extremities of the

droplet. In these dynamical menisci, the viscous force is sublinear with

the outer phase velocity and scales as C2/3
a , depending on the boundary

conditions at the interface.

Based on the work of Hodges et al., we consider that the boundary condi-

tions that are required to solve the Stokes equation are:

- stress-free in the dynamical menisci of the droplet and in the lubricating

�lms

ηw
∂v(w)

∂n
= 0 (22)

- v = 0 at the interfaces of the droplet spherical menisci (mainly in the

gutters).

In the speci�c case in which a thermal gradient is imposed along the droplet

interface, the boundary condition writes

ηo
∂v(o)

∂n
− ηw

∂v(w)

∂n
=
dγ

dT

dT

dx
(23)

We consider that there is no interfacial rheology induced by the presence of

surfactants.
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Part II

Materials and Methods - The

thermomechanical actuation

30



Many techniques have already been developed in micro�uidics to handle droplets

based on a large variety of physical mechanisms: electrophoresis [54], magnetic �eld

[55], acoustic �eld [56], marangoni e�ects [57, 58]. In this manuscript, we focus on

an additional technique, called the thermomechanical actuation, that can propulse,

stop, split, store and sort droplets. All these functionalities have been demonstrated

few years ago by Miralles et al. [106]. In this manuscript, we use this technique to

impose a local variation of the topography in the micro�uidic channel and to study,

in a more fundamental perspective, the response of a droplet to this topographic

variation.

The thermomechanical actuation technique relies on the electrical actuation of a

micropatterned resistance that locally heats the micro�uidic channel by the Joule

e�ect [48]. This chapter is dedicated to the description of the microfabrication of the

thermomechanical device and to the characterization of the thermal e�ects that are

induced on the droplets: the thermal dilation of the channel walls and the increase

of surface tension with temperature.

7 Microfabrication of the thermomechanical device

Figure 12 illustrates the thermomechanical device. The latter is composed of a

PDMS micro�uidic chip [59] that is sealed on top of a glass substrate over which

are patterned a network of micro-resistances, made of chromium and gold. A cross-

section of the chip is schemed in �gure 13.

a) b)

Figure 12: a) Image of the thermomechanical device composed of a PDMS chip on top of a glass

substrate. b) Top view of the glass substrate on which are patterned the micro-resistances.
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Figure 13: Scheme of a cross-section of the device with the di�erent materials that are encountered:

glass, PDMS, water (the channel), PDMS. The material height scales are not respected on the

scheme.

7.1 The PDMS micro�uidic chip

The micro�uidic chip is made in a single block of poly(dimehtyl)siloxane (PDMS).

The PDMS block is composed of polymer RTV-615 mixed with a crosslinker at a

weight ratio 1/10. The crosslinker/polymer mixture is poured on a silicium wafer

(soft-lithography technique [60]) over which the patterns of the micro�uidic channels

are designed in photoresist SU8 as the result of a photolithography process [61] (see

�gure 14). The mixture is cooked at 70 ◦C for 2 hours.

Figure 14: Soft-lithography process and photolihtography process.
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7.2 Substrate with micro-resistances

The substrate is a 700 µm thick borosilicate glass wafer on which are deposited 15nm

of chromium and 150 nm of gold. (ACM Grenoble). The two layers of metal are

patterned with an etching process using S1818 photoresist [106]. Chromium patterns

constitute the heating resistances and gold patterns serve as electrical connectors as

their resistance is much smaller. The resistor width is 50 µm and its length is 400

µm. Its typical ohmic value is 300 ohm. The resistances are electrically isolated by

spincoating a 30 µm thick layer of PDMS on top of the glass substrate.

1. First, the liquid PDMS at 1:10 is spincoated onto the substrate at 2500 rpm

during 40s.

2. Then, the substrate is cooked in the oven at 70 ◦ C during 2h.

7.3 Assembly of the device and surface treatment

The micro�uidic chip and the substrate are exposed to an oxygen plasma for 45

s such that -OH are created at their surface. When the two surfaces are put in

contact few seconds after the oxygen plasma, they become bonded with covalent

bondings (Si-O-Si). Water is injected in the micro�uidic channel few minutes after

the plasma exposition to ensure that the PDMS channel remains hydrophilic during

the experiments [35].

8 Actuation of the thermomechanical device

External wires are connected to the resistances and to an external voltage generator.

The device is illustrated on �gure 15.

33



Figure 15: Image of the experimental set-up extracted from [106].

9 Observation set-up

The experimental cell is placed under a stereomicroscope (Leica MZ FLIII) that

can illuminate the device with a white light source (Volpi Intralux 5100) and with a

UV lamp (ebq 100) in re�ection con�guration. The droplet deformation is recorded

with a CMOS camera (PixelLink PL-B781) at 15 Hz acquisition frame rate and is

observed in the plane (x, y).

Figure 16: The droplet is experimentally observed in the plane (x, y).

10 Generation of mineral oil droplets in water

As mentioned in the introduction chapter, non-wetting, mineral oil droplets (Sigma

Aldrich M5904) are generated in a solution of deionized water mixed with surfactants
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(Sodium Dodecyl Sulfate : SDS, Sigma-Aldrich L4509) at 2.4 g.L−1. The droplet

production is achieved in a T-junction at the entrance of the micro�uidic system,

see �gure 17a) [62, 63].

a) b)

Figure 17: a) Scheme of the channel design composed of a T-junction that allows the generation of

droplets. b) 3D view of the micro�uidic channel that is aligned on the micro-patterned chromium

resistance.

Remark:

Fluorescein is added to the water phase at 0.44 g.L−1. Thus, when the droplet is

illuminated by a UV lamp, all the �eld of observation appears black, except from

the outer phase that appears green (with the eyes) or white (with the camera).

11 Temperature increase in the system

When a voltage is applied to the micro-patterned resistance, we measure a local

temperature increase in the channel. This temperature increase has been character-

ized with an infrared camera (FLIR camera) that has a spatial resolution of 5 µm

and a time resolution that is smaller than 100 ms, see �gure 18.

The infrared camera captures the temperature ony at the surface of an object. In

order to measure the temperature increase in the channel induced by the heating

resistance, the temperature is captured on top of the sublayer of PDMS that is

spincoated on the glass substrate.

To ensure that the temperature that is measured by the infrared camera comes only

from the hot substrate and not from re�ected IR waves of the ambient atmosphere,

a painting (a black-body solution) is deposited on the substrate (Velvet black paint-

ing) that has an emissivity close to 1 [64]. Then, the temperature is captured at

the surface of this thin layer of painting. In the following experiments, the room

temperature is set to 26◦C.
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Spatio-temporal pro�le of the temperature gradient in the system

Figure 18a illustrates the temperature pro�le along the x-axis on one side of the hot

resistance (located at x = 0) for electrical powers varying from 0 to 75 mW. Since

the length of the resistance in the y-direction is larger than the typical width of the

channel, the temperature is considered as homogeneous along the channel width.

Figure 18b illustrates the time evolution of the temperature in the channel when the

resistance is successively switched on (at t = 4.6 s) and o� (at t = 18.5 s), for a power

equal to 50 mW. The typical timescales of the temperature increase and decrease

in the channel are smaller than 500 ms. The typical time of our experiments being

of few tens of seconds, we can consider that the temperature increase and decrease

are instantaneous in the channel. After this transient time of at most 500 ms, the

temperature remains constant in the channel as long as the resistance is on.
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Figure 18: a) Spatial temperature pro�le measured with an infrared camera for 0 < P < 75 mW

along the x-axis. b)Temporal temperature pro�le for P = 50 mW. The resistance is switched on

at t = 4.6 s and o� at t = 18.5 s .

As suggests �gure 18a, the spatial temperature pro�le is not linear. However, �gure

19 shows thar we can extract some bounds for the temperature gradient : 8000 <

∂xT < 16000 K.m−1. From now on, we consider that ∂xT is constant and is of the

order of magnitude 104 K.m−1.
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Figure 19: Spatial evolution of the temperature pro�le. Upper (red) and lower bound (orange) of

the temperature gradient for T = 80 ◦C.

Thermal di�usion accross the channel height

The time of the thermal di�usion accross the channel height scales as τT = e2/D

whereD is the thermal di�usion coe�cient of mineral oil (D = κ/(ρC) ∼ 0.1333/1900/870 ∼
10−7 m2.s−1), at room temperature [65]. We �nd that τT ∼ 10−10/10−7 ∼ 10−3 s,

which is much smaller than the typical time of our experiments (fews tens of sec-

onds). Thus, even though the temperature has only been measured at the surface

of the channel bottom wall, the latter can be considered as constant accross the

channel height.

N.B. In this calculation, we provide the thermal di�usion coe�cient of mineral oil

at room temperature but we expect it to be a bit smaller at higher temperature.

Therefore, the calculation tT ∼ 10−3 s gives an upper bound for the thermal di�usion

time accross the channel height.

E�ect of a �ow in the channel on the temperature pro�le

The temperature pro�le could be altered by �ows in the channel. In the case of a

uni-directional stationary �ow along the x-axis of mean velocity V , the temperature

would obey the advection-di�usion law that writes V ∂xT = D∂2
zT , z being the

direction along which the dimension of the channel is the smallest.

To know if convection might alter the temperature gradient, we need to compare

the time of the heat transfer induced by convection and the time of the heat transfer

induced by di�usion. Thus, we de�ne the Peclet Number: Pe =
tdiff
tadv

= V l
D
.

37



In our experiments, we recall that

V = 10 µm.s−1

l = 1 mm and

D = 10−7 m2.s−1 .

We �nd that Pe ∼ 10−1 which means that tdiff << tadv and that the heat transfer

is dominated by di�usion. Therefore, the temperature gradient is not altered by the

�ows in the channel.

Variation of the temperature with the electrical power

From now on, the variable T describes the maximum temperature in the channel on

top of the hot resistance, at x = 0. Figure 20 shows the linear evolution of T as a

function of the electrical power in the system. The electrical power P that is applied

at the edges of the resistance equals to U2

R
where U is the voltage at the edges of the

resistance and R its ohmic value. We �nd that within the range 0 < P < 100 mW,

the maximum temperature veri�es T = Tamb+βTP where the ambient temperature,

Tamb, is equal to 26◦C and βT = 0.5 ◦C.mW−1.
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Figure 20: Evolution of T with the electrical power P that is applied at the edge of the micropat-

terned resistance.
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12 E�ect of the temperature on the channel topography

The thermal expansion of PDMS RTV-615 has been characterized in the literature

and its coe�cient of thermal expansion αT is equal to 3 ∗ 10−4K−1 [66, 67]. In a

(x, z) plane, we can estimate the maximum channel deformation, δ(z), that results

from the temperature increase in the device. This deformation veri�es δ(z) = αThT

where h is the initial height of the PDMS layer and T , the maximum temperature

in the material.

• For the 30 µm thick PDMS sublayer at the bottom of the channel, we �nd that

δ(z) = 30 ∗ 10−6 ∗ 3 ∗ 10−4 ∗ 80 ∼ 0.1 µm for T = 80 ◦C.

• For the block of PDMS on top of the channel, we �nd that δ(z) = 10−2 ∗ 3 ∗
10−4 ∗ 80 ∼ 100 µm, if we consider that this block is approximately 1 cm thick.

This would mean that the 30 µm high channel could be completely blocked at the

level of the hot resistance. We do not observe such a deformation in our experiments,

which might be explained by the fact that this calculation is very naive. Indeed, it

assumes for example that the temperature is homogeneous across the 1 cm PDMS

block which is unlikely true. In order to further characterize the thermal dilation of

the channel walls, we carry out a direct experimental calibration.

12.1 In-situ characterization of the channel thermal dilation

Most methods used to measure deformations inside a sealed cavity are optical.

Among them, we list:

• Fluorescence measurement using the linear relationship between the �uorescent
solution layer thickness and intensity [68].

• Confocal microscopy, very convenient to measure topological shapes but its

resolution of about 1 µm makes it unadapted to measure deformations of few

µm [69].

• Refracted images of a pattern produced by a curved interface. Dangla et al.

used this optical method to measure the swelling of micro-channels induced by

alcane oils [70].

These methods turn out to be complex to implement to measure the thermal di-

lation of the channel walls in-situ. In the �rst method, �uorophores bleach with

temperature and in the last method, multiple interfaces are curved along the light

path and these interfaces might not be curved towards the same direction, which

makes the analysis of the refracted patterns quite di�cult.
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Home-made method to measure the thermal dilation of the channel

To quantify the topological change induced by the thermal dilation of the channel

walls, we designed a simple home-made system that we call the calibration step

chip. This PDMS chip is composed a 200 µm wide channel that is 4, 5, 6 up to

15 µm high, with incremental steps of 1 µm, see �g. 21a. The chip is fabricated

with a soft-lithography technique using a brass mold that has been milled with a

micro-milling machine (the resolution of which is smaller than 100 nm).

The substrate on top of which is sealed the calibration chip is composed of a glass

slide on which micro-resistances are patterned and a 30 µm thick layer of PDMS is

spincoated - the substrate is similar to the one that is described in section 1. The

channel is full of air (n = 1) to increase the refractive index di�erence in between

the channel and the PDMS walls (n = 1.42).

When the channel dilates of dz, the roof touches the bottom channel wall such that

a contact line in between the two layers appears at step heights that are smaller or

equal to dz , see �gure 21. By measuring the maximum height of the step at which

the contact line is observed for a given temperature in the device, we can quantify the

maximum deformation of the channel walls in the z-direction. The variation of this

deformation as a function of the maximum temperature in the channel is illustrated

in �gure 22. The calibration measurements show that the channel deformation is

comprised in between 0 µm and 10 µm. Unfortunately, the calibration step chip

fails to quantify the horizontal extent of the con�nement gradient that is established

in the channel.
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Figure 21: a) Scheme of the home-made calibration step device. The device contains steps in

its roof to measure the dilation of micro-channels. The channel width is 200µm and its height is

comprised in between 1 and 15 µm with steps of 1 µm. b) Typical observation that is made in

the calibration chip. A contact line appears when the channel walls dilates such that the top wall

touches the bottom wall.
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Figure 22: Height of the channel deformation versus the maximum temperature in the device,

calibrated with the calibration step chip.
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An interesting observation might help us to interpret the unexpected large

dilation of PDMS

When the 30 µm thick sublayer of PDMS is not present in the chip, we do not observe

any dilation of the channel, even at the smallest step heights. Oddly enough, we

deduce that it is the PDMS sublayer that dilates the most in the channel. Contrary

to the main PDMS block that constitutes the chip, the sublayer of PDMS is not

degassed during the microfabrication process. Thus, some air bubbles might remain

trapped in the thin layer of polymer such that the latter dilates largely when the

temperature is increased in the channel. To validate this interpretation, the same

calibration measurements should be carried out after having degassed the PDMS

sublayer.

12.2 Mechanical pro�lometer measurements

In order to measure the horizontal extent of the channel dilation, we open the

thermomechanical device to measure the topography of the bottom wall with a

mechanical pro�lometer (Dektak 6M) when the resistance heats the device. The

PDMS sublayer is sti�ened by two glass slides that are separated by the typical

width of the channel 200 µm [106].

Figure 23: Scheme of the experimental set-up that is used to characterize a topographical change

in the channel with a mechanical pro�lometer. This image is adapted from Miralles et al. [44].

The sublayer is sti�ened by two glass slides that are separated by the typical width of the channel

200 µm to reproduce the experimental con�guration of a closed channel.

The thermal dilation pro�le of the bottom channel wall is shown in �gure 24. We

observe that this deformation is comprised in between 500 nm to 2.5 µm for 30 <

T < 80 ◦C and that its horizontal extent is around 60 µm. Figure 25 illustrates the

maximum deformation of the sublayer as a function of the maximum temperature

in the channel. This deformation is approximately 4 times smaller than the one

that has been measured with the calibration step chip. In the following, we only

consider the values of dz provided by the step chip that accounts for the dilation of

all the channel walls and that has a geometrical con�guration more similar to the

experimental device.
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Figure 24: Spatial pro�le of the bottom layer of PDMS that is spin-coated on top of the resistance

and sti�ened by two glass slides. The pro�le is measured with a mechanical pro�lometer for

di�erent temperatures in the channel.
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Figure 25: Maximum deformation the bottom layer of PDMS that is spin-coated on top of the

resistance and sti�ened by two glass slides separated by a distance of 200 µm. This deformation

is measured with a mechanical pro�lometer as a function of the maximum temperature in the

channel.

N.B. We measured the deformation pro�le of the sublayer of PDMS after a succession

of cycles of temperature increase. We found the sublayer recovers a nearly �at surface
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when the resistance is switched o�. Therefore, we consider that the thermal dilation

of the channel is reversible.

13 E�ect of temperature on surface tension: the Marangoni

e�ect

Surface tension is known to vary with temperature. The sign of dγ
dT

(∂Tγ) depends

on the liquids that are at play. In the case of mineral oil and water mixed with

�uorescein and sodium dodecyl sulfate, we characterize the surface tension variation

with temperature. We observe that surface tension increases with temperature. The

gradient ∂Tγ has been measured using the pendant drop method (KRÜSS) coupled

with a thermal bath (JILABO), see �gure 26. The software provided by Krüss mea-

sures the shape of the pendant droplet and extracts a surface tension by balancing

the gravitational pressure with the Laplace pressure. For each temperature, a pic-

ture of the pendant droplet immersed in the thermal bath is taken at equilibrium

and each of the images is associated with a surface tension [71].
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Figure 26: a) Image of a pendant drop b) Pro�le of the interfacial tension between mineral oil and

water mixed for [SDS]=2 CMC.

We �nd that dγ
dT

= 2.3 ∗ 10−5 N.m−1.K−1. Therefore, the stress that is imposed at

the interface of the droplet in the vicinity of a hot resistance is equal to

dγ

dx
=
dγ

dT

dT

dx
∼ 2 ∗ 10−5 ∗ 104 ∼ 0.2Pa. (24)
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Summary

We describe a technique based on a thermomechanical actuation that allows to

change in a reversible way the topography of the channel. This actuation is based on

the heating of a micropatterned resistance that establishes a gradient of temperature

of around 104 K.m1 on the lengthscale of the droplet. This temperature gradient

has two e�ects on the droplet:

1. it imposes a Marangoni stress at the droplet interface.

The value of the stress is dγ
dx

= dγ
dT

dT
dx
∼ 2 ∗ 10−5 ∗ 104 ∼ 0.2 N.m−2 (Pa)

when the resistance heats at 80 ◦C (P = 130 mW).

2. it induces a change of the channel topography because of the thermal expansion

of the latter.

The maximum dilation that is observed in the channel has been characterized

in-situ and seems to be bounded in between 5 µm and 10 µm for electrical

powers varying from 50 mW to 110 mW.
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Part III

Droplet deformation
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In this chapter, we focus on the droplet deformation induced by a local variation

of the channel topography. This topographic variation is induced by the thermal

dilation of the channel walls. The temperature increase that creates this dilation

stems from the heating of a micro-resistance that is located below the micro�uidic

system, see section Materials and Methods for more details.

We observe that when a droplet is located on top of the heating micro-resistance,

it deforms until it can even break. Several thermal e�ects could account for the

droplet deformation. Indeed, beyond the con�nement gradient that is imposed on

the droplet because of the channel dilation, a surface tension gradient sets along the

droplet interface that provokes a Marangoni �ow in both phases towards the hot

regions where the surface tension is higher for the working liquids.

To discriminate the relative contribution of the Marangoni e�ect and of the con-

�nement gradient e�ect on the experimental droplet deformation, a "mechanical"

device has been designed to mimic the topographical variation that is induced by

the thermal channel wall dilation without any temperature increase. The con�ne-

ment gradient is indented in the channel during the microfabrication process. By

comparing the droplet deformation that is achieved in this "mechanical" device with

the one that is observed in the "thermomechanical" device, we are able to show that

the thermal Marangoni contribution to the droplet deformation process is negligible.

Thus, the droplet deformation is mainly due to the local variation of the channel

topography. We show that a variation of only 15 % of the channel height can induce

the droplet deformation and even its break-up.

The droplet deformation is driven by a capillary motion and is mediated by viscous

dissipation. To model the deformation mechanism, we calculate the minimum sur-

face energy of the droplet given the geometric constraints that are imposed in the

channel. Then, we couple this calculation to a power balance between the viscous

dissipation power and the increased surface excess energy of the droplet per unit

of time that manages to recover the main features of the dynamics of the droplet

deformation.
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14 State-of-the-art on the droplet break-up

Droplet break-up is a basic functionality that is required in emulsion science for

droplet production. The break-up mechanism has been extensively studied in the

literature. In 1873, Plateau showed that droplets of controlled volume can be pro-

duced as the result of the destabilization of a liquid thread; this instability is now

known as the Rayleigh-Plateau instability. Since the pioneering study of Taylor

on the droplet deformation induced by an extensional �ow, break-up has also been

investigated in a large variety of �ow and geometrical con�gurations.

When droplets are placed in shear �ows [72] or in extensional �ows [73, 74], they de-

form until they are su�ciently elongated to allow the growth of capillary instabilities

(Rayleigh-Plateau instability). In these �ow conditions, it has been demonstrated

that droplet breakup occurs when the capillary number exceeds a certain thresh-

old value C∗a . This value varies non-monotonically with the viscosity ratio in the

biphasic system, λ [75]. The con�nement also plays a crucial role in these elongation-

mediated breakups, [76], see Varanoye et al. 2006 for a review. For instance, Guillot

et al. have proved that the growth of capillary instabilities could be prevented in

con�ned geometries [77, 78].

Since the �ow conditions that are required to induce droplet break-up depend on

many parameters (shear or extensional �ow, viscoity ratio and con�nement), active

techniques have been developed to break droplets on demand using, for instance, an

electrical �eld [79] or an acoustic �eld [56]. The electrical �eld imposes a Lorentz

force on the droplet that is polarized as a dipole. It results in the elongation of

the droplet until the latter breaks. The acoustic �eld deforms the droplet interface

under the e�ect of the radiation pressure.

In parallel, some researchers have designed complex geometric micro�uidic con�gu-

rations to break up droplets with a fairly high throughput: T-junction [80, 62, 81,

82, 83], cross-�ow channels [84], obstacles [7], step channels [85]. In T-junction ge-

ometries or in cross-�ow channels, that are very often used in micro�uidic devices,

breakup also occurs when the capillary number is higher than a threshold value

C∗a . In addition, the breakup criteria depends on the geometrical parameters of the

system like the initial length of the droplet and the width of the inlet channel [82].

In the step emulsi�cation, the liquid thread destabilizes when it reaches a step

change in the cavity height or when it undergoes a con�nement gradient [85, 45]. In

this case, the radius of the droplets that are produced depends on the con�nement

gradient and on the initial height of the cavity. In the step-emulsi�cation process,

the thread is injected at a constant �ow-rate Q in a stepped cavity. The initial height

of the thread is h0 while h0 + ∆h is de�ned as the height of the output cavity. This

process results in the production of controlled volume droplets, the radius of which
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is h0 when ∆h > h. A variation of this technique consists of injecting the thread

into a large cavity where the top wall is tilted with an angle α that is comprised

between 0.5◦and 4.5◦. Dangla et al. [45] discuss the criteria of break-up of this

system and predict that the radius of the droplets that are produced veri�es

R∗ = 0.44

√
1 + 0.2

√
tan(α)

w

h0

h0√
tan(α)

. (25)

Our study relies on an additional technique to achieve droplet break-up. This tech-

nique -so far called the thermomechanical actuation- has been already developed by

[34, 44]. In this work, we propose a theoretical framework to predict the droplet

deformation and break-up achieved with this thermomechanical device.
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15 Experimental observations

We observe that when the droplet is located on top of a hot resistance, a neck forms

at its center. The droplet deforms in the equatorial plane (in-plane) like a peanut

(�g. 27). By mass conservation, the outer phase (water) is pulled towards the center

of the droplet to occupy the volume that is released by the formation of the neck.

In the meantime, the volume of oil is conserved such that the droplet extremities

move slowly away from the resistance.

In order to describe the droplet deformation, several parameters are considered: the

droplet length L(t), the neck extension in the y-axis and the neck extension in the

x-axis. We de�ne h(x, t) as the in-plane distance in between the channel wall and the

droplet interface. The maximum value of this distance which by de�nition occurs

at x=0, on top of the heating resistance, is noted h0(t). Thus, the neck extension

in the y-axis writes w − 2h0(t) where w is the channel width. The neck extension

in the x-axis is de�ned as b(t). By volume conservation, we should be able to relate

the neck extension to the droplet elongation. In the following sections, we decide to

describe the droplet deformation through the spatio-temporal evolution of the neck

instead of the droplet length.

Gutters are located at the four corners of the channel. The typical size of these

gutters, schematically indicated in the green-boxed inset in �gure 27b, scales linearly

with the channel height e. The length of these gutters is noted Lg. All these

notations are illustrated in Figure 27.
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Figure 27: a) 3D scheme of the non-wetting mineral oil droplet surrounded by water con�ned in

a rectangular micro�uidic channel. The neck is de�ned as the spatial region in which the droplet

interface deforms. This region is located in the vicinity of the resistance. b) Geometrical parameters

of the system. Gutters are located at the four corners of the channel. The typical size of these

gutters, schematically indicated in the green-boxed inset, scales linearly with the channel height e.

c) Typical droplet deformation captured with a camera in a top view plane (x, y). The interface

pro�le of the droplet is described by h(x, t), the horizontal extent of the neck region is de�ned by

b.

When the resistance is switched on, the droplet deforms until it can either reach

an equilibrium shape (�gure 29) or break into two (�gure 28). The fate of the

droplet depends on the temperature increase that is induced in the system. Beyond

a certain critical value of the temperature increase T ∗, the droplet deforms until its

neck width gets smaller than the channel height (w − 2h0(t) = e) and the droplet

breaks. Snapshots illustrate the droplet break-up process in �gure 28. The break-up

criteria w − 2h0(t) = e is discussed further in this chapter.

If the temperature increase in the channel is smaller than the critical temperature,

T < T ∗, the droplet deforms until it reaches an equilibrium shape. Figure 29

illustrates a snapshot of the droplet deformation until the neck width stabilizes

to a constant value. The typical timescale of the droplet deformation up to its

equilibrium state is few seconds to tens of seconds, for oil-in-water droplets with

hundreds of micrometers length, in channels with typically tens of microns in height.
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Above T∗:

Figure 28: Snapshot of the droplet deformation in the vicinity of the heating resistance. 10 seconds

after the resistance is switched on, the droplet breaks. In this experiment, the channel width is

200 µm and its height is 30 µm. The temperature at the level of the resistance is approximately

75 ◦C.

Below T∗:

Figure 29: Snapshot of the droplet deformation in the vicinity of the heating resistance. The

droplet starts to deform few hundreds of ms after the resistance is switched on, until reaching an

equilibrium shape. The typical timescale of this process is ten seconds. In this experiment, the

channel width is 200 µm and its height is 30 µm. The temperature at the level of the resistance is

approximately 55 ◦C as measured with an infrared camera.
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Figure 30 shows the time evolution of the neck width de�ned as w − 2h0(t) for the

breaking (�g. 28) and the non-breaking droplet case (�g. 29). We recover that in

the breaking case (T = 74 ◦C), the neck width w − 2h0(t) decreases over time until

it reaches the value e = 30 µm and the droplet breaks. In the non-breaking case

(T = 54 ◦C), the neck width decreases until it reaches a plateau.
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Figure 30: Time evolution of the neck width for a non-breaking and for a breaking droplet. In

this experiment, the droplet length is 800 µm, the channel height and width are respectively 30

µm and 200 µm. For T = 74 ◦C, the neck width w−2h0(t) decreases over time until it reaches the

value e = 30 µm and the droplet breaks. For T = 54 ◦C, the neck width decreases until it reaches

a plateau value that is approximately half of the channel width.

Figure 31 plots the same time evolution of the droplet neck width for a larger range

of temperature (47 ◦C < T < 74 ◦C). On the �gure, we can assume that the critical

temperature T ∗ above which the droplet breaks is comprised in between 54 ◦C and

60 ◦C.
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Figure 31: Time evolution of the neck width for a large range of temperature (47 ◦C < T < 74
◦C). Given the conditions of the experiment (800 µm long droplet in a 30 µm and 200 µm high

and wide channel), we can assume that the critical temperature T ∗ above which the droplet breaks

is comprised in between 54 ◦C and 60 ◦C.

In �gure 32, we plot the dynamics of a series of droplets that break. The only geo-

metrical characteristic that di�erentiates these droplets is their length. The temper-

ature is the same for all these droplets and is higher than the critical temperature

for them to break. On this plot, we put a line for w− 2h0 = e, and we recover once

again that the dynamics encounters a transition at this point: the droplets break.

Lastly, we observe that the break-up dynamics increases with the droplet length.
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Figure 32: Time evolution of the neck width for a large range of droplet lengths (500 µm < L <

1800 µm). In these experiments, the channel dimensions are e = 30 µm and w = 200 µm. In the

experiments, the temperature is T = 60◦C.

We now look at the time evolution of the entire interface pro�le de�ned as h(x, t),

see �gure 33a. The latter appears to be self-similar at late times (the last 60 %

of the dynamical process) such that we can de�ne the function pr that veri�es

h(x, t) = h0(t)pr(x/b), for −b < x < b. In �gure 33b, this function pr is plotted

versus the dimensionless variable u de�ned as u = x/b, b being the extent of the

neck in the x-axis. The fact that the interface pro�le h(x, t) can be expressed as the

multiplication of two functions that depend respectively on time and space simpli�es

the model of the droplet deformation process. This separation of variables will be

fully elaborated in the next section.

The variable u = x/b can be de�ned independently on time since we notice in �gure

33a, that b does not vary with time (b ∼ 200 µm). At early times, this observation

is no longer true and b(t) can not be considered as constant, see the Appendix page

111. In �gure 33, the interface pro�le is plotted 20 seconds after the beginning of

the droplet deformation up to the end of the droplet deformation, 70 seconds after.
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Figure 33: a) Entire interface pro�le time evolution of the neck during a droplet deformation

experiment. Green curves correspond to late times while black curves correspond to early times.

The pro�les h(x, t) are plotted from t = 20 s after the beginning of the droplet deformation up to

t = 90 s. The dimensions of the channel are w = 400 µm and e = 30 µm. In this experiment, the

droplet length is 3800 µm. b) Same interface pro�les rescaled by h0(t). The x-axis is rescaled by

b.

16 The break-up criteria: experimental check

We have observed in the last section that droplets break when the neck width w −
2h0(t) gets smaller than the channel height e. This criteria is consistent with several

studies that deal with droplet break-up in a con�ned geometry in the literature

[82, 45].

However, as an experimental check, we show that when w − 2h0(t) = e, the surface

of the deformed droplet gets larger than the surface of two splitted droplets such

that it becomes more energetically favorable for the droplet to break. We de�ne

τbreak as the experimental time at which the droplet breaks.

Approximately, we calculate the perimeter Φ of the in-plane droplet interface in the

neck region at most ∆t = 100 ms before the break-up and 100 ms after the break-up,

see �g. 34. We assume that the cavity height pro�le along this in-plane perimeter

is constant during this period of time - that lasts at most 200 ms.

After a simple image processing, we �nd that Φ(τbreak − ∆t) = 512 µm and that

Φ(τbreak + ∆t) = 460 µm. We can then assume that the surface of the droplet
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interface in the neck region is approximately 512*e µm2 just before the break-up and

approximately 460*e µm2 just after the break-up. While this preliminary analysis

is highly approximate, we will show more rigorously in the following that droplet

breakup is energetically favorable under the conditions of a sloped channel geometry.

Figure 34: a) Zoom on the neck region of a droplet captured just before and just after the break-

up. b) The contour of the in-plane droplet interface that is detected over time to measure Φ is

highlighted in red.

The following sections provide more robust insights on the physical mechanisms that

are at play during the droplet deformation.

17 The physical mechanisms at play

We identify two physical mechanisms that may account for the droplet deformation:

the Marangoni e�ect and the con�nement gradient e�ect (called the mechanical

e�ect). Both e�ects are discussed in this section.

17.0.1 Why might the droplet deform when a gradient of surface tension is estab-

lished at its interface ?

The thermal Marangoni e�ect corresponds to a variation of surface tension with

temperature. The surface tension gradient that establishes along the droplet inter-

face sets a stress at the interface such that the continuity of the tangential stresses

writes (
ηo
∂v

(o)
x

∂n
− ηw

∂v
(w)
x

∂n

)
interface

=
dγ

dx
(26)

where n de�nes the normal direction at the interface. In the studied system (mineral

oil in water and SDS), surface tension increases with temperature. The Marangoni
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stress that is associated with this increase has been characterized in chapter Mate-

rials and Methods.

When the temperature is 70 ◦C at the level of the resistance, we �nd that the order

of magnitude of the Marangoni stress is 0.2 N.m−2.

dγ

dx
=
dγ

dT

dT

dx
∼ 10−5 ∗ 104 ∼ 10−1N.m−2 (27)

Figure 35 illustrates the �ows that can stem from the thermal Marangoni e�ect

at the droplet interface. These �ows are oriented towards the high surface tension

regions.

Figure 35: Flow pattern that may arise from the thermal Marangoni e�ect. The droplet interface

is moved by the Marangoni stress and its advection creates a �ow near the interface in both phases.

This �ow is oriented towards the hot regions. By symmetry, there might be �ow recirculations

in the droplet phase such that the droplet interface can be deformed by the incoming �ow of the

outer phase towards the neck of the droplet.

We prove in the following that the Marangoni e�ect is not the prevailing mechanism

in the droplet deformation process. However, the Appendix page 111 provides an

estimation of the order of magnitude of a break-up time that would only be due to

Marangoni �ows.

17.0.2 Why might the droplet deform when the channel locally contracts ?

The mechanical e�ect corresponds to the local variation of topography induced by

the thermal dilation of the channel walls. This dilation is illustrated in �gure 36.

The �gure recaps all the parameters that describe the droplet deformation. More

speci�cally, the channel thermal dilation is characterized by two parameters: its
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horizontal extent, dx and its vertical extent, dz. We recall that the variation of dz
with the temperature has been characterized in-situ while we have not characterized

the horizontal extent dx of the topographic variation in the channel, see the chapter

Materials and Methods. The function e(x) describes the channel height that varies

along the droplet length.

Figure 36: Geometrical parameters that are used to describe the droplet deformation.

When the channel height is constant and equal to e, we recall that the radius of

the droplet meniscus in the plane (y, z) is constant and equal to e/2, see the chap-

ter Introduction for more details. When the droplet undergoes a local gradient of

con�nement, this radius is decreased as e(x)/2, meaning that the droplet curvature

in the (y, z) suddenly increases. Where the con�nement gradient is localized, the

droplet mean curvature writes

C =
∂2
xh√

1 + (∂xh)3/2
+

2

e(x)
(28)

where ∂2xh√
1+(∂xh)3/2

is its in-plane curvature.

At equilibrium, to maintain C constant, ∂2xh√
1+(∂xh)3/2

should decrease when 2
e(x)

in-

creases. Initially, the in-plane curvature of the droplet is zero at the level of the

side channel walls, see �gure 36. Thus, when the con�nement gradient is imposed

on the droplet, this curvature is expected to become more and more negative as
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e(x) decreases. This mechanism could account for the neck formation at the center

of the droplet where the con�nement gradient is established. Indeed, Dangla et al.

have shown that a con�nement gradient of only few degrees could break a thread,

as the result of the formation of this negative in-plane curvature in response to the

decrease of the channel height [45].

In order to determine whether it is the mechanical or the Marangoni e�ect that

prevails in the droplet deformation process, we design an experimental device that

allows to isolate the con�nement gradient e�ect without any temperature increase.

17.0.3 Comparison with a purely mechanical device

A device that mimics the con�nement gradient induced by the hot resistance has

been designed and fabricated using a micro-milling machine. This device, that is

schemed in �gure 37, contains a symmetric and linear con�nement gradient. This

con�nement gradient is de�ned by two parameters dx and dz that describe respec-

tively its horizontal and vertical extent. Di�erent systems were designed in which

dx varies from 400 to 800 µm and dz from 3 to 10 µm, e varying from 20 µm to 40

µm and w varying from 200 µm to 400 µm. The values of dx and dz are measured

with a mechanical pro�lometer (Dektak 6M). The ratio dz
dx

de�nes the tilt θ of the

channel top wall and this tilt ranges from 0.2 ◦ to 1.4 ◦. In these devices, called

"mechanical" devices, the channel height e(x) can be de�ned as a linear piecewise

function:

• for −∞ < x < −dx, e(x) = e

• for −dx < x < 0, e(x) = e− dz − θx

• for 0 < x < dx, e(x) = e− dz + θx

• for dx < x <∞, e(x) = e

Figure 37: Scheme of a mechanical device in which a con�nement gradient is indented. The system

is called the "mechanical" system and is compared to the "thermomechanical" system. a) 3D view

b) Cross view in the plane (x, z).

In the "mechanical" devices, droplets deform when they undergo the gradient of

con�nement, similarly to the "thermomechanical" devices. Figure 38 illustrates a
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snapshot of a 1600 µm long droplet that deforms in a "mechanical" device in which

dz = 5 µm, dx = 400 µm, e = 30 µm and w = 400 µm.

In a "thermomechanical" device, the con�nement gradient is applied on demand on

the droplet once the latter is static in the channel. In the "mechanical" device, the

droplet has to be pushed under the con�nement gradient. The droplet velocity is

monitored with a pressure controller that adjusts the pressure at the entrance of the

channel. When the droplet is centered under the con�nement gradient, the latter

is stopped - the pressure is decreased to zero at the entrance of the channel. The

droplet starts to deform as soon as it undergoes the con�nement gradient. In the

following, we only observe the period of time during which the droplet is stopped in

the channel. This period corresponds to the late times of the droplet deformation

(typically the last 40-50% of the droplet deformation process).

Figure 38: Snapshots of the droplet deformation in a "mechanical" device in which dz = 5 µm,

dx = 400 µm, e = 30 µm and w = 400 µm. The droplet is 1600 µm long. The droplet deformation

is considered only after the third frame when the droplet is stopped in the channel. The images

are equally spaced in time and the total duration of the snapshot is 104 seconds.

Figure 39 plots the time evolution of the entire interface pro�le of the droplet. The

latter appears to be also self-similar at late times, this represents a further similarity

to the "thermomechanical" device. For this device, we can also de�ne a function pm
that veri�es h(x, t) = h0(t)pm(x/b) for −b < x < b. The function pm is plotted in

Figure 39b versus u = x/b, b being the extent of the neck in the x-axis that is also

constant over time.

Remark:

For this experiment, the neck extension in the x-axis is approximately 350 µm,

similarly to the extension of the con�nement gradient dx that is equal to 400 µm.

This observation is important for the model section.
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Figure 39: Time evolution of the interface pro�le h(x, t) of the droplet deformation in a "mechan-

ical" device in which dz = 5 µm, dx = 400 µm, e = 30 µm and w = 400 µm. The droplet is

1600 µm long. The timelapse that is plotted is around 70s. During this period of time, h(x, t) is

self-similar and writes h(x, t) = h0(t)p(x). We de�ne u = x/b where b is the x-axis extent of the

neck that is constant over time.

In �gure 40, we compare the self-similar function pr and pm respectively for the

"thermomechanical" and the "mechanical" devices as a function of u (u = x/b

where b is the extent of the droplet deformation in the x-axis). We observe that

the self-similar functions in both devices collapse on top of each other with an error

of 10%. This observation supports the idea that the droplet is mainly deformed

by the con�nement gradient that is imposed in the channel and that the thermal

Marangoni e�ect can be disregarded. Given these considerations, we write a model

in the next section that aims at predicting the droplet equilibrium shape and its

break-up given the geometrical constraints of the channel.
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Figure 40: Comparison of the self-similar functions p of the droplet deformation in between the

"thermomechanical" and the "mechanical" device.

18 Predicting the droplet deformation shape

To predict the droplet deformation shape, we calculate the minimum surface that

the droplet can adopt when the con�nement gradient is imposed.

18.1 Surface minimization

The surface energy of the droplet writes E = γS where S is the surface of the droplet.

Surface tension leads the droplet to minimize its surface energy. We calculate the

excess surface of the droplet that is the di�erence between the surface energy of

the droplet when the latter is deformed and the surface energy of the droplet when

the latter has its initial plug-like shape. This calculation takes into account the

variation of the channel height e(x). We write that the excess surface energy of

the droplet is EΣ = γ∆S. In the following discussion, we assume that the surface

tension is constant along the droplet interface such that minimizing E is equivalent

to minimizing ∆S.

Because the droplet is centered at the level of the con�nement gradient, the axis

x = 0 is an axis of symmetry for the droplet. Hence, we only consider the half-surface

of the droplet and we distinguish three regions :

• the droplet extremity (1) which only translates in the channel

• the sides of the droplet (2) which are elongated during the evolution and where
the gutters are localized
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• the con�nement gradient region (3) where the neck forms.

Figure 41 illustrates the regions 1, 2 and 3. We calculate the excess surface of the

droplet interface in each of these regions.

Figure 41: Regions (1,2,3) of the droplet surface.

In region 1:

By de�nition, the surface of the droplet interface is not modi�ed in this region.

In region 2

The droplet is elongated by volume conservation. Indeed, the volume that is lost

in region 3 for the formation of the neck is moved to region 2. The droplet is then

elongated by ∆l.

Since we observe on �gure 39 that the extent of the neck is the x-axis, b, is of the

same order of magnitude as the con�nement gradient extent dx, we consider that

the cavity height is constant in region 2, equal to e and decreases only in region 3.

The total surface of the droplet including the menisci is given by

∆S2 = (2(w − e) + πe)∆l (29)

The droplet elongation ∆l is deduced from the volume conservation in the droplet.

The volume that is lost in region 3 is

Ω1 =

(
(w − e)e+

πe2

4

)
b− e

(
(w − e)b− 2

∫ b

0

h(x, t)e(x)dx

)
−
∫ b

0

πe2(x)

4

√
1 + ∂xh2dx

(30)
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that simpli�es as

Ω1 = 2

∫ b

0

h(x, t)e(x)dx−
∫ b

0

πe2(x)

4
(
√

1 + ∂xh2 − 1)dx. (31)

This volume must be equal to the volume that is increased in region 2

Ω2 = e
(

(w − e) +
πe

4

)
∆l (32)

Ω1 must be equal to Ω2 by volume conservation such that we get

e
(

(w − e) +
πe

4

)
∆l = 2

∫ b

0

h(x, t)e(x)dx−
∫ b

0

πe2(x)

4
(
√

1 + ∂xh2 − 1)dx (33)

By replacing the expression of ∆l obtained with the volume conservation in equation

(33) in the expression of the excess surface in equation (29), we get the expression

of the surface excess in region 2.

∆S2 =
2(w − e) + πe

(w − e)e+ πe2

4

[
2

∫ b

0

h(x, t)e(x)dx−
∫ b

0

πe2(x)

4
(
√

1 + ∂xh2 − 1)dx

]
(34)

In region 3

In this region, the surface of the droplet interface decreases to counter the excess

surface induced by the con�nement gradient. The top channel is considered to be

�at while the bottom channel wall is locally deformed by the con�nement gradient

tilted with a angle θ << 1.

1. The excess surface of the top interface writes

∆St3 =

[
wb− 2

∫ b

0

(
h(x, t) +

e(x)

2

)
dx

]
− (w − e) b (35)

so,

∆St3 = −2

∫ b

0

(
h(x, t) +

e(x)

2

)
dx + eb (36)

∆St3 = −2

∫ b

0

(
h(x, t) +

e(x)− e
2

)
dx (37)

Since e − e(x) < dz and dz ∼ 5 µm, e(x)−e
2

<< h(x, t) and the expression of

∆St3 simpli�es as

∆St3 = −2

∫ b

0

h(x, t)dx (38)
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2. The excess surface of the bottom interface writes

∆Sb3 =

[(
wb− 2

∫ b

0

(
h(x, t)− e(x)

2

)
dx

)
− (w − e) b

]
1

cosθ
(39)

simarly to ∆St3, ∆Sb3 simpli�es as

∆Sb3 = −2

∫ b

0

h(x, t)
1

cosθ
dx (40)

As a result, ∆S3 = ∆St3 + ∆Sb3 gives

∆S3 = −2

∫ b

0

h(x, t)

(
1 +

1

cosθ

)
dx (41)

3. The excess surface of the droplet menisci writes

∆Sm3 = 2

∫ b

0

πe(x)(
√

1 + ∂xh2 − 1)dx (42)

Conclusion

The total excess surface of the droplet writes

∆S = −2

∫ b

0

(
1 +

1

cos θ

)
h(x, t)dx + 2

∫ b

0

πe(x)(
√

1 + ∂xh2 − 1)dx

+(2(w − e) + πe)∆l

(43)

In this expression, we replace

• h(x, t) by h0p(x/b) and

• ∂xh by h0
b
p′(x/b)

• e(x) by min(e, e− dz dx−xdx
).

The function p is extracted from the experimental data. More precisely, p is obtained

by �tting the experimental pro�les illustrated in �gure 40. We �nd for 0 < x < 1,

p(x) = −1.6727x5 + 3.3531x4 + 0.317x3 − 3.0016x2 + 0.0033x+ 1.0001 (44)

and

p′(x) = −5 ∗ 1.6727x4 + 4 ∗ 3.3531x3 + 3 ∗ 0.317x2 − 3.0016x+ 0.0033. (45)
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18.2 Minimization of the droplet surface

We minimize the excess surface of the droplet ∆S(h, b) in order to predict the

equilibrium shape of the droplet deformation de�ned by beq = b(teq) and heq =

h0(teq), teq being the time at which the droplet reaches an equilibrium shape. We

solve the system of equation

∂∆S

∂h
(heq, beq) = 0 (46)

and
∂∆S

∂b
(heq, beq) = 0 (47)

using the matlab function fminsearch.

We �nd that beq and heq depend on four geometrical parameters of the system:

the channel width and height, w and e and the con�nement gradient extents dx
and dz. For example, �gure 42 illustrates the theoretical predictions of the droplet

deformation for a w = 400 µm wide channel and for a con�nement gradient that has

a dx = 400 µm x-axis extent. To build this phase diagram, we �nd the minimum

(heq, beq) of ∆S for e varying from 15 µm to 50 µm and for dz varying from 0 µm

to 10 µm. If heq veri�es w − 2heq < e, we say that the droplet breaks. If heq < 1

µm, we say that there is no deformation. Otherwise, we draw a transient region in

which we predict that the droplet deforms but does not break.
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Figure 42: Phase diagram of (e, dz) for dx = 400 µm and w = 400 µm, that predicts the fate of

droplets in devices with dimensions (e, w = 400, dz, dx = 400): breaking (below the orange line)

or non-breaking (above the orange line). A transient region is plotted above the orange line and

corresponds to situations in which droplets deform but reach an equilibrium shape. Then, a darker

zone is plotted that corresponds to cases in which droplets do not deform.

We are thus able to draw a phase diagram in �gure 43 that predicts the fate of

droplets as a function of three dimensionless parameters dz
w
, e
w
and dx

w
.
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Figure 43: Phase diagram that predicts the fate of droplets in devices with dimensions

(e, w, dz, dx): breaking (above the line) or non-breaking (below the line). The geometric pa-

rameters are adimensionned by the channel width w. The curves correspond to the spectrum of

equations w − 2heq = e plotted for di�erent ratios dx
w .

The experimental data obtained with the "mechanical" devices are plotted on this

phase diagram, see �gure 44. The experimental data seem consistent with theory. To

further validate this model, the theoretical predictions of heq and beq are compared

to Surface Evolver simulations.

Remark:

The experimental data obtained with the "thermomechanical" device can not be

illustrated on the diagram since dx has not been properly characterized in this

device. Having said this, we give in the next section some details of comparisons of

this model with the experimental data to extract values for dx.
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Figure 44: Phase diagram 43 on which the experimental data obtained with "mechanical devices"

are added. Dark green dots correspond to breaking devices, light green dots correspond to non-

breaking "mechanical" devices. In the latter devices, the droplets do not even deform.

18.3 Validation of the model: Surface evolver simulations

Surface Evolver is a free simulation software that minimizes the surface energy of an

object subject to prede�ned geometric and energetic constraints. It uses 2D �nite

elements to represent 3D bodies and minimizes their energy through a sequence of

mesh re�ning. A detailed description of the Surface Evolver algorithm is given in

[86]. Our model consists in a �xed volume droplet that is bounded in a rectangular

microchannel that contains a con�nement gradient as described in 12. An additional

symmetry constraint ensures that the droplet is centered around the deformation.

Surface Evolver calculates the minimum energy geometry of the droplet but gives

us no information on the dynamics of the droplet evolution. It allows us to compute

equilibrium shapes for a range of geometric parameters and to predict if the droplet

will break or not. Figure 45 illustrates an example of a droplet deformation induced

by a local gradient of con�nement that is achieved with Surface Evolver simulations.
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Figure 45: a) Example of the surface evolver simulations that are carried out for dz = 5 µm,

dx = 400 µm, e = 30 µm and w = 400 µm. These dimensions are similar to the ones of a

mechanical device that has been used in our experiments.

Figure 46 shows that the interface pro�le of the droplet provided by Surface Evolver

collapse on top of the one predicted by the model with an error that is smaller than

5 %.

100 200 300 400
0

50

100

150

Figure 46: Plot of the droplet interface pro�le in the neck region provided by Surface Evolver

(cross markers) and by the semi-theoretical model (black lines using expression 44) for two sets

of geometric parameters: (blue) dz = 4µm, dx = 400µm, e = 35µm and w = 400µm and (green)

dz = 9µm, dx = 300µm, e = 40µm and w = 200µm

The surface minimization of the droplet seems to capture with a good agreement

the deformation of the latter. This model neglects the thermal Marangoni e�ect

contribution which thus suggests that its contribution to the equilibrium shapes is
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minimal. In the next section, we build a model that aims at predicting the dynamics

of the droplet deformation.

19 Predicting the droplet dynamics

The droplet deformation that is studied in the last section is not immediate since it

is mediated by the viscous dissipation in the biphasic system. In this section, we are

interested in predicting the dynamics of the droplet deformation which requires �rst

to identify the origin of this viscous dissipation. While the analytical description

of the viscous distribution in the system is complex, an experimental observation

makes us assume that the dynamics of the deformation process is set by the viscous

dissipation of water in the gutters.

19.1 Localization of the viscous dissipation in the gutters

Figure 48 shows the variation of the break-up time τbreak de�ned by w−2h0(τbreak) =

e as a function of the droplet length for the channel geometry. We observe that the

break-up time varies linearly with the droplet length. We notice that when τbreak
tends to zero, the droplet length is approximately 300 µm which is approximately

equal to b in these experiments, see �gure 39a that shows the interface pro�le of

the neck in the same channel geometry: δ = 5µm, b = 400µm, e = 30µm and

w = 400µm.

If we now plot τbreak as a function of the mean gutter length, we observe that the

curve τbreak = f(L) is shifted to (0,0), see �gure 48b. To calculate the mean gutter

length of the droplet, we calculate the equivalent length of the four gutters in parallel

through which the neck �lls:

1

Lg
=

1

Lleftg

+
1

Lrightg

(48)

where Lleftg and Lrightg are de�ned in �gure 47. Given these observations, we are

motivated to only take into account the viscous dissipation of water that drains

through the gutters to model the dynamics of the droplet deformation.

Figure 47: De�nition of the Lleftg and Lrightg .
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Figure 48: Break-up time of droplets in a mechanical gradient depending on drop e�ective size

(geometric parameters : δ = 5µm, b = 400µm, e = 30µm and w = 400µm

19.2 Power balance

To model the droplet deformation dynamics, we write a power balance that compares

the viscous dissipation power with the excess surface energy that is increased in the

system per unit of time.

The viscous dissipation power

The viscous dissipation power in the system is [37]

P =

∫ ∫ ∫
η(∇v + T∇v)2dΩ (49)

where η is the viscosity of the �uid, v is the velocity �eld in the �uid, Ω is the volume

of the �uid in which the viscous power is calculated.

The volume of the gutters scales as e2Lg, e2 being the typical section of the gutters.

Flows shear on the typical size of the gutters e. Thus, if we only take into account

the viscous dissipation in the gutters (see section 21.2), the power scales as

P ∼ ηw
v2

e2
e2Lg (50)
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where v is the mean velocity in the gutters. Hence,

P ∼ ηwv
2Lg. (51)

By conservation of mass, the volume of water that is emptying in the neck region

per unit of time should be equal to the �ow rate in the gutters. Therefore, we must

have

∂tΩ1 = ve2 (52)

with Ω1 given by equation (31) that is recalled here,

Ω1 = 2

∫ b

0

h(x, t)e(x)dx−
∫ b

0

πe2(x)

4
(
√

1 + ∂xh2 − 1)dx. (53)

Then, the viscous dissipation power is

P ∼ ηwLg
e4

[∂tΩ1]2 (54)

In order to take into account all the approximations that we make to express this

viscous dissipation power, we de�ne an adjustable parameter K such that

P = K
ηwLg
e4

[∂tΩ1]2 (55)

We replace the expression h(x, t) = h0p(x/b) in equation (55) such that we get,

P = K
ηwLg
e4

[
∂t

(
2

∫ b

0

h0p(x/b)e(x)dx−
∫ b

0

πe2(x)

4
(

√
1 +

h2
0

b2
p′2(x/b)− 1)dx

)]2

.

(56)

In equation (56), all terms are constant in time such that the power veri�es,

P = K
ηwLg
e4

∂2
t h0

[
2

∫ b

0

p(x/b)e(x)dx−
∫ b

0

πe2(x)

4

h0p′2(x/b)

b2
√

1 + h2
0p′2(x/b)

dx

]2

. (57)

For sake of simplicity, we note I(h0) =

[
2
∫ b

0
p(x/b)e(x)dx−

∫ b

0
πe2(x)

4
h0p′2(x/b)

b2
√

1+h2
0p′2(x/b)

dx

]2

.

The excess surface energy per unit of time

The excess surface energy of the system per unit of time is obtained by calculating

the time derivation of ∆S given by equation (43),

∂tE = γ∂t(∆S) (58)
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In equation (58), the interface pro�le expression h(x, t) is replaced by h0(t)p(x/b)

and the time derivative of the interface pro�le is ∂th0p(x/b).

We have,

∂t(∆S) = −2

∫ b

0

∂th0

(
1 +

1

cos θ

)
p
(x
b

)
x + 2

∫ b

0

πe(x)∂th0
h0p′2(x/b)

2
√

1 + ∂xh2
dx

+(2(w − e) + πe)∂t(∆l)

(59)

with

(2(w−e)+πe)∂t(∆l) =
2(w − e) + πe

(w − e)e+ πe2

4

[
2∂th0

∫ b

0

p
(x
b

)
e(x)dx−

∫ b

0

πe2(x)

4
∂th0

h0p′2(x/b)

2
√

1 + ∂xh2
dx

]
.

(60)

We factor equation (61) by ∂th0 such that the equation writes,

∂t(∆S) = ∂th0F (h0) (61)

F being a function of h0. Indeed, in all the terms of equation (61), the only parameter

that varies with time is h0.

The power balance

The power balance writes

∂tE = P (62)

Therefore, we must have,

∂th0F (h0) =
KηwLg
e4

I(h0). (63)

The numerical resolution of equation (62) reconstructs the time evolution of h0(t)

as follows,

h0(t+ 1) = h0(t) +
KηwLgI(h0)

e4F (h0)
(64)

with h0(0) = 0.

The adjustable parameter K is set by adjusting the time evolution h0(t) predicted

by the power balance with the experimental data in the "mechanical" devices in
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which the geometric parameters (dx, dz, w and e) are well characterized. We �nd

K = 2.1 ∗ 10−3. Figure 49 compares the model prediction to the experimental data.
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Figure 49: Time evolution of the neck width for a "mechanical" device in which dz = 5 µm,

dx = 400 µm, e = 30 µm and w = 400 µm. The di�erent curves correspond to droplets with

varied gutters lengths Lg = (17; 37; 60; 68; 100; 150; 155) µm ranked from the droplet that splits

the quickest to the one that splits the slowest. The value of K is adjsuted to 2.1 ∗ 10−3 in the

power balance model to �t the experimental data (dots) with the theoretical predictions (line).

We set K = 2.1∗10−3 for the rest of the discussion and we compare the model to the

experimental data obtained with the "thermomechanical" device. The parameter K

can be regarded as a permeability coe�cient by considering the gutters as pores that

have a complex geometry. In this device, the value of dz has been characterized as a

function of the maximum temperature increase in the channel while the value of dx is

unknown. In order to compare the model with the time evolution of the neck width

w − 2h0, we need to adjust the value of dx. For that, we de�ne the dimensionless

function N that calculates the di�erence between the model prediction w − 2hth(t)

and the experimental pro�le w−2hexp(t) of the neck width, normalized by the typical

error of the image processing that we consider to be twice the pixel size, err = 10

µm. N writes

N(dx, dz) = 4
(hexp(t)− hth(t))2

e2
rr

. (65)

By minimizing function N (using the matlab function fminsearch), we can obtain
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the values of (dx, dz) that best �t the experimental data. Figure 50 illustrates the

model prediction for two experimental data sets corresponding to the same droplet

at two di�erent temperatures in the channel.
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Figure 50: Time evolution of the neck width for experiments carried out in the "thermomechanical"

device for two di�erent temperatures: T = 54◦C (non-breaking droplet) and T = 67◦C (breaking

droplet). The values of the geometrical parameters (dz, dx) are adjusted to �t the experimental

data (dots) with the theoretical predictions (line).

By �tting the time evolution of the droplet deformation for a larger range of tem-

peratures, see the Appendix page 114, we can plot the evolution of dz and dx as a

function of the maximum temperature in the system. Figure 51a) plots the values

of dz that we implemented in the model to recover the dynamics of our experiment

data. These values are compared to the ones that we have characterized in �gure

22 in the chapter Materials and Methods. The characterization and the �tting val-

ues of dz seem to be in pretty good agreement with one another, especially at high

temperatures (T > 60◦C). Similarly, �gure 51b) shows the �tting values of dx as a

function of the maximum temperature in the system.

By plotting N as a function of dx in the vicinity of the �tting value of dx, we

can estimate the sensitivity of the model to predict the variation of the channel

topography. Figure 52a shows that when N = Nmin + 1, we have 171 < dx < 179

µm, Nmin being the minimum value of N . This means the sensitivity of the model

on the parameter dx is high (less than ten micrometers). The same considerations

are made for dz, see �gure 52b. We �nd that the sensitivity of the model on the

parameter dz is hundreds of nanometers.
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Figure 51: a) Fitting values of dz (cross markers) that �t at best the theoretical model with

the experiment pro�le of the time evolution of the neck width in the resistance device for di�erent

temperature increase. The predicted values of dz (cross markers) are compared to the characterized

values of dz (square) in the chapter Materials and Methods. b) Fitting values of dx that have been

chosen to �t the experimental data with the model for di�erent temperature increase.
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Figure 52: Evolution of the �tting error N as a function of: a) the x-axis extent of the gradient

of con�nement dx b) the z-axis extent of the con�nement gradient dz near the best �tting values

(dx, dz).
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20 Conslusions & Perspectives

• A local variation of the channel height of less than 20 % can lead to the droplet

break-up when the latter is con�ned in a rectangular pore. By volume conser-

vation, the external phase has to drain through the gutters towards the neck

region when the droplet deforms.

• Even though, the droplet is 25 times mores viscous that the outer phase, the

con�nement modi�es the distribution of the viscous stresses such that it is the

less viscous phase that seems to set the dynamics of the droplet deformation.

• While a surface minimization seems to capture the droplet deformation features,

a power balance based on scaling arguments manages to capture the dynamics

of the deformation process. The model recovers that the linear breakup time

scales with the length of the gutters Lg.

• The geometrical parameters of the con�nement gradient dz and dx can be set

as adjustable parameters in the power balance model such that their values

could be extracted by �tting the model to experimental droplet deformation

data. Consequently, the observation of in-plane droplet deformations could

constitute a new technique to indirectly measure in-situ the local variation of

a rectangular channel topography.

This work raises the following questions.

On the droplet deformation process

• We see that the droplet deformation is driven by the con�nement gradient in the

channel. However, we can wonder how the thermal Marangoni e�ect modi�es

the �ows in both phases. What is the spatial extent of these �ows ?

• Could the droplet deform if there were no gutters - in a cylindrical capillary

tube for instance ? How would the deformation dynamics be altered in such a

geometry ?

On the thermomechanical actuation

The indirect characterization of the PDMS thermal dilation seems to con�rm that

the channel contracts of approximately 20%. This large dilation is unexpected. One

possible mechanism for this large deformation is the thermal dilation of nanobubbles

that would be trapped in the polymer matrix and that would expand with temper-

ature. Of course, other mechanisms are possible and we leave the interpretation of

the thermal dilation of the channel as an open question.
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Towards the fabrication of droplet shape soft-solid microstructures ?

Figure 53 shows a droplet deformed by a succession of con�nement gradient indented

in a system made out of a micro-milled mold. Figure 54 shows that by monitoring

the topography of the channel, we can also deform a droplet made of diethylene

glycol diacrylate mixed with 10% of 2-hydroxy-2-methylpropiophenone such that

the latter can be solidi�ed under a UV-exposition during the deformation process.

Unlike the stop-�ow lithography process that manages to build 2D structures with

sharp edges - by illuminating a channel full of a photo-polymerisable solution with

a UV lamp through a mask- [87], we achieve to fabricate 3D soft structures with a

deformed droplet-like shape.

Figure 53: Droplet deformed by a succession of con�nement gradient indented in a system made

out of a micro-milled mold.

Figure 54: Solid droplet out of the channel using a scanning electron microscope (x120). The

droplet is made of a solution of acrylate based monomers. The internal phase is a solution of

diethylene glycol diacrylate with 10% 2-hydroxy-2-methylpropiophenone and the continuous phase

is water with 2% SDS. The exposure time to the UV lamp is 500 ms.
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Summary

In this chapter, we have investigated the droplet deformation induced by a local

variation of the channel topography. This variation is induced by the local thermal

dilation of the channel walls heated with a micro-patterned resistance that is located

below the channel.

We show that the droplet deforms to minimize its surface energy when the latter

undergoes the local con�nement gradient until it can even break. The thermal

Marangoni e�ect that is induced in the system does not seem to have a signi�cant

e�ect on the droplet deformation.

The dynamics of the droplet deformation seems to be set by the viscous dissipation

of �ows that drain through the gutters located at the four corners of the channel.

Observing the dynamics of the droplet deformation could constitute a new tool to

indirectly measure the local variation of the channel topography, provided that this

one can be assimilated to a symmetric and linear con�nement gradient.
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Part IV

Droplet Relaxation
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In this chapter, we report the experimental study concerning the capillary relaxation

of a droplet after the channel deformation is released. Initially pinched in its center

(�gure 55a), the droplet relaxes back to its plug-like shape minimizing its surface

energy under the constraints imposed by the channel walls (�gure 55b). During

this relaxation process, the liquid contained in the central neck drains towards the

extremities of the droplet. Surprisingly, the droplet relaxation that is also driven

by surface tension and mediated by viscous dissipation, displays a dynamics that is

very di�erent from the droplet deformation. Figure 55c shows the spatio-temporal

evolution for both the droplet deformation (ton < t < toff ) and relaxation (t > toff ).

ton is the time at which the resistance is switched on and toff is the time at which the

resistance is switched o�. While the rate of neck thinning during the deformation

process is decreasing, the rate of neck thickening during the relaxation process is

constant over time.

To explain the linear dynamics of droplet relaxations, we follow a theoretical ap-

proach that is di�erent from the one we had for the droplet deformation. This

approach integrates the role of the non-linear viscous dissipation in the dynamical

meniscus of the neck [32]. This work allows us to show that classical models incorpo-

rating capillary driving with viscous dissipation employing geometrical invariance,

whether translation or rotation cannot describe the relaxation in the intrinsically

3-dimensional geometry of the studied system. By "classical models", we refer to

the ones that are used to describe for instance, the relaxation of a droplet in an

in�nite bath [74],[73], of a thin-liquid �lm that is invariant by translation [88, 89], of

a droplet that has trapped a �uid pocket (a dimple) near a solid boundary [90, 91],

of a droplet in a Hele-Shaw cell [92, 93] By considering the 3D problem, a scaling

model incorporating dominant dissipation within the droplet menisci allows a full

recovery of the self-similar droplet dynamics.
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Figure 55: a) 3D illustration of the peanut-like shape droplet b) Snapshot of a 800 µm long droplet

relaxation in a 200µm*30µm rectangular channel. The images are displayed every 5 seconds. c)

Spatio-temporal evolution of the neck width during the droplet deformation ton < t < toff and

the droplet relaxation t > toff . ton is the time at which the resistance is switched on and toff is

the time at which the resistance is switched o�.
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21 Experimental observations

21.1 De�nitions

This paragraph recaps the geometrical parameters of the problem, similar to the

ones that are used to describe the droplet deformation. Figure 56 illustrates the

droplet geometry. We de�ne

• h(x, t) as the distance between the channel side wall and the droplet interface

• L is the droplet length

• Lg is the length of the gutters

A sequence of droplet pro�les is shown in Figure 56bi - iv). The neck is de�ned

as the central portion of the peanut-like shape of the droplet. The extent of the

neck in the x-axis is described by σ which corresponds to the the full width, half

maximum of the interface pro�le. The extent of the neck in the y-axis is described

by h0, the maximum value of the interface pro�le. We observe that the timescale of

the droplet relaxation is few seconds.
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Figure 56: a) 3D schematic of the droplet geometry shaped by the con�nement in the z-axis and

in the y-axis. The undeformed droplet length is L; w and e are respectively the width and the

thickness of the channel. The inset schematically shows the form of the gutters and the meniscus

of radius e/2. (b) Snapshot of the relaxation of the droplet. The neck full width, half maxima is σ,

and h(x, t) is the distance between the channel wall and the deformed interface, of maximal value

h0(t) = h(0, t).

In order to prepare the well-controlled, out-of-equilibrium droplet interfaces shown

in Figure 57, we use a thermomechanical actuation. All the details of this process

are provided in the previous chapter. When the heating resistors are switched o� at

time t = toff , the PDMS relaxes and the droplet neck then returns to equilibrium.

Figure 57a) displays the spatio-temporal evolution of the droplet cross-section at

x = 0 for two di�erent droplet lengths. Two regimes are observed. First, the neck

relaxes abruptly over a typical time of hundreds of milliseconds and second, the

relaxation proceeds more slowly and approaches equilibrium.

21.2 First temporal regime

The �rst temporal regime corresponds to the thermal relaxation of the PDMS dila-

tion. During this regime, the channel thickness e(x) increases such that the gradient

of con�nement disappears and a solid volume is suddenly released. The inset of Fig-

ure 57ai shows a zoom of this �rst relaxation, as well as a temperature pro�le taken
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Figure 57: a) Spatiotemporal evolution of the neck for two droplets in a channel of section
e×w = 30×200 µm2 with lengths, i) Ld = 510 µm (elapsed time: 15s) and ii) Ld = 1025 µm (15
s). The insets show: i) experimental temperature versus time for the highlighted 1.4 s interval;
ii) schematics of the thickness pro�le e(x) around toff , the latter quantity also indicated by the
dashed vertical line.

with a infrared camera (Flir Camera, ATS). The �rst regime and the thermal re-

laxation in the device take place over the same period of approximately 200 ms (at

most 500 ms). The newly available volume, schematically indicated in Figure 57aii,

is occupied by the phase that �ows the most easily. A careful examination of both

the volume released by the thermal homogenization and the increase of the inner

phase volume in the neck suggests that the inner phase �ows more easily than the

outer phase. This result is consistent with our observations of the droplet deforma-

tion that suggested that it was the external phase that was setting the dynamics of

the process, see the previous chapter.

Demonstration: The volume released by the thermal relaxation of the system can

be extrapolated from the topography of the channel thermal expansion characterized

in chapter Materials& Methods. The bottom channel topography is built from the

maximum dilation height that has been experimentally calibrated.

For a temperature of T = 60 C that has been applied to a droplet in a 200 µm

wide and 30 µm high channel, the volume (scheme 58) that is suddenly released

by the thermal relaxation of the channel bottom layer can be approximated to

dz ∗ dx ∗ w ∼ 5 ∗ 100 ∗ 200 ∼ 105µm3 where dz is the maximal dilation height of the

bottom wall, dx is the extent of the dilation in the x-direction that is assumed to be

100 µm and w is the channel width.
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Figure 58: Volume of the bottom channel thermal expansion.

The increase of the inner phase volume in the neck region, can be estimated by

subtracting the top view of a droplet before and after the switch o� of the resistance

and multiply the surface that derives from this substraction by the channel height.

(see �gure 59 which corresponds to a system that also veri�es T = 60 C, w=200 µm

and e=30 µm).

Figure 59: Calculation of the volume of oil, the inner phase, that occupies the free volume released

by the thermal relaxation of the system.

The increased volume of the inner phase: Vinnerphase ∼ 3, 8.105µm3 in the neck re-

gion, is of the same order of magnitude than the volume released by the thermal

relaxation,Vdilation. This preliminary observation shows that because of the con�ne-

ment, the inner phase (ηi = 25 × 10−3 Pa.s) �ows more easily than the external

phase (ηo = 1×10−3 Pa.s) - that has to �ow through the gutters and possibly in the

lubricating �lms. In the following, we consider that the dissipation occurs mainly

in the external phase.
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21.3 Second temporal regime

The second temporal regime is due to capillary driven �ows. In Figures 60b) and c)

we show the time evolution of the geometric features describing the neck: �rst, the

neck extent along y, h0(t) and second, the neck extent along x, σ(t) de�ned in �gure

55c. For all the droplets that we have studied, we observe that h0(t), varies linearly

with time over a signi�cant period, and extrapolates to zero thickness at a time we

call t0. We note also that the relaxation time increases with the droplet length for

a given channel geometry as demonstrated in Figure 60 - this is a signature of the

dissipation of the liquid �owing in the gutters, see the previous chapter. Despite the

small range of variation that is attainable with these experiments, the neck extent

along x, σ(t) varies with a power law that is captured by a scaling (t0 − t)β, with
β = 1/3 providing a good description of the data; this power law is shown by the

black line in this latter �gure and is discussed in the next section.
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Figure 60: b) h0 as a function of time for three droplet lengths and c) the corresponding time

dependence of the x extent of the neck, σ.

Having brie�y described the main features of the pro�le dynamics, we show in Figure

61a) the time evolution of the full raw pro�les in the neck region at early times when

h0(t) > e. Based on the temporal evolutions of the neck features found in �gure

57b) and c), we apply the scalings describing h0(t) and σ(t) to the entire pro�les of
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Figure 61 a). Figure 61 b) thus depicts the rescaled curves of h(x, t)/τ as a function

of x/τ 1/3 ≡ u, where we de�ne τ = t0 − t . The interface pro�le h(x, t) writes, in a

self-similar way [94, 89, 95]:

h(x, t) = ταf
( x
τβ

)
(66)

where τ = t0 − t, u = x
(t0−t)β .

f is de�ned as the master curve on top of which all the interface pro�les over time

collapse after rescaling (Figure 61 (b)). Experimentally, we �nd a good quantitative

agreement for α = 1 and β = 1/3.

At late times, when h0(t) < e, the interface pro�le does not follow very well the

same self-similar analysis, see the Appendix page 115.
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Figure 61: a) Interface pro�le h(x, t) at the level of the neck over time. Dark blue plots illustrate

the neck pro�les at early stages and light green plots show the later stages; the total elapsed time

is 6.5 s and the droplet length was L = 800 µm, with e = 30 µm and w = 200 µm. b) The same

pro�les of the central droplet interface after having rescaled the y-axis by t0 − t and the x-axis by

(t0 − t)1/3.

Robustness of the exponent β:

In �gure 61, the self-similar analysis shows that β = 1/3, also suggested by the time

evolution of σ in �gure 60c, is a good candidate to rescale the horizontal extent of

the interface pro�le. Yet, a large range of β seems to give a good agreement with

the experimental data as illustrated in �gure 62.
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Figure 62: Self-similar pro�le of the interface after having rescaled the y-axis by τ and the x-

axis by τβ with β = 1, 1/2, 1/3, 1/4, 1/5. For more acuity, the interface pro�le are respectively

mulitplied by 5, 4, 3, 2 and 1.

Since the self-similar analysis does not enable us to discriminate in a robust manner

the values of β, we look at another parameter that varies also as a function of β:

the volume of water that is trapped in the neck region Ω(t). This volume Ω(t) is

approximately

Ω(t) = 2e

∫ c

−c
h(x, t)dx. (67)

where the bound c of the integral is chosen in between the maximum value of the

neck extent in the x-axis and the extremity of the droplet. Thus, we ensure that

Ω(t) covers the volume of water in the neck at any experimental time, t.

Using the self-similar expression of h(x, t), the volume of the external phase in the

neck becomes

Ω(x, t) = 2e

∫ c

−c
ταf

( x
τβ

)
dx. (68)

Upon a change of variables, u = x/τβ, in the integral, Ω is given by

Ω(x, t) = 2eτα+β

∫ c

−c
f(u)du. (69)
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where
∫ c
−c f(u)du is constant over time. The boundaries of the integral [−c, c] can

be considered as constant upon the change of variables since c has been chosen such

c/τβ is larger than the neck x-axis extent at any experimental time and since we

consider that h(x, t) = 0 beyond x = ±c.

Figure 63 shows the time evolution of Ω(t) ∼ τα+β. By �tting the curve with a

function mτ p, for p = [0; 1/5; 1/4; 1/3; 1/2; 1], we �nd that for 2 > p > 3/2 and

p = 1, corresponding respectively to 1 > β > 1/2 and β = 0, the time evolution of

Ω(t) is no longer in the errorbar of the experiment data.
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Figure 63: Time evolution of the volume of water in the neck Ω(t). Experimental data (rectangles)

are compared to power evolutions mτp for for p = [0; 1/5; 1/4; 1/3; 1/2; 1].

22 Model

In this section, we investigate the mechanisms that are at play in the droplet relax-

ation process. In order to do so, we identify the origin of the viscous dissipation in

the system and we balance it with the capillary driving force induced by the initial

curvature of the droplet interface.

In the previous section, we have seen that the dynamics of the droplet relaxation is

very di�erent from the one of the deformation process (discussed in chapter 3): the

y-axis extent of the neck varies linearly over time and its x-axis extent seems to have

a sublinear evolution with time τ . If we wanted to apply the surface minimization

model of chapter 3 to the the droplet relaxation, we would have to integrate a varying
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boundary b with time in the integrals of the excess surface expression, see equation

43. In addition, the power balance written for the droplet deformation would set

only one constraint on α and β while we need a system of two equations to predict

both values.

For all these reasons, we rather decide to investigate new theoretical approaches

even though both processes deal with a liquid object that relaxes after having been

driven out-of-equilibrium.

At �rst, we show that classical models as the lubrication equation in a 2D plane

of invariance or the Brinkman approximation [90, 89, 92] are not appropriate to

capture the self-similar exponents of the interface pro�le. Then, we write a model

based on scaling arguments that consider the critical contribution of the droplet

menisci and the gutters to the relaxation process. These arguments manage to

recover the self-similar exponents of the droplet interface pro�le α and β.

22.1 First attempt: a thin-liquid �lm relaxation

At �rst sight, we consider the problem with invariance in z as considered, for example

in [96, 89, 90]. This assumption discards the presence of the droplet menisci and the

con�nement of the external phase in the z-direction. This consideration is true at

most at late times when the interface pro�le h(x, t) becomes smaller than the cavity

height, see �gure 60 and 61.

In this approximation, the problem can be reduced to a 2D plane (x, y). The height

of the �at �lm, at equilibrium, is considered to be e, the typical size of the gutters.

Figure 64: 2D approximation of the relaxation problem if we consider that the system is similar

to a �at thin-liquid �lm in�nite in the z-direction.

We assume that the y-axis deformation extent of the interface h(x, t) is small com-

pared to the scale σ of variations in the x direction, σ being the typical droplet

length.

The velocity �eld in the external phase writes (vx, vy) in the (x, y) plane, where

(vx, vy) scale respectively as (Vx, Vy). We consider the thin layer of �uid as incom-
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pressible, so: ∂xvx + ∂yvy = 0 which thus gives on a scaling level Vy ∼ Vxh
σ
<< Vx.

The velocity can be considered as unidirectional in the x-direction (lubrication ap-

proximation, [97]).

In the external phase, the velocity vx pro�le veri�es the Stokes equation:

0 = −∂xp+ η(∂xxvx + ∂yyvx + ∂zzvx) (70)

where ∂xp is the pressure gradient in the x-direction. In the system, the viscous

dissipation scales as η
(
Vx
σ2 + Vx

h2
+ Vx

e2

)
. Since we only consider the period of time

when, h(x, t) becomes smaller than the channel height e, h < e < σ ensures that

the viscous dissipation prevails in the y-direction.

Hence, the Stokes equation can be simpli�ed as:

∂yyvx =
∂xP

η
(71)

where η is the viscosity of the external phase and ∂xP is the pressure gradient driven

by the curvature gradient at the surface of the thin �lm and scales as γ∂3
xh in the

lubrication approximation.

We impose a no-slip boundary condition at the channel wall, vx = 0 on y = 0. At

the level of the advancing dynamical meniscus of the droplet, we impose a stress-free

boundary condition, η∂yvx = 0 at y = h(x, t) (see the chapter Introduction), such

that equation 71 gives:

vx =
∂xp

2η
(y2 − 2yh) (72)

In these conditions, the �ow rate per unit of length, q(x) =
∫ h(x)

0
v(y)dy, equals to

γ
3η
h3(x)∂

3h
∂x3

. The mass is conserved in the external phase such that ∂th = −∂xq. If
we replace the expression of the �ow rate per unit of length in the mass conservation

equation, h(x, t) obeys, [89, 90]:

− γ

3η

∂

∂x

(
h3(x)

∂3h

∂x3

)
=
∂h

∂t
(73)

.

To solve equation 73 that is assumed to rule the interface pro�le, we use the self-

similar expression of h(x, t) =ταf(u) where u = τ−βx.

Resolution of the lubrication equation with a self-similar solution

Using the expression: h(x, t) = ταf(τ−βx), we obtain the general expression of the

temporal and spatial derivatives of h(x, t):
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∂h

∂t
= ατα−1f + τα

(
−β x

τβ+1

∂f

∂u

)
(74)

so
∂h

∂t
= ατα−1f − βτα−1uf ′ (75)

and
∂nh

∂xn
= τα−nβf (n)(u). (76)

In equation 73 that is supposed to rule the dynamics of relaxation, we have

∂

∂x

(
h3∂

3h

∂x3

)
= 3h2∂

3h

∂x3
+ h3∂

4h

∂x4
. (77)

If we combine 73+75+76, the self-similar analysis of equation 77 gives

αf − βuf ′ + γ

η
f 2f ′f ′′′τ 4(α−β)−(α−1) +

γ

3η
τ 4(α−β)−(α−1)f ′′′′ = 0. (78)

For the equation to be right at all times, we have

3α− 4β + 1 = 0 (79)

which is not consistent with the experimental data (�gure 61) that is much more in

agreement with α = 1 and β = 1/3. Indeed, if we take for granted that α = 1 (�gure

60b), this equation would give β = 1, which is inconsistent with the experimental

data of the time evolution of Ω(t) and of the neck x-axis extension, σ(t), on �gures

60c and 63c.

Limitations of this approach

In the previous demonstration, we assumed that there was no shear in the z-

direction. In reality, at early stages, h(x, t) is of the same order of magnitude and

even larger than the cavity height e, see 61. To take into account the contribution of

the height e to the viscous dissipation in our projected 2D problem, we can amend

the velocity pro�le using the Brinkman approximation [98, 99, 92].

Brinkman has shown that in a Hele-Shaw con�guration, the viscous dissipation is

diminished by a term that is proportional to the velocity vx and to k2 = 12/e2,

where e is the height of the cavity. The shear term then writes η(∂2
yvx − k2vx).

Brinkman approximation

In such approximation, Stokes equation writes

∂xp = η(∂yyvx − k2vx) (80)
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The general solution is then vx(y) = − 1
ηk2
∂xp+ Aeky +Be−ky.

The no-slip boundary conditions, vx = 0 on y = 0 and the stress-free boundary

condition at the droplet interface, set A = 1
ηk2(1+e2kh)

∂xp and B = e2kh

ηk2(1+e2kh)
∂xp

Volume conservation writes ∂th =
∫
vxdy such that we get

∂th =
−γ
ηk2

∂x

[(
−h+

1

k
tanh(hk)

)
∂3
xh

]
(81)

In order to recover the self-similar exponents α and β of h(x, t) and carry out the

self-similar analysis of the problem, we discard the term in tanh by making the

approximation that kh� 1 which is at best true at early times when h� e. As a

result, h(x, t) veri�es approximately

∂th =
γ

ηk2
∂x(h∂

3
xh). (82)

Combining equations 75+76 and 82, we obtain the following condition on the self-

similar exponents: α− 4β + 1 = 0 that is still not consistent with our experimental

observations α = 1 and β = 1/3. This equation would give β = 1/2 if α = 1.

Besides, this model does not achieve to predict the values of both α and β. In

the following section, we re�ne again our model by taking into account the viscous

contribution of the droplet menisci to the relaxation dynamics.
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22.2 Meniscus dissipation model

The fact that neither the lubrication equation 73 nor the Brinkman approximation

82 allows us to recover the dynamical features of droplets relaxation motivates an

investigation of the viscous dissipation in the menisci. To take this dissipation into

account, we write a scaling model in which we balance the capillary motion of the

meniscus in the neck region and the viscous dissipation in the advancing/receding

menisci of the droplet. This model, coupled to a volume conservation that takes

into account the dissipation in the gutters, �nally enables us to predict faithfully

the self-similar exponents of the interface pro�le.

Our approach

In order to predict the self-similar exponents: α and β, a system of two equations

is required. The spirit of the model that we write can be likened to the example of

a tank of beer that empties through a tube, see the box.
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Example of a tank of beer that empties under the e�ect of gravity and

that is connected at its bottom to a small diameter tube.

Fist: a tank of water (without any foam)

It is assumed that the length of the end tiny tube L is long enough or e small enough

to consider that the bulk viscous dissipation is larger in the tube than in the tank.

The height of water in the tank is ruled by the balance between the gravitational

force (Fg ∼ ρghπw2) and viscous forces. Among the viscous forces, we list the bulk

viscous force in the tube (Fv ∼ ηvL), and the viscous dissipation at the level of

the moving contact line at the interface water/air/wall. v corresponds to the mean

velocity in the tube. If the radius of the tank is wider than the capillary length,

the viscous friction at the level of the contact line can be neglected. The viscous

dissipation that prevails is localized in the tiny tube.

Second: a tank of beer

To force the comparison, we add a foam on top of the liquid. We imagine that the

bubbles of the foam are non-wetting. Therefore, the viscous force that prevails in the

foam is due to the friction in the lubricating �lms between the wall and the bubbles

of the foam [33, 32]. This force scales as Fc = wγC
2/3
a where w is the diameter of

the tank and Ca = η∂th
γ
.

Figure 65: Scheme of a tank full of beer that is emptying under the e�ect of gravity and that is

connected at its bottom to a small diameter tube. Geometrical parameters of the problem: L is

the length of the tube, e is the diameter of the tube, w is the width of the tank, h(t) is the height

of beer. The beer is modelled as a liquid on top of which lays a foam.
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The force balance in the system writes

Fg = Fv + Fc (83)

We write the conservation of �ow rate in the system such that w∂th = ev.

The force balance writes: ρghπw2 = γw
(
η∂th
γ

)2/3

+ ηLw∂th
e

.

The contribution of the foam to the overall dynamics has been evidenced for a slosh-

ing tank by Gallaire et al. [100]. The authors show that sublinear capillary forces

govern the friction at liquid-solid and liquid-liquid interfaces and amend the classical

damped harmonic oscillator models for sloshing water even at the macroscale.

In the studied system, the tube is the equivalent of the gutters, the gravitational

force must be replaced by capillary driving forces and the viscous friction in the

moving foam with the tank wall can be compared to the viscous friction in the

lubricating �lms at the level of the advancing menisci in the neck region.

Local force balance in the advancing menisci

Four menisci are advancing at the neck, both at the top and bottom walls for

two sides of the neck. We note that four menisci are also receding at the droplet

extremities (top and bottom walls at the two extremities), see �gure 66. We assume

that the velocities there are proportional to those in the neck.

Figure 66: Direction of the moving droplet menisci in the neck region and at the extremities of the

droplet.

Bretherton showed that, when a meniscus is advancing or receding near a solid

boundary, most dissipation is in fact located in the dynamical meniscus [32, 33],

which connects the �at lubricating �lm and the static meniscus with characteristic

radius of curvature 2/e in the plane (y, z), see �gure 67.
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Figure 67: Geometry of a moving meniscus when a non-wetting droplet is pushed in a con�ned

cavity. We de�ne three zones: the static meniscus at the equator, z = 0, the dynamical meniscus

close the wall and the constant thickness lubrication �lm that separates the liquid boundary from

the wall.

The viscous drag force per unit length of the dynamical meniscus (in the x axis)

scales with the capillary number, Ca = ηV γ−1 with V a typical interface velocity.

Cantat [33] showed that Fdiss ≈ γCa2/3.

The liquid velocity in the meniscus of the neck around the position x = 0 is V ≈
∂th and the subsequent dissipative force in the dynamical meniscus writes Fdiss ≈
γ (ηγ−1|∂th|)2/3

. The driving force is generated by the gradient of curvature along

the interface, and writes in the limit of small slopes, and per unit length of the

meniscus: Fcap ≈ γe2∂3
xh , by considering that the dominant force is on the �uid

between the meniscus and the wall, a space of typical lengthscale e.

Remark:

The dissipation, as written in the text, considers the main portion of the dissipation

only which is around x = 0 where the �uid velocity is normal to the meniscus. There

must be a transition between the �ows normal to the advancing menisci in the neck

and the �ows parallel to the droplet interface in the gutters. We do not know what

is the �ow �eld distribution in the neck. However, we could de�ned an angle φ in

the neck such that the meniscus dissipation would be moderated by the projection

of the �uid velocity normal to the meniscus, see �gure 68. In this case, the viscous

drag per unit length of the dynamical meniscus would write Fdiss ≈ γ(cosφ)2/3Ca2/3,

where φ is illustrated in �gure 68. In the discussion, we only consider the section of

the menisci where �ows are normal to the interface and Fdiss ≈ γCa2/3 per unit of

length of meniscus.
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Figure 68: a) View of the advancing meniscus in the neck. Flows are normal to the interface at the

center of the neck. The velocity �elds write vy(z) while �ows are parallel to the gutters, velocity

�elds then write vx(z). b) Cross-section of the advancing meniscus in the plane (y, z).

By balancing the driving and the dissipation forces, we �nd a relation between the

temporal evolution of the pro�le and its current state:(
η

γ
|∂th|

)2/3

∼ e2∂3
xh . (84)

According to the observed self-similarity, h(x, t) = ταf
(
x
τβ

)
, equation 84 becomes:(

η

γ

)2/3

(−ατα−1f + βuτα−1f ′)2/3 = e2τα−3βf ′′′. (85)

For the equation to be true at all times,

α− 9β + 2 = 0 (86)

In order to close the problem, we consider conservation of liquid volume �owing

from the neck towards the droplet extremities through the gutters.

Volume conservation

The liquid that is expelled from the neck region during the relaxation process has to

escape through the gutters by volume conservation. The volume Ω(t) of the external
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phase in the neck writes

Ω(t) = e

∫ c

−c
2h(x, t)dx. (87)

The bounds of the integral are −c and c and we take c, a constant that is larger than
the maximum half-extent of the neck in the x-axis, see p. . Using the self-similar

expression of h(x, t), the volume of the external phase in the neck becomes

Ω(x, t) = e

∫ c

−c
2ταf

( x
τβ

)
dx. (88)

Upon a change of variables in the integral, Ω is given by

Ω(x, t) = 2eτα+β

∫ c′

−c′
f(u)du. (89)

We consider that the boundaries [−c, c] are chosen such that [−c′, c′] still cover the
entire volume of the neck. We estimate that the volume lost per unit of time in

the neck scales with the mean velocity v of the �ow in the gutters times the typical

cross-section of the gutters:
dΩ

dt
= 〈v〉e2 (90)

The mean velocity of the �ow is estimated using the Stokes equation η∆2v = −∂xP .
The �ow is driven through the gutters by the over-pressure induced by the positive

curvature at the center of the neck. As a result, the pressure drop is equal to the

Laplace pressure gradient induced by the curvature of the neck ∂xP ∼ γ∂2
xh/Lg and

established along the gutters length Lg through which the liquid �ows. We consider

that the �ow in the gutters shears on the typical width of the gutters e. Given all

these considerations, the mean velocity scales as:

〈v〉 = −γ∂
2
xh

ηLg
e2 (91)

The volumetric �ow rate in the gutters then scales as:

Consequently, equations (90) and (91) give:

dΩ

dt
= −γ∂

2
xh

ηLg
e4 (92)

The second partial derivative of the expression of h(x, t) is, according to the observed

self-similarity:

∂2
xh = τα−2βf ′′(u) (93)

The curvature of the neck is considered at x = 0 (at the center of the droplet) where
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∂2
xh = τα−2βf ′′(0). Using the expression (93), equation (92) then becomes:

dΩ

dt
= −γτ

α−2βf ′′(0)

ηLg
e4. (94)

Another expression of the volume lost in the neck per unit of time can be obtained

by simply deriving equation (89),

dΩ

dt
= e(α + β)τα+β−1

∫ c′

c′
f(u)du. (95)

where
∫
f(u)du is a constant with time.

We balance equations (94) and (95) in order to �nd a constraint on the temporal

self-similar exponents:

− γτα−2βf ′′(0)

ηLg
e4 = e(α + β)τα+β−1

∫ c′

c′
f(u)du. (96)

Figure 69 displays the time evolution of the gutter length Lg. The latter expands

of 25 µm which corresponds to only 2% of its mean length. In the following, we

consider that Lg is constant over time.
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Figure 69: Time evolution of the gutter length for a 2100 µm long droplet in a 200 µm wide and

a 30 µm high channel

In equation 96 all terms except from τ are independent on time. The exponents of

τ must be equal:

α− 2β = α + β − 1. (97)
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Solutions for α and β

Equations 86 and 97 lead to the two values of self-similar exponents,

α = 1 (98)

and

β = 1/3 (99)

consistent with the experimental data.

This agreement underlines the dominating e�ect of the menisci and gutters located

at the con�ning walls on the drainage dynamics.

Characteristic drainage time

Finally, it is possible to de�ne a characteristic drainage time to couple all of the

experimental data h0(t). Further mass conservation consideration gives a relation

between the velocity of the meniscus at the center of the neck and the mean velocity

in the gutters h∂th ≈ ev̄. As a result, the mean velocity of the neck meniscus can

be written h
e

∆h
τd

= −γ(ηLg)
−1e2∂2

xh, where the time τd is the typical drainage time

during which the neck size reaches the channel width ∆h ≈ w with constant velocity.

At �rst sight, from Figure 56, the curvature ∂2
xh seems to be of the order of w−1. In

order to be more quantitative, �gure 70 plots the curvature κ = ∂2
xh(0, t) times w

versus τ . It shows that κ is of the order of magnitude of w−1.
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Figure 70: Plot of wκ(t) versus τ for di�erent datasets: ( �) Lg = 446µm e = 30µm w = 200µm,

(�)Lg = 430µm e = 30µm w = 200µm, (�)Lg = 350µm e = 30µm w = 200µm, (Λ)Lg = 1000µm

e = 29µm w = 400µm, (Λ)Lg = 850µm e = 30µm w = 400µm, (Λ)Lg = 950µm e = 30µm

w = 400µm.

We therefore de�ne

τd =
wηLg
γe

. (100)

The time evolution of the neck height h0(τ) can thus be represented using the

dimensionless variables h̃ and τ̃ with τ = τdτ̃ and h = eh̃. These dimensionless

variables are plotted on �gure 71. Remarkably, all the data collapse onto a single

linear curve, whatever the droplet length, channel width or cavity thickness. The

collapse lies within an errorbar that is calculated in the Appendix 115. As such, the

momentum conservation in the advancing neck coupled to a volume conservation in

the gutters captures faithfully the experimental observations of the relaxation of the

droplet for a wide range of length, channel height and width.
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Figure 71: a) Plot of h(0, t) versus τ b) Plot of dimensionless variables h̃(0, t) versus τ̃ for di�erent

sets of experiments: ∗ Lg = 1000µm e = 29µm w = 400µm, ∗Lg = 850µm e = 30µm w = 400µm,

�Lg = 750µm e = 30µm w = 200µm, �Lg = 549µm e = 30µm w = 200µm, �Lg = 350µm

e = 30µm w = 200µm, •Lg = 260µm e = 60µm w = 200µm, •Lg = 360µm e = 60µm w = 200µm.
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23 Conclusion

To conclude, the 3D geometry of micro�uidic droplets, shaped by the 2D con�ne-

ment in height and in width gives rise to menisci and gutters of typical size imposed

by the channel height. These objects play a major role in relaxation dynamics.

Analytical descriptions based on the classical lubrication equations or Brinkman

approximation do not achieve to recover the experimental observations. By con-

trast, we have predicted the relaxation dynamics with a scaling analysis considering

capillary driving forces and viscous dissipation mainly in the gutters and menisci.

Considering a resulting characteristic relaxation time of droplets depending on the

physico-geometrical parameter of the channels, we fully collapse all the dynamics

onto a single curve.

Summary

This chapter investigates the droplet relaxation to its plug-like equilibrium shape

after the resistance is switched o�.

We show that the thermal relaxation of the PDMS dilation occurs in a few hundreds

of ms, much faster than the droplet relaxation that takes place over tens of seconds.

The dynamics of the relaxation process is very di�erent from the dynamics that we

observe for the droplet deformation. Indeed, the rate of neck thickening is constant

over time and the x-axis extent of the neck varies as τ 1/3 where τ is the time distance

from the end of the relaxation. The evolution of the droplet interface displays a self-

simlar pro�le at early times.

The droplet relaxation is capillary-driven and is mediated by viscous dissipation.

We write a scaling model that takes into account the Bretherton sublinear friction

in the moving menisci of the droplet and the linear friction in the gutters. This

model recovers the self-similar exponents of the interface pro�le.

Our study emphasizes the peculiar role of the droplet menisci in the dynamics of

droplet relaxations and raises some questions:

• Why is the nonlinear friction in the moving meniscus evidenced in the droplet

relaxation dynamics and not in the droplet deformation one ?

• Why does the x-axis extent of the neck varies with time in the relaxation process

and not during the deformation process ?
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Part V

Conclusion

In this manuscript, the response of a non-wetting droplet, con�ned in the rectangu-

lar section of a micro�uidic channel, to a local variation of the channel topography

has been investigated. The local con�nement gradient, that can reversibly be in-

duced in the channel with using a thermomechanical actuation, leads the droplet to

deform. If the channel is deformed enough, the droplet can even break. The studied

deformations are driven by capillary forces until the surface energy is minimized

subject to the constraints imposed by the con�ning wall. This deformation is not

instantaneous since it is mediated by the viscous dissipation that seems to be local-

ized in the gutters at the four corners of the channel. A power balance equating the

time derivative of the surface energy of the droplet and the viscous dissipation power

manages to capture the time evolution of the droplet deformation. This model can

be used to �t the experimental observation of the dynamics of the deformation pro-

cess with the vertical and horizontal dilations of the channel as independent �tting

parameters, with a micrometric resolution.

When the topography of the channel goes back to �at after the thermomechanical

actuation is stopped, the droplet relaxes to its plug-like shape. Interestingly, the

dynamics of this relaxation process is linear unlike the deformation process, the

speed of which decreases over time. By coupling a force balance in the dynamical

menisci of the relaxing droplet with a volume conservation of the external phase

that has to �ow through the gutters, we manage to recover the linear time evolution

of the relaxation process. Lastly, a characteristic drainage time that depends on the

physico-geometrical parameters of the system can be extracted from this study.

The relaxation dynamics of an initially out-of-equilibrium liquid/liquid interface

has been studied for many decades[101, 91, 102]. Fundamentally in these studies,

simply-modelled geometries lead to quantitative descriptions which can in turn lead

to the revelation of molecular scale physics: disjoining pressure and slip length being

examples [90, 89, 41]. In the geometrical con�guration of this work, this small scale

physics might not be revealed since �ows occurrs mainly in the gutters that are

tens of microns large. However, these two studies emphasize the dominating role

of capillary forces at the micrometer scale that can even provoke droplet to break-

up with a dilation of the channel height of just 15 %. They also emphasize the

e�ects of the con�nement on the droplet dynamics. For example, the role of the less

viscous phase that has been demonstrated in plunging plates [96] or in bouncing

and splashing droplets [103, 104, 105], wherein the less viscous phase is strongly

con�ned, is one more time illustrated. Similarly, the importance of the dynamical

menisci of the droplet [32], is once again evidenced.
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As a perspective, since the boundary conditions at the droplet interface has been

proven to modify the viscous friction force in these menisci [33], we might wonder

if we would observe a change in the droplet relaxation dynamics if we rather added

insoluble surfactants to the system. We might also wonder what �ow patterns are

induced by the thermal surface tension gradient at the droplet interface during the

deformation process.
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Appendix

Droplet deformation

Early times of the self-similar analysis

Figure 72: (a) Interface pro�le h(x, t) at the level of the neck during the entire process of the

droplet deformation. b) Associated self-similar functionpr as a function of u = x/b.

Approximative estimation of the time of the droplet break-up in the case

of a Marangoni e�ect

In the lubricating �lms (top, bottom, sides of the droplet), the length over which

there is a �ow shear is h∞ (see the chapter Introduction). In the gutters, the distance

over which �ows shear is typically the size of the gutters that scales as e. In the

droplet, at the level of the meniscus, �ows also typically shear over the height of the

cavity e. We can thus estimate the velocity of the Marangoni �ow in each regions

of the system. For the calculations, we take e = 30 µm and h∞ = 20 nm. The

viscosity of mineral oil is 25 mPa.s−1 and the viscosity of water is 1 mPa.s−1.

• In the lubricating �lm



If we note Vint the velocity of the interface, the tangential stress continuity at

the interface writes

ηo
Vint
e
− ηw

Vint
h∞

=
dγ

dx
(101)

The ratio ηo/e ∼ 25∗10−3/(30∗10−6) ∼ 103 while the ratio ηw/h∞ ∼ 10−3/(20∗
10−9) ∼ 106. We conclude that the velocity at the interface Vint ∼ dγ/dx ∗
h∞/ηw ∼ 10−7 m/s and that we can neglect the velocity of the Marangoni

�ows in the lubricating �lms.

• In the gutters

The tangential stress continuity writes

ηo
Vint
e
− ηw

Vint
e

=
dγ

dx
(102)

The interface velocity is then Vint = dγ
dx

e
ηo−ηw ∼ 30∗10−6/(24∗10−3) ∼ 10−3m/s.

Figure 73 summarizes the distribution of the velocity at the droplet interface in a

cross-section view. The �gure illustrates that the velocity is nearly zero (see previous

discussion) in the lubricating �lms and maximum in the gutters.

Figure 73: Scheme of the velocity distribution at the interface of the droplet in a cross-section

view. The �gure illustrates that the velocity is zero in the lubricating �lms and maximum in the

gutters.

In order to estimate a time of break-up, we calculate the �ow-rate of water in the

gutters induced by the thermal Marangoni e�ect.

We de�ne r as a radial coordinate that veri�es y2 +z2 = r2, see �gure 73. r identi�es

the distance of a �uid element from the droplet interface in the diagonal of the gutter.

The velocity �eld in the gutter that stems from the Marangoni e�ect derives from

the integration of the boundary condition at the interface written in equation (102).

We assume that the velocity �led in the gutter scales

v(r) ≈ 1

ηo − ηw
dγ

dx
r + A (103)

A being a constant that must be determined by the boundary conditions.
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At the droplet interface v(0) = Vint, at the walls, v(e) = 0. Therefore, the velocity

�eld writes

v(r) ≈ 1

ηo − ηw
dγ

dx
(e− r) (104)

The mean velocity in the gutter then scales as

V ≈ 1

e

∫ e

0

1

ηo − ηw
dγ

dx
(e− r)dr (105)

so

V ≈ 1

2e

1

ηo − ηw
dγ

dx
(106)

Considering that the typical total section of the gutters is e2, the �owrate of water

that enters in the neck per unit of time scales as Q ∼ e
2

1
ηw

dγ
dx
∼ 10−5 ∗ 102 ∗ 0.2 ∼

10−4m3.s−1.

In particular, we note that equation (106) largely overestimates the mean velocity

since it takes as a typical length scale the channel height, e, which is only true near

the center of the gutter. In all other places, the gutter height is smaller. Indeed, in

a rectangular channel cross-section, the interface velocity varies from the one given

by eq. (102) down to the one given at the lubrication �lm which is set to zero. A

way to take into account the complex contribution of these boundaries to the �ow

�eld is to de�ne a permeability coe�cient α. This coe�cient is commonly de�ned in

the studies that deal with �ows in porous media []. The �ow-rate is then amended

by α and we have Q ∼ αe
2

1
ηo−ηw

dγ
dx
∼ α10−3.

The volume of water in the neck is approximately bwe ∼ 10−12 µm3. Therefore, we

can de�ne a time of break-up associated with the thermal Marangoni e�ect that is

around
wbe

Q
∼ α−110−9s (107)

In order to recover the time of break-up that is observed in our experimental data,

α should be of the order of magnitude 10−10. This value is very far from the typical

value of the permeability coe�cient that is calculated in the literature for porous

media -in foams this coe�cient is of the order of magnitude 10−4 [106]. In addition,

the fact that the droplet reaches an equilibrium state while the tangential stress dγ
dx

is maintained at the interface suggests that the Marangoni �ow can hardly be the

prevailing mechanism in the system. In the next section, we prove that the local

channel dilation is the main motor of the droplet deformation.
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Best �t of the droplet deformation dynamics data in the "resistance"

system
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Figure 74: Comparison in between the time evolution of the neck width of a 800 µm long droplet

deformed by di�erent temperature increase in a 200 µm and 30 µm wide and high channel. The

values of (dx, dz) that were implemented in the model to �t the experimental data minimize the

error function N .

Viscous dissipation in the system

As described by Cantat [33], the viscous force associated equals to

fdiss = −η
∫
meniscus

∂v

∂z
(y)dy. (108)

The velocity expression and the related viscous force depend on the boundary con-

dition that is set at the droplet interface. In the case of a stress free boundary

condition, the viscous force per unit of interface length that is located in the dy-

namical meniscus and in the lubrication �lm scales as:

• for an advancing meniscus, fadiss = 3.84γC
2/3
a

• for a receding meniscus, f rdiss = −1.1γC
2/3
a
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Droplet relaxation

Late times

Figure 61(a) does not display the interface pro�le at late times which correspond to

the last seconds of the relaxation process for the sake of clarity. However, they are

shown on �gure 75 that plots that the whole time evolution of h(x, t). We notice

that the late times pro�les are noisier. This noise is ampli�ed as the pro�les are re-

scaled for the self-similar analysis. Likely, this noise, comes from the image analysis

of the experimental data that relies on the contrast between the inner phase and

the outer phase. The quantity of external phase becoming smaller and smaller as

the relaxation process ends, we expect the pro�les to be harder to detect thanks to

our image analysis technique.
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Figure 75: (a) Interface pro�le h(x, t) at the level of the neck over 11 seconds, the duration of the

relaxation process. (b) Self-similar pro�le of the interface after having rescaled the y-axis by t0− t
and the x-axis by (t0 − t)1/3.

Calculation of the errorbar on the characteric drainage time

To collapse perfectly the experimental data on a master line in �gure 71, we add to

adjust the values of w, e, l from the one measured thanks to an image processing

by dw, de and dl.
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dτ

τ
=

((
2dw

w

)2

+

(
2de

e

)2

+

(
dl

l

)2
)1/2

(109)

On all the experimental images, the pixel size p is smaller than 5 µm. We do not

consider the variation of w and e on a same micro�uidic system induced by the

microfabrication process. Then, we consider that de is zero and dw = 2p ∼ 10 µm.

The interface between the droplet and the side channel wall on experimental images

is di�cult to detect with our image processing since the presence of the menisci

blurs the interface. This error is maximum on the datasets corresponding to e = 60

µm where the meniscus radius is e
2
∼ 30 µm. Therefore, we can estimate that dl ∼ e

All these limitations lead to dτ/τ ∼ 14% superior to all our experimental data.
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Résumé 
 

Cette thèse porte sur l’étude expérimentale de 
la déformation et de la relaxation d’une goutte, 
confinée dans un canal microscopique de 
section rectangulaire. Cette goutte est 
initialement déformée en forme de cacahuète 
grâce à un gradient de confinement induit de 
façon locale et réversible dans le canal. 
Lorsque que le gradient de confinement est 
désactivé, la goutte relaxe vers sa forme 
d’équilibre. Durant cette phase de relaxation, le 
liquide contenu dans le réservoir, formé au 
niveau de la déformation de la goutte, draine 
vers les extrémités de la goutte. Dans notre 
étude, la géométrie du système est complexe et 
ne présente pas d’axe de symétrie ni 
d’invariance. Pour décrire la dynamique de la 
déformation et de la relaxation de la goutte, les 
modèles classiques, qui reposent sur une 
approximation 2D de la goutte, ne peuvent pas 
être invoqués. Cependant, des lois d’échelles 
nous permettent de décrire la dynamique de la 
goutte. Elles mettent en évidence la contribution 
significative des ménisques à la dissipation 
visqueuse dans le système. 
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Abstract 
 

We  report  an  experimental  study  concerning  
the  capillary  deformation and relaxation  of  a  
relatively  long  droplet confined  to  a  
microscopic  channel  with  rectangular  cross-
section.  These droplets,  found  in  numerous  
microfluidic  applications,  are  centrally  
pinched  into  a  peanut-like  shape  thanks  to  
a  localized, reversible  deformation  of  the  
channel.  
After  the  channel  deformation  is  released,  
the  droplet  relaxes  back  to  its  plug-like  
shape  minimizing  its  surface  energy  under  
the  constraints  imposed  by  the channel  
walls.  During  this  relaxation,  the  liquid  
contained  in  the  central  neck  drains  towards  
the extremities  of  the  droplet.   
Classical  models incorporating  capillary  
driving  with  viscous  dissipation employing  
geometrical  invariance,  whether  translation  or  
rotation  cannot  describe  the deformation and 
relaxation  in such  intrinsically  3-dimensional  
geometries.  By  considering  the  3D  problem,  
scaling  models incorporating  dominant  
dissipation  within  the  droplet  menisci  allows  
a  full  recovery  of  the  droplet deformation and 
relaxation dynamics. 
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