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Abstract 

Information measured by lidar depends on the observed vegetation and the acquisition geometry, which 

is a function of the acquisition parameters and the terrain properties. The thesis aims to understand the 

relationship between lidar acquisition geometry and forest attribute predictions, focusing on the 

assessment and management of impacts of lidar scan angle on lidar metrics and ABA models. Four 

different forest types were studied with three forest types (broadleaf, coniferous and mixed) in 

mountainous terrain and one forest type (riparian) in relatively flat terrain. The thesis was divided into 

three parts. The first part assessed the effect of lidar scan angle on lidar metrics commonly used in ABA 

predictions. It was observed that different lidar metrics behave differently under changing scan angles. 

Subsequently, the effect of including metrics with different sensitivities to scan angle was investigated 

in the second part of the study. A model involving a set of predefined metrics with different sensitivities 

to scan angle was used. Existing lidar datasets were resampled based on the flight lines 1) to simulate 

lidar acquisitions with different scan geometries, 2) to build models for a set of scan patterns and 3) to 

further compare the quality of estimations resulting from each scan pattern. These comparisons 

highlighted that introducing metrics sensitive to scan angle led to a decrease in model robustness. Also, 

the variation in the accuracy of ABA models was found to be higher for datasets consisting of point 

clouds scanned from only one flight line as opposed to those consisting of point clouds scanned from 

multiple flight lines. The normalisation of lidar metrics sensitive to scan angle was also attempted using 

voxelisation. Voxel-based metrics contributed by increasing either the precision or the accuracy, or both. 

In the last part of the study, the terrain properties and acquisition parameters were considered explicitly. 

As the interaction between lidar acquisition parameters, terrain, and vegetation properties can be 

complex, neural networks were used to model the relationships between various lidar metrics and the 

acquisition geometry, resulting in significantly better ABA predictions. 

Keywords: lidar, forest, scan angle, voxelisation, neural networks, sustainable management 



Résume 

L’information mesurée par Lidar aéroporté dépend de la végétation observée et de la géométrie de 

l'acquisition lidar, elle-même fonction des paramètres d'acquisition et des propriétés du terrain. Cette 

thèse vise à comprendre la relation entre la géométrie d'acquisition du lidar et les prédictions d'attributs 

forestiers en se focalisant sur l'évaluation et la gestion des impacts de l'angle de balayage du lidar sur 

les métriques lidar et les modèles construits à l’échelle du peuplement (i.e. approches surfaciques ou 

ABA). Quatre types de forêts différents ont été étudiés, dont trois types de forêts (feuillus, conifères et 

mixtes) en terrain montagneux et un type de forêt (ripisylve) en terrain relativement plat. La thèse est 

divisée en trois parties. La première partie évalue l'effet de l'angle de balayage du lidar sur les mesures 

lidar couramment utilisées dans les prédictions de type ABA. On a ainsi montré que les différentes 

métriques lidar ne sont pas impactées de la même façon par des changements d'angle de balayage. La 

deuxième partie de l'étude s’intéresse aux conséquences sur la qualité des modèles de l’introduction 

dans ces modèles de métriques lidar présentant des sensibilités différentes à l'angle de balayage. Un 

modèle basé sur un jeu de métriques Lidar prédéfinies, plus ou moins sensibles aux angles de balayage, 

est utilisé.   

Les jeux de données lidar existants sont ré-échantillonnés selon les lignes de vol pour 1) simuler des 

acquisitions lidar avec différentes configurations de balayage, 2) construire des modèles pour une série 

de configurations de balayage différentes, et 3) comparer la qualité des estimations qui résultent de 

chaque configuration d’acquisition. Ces comparaisons montrent que l’introduction de métriques 

sensibles à l’angle de balayage diminue la robustesse des modèles. De plus, la variation de la précision 

des modèles ABA s’est révélée être plus élevée pour les jeux de données composés de nuages de points 

acquis depuis une seule ligne de vol que pour ceux composés de nuages de points obtenus en combinant 

les mesures de plusieurs lignes de vol.   

Nous avons aussi tenté de normaliser les métriques lidar en utilisant des méthodes de voxellisation pour 

limiter les impacts des changements d’angles de balayage. Les métriques issues des données voxellisées 

contribuent à augmenter la précision des prédictions ou à augmenter leur justesse, ou, dans certains cas, 

les deux en même temps. Dans la dernière partie de l'étude, les propriétés du terrain (topographie) et les 

paramètres d'acquisition sont explicitement pris en compte dans les modèles. Comme les interactions 

entre les paramètres d'acquisition lidar, le terrain et les propriétés de la végétation peuvent être 

complexes, un réseau de neurone (perceptron multicouche) est utilisé pour modéliser les relations entre 

les attributs forestiers et les métriques lidar en tenant compte de ces interactions entre métriques lidar et 

géométrie d'acquisition. Cela a permis d'améliorer significativement les prédictions ABA. 

Mots clés: lidar, forêt, angle de scan, voxellisation, réseau de neurones, gestion durable 
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Résumé long en Français  

Développement du potentiel du Lidar aéroporté pour la gestion durable des forêts : prise en 

compte et gestion des effets de l’angle de balayage sur les prédictions d’attributs forestiers à l’aide 

de modèles surfaciques (ABA) 

Contexte et objectifs de la thèse 

Contexte  

Nos vies quotidiennes sont étroitement liées aux écosystèmes forestiers, de par les nombreuses 

ressources que nous en tirons, telles que le papier, le bois, l’énergie, ou la nourriture. En outre, les forêts 

permettent la subsistance de plus d'un milliard de personnes dans le monde et le maintien de nombreuses 

populations autochtones (Bernier et Schoene, 2009). Les forêts abritent également une grande diversité 

d’espèces végétales et animales. Cette biodiversité est essentielle à la préservation des équilibres 

écologiques et doit être préservée tout en assurant le maintien des fonctions économiques et sociales de 

la forêt (FAO, 2020). Dans le contexte du changement climatique, les forêts constituent d’importants 

puits de carbone naturels indispensables à la réduction des émissions de gaz à effet de serre. Elles 

contribuent également à lutter contre le réchauffement climatique grâce au refroidissement par 

évaporation (Bonan, 2008). Parallèlement, les forêts sont constamment menacées par des pressions 

d’origine anthropique (déforestation, fragmentation et pollution) et climatique (changements 

phénologiques, déplacements d'aires de répartition, épisodes de dépérissement, infestations d'insectes) 

ou une combinaison des deux (disparition d’espèces animales, incendies, changements de composition 

des peuplements et de productivité primaire nette, changements biogéochimiques) (Prăvălie, 2018). 

Aujourd’hui, les écosystèmes forestiers subissent constamment des perturbations et il est devenu 

primordial de les gérer avec la volonté de maintenir cet équilibre fragile entre les facteurs socio-

économiques et écologiques (Kuuluvainen et al., 2021 ; Lazdinis et al., 2019 ; MacDicken et al., 2015 ; 

Prăvălie, 2018). 

Historiquement, la gestion des forêts était principalement motivée et guidée par un objectif de 

production de bois et d'autres ressources naturelles (Gadow et al., 2000). Autour des années 1990, la 

biodiversité est devenue une composante essentielle de la gestion forestière (ONU, 1992). L'adaptation 

aux impacts du changement climatique sur les écosystèmes forestiers a, quant à elle, pris une importance 

considérable au XXIe siècle (Bernier et Schoene, 2009 ; Jandl et al., 2019 ; Spittlehouse et Stewart, 

2003). Avec l’accroissement constant de la population humaine, les milieux forestiers doivent ainsi être 

gérés dans une perspective à long terme. Dans un contexte de changement climatique, la préservation  

des forêts et des services écosystémiques qu’elles procurent nécessitera de guider l'élaboration des plans 

de gestion par les dernières connaissances scientifiques (Bergeron et al., 2004 ; Seidl et al., 2011 ; 

Torres-Rojo et al., 2016 ; Williamson et Edwards, 2014). Ainsi, une information actualisée en 



ix 

 

permanence est au cœur de la gestion durable des forêts. Une partie de cette information peut être 

collectée par le biais d'inventaires forestiers réalisés à plusieurs échelles (Kangas et Maltamo, 2006). 

Différents pays disposent de programmes d'inventaire forestier national (IFN) pour quantifier les 

ressources forestières et élaborer des politiques de gestion forestière adaptées (Barrett et al., 2016 ; Bohn 

et Huth, 2017 ; Breidenbach et Astrup, 2012 ; McRoberts et Tomppo, 2007; Nilsson et al., 2017). 

Traditionnellement, l'inventaire forestier implique l'identification des espèces et la prise de mesures sur 

les arbres individuels pour estimer des attributs au niveau des peuplements forestiers. Ces attributs 

comprennent la hauteur dominante des arbres (m), la hauteur moyenne (m), la surface terrière (m² ha-1), 

la densité des tiges (nombre de tiges par ha), le volume total brut (m3 ha-1), la biomasse aérienne totale 

(Kg ha-1) (McRoberts et Tomppo, 2007). Ces relevés sont parfois complétés par des informations 

concernant la végétation arbustive et herbacée. La collecte de mesures sur le terrain est longue et 

coûteuse, et est donc effectuée sur un échantillon de placettes dont la surface reste limitée (typiquement 

de l’ordre de 250 à 700 m² en forêt tempérée). Cet échantillon est représentatif des forêts de la zone 

inventoriée. Les informations sont ensuite extrapolées à l'ensemble de la zone forestière afin d’obtenir 

des estimations des différents attributs forestiers, du niveau local au niveau national (McRoberts et 

Tomppo, 2007 ; White et al., 2017). 

La télédétection aéroportée et spatiale permet d’acquérir des informations exhaustives sur de grandes 

surfaces et facilite la mise à l'échelle des inventaires forestiers (passage du terrain aux échelles régionales 

ou nationales). Grâce à la télédétection, l'inventaire forestier traditionnel est amélioré au niveau régional 

et national (White et al., 2017 ; Wulder et al., 2012a). La télédétection fait ainsi partie intégrante des 

méthodes d’inventaires modernes et est utilisée selon trois modalités : 1) comme support aux relevés 

terrain et source d’informations complémentaires, 2) comme source de données auxiliaires pour 

améliorer la précision des inventaires et produire des estimations sur de petits territoires et 3) pour la 

cartographie (McRoberts and Tomppo, 2007) 

Dans ce contexte, la technologie Lidar (« light detection and ranging ») présente un potentiel 

particulièrement intéressant pour caractériser les forêts. Les Lidars sont des systèmes de télédétection 

active basés sur l’émission-réception d’un signal laser. Pour couvrir de grandes surfaces, des capteurs 

équipés de systèmes à balayages sont montés sur des plates-formes aéroportées (ALS (airborne laser 

scanning) ou laser à balayage aéroporté) ou, depuis plus récemment, des capteurs pouvant acquérir des 

données le long d’un nombre limité de traces ont été embarqués sur des engins spatiaux, par exemple la 

mission ICESat1 (Schutz et al., 2005), qui a acquis des données entre 2003 et 2009, et les missions 

GEDI (Dubayah et al., 2020) et ICESat2 (Magruder et al., 2021) actuellement opérationnelles.  

Les systèmes aéroportés (ALS) sont reconnus pour leur capacité à générer des mesures spatialisées de 

la structure en 3D de la végétation plus précises et denses que les autres technologies de télédétection 

(Holmgren and Nilsson, 2003; Nelson, 2013). Ces mesures sont généralement produites sous la forme 
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de nuages de points 3D géolocalisés, dont la densité varie de moins d’un point par m² à plusieurs dizaines 

de points par m². La position de chaque point indique la présence d’éléments de végétation (feuilles, 

bois ou tronc) ou du sol ayant interagi avec le faisceau laser émis par le système.  Le Lidar permet ainsi 

de détecter le haut de la canopée et le sol, d’estimer la hauteur des peuplements forestiers (Dubayah and 

Drake, 2000; Hudak et al., 2009; Næsset, 1997; Nelson, 2013; Rempel and Parker, 1964) et d’en déduire 

d’autres informations comme la surface terrière, le volume de bois, la biomasse.  

Les approches dites surfaciques (ABA en anglais pour Area Based Approaches) sont couramment 

utilisées pour produire des informations forestières au niveau peuplement (par opposition aux approches 

au niveau de l’arbre). Elles consistent à établir, à l’aide d’un modèle de régression, une relation entre 

des attributs forestiers issus des mesures de terrain et des variables Lidar calculées à partir des nuages 

de points 3D au niveau des placettes de terrain (Næsset, 2002; White et al., 2017; Wulder et al., 2012). 

Les métriques Lidar peuvent être ensuite calculées en tout point de l’espace et les modèles appliqués 

pour cartographier les attributs forestiers d’intérêt.  

Les métriques Lidar utilisées dans les modèles sont un « résumé » des milliers de points qui représentent 

le peuplement au niveau d’une placette forestière. Si le peuplement ne change pas, on pourrait s’attendre 

à avoir systématiquement le même nuage de point. Cependant la distribution des points est fortement 

dépendante des conditions et paramètres d’acquisition, incluant le système (e.g. la longueur d’onde, la 

puissance et la divergence du laser, les caractéristiques du récepteur) et les spécifications de 

l’acquisition, comme la hauteur de vol, la fréquence d’émission du système, l’angle maximum de 

balayage (ou de scan), le recouvrement entre ligne de vols.  

L’avantage des approches surfaciques est qu’elles restent performantes même pour traiter des jeux de 

données Lidar ayant des densités de points faibles (e.g., de l’ordre 1 point/m²). Et elles ne nécessitent 

pas, comme c’est le cas pour les approches à l’arbre, d’étape de segmentation, coûteuse en temps et 

ressources de calcul pour des résultats de qualité très variable. Cependant, un paramètre d’acquisition 

susceptible d’affecter la qualité des modèles surfaciques et la précision des résultats a été encore assez 

peu étudié. Il s’agit de l’angle de balayage ou angle de scan. L’étude de l’impact de ce paramètre sur la 

qualité des modèles surfaciques et sur la fiabilité des prédictions des attributs forestiers qui en découle 

est au cœur de ce travail de thèse.   

Questions de recherche et objectifs de la thèse 

Alors que l’angle de scan est reconnu comme étant un paramètre susceptible d’impacter les modèles 

surfaciques, il semble y avoir deux écoles de pensée concernant l’angle de scan : l’une, dominante, qui 

recommande de limiter l’angle de scan à des acquisitions quasi-nadir (< 15°) et l’autre qui soutient 

qu’accroître les angles de scan peut apporter de nouvelles informations et connaissances sur les 

peuplements forestiers.  
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Depuis le début de l’utilisation du Lidar en forêt, la tendance a été de recommander de limiter l’angle 

de scan à maximum 15° afin de favoriser la pénétration du signal jusqu’au sol et les mesures de hauteur 

des arbres. Ainsi, la plupart des études qui ont analysé l’impact de l’angle de scan ont été faites à partir 

de jeux de données avec des angles ne dépassant pas 15°-20°. Plusieurs études ont ainsi conclu au faible 

impact de l’angle de scan sur les modèles de terrain sous couvert (Ahokas et al. ( 2005) avec des angles 

< 15°), sur les estimations des hauteurs des arbres (Magnussen and Boudewyn (1998) avec des angles 

< 12°), sur le taux de trouées (Chen et al. (2014) avec des angles < 15°). Keränen et al., (2016) ont trouvé 

que la prédiction des hauteurs moyennes des arbres et des volumes de bois étaient plus précises avec 

des angles limités à 15° qu’avec des angles allant jusqu’à 20°. Certaines études se sont appuyées sur la 

simulation de données Lidar pour analyser des données caractérisées par une gamme d’angles de scan 

plus large que celle des données expérimentales habituellement disponibles  (Disney et al., 2010; 

Holmgren et al., 2003; Qin et al., 2017). Qin et al. (2017) ont ainsi montré que des angles de 20° 

permettaient de mieux reconstruire les profils de distribution des feuilles que des angles plus faibles. A 

partir de données expérimentales, van Lier et al., (2021) ont récemment conclu qu’utiliser des données 

avec des angles de scan allant jusqu’à 30° avait peu d’impact sur les prédictions des attributs forestiers, 

même si les métriques Lidar pouvaient être significativement impactées par les changements d’angles. 

Kamoske et al., (2019) ont aussi suggéré que des angles de scans plus élevés permettraient de mieux 

comprendre la distribution des trouées dans la canopée.  

Par ailleurs, on constate qu’au fil du temps les angles de scan maximums ont tendance à augmenter dans 

les jeux de données Lidar, probablement en raison de l’évolution des capteurs et de considérations 

pratiques visant à limiter les coûts. De plus en plus de pays planifient des acquisitions au niveau national 

pour répondre à plusieurs objectifs applicatifs, y compris le suivi des forêts. Pour ces acquisitions sur 

de vastes territoires, les angles maximums sont généralement ≥ 30°.  En parallèle les acquisitions par 

Lidar embarqués sur drone en forêt se développent, pour des études au niveau local, avec des angles de 

scans élevés (>20°) en raison de la faible hauteur de vol  (Cao et al., 2019; Liu et al., 2018; Lu et al., 

2020; Ma et al., 2022).   

En raison de la complexité de la végétation, mesurer sa structure par Lidar dépend fortement de la 

géométrie de l’acquisition. Ainsi, alors qu’un effet probable de l’angle de scan sur les modèles 

surfaciques est reconnu, il n’y a pas de consensus sur les limites acceptables pour ce paramètre, ni sur 

l’importance de son impact sur les modèles surfaciques en milieu forestier. De plus, très peu d’études 

se sont intéressées à des stratégies pour traiter des données caractérisées par des angles de scan supérieur 

à 20°, alors même que de telles données commencent à se multiplier.  

Ces constats soulignent le besoin d’améliorer notre compréhension de l’impact de l’angle de scan sur 

les mesures Lidar en forêt et sur la qualité de prédiction des attributs forestiers afin de déterminer si plus 
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d’attention doit être portée à ce paramètre lors de l’analyse des données Lidar et du développement de 

modèles surfaciques.  

Pour cela, deux hypothèses de travail ont été formulées : 

H1 : les prédictions d’attributs forestiers à l’aide de modèles surfaciques ne seront pas fiables si l’impact 

de l’angle de scan n’est pas pris en compte lors de la modélisation de la relation entre attribut forestiers 

et variables Lidar. 

La question de recherche principale découlant de cette hypothèse est : « Quels sont les impacts des 

angles de scan sur les métriques Lidar et sur les prédictions des modèles surfaciques ? » 

H2 : La normalisation des métriques Lidar par rapport aux changements de la géométrie d’observation 

ou l’incorporation des caractéristiques de cette géométrie dans les modèles peuvent aider à atténuer 

l’impact des angles de scan sur la qualité des prédictions.   

La question de recherche principale découlant de cette hypothèse est : « Comment gérer l’impact des 

angles de scan sur les prédictions des modèles surfaciques ? »  

Dans le cadre de ces deux hypothèses, l’objectif principal de la thèse est de comprendre si la prise en 

compte de l’impact de l’angle de scan sur les données Lidar est essentiel pour le développement de 

modèles surfaciques robustes et précis pour la prédiction d’attributs forestiers.  

Les sous-objectifs suivants ont été définis pour ce travail de thèse :  

1) Evaluer l’impact des angles de scan sur la qualité des modèles Lidar surfaciques pour différents 

peuplements forestiers complexes 

a. En estimant l’impact de ces angles sur des métriques Lidar communément utilisées dans 

les modèles 

b. En estimant l’impact de l’utilisation de métriques explicatives mais sensibles à l’angle 

de scan sur la qualité des prédictions des modèles. 

2) Développer des méthodes pour gérer les effets des angles de scan sur les modèles de prédiction 

a. En considérant différentes combinaisons de géométries d’acquisition (angles de scan)  

b. En utilisant des métriques calculées après avoir mobilisé des approches de voxellisation 

pour normaliser des effets des angles de scan 

c. En modélisant les effets complexes des angles de scan grâce à des réseaux de neurones 

artificiels avec, en entrée des modèles, les caractéristiques de la géométrie d’acquisition 

en plus des métriques Lidar.  

3)  Proposer, sur la bases des résultats obtenus, des recommandations et des perspectives, pour une 

utilisation opérationnelle des données Lidar pour des applications forestières. 
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Cette thèse comprend quatre chapitres qui sont résumés dans ce qui suit. Les trois premiers ont été 

rédigés sous forme d’article de journal. Le dernier chapitre résume les résultats de la thèse et propose 

des pistes pour de futures recherches.  

Chapitre 2 : Impact de l’angle de scan sur les métriques Lidar utilisées dans les modèles 

de prédiction des caractéristiques des peuplements forestiers : une analyse basée sur un 

découpage des données selon une grille régulière.  

 

Le sous-objectif 1-a est au cœur de ce chapitre qui aborde la question suivante : Quel est l’impact des 

angles de scan sur les métriques Lidar communément utilisées dans les modèles surfaciques? 

Ce chapitre a été publié dans « International Archives of the Photogrammetry, Remote Sensing and 

Spatial Information Sciences » (Dayal et al., 2020).  

Les approches dites surfaciques (ABA) s’appuient sur des modèles de régression pour établir une 

relation entre les attributs forestiers d’intérêt et des variables dérivées des données Lidar, encore 

appelées métriques Lidar.  Les modalités d’acquisition des données Lidar déterminent la qualité et les 

caractéristiques des nuages de points 3D utilisés pour le calcul des métriques. Ces caractéristiques 

peuvent varier d’une acquisition à l’autre mais aussi localement au sein d’un même jeu de données.  

L’angle de balayage, ou angle de scan, est l’une des caractéristiques des données qui peut avoir un 

impact sur l’estimation des métriques Lidar et donc sur les modèles surfaciques qui utilisent ces 

métriques. Les métriques standards les plus utilisées comprennent les caractéristiques des distributions 

de la hauteur et de l’intensité des points Lidar, telles que la moyenne, l’écart-type, les percentiles, ainsi 

que des métriques de densités par strates de hauteur ou des métriques de rugosité du sommet de la 

canopée (Rumple index). Ces métriques standards sont parfois complétées par des métriques spécifiques 

développées pour mieux représenter certaines caractéristiques du peuplement, par exemple le taux de 

couvert ou le taux de trouées. Ces métriques sont calculées sur une surface représentative du peuplement 

local, i.e. similaire à celle utilisée pour les inventaires de terrain. C’est donc à cette échelle qu’il est 

important d’étudier la façon dont les métriques Lidar varient en fonction de l’angle de scan. Une forte 

sensibilité à ce paramètre traduirait un manque de robustesse des variables explicatives pour la 

construction des futurs modèles.  

L’objectif de ce chapitre est d’évaluer, au niveau d’un peuplement, l’impact de l’angle de scan sur 

11 métriques (9 métriques de hauteur des points et 2 autres métriques communément utilisées).  

La zone d’étude est la ripisylve du Ciron, dans les Landes, dans le Sud-Ouest de la France. Sur ce 

site, caractérisé par des peuplements feuillus et des mélanges feuillus/pins de structure complexe, 

l’acquisition de données Lidar a été faite à l’aide d’un système Lidar léger embarqué sur ULM en 
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favorisant un recouvrement entre lignes de vol supérieur à 35% et en passant à plusieurs reprises sur 

certaines zones. Ainsi, une part significative de la zone a été observée depuis plusieurs points de vue. 

La zone d’étude a été divisée selon une grille définissant des cellules carrées de 30 m de côté. Dans 

chaque cellule, les lignes de vol ayant produit un nuage de points couvrant au moins 90% de la surface 

de la cellule ont été identifiées et retenues. Puis, pour chaque nuage de points issu d’une de ces lignes 

de vol, une classe d’angle de scan est attribuée, sur la base de l’angle de scan moyen des points contenus 

dans la cellule.  Quatre classes ont été définies : 0°-10°, 10°-20°, 20°-30° and 30°- 40°.  Pour les cellules 

contenant plusieurs nuages de points affectés à la même classe d’angle, seul celui dont l’angle moyen 

est le plus proche du centre de la classe a été retenu. Les 11 métriques Lidar ont ensuite été calculées 

par ligne de vol - et donc par classe d’angle - pour chaque cellule, résultant en un maximum de 4 valeurs 

par cellule et par métrique. La comparaison de ces valeurs permet d’évaluer l’évolution des métriques 

en fonction de l’angle de scan. Cette comparaison a été faite à l’aide de tests de Student (t-test) appariés 

et de régressions linéaires.  

Les résultats montrent que, pour la plupart des métriques, les valeurs diminuent lorsque l’angle de 

scan augmente, les valeurs au nadir étant prises comme référence. Le taux de trouées et l’indice de 

rugosité de la canopée (Rumple index) sont plus impactés par l’angle de scan que l’écart-type des 

hauteurs des points. La hauteur maximale s’est révélée être peu sensible à l’angle de scan. Parmi les 

percentiles de la distribution des hauteurs, les percentiles les plus élevés se sont révélés moins sensibles 

à l’angle de scan que les percentiles les plus bas.  Ces résultats montrent que l’angle de scan peut 

impacter de façon significative certaines métriques couramment utilisées dans les modèles surfaciques. 

L’impact susceptible d’en résulter sur les modèles eux-mêmes doit être étudié et fait l’objet du prochain 

chapitre. 

 

Chapitre 3 :  Analyse de l’impact des angles de scan Lidar sur la prédiction des attributs 

forestiers dans différents environnements forestiers   
 

Ce chapitre aborde les trois questions suivantes :  

- Quel est l'effet de l'inclusion de métriques Lidar sensibles à l'angle de scan sur les modèles ABA? 

(sous-objectif 1-b) 

- Peut-on gérer les effets des angles de scan sur la qualité des modèles en combinant des nuages de 

points acquis selon différents points de vue? (sous-objectif 2-a) 

- Peut-on gérer les effets des angles de scan sur la qualité des modèles en normalisant les métriques 

Lidar par rapport aux effets de ces angles grâce à la voxellisation ? (sous-objectif 2-b) 
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Il a fait l’objet d’une publication, soumise à la revue « Journal of Photogrammetry and Remote Sensing 

(P&RS) » de l’ISPRS (International Society for Photogrammetry and Remote Sensing ). La publication 

a été acceptée et resoumise après prise en compte des corrections et avis des évaluateurs.  

Des études, dont celle présentée au chapitre précédent, ayant démontré que plusieurs métriques dérivées 

des données Lidar et couramment utilisées dans les approches surfaciques étaient sensibles aux angles 

de scan, les deux objectifs suivants ont été fixés pour cette partie de la thèse :  

1) Analyser l’impact de cette sensibilité sur les prédictions des attributs forestiers obtenues par des 

modèles surfaciques;  

2) Évaluer le potentiel d’approches de voxellisation pour normaliser les métriques Lidar des 

changements dus aux angles de scan et atténuer l’effet de ces angles sur la qualité des modèles 

surfaciques. 

L’étude a porté sur quatre environnements forestiers complexes, une ripisylve (29 placettes) pour le site 

du Ciron, dans le Sud-Ouest de la France, et trois peuplements de montagne, pour le site du Parc Naturel 

Régional du massif des Bauges (PNR des Bauges) situé dans les Alpes françaises (feuillus (42 placettes), 

résineux (31 placettes) et mixtes (45 placettes)).   

Pour atteindre nos objectifs, nous avons sélectionné un modèle basé sur quatre métriques Lidar 

présentant différents niveaux de sensibilité aux angles de scan, i.e. la moyenne et la variance des hauteurs 

au-dessus du sol des points Lidar de végétation  (µCH et ²CH), le taux de trouées (Pf ) et le coefficient de 

variation du profil de densité de surface foliaire (CVLAD). Pour chaque placette, nous avons considéré 

indépendamment les nuages de points scannés à partir de lignes de vols différentes. Chaque nuage a été 

caractérisé par l’angle de scan moyen des points le composant et classé dans l’une des trois classes 

suivantes selon la valeur de cet angle moyen : A (0°  MSA< 10°), B (10° MSA< 20°) ou C (20° 

MSA< 30°). 

Un dispositif expérimental comprenant neuf scénarios a été conçu pour étudier l’impact sur les modèles 

surfaciques du nombre de lignes de vol (scénarios fl1, fl2 et fl3 pour, respectivement, une, deux et trois 

lignes de vol) et de l’angle de scan prédominant (scénarios A, B ou C) ou de la combinaison de deux 

angles de scan prédominants (scénarios (A et B), (A et C), ou (B et C)). Pour les mêmes placettes 

forestières, nous avons produit pour chaque scénario 5000 jeux de données par tirage aléatoire dans 

l’ensemble des combinaisons de lignes de vol disponibles par placettes. Pour chaque jeu de données, 

trois modèles surfaciques ont été construits et validés par validation croisée (LOO cross validation) pour 

prédire trois attributs forestiers, i.e. le volume de tronc (Vst), le volume total (Vtot) et la surface terrière 

(BA). Trois critères permettant d’évaluer le bon ajustement des modèles ont été calculés : le coefficient 

de détermination (R²), l’erreur quadratique moyenne relative (rRMSE) et l’erreur moyenne en 

pourcentage (MPE).  
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Les distributions de ces critères de qualité ont été comparées pour les différents scenarios afin d’évaluer 

le comportement des modèles de prédiction lorsque : 1) le nombre de lignes de vol (i.e. d’angles de scan) 

par placette augmente (fl1, fl2, fl3) ; 2) le jeu de données Lidar est caractérisé par des angles de scan 

spécifiques (A, B ou C) ou une combinaison spécifique d’angles de scan (AB, AC ou BC) ; 3) la 

voxellisation est utilisée pour calculer le taux de trouées (Pf) et le coefficient de variation du profil de 

densité foliaire (CVLAD), deux variables ayant montré dans certains peuplements une assez forte 

sensibilité aux changements d’angles de scan.  

Les résultats montrent que les modèles construits avec des nuages de points issus de directions de scan 

multiples, i.e., acquis depuis plusieurs lignes de vol, sont plus robustes, avec un écart type plus faible 

pour les critères mesurant le bon ajustement des modèles. En moyenne, en considérant tous les types de 

forêts, les écarts types des distributions de R² pour fl2 et fl3 sont inférieurs de 42 % et 77 % à ceux 

obtenus pour fl1. Nous avons également observé qu’un jeu de données avec une configuration 

d’acquisition privilégiant des angles de scan au nadir (i.e. scénario A), ne donnait pas toujours de 

meilleures prédictions (e.g., R² moyen plus élevé de 0.08, 0.07, 0.04 avec le scénario B pour les feuillus, 

les conifères et les peuplements mixtes). Ces analyses montrent qu’un modèle d’estimation d’attributs 

forestiers construit sur la base d’un ensemble de placettes d’étalonnage (calibration/validation du 

modèle) dépend fortement de la géométrie des acquisitions Lidar sur ces placettes. Ainsi, lors de 

l’application du modèle pour cartographier les attributs forestiers sur une zone complète, la fiabilité des 

prédictions n’est pas garantie, même pour des peuplements similaires à ceux ayant fait l’objet de relevés 

terrain au niveau des placettes d’étalonnage. Le risque est particulièrement élevé dans le cas 

d’acquisitions Lidar réalisées avec un faible taux de recouvrement entre lignes de vol, conduisant à de 

nombreuses zones observées depuis un seul point de vue (i.e., un seul angle de scan).  

Le remplacement dans les modèles des variables Pf  et CVLAD calculées directement à partir des nuages 

de points par celles calculées après voxellisation du nuage de points et construction de profils de 

végétation a permis d’atténuer les impacts des changements d’angles de scan. La voxellisation corrige 

des effets d’occlusion et prend en la longueur du trajet du faisceau laser dans la végétation, et donc 

l’angle de scan. Avec ces nouvelles variables, nous avons ainsi observé a) une augmentation des 

moyennes des distributions des R² et une diminution des moyennes des erreurs, indiquant une 

amélioration de la justesse des prédictions, ou b) une diminution des écarts types des critères mesurant 

l’ajustement des modèles, indiquant une augmentation de la précision des prédictions, ou c) les deux en 

même temps.  Ces résultats soulignent le potentiel de la voxellisation à normaliser les métriques Lidar 

des effets des angles de scan et l’intérêt de cette normalisation pour développer des modèles plus 

robustes.  
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Chapitre 4 : Amélioration de la prédiction d’attributs forestiers à partir de données Lidar 

par la prise en compte de l’angle de scan et de la topographie dans des modèles basés sur 

des réseaux de neurones.  
 

Ce chapitre aborde l’objectif 2-c au travers de la question suivante : Comment intégrer la géométrie des 

acquisitions Lidar dans les modèles surfaciques ?   

Une infinité de métriques Lidar décrivant les peuplements forestiers peuvent être intégrées dans les 

modèles surfaciques. Ces métriques sont, la plupart du temps, utilisées sans que l’on connaisse leur 

sensibilité aux changements d’angles de scan.  Plutôt que de considérer cette sensibilité comme une 

contrainte, elle pourrait être vue comme une opportunité de caractériser plus finement les propriétés de 

la végétation. 

Pendant de nombreuses années, il a été recommandé de limiter l’angle de scan maximum à 15-20 degrés 

lors de l’acquisition de données Lidar destinées à des applications forestières. Restreindre l’angle de 

scan entraîne une réduction de la fauchée et donc de la surface couverte au sol à chaque passage de 

l’avion. Ainsi, pour réduire les coûts (i.e. optimiser le temps de vol pour couvrir un territoire donné), la 

limitation de l’angle maximum de scan peut être accompagnée d’une réduction du taux de recouvrement 

entre lignes de vol. Au cours des dernières années, on a pu constater une augmentation des angles de 

scan dans les jeux de données Lidar utilisés pour le suivi des forêts. D’une part, de nombreux pays ont 

réalisé des acquisitions Lidar au niveau national avec des angles de scan maximums de 30° et plus. Ces 

acquisitions ont pour vocation d’être utilisées pour différentes applications, y compris forestières. 

D’autre part, les acquisitions par systèmes légers se multiplient pour des études au niveau local et 

s’accompagnent d’angles de scan plus élevés que les acquisitions aériennes traditionnelles. Cependant, 

des études ont montré que les métriques Lidar présentent des sensibilités différentes aux angles de scan 

qui peuvent affecter la robustesse des modèles de prédiction basés sur les approches surfaciques (ABA) 

et leur fiabilité lors de leur application pour générer des cartes d’attributs forestiers. De plus, la 

topographie affecte également les métriques Lidar.  

Il apparait donc essentiel de pouvoir prendre en compte l’impact combiné de la géométrie d’observation 

(angles de scan et azimut des faisceaux Lidar) et de la topographie sur les métriques Lidar pour améliorer 

les modèles surfaciques. Dans cette partie du travail de thèse, nous faisons l’hypothèse que les réseaux 

de neurones artificiels ont la capacité de gérer ces interactions complexes.  

Le site d’étude est le Parc Naturel Régional du massif des Bauges dans les Alpes françaises. Ce site de 

haute montagne est caractérisé par la présence de forêts de feuillus, de conifères et mixtes. Les mesures 

terrain ont été collectées au niveau de 291 placettes circulaires de 15 m de rayon échantillonnant les 

trois types de forêts. Les données Lidar ont été acquises avec des recouvrements multiples entre lignes 
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de vol, et chaque placette de terrain a été scannée depuis plusieurs lignes de vol. Les nuages de point 3D 

de chaque placette terrain ont été divisés en fonction des lignes de vol, résultant en 1095 observations 

pour lesquelles 55 métriques Lidar standards ont été calculées pour caractériser la végétation. De plus, 

des variables ont été introduites pour décrire la topographie au niveau des placettes et les caractéristiques 

de la géométrie d’acquisition (angle de scan et azimut). Chaque nuage de points obtenu avec une ligne 

de vol, et les métriques Lidar correspondantes, sont le résultat d’une interaction spécifique entre les 

paramètres d’acquisitions, les propriétés du terrain et les caractéristiques de végétation et peuvent donc 

être considérés comme une observation unique et indépendante dans les modèles surfaciques. Cette 

façon de procéder peut être apparentée à une méthode d’augmentation de données appliquée en amont 

du développement d’un modèle.  

Nous avons utilisé un perceptron multicouche (MLP) avec deux couches cachées pour modéliser la 

surface terrière (BA) et le volume totale (Vtot). Ce réseau de neurones est supposé pouvoir mieux 

modéliser les interactions complexes entre les métriques Lidar de végétation (e.g., métriques de 

distributions des hauteurs et des intensités des points Lidar, densités de points par strates de hauteur, 

métriques de canopée, i.e. rugosité du sommet de la canopée et taux de couvert), la topographie locale 

(pente, orientation, altitude), et la géométrie de l’acquisition par le Lidar (angles de scan et azimut de la 

visée, distance entre le terrain et l’avion). 

 La division des données en un jeu pour l’étalonnage du modèle (calibration/validation) et un jeu pour 

son évaluation (test) a été définie sur la base des identifiants des placettes afin d’éviter qu’une placette 

ne contribue à la fois à l’étalonnage et au test des modèles. 30 itérations ont été réalisées avec des jeux 

d’étalonnage et de test différents. A chaque itération, pour chaque placette du jeu de test, chaque attribut 

forestier (i.e., BA et Vtot) est prédit autant de fois que le nombre de nuages de points disponibles, i.e. le 

nombre de lignes de vol à partir desquelles des données ont été acquises pour la placette. La médiane 

des prédictions est utilisée pour évaluer la performance des modèles à l’aide de critères standard, i.e. le 

coefficient de détermination R² et des mesures d’erreurs. Plusieurs jeux de données sont considérés : 1) 

standard (std), avec les métriques issues des nuages de points composés des points provenant de toutes 

les lignes de vol, 2) augmenté (aug) en distinguant les observations issues de chaque ligne de vol, 3) 

standard et augmenté complétés avec les informations de topographie (stdterrain, et augterrain) 4) augmenté 

complété des informations de topographie et de la géométrie d’acquisition (augterrain+scan). Les 

performances des différents modèles MLP ont été comparées à celles de modèles construit avec un 

algorithme de Forêt Aléatoire (ou Random Forest, RF), une approche de régression non-paramétrique 

couramment utilisée et prise ici comme référence.  

Pour le MLP, les R² pour les prédictions avec le jeu de données augterrain+scan (R² de 0.83 et 0.85 pour 

BA et Vtot) sont supérieurs à ceux obtenus avec le jeu de données stdterrain , i.e. sans diviser les nuages de 

points selon leur géométrie de scan (R² de 0.77 pour BA et Vtot). Les résultats de ce modèle (MLP avec 
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augterrain+scan ) sont aussi nettement meilleurs que ceux du MLP basé sur le jeu de données standard (std) 

(R² de 0.66 et 0.71 pour BA et Vtot, respectivement) qui n’intègre ni variables topographiques, ni 

géométrie d’acquisition. Dans tous les scénarios, y compris celui basé sur le jeu de données augterrain+scan, 

le MLP surpasse le RF (R² de 0.6 et 0.64 pour BA et Vtot pour le RF appliqué aux données augterrain+scan). 

Ces résultats, obtenus avec un réseau de neurones MLP à deux couches, soulignent le potentiel des 

méthodes d’apprentissage profond à fournir une solution efficace pour modéliser les interactions 

complexes entre les signaux Lidar et la végétation, qui sont régies par le changement de la géométrie 

d’acquisition et de la topographie. 

Chapitre 5 : Conclusion et perspectives 

Par sa capacité à fournir des mesures de la structure en 3D de la végétation sur de vastes surfaces, le 

Lidar aéroporté est une technologie particulièrement adaptée pour fournir des informations utiles à la 

gestion des forêts. L’utilisation croissante du Lidar pour les applications forestières, et en particulier 

pour l’inventaire forestier et la cartographie d’attributs forestiers, témoigne de ce potentiel. Construire 

des modèles reliant des données issues de mesures de terrain au niveau de placettes forestières et des 

variables issues des nuages de points 3D Lidar est la façon la plus courante de produire des estimations 

de paramètres forestiers et des cartes à grande échelle. Cette approche est appelée approche surfacique 

(ou ABA, pour Area Based Approach en anglais). 

Cependant, de par le mécanisme d’acquisition par balayage des données Lidar, il est difficile d’obtenir 

des nuages de points avec les mêmes caractéristiques de densité et d’angles de balayage (ou de scan) en 

tout point de l’espace.  L’impact de l’angle de scan sur la qualité des données en forêt et des modèles de 

prédiction a été assez peu étudié. Cependant, ces dernières années, on constate qu’une importance 

croissante est accordée à la compréhension de l’influence des angles de scan sur les métriques Lidar. 

Par convention, l’angle de scan maximum a été limité à 15-20° pour la plupart des études en milieu 

forestier. Une telle limitation est très contraignante (mauvais rapport coût/surface) pour la réalisation de 

couvertures au niveau national qui visent une efficience opérationnelle. Même à une échelle plus locale, 

autoriser un angle de scan maximum plus élevé permettrait de diminuer les coûts d’acquisition. Par 

ailleurs, l’utilisation de systèmes légers tend à se développer en forêt et implique en général des angles 

de scan maximums plus élevés qu’avec des systèmes aéroportés qui opèrent à plus haute altitude.  

Pour ces raisons il est important d’étudier et de mieux comprendre l’effet des angles de scan sur la 

qualité des nuages de points au regard des applications forestières. Dans cette thèse, l’impact de 

différentes géométries d’acquisition sur les modèles surfaciques Lidar développés pour la prédictions 

d’attributs forestiers a été étudié dans différents environnements forestiers complexes.  

L’étude a été menée selon deux axes de travail. Le premier axe s’est focalisé sur l’étude de l’impact de 

l’angle de scan sur les métriques Lidar et sur la qualité des modèles surfaciques basés sur ces métriques. 
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Le second axe s’est concentré sur l’exploration de différentes stratégies pour mieux gérer les effets des 

angles de scan.  

Les résultats obtenus ont montré que l’angle de scan peut impacter de façon significative certaines 

métriques couramment utilisées dans les modèles surfaciques. Ils ont aussi souligné le manque de 

robustesse des modèles construits à partir de jeux de données de calibration constitués de nuages de 

points issus d’une seule ligne de vol (i.e. un seul angle d’observation) au niveau des placettes de 

référence et le risque d’erreurs non maîtrisées qui en découle, lorsque ces modèles sont utilisés pour 

cartographier les attributs forestiers. Il est ainsi apparu impératif de gérer les effets des angles de scan 

lors de l’élaboration et de l’utilisation des modèles.  

Pour se faire trois stratégies ont été évaluées.  

La première stratégie, et la plus simple en théorie, est de s’assurer que l’acquisition des données est faite 

de façon à ce que tout point de la zone d’étude est scanné depuis au moins deux lignes de vol, trois voire 

plus si possible, pour compenser les biais de représentation de la végétation liés aux angles de scan. Les 

résultats ont en effet montré que les modèles construits avec des nuages de points issus de directions de 

scan multiples étaient plus robustes. Cependant, pour des questions de coût des acquisitions, cette 

solution n’est pas envisageable dans un contexte opérationnel.  

La seconde stratégie, est de s’assurer que les modèles utilisent des métriques Lidar peu sensibles aux 

angles de scan. Dans cette optique, les résultats obtenus ont montré que la voxellisation, basée sur des 

approches de suivi de rayons, était une option intéressante pour normaliser les métriques Lidar des effets 

des angles de scan et augmenter ainsi la robustesse et la fiabilité des modèles. La voxellisaiton peut être 

appliquée à l’échelle des placettes de terrain pour élaborer les modèles, mais aussi sur l’ensemble d’une 

zone d’étude pour appliquer le modèle et produire des cartes d’attributs forestiers plus fiables. Les 

approches de voxellisation ont aussi le potentiel de caractériser la végétation avec plus de précision. Des 

développements méthodologiques sont cependant encore nécessaires pour les optimiser et les intégrer 

dans des procédures opérationnelles d’inventaires forestiers améliorés combinant données terrain et 

Lidar.  

La troisième stratégie consiste à prendre directement en compte dans les modèles la géométrie des 

acquisitions, en la décrivant au travers de variables spécifiques (e.g. angle de scan, azimut de visée pour 

l’acquisition) et en intégrant aussi la morphologie du terrain (pente, orientation, altitude). Les résultats, 

obtenus avec un réseau de neurones MLP à deux couches, ont permis de montrer le potentiel des 

méthodes d’apprentissage profond pour modéliser les interactions complexes entre les signaux Lidar et 

la végétation qui sont modulées par la géométrie des acquisition et de la scène observée. Le déploiement 

de ces approches n’est cependant pas toujours possible en raison de la difficulté de disposer de 

suffisamment de données de référence terrain contemporaines des acquisitions Lidar, les inventaires 

terrain étant longs et couteux à réaliser.  
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Les résultats de cette thèse soulignent l’importance de poursuivre les recherches pour améliorer notre 

compréhension des interactions Lidar/végétation et notre capacité à gérer les effets des angles de scan 

sur les données Lidar et les modèles de prédiction d’attributs forestiers dans des contextes forestiers 

variés (types de peuplements et topographie). Les stratégies visant à normaliser les métriques Lidar et à 

s’appuyer sur des méthodes d’apprentissage profond pour gérer les effets des angles de scan ont été 

évaluées indépendamment mais pourraient être combinées afin de tirer parti des bénéfices des deux 

approches. Faire appel à des données Lidar simulées ouvre aussi des perspectives intéressantes pour, 

d’une part, analyser de façon plus systématique les effets des angles de scan sur les métriques Lidar dans 

différents types de peuplements forestiers et, d’autre part, produire des données de référence 

additionnelles pour favoriser le déploiement de méthodes d’apprentissage profond.  

. 
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1.1 Sustainable Forest Management 

"Sustainable forest management means the stewardship and use of forests and forest lands in a way, 

and at a rate, that maintains their biodiversity, productivity, regeneration capacity, vitality and their 

potential to fulfil, now and in the future, relevant ecological, economic and social functions, at local, 

national, and global levels, and that does not cause damage to other ecosystems." 

- Resolution H1 of the Helsinki Ministerial Conference on the Protection of Forests in Europe, 

1992 

A broad understanding of the definition above tells us that we interact with forests on two levels: socio-

economic and ecological. Our daily lives are inextricably linked with forest ecosystems because of the 

numerous resources we derive from forests, such as wood, fuel, paper, food and many more. Moreover, 

forests are responsible for providing livelihoods to more than a billion people worldwide and sustaining 

numerous indigenous populations (Bernier and Schoene, 2009). In Europe alone, about 2.6 million 

people depend on various industries linked to forests (Forest Europe, 2020). Forests are also home to 

diverse species of plants and animals that make up the biological biodiversity critical for maintaining an 

ecological balance while providing many economic benefits (FAO, 2020). In the context of global 

climate change, forests are also crucial carbon sinks, and they help tackle global warming through 

evaporative cooling (Bonan, 2008). At the same time, forests are under constant threat due to 

anthropogenic (deforestation, fragmentation and pollution), climatic factors (phenological shifts, range 

shifts, die-off events, insect infestations) or a combination of both (defaunation, fires, composition shifts, 

net primary productivity shifts, biogeochemical shifts) (Prăvălie, 2018). Forests constantly undergo 

disruptive changes; therefore, their management to maintain a balance between the socio-economic and 

ecological factors assumes increased importance (Kuuluvainen et al., 2021; Lazdinis et al., 2019; 

MacDicken et al., 2015; Prăvălie, 2018).  

Forest management plans identify the activities to be carried out per the goals and objectives of the 

forest managers (Bettinger et al., 2017). With the ever-increasing human population, forest 

environments must be managed with long-term perspectives. Historically, forest management was 

mainly driven by the primacy of timber production and other natural resources (Gadow et al., 2000). For 

example, in countries such as Finland and Sweden, the idea of sustainability was limited to economic 

sustainability, allowing them to make up around 15% of global sawn wood and paper pulp production 

with only 2% of the international forest area (Kuuluvainen et al., 2021). Such intensive practices are 

known to jeopardise the biodiversity of forests due to degradation of habitats and loss and reduced 

structural and species variability (Kuuluvainen et al., 2021). Around the 1990s, biodiversity became an 

essential component of forest management (UN, 1992). While a balance between the extraction of 

resources and ecological considerations may only be achieved if efficient management plans guide forest 

management practices, climate change considerations are crucial in the present and the future. Adapting 
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to the effects of climate change on forest ecosystems has assumed significant importance over the 21st 

century (Bernier and Schoene, 2009; Jandl et al., 2019; Spittlehouse and Stewart, 2003). The evolution 

of forests in the context of climate change will require the development of scientifically guided plans 

for effective decision-making concerning harvest levels prediction, resource consumption optimisation 

and maintenance of forest health (Bergeron et al., 2004; Seidl et al., 2011; Torres-Rojo et al., 2016; 

Williamson and Edwards, 2014). Therefore, information is at the heart of sustainable forest management 

and is obtained through forest inventories (Kangas and Maltamo, 2006). 

1.2 The role of remote sensing in enhancing forest inventory 

Forest inventory and mapping form crucial components of sustainable forest management by providing 

periodic information about the availability of natural resources and the state of the forest in general. It 

involves collecting data on forest resources within an area, whether local, national or global. The 

quantity and quality of forest information are vital components of forest management. Forest 

information is collected through forest inventory conducted at several geographic levels, which is 

typically carried out through field measurement of forest attributes at sample field plots. Forest attributes 

are modelled using the information from sample locations and extrapolated spatially to understand the 

current state of forests and their evolution over time. Different countries have national forest inventory 

(NFI) programs to quantify forest resources and develop suitable forest management policies (Barrett et 

al., 2016; Bohn and Huth, 2017; Breidenbach and Astrup, 2012; McRoberts and Tomppo, 2007; Nilsson 

et al., 2017).  

Traditionally, forest inventory involves species identification and measurements made on individual 

trees (and smaller vegetation) for the estimation of forest attributes such as tree heights (m), mean height 

(m), basal area (m² ha-1), stem density (stems ha-1), Gross total volume (m3 ha-1 ), Total aboveground 

biomass (kg ha-1) (McRoberts and Tomppo, 2007). The measurements can be intensive and costly and 

are therefore made on sample plots. The information is extrapolated to the entire forest area to derive 

estimates of the various forest attributes from local to national levels (McRoberts and Tomppo, 2007; 

White et al., 2017). In traditional forest inventory, accuracy depends on the number of sampling units 

and their stratification to ensure even representation, which in turn depend on cost and time constraints. 

Moreover, tree measurements are not made for all the trees in the forests, and wall-to-wall coverage is 

not practical.  

Remote sensing solves the problem of scaling forest inventories as sensors mounted on aircrafts or 

satellites are used to make measurements over large areas. Traditional forest inventory becomes the 

enhanced forest inventory (EFI) at the regional and national level with the support of remote sensing 

(White et al., 2017; Wulder et al., 2012a). In general, remote sensing involves two main components, a) 

acquisition of data, and b) interpretation of data. Data acquisition involves the use of different kinds of 
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sensors such as optical, infrared, thermal, microwave or lidar to acquire data about forests (Lillesand et 

al., 2004). Sensors collecting such data are mounted on different platforms such as terrestrial and 

ground-based, aerial and satellite, depending on the application, data properties or coverage area (Figure 

1). 

 

Figure 1: (a) Various remote sensing platforms based on their area of coverage and operation altitudes (Gili et al., 2021); 

(b)  Classification of remote sensing platforms based on their operations (left) and different types of data resulting from 

optical, infrared, lidar and microwave sensors (right) (Lechner et al., 2020). 

Interpretation of data may range from a basic visual interpretation to using advanced modelling 

techniques to derive useful information about the forests. Studies have used various sensors to extract 

information about forests, such as land-use land-cover (LULC), vegetation structure, biodiversity and 

vegetation cover, among others (Cartus et al., 2012; Dubayah and Drake, 2000; Foody et al., 2003; Hall 

et al., 2006; Le Toan et al., 1992; Magnussen and Boudewyn, 1998; Neumann et al., 2010). Multisource 

forest inventories (MFI) combine NFI information with auxiliary data, mainly remote sensing data or 

forest maps derived from remote sensing data, to increase inventories' speed and cost efficiency while 

reducing uncertainties of forest characteristics estimates. MFIs provide accurate results at more local 

scales without increasing the effort in the field. Remote sensing data contributes to the support of modern 

NFIs through three main applications: (1) surrogates for field observation or measurement; (2) ancillary 

data to improve the precision of traditional inventory areal estimates; and (3) mapping (McRoberts and 

Tomppo, 2007). 

1.3 Enhanced forest inventory with lidar 

Lidar is an active remote sensing method that involves the emission of monochromatic energy pulses 

with wavelengths, usually in the infrared region for earth observation. Lidar sensors are also mounted 

on different platforms (Figure 1). For large-scale coverages, sensors are mounted on airborne platforms, 

i.e. airborne laser scanning (ALS) or, since more recently, on spacecraft, e.g. the ICESat1 mission 

(Schutz et al., 2005), which operated from 2003 to the end of 2009, and the ongoing GEDI (Dubayah et 

al., 2020) and ICESat2 missions (Magruder et al., 2021). ALS sensors, in particular, have gained 
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recognition for their ability to generate the most accurate, spatially explicit and dense measurements of 

vegetation (Holmgren and Nilsson, 2003; Nelson, 2013). The pulses are emitted towards objects of 

interest, such as buildings, vegetation etc. and the roundtrip time of the pulse is used to measure the 

distances of the objects from the sensor. Part of the laser pulse strikes an object (a group of leaves, for 

example), which is returned as an echo, and the remaining portion of the pulse continues further. This 

process repeats to generate a waveform, which is the entire backscatter signal (Figure 2). It is possible 

to have multiple echoes or returns, with the first return generally corresponding to the top of the 

vegetation and the last return corresponding to the ground or lower parts of the vegetation closer to the 

ground. The intermediate returns make lidar scanning exceptionally proficient in sensing the internal 

canopy regions of the vegetation. The full waveforms generated as a result of the interaction of the 

pulses with the objects possess the range information and information about the physical backscattering 

properties of the objects (Mallet and Bretar, 2009). From waveforms, a discrete set of georeferenced 

points called point clouds sampled on the surfaces of the objects in three-dimensional space are obtained 

along with the intensity of returns (Lillesand et al., 2004; Vosselman and Maas, 2010).  

 

Figure 2: Illustration of an airborne lidar scanning (ALS) setup. The principle is the same for terrestrial scanners. 

The ability of lidar to accurately detect the top and bottom (ground) of the vegetation has been used for 

several decades, with earlier studies focused on measuring the height of the vegetation (Dubayah and 

Drake, 2000; Hudak et al., 2009; Næsset, 1997a; Nelson, 2013; Rempel and Parker, 1964), thereby 

enabling estimation of biophysical parameters such biomass and forest structural information such as 

basal area and wood volume. Recent developments in lidar scanning allow for acquiring very high-

density point clouds. Identifying individual trees and directly measuring their physical characteristics, 

such as crown diameter or height, is possible. This method is called the individual tree detection (ITD) 

approach. Although lidar sensors now have very high pulse frequencies that result in dense point clouds 

(Figure 3), it is challenging to identify individual trees in dense canopies due to the complexities in the 
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shapes of different crowns and difficulties in developing robust algorithms. Furthermore, the density of 

the points in lower parts of the forests reduces, making it challenging to identify suppressed trees (Räty, 

2020). However, there has been significant progress in ITD methods over the years (Ferraz et al., 2016; 

Jeronimo et al., 2018; Koch et al., 2006; Kwak et al., 2007; Picos et al., 2020; Véga et al., 2014; Zhen 

et al., 2016) 

 

Figure 3: Dense point cloud obtained for one of the field plots in this study. The point cloud was normalised using a digital 

terrain model (DTM) to convert point altitudes to point heights above ground. Converting these dense representations to 

useful information in the form of trees can be challenging. 

An alternate option is an area-based approach (ABA) (Figure 4), wherein statistical relationships, also 

known as models, are developed between field measurements for representative forest areas (field 

reference plots) and lidar metrics derived for points clouds corresponding to those areas (Næsset, 2002; 

White et al., 2017; Wulder et al., 2012b). The statistical relationships could be parametric regression 

models (Hudak et al., 2006; Woods et al., 2011)  or non-parametric regression methods such as random 

forests (Nurminen et al., 2013; Yu et al., 2015),  k-NN (Chirici et al., 2016; LeMay and Temesgen, 2005; 

Packalén and Maltamo, 2007; Vastaranta et al., 2013), and, in recent years, deep learning-based methods 

(Lahssini et al., 2022; Liu et al., 2021; Martins-Neto et al., 2021). The advantage of ABA approaches 

lies in the fact that they are known to perform well even with datasets with low pulse densities. The lidar 

metrics can be in the form of statistical descriptors of the vertical distribution of points or of the 

distribution of intensity values of the points, canopy structural parameters (Hopkinson and Chasmer, 

2009), vegetation profiles (Bouvier et al., 2015; Fischer et al., 2019), voxels (Carrasco et al., 2019; 

Pearse et al., 2019), or any metrics meant to capture the structural characteristics of the vegetation. 

Figure 5 illustrates different ways in which lidar data could be summarised. 
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Figure 4: Illustration of area-based approaches.  

Lidar metrics are nothing but summaries of the several thousands of points in the point cloud that 

represent a given plot of forest. If the forest plot remains constant, one would expect the lidar metrics to 

stay constant. This would be true if lidar data acquisitions were carried out with the same system and 

constant acquisition parameters. However, by its very nature, lidar scanning can be highly variable. 

Lidar scanning is governed by parameters such as the flying height, pulse repetition rate of the 

transmitter, overlap requirements and the scan angle (or the field of view), and other sensor-related 

properties, e.g. wavelength, beam divergence, power and recorder type. These parameters are dynamic 

and can vary across different acquisitions, collectively governing the quality of the point clouds. 

Furthermore, the relationship between lidar metrics and forest parameters also depends on the forest 

type and terrain characteristics. The latter has been shown to impact point distributions and the ABA 

model based on distributional metrics (Hansen et al., 2017).  

Voxel-based metrics are alternatives to standard lidar metrics. They have also been explored in recent 

years to summarise and characterise vegetation more accurately. Point clouds are subdivided into 

smaller three-dimensional units called voxels. A voxel (volumetric pixel) is analogous to a pixel in 

image data, wherein each pixel contains some summary information of the area it represents. The three-

dimensional distribution of vegetation elements is captured better by discretising the point clouds using 

voxels (Pearse et al., 2019; Yan et al., 2019). The number of points in each voxel can also be related to 

the distribution of foliage to obtain a simplified but more accurate spatial distribution of the vegetation 

(Béland et al., 2011; Carrasco et al., 2019; Grau et al., 2017; Soma et al., 2018). Voxel-based metrics 

have been demonstrated to improve the accuracy of forest attribute predictions (Kim et al., 2016; Pearse 

et al., 2019). Their use in ABA models has given rise to exciting possibilities in the future. ITD or ABA 

approaches depend on a specific minimum point density related to the pulse density. Nonetheless, 

studies have found that ABA methods tend to perform well even in low pulse densities (Bouvier et al., 
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2019; Disney et al., 2010; Jakubowski et al., 2013; Lovell et al., 2005; Qin et al., 2017). ITD approaches, 

on the other hand, need higher pulse densities (>5 pulses /m²) for the delineation of different trees (Räty, 

2020). 

 

      

 

 

Standard metrics (White et al., 2017) Vegetation profiles (Bouvier et al., 2015) Voxels (Vincent et al., 2017) 

Figure 5: Different ways to summarise lidar data into statistical descriptors 

Lidar sensor development over the years now allows for scans at very high pulse repetition frequencies 

and with multiple echo detection capabilities. For ABA models, theoretically, there is no upper limit to 

the point/pulse densities, which are mainly governed by the field of study, operational considerations 

and storage capabilities. Studies have benchmarked the minimum pulse densities to be around one pulse 

per m² for ABA approaches to perform well. As regards the lidar scan angle, there are no well-defined 

upper limits.  

1.4 Understanding the role of lidar scan angle in forestry 

applications 

As it often happens that an invention or a technology goes on to serve a purpose for which it was not 

envisioned, lidar, or light detection and ranging, was never developed as a remote sensing tool to study 

forests. Nelson (2013) notes that the initial use of lidar remote sensing was driven by a need to accurately 

characterise terrain properties, sea ice roughness and thickness (Ketchum, 1971; Toomajr and Tucker, 

1971) and bathymetric measurements (Hickman and Hogg, 1969). Lidar remote sensing was not used 

for forestry in the early years. However, studies attempted to employ lidar to penetrate the forest cover 

and extract the underlying surface (Krabill et al., 1980). Still, Rempel and Parker (1964) and Link (1969) 

were some of the early studies that acknowledged the possibility of using the lidar profile measurements 

for studying forests. However, these findings were also a by-product of using lidar to profile the terrain 

below forest cover. In profiling lidar, the sensor is generally locked in its position, pointing nearly 

vertically downwards, i.e. the scan angle is fixed at around 0° (Figure 6a).   
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Rempel and Parker (1964) acknowledged that vegetation heights could be directly estimated even if 

only "5 per cent of the forest cover permits an optical path to the ground". Krabill et al. (1980) noted the 

possibility of using lidar scanning to measure tree heights if part of the laser pulse was reflected from 

the canopy and the remaining from the forest floor.  

 

(a) 

 

(b) 

 

(c) (d) 

Figure 6: (a) Profiling lidar fixed at a scan angle of 0°, (b) rotating scanning mechanism that allows for scans of a larger 

area, (c) higher scan angles can cover an even greater surface area on the ground, (d) different acquisitions for the same 

area of interest with wider scans. Note: In reality, the pulses are diverging.  

In the same decade, in a hydrography workshop aimed at developing a lidar system for detecting 

underlying terrain, it was established that a conical scan angle of 15°, expandable to 25°, would be 

suitable for the purpose (Nelson, 2013). The underlying principle was that tree height accuracy depends 

on how accurately the treetops and the ground below could be identified. This was a reasonable 

assumption since an increase in lidar scan angle means that it is more challenging to have an optical 

path to the ground due to an increase in the apparent density of the vegetation (Roussel et al., 2018). 

Besides, many early systems had a pulse repetition frequency (PRF) of a few hundred pulses per second 

(Nelson, 2013). Naturally, limiting the scan angle to a predominantly nadir configuration of 10°-15° 

ensured that laser pulses had low resistance on the way to the ground and back. Over the decades, this 

principle has been followed as a convention to extract tree heights and other forest attributes. 
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Extraction of accurate tree height measurements using lidar was the basis of lidar measurements during 

the 80s and 90s using profiling lidar configurations (Næsset, 1997b, 1997a). Tree height measurements 

were used to extract/model other forest attributes (Dubayah and Drake, 2000). However, profiling lidar 

does not offer the benefit of scaling up operations, which is the primary advantage of remote sensing. 

Eventually, a rotating mechanism was incorporated into lidar instruments, enabling a broader coverage 

to emit laser pulses at different angles in a sweeping or scanning fashion (Lefsky et al., 2002). In the 

90s, studies began exploring the potential of increasing lidar scan angle up to 20° (Næsset, 1997b, 

1997a). The scan angle was not found to be an influential parameter in predictions of tree heights 

(Næsset, 1997a) or timber volume (Næsset, 1997b) of boreal forests. However, the need to quantify the 

effects of "looking" through the canopy at different angles was emphasised. 

Over the years, there has been some investigation into the influence of scan angle on various lidar 

metrics and forest attributes. Still, the datasets in most of the studies were cut-off at the 15°-20° 

threshold, keeping in line with some of the early conventions. Magnussen and Boudewyn (1998) 

observed that the lidar scan angle has minor effects on estimating stand heights. However, their study 

was on a dataset with a maximum scan angle of 12°. Morsdorf et al. (2008) observed fractional cover to 

be affected by scan angle despite using a lidar system with a maximum scan angle of 7.5°. Ahokas et al. 

(2005) found that the DTMs derived from lidar data were not significantly affected by scan angles of up 

to 15°. Chen et al. (2014) found that gap-fraction was stable up to 15°, which was the scan angle 

threshold in the study. Keränen et al. (2016) tested the effect of scan angle on the prediction of plot 

volume and mean height and found that a narrower scan angle range of ±15° was more accurate than a 

scan angle range of ±20°.  

Even full-waveform data has been studied for the effect of scan angle. Crespo-Peremarch and Ruiz 

(2020) found that the return waveform energy (RWE), a metric derived from full-waveform lidar, had a 

lower radiometric error when computed for off-nadir pulses. RWE is sensitive to the energy loss along 

the trajectory. However, they limited the study to lidar pulses with a scan angle of less than 20°. They 

also found that predictions of forest fuel variables were marginally more accurate with inclined pulses. 

Interestingly, Kamoske et al. (2019) also recommended that higher scan angles would ensure a better 

sampling of the vegetation resulting in a more accurate understanding of the gaps in the canopy. Kellner 

et al. (2019) also suggest that point clouds acquired with wider scan angles can "resolve individual tree 

and branch structure and are similar to TLS".   

Limited by cost considerations, lidar data acquisition does not allow for a comprehensive scanning of 

forest plots from multiple locations, making it difficult to understand the effect of scan angle for a range 

of acquisition geometries as most operational lidar acquisitions have been constrained to a scan angle 

of 15°-20°. On the one hand, acquisition costs could be brought down by increasing the scan angle to 

30°, and on the other, data users prefer a 50% of overlap to minimise the error and make the data reliable. 
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The resulting tradeof, therefore, underlines a need for a comprehensive investigation of the effects of 

higher scan angles, which were also addressed from a data simulation point-of-view. Studies tried to 

overcome acquisition limitation on diversity in lidar scan angles in datasets by simulating lidar point 

clouds for different forest types (Disney et al., 2010; Holmgren et al., 2003; Qin et al., 2017). Simulation 

enabled generation of lidar data with different characteristics without the practical constraints. Holmgren 

et al. (2003) simulated lidar data with scan angles up to 30° in 5° intervals from computer models of 

pine and spruce trees. Similarly, Disney et al. (2010) also simulated lidar data with scan angles of up to 

30°. Qin et al. (2017) simulated lidar datasets in intervals of 5° up to 30° and from different altitudes. 

They observed that foliage profiles from simulated vegetation models were similar to those retrieved 

from simulated lidar data with a scan angle of 20°, highlighting the benefits of inclined observations. 

Conversely, Roussel et al. (2018) proposed a mathematical framework to normalise effects of the scan 

angle on lidar metrics (classical lidar descriptors such as mean, standard deviation, percentiles, kurtosis 

and skewness and height distribution entropy) to result in metrics as if they were computed for nadir 

point clouds. When using voxelisation approaches, the path length is also considered to normalise 

information (Grau et al., 2017; Soma et al., 2018). Recently, van Lier et al. (2021) tested the effect of 

using lidar data with scan angles up to 30° on forest attribute predictions. They concluded that although 

lidar metrics were significantly affected, their impact on the predictions was not of great magnitude.  

Over the years, there has been a gradual increase in the lidar scan angle marking a shift away from the 

traditional practice of limiting the scan angle to nadir or just off-nadir angles owing to practical 

considerations and the development of systems with high pulse repetition frequency capabilities. The 

flexibility of lidar allows for large-scale nationwide multipurpose acquisitions (IGN, n.d.). Recent 

innovations such as the Leica SPL100 have fixed FOV capabilities of up to 60° allowing wide-area 

acquisition at a lower cost per data point (Leica Geosystems). In recent years UAV acquisitions have 

been carried out at local levels, which involve scan angles higher than 20° (Cao et al., 2019; Liu et al., 

2018; Lu et al., 2020; Ma et al., 2022). In the coming years, increasing the use of such low-flying 

platforms with high scan angles will entail the need for simultaneous knowledge building concerning 

the influence of lidar parameters.  

There seem to be two schools of thought, a) one that prefers to limit the scan angle to nadir or just off-

nadir and b) one that believes it is possible to obtain new insights by increasing the scan angle. Roussel 

et al. (2018) remarked that the effect of scan angle of forest predictions might vary from one forest type 

to another and may also depend on the chosen lidar metrics and subsequent ABA models. Sometimes 

contrasting observations in different studies evidence this. There is a lack of conclusive knowledge about 

the lower and upper thresholds for scan angle. Indeed, this further reinforces the need to improve our 

understanding of the problem. 
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Additionally, in any given scene, the acquisition geometry is defined by the lidar scanning parameters, 

the terrain and vegetation type physical characteristics. In steep environments, if the aircraft is relatively 

'upslope' of the forest being scanned, the pulses must travel through some vegetation immediately next 

to the area of interest. Furthermore, the trees grow with some inclination in steep terrains with 

asymmetrical crowns due to competition for light (Breidenbach et al., 2008). Considering the acquisition 

geometry is thus essential to understanding lidar scan angle.  

Although some of the research so far has attempted to study the influence of lidar scan angle on lidar 

metrics and, to a lesser extent, on attribute estimations using lidar data, there is certainly scope for more 

work to be done in this regard. On the one hand, as mentioned before, the general understanding is to 

limit lidar acquisition to 20° or filter out datasets acquired with high inclination (ICSM, 2010). Using 

50% overlap is one way to ensure sufficient sampling of forest plots. However, ensuring a high degree 

of overlap can be costly. In NFI recommendations of some countries, there are specifications of overlap 

criteria of 30% (Ministry of Forests, Lands and GeoBC, 2020), while some other countries do not have 

an explicit consideration of the same (ACT, n.d.; IGN, n.d.; Swisstopo, n.d.). 

1.5 Research questions and objectives 

For sustainable forest management, accurate information about the forests is critical. With differing data 

acquisition practices across local, regional, national and global scales and different platforms, it is 

essential to move towards harmonisation of information while ensuring cost-effectiveness. While lidar 

scan angle has been acknowledged to impact ABA models, there is a lack of convergence among some 

of the studies. Even lesser attention has been given to strategies to deal with datasets comprising inclined 

scan angles while the incidence of such datasets is increasing either due to new technological 

developments or due to limitations in costs. Due to the complexity of vegetation, measuring its structure 

using lidar highly depends on the acquisition geometry. Studying these interactions and better evaluating 

their impact on forest attribute estimations from lidar data is essential to determine if more attention 

should be paid to this acquisition parameter.  

Two main hypotheses were: 

H1: ABA predictions will be unreliable if influences of scan angle are not considered when modelling 

relationships between forest attributes and lidar variables  

The main research question based on the hypothesis is: 

Q1: What are the impacts of lidar scan angle on lidar metrics and ABA predictions? 

H2: The effect of scan angles on the accuracy of predictions can be reduced by normalising lidar metrics 

to changes in acquisition geometry or by incorporating this geometry in ABA models. 
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The main research question based on the hypothesis is: 

 Q2: How to manage the impact of lidar scan angle on ABA predictions? 

In the context of the hypotheses, the main objective of this PhD study was to understand whether 

accounting for the impact of scan angles on lidar data could be helpful in the development of robust and 

accurate ABA models for the prediction forest attributes, and therefore fostering use of lidar for forestry 

application.  

The sub-objectives of the study were: 

1) To assess the impact of lidar scan angle on ABA models metrics on a diversity of complex forest 

environments 

a. By assessing the impact of scan angle on commonly used lidar metrics that are used in 

ABA models 

b. By assessing the impact of using metrics that are explanatory but sensitive to lidar scan 

angle on ABA predictions  

2) To develop methods to manage the impacts of lidar scan angle on ABA models 

a. By considering different combinations of acquisition geometries (scan angle) 

b. By developing metrics using voxel-based approaches to normalise for effects of scan 

angle  

c. By modelling the effects of scan angles by considering overall acquisition geometry 

using deep learning approaches. 

3) Draw perspectives and recommendations from our findings for the operational use of lidar data 

for forest applications 

1.5.1 Impact of scan angle on ABA models 

The impact of scan angle on ABA models was addressed via the sub-objectives 1a and b. The 

fundamental challenge, as illustrated in Figure 5, is that although increasing the scan angle will help 

improve the operational efficiency, we do not know the implications of doing so on lidar metrics and on 

subsequent forest attribute predictions using ABA models. The challenges arise from the fact that 

numerous lidar metrics used in ABA models are not assessed from the point of view of the impact of 

scan angle before the development of ABA models. Studies have documented the effect of various scan 

angles in different forest environments (Keränen et al., 2016; Montaghi, 2013; Roussel et al., 2018; van 

Lier et al., 2021). For example, Keränen et al. (2016)  observed that a scan angle lower than 15° was 

preferable for the prediction of volume in pine-dominated managed forests, while van Lier et al. (2021) 

found marginal effects of lidar scan angle even up to 30° for forest attribute predictions in balsam-fir 

dominated stands. As forests are not homogenous environments, 'viewing' them from different locations 

can result in varying information. Furthermore, as forests have varying physical characteristics, it is 
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imperative to assess the impact of scan angle in various forest environments, especially in complex 

stands and mountainous areas.   

This part of the study comprises two stages. In the first stage, it was hypothesised that lidar metrics 

would be influenced by changing acquisition geometry (scan angle), driven by the spatial heterogeneity 

of complex forest environments. The effect of lidar scan angle on a set of lidar metrics was studied for 

the riparian forests along the river Ciron in southwestern France. The riparian forests were relatively flat 

terrain with average slope of 8.9 degrees. The set of metrics comprised statistical descriptors of the 

distribution of point heights and forest structural characteristics. For the second stage of the study, it 

was hypothesised that ABA models calibrated based on a set of plots scanned with specific geometries 

(which depends on the flight plan) may be prone to prediction errors when applied to assess stand 

characteristics of similar stands scanned with different acquisition geometries. At this stage, three other 

types of forests were also considered, which consisted of broadleaf, coniferous and mixed stands in 

mountainous terrain with an average slope of 26 degrees.  

The specific questions that were addressed in this part of the study were: 

Q1) What is the impact of lidar scan angle on commonly used lidar metrics? 

Q2) What is the effect of the inclusion of lidar metrics sensitive to scan angle on ABA models? 

1.5.2 Strategies to deal with impacts of lidar scan angle 

This part of the study concerns the second sub-objective. So far, most lidar acquisitions are planned 

based on the hypothesis that high scan angles (above 20°) must be avoided to ensure ground detection. 

As a strategy to manage lidar datasets with inclined scanning, studies have proposed the normalisation 

of lidar metrics for point clouds acquired from inclined scans to correspond to those acquired from 

vertical scans (Roussel et al., 2018).   

Accurate characterisation of the canopy properties is an essential requirement for a better understanding 

of spatial and temporal properties of vegetation, and voxel-based metrics have been shown to perform 

well in these tasks (Carrasco et al., 2019; Kim et al., 2016; Pearse et al., 2019). Three strategies were 

proposed and evaluated to manage scan angle impacts and improve ABA model robustness.  

The simplest method for reducing the impact of scan angle effects was investigated in the first strategy 

(S1), which involved mixing point clouds from several flight lines with various scan angles. The 

performance of ABA models was also studied when the data consisted of point clouds from single flight 

lines. As it can be costly to ensure overlaps, this technique is not feasible in an operational environment. 

Therefore, two different strategies were also investigated. The second strategy (S2) suggested a voxel-

based approach to normalising lidar metrics. It was hypothesised that the impacts of the lidar scan angle 

could be normalised by voxel-based 3D reconstruction techniques based on the lidar pulse trajectory 
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retrace resulting in a calculation of voxel-level plant area density (PAD) with higher accuracies (Figure 

7). 

 

Figure 7: Ray-tracing 

The third strategy (S3) hypothesised that any given acquisition geometry results from the unique 

interaction between lidar acquisition parameters, terrain properties and vegetation characteristics. 

Therefore, changes in lidar metrics, if any, due to varying scan angles provide some unique insights into 

the properties of the vegetation. The innovative aspect of this part of the study was to consider point 

clouds for the same plots but from different flight lines as independent and unique observations to 

augment standard lidar datasets for ABA models. The variables describing the acquisition geometry 

were thus considered critical explanatory variables to be included in the model.  

The specific questions that were addressed in this part of the study were: 

Q3) How does overlap in lidar data acquisition influence the quality of ABA models? 

Q4) How to normalise lidar metrics sensitive to lidar scan angle? 

Q5) How to model acquisition geometry in ABA models? 

1.6 Overview of the thesis 

This thesis is divided into three main chapters corresponding to three publications. 

Chapter 2 mainly addresses Q1. The influence of lidar scan angle was assessed on commonly used lidar 

metrics that were computed for an entire forest. ABA approaches involve developing models for a given 

set of field plots followed by dividing the whole forest into a grid with a grid-cell area comparable to 

the area of field plots used. Similarly, the forest was divided into a grid and metrics were computed for 

different scan angles in a grid cell. The study site is a riparian area along the Ciron river and some of its 

tributaries in Southwestern France. It includes broadleaved and mixed stands with low levels of 

management intensity. Stands are characterised by a high diversity in species and by their structural 

complexity. The variability of the metrics was analysed by comparing metrics computed for point clouds 
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acquired with inclined scan angles to those computed for point clouds obtained with nadir acquisition. 

The study highlighted that metrics were differently sensitive to scan angle and that metrics such as gap 

fraction, commonly used in models, were amongst the most sensitive.  

This chapter was published in the ISPRS Archives in 2020 as a part of the proceedings of the ISPRS 

Congress Nice 2020. Initially accepted as an oral presentation, it was also presented as a poster in the 

ISPRS Congress Nice 2020/2021/2022.  

In Chapter 3, several questions are addressed using lidar datasets for varying types of forests and terrain 

properties. The first study area (riparian region) was studied along with three different forest types 

(coniferous, broadleaf and mixed) in the Massif des Bauges in eastern France. For both sites, lidar 

datasets were acquired with multiple overlaps, and different regions were scanned with different 

acquisition geometry or viewing characteristics. Lidar datasets were resampled from the existing data to 

datasets with constraints on the lidar scan angle. In other words, for the same area, different and 

independent lidar acquisitions were simulated. A predefined ABA model with metrics with varying 

sensitivities to scan angle was chosen to model forest attributes. Firstly, the impact of scan angle on the 

lidar metrics chosen or the ABA model was assessed at the level of the plots for three forest types at 

Bauges. Then the effect of using lidar metrics sensitive to scan angle on the forest attribute predictions 

was investigated (Q2). The lack of robustness was reflected in the ABA predictions for models built 

with metrics sensitive to scan angle for datasets with different acquisition geometries.  

In this Chapter 3, questions Q3 and Q4 were also addressed to evaluate the potential of two suggested 

strategies, S1 (combining several flight lines) and S2 (using voxelisation to normalise metrics), to 

mitigate the effects of scan angles on ABA models. Based on S1, it was observed that the variation in 

ABA predictions was lower when datasets consisted of point clouds combined from multiple flight lines. 

Regarding S2, the resampled datasets were used to build ABA models with equivalent metrics derived 

from voxelisation. The benefit of using voxelisation as a strategy to manage the effects of scan angle 

was assessed. Voxel-based metrics had a positive contribution to the predictions on account of 

improving the average accuracy of predictions and reducing the variability in predictions for datasets 

with different acquisition geometries. This chapter has been submitted to the ISPRS Journal of 

Photogrammetry and Remote Sensing. It has been accepted with major revisions and was resubmitted. 

Chapter 4 focuses on Q5. A different perspective was applied to understand the impact of scan angle on 

lidar metrics and ABA predictions. Forest vegetation is not evenly distributed, and the terrain is not 

always flat, as was the case for the study area at Bauges. In such complex terrains, the azimuth of 

acquisition also plays a role in the acquisition. Neural networks were used to model the interaction 

between factors such as the acquisition parameters, terrain and vegetation properties. A point cloud for 

any given plot resulting from the interactions of these factors was considered a unique observation. A 

related study investigating the fusion of lidar and optical data using deep learning-based approaches was 
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published in Lahssini et al. (2022). A part of that study using the multilayer perceptron (MLP) was 

adapted to the requirements of this study. This chapter has been written in the form of a publication for 

submission to peer-reviewed journals. The findings were also presented at the ForestSAT conference in 

Berlin in 2022 

The findings are discussed in Chapter 5. Few recommendations and perspectives are provided to foster 

the operational use of lidar data for forest applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

 

18 

 

 

 



19 

 

  Scan angle impact on lidar-derived metrics 

used in ABA models for prediction of forest stand 

characteristics: a grid based analysis 

K. R. Dayal 1*,  S. Durrieu 1,  S. Alleaume 1,  F. Revers 2,  E. Larmanou 1 ,  J-P Renaud 3,  M. 

Bouvier4 

1 INRAE, TETIS, Université de Montpellier, AgroParisTech, CIRAD, CNRS, INRAE, 

Montpellier, France 

2 INRAE, UMR 1202 BIOGECO, Université de Bordeaux, Cestas, France 

3Office National des Forêts, Nancy, France 

4 INFOGEO, Montpellier, France 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      

*  Corresponding author 

 



Scan angle impact on lidar-derived metrics used in ABA models for prediction of forest stand 

characteristics: a grid based analysis  

20 

 

Abstract: Lidar scan angle can affect estimation of lidar-derived forest metrics used in area-

based approaches (ABAs). As commonly used first-order metrics and various user-developed 

metrics are computed in the form of a grid or a raster, their response to various scan angles needs 

to be investigated similarly. The objective of this study was to highlight the impact of scan angles 

on 11 metrics (9 height-based and 2 other commonly used metrics) at the level of the grid-cell. 

The study area was divided into a grid of cell size 30 m. In every grid-cell, the flight lines that 

sampled at least 90% area of the grid-cell were identified. The flight lines and the corresponding 

point clouds were then classified based on their mean scan angle into four classes 0°–10°, 10°–

20°, 20°–30° and 30°–40°. Metrics were computed for one flight line per class for each grid-cell. 

This resulted in a maximum of four values for a metric in every grid-cell. Comparing these values 

revealed the evolving nature of the metrics with the scan angle. For the comparison we used a 

paired t-test and simple linear regression. We observed that most of the metrics were 

systematically under-estimated with increasing scan angle. Gap-fraction, rumple index were 

affected more than standard deviation of height while the maximum height was relatively stable. 

Among the height percentiles, the higher percentiles were relatively more stable compared to the 

lower percentiles. Scan angles can indeed have an impact on the estimation of lidar derived 

metrics. Although, many of the metrics studied showed statistically significant differences in their 

computation for different scan angles, their impact on the accuracies of ABA models needs to be 

studied further by accounting for the differences as shown in this study. 

Keywords: lidar, scan-angle, area-based approach, forest metrics, forest inventory 
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2.1 Introduction 

Lidar acquires an explicit three-dimensional representation of the forest structure. Such 

information is essential to model both ecological and resource management information, and there 

is a broad spectrum of methods, across various airborne LiDAR platforms, for improved 

characterisation of forest ecosystems and a better understanding of their functioning. It is possible 

to extract several forest inventory attributes with improved accuracies for better resource 

management (Bohn and Huth, 2017; Breidenbach et al., 2010; Côté et al., 2018; Næsset, 2007; 

Wallace et al., 2012). Lidar data can also be used to assess biophysical variables, such as above-

ground biomass (AGB) and Leaf Area Index (Bouvier et al., 2015; Breidenbach and Astrup, 2012; 

Lefsky et al., 2002; Vincent et al., 2017)  

In Area-based approaches (ABAs), a set of ALS variables (Xi) – derived from lidar data for a 

given area – is linked to a target variable (Y) measured at the same area on the ground (Dubayah 

and Drake, 2000). This is done for a handful of different plots to build a predictive model to 

predict the target variable for the entire forest. The fundamental unit of a predictive model is a 

small subset from the lidar point cloud, the area of which equals the area of a reference field plot 

(i.e., typically 0.025 to 0.07 ha). A model developed for representative plots is then applied to the 

whole forest area divided into grid cells, the area of which still equals the area of reference field 

plots. Any given target forest attribute is thus predicted at the cell level. Notwithstanding the 

trade-off between area coverage, the density, and the resolution of measurements between 

different platforms (i.e. aerial and un-manned aerial vehicles (UAV)), studies have recommended 

further investigation of variation in acquisition parameters for forest parameter assessment (Cao 

et al., 2016; Korhonen et al., 2011; Tompalski et al., 2019). Some studies focussed on the effect 

of point density on the accuracy of stand attribute predictions (Bouvier et al., 2019; Næsset, 2009; 

Singh et al., 2016). Relevant lidar metrics selected to build predictive models were found to differ 

significantly with pulse density in Næsset, (2009) but in Bouvier et al., (2019) there was no change 

in the four metrics used. However, in the range of explored pulse densities, i.e. from 0.06 to 12.7 

pulses/m², in all the studies considered together, only minor or even no impact on stand attribute 

predictions was found.  

Another critical acquisition parameter is the maximum off-nadir scan angle (Bater et al., 2011). 

Liu et al., (2018) demonstrated the effect of scan angle on gap fraction estimation which, in turn, 

affects the estimation of LAI. Tompalski et al., (2019) recommend the disentangling of various 

acquisition parameters, including scan angle, to develop robust transferable models. Studies 

utilising lidar-based metrics generally do not consider the influence of scan angles, and there may 

be unaccounted biases which may cancel each other in predictive models (Roussel et al., 2018). 

There can only be one, or a few flight-passes for a given area, and it is evident that the ‘viewing 
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configuration’, or the scan angle with which each grid-cell is sampled will be different (Figure 

1). Owing to these inconsistencies, metrics computed for an entire forest, in the form of a raster 

may possess inherent biases. For airborne acquisitions, Evans et al., (2009) recommend limiting 

the maximum scan angle to 15° to reduce measurement errors, despite a reduction in flight time 

and cost that would have enabled higher scan angles. In Montaghi, (2013), several metrics were 

found to be relatively stable up to an angle of 20 degrees. However, with the increasing popularity 

of light systems embedded on low altitude platform – such as ULM or UAVs – it is imperative to 

understand the response of various commonly used metrics to varying scan angles as limiting the 

scan angle to 15-20 degrees is hardly feasible in an operational mode for reasons of time and data 

volume optimisation. This would allow for better management of the biases and result in more 

informed mission planning for efficient data acquisition. 

In the present study, with the objective to contribute to the understanding of how scan angles 

modify metrics that are commonly used in ABA approaches, we analysed the impact of scan 

angles on a set of metrics that can be used to describe the horizontal and vertical vegetation 

structure of a riparian forest located in the Landes area, in south-west France. 

 

 

 

Figure 1: Acquisition geometry from different flight lines 

2.2 Materials 

2.2.1 Study area 

The study area  is a riparian zone bordered by pine forests in the Ciron valley in the southeast of 

the Gironde and the northwest of the Lot-et-Garonne departments, in the Aquitaine region of 

south-western France. As a result of related projects, field plot information was available for 30 
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circular sites (15 m radius) along the river Ciron (flowing in SE-NW direction) and its tributaries, 

covering a total length of approximately 45 km. The plots are representative of the riparian 

ecosystem. The field measurements are indicative of structurally diverse vegetation in the region, 

with as many as 33 different species of trees and a diameter at breast height (DBH) varying from 

7.5 cm to 87 cm (Figure 2). The riparian region includes the active floodplains. It is highly 

biodiverse because of sparse forest management activities. In contrast, periodic management 

practices are carried out in the pine forests located beyond the riparian region. 

 

Figure 2: Example of the riparian environment in the study 

area 

2.2.2 Lidar data 

In early October 2019, INFOGEO (France) acquired lidar data using a VQ580 laser scanner 

(RIEGL, Austria) on an ultralight aircraft platform. The flying altitude was approximately 250 m, 

which enabled data-acquisition at an overall point density of around 68 pts/m². Overlap of 35%-

40% and several passes over any given area (Figure 3) ensured that several locations across the 

region were sampled with multiple ‘viewing’ configurations (Figure 1). However, it was not 

possible to obtain all the configurations for all the areas. Additional sensor specifications are 

available in Table1. Data pre-processing was carried out by INFOGEO, which involved 

classification of ground points using TerraScan (Terrasolid Ltd., Finland). 

Date of acquisition Early October 2019 

Sensor RIEGL VQ580 

Wavelength Near-infrared 

Field of view 60° (+30°/-30°) 

Beam divergence 0.2 mrad 

Footprint diameter 52 mm @ 250m 

Ground speed 25 m/s 

Point density 68 pts/m² 

Flight altitude AGL 250 m 

Table 1: Technical specifications of the sensor 
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2.3 Methods 

2.3.1 Metrics selection 

While new metrics are continually being developed to improve prediction of forest attributes 

(Almeida et al., 2019; Bouvier et al., 2015; Véga et al., 2016), first order derivatives such as 

height-based and density-based metrics are commonly utilised in ABA approaches (Mitchell et 

al., 2012). We thus considered height-based metrics such as mean, maximum, standard deviation, 

coefficient of variation of heights, and height percentiles (10th, 30th, 50th, 70th and 90th). When 

computing these metrics, the understory vegetation and ground points were not considered by 

filtering out all points below a height threshold of 1m. Besides typically describing distributions 

(Roussel et al., 2018), these also considered to be descriptors of forest structural conditions.  

We also included two other widely studied metrics in our study: gap fraction and rumple index. 

The distribution of foliage determines the proportion of open areas in forest vegetation, which, in 

turn, determines the amount of energy from the sun and the sky that travels through the canopy 

(Nilson, 1971). Gap frequency or gap fraction is a good indicator of the structural characteristics 

of the vegetation and can be assessed from lidar data (Bouvier et al., 2015). Gap fraction was 

calculated as described by Bouvier et al., (2015) by dividing the number of first returns below a 

specific reference height (2m) by the total number of first returns. Rumple index is the ratio of 

the outer surface area of the canopy to the ground surface (Parker and Russ, 2004). It is a measure 

of the structural complexity of the stand. It characterises the outer-canopy, which is related to the 

development of the forest stand.  

 

Figure 3: Canopy height model of the Ciron valley area with field plot locations and data acquisition flight lines 
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2.3.2 Data preparation to analyse effects of scan angle 

As stated in the introduction, the grid-cell is the unit area used to apply an ABA model. The 

dimensions of the grid-cell are similar to those of field reference plots, which are 30 m diameter 

circular plots in this study. Hence, we attempted to discretise the scan angles according to a grid 

containing cells of 30 m x 30 m and analysed the point cloud in every cell to understand the 

impact of variations in scan angle on pre-defined metrics. Due to the acquisition geometry 

illustrated in Figure 1, not every grid-cell is sampled with all the possible scan angles. In other 

words, the data with continuous scan angles, i.e. 1°, 2°, 3°…10°, 11° etc. is not available for every 

grid-cell. Five classes of scan angle (absolute value) were thus defined based on the scan angle 

rank of the LAS dataset, namely 0°- 10° as class 1, 10°- 20° as class 2, 20°- 30° as class 3, 30°- 

40° as class 4 and >40° as class 5. The scan angle is based on 0 degrees for nadir and -90° and 

+90° to the left and right sides of the aircraft respectively (ASPRS, 2013). We hypothesised that, 

for each pair of scan-angle classes (class 1-class 2, class 1-class 3 etc.), the number of common 

grid-cells sampled from the five different classes of angle would be sufficiently high and 

representative of the diversity of the stand types present across the site.  

The steps of the process followed are: (i) for each grid-cell, we identified all the flight lines from 

which the lidar sensor sampled it either entirely or partially, and divided the point cloud in the 

grid-cell into subsets based on the flight lines. We did not consider any flight lines and, by 

extension, point clouds that partially sampled a grid-cell if they covered less than 90% of its area 

to avoid including in the analysis metrics that are not representative of the whole forest plot within 

the grid-cell; (ii) we then computed the mean scan angle for each of the remaining point clouds. 

We assumed that from a particular flight line and at a flight height of 250 m, the sensor samples 

a given grid-cell largely homogeneously and that the mean scan angle could be considered 

representative of the acquisition characteristics. This assumption was necessary for the sake of 

simplification, as it is not possible to analyse the influence of scan angle continuously. In practical 

applications, all regions are not sampled equally with all scan angles, i.e. the laser beams are never 

parallel. When a grid-cell was viewed with the same scan-angle class from more than one flight 

line, we considered the flight line that had mean scan angles closest to the respective class median 

values (0° for -10° to +10°, 15° for 10° to 20° etc.); (iii) the metrics were computed for the point 

clouds from each of the remaining flight lines. After considering the area threshold of 90%, there 

were instances where some classes had no flight lines/point clouds and in such cases, the metrics 

were not calculated. 

The result comprised a stack of five rasters in which every grid-cell had a vector of five values 

for the metrics, one for each class of scan angle (including NA values for empty classes). During 

the data acquisition, a certain buffer area was considered on either side of the riparian forests. 

These areas contained urban settlements and agricultural fields. We used a 95th height percentile 
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raster to conditionally filter out all the pixels in the five layers corresponding to a 95th percentile 

value of 7 m or less. The number of grid-cells with points belonging to class 5 (40°-50°) were 

significantly lower compared to other classes. We also observed that these grid-cells were in 

regions where the aircraft was making a turn during data acquisition. Therefore, we did not 

consider class 5 and conducted further analysis of the other four classes. After dropping class 5 

and retaining only grid-cells corresponding to forests (95th height percentile > 7 m) we first 

analysed the diversity of viewing configurations that could be found on the area by counting the 

number of scan angle classes per grid-cell. Then, metrics were compared for grid-cells viewed 

concurrently from the first four classes of scan angles. 2000 common grid-cells distributed across 

the entire study area were available.  

2.3.3 Analysis of scan angle effects on the selected metrics  

For a statistical understanding of the influence of scan angle on metrics, we compared the 

distribution of metrics using mean and standard deviation. We used the paired sample t-test or 

dependent sample t-test to determine whether the mean difference between two sets of 

observations is zero. In a paired sample t-test, each subject or entity is measured twice, resulting 

in pairs of observations. We compared the metric values for class 2, class 3 and class 4 to class 1 

values. The null hypothesis (𝐻0) being that the true mean difference (𝜇𝑑) between the classes is 

equal to zero. The two tailed alternative hypothesis (𝐻1) assumes that the true mean difference 

(𝜇𝑑) is not zero. The level of significance was 0.05. The dispersions of differences between class 

1 and class i (i= {2,3,4}) were also assessed by computing the standard deviations of the cell by 

cell differences for each pair of scan-angle classes considered. 

Furthermore, we also compared the metric values for each of classes 2, 3 and 4 to class 1 using 

simple linear regression to assess the impact of scan angle as we move away from a predominantly 

vertical ‘viewing conditions’  (class 1). The linear relationships were tested for statistical 

significance in two aspects, namely, slope and intercept. The equation for the linear regression 

model that can be used to explain the relation between 𝑌 (class i, where i = {2,3,4}) and 𝑥 (class 

1) is as follows: 

𝑌 = 𝛽0 + 𝛽1𝑥 +  𝜖   (1) 

𝛽0 is the coefficient for intercept and 𝛽1 is the coefficient for the slope. Using the 

linearHypothesis() function in R, we jointly tested for the significance of 𝛽0 = 0 and 𝛽1 = 1, at 

a level of significance of 0.05. For P-values<0.05, the null hypotheses were rejected, thereby 

indicating that there was a bias in the estimation of the metrics for higher scan angles, either due 

to the slope or the intercept. 
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2.4 Results 

2.4.1 Summary of the grid-cells 

There were 16758 grid-cells with a 95th height percentile value of 7 m or more considered as 

forest. Among these, 2446 grid-cells did not return any class of scan angles; 906 grid-cells 

contained any one class; 4549 grid-cells contained any two classes; 6857 grid-cells contained any 

three classes; and 2000 grid-cells contained four classes. 

2.4.2 Mean differences and standard deviation 

The results of the paired t-tests for the sample of 2000 grid-cells containing the four scan-angle 

classes are presented in Table 2. As per the mean differences, for almost every metric there was 

an underestimation for the inclined classes, which led to statistically significant differences as 

shown in the table. The max (maximum) metric was not significantly affected across class 1, class 

2 and class 3; however, class1-class 4 was statistically significant with a mean difference of 0.183 

m. For the mean metric, the mean differences for class 1-class 2 and class 1-class 3 are statistically 

significant at 0.113 m and 0.130 m respectively. In the case of coefficient of variation of height 

and rumple index, the metrics for class 2 seem to have been overestimated compared to the 

reference class (class 2>class 1). There was no difference between class 1 and class 3 and a 

significant underestimation for class 4 compared to class 1.  

For coefficient of variation, the mean difference for class 1-class 4 was approximately 0.869 m. 

The mean differences for the percentiles were mostly positive (ranging from 0.09 to 0.18) for 

class 1-class 2 and class 1-class 3. The lower percentiles had no significant mean difference for 

class 1-class 4, with the exception of p30 (30th percentile), which had a p-value of around 0.02. 

Within the percentiles, for class 1-class 2 and class 1-class 3, p10 had the highest mean difference 

and the p90 (90th percentile) had the lowest mean difference. For any given metric, the standard 

deviations of the differences had an increasing trend from class 1-class 2 to class 1-class 4. This 

was observed for all metrics with no exception. 

2.4.3 Simple linear regression (cli~cl1) 

A visual analysis of the scatterplots for class i vs class 1 showed that class 1 metrics are linearly 

related to the metrics of the other scan-angles. Figure 4 depicts the scatterplots for a subset of six 

metrics. Some metrics such as gap fraction and rumple index were clearly affected by the scan 

angle, while some such as p10 (10th percentile) were affected to a lesser extent. The effect of scan 

angle on mean, max (maximum), and p90 is relatively lesser. Testing how different the regression 

lines are from the y=x line can reveal the existence of systematic (intercept) and variable (slope) 

biases (Table 2). We observed that for almost every metric, the slopes of the respective regressions 

lines were less than one. For the height percentiles, between p10 to p90 there was a gradual shift 
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of the regression lines towards the y=x. Lower percentiles were more affected by a change in 

scan-angle than higher percentiles. The null hypothesis, that slope = 1 and intercept = 0, was not 

rejected for the max metric for class 2~class 1. Although the slope values for class 3~class 1 and 

class 4~class 1 are close to 1, under the joint hypothesis test, the null hypothesis was not rejected 

due to a significant effect of the intercept. This was also the case for other metrics as shown in 

Table 2. Coefficient of variation, gap fraction, and rumple index appear to be considerably 

influenced by the scan angle either due to the existence of a significant systematic bias (CV and 

rumple index), or due to variable bias (gap fraction and rumple index). 

 

 

 

Table 2:  Tabulation of the paired t-tests, standard deviation of differences (with the increase relative to cl1-cl2 in 

% in parenthesis) and joint hypothesis tests for the intercept = 0 and slope = 1 scenario; cl1, cl2, cl3, cl4 are 

short for classes 1, 2, 3 and 4 respectively. 

(#= unit less, *** = <0.001, ** = <0.01, *=<0.05, . = <0.1, ‘ ‘= >0.1) 
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Figure 4: Scatter plots for selected metrics that depict the evolution of the metric under the influence of scan angle.  
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2.5 Discussion 

The mean differences revealed the variations in metrics for different classes, but it could not 

adequately convey some of the biases (sometimes means are equal but can hide the existence of 

biases). On the other hand, simple linear regression was able to add to this information in two 

aspects. Firstly, as a visual diagnostic, it presented linear relationships between the classes for all 

the metrics. It also showed an increasing spread of the data as class 1 was compared with classes 

2, 3, and 4. This spread is responsible for the increase in the standard deviations of the differences 

as shown in Table 2. The rate of increase of the standard deviations are very high for the metrics 

(except max and rumple when comparing class 1-class 2 to class 1-class 3), with a percentage 

increase ranging between +2% and +42% and +50% and +112% when comparing class 1-class 2 

to class 1-class 3 and to class 1-class 4, respectively. Secondly, the different slope and intercepts 

revealed the inherent biases in the estimation of these metrics from different scan angles. Rumple 

index and gap fraction were considerably affected which is significant as studies (Bouvier et al., 

2015; Véga et al., 2016) have reported that these metrics were useful to improve models to predict 

forest parameters. Liu et al. (2018) observed that the scan angle affected the gap fraction 

differently in different forests (and different structural conditions). However, they did conclude 

that the estimation is maximum for vertical observation, i.e. nadir, which was also observed in 

this study.  

The height based metrics were affected to a lesser extent. The max metric showed the least 

variation. The higher percentiles appeared to be relatively stable compared to the lower 

percentiles. Montaghi (2013) reported that the higher percentiles, in particular, remained 

relatively stable compared to density metrics (not explored in this study). They also said that the 

Understory ratio, defined as “the ratio between all returns below a given height (e.g., 2 m) and 

the number of these returns plus returns classified as ground”, was also affected by the scan angle. 

The computation of the understory ratio is similar to the calculation of the gap fraction in this 

study. 

The variation in the estimation of metrics could potentially impact the quality of ABA models 

that utilise these metrics. Practical limitations in flight planning cause the grid-cells in an area to 

be sampled with different “viewing conditions”. When several classes of angles are used together, 

changes in the metrics  

will also be due to differences in scan-angle and not only in stand characteristics. This effect could 

perhaps be systematically addressed by taking into account classes of scan angle when building 

models. For example, building one model for one class of scan angles which would necessitate 
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more field plot measurements; or using regression analysis to model the effect of scan angle, with 

the possibility to partially correct for these effects before developing the model.  

The limitations of the study are related to the generalisation of scan angles with mean scan angles 

in a range of 10° to one class value. Within-class variations could not be addressed systematically. 

Moreover, even the mean scan angle for a flight line is a generalisation of range of scan angles. 

It is not possible to overcome these acquisition limitations. Furthermore, the characteristics of the 

stands could also have a significant role to play. This was however not addressed in the present 

study. It is pertinent that the intermingling of the effects of stand characteristics and scan angle 

be decoupled for a systematic appraisal. Radiative transfer based simulation of forest point clouds 

could open up potential avenues to address these issues.  

2.6 Conclusions 

In this study, we analysed metrics that are frequently used in ABA methods to understand their 

response to varying scan angles. Metrics were computed in the form of a grid for each class of 

‘viewing configuration,’ i.e. scan angle. There was a noticeable impact on the metrics with gap 

fraction, rumple index, and CV of height being affected significantly. Higher height percentiles 

were affected to a lesser extent than lower height percentiles and the maximum height metric was 

relatively stable. The key advantage of ABA methods is the ability to characterise within-stand 

variability. This has been a proven development over the conventional stand-level based inventory 

(Dubayah and Drake, 2000). However, practical data acquisition constraints may eventually lead 

to biases in metrics as demonstrated in this study. These biases can vary depending on the 

locations of the grid-cell and how they are sampled. The capacity to handle these biases could 

significantly contribute in improving the accuracy of the ABA models.  
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Abstract: As studies have underlined the sensitivity of lidar metrics to scan angles, the objective of 

this study was twofold. Firstly, we further investigated the influence of lidar scan angle on the ABA 

predictions of stand attributes of riparian (29 field plots), broadleaf (42 field plots), coniferous (31 

field plots) and mixed (45 field plots) forest types in France. Secondly, we evaluated the potential of 

voxelisation approaches to normalise scan angle effects in lidar metrics and mitigate scan angle 

effects in ABA models. To achieve these objectives, we first selected a model based on four lidar 

metrics with different sensitivities to lidar scan angle, i.e. mean and variance of canopy height values, 

gap-fraction, and coefficient of variation of plant area density (PAD) profile. For each plot, we 

considered the point cloud scanned from one flight line independently and characterised each 

resulting point cloud by the mean scan angle (MSA) and classified them into one of three classes: A 

(0° <=MSA < 10°), B (10°<=MSA < 20°) or C (20°<=MSA < 30°). An experimental setup involving 

nine scenarios was conceived to study the impact of the number of flight lines (scenarios fl1, fl2 and 

fl3) and predominant scan angle (scenarios A, B or C) or combination of scan angle directions 

(scenarios A and B, or A and C, or B and C), on area-based approach (ABA) models. We built ABA 

models for the same forest plots for 5000 resampled datasets in each scenario to predict three forest 

attributes, i.e., stem and total volume (Vst and Vtot) and basal area (BA). Three goodness-of-fit criteria 

were computed for each model (coefficient of determination (R2), relative root mean square error 

(rRMSE) and mean percentage error (MPE). We compared the distributions of the goodness-of-fit 

criteria between scenarios to assess the behaviour of the predictive models when: 1) the number of 

flight lines (i.e., scan angles) increases (fl1, fl2 or fl3); 2) lidar datasets comprise specific scan angle 

(A, B or C) or combination of scan angles (AB, AC or BC); 3) voxelisation is used to compute Pf and 

CVPAD. The results show that models built with point clouds scanned from multiple flight lines were 

more robust, with a lower standard deviation of their goodness-of-fit criteria. On average, across all 

forest types, compared to fl1, the standard deviations of R2 distributions were lower for fl2 and fl3 

by 42 % and 77 %, respectively. We also observed that a dataset with a predominantly nadir 

configuration (i.e., scenario A) did not always result in better predictions (mean R2 higher by 0.08, 

0.07, 0.04 for scenario B for broadleaf, coniferous and mixed, respectively). For a set of calibration 

plots, the resulting forest attribute models depend on the acquisition geometry over the plots, as 

observed in this study, which could result in unreliable wall-to-wall predictions. The risk is 

particularly high in acquisitions with low overlapping rates, with many areas covered by only one 

flight line. Using voxel-based Pf and CVPAD together with the mean and variance of heights helped 

to mitigate the impacts of changes in scan angles by a) increasing the means of the distributions, 

thereby improving the accuracy of predictions, or b) reducing the standard deviations, thereby 

increasing prediction precision, or c) both of the above. 

Keywords: lidar, scan angle, forest structure, voxelisation, vegetation profile, leaf area index, forest 

inventory, ABA models 
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3.1 Introduction 

Lidar scanning was initially developed for topographical surveys by taking advantage of its ability 

to penetrate the forest canopy (Krabill et al., 1984). However, lidar can also probe forest canopies 

with high accuracy, thus making it suitable for deriving forest attributes for large areas (Nelson, 

2013). Over the years, the data collected by lidar in forest environments, which generally take the 

form of 3D point clouds with signal-related attributes, have been used to directly and accurately 

measure forest attributes such as the treetop height, canopy height, and also model forest attributes 

such as above-ground biomass (AGB), basal area (BA), wood volume (stem and total volume), 

canopy volume and vegetation profiles (Bouvier et al., 2015; Drake et al., 2003; He et al., 2013; Ioki 

et al., 2014; Kankare et al., 2013; Næsset, 2002, 1997a; Tompalski et al., 2019; Vincent et al., 2017). 

These attributes are essential from resource management and biodiversity perspectives. 

Forest attributes are commonly estimated via area-based approaches(ABA), which involve 

establishing statistical relationships between forest attributes, computed from manual measurements 

of trees in sample plots and a set of lidar metrics for the same areas (Næsset, 1997a, 1997b; White et 

al., 2016; Wulder et al., 2012). Plot-level classical lidar metrics are computed by measuring the 

vertical distribution of the 3D points in terms of the mean, variance, percentiles and many other 

standard statistical descriptors of distribution (White et al., 2017). Voxelisation is an alternative 

method to summarise the point clouds while retaining more detailed structural information. It can be 

used to characterise the 3D distribution of leaf or plant area density within a 3D grid of localised 

regular volumes, i.e., the voxels (Grau et al., 2017; Popescu and Zhao, 2008; Soma et al., 2018). 

Studies have also tried to derive new plot-level metrics by summarising the information in profiles 

and voxels (Bouvier et al., 2015; Carrasco et al., 2019; Fischer et al., 2019; Zhang et al., 2017). The 

possibilities are endless, and there is a continuous effort to identify robust metrics that could 

contribute to accurate predictions of forest attributes. However, the use of classical lidar metrics and 

new metrics should take into consideration the potential variations that arise due to lidar data 

acquisition factors. 

There are differences in the point clouds inherent to data acquisition processes, which need further 

investigation to comprehend their influences better when assessing tree or stand characteristics. The 

lidar pulse density, for example, can vary from under one pulse per m2 in airborne data to several 

pulses per m2 in unmanned aerial vehicle (UAV) data. Some studies have investigated the influence 

of pulse density and found that the prediction accuracies in ABA approaches relying on classical 

lidar metrics were largely unaffected until pulse densities were as low as one pulse per m2 (Bouvier 

et al., 2019; Jakubowski et al., 2013; Magnussen et al., 2010; Silva et al., 2017). On the other hand, 

studies using voxel-based approaches to estimate gap-fraction studies have demonstrated the 

potential biases that can arise due to poorly sampled voxels (Pimont et al., 2018; Soma et al., 2018). 
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Lidar scan angle is another parameter that can significantly affect lidar metrics and the prediction of 

forest attributes (J. Liu et al., 2018; Montaghi, 2013; Tompalski et al., 2019). A scan angle of 15–20 

degrees is the often-recommended upper threshold in airborne lidar acquisitions for forestry 

applications (Wulder et al., 2012). Some early studies, such as Rempel and Parker (1964), observed 

that tree heights could be measured with sufficient accuracy if the signal reached some part of the 

ground. The chance of detecting ground surface is higher for vertically incident beams. 

Consequently, a convention of sorts has been followed over the years with regard to inclined lidar 

scanning. It is still followed in current recommendations (see, for example, Mitchell et al., 2018). 

However, systems have evolved considerably with an increased capacity to detect multiple echoes, 

including echoes of lower intensity (Li et al., 2020). Conversely, it is also believed that with higher 

scan angles, lidar pulses cover a larger area, thus increasing their chance of encountering gaps within 

the canopy and penetrating deeper into dense forest canopies (Kamoske et al., 2019). 

A narrow scan angle range limits the swath width, and increasing the scan angle range could help 

optimise costs. Some studies have experimented with scan angles greater than 20° (Bolton et al., 

2020; Cartus et al., 2012; J. Liu et al., 2018; van Lier et al., 2021). Therefore, it is of practical interest 

to explore the extent to which scan angle can be increased with negligible effects on lidar-derived 

forest metrics and forest attributes and make the most out of the diversity of existing and future data 

sets. 

Several studies have analysed the influence of lidar scan angle on lidar metrics (Chen et al., 2014; 

Dayal et al., 2020; Disney et al., 2010; J. Liu et al., 2018; Montaghi, 2013; Soudarissanane et al., 

2009). Differing forest types, sensors, and the metrics studied have certainly influenced the findings 

in different studies. However, there were also points of convergence among these studies, such as 

the fact that some metrics were not significantly affected by scan angle (e.g., maximum of height 

values) and some others, which depend on the returns from lower parts of the forests (understory 

ratio metrics), were indeed influenced by scan angle. 

Regarding implications for forest attribute prediction, in a study by Næsset (1997), scan angles of up 

to 20° were found not significantly to impact the prediction of mean heights. Recently, van Lier et 

al. (2021) examined the impact of scan angle on predictive models, and their data was acquired with 

scan angles up to 30°. Their study indicated that attribute predictions were indeed affected by the use 

of lidar metrics impacted by scan angle, but not very significantly. Moreover, Lorey’s mean height 

predictions were stable up to 30°. Interestingly, they also found that predictions of forest attributes 

(Lorey’s mean height, gross merchantable volume and total volume) were more accurate when lidar 

data comprised scans from a single flight line instead of a combination of flight lines. However, the 

difference was marginal (difference in mean absolute percentage error < 1.3 %) 
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To our knowledge, the strategies to manage the likely influence of lidar scan angle on metrics and 

ABA predictions have been little explored. Roussel et al. (2018) proposed a correction for the biases 

caused by scan angle based on the hypothesis that an increase in lidar pulse inclination increases the 

chances of it being intercepted due to the increased distance covered. It is crucial to underline the 

need for further study on the influence of scan angle due to virtually countless lidar metrics, different 

modelling methods, various scanner properties, flight planning considerations, different forest types 

and varying terrain properties, which would enable the development of robust lidar-based models. 

In this context, the main objective of this study was twofold. First, to assess the influence of the 

inclusion of lidar metrics sensitive to scan angle on ABA models for different kinds of complex 

forests, i.e., riparian forests and mountainous forests with coniferous, broadleaf and mixed stands. 

Second, to propose means to manage the impact of unavoidable and continuous changes in scanning 

conditions of forest environments that characterise lidar acquisitions. The study is a natural follow-

up to our previous study investigating the effect of lidar scan angle on lidar metrics (Dayal et al., 

2020). We worked with two hypotheses. Firstly, we assumed that the established impact of scan 

angle on metrics would eventually affect both the quality and the robustness of predictive models. 

Secondly, we assumed that using plant area density (PAD) profiles, rather than point clouds, would 

allow us to normalise lidar information for impact of changes in scan angles, and would make both 

metrics and models more robust to changes in scan angles. We firstly demonstrated the effects of 

using metrics sensitive to lidar scan angle in ABA models. We chose four metrics with a proven 

capacity to predict forest attributes, each with different sensitivities to scan angle. Secondly, we 

conceived an experimental setup wherein standard lidar datasets were resampled to create multiple 

datasets made up of lidar observations corresponding to different scanning scenarios to build ABA 

models. The resampling was done at the level of the flight lines by randomly picking flight lines to 

make different combinations. The experimental setup comprises lidar scanning scenarios with 

different inclinations (scan angle), with (multiple flight lines), and without (single flight line) 

overlap. Finally, we used voxel-based metrics to demonstrate their potential to normalise the effects 

of scan angle and improve predictions. We proposed these new metrics based on the underlying 

hypothesis that voxel-based tracking of the extinction of a laser pulse can improve the accuracy of 

forest variables such as LAD/PAD (used in this study) (Vincent et al., 2017). 

3.2 Materials and methods 

3.2.1 Study sites and field plot measurements 

We used two sites representative of complex forest environments for this study. The first study site 

in southwest France is a riparian zone along the river Ciron, a tributary of the Garonne, and three of 

its sub-tributaries. It is rich in biodiversity and not subject to intense forest management. Field data 
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were collected at 29 locations along the river Ciron and its tributaries. These sites were chosen to 

represent a gradient in width and density of the riparian forest. The species present on this site include 

the common oak (Quercus robur), Pyrenean oak (Quercus Pyrenaica), common alder (Alnus 

glutinosa), and maritime pine (Pinus pinaster). Several locations are also characterised by shrub 

species such as common hawthorn (Crataegus monogyna) and alder buckthorn (Frangula alnus). At 

each of the 29 sites, plots of radius 15 m were established, and differential GNSS (DGNSS, Trimble, 

USA) was used to measure the plot centre coordinates. For all the trees with a diameter at breast 

height (DBH) above 7.5 cm, trunk circumferences at breast height were measured with a tape and 

tree heights were measured using a hypsometer Vertex (Haglöf, Sweden). All the measurements were 

carried out between June and August 2019. The basal area (BA) computations were made from the 

circumference measurements, and the stem volume (Vst) and total volume (Vtot) were estimated using 

robust allometric equations developed for French metropolitan species (Deleuze et al., 2013). 

The second study site is located in the French department of Haute-Savoie in eastern France, in the 

French Alps. It is a part of the Massif des Bauges Natural Regional Park, covering an area of 

approximately 373.5 km2. The terrain is hilly (plot altitudes range from 420 m to 1760 m). The most 

common tree species comprise silver fir (Abies alba), Norway spruce (Picea abies) and common 

beech (Fagus sylvatica). Field inventory was carried out for 118 15 m radius plots during spring and 

fall 2018. Plot centre locations were measured using differential GNSS (DGNSS, Trimble, USA). 

Field inventory protocol involved measuring tree DBH of trees with DBH greater than 17.5 cm. 

Small trees (7.5 cm ≤ DBH < 17.5 cm) were counted within a plot radius of 10 m and classified as 

either coniferous or broadleaf.  

Since DBH and height measurements were unavailable for all the trees with DBH greater than 7.5 

cm, computation of basal area, stem and total volumes at plot level required estimations for the 

unmeasured trees. Firstly, the number of small trees was extrapolated from 10 m radius plots. 

Secondly, the nationwide tree inventory database (NFI) generated by IGN (Institut National de 

l'Information Géographique et Forestière), containing measurements of trees with DBHs in the 7.5 

cm to 17.5 cm range, was used to extrapolate DBH and height values for non-measured trees. All 

NFI plots located in the ecoregion that includes the study site were selected to have forest plots with 

similar climatic and growing conditions to those measured on the study site. For trees with DBH 

ranging from 7.5 cm to 17.5 cm, the median DBH value in the NFI database is around 11.1 cm. This 

value was used to compute the basal area of the trees with DBHs lower than 17.5 cm. Using NFI 

measurements, allometric relationships were established for each species (or group of species when 

the number of trees was not high enough) to estimate the heights of all the trees when there were no 

available height measurements. Volumes were then computed using the allometric equations 

available in Deleuze et al. (2013). Plots were classified into three main forest types, i.e., broadleaf, 

coniferous and mixed. Plots with the BA of coniferous trees greater than 75 % and lower than or 
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equal to 25 % of the total BA were labelled as coniferous (31 plots) and broadleaf (42 plots), 

respectively. The 45 remaining plots were labelled as mixed stands. 

Table 1 summarises the main characteristics of the forest types under study, i.e., riparian stands and 

coniferous, broadleaf and mixed mountainous stands. The distribution of the plots at both study sites 

is shown in Figure1. 

 

Ciron Bauges 

Riparian (29 plots) Coniferous (31 plots) Broadleaf (42 plots) Mixed (45 plots) 

Min Mean Max Min Mean Max Min Mean Max Min Mean Max 

Slope 

(degrees) 
4.9 8.9 21.0 12.9 28.7 40.6 11.4 29.8 45.1 8.5 24.8 40.2 

Basal 

area 

(m²/ha) 

17.2 28.5 47.6 10.7 36.8 89.7 3.4 28.0 57.0 4.5 29.7 63.3 

Stem 

volume 

(m3/ha) 

118.7 272.7 475.5 101.2 401.6 1148.2 23.8 269.9 617.2 40.6 298.2 759.5 

Total 

volume 

(m3/ha) 

135.9 296.2 552.9 102.4 410.3 1171.9 25.2 294.8 683.9 42.3 311.7 788.4 

Table 1: Summary of average slope and field plot measurements for Basal area, Stem volume and Total volume for all 

the forest types  

3.2.2 Lidar data acquisition and processing 

At the Ciron study area, INFOGEO (France) acquired lidar data using a VQ580 laser scanner (Riegl, 

Austria) on an ultralight aircraft platform in early October 2019. The flying height was approximately 

250 m, which enabled data acquisition at an overall point density of around 68 pts/m2. Overlap of 

35 % - 40 % and several passes over any given area ensured that most of the area was sampled using 

multiple scanning configurations. Data pre-processing was carried out by INFOGEO, which involved 

the classification of ground points using TerraScan (Terrasolid ltd., Finland). 
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Figure 1: Location of study sites and distribution of plots. In the left image, the riparian plots (purple) are distributed in 

the riparian region (blue) along the river Ciron and its tributaries. In the right image, the broadleaf (red), coniferous 

(black) and mixed (orange) plots are distributed across the northern part of Massif des Bauges Natural Regional Park . 

For the Bauges site, the company Opsia (France) carried out airborne lidar data acquisition and 

processing in September 2018. The flying height was around 1050 m with several passes of flight 

lines to ensure most of the area was scanned using multiple scanning configurations. Due to a higher 

flying altitude, the point density of this dataset was lower at approximately 13 pts/m2. Trajectory 

information, essential for voxelisation (used in this study), was also known for both sites. Additional 

specifications are given in Table 2. 

 Ciron Bauges 

Date of acquisition October 2019 September 2018 

Sensor Riegl VQ580 Riegl LMSQ780 

Wavelength (nm) 1064 1064 

Scan angle (deg) 60° (+30°/-30°) 60° (+30°/-30°) 

Beam divergence (mrad) 0.2 <=0.25 

Ground speed (m/s) 25 45 

Point density (pts/m²) 68 13 

Flight height (AGL) (m) 250 1050 
Table 2: Technical specifications for the lidar sensor and data that were acquired for the two sites 

3.2.3 Data processing and experimental setup 

3.2.3.1 Splitting of point clouds based on flight lines 

Point clouds corresponding to the field plots were clipped from the lidar data using coordinates of 

the plot centres and plot diameters (30 m). Due to flight line overlaps, the point cloud for a given 

plot is typically a composite of point clouds acquired with different scanning configurations. We split 

the point clouds for each plot based on the constituent flight lines. Each resulting constituent point 

cloud was represented by the mean of the scan angles (MSA) with which it was scanned. We 

categorised these point clouds within three classes based on their absolute MSA values: class A (0° ≤ 



Chapter 3 

 

41 

 

MSA < 10°), class B (10°≤ MSA < 20°), class C (20° ≤ MSA < 30°). We did not consider those point 

clouds acquired with MSA greater than 30° as they were most likely acquired when the aircraft made 

turns, and there were few such instances. The fundamental 'unit' in our experiments is the point cloud 

for a plot acquired from only one flight line. We assessed pulse densities for each of the point clouds. 

For the Bauges dataset, 99 % of the constituent point clouds had a pulse density greater than 1 pulse 

per m², and for the Ciron dataset, all the point clouds had a pulse density greater than 14 pulse m². 

These values were higher than the thresholds below which pulse densities are known to influence 

lidar metrics and forest attribute predictions. (Bouvier et al., 2019, Jakubowski et al., 2013, 

Magnussen et al., 2010, Pearse et al., 2019).  

3.2.3.2  Partially sampled point clouds per plot 

 

Figure 2: Flight lines that partially cover a plot . 

We computed the area covered by each constituent point cloud by fitting a two-dimensional hull to 

the points projected onto a horizontal plane. Then, an area threshold was used to drop any point cloud 

that covered<90 % of the total plot area (Figure 2), resulting in a final dataset set of 93, 110, 144 and 

149 point clouds for riparian (29 plots), coniferous (31 plots), broadleaf (42 plots) and mixed plots 

(45 plots), respectively. Figure 3 shows the number of flight lines per plot and class for different 

forest types. 
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Figure 3: Heatmap depicting the number of flight lines (N) belonging to each MSA class (A, B, C) in a plot in different 

forest types. Each sub-division along the horizontal axis represents a plot. The blank tiles (white) are cases where no flight 

lines belong to that particular class for the given plot  

The 'expansion' of the dataset made it possible to pick any one or a combination of point clouds per 

plot. In other words, it was possible to recreate datasets with different scanning configurations. With 

multiple possibilities for each plot, there were thousands of unique combinations in which the point 

clouds could be picked under different experimental scenarios (explained in the following sections). 

We use the two terms 'point cloud' and 'flight line' interchangeably, and they essentially refer to the 

same data. 

3.2.3.3 Description of experiments  

From the available flight lines per plot, we simulated different scenarios for scan-angle 

configurations based on (1) the number of flight lines, (2) homogeneity in scanning configurations 

and (3) with conventional point-cloud subsets, i.e., merging all flight lines. The three main kinds of 

scenarios are described in detail. 

3.2.3.3.1 General scenarios based on the number of flight lines per plot  

These scenarios were divided into three categories fl1, fl2 and fl3 (Figure 4). In the first scenario, fl1, 

we picked any one flight line and its corresponding point cloud per plot. This scenario represents the  
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worst-case scenario or the most basic scenario wherein each plot was scanned only once. This 

scenario corresponds to an acquisition with no overlap between flight lines. In the second scenario, 

fl2, we picked any two flight lines per plot and merged the respective point clouds to build a 

composite point cloud. In the third scenario, fl3, we picked any three flight lines per plot to build the 

corresponding composite point cloud. In the second and third scenarios (fl2 and fl3), we 

automatically considered all the available flight lines for the plots that were scanned based on either 

less than or equal to two or three flight lines, respectively (Figure 4).  

When a plot was scanned from three different flight lines, there were 𝐶3
1 = 3 possibilities of picking 

any one flight line, 𝐶3
2 = 3 possibilities of picking two flight lines and 𝐶3

3 = 1 possibility of picking 

three flight lines each time (Figure 5). For each forest type, the total number of all possible 

combinations in each scenario is given by ∏ ni , where 𝑛𝑖  is the total number of flight lines (for fl1) 

or combinations of flight lines (for fl2 and fl3) in plot i. Each combination represents a unique way 

in which all the plots were collectively scanned.  

Figure 4 : Splitting of the point clouds based on the flight lines to obtain point clouds from single flight lines. The resulting 

datasets for three general scenarios (fl1, fl2 and fl3) are illustrated. 
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3.2.3.3.2 Weighting for unequal distribution of flight lines 

Due to uneven distribution of flight lines across the classes for any given plot (Figure 3), randomly 

sampling a flight line (or flight line combination) could result in over-representation of some classes 

(or class combination). Over several iterations, unequal probabilities may lead to sample induced 

biases and, therefore, some of the information may be incorrectly utilised (Nahorniak et al., 2015). 

We computed the probability of picking a class (or class combination) as a consequence of randomly 

picking a flight line (or flight line combination) for a plot. The probabilities were assigned to the 

corresponding flight line (or flight line combination) and inverse probability weights (𝑤𝑡𝑖) were 

computed using the following equation: 

wti =

1

𝑝i
1

∑ 𝑝𝑖
𝑛
1

                                                                                                (1) 

where 𝑝𝑖 is the assigned probability of a flight line (or flight line combination) 𝑖, 𝑛 is the number of 

flight lines (or flight line combinations) available for the plot. The weights were scaled between 0-1. 

The weighting ensured that the flight lines (or flight line combinations) were picked in such a way 

that over several iterations, all the available classes (or class combinations) for the plot are picked 

almost equally. Scenario fl1 and the corresponding weighting step is illustrated in Figure 5 left in the 

panel 'weights'. 

3.2.3.3.3 Special cases within general scenarios based on homogeneity in scanning configurations  

These scenarios were divided into six categories A, B, C, AB, AC and BC. In scenarios A, B and C, 

we picked any one flight line per plot, as in scenario fl1, but with a constraint on the flight-line MSA. 

For example, we considered only flight lines with MSA belonging to class A in scenario A (0° 

<=MSA< 10°). Similarly, we considered only those flight lines with MSAs belonging to classes B and 

C for scenarios B and C, respectively. Scenarios A, B and C are special cases of scenario fl1. Scenario 

A is illustrated in the panel on the right labelled ‘weights’ in Figure 5. 

Furthermore, for scenario AB, for example, we picked any two flight lines per plot such that one of 

them belonged to class A and the other to class B.  Similar constraints were applied to scenarios AC 

and BC. Scenarios AB, AC and BC are special cases of scenario fl2. We did not consider other 

scenarios, such as AA, BB, etc., as such cases were not numerous.  

In Figure 3, the distribution of flight lines across different classes and across all the plots is clearly 

not even. In addition, some plots do not have any flight lines belonging to one or more classes. For 

example, riparian plots 13 and 14 do not have any flight lines in classes A and B, and such plots 

cannot be a part of experiments for scenarios A and B. Therefore, we identified the common plots 

with at least one flight line in classes A, B and C each to make the results across different scenarios 

comparable. There were 19 plots (out of 29) with at least one flight line in each class among the 
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riparian plots. We picked the flight lines (or combinations of flight lines) for scenarios A, B, C, AB, 

AC and BC only in these plots. For those special cases within general scenarios based on homogeneity 

in scanning configurations, the weighting step was adapted accordingly. For the remaining plots, i.e., 

plots that were not a part of the common plots, weightings ensured that all available classes (or class 

combinations) were picked roughly equally. The same process was followed for the other three forest 

types. 

All the possible experimental scenarios can be listed as fl1, A, B, C, fl2, AB, AC, BC, and fl3. Based 

on the sampling framework described above, we were able to create 5000 unique lidar datasets for 

each scenario. 

3.2.3.3.4 Scenario with conventional point cloud subsets 

We also built models in the conventional way, which is the standard procedure followed when 

building models with ABA approaches. The point clouds from different flight lines were considered 

together and metrics were computed for the composite point clouds. 

The detailed workflow followed in this study is illustrated in Figure 5 for scenarios fl1, A, B, and C. 

Figure 4 illustrates how flight lines in each plot were combined in fl2, AB, AC, BC, and fl3. The 

remainder of the process was identical. 
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Figure 5: Illustration of the experimental setup for scenarios fl1, A, B and C. n=5000 for all experiments. The illustration is 

for an example set of three plots each scanned with different number of flight lines. In the left panel, scenario fl1 is illustrated 

and in the right panel, scenario A is illustrated. 



Chapter 3 

 

47 

 

3.2.4 Lidar metrics and regression models 

3.2.4.1 Selection of metrics 

While lidar-derived metrics can be sensitive to lidar scan-angle, they are not all sensitive to the same 

degree (Dayal et al., 2020; Holmgren et al., 2003; Montaghi, 2013). In our preceding study (Dayal 

et al., 2020), we observed that the mean of the lidar point heights was not sensitive to scan angle. 

Moreover, the lower percentiles appeared to be more sensitive than the higher percentiles. Gap-

fraction, computed as the ratio of the number of first returns below a height threshold of 2 m to the 

total number of points, was also very sensitive to changes in scan angle. As a result, the computation 

of metrics that depend on the sampling of the lower strata is affected. The scan angle could affect 

many of the metrics mentioned above (and several others not mentioned here).  

We opted to restrict the analysis of the effect of  scan angle on ABA models built with four metrics 

that proved relevant to predicting Basal Area (BA), Stem Volume (Vst) and Total Volume (Vtot) in 

various forest types, as demonstrated in Bouvier et al. (2015). The ABA models proposed in this 

study were developed to generalise and simplify the model selection process, thus making it easier 

to compare models (Véga et al., 2016). The metrics used in the models were selected while 

considering the spatial heterogeneity in the forest structure. These metrics are a) average value of 

canopy height values, 𝜇𝐶𝐻, b) variance of canopy height values, 𝜎𝐶𝐻
2 , c) gap-fraction 𝑃𝑓, and d) 

coefficient of variation of PAD profile, 𝐶𝑉𝑃𝐴𝐷. These metrics are generally stable even at low pulse 

densities (Bouvier et al., 2019). For the Bauges site, we computed these metrics at the level of the 

plots for the Bauges site for classes A, B and C. We compared the metrics for classes B and C to 

metrics for class A (considering class A as reference as in Dayal et al., 2020) and found that class B 

and class C 𝑃𝑓 metrics and only the class C 𝜎𝐶𝐻
2  metrics were most sensitive to scan angle. 𝜇𝐶𝐻 and 

𝐶𝑉𝐿𝐴𝐷 were relatively stable. These results are in Appendix A 

3.2.4.2 Computation of lidar metrics 

During the field measurements along the river Ciron, we observed that the bushes, considered a part 

of the lower vegetation, grew to a height of approximately 5 metres. Therefore, the threshold for 

computation of the metrics was set at 5 metres and applied to all study areas. 𝜇𝐶𝐻  and 𝜎𝐶𝐻
2 , were 

computed after normalising point elevations by removing the influence of terrain on above ground 

measurements using a digital terrain model (DTM). 𝑃𝑓 and 𝐶𝑉𝑃𝐴𝐷, were computed in two ways, i.e., 

by traditional computation and voxel-based computation. 

3.2.4.2.1 Traditional computation 

The ground returns show that corresponding laser pulses were not fully intercepted in their round trip 

path through the canopy, which represent gaps in the canopy (Hopkinson and Chasmer, 2009). In the 

ratio method of computation of gap-fraction, Pf, when computed as a fraction of the total first returns, 
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may be considered equivalent to the transmittance. The transmittance is related to the LAI as per the 

Beer-Lambert law (Nilson, 1971)as shown below: 

𝑃𝑓(𝜃) = 𝑒
−𝐺(𝜃,𝛼)𝐿𝐴𝐼

𝑐𝑜𝑠𝜃                                                                        2) 

𝑃𝑓(𝜃) is the gap-fraction in direction θ; LAI is the leaf area index, and G(θ,𝛼) is the ratio of foliage 

area projected in direction θ to the actual area. G(θ,𝛼)/𝑐𝑜𝑠𝜃 is generally assumed to be 0.5, 

considering the spherical leaf angle distribution. The canopy-return ratio assumes that the laser pulses 

are incident vertically. This assumption may be considered a reasonable generalisation for lidar data 

when the scan angle is not very high (Almeida et al., 2019; MacArthur and Horn, 1969), which is 

generally not the case for platforms flown at lower altitudes. PAD profiles were generated by 

applying the same principle to 1 m point-cloud layers and by computing  the per layer  𝑃𝑓 (Bouvier 

et al., 2015). It is implied that each layer is assumed to be homogeneous. This assumption tends to 

simplify the structural distribution of the vegetation.  PAD is the plant area density, which includes 

leaves and other woody material, while LAD is the leaf area density, which does not consider the 

woody material.  However, as originally done in earlier studies, we considered PAD profiles for the 

computation of  𝑃𝑓 and 𝐶𝑉𝑃𝐴𝐷. 

3.2.4.2.2 Voxel-based computation  

Metrics were also computed using voxel-based approaches to generate plant area density (PAD) 

profiles. These approaches are better at characterising uneven forest canopy due to improved space 

discretisation  (gaps and non-gaps) (Pearse et al., 2019; Soma et al., 2021; Wang et al., 2020). When 

combined with path distribution methods, they provide refined estimates of PAD. It is thus expected 

that changes in scan angles will be better managed with voxel-based approaches, and that the PAD 

profile will be at least partly normalised from scanning conditions.  

This study used the voxel-based 3D reconstruction method implemented in the software AMAPVox 

version 1.6.2 (Vincent et al., 2017). The software recreates the acquisition geometry using the 

trajectory information (position and orientation) as well as retracing each laser pulse path and its 

subsequent interaction with elements of the forest, i.e., point cloud. It then computes the local 

transmittance in each voxel which is then converted to the PAD using the Beer-Lambert law. For 

voxelisation, we used point clouds before height normalisation, i.e., with the Z coordinates being 

elevations instead of height above the ground, to avoid distortion of the geometry. The voxel size 

was set to 1 m. The DTM for each point cloud was resampled to 1 m to align it with the overlaying 

voxels, and the columns of voxels were normalised accordingly. We then computed the mean of the 

local PAD values per layer to obtain the PAD profiles and then summed up the profile values to 

calculate the plant area index (PAI) for the plot (Lovell et al., 2003). The PAI can be linked to the Pf  

based on the following equation: 
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𝑃𝑓 = 𝑒−𝑘𝑃𝐴𝐼                                                                                                                                           (3) 

where k is 0.5 for spherical leaf angle distribution. 𝑃𝑓 is computed in this way as 𝑃𝑓
𝑣𝑜𝑥. The 𝐶𝑉𝐿𝐴𝐷

𝑣𝑜𝑥
 

was computed as the coefficient of variation of the profile. The comparison of vegetation profiles for 

all the plots can be found in Appendix C.  

To summarise, two sets of metrics were used. The first set is called reference metrics, which is 

comprised of 𝜇𝐶𝐻 , 𝜎𝐶𝐻
2  , 𝑃𝑓 and 𝐶𝑉𝑃𝐴𝐷 The second set is called voxel metrics, and it comprises 𝜇𝐶𝐻 

, 𝜎𝐶𝐻
2  ,  𝑃𝑓

𝑣𝑜𝑥 and  𝐶𝑉𝑃𝐴𝐷
𝑣𝑜𝑥. Metrics were computed for each point cloud (fl1) and composite point 

clouds (fl2 or fl3). 

3.2.4.3 Regression models 

We used a multiplicative power model (Bouvier et al., 2015; Gobakken and Næsset, 2005; Kangas 

et al., 2018) to estimate forest attributes. A log-log transformation was used to achieve linearity. The 

model is as follows: 

𝑙𝑜𝑔 𝑦 = 𝑏0 + ∑ 𝑏𝑖 log 𝑥𝑖
𝑛
𝑖=1 + ε                                                                                                        (4) 

Where 𝑏𝑖 are model coefficients, 𝑦 is the forest attribute (Vst,, Vtot  or BA) and 𝑥𝑖 are the ith retained 

lidar metrics (n = 2 or 4) 

This relationship is suitable for estimating forest attributes (Næsset, 2002, 1997). 

3.2.4.4 Model validation and performance assessment 

Leave-one-out cross-validation is most suitable for smaller datasets (Picard and Cook, 1984). Thus, 

it was employed in this study to analyse the predictive capabilities of the models.  A model is built 

for all but one of the plots at a given instance. The model is used to predict a value for the disregarded 

plot. This process is repeated until predictions are made for each of the plots.   

Log-transformation of variables introduces a systematic bias. The bias was corrected using a 

correction factor as per Sprugel (1983). The standard error of estimate (SEE) of regression was 

computed, as given by: 

𝑆𝐸𝐸 = √∑
(log yi−log ŷi)2

(n−p)
                                                                                                                        (5) 

𝑦𝑖   and �̂�𝑖 are the ith observed and predicted values, respectively, in log-scale,  𝑛  is the number of 

observations, and p is the number of parameters in the model. The correction factor (CF) was 

computed using SEE as per: 

𝐶𝐹 =  𝑒𝑥𝑝(
𝑆𝐸𝐸2

2
)
                                                                                                                                     (6) 
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The observed and predicted values in the log scale were back-transformed to the arithmetic scale, 

and the back-transformed predicted values were multiplied by the correction factor. The goodness-

of-fit of the models was assessed using the determination coefficient (R²), the Root Mean Squared 

Error (RMSE), the relative Root Mean Squared Error (rRMSE) and the Mean Percentage Error 

(MPE). The formulae for these measures are as follows: 

R2 = 1 −
∑ (yi−ŷi )2𝑛

1

∑ ( yi−y̅)2𝑛
1

                                                                                                                                 (7) 

RMSE =  √
∑ (ŷi−yi)2𝑛

1

n
                            (8) 

rRMSE =
RMSE

y̅
∗ 100                                                                                                                             (9) 

MPE =  
100

n
∑

(yi−ŷi)

yi

𝑛
1                                                                                                                              (10) 

3.2.5 Statistical analysis for comparison of scenarios 

We expected each experimental scenario to result in a distribution of the goodness-of-fit criteria (R², 

rRMSE, MPE), as illustrated in Figure 5. Distribution spreads (or variances) indicate the prediction 

precision, and distribution means indicate accuracies across different experimental scenarios. To 

compare distributions of R², rRMSE, MPE of different scenarios, different statistical tests were used: 

a) Welch's ANOVA to compare the means, b) Games-Howell posthoc tests for pairwise comparisons 

(R package rstatix  Kassambara, 2021), and c) pairwise F-tests with Bonferroni correction for 

multiple comparisons (Hervé, 2021) to compare the variances. Games-Howell posthoc test maintains 

the significance level for multiple comparisons and does not require any adjustments to the 

significance level (Lee and Lee, 2018).  

To summarise, all the results and analyses were presented as follows: 

Firstly, to demonstrate the effect of inclusion of metrics with different sensitivities to scan angle, we 

built ABA models with only, 𝜇𝐶𝐻 and 𝜎𝐶𝐻
2 , and compared the goodness-of-fit criteria to those of 

ABA models built with reference metrics (𝜇𝐶𝐻, 𝜎𝐶𝐻
2 , 𝑃𝑓 and 𝐶𝑉𝑃𝐴𝐷), to predict Vst for scenarios fl1 

and fl2. We computed the percentage changes in the means and standard deviations. 

Secondly, we analysed the distributions of goodness-of-fit criteria for predictions of the three forest 

attributes using reference metrics, for all the experimental scenarios and all forest types. We 

compared the means and variances of the general fl1, fl2 and fl3 scenarios. Furthermore, we also 

compared the means and variances of homogenous scanning scenarios A, B, C, AB, AC, BC and AC 

in pairs. To quantify the inter-scenario variations, we computed the mean of the absolute pairwise 
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differences (or mean absolute differences, MAD) resulting from the posthoc tests. MAD measures 

the average magnitude of differences without considering the directions. 

Thirdly, we analysed the distributions of goodness-of-fit criteria for the prediction of the three forest 

attributes with reference metrics (𝜇𝐶𝐻, 𝜎𝐶𝐻
2 , 𝑃𝑓 and 𝐶𝑉𝑃𝐴𝐷), in comparison to the distributions 

obtained with voxel metrics (𝜇𝐶𝐻, 𝜎𝐶𝐻
2 , 𝑃𝑓

𝑣𝑜𝑥 and 𝐶𝑉𝑃𝐴𝐷
𝑣𝑜𝑥). We reported the percentage changes in 

means and standard deviations when voxel metrics were used, per scenario. We also demonstrated 

the performance of voxel metrics when ABA models were built conventionally, i.e., all available 

flight lines per plot are considered together, in terms of the goodness-of-fit criteria.  

3.3 Results 

In what follows only results concerning stem volume (Vst) will be presented as the results for BA and 

Vtot exhibited similar trends. They are presented in the Appendix B. 

3.3.1 Effect of inclusion of metrics sensitive to scan angle 

For the riparian, broadleaf and mixed plots, the inclusion of 𝑃𝑓 and 𝐶𝑉𝐿𝐴𝐷 improved the means of 

the R² by 6.3%, 10.3% and 9.1% for scenario fl1 and by 7.4%, 7.7% and 8.6% for scenario fl2, 

respectively. For the coniferous plots, there were reductions in the mean R² values by 11% and 31% 

for fl1 and fl2, respectively. The standard deviations of R² distributions increased by 222.7%, 

292.8%, 159.4% and 33.4% for fl1 and 158.8%, 171%, 217.2 and 119.2% for fl2, for riparian, 

broadleaf, coniferous and mixed plots.  Similarly, the standard deviations of the error distributions 

(rRMSE and MPE) were higher for all the forest types (Table 3). The distributions are shown in 

Figure 6. 
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Figure 6: Distributions of the goodness-of-fit criteria for the models with (black) and without (grey) 𝑃𝑓 and 𝐶𝑉𝐿𝐴𝐷; top 

panel: R²; middle panel: rRMSE; bottom panel: MPE . 

  R2 rRMSE MPE 

 Flight 

lines 
Riparian Broadleaf Coniferous M i x e d Riparian Broadleaf Coniferous M i x e d Riparian Broadleaf Coniferous M i x e d 

% 

change 

Mean 

One 6.3 10.3 -11.0 9.1 -3.7 -4.3 3.6 -3.7 -0.4 -23.0 10.0 -0.9 

Two 7.4 7.7 -30.9 8.6 -4.3 -3.1 8.9 -3.8 -1.0 -22.0 15.7 -4.3 

% 

change 

in SD 

One 222.7 292.8 159.4 33.9 237.5 307.3 147.1 39.9 96.2 98.1 74.6 41.7 

Two 158.8 171.0 217.2 119.2 170.2 180.2 190.2 128.3 71.4 110.3 126.0 26.5 

Table 3: Percentage changes in the means and standard deviations of the distributions of the goodness-of-fit criteria for 

models with and without 𝑃𝑓and 𝐶𝑉𝐿𝐴𝐷 
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3.3.2 Comparison of performance measures for different scenarios with 

randomly chosen scan angles (fl1, fl2, fl3) and of homogenous 

scanning scenarios  

For the scenario-wise comparisons, we included the results for stem volume Vst for the four forest 

types (results for BA and Vtot can be found in Appendix B). The distributions of goodness-of-fit 

criteria for predicting Vst for each experimental scenario are shown in Figure 7. For scenarios fl1, fl2, 

fl3, percentage changes in the means and SD of the distributions are given in Table 4. For the riparian 

and mixed plots, the means of the R2 values show an upward trend with an increase in the number 

of flight lines per plot. For the broadleaf and coniferous plots, we observed an opposite trend for R2 

distributions. For the coniferous plots, there was a considerable reduction (approximately 30 %) in 

the mean R2 values for scenarios fl2 and fl3 compared to scenario fl1. The reduction was marginal 

for broadleaf plots. The spreads, or standard deviations, for all the distributions for all forest types 

and all goodness-of-fit criteria successively reduced with an increase in the number of flight lines 

(i.e. fl2 and fl3 compared to fl1). The reductions ranged from 23 % to 85.9 %, and all pairwise F-test 

comparisons were statistically significant. 

Among the homogenous scenarios, i.e., A, B, C, AB, AC or BC, the distribution means were mainly 

stable on the riparian plots except for scenario C, which deviated considerably. We also observed 

that scenario A (predominantly nadir) was not always better than scenarios B or C (Figure 7) for all 

forest types. The variability among scenarios A, B and C was the highest for the mixed plots (MAD 

of 0.07) and the lowest for the riparian plots (MAD of 0.03). The mean absolute difference (MAD) 

of the pairwise differences of mean R² values among scenarios AB, AC and BC were generally lower 

than those among scenarios A, B and C, for all forest types (Table 5). This indicates an overall 

stabilisation in the means due to point clouds acquired from at least two flight lines, each belonging 

to different MSA classes.  

The third part of Table 5 shows that the MAD of comparisons between single (A, B or C) and double 

flight line (AB, AC or BC) scenarios are similar to those of comparisons among single and double 

flight line scenarios, respectively except for the coniferous plots. The MAD of the goodness-of-fit 

criteria for the coniferous plots were highest than those for riparian, broadleaf and mixed plots, 

respectively, highlighting a greater difference between single and double flight line scenarios. The 

same pattern was observed for the overall MAD with the lowest values for the riparian plots followed 

by broadleaf, mixed and coniferous (0.02, 0.04, 0.05 and 0.08 for R2 and 0.6, 1.3, 2.0 and 2.5 

percentage points for rRMSE), except for mixed plots that had a higher MPE MAD value (1.5 

percentage points) than coniferous plots (1.2 percentage points) (Figure 7). 
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Regarding the pairwise F tests in (Table 6), comparisons among scenarios A, B and C revealed that 

scenario A had lower standard deviations than scenarios B and C only for the mixed plots. We 

observed that scenario B had lower standard deviations for the other forest types than scenario A 

(reductions in SD of R2 in the 9 % to 18 % range). Similarly, scenario C had lower standard 

deviations compared to scenario A for broadleaf and coniferous (reductions of 14 % and 6 %, 

respectively). However, scenario C systematically resulted in higher standard deviations than 

scenario B.  

The comparisons among AB, AC and BC revealed that the presence of nadir acquisition, i.e. scenario 

A, in combination with scenarios B or C (AB or AC), is beneficial compared to scenario BC. For 

scenario BC, the R2 standard deviations increased in the 4.8 % to 224 % range for riparian, broadleaf 

and mixed plots except coniferous, for which there was no significant change. However, comparisons 

between scenarios AB and AC revealed different trends according to forest types (Table 6). 

The spreads of the distributions for double flight scenarios lines (AB, AC or BC) were significantly 

lower than those for single flight line scenarios (A, B or C), with reductions in the standard deviations 

in the range of 31.2 % to 65.2 % across all forest types and goodness-of-fit criteria, with a single 

exception of the pair A-BC (Mixed, R2 and rRMSE) wherein the standard deviation increased by 

31.4 % and 46.4 % for R2 and rRMSE respectively (third part of Table 6). 
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Figure 7: Distribution of the goodness-of-fit criteria of predictions of stem volume (Vst) models (R², rRMSE, MPE) for 

different scenarios and for the different forest types (Riparian, Coniferous, Broadleaf and Mixed). The single (fl1, A, B 

and C), double (fl2, AB, AC and BC) and triple (fl3) flight lines scenarios are depicted in blue, orange and yellow, 

respectively  
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    R² rRMSE MPE 

    Riparian Broadleaf Coniferous Mixed Riparian Broadleaf Coniferous Mixed Riparian Broadleaf Coniferous Mixed 

% change 

 in  

mean 

fl1-fl2 1.4* -0.6 -29.8* 3.0* -0.9* 0.6* 8.8* -1.4* -1.8* -0.6* 9.8* -4.9* 

fl1-fl3 2.0* -2.2* -30.3* 4.6* -1.3* 1.4* 9.1* -2.1* -3.2* -0.7* 10.5* -5.6* 

fl2-fl3 0.6* -1.7* -0.6 1.6* -0.4* 0.8* 0.2* -0.8* -1.4* -0.1 0.6* -0.7* 

% change  

in  

SD 

fl1-fl2 -52.8* -58.2* -23.0* -33.7* -53.0* -58.1* -28.3* -33.0* -54.6* -39.0* -35.8* -58.6* 

fl1-fl3 -78.5* -73.7* -72.4* -81.7* -78.4* -74.0* -74.3* -81.4* -77.5* -65.1* -74.0* -85.9* 

fl2-fl3 -54.3* -37.1* -64.2* -72.5* -54.1* -37.9* -64.2* -72.3* -50.4* -42.8* -59.6* -65.8* 

 

Table 4: Pairwise comparisons of means and standard deviations of distributions of goodness-of-fit criteria in terms of 

percentage changes for scenarios fl1, fl2 and fl3. Values in bold indicate comparisons that were not statistically 

significant (p>0.05) (Games-Howell test for means and pairwise F tests for variances) 

  R² rRMSE MPE 

Group 1 Group 2 Riparian Broadleaf Coniferous Mixed Riparian Broadleaf Coniferous Mixed Riparian Broadleaf Coniferous Mixed 

A B 0.02* 0.08* 0.07* 0.04* -0.4* -2.9* -2.3* -1.6* 0.2* 0.4* 0.9* 1.7* 

A C -0.03* 0.05* 0.07* 0.10* 0.9* -1.7* -2.4* -4.1* -0.2* -0.5* 0.7* 3.1* 

B C -0.05* -0.03* 0.00 0.06* 1.4* 1.2* -0.1 -2.5* -0.4* -0.9* -0.2* 1.4* 

MAD 0.03 0.05 0.05 0.07 0.9 1.9 1.6 2.7 0.3 0.6 0.6 2.1 

 

AB AC 0.01* -0.01* 0.04* -0.03* -0.3* 0.5* -1.2* 1.3* 0.0* -1.4* -0.5* -0.7* 

AB BC 0.01* 0.03* 0.05* 0.04* -0.2* -1.1* -1.5* -1.8* 0.1* -1.6* 0.0 1.2* 

AC BC 0.00* 0.04* 0.01* 0.08* 0.1* -1.6* -0.4* -3.1* 0.1* -0.2* 0.5* 1.9* 

MAD 0.01 0.03 0.03 0.05 0.2 1.1 1.0 2.1 0.1 1.0 0.4 1.3 

 

A AB 0.01* 0.03* -0.09* 0.06* -0.1* -0.9* 2.7* -2.2* 0.1* 0.9* -1.0* 2.3* 

A AC 0.02* 0.02* -0.05* 0.02* -0.4* -0.4* 1.5* -0.9* 0.1* -0.5* -1.6* 1.6* 

A BC 0.01* 0.06* -0.04* 0.10* -0.3* -2.1* 1.2* -4.0* 0.2* -0.7* -1.0* 3.5* 

B AB -0.01* -0.05* -0.16* -0.01* 0.3* 2.0* 5.0* 0.6* -0.1* 0.5* -1.9* -0.6* 

B AC 0.00 -0.06* -0.12* 0.02* 0.0 2.5* 3.8* -0.7* -0.1* -0.9* -2.4* 0.1* 

B BC 0.00* -0.02* -0.11* 0.06* 0.1* 0.8* 3.5* -2.4* 0.0 -1.1* -1.9* 1.8* 

C AB 0.04* -0.02* -0.16* 0.05* -1.1* 0.8* 5.1* -1.9* 0.3* 1.4* -1.7* 0.8* 

C AC 0.05* -0.03* -0.12* 0.08* -1.4* 1.3* 3.9* -3.2* 0.3* 0.0 -2.3* 1.5* 

C BC 0.05* 0.01* -0.11* 0.00 -1.2* -0.3* 3.6* -0.1* 0.4* -0.2* -1.7* -0.4* 

MAD 0.02 0.03 0.10 0.04 0.6 1.2 3.4 1.8 0.2 0.7 1.7 1.4 

 

Overall MAD 0.02 0.04 0.08 0.05 0.6 1.3 2.5 2.0 0.2 0.7 1.2 1.5 

Table 5: Pairwise differences of comparisons of means between different scenarios. The comparisons are grouped into 

three types, i.e., among A, B and C, among AB, AC and BC and between A, B, C and AB, AC and BC. Mean absolute 

differences per type and overall mean absolute differences are also provided. * p<0.05 and non-significant differences 

are in bold. 
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  R² rRMSE MPE 

Group 1 Group 2 Ripari an Broadleaf Coniferous M i x e d R i p a r i a n Broadleaf Coniferous M i x e d Riparian Broadleaf Coniferous M i x e d 

A B -8.9* -18.4* -14.8* 50.1* -7.1* -11.3* -10.0* 56.5* -9.1* -4.1* -7.3* 7.5* 

A C 32.9* -13.5* -6.1* 87.1* 27.9* -10.2* -1.2 107.9* 38.4* -8.5* 2.3 12.0* 

B C 46.0* 6.0* 10.3* 24.7* 37.7* 1.3 9.8* 32.9* 52.3* -4.6* 10.3* 4.2* 

              

AB AC 8.2* -23.3* -1.1 21.9* 9.9* -24.3 1.8 18.1* 26.0* -6.8* 23.9* 10.3* 

AB BC 28.1* 4.8* 0.0 223.9* 29.3* 7.4* 3.8 242.4* 29.9* -4.6* -2.1 70.6* 

AC BC 18.4* 36.6* 1.0 165.6* 17.6* 42.0* 1.9 189.9* 3.1 2.3 -20.9* 54.7* 

              

A AB -53.9* -64.0* -27.0* -59.4* -53.7* -63.2* -30.2* -57.3* -51.9* -54.2* -49.7* -75.6* 

A AC -50.1* -72.4* -27.7* -50.5* -49.1* -72.2* -28.9* -49.5* -39.3* -57.3* -37.6* -73.1* 

A BC -41.0* -62.3* -27.0* 31.4* -40.2* -60.5* -27.5* 46.4* -37.5* -56.3* -50.7* -58.4* 

B AB -49.4* -55.9* -14.2* -73.0* -50.2* -58.5* -22.4* -72.7* -47.0* -52.2* -45.7* -77.3* 

B AC -45.2* -66.2* -15.1* -67.0* -45.3* -68.6* -21.0* -67.7* -33.2* -55.4* -32.8* -75.0* 

B BC -35.2* -53.8* -14.3* -12.4* -35.6* -55.5* -19.5* -6.5* -31.2* -54.4* -46.8* -61.3* 

C AB -65.3* -58.4* -22.3* -78.3* -63.8* -59.0* -29.3* -79.4* -65.2* -49.9* -50.8* -78.2* 

C AC -62.5* -68.1* -23.1* -73.6* -60.2* -69.0* -28.1* -75.7* -56.2* -53.3* -39.0* -76.0* 

C BC -55.6* -56.4* -22.3* -29.8* -53.2* -56.0* -26.7* -29.6* -54.8* -52.2* -51.8* -62.8* 

Table 6. Pairwise F tests quantified by the percentage changes in standard deviations of different scenarios. The values 

are changes in standard deviation of group 2 relative to group 1. * p<0.05 and non-significant comparisons are in bold.  

3.3.3 Inclusion of voxel metrics 

3.3.3.1 Analysis of impact of voxel metrics considering the scenarios together  

The distribution of the goodness-of-fit criteria for models built with reference and voxel metrics for 

all scenarios considered together is shown in Figure 8 for Vst. The overall percentage changes in 

means and standard deviation of the distributions are given in Table 7, in which deteriorations are 

highlighted in red. Voxel metrics had an overall positive impact on the R2 distribution (riparian 

(+22.2 %), broadleaf (+8.3 %), coniferous (+0.1 %), mixed (+23.1 %)). The mean rRMSE values 

were reduced by 16.6 %, 3.6 % and 12.2 % for riparian, broadleaf and mixed plots. The mean rRMSE 

value increased by 0.1 % for coniferous plots. For broadleaf and coniferous plots, the MPE values 

did not improve with voxel metrics for predictions of all three attributes (an increase of 12.6 % and 

8.1 %, respectively). In contrast, mean MPE values improved for both riparian and mixed plots (a 

decrease of 25.2 % and 18.7 %, respectively). For coniferous, broadleaf plots and mixed plots, the 

standard deviations of distributions of R2, rRMSE and MPE improved with voxel metrics with 

reductions in the range of 0.8 % to 42.6 %. For riparian plots, the standard deviations increased by 

29.6 %, 60.3 % and 42.1 % for R2, rRMSE and MPE, respectively. The scenario-wise percentage 

changes in means and standard deviations are given in Table 8 and Table 9, respectively. 
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Figure 8: Comparison of the distribution of goodness-of-fit criteria  (R², rRMSE, MPE) between models for the 

prediction of Vst with reference (grey box-plots) and voxel (blue box-plots) metrics, respectively,  for different scenarios 

combined and for different forests types (Riparian, Broadleaf, Coniferous and Mixed)  

 R² rRMSE MPE 

Riparian Broadleaf  Coniferous M i x e d Riparian Broadleaf  Coniferous M i x e d Riparian Broadleaf  Coniferous M i x e d 

% change in mean 
22.2* 8.3* 0.1 23.1* -16.6* -3.6* 0.1* -12.2* -25.2* 12.6* 8.1* -18.7* 

% change in SD 
29.6* -42.6* -38.5* -15.0* 60.3* -41.1* -38.1* -4.7* 42.1* -0.8* -10.1* -24.3* 

Table 7: Overall (scenarios A, B, C, AB, AC, BC considered together) percentage change in the means and standard 

deviations of distributions using voxel metrics in ABA predictions of Vst. Values in red indicate deterioration. All 

comparisons were significant (*) except for those in bold.  

3.3.3.2 Scenario-wise impact of voxel metrics 

3.3.3.2.1 Effect on the median and mean values of the distributions for the different scenarios 

The scenario-wise percentage changes in the means are given in Table 8. R2 and rRMSE means 

improved in the range of 2.3 %-144 % and 0.9 %-24.2 %, respectively, except for some scenarios in 

coniferous plots (scenarios fl1, B, C, AC and BC) where voxel metrics did not perform well. There 

were contrasting results for MPE, with reductions in the 5.7 %-34.6 % range across all the scenarios 

for the riparian and mixed plots and increases in the 3 % to 21.8 % range for the coniferous and 

broadleaf plots. Comparisons across one, two and three flight lines scenarios revealed no systematic 

trend in the magnitude of the changes for both improvement and deterioration cases. 
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Forest 

type 

One flight line Two flight lines 
Three 

flight 

lines 

fl1 A B C fl2 AB AC BC fl3 

R
² 

Riparian 27.0* 28.1* 22.6* 36.3* 18.9* 21.2* 18.9* 15.9* 13.7* 

Broadleaf 4.1* 6.7* 2.3* 3.1* 10.7* 10.7* 10.5* 10.3* 15.1* 

Coniferous -3.8* 6.0* -2.8* -20.1* 9.3* 35.1* -1.8* -10.8* 9.7* 

Mixed 20.0* 39.9* 29.1* 2.2* 24.0* 19.2* 33.8* 18.2* 24.1* 

rR
M

S
E

 Riparian -20.3* -21.1* -17.8* -24.2* -14.2* -15.8* -14.6* -11.9* -10.2* 

Broadleaf -1.5* -2.3* -0.9* -1.2* -4.7* -4.6* -4.3* -5.0* -6.6* 

Coniferous 1.4* -1.4* 1.0* 6.9* -1.6* -5.9* 0.4* 2.4* -1.7* 

Mixed -10.1* -17.3* -14.8* -1.3* -12.8* -10.0* -16.0* -11.4* -13.3* 

M
P

E
 

Riparian -30.0 -30.3* -26.7* -34.6* -22.1* -24.3* -24.8* -18.6* -15.8* 

Broadleaf 11.9* 21.7* 3.1* 10.4* 13.5* 21.8* 15.6* 3.9* 12.6* 

Coniferous 9.6* 5.6* 8.7* 16.8* 6.2* 3.0* 5.8* 12.0* 5.5* 

Mixed -17.5* -24.4* -23.3* -5.7* -18.8* -16.4* -23.1* -16.0* -20.1* 

Table 8: Scenario-wise percentage changes in the means of distributions of goodness-of-fit criteria when using voxel 

metrics for the predictions of Vst. Values in red indicate a deterioration. All comparisons were significant (*) except for 

those in bold, all comparisons were significant (*) except for those in bold  

3.3.3.2.2 Effect on the distribution spread for the different scenarios 

Voxel metrics also positively impacted the distributions by reducing the spread, or the standard 

deviations, of all three goodness-of-fit criteria for all the scenarios for broadleaf and coniferous forest 

types (Table 9). The standard deviations of the distributions for broadleaf and coniferous plots 

decreased by 23.3 % to 70 %, 22.5 % to 68.2 % and 2.1 % to 55.8 % for R2, rRMSE and MPE, 

respectively. The only exception was a slight increase of 2.1 % in the standard deviations of MPE 

values for scenario C for coniferous plots.  

For the riparian and the mixed plots, at least one of the three goodness-of-fit criteria was negatively 

impacted due to voxelisation (except scenarios C and BC for mixed plots). 

 
Forest  

type 

One flight line Two flight lines 

Three 

flight 

lines 

fl1 A B C fl2 AB AC BC fl3 

R
² 

Riparian -29.0* -1.6* 25.7* -4.1* -7.9* 54.9* 31.1* 13.7* -0.3* 

Broadleaf -54.0* -61.1* -57.8* -42.2* -52.9* -59.9* -42.1* -48.5* -60.1* 

Coniferous -44.4* -45.6* -23.3* -41.7* -52.0* -70.0* -63.9* -59.3* -31.1* 

Mixed 56.9* 94.8* 27.0* -38.7* 16.0* 68.0* 11.1* -30.5* 81.9* 

rR
M

S
E

 Riparian -11.8* 24.9* 53.2* 27.1* 8.0* 84.9* 54.2* 29.6* 11.1* 

Broadleaf -52.9* -59.9* -57.7* -40.3* -50.5* -58.0* -39.4* -45.5* -57.1* 

Coniferous -44.0* -43.8* -22.5* -43.9* -51.2* -68.2* -64.2* -60.3* -29.9* 

Mixed 75.7* 137.0* 49.5* -38.0* 33.5* 87.3* 32.9* -22.4* 109.6* 

M
P

E
 Riparian 10.6* 24.2* 68.0* 24.8* 33.1* 67.2* 29.3* 28.6* 22.8* 

Broadleaf -41.7* -54.3* -55.8* -33.4* -48.7 -55.0* -21.0* -20.0* -35.9* 

Coniferous -13.9* -22.7* -15.9* 2.1* -11.2* -35.1* -40.2* -14.2* -1.3* 

Mixed 22.1* 0.9* -9.6* -41.2* 34.9* 63.6* 32.0* -3.9* 90.6* 

Table 9: Scenario-wise percentage changes in the standard deviations of distributions of goodness-of-fit criteria using 

voxel metrics for the predictions of Vst. Values in red indicate a deterioration. All comparisons were significant (*) except 

for those in bold  

3.3.3.2.3 Effect of voxel-based metrics on conventional models  

We observed a general improvement in the goodness-of-fit criteria for all the three forest attributes 

(Table 10) when using voxel metrics in conventional models, i.e., considering all the flight lines 
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together. The R2 improved for all forest types (9.1 % for riparian, 3.8 % for coniferous, 8.5 % for 

broadleaf and 25.3 % for mixed plots), respectively. The rRMSE values decreased by 9.5 %, 0.5 %, 

4 %, and 14 % for riparian, broadleaf, coniferous, and mixed plots, respectively. There were only 

marginal changes in all goodness-of-fit criteria for the coniferous plots, with minor improvements in 

the R2 and rRMSE values, while the MPE increased by 8.5 %. The MPE for broadleaf plots was also 

higher by 13.1 %. Results for BA and Vtot are presented in Appendix B. 

Goodness-of-

fit criteria 

Forest 

type 

reference 

metrics 

voxel 

metrics 
% change 

R² 

Riparian 0.66 0.72 9.1 

Coniferous 0.26 0.27 3.8 

Broadleaf 0.47 0.51 8.5 

Mixed 0.51 0.64 25.3 

rRMSE 

Riparian 21.1 19.1 -9.5 

Coniferous 44.2 44 -0.5 

Broadleaf 40.2 38.6 -4.0 

Mixed 40.2 34.4 -14 

MPE 

Riparian -4.3 -3.6 -16.3 

Coniferous -20 -21.7 8.5 

Broadleaf -15.3 -17.3 13.1 

Mixed -18.3 -14.7 -20.4 

Table 10: Goodness-of-fit criteria for predictions of Vst for conventional models built with reference and voxel metrics 

3.4 Discussion 

The overall objective of this study was to evaluate the impact of different scanning configurations 

on ABA predictions. Our results showed that including lidar metrics sensitive to scan angle could 

result in highly variable ABA model performances. We also proposed alternate methods to compute 

lidar metrics based on voxelisation to mitigate scan angle effects. 

3.4.1 Impact of scan angle on models of different scanning scenarios 

The percentage changes in the means and standard deviations of goodness-of-fit criteria for models 

built using lidar data for the same plots, based on different scanning configurations, reflect the 

variability of ABA models and the resulting predictions. The standard deviations (spread) of all three 

goodness-of-fit criteria (R2, rRMSE and MPE) for all the forests decreased when the dataset was 

comprised of multiple flight lines per plot. However, the distribution means were different according 

to forest types, and there was no definite pattern. For example, for the riparian plots at Ciron, the 

distribution means appeared to be broadly stable for all scenarios except for scenario C (20°<=MSA 

< 30°), which decreased considerably. For the three forest types at Bauges, the goodness-of-fit 

criteria means of the models generally improved in conjunction with an inclination increase, i.e., A 

to C (class A (0° <=MSA < 10°), class B (10°<=MSA < 20°), class C (20°<=MSA < 30°), except for 
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broadleaf plots, where there was a marginal decrease for scenario C relative to scenario B. Overall, 

the distribution means for scenario B were relatively stable compared to scenarios A and C. It is worth 

noting that the predominantly nadir configuration, i.e., scenario A, was not clearly better than 

scenarios fl1, B, or C. Scenario A distributions were marginally lower than those of fl1 broadleaf, 

coniferous and mixed plots. There were significant differences between the distribution means, but 

their magnitude varied across the different types of forests. We observed that the variations among 

scenarios A, B, and C tended to be higher than those among scenarios AB, AC, and BC. For the 

coniferous plots, the means for scenarios fl2 and fl3 were considerably lower than those for scenario 

fl1 by almost 30 % in each case. We observed the same phenomenon for broadleaf plots, but the 

differences were lower (fl2-fl1: −0.6 %, fl3-fl1: −2.2 %*). Van Lier et al. (2021) also observed 

marginally higher errors for models built with multiple flight line data. On the other hand, we 

observed an opposite trend for riparian plots. 

Let us consider the goodness-of-fit distribution as unexpected ’risk’ when using a dataset acquired 

with a particular configuration to build ABA models. The risk of having highly variable predictions 

is reduced when at least two flight lines are used to scan each plot. The reduction in the goodness-

of-fit criteria spreads (or variance), thanks to the inclusion of more flight lines, is thus highly 

significant because it indicates an improvement in the precision of the goodness-of-fit criteria. 

Although this implies that the chance of having an apparently ’great’ model is reduced, it also means 

that the possibility of having a poorly defined model is also diminished. Suppose the model was 

extrapolated to provide a map of the targeted forest attributes, then, in that case, the goodness-of-fit 

criteria might not be valid for areas scanned with configurations other than those of the plots used to 

build the model. These results underline the importance of having a large number of field plots, which 

should be representative of the diversity of both forest stands and scanning conditions. Future studies 

need to assess the prediction variability when ABA models, based on a specific scanning 

configuration dataset, are used to generate wall-to-wall predictions. 

The metrics commonly used in ABA approaches are certainly affected by scan angle, as 

demonstrated by several studies (Holmgren et al., 2003; Liu et al., 2018; Montaghi, 2013). To our 

knowledge, few studies have explored the effect of the inclusion of metrics sensitive to scan angle in 

ABA models (Holmgren et al., 2003; van Lier et al., 2021). Van Lier et al. (2021) recently 

investigated the effect of scan angle on both lidar metrics and ABA models to predict different forest 

attributes. In their study, which addresses scan angle effects on area-based models, they found 

relatively stable goodness-of-fit (R2, rRMSE and MPE), with minor differences between models 

built with and applied to datasets acquired from near-nadir, off-nadir as well as combinations of flight 

lines. These findings are similar to those we obtained on the riparian plots at Ciron. The mean R2 

values ranged between 0.57 and 0.59 for Vst, without considering scenario C, which had lower R2 

and higher errors. For the other three forest types, the inter-scenario variations were higher. 
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Interestingly, Van Lier et al. (2021) observed that the accuracy of the models was marginally lower 

when built with point clouds scanned from multiple flight lines (aggregate of flight lines). Their 

observations were for balsam fir stands, a coniferous forest type. We observed similar patterns for 

coniferous plots but with substantial differences (30 % lower mean R2 values) between fl1 and fl2, 

and fl1 and fl3 scenarios. Although we observed variations between scenarios at the Bauges site, 

more flight lines did not necessarily lead to better predictions (higher R2 and lower errors) but rather 

to more precise predictions, which is essential from a practical point of view. Moreover, it is 

interesting to note the better performances with point clouds acquired from single flight lines. 

For the Bauges site, scenario C (20°<=MSA< 30°) does not have the same negative impact it had on 

the riparian plots, which could be related to the differences in data acquisition properties. MSA classes 

for both sites are not fully comparable due to the differences in flying altitudes (250 m over Ciron 

sites and 1050 m over Bauges sites). In addition, depending on the slope of the plots, the lidar pulse-

canopy interactions may be different for flight lines with similar mean scan angles but with different 

azimuths, as illustrated in Figure 9. In a related study, we found that the inclusion of terrain 

parameters positively impacted the forest attribute predictions (Lahssini et al., 2022). Nevertheless, 

using two flight lines for a predominantly inclined scenario, i.e., scenario BC, seems to have ensured 

that the distributions are more stable for both sites and all stand types. Furthermore, if a 50 % overlap 

is ensured during data acquisition, single flight line scenarios (fl1, A, B and C) are generally not 

observed everywhere (typically scenarios B and C). Our results will provide a useful reference for 

subsequent analyses, and it is always beneficial to be aware of potential risks associated with specific 

data properties.  

An acquisition configuration with a maximum of 30° scanning angle and ensuring a 2/3 overlapping 

between successive flight lines would limit scan angle impacts on ABA prediction quality over a 

forest area. However, this high level of overlapping comes at a prohibitive cost for many operational 

campaigns. In practice, different specifications for forestry applications can be found, such as, those 

provided by the USDA (Mitchell et al., 2018), with scan angle ≤ 13° and swath overlap of possibly 

50 %, by Natural Resources Canada (NRC, 2017), with scan angle ≤ 20° and at least 20 % swath 

overlap increased to 30 % in British Columbia (Ministry of Forests, Lands and GeoBC, 2020). 

Several countries have undertaken multipurpose acquisitions. The specifications provided for New 

Zealand and Australia include a maximum scan angle of 20° and a minimum swath overlap of 10 % 

(ICSM, 2010). Specifications are not always easy to find. However, we picked a few las tiles in 

several European countries’ open source national lidar data sets. We found that scan angles could 

reach at least 30° for France (IGN, n.d.), Luxembourg (ACT, n.d.) and Switzerland (Swisstopo, n.d.) 

and even 36° for Slovenia (“AGENCIJA RS ZA OKOLJE,” n.d.). 
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Figure 9: Two point clouds from the same plot on a steep slope with the same scan angle class (class C) of mean scan 

angles, 26° (yellow) and 22° (green)  

In addition, local-scale forest applications based on light lidar systems are likely to develop in the 

near future (Jaakkola et al., 2017; Lei et al., 2019; K. Liu et al., 2018; Torresan et al., 2017). Such 

acquisitions are characterised by higher scan angle ranges than traditional airborne acquisitions. In 

these cases, the impact of the scanning condition differences over the forest must be effectively 

managed to ensure ABA model quality and robustness for operational applications. Normalising lidar 

metrics concerning scan angle changes could help achieve this goal.  

3.4.2 The potential of normalised metrics  

Inclusion of carefully considered metrics such as Pf certainly contribute to more accurate predictions, 

but the return-ratio-based computation is highly variable due to its dependence on the ground returns. 

However, metrics such as  𝑃𝑓 and vegetation profiles based metrics such as 𝐶𝑉𝑃𝐴𝐷 are helpful for 

better characterisation of structural characteristics and prediction of wood volume (Bouvier et al., 

2015; Næsset, 2002). The spreads of the distributions with 𝜇𝐶𝐻, 𝜎𝐶𝐻
2  were higher for Bauges plots 

compared to Ciron (Figure 6) which could be due to class C 𝜎𝐶𝐻
2  which was found to be more 

sensitive (see Appendix A). However, the effects due to inclusion of   𝑃𝑓 and 𝐶𝑉𝑃𝐴𝐷 were much 

higher (Figure 6) with average increase in standard deviations of 143% across all forest types and 

goodness-of-fit criteria (Table 3).  

Voxel-based methods were applied to derive normalised vegetation profiles, which were in turn used 

to compute 𝑃𝑓
𝑣𝑜𝑥 and 𝐶𝑉𝑃𝐴𝐷

𝑣𝑜𝑥. Substituting these metrics positively impacted mean R² values with an 

average increase of 38 %, barring some mainly concerning coniferous plots. Similarly, the rRMSE 

values were reduced by an average of 10 %. This method of estimating gap fraction did not depend 

on ground returns but rather on estimating PAD values as a function of the interaction between the 

laser pulses/canopy interactions. In some of the attribute-scenario combinations (riparian and mixed 
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type), distribution variation of the goodness-of-fit criteria was higher for voxel metrics. However, 

distribution mean increases underline the benefit of using 𝑃𝑓
𝑣𝑜𝑥 and 𝐶𝑉𝑃𝐴𝐷

𝑣𝑜𝑥, and other profile-based 

metrics in general that can more accurately characterise canopy structural properties. Indeed, when 

comparing with reference PAD profiles, which are based on the number of points per layer, for most 

plots, we observed a normalisation of the profiles regarding scan angle effects. In Appendix C, 

vegetation profiles obtained using layers of points (Bouvier et al., 2015) and voxelisation, as 

described in this study, are shown for two cases: (a) where appears to reduce the variation, and (b) 

where it seems to add some noise to profiles. The profiles obtained from both methods show similar 

patterns, but the areas under the curves are different. However, we have no reference data to conclude 

that one type of profiles is better than the others. Based on the results of this study, we can conclude 

that voxel-based profiles and metrics have the potential to better characterise the distribution of the 

vegetation. 

Voxel-based PAD estimations are, however, sensitive to the number of beams passing through a 

voxel and voxel size (Pimont et al., 2018; Soma et al., 2021). These factors were beyond the scope 

of the present study. However, biases arising from poorly sampled voxels, which is generally the 

case in the lower strata when airborne lidar is used, could ultimately affect the ABA models. On the 

one hand, studies have reported that low pulse densities do not affect ABA predictions; on the other 

hand, the low sampling density has been shown to affect voxel-based estimation of PAD.  

Additionally, voxel size was also influential in generating the profiles as the voxels were normalised 

using a resampled DTM of length 1 m (same as the size of the voxel). In each voxel column, the 

lowest voxel containing points (ground and lower vegetation) was identified as the ground or the 0th 

voxel, followed by successive labelling of voxels in each column. The profiles were computed as the 

mean of all the voxels with the same label. This ensured we generated the PAD profiles by following 

the terrain by considering layers of voxels at a uniform distance from the ground. The way in which 

columns of voxels were aggregated to compute the profile added some noise because ground position 

accuracy based on the voxel resolution. For very steep slopes, if the ground is located in both the 

bottom of a voxel and the top of the neighbouring voxel, the PAD in the resulting profile will combine 

information from nearly-two metres of vegetation instead of one. In addition, any error in identifying 

the correct ground voxel could incorrectly shift an entire column of voxels by a metre. Finally, there 

is also scope for refining the method of vegetation profile conversions to Pvoxf or any other metric 

that could contribute to ABA models. 

Nonetheless, voxel metrics had a generally positive impact by either improving the means of the 

distributions, or by reducing the standard deviations, or both. Metrics derived from PAD profiles 

obtained using voxelisation approaches are an option to manage the effect of scan angles on ABA 

models if point densities are high enough to ensure a good sampling of lower layers. However, 
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voxelisation approaches need to be improved, and tools for easy computation of such PAD profiles 

need to be developed. This will facilitate the computation of PAD profiles at various resolutions and 

in hilly environments at the level of the field plots (model development) and the whole area (model 

implementation). 

3.4.3 Characterisation of plots and interactions between topography and 

scanning conditions in complex stands 

Riparian models seemed to perform better than the three other plot types located at Massif des 

Bauges. The goodness-of-fit criteria for predictions of all forest attributes on the riparian plots had 

R2 values 0.67–0.74 and rRMSE values in the range of 18 %-20 %, which were within the range of 

values reported in several studies (Coops et al., 2021). However, the model quality deteriorated for 

the broadleaf, mixed and coniferous plots (Table 10 for Vst and Table 15 for BA and Vtot). Measuring 

DBHs of small trees contributing to the lidar signal would have enabled an improved classification 

and an improved estimation of the reference BA and wood volumes, limiting additional sources of 

noise in the model. Nonetheless, the improvements with voxel metrics were notable. 

In the Bauges plots, the high slopes of many plots could have affected the interaction of the lidar 

with the canopy. Due to limited datasets, the azimuth of the lidar acquisition was not considered. In 

some plots, the tree sizes heterogeneity was very high, with many instances of large trees found near 

the periphery of the plots. Many such trees were found beyond the plot while a significant part of the 

canopy was still present in the plot subsets, thereby occluding acquisition from flight lines with 

certain azimuths. The occlusion was especially prominent for inclined scanning.  

3.4.4 Perspectives for improved models  

The distributions of the goodness-of-fit indicate that there may indeed be a ’risk’ linked to how data 

is acquired. Each data acquisition for any given area may be different and the associated higher risk 

may cause discrepancies in forest attribute modelling and in forest environment monitoring. Our 

findings showed that greater the number of flight lines (high overlap), the lower the risk. However, 

increasing the overlap is not a cost-effective solution. Another solution may be to strike a better 

balance between acquisition characteristics and the identification or development of metrics that 

capture the structure of the forest effectively (vegetation profiles, for example). Therefore, lidar 

metrics need to be studied or developed from the perspective of different lidar scanning 

characteristics. Furthermore, in case of coniferous forests, the distribution means were better with 

only two metrics. Upon investigation, we found that some of the metrics were correlated and  𝑃𝑓 and 

𝐶𝑉𝑃𝐴𝐷 were not useful for the coniferous plots resulting in lower (adjusted) R2 and higher errors.  
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These metrics ought to be tested further to better understand their behaviours when dealing with 

different canopies various other modelling methods could also be considered. The plots were in very 

steep terrain and variables related to the terrain properties could be a useful input for ABA models 

(Lahssini et al., 2022). Integration of terrain properties along with scan angle information could be 

approached from a deep learning perspective, as these factors are complex to model. However, 

evaluating the potential of such approaches would require more than the 118 plots studied on the 

Bauges site.  

3.5 Conclusion 

In this study, we studied the influence of lidar scan angle on forest attribute prediction for four 

different forest types: riparian, broadleaf, coniferous, and mixed. We opted for a predefined model 

using four metrics based on different behaviours under changing lidar scan angles. These metrics 

were a) average value of canopy height values 𝜇𝐶𝐻, b) variance of canopy height values 𝜎𝐶𝐻
2 , c) gap-

fraction 𝑃𝑓, and d) coefficient of variation of PAD profile, 𝐶𝑉𝑃𝐴𝐷. Although 𝑃𝑓 and 𝐶𝑉𝑃𝐴𝐷 helped 

improving accuracies of ABA models, their sensitivity to lidar scan angle transferred to ABA model 

accuracies and resulted in highly variable predictions. However, the presence of multiple flight lines 

tended to reduce the variability, thus increasing the probability of developing models that are more 

robust. Furthermore, we proposed alternative computations of 𝑃𝑓 and 𝐶𝑉𝑃𝐴𝐷 from vegetation profiles 

generated using voxelisation. These metrics either improved overall prediction accuracy, or reduced 

the variation in predictions or both, thereby highlighting two key points: a) lidar metrics sensitivity 

to scan angle must be assessed, especially when developing general ABA models, and b) voxel-based 

metrics have the potential to better characterise forest structural characteristics, which in turn 

contribute to more accurate predictions. Developing models that are unaffected by changing scan 

angle would result in accurate and reliable wall-to-wall predictions. Many countries and regions plan 

multipurpose lidar acquisitions based on different specifications. Concurrently, local surveys based 

on with light lidar systems are likely to develop in the near future for forest applications. In both 

cases, homogenous scanning configuration over a whole forest area is not achievable in practice and 

different parts of the forest will be observed using different scan angles or combinations of scan 

angles. Our study emphasises the necessity to develop new approaches that are better at mitigating 

scan angle impacts on ABA models to enable the further development of operational forest 

applications.  
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Abstract 

Lidar metrics are differently sensitive to lidar scan angle, which can eventually affect the robustness 

of area-based approach (ABA) models and modelling the interplay of scan angle, azimuth of 

acquisition, and terrain properties can be complex. The study hypothesises that neural networks can 

manage the interplay of lidar acquisition parameters, terrain properties, and vegetation characteristics 

to improve ABA models. The study area is in Massif des Bauges Natural Regional Park, eastern 

France comprising 291 field plots in mountainous environment with broadleaf, coniferous, and 

mixed forest types. Lidar data was acquired with high overlap to scan field plots from multiple flight 

lines. The point cloud data for each field plot was expanded based on the flight lines resulting in 

1095 independent observations. Standard lidar metrics, terrain metrics and scan metrics were also 

defined. A multilayer perceptron (MLP) was used to model basal area (BA) and total volume (Vtot), 

while considering the interactions between the 3D lidar point cloud metrics, terrain metrics and scan 

metrics of the expanded dataset. With expanded datasets, the MLP R² for the median predictions per 

plot were higher (R² of 0.83 and 0.85 for BA and Vtot) than predictions with standard datasets (291 

observations) (R² of 0.77 for both BA and Vtot). It also outperformed an MLP model that neither 

accounted for the terrain properties nor the scanning geometry (R² of 0.66 and 0.71 for BA and Vtot, 

respectively). The MLP also outperformed RF regression, which was unable to exploit additional 

terrain and scan information effectively.  

Keywords: ABA, ANN, forest attribute, lidar, RF, terrain 
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4.1 Introduction 

The ability of lidar technology to create dense three-dimensional representations of vegetation has 

been widely used to extract useful information characterising forest properties (Dubayah and Drake, 

2000). With airborne lidar systems (ALS), it is possible to cover large areas to generate accurately 

measured three-dimensional point clouds. An essential requirement in lidar remote sensing of forests 

is detecting the ground surface beneath the canopy, enabling accurate measurement of vegetation 

heights. As a result, the lidar scan angle, or the (half) field of view, has been limited to 20° to ensure 

most lidar pulses reach the ground (Nelson, 2013). So far, most studies involving lidar remote sensing 

for forestry applications have followed this convention (Fekety et al., 2018; Gobakken and Næsset, 

2008, 2005; Leiterer et al., 2015; Mitchell et al., 2018; Næsset, 1997a; Ørka et al., 2018). Recently, 

some studies (Fedrigo et al., 2018; Lopatin et al., 2016; van Lier et al., 2021) have tried to assess the 

impact of scan angles greater than 20°, and many studies involving UAV-based lidar data routinely 

used much higher scan angles (Corte et al., 2020; Ma et al., 2022). 

It may be difficult for highly inclined lidar pulses to reach the ground surface owing to the increased 

occlusions. Nonetheless, it is also true that probing lidar canopies with inclined pulses may also lend 

newer insights or different perspectives (Kamoske et al., 2019). A related study (Dayal et al., 2022) 

observed that datasets comprising nadir point clouds did not always result in better ABA models. 

Forest canopies are not a homogenous medium, and the lidar-derived information (lidar metrics) 

depends on how the lidar pulses sample the canopy. In addition, two lidar acquisitions may not have 

identical properties. The lidar metrics could be affected by the overall acquisition geometry as 

characterised by the acquisition properties (sensor properties, scan angle, scan azimuth, flying 

height), terrain properties, and vegetation structural characteristics.  

In area-based approaches (ABA), there are numerous lidar metrics to choose from, and new metrics 

are constantly being developed to summarise the vegetation structural information comprehensively. 

Standard metrics used over the years include statistical descriptors such as the mean, standard 

deviation, variance, entropy, percentiles of the height or intensity values or cover rate metrics, density 

metrics, and gap-fraction. A stepwise selection procedure is often employed to identify metrics useful 

in predicting forest attributes using multiple linear regression (Næsset, 2002). However, the final set 

of metrics may vary depending on the forest type or lidar acquisition parameters. Another approach 

is to use expert knowledge to define and select a short list of metrics that could explain most, if not 

all, of the variance of the dependent variables (Bouvier et al., 2015). Still, assessing the influence of 

scan angle on selected metrics and, subsequently, on the forest attribute predictions may not always 

be practical. Furthermore, the influence of lidar metrics may be site-specific, and it is advisable to 

assess the effects of scan angle before further analysis on a case-by-case basis (Coops et al., 2021; 

Roussel et al., 2018).  
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Traditionally, the modelling of forest attributes is done using parametric and non-parametric models. 

Due to their simplicity, parametric methods such as ordinary least squares (OLS) regression have 

been widely used by studies to model forest attributes (Næsset, 2002; Tompalski et al., 2019; White 

et al., 2017). Non-parametric methods such as KNN or random forest (RF) do not depend on any 

assumptions regarding the data. They can accommodate nonlinear relationships between the 

dependent and independent variables (Cosenza et al., 2022). Both KNN and RF are among the most 

commonly used non-parametric approaches in ABA (Fassnacht et al., 2014). However, RF was found 

to have a higher level of transferability to new areas than KNN (Tompalski et al., 2019). Artificial 

neural networks (ANN) have also become a popular non-parametric method to address inherent non-

linearity in datasets (Atkinson and Tatnall, 1997; Gopal and Woodcock, 1996). Neural networks are 

also known for their capacity to generalise (Özçelik et al., 2013). The feed-forward back-propagation 

multi-layered perceptron (MLP) is often used with remote sensing data. It consists of a network of 

several interconnected layers of neurons designed to mimic the capabilities of the human brain, such 

as generalisation and understanding complex patterns. In parametric methods such as OLS, only a 

few metrics can be used to avoid the problem of overfitting and the use of correlated variables. In 

non-parametric methods, there are no such limitations. Therefore, they are suited to understanding 

complex interactions between several lidar variables, acquisition geometry, and vegetation 

properties. Among the various non-parametric methods, the MLP has been demonstrated to have 

better generalisation capabilities (Liu et al., 2021; Özçelik et al., 2013).   

However, MLP methods depend on the volume of data, which generally comprises large datasets 

with several thousand samples. In ABA approaches, which involve collecting labour-intensive field 

measurements in often-complex terrains, it is impossible to measure many field plots (samples) as 

field measurements make up a significant part of the costs. The field plots in ABA models typically 

range from a few tens to a few hundred. In addition, only a few field plots describe particular stand 

types. Generally, lidar acquisitions for forests are planned with multiple overlaps such that each 

forest area (or field plot) is thoroughly sampled from multiple locations. Point clouds acquired from 

each location may be considered independent observations. In addition, owing to the heterogeneous 

nature of the vegetation, the point clouds for any field plot may, in most cases, certainly retain 

differences and, therefore, may be used as they are for data expansion. Therefore, each point cloud 

results from the real-world interaction of the physical lidar signal with the natural vegetation. 

A point cloud obtained from a flight line results from the interaction of acquisition parameters, terrain 

properties, and vegetation characteristics. Thus, it can be considered a unique and independent 

observation in ABA models. The objective of this study was to use individual point clouds obtained 

from multiple flight lines independently to improve ABA predictions by increasing the number of 

observations in lidar datasets. We demonstrated: i) the capacity of multilayer perceptron to model 
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complex interactions between lidar signal and both acquisition and terrain properties and ii) the 

benefits of expanding lidar datasets based on flight lines to build ABA models. 

4.2 Materials and methods 

4.2.1 Study area and field measurements  

The study site is the Massif des Bauges Natural Regional Park in the French Alps. It is located 

between the two administrative departments of Savoie and Haute-Savoie and covers an area of 

approximately 850 km². The terrain is hilly (plot altitudes range from 420 m to 1760 m). The most 

common tree species comprise silver fir (Abies alba), Norway spruce (Picea abies), and common 

beech (Fagus sylvatica). Field inventory was carried out for 291 15 m radius circular plots during 

spring and fall 2018. Plot centre locations were measured using differential GNSS (DGNSS, Trimble, 

USA). Field inventory protocol involved measuring tree Diameter at Breast Height (DBH, measure 

1.3 m above ground) of trees with DBH greater than 17.5 cm. Small trees (7.5 cm ≤DBH<17.5 cm) 

were counted within a plot radius of 10 m and classified as either coniferous or broadleaf.  

Since DBH and height measurements were unavailable for all the trees with DBH greater than 7.5 

cm, computation of basal area, stem, and total volumes at plot level required estimations for 

unmeasured trees. Firstly, the number of small trees was extrapolated from the number of trees in 10 

m radius plots to 15 m radius plots. Secondly, the nationwide tree inventory database (NFI) generated 

by IGN (Institut National de l'Information Géographique et Forestière) containing measurements of 

trees with DBHs in the 7.5 cm to 17.5 cm range was used to extrapolate DBH and height values for 

non-measured trees. All NFI plots in the ecoregion that includes the study site were selected to have 

forest plots with similar climatic and growing conditions to those measured on the study site. For 

trees with DBH ranging from 7.5 cm to 17.5 cm, the median DBH value in the NFI database is around 

11.1 cm. This value was used to compute the basal area of the trees with DBHs lower than 17.5 cm. 

Using NFI measurements, allometric relationships were established for each species (or group of 

species when the number of trees was not high enough) to estimate the heights of all the trees when 

there were no available height measurements. Volumes were then computed using the allometric 

equations available in Deleuze et al. (2013). The same protocol was followed in Lahssini et al. 2022 

and Dayal et al. 2022. 

Basal area (m²/ha) Total volume (m3/ha) 

Min Mean Max Min Mean Max 

0.36 30.2 89.7 2.52 312.1 1172 

Table 1: Summary for Basal area (BA) and Total volume (Vtot) for the 291 inventory plots 
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4.2.2 Lidar data 

 

Figure 1: Location of the study site, distribution of field plots and coverage of lidar missions. The small dots in black 

depict the approximate (average) location of the aircraft when it scanned a field plot.  

Lidar data acquisition was carried out in two missions. The first mission (summer 2016) covering 

areas of department 73 resulted in a dataset of 4-5 points/m² point density on average and the second 

mission (summer 2018) covering areas in department 74 resulted in a dataset of approximately 14 

points/m² point density on average. Lidar acquisitions were carried out with multiple overlaps such 

that each field plot was scanned from several locations with different azimuths and scan angles. 

Figure 1 shows the locations of the field plots in the study area along with (average) aircraft locations 

while scanning respective field plots. 

 73 74 

Date of acquisition September 2016 September 2018 

Sensor Leica ALS70-HP Riegl LMSQ780 

Wavelength (nm) 1064 1064 

Scan angle (deg) 46° (+23°/-23°) 60° (+30°/-30°) 
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Beam divergence (mrad) 0.15 <=0.25 

Ground speed (m/s) 85 45 

Point density (pts/m²) 4 14 

Flight height (AGL) (m) 1500* 1050 
Table 2: Acquisition parameters for the two flights (*calculated from data) 

4.2.3 Splitting of point clouds based on flight lines 

Point clouds corresponding to the field plots were clipped from the lidar data using coordinates of 

the plot centres and plot radius (15 m). Due to flight line overlaps, the point cloud for a given plot is 

typically a composite of point clouds acquired with different scanning configurations. We split the 

point clouds for each plot based on the constituent flight lines. Each resulting constituent point cloud 

was represented by the mean of the scan angles (MSA) with which it was scanned. We did not 

consider those point clouds acquired with MSA greater than 30° as they were most likely acquired 

when the aircraft made turns, and there were few such instances. The fundamental 'unit' in our 

experiments is the point cloud for a plot acquired from only one flight line. We assessed pulse 

densities for each point cloud, and 90% of the constituent point clouds had a pulse density greater 

than one pulse per m². We computed the area covered by each constituent point cloud by fitting a 

two-dimensional hull to the points projected onto a horizontal plane. Then, an area threshold was 

used to drop any point cloud that covered less than 90% of the total plot area (Figure 2).  

 

Figure 2: Flight lines that partially cover a plot 

The flight trajectory data was used to extract the locations of the aircraft while scanning respective 

field plots, and the average location of the aircraft was computed. The azimuth of the scan was 

calculated as the angle with respect to geographic north between the average location of the aircraft 

and the respective field plot centre. Each point cloud results from unique scan geometry that is 

characterised by the mean scan angle, scanning azimuth, and scanning distance. 

Two kinds of datasets were considered. In the first kind of dataset, point clouds were not separated 

based on the flight lines. This dataset was called the standard dataset and contained as many point 

clouds as field plots in the study (291). Point clouds were separated based on the flight line 

information for the second dataset, called the expanded dataset. In the expanded dataset, there were 
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from one to eight point clouds per field plot resulting in 1095 point clouds and corresponding to a 

mean number of 3.8 point clouds per plot.  

4.2.4 Lidar metrics 

Lidar metrics were computed for each point cloud in both datasets after normalising the point clouds 

in height, i.e., transforming the point elevation into height above the ground using the lidar-derived 

DTM. All points below a height threshold of five meters were considered lower vegetation and 

filtered out. Fifty-five metrics related to heights, intensities, canopy and terrain properties and scan 

geometry were computed. The height-based metrics are the statistical distributions computed for the 

Z values of the point cloud. The intensity metrics comprise statistical descriptors of the intensity 

values. Canopy metrics consist of gap fraction (Hopkinson et al., 2004) and rumple index (Jenness, 

2004). The gap fraction was computed as the ratio of the number of returns below the 5m threshold 

to the total number of returns. Rumple index is the ratio of the 3D surface area of the canopy to the 

surface area of the ground. Gap-fraction and rumple index were found to be very sensitive to the scan 

angle (Dayal et al., 2020). The summary of these metrics is given in Table 3. 

Type of metric Metrics 

Height based 

max, mean, standard deviation of heights 

percentiles of heights,  

skewness of heights (first and last returns),  

kurtosis of heights (first and last),  

entropy,  

percentage of echoes above mean, 

layer wise cumulative percentage of echoes 

Intensity-based  

total, mean, max, standard deviation, skewness, 

kurtosis,  

layer-wise cumulative percentage of echoes, 

percentage of total intensity below percentiles (10, 

30, 50, 70, 90)  

Echoes Percentage of nth echoes 

Canopy properties 
gap fraction,  

rumple index 

Terrain properties slope, aspect, elevation 

Scan geometry 
mean scan angle, scan azimuth and distance from 

the plane 

Table 3: Summary of the metrics obtained from lidar data, terrain properties and scan geometry 

Point clouds can change according to the local topography and viewing configuration for a given 

forest plot. Depending on the slope, orientation, elevation, scan angle, and aircraft position, there 

could be several cases. In Figure 3, the illustrations depict two possibilities of lidar scanning a plot 

on a slope with similar scan angles, a) scanning along the slope and b) scanning against the slope. 
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An example of a point cloud scanned from different directions is shown in 3c, wherein two point 

clouds with similar mean scan angles can have different properties due to the interaction between 

terrain properties and scanning parameters. Information on terrain properties and scan geometry were 

thus added as additional variables (Table 3). Terrain information was computed by generating digital 

terrain models (DTM) of a resolution of 1m. The DTM of each plot was used to generate slope and 

aspect maps. The average slope, aspect, and elevation values were computed from the slope and 

aspect maps and DTMs, respectively. 

The values of the dependent variables, i.e., BA and Vtot and terrain properties (slope, azimuth, and 

elevation), were replicated for each plot depending on the corresponding number of flight lines or 

point clouds. All the values were scaled between 0 and 1. All lidar metrics were computed using the 

lidR package in R (Roussel et al., 2020). 

 

Figure 3: Illustration of lidar scanning along the slope and against the slope. (a) top view; (b) side view; (c) example 

point clouds with similar mean scan angle 26° (yellow) and 22° (green) ; (d) example scan geometry with relevant 

parameters  
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4.2.5 Experiments and cross-validation scheme 

 

Figure 4: Illustration of the cross-validation scheme for standard and augmented datasets. The process was repeated 30 

times (30 splits). 

We used the same splits of data as those used for cross-validation of the models in Lahssini et al. 

(2022) to enable a direct comparison to results from our study. The field plot measurements and 

corresponding lidar metrics were split in the standard dataset into training and test sets. The training 

set was further subdivided into training (191 field plots or samples) and validation set (50 field plots 

or samples), with roughly an 80: 20 ratio. The test set (50 field plots or samples) was completely 

blind to the training and validation sets. The dataset generated in this way is referred to as the 

standard dataset. When the point clouds were considered per flight line, there were 1095 samples 

total, while the number of field plots was still the same (291). This dataset is referred to as the 

expanded dataset on account of the higher number of point clouds based on flight lines. We used the 

field plot ids from the test set of the standard dataset to create the corresponding test (and training) 

set(s) of the expanded datasets. This ensured that point clouds for the sample field were not present 

in both the test and training sets (data leakage). However, the training set was randomly divided into 

an 80: 20 ratio, which ensured that there were chances of some point clouds for the same plots being 

present in both training and validation sets to aid the model fitting process. The cross-validation 

scheme is illustrated in Figure 4. Thirty splits containing training, validation, and test data were 

generated for all the datasets.  

The benefit of the data expansion strategy was tested via three experiments.  

1. The standard dataset (std) comprising only the lidar metrics was used to build a model and 

then compared with a model built with the expanded dataset (exp) comprising only the lidar 

metrics.  
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2. The standard dataset was appended with terrain variables (slope, azimuth, and elevation) 

(stdterrain) to build a model and compared to a model built with the expanded dataset also 

appended with terrain variables (expterrain). 

3. The expanded dataset was appended with both terrain and scan geometry variables 

(expterrain+scan).   

Indeed, scan geometry features are not available along with standard lidar metrics as, in this case, the 

point cloud results from a mixture of scanning configurations. The workflow used in the study is 

illustrated in Figure 5.  

 

Figure 5: Illustration of the workflow employed in the study using a multi-layer perceptron   

4.2.6 Regression models 

We used the TensorFlow (2.6.0) library in Python (3.9.7) for the fully connected multilayer 

perceptron (MLP) (Martín Abadi et al., 2015). The MLP network consisted of two hidden layers. 

Each neuron in a layer is fully connected (FC) to all the neurons in the following layer. The 

components of the designed MLP include the input layer, two hidden layers, and an output layer. The 

rectified linear units (ReLU) function was used as the activation function. It defines how the input 

values it receives are output to the next neuron. A dropout rate of 0.3 was used to regularise the 

network to prevent overfitting. The adaptive moment estimation (ADAM) optimiser was used for the 

optimisation of the network. The network is illustrated in Figure 5. The KerasTuner (O'Malley et al., 
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2019) was used for the hyperparameter optimisation to obtain three hyperparameters: a) the number 

of neurons in the first hidden layer, b) the number of neurons in the second hidden layer, and c) the 

learning rate of the Adam optimiser. The tuned hyperparameters are given in the results section 

(Table 3). Random forests (RF) models were also built for all the datasets to compare the 

performances with the MLP network. The number of trees built were 500 and mtry value was set to 

default, i.e. number of independent variables divided by 3. The model was implemented using the 

randomForest package in R (Liaw and Wiener, 2002).   

4.2.7 Model accuracy assessment 

The goodness-of-fit of the MLP and RF models was assessed using the determination coefficient 

(R²), the Root Mean Squared Error (RMSE), the relative Root Mean Squared Error (rRMSE), and 

the Mean Percentage Error (MPE). The formulae for these measures are as follows: 

R2 = 1 −
∑ (yi−ŷi)

2𝑛
1

∑ (yi−y̅)
2𝑛

1
                                                                                                           (1) 

RMSE = √
∑ (ŷi−yi)

2𝑛
1

n
                                                                                                         (2) 

rRMSE =
RMSE

y̅
∗ 100                                                                                                       (3) 

MAE =
∑ |(yi−ŷi)|
𝑛
1

n
                                                                                                              (4) 

Depending on the number of flight lines that scanned a given plot, there could be multiple predictions 

per plot for models built with the three kinds of expanded datasets (exp, expterrain, and expterrain+scan). 

The median value was considered for computing the goodness-of-fit criteria. 

4.3 Results 

4.3.1 Hyperparameter tuning 

Dataset Basal area Total volume 

Standard  (metrics) or std (256, 32, 0.01) (256, 64, 0.01) 

Standard  (metrics + terrain) or stdterrain (256, 64, 0.01) (256, 32, 0.01) 

Expanded  (metrics) or exp (1024, 32, 0.001) (1024, 64, 0.001) 

Expanded  (metrics + terrain) or expterrain (1024, 128, 0.001) (1024, 128, 0.001) 

Expanded  (metrics + terrain  + scan geometry) or expterrain+scan (1024, 128, 0.001) (1024, 128, 0.001) 

Table 4: Summary of the tuned hyperparameters for different experiments (neurons in the first hidden layer, neurons in 

the second hidden layer, learning rate) 

Tuning for each dataset resulted in different hyperparameters. The tuned hyperparameters are given 

in Table 4 [Table 4 near here]. Tuning for the standard and expanded datasets resulted in two options 
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for the number of neurons in the first hidden layer. For the standard datasets, there were 256 neurons, 

while for the expanded datasets, the tuning resulted in 1024 neurons. For the second hidden layer, 

the number of neurons varied between 32, 64, and 128. The learning rate was either 0.01 (std) or 

0.001(exp). 

4.3.2 Model performances 

Forest 

attribute 
Dataset 

R² MPE RMSE rRMSE% 

MLP RF MLP RF MLP RF MLP RF 

Basal 

area 

std 0.66 0.53 6.7 7.9 8.9 10.4 30.5 35.8 

stdterrain 0.77 0.58 5.4 7.4 7.3 9.8 25 33.6 

exp 0.76 0.54 5.7 7.8 7.5 10.4 26 35.7 

expterrain 0.81 0.61 5 7.2 6.7 9.5 21.3 32.6 

expterrain+scan 0.83 0.60 4.7 7.2 6.2 9.5 19.9 32.6 

Total 

volume 

std 0.71 0.57 78.2 95.0 103 126.2 34.4 42.2 

stdterrain 0.77 0.62 71.7 89.2 96.2 117.5 32.2 39.3 

exp 0.78 0.55 68.2 96.8 91.3 129.7 30.5 43.2 

expterrain 0.83 0.64 57.6 86.5 77.9 115.1 26 38.3 

expterrain+scan 0.85 0.64 54.6 86.2 71.8 114.6 24 38.1 

Table 5: Compilation of the goodness-of-fit criteria for all the experiments. Best results for each models, i.e. for MLP and 

RF, respectively, are underlined in bold. Results of the best model are framed in red.   

The R², MAE, RMSE, and rRMSE are presented in Table 5 [Table 5 near here] for both MLP and 

RF models. The observed and predicted values for BA and Vtot are shown in Figure 6 and Figure 7, 

comparing the results of the MLP ABA models built with a) std and exp datasets, b) stdterrain, and both 

expterrain and expterrain+scan, respectively. We rebuilt the models with std and stdterrain and observed that 

the goodness-of-fit criteria were higher for models with both std and stdterrain (BA: R² of 0.66 and 

0.71; Vtot: 0.71 and 0.77) compared to Lahssini et al., (2022) (BA: R² of 0.61 and 0.69; Vtot: 0.67 and 

0.74). 

The regression lines in Figure 6 reveal a bias in the predictions for MLP. The plots with higher values 

of BA and Vtot have underestimated predictions, and those with lower values have slight 

overestimations, especially for BA. 

MLP systematically outperformed RF. The RF R² was lower by 19% (BA and Vtot, std). The 

differences in R² between MLP and RF increased across the datasets highest differences for the 

expterrain+scan datasets for BA and Vtot. The rRMSE values with expterrain+scan datasets were higher for 

RF by approximately 60% for both BA and Vtot. 

Regarding the data sets used, the trends were similar for MLP and RF. The lowest model accuracies 

were observed for the model built with the std datasets (BA: R²=0.66 and 0.53, rRMSE=30.5% and 
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35.8%; Vtot: R²=0.71 and 0.57, rRMSE=34.4% and 35,8%, for MLP and RF, respectively). The exp 

datasets demonstrated relative improvements for the MLP (BA: R²=0.76; rRMSE=26%; Vtot: 

R²=0.78, rRMSE=30.5%) with 15% and 10% increase in R² and 15% and 11% percentage points 

reduction in the rRMSE for BA and Vtot, respectively. Incorporating terrain properties (stdterrain) 

resulted in better models with both MLP and RF.  

However, in contrast to the MLP, RF models did not benefit from the data expansion (datasets exp). 

BA predictions improved marginally (R²:0.54 for exp vs 0.53 for std) while Vtot predictions 

deteriorated (R²:0.55 for exp vs 0.57 for std). RF models with expterrain were better than those with 

stdterrain for both BA (R²:0.58 for stdterrain vs 0.61 for expterrain) and Vtot (R²:0.62 for stdterrain vs 0.64 for 

expterrain) with increases of 5% and 3% in R² values, respectively. There errors reduced in the range 

of 3%-5%. [Figure 6 near here] [Figure 7 near here] 

 

Figure 6: Scatterplots of predicted and observed values for models built with std and aug datasets 
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Figure 7: Scatterplots of predicted and observed values for models built with stdterrain,  augterrain  and augterrain+scan datasets.  

The MLP models built with stdterrain resulted in better goodness-of-fit values (BA: R²=0.77, 

rRMSE=25%; Vtot: R²=0.77, rRMSE=32.2%) than those built with std datasets (BA: R²=0.66, 

rRMSE=30.5%; Vtot: R²=0.71, rRMSE=42.2%). The goodness-of-fit of models built with expterrain 

datasets were better for both BA and Vtot (BA: R²=0.81, rRMSE=25%; Vtot: R²=0.83, rRMSE=32.2%) 

with increases of 5% and 8% respectively. The three error goodness-of-fit criteria (MAE, RMSE, 

and rRMSE) reduced in the 7% to 15% range and around 19% for BA and Vtot, respectively. 

Incorporating additional information about the scan geometry (expterrain+scan) resulted in slightly better 

MLP models with 3% higher R² values and lower errors in the 5%-8% range for both BA and Vtot. 

The RF models with expterrain+scan datasets did not result in any improvements (less than a 1% 

reduction in errors).  

In addition, in Figure 6, the saturation problem of underestimating large values is evident. It appears 

to be well-handled by the MLPs when combined with terrain information and scan information. 

4.4 Discussion 

Hyparameter tuning was a crucial step in this study. The models built with std and stdterrain datasets 

for both BA and Vtot were better than those observed in Lahssini et al. (2022). This could be due to 

variations in hyperparameter tuning resulting in better models and underlining the importance of the 
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tuning process to obtain better models. The random initialisations of the algorithms used in the 

models may yield varying hyperparameters. In our experiments, we observed the learning rate as an 

essential parameter and often tuned to 0.001 for the expanded datasets. 

A prevalent problem regarding saturation was also observed in this study with std datasets for both 

basal area (BA) and total volume (Vtot). The saturation issue was handled well by a deep-learning-

based fusion strategy using lidar and optical (Sentinel-2) datasets (Lahssini et al., 2022). In this study, 

however, the saturation effects appear less apparent for models built with expanded datasets 

consisting of terrain properties (expterrain and expterrain+scan datasets). The changes in lidar point cloud 

geometry may convey information on species composition at the plot level, as done by the Sentinel-

2 time series study by Lahssini et al. (2022).   

The models with expanded datasets consistently outperformed those with corresponding standard 

datasets. However, between expterrain and expterrain+scan, the R² values improved for MLP models from 

0.81 to 0.83 and 0.83 to 0.85 for BA and Vtot, respectively. It appears that the improvement was not 

of a large magnitude. The goodness of fit criteria for RF was stable when comparing the two data 

sets. This could be attributable to the fact that there may be some redundancy in the information 

offered by the point clouds that were considered independent observations. Figures 3a and 3b 

illustrate the differences in point clouds due to slope, even if the scan parameters are nearly similar 

due to the steep slope. Irrespective of the variations due to differences in scan angle, the slope directly 

affects the point cloud and the resulting lidar metrics (see Figure 3c). The MLP is perhaps able to 

learn this relationship in this instance. There is, however, scope to better model the relationship 

between the scan properties and terrain properties analogous to the concept of topographic 

normalisation of optical images (Gu and Gillespie, 1998). 
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Figure 8: Graphical illustration of the goodness-of-fit criteria. The bars represent the standard deviations of the results obtained for 30 splits of data
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Nonetheless, the addition of scan geometry demonstrated improvements with the MLP. A qualitative 

assessment of the scatterplots in Figure 7 reveals that a model built with expterrain+scan dataset was 

indeed capable of dealing with the issue of saturation that is commonly observed with large values. 

The scatterplots are comparable to those obtained in Lahssini et al. (2022) after implementing a 

fusion of lidar and optical information, and this creates interesting possibilities for future studies. 

Furthermore, while the MLP outperformed the RF models, some of the relative improvements across 

the datasets, though marginal, were apparent even in the RF models. 

Modelling strategies certainly influence the results. A few studies have explored different deep-

learning methods to predict forest attributes from lidar data. Martins-neto et al., (2021) used an MLP 

architecture with the principal components of a set of metrics similar to our study. They observed an 

rRMSE of 22.5% for the predictions of BA in heterogeneous tropical forests. In our study, the best 

performing model was the expterrain+scan dataset with an rRMSE of 19.9%. However, they did not 

consider metrics such as the gap-fraction with proven explanatory power for forest structure 

characterisation. 

Additionally, gap-fraction and the rumple index (used in this study) are metrics that are sensitive to 

lidar scan angle (Dayal et al., 2020; Montaghi, 2013). The data expansion strategy may have 

benefited from additional information from these two metrics, among other sensitive metrics. On the 

other hand, Liu et al. (2021) observed lower rRMSE values of 14.5% in volume predictions in 

predominantly Eucalyptus, and Chinese-fir-dominated stands. In comparison, an rRMSE of 24% was 

observed in this study. Even if they used a more advanced modelling framework that combines a 

fully-connected neural network and an optimised radial basis neural network, the result difference is 

also likely to be linked to relatively simpler forest stands under study. In addition, studies using other 

modelling methods, such as OLS or RF, reported rRMSE values of basal area (BA) and volume (Vtot) 

predictions were in the range of 23% to 29% and 22% to 34%, respectively (Coops et al., 2021). In 

this study, we observed an rRMSE for BA and Vtot of 19.9% and 24% for a model built with 

expterrain+scan datasets. 

We used the intensity information provided by the data provider without implementing a 

normalisation step to enhance it, as demonstrated in different studies (Gatziolis, 2011; Hopkinson, 

2007; Martins-neto et al., 2021). Shi et al. (2018) demonstrated that intensity information is more 

effective than other height-based metrics in discriminating tree species. The forests in PNR Bauges 

comprise forest plots of broadleaved, coniferous, and mixed types of forests with different species of 

vegetation. Calibrated intensity information could further help in improving the accuracies of the 

models. In addition, the intensity information is also known to be affected by the scan angle (Martins-

neto et al., 2021). 
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The distribution of BA and Vtot across different test sets reveals that the dataset was not balanced as 

there are very few plot measurements with very high values. Many of the cross-validation splits used 

in this study (and in Lahssini et al., (2022)) also suffered from a lack of balanced training and testing 

samples. We believe that field plot measurement representing diverse forest stands will further help 

build robust models. The sampling strategy used to collect field measurements followed a systematic 

sampling scheme to establish sites for periodic monitoring. A stratified sampling scheme would be 

more suitable for building models. Moreover, some differences may arise because small trees 

(DBH<7.5cm) were not measured as per the field measurements protocol. The contribution of such 

trees in estimating the signal could be higher. 

Dayal et. al. (2022) demonstrated the benefits of using voxel-based metrics. Voxel-based metrics 

contributed by reducing rRMSE values for ordinary least squares regression (OLS) ABA models 

based on forest type (riparian, broadleaf, coniferous, and mixed). For OLS ABA models, using voxel-

based metrics improved the predictions by reducing the rRMSE by 10%, 4%, and 14% for riparian, 

broadleaf, and mixed types, respectively. The rRMSE values for different forest types and with only 

four lidar metrics (including voxel-based metrics) ranged between 30%-40%, comparable to those 

observed with MLP models built with std, stdterrain, and exp datasets in this study. However, including 

normalised intensity information along with stand type characteristics and voxel-based metrics could 

be beneficial for building better models using deep-learning approaches and a possible future area of 

exploration.  

In this study, we opted to describe our datasets based on the flight lines as 'expanded datasets.' The 

common practice combines all these observations in lidar ABA models to generate the 'standard' 

datasets. Essentially, each observation in the dataset represents an independent physical observation 

(or lidar scanning) of a given field plot. As the vegetation in the field plots is rarely identical when 

viewed from multiple directions, it may be argued that the resulting differences from different scans 

are comparable to the data augmentation procedure that is commonly used to increase the number of 

samples when dealing with images (Mikolajczyk and Grochowski, 2018; Shorten and Khoshgoftaar, 

2019; Taylor and Nitschke, 2019; Wang et al., 2017). In order to avoid confusion with commonly 

practised data augmentation strategies, we referred to our modified datasets as 'expanded' datasets. 

Nonetheless, we would like to emphasise the similarities. 

4.5 Conclusion 

This study demonstrated that considering point clouds from different flight lines as independent 

observations in non-parametric models can improve ABA predictions for forest attributes. By 

considering the point clouds as independent observations, we retained the heterogeneity in the lidar 

metrics due to variations in the acquisition geometry in the form of an expanded dataset with a 
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significantly higher number of observations than a standard dataset. A multilayer perceptron (MLP) 

could harness the expanded information to predict forest attributes with higher accuracies than a 

Random Forest model, commonly used in ABA approaches. The present MLP model also 

demonstrated the potential to result in predictions comparable to methods involving the fusion of 

optical and lidar data (Lahssini et al., 2022). Optical data may be incorporated to improve further the 

results observed in this study. 

Considering point clouds from different flight lines could be used to revisit existing lidar datasets to 

improve the ABA predictions by harnessing both the homogeneity and heterogeneity alike of lidar 

metrics (Dayal et al., 2020) when field plots are scanned from multiple locations. The different 

perspectives of the same field plots could help develop robust models.  

Furthermore, the point clouds from different flight lines were considered independent observations 

for simplicity. In reality, they are observations of the same field plot and can be grouped based on 

field plots, resulting in a longitudinal dataset. A longitudinal dataset contains repeated observations 

of the same entity over different periods, which, in this case, happens to be the scan geometry. 

Longitudinal datasets are dealt with differently with methods such as pooled OLS or fixed-effects 

model, among others, or deep learning methods such as recurrent neural networks and their 

variations. Such methods could be possible alternatives that may be employed to extract the 

maximum amount of information from such lidar data. 
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5.1 Synthesis of the thesis 

The ability to exercise the accurate measurement capabilities of lidar over vast areas of vegetation 

makes it the most suitable remote sensing technique for forest management purposes. The increasing 

use of lidar globally is evidence of its potential. Its use has been incredibly beneficial for forest 

inventories by making it possible to obtain information at a very high level of detail. Linking field 

plot measurements with accurately measured lidar data for the same, also known as area-based 

approaches (ABA), is the most common way to arrive at predictions of forest attributes at a fine 

scale. However, the lidar scanning mechanism and its scan parameters make it challenging to have 

uniformly dense point clouds everywhere. One of the parameters, the lidar scan angle, has been 

insufficiently studied, and in recent years understanding its influence on lidar metrics and ABA 

models has assumed importance. As a convention, scan angle has been limited to less than 15-20 

degrees for most studies using lidar for scanning forests. A low scan angle poses challenges to many 

national-level lidar acquisitions seeking operational efficiency. Even local-level lidar acquisitions 

benefit from a wider scan angle, reducing operation costs. Furthermore, data acquisition using UAV 

lidar often employ high scan angles. Therefore, it is imperative to understand and study further the 

effect of using such.  

Lidar scan angle is integral to the acquisition geometry defined by the scanning parameters, terrain, 

and vegetation properties. This PhD thesis studied the effect of different acquisition geometries on 

lidar-based ABA models in different complex forest environments. The study was conducted in two 

broad parts covered in three main chapters of the thesis. In the first part of the study, the effect of 

lidar scan angle on lidar metrics and ABA models was assessed. In the second part of the study, 

different strategies to manage the impacts of scan angle were explored. The study had five specific 

questions; the main findings per question are summarised below. Finally, the limitation of the study 

and future perspectives will be discussed at the end. 

5.1.1 Assessing the impact of lidar scan angle on ABA models in diverse, 

complex forest environments. 

Q1) What is the impact of lidar scan angle on commonly used lidar metrics? 

This study objective demonstrated that different lidar metrics are differently sensitive to the scan 

angle. 11 lidar metrics (9 height metrics and two canopy metrics) were analysed to understand their 

behaviour under changing scan angle. The scan angle impacted some metrics, such as gap fraction 

and rumple index, while impacting others, like p10 (10th percentile), to a lesser extent. Mean, max 

(maximum), and p90 are substantially less affected by scan angle. Similar findings were observed in 

Montaghi (2013), who studied boreal forests. Contrastingly, Yang et al. (2011) found that the higher 

percentiles (100th percentile) were more sensitive to scan angle for simulated deciduous forest 
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environments with full waveform data. Irrespective of the differences in the study areas, it is clear 

that it is impossible to have universal assumptions regarding the effect of scan angle on lidar metrics. 

Although conceptual ideas may guide hypotheses, it is recommended to be mindful of the sensitivity 

of lidar metrics to scan angle while planning lidar acquisitions. For example, it is a reasonable 

hypothesis that a metric such as gap-fraction, which has proven capabilities to characterise vegetation 

structure, will undoubtedly be biased when assessed from the point cloud distribution since the path 

length increases with increasing scan angle. This behaviour may be emphasised further when the 

acquisition geometry changes with higher slopes in mountainous terrain. Based on the observations 

in this chapter, a predefined model was selected consisting of metrics with different sensitivities to 

scan angle to study the inclusion of these metrics in the same.  

Q2) What is the impact of including lidar metrics sensitive to scan angle on ABA models? 

An attempt was made to answer this question by simulating different acquisition geometries by 

resampling existing lidar datasets. The simulated sets of data broadly were of two kinds a) composed 

only of point clouds scanned from only one flight line (single flight line set, fl1) and b) composed 

only of point clouds scanned from any two flight lines (double flight line set, fl2). The idea was to 

evaluate and compare the behaviour of ABA models built with the same lidar metrics for the single 

flight line set for the same area and when using two sets of metrics more or less sensitive to scan 

angle. Models to predict wood volume (stem and total volumes) and basal area were evaluated for 

three different and complex stands (riparian area and broadleaved, mixed and coniferous stands in a 

mountainous area) through a leave-one-out cross-validation approach. In an ideal scenario where 

lidar metrics are not affected by the acquisition geometry (scan angle), the models should result in 

similar predictions. In other words, there will be no variations in the goodness-of-fit criteria. 

However, as demonstrated in Chapter 2, different lidar metrics are affected differently. Firstly, 

models were built using two highly explanatory metrics (mean and variance of heights) that were 

found to be relatively less sensitive to scan angle. Secondly, models were built using two additional 

explanatory metrics, gap fraction (Pf) and coefficient of variation of LAD profile (CVLAD) (Bouvier 

et al., 2015), which were more sensitive to scan angle. With models built with the mean and variance 

of heights as references, using the simulated datasets, the inclusion of Pf and CVLAD increased the 

variations in the accuracy (R²) of the predictions across experimental scenarios (see Chapter 3) by 

an average of 171%. However, it does not mean they are not beneficial. Inclusion of the metrics, 

while increasing the standard deviation (SD) of the predictions, also increased the average accuracy 

by 8% (except for coniferous forests). Results were relatively more stable when models were built 

with the second data set (fl2), i.e. two flight lines scanning each forest plot. Different acquisition 

geometries may not be well represented when few field plots exist. Building a model for such lidar 

acquisitions will undermine the accuracy of predictions of attributes in datasets (or areas) scanned 

with different geometries. If lidar data is acquired from single flight lines, the risk of a poorly 
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specified model will increase, resulting in unreliable forest attribute maps. It may be the case that 

even a few plots that are not scanned well may impact ABA models. Therefore, it is essential to 

develop approaches to manage scan angle effects when developing ABA models. 

5.1.2 Methods to manage the impacts of lidar scan angle on ABA models 

Q3) How does overlap in lidar data acquisition influence the quality of ABA models? 

Overlapping of flight line swaths is mainly done to ensure areas on the ground are sampled from 

multiple locations to create a dense point cloud representation of the vegetation. The data acquisition 

in both the study areas was carried out with sufficient overlap to ensure that many, if not all, field 

plots were scanned from multiple locations. Some field plots in the Bauges dataset were scanned 

from as many as eight flight lines enabling eight different point clouds from individual flight lines 

and 28 different point clouds from any two flight lines. The average number of flight lines from 

which scanned a plot was approximately four (3.8). There was sufficient variability in the 

combinations of point clouds in both study sites to investigate to what extent the combination of 

different ‘points of view’ could help manage the impact of scan angle. The first set of simulated 

datasets corresponds to absolutely zero overlaps (single flight line set), and the second set 

corresponds to 50% overlap (double flight line set). Datasets resampled in terms of any three flight 

lines were also included for comparison despite the lack of variability of point clouds due to an 

insufficient number of flight lines (triple flight line set). The standard deviations of the goodness-of-

fit criteria distribution were reduced by an average of 42% for double flight line sets compared to the 

single flight line sets. 

Constraints were also applied to the single and double flight line sets to simulate specific acquisition 

geometries. There were six acquisition geometries obtained by filtering flight lines belonging to: only 

nadir (A), slightly off-nadir (B) and off-nadir (C) from single flight line sets, and their combinations 

(AB, AC and BC) from double flight line sets. There was a reduction in the SDs of the R² distribution 

by an average of 45% for all comparisons of AB, AC and BC with A, B and C. At the level of the 

forest types, these reductions were 51%, 62%, 21% and 46% for riparian, broadleaf, coniferous and 

mixed forest types. Therefore, ensuring at least a 50% overlap to scan any given area from two 

different locations could curtail the variability in predictions due to varying acquisition properties.  

On the other hand, the means of the goodness-of-fit criteria distributions revealed an interesting 

phenomenon. The means represent the average accuracies of the models in each set (fl1, A, B, C, fl2, 

AB, AC and BC). It would seem intuitive to ensure overlaps will result in dense point clouds and 

more accurate models. Based on the results observed in this study, it may only be partially true. The 

mean R² values predictions for fl1 datasets were lower than those for fl2 datasets only for the riparian 

and mixed plots. For the broadleaf and coniferous plots, the opposite, i.e. the predictions were better 



Conclusion 

 

94 

 

with individual flight line datasets (fl1) than with double flight line datasets (fl2). There was a 

considerable difference for coniferous plots. The fl2 dataset mean R² was almost 30% lower than 

that for the fl1 dataset. The trend was more apparent in comparison with the results for fl3. The trend 

was reinforced when compared to the single point goodness-of-fit values for models built with all 

the point clouds from different flight lines considered together, i.e. the traditional ABA models. The 

trend of better models with single flight line point clouds was also observed by van Lier et al. (2021) 

for balsam fir-dominated stands. Across fl1, fl2 and fl3 datasets, there was a tendency to converge at 

the goodness-of-fit criteria of the traditional models. The results underline that, even with lower 

values for the goodness of fit criteria, models built with datasets acquired from multiple flight lines 

in every forest location will be more robust and reliable. However, our results also open up questions 

regarding such contrasting trends, with mean trends better with a single flight line than with two or 

three for some of the stands. 

Furthermore, despite the changes in the acquisition geometry between the two study areas, i.e. Ciron 

and Bauges, the goodness-of-fit distributions for different acquisition geometries (f1, A, B, C fl2, AB, 

AC, BC and fl3) indicate that some inclination (B) is desirable. In addition, as acquiring data with 

high overlap between flight lines is costly and could hinder the use of lidar for forestry applications, 

it is worthwhile to develop strategies to better deal with the influence of scan angles on metrics and 

models. Some approaches in that regard have been addressed through the two last questions.   

Q4) How to normalise lidar metrics sensitive to lidar scan angle? 

With datasets corresponding to different acquisition geometries (f1, A, B, C, fl2, AB, AC, BC and fl3), 

ABA models were built for each set by including metrics computed from a voxel-based estimation 

of plant area density (PAD) profiles. It was assumed that voxelisation could normalise information 

due to its capacity to estimate PAD values from the point clouds at the voxel level (better 

discretisation of space) while mitigating occlusion effects and taking into account the path length of 

the laser pulse in the vegetation. The resulting pot level PAD profiles were used in place of ground 

returns for gap fraction and CVLAD estimation. Besides a few exceptions that mostly involved 

coniferous plots, using voxel-based metrics positively impacted mean R² values, increasing them on 

average by 38%. The rRMSE values were also decreased by an average of 10%. The advantage of 

voxel-based metrics, as well as other profile-based metrics generally, is that they more accurately 

characterise canopy structural properties, highlighted by increased accuracy. Moreover, the 

goodness-of-fit of the traditional ABA models improved when voxel-based metrics were used for 

riparian, broadleaf and mixed plots. Voxel-based metrics also reduced the SD of the distributions of 

the goodness-of-fit criteria for all resampled datasets (f1, A, B, C fl2, AB, AC, BC and fl3) of broadleaf 

and coniferous plots.  
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There are two aspects to the PAD profiles obtained from voxelisation and layer-based method. The 

first is the shape of the profile, and the second is the similarity between the profiles for different point 

clouds on the same plots. The improvement in R² values when voxel-based metrics were used 

indicates that the profiles (and subsequent metrics) based on voxelisation were better at 

characterising the vegetation. Moreover, the similarity of the voxel-based profiles was considered 

indicative of the normalisation tendency with voxelisation. Therefore, with voxelisation, it is possible 

to increase the accurate characterisation of the vegetation from multiple ‘points of view’. However, 

it did not work perfectly in all the cases (for all field plots). There were some instances wherein 

voxel-based profiles were more dissimilar than the layer-based profiles. Nonetheless, the shape of 

the profiles was also different, and it may be assumed that voxelisation generally performed better  

Moreover, voxelisation was done without height normalisation as the geometry needs to remain 

intact for the ray tracing. The height normalisation is done at the level of the voxels, which is coarser 

and could lead to some artefacts. Also,  implementation of voxel-based methods at the level of the 

entire forest is not easily possible right now, and it requires greater computation efforts. 

Q5) How to model acquisition geometry in ABA models? 

So far, only the lidar scan angle was studied. A given lidar scan is a part of the acquisition geometry, 

which also includes the terrain and vegetation properties, especially in areas with steep slopes. 

Therefore, the lidar acquisition geometry is not only defined by the scan angle but also by the 

azimuth. In terrain with a slope, the impact of azimuth can be prominent when interacting with the 

topography: a point cloud over a forest scene with the same scan angle can be highly different when 

the sensor is scanning along or against the slope. Hence, the relationship between the lidar scanner 

and the local topography becomes an important consideration. Yang et al. (2011) observed that full-

waveform shapes are affected by vegetation structure and terrain parameters. Previous work also 

demonstrated that considering local topography when developing ABA models based on point clouds 

is beneficial (Lahssini et al., 2022). Therefore, it was attempted to incorporate the overall acquisition 

geometry in ABA models using neural networks. A multilayer perceptron (MLP) was used in an 

attempt to disentangle the complex non-linear interactions between various lidar variables, terrain 

and scan properties 

In this chapter, the slope was characterised by the degree of slope, the azimuth of the slope and the 

elevation, and the acquisition parameters were characterised by the mean scan angle, azimuth of 

scanning and the distance of the scanner from the plot. For each plot, acquisition from each flight 

line results in a unique point cloud and a unique set of corresponding metrics describing the local 

stand, impacted by the interplay of terrain and acquisition parameters besides the vegetation 

properties.  
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Comparing MLP models with and without geometric information highlighted the importance of 

adding information on geometry in the model to improve the prediction of forest attributes. The R² 

values increased to 0.83 from 0.77 for basal area predictions and to 0.85 from 0.77 for total volume 

predictions. Furthermore, the augmentation of datasets also demonstrated an overall improvement in 

the predictions.  

The multi-linear regression (MLR) for different stand types demonstrated the limitations of some of 

the metrics. To a great extent, this limitation was overcome by using voxel-based metrics. However, 

MLR regressions are generally built by stratifying for the forest types to obtain good results. The 

MLP does not have this limitation. The results for MLP models with terrain and scan informations 

were nearly similar to those obtained with the deep learning-based fusion of lidar and optical data by 

Lahssini et al. (2022). Optical data is known for discriminating between well between different 

species. It may be hypothesised that when the MLP was trained with different views of the same 

forest plots, it could learn to discriminate between the three forest types well and result in 

improvements similar to those obtained by the fusion strategy. 

Finally, explicit consideration of factors that explain the interaction of acquisition parameters, terrain 

and vegetation properties can improve ABA models. As these factors may be challenging to model, 

methods such as Artificial Neural networks (and more advanced deep learning-based methods) can 

be harnessed for their capabilities to learn complex relationships.  

5.2 Limitations and Perspectives  

Most lidar acquisitions are carried out with a lidar scan angle rarely greater than 20°. In that context, 

it was pretty challenging to identify datasets that could be adapted to the experimentation scheme in 

this study. The two datasets that were used were considerably different in terms of the acquisition 

parameters. The Bauges dataset was acquired in two standard airborne lidar acquisitions that resulted 

in datasets with point densities of 14 points/m² and 4 points/m². In contrast, the Ciron dataset was 

acquired from a light aircraft resulting in a dataset with a point density of 69 points/m².  

Some limitations with the datasets influenced the experiments for the two first parts of the study. In 

the first part involving the assessment of lidar scan angle on metrics, the various flight lines had to 

be grouped based on their mean scan angles (MSA) in 10° intervals. A near-continuous change of 

scan angle is not practical in real datasets. Flight lines with MSAs closest to respective class medians 

were chosen from each class, thereby losing information from some of the other flight lines in the 

same classes. In the second part of the study, the datasets were resampled such that the point clouds 

for each plot corresponded to particular acquisition geometries. However, it was not possible to have 

the same acquisition conditions for all the plots (e.g. nadir (A) and moderate (class B) scan angle for 

all the plots). The comparison was instead of models built with “predominantly” nadir or off-nadir 
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datasets as opposed to a pure nadir or off-nadir. Nearly 50% of the plots in some forest types did not 

correspond to the main scanning scenario in consideration. It may be the case that there may be noise 

from such situations, but, on the contrary, it may also be argued that this leant some sense of realistic 

data acquisition characteristics to the datasets.  

In the fourth chapter, a data augmentation procedure contributed positively to the ABA predictions. 

In that case, the unbalanced number of flight lines among the plots was less detrimental.  

The experimental setup was devised to cover many possible scanning configurations. More 

possibilities exist that could refine the experiments to reflect many real-life acquisition scenarios. 

Furthermore, the increasing use of drones and multipurpose lidar acquisitions will bring scan angle 

into focus over the next few years and bringing down costs has always been an important 

consideration. Optimisation of lidar data acquisition in light of new technologies, platforms and 

practical considerations such as cost and time, therefore, sustain the need to study the effects of lidar 

scan angle in more detail. UAVs are low-cost alternatives that can be used to acquire experimental 

datasets with very high scan angles and degrees of overlap. They also provide high-density point 

clouds that can be used to resolve various vegetation elements.  

Using simulated lidar datasets could also be a valuable solution to extend this work. Radiative 

transfer models such as DART could be used simulate lidar data in forest environments (Gastellu-

Etchegorry et al., 2015). Simulations could be used to answer several questions raised in this thesis 

as they could provide lidar data sets (i) acquired from a continuously changing scan angle, (ii) 

acquired with specific acquisition geometry, and (iii) to generate additional samples to augment 

datasets for deep-learning based models. In recent years, simulated datasets have become 

increasingly realistic. They have the potential to fill in the gaps in real datasets.  

Although the number of field measurements is critical to building ABA models, their quality also 

matters. The protocol followed during the field plot measurements in the Bauges site did not allow 

for measuring trees with diameters below 17.5 cm. Some plots had tree measurements for only a 

handful of trees with diameters greater than 17.5 cm. The other vegetation (small trees and lower 

vegetation), however, was sensed by the lidar sensor. Although the diameters of the smaller trees 

were estimated for this work, more accurate information about them will relate better to the lidar 

signal. Furthermore, the stratification of measurements to have plots with diverse field plot 

measurements will result in better-calibrated models. This was mainly a problem with the Bauges 

dataset because there were only a handful of plots with very high basal area and total volume values. 

In the riparian field plots, one plot had the largest tree among those measured in the field plot 

measurements. However, while clipping the datasets using the plot centre coordinates, the tree trunk 

was not a part of the clipped subset, but a significant part of its canopy was a part of the subset. Such 

problems are known as the border or edge effects, and they have been known to affect ABA 
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predictions (Knapp et al., 2021). These effects can be more pronounced with higher scan angles, 

especially when dealing with single flight line datasets. For the example mentioned above, edge 

effects could have a role to play when dealing with very heterogeneous forest environments. In this 

study, however, it was not addressed, and plots with severe edge effects were not considered.  

The most straightforward strategy to mitigate the impact of scan angles on ABA models would be to 

ensure that each part of the forest is “seen” from a diversity of scan angles and azimuths. This is not 

possible in practice. Voxel-based metrics were demonstrated to have great potential to normalise 

lidar metrics before building ABA models, thus improving model robustness. They are extremely 

useful for converting an unordered set of vegetation points into an ordered three-dimensional 

representation of the vegetation. Nevertheless, the voxel-level PAD estimation is known to be biased 

at low point densities (Pimont et al., 2018; Soma et al., 2018). Furthermore, the voxel size was set at 

1m in this study. Voxel size is also an important parameter to consider as smaller voxels can better 

discretise the distribution of the vegetation. A balance must be achieved between the point densities 

and the voxel size. The bias-corrected estimators proposed by Soma et al. (2018) and Pimont et al. 

(2018) and the LAD kriging method by Soma et al. (2020) have the potential to increase the accuracy 

of PAD (or LAD) estimation. In this study, the vegetation profiles were derived from the voxelised 

scene to compute voxel-based gap-fraction to have comparable metrics to the original model 

containing gap-fraction as one of the metrics. Alternate metrics from the voxels and vegetation 

profiles are also a possibility. 3D convolutional neural networks called VoxNet (Maturana and 

Scherer, 2015) for object detection offer interesting possibilities for using the explicit 3D spatial 

structure of the information. 

Accuracy of forest attribute prediction needs to be accompanied by precision in prediction accuracy. 

The precision is possible when forests are scanned uniformly from all directions. As that is not 

possible in real life, strategies have to be developed to manage the potential variations that could 

arise. The simplest way to manage the variations due to lidar scan angle is to ensure lidar data 

acquisition is made so that areas are scanned from at least two or three flight lines to ensure a 

comprehensive vegetation sampling. From a practical perspective, adopting more efficient and cost-

effective practices is desirable. In such cases, metrics will have to be carefully chosen to be stable 

under changing scan angles. Voxelisation using ray-tracing can be an option to normalise the metrics 

at the field plots and the whole forest level to generate reliable wall-to-wall maps. Voxel-based 

methods also have the potential to characterise vegetation better. These methods must be developed 

further to incorporate them into operational lidar-based enhanced forest inventories (EFIs). Finally, 

acquisition geometries should be given due consideration while modelling forest attributes. Research 

in this regard, with various acquisition geometries, will enrich our understanding of the mechanism 

with which lidar pulses sample canopies from different viewpoints, in different terrains and different 

types of forests.  
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Appendix A: Effect of scan angle on metrics at plot level 

for Bagues site 

 

Figure 10: Comparison of metrics computed for classes B and C with class A, for all the three forest types at Bauges 

considered together. The methodology used was similar the one used in Dayal et al., (2020) but only at the level of the field 

plots available. The metrics were affected differently by changing scan angle with Pf being the most sensitive. 
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Appendix B: Results of Basal area and Total Volume 
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Figure 11: Distribution of the performance measures of basal area (BA) models (R², rRMSE, MPE) for different scenarios and 

for the different forest types (Riparian, Broadleaf, Coniferous and Mixed). The single (fl1, A, B, C), double (fl2, AB, AC, BC) 

and triple (fl3) flight lines scenarios are depicted in blue, orange and yellow respectively (colour) 
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Figure 12: Distribution of the performance measures of total volume (Vtot) models (R², rRMSE, MPE) for different scenarios 

and for the different forest types (Riparian, Broadleaf, Coniferous and Mixed). The single (fl1, A, B, C), double (fl2, AB, AC, 

BC) and triple (fl3) flight lines scenarios are depicted in blue, orange and yellow respectively (colour) 
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B.1 Scenario wise comparison of distributions for reference and voxel metrics 

 
Forest 

type 

One flight line Two flight lines 
Three 

flight 

lines 

fl1 A B C fl2 AB AC BC fl3 

R
² 

Riparian 40.2* 33.5* 26.6* 88.3* 27.0* 29.3* 27.0* 21.7* 19.9* 

Broadleaf 5.1* 11.2* 8.9* -4.5* 20.1* 25.0* 16.3* 17.6* 31.3* 

Coniferous 10.1* 18.8* 2.1* -8.3* 22.9* 37.0* 14.5* 0.3 24.8* 

Mixed 24.1* 42.3* 28.4* 10.5* 29.4* 21.3* 41.7* 24.9* 28.3* 

rR
M

S
E

 Riparian -15.3* -14.5* -11.6* -22.3* -11.6* -13.0* -12.2* -9.2* -8.9* 

Broadleaf -1.3* -2.4* -2.7* 1.6* -5.4* -6.0* -4.2* -5.4* -8.0* 

Coniferous -2.7* -4.7* -1.0* 2.1* -4.7* -8.6* -2.9* 0.0 -5.0* 

Mixed -10.3* -15.4* -12.3* -5.3* -12.6* -9.0* -16.1* -12.2* -12.6* 

M
P

E
 

Riparian -23.6* -25.9* -17.1* -30.5* -17.9* -21.2* -21.2* -11.5* -12.3* 

Broadleaf 19.8* 25.7* 17.7* 18.0* 19.8* 32.0* 20.6* 13.4* 18.0* 

Coniferous 4.7* 2.2* 7.3* 8.8* 3.7* 1.4* 3.3* 9.3* 2.7* 

Mixed -14.6* -19.0* -21.5* -4.6* -14.9* -12.5* -17.4* -14.4* -15.0* 

Table 11: Scenario-wise percentage changes in the means of distributions  of goodness-of-fit criteria using voxel metrics for 

the predictions of BA. Values in red indicate a deterioration All comparisons were significant (*) except for those in bold All 

comparisons were significant (*) except for those in bold (colour) 

 
Forest 

type 

One flight line Two flight lines 
Three 

flight 

lines 

fl1 A B C fl2 AB AC BC fl3 

R
² 

Riparian 31.2* 34.5* 25.1* 39.6* 23.9* 25.6* 25.1* 20.2* 18.1* 

Broadleaf 5.0* 7.7* 2.3* 4.7* 11.9* 11.1* 12.2* 11.6* 16.2* 

Coniferous -3.2* 6.4* -2.7* -19.1* 10.8* 36.3* 0.0 -9.0* 11.8* 

Mixed 19.1* 38.7* 27.6* 2.1* 23.1* 18.2* 33.0* 17.5* 23.4* 

rR
M

S
E

 Riparian -17.6* -19.3* -15.0* -19.8* -13.5* -14.5* -14.3* -11.4* -10.2* 

Broadleaf -1.7* -2.4* -0.8* -1.8* -4.9* -4.5* -4.6* -5.3* -6.6* 

Coniferous 1.2* -1.5* 1.0* 6.5* -1.8* -6.0* 0.1 1.9* -2.0* 

Mixed -9.7* -17.0* -14.3* -1.3* -12.5* -9.6* -15.7* -11.1* -13.0* 

M
P

E
 

Riparian -24.7* -27.4* -22.2* -26.3* -19.5* -21.3* -22.1* -16.6* -13.9* 

Broadleaf 10.1* 20.3* 0.6* 8.7* 11.3* 19.0* 13.6* 1.6* 10.5* 

Coniferous 9.5* 5.5* 8.6* 16.5* 6.1* 3.0* 5.7* 11.7* 5.4* 

Mixed -17.6* -24.5* -23.6* -5.7* -18.8* -16.4* -23.0* -15.9* -20.0* 

Table 12: Scenario-wise percentage changes in the means of distributions  of goodness-of-fit criteria using voxel metrics for 

the predictions of Vtot. Values in red indicate a deterioration All comparisons were significant (*) except for those in bold All 

comparisons were significant (*) except for those in bold (colour) 

 
Forest 

type 

One flight line Two flight lines 
Three 

flight 

lines 

fl1 A B C fl2 AB AC BC fl3 

R
² 

Riparian -30.5* -2.5* 58.3* 14.0* -20.1* 35.0* -12.1* -4.1* -17.0* 

Broadleaf -52.4* -59.4* -61.7* -35.0* -60.7* -72.5* -54.6* -48.3* -62.9* 

Coniferous -35.9* -19.8* -16.2* -16.7* -35.8* -60.2* -58.0* -57.6* -32.2* 

Mixed 21.2* 69.9* 30.9* -40.3* -6.2* 60.2* -1.8* -26.8* 39.9* 

rR
M

S
E

 Riparian -17.7* 15.3* 80.1* 48.5* -9.5* 55.9* 0.8* 5.9* -8.9* 

Broadleaf -51.8* -58.5* -61.3* -35.3* -58.6* -70.6* -52.7* -45.4* -59.6* 

Coniferous -33.5* -15.6* -13.9* -17.4* -32.1* -56.4* -56.8* -57.5* -28.7* 

Mixed 35.7* 102.6* 50.7* -36.9* 7.3* 76.4* 17.3* -17.6* 59.8* 

M P E
 Riparian 3.6* 6.3* 101.8* 63.9* 11.4* 33.3* -1.7* 26.2* -3.4* 

Broadleaf -37.3* -58.6* -62.2* -27.8* -39.8* -60.6* -11.0* -15.0* -16.1* 
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Coniferous -17.4* -7.9* -12.2* -6.5* -7.4* -21.9* -28.5* -27.5* -5.1* 

Mixed 23.3* -16.4* -8.8* -33.9* 17.0* 60.4* 39.1* 4.1* 90.9* 

Table 13: Scenario-wise percentage changes in the standard deviations of distributions  of goodness-of-fit criteria using voxel 

metrics for the predictions of BA. Values in red indicate a deterioration. All comparisons were significant (*) except for those 

in bold All comparisons were significant (*) except for those in bold (colour)  

 
Forest 

type 

One flight line Two flight lines 
Three 

flight 

lines 

fl1 A B C fl2 AB AC BC fl3 

R
² 

Riparian -4.5* 49.7* 63.6* 35.7* 5.4* 82.3* 45.1* 35.9* -1.7* 

Broadleaf -56.3* -63.3* -58.9* -46.9* -51.0* -58.0* -39.7* -46.7* -59.0* 

Coniferous -44.1* -45.7* -22.4* -41.5* -52.5* -70.1* -63.9* -59.3* -32.3* 

Mixed 56.9* 96.2* 28.1* -38.5* 15.0* 70.5* 14.2* -30.8* 83.0* 

rR
M

S
E

 Riparian 14.9* 85.0* 92.6* 69.6* 22.3* 114.0* 70.0* 53.9* 9.6* 

Broadleaf -55.0* -62.1* -58.8* -44.8* -48.4* -56.0* -36.7* -43.6* -55.9* 

Coniferous -43.6* -43.9* -21.7* -43.5* -51.5* -68.2* -64.0* -60.2* -30.9* 

Mixed 75.0* 137.8* 49.8* -37.9* 31.8* 89.1* 36.2* -23.2* 110.1* 

M
P

E
 

Riparian 42.9* 64.5* 122.1* 64.9* 41.5* 70.5* 32.0* 36.5* 17.5* 

Broadleaf -42.4* -54.6* -54.4* -36.6* -49.3* -54.5* -22.9* -18.8* -38.2* 

Coniferous -13.3* -23.0* -16.2* 4.0* -11.0* -34.9* -40.0* -13.1* -1.3* 

Mixed 22.7* -0.3* -8.8* -42.5* 34.7* 62.0* 28.1* -11.1* 96.3* 

Table 14: Scenario-wise percentage changes in the standard deviations of distributions  of goodness-of-fit criteria using voxel 

metrics for the predictions of Vtot. Values in red indicate a deterioration. All comparisons were significant (*) except for those 

in bold All comparisons were significant (*) except for those in bold (colour) 

B.2 BA and Vtot predictions for conventional using voxel metrics  

Goodness-of-

fit 
Forest type 

Basal area Total volume 

W/ reference 

metrics 

W/ voxel 

metrics 

W/ reference 

metrics 

W/ voxel 

metrics 

R² 

Riparian 0.51 0.6 0.58 0.66 

Broadleaf 0.35 0.43 0.49 0.53 

Coniferous 0.29 0.34 0.27 0.27 

Mixed 0.44 0.6 0.51 0.64 

rRMSE 

Riparian 20 18.04 22.72 20.50 

Broadleaf 35.46 33.18 38.85 37.17 

Coniferous 36.33 35.24 43.95 43.90 

Mixed 37 32 40.3 34.5 

MPE 

Riparian -4.24 -3.64 -4.91 -4.14 

Broadleaf -13.38 -16.43 -14.33 -16.47 

Coniferous -14.89 -15.85 -19.66 -21.40 

Mixed -16 -13.5 -18.6 -14.7 

Table 15: Goodness-of-fit criteria for predictions of BA and Vtot for conventional models built with reference and voxel 

metrics 
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