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Dr. Aurélien LARCHER
Mines Paris Co-encadrant de thèse
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Résumé en Français

Ce chapitre présente le contexte général de la thèse où les motivations
industrielles ont mené à l’initiation d’un projet académico-industriel dans
lequel cette thèse s’inscrit : la chaire ANR INFINITY. Cette chaire a pour
but de développer un outil de simulation numérique pour la trempe in-
dustrielle permettant ainsi aux divers industriels partenaires de la chaire
de considérablement améliorer leurs fabrications industrielles nécessitant
un procédé de trempe. Ce procédé industriel met en jeu une multitude
phénomènes physiques (échanges thermiques, dynamique des fluides, mouil-
lage, tension de surface,...) pour permettre le refroidissement d’un solide,
initialement à haute température, au sein d’un fluide (liquide ou gaz) de plus
basse température.

Lors de la trempe d’un solide au sein d’un liquide comme l’eau, la
température du liquide proche du solide se met à augmenter pour atteindre
la température de saturation ce qui provoque la création d’une fine couche
de vapeur enrobant le solide. Cette couche de vapeur possède donc une
température plus élevée que celle du liquide qui n’est plus au contact du
solide. Ainsi, le solide se refroidit plus lentement ce qui amène une perte de
qualité. En effet, plus le refroidissement de la pièce industrielle est rapide,
meilleure sera la qualité de cette pièce.

Comprendre les échanges thermiques ayant lieu dans tout l’environnement
de la pièce est donc de la plus haute importance pour espérer améliorer
la qualité du matériau. À travers toute cette thèse, un intérêt particulier
sera établi numériquement sur les échanges ayant lieu dans le mélange liq-
uide/vapeur. Pour cela, il est nécessaire d’adopter une méthode de cap-
ture d’interface permettant d’apporter des informations sur la physique du
système ainsi qu’une robustesse numérique. Un bref descriptif des princi-
pales méthodes de capture d’interface a été établi dans ce chapitre et une
de ces méthodes répondant aux critères d’adoption a été choisie pour être
implémentée au sein de la bibliothèque numérique existante CIMLIB-CFD
développée par l’équipe académique à travers la méthode des éléments finis
P1.

La librairie CIMLIB-CFD est à la base du développement du futur logiciel
de simulation numérique issu de la chaire permettant ainsi de traiter des cas
de trempe industriels avancés. Après avoir défini les objectifs de cette thèse,
une vue globale de sa composition est présentée et sera détaillée dans les
chapitres suivants.
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Industrial motivations

To meet the challenges of competitiveness and technological innovation in the energy,
automotive, air, and space transport sectors, manufacturers are placing a strong
demand on obtaining quality material for their production. This demand varies
according to the structure of the material and its geometry due to the diversity of
applications such as the production of cars, airplanes or power plants, aircraft or
energy plants. Today, to improve the quality of the material, the industrialists use
a metallurgical process, called the quenching process.

The quenching process is a heat treatment operation consisting of heating a
material at a high temperature for a certain time and then cooling suddenly by
immersing it in a liquid (water, polymer, etc.) at a lower temperature to give a
certain micro-structure to the metal to obtain desired mechanical properties (Figure
1).

Figure 1: Industrial quenching (from heattreatmentsservices.com)

Heating a material in a furnace allows the diffusion of specific atoms (e.g., carbon
atoms). To prevent segregation of these atoms during the cooling phase and therefore
inhomogeneity of the microstructure, the cooling must be sudden. Consequently, the
control of the cooling rate is of the utmost importance in quenching.

When in contact with the liquid, the high-temperature difference leads to boil-
ing, producing then a film of vapor enveloping the material. This film of vapor acts
as a thermal mantle which decreases the cooling rate of the material. Controlling
the cooling during the quenching process is, therefore, a major issue. The approach
currently followed by the industrialists to study the cooling of the material relies on
models based on averaged semi-empirical parameters, called exchange coefficients.
These are limited to particular scenarios and for a specific geometrical evolution of
the flow. They are determined experimentally and multiplying these experiments
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is not an economically viable strategy because of the cost of this process. Thus,
physical modeling of the system coupled with numerical simulation is a promising
alternative since Computational Fluid Dynamics (CFD) offers powerful numerical
tools thanks to the increase in computational performance. Although numerical
simulation is beginning to be used in the metallurgy industry, there is no software
available today that can reliably simulate a quenching process because of the com-
plexity of the physical phenomena involved (Figure 2).

Figure 2: Multiphysics phenomena (pictures from conmecheng.com and heattreat-
mart.com)

To develop this new numerical tool, the ANR industrial chair INFINITY (Figure
3), a 4-year project gathering academic and industrial partners has been initiated.
This software will allow industrialists to accelerate the decision support to obtain a
high-quality material, without cracks and with the desired properties.

Figure 3: ANR industrial chair: INFINITY

However, a clear understanding of the physical phenomena is required and re-
mains today a major challenge for both the industrial and academic sectors. For
example, modeling the liquid/vapor phase change as well as studying the heat ex-
change between the liquid and the vapor occurring during boiling due to temperature
differences are one of the many challenges to be addressed. To achieve this model-
ing, it is necessary to describe the evolution of the liquid/vapor interface in a precise
way.
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Interface capturing methods

Accurate computing of the interface evolution remains a challenge. Interface cap-
turing methods are widely used in the computation of flow problems with mov-
ing boundaries and interfaces [1]. This category of problems includes free-surface
[2, 3] and interfacial flows referring to multiphase flow problems [4] that involve
several immiscible fluids, like liquid-gas or liquid-liquid systems separated by time-
evolving sharp interfaces. Flow problems with moving interfaces are also involved
in fluid-structure interaction problems [5] combining fluid flow and solid mechanics
to capture the interaction between the solid and the fluid.

Interface capturing methods are then crucial to understanding heat transfer for
a liquid/gas flow [6]; however, interface moving problems offer many computational
challenges like precision, computational cost, or robustness. The particularity of
the interface capturing methods is that they can locate the interface within the
Eulerian framework by capturing the interface. Concretely, an appropriate field is
introduced for keeping track of its evolution. This is different from tracking the
interface within the Lagrangian framework by following marking points located on
the interface [7, 8]. Different interface capture methods exist and for each one of
these methods, the appropriate field describing the interface is named differently
like volume-fraction function, level-set function, or phase-indicator function. More
references to these methods will be given below in each dedicated subsection.

In all the following, Ω denotes a domain of Rd, where d is the geometric dimen-
sion, with a smooth enough boundary ∂Ω. n represents the unit exterior normal to
the boundary. Coordinates of Ω and ∂Ω are respectively denoted by x and s, and
accordingly dx and ds stand for the d-dimensional and (d-1)-dimensional Lebesgue
measure. tf > 0 denotes the final time. The velocity field of the flow is denoted by
u. A computational cell is denoted by K and its volume by |K|.

Volume-of-Fluid method

In the class of interface capturing methods, an approach consists in approximating
the localization of the interface and assigning properly the fluid properties by defin-
ing a volume-fraction function. This approach is called the Volume-of-Fluid (VoF)
method [9–11]. One considers two non-miscible and incompressible fluids occupying
a domain Ω. The region Ωref ⊂ Ω occupied by the reference fluid at a given instant
t is defined by a phase indicator function H : Ω× [0, tf ] → {0, 1} as follows:

H(x, t) =

{
1 if x ∈ Ωref ,

0 if x ∈ Ωref
c.

(1)
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In the absence of phase change, each fluid parcel retains its phase indicator value
during its motion. Therefore, the material derivative of H is zero, i.e.

DH

Dt
= ∂tH + (u ·∇)H = 0 (2)

The volume-fraction function CK is defined, in each computational cell K, as the
spatial average of the phase indicator function H:

CK(t) :=
1

|K|

∫
K

H(x, t) dx (3)

Cells in which CK = 1 are full of reference fluid, those where CK = 0 are full of the
other fluid, while those for which 0 < CK < 1 contain a part of the interface. By
integrating Equation (2) over K and by using the definition introduced in (3), it
comes

|K|∂tCK(t) +
∫
∂Ω

(u ·n)H(s, t) ds =

∫
Ω

H∇·u dx (4)

Since ∇·u = 0 for incompressible flows, the term in the right-hand side of (4)
should be vanished. However, the approximation may not enforce the divergence-
free constraint at the discrete level. Two main categories of VoF methods exist
in the literature: geometric VoF and algebraic VoF methods. In geometric VoF
methods an approximation to H is found geometrically (e.g. by a plane), whereas
in algebraic VoF [9] methods H is represented by a function (e.g. polynomial or
trigonometric function).

Geometric VoF method

Geometric VoF methods proceed in two steps. First, the interface is reconstructed in
each computational cell knowing the volume fraction field. Second, the reconstructed
interface is advected by computing the fluxed volume across each computational cell
using geometric methods. For the first task, the most widely used method is the
Piecewise Linear Interface Calculation (PLIC) scheme [12]. In this approach, the
interface is approximated in each interfacial cell as a line in two dimensions or a
plane in three dimensions as

n ·x+ α = 0 (5)

where α is the constant in the plane equation that is selected to enforce that the
volume cut by the interface is equal to CK in the computational cell. The main choice
left to the user is how to compute the interface normal n [13]. Once the normal
n has been calculated, the next step is to compute α [11]. For the second task,
the interface is advected by integrating (4) in time. The main decision left to the
user is on how the volume fluxes of the reference fluid are calculated. Two classes of
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advection algorithms have emerged: (i) split methods that rely on operator-splitting
to perform a series of one-dimensional advections in each spatial dimension and (ii)
unsplit methods, which advect the interface in one step.

Split methods are algorithmically straightforward to implement compared to
multidimensional (unsplit) schemes. Unsplit schemes involve the computation of
polyhedral complex flux in computational cells containing the interface. These com-
putations are expensive and can lead to significant parallel load imbalance if left
untreated [14]. On the other hand, unsplit methods have the advantage to re-
quire only one advection and reconstruction step. This category of methods is then
more amenable for general three-dimensional unstructured meshes. Split advection
schemes use operator-splitting to decompose (4) into a series of one-dimensional
advection. Because spatial derivative terms are generally non-zero, the right-hand
side in (4) is retained. This is in contrast to unsplit schemes which omit the last
term due to incompressibility constraint ∇·u = 0. Unsplit VoF advection methods
compute and transport the fluxed volume in one step. In two dimensions, the first
split advection scheme to satisfy the boundedness condition, 0 ≤ CK ≤ 1, and mass
conservation in incompressible flow is known as the Eulerian implicit – Lagrangian
explicit scheme [8].

It is important to note that in VoF advection schemes, discrete mass conservation
is only guaranteed if ∇·u = 0 is satisfied discretely in every grid cell. In practice,
the condition ∇·u = 0 is typically only satisfied up to some user-specified tolerance
through the iterative solution of the Poisson equation for pressure [15].

Algebraic VoF methods

Algebraic VoF methods are probably one of the oldest classes of interface capturing
methods and the first of the VoF-type methods [9]. In these methods, the volume
fraction CK is obtained via Equation (4) with a numerical approximation (volume-
averaged, polynomial or hyperbolic-tangent representation) for the phase indicator
function H. These methods compute the fluxes algebraically without the need for
geometric reconstruction of the interface. Algebraic VoF methods can be classified
into two categories based on an approach used to compute the fluxes: compressive
class and THINC class (tangent of hyperbola for interface capturing).

Compressive schemes use the information of the orientation of the interface (in-
terface normal) with respect to the cell face and compute the face flux for the VoF
function. The precision of the compressive algebraic VoF method is generally found
to be about an order of magnitude lower than geometric VoF methods. An artificial
interface sharpening term is typically added to the right-hand side of Equation (4)
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to avoid the diffusion of the interface when the interface gets deformed within flows
with high strain rates.

THINC schemes [16] are a group of relatively new methods within algebraic VoF
where a hyperbolic-tangent profile is assumed for the phase indicator function H
within the cell containing the interface, and the fluxes are computed algebraically
according to this assumption from Equation (4). The accuracy of these methods
can be close to the geometric VoF method at a lesser cost. Unlike the compressive
scheme, these methods do not require artificial compression.

To summarize the VoF method, each cell is represented by its liquid volume fraction,
and the interface is marked by a volume-fraction function. The VoF method is con-
servative and can deal with extensive topological changes in the interface. Despite
its good mass conservation properties, the interface reconstruction can involve con-
siderable computational effort, especially for three-dimensional problems. Another
drawback is that it is difficult to compute accurate interface normal and curvature
because of the discontinuity of the color function which can make the simulation of
an evolving interface very challenging. In particular, authors in [17] argue that the
VoF method is inherently limited by the second-order accuracy of schemes used for
advection in this context. However, it is still one of the most popular techniques in
front capturing due to its good conservation properties.

Level-set method

An alternative to the VoF method in capturing fronts is the level-set method. This
method was introduced by Osher & Sethian (1999) [18, 19]. Due to its simplicity and
ability to capture interfaces, it has been widely applied in a variety of fields, such
as incompressible fluid dynamics, combustion, image processing, etc. This method
considers the zero isocontour of a function α which implicitly defines the interface
Γ of two-phase flows:

Γ := {x ∈ Ω such that α(x, t) = 0, ∀t ∈ [0, tf ]}

This function α is chosen as a signed distance function α : Ω× [0, tf ] → R called
level-set function, that represents the Euclidean distance deucl to the interface Γ of
a position x ∈ Ω = Ω1 ⊔ Γ ⊔ Ω2 at an instant t ∈ [0, tf ]:

α(x, t) := ± min
xΓ∈Γ

deucl(x,xΓ)


> 0 if x ∈ Ω1,

= 0 if x ∈ Γ,

< 0 if x ∈ Ω2,

(6)
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Ωi denotes the region occupied by the fluid i ∈ 1, 2. The sign of α is defined as
positive on one side of the interface and negative on the other. This function allows
to identify the location of the interface (Figure 4).

Figure 4: Level-set function α for a two-fluid flow

In the case of two incompressible fluids separated by the interface Γ within a
domain Ω, the level-set function is advected by the fluid velocity field u:

∂t α + (u ·∇)α = 0 (7)

This equation describes the evolution of α in Ω over time.

In order to capture the interface accurately, the level-set function must be a
distance function, that is,

|∇α| = 1.

However, since the velocity field is not a simple uniform one, α loses its signed
distance property after the advection step, and hence needs to be reinitialized by
solving a Hamilton–Jacobi equation. This equation reconstructs the level-set with
the exact zero isovalue of α. By introducing a virtual time τ , one searches ψ that
has the same zero values as α such that:

∂ψ

∂τ
+ S(α)(|∇ψ| − 1) = 0, (8)

ψ(x, τ = 0) = α(x, t), (9)

where the sign function S(α) is defined as:

S(α) :=


1 if α > 0

0 if α = 0

−1 if α < 0

(10)
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Equation (8)-(9) can be rewritten as an advection equation:

∂ψ

∂τ
+U ·∇ψ = S(α), (11)

ψ(x, τ = 0) = α(x, t), (12)

with the velocity U computed as:

U = S(α)
∇ψ

|∇ψ|
(13)

The level-set method offers many advantages over other methods such as:

1. accurate computation of normal and curvature which are naturally defined
from α by

n :=
∇α

|∇α|
(14)

and

κ := ∇· (n), (15)

due to the smoothness of the α field.

2. straightforward extensions to Cartesian adaptive mesh refinement.

This method can handle the merging and breaking of interfaces automatically,
so the interface never has to be explicitly reconstructed as with the VoF method.
However, the biggest disadvantage of this method is the fact that the mass of each
phase is not conserved, a crucial requirement for numerical modeling of realistic
two-phase flows because of a nonphysical loss/gain of the fluid at each time step.
As time evolves, even a negligibly small error can be accumulated to a sufficiently
large magnitude and may finally lead to the solution breaking down [17]. this kind
of mass loss/gain mainly comes from two aspects. Firstly, the discretization of the
level set equation can lead to numerical dissipation which requires remedying using
a higher-order and conservative discretization scheme. Secondly, a mass loss/gain
can occur from the reinitialization process necessary to keep the level-set function
as a signed distance function. Another disadvantage of this method is the choice of
the reinitialization frequency because of the more frequent the reinitialization, the
longer the computation time.

To summarize, the level-set method is an interface capturing method which dis-
tributes the physical properties of each phase and captures the evolution of the
interface. Its ability to deal with complex topology changes of the interface and the
ease to compute from the level-set function quantities such as the curvature of the
interface or the normal field to the interface makes it very useful in our context:
heat transfer simulation and particularly in phase change.
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Diffuse-interface method

In contrast to the VoF and level-set methods in which the interface separating two
fluids is sharp, diffuse-interface models represent the interfacial region by contin-
uous variations of an order parameter φ, such as concentration or density. These
variations give the interface a non-zero thickness (i.e. it is diffuse) and an internal
structure (Figure 5). Moreover, the order parameter is described smoothly through
the interfacial region which is identified by a range of constant contours. This means
that interface tracking is unnecessary. Originally, the diffuse-interface model is based
on the Van der Waals model of capillarity [20]. It consists of describing an inter-
face separating a liquid and a vapor phase of a pure fluid with a thermodynamic
model. Specifically, the internal structure of an interface is mostly at equilibrium
and only perturbed by dynamic effects. Moreover, in the thermodynamic model of
Van der Waals, the energy of the fluid allows recovering of surface tension considered
as energy concentrated at the interface. When the interface thickness approaches
zero, the diffuse-interface model tends to be identical to a sharp interface, like in
the level-set formulation.

Figure 5: Diffuse-interface for a bi-fluid system

Since then, the diffuse-interface theories have been used in modeling physical
phenomena such as superconductivity [21], spinodal decomposition [22, 23], order-
ing transition in alloys [24, 25], and hydrodynamic [26]. It also has been used in
critical phenomena [27], and phase transitions - like dendritic growth [28, 29] -,
and solidification [30, 31]. With the development of computers, the diffuse-interface
method has recently gained popularity for numerical simulations of two-phase flow
problems. This kind of problem is very challenging to numerically simulate, es-
pecially in three dimensions, because it is a moving boundary problem. It needs
a particular numerical treatment to apply the boundary conditions at the moving
interfaces, which is difficult [32]. This difficulty can be overcome with the help of
diffuse-interface methods. These numerically attractive methods can remove the
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difficult problem of the treatment of the boundary conditions at the interfaces by
describing the moving of an entire two-phase system, even within interfacial regions
with a continuous transition.

These are the main advantages to consider a thickness for the interface. Despite
these advantages, it is important to note that when equations are numerically solved,
they need to be discretized in time and space. In spatial discretization, the interface
must be captured by the mesh, which means that the mesh size must be smaller than
the interface thickness. Remember that interface models have been derived based
on physical arguments, especially that the interfacial internal structure is physical
and therefore, the interface thickness too. In this case, the scale of the interface
thickness is of the order of 10−9m. Thus, the mesh size should be h ≤ 10−9m, which is
extremely small for many applications and especially industrial applications because
they are at a macroscopic scale. Too many mesh cells would be necessary only to
capture the interfacial regions. This leads to a very important computation cost
which is a big challenge. A way to manage this major issue is to develop an adaptive
mesh refinement technique for capturing the interfacial regions. Indeed, because
many physical phenomena happen near the interface, a fine spatial discretization
is necessary to capture them. But for mesoscopic scale problems, like the size of
bubbles or droplets, or macroscopic scale problems, like industrial processes, all the
physical phenomena of interest occur at a similar scale. Thus, a scale separation
with the interface thickness can be justified. This means that the thickness must
be adapted so that a reasonable mesh size can be used to capture the interface
structure. The interface thickness should then be a free parameter whose value can
be arbitrarily considered.

Although in realistic immiscible two-phase flow applications, the physical thick-
ness of the interface is practically impossible to resolve numerically, this method
offers some desirable properties which have attracted the interest of two-phase flow
modelers in recent years. For instance, authors in [26] developed a tool for two-
phase flows of Newtonian fluids based on the diffuse-interface model. In [33, 34],
a diffuse-interface model, based on the so-called Model H [27, 35, 36], has been
used to simulate Rayleigh–Taylor instability, capillary waves, and contact line dy-
namics. Simulation of phase separation under shear has been done in [37]. In [38],
authors showed comparable results between those obtained by analyzing the flow
near a moving contact line based on the Model H and those from the association of
Navier–Stokes equations with a sharp interface.

For these applications, the diffuse-interface method, also called the phase-field
method, is either based on Cahn–Hilliard or Allen–Cahn equations, which are two
important gradient flows of the Ginzburg–Landau–Wilson free energy functional
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[21]. In a bounded physical domain given by Ω this energy functional is defined on
the H 1(Ω) space in the form

E : H1(Ω) −→ [0,∞]

φ 7−→ E(φ) =
∫
Ω

(
F (φ) +

ϵ2

2
|∇φ|2

)
dx

(16)

where φ is the so-called order parameter or phase-field function, ε is the inter-
face thickness and F is the free energy of the system. The Allen–Cahn phase-field
model [24, 25] consists of a nonlinear convection-diffusion-reaction equation. Dif-
ferent well-established numerical methods could be implemented for solving such
equations. This easy-to-implement second order PDE is widely used in material
science applications where the phase change occurs. This equation is in fact the
L2(Ω) gradient flow of the energy functional defined in (16),

∂t φ+∇· (φu) = δE
δφ

(φ) (17)

This equation is in non-conservative form. The inherent lack of conservation of φ
in the Allen–Cahn equation is a major limitation for immiscible two-phase flows. In
the computational studies of the Allen—Cahn equation, one of the major challenges
is to effectively resolve the thin interfacial layer. Variational discretization based on
the Galerkin finite element method of the equation leads to spurious oscillations in
the solution when the convection or reaction effects are dominant [39]. Although
linear stabilization methods such as Streamline–Upwind–Petrov–Galerkin (SUPG)
[40] and Galerkin/Least-Squares (GLS) can reduce spurious oscillations, the solution
has oscillatory behavior near the region of high gradients. The solution thus obtained
can affect the physical results and lead to the wrong prediction of the underlying
phenomenon being studied. Regarding phase-field modeling of two-phase flows, the
interface between the two fluids is represented by the order parameter φ which is
solved by the Allen–Cahn equation. The variable φ is also used to define the physical
properties of the fluid phases such as density and viscosity, which should always be
positive. Oscillations in φ can lead to unbounded values which can cause the density
or viscosity to be negative, thus producing unstable or nonphysical results. Despite
many existing investigations, there is still a lack of complete understanding today
on how the spatial mesh size h and time-step size ∆t should be chosen in connection
to the value of the small parameter ϵ.

The Cahn–Hilliard equation [41] introduced to describe the initial stage of spin-
odal decomposition [22] is a more popular option because it conserves total mass.
This equation is given by,

∂t φ+∇· (φu) = ∇·
(
δE
δφ

(φ)

)
(18)

13



is the H−1(Ω) gradient flow of the energy functional defined in (16). The density,
viscosity, and other physical quantities are characterized by the order parameter
φ which evolution is governed by (18). Because φ allows for a smooth transition
between the liquid phase and the vapor phase, the physical properties are changing
across the interface. However, the phase-field function φ changes quickly near the
interface and, hence, must be well resolved. In other words, a relatively large number
of grid points near the interface are needed. An appropriate choice of the measure
of interface thickness value noted ϵ is important for accurate calculations. Taking
too large ϵ may give rise to nonphysical solutions, while too small ϵ to numerical
difficulties. The Cahn–Hilliard model, like the other diffuse-interface models can
be viewed as a physically motivated level-set method. This model is therefore a
promising way to describe the transition between the liquid phase and its vapor.
Consequently, fluid interactions and phase change can be solved in the whole domain.

Objectives of the thesis

This thesis is part of the desire to have a numerical framework dealing with complex
industrial cases. For this reason, it is necessary to develop new solvers that enrich
the library of methods currently used in the team. This desire relies on the will to
consider a new approach of interface capturing enabling the obtaining of new in-
formation about the physics of the system and bringing numerical robustness. The
phase-field method is based on an energetic approach of the interface separating the
phases that which is not the case for the currently used interface capturing method.
Furthermore, the method owns good properties to model the capillary action - in-
volved in the wetting - and considers contact angles. Directed by a perspective
of industrial applications, this interface capturing aims to be unified with other
physical models for a multiphysics characteristic and multiple applications to the
industrial numerical simulation.

This thesis consists of a first entrance of the phase-field method in the research
work of the team. The purpose is to develop a numerical tool implementing this
method with a P1 finite element method in the CIMLIB-CFD library. This involves
a presentation and a theoretical study of the considered interface capturing method
as well as a numerical study. For an application on physical systems involving fluid
movement, an understanding of the way to consider the interface capturing in the
framework of the fluid dynamics is required. Therefore, a theoretical study about
the coupling with fluid dynamics must be done. With the will to perform CFD
simulations, a numerical study can be considered as well. In the framework of the
INFINITY project, simulations of the quenching process are aimed. This implies
extending the model studied and developed in this thesis to the consideration of the
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temperature evolution within the systems. With this accomplishment, a challenging
multiphysics and unified solver can be designed in the proposed work, which is a real
breakthrough and innovation allowing us to robustly deal with realistic industrial
conditions of the quenching process in the future.

Numerical framework

The numerical experiments that we will consider in this thesis are all implemented
with CIMLIB-CFD, a finite element library for automated finite element-based scien-
tific computing that provides high-level capabilities in advanced computing in mate-
rial forming and computational fluid dynamics. It offers access to high-performance
linear algebra, including a parallelization based on MPI, supported through the in-
corporation of open-source libraries such as PETSc. This scientific library has been
developed by the Computing & Fluid (CFL) team at the Center for Material form-
ing (CEMEF), a research laboratory of Mines Paris - PSL Research University. It
represents an object-oriented program, written in C++, and gathers the numerical
development of the team members (Ph.D. students, researchers, and associate pro-
fessors...). CIMLIB-CFD aims at providing a set of tools that can be gathered to
perform numerical simulations of industrial processes, like the quenching process, in
collaboration with industrial partners.

Layout of the thesis

After the present introduction chapter about the motivations of this thesis and an
overview of the main interface capturing methods, the thesis is divided into four
chapters. Chapter 1 is an introduction to the Cahn–Hilliard equations considered as
an interface capturing method. Chapter 2 is dedicated to the coupling of the Cahn–
Hilliard equations with the dynamics governing multiphase flows. For these two
chapters, mathematical and numerical models will be presented as well as a series
of numerical simulations for a numerical verification and validation of the method.
In Chapter 3, different approaches to improve the numerical method are used to
perform industrial type simulation. A first approach for modeling the phase change
at the interface with the phase-field function within a multiphase flow is detailed
in Chapter 4. Numerical multiphysics simulations for the quenching process will
be presented. Finally, a conclusion chapter will explore the limits and the possible
extensions of the present work to include more features in future contributions.
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1 Cahn–Hilliard as an interface capturing method

Résumé en Français

Ce chapitre présente la méthode phase-field permettant de capturer
l’interface d’un mélange liquide/vapeur. Cette méthode modélise une in-
terface diffuse, c’est-à-dire avec une certaine épaisseur séparant les phases
liquide et vapeur. La méthode phase-field est basée sur les équations de
Cahn–Hilliard qui prennent leurs origines dans la transformation de phase
et la décomposition spinodale. Ces équations correspondent à une équation
de continuité par rapport à une certaine variable, appelée paramètre d’ordre
permettant d’identifier les phases pures (liquide et vapeur) et l’interface, et
une équation dérivée d’une énergie dépendante du paramètre d’ordre, appelée
énergie libre qui n’est nulle que dans les phases pures.

Pour mieux appréhender et comprendre ces équations, une étude
mathématique et numérique les concernant est requise. Pour initier cette
étude, quelques rappels de propriétés mathématiques de ces équations, ac-
compagnés d’éléments de preuve sont présentés dans ce chapitre. En parti-
culier, sont abordées la propriété de conservation de la masse des équations
de Cahn–Hilliard sous l’hypothèse d’une vitesse d’advection à divergence
nulle, la propriété de dissipation de l’énergie libre et la propriété d’estimation
d’énergie des équations de Cahn–Hilliard.

Afin d’implémenter numériquement cette méthode de capture d’interface,
il est nécessaire de procéder à une discrétisation spatiale et temporelle de
ces équations pour en obtenir une formulation matricielle correspondante au
système à résoudre. La discrétisation spatiale est formulée dans un cadre
élément fini mixte. Pour la discrétisation temporelle, une linéarisation du
terme non-linéaire est requise. Une fois la forme discrète des équations
de Cahn–Hilliard obtenues, un rappel de la propriété d’estimation d’énergie
discrète des équations est proposé, accompagnée d’éléments de preuve. En
particulier, sont déduits les espaces d’énergie auxquelles appartiennent les
solutions des équations de Cahn–Hilliard.

Pour tester le solveur de ces équations, une étape de vérification consistant
en l’étude de convergence du solveur est réalisée. Elle permet de déduire
l’ordre de convergence des solutions des équations selon le schéma numérique
utilisé. Vient ensuite une étape de validation dans laquelle sont simulés des
cas de transport d’interface pure pour une comparaison des performances
avec celles obtenues par une autre méthode de capture d’interface déjà utilisée
par CIMLIB : la méthode level-set.
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1.1. Introduction

1.1 Introduction

This chapter presents the framework of the interface capturing based on the phase-
field method. It is the first step to simulating a liquid/vapor interaction within the
quenching process. The origins of the phase-field method in the Cahn & Hilliard
theory will first be investigated. The obtained governing equations will then be
explained. In the next section, a study of some mathematical properties of these
equations is proposed. To get a solver allowing the interface capturing, a full space
and time discretization of these equations will be established. Then, some numerical
properties of the discretized equations will be described. Finally, a series of numerical
simulations will be performed to have a first glimpse of the solver’s abilities.

1.2 Cahn–Hilliard origins

The origins of the Cahn–Hilliard equations come from phase transformations [1]
and spinodal decomposition [2]. Phase transformations happen when a region in
a material can decrease its free energy by modifying its structure, composition,
or anything characterizing a phase within this material. These processes occur in
many physical phenomena like melting, solidification, condensation, or evaporation
for instance. Transformations from an unstable to a stable phase do not happen
simultaneously within all the material but start in a part of the material due to
spontaneous fluctuation in the material [3]. Spinodal decomposition is an example of
phase transformation for which composition variations increase over time in a phase
until two distinguished phases are created whose concentrations are determined by
the equilibrium conditions. During this process, phases move from regions of low
chemical potential to high chemical potential. That diffusion occurs to diminish the
composition variations and to get a spatially uniform distribution of the chemical
potential. The Cahn–Hilliard theory [4, 5] is based on a continuum equation for the
kinetics of spinodal decomposition. In this theory, the free energy is a function of
the concentration which has a spatial dependence. This concentration, called order
parameter and denoted by φ, allows to identify two phases (Figure 1.1).
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1 Cahn–Hilliard as an interface capturing method

x

φ

1

0

-1
Interface ε

Phase 1 Phase 2

Figure 1.1: Order parameter identifying the phases

It should be understood as being a volume fraction or a mass fraction. With the
volume (or mass) fraction meaning, the order parameter is the volume (or mass)
fraction per unit volume (or mass) of one phase, in a system having two phases. It
takes the value +1 in the first phase and -1 in the second one with a thin, smooth
transition region of width ε between the two phases (Figure 1.2). Consequently the
interface in which these two phases coexist is described by the zero isocontour of
the order parameter φ : Γt := {x ∈ Ω such that φ(x, t) = 0}, ∀t ∈ [0, tf ].

Figure 1.2: Two-phase system within the phase-field Cahn–Hilliard approach

The free energy must increase if φ varies. Specifically, the free energy is mini-
mized for a constant φ, therefore in the pure phases when φ = ±1. By considering
the gradient of the order parameter as a measure of spatial variations in the con-
centration, the Ginzburg–Landau free energy functional [6] is defined as follows:

E(φ) :=

∫
Ω

F (φ) +
ε2

2
|∇φ|2 dx (1.1)
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1.3. The governing equations

where ϵ is the interface thickness and F is the homogeneous free energy. This energy
describes the entropy of mixing and takes into account the interaction between the
two components. The second term of the integral is the energy used to form the
interface separating the two phases. It penalizes large gradients and was introduced
in the theory of phase transitions to model capillary effects. Some expressions for
the free energy have been developed [4, 7–9]. One of the common expressions of the
homogeneous free energy function is the quartic polynomial in the order parameter
φ with a double-well potential form:

F (φ) =
1

4
(φ2 − 1)2 (1.2)

for which two minima are reached for φ = −1 and φ = +1 corresponding to the two
pure phases as represented in Figure 1.3.

φ

F (φ)

φ = +1 φ = −1

Figure 1.3: Homogeneous free energy

The double-well form is a fundamental physical assumption for the free energy F in
the phase separation framework. A logarithmic expression of F can also be found in
the literature [10–12]. However, because of its simplicity in the numerical framework,
the usual form in the numerical literature is the polynomial expression (1.2). In the
following, this expression of free energy is adopted, which is easier to work with.

1.3 The governing equations

The Cahn–Hilliard equation can be derived from the total free energy functional
which can be rewritten as

E [φ] = F [φ] + G[φ]
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1 Cahn–Hilliard as an interface capturing method

where,

F [φ] =

∫
Ω

F (φ) dx and G[φ] =
∫
Ω

ε2

2
|∇φ|2 dx

In the following, boundary conditions on φ are assumed to be as follows:

∇φ ·n = 0 on ∂Ω.

Definition 1.3.1. Let φ be a real function, the directional derivative of a func-
tional F [φ(x)] is defined by

D[λ(x)]F [φ(x)] := lim
µ→0

F [φ(x) + µλ(x)]− F [φ(x)]

µ

and is a linear functional of λ(x) and admits
∫
α(x′)λ(x′)dx′ as its representation,

where

α(x) :=
δF [φ(x)]

δφ(x)
=

∫
α(x′)δ(x′ − x)dx′

Definition 1.3.2. One defines the chemical potential ω as the first derivative of the
free energy functional E with respect to the order parameter φ:

ω :=
δE
δφ

Proposition 1.3.3. The chemical potential ω is related to the order parameter φ
by the following relation:

ω = −ε2∆φ+ F ′(φ) (1.3)

where F ′(φ) = φ(φ2 − 1).

Proof. The directional derivative of E(φ) on ψ is

D[ψ]E [φ] =
∫
Ω

ψ
δE [φ]
δφ

dx

therefore
δE [φ]
δφ

=
δF [φ]

δφ
+
δG[φ]
δφ
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1.3. The governing equations

Lemma 1.3.4. If

F [φ] =

∫
f(φ(x))dx

then,

D[λ(x)]F [φ(x)] =

∫
λ(x)

∂

∂φ
f(φ(x))dx

whence
δF [φ(x)]

δφ(x)
=

∂

∂φ
f(φ(x))

By Lemma1.3.4,
δF [φ]

δφ
=

∂

∂φ
F (φ) = φ(φ2 − 1)

Let λ ∈ R and ψ ∈ H1(Ω), then

G[φ+ λψ] =

∫
Ω

ε2

2
|∇(φ+ λψ)|2 dx

=

∫
Ω

ε2

2
|∇φ+ λ∇ψ|2 dx

=

∫
Ω

ε2

2
(|∇φ|2 + 2λ∇φ ·∇ψ + λ2|∇ψ|2) dx

=

∫
Ω

ε2

2
|∇φ|2 dx+

∫
Ω

ε2

�2
�2λ∇φ ·∇ψ dx+

∫
Ω

ε2

2
λ2|∇ψ|2 dx

G[φ+ λψ] = G[φ] + λε2

∫
∂Ω

ψ∇φ · n︸ ︷︷ ︸
0

dσ −
∫
Ω

ψ∆φ dx

+ λ2
∫
Ω

ε2

2
|∇ψ|2 dx

Therefore,

G[φ+ λψ]− G[φ]
λ

= −
∫
Ω

ψ(ε2∆φ) dx+ λ

∫
Ω

ε2

2
|∇ψ|2 dx

Thus,

D[ψ]G[φ] = lim
λ→0

G[φ+ λψ]− G[φ]
λ

=

∫
Ω

ψ · (−ε2∆φ︸ ︷︷ ︸
δG[φ]
δφ

) dx

It comes that

ω :=
δE [φ]
δφ

= φ(φ2 − 1)− ε2∆φ
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1 Cahn–Hilliard as an interface capturing method

Since the order parameter φ(x, t) must be conserved within the domain Ω in the
absence of sources and sinks, this quantity satisfies to the continuity equation:

dφ

dt
+∇·J = 0 (1.4)

where J representing the mass flux is determined by the Fick’s first law as

J = −D∇φ (1.5)

where D is the diffusion coefficient, which means that the mass flux points in the
direction of decreasing concentration. Note that the usual uniform quantity in equi-
librium is not the concentration φ but the chemical potential ω which is a thermo-
dynamic quantity, unlike φ. A more general form of this driving force for diffusion
is obtained by considering the chemical potential ω(x, t). For the i-th pure phase in
the domain, Ji is induced by the gradient of the chemical potential:

Ji = −cimi
ωi
∂x

(1.6)

where ci and mi are respectively the concentration and the mobility of the i-th pure
phase. Thus, the generalized statement of the Fick’s first law is given by:

J = −M(φ)∇ω (1.7)

whereM(φ) is the mobility coefficient [13]. The diffusion within the system is always
down the gradient of the chemical potential, i.e. from areas of high chemical poten-
tial to areas of low chemical potential. By combining this law with the continuity
equation, it comes

dφ

dt
+∇· (−M(φ)∇ω) = 0. (1.8)

With Equations (1.3) and (1.8), the Cahn–Hilliard equations are written as the
following mixed formulation of a non-linear fourth-order diffusion equation for the
order parameter φ:

dφ

dt
−∇· (M(φ)∇ω) = 0 (1.9)

ω + ε2∆φ− F ′(φ) = 0 (1.10)

Nowadays, this model is applied in diverse scientific fields, such as multiphase fluid
flows, tumor growth, image processing, and population dynamics.
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1.4. Mathematical properties

In order to capture the interface and transport it with a flow velocity u in the
fluid dynamics framework, the Cahn–Hilliard equations become:

∂φ

∂t
+∇· (φu)−∇· (M(φ)∇ω) = 0 in Ω, (1.11)

ω + ε2∆φ− F ′(φ) = 0 in Ω. (1.12)

with the following initial and boundary conditions:

φ(·, 0) = φ0 in Ω, (1.13)

∂φ

∂n
=
∂ω

∂n
= 0 on ∂Ω× [0, tf ]. (1.14)

The degeneracy of the mobility M(φ) involves difficulties in the study of the Cahn–
Hilliard equations. The mobility M(φ) = M is therefore assumed as constant and
positive [14, 15]. However, in the literature [8, 16, 17], different forms of the mobility,
constant or depending on φ, are suggested. Thus, the Cahn–Hilliard equations
are equivalent to a convection-diffusion equation, with non-linear diffusion. The
convection is given by the velocity field u which is assumed fixed, known, and with
enough regularity (at least u ∈ C1), in all the present chapter. φ and ω are the
two solution fields of these equations, which are consequently written under a mixed
formulation. There is no exact solutions for d ≥ 2. Numerical methods must be used
to determine the solutions and study their evolution. Before tackling the numerical
framework, one introduces some mathematical properties of these equations.

1.4 Mathematical properties

The role of mathematics is to enable the theoretical and numerical validation of the
models and approximations. Three components are in permanent interaction:

1. Modeling: to identify the phenomena to model, to identify the scales and
the pertinent parameters for the phenomenon to model, to propose mecha-
nisms explaining these phenomena, to propose simplified systems for which
the mathematical study is possible, etc...

2. Theoretical analysis: proof of the ”well-posedness” characteristic of the
models (existence and uniqueness of solutions), asymptotic analysis of the
models (when the parameters tend toward zero), stability analysis of the sta-
tionary solutions (equilibrium points of the system), compactness study, etc...

3. Numerical analysis: proof of results justifying the relevance of the numeri-
cal approximation, effective calculation of the models approximated solutions,
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1 Cahn–Hilliard as an interface capturing method

predicting the unstable behaviors, parameter dependency analysis, develop-
ing more robust and faster codes based on the mathematical analysis of the
system, etc...

In all the theoretical results introduced in the present chapter, the order pa-
rameter φ is assumed respecting the maximum principle. One notes that it is a
strong hypothesis since it is the biggest difficulty in the mathematical analysis of
the Cahn–Hilliard equations [18]

The present section will focus on a brief review of the mathematical results of
the model (1.11)-(1.14) introduced previously. These governing equations describe
the time-space evolution of the macroscopic quantities involved in the mixture com-
position, i.e. the order parameter φ and the chemical potential ω. The Equations
(1.11)-(1.12) associated to the boundary conditions (1.13)-(1.14) verify the following
property, also called mass conservation of the Cahn–Hilliard equations.

Definition 1.4.1. The mass m of the order parameter φ in the domain Ω is defined
by:

m(φ) :=

∫
Ω

φ(x, t) dx

Proposition 1.4.2. For all solution φ of (1.11)-(1.12) verifying the conditions
(1.13)-(1.14) with a regular enough velocity field u verifying the divergence-free con-
dition ∇· (u) = 0 in Ω,

d

dt
m(φ) = 0

which implies

m (φ(t)) = m(φ0)

Proof. Let φ a solution of (1.11)-(1.12) verifying (1.13)-(1.14) and u regular enough
verifying ∇· (u) = 0 in Ω, then

d

dt
m (φ(t)) =

d

dt

∫
Ω

φ(x, t) dx

=

∫
Ω

d

dt
φ(x, t) dx

=

∫
Ω

∇· (M(φ)∇ω)− φ∇· (u)︸ ︷︷ ︸
0

dx
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1.4. Mathematical properties

=

∫
∂Ω

M(φ)∇ω · n︸ ︷︷ ︸
0 on ∂Ω

ds

d

dt
m (φ(t)) = 0.

It comes that m (φ(t)) is constant with respect to the time t:

m (φ(t)) = m(φ0)

Another property of the model (1.11)-(1.14) is the dissipation of the free
energy functional (16) relying on this model.

Proposition 1.4.3. For all solution φ of (1.11)-(1.12) verifying the conditions
(1.13)-(1.14),

d

dt
E(φ) ≤ 0

Proof. Let φ a solution of (1.11)-(1.12) verifying (1.13)-(1.14), then

d

dt
E(φ) =

d

dt

∫
Ω

(F (φ) +
ε2

2
|∇φ|2) dx

=

∫
Ω

(
d

dt
F (φ) +

ε2

2

d

dt
|∇φ|2) dx

=

∫
Ω

(f(φ)
dφ

dt
+
ε2

�2
�2∇φ · d

dt
∇φ︸ ︷︷ ︸

∇( dφ
dt )

) dx

=

∫
Ω

(f(φ)− ε2∆φ)
dφ

dt
dx+

∫
∂Ω

ε2
dφ

dt
∇φ · n︸ ︷︷ ︸
0 on ∂Ω

ds

=

∫
Ω

ω∇· (M(φ)∇ω) dx

=

∫
∂Ω

ωM(φ)∇ω · n︸ ︷︷ ︸
0 on ∂Ω

ds−
∫
Ω

∇ω · (M(φ)∇ω) dx

= −
∫
Ω

M(φ)|∇ω|2 dx where M(φ) is positive

d

dt
E(φ) ≤ 0

31



1 Cahn–Hilliard as an interface capturing method

The mathematical study usually relies on different fundamental questions. First,
the question of the existence and uniqueness of solutions allows to state the well-
posedness of the problem (1.11)-(1.14). It is often very difficult to answer this
question in the framework of strong solutions. They require strong regularities,
they are in complex spaces, and they are not necessarily unique. The framework of
the weak solutions is a bit easier because they require weak regularities. They are
found in the energy spaces and before looking into their existence, one usually looks
for these energy spaces, by establishing the energy estimate similarly to [19].

Theorem 1.4.4. If the solutions φ and ω of (1.11)-(1.12) with the conditions
(1.13)-(1.14) exist in the weak sense where the velocity field u is regular enough
and verifies u · n = 0 on ∂Ω, then

φ ∈ L∞([0, tf ];H
1(Ω)) ∩ L2([0, tf ];H

2(Ω))

ω ∈ L2([0, tf ];H
1(Ω))

and the following energy estimate is obtained for a certain c1, c2, c3 > 0:

c1

∫ t

0

∥∇ω(s)∥2L2(Ω) ds+ c2

∫ t

0

∥u(s)∥2L2(Ω) ds

+ c3∥∇φ(t)∥2L2(Ω) + ∥φ
2(t)− 1

2
∥2L2(Ω)

≤c3∥∇φ0∥2L2(Ω) + ∥φ
2
0 − 1

2
∥2L2(Ω)

(1.15)

The sketch of the proof is established here for the sake of completeness.

Proof. Let φ and ω weak solutions of (1.11)-(1.12) with the conditions (1.13)-(1.14)
where the velocity field u is regular enough and verifies u · n = 0 on ∂Ω.One
multiplies Equation (1.11) by ω and integrates it on Ω. Then, Equation (1.12) is
multiplied by −∂tφ and integrated on Ω. Finally, these both equations are summed.
By dealing with each term:

1.
∫
Ω
ω∂tφ dx.

2.
∫
Ω
ω∇φ · u dx.

3.
∫
Ω
ωφ∇·u dx
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1.4. Mathematical properties

4. −
∫
Ω
∇· (M(φ)∇ω)ω dx = −

∫
Ω

∇· (M(φ)ω∇ω) dx︸ ︷︷ ︸∫
∂ΩM(φ)ω∇ω·n ds=0

+
∫
Ω
M(φ)|∇ω|2 dx

Therefore −
∫
Ω
∇· (M(φ)∇ω)ω dx =

∫
Ω
M(φ)|∇ω|2 dx (because of (1.14)).

5. -
∫
Ω
ω∂tφ dx.

6. −
∫
Ω
ε2∆φ∂tφ dx = −

0 because of (1.14)︷ ︸︸ ︷∫
∂Ω

ε2∂tφ∇φ · n ds+
∫
Ω
ε2∇(∂tφ) ·∇φ dx

Therefore −
∫
Ω
ε2∆φ∂tφ dx =

∫
Ω
∂t(

ε2

2
|∇φ|2) dx.

7. −
∫
Ω
f(φ)×(−∂tφ) dx =

∫
Ω
∂tφf(φ) dx =

∫
Ω
∂t (F (φ)) dx = ∂t

(∫
Ω
F (φ) dx

)
.

and summing them, it comes

��
����∫

Ω

ω∂tφ dx+

∫
Ω

ωu ·∇φ dx+

∫
Ω

ωφ∇·u dx+

∫
Ω

M(φ)|∇ω|2 dx

−
���

���∫
Ω

ω∂tφ dx+ ∂t

(∫
Ω

ε2

2
|∇φ|2 dx

)
+ ∂t

(∫
Ω

F (φ) dx

)
= 0

However, because u · n = 0 in ∂Ω,∫
Ω

ωu ·∇φ dx+

∫
Ω

ωφ∇·u dx =

∫
Ω

ω∇· (φu) dx

=

∫
Ω

∇· (ωφu) dx−
∫
Ω

φu ·∇ω dx

=

∫
∂Ω

ωφu · n︸︷︷︸
0

ds−
∫
Ω

φu ·∇ω dx∫
Ω

ωu ·∇φ dx+

∫
Ω

ωφ∇·u dx = −
∫
Ω

φu ·∇ω dx

Thus,

−
∫
Ω

φu ·∇ω dx+

∫
Ω

M(φ)|∇ω|2 dx+ ∂t

(∫
Ω

ε2

2
|∇φ|2 dx+

∫
Ω

F (φ) dx

)
= 0

Furthermore,∫
Ω

φu ·∇ω dx ≤ ∥φ∥L∞(Ω)

∫
Ω

u ·∇ω dx because φ is bounded in Ω× [0, tf ]
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1 Cahn–Hilliard as an interface capturing method

≤ ∥φ∥L∞(Ω)∥∇ω∥L2(Ω)∥u∥L2(Ω) by Cauchy–Schwarz’s inequality∫
Ω

φu ·∇ω dx ≤ ∥φ∥L∞(Ω)

(
α

2
∥∇ω∥2L2(Ω) +

1

2α
∥u∥2L2(Ω)

)
by Young’s inequality for a certain α > 0.

Thus,

−
∫
Ω

φu ·∇ω dx ≥ −∥φ∥L∞(Ω)

(
α

2
∥∇ω∥2L2(Ω) +

1

2α
∥u∥2L2(Ω)

)
which means,

−∥φ∥L∞(Ω)

(
α

2
|∇ω|2L2(Ω) +

1

2α
∥u∥2L2(Ω)

)
+

∫
Ω

M(φ)|∇ω|2 dx

+∂t

(∫
Ω

ε2

2
∥∇φ∥2 dx

)
+ ∂t

(∫
Ω

F (φ) dx

)
≤ 0

Because the mobility is assumed as constant and positive : M(φ) = M > 0,

F (φ) =
(
φ2−1

2

)2
, and by integrating w.r.t the time t,

− ∥φ∥L∞(Ω)
α

2

∫ t

0

∥∇ω(s)∥2L2(Ω) ds+
1

2α

∫ t

0

∥u(s)∥2L2(Ω) ds

+ M

∫ t

0

∥∇ω(s)∥2L2(Ω) ds+
ε2

2
∥∇φ(t)∥2L2(Ω) −

ε2

2
∥∇φ0∥2L2(Ω)

+ ∥φ
2(t)− 1

2
∥2L2(Ω) − ∥φ

2
0 − 1

2
∥2L2(Ω) ≤ 0

For α > 0 such that M − α
2
∥φ∥L∞(Ω) > 0,(

M − ∥φ∥L∞(Ω)
α

2

)∫ t

0

∥∇ω(s)∥2L2(Ω) ds+
1

2α

∫ t

0

∥u(s)∥2L2(Ω) ds

+
ε2

2
∥∇φ(t)∥2L2(Ω) + ∥φ

2(t)− 1

2
∥2L2(Ω)

≤ ε2

2
∥∇φ0∥2L2(Ω) + ∥φ

2
0 − 1

2
∥2L2(Ω)

This energy estimate gives a control of the solutions by the initial data. From
this estimate, one deduces that

φ ∈ L∞([0, tf ];H
1(Ω)) ∩ L2([0, tf ];H

2(Ω))

ω ∈ L2([0, tf ];H
1(Ω))
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1.5. Space and time discretization for the Cahn–Hilliard equations

Once the energy spaces are known, it is usually in the mathematical study to
prove the existence and uniqueness of these solutions. In [20], under certain as-
sumptions like periodicity on φ, the existence of global weak solutions of the model
(1.11)-(1.14) is proved.

Another fundamental question concerns the order parameter φ which has its
physical values between -1 and 1 in the Cahn–Hilliard model. It is then necessary to
ensure that the continuous and discrete solutions of the equations verify this prop-
erty [21, 22]. The main difficulty is the non-existence of the maximum principle for
the bilaplacian operator and for the 4ht-order elliptic operators [18]. For constant
mobility and polynomial free energy such as (1.2), the L∞ estimation of the maxi-
mum principle is not verified. However, as shown in [20], it is at least necessary to
have degenerate mobility M(φ) for φ = ±1 or free energy with a logarithmic form
to satisfy the estimate.

1.5 Space and time discretization for the Cahn–Hilliard equa-
tions

Like many other models the Cahn–Hilliard model cannot be solved analytically and
needs to be dealt with alternatively. Especially because of its high non-linearity,
numerical solving of the equations is necessary. The numerical approach will not
allow getting the exact solution(s) of the equations but will help to compute an
approximation of the solution. Furthermore, the solutions can be visualized through
numerical simulation. In order to do that, the Equations (1.11)-(1.12) need to be
discretized in space and time. In this section, the discretization of these equations
will be established to get the Cahn–Hilliard solver to implement.

1.5.1 Mixed finite element framework

In this section, a weak formulation of the Cahn–Hilliard model (1.11)-(1.14) similar
to [15, 21] is presented. The space discretization will be established with the contin-
uous Galerkin CG1 method in the finite element framework. Let Lp(Ω) denotes the
space of p integrable functions with norm denoted by ∥ · ∥0,p , where for simplicity of
notation one sets ∥ ·∥0,2 = ∥ ·∥. Let Hm(Ω), m ∈ {−1, 1, 2}, the usual Sobolev space

with norm ∥ · ∥m and let (H1(Ω))
′
denote the dual space of H1(Ω). One defines the

following spaces:

V = {v ∈ H1(Ω) such that (v, 1) = 0}, (1.16)

Hm
E (Ω) = {v ∈ Hm(Ω) such that ∂nv = 0 on ∂Ω}, (1.17)

where (·,·) denotes the L2 inner product.
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1 Cahn–Hilliard as an interface capturing method

The mixed weak formulation of (1.11)-(1.14) is defined as follows: for tf > 0,

find (φ, ∂tφ, ω) ∈ L∞(0, tf ;H
4
E(Ω) ∩ V ) ∩ H1(0, tf ;L

2(Ω)) × L2(0, tf ; (H
1(Ω))

′
) ×

L∞(0, tf ;H
2
E(Ω)) such that for all (ψ, χ) ∈ H1(Ω)×H1(Ω)

(∂tφ, ψ) + ((u ·∇)φ, ψ) + (φ∇· (u), ψ) +M(∇ω,∇ψ) = 0, (1.18)

(ω, χ)− ε2(∇φ,∇χ)− (φ(φ2 − 1), χ) = 0, (1.19)

φ(·, 0) = φ0, (1.20)

where φ0 ∈ H1(Ω).

Let the triangulation Th of Ω be a family of disjoint elements K so that

Ω =
⊔
K∈Th

K

and Vh ⊂ H1(Ω) the finite element space associated to Th defined by

Vh = {vh ∈ C0(Ω̄) such that vh|K ∈ P1, K ∈ Th} (1.21)

where P1 denotes the set of polynomials of degree less or equal to 1. Thus (1.18)-
(1.20) can be written under the following P1 finite element formulation by the
Galerkin approximation : for tf > 0, find (φh, ωh) ∈ Vh × Vh such that for all
(ψh, χh) ∈ Vh × Vh

(∂tφh, ψh) + ((u ·∇)φh, ψh) + (φh∇· (u), ψh) +M(∇ωh,∇ψh) = 0, (1.22)

(ωh, χh)− ε2(∇φh,∇χh)− (φh(φ
2
h − 1), χh) = 0, (1.23)

φh(·, 0) = φ0h ,(1.24)

where φ0h ∈ Vh.

Before having the matrix linear system allowing the numerical solving of the
Cahn–Hilliard equations, a time discretization and linearization step is necessary.
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1.5. Space and time discretization for the Cahn–Hilliard equations

1.5.2 Time discretized scheme and linearization

In order to solve the Cahn–Hilliard equations (1.22)-(1.24) with P1 finite elements
method, the equation is discretized as a system and solved at each time step in
[0, tf ], tf > 0, with an implicit time discretization using backward differentiation
formula for the time derivative of φ with order p.

t0 = 0, tn = n∆t and tN = tf ,

u(·, tn+1) = un+1 is known ,

φ(·, tn+1) ≈ φn+1,

∂φ

∂t
(·, tn+1) ≈ α0φ

n+1 −
∑p−1

k=0 βkφ
n−k

∆t
,

∇φ(·, tn+1) ≈ ∇φn+1,

ω(·, tn+1) ≈ ωn+1,

∆φ(·, tn+1) ≈ ∆φn+1,

φ(φ2 − 1)(·, tn+1) = (φ3 − φ)(·, tn+1) ≈ (φ3 − φ)n+1.

Therefore, the space-time discretized Cahn–Hilliard equation with the finite el-
ement framework is given by

(
α0φ

n+1
h −

∑p−1
k=0 βkφ

n−k
h

∆t
, ψh) +

(
(un+1 ·∇)φn+1

h , ψh
)

+(φn+1
h ∇· (un+1), ψh) +M(∇ωn+1

h ,∇ψh) = 0,

(1.25)

(ωn+1
h , χh)− ε2(∇φn+1

h ,∇χh)−
(
(φ3 − φ)n+1

h , χh
)
= 0, (1.26)

for φnh, ω
n
h , ψh, χh ∈ Vh and a known un+1.

The BDF-1 Cahn–Hilliard equation is considered here. Therefore, with α0 = 1
and β0 = 1, it comes the following dicretization

α0φ
n+1
h −

∑p−1
k=0 βkφ

n−k
h

∆t
=
φn+1
h − φnh
∆t

(1.27)

Consequently, the space-time discretized Cahn–Hilliard equations become: find
(φn+1

h , ωn+1
h ) ∈ Vh × Vh such that for all (ψh, χh) ∈ Vh × Vh,

(
φn+1
h

∆t
, ψh) +

(
(un+1 ·∇)φn+1

h , ψh
)

+(φn+1
h ∇· (un+1), ψh) +M(∇ωn+1

h ,∇ψh) = (
φnh
∆t
, ψh),

(1.28)
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1 Cahn–Hilliard as an interface capturing method

(ωn+1
h , χh)− ε2(∇φn+1

h ,∇χh)−
(
(φ3 − φ)n+1

h , χh
)
= 0, (1.29)

and by considering an element Kp of the triangulation Th of Ω ⊂ Rd and denoting
by φn+1

p and ωn+1
p the unknowns solutions in the element Kp at the instant n+1, the

formulation on each element Kp is written as follows: find (φn+1
p , ωn+1

p ) ∈ Vh × Vh
such that for all (ψh, χh) ∈ Vh × Vh,

(
φn+1
p

∆t
, ψh)Kp +

(
(un+1 ·∇)φn+1

p , ψh
)
Kp

+(φn+1
p ∇· (un+1), ψh)Kp +M(∇ωn+1

p ,∇ψh)Kp = (
φn

∆t
, ψh)Kp ,

(1.30)

(ωn+1
h , χh)Kp − ε2Kp

(∇φn+1
h ,∇χh)Kp −

(
(φ3 − φ)n+1

p , χh
)
Kp

= 0, (1.31)

where (·, ·)Kp denotes the L2-inner product on the element Kp.

One introduces the following elementary bilinear forms:

mp(·, ·) : H1(Ω)×H1(Ω) → R

(u, v) 7→
∫
Kp

uv dx

ap(·, ·) : H1(Ω)×H1(Ω) → R

(u, v) 7→
∫
Kp

∇u ·∇v dx

bp(·, ·) : H1(Ω)×H1(Ω) → R

(u, v) 7→
∫
Kp

εKp∇u ·∇v dx

dp(·, ·) : H1(Ω)×H1(Ω) → R

(u, v) 7→
∫
Kp

(un+1 ·∇u)v dx+

∫
Kp

∇· (un+1)uv dx

and denotes

φn+1
p =

d+1∑
j=1

φn+1
j ψpj and ωn+1

p =
d+1∑
j=1

ωn+1
j ψpj

where (ψpj )1≤j≤d+1 are the local shape functions associated to the element Kp.

Having a matrix formulation depends on how the non-linear term (φ3−φ)n+1
p in

the equation for the chemical potential (1.31) is treated. To deal with this non-linear
term, three different discretized linear schemes are proposed for this term:
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1.5. Space and time discretization for the Cahn–Hilliard equations

� A classical linear scheme:(
φ(φ2 − 1)

)n+1

p
≈
(
(φn)2 − 1

)
φn+1
p (1.32)

This linear scheme gives the following discrete problem: find (φn+1
j , ωn+1

j ),
j ∈ {1, ..., d+ 1} such that

d+1∑
i=1

d+1∑
j=1

(
φn+1
j

∆t
ψpj , ψ

p
i )Kp +

d+1∑
i=1

d+1∑
j=1

(
φn+1
j (un+1 ·∇)ψpj , ψ

p
i

)
Kp

+
d+1∑
i=1

d+1∑
j=1

(∇· (un+1)φn+1
j ψpj , ψ

p
i )Kp +M

d+1∑
i=1

d+1∑
j=1

(ωn+1
j ∇ψpj ,∇ψpi )Kp

=
d+1∑
i=1

d+1∑
j=1

(
φnj
∆t
ψpj , ψ

p
i )Kp ,

d+1∑
i=1

d+1∑
j=1

(ωn+1
j ψpj , ψ

p
i )Kp −

d+1∑
i=1

d+1∑
j=1

(ε2Kp
φn+1
j ∇ψpj ,∇ψpi )Kp

−
d+1∑
i=1

d+1∑
j=1

((
(φn)2 − 1

)
φn+1
j ψpj , ψ

p
i

)
Kp

= 0,

Let Φn+1
p and Xn+1

p respectively represent the fields φn+1
p and ωn+1

p in the local
basis of the element Kp. The elementary matrix formulation is then written
as following(

1
∆t
Me

p +De
p(U

n+1) MKe
p

−Be
p −Me

p((Φ
n)2 − 1) Me

p

)(
Φn+1
p

Xn+1
p

)
=

(
1
∆t
Me

p(Φ
n)

0

)
(1.33)

where [
Me

p

]
i,j

= mp(ψ
p
j , ψ

p
i ), for i, j ∈ {1, ..., d+ 1},[

Ke
p

]
i,j

= ap(ψ
p
j , ψ

p
i ), for i, j ∈ {1, ..., d+ 1},[

Be
p

]
i,j

= bp(ψ
p
j , ψ

p
i ), for i, j ∈ {1, ..., d+ 1},[

De
p

]
i,j

= dp(ψ
p
j , ψ

p
i ), for i, j ∈ {1, ..., d+ 1}.

� The Eyre linear scheme for β = 1 [23]:(
φ(φ2 − 1)

)n+1

p
≈ βφn+1

p + (φn)3 − (β + 1)φn = φn+1
p + (φn)3 − 2φn (1.34)

By following the same way as above, the matrix formulation is then,(
1
∆t
Me

p +De
p(U

n+1) MKe
p

−Be
p −Me

p Me
p

)(
Φn+1
p

Xn+1
p

)
=

(
1
∆t
Me

p(Φ
n)

Me
p ((Φ

n)2 − 2Φn)

)
(1.35)
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1 Cahn–Hilliard as an interface capturing method

� The optimal dissipation scheme [24]:(
φ(φ2 − 1)

)n+1

p
≈ 1

2

(
3(φn)2 − 1

)
φn+1
p − 1

2

(
(φn)3 + φn

)
(1.36)

which involves the following matrix formulation:(
1
∆t
Me

p +De
p(U

n+1) MKe
p

−Be
p −Me

p

(
3(Φn)2−1

2

)
Me

p

)(
Φn+1
p

Xn+1
p

)
=

(
1
∆t
Me

p(Φ
n)

−Me
p

(
(Φn)3+Φn

2

)) (1.37)

1.6 Numerical properties

This section is dedicated to the study of the numerical scheme of the Cahn–Hilliard
model presented in the previous section. In the numerical study, it is usual to look
for the a priori estimates by determining beforehand the energy estimate associated
with the model. Then, the existence of approximated solutions is deduced. Finally,
their convergence is obtained by using compactness results. These two last points
will not be treated in the present work.

By starting from the Cahn–Hilliard equations with non-degenerate and constant
mobility:

∂φ

∂t
+ (u ·∇)φ+ φ∇· (u)−M∆ω = 0 in Ω, (1.38)

ω + ε2∆φ− F ′(φ) = 0 in Ω. (1.39)

completed with the initial and boundary conditions given by (1.13)-(1.14), one pro-
poses the following time semi-discretization:

φn+1 − φn

∆t
+ (un+1 ·∇)φn+1 + φn+1∇·un+1 −M∆ωn+1 = 0 in Ω, (1.40)

ωn+1 + ε2∆φn+1 − F ′(φ)n+1 = 0 in Ω, (1.41)

It is important to note that if the velocity is divergence-free ∇·u = 0, the approx-
imation may not enforce this constraint at the discrete level. The corresponding
discretized term must be kept in the numerical scheme.
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1.6. Numerical properties

Just like Section 1.4, there exists an energy estimate result at the discrete level:

Theorem 1.6.1. If the solutions φn and ωn of (1.40)-(1.41) exist in the weak sense,
then

φn ∈ L∞(0, tf ;H
1(Ω)) ∩ L2(0, tf ;H

2(Ω))

ωn ∈ L2(0, tf ;H
1(Ω))

and for all N ∈ N there exists a, b, and c(∆t) > 0 such that

a∥∇φN∥2L2(Ω) + b(F (φ)N , 1) + c(∆t)
N−1∑
n=0

∥∇ωn+1∥2L2(Ω) < +∞ (1.42)

Proof. Let φn and ωn weak solutions of (1.40)-(1.41). By multiplying Equation
(1.40) by ∆tωn+1 and Equation (1.41) by −(φn+1 − φn), then by integrating and
summing, it comes

((((((((((
(φn+1 − φn, ωn+1) + ∆t

(
(un+1 ·∇)φn+1, ωn+1

)
+ ∆t

(
φn+1∇·un+1, ωn+1

)
−M∆t(∆ωn+1, ωn+1)

− ((((((((((
(φn+1 − φn, ωn+1)− ε2(∆φn+1, φn+1 − φn) + (F ′(φn), φn+1 − φn) = 0

Therefore by integrating by parts and using the Neumann boundary conditions on
φn and ωn for all n ∈ N,

∆t
(
∇· (φn+1un+1), ωn+1

)
+M∆t(∇ωn+1,∇ωn+1)

+ (F ′(φn), φn+1 − φn) + ε2 (∇φn+1,∇φn+1 −∇φn)︸ ︷︷ ︸
1
2
(∥∇φn+1∥2

L2(Ω)
−∥∇φn∥2

L2(Ω)
+∥∇φn+1−∇φn∥2

L2(Ω)
)

= 0

Thus,

− ∆t
(
φn+1un+1,∇ωn+1

)
+M∆t∥∇ωn+1∥2L2(Ω) + (F ′(φ)n+1, φn+1 − φn)

+
ε2

2
(∥∇φn+1∥2L2(Ω) − ∥∇φn∥2L2(Ω) + ∥∇φn+1 −∇φn∥2L2(Ω)) = 0

Since inf
R
F ′′ = −1, then

F (φ)n+1 − F (φ)n ≤ F ′(φ)n+1(φn+1 − φn) +
(φn+1 − φn)2

2

Therefore (F (φ)n+1−F (φ)n, 1) ≤ (F ′(φ)n+1, φn+1−φn)+
∥φn+1−φn∥2

L2(Ω)

2
and by the

Poincaré’s inequality, there exists CP (h) > 0 such that

(F (φ)n+1 − F (φ)n, 1) ≤ (F ′(φ)n+1, φn+1 − φn) + CP
∥∇φn+1 −∇φn∥2L2(Ω)

2
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1 Cahn–Hilliard as an interface capturing method

In the semi-discrete energy estimate, the expression

(F ′(φ)n+1, φn+1 − φn) +
ε2

2

∥∇φn+1 −∇φn∥2L2(Ω)

2

is true for all ε, then by choosing it such that ε2 = CP ,

− ∆t
(
φn+1un+1,∇ωn+1

)
+M∆t∥∇ωn+1∥2L2(Ω) + (F ′(φ)n+1, φn+1 − φn)

+
CP
2
(∥∇φn+1∥2L2(Ω) − ∥∇φn∥2L2(Ω) + ∥∇φn+1 −∇φn∥2L2(Ω)) = 0

Furthermore, respectively because φ is bounded, the Cauchy–Schwarz inequality,
and Young’s inequality, it comes

∆t
(
φn+1un+1,∇ωn+1

)
≤ ∆t∥φn+1∥L∞(Ω)

(
∇ωn+1,un+1

)
≤ ∆t∥φn+1∥L∞(Ω)∥∇ωn+1∥L2(Ω)∥un+1∥L2(Ω)

∆t
(
φn+1un+1,∇ωn+1

)
≤ ∆t∥φn+1∥L∞(Ω)

(
θ

2
∥∇ωn+1∥2L2(Ω) +

1

2θ
∥un+1∥2L2(Ω)

)
Consequently,

−∆t
(
φn+1un+1,∇ωn+1

)
≥ −∆t∥φn+1∥L∞(Ω)

(
θ

2
∥∇ωn+1∥2L2(Ω) +

1

2θ
∥un+1∥2L2(Ω)

)
Whence

− ∆t∥φn+1∥L∞(Ω)

(
θ

2
∥∇ωn+1∥2L2(Ω) +

1

2θ
∥un+1∥2L2(Ω)

)
+M∆t∥∇ωn+1∥2L2(Ω)

+ (F (φn+1)− F (φn), 1) +
CP
2
(∥∇φn+1∥2L2(Ω) − ∥∇φn∥2L2(Ω)) ≤ 0

By choosing θ > 0 such that θ < 2M
∥φn+1∥L∞(Ω)

,

∆t

(
M − ∥φn+1∥L∞(Ω)

θ

2

)
∥∇ωn+1∥2L2(Ω) −

∆t∥φn+1∥L∞(Ω)

2θ
∥un+1∥2L2(Ω)

+ (F (φn+1)− F (φn), 1) +
CP
2
(∥∇φn+1∥2L2(Ω) − ∥∇φn∥2L2(Ω)) ≤ 0

Since the known data un is assumed in L2(Ω), then un is bounded for all n ∈
{0, 1, ..., N − 1}: there exists u ∈ L2(Ω) such that

∀n ∈ {0, 1, ..., N − 1}, ∥un+1∥2L2(Ω) ≤ ∥u∥2L2(Ω)
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1.6. Numerical properties

It comes

∆t

(
M − ∥φn+1∥L∞(Ω)

θ

2

)
∥∇ωn+1∥2L2(Ω) + (F (φn+1)− F (φn), 1)

+
CP
2
(∥∇φn+1∥2L2(Ω) − ∥∇φn∥2L2(Ω)) ≤

∆t∥φn+1∥L∞(Ω)

2θ
∥u∥2L2(Ω)

By summing in time for n from 0 to N − 1, for all N ∈ N,

∆t
N−1∑
n=0

(
M − ∥φn+1∥L∞(Ω)

θ

2

)
∥∇ωn+1∥2L2(Ω) +

N−1∑
n=0

(F (φ)n+1 − F (φ)n, 1)

+
CP
2

N−1∑
n=0

(
∥∇φn+1∥2L2(Ω) − ∥∇φn∥2L2(Ω)

)
≤

N−1∑
n=0

∆t∥φn+1∥L∞(Ω)

2θ
∥u∥2L2(Ω)

Because ∥φn+1∥L∞(Ω) < +∞, there exists C0 > 0 such that ∥φn+1∥L∞(Ω) ≤ C0.
Hence

∆t

(
M − C0

θ

2

)N−1∑
n=0

(
∥∇ωn+1∥2L2(Ω)

)
+ (F (φ)N , 1)− (F (φ)0, 1)

+
CP
2

(
∥∇φN∥2L2(Ω) − ∥∇φ0∥2L2(Ω)

)
≤ ∆tC0

2θ
∥u∥2L2(Ω)

N−1∑
n=0

1

Thus for all N ∈ N,

∆t

(
M − C0

θ

2

)N−1∑
n=0

(
∥∇ωn+1∥2L2(Ω)

)
+ (F (φ)N , 1) +

CP
2
∥∇φN∥2L2(Ω)

≤ CP
2
∥∇φ0∥2L2(Ω) + (F (φ)0, 1) +

∆tC0

2θ
∥u∥2L2(Ω)

N(N − 1)

2
< +∞

where φ0, F (φ)0, and u are known initial data.

From this estimate and by using the fact that ∆φn is in the expression of ωn,
one deduces that for all n ∈ N

φn ∈ L∞(0, tf ;H
1(Ω)) ∩ L2(0, tf ;H

2(Ω)),

ωn ∈ L2(0, tf ;H
1(Ω)).
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1 Cahn–Hilliard as an interface capturing method

The proved relation shows the decay along time of the energy associated with
the system (1.40)-(1.41). Moreover, as mentioned previously, the energy estimate
(1.6.1) provide also very useful a priori estimations allowing to proof the existence of
approximated solutions and a convergence towards weak solutions of (1.40)-(1.41).
The proof of existence and convergence towards weak solutions has been done in [25]
for discretized equations slightly different from those studied in the present work.

A key point of the existence theorem is that the bounds can depend on the time
step ∆t and the mesh size h, which is a dependence of the Poincaré constant CP (h),
whereas it is crucial that the a priori estimates are independent of ∆t and h to
prove the convergence theorem.

1.7 Simulation of an interface transport

This section is dedicated to the simulation of test cases for interface transport by
the Cahn–Hilliard equations and the numerical method previously presented. This
is to investigate the efficiency and applicability of this method in two-dimensional
space. First, a convergence analysis is performed to assess the numerical solver.
Manufactured solutions similar to [26] will be used in the study for the different
linearized schemes. Then a series of test cases are performed including a pulse
rotation, a single vortex - both of them initially represented in Figure 1.4 below -,
and the Zalesak disk benchmark as defined in [27].

r

Figure 1.4: Inital step for benchmarks
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1.7. Simulation of an interface transport

In the different test cases, the mesh is considered uniform and the mesh size is
at the most h ≃ ε

4
so that the bi-Laplacian of the Cahn–Hilliard equations is well

approximated. In all the following simulations, the GMRes solver preconditioned by
Jacobi ILU is used for the solving of Cahn–Hilliard systems. Furthermore, the phase-
field function is initialized from the level-set function which has been regularized
and normalized to get a diffuse interface of thickness ε with an order parameter
φ ∈ [−1, 1]. In this way, the zero isovalues of the level-set and phase-field functions
are initially the same.

1.7.1 Numerical convergence analysis

In scientific computing, the aim of code verification is to ensure that the code is a
faithful representation of the underlying mathematical model. This model generally
consists of partial differential equations (PDEs) with initial and boundary condi-
tions, and possibly other constraints. Code verification therefore considers both the
correctness of the numerical algorithms chosen and that of the implementation of
these algorithms in the source code [28]. Stern & al. [29] describe a set of procedures
for verification, validation and certification methodologies for numerical simulations.

The method of manufactured solutions is a very powerful and general approach
to create exact solutions for a system of PDEs. Rather than trying to find an exact
solution of the system of PDEs with initial and boundary conditions, the goal is
to ”manufacture” an exact solution for a system of PDEs slightly modified. For
code verification, it is not necessary for the manufactured solution to be related to a
realistic physical problem: the verification is only concerned with the mathematics
of a given problem. The method of manufactured solutions requires the solution of
an inverse problem: given a set of equations and a chosen solution, find a set of
modified equations that satisfy this solution.

To study the convergence of our numerical solvers, a body source term is en-
forced in the Cahn–Hilliard equations to impose an exact solution. The problem is
considered in a two-dimensional domain with (x, y) ∈ [0, 1]2. According to [30], a
manufactured Cahn–Hilliard solution is given by

φ(x, y; t) = cos(πx) cos(πy) cos(t). (1.43)

Using the definition of the chemical potential, the manufactured solution ω is then

ω(x, y; t) = φ(φ2 − 1 + 2π2ε2) because ∆φ = −2π2φ, (1.44)

with φ given by (1.45).
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1 Cahn–Hilliard as an interface capturing method

The velocity is chosen as follows

u(x, y; t) =

(
sin(πx) cos(πy) sin(t)
− cos(πx) sin(πy) sin(t)

)
. (1.45)

The velocity is divergence-free: ∇·u = 0. As previously said, this is unfortunately
not necessarily verified numerically. Therefore, the velocity divergence term is kept
in the discretization. The following initial conditions are deduced:

u(·, 0) =
(
0
0

)
, φ(·, 0) = φ0(x, y) = cos(πx) cos(πy).

By injecting the expressions given by (1.43), (1.44), and (1.45) in the Cahn–
Hillard equations (1.38)-(1.39), the different terms are calculated as follows:

� ∂tφ(x, y; t) = − cos(πx) cos(πy) sin(t)

� u ·∇φ =

(
sin(πx) cos(πy) sin(t)
− cos(πx) sin(πy) sin(t)

)
·
(
−π sin(πx) cos(πy) cos(t)
−π cos(πx) sin(πy) cos(t)

)
u ·∇φ = π cos(t) sin(t)

(
cos2(πx) sin2(πy)− sin2(πx) cos2(πy)

)
u ·∇φ = π cos(t) sin(t)

(
( cos(2πx)+1

2
)(1−cos(2πy)

2
)− (1−cos(2πx)

2
)( cos(2πy)+1

2
)
)

u ·∇φ = π cos(t) sin(t)
4

(cos(2πx)+ �1−cos(2πy)−((((((((((
cos(2πx) cos(2πy)− [cos(2πy)−

((((((((((
cos(2πx) cos(2πy)− cos(2πx) + �1])

u ·∇φ = π cos(t) sin(t)
4

(2 cos(2πx)− 2 cos(2πy))

u ·∇φ = π cos(t) sin(t)
2

[cos(2πx)− cos(2πy)]

� ∆ω = ∆(φ3)−∆φ+2π2ε2∆φ = ∆(φ3)+2π2φ(1−2π2ε2) because ∆φ = −2π2φ

� ∆(φ3) = 6π2φ cos3(t)[cos2(πx) sin2(πy)+sin2(πx) cos2(πy)−cos2(πx) cos2(πy)]

Thus,

∂tφ+ u ·∇φ−M∆ω = − cos(πx) cos(πy) sin(t)

+
π cos(t) sin(t)

2
[cos(2πx)− cos(2πy)]

− M [2π2φ(1− 2π2ε2) + 6π2φ cos3(t)[cos2(πx) sin2(πy)

+ sin2(πx) cos2(πy)− cos2(πx) cos2(πy)]]
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1.7. Simulation of an interface transport

The source term which must be added to the right-hand side of Equation (1.40)
is given by

fCH = − cos(πx) cos(πy) sin(t) +
π cos(t) sin(t)

2
[cos(2πx)− cos(2πy)]

− M [2π2φ(1− 2π2ε2) + 6π2φ cos2(t)[cos2(πx) sin2(πy)

+ sin2(πx) cos2(πy)− cos2(πx) cos2(πy)]]

The parameters M=10−5, ε=10−2, and tf=0.4096 are fixed for the convergence
analysis. The boundary conditions are fixed such that: φn = φ(·, tn) and ωn =
ω(·, tn) on ∂Ω. The analysis is performed with the three linearizations (1.31), (1.34),

and (1.37) at constant CFL (lower than
√
2
2
because of the expression of the analytical

velocity) with the following choice of time step ∆t and mesh size h:

∆t h h1/2 h2

3.125 · 10−4 3.125 · 10−3 5.5901699 · 10−2 9.765625 · 10−6

6.25 · 10−4 6.25 · 10−3 7.9056941 · 10−2 3.90625 · 10−5

1.25 · 10−3 1.25 · 10−2 1.11803399 · 10−1 1.5625 · 10−4

The convergence rate is determined by computing the L2-norm and H1-norm for
φ and ω.

10−2.4 10−2.2 10−2

10−5

10−4

10−3

10−2

h

L
2
er
ro
r

h

h2

errL2(φ)

errL2(ω)

(a) L2-error

10−2.4 10−2.2 10−2

10−4

10−3

10−2

10−1

h

H
1
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Figure 1.5: Spatial convergence analysis at constant CFL ≈ 0.1 (log scale)
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1 Cahn–Hilliard as an interface capturing method

Figure 1.5a depicts the logarithm of L2-errors both for φ and ω as a function of
the logarithm of h, while Figure 1.5b depicts the logarithm of H1-errors. The results
are the same for all the linearizations. From the convergence analysis represented
in Figure 1.5, one deduces with the slopes that the L2 order convergences of φ and
ω are equal to 1, and the H1 order convergences are respectively 1 and 1

2
.

1.7.2 Pulse rotation

A unity square domain [0, 1]2 and a disk of radius 0.15 centered in (0.5, 0.75) are here
considered as shown in Figure 1.4. The domain is composed of 650,000 elements with
a mesh size of h=0.002. This disk is transported by the Cahn–Hilliard equations
with the following divergence-free velocity field:

u(x, y) =
π

314

(
0.5− y
x− 0.5

)
. (1.46)

The interface thickness is fixed at ε=0.008, the mobility atM=10−6, the time step at
∆t=0.1, and the final time at tf=1280 which means a bit more than two revolutions.
Figure 1.6 shows the phase-field solution at t=0, t=314, t=628, t=942, and t=1256.
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1.7. Simulation of an interface transport

(a) t=0

(b) t=314 (c) t=628

(d) t=942 (e) t=1256

Figure 1.6: Phase-field solution at t=0, 314, 628, 942, and 1256
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1 Cahn–Hilliard as an interface capturing method

The volume loss of the positive region of the order parameter φ is computed
using the following relation approximated at a first-order accurate error measure:

|
∫
Ω
H (φ(x, 0)) dx−

∫
Ω
H (φ(x, tn)) dx|∫

Ω
H (φ(x, 0)) dx

(1.47)

whereH(φ) is the indicator function for φ ≥ 0; i.e., H(φ) = 1 if φ ≥ 0 andH(φ) = 0
otherwise. The same process can be done for the volume loss computation of the
positive region of the level-set function α by only replacing φ by α.

By determining the percentage of volume loss from the relation (1.47), the results
given by the phase-field method (PF) and the level-set method (LS) for different
mesh sizes h are summarized in Table 1.1.

Nbelements h ε % Volume Loss - PF % Volume Loss - LS
648,000 2 · 10−3 8 · 10−3 2.07 1.59
152,000 4 · 10−3 16 · 10−3 3.47 3.92
67,500 6 · 10−3 24 · 10−3 4.89 9.34
38,000 8 · 10−3 32 · 10−3 6.26 19.20

Table 1.1: Pulse rotation: comparison of the volume loss by number of elements

From this Table 1.1, the results show that for the most refined mesh, the volume
loss is a bit lesser with the level-set method (LS) than with the phase-field method
(PF). However, the coarser is the mesh, the bigger is the volume loss for both
methods and especially for LS which is considerably higher than PF.

1.7.3 Single Vortex

As the previous test case, a unity square domain [0, 1]2 and a disk of radius 0.15
centered in (0.5, 0.75) is considered as shown in Figure 1.4. The domain is composed
of 650,000 elements with a mesh size of h=0.002. This disk is transported by the
Cahn–Hilliard equations with the following divergence-free velocity field:

u(x, y) = 2

(
− sin (πy) cos (πy) sin 2(πx)
sin (πx) cos (πx) sin 2(πy)

)
. (1.48)

The interface thickness ε varies with the mesh size h according to Table 1.2, the
mobility is fixed at M=10−6, the time step at ∆t=0.0002, and the final time at
tf=4. All along with the movement, the disk deforms and becomes a single vortex
revolving around the center. This problem has been introduced by [31] to test the
accuracy of resolving thin filaments on the scale of the mesh size when stretching
or tearing flows occur. Figure 1.7 shows the phase-field solution at t=0, t=1, t=2,
t=3, and t=4 after performing the simulation in parallel with 4 cores.
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1.7. Simulation of an interface transport

(a) t=0

(b) t=1 (c) t=2

(d) t=3 (e) t=4

Figure 1.7: Phase-field solution at t=0, 1, 2, 3, and 4
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1 Cahn–Hilliard as an interface capturing method

For a simulations performed for different number of elements in parallel with
4 cores, Table 1.2 gives the volume loss computed by the relation (1.47) with the
phase-field method (PF) and with the level-set method (LS) at the final time. There
is no diffuse interface with thickness ε for the level-set method.

Nbelements h ε % Volume Loss - PF % Volume Loss - LS
648,000 2e-3 8e-3 0.45 1.15
152,000 4e-3 16e-3 2.04 2.77
67,500 6e-3 24e-3 5.18 11.46
38,000 8e-3 32e-3 11.81 31.82

Table 1.2: Single Vortex: comparison of the volume loss by number of elements

From Table 1.2, the results show that for the same mesh size the phase-field
method losses less volume than the level-set method. From one mesh size to another
the gap between the losses is more important for the level-set method than the
phase-field method.

1.7.4 Zalesak’s Disk

In interface capturing methods, the Zalesak disk benchmark is a good indicator of
diffusion errors. Initially, a slotted disk centered at (0.5,0.75) with a radius of 0.15
in a unity square domain is considered. The slot has a width of 0.05 and a length
of 0.25. It is represented in the figure 1.8.

Figure 1.8: Zalesak disk benchmark
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1.7. Simulation of an interface transport

The test case consists of a rotation of the disk [32] in the constant velocity field
(1.48) which is divergence-free. The domain is composed of 650,000 elements with
a mesh size of 2·10−3. The interface thickness is fixed at ε=0.008, the mobility at
M=10−6, the time step at ∆t=0.1, and the final time at tf=1280 which means a bit
more than two revolutions. Figure 1.9 shows the phase-field solution at t=0, t=314,
t=628, t=942, and t=1256 after performing the simulation in parallel with 4 cores.

(a) t=0

(b) t=314 (c) t=628

Figure 1.9: Phase-field solution of the Zalesak disk at t=0, 314, and 628
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1 Cahn–Hilliard as an interface capturing method

(d) t=942 (e) t=1256

Figure 1.9: Phase-field solution of the Zalesak disk at t= 942 and 1256

As for the pulse rotation case, the simulation is performed in parallel with 4
cores and the volume loss is determined from the relation (1.47). The results given
by the phase-field method (PF) and the level-set method (LS) for different mesh
sizes h are summarized in Table 1.3.

Nbelements h ε % Volume Loss - PF % Volume Loss - LS
648,000 2e-3 8e-3 0.19 7.08
152,000 4e-3 16e-3 1.73 31.63
67,500 6e-3 24e-3 3.38 75.61
38,000 8e-3 32e-3 4.66 100

Table 1.3: Zalesak Disk: comparison of the volume loss by number of elements

From this Table 1.3, the results show that for any considered mesh size, the
volume loss of the slotted disk for LS is much bigger than for PF and this difference
is increasing considerably as the mesh size is decreasing.
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1.8. Conclusion

1.8 Conclusion

In the present chapter, an interface capturing method based on the Cahn–Hilliard
equations has been introduced. Some properties of these equations have been pre-
sented and proved in the continuous and discrete framework. Then, a series of test
cases have been simulated to investigate the numerical ability of the solver which
enables to capture of the evolution of a diffuse interface separating two domains. It
is important to note that numerical diffusion is observed in the simulation results.
Oscillations of φ characterized by overshoot and undershoot observed on the plot
of φ through an axis at the neighborhood of the diffuse interface of thickness ε, in
Figure 1.10.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
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−0.50
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φ

Figure 1.10: Evolution of the order parameter at the neighborhood of the interface diffuse

This is due to the advection operator in the Cahn–Hilliard model and could be
boosted by the presence of the bilaplacian which enforces the diffusion. A solution
allowing to deal with this drawback will be proposed in the conclusion chapter.
Before that, the current model will be coupled to the multiphase flow framework in
the next chapter.
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2 Multiphase flow and coupling

Résumé en Français

Une fois l’interface capturée à l’aide de la méthode phase-field, le but
est de déterminer son évolution dans le cadre d’un écoulement de deux flu-
ides. Ceci permettra de connâıtre la dynamique du film de vapeur autour
du solide et des bulles de vapeur créées par l’ébullition. Ce chapitre présente
l’étude du couplage de la dynamique des fluides avec la méthode de cap-
ture d’interface phase-field. Dans la littérature, différents modèles proposant
un tel couplage existent. Le présent chapitre s’inspire d’un de ces modèles
et propose de considérer les équations d’Euler et les lois de mélange d’un
système de deux fluides incompressibles et Newtonien à l’aide des solutions
des équations de Cahn–Hilliard. Afin de prendre en compte les effets de cap-
illarité présents lors de la trempe industrielle, l’étude fera appel à la théorie
de Korteweg. Les forces visqueuses, les forces de pression, et la force de
gravité sont également considérées pour établir un modèle couplé de capture
d’interface et d’écoulement biphasique appelé : le modèle couplé de Cahn–
Hilliard–Navier–Stokes incompressible.

De même qu’avec les seules équations de Cahn–Hilliard, une étude
mathématique et numérique des équations couplées est nécessaire pour une
meilleure compréhension de ce modèle. Pour initier cette étude, ce chapitre
présente un rappel de quelques propriétés mathématiques de ces équations
couplées ainsi que des éléments de preuves associées : l’estimation d’énergie
et la dissipation de l’énergie totale du modèle continu.

Afin d’implémenter numériquement de ce modèle, une discrétisation spa-
tiale et temporelle de ces équations est proposée. Puisqu’une méthode de
résolution à pas fractionnaire sera ici adoptée, le modèle discret des équations
de Cahn–Hilliard déterminé au chapitre précédent sera conservé. Il s’agira
donc de discrétiser les équations de Navier–Stokes. La discrétisation spa-
tiale est réalisée par la méthode des éléments finis P1 Lagrange et utilise
la méthode de stabilisation VMS pour la résolution.Ce chapitre se conclut
par une étape de validation dans laquelle est simulée une série de cas test
d’écoulements biphasique avec capture d’interface sur maillage uniforme en
2D. Les résultats obtenus par la méthode phase-field sont comparés avec ceux
de la méthode level-set issus de la littérature.
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2.1. Introduction

2.1 Introduction

In the previous chapter, an interface capturing method based on the Cahn–Hilliard
equations has been introduced and studied, to develop a method to capture the
time-space evolution of a diffuse interface separating two domains. The present
chapter is dedicated to the multiphase framework. This means that domains sep-
arated by an interface correspond to different fluids. In this framework, the flow
is governed by a dynamic that has to be determined. The goal of this chapter is
to develop and study a model coupling the interface capturing method with the
flow dynamics. Diffuse-interface models for single-component and binary fluids are
discussed in [1] and under the well-known ”model H” in [2]. In [3–5], authors study
a diffuse interface model for the flow of two viscous incompressible Newtonian fluids
of the same density in a bounded domain. Boyer & al. [6] describe some aspects
of the diffuse interface modeling of incompressible flows, composed of three immis-
cible components, without phase change. In [7], Jamet made a study of the diffuse
interface models in fluid mechanics.

The development of the coupled model will begin with a study dedicated to the
balance equations induced by the Cahn–Hilliard model. Then, to have a model
taking into account the capillary action, a section dedicated to the Korteweg theory
of capillarity will be presented. The next section will allow determining the governing
equations of the coupled model. Then a study of some mathematical properties of
these equations is proposed. To have a numerical framework, a full space and time
discretization of these equations will be established. Then some numerical properties
of the discrete model will be presented. Finally, a series of numerical simulations
will be performed to assess the discrete model.

2.2 Balance equations

One considers a two-phase flow of immiscible and incompressible fluids in a bounded
connected domain Ω ⊂ Rd, where d is the spatial dimension. The phase function
φ allows identifying the two Newtonian fluids and takes the value +1 in the first
fluid, of density ϱ1 and viscosity η1, and -1 in the second one, of density ϱ2 and
viscosity η2, with a thin, smooth transition region of width ε between the two fluids,
as represented in Figure 2.1.
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2 Multiphase flow and coupling

Figure 2.1: Two-fluid flow with the phase-field Cahn–Hilliard approach

By convention, the order parameter φ equals +1 in the heaviest phase, therefore
one assumes that ϱ1 > ϱ2. From the order parameter φ, the global density and
viscosity for the mixture are defined as follows:

ϱ(φ) =
1 + φ

2
ϱ1 +

1− φ

2
ϱ2 (2.1)

η(φ) =
1 + φ

2
η1 +

1− φ

2
η2 (2.2)

By using the relation (2.1), the continuity equation induced from the Cahn–Hilliard
model is first looked for.

Proposition 2.2.1. For φ solution of the Cahn–Hilliard equations (1.11)-(1.12) and
a density defined as (2.1), the continuity equation is given by

∂t (ϱ(φ)) +∇· (ϱ(φ)u)− ϱ1 − ϱ2
2

∇· (M(φ)∇ω) = 0 (2.3)

Proof. Let φ a solution of (1.11)-(1.12). From the relation (2.1),

∂t (ϱ(φ)) = ∂t

(
ϱ1 − ϱ2

2
φ+

ϱ1 + ϱ2
2

)
=
ϱ1 − ϱ2

2
∂t (φ)

and

∇· (ϱ(φ)u) = ∇·
(
(
ϱ1 − ϱ2

2
φ+

ϱ1 + ϱ2
2

)u

)
=

ϱ1 − ϱ2
2

∇· (φu) + ϱ1 + ϱ2
2

∇·u

∇· (ϱ(φ)u) =
ϱ1 − ϱ2

2
∇· (φu) because of incompressibility (∇·u = 0)
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2.2. Balance equations

By summing, it comes

∂t (ϱ(φ)) +∇· (ϱ(φ)u) =
ϱ1 − ϱ2

2
∂t (φ) +

ϱ1 − ϱ2
2

∇· (φu)

=
ϱ1 − ϱ2

2
(∂t(φ) +∇· (φu))

∂t (ϱ(φ)) +∇· (ϱ(φ)u) =
ϱ1 − ϱ2

2
∇· (M(φ)∇ω) by Equation (1.11)

Therefore, the continuity equation is:

∂t (ϱ(φ)) +∇· (ϱ(φ)u)− ϱ1 − ϱ2
2

∇· (M(φ)∇ω) = 0

The next step is to identify the temporal and convective term of the momentum
equation coupling to the Cahn–Hilliard equation.

Proposition 2.2.2. For φ solution of the Cahn–Hilliard equations (1.11)-(1.12) a
density defined as (2.1), and an incompressible flow (∇·u=0), the non-conservative
form of the momentum equationis given by

∂t (ϱ(φ)u) +∇· (ϱ(φ)u⊗ u) +∇· (u⊗ J) = ϱ(φ)∂t (u) + (ϱ(φ)u ·∇)u

+ (J ·∇)u
(2.4)

Proof. Let φ a solution of (1.11)-(1.12). From the relation (2.1),

∂t (ϱ(φ)u) = ∂t (ϱ(φ))u+ ϱ(φ)∂t (u)

= ∂t

(
ϱ1 − ϱ2

2
φ+

ϱ1 + ϱ2
2

)
u+ ϱ(φ)∂t (u)

∂t (ϱ(φ)u) =
ϱ1 − ϱ2

2
∂t (φ)u+ ϱ(φ)∂t (u)

and

∇· (ϱ(φ)u⊗ u) = ∇·
(
(
ϱ1 − ϱ2

2
φ+

ϱ1 + ϱ2
2

)u⊗ u

)
= ∇·

(
(
ϱ1 − ϱ2

2
φ)u⊗ u+ (

ϱ1 + ϱ2
2

)u⊗ u

)
=

ϱ1 − ϱ2
2

∇· (φu⊗ u) +
ϱ1 + ϱ2

2
∇· (u⊗ u)

=
ϱ1 − ϱ2

2
(∇· (u)φu+ (u ·∇)(φu))
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2 Multiphase flow and coupling

+
ϱ1 + ϱ2

2

∇· (u)︸ ︷︷ ︸
0

u+ (u ·∇)u


∇· (ϱ(φ)u⊗ u) =

ϱ1 − ϱ2
2

(∇· (u)φu+ (u ·∇)φ · u+ (φu ·∇)u)

+
ϱ1 + ϱ2

2
(u ·∇)u

Thus, by summing these terms, it comes

∂t (ϱ(φ)u) +∇· (ϱ(φ)u⊗ u) =
ϱ1 − ϱ2

2
∂t (φ)u+ ϱ(φ)∂t (u)

+
ϱ1 − ϱ2

2
(∇· (u)φu+ (u ·∇)φ · u)

+
ϱ1 − ϱ2

2
(φu ·∇)u+

ϱ1 + ϱ2
2

(u ·∇)u

=
ϱ1 − ϱ2

2
(∂t (φ) +∇· (φu))u+ ϱ(φ)∂t (u)

+
ϱ1 − ϱ2

2
(φu ·∇)u+

ϱ1 + ϱ2
2

(u ·∇)u

=
ϱ1 − ϱ2

2
(∂t (φ) +∇· (φu))u+ ϱ(φ)∂t (u)

+

(
(
ϱ1 − ϱ2

2
φ+

ϱ1 + ϱ2
2

)u ·∇
)
u

=
ϱ1 − ϱ2

2
∇· (M(φ)∇ω)u+ ϱ(φ)∂t (u)

+ (ϱ(φ)u ·∇)u

= ϱ(φ)∂t (u) + (ϱ(φ)u ·∇)u

+∇·

− ϱ2 − ϱ1
2

M(φ)∇ω︸ ︷︷ ︸
J

u

= ϱ(φ)∂t (u) + (ϱ(φ)u ·∇)u− (∇·J)u
∂t (ϱ(φ)u) +∇· (ϱ(φ)u⊗ u) = ϱ(φ)∂t (u) + (ϱ(φ)u ·∇)u+ (J ·∇)u

−∇· (u⊗ J)

Consequently, the non-conservative form of the momentum equationcoupled to the
Cahn–Hilliard equation is

∂t (ϱ(φ)u) +∇· (ϱ(φ)u⊗ u) +∇· (u⊗ J) =ϱ(φ)∂t (u) + (ϱ(φ)u ·∇)u

+ (J ·∇)u
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2.3. Korteweg’s capillarity theory

Non-conservative form of the momentum equationand continuity equation, in-
duced by the Cahn–Hilliard model, have been determined in this section. It is the
first step to obtaining the governing equations of an interface capturing based on the
Cahn–Hilliard equations for multiphase flows. In fluid mechanics, the flow dynamics
is given by the so-called Navier–Stokes equation. This equation corresponds to the
non-conservative form of the momentum equationextended by modeled terms. To
have a full coupled Cahn–Hilliard–Navier–Stokes model, the non-conservative form
of the momentum equation(2.4) determined previously is used. In the following, the
modeled terms considered in Navier–Stokes equations are those modeling the mass
flux at the interface, the capillarity, the gravity, the pressure, and the viscous forces.

2.3 Korteweg’s capillarity theory

Capillarity, or capillary action (Figure 2.2), is an inter-molecular phenomenon during
which a liquid, like water, rises or falls in a narrow space such as a thin tube or the
voids of a porous material against external forces, such that the gravity force.

Figure 2.2: Capillary action

The use of capillary stress tensor to model the diffuse interface separating fluids
and to model the forces associated has been developed in the literature. Anderson
& al. [1] use these notions in a hydrodynamic description. The Van der Waals
model of capillarity in the framework of liquid-vapor flows with phase change has
been described in [7]. Antanovskii [8] derived a phase-field model of capillarity for
non-isothermal, viscous, and quasi-compressible flow. Bresch & al. [9] proposed
diffusive capillary models of Korteweg type to study their mathematical properties
by assuming an isotherm flow.

Once Van der Waals [10] established a theory of the interface based on his ther-
modynamic model which allowed him to predict the thickness of the interface and to
show that the interface thickness becomes infinite as the critical point is approached,
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2 Multiphase flow and coupling

Korteweg [11] built on these theories. Specifically, he proposed a constitutive law
for the capillary stress tensor based on the density and its spatial gradients. The
capillarity stress tensor given by the Korteweg’s capillarity theory

K = σ

((
ϱ(φ)∆ϱ(φ) +

1

2
|∇ϱ(φ)|2

)
I−∇ϱ⊗∇ϱ

)
(2.5)

is called the Korteweg stress tensor. It implies a surface tension force in the tangen-
tial direction of the interface. Surface tension is an inter-molecular force involved
in the capillary action. It refers to liquid molecules that are more closely bound
together at the surface, making the top of the liquid more tight and dense than the
rest of the liquid. Surface tension holds the liquid together at the top as it moves
up during capillary action, holding the liquid molecules together like a drawstring.

The divergence of this tensor intervenes in the Navier–Stokes equation:

∇·K = ∇·
(σ
2

(
∆ϱ2 − |∇ϱ|2

)
I− σ∇ϱ⊗∇ϱ

)
= ∇·

(σ
2

(
∆ϱ2 − |∇ϱ|2

)
I
)
− σ∇· (∇ϱ⊗∇ϱ)

∇·K = ∇
(σ
2

(
∆ϱ2 − |∇ϱ|2

))
− σ∇· (∇ϱ⊗∇ϱ)

Since ∇ϱ = ϱ1−ϱ2
2

∇φ by the relation (2.1),

∇· (∇ϱ⊗∇ϱ) = ∇·
(
(ϱ1 − ϱ2)

2
∇φ⊗ (ϱ1 − ϱ2)

2
∇φ

)
= ∇·

(
(ϱ1 − ϱ2)

2

4
∇φ⊗∇φ

)
=

(ϱ1 − ϱ2)
2

4
∇· (∇φ⊗∇φ) +∇φ⊗∇φ : ∇

(
(ϱ1 − ϱ2)

2

4

)
︸ ︷︷ ︸

0

∇· (∇ϱ⊗∇ϱ) =
(ϱ1 − ϱ2)

2

4
∇· (∇φ⊗∇φ)

However, for (φ,ω) solutions of (1.11)-(1.12)

∇· (∇φ⊗∇φ) = ∆φ∇φ+∇
(
1

2
|∇φ|2

)
=

(
ε2

ε2
∆φ− 1

ε2
f(φ)

)
∇φ+∇

(
1

ε2
F (φ) +

1

2
|∇φ|2

)
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2.4. The governing coupled equations

=
1

ε2
(
ε2∆φ− f(φ)

)︸ ︷︷ ︸
−ω

∇φ+∇
(

1

ε2
F (φ) +

1

2
|∇φ|2

)

∇· (∇φ⊗∇φ) = − 1

ε2
ω∇φ+∇

(
F (φ) +

1

2
|∇φ|2

)
Consequently, the divergence of the capillarity stress tensor is given by:

∇·K =∇
(σ
2

(
∆ϱ(φ)2 − |∇ϱ(φ)|2

))
− σ

(ϱ1 − ϱ2)
2

4

(
∇
(
F (φ) +

1

2
|∇φ|2

)
− 1

ε2
ω∇φ

) (2.6)

The Navier–Stokes equations coupled to the Cahn–Hilliard equations can now be
determined.

2.4 The governing coupled equations

In Section 2.2, non-conservative form of the momentum equationhas been deter-
mined with the help of the Cahn–Hilliard equations (1.11)-(1.12). These equations
have also been used in Section 2.3 to have an expression of the capillary forces
in function of the Cahn–Hilliard solutions. To have a full coupled Cahn–Hilliard–
Navier–Stokes model for an incompressible two-fluid mixture of different densities
with capillary forces involved, one models in addition the gravity forces with the
help of a gravity vector g and the pressure and viscous forces by the stress tensor
for incompressible Newtonian fluids S = −P I+2η(φ)D(u), where D(u) = ∇u+∇uT

2

is the strain tensor, P is the hydrodynamic pressure, and I is the identity tensor.
Consequently, the coupled equations in the domain Ω are given by:

∂tφ+∇· (φu)−∇· (M(φ)∇ω) = 0, (2.7)

ω + ε2∆φ− f(φ) = 0, (2.8)

∂t (ϱ(φ)u) +∇· (ϱ(φ)u⊗ u) +∇· (u⊗ J) = ∇· (S+K) + ϱ(φ)g, (2.9)

∇·u = 0. (2.10)

In Section 2.2, the relation (2.4) has been showed:

∂t (ϱ(φ)u) +∇· (u⊗ ϱ(φ)u) +∇· (u⊗ J) = ϱ(φ)∂t (u) + (ϱ(φ)u ·∇)u

+(J ·∇)u

and in Section 2.3, the divergence of the capillary tensor (2.6) is given by:

∇·K =∇
(σ
2

(
∆ϱ(φ)2 − |∇ϱ(φ)|2

))
− σ

(ϱ1 − ϱ2)
2

4

(
∇
(
F (φ) +

1

2
|∇φ|2

)
− 1

ε2
ω∇φ

)
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2 Multiphase flow and coupling

It does remain to deal with the divergence of the stress tensor S:

∇·S = ∇· (−P I+ 2η(φ)D(u)) = −∇P +∇· (2η(φ)D(u)) (2.11)

which is summed with (2.6) to give:

∇· (S+K) = −∇P +∇· (2η(φ)D(u)) +∇
(σ
2

(
∆ϱ2 − |∇ϱ|2

))
−σ (ϱ1 − ϱ2)

2

4

(
− 1

ε2
ω∇φ+∇

(
F (φ) +

1

2
|∇φ|2

))
∇· (S+K) = −∇p+∇· (2η(φ)D(u)) +

σ

ε2
ω∇φ

where p = P − σ
(

1
2
(∆ϱ2 − |∇ϱ|2) + (ϱ1−ϱ2)2

4

(
F (φ) + 1

2
|∇φ|2

))
is the pressure.

Thus, the coupled Cahn–Hilliard–Navier–Stokes equations for non miscible and
incompressible two-fluid flow in a domain the domain Ω are:

∂tφ+∇· (φu)−∇· (M(φ)∇ω) = 0, (2.12)

ω + ε2∆φ− f(φ) = 0, (2.13)

ϱ(φ)∂t (u) + (ϱ(φ)u ·∇)u+ (J ·∇)u

−∇· (2η(φ)D(u)) +∇p =
σ

ε2
ω∇φ+ ϱ(φ)g,

(2.14)

∇·u = 0, (2.15)

with the following initial and boundary conditions:

u(·, 0) = u0, φ(·, 0) = φ0 in Ω, (2.16)

u · n = 0,
∂φ

∂n
=
∂ω

∂n
= 0 on ∂Ω× (0, tf ], tf > 0. (2.17)

One notes that the pressure p depends on the hydrodynamic pressure P , the
order parameter φ, and the surface tension coefficient σ. The flow and the interface
dynamics are governed by the Cahn-–Hilliard–Navier-–Stokes model which can also
describe topological transitions like droplet coalescence.

2.5 Mathematical properties of the coupled equations

As in the previous chapter, the order parameter φ is assumed respecting the maxi-
mum principle in all the theoretical results introduced in the present chapter.

In this section, a theoretical study of the coupled model (2.12)-(2.15) established
in the previous Section 2.4 will be done. Compared to the model (1.11)-(1.12)
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2.5. Mathematical properties of the coupled equations

introduced in Section 1.3, these equations describe the evolution in space and time
of the macroscopic variables characterizing, on one hand, the mixture composition
in the whole domain, by the variables φ and ω, and in another hand, the flow of
the incompressible, diphasic, and non-homogeneous mixture, by the velocity field u
and the pressure p. As stated in Section 1.4 of the last chapter for the model (1.11)-
(1.12), the mathematical study will rely on the existence and uniqueness results of
the model (2.12)-(2.17). For the existence of weak solutions, a preliminary study to
find the energy spaces for which these solutions belong is required. This study relies
on the following energy estimate result:

Theorem 2.5.1. If the solutions (φ, ω, u, p) of (2.12)-(2.15) with a constant
positive mobility (M(φ) = M > 0) the conditions (2.16)-(2.17) exist in the weak

sense, then by denoting H1(Ω) := (H1(Ω))
d

φ ∈ L∞([0, tf ];H
1(Ω)) ∩ L2([0, tf ];H

2(Ω))

ω ∈ L2([0, tf ];H
1(Ω))

u ∈ L∞([0, tf ];L
2(Ω)) ∩ L2([0, tf ];H

1(Ω))

p ∈ L2(Ω)

and the following energy estimate is obtained for a certain c1, c2, c3, c4, c5 > 0:

c1∥u(t)∥2L2(Ω) + c2

∫ t

0

∥D(u(s))∥2L2(Ω) ds+ c3∥∇φ(t)∥2L2(Ω)

+ c4∥
φ2(t)− 1

2
∥2L2(Ω) + c5

∫ t

0

∥∇ω(s)∥2L2(Ω) ds

≤c1∥u0∥2L2(Ω) + c3∥∇φ0∥2L2(Ω) + c4∥
φ2
0 − 1

2
∥2L2(Ω)

(2.18)

Proof. For the proof, one can consider the gravitational field as a derivation of a
gravitational potential: g = ∇G which can be included in the pressure gradient
∇p. Let (φ, ω, u, p) weak solutions of (2.12)-(2.15) with the conditions (2.16)-
(2.17). First, one multiplies Equation (2.12) by σ

ϵ2
ω and integrates it on Ω. Second,

Equation (2.13) is multiplied by − σ
ε2
∂tφ and integrated on Ω. Finally, Equation

(2.14) is multiplied by u and also integrated on Ω.

One recalls a useful identity which helps for the estimate energy:

Lemma 2.5.2. For all vectors u, v and w ∈ Rd,

(w ·∇)u · v = v ⊗w : ∇u

= ∇· (u · v⊗w)− (w ·∇)v · u− u · v∇·w

69



2 Multiphase flow and coupling

By dealing with each term:

�

∫
Ω
[ϱ(φ)∂tu+ (ϱ(φ)u ·∇)u+ (J ·∇)u] · u dx

=
∫
Ω
ϱ(φ)∂t(

1
2
|u|2) dx+

∫
Ω

1
2
[∇· (u · u⊗ ϱ(φ)u)− |u|2∇· (ϱ(φ)u)] dx

+
∫
Ω

1
2
[∇· (u · u⊗ J)− |u|2∇·J] dx by Lemma 2.5.2

=
∫
Ω

[
∂t

(
ϱ(φ)
2
|u|2

)
− 1

2
|u|2∂t (ϱ(φ))

]
dx+

∫
Ω

1
2
∇· (u · u⊗ ϱ(φ)u) dx

−
∫
Ω
|u|2∇· (ϱ(φ)u) dx+

∫
Ω

1
2
∇· (u · u⊗ J) dx−

∫
Ω
|u|2∇·J dx

=
∫
Ω
∂t

(
ϱ(φ)
2
|u|2

)
dx+

∫
Ω

1
2
∇· (u · u⊗ ϱ(φ)u) dx+

∫
Ω

1
2
∇· (u · u⊗ J) dx

−
∫
Ω

1
2
|u|2 [∂t (ϱ(φ)) +∇· (ϱ(φ)u) +∇·J]︸ ︷︷ ︸

0

dx (by equation (2.3)),

However,
∫
Ω

1
2
∇· (u · u⊗ ϱ(φ)u) dx =

∫
Ω

1
2
∇· (u · u⊗ J) dx = 0

since u · n = 0 on ∂Ω and by using the divergence theorem.

Therefore, it comes∫
Ω
[ϱ(φ)∂tu+ (ϱ(φ)u ·∇)u+ (J ·∇)u] · u dx =

∫
Ω
∂t

(
ϱ(φ)
2
|u|2

)
dx.

�

∫
Ω
∇p·u dx =

∫
Ω

∇· (pu) dx︸ ︷︷ ︸∫
∂Ω pu·n ds=0

−
∫
Ω
p∇·u︸ ︷︷ ︸

0

dx = 0 (u·n = 0 on ∂Ω by (2.17)).

� −
∫
Ω
∇· (2η(φ)D(u)) · u dx

= −
∫
Ω

∇· (u · 2η(φ)D(u)) dx︸ ︷︷ ︸∫
∂Ω u·2η(φ)D(u)·n ds=0

+
∫
Ω
2η(φ)|D(u)|2 dx =

∫
Ω
2η(φ)|D(u)|2 dx.

�

∫
Ω

σ
ε2
ω∇φ · u dx.

� −
∫
Ω

σ
ε2
ω∂tφ dx.
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2.5. Mathematical properties of the coupled equations

� −
∫
Ω

σ
ε2
ε2∆φ∂tφ dx

=
∫
Ω
σ∇(∂tφ) ·∇φ dx−

0 because ∇φ·n=0 on ∂Ω︷ ︸︸ ︷∫
∂Ω

σ∂tφ∇φ · n ds =
∫
Ω
σ∂t(∇φ) ·∇φ dx.

Therefore, −
∫
Ω

σ
ε2
∆φ∂tφ dx =

∫
Ω
∂t(

σ
2
|∇φ|2) dx.

� −
∫
Ω
f(φ)× (− σ

ε2
∂tφ) dx

=
∫
Ω

σ
ε2
∂tφf(φ) dx =

∫
Ω

σ
ε2
∂t (F (φ)) dx = ∂t

(∫
Ω

σ
ε2
F (φ) dx

)
.

�

∫
Ω

σ
ε2
ω∂tφ dx.

�

∫
Ω
σ
ϵ2
ωu ·∇φ dx.

�

∫
Ω
σ
ϵ2
ωφ∇·u︸ ︷︷ ︸

0

dx = 0.

� −
∫
Ω
∇· (M(φ)∇ω) σ

ε2
ω dx

=
∫
Ω

σ
ε2
M(φ)|∇ω|2 dx−

∫
∂Ω

σ
ε2
M(φ)ω∇ω·n ds=0︷ ︸︸ ︷∫

Ω

∇·
( σ
ε2
M(φ)ω∇ω

)
dx (∇ω · n = 0 on ∂Ω)

Therefore, −
∫
Ω
∇· (M(φ)∇ω) σ

ε2
ω dx =

∫
Ω

σ
ε2
M(φ)|∇ω|2 dx.

By summing all these terms, it comes

∂t

(∫
Ω

ϱ(φ)

2
|u|2 dx

)
+

∫
Ω

2η(φ)|D(u)|2 dx−
��������
∫
Ω

σ

ε2
ω∂tφ dx

+ ∂t

(∫
Ω

σ

2
|∇φ|2 dx

)
+ ∂t

(∫
Ω

σ

ε2
F (φ) dx

)
+

��������
∫
Ω

σ

ε2
ω∂tφ dx

+
����������
∫
Ω

σ

ε2
ωu ·∇φ dx+

∫
Ω

σ

ε2
M(φ)|∇ω|2 dx

=
����������
∫
Ω

σ

ε2
ωu ·∇φ dx
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2 Multiphase flow and coupling

which means,

∂t

(∫
Ω

ϱ(φ)

2
|u|2 dx

)
+

∫
Ω

2η(φ)|D(u)|2 dx+ ∂t

(∫
Ω

σ

2
|∇φ|2 dx

)
+∂t

(∫
Ω

σ

ε2
F (φ) dx

)
+

∫
Ω

σ

ε2
M(φ)|∇ω|2 dx = 0

(2.19)

Because the density ϱ(φ) and the viscosity η(φ) are bounded for any φ, there
exists ϱmin > 0 and ηmin > 0 such that

ϱmin ≤ ϱ(φ), ∀φ

and

ηmin ≤ η(φ), ∀φ

Because F (φ) =
(
φ2−1

2

)2
and by assuming the mobility is constant positive:

M(φ) =M > 0, it comes

ϱmin
2
∂t

(
∥u∥2L2(Ω)

)
+ 2ηmin∥D(u)∥2L2(Ω) +

σ

2
∂t

(
∥∇φ∥2L2(Ω)

)
+
σ

ε2
∂t

(
∥φ

2 − 1

2
∥2L2(Ω)

)
+M

σ

ε2
∥∇ω∥2L2(Ω) ≤ 0

By integrating with respect to the time t,

ϱmin
2

∥u(t)∥2L2(Ω) −
ϱmin
2

∥u0∥2L2(Ω) + 2ηmin

∫ t

0

∥D(u(s))∥2L2(Ω) ds

+
σ

2
∥∇φ(t)∥2L2(Ω) −

σ

2
∥∇φ0∥2L2(Ω) +

σ

ε2
∥φ

2(t)− 1

2
∥2L2(Ω) −

σ

ε2
∥φ

2
0 − 1

2
∥2L2(Ω)

+M
σ

ε2

∫ t

0

∥∇ω(s)∥2L2(Ω) ds ≤ 0

Finally, the following energy estimate is obtained:

ϱmin
2

∥u(t)∥2L2(Ω) + 2ηmin

∫ t

0

∥D(u(s))∥2L2(Ω) ds+
σ

2
∥∇φ(t)∥2L2(Ω)

+
σ

ε2
∥φ

2(t)− 1

2
∥2L2(Ω) +M

σ

ε2

∫ t

0

∥∇ω(s)∥2L2(Ω) ds

≤ϱmin
2

∥u0∥2L2(Ω) +
σ

2
∥∇φ0∥2L2(Ω) +

σ

ε2
∥φ

2
0 − 1

2
∥2L2(Ω)

(2.20)
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2.5. Mathematical properties of the coupled equations

This energy estimate gives a control of the solutions by the initial data. From
this estimate, one deduces that

φ ∈ L∞([0, tf ];H
1(Ω)) ∩ L2([0, tf ];H

2(Ω))

ω ∈ L2([0, tf ];H
1(Ω))

u ∈ L∞([0, tf ];L
2(Ω)) ∩ L2([0, tf ];H

1(Ω))

p ∈ L2(Ω)

From the proof and the energy equation (2.19), the property of decay of energy
is directly deduced:

dEtot
dt

= −
∫
Ω

2η(φ)|D(u)|2 dx−
∫
Ω

σ

ε2
M(φ)|∇ω|2 dx ≤ 0, (2.21)

where the total energy is

Etot(u, φ, t) =

∫
Ω

ϱ(φ)

2
∥u∥2 dx+

∫
Ω

σ

2
∥∇φ∥2 dx+

∫
Ω

σ

ε2
F (φ) dx. (2.22)

In the literature, authors studied the existence and uniqueness properties of the
coupled and incompressible Cahn–Hilliard–Navier–Stokes equations. In [5], Abels
showed the existence of global weak solutions for any dimension d, their regularity
and uniqueness for d = 2 and the asymptotic behavior as t → ∞ of the Cahn–
Hilliard–Navier–Stokes model for two-phase flows of viscous, incompressible fluids
with matched densities. He also showed in [12] the existence of weak solutions
for this model with general densities. Then, Abels & al. [13, 14], extended the
proof in the case of degenerate mobility. The existence of a global-in-time weak
solutions of a model similar to (2.12)-(2.17) has been established in [15]. In [16],
Boyer obtained global existence results of weak solutions of the model with matched
densities, even with degenerate mobility, for any dimension d and an existence and
uniqueness result of strong solutions, global for d = 2 and local for d = 3. However,
the global existence of strong solutions for the model with general densities with
d = 3 remains an open question, which is already the case for the incompressible
Navier–Stokes equations.

The mathematical aspects of the Cahn–Hilliard equations (2.12)-(2.13) viewed
in the end of Section 1.4 remain available in the current study. In the following,
the numerical implementation of the coupled system will be established, so which
requires a discretization of this system.
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2 Multiphase flow and coupling

2.6 Space and time discretization

In this section, a numerical resolution of the coupled system (2.12)-(2.15) by a frac-
tional step approach is proposed. This means the Cahn–Hilliard mixed formulation
is first solved and at each time step n, the solutions φn and ωn are used to solve then
un and pn from the incompressible Navier–Stokes equations. To solve the Cahn–
Hilliard equations, the system (2.12)-(2.13) is discretized as explained in 1.5. Once
the Cahn–Hilliard matrix system (1.31) is solved, the incompressible Navier–Stokes
equations (2.14)-(2.15) are then solved. These equations allow modeling physical
phenomena like weather, ocean current, turbulent flow, hemodynamics, multiphase
flow, etc.

2.6.1 Finite element discretization

Like the Cahn–Hilliard equations in 1.5.1, the space discretization of the incompress-
ible Navier–Stokes equations (2.14)-(2.15) is based on the P1 finite element method.
This starts by establishing the weak formulation of the equations (2.14)-(2.15). In
order to find a variational formulation of the Navier–Stokes equations, consider the
following infinite-dimensional spaces:

V div = {u ∈ H 1(Ω) such that (∇·u, v) = 0 ∀v ∈ L2(Ω)}, (2.23)

V 0 = {u ∈ Vdiv such that u = 0 on ∂Ω} (2.24)

Q = L2(Ω). (2.25)

Let V div = V div × Q and V 0 = V 0 × Q. The weak formulation of (2.14)-(2.15) is
reads: given u0, for tf > 0, find

(u, p) ∈ V div

such that for all (v, q) ∈ V 0

(ϱ(φ)∂tu,v) + (((ϱ(φ)u+ J) ·∇)u,v)

+ (2η(φ)D(u) : D(v)) + (∇p,v) = (
σ

ε2
ω∇φ,v) + (ϱ(φ)g,v),

(2.26)

(∇·u, q) = 0, (2.27)

u(·, 0) = u0 ∈ V 0, (2.28)

The standard Galerkin formulations are not robust to simulate convection-
dominated flow because it suffers from spurious oscillations that pollute the solution.
Stabilized methods are getting increasing attention in computational fluid dynamics
because they are designed to solve these drawbacks typical of the standard Galerkin
method. The Variational Multiscale method (VMS) is a technique used for deriving
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2.6. Space and time discretization

models and numerical methods for multiscale phenomena [17]. The VMS framework
has been widely used to design stabilized finite element methods in which stability of
the standard Galerkin method is not ensured both in terms of singular perturbation
and of compatibility conditions with the finite element spaces [18]. The VMS [19] is
a technique used to get mathematical models and numerical methods which are able
to catch multiscale phenomena. This method is usually adopted for problems with
huge scale ranges, which are separated into a number of scale groups [20]. The VMS
deals with mixed variational formulations for solving the Navier–Stokes equations.
The main idea of the method is to decompose the unknown into two components,
coarse and fine, corresponding to the fine and large scales of resolution. The fine
scale solution is determined analytically eliminating it from the problem of the coarse
scale equation.

In order to discretize in space the Navier–Stokes equations, consider the function
space of finite element:

Xh = {uh ∈ C0(Ω̄) such that uh|K ∈ P1, K ∈ Th}, (2.29)

of piecewise Lagrangian Polynomials of degree 1 over the domain Ω triangulated with
a mesh Th made of elements of diameters hK , K ∈ Th. Let introduce a multiscale
direct-sum decomposition of the space V which represents either V div and V 0 [21]:

V = Vh ⊕ V ′

being

Vh = V div,h := V div,h ×Q or Vh = V 0,h := V 0,h ×Q

the finite dimensional function space associated to the coarse scale, and

V ′
= V ′

div := V ′

div ×Q or V ′
= V ′

0 := V ′

0 ×Q

the infinite-dimensional fine scale function space, with

V div,h = V div ∩ Xh

V 0,h = V 0 ∩ Xh

and

Qh = Q∩ Xh
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2 Multiphase flow and coupling

Thus, (2.26)-(2.28) can be written under the following P1 finite element formu-
lation by the Galerkin approximation : given u0, for tf > 0, find

u = uh + u′ ∈ V div,h ⊕ V ′

div

and

p = ph + p′ ∈ Qh ⊕Q ′

such that for all v = vh + v′ ∈ V 0,h ⊕ V ′
0 and all q = qh + q′ ∈ Qh ⊕Q ′

(ϱ∂t(uh + u′),vh + v′)

+ ((ϱ(uh + u′) + J) ·∇(uh + u′),vh + v′)

+ (2η(φ)D(uh + u′) : D(vh + v′))

+ (∇(ph + p′),vh + v′) =
( σ
ε2
ω∇φ,vh + v′

)
+ (ϱg,vh + v′),

(2.30)

(∇· (uh + u′), qh + q′) = 0, (2.31)

u(·, 0) = u0 ∈ Vh,0 ⊕ V ′

0, (2.32)

which can be rewritten as follows: given u0, for tf > 0 find

uh + u′ ∈ V div,h ⊕ V ′

div

and

ph + p′ ∈ Qh ⊕Q ′

such that the coarse scale formulation of (2.30)-(2.32) is given by: for all (vh, qh) ∈
V 0,h,

(ϱ∂t(uh + u′),vh)

+ ((ϱ(uh + u′) + J) ·∇(uh + u′),vh)

+ (2η(φ)D(uh + u′) : D(vh)) + (∇(ph + p′),vh) =
( σ
ε2
ω∇φ,vh

)
+ (ϱg,vh),

(2.33)

(∇· (uh + u′), qh) = 0, (2.34)

uh(t = 0) = uh,0 ∈ Vh,0, (2.35)
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2.6. Space and time discretization

and the fine scale formulation is given by: for all (v′, q′) ∈ V ′
0

(ϱ∂t(uh + u′),v′)

+ ((ϱ(uh + u′) + J) ·∇(uh + u′),v′)

+ (2η(φ)D(uh + u′) : D(v′))

+ (∇(ph + p′),v′) =
( σ
ε2
ω∇φ,v′

)
+ (ϱg,v′),

(2.36)

(∇· (uh + u′), q′) = 0, (2.37)

u′(t = 0) = u′
0 ∈ V ′

0, (2.38)

As in [22], one assumes that the convective velocity of the non-linear term may
be approximated using only the large scale component (uh + u′) · ∇(uh + u′) ≈
uh ·∇(uh + u′) and the sub-scales are considered quasi-static, and not tracked in
time.

By expressing u′ and p′ as in [23], substituting them into the coarse scale for-
mulation, and integrating by parts, the system (2.33)-(2.35) becomes: given u0, for
tf > 0 find (uh, ph) ∈ V div,h such that for all for all (vh, qh) ∈ V 0,h

(ϱ∂tuh,vh) + ((ϱuh + J) ·∇uh,vh)

−
∑
K

(τuRu, ϱuh∇vh)K + (2η(φ)D(uh) : D(vh))

− (ph,∇·vh)−
∑
K

(τpRp,∇·vh)K =
( σ
ε2
ω∇φ,vh

)
+ (ϱg,vh),

(2.39)

(∇·uh, qh)−
∑
K

(τuRu,∇qh)K = 0, (2.40)

uh(t = 0) = uh,0 ∈ Uh,0, (2.41)

where
∑

K stands for the summation over all the elements K of the partition Th,
(·, ·)K denotes the L2 inner product in each element K, τu and τp are stabilization
parameters given by [24], and Ru and Rp are residuals defined as follows:

Ru = ϱ(φ)g+
σ

ε2
ω∇φ− ϱ(φ)∂tuh − ϱ(φ)uh ·∇uh

− ph −∇· (2η(φ)D(uh)) ,
(2.42)

Rp = −∇·uh. (2.43)

The terms
∑

K(τuRu, ϱuh∇vh)K ,
∑

K(τpRp,∇·vh)K , and
∑

K(τuRu,∇qh)K rep-
resent the effects of the sub-grid scales and deal with the instability in convection

77



2 Multiphase flow and coupling

dominated regime. The VMS method allows getting P1/P1 solutions for the velocity
and the pressure.

2.6.2 Time discretization

For the time discretization, semi-implicit BDF-schemes based on Newton–Gregory
backward polynomials are used to extrapolate the nonlinear terms. By considering
BDF-σ the time derivative is approximated as follows

∂tuh ≈
ασu

n+1
h − un,σh
∆t

, (2.44)

with

ασ =


1 for σ = 1,
3
2
for σ = 2,

11
6
for σ = 3.

(2.45)

and

un+1,σ
h =


unh for n ≥ 0 and σ = 1,

2unh − un−1
h for n ≥ 1 and σ = 2,

3unh − 3un−1
h + un−2

h for n ≥ 2 and σ = 3.
(2.46)

Thus, the linearized semi-implicit formulation of the Navier–Stokes equations is:(
ϱn
ασu

n+1
h − un,σh
∆t

,vh

)
+
(
(ϱn+1un+1,σ

h + Jn+1) ·∇un+1
h ,vh

)
−
∑
K

(τn+1,σ
u Rn+1,σ

u , ϱn+1un+1,σ
h ∇vh)K +

(
2ηn+1D(un+1,σ

h ) : D(vh)
)

−
(
pn+1
h ,∇·vh

)
−
∑
K

(τn+1,σ
p Rn+1

p ,∇·vh)K

=
( σ
ε2
ωn+1∇φn+1,vh

)
+ (ϱn+1g,vh),

(2.47)

(∇·un+1
h , qh)−

∑
K

(τn+1,σ
u Rn+1,σ

u ,∇qh)K = 0, (2.48)

with the following discretized residuals:

Rn+1,σ
u =ϱn

ασu
n+1
h − un,σh
∆t

+ ϱn+1un+1,σ
h ·∇un+1

h +∇pn+1
h

− 2ηn+1D(un+1
h )− σ

ε2
ωn+1∇φn+1 − ϱn+1g,

(2.49)

Rn+1
p = ∇·un+1

h (2.50)
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and the following discretized stabilization parameters:

τn+1,σ
u =

((
c1η

n+1

ϱn+1h2

)2

+

(
c2∥un+1,σ

h ∥K
h

)2
)− 1

2

, (2.51)

τn+1,σ
p =

((
ηn+1

ϱn+1

)2

+

(
c2∥un+1,σ

h ∥Kh
c1

)2
)− 1

2

(2.52)

Thus, by denoting y, y∗ and y′ the discrete solutions yn+1, yn and yn−1 to sim-
plify, the discretized coupled Cahn–Hilliard–Navier–Stokes equations are solved by
a fractional step resolution as follows:

1. Solving the Cahn–Hilliard equations, for example with the classical scheme
(1.31):

(
φh − φ∗

h

∆t
, ψh) + (u∗ ·∇φh, ψh) +M(∇ωh,∇ψh) = 0, (2.53)

(ωh, χh)− ε2(∇φh,∇χh)− (φh
(
(φ∗

h)
2 − 1

)
, χh) = 0, (2.54)

2. Then, the incompressible Navier–Stokes equations are solved with the VMS
method: (

ϱ∗
ασuh − u∗,σ

h

∆t
,vh

)
+ ((ϱuσh + J) ·∇uh,wh)

−
∑
K

(τσuRσ
u, ϱu

σ
h∇vh)K + (2ηD(uσh) : D(vh))

− (ph,∇·vh)−
∑
K

(τσpRp,∇·vh)K

=
( σ
ε2
ω∇φ,vh

)
+ (ϱg,vh),

(2.55)

(∇·uh, qh)−
∑
K

(τσuRσ
u,∇qh)K = 0, (2.56)
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2 Multiphase flow and coupling

2.7 Two-phase flow simulation with interface capturing

To validate the implemented methods of the present Cahn–Hilliard–Navier–Stokes
model, two-dimensional time-dependent numerical test cases are presented in this
section: a dam-break test according to the benchmark defined in [25] and a rising
bubble test case presented in [26, 27]. In the next simulations, the meshes are
considered uniform, and the effects of flux mass are neglected: J=0. The results
obtained with the proposed approach are compared with those obtained by other
approaches that can be found in the literature.

2.7.1 Dam-break 2D

One considers a fluid column (water) inside a fluid domain (air) Ω = [0;Lx]× [0;Ly]
as presented in Figure 2.3.

γ2a

a

Ly

Lx

Figure 2.3: Dam-break benchmark

In this test case, the water column will collapse under the only gravity effect
g=9.81. Surface tension is assumed neglected: σ=0. All the parameters related to
the test case are depicted in Table 2.1:

ϱwater 1000 ∆t 4 · 10−4

ηwater 10−2 Lx 0.5
ϱair 1 Ly 0.15
ηair 10−3 a 0.06
M 10−6 γ2 2
ε 3.2 · 10−3 Nbelements 300,000
tf 10 h 8 · 10−4

Table 2.1: Parameters of the dam-break test case

80



2.7. Two-phase flow simulation with interface capturing

Figure 2.4 presents the evolution of the phase-field solution for the 2D dam-break
at different time with a uniform mesh composed of 300,000 elements of mesh size h,
after performing the simulation in parallel with 4 cores.

(a) t=0 (b) t=0.2

(c) t=0.4 (d) t=0.6

(e) t=1 (f) t=2

Figure 2.4: Phase-field solution at t=0, 0.2, 0.4, 0.6, 1, and 2 of the dam-break
evolution
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2 Multiphase flow and coupling

Experimental results are available from [28] and make this benchmark suitable for
validation. Numerical results by the level-set method have been done as studied in
[29]. In Figure 2.5a, the non-dimensional evolution of the front position is compared
for the different methods as well as the non-dimensional evolution of the column
height in Figure 2.5b.
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(a) Non-dimensional front line position
evolution
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(b) Non-dimensional height evolution

Figure 2.5: Non-dimensional evolution of the front position and the height column

The results are in agreement in the two cases for the different methods. The
simulation until the final time tf has been performed in 71h 10min.
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2.7. Two-phase flow simulation with interface capturing

2.7.2 Rising bubble 2D

One considers a bubble of light fluid ΩLF surrounded by a heavier fluid ΩHF as
presented in Figure 2.6. This bubble rises due to gravitational force. The motion

Lx

Ly

D

ΩLF

ΩHF

Figure 2.6: Rising bubble benchmark

gives rise to a deformation of the bubble shape which depends also on the value
of the tension surface coefficient σ. The parameters for the benchmark test are
summarized in Table 2.2.

ϱHF 1000 ∆t 10−3

ηHF 10 Lx 1
ϱLF 1 Ly 2
ηLF 0.1 D 0.5
M 10−6 g 0.98
ε 2 · 10−2 σ 1.96
tf 5 Nbelements 200,000

Table 2.2: Parameters of the rising bubble test case

83



2 Multiphase flow and coupling

Figure 2.7 presents the configuration for the bubble at t=0, t=1, t=2, t=3, t=4,
t=5 with a uniform mesh composed of 200,000 elements of mesh size h=0.005 after
performing the simulation in parallel with 4 cores.

(a) t=0 (b) t=1 (c) t=2

Figure 2.7: Phase-field solution of the bubble evolution at t=0, 1, and 2 with σ=1.96

(d) t=3 (e) t=4 (f) t=5

Figure 2.7: Phase-field solution of the bubble evolution at t=3, 4, and 5 with σ=1.96
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2.7. Two-phase flow simulation with interface capturing

As for the dam-break benchmark, the velocity is unknown and the Navier–Stokes
equations admits the gravity as a source term. Numerical results by the level-set
method have been done as studied in [26] and benchmark quantities as the position
of the bubble mass center and the rise velocity of the bubble mass center have been
measured. The position of the bubble mass center is defined by xC = 1

|Ωair|

∫
Ωair

x dx

and the rise velocity of the bubble mass center is defined by uC = 1
|Ωair|

∫
Ωair

u dx.
In Figure 2.8a, the position evolution of the bubble mass center is presented for
both level-set and phase-field methods and the velocity component evolution of the
bubble mass center in the direction opposite to the gravitational vector are shown
in Figure 2.8b. The results are in agreement in the two cases for the both methods.
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(a) Position evolution of the bubble mass
center
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(b) Velocity evolution of the bubble mass
center

Figure 2.8: Position and velocity evolution of the bubble mass center for σ=1.96
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2 Multiphase flow and coupling

By changing the physical properties of the bubble and the tension surface coef-
ficient and setting them as in [26]: ϱLF=100, ηLF=1, and σ=24.5, a new simulation
is performed with the same previous values for the other parameters. Figure 2.9
presents the configuration of the rising bubble 2D case with a uniform mesh com-
posed of 200,000 elements at t=0, t=1, t=2, t=3, t=4, and t=5.

(a) t=0 (b) t=1 (c) t=2

Figure 2.9: Phase-field solution of the bubble evolution at t=0, 1, and 2 with σ=24.5

(d) t=3 (e) t=4 (f) t=5

Figure 2.9: Phase-field solution of the bubble evolution at t=3, 4, and 5 with σ=24.5
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2.7. Two-phase flow simulation with interface capturing

In Figure 2.10a, the position evolution of the bubble mass center is presented for
both level-set and phase-field methods and the velocity component evolution of the
bubble mass center in the direction opposite to the gravitational vector are shown
in Figure 2.10b.
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Figure 2.10: Position and velocity evolution of the bubble mass center for σ=24.5

The results are similar in the two cases for the both methods. The simulation
took 22h 27min to perform the rising bubble until the final time tf=5s in both case
for σ=1.96 and σ=24.5.
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2 Multiphase flow and coupling

In this test case, because of the values chosen for the parameters, the convection is
weaker than the case with σ=1.96. Indeed, as expected, by comparing the velocity
magnitude of these both cases at the final time tf=5s, the velocity is weaker in
the case with a surface tension coefficient σ=24.5 (∥uh(·, t = 5)∥ℓ2 = 0.23759)
than the case with σ=1.96 (∥uh(·, t = 5)∥ℓ2 = 0.31784). As a consequence, the
overshoots/undershoots, existing because of the convection numerical scheme, are
less amplified with σ=24.5 than σ=1.96. However, numerical diffusion persists and
accumulates, in one hand because of the convection scheme in P1 and in other hand
because of the diffusion operator ∆ω of order 4 on φ, with a mobility M considered
as positive and constant which plays therefore a role of diffusion coefficient. An
approximate view of the numerical diffusion for values of the order parameter φ
between -1 and 1 at the final time tf=5s is represented in Figure 2.11 ( Figure 2.11b
is the same as Figure 2.9f).

(a) scaled (b) unscaled

Figure 2.11: Phase field solution of the rising bubble evolution at tf=5 with scaled
(left) and unscaled (right) values of varphi
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2.7. Two-phase flow simulation with interface capturing

2.7.3 Rayleigh–Taylor instability 2D

In this test case, the Rayleigh–Taylor instability, where a heavy fluid ΩHF falls into a
lighter and underlying fluid ΩLF , is simulated. This two layers of fluid, as represented
in Figure 2.12, are initially at rest in the rectangular domain Ω = [0, Lx] × [0, Ly].
It is the problem for fluid mixing induced by unstable stratification as documented
in [30].

Lx

Ly

ΩLF

ΩHF

Figure 2.12: Rayleigh–Taylor instability

The transition between the two fluids is regularized and initialized as the follow-
ing phase-field function:

φ0(x) = 0.05 cos(2π(x− 0.5)) + 2 (2.57)
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2 Multiphase flow and coupling

The movement gives a deformation of the shape of the fluid. The parameters for
the test case are summarized in Table 2.3.

ϱHF 3 ∆t 10−4

ηHF 0.0135 Lx 1
ϱLF 1 Ly 1
ηLF 0.1 Lz 4
M 10−6 g 9.8
ε 2 · 10−2 σ 3 · 10−2

tf 115 Nbelements 100,000

Table 2.3: Parameters of the Rayleigh–Taylor instability test case

In Figure 2.13, the instability evolution is represented at time t =0, 0.25, 0.5,
0.75, 1, 1.25, 1.5, and 1.75, with a uniform mesh composed of 100,000 elements of
mesh size h after performing the simulation in parallel with 4 cores.

(a) t=0 (b) t=0.25 (c) t=0.5

Figure 2.13: Phase-field solution of the Rayleigh–Taylor instability at t=0, 0.25, and
0.5
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2.7. Two-phase flow simulation with interface capturing

(d) t=0.75 (e) t=1 (f) t=1.25

(g) t=1.5 (h) t=1.75

Figure 2.13: Phase-field solution of the Rayleigh–Taylor instability at t=0.75, 1, 1.25,
1.5, and 1.75
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2 Multiphase flow and coupling

The above results are in good agreement with those from [30]. Compared to
the rising bubble case in Subsection 2.7.2, the filaments of the heavy fluid are more
chaotic and unstable. This is essentially due to a dominated convection (at t=1.75,
∥uh(·, t = 1.75)∥ℓ2 = 4.0174) despite the presence of the numerical diffusion. This
can be seen so with an approximate visualization of the numerical diffusion for values
of the order parameter φ between -1 and 1 at the final time tf=5s is represented in
Figure 2.14 ( Figure 2.14b is the same as Figure 2.13h).

(a) scaled (b) unscaled

Figure 2.14: Phase field solution of the Rayleigh–Taylor instability evolution at
t=1.75 with scaled (left) and unscaled (right) values of varphi

As a consequence of the present dominated convection, extremal values of φ are
bigger than the rising bubble case. In the present case, it took 54min to obtain
t=1.75s and 37h 40min to simulate tf=115s.
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2.8. Conclusion

2.8 Conclusion

In this chapter, the phase-field method to capture an interface has been coupled
to the multiphase flow framework. As a consequence, the coupled Cahn–Hilliard–
Navier–Stokes equations have been established to model this kind of problem. Capil-
lary action has been taken into account in the model to introduce the wetting effect.
Some properties of these coupled equations have been presented and proved. A se-
ries of numerical test cases have been simulated by solving the discrete model with
a fractional step way. Comparisons with the results of the literature have been done
as a validation step. Initially observed in the previous chapter, numerical diffusion,
and overshoots/undershoots on the order parameter φ are still observed in these
simulations, because of the convection numerical scheme and fourth-order diffusion
in a finite element P1 framework. Despite these numerical aspects, the validation
criteria of the different test cases give results in agreement with other numerical and
experimental results. This means that these validation criteria are not so sensitive
to the observed numerical drawbacks. In the next chapter, a numerical improvement
will be approached to achieve more realistic cases.

Bibliography

[1] D. M. Anderson, G. B. McFadden, and A. A. Wheeler. Diffuse-interface in fluid
mechanics. Annual Review of Fluid Mechanics, 30(1):139–165, 1998. 61, 65

[2] P. C. Hohenberg and B. I. Halperin. Theory of dynamic critical phenomena.
Reviews of Modern Physics, 49(3):435–479, 1977. Publisher: American Physical
Society. 61

[3] D. Jacqmin. Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field
Modeling. Journal of Computational Physics, 155(1):96–127, 1999. 61

[4] F. Yue, C. Feng, S. Liu, and B. Shen. A diffuse-interface method for simulating
two-phase flows of complex fluids. Journal of Fluid Mechanics, 515(1):293–317,
2004.

[5] H. Abels. On a diffuse interface model for two-phase flows of viscous, incom-
pressible fluids with matched densities. 194(2):463–506, 2009. 61, 73

[6] F. Boyer, C. Lapuerta, S. Minjeaud, and B. Piar. Cahn–Hilliard/Navier–Stokes
model for the simulation of three-phase flows. Transport in Porous Media,
82(3):463–483, 2010. 61

[7] D. Jamet. Diffuse interface models in fluid mechanics. Technical report, CEA
Grenoble, 2014. 61, 65

93



BIBLIOGRAPHY

[8] L.K. Antanovskii. A phase field model of capillarity. Physics of Fluids, 7(4):747–
753, Apr 1995. 65

[9] D. Bresch and B. Desjardins. Quelques modèles diffusifs capillaires de type
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3 Anisotropic mesh adaptation for phase-field methods

Résumé en Français

Dans les chapitres précédents, une méthodologie permettant de
numériquement capturer l’interface séparant deux fluides et suivre son
évolution ainsi que celle de la dynamique de ces deux fluides a été présentée.
Des cas test appliquant cette méthodologie ont été numériquement simulés
en 2D sur maillage uniforme. Dans l’optique de simuler des cas industriels en
ayant une capture précise de l’interface, la simulation numérique sur maillage
uniforme devient rapidement très coûteuse en temps de calcul. Se pose donc
la question de la réduction du temps de calcul sans perte de la précision.

Ce chapitre présente la méthode d’adaptation de maillage anisotrope con-
sistant à raffiner le maillage dans les zones d’intérêts et grossir le mail-
lage ailleurs. Les zones d’intérêts sont les zones à fort gradient d’un ou
plusieurs champs donnés. Le procédé d’adaptation de maillage anisotrope
permet de construire une nouvelle métrique basée sur le gradient de ce(s)
champ(s) à travers un algorithme automatisé. Ces champs sont appelés
critères d’adaptation. Il peut s’agir par exemple du champ de vitesse, pour
raffiner le maillage dans les endroits à fort gradient de vitesse c’est-à-dire où
a lieu la dynamique, du champ de température, pour un maillage plus fin là
où ont lieu les plus forts échanges thermiques, et/ou d’autres champs.

Dans les travaux présentés ici, la zone d’intérêt concerne uniquement
l’interface séparant les deux fluides. De ce fait, il est pertinent de choisir
un champ décrivant l’interface comme critère d’adaptation. À partir du
présent chapitre, le critère d’adaptation sélectionné est l’énergie libre. En
effet, de par son fort gradient dans la zone de transition séparant les deux
fluides, c’est-à-dire à l’interface, ce champ permet d’obtenir une interface
précisément décrite et un maillage bien raffiné en son voisinage.

Ce chapitre présente ensuite une application de la méthode d’adaptation
de maillage anisotrope avec ce choix de critère d’adaptation à travers une série
d’expériences numériques. Les expériences numériques du chapitre précédent
ont toutes été reprises et simulées à nouveau. Il a notamment été observé une
diminution de la diffusion numérique avec le maillage anisotrope comparé au
maillage uniforme, ainsi qu’une meilleure conservation du volume de chacune
des deux phases subissant l’écoulement.

L’adaptation de maillage anisotrope a aussi permis de réaliser ces
expériences numériques en 3D, ce qui était sans espoir avec le maillage uni-
forme du fait du fort coût de calcul requis. Cette réussite permet donc
d’espérer une simulation numérique plus réaliste d’un refroidissement d’une
pièce industrielle lors de la trempe.
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3.1 Introduction

To improve the efficiency of finite element methods and to provide an accurate
computation of small scale feature the interface evolution, a numerical technique
consists of local mesh refinement. Anisotropic mesh adaptation plays a key role in
simulation problems for which interfaces are involved. This method can capture the
interfaces with good accuracy at a low number of elements in the mesh. The purpose
is to combine the phase-field approach with local mesh refinement around the zero
isovalue of the order parameter φ, which corresponds to the interface region. The key
to the anisotropic mesh adaptation is to generate highly stretched and well-oriented
elements to have a good capture of the sharp gradients. Elements can then be
stretched in particular directions according to the solution features. In the literature,
several approaches to anisotropic mesh adaptation exist. In [1–3], the approaches
rely on local modifications of an existing mesh. Specifically, they use a metric field
to redefine the geometric distances allowing to adapt the mesh size according to
mesh directions. In [4], authors have developed a mesh adaptation method based
on a posteriori error estimation. This method produces metrics from the error
analysis of the discretization error which steers the remeshing. In the following, the
anisotropic mesh adaptation technique adopted is extracted from [5–7]. The method
is driven by directional error estimators. The mesh is dynamically adapted to the
adaptation criterion. The purpose is to refine the interface region. The refinement
will then affect both the density of elements and their shapes around the interface.
Therefore, the mesh will be anisotropically adapted and stretched along the direction
of the considered criterion. Compared to an isotropic refinement, a large number
of elements is saved. The adopted technique needs first a metric map prescribing a
mesh size according to the principal directions in the domain, which are given by
the eigenvectors of the metric while the mesh size h is given by the eigenvalues. The
metric M is a positive definite symmetric tensor [8–10], representing a local base
modifying the distance computation from the Euclidean space to the metric space,
such that:

∥x∥M =
√
xT ·M · x (3.1)

for a vector x of the Eucledian space. The scalar product associated to the metric
space is given by

< x,y >M := xT ·M · y (3.2)

An accurate description of the interface is obtained by using the normal direction
as the principal direction of mesh refinement. It comes that a mesh size can be
prescribed around the interface while a larger mesh size is considered far from the
interface. A new metric can be then defined from the principal direction and the
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3 Anisotropic mesh adaptation for phase-field methods

non-uniform mesh size of the domain. This metric corresponds to an isotropic metric
far from the interface and to an anisotropic metric near the interface.

3.2 Edge-based metric

The process of anisotropic mesh adaptation described previously is automated. It
relies on the a posteriori definition of a metric field driving the remeshing procedure
so that the interpolation error is minimized. This strategy is based on a statistical
representation of the distribution of edges sharing a vertex, called length distribu-
tion tensor. The definition of an edge-based error estimator with a gradient recovery
method, as proposed in [6], allows linking the length distribution tensor to the inter-
polation error. Once the optimal metric has been obtained, the mesh generation and
adaptation method, based on a topological representation, is applied to obtain the
new mesh. This metric construction is commonly used for dynamic mesh adaptation
based on the variation of several fields.

3.2.1 Length distribution tensor

Let xi and xj two vertices of the edge xij. Let Γ(i) the set of nodes xj sharing
an edge with xi. As stated by [6], The problem of finding a unitary metric Mi

associated to the i-th node can be formulated as the following least square problem:

Mi = argmin
M∈Rd×d

sym

∑
j∈Γ(i)

Mxij · xij − |Γ(i)|

2

(3.3)

For a finite element admissible mesh, vertices of Γ(i) has to form at least d non
co-linear edges with vertex xi.

Definition 3.2.1. The length distribution tensor denoted byXi is defined as follows:

Xi :=
1

|Γ(i)|

∑
j∈Γ(i)

xij⊗xij

 (3.4)

The length distribution tensor gives an average representation of the distribution
of edges in Γ(i)

Proposition 3.2.2. An approximated solution of the problem (3.3) is given by:

Mi =
1

d
(Xi)−1 (3.5)
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3.2. Edge-based metric

3.2.2 Edge based error estimation

Let Vh the finite element space defined in (1.21):

Vh = {vh ∈ C0(Ω̄) such that vh|K ∈ P1, K ∈ Th}

where the triangulation Th of Ω is a family of disjoint elements K such that

Ω =
⊔
K∈Th

K.

Let u ∈ C2(Ω) a regular function. Let Πh : C2(Ω) → Vh a Lagrange interpolation
operator such that, by denoting ui the node value of Πhu at xi, for all i ∈ {1, ..., N}
where N is the number of nodes:

ui := Πhu(x
i) (3.6)

In the case of continuous element P1, the gradient of Πhu is a piecewise constant
field but it is continuous along the edges in the direction of the edges, therefore

uj = ui +∇Πhu · xij (3.7)

By denoting uij := uj − ui, as established in [6], the following result is obtained:

Proposition 3.2.3. The inequality of the interpolation error gradient projected
along an edge xij is given by:

| (∇Πhu−∇u) · xij| ≤ max
y∈[xi,xj ]

|Hu(y)x
ij · xij| (3.8)

where Hu :=
[

∂2u
∂xi∂xj

]
1≤i,j≤N

is the associated Hessian.

3.2.3 Gradient recovery procedure

An interpolation operator enabling the building of a continuous gradient can be de-
fined directly at the node of the mesh and depending only on the given interpolation
values. This interpolation operator is based on the length distribution tensor and
the projection of the gradient along the edges. By denoting gi := ∇u(xi) the exact
value of ∇u at node i and considering its Lagrange interpolate gih := Πh∇u(xi), it
comes:

gj = gi +∇gh · xij (3.9)

where gh := Πh∇u.
And the projection of the gradient along the edges xij is given by(

∇gh · xij
)
· xij =

(
gj − gi

)
· xij (3.10)
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3 Anisotropic mesh adaptation for phase-field methods

Definition 3.2.4. By denoting gij := gj − gi, the error along the edges xij is
defined by:

eij := |gij · xij| (3.11)

This error sampling is the exact interpolation error along the edge and enables
the evaluation of the global L2 error. The error (3.11) can be evaluated only if the
gradient of u is known and continuous at the nodes of the mesh. This means that
the solution must be at least in C2(Ω).

To overcome this constraint, a recovery procedure can be considered as proposed
in [6] by defining the following local optimization problem:

gi = argmin
g

∑
j∈Γ(i)

|(g−∇uh) · xij|2
 = argmin

g

∑
j∈Γ(i)

|gxij − uij|2
 (3.12)

by using (3.7), where uh is the approximated solution. Solving

0 =
∑
j∈Γ(i)

(
(gixij) · xij − uij · xij

)
=
∑
j∈Γ(i)

(
gi(xij⊗xij)− uij · xij

)
(3.13)

and taking

ui :=
∑
j∈Γ(i)

uij · xij (3.14)

allows to obtain the following solution of (3.12):

gi =
(
Xi
)−1

ui (3.15)

3.2.4 Metric construction

Once the gradient recovery procedure is performed, the next step is to relate the
error indicator eij defined in (3.11) to an adequate metric for the anisotropic mesh
adaptation. Indeed, during the mesh adaptation procedure, the length of an edge is
changed in the edge direction of a stretching factor. According to [6], this stretching
factor, denoted by s ∈ R+, considers the edge transformation in its own direction
and verifies:

xij 7→ sxij

ēij := |gij · sxij| = s2eij
(3.16)

with eij defined in (3.11). To obtain a new metric depending on the error ēij defined
in (3.16) and taking into account the edge stretching, it is necessary to calculate a
new length for each edge and to use it for rebuilding the length distribution tensor
introduced in (3.4).
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3.2. Edge-based metric

Definition 3.2.5. One defines sij, i, j ∈ N be the set of edges stretching factors
by:

ẽij := (sij)2eij|x̃ij| := sij|xij| (3.17)

where ẽij and |x̃ij| denote respectively the target error and associated edge length.

The new metric is obtained from the following result [6]:

Theorem 3.2.6. Let E the set of edges of a mesh and p ∈ [1, d] be an exponent to
be defined. Then, the continuous metric field defined at the mesh nodes is:

Mi :=

1

d

∑
j∈Γ(i)

(sij)2xij⊗xij

−1

(3.18)

where

sij =

(
λ

eij

)1/p

(3.19)

and

λ =

(∑
i

∑
j∈Γ(i)(e

ij)
p

p+2

card(E)

)1/p

(3.20)

minimizes the error for a fixed number of edges card(E). Moreover, if sij = 1 for
all i ∈ N and all j ∈ Γ(i), then the mesh is optimal.

It is important to note that, in the mesh adaptation method of the present work,
the stretching factor sij is computed so that the number of edges is fixed.

3.2.5 Mesh adaptation criteria

The aim is to apply the anisotropic mesh adaptation so that the interface is better
captured. Different fields can be used as a criterion for mesh adaptation in function
of the fields of interest. To well capture the interface, a criterion based on the
order parameter φ, which describes the interface, seems to be obvious. Therefore,
the phase-field solution φ can be chosen as a criterion for mesh adaptation. In the

present work, the free energy F (φ) = (φ2−1)2

4
from (1.2), directly related to φ, is

the field that will be chosen for its usefulness in mesh adaptation. Thanks to its
property for which this free energy is non-null in the interface region and vanishes
away from the interface at any time, it is a good criterion that represents accurately
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3 Anisotropic mesh adaptation for phase-field methods

the interface area. To have a field that doesn’t dominate the error estimator eij and
to take into account the variations of this variable, the considered field is normalized.
In the case of the free energy F (φ), it is normalized by its maximum.

In practice, the mesh adaptation method considered here can increase the compu-
tation cost of a simulation. In this case, it could be judicious to have an adaptation
frequency that avoids the adaptation at each time step. The purpose is to deter-
mine the optimal frequency to reduce computation costs. The optimal frequency is
difficult to determine. However, it can be approached with the help of information,
like the initial number of elements in the domain or even near to the interface, the
considered time step, and the velocity magnitude in the areas of interest,... The
anisotropic mesh adaptation enables to performance of simulations quicker while
reducing computation costs and obtaining a more accurate solution. In this case,
simulations of 3D cases are more feasible than with a uniform mesh.

3.3 Numerical experiments

Now the anisotropic adaptation mesh method is explained, the following is dedicated
to numerical simulation of test cases. The method will be applied to the test cases
previously introduced and compared with the previous outcomes. The test cases
considered are those of the multiphase flow framework studied in Section 2.7 of the
last chapter.

3.3.1 Dam-break 2D

The present test case is dedicated to the dam-break 2D simulation, as introduced
in 2.7.1, within the framework of anisotropic mesh adaptation explained previously.
The water column, as represented in 2.3 collapses again in the air domain because the
gravity force g = (0,−g), where g = 9.81. With mesh adaptation, one can reduce the
number of elements while reducing the mesh size locally, in the neighborhood of the
interface. This involves that the interface thickness can also be decreased. Compared
to the previous chapter, some parameters have been modified. The parameters
related to this test case with mesh adaptation are summarized in Table 3.1.
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3.3. Numerical experiments

ϱwater 1000 ∆t 0.0004
ηwater 0.01 Lx 0.5
ϱair 1 Ly 0.15
ηair 0.001 a 0.06
M 10−6 γ2 2
g 9.81 σ 0
ε 0.001 Nbelements 20,000
tf 10 hmin 0.0001

Table 3.1: Parameters of the 2D dam-break test case with mesh adaptation

The simulation has been performed on 4 cores, with a visualization file created
every 25-time step. In this simulation, the remeshing is performed every 3-time step.
Figure 3.1 represents the evolution of the phase-field solution and the adapted mesh
at different time.

(a) t=0 (b) t=0.2

Figure 3.1: Phase-field solution at t=0 and 0.2 of the dam-break evolution with mesh
adaptation
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3 Anisotropic mesh adaptation for phase-field methods

(c) t=0.4 (d) t=0.6

(e) t=1 (f) t=2

(g) t=4 (h) t=10

Figure 3.1: Phase-field solution at t=0.4, 0.6, 1, 2, 4, and 10 of the dam-break evo-
lution with mesh adaptation
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3.3. Numerical experiments

In Figure 3.1, the effect of the mesh adaptation are clearly remarkable. The mesh
is well refined in the interface area while it is coarsed far from the interface. As a
consequence, the interface is at least as well as captured with only 20,000 elements
than the 300,000 elements of the uniform mesh case.

As done in the previous chapter with the uniform mesh, a comparison with
experimental results [11] and numerical results by the level-set method [12] is estab-
lished. Specifically, the non-dimensional evolution of the front position is compared
in Figure 3.2a as well as the non-dimensional evolution of the height in Figure 3.2b.
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(b) Non-dimensional height evolution

Figure 3.2: Non-dimensional evolution of the front position and the height column within
the mesh adaptation framework

The results are the same as those observed in the previous chapter: they agree
with the other methods. The simulation until the final time tf has been performed
in 9h 45min, compared to 71h 10min with the uniform mesh.

3.3.2 Rising bubble 2D

The present test case is the same one introduced in 2.7.2. A bubble of light fluid is
surrounded by a heavier fluid and rises under the gravity effect and surface tension
forces. The considered parameters summarized in Table 3.2.
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3 Anisotropic mesh adaptation for phase-field methods

ϱHF 1000 ∆t 0.001
ηHF 10 Lx 1
ϱLF 1 Ly 2
ηLF 0.1 D 0.5
M 10−6 g 0.98
ε 0.008 σ 1.96
tf 5 Nbelements 10,000

Table 3.2: Parameters of the rising bubble test case with anisotropic mesh adaptation

The minimum mesh size is fixed at hmin=10−4 so that the interface region is well
refined because of the anisotropic mesh adaptation. The adaptation step happens
every 5 increments of time. The simulation has been performed in parallel on 4
cores, with a visualization file created every 50-time step. Figure 3.3 shows the
evolution of the parameter order φ and the adapted mesh at time t=0, 1, 2, 3, 4,
and 5.

(a) t=0 (b) t=1 (c) t=2

Figure 3.3: Phase-field solution and adapted mesh of the bubble evolution at t=0, 1,
and 2 with σ=1.96
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3.3. Numerical experiments

(d) t=3 (e) t=4 (f) t=5

Figure 3.3: Phase-field solution and adapted mesh of the bubble evolution at t=3, 4,
and 5 with σ=1.96

By representing the position and velocity evolution of the bubble mass center
over time respectively in Figure 3.4a and 3.4b, the comparison with the level-set
method [13] gives the same results as the previous chapter with a uniform mesh.
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(a) Position evolution of the bubble mass
center
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(b) Velocity evolution of the bubble mass
center

Figure 3.4: Position and velocity evolution of the bubble mass center for σ=1.96 with mesh
adaptation

As in the previous chapter, a simulation of the rising bubble with another value
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3 Anisotropic mesh adaptation for phase-field methods

of the surface tension coefficient σ=24.5 has been performed. Compared to the
previous case, only the surface tension coefficient and the physical properties of the
bubble have been changed as defined in [13] with a light fluid density ϱLF=100 and
a light fluid viscosity ηLF=1. The simulation has also been performed on 4 cores.
The adapted mesh and the phase-field solution of the rising bubble are presented in
Figure 3.5 at time t=0, 1, 2, 3, 4, and 5.

(a) t=0 (b) t=1 (c) t=2

(d) t=3 (e) t=4 (f) t=5

Figure 3.5: Phase-field solution and adapted mesh of the bubble evolution at t=0, 1,
2, 3, 4, and 5 with σ=24.5
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3.3. Numerical experiments

Position and velocity evolution of the bubble mass center over time are repre-
sented again, respectively in Figure 3.6a and 3.6b. The results are the same as those
obtained in the uniform mesh case.

0 0.5 1 1.5 2 2.5 3

0.6

0.8

1

Time (s)

P
o
si
ti
o
n
(m

)

Phase-field

Level-set by Hysing & al. [13]

(a) Position evolution of the bubble mass
center
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Figure 3.6: Position and velocity evolution of the bubble mass center for σ=24.5 with mesh
adaptation

In Figure 3.3 and 3.5, the numerical diffusion is less present than the uniform
mesh case in Figure 2.7 and 2.9. Unlike the uniform mesh case, there are no under-
shoots at some instants like t=3, t=4 and t=5 with mesh adaptation when σ=1.96
neither when σ=24.5, which means φ ≥ −1. However, there are still overshoots for
each time t presented in Figure 3.3 and 3.5 but they are less marked than in Figure
2.7 and 2.9. In the case of a surface tension coefficient σ=1.96, the maximum value
of the parameter order noted in Figure 3.3 is reached for |φ|max=1.023 with mesh
adaptation compared to |φ|max=1.126 noted in Figure 2.7 with the uniform mesh.
The same observation is done for a surface tension coefficient σ=24.5 but with other
values of |φ|max.

The simulation took 24min to perform the rising bubble until the final time
tf=5s in both cases for σ=1.96 and σ=24.5 with mesh adaptation compared to 22h
27min with a uniform mesh as stated in Chapter 2. With the uniform mesh, there
were 200,000 elements while with the adapted mesh, it has been reduced to 10,000
elements.
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3 Anisotropic mesh adaptation for phase-field methods

3.3.3 Rayleigh–Taylor instability 2D

The test case of the Rayleigh–Taylor instability has been introduced in the previous
chapter. It consists of the falling of a heavy fluid into a lighter and underlying
fluid. The framework is the same as described in 2.7.3 with a set of parameters
summarized in the following Table 3.3:

ϱHF 3 ∆t 0.001
ηHF 0.0135 Lx 1
ϱLF 1 Ly 4
ηLF 0.0045 σ 0.03
M 10−6 g 9.8
ε 0.01 hmin 0.001
tf 115 Nbelements 5,000

Table 3.3: Parameters of the Rayleigh–Taylor instability test case with anisotropic mesh
adaptation

The adaptation step happens every 3 increments of time. The simulation has
been performed on one core, with a visualization file created every 50-time step.
The evolution of the instability and the adapted mesh at different time t are shown
in Figure 3.7.
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3.3. Numerical experiments

(a) t=0 (b) t=0.25 (c) t=0.5

(d) t=0.75 (e) t=1 (f) t=1.25

Figure 3.7: Phase-field and adapted mesh solution of the Rayleigh–Taylor instability
at t=0, 0.25, 0.5, 0.75, 1, and 1.25
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3 Anisotropic mesh adaptation for phase-field methods

(g) t=1.5 (h) t=1.75

Figure 3.7: Phase-field solution and adapted mesh of the Rayleigh–Taylor instability
at t=1.5 and 1.75

It appears a clear representation of the interface with a well refined mesh in the
interface region. Compared to Figure 2.13 presenting the evolution of the instability
with a uniform mesh, several observations can be done. First, the numerical dif-
fusion has much more decreased and the phases are much less mixed. Second, the
overshoots and undershoots are really less marked. By analyzing the value range of
the parameter order φ in Figure 3.7, it rarely exceeds the initial and desired value
range of φ, which means [-1,1]. Values of φ are really out of this range in Figure
3.7g and 3.7h with an absolute extreme value of |φ|max=1.026. It is smaller than
what observed in Figure 2.13 with a uniform mesh for which this value has already
been reached after only t=0.25 and |φ|max=1.606 as noted in Figure 2.13h at t=1.75.
Third, by comparing the phase-field solution of the lighter fluid at the final time
tf=115s for the uniform mesh (Figure 3.8a) and the adapted mesh (Figure 3.8b), a
remarkable difference is visible.
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3.3. Numerical experiments

(a) Uniform mesh (b) Adapted mesh

Figure 3.8: Phase-field solution of the Rayleigh–Taylor instability at t=115 for the
uniform mesh and the adapted mesh

Indeed, despite the numerical diffusion, it seems that the volume of the lighter
volume has more decreased in the case of the uniform mesh than the case of the
adapted mesh. It is clearly indicated by the level of the interface separating the both
phases. By measuring the relative volume loss of the lighter fluid over all the simu-
lation for the cases of uniform and adapted mesh, this observation is quantitatively
validated in Figure 3.9.
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Figure 3.9: Volume loss evolution over time of the lighter fluid for the uniform and adapted
mesh

From the graphs, it is obvious to note that the volume loss of the lighter fluid
in the uniform mesh case is 25% while in the adapted mesh, it is only 5%. As
remarked previously, the mesh adaptation helps to reduce numerical diffusion. This
means the mobility of the species is closer to the fixed value of M and less amplified
by numerical diffusion, so that the volume loss is better controlled.

The simulation has been performed on one core and took 12min to obtain t=1.75s
compared to 54min with the uniform mesh on 4 cores. To simulate tf=115s, it took
8h 35min while the simulation with the uniform mesh took 37h 40min on 4 cores.
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3.3. Numerical experiments

3.3.4 Dam-break 3D

In this test case, the dam-break is simulated in 3 dimensions of space. As in the 2D
case, this test case considers a water column that collapses under the only gravity
effect as represented in Figure 3.10.

Lx

Ly

Lz

γ2a

a

Figure 3.10: Dam-break benchmark 3D

To perform this simulation, an anisotropic mesh adaptation method has been
considered. As established previously, the surface tension effect is neglected. The
parameters of this test case are set as depicted in Table 3.4:

ϱwater 1000 ∆t 0.0001
ηwater 0.01 Lx 0.5
ϱair 1 Ly 0.15
ηair 0.001 Lz 0.15
M 10−6 a 0.06
g 9.81 γ2 2
ε 0.004 Nbelements 500,000
tf 3 hmin 0.0004

Table 3.4: Parameters for the simulation of the dam-break test case in 3D

The simulation has been performed on 20 cores, with a visualization file created
every 100-time step. In this simulation, the remeshing is performed every 10-time
step. The evolution of the phase-field solution and the adapted mesh in 3D at
different time is represented in Figure 3.11.
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(a) t=0 (b) t=0.1

(c) t=0.2 (d) t=0.3

(e) t=0.4 (f) t=0.5

(g) t=0.6 (h) t=0.8

(i) t=1 (j) t=2

(k) t=3

Figure 3.11: Dam-break evolution from time t=0 to t=3
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3.3. Numerical experiments

As established in the 2D case, the numerical simulation, which is more realistic in
3D, has been compared to the experimental benchmark [11]. Figure 3.12 compares
the evolution of the non-dimensional front line position and height over the non-
dimensional time for the experimental method and two numerical methods, the
level-set approach of [12] and the phase-field approach described in the present
work.
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(a) Non-dimensional front line position
evolution
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(b) Non-dimensional height evolution

Figure 3.12: Non-dimensional evolution of the front position and the height of the dam-
break in 3D

The numerical and experimental results present good similarities. To be more
precise, by computing the relative ℓ 2-error between the numerical results obtained
with the phase-field method and the experimental results [11], the error is 4.91% on
the non-dimensional front line position and 1.97% on the non-dimensional height.
The simulation on 20 cores has been performed in 209h 24min to reach tf=3s.
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3.3.5 Rising bubble 3D benchmark

This part is still about 3D test cases. The purpose is to simulate the rising bubble
case initially introduced previously in 2D. In this test case, a spherical bubble of a
light fluid is rising within a column of a heavier fluid as represented in Figure 3.13.

Lx

Ly

Lz

D

Figure 3.13: Rising bubble benchmark 3D

The parameters of the test case are summarized in Table 3.5.

ϱHF 1000 ∆t 0.001
ηHF 10 Lx 1
ϱLF 1 Ly 1
ηLF 0.1 Lz 2
M 10−6 D 0.5
g 0.98 σ 1.96
ε 0.004 Nbelements 500,000
tf 3 hmin 0.0001

Table 3.5: Parameters for the simulation of the dam-break test case in 3D

The simulation has been performed on 32 cores, with a visualization file created
every 50-time step. In this simulation, the remeshing is performed every 5-time step.
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3.3. Numerical experiments

The evolution of the phase-field solution and the adapted mesh in 3D at different
time is represented in Figure 3.14.

(a) t=0 (b) t=1

(c) t=2 (d) t=3

Figure 3.14: Interface evolution at t=0 , 1, 2, and 3 of the rising bubble in 3D

The interface separating the bubble from the rest of the domain is well refined
over all the rising. The dynamics are similar to what has been observed in the 2D
case. The simulation of the 3D test case of the rising bubble took 67h 11min.
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3.3.6 Rayleigh–Taylor instability 3D

The last test case of this chapter is about the Rayleigh–Taylor instability in 3D. Two
layers of fluid, as represented in Figure 3.15, are initially at rest in the rectangular
paver Ω = [0, Lx]× [0, Ly]× [0, Lz].

Lx

Ly

Lz

Figure 3.15: Rayleigh–Taylor instability 3D

The transition between the two fluids is regularized and initialized as the follow-
ing phase-field function:

φ0(x, y) = 0.05 cos(2π(x− 0.5)) + 0.05 cos(2π(y − 0.5)) + 2 (3.21)

The movement gives a deformation of the shape of the fluid. The parameters for
the test case are summarized in Table 2.3.

122



3.3. Numerical experiments

ϱHF 3 ∆t 0.001
ηHF 0.135 Lx 1
ϱLF 1 Ly 1
ηLF 0.1 Lz 4
M 10−6 ε 0.02
g 9.81 σ 0.03
tf 1.4 Nbelements 750,000

Table 3.6: Parameters for the simulation of the 3D test case of Rayleigh–Taylor instability

The test case of Rayleigh–Taylor instability simulation has been simulated on
32 cores, with a visualization file created every 50-time step. In this simulation, the
remeshing is performed every 5-time step. The evolution of the interface and the
adapted mesh in 3D at different time is represented in Figure 3.16.

(a) t=0 (b) t=0.25 (c) t=0.5

Figure 3.16: Interface evolution at t=0 , 0.25, and 0.5 of the Rayleigh–Taylor insta-
bility in 3D
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(d) t=0.75 (e) t=1 (f) t=1.25

Figure 3.16: Interface evolution at t=0.75, 1, and 1.25 of the Rayleigh–Taylor insta-
bility in 3D

Similar dynamics to the 2D case are observed in the 3D case. The interface
is well-captured over the transport duration with a fine mesh in its region. The
simulation of the 3D test case of the Rayleigh–Taylor instability took 33h 46min.

3.4 Conclusion

With the anisotropic mesh adaptation method applied in the presented simulations,
the diffusion effect is less marked than with the uniform mesh. The undershoots
and overshoots are also less amplified in the adapted mesh case than in the uniform
mesh. This is explained by a large number of refined elements around the interface
with a small mesh size. The validation results are the same as those obtained in
the previous chapter and have not been impacted by mesh adaptation. Moreover,
better conservation of the volume of the different phases is relevantly observed with
mesh adaptation compared to the uniform mesh. This is due to a weaker diffusion
because of the large number of refined elements around the interface. As remarked
in the different test cases, simulations are highly quicker with mesh adaptation than
without. Simulations in 3D are now feasible with mesh adaptation.
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Résumé en Français

Avec les chapitres précédents, il est désormais possible de numériquement
simuler un écoulement à deux phases séparées par une interface capturée
par la méthode phase-field. Afin de réaliser une simulation numérique d’une
trempe industrielle refroidissant une pièce, il est nécessaire de prendre en
compte un solide, des échanges thermiques entre les phases, et un changement
de phase eau/vapeur. Ceci a déjà été traité avec un cadre level-set pour la
modélisation des interfaces eau/vapeur et vapeur/solide dans des travaux
précédents.

Dans le présent chapitre, le cadre level-set est repris à la seule différence
que l’interface séparant les deux fluides eau/vapeur est modélisée à l’aide
de la méthode phase-field. Un écoulement multiphasique (solide-eau-vapeur)
où chaque phase est munie de propriétés thermo-physiques. Ces propriétés,
en plus de la fonction level-set et du paramètre d’ordre, permettent de
déterminer les lois de mélange du système eau/vapeur/solide intervenant
dans les équations décrivant le mouvement du mélange eau-vapeur avec
changement de phase et échange thermique.

Pour modéliser le changement de phase ayant lieu durant la vaporisation
de l’eau, les équations de Cahn–Hilliard sont réécrites à l’aide d’un bilan de
masse dans chacune des phases eau et vapeur en faisant intervenir le taux
de transfert de masse de l’eau vers la vapeur. Ce taux de transfert de masse
est calculé par la condition de Stefan à l’aide du champ de température qui
doit ainsi être résolu. La résolution de champ permet ainsi de connâıtre
les échanges thermiques ayant lieu dans l’ensemble du système à chaque
instant. Pour résoudre ce modèle thermique correspondant à une équation
de type convection-réaction-diffusion, une méthode de stabilisation élément
fini est utilisé. Tout comme avec le modèle de Cahn–Hilliard–Navier–Stokes
du chapitre précédent, une résolution à pas fractionnaire est utilisée pour le
modèle couplé incluant la thermique.

Cette résolution est appliquée sur une série d’expériences numériques
présentées dans ce chapitre. Il s’agira en premier lieu d’évaluer la précision
du modèle de changement de phase en comparant la solution numérique
obtenue et la solution analytique du cas de Stefan 2D. Vient ensuite une
première simulation numérique de la trempe industrielle en 2D par le modèle
de Cahn–Hilliard–Navier–Stokes avec la thermique. Enfin, ce chapitre se con-
clut par des exemples d’applications industrielles sur des pièces de différentes
géométries afin de réaliser une simulation numérique 3D de leur trempe
comme preuve de concept.
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4.1 Introduction

Multiphase flow and heat transfer are widely considered for the optimization of
many engineering systems, such as nuclear safety [1] or quenching process [2]. This
kind of process presents an interaction between three phases: an immersed solid,
surrounded by a thin vapor film, within a liquid domain for cooling the hot solid. In
the following, the liquid is assumed vaporizing. The existing vapor film is due to the
high thermal gradient at the interface of the solid. This film of vapor acts as a ther-
mal mantle which decreases the cooling rate of the material. The system is mainly
driven by the vaporization phenomenon. To better understand the quenching pro-
cess and the happening cooling, a study involving multiphase flow, phase, change,
heat transfer, and fluid-solid interaction is required. The classical well-known meth-
ods to simply and quickly deduce the cooling of a solid, without any knowledge of
the fluid behavior, rely on the use of empirical heat transfer coefficients. However,
these are limited to particular scenarios and for a specific geometrical evolution of
the flow.

The quenching process modeling introduces several challenges that have to be
overcome to get a good model of the process. One of them is about the liquid-to-
vapor phase change. In this chapter, the interface capturing with multiphase flow
combined with the framework of boiling will be presented to enable the simulation of
liquid/vapor interaction within the quenching process. The current existing frame-
work to capture the liquid/vapor interface is based on the level-set method [3]. In
the following, a proof of concept of the Cahn–Hilliard model replacing the level-set
method for the liquid/vapor interface will be done. The first section is dedicated
to the setup of an approach of a model combining the phase-field and multiphase
flow model presented in the previous chapters with a liquid-to-vapor phase change
and heat transfer. The obtained governing equations will then be established. A
series of numerical simulations have been performed to have a first glimpse of the
unified solver’s abilities. In the last section, examples of industrial cases simulation
of quenching will be presented.

4.2 Liquid-to-vapor phase change and heat transfer

Until now, all the multiphase flow study has been done in the isothermal and incom-
pressible framework. To consider a phase change in the model, the incompressible
approach should be modified and the velocity field is not solenoidal anymore.

Proposition 4.2.1. When the incompressible flow assumption is not enforced, it
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4.2. Liquid-to-vapor phase change and heat transfer

comes that the divergence of velocity field is obtained as follow:

∇·u =
ϱ2 − ϱ1
ϱ1 + ϱ2

∇· (M(φ)∇ω) (4.1)

Proof. By considering the mass conservation law,

∂t (ϱ(φ)) +∇· (ϱ(φ)u) = 0.

However, by replacing the density ϱ(φ) by (2.1), it comes

∂t (ϱ(φ)) +∇· (ϱ(φ)u) =
ϱ1 − ϱ2

2
(∂t (φ) +∇· (φu)) + ϱ1 + ϱ2

2
∇·u

=
ϱ1 − ϱ2

2
∇· (M(φ)∇ω) +

ϱ1 + ϱ2
2

∇·u

by using Equation (1.11). Therefore, the mass conservation law is respected if and
only if

ϱ1 − ϱ2
2

∇· (M(φ)∇ω) +
ϱ1 + ϱ2

2
∇·u = 0

which means

∇·u =
ϱ2 − ϱ1
ϱ1 + ϱ2

∇· (M(φ)∇ω)

The relation (4.1) corresponds to the phase movement at the diffuse interface
due to the species mobility. To take into account the phase change due to the
temperature field influence, like in the vaporization case, this field should intervene
in the model. The Cahn–Hilliard model should then be extended by accounting for
the dynamics of energy transfer [4]. In Chapter 1, a free energy has been introduced
by the relation (1.2). This free energy is only related to the parameter order φ.
However, the logarithmic form of the energy is dependent of the temperature [5–7]:

F (φ, T ) = −Tc
2
φ2 +

T

2
((1 + φ) ln(1 + φ) + (1− φ) ln(1− φ)) (4.2)

where Tc is the critical temperature. This form is ideal to allow the respect of
maximum principle on φ which can then belong to the interval [-1,1] of the admissible
physically values [8]. However, to develop a finite element scheme of the Cahn–
Hilliard equations, it could be difficult to have a discretized form of these equations
with this logarithmic free energy. Then, as adopted in Chapter 1, it is easier to deal
with a polynomial form, which has similar properties to the logarithmic form (cf.
Chap 1). In the phase change case, it is desirable to have free energy dependent on
the temperature field. It is possible to obtain a polynomial form of the free energy
dependent on the temperature field, as suggested by the following result:

131



4 Applications to boiling

Proposition 4.2.2. The quartic form of the free energy (4.2) is given by

F (φ, T ) =
T

2
· φ

4

6
+ (T − Tc)

φ2

2
(4.3)

Proof. By a Taylor development of (4.2) on φ in the neighborhood of 0:

F (φ) =
φ→0

−Tc
2
φ2 +

T

2
F (0) +

n∑
k=1

F (k)(0)
φk

k!
+O(φn+1)

where

F (k)(φ) =
dk

dφk
((1 + φ) ln(1 + φ) + (1− φ) ln(1− φ))

=
dk

dφk
((1 + φ) ln(1 + φ)− (1 + φ) + (1− φ) ln(1− φ)− (1− φ))

+
dk

dφk
((1 + φ) + (1− φ))︸ ︷︷ ︸

0

However, by noting x = 1 + φ

d

dx
(x ln(x)− x) = ln(x)

therefore,

x ln(x)− x =

∫
ln(x)dx.

Since

d

dφ
((1 + φ) ln(1 + φ)− (1 + φ)) = ln(1 + φ)

d

dφ
((1− φ) ln(1− φ)− (1− φ)) = − ln(1− φ),

it comes

F (k)(φ) =
dk−1

dφk−1
(ln(1 + φ)− ln(1− φ))

Therefore

n∑
k=1

F (k)(φ)
φk

k!
=

n∑
k=1

dk−1

dφk−1
(ln(1 + φ)− ln(1− φ))

φk

k!

= (ln(1 + φ)− ln(1− φ))φ
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+
n−1∑
k=1

dk

dφk
(ln(1 + φ)− ln(1− φ))

φk+1

(k + 1)!

However,

dk

dφk
ln(1 + φ) =

(−1)k−1(k − 1)!

(1 + φ)k

dk

dφk
ln(1− φ) =

(−1)(k − 1)!

(1− φ)k

therefore,

n∑
k=1

F (k)(φ)
φk

k!
= (ln(1 + φ)− ln(1− φ))φ

+
n−1∑
k=1

(
(−1)k−1(k − 1)!

(1 + φ)k
+

(k − 1)!

(1− φ)k

)
φk+1

(k + 1)!

Thus,

n∑
k=1

F (k)(0)
φk

k!
=

n−1∑
k=1

(
(−1)k−1(k − 1)! + (k − 1)!

) φk+1

(k + 1)!

=
n−1∑
k=1

(
(−1)k−1 + 1

) φk+1(k − 1)!

(k + 1)!
.

Hence,

F (φ) =
φ→0

−Tc
2
φ2 + 0 +

T

2

n−1∑
k=1

(
(−1)k−1 + 1

) φk+1

k(k + 1)
.

However,

(−1)k−1 + 1 =

{
0 if k is even
2 if k is odd

and
n−1∑
k=1

(
(−1)k−1 + 1

) φk+1

k(k + 1)
=

n−2∑
k=0

(
(−1)k + 1

) φk+2

(k + 1)(k + 2)
,

therefore, by changing the index k → k + 1,

n−2∑
k=0

(
(−1)k + 1

) φk+2

(k + 1)(k + 2)
=

n−2
2∑

k=0

2 · φ2k+2

(2k + 1)(2k + 2)
,
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whence

F (φ) =
φ→0

−Tc
2
φ2 +

T

2

n−2
2∑

k=0

2 · φ2k+2

(2k + 1)(2k + 2)
+O(φn+1).

Thus,

F (φ) =
φ→0

−Tc
2
φ2 + T

n−2
2∑

k=0

φ2k+2

(2k + 1)(2k + 2)
+O(φn+1)

is the polynomial form of the free energy (4.2). By taking n=4, the quartic form is
obtained.

This new form of F is the one involved in the free energy functional:

E(φ, T ) :=
∫
Ω

F (φ, T ) +
ε2

2
|∇φ|2 dx (4.4)

which allows to obtain a new expression of the chemical potential ω.

Proposition 4.2.3. The chemical potential associated to the free energy (4.4) is
given by

ω(φ, T ) =
T

2
· φ

3

3
+ (T − Tc)φ− ε2∆φ (4.5)

Proof. By using Definition 1.3.1 of the chemical potential, one follows the same
reasoning of the proof of Proposition 1.3.3.

Definition 4.2.4. One defines the entropy s, in the thermodynamic sens, as the
first derivative of the free energy functional E with respect to the temperature T :

s :=
δE
δT

Proposition 4.2.5. The entropy s is related to the order parameter φ by the fol-
lowing relation:

s(φ) =
φ4

12
+
φ

2
(4.6)

Proof. By noting,
E [φ, T ] = F [φ, T ] + G[φ, T ]

where,

F [φ, T ] =

∫
Ω

F (φ, T ) dx and G[φ, T ] =
∫
Ω

ε2

2
|∇φ|2 dx,
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it comes by applying Lemma 1.3.4 with the variable T ,

δF [φ, T ]

δT
=

∂

∂T
F (φ, T ) =

φ4

12
+
φ

2

Let λ ∈ R and ψ ∈ H1(Ω), then

G[φ, T + λψ] =

∫
Ω

ε2

2
|∇φ|2 dx+

∫
Ω

ψ · 0 dx

which means that,

δG[φ]
δφ

= 0

Thus,

s :=
δE [φ, T ]
δT

=
δF [φ, T ]

δT
+
δG[φ, T ]
δT

=
φ4

12
+
φ

2

With these new contributions, the Cahn–Hilliard equations need to be rewritten
to take them into account. A new equation on the entropy s should be considered
[9] so that the Cahn–Hilliard model is extended. Ideally, the non-isothermal Cahn–
Hilliard model should be derived from the fundamental laws of thermodynamics.
Gurtin [10] considered an approach based on a balance law for micro-forces, which
extends the models derived by Alt & al. [4] based on an entropy principle to non-
isotropic materials and to systems that are far from equilibrium. Miranville & al.
[11] extended this approach to the Ginzburg–Landau equation.

After obtaining the non-isothermal Cahn–Hilliard model, considering the balance
equations as done in Section 2.2 is the next step. The mass balance needs to be
determined to respect the conservation laws. Then, by following the approach of
Chapter 2, a temperature-dependent and coupled Cahn–Hilliard–Navier–Stokes with
phase change. It rests to determine the evolution equation on the temperature
T . This equation should derive from the energy conservation law. Thus, a full
coupled Cahn–Hilliard–Navier–Stokes model with heat transfer and phase change is
obtained. As explained in Section 1.4, a such model needs to be studied physically,
mathematically, and numerically. This is out of the scope of the present work and is
not treated. In the following, an approximate and simpler approach will be adopted
to solve numerically the models of the involved phenomena.
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In multiphase flows, the concern is to be able to accurately compute the velocity
and temperature fields in the whole domain, capture interfaces moving at high veloc-
ity, and quantify mass transfer rate in a thickness around the interface to model the
phase change. To establish a first version of unified solvers allowing the simulation
of multiphase flows with heat transfer and phase change due to vaporization, a study
on the mass balance shall be done. This study begins with the mass conservation of
the phase (liquid l or vapor v) in an arbitrary volume element fixed in space. One
reminds the mixing law for the density established in Section 2.2 and applied to a
liquid/vapor system of densities ϱl > ϱv:

ϱ(φ) = ϱl
1 + φ

2
+ ϱv

1− φ

2
(4.7)

The local densities of the liquid l and the vapor v in a volume element are defined
by:

ϱ̄l = ϱl
1 + φ

2
, (4.8)

ϱ̄v = ϱv
1− φ

2
(4.9)

If a liquid-to-vapor phase change is considered, then by denoting ṁ [kg·m−2·s−1] the
mass transfer rate leaving the liquid to the vapor and δ(φ, ω) [m−1] a smoothed rep-
resentation of the interface between the two phases, the continuity equation within
the liquid phase is

∂tϱ̄l +∇· (ϱ̄lu) = −ṁδ(φ, ω) (4.10)

because a liquid has left, and within the vapor phase

∂tϱ̄v +∇· (ϱ̄vu) = ṁδ(φ, ω) (4.11)

because a vapor has been created. By using the expressions (4.8) and (4.9) of the
local densities, it comes

ϱl
2
∂tφ+

ϱl
2
∇· (φu) = −ṁδ(φ, ω), (4.12)

−ϱv
2
∂tφ− ϱv

2
∇· (φu) = ṁδ(φ, ω) (4.13)

therefore,

∂tφ+∇· (φu) = − 2

ϱl
ṁδ(φ, ω), (4.14)

∂tφ+∇· (φu) = − 2

ϱl
ṁδ(φ, ω). (4.15)
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By summing the relations (4.15) and (4.17), it comes

∂tφ+∇· (φu) = −ṁδ(φ, ω) ·
(
1

ϱl
+

1

ϱv

)
(4.16)

One reminds the Cahn–Hilliard equations:

∂tφ+∇· (φu)−∇· (M(φ)∇ω) = 0 (4.17)

ω + ε2∆φ− φ(φ2 − 1) = 0 (4.18)

By using Equation (4.17) within Equation (4.16), it comes

∇· (M(φ)∇ω) = −ṁδ(φ, ω) ·
(
1

ϱl
+

1

ϱv

)
(4.19)

With Proposition 4.2.1, the divergence of velocity field becomes

∇·u = −ṁδ(φ, ω)ϱv − ϱl
ϱl + ϱv

·
(
1

ϱl
+

1

ϱv

)
(4.20)

which gives

∇·u =
ṁδ(φ, ω)

ϱl + ϱv
·
(
ϱl
ϱv

− ϱv
ϱl

)
(4.21)

The relation (4.21) corresponds to the mass transfer occurring at the interface be-
tween the vapor and the liquid because of the phase change during vaporization.
By using the relations (4.19) and (4.21), the Cahn–Hilliard equations (4.17)-(4.18)
with liquid-to-vapor phase change become

∂tφ+ (u ·∇)φ+
ṁδ(φ, ω)

ϱl + ϱv
·
(
ϱl
ϱv

− ϱv
ϱl

)
φ− ṁδ(φ, ω) ·

(
1

ϱl
+

1

ϱv

)
= 0, (4.22)

ω + ε2∆φ− φ(φ2 − 1) = 0 (4.23)

As done in Section 2.2, the next step is to identify the temporal and convective
term of the momentum equation coupling to the Cahn–Hilliard equation.

Proposition 4.2.6. For φ solution of the Cahn–Hilliard equations (4.22) − (4.23)
and a density defined as (4.7), the temporal and convective term of the momentum
equation is given by

∂t (ϱ(φ)u) +∇· (u⊗ (ϱ(φ)u+ J)) = ϱ(φ)∂t (u) + ((ϱ(φ)u+ J) ·∇)u

+
ṁδ(φ, ω)

2

(
ϱl
ϱv

− ϱv
ϱl

)
u

(4.24)

where J is the mass flux at the interface defined by:

J =
ϱv − ϱl

2
M(φ)∇ω (4.25)
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Proof. It is the same proof as that of Proposition 2.2.2 by considering the non-zero
divergence of the field (4.21).

By following the steps of Section 2.4, it comes to a new coupled Cahn–Hilliard–
Navier–Stokes equations with a liquid-to-vapor phase change:

∂tφ+ (u ·∇)φ+
ṁδ(φ, ω)

ϱl + ϱv
·
(
ϱl
ϱv

− ϱv
ϱl

)
φ− ṁδ(φ, ω) ·

(
1

ϱl
+

1

ϱv

)
= 0, (4.26)

ω + ε2∆φ− φ(φ2 − 1) = 0, (4.27)

ϱ(φ)∂t (u) + (ϱ(φ)u ·∇)u+ (J ·∇)u

+
ṁδ(φ, ω)

2

(
ϱl
ϱv

− ϱv
ϱl

)
u−∇· (2η(φ)D(u)) +∇p =

σ

ε2
ω∇φ+ ϱ(φ)g,

(4.28)

∇·u =
ṁδ(φ, ω)

ϱl + ϱv
·
(
ϱl
ϱv

− ϱv
ϱl

)
, (4.29)

One considers a three-phase flow composed of a solid immersed inside two immis-
cible fluids (water and vapor, for example) in a bounded connected domain Ω ⊂ Rd,
where d is the spatial dimension. A level-set function α defines the solid/vapor inter-
face. An order parameter φ identifies the two Newtonian fluids and takes the value -1
in the vapor and +1 in the water with a thin, smooth transition region of width ε be-
tween the two fluids. Consequently the water/vapor interface is described by the zero
isocontour of the phase indicator φ : Γt := {x ∈ Ω such that φ(x, t) = 0},∀t ∈ R+.
In the monolithic approach, all the different phases considered (solid, liquid, gas) are
immersed in a single domain. To avoid a discontinuity at the solid/vapor interface,
a smooth Heaviside function is computed to distribute in space the corresponding
physical properties. This Heaviside function is given by:

Hε(α) =


1 if α > ε
1
2

(
1 + α

ϵ
+ 1

π
sin
(
πα
ε

))
if |α| ≤ ε

0 if α < −ε
(4.30)

The material properties such as density ρ, dynamic viscosity η and the heat
capacity cp are therefore computed, for the solid/vapor mixing law, as follows:

ρvs(α) = ρsHε(α) + ρv (1−Hε(α)) , (4.31)

ηvs(α) = ηsHε(α) + ηv (1−Hε(α)) , (4.32)

ρvsc
vs
p (α) = ρsc

s
pHε(α) + ρvc

v
p (1−Hε(α)) . (4.33)

However, using a linear mixing law for the thermal conductivity would lead to
inaccurate results. According to [12], a harmonic mixing laws is recommended to
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ensure the conservation of the heat flux:

kvs =
(
Hε(α)
ks

+ 1−Hε(α)
kv

)−1

(4.34)

This method only requires knowledge of the material properties and deals naturally
with conjugate heat transfer.

To determine the material properties for the water/vapor mixing law, the phase-
field φ and the solid/vapor mixing law are used as follows:

ρ(φ) = ρw
1+φ
2

+ ρvs
1−φ
2
, (4.35)

η(φ) = ηw
1+φ
2

+ ηvs
1−φ
2
, (4.36)

ρcp(φ) = ρwc
w
p

1+φ
2

+ ρvsc
vs
p

1−φ
2
, (4.37)

k =
(

1
kw

1+φ
2

+ 1
kvs

1−φ
2

)−1

(4.38)

Then, a hybrid definition of both interfaces by the level-set method for the
solid/vapor interface and the phase-field method for the vapor/water interface is
obtained as shown in Figure 4.1.

Figure 4.1: Level-set and phase-field hybrid interfaces

The mass transfer rate is defined using the heat released by a volume V of liquid
that has vaporized between the time t and t+∆t. Considering a domain composed
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of water and vapor (see Figure 4.2), the position of the interface at the time t is
given by x(t). The heat released Q by a volume V of liquid that has vaporized

Figure 4.2: Volume that has vaporized between t and t+∆t

during the elapsed time between t and t+∆t is:

Q = ρV L (4.39)

where L is the latent heat. The heat fluxes are defined on a surface of area A,
respectively in the vapor and the water by −kv∇Tv and −kw∇Tw:

Q =

∫ t+∆t

t

∫
A

[−kv∇Tv · ex + kw∇Tw · ex]da dr (4.40)

where ex = (1, 0). Dividing by ∆t and passing to the limit:

lim
∆t→0

ρLx(t+∆t)− x(t)

∆t
= lim

∆t→0

1

∆t

∫ t+∆t

t

[−kv∇Tv · ex + kw∇Tw · ex]dr (4.41)

The velocity of the interface, the so-called Stefan condition, is then obtained:

ρLdx

dt
= (−kv∇Tv + kw∇Tw) · ex (4.42)

The mass flux leaving the interface can then be evaluated from the conductive heat
flux as

ṁ =
−k∇T

L
(4.43)

4.3 Convection-diffusion-reaction for cooling

The classical convection-diffusion-reaction equation involving the energy absorbed
by vaporization is given by:

ρcp (∂tT + (u ·∇)T ) = ∇ · (k∇T )− ρv[L+ (cvp − cwp )(T − Tsat)]
φ− − φ−−

∆t
(4.44)
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where φ− and φ−− denote the phase-field solution respectively at the last and second
to last time step.

By combining (4.41) with the system (4.26)-(4.29), multiphase flow and interface
capturing with phase change and heat transfer is governed by the following system
of equations:

∂tφ+ (u ·∇)φ+
ṁδ(φ, ω)

ϱl + ϱv
·
(
ϱl
ϱv

− ϱv
ϱl

)
φ− ṁδ(φ, ω) ·

(
1

ϱl
+

1

ϱv

)
= 0, (4.45)

ω + ε2∆φ− φ(φ2 − 1) = 0, (4.46)

ϱ(φ)∂t (u) + (ϱ(φ)u ·∇)u+ (J ·∇)u

+
ṁδ(φ, ω)

2

(
ϱl
ϱv

− ϱv
ϱl

)
u−∇· (2η(φ)D(u)) +∇p =

σ

ε2
ω∇φ+ ϱ(φ)g,

(4.47)

∇·u =
ṁδ(φ, ω)

ϱl + ϱv
·
(
ϱl
ϱv

− ϱv
ϱl

)
, (4.48)

ρcp(φ) (∂tT + (u ·∇)T ) =∇ · (k∇T )

− ρv[L+ (cvp − cwp )(T − Tsat)]
φ− − φ−−

∆t
.
(4.49)

with the following initial and boundary conditions:

φ(·, 0) = φ0, u(·, 0) = u0, T (·, 0) = T0 in Ω, (4.50)

∂φ

∂n
=
∂ω

∂n
= 0, u · n = 0, T = Tw on ∂Ω× (0, tf ], tf > 0. (4.51)

Equations (4.45)-(4.48) are numerically solved by the numerical approach de-
scribed in Chapters 1 and 2. The convection-diffusion-reaction equation (4.49)
solves the temperature T by a stabilized finite element approach similar to that
introduced in Chapter 2. A fractional step approach is proposed to solve the system
(4.45)-(4.51)
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4.4 Numerical simulation

In this section, the abilities of the present Navier–Stokes–Cahn–Hilliard model ex-
tended by the phase change model and heat transfer are tested.

4.4.1 Stefan problem

One considers, first, the one-dimensional Stefan benchmark. It is a well-known
problem and serves as a benchmark to assess the accuracy of phase change models
[13–15]. Figure 4.3 defines schematically the classical Stefan problem.

Figure 4.3: Initial setup of the Stefan problem

The domain is initially filled with water. The temperature at the wall is set
constant and higher than the saturation temperature. The water is at saturation
temperature. The position of the interface is given by

s(t) = 2χ
√
αvt (4.52)

where αv is the thermal diffusivity defined by αv = kv/(ρvc
v
p) and χ is solution of

the transcendental equation:

Tsat − Twall√
πL

cvp = χerf(χ) exp(χ2) (4.53)

derived in the case of a constant temperature in the liquid. The temperature in the
vapor at a given time t is given by

T (x, t) = Twall +
Tsat − Twall

erf(χ)
erf

(
x

2
√
αvt

)
(4.54)

One considers the physical properties for the water and the vapor given in Table 4.1
and we consider Twall − Twater = 10◦C.
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4.4. Numerical simulation

ρ [kg ·m−3] η [Pa · s] cp [J · kg−1 ·K−1] k [W ·m−1 ·K−1] Lsat [J · kg−1]
Vapor 5.97 · 10−1 1.26 · 10−5 2030 2.5 · 10−2

Water 958.4 2.8 · 10−4 4216 6.79 · 10−1 2.26 · 106

Table 4.1: Physical properties for the vapor and the water

At t > 0, a phase change occurs and induces a motion of the interface between
the vapor and the water. The convective term in the energy conservation equation
is neglected in both phases. Figure 4.4 shows the evolution of the interface for both
the analytical and the numerical solution according having good agreement.
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Figure 4.4: Evolution of the interface position for the Stefan problem

4.4.2 Boiling case

One considers an immersed solid inside a water/vapor environment as presented
in Figure 4.5. A vapor film is assumed to exist and surround the solid at the
initialization. The thickness of this vapor film from the solid surface is initially
fixed at εvap. The solid, vapor and water temperatures are respectively supposed
initialized at Ts = 985◦C, Tv = 100◦C and Tw = 20◦C. There is a slip condition at
the domain boundary : u · n = 0, where n is the normal to the boundary.
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Figure 4.5: Solid immersed in a water/vapor environment

In this study case, the solid heat will cause boiling and then create vapor bubbles
from the phase change of the water near the solid. These bubbles, for which the
density is less than that of water, will go back up to the surface. The solid is cooling
over time because of the lower temperature of the environment where it is immersed.
The surface tension forces are taken into account at the water/vapor interface: the
surface tension coefficient is set at σ = 6 · 10−2. All the parameters related to the
study case are depicted in the following Table 4.2:

ρw 1000 ∆t 10−3

ηw 5 · 10−3 M 10−6

ρv 1.7 ε 2 · 10−3

ηv 9.99 · 10−4 L 2.26 · 106
ρs 8200 Tsat 100
ηs 10−3 Nbelements 20,000
tf 23 hmin 2.5 · 10−4

Lx 6 · 10−1 Ly 4 · 10−1

a 1.5 · 10−2 b 7.5 · 10−2

c 1.2 · 10−1 εvap 1.25 · 10−3

Table 4.2: Parameters of the boiling case

Figure 4.6 shows the dynamics (left) and temperature (right) evolution of the
multiphase flow during the quenching simulation time.
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(a) t=0

(b) t=5

(c) t=10

Figure 4.6: Dynamics (left) and temperature (right) evolution during the quenching
duration



4 Applications to boiling

(d) t=15

(e) t=23

Figure 4.6: Dynamics (left) and temperature (right) evolution during the quenching
duration (contin.)

The simulation has been performed in parallel with 4 cores and it took approx-
imately 22 hours to be completed. In Figure 4.7, the temperature evolution at the
solid center, the right side, and the left side is plotted.
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Figure 4.7: Evolution of the temperature at different region of the solid

The quantitative results show a solid cooling over the quenching simulation.
The temperature in the solid center decreases from 985◦C to 715◦C in 23s. The
temperature on the right side of the solid reaches 720◦C and on the left side, it
reaches almost 750◦C. After 9s of quenching, the cooling of the solid left side is less
quick than the solid center and right side. This can be explained by the region from
which the bubbles start to rise. Indeed, by observing the dynamics of the multiphase
flow in Figure 4.7, characterized by the density (left), the bubbles leave the solid
region essentially from the middle and a bit less from the right side. Physically,
when a bubble breaks away from the vapor film surrounding the solid, it gives way
to the cooler water which comes into physical contact with the solid for a short
time. This phenomenon provokes a quicker cooling of the solid region from where
the bubble has split up.
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4.5 Industrial applications

This section is an openness to industrial applications. The developments realized
all over the present thesis will be applied to simulate 3D boiling and phase change
of a quenching process. To do so, several test cases will be presented: first, a
solid inside a quench water tank, second, two identical solids to the first case are
quenched one below the other, and finally a quenching of a solid with a larger and
more complex geometry. Due to confidentiality, these test cases presented here are
like those encountered in the industry. As well, to keep a closer aspect to a real
industrial quenching, physical properties similar to real cases are considered. The
different simulations presented here are a proof of concept of the abilities of the
solvers described within the present work. The aim is to have a glimpse of a more
realistic industrial quenching for which cooling is observed. However, because of the
assumptions established, like the non-evolution of the thermo-physical parameters,
and not taking into account some phenomena involved in quenching, such as solid-
phase transformation, wetting and contact angle, radiation, etc... no comparison
with experimental data will be done.

In the next simulations, the solid is initially immersed in the water tank and
surrounded by a thin vapor film. The density of the solid, vapor, and water is
respectively denoted by ϱs, ϱv, and ϱw [kg·m−3]. Idem, the viscosity of the solid,
vapor, and water is respectively denoted by ηs, ηv, and ηw [Pa·s]. The temperatures
of the solid, vapor, and water are respectively initialized at Ts, Tv, and Tw [◦C]. The
specific heat of the solid, vapor, and water is given by csp, c

v
p, and c

w
p [J·kg−1·K−1].

The thermal conductivity of the solid, vapor, and water is given by ks, kv, and kw
[W·m−1·K−1] The latent heat is denoted by L [J·kg−1]. Tsat is the saturation tem-
perature [◦C]. During boiling, the fluid flow takes into account the capillary action
at the interface separating the water and vapor, with a surface tension coefficient
σ [J·m−2]. The mobility M involved in the Cahn–Hilliard equations is a non-null
constant. The time step of the simulations is given by ∆t [s]. These parameters are
fixed for all the next simulations with values given by Table 4.3.
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4.5. Industrial applications

ρw 1000 ηw 5 · 10−3

ρv 1.7 ηv 9.99·10−4

ρs 8200 ηs 10−3

csp 435 cvp 2010

cwp 4185 ks 11.4

kv 6 · 10−1 kw 2.5 · 10−2

Ts 985 Tv 100
Tw 20 Tsat 100
L 2.26 · 106 M 10−6

σ 7.3 · 10−1 ∆t 2.5 · 10−3

Table 4.3: Fixed parameters of the 3D quenching test cases

4.5.1 3D quenching of a solid

This test case is about the quenching, within a water tank, of a solid with the shape
of stacking of cylinders of different sizes as shown in Figure 4.8.

Lx

Ly

Lz

Figure 4.8: Quenching of a piece

The domain is a rectangular pave of dimension [0, Lx]× [0, Ly]× [0, Lz] = [0, 1]×
[0, 1]× [0, 2]. The vapor film has an initial thickness εvap = 5 · 10−3m from the solid
surface. The interface separating the water and vapor has a thickness ε = 6 ·10−3m.
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4 Applications to boiling

The duration of the quenching is tf=7s. The simulation has been performed on 32
cores with a visualization file created every 5-time increments. During the mesh
adaptation, which happens every time step, the admissible minimum mesh size is
hmin = 10−4m. Figure 4.9 shows the temperature evolution at the solid surface,
the dynamics of the interface separating water and vapor, and the evolution of the
adapted mesh. The computations took 124h 41min to simulate this test case.

(a) t=0 (b) t=0.1

(c) t=0.2 (d) t=0.4

Figure 4.9: Dynamics, mesh, and temperature evolution during the quenching of a
solid
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(e) t=1 (f) t=2

(g) t=4 (h) t=7

Figure 4.9: Dynamics, mesh, and temperature evolution during the quenching of a
solid (contin.)
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As expected, the solid is cooling over time. Some regions of the solid surface are
close to the temperature of water Tw after a few seconds. However, it seems there
are zones at the solid surface for which the temperature is still very hot and close
to the initial temperature of the solid Ts. By focusing only on the solid, Figure 4.10
gives a clearer view of the temperature above and below the solid surface.

(a) t=0

(b) t=0.1

(c) t=0.15

Figure 4.10: Evolution of the temperature at the solid interface and the dynamics of
the interface separating water and vapor with a view from above (left)
and below (right) at different time of the quenching of a solid
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(d) t=0.2

(e) t=0.5

(f) t=7

Figure 4.10: Evolution of the temperature at the solid interface and the dynamics of
the interface separating water and vapor with a view from above (left)
and below (right) at different time of the quenching of a solid (cont.)

From the visualizations, one observes that the above surface of the solid is cooled
quicker than the below part. This can be explained by the film of vapor which
is maintained below the solid and cannot escape. As remarked in the preceding
paragraph, there are indeed zones, except below the solid, which are cooled quicker
than others. In the more cooled regions of the solid surface, the film broke and
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4 Applications to boiling

disappeared. This means that water can come into contact with the solid and cool
it effectively. In the warmest zones, the vapor film still exists and covers them.
Thus, the water doesn’t come into contact with these regions of the solid surface
which cool slower.

4.5.2 3D quenching of two identical solids

The present test case is similar to the previous one. The considered domain and
solid are the same. In addition, there is an identical solid above the previous one
from a distance D=1m as represented in Figure 4.11.

Lx

Ly

Lz

D

Figure 4.11: Quenching of 2 pieces

A simulation of this test case has been done for quenching with a duration
tf=1.8s. The rest parameters are the same as the previous case 4.5.1. In Figure
4.12, the evolution of the temperature at the solid surface, the dynamics of the
interface separating water and vapor, and the adapted mesh, are represented at
different instants. The simulation has been performed on 32 cores and took 145h
01min to be completed. A visualization file is created every 20-time increments.
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(a) t=0 (b) t=0.3

(c) t=0.6 (d) t=0.9

Figure 4.12: Dynamics, mesh, and temperature evolution during the quenching of two
identical solids
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(e) t=1.2 (f) t=1.8

Figure 4.12: Dynamics, mesh, and temperature evolution during the quenching of two
identical solids (contin.)

Similar behavior to the previous case is observed in this one. Both solids are
cooling over time. As seen previously, there exist regions of the surface of the
solids that are cooler than others. The adapted mesh is well refined in the interest
zones, which means in the solids neighborhood. It is within this region that the
main phenomena happen: boiling, rising bubble, fluid flow, phase change, and heat
transfer,... Both solids seem not to be affected by each other. A view from above
and below this both solid is shown in Figure 4.13 to have an accurate visualization
of these pieces.
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(a) t=0

(b) t=0.3

(c) t=0.9

Figure 4.13: Evolution of the temperature at the solid interface and the dynamics of
the interface separating water and vapor with a view from above (left)
and below (right) at different time of the quenching of two identical
solids
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(d) t=1.2

(e) t=1.8

Figure 4.13: Evolution of the temperature at the solid interface and the dynamics of
the interface separating water and vapor with a view from above (left)
and below (right) at different time of the quenching of two identical
solids (cont.)

By observing the visualizations of Figure 4.13, one can see a close behavior
between the pieces’ neighborhoods. The cooling and the boiling dynamics are similar
even with 1m separating both solids. The vapor film moves from the bottom to the
top. With the view from below, an interesting difference between the pieces appears
and becomes clearer over quenching. Indeed, the solid at the bottom is in the same
configuration as the case 4.5.2, whereas the solid at the top shows, in its below
surface, a zone cooler than the rest of this surface. This zone is quickly created after
t=0.2s and located on the same vertical axis as the top of the below solid. This
means that, within the same quenching bath, the quenching of a solid affects that
of another one above it. This can be explained by the fact that the boiling of the
below piece gives a vertical flow dynamics that weakens a zone of the vapor film
stuck underneath the above solid. This zone corresponds to the closest zone from
the below solid.
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4.5.3 3D queching of a large solid with a complex geometry

This final test case consists in quenching a solid larger than the previous ones and
with more complex geometry. This solid is immersed in a domain of water with a
rectangular pave shape of dimension [0, Lx]× [0, Ly]× [0, Lz] = [0, 5]× [0, 2]× [0, 2.5].
Figure 4.14 illustrates the initial configuration of the case.

Figure 4.14: Quenching of a large solid with a complex geometry

Pieces with complex geometries are common in industrial quenching. This part
aims to challenge the framework developed in the present work for this kind of case
as a proof of concept. Like the previous cases, the vapor film is assumed to exist
and surround the solid at the initialization. The initial thickness of this vapor film
from the solid surface is fixed at εvap = 2 · 10−2m. Water and vapor are separated
by an interface of thickness ε = 1.6 · 10−2m. A simulation of quenching of tf =0.7s
has been performed on 64 cores with a visualization file created every 5-time step.
The minimum mesh size encountered in the adapted mesh is fixed at hmin=10−4m.
The rest of the parameters are fixed according to Table 4.3. The duration of this
simulation is 76h 46min. Figure 4.15 shows the evolution of the quenching every
0.1s until the final time tf .
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(a) t=0

(b) t=0.1

(c) t=0.2

Figure 4.15: Evolution of the temperature at the solid interface and the dynamics of
the interface separating water and vapor with a view from above (left)
and below (right) at different time of the quenching of a complex geo-
metrical solid
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(d) t=0.3

(e) t=0.4

(f) t=0.5

Figure 4.15: Evolution of the temperature at the solid interface and the dynamics of
the interface separating water and vapor with a view from above (left)
and below (right) at different time of the quenching of a complex geo-
metrical solid (cont.)
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(g) t=0.6

(h) t=0.7

Figure 4.15: Evolution of the temperature at the solid interface and the dynamics of
the interface separating water and vapor with a view from above (left)
and below (right) at different time of the quenching of a complex geo-
metrical solid (cont.)

In Figure 4.15, the cooling, as well as the vapor film disappearance, are visible a
few times and progress from the top of the solid to the bottom. The hotter regions of
the solid surface are still at the bottom. A particularity of this quenching, compared
to the previous test cases, is the flow dynamics. Usually, the bubbles created during
boiling rise towards the top of the domain. In the present case, the bubbles grew
towards the bottom. This can be due to the particular geometry of the solid.
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4.6 Conclusion

In the present chapter, the coupled model of phase-field and multiphase flow has
been extended to a model that, in addition, takes into account the liquid-to-vapor
phase change and heat transfer. The phase-field method has then been adopted for
the liquid/vapor interface initially based on an existing level-set framework. The
governing equations have been presented and numerical implementation of these
equations has been done and tested on quenching cases. From 2D to 3D quenching
of a complex geometrical solid, simulations have been performed to illustrate proof
of concept about quenching simulations with phase-field. Some observations have
been done from the different simulations. These observations are proof of concept
and remain fairly qualitative.
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[9] F. De Anna, C. Liu, A. Schlömerkemper, and J.-E. Sulzbach. Temperature
dependent extensions of the cahn-hilliard equation, 2021. 135

[10] M. E. Gurtin. Generalized Ginzburg–Landau and Cahn–Hilliard equations
based on a microforce balance. Physica D: Nonlinear Phenomena, 92(3):178–
192, 1996. 135

[11] A. Miranville and G. Schimperna. Nonisothermal phase separation based on
a microforce balance. Discrete and Continuous Dynamical Systems-series B,
5(3):753–768, 08 2005. 135

[12] S.V. Patanka. Numerical Heat Transfer And Fluid Flow. Series In Computa-
tional And Physical Processes In Mechanics And Thermal Sciences. Taylor &
Francis, 1980. 138

[13] S.W.J. Welch and J. Wilson. A volume of fluid based method for fluid flows
with phase change. Journal of Computational Physics, 160(2):662 – 682, 2000.
142

[14] S. Hardt and F. Wondra. Evaporation model for interfacial flows based on a
continuum-field representation of the source terms. Journal of Computational
Physics, 227(11):5871 – 5895, 2008.

[15] F. Gibou, L. Chen, D. Nguyen, and S. Banerjee. A level set based sharp
interface method for the multiphase incompressible Navier—Stokes equations
with phase change. Journal of Computational Physics, 222(2):536 – 555, 2007.
142

164



Chapter 5

Conclusions and Perspectives

Contents
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

165



5 Conclusions and Perspectives

Résumé en Français

Ce chapitre présente les conclusions générales de ces travaux de thèse,
ainsi que les perspectives qui en découlent. La librairie élément fini CIMLIB-
CFD préexistante, déjà munie de la méthode level-set, a été enrichie par une
nouvelle méthode de capture d’interface : la méthode phase-field. Cette
méthode permet de capturer l’interface séparant deux fluides en prenant
en compte leur physique. Couplée à la dynamique des fluides et étendue
à la thermique, diverses expériences numériques ont pu être réalisées pour
valider les modèles étape par étape. À commencer par le modèle de Cahn–
Hilliard pour la capture d’interface, puis le modèle de Cahn–Hilliard–Navier–
Stokes incompressible pour la capture d’interface au sein d’un écoulement
de deux fluides incompressibles, et enfin, ce dernier modèle a été étendu
à la thermique pour prendre en compte les échanges de température et le
changement de phase eau/vapeur. La simulation numérique en 3D d’une
trempe industrielle a ainsi pu être réalisée comme preuve de concept, ce qui
valide une première étape dans l’optique d’intégrer l’implémentation issue de
ces travaux de thèse à l’outil numérique développé dans le cadre de la chaire
INFINITY.

Toutefois, de nombreuses perspectives de recherche restent à explorer
et exploiter afin de rendre robuste l’implémentation réalisée et favorable
son intégration au logiciel. Parmi celles-ci se trouve l’importance de met-
tre en place une méthode permettant de borner le paramètre d’ordre de
sorte à ce que le principe du maximum soit respecté pour les équations de
Cahn–Hilliard. Ceci aidera à l’identification d’un schéma numérique stable
même pour des simulations numériques en temps long. Il serait également
intéressant de développer une nouvelle métrique pour l’adaptation de mail-
lage qui soit spécifique à la méthode phase-field afin d’avoir une fine capture
de l’interface avec un faible coût de calcul, en particulier pour les cas 3D.
Afin d’avoir un modèle qui soit thermodynamiquement consistant, il serait
pertinent de repartir des équations de la thermodynamique en considérant le
cas non-isotherme de l’énergie libre et d’en obtenir les équations dérivées.
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5.1 Conclusion

The work of the present thesis constitutes a first introduction of the phase-field
method within the framework of the research group that, until today, had an inter-
face capturing approach exclusively based on the level-set method. In the future,
the aim is to make robust this new tool for realistic industrial applications. The
phase-field model used here relies on the Cahn–Hilliard equations which have been
presented and discretized within the CG1 finite element method to have a developed
interface capturing solver. A review of theoretical results for the continuous and dis-
crete equations has been done. Then, a series of numerical test cases have followed,
including a verification of the solver by manufactured solutions. The framework has
then been enriched to take into account multiphase flow. Thus, a coupled system of 4
equations based on Cahn–Hilliard and Navier–Stokes equations has been obtained.
The goal is to be able to solve multiphase flow cases with an interface capturing
based on the phase-field model and including capillary action. These equations
have also been studied theoretically and numerically, especially by proving the con-
tinuous energy estimate. Test cases from the literature have been simulated with
results in accordance with the references. In the optic to proceed to less time costly
computations, and especially to be able to simulate 3D cases, an anisotropic mesh
adaptation has been set up with an adaptation criterion based on a function of the
order parameter. Finally, to hope for some industrial applications, these solvers
have been enriched with a heat exchange evolution model and the liquid-to-vapor
phase change due to vaporization. This allowed, as a promising proof of concept, to
simulate 2D and 3D quenching of solids with different geometries inspired by those
encountered in industry. A unified numerical solver capturing the interface within
a multiphase flow and describing the heat transfers of the system has been designed
as a promising - and subject to improvements - tool for complex industrial processes
and beyond.

5.2 Perspectives

The numerical tool developed in the present work is far from perfect. It has its
limitations at different scales. Improvements can be done to make robust this unified
numerical framework, for example, by studying:

� The setup of a diffusive and anti-diffusive stabilization method coupled with
the flux limiting strategy can help to bound the order parameter φ between
-1 and 1 at any time to respect the maximum principle, which is not currently
respected for Cahn–Hilliard equations.

� The development of a new metric for mesh adaptation that enables a finer
capture of the interface with lower computational cost.
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� The numerical scheme to identify how the mass flux contribution (J ·∇)u in
Navier–Stokes equations can be included in simulations, which is currently not
the case due to stability issues in several simulations.

� The extension to the non-isotherm case and investigating the free energy F (φ)
to have a thermodynamically consistent model. To do this, it is necessary to
start from the fundamental equation of thermodynamics.

� The current model in order to take into account all the main physics involved
in the quenching process allowing, therefore, a better comparison between
numerical and experimental results.

� The semi-discretization in time to drastically diminish the numerical diffusion
for long time simulations.

� How the wetting of the wall can be taken into account in the phase-field model.

� The development of a good interpolate operator to have more regular solutions
and boundary conditions that include contact angle
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RÉSUMÉ

Cette thèse s’inscrit dans la volonté de développer un nouveau cadre numérique apte à traiter des cas industriels com-
plexes. De cela est né le besoin de développer de nouveaux solveurs numériques qui viendront enrichir la bibliothèque
des méthodes actuellement utilisées au sein de l’équipe. Cette volonté repose sur celle d’envisager une nouvelle ap-
proche de capture d’interface permettant d’obtenir de nouvelles informations sur la physique du système et apporter
une robustesse numérique. La méthode phase-field est basée sur une approche énergétique de l’interface séparant les
phases ce qui n’est pas le cas de la méthode de capture d’interface actuellement utilisée par l’équipe qui repose sur une
approche géométrique. De plus, la méthode possède de bonnes propriétés pour modéliser l’action capillaire, impliquée
dans le mouillage, et considérer les angles de contact. Orientée dans une perspective d’applications industrielles, cette
interface de capture a pour objectif d’être unifiée à d’autres modèles physiques pour développer un outil multiphysique et
une application multiple à la simulation numérique industrielle.

ABSTRACT

This thesis is part of the desire to have a numerical framework dealing with complex industrial cases. For this reason, it is
necessary to develop new solvers that enrich the library of methods currently used in the team. This desire relies on the
will to consider a new approach of interface capturing enabling the obtaining of new information about the physics of the
system and bringing numerical robustness. The phase-field method is based on an energetic approach of the interface
separating the phases that which is not the case for the currently used interface capturing method. Furthermore, the
method owns good properties to model the capillary action, involved in the wetting, and consider contact angles. Directed
by a perspective of industrial applications, this interface capturing aims to be unified with other physical models for a
multiphysics characteristic and a multiple applications to the industrial numerical simulation.
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