
HAL Id: tel-03956192
https://pastel.hal.science/tel-03956192

Submitted on 25 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solvatation implicite généralisée pour les systèmes finis
et infinis périodiques

Dario Vassetti

To cite this version:
Dario Vassetti. Solvatation implicite généralisée pour les systèmes finis et infinis périodiques. Chimie
analytique. Université Paris sciences et lettres, 2021. Français. �NNT : 2021UPSLC010�. �tel-
03956192�

https://pastel.hal.science/tel-03956192
https://hal.archives-ouvertes.fr


Préparée à l’École nationale supérieure de chimie de Paris

Generalized implicit solvation for finite and infinite periodic
systems

Solvatation implicite généralisée pour les systèmes finis et
infinis périodiques

Soutenue par

Dario Vassetti
Le 29/10/2021

École doctorale no388
Chimie Physique et Chimie
Analytique de Paris-Centre

Spécialité
Chimie Physique

Composition du jury :

M. Alexis MARKOVITS
Professeur, Sorbonne Université , France Président

M. Frédéric CASTET
Professeur , Université de Bordeaux, France Rapporteur

M. Michel RERAT
Professeur , Univ. de Pau et des pays de l’Adour, France Rapporteur

Mme Silvia CASASSA
Professeur, Université de Turin, Italie Examinateur

M. Frédéric LABAT
Maître de Conférences, Chimie ParisTech, France Directeur de thèse





Acknowledgments

First, I would like to thank all members of the dissertation committee for their time, and
for having accepted to review and examine my thesis work.

I would then like to thank my supervisor, Dr. Frédéric Labat, for the opportunity
to work at Chimie ParisTech. In particular, for your in�nite patience, help, and advice
throughout these three years of PhD. You have been a great supervisor, giving me the time
to explore the various topics and you have always been available for my many doubts and
questions.

I would also like to thank both past and present members of the CTM group which
have accompanied me in these last three years of my life. The pleasant and friendly work
environment has made the years �y by fast, and helped more than words can tell.

Even if far, I would like to thank my friends in Florence (especially the ones that kept
me company for many years, and many hours, on the bench outside the library), as without
you I probably would not have endured those many years of university, and I would also
like to thank all the people and friends I meet here at Chimie ParisTech.

I would also like to greatly thank my family, especially my mother and my sister, for
their constant support throughout the years. You have allowed me too �nish my studies
without worries and is thank too you that I could have this experience in Paris.

Finally, I would like to thank Christelle for her love and support throughout these years
of PhD. Thank you for your patience (especially during my long monologues and complaints
about society), and the wonderful time and experiences we have passed together.



ii



Contents

Resume de these en francais xi

General context xiii

Méthodologie xvii

Principaux résultats et conclusions obtenus xxiii

Context and Thesis Outline 1

1 Electronic Structure methods 5
1.1 Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 The Born-Oppenheimer Approximation . . . . . . . . . . . . . . . . . 6
1.2 Hartree-Fock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Limits of the Hartree-Fock approach . . . . . . . . . . . . . . . . . . 10
1.3 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Exchange-Correlation Energy Functionals . . . . . . . . . . . . . . . 13
1.4 Periodic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.1 Localized Basis Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.2 Plane Wave Basis Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.3 Surface Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Implicit Solvation Models: State of the Art 23
2.1 Solvation Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Electrostatic Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 The Electrostatic Problem: Poisson Equation . . . . . . . . . . . . . 25
2.2.1.1 Self-Consistent Reaction Field Formalism . . . . . . . . . . 27
2.2.1.2 Poisson-Boltzmann . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.1.3 Atomic Point Charge Approximation . . . . . . . . . . . . . 30

2.2.2 Overview of Numerical Methods . . . . . . . . . . . . . . . . . . . . . 30
2.2.2.1 Boundary Element Method . . . . . . . . . . . . . . . . . . 30
2.2.2.2 Finite-Di�erence Method . . . . . . . . . . . . . . . . . . . 32

2.2.3 Cavities De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.4 Born and Generalized Born Model . . . . . . . . . . . . . . . . . . . 37
2.2.5 Multipolar Expansion Methods . . . . . . . . . . . . . . . . . . . . . 38
2.2.6 Apparent Surface Charge Formalism . . . . . . . . . . . . . . . . . . 40

2.2.6.1 D-PCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.6.2 C-PCM and COSMO . . . . . . . . . . . . . . . . . . . . . 42
2.2.6.3 IEF-PCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



iv CONTENTS

2.3 Non-Electrostatic Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.1 Cavitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.2 Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.3 Repulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.4 SASA based models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.4.1 Cavity Dispersion and Solvent structural e�ects: CDS . . . 49
2.3.4.2 SCCS and SCCS-P . . . . . . . . . . . . . . . . . . . . . . . 50
2.3.4.3 xESE and uESE . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4 Periodic Implicit Solvation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4.1 Smooth Cavity Periodic Models . . . . . . . . . . . . . . . . . . . . . 53
2.4.2 Periodic C-PCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Implicit solvation in Crystal 57
3.1 Electrostatic Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1.1 Finite-Di�erence Generalized Poisson . . . . . . . . . . . . . . . . . . 58
3.1.1.1 Atomic Charge Models . . . . . . . . . . . . . . . . . . . . . 62

3.1.2 Apparent Surface Charges . . . . . . . . . . . . . . . . . . . . . . . . 65
3.1.3 Solvent Excluded Surface . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.1.4 Self-Consistent Reaction Field . . . . . . . . . . . . . . . . . . . . . . 68

3.2 Non-Electrostatic Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2.1 Cavity, Dispersion, and Solvent Structural E�ects Model . . . . . . . 71

4 Analytical calculation of the SASA and its nuclear gradients by stereo-
graphic projection 75
4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1.1 SASA calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.1.2 SASA nuclear gradients calculation . . . . . . . . . . . . . . . . . . . 81
4.1.3 Algorithm structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.1 Total and atomic SASA . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3.1.1 Mobley test set . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3.1.2 42 proteins test set . . . . . . . . . . . . . . . . . . . . . . . 85
4.3.1.3 SASA size-extensivity for periodic systems . . . . . . . . . . 85
4.3.1.4 HCOOH/NiO (100) . . . . . . . . . . . . . . . . . . . . . . 86

4.3.2 SASA gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.2.1 Mobley test set . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.2.2 Helix model of poly-glycine and HCOOH/NiO (100) . . . . 89

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Calculating solvation energies with FDPB: e�ects of the atomic charge
and non-electrostatic models 91
5.1 Review of the Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.1 ∆Gne contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.2 ∆Gel contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.2.1 Atomic charge and level of theory e�ects . . . . . . . . . . . 96



CONTENTS v

5.3.2.2 Basis set dependence . . . . . . . . . . . . . . . . . . . . . . 97
5.3.3 Combined e�ects on ∆Gsolv . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.4 Improving CM5 performances: scaling atomic charges . . . . . . . . . 100
5.3.5 E�ects of the charge model on the SCRF performance . . . . . . . . . 102
5.3.6 E�ects of the charge model on charged molecules . . . . . . . . . . . 103

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Revised CDS model for FDPB calculations: parametrisation and exten-
sion to ionic solutes 107

6.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.1.1 Electrostatic Contribution . . . . . . . . . . . . . . . . . . . . . . . . 108
6.1.2 Non-Electrostatic Contribution . . . . . . . . . . . . . . . . . . . . . 108
6.1.3 Solvation Energy Correction for Charged Species . . . . . . . . . . . 110
6.1.4 Training Set and Parameters Optimization . . . . . . . . . . . . . . . 111

6.1.4.1 Training set . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.1.4.2 CDS parameter optimization . . . . . . . . . . . . . . . . . 111
6.1.4.3 Charged species correction and parameter optimization . . . 113

6.2 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3.1 Neutral solutes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.3.1.1 Finite molecular solutes . . . . . . . . . . . . . . . . . . . . 115
6.3.1.2 Wetting of TiO2 anatase (101) . . . . . . . . . . . . . . . . 120

6.3.2 Ionic solutes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3.2.1 Free energies of solvation . . . . . . . . . . . . . . . . . . . . 123
6.3.2.2 pKa evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 Towards electrostatic forces in FDPB 129

7.1 Overview of dielectric boundary forces . . . . . . . . . . . . . . . . . . . . . 130
7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.2.1 Electric and Displacement �elds calculation . . . . . . . . . . . . . . 133
7.3 Model Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.3.1 Two-atoms System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.3.2 Three-atoms System . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.4 Molecular Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8 Conclusions and Perspectives 139

A Partial derivatives of the curve integrals for SASA gradients 145

A.1 Evaluation of
∂Iij,λ

∂(aij ,bij ,cij ,dij)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.2 Evaluation of
∂Iij,λ

∂(aik,bik,cik,dik)
and

∂Iij,λ

∂(ail ,bil ,cil ,dil)
. . . . . . . . . . . . . . . . . . . . 151

B E�ects of the grid spacing on the solvation energy 153

B.1 1-2 dichloroethane: grid spacing e�ects . . . . . . . . . . . . . . . . . . . . . 153
B.2 Ions: grid spacing e�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154



vi CONTENTS

C Ions: E�ects of the charge and non-electrostatic models 157
C.1 ∆Gne distributions for ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
C.2 E�ects of the charge model on the SCRF performance . . . . . . . . . . . . . 159



List of Acronyms

List of the main acronyms used throughout this thesis:

AO Atomic Orbital
ASC Apparent Surface Charges
BEM Boundary Element Method
BGP Boundary Grid Points
BZ Brillouin Zone
CDS Cavity, Dispersion, Solvent structural e�ects
CM5 Charge Model 5
COI Circle of Intersection
DFT Density Functional Theory
ECP E�ective Core Potential
ESP ElectroStatic Potential �tted atomic charges
FD Finite-Di�erence
FDM Finite-Di�erence Method
FDPB Finite-Di�erence Poisson-Boltzmann
FEM Finite-Element Method
GBA Generalized Born Approximation
GGA Generalized Gradient Approximation
GH Global Hybrid
GTF Gaussian Type Function
HF Hartree-Fock
KS Kohn-Sham
HPA Hirshfeld Population Analysis
IEF Integral Equation Formalism
LDA Local Density Approximation
MD Molecular Dynamics
MO Molecular Orbital
MPE Multipolar Expansion
MUD Mean Unsigned Di�erence
MUE Mean Unsigned Error
PAW Projector Augmented Wave
PBC Periodic Boundary Conditions
PCM Polarizable Continuum Model
QM Quantum-Mechanics
RF Reaction Field
RMSE Root Mean Square Error
RUE Relative Unsigned Error
SASA Solvent-Accessible Surface Area
SCF Self-Consistent Field
SCRF Self-Consistent Reaction Field
SES Solvent-Excluded Surface
SMx Solvation Model x (x=6,8,12,D)
O-SOR Optimal-Successive Over Relaxation
SP Stereographic Projection
SPT Scaled Particle Theory
SR Shrake and Rupley algorithm
STF Slater Type Orbital
vdW van der Waals



viii CONTENTS



List of Publications

Publications

[3] Can O§uz, I, Vassetti, D, Labat, F. "Assessing the performances of di�erent contin-
uum solvation models for the calculation of hydration energies of molecules, polymers and
surfaces: a comparison between the SMD, VASPsol and FDPB models." , Theor. Chem.
Acc., invited article for a special collection devoted to Young Investigators in the �eld of
Theoretical and Computational Chemistry, 140, 99 (2021)

[2] Vassetti, D, Labat, F. "Evaluation of the performances of di�erent atomic charge and
non-electrostatic models in the �nite-di�erence Poisson�Boltzmann approach.", Int. J.
Quantum Chem. 2021; 121:e26560.

[1] Vassetti, D, Civalleri, B, Labat, F. "Analytical calculation of the solvent-accessible
surface area and its nuclear gradients by stereographic projection: A general approach for
molecules, polymers, nanotubes, helices, and surfaces", J. Comput. Chem. 2020; 41: 1464�
1479.

Accepted for publication

[1] Vassetti, D, Can O§uz, I, Labat, F. "Generalizing continuum solvation in Crystal to
non-aqueous solvents: implementation, parametrization and application to molecules and
surfaces.", submitted for publication to J. Chem. Theory Comput.

Publications in development

[3] Vassetti, I, Civalleri, B, Labat, F. "Solvation forces in self-consistent reaction-
�eld �nite-di�erence approaches: implementation and application to
�nite and in�nite periodic systems".

[2] Vassetti, I, Labat, F. "A simple non-electrostatic model based on the Solvent-Accessible
Surface Area and the solvent dielectric constant for FDPB- and IEF- based electrostatics"

[1] Vassetti, D, Labat, F. "A new parametrization of the VASPsol continuum solvation
model for non-aqueous solvents".



x CONTENTS



Resume de these en francais



xii CONTENTS



General Context

Les e�ets des solvants jouent un rôle fondamental dans de nombreuses propriétés physiques
et chimiques de la matière [1, 2, 3, 4, 5]. Par exemple, les couleurs de certaines molécules
peuvent être a�ectées par des déplacements de la position des bandes dans les spectres
optiques [6, 7, 8], dus au fait que le solvant modi�e la stabilité des états excités, et la
réactivité chimique d'une molécule change sous l'e�et catalytique du solvant [5, 9, 10] en
raison du changement de stabilité d'une con�guration d'état de transition. Ainsi, la prise
en compte des e�ets du solvant et plus généralement de l'environnement dans les calculs
de la mécanique quantique (MQ) est cruciale pour mieux modéliser, comprendre et prévoir
les propriétés physiques et chimiques d'un système.

Du point de vue de la modélisation chimique quantique, il existe deux approches princi-
pales pour modéliser un solvant et prendre en compte les e�ets de solvatation, ces approches
sont généralement appelées modèles de solvatation explicite et implicite [11, 12, 13, 14].

Les modèles de solvatation explicites sont conceptuellement simples, car les coordonnées
atomiques composant une molécule de solvant sont traitées de manière explicite en tenant
compte des interactions intermoléculaires directes et spéci�ques qui se produisent entre un
soluté et un solvant, comme la liaison hydrogène, ainsi que des interactions au sein du
solvant lui-même. La Fig. 11a montre un de ces modèles pour une molécule générique
dans l'eau. Cette approche de la modélisation du solvant dans un calcul QM est donc
intuitive, et o�re une image sensible d'un système solvaté en prenant pleinement en compte
les complexités de l'environnement, et o�re ainsi le niveau le plus détaillé de description
des e�ets de solvatation. La prise en compte de ces complexités est malheureusement aussi
l'inconvénient et le facteur limitant de ces approches explicites, surtout en MQ, car le coût
de calcul augmente régulièrement avec le nombre d'atomes dans un système. Par exemple,
les codes informatiques courants pour l'étude de la structure électronique avec des méthodes
telles que la théorie de la fonction de densité (DFT) s'échelonnent avec la taille des atomes
du système (O(N3)) [15]. On peut alors voir comment l'inclusion de quelques molécules de
solvant, même relativement petites, telles que l'eau, peut augmenter considérablement les
temps de calcul, les rendant excessivement longs, voire impossibles à réaliser, en particulier
dans le cas de solvants organiques plus grands en raison des nombreux degrés de liberté.
De plus, les modèles explicites de solvant nécessitent l'échantillonnage d'un grand nombre
de conformations soluté/solvant [16] pour avoir une description entièrement réaliste d'un
système, et pour e�ectuer une analyse statistique a�n d'obtenir les propriétés du système.
Ceci aggrave encore le coût de calcul de ces modèles, les reléguant à la mécanique moléculaire
(MM) [17, 18, 19], ou à des méthodes hybrides telles que QM/MM [20, 21, 22].

Une approche alternative au traitement explicite du solvant est celle suivie dans la sol-
vatation implicite [23, 24, 25, 26]. Dans ces modèles de solvatation, la structure atomique
et la densité de charge du solvant sont remplacées par un milieu continu, sans structure,
polarisable et dé�ni uniquement par sa permittivité relative statique ε. En raison de la
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nature sans structure de ce milieu diélectrique, une surface ad hoc (généralement appelée
cavité du soluté, et représentée sur la Fig. 11c pour une molécule générique) doit être
dé�nie pour servir d'interface entre la région atomique du soluté caractérisée par ε = 1 et le
milieu diélectrique caractérisé par la permittivité relative du solvant. Le remplacement des
degrés de liberté du solvant par ce milieu diélectrique réduit considérablement le temps de
calcul nécessaire pour inclure les e�ets de solvatation dans un calcul QM et, en outre, sup-
prime la nécessité d'échantillonner la conformation du soluté/solvant, car l'électrostatique
globale du solvant est approximée par un e�et de champ moyen décrit par la permittivité
relative du solvant. En tant que tels, les modèles de solvatation implicites échangent des
interactions intermoléculaires soluté/solvant spéci�ques, telles que la liaison hydrogène, et
d'autres interactions non électrostatiques, comme la dispersion et la répulsion, contre une
e�cacité de calcul permettant l'introduction d'e�ets de solvatation dans les calculs QM de
grands systèmes à un coût de calcul raisonnable. Il est intéressant de noter que certaines des
limitations des modèles de solvatation implicites peuvent être surmontées en considérant
un nombre limité de molécules de solvant dans la cavité du soluté, ce qui donne lieu à une
approche hybride qui porte généralement le nom de modèle cluster-continuum [27, 28, 29],
et qui est illustrée à la Fig. 11b.

(a) Explicit Solvation (b) cluster-continuum solvation (c) Implicit Solvation

Figure 1: Représentations des modèles de solvatation (a) Explicite, (b) cluster-continuum,
et (c) Implicite. En bleu clair, la cavité du soluté séparant la région atomistique du soluté
et le milieu diélectrique caractérisé par la permittivité relative ε.

C'est pour ces raisons que des modèles de solvatation implicites ont été développés et
implémentés dans de nombreux codes de QM courants [30, 31, 32, 33, 34, 35]. Au départ,
ces modèles étaient principalement axés sur les systèmes moléculaires �nis typiques de
la chimie organique, puis sur les molécules d'intérêt biologique présentes dans l'eau. Les
développements de ces modèles pour les systèmes périodiques, tels que les polymères et
les surfaces, ont été moins nombreux. Cela s'explique en partie par les di�cultés liées à
la nature périodique du système qui complique les équations dans le formalisme de la MQ
et dans le problème électrostatique, et par un manque général de données expérimentales
disponibles, ce qui rend les validations des modèles de solvatation implicites périodiques
plus di�ciles que leurs homologues non périodiques, qui peuvent compter sur une grande
variété de bases de données pour les tests et le développement [36, 37, 38].

L'objectif de cette thèse est donc de développer et d'implémenter un modèle de sol-
vatation implicite pour les systèmes périodiques et non périodiques, dans le but de mieux
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modéliser les matériaux en incluant un environnement plus réaliste et plus proche des con-
ditions expérimentales. L'implémentation et le développement sont faits dans Crystal
[31, 39], un programme de calcul de la structure électronique de molécules, de polymères,
de nanotubes, d'hélices, de surfaces et de cristaux, tant au niveau de la théorie de Hartree-
Fock (HF) que de la théorie de la fonction de densité (DFT), en utilisant des combinaisons
linéaires de fonctions gaussiennes centrées sur les atomes.
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Méthodologie

L'énergie libre de solvatation d'un soluté est dé�nie comme le travail thermodynamique
réversible de transfert d'une molécule entre un gaz idéal et un solvant à une pression et une
température �xes. Elle a été utilisée pour évaluer la précision du modèle de solvatation
implicite dans Crystal.

Pour une conformation donnée, l'énergie libre de solvatation ∆Gsolv est généralement
séparée en deux contributions représentant des phénomènes physiques di�érents, et ap-
pelées changements d'énergie libre électrostatique ∆Gel et non électrostatique ∆Gne, ou
simplement énergies :

∆Gsol = ∆Gel + ∆Gne. (1)

La contribution électrostatique est liée au travail nécessaire pour polariser le système
soluté-solvant. D'un point de vue physique, ces e�ets de polarisation électronique et nu-
cléaire soluté-solvant proviennent de la réponse électrostatique à courte et longue portée
du solvant diélectrique à la densité de charge du soluté ρ(r). Cette réponse est un champ
électrique appelé champ réactionnel (RF) [72], qui est responsable de la polarisation de la
densité de charge du soluté. À son tour, cette polarisation induit une autre polarisation
dans le diélectrique, ce qui conduit à un processus autocohérent de polarisation mutuelle
entre le soluté et le solvant, appelé champ réactionnel autocohérent (SCRF) [79].

La contribution non-électrostatique n'est pas liée à un seul e�et, mais à un terme
générique représentant plusieurs d'entre eux que l'on trouve dans la première sphère de
solvatation, et qui ne peuvent pas être directement pris en compte en considérant le solvant
comme un milieu diélectrique caractérisé uniquement par la constante diélectrique ε, comme
mentionné précédemment. Les principaux e�ets sont la répulsion de Pauli à courte portée
∆Grep, les interactions attractives de dispersion ∆Gdis, la liaison hydrogène ∆Ghb, et la
cavitation ∆Gcav, qui est dé�nie comme le travail nécessaire pour former une cavité à
l'intérieur du milieu diélectrique dans lequel elle sera placée. En première approximation,
chaque phénomène est traité indépendamment des autres et l'énergie non électrostatique
peut être décomposée en une somme de chaque contribution :

∆Gne = ∆Grep + ∆Gdis + ∆Ghb + ∆Gcav. (2)

Il est clair que les équations 1 et 2 sont une approximation, car ces phénomènes ne sont
pas totalement indépendants les uns des autres. A la lumière de ceci, et du fait que les
contributions électrostatiques et non-électrostatiques ne sont pas des observables physiques
directes, contrairement à l'énergie de solvatation, la séparation permet un traitement sim-
pli�é capable de prédire les énergies de solvatation avec une précision bien supérieure à
l'incertitude des données expérimentales pour la plupart des solutés neutres, et proche de
l'incertitude expérimentale pour les espèces chargées.
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Contribution électrostatique

La contribution électrostatique est calculée par une méthode SCRF [79] où les e�ets de
polarisation de surface à l'interface soluté-solvant sont pris en compte par des charges de
surface apparentes (ASC) projetées sur la cavité du soluté [73], et où le problème électro-
statique sous-jacent est traité par une approche en di�érences �nies (FD) pour résoudre
l'équation de Poisson généralisée [289].

L'équation de Poisson généralisée relie la densité de charge du soluté ρ(r) au potentiel
φ(r) qu'elle génère, en tenant compte du milieu diélectrique par le biais de la permittivité
relative ε(r), et est donnée par :

∇[ε(r) · ∇φ(r)] = −4πρ(r) =
atoms∑

i

qiδ(r − ri), (3)

où la densité de charge du soluté ρ(r) est ici discrétisée sous forme de charges ponctuelles
atomiques qi.

L'utilisation d'une cavité de soluté [169, 170] à surface exclue du solvant (SES) pour
séparer la région atomistique Ωin, où les atomes sont traités explicitement, de la région du
solvant Ωout, dé�nit la permittivité relative comme une fonction échelon de la position :

ε(r) =

{
εin if r ∈ Ωin

εout if r ∈ Ωout,
(4)

où εin est égal à 1 dans la région atomique Ωin, et εout est égal à la permittivité relative du
solvant dans la région du solvant Ωout, comme le montre la �gure 2a.

Les solutions analytiques de l'équation de Poisson généralisée ne peuvent être obtenues
que pour des géométries de cavités simples (par exemple, sphères et ellipsoïdes), alors que
les méthodes numériques sont nécessaires pour les cavités de formes moléculaires. Ainsi,
pour résoudre numériquement l'équation de Poisson généralisée, une méthode FD a été
utilisée, dans laquelle les propriétés physiques du système sont cartographiées sur une grille
avec un espacement h et les dérivées sont résolues numériquement aux n÷uds de la grille,
chacun étant caractérisé par trois entiers (i, j, k) dé�nissant sa position dans l'espace. Un
exemple de grille FD pour un système moléculaire �ni est présenté à la Fig. 2a.
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Figure 2: (a) Exemple 2D d'une grille FD avec un espacement h. En gris, les n÷uds de grille
où l'équation de Poisson généralisée est résolue. En bleu, permittivité relative cartographiée
entre les n÷uds de la grille. En rouge, les points de la grille aux bords où les conditions aux
limites sont imposées, et en orange les points de grille des limites à l'interface soluté-solvant.
La région atomistique est indiquée par Ωin, et la région du solvant par Ωout. (b) Élément
de volume pour une grille cubique FD.
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La grille FD nécessite un certain nombre d'étapes préliminaires : (i) chargement de
la grille, lors de laquelle les charges atomiques du soluté qi sont distribuées sur la grille à
l'aide d'un algorithme d'interpolation inverse quadratique [288], (ii) attribution des valeurs
du diélectrique en chaque point de la grille, et (iii) imposition de conditions limites de
Dirichlet ou d'Ewald périodiques aux n÷uds de grille en bordure de domaine, en fonction
de la périodicité du système. Le potentiel est ensuite résolu de manière itérative à l'aide de
l'algorithme O-SOR (Optimal Successive Over Relaxation) [148, 149] en chaque n÷ud de
la grille.

En utilisant comme exemple un système moléculaire �ni et une grille FD avec un es-
pacement h, le potentiel en chaque n÷ud de grille φijk = φ(i, j, k) est alors donné par
:

φ0D
ijk =

1∑6
i εi

( 6∑

i

εiφi + 4π
qijk
h

)
, (5)

et dépend de la charge du soluté au n÷ud de grille qijk et de la permittivité relative aux
six n÷uds de grille adjacents, comme le montre également l'illustration 2b.

Cette approche est générale et peut également être appliquée aux systèmes périodiques
en une et deux dimensions, tels que des polymères et des surfaces, en utilisant des formules
d'Ewald pour des systèmes en périodicités réduites[290], et en imposant des conditions de
Dirichlet aux seules directions non périodiques. De plus, des grilles non cubiques peuvent
également être considérées[289].

Les potentiels convergés aux n÷uds de la grille sont ensuite utilisés pour calculer les
valeurs des ASC a�n de prendre en compte la polarisation de surface à l'interface soluté-
solvant, et sont déterminése à partir des potentiels électrostatiques convergés aux points
limites de la grille (BGP). Il s'agit de points spéciaux de la grille FD caractérisés par
la présence d'au moins un point voisin diélectrique dans un milieu diélectrique di�érent,
comme le montrent la Fig. 3.3a et la Fig.3.3b.
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Figure 3: (a) Focus sur un point de grille limite sur une grille de di�érences �nies cubique
en 2D, et (b) élément de volume élémentaire contenant un point de grille limite en son
centre en orange. L'interface soluté-solvant est représentée par un plan orange.

En utilisant à nouveau comme exemple une grille cubique avec un espacement h, l'ASC
qasc correspondant à un BGP est obtenu à partir de la valeur du potentiel convergé φBGP
à la position de la grille du BGP (i, j, k), et des potentiels φn aux n÷uds de grille voisins
(n ∈ [1; 6]), selon [289] :

qasc = −qBGP +
3h

2π

(
φBGP −

1

6

6∑

n

φn

)
, (6)
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où la charge du soluté qBGP à l'emplacement du BGP doit être retirée de l'ASC. Puisque
seule la polarisation de surface, et non de volume, est prise en compte dans le formalisme
FD-ASC, une procédure de renormalisation pour les ASC est également e�ectuée : [231].

Un potentiel d'interaction soluté-solvant Vint peut alors être dé�ni à partir de l'ASC
cartographié sur la surface exclue du solvant (SES) du soluté à partir du BGP. L'inclusion
de ce potentiel d'interaction dans l'hamiltonien de la phase gazeuse du soluté Hgas dé�nit
un hamiltonien soluté-solvant :

Hsolv = Hgas + Vint, (7)

qui permet un traitement en mécanique quantique des e�ets de polarisation, et les e�ets de
polarisation mutuelle soluté-solvant peuvent être pris en compte par une méthode itérative
de champ réactionnel autocohérent (SCRF) [79, 97], représentée schématiquement en Fig.
2.3.

Le ∆Gel est obtenu par la di�érence entre l'énergie du système soluté-solvant en inter-
action complète 〈ψs|Hgas +Vint |ψs〉, et la somme de l'énergie de la phase gazeuse du soluté
〈ψg|Hgaz |ψg〉 et de l'énergie du champ réactionnel ERF , selon :

∆Gel = 〈ψs|Hgas + Vint |ψs〉 −
(
〈ψg|Hgas |ψg〉+ ERF

)
, (8)

où ψs et ψg sont les fonctions d'onde du système solvaté et en phase gaz, respectivement.
L'énergie de champ réactionnel ERF est donnée par une somme d'interactions coulombiennes
entre le iime ASC qi et le potentiel du soluté φs(r) évalué à la position de ces charges ASC
(rasci ), selon :

ERF =
1

2
〈ψs|Vint |ψs〉 =

1

2

Nasc∑

i

qi · φ(rasci ). (9)

D'un point de vue physique, l'énergie de champ réactionnel ERF correspond au travail
nécessaire pour placer les ASC {qi}, aux positions rasci , dans le champ généré par la dis-
tribution de charge du soluté, et est également égale au travail non réversible nécessaire
pour polariser un diélectrique linéaire isotrope, et doit être enlevée pour obtenir le statut
d'énergie libre [25, 23]. Pour un système périodique, les ASC {qi} sont calculées dans la
maille unitaire de référence, et le potentiel du soluté φ est obtenu par les formules d'Ewald
[289] aux positions spatiales des ASC.

Figure 4: Flow chart for the SCRF process.
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Contribution non-électrostatique

L'énergie non électrostatique est liée à la surface accessible au solvant (SASA) [167, 168]
du soluté Am, et est donnée par la somme des surfaces des sphères centrées sur les atomes
Ai, selon :

A(Ri; rp) =
atoms∑

i

Ai(Ri + rp). (10)

où Ri sont les rayons dépendants des atomes des sphères, et rp est le rayon d'une sonde
sphérique de solvant ajoutée à chaque rayon atomique. Les contributions atomiques SASA
sont obtenues par une approche analytique de projection stéréographique qui a été implé-
mentée dans le code Crystal et généralisée aux systèmes périodiques [341]. Un exemple
de SASA est présenté en Fig. 2.10.

Figure 5: En orange, SASA d'une molécule de benzène, en noir et blanc les sphères dures
de van der Waals pour les atomes de carbone et d'hydrogène, respectivement.

La SASA est un composant de base du modèle de Cavitation, Dispersion and Structural
E�ects (CDS) [81, 80], pour lequel l'énergie non électrostatique ∆Gne est donnée par une
contribution pondérée des SASA atomiques Ai et moléculaire Am, selon :




∆GCDS
ne =

atoms∑

i

σiAi + σMAM

σi =

(
σ̃nzin+ σ̃αziα + σ̃βziβ

)
+
∑atoms

j 6=i

(
σ̃nzizjn+ σ̃αzizjα + σ̃βzizjβ

)
T ({zj, Rij})

σM = σ̃γγ + σ̃φ
2
φ2 + σ̃ψ

2
ψ2 + σ̃β

2
β2

(11)

les poids sont des tensions super�cielles atomiques σi et moléculaires σM (d'un point de vue
des unités), et dépendent d'un ensemble de descripteurs empiriques du solvant n, α, β, γ, ψ, φ
et de paramètres optimisables.

En particulier, les descripteurs empiriques sont : l'indice de réfraction n (à 293K), les
paramètres d'acidité α [311, 312, 313] et de basicité β [314] hydrogène d'Abraham, la tension
super�cielle macroscopique du solvant γ, le carré de la fraction d'atomes de solvant non
hydrogène qui sont des atomes de carbone aromatiques φ2, et le carré de la fraction d'atomes
de solvant non hydrogène qui sont F, Cl ou Br ψ2. Les paramètres optimisables sont plutôt
donnés par des paramètres dépendants du numéro atomique σ̃zi ainsi que des paramètres
de paires d'atomes σ̃zizj , plus quatre paramètres globaux indépendants des atomes σ̃. En
outre, une fonction de coupure T ({zj, Rij}) basée sur le numéro atomique et la distance de
la paire d'atomes Rij est utilisée pour dé�nir les types d'atomes.
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Principaux résultats et conclusions

obtenus

Cette thèse contient un total de 216 pages divisées en huit chapitres. Tout au long de
la thèse, l'énergie de solvatation a été utilisée pour évaluer les performances du modèle
de solvatation, et elle a été considérée comme la somme des contributions électrostatique
∆Gel et non-électrostatique ∆Gne. La contribution électrostatique a été prise en compte
par une méthode SCRF utilisant un formalisme ASC, où le problème électrostatique sous-
jacent est résolu numériquement par un schéma de Poisson généralisé FD, où la densité de
charge du soluté est approximée par des charges ponctuelles atomiques. La contribution
non-électrostatique représente les e�ets de solvatation restants qui ne sont pas pris en
compte par le modèle électrostatique, et est calculée e�cacement par un modèle basé sur la
SASA du soluté, car la majorité des e�ets non-électrostatiques concertent principalement
la première sphère de solvatation du soluté.

Dans le chapitre 4, une approche analytique pour calculer la SASA du soluté et ses gradi-
ents nucléaires basée sur une technique de projection stéréographique, valable àa la fois pour
les systèmes �nis et in�nis périodiques, a été implémentée dans le code Crystal [341]. Pour
les systèmes �nis, les SASA obtenues ont été comparées aux valeurs analytiques de référence
[330] avec un excellent accord, comme le montre la Fig. 4.8, tandis que pour les systèmes
périodiques in�nis, des tests d'extensivité de taille ont été réalisés avec succès. L'exactitude
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(a)

10−14 10−12 10−10 10−8 10−6 10−4 10−2 100 102
0

2000

4000

6000

2

41
29

35
73

43
9

3753210

|∆| (Å2)
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Figure 6: Histogramme des erreurs relatives non signées (en Å2) des SASA atomiques pour
les 501 molécules de l'ensemble de test de Mobley [38], par rapport à une autre approche
analytique de référence [330], obtenues soit avec l'algorithme analytique SP (à gauche), soit
avec l'algorithme numérique SR (à droite). SASA atomique de la molécule .

des gradients analytiques a également été con�rmée par l'excellent accord obtenu avec les
gradients numériques et l'invariance translationnelle trouvée pour les systèmes �nis et in�nis
périodiques. Les résultats globaux montrent que la technique de projection stéréographique
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est un moyen général, simple et e�cace pour calculer la SASA [341], qui est un composant
de base de nombreux modèles de solvatation non-électrostatiques précis et e�caces.

Dans le chapitre 5, comme le terme source de l'équation de Poisson généralisée est ap-
proximé par des charges ponctuelles atomiques, la procédure FDPB et le calcul de l'énergie
électrostatique dépendent du modèle de charge atomique considéré. Les e�ets de di�érents
modèles de charge et non électrostatiques sur l'énergie de solvatation ont été étudiés sur un
ensemble d'essai de 501 molécules neutres et 112 molécules chargées dans l'eau [38]. Pour la
contribution électrostatique, cinq modèles de charge di�érents ont été considérés : Mulliken
[291], Hirshfeld (HPA) [292], Hirshfeld-I (HPA-I) [293, 294], CM5 [194], et CM5-I [191], cal-
culés au niveau DFT avec la fonctionnelle B3LYP et au niveau HF avec les bases 6-31G,
6-311G(d,p) et 6-311++G(d,p). Pour le modèle non électrostatique, deux approches basées
sur la sSASA du soluté ont été explorés: le modèle αSASA et le modèle CDS. Ce dernier
utilise deux ensembles distincts de paramètres obtenus dans la littérature : CDS-CM5 et
CDS-ESP, développés à l'origine pour un modèle de solvatation basé sur l'approche GBA
[81].

Les valeurs de l'énergie électrostatique pour l'ensemble de test varient considérablement
en fonction des modèles de charge et du niveau de théorie considérés. En moyenne, les
énergies électrostatiques obtenues avec le modèle de charge Hirshfeld sont les plus faibles,
tandis que les valeurs calculées avec Hirshfeld-I sont les plus élevées, les autres modèles
de charge se situant entre les deux. Du point de vue du niveau de théorie, la méthode
HF donne globalement des énergies électrostatiques plus négatives par rapport à B3LYP en
raison des e�ets de surpolarisation, et le modèle de charge le moins dépendant de l'ensemble
de base est, du plus bas au plus élevé: Hirshfeld<CM5<CM5-I<Hirshfeld-I�Mulliken, ce
dernier modèle donnant des énergies de solvatation non physiques pour des ensembles de
base plus importants, comme le montre également la �gure 5.3. En outre, le modèle de
charge Mulliken présente des problèmes techniques dans la procédure de convergence SCRF
par rapport aux autres modèles de charge, augmentant le nombre total de cycles SCRF
nécessaires à la convergence et nuisant à la performance du modèle.
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Figure 7: Comparaison entre les valeurs de ∆Gel calculées avec B3LYP/6-311G(d,p) et
B3LYP/6-31G et B3LYP/6-311++G(d,p). Les données obtenues avec des charges de Mul-
liken (carrés rouges), Hirshfeld (cercles bleus) et CM5 (triangles verts) sont représentées.

En couplant la contribution électrostatique calculée avec les di�érents modèles de charge
avec les modèles non électrostatiques αSASA [289, 191], CDS-ESP et CDS-CM5 pour les
molécules neutres, seul un nombre limité de combinaisons a obtenu une erreur moyenne
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non signée (MUE) inférieure à 1,00 kcal/mol, notamment le modèle de charge Hirshfeld
avec CDS-ESP. En général, la surestimation de l'énergie électrostatique par la méthode HF
se traduit par une MUE plus élevée par rapport à B3LYP et de meilleures performances
sont observées lors de l'utilisation d'ensembles de base incluant des fonctions de di�uses.
La valeur de MUE élevée obtenue avec des charges CM5 en utilisant la paramétrisation
CDS-CM5 souligne également la faible transférabilité des paramètres d'origine du modèle
CDS obtenus avec une approche GBA à une approche FDPB.

Pour améliorer les performances des charges CM5 en utilisant un schéma FD et les
paramètres CDS-CM5 par défaut, un facteur d'échelle a été appliqué [191]. La valeur
du facteur d'échelle a été obtenue en minimisant l'erreur moyenne non signée (MUE) au
niveau de théorie B3LYP/6-311G(d,p) sur les 501 molécules neutres considérées comme un
ensemble de test, comme le montre la �gure 5.4. Le processus a donné deux minima avec
des MUE de 0,68 et 0,74 kcal/mol avec un facteur d'échelle de 0,52 et 0,73 pour les modèles
CDS-CM5 et CDS-ESP, respectivement.
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Figure 8: MUE du ∆Gsolv comparé aux valeurs expérimentales et terme électrostatique
moyen pour 501 molécules neutres en fonction du facteur d'échelle des charges CM5 s.
Le ∆Gel, obtenu au niveau B3LYP/ 6-311G en utilisant di�érents facteurs d'échelle s, est
combiné avec le ∆Gne obtenu avec les modèles ∝SASA, CDS-ESP et CDS-CM5. La ligne
en pointillés représente le seuil de 1,00 kcal/mol pour un MUE acceptable. La moyenne des
∆Gel (ligne noire pleine) et la dispersion de chaque distribution pour chaque valeur de s
(lignes verticales grises) sont également indiquées.

Pour les espèces chargées, Mulliken et le modèle de charge 0,52·CM5 ont donné de piètres
résultats, tandis que la performance des autres modèles de charge est fortement a�ectée par
le niveau de théorie. Contrairement aux molécules neutres, l'e�et de surpolarisation HF [80]
contribue à un MUE plus faible par rapport à B3LYP pour les anions. De bons résultats
sont obtenus en considérant la charge CM5 avec les paramètres CDS-CM5. En fait, cette
combinaison atteint un MUE de seulement 2,62 kcal/mol, une valeur dans l'incertitude
expérimentale de l'ensemble de test de 3,00 kcal/mol. En général, nous pouvons conclure
que la surpolarisation et le modèle de charge avec une magnitude de charge plus élevée
sont capables d'atteindre un MUE plus faible pour les espèces chargées négativement et
devraient être préférés. D'autre part, les performances pour les cations sont bien en deçà
de 3,00 kcal/mol pour toutes les combinaisons de modèles de charge et de modèles non
électrostatiques, à l'exception des modèles de charge de Mulliken et de 0,52 · CM5.

Bien qu'une bonne précision ait été atteinte dans la prédiction des énergies de solvatation
en utilisant les charges 0,52 ·CM5, les résultats sont limités aux molécules neutres, car les
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espèces chargées se sont révélées extrêmement sensibles aux variations des amplitudes de
charge et fortement dépendantes du niveau de théorie. En outre, la mise à l'échelle n'a
été véri�ée que pour le solvant aqueux. Cela a mis en évidence la nécessité de réoptimiser
les paramètres du modèle CDS et de développer des corrections spéci�ques aux espèces
chargées, tout en essayant de minimiser la dépendance du modèle au niveau de la théorie.

Dans le chapitre 6, le modèle de solvatation implicite a été étendu aux solvants non
aqueux, et le modèle CDS a été reparamétré pour les espèces neutres et étendu pour les
espèces chargées en considérant un terme correctif supplémentaire basé sur le paramètre
d'acidité d'Abraham du solvant. En particulier, la correction pour les espèces chargées est
additive à Eq. 2, et est donnée par :

∆Gion
ne = I(Q,C, k) ·

(
Aα

(1 + α2)
+B

)
AM (12)

où A, B et C sont des paramètres à optimiser, AM est la SASA totale du soluté, α est l'acidité
de liaison hydrogène d'Abraham du solvant et I(Q,C, k) est une fonction choisie pour passer
facilement des solutés neutres, chargés positivement et négativement sans discontinuité,
dé�nie comme suit :

I(Q,C, k) =
|Q|

1 + exp(k ·Q) + C
. (13)

Les tests du modèle CDS reparamétré et étendu ont été e�ectués en considérant les
énergies de solvatation pour des systèmes moléculaires �nis, les énergies de transfert entre
les solvants organiques et l'eau, les calculs de pKa dans un solvant aqueux, et les calculs de
structure de bandes sur un modèle slab d'une surface de TiO2.
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Figure 9: MUE moyenne (en kcal/mol) des énergies de solvatation pour chaque solvant
donnée en fonction de la constante diélectrique du solvant (ε), en utilisant les charges CM5
(croix rouges) et HPA (points bleus). Les lignes en pointillés colorés indiquent le MUE
moyen de chaque modèle de charge 0, 72 ± 0, 11 et 0, 64 ± 0, 09 kcal/mol pour les charges
CM5 et HPA, respectivement. La ligne pointillée noire souligne le seuil de 1,00 kcal/mol
visé pour les solutés neutres.

La reparamétrisation du modèle CDS est basée sur 10 niveaux de théorie donnés par la
combinaison de 5 fonctionnelles (B3LYP, B3PW, mPW1PW, PBE et PBE0) et 2 ensembles
de base (6-31G∗ et 6-311G∗∗). De plus, les modèles de charge HPA et CM5 ont été considérés
pour résoudre l'équation de Poisson généralisée en raison de leur plus faible dépendance au
niveau de théorie, et de leur plus grande stabilité, par rapport aux autres modèles de charge
[191]. Il en résulte un ensemble indépendant de paramètres pour chacun des deux modèles
de charge considérés.
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Pour le calcul des énergies de solvatation des systèmes moléculaires �nis, la base de
données MNSOL a été utilisée [36]. Cette base de données comprend 2523 espèces neutres,
91 solvants, et 327 espèces chargées dans 4 solvants, ainsi que 144 énergies libres de transfert
entre l'eau et 14 solvants organiques. Pour tester davantage la robustesse du modèle CDS
reparamétré et étendu, 83 calculs supplémentaires de pKa [363] dans l'eau ont été e�ectués.
Pour les systèmes périodiques, en raison du manque d'énergies de solvatation expérimentales
�ables, les résultats du modèle FDPB ont été comparés avec le modèle de solvatation
implicite de VASPsol en utilisant 3 solvants di�érents.

En commençant par les espèces neutres, de très bons résultats ont été obtenus pour
2523 combinaisons soluté/solvant neutre dans 91 solvants [36]. En fait, la plupart des MUE
calculées se situent sous le seuil de 1,00 kcal/mol pour des résultats acceptables, comme
le montre la Fig. 6.3,et il y a un bon accord global avec le modèle de solvatation SM12
utilisé comme référence. De plus, une très faible dépendance au niveau de théorie a été
observée pour les 10 niveaux de théorie, justi�ant le choix d'utiliser les charges CM5 et
HPA. En considérant une moyenne sur les 10 niveaux de théorie, le MUE de l'ensemble
des tests est de 0, 71 ± 0, 01 et 0, 64 ± 0, 01 kcal/mol avec les charges atomiques CM5 et
HPA, respectivement, et sont comparables aux 0,62 kcal/mol rapportés par le modèle de
solvatation SM12 au niveau B3LYP/6-31G∗ avec les charges atomiques CM5.

Des conclusions similaires aux molécules neutres peuvent être tirées en considérant les
144 énergies de transfert entre l'eau et 14 molécules organiques. Les valeurs MUE sont de
0, 71±0, 02 et 0, 86±0, 01 kcal/mol avec les charges atomiques CM5 et HPA, respectivement.
Ces valeurs sont à nouveau en accord avec la valeur du modèle SM12 de 0,60 kcal/mol au
niveau B3LYP/6-31G∗ avec les charges atomiques CM5.
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Figure 10: (a) Energies de solvatation totales calculées à l'aide des charges CM5 au niveau
B3LYP/6-311++G(d,p) pour 327 espèces chargées par rapport aux énergies de solvata-
tion expérimentales en utilisant la paramétrisation CDS originale et révisée, et le modèle
étendu. (b) Comparaison entre les valeurs pKa calculées et expérimentales pour 28 acides
carboxyliques (en noir), 10 amines aliphatiques (en rouge) et 45 thiols (en bleu) dans l'eau,
obtenues avec les charges CM5. Les lignes pointillées intérieures et extérieures représentent
des erreurs de ±1,00 et ±3,00 unités pKa, respectivement.

Pour les 327 espèces chargées dans quatre solvants di�érents [36], l'inclusion d'un terme
correctif basé sur le paramètre d'acidité d'Abraham du solvant améliore considérablement
le calcul des énergies de solvatation au niveau DFT. En fait, la MUE pour les anions est
réduite de moitié par rapport à celles obtenues avec le modèle CDS original, tandis que
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la MUE pour les cations est légèrement réduite. Pour les cations et les anions, la MUE
calculée est proche de l'incertitude expérimentale de 3,00 kcal/mol, comme le montre la
�gure 6.6a.

Le terme correctif a été testé plus en détails en e�ectuant des calculs de pKa en solvant
aqueux pour 83 molécules [363]. Les valeurs de MUE par rapport aux données expérimen-
tales sont de 1,18 et 2,09 unités pKa avec les charges atomiques CM5 et HPA, respective-
ment. Ces valeurs améliorent considérablement le modèle de solvatation SMD de référence
utilisant le modèle CDS, pour lequel une valeur MUE de 4,37 pKa unités a été rapportée
[363]. En particulier, lorsqu'on utilise les charges CM5, la majorité des valeurs pKa se
situent dans un seuil de 3,00 pKa unités pour lequel les résultats peuvent être considérés
comme acceptables, comme le montre la Fig. 6.6b.

En considérant un modèle slab d'une surface d'anatase TiO2, un très bon accord a égale-
ment été trouvé pour les énergies de solvatation calculées et les changements de structure de
bandes lors de la solvatation entre le modèle de Poisson en FD dans Crystal et le modèle
de solvatation implicite de VASPsol [281], comme le montre le Tab. 6.5. Lors du passage
de la phase gazeuse à l'eau, à l'acétonitrile ou au toluène, des tendances très similaires
peuvent être observées pour les énergies de solvatation, la stabilisation de la surface, et une
légère ouverture de la bande interdite et un déplacement vers le haut des bandes calculées
lors de la solvatation. Tous ces e�ets se sont avérés plus signi�catifs avec des solvants plus
polaires.

Water Acetonitrile Toluene
FDPB VASPsol FDPB VASPsol FDPB VASPsol

∆Gel −10.37 −10.94 −8.84 −8.32 −3.27 −1.17
∆Gne −0.69 +0.56 +0.52 +0.56 +0.22 +0.54
∆Gtot −11.06 −10.38 −8.32 −7.76 −3.05 −0.63

∆∆G
w/x
el � � +1.53 +2.62 +7.10 +9.77

Table 1: Energies libres totales de solvatation calculées (∆Gtot), composantes électro-
statiques (∆Gel) et non électrostatiques (∆Gne), d'un modèle slab d'une surafce de TiO2

anatase (101) à 10 couches de Ti, solvaté dans de l'eau, de l'acétonitrile et du toluène im-
plicites avec les modèles de solvatation FDPB et VASPsol. ∆∆G

w/x
el est la di�érence entre

les données ∆Gel calculées dans l'eau et dans les autres solvants. Toutes les données sont
en kcal/mol. Les charges atomiques CM5 ont été utilisées.

Ces résultats montrent que le modèle de Poisson en FD étendu et reparamétré est
capable d'obtenir des énergies de solvatation précises pour une large gamme de solvants
et de systèmes di�érents, tout en présentant une faible dépendance par rapport au niveau
de théorie, ce qui démontre la robustesse du modèle. Après avoir obtenu des énergies de
solvatation précises, les forces de solvatation pour l'optimisation de la géométrie d'un soluté
en solvant sont nécessaires comme étape �nale pour compléter le modèle.

Dans le chapitre 7, l'implémentation actuelle des forces de solvatation est détaillée. Elle
est considérée comme une somme de contributions non électrostatiques et électrostatiques.
Les forces non-électrostatiques précises et e�caces sont obtenues analytiquement à partir
du gradient de l'énergie non-électrostatique du modèle CDS, tandis que les forces électrosta-
tiques analytiques sont obtenues à partir d'une formulation basée sur les ASC développée
par Cai et al. [153], en utilisant une approche intégrale du tenseur des contraintes de
Maxwell.
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Les forces électrostatiques analytiques ont été testées sur des systèmes modèles à deux et
trois sphères chargeées, et se sont révélées qualitativement conformes aux résultats obtenus à
partir des forces calculées numériquement et des résultats du modèle de solvatation implicite
MIB [175], validant l'implémentation globale des forces.

Néanmoins, la conservation des forces reste un problème lors du passage à des systèmes
moléculaires �nis. Ceci peut être attribué à la discrétisation dépendante de la grille et
aux erreurs numériques qui peuvent être liées à: (i) la construction numérique des portions
réentrantes de la SES, (ii) la décomposition des forces s'exerçant sur la cavité aux deux
centres atomiques les plus proches, et (iii) l'interpolation unilatérale des champs électriques
à l'interface soluté/solvant. En tant que tel, pour obtenir des forces électrostatiques précises,
il faut encore améliorer la formulation de Cai et al. [153] en diminuant sa dépendance à
la grille FD par l'utilisation de techniques d'interpolation plus précises et en améliorant la
construction des portions réentrantes de la SES.

Dans l'ensemble, le modèle de solvatation implicite s'est révélé e�cace et robuste, ca-
pable de calculer e�cacement les énergies de solvatation pour de nombreux systèmes dans
di�érents environnements de solvant. Parallèlement à l'amélioration des forces électrosta-
tiques, les travaux ont également commencé sur les applications du modèle à des systèmes
d'intérêt chimique, tels que la réaction du monoxyde de carbone et de l'eau pour former de
l'hydrogène et du dioxyde de carbone sur une plaque de Pt(111) (également connue sous le
nom de réaction de déplacement du gaz vers l'eau) en considérant un solvant aqueux a�n
de tenir compte des e�ets environnementaux et de modéliser plus précisément la réaction.
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General Context

Solvent e�ects play a fundamental role in many physical and chemical properties of matter
[1, 2, 3, 4, 5]. For instance, the colors of some molecules can be a�ected by shifts in band
position in the optical spectra [6, 7, 8], due to the solvent altering the stability of excited
states, and the chemical reactivity of a molecule changing under the catalytic e�ect of the
solvent [5, 9, 10] due the stability change of a transition state con�guration. As such,
accounting for solvent and more in general environmental e�ects in Quantum-Mechanical
(QM) calculations is crucial to better model, understand, and predict both physical and
chemical properties of a system.

From the perspective of quantum chemical modeling two main approaches exist to model
a solvent and take in account solvation e�ects, these approaches are usually referred to as
explicit and implicit solvation models [11, 12, 13, 14].

Explicit solvation models are conceptually straightforward, as the atomic coordinates
composing a solvent molecule are treated explicitly accounting for direct, and speci�c,
intermolecular interactions that occur between a solute and a solvent, such as hydrogen
bonding, as well as interactions within the solvent itself. Fig. 11a shows one such models
for a generic molecule in water. This approach to modeling the solvent in a QM calculation is
thus intuitive, and o�ers a sensible picture of a solvated system by fully taking in account
the environment complexities, and thus o�ers the most detailed level of description of
solvation e�ects. Accounting for these complexities is unfortunately also the downside and
limiting factor of these explicit approaches, especially in QM, as the computational cost
steadily increases with the number of atoms in a system. For example, common computer
codes for the study of the electronic structure with methods such as Density Functional
Theory (DFT) scale with the size of atoms of the system (O(N3)) [15]. One can then see
how including even few, relatively small, solvent molecules such as water can dramatically
increase calculation times, rendering them excessively time consuming if not impossible to
perform, especially in the case of larger organic solvents due to the many degrees of freedom.
In addition, explicit solvent models require the sampling of a high number of solute/solvent
conformations [16] to have a fully realistic description of a system, and to perform statistical
analysis to obtain system properties. This further aggravates the computational cost of such
models, relegating them to Molecular Mechanics (MM) [17, 18, 19], or hybrid methods such
as QM/MM [20, 21, 22].

An alternative approach to explicitly treating the solvent is the one followed in implicit
solvation [23, 24, 25, 26]. In these solvation models the atomistic structure and charge
density of the solvent is replaced by a continuous, structure-less, polarizable media de�ned
uniquely by its static relative permittivity ε. Due to the structure-less nature of this dielec-
tric media an ad hoc surface (usually referred to as solute cavity, and shown in Fig. 11c for
a generic molecule) has to be de�ned which acts as interface between the solute atomistic
region characterized by ε = 1 and the dielectric media characterized by the solvent relative
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permittivity. The replacement of the solvent degrees of freedom with this dielectric media
drastically lowers the computational time required to include solvation e�ects in a QM cal-
culation and, in addition, removes the need of solute/solvent conformation sampling, as the
solvent bulk electrostatics are approximated through a mean-�eld e�ect described by the
solvent relative permittivity. As such, implicit solvation models trade speci�c intermolecular
solute/solvent interaction such as hydrogen bonding, and other non-electrostatic interac-
tions, like dispersion and repulsion, for computational e�ciency allowing the introduction
of solvation e�ects in QM calculations of large systems at a reasonable computational cost.
Worth noting is that some of the limitations of implicit solvation models can be overcomed
by considering a limited number of solvent molecules within the solute cavity giving rise
to a hybrid approach which usually goes under the name of a cluster-continuum model
[27, 28, 29], and shown in Fig. 11b.

(a) Explicit Solvation (b) cluster-continuum solvation (c) Implicit Solvation

Figure 11: Representations of (a) Explicit, (b) cluster-continuum, and (c) Implicit solvation
models. In light blue the solute cavity separating the solute atomistic region and the
dielectric media characterized by the relative permittivity ε.

For these reasons implicit solvations models have been developed and implemented in
many of the mainstream QM codes [30, 31, 32, 33, 34, 35]. Initially focusing mostly on �nite
molecular systems typical of organic chemistry, and later also on molecules of biological
interest in water, with fewer developments of such models for periodic systems, such as
polymer and surfaces. Some reasons for this can be traced back to di�culties related to the
periodic nature of the system complicating the equations in the QM formalism and in the
electrostatic problem, and a general lack of available experimental data, making validations
of periodic implicit solvation models more troublesome than their non-periodic counterparts,
which may count on a wide variety of databases for both testing and development [36, 37,
38].

The aim of this thesis is then to develop and implement an implicit solvation model
for both periodic and non-periodic systems, with the goal to better model materials by
including a more realistic environment closer to the experimental conditions.Implementation
and development is made in Crystal [31, 39], a program for the electronic structure
calculations of molecules, polymers, nanotubes, helices, surfaces, and crystals, at both the
Hartree-Fock (HF) and Density Functional Theory (DFT) levels of theory using linear
combinations of atom centred Gaussian functions.
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Outline of the Thesis

This manuscript is organized into seven chapters:

� Chapter I will introduce the Quantum Mechanical methods for the study of the
electronic structure of both molecular, and periodic systems used throughout this
thesis. In particular, it will �rst focus on Hartree-Fock (HF) and Density Functional
Theory (DFT) methods for �nite molecular systems, and will then focus on their
extension to periodic ones.

� Chapter II covers the State of the Art in implicit solvation, thus focusing on models
of both practical and historical signi�cance. Starting with the wide literature for �nite
molecular systems, and concluding with models for periodic systems. The solvation
free energy of a solute and its main contributions will be used as a guideline within
the chapter, due to its importance as a property that any solvation model should
accurately predict.

� Chapter III will focus on the implicit solvation model in Crystal. In particular, it
will discuss the various methods involved in the development of the model and their
interconnections. First, considering methods related to the dielectric media and the
solute cavity, and then methods to include non-electrostatic e�ects which are lost by
considering the solvent uniquely as a dielectric media.

� Chapter IV covers the implementation, and extension to in�nite periodic systems,
of an analytical method to compute the Solvent-Accessibile Surface Area (SASA) of a
solute and its nuclear gradients. The SASA is the starting point to e�ciently model
e�ects found in the �rst solvation shell which are not accounted for by approximating
the solvent as a dieletric structureless media, as it will be shown in the following
chapters.

� Chapter V explores the e�ects of atomic point charge models, and level of theory,
on the computation of the electrostatic contribution to the total solvation energy for
neutral and charged solutes in aqueous solvent. Furthermore, e�ects found in the
�rst solvation shell, which are neglected by approximating the solvent as a struc-
tureless dielectric media, are reintroduced by considering computationally e�cient
non-electrostatic models based on the solute SASA.

� Chapter VI will focus on the reparametrization of the non-electrostatic model, in-
troduced in chapter V, to nonaqueous solvents, and its extension to charged solutes.
Furthermore, the implicit solvation model is validated considering a large set of neu-
tral and charged solutes, transfer energies between organic and aqueous solvents,
computation of pKa's in water, and calculations on periodic systems in both aqueous
and nonaqueous environments.

� Chapter VII focuses on the current implementation of the electrostatic forces in
Crystal, and will cover the �rst tests on various model systems used to validated
the implementation; together with a comparison with other implicit solvation models.
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Chapter 1

Electronic Structure methods

This chapter will overview the main non-relativistic Quantum Mechanical (QM) methods
used throughout this thesis. Schrödinger equation and the Born-Oppenheimer approxima-
tion will be introduced �rst, followed by the Hartree-Fock (HF) and Density Functional
Theory (DFT) methods for the study of the electronic structure of quantum systems. First
focusing on their description for �nite molecular systems, and then to their extension to
the study of periodic systems such as surfaces.

1.1 Schrödinger Equation

The Schrödinger Equation is a linear partial di�erential equation that describes the quan-
tum state, also referred to as wave function, of a quantum-mechanical system [40, 41]. The
most general form is the time-dependent Schrödinger equation. This equation accounts for
the time t evolution of a quantum system ofN particles at a position r = {r1, r2, r3, ..., rN}:

i~
∂

∂t
|ψ(r, t)〉 = H |ψ(r, t)〉 , (1.1)

where H is the Hamiltonian operator corresponding to the total energy of the system
including both kinetic and potential energy, and ψ(r, t) is the time-dependent wave function
which describes the state of the system.

The time-dependent Schrödinger equation can be simpli�ed for stationary states and
described by a time-independent wave function:

H |ψ(r)〉 = E |ψ(r)〉 , (1.2)

where E corresponds to the total energy of the system. In this case the Hamiltonian H for
a system of N electrons, and M nuclei is, in atomic units, given by:

H = − 1

2

N∑

i

∇2
i

︸ ︷︷ ︸
Te

− 1

2

M∑

A

∇2
A

MA

︸ ︷︷ ︸
TN

−
N∑

i

M∑

A

ZA
RiA

︸ ︷︷ ︸
VeN

+
N−1∑

i

N∑

j>i

1

Rij

︸ ︷︷ ︸
Vee

+
M−1∑

A

N∑

B>A

ZAZB
RAB

︸ ︷︷ ︸
VNN

(1.3)

where the indexes i and j are used for electrons, and A and B are used for nuclei, RiA and
Rij are distances, MA is the mass, and ZA the charge of a nucleus A, respectively. The �rst
two terms are the electron Te and nuclear TN kinetic energies, the third and the fourth are
the electron-nuclear VeN and electron-electron Vee interaction potentials, and the last term
is the nuclear-nuclear interaction potential VNN .
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1.1.1 The Born-Oppenheimer Approximation

The Born-Oppenheimer approximation allows to further simplify Schrödinger equation by
decoupling the electronic and nuclear motions, and by considering the latter as stationary
[40, 41].

Physically, this approximation is justi�ed by the higher mass of the nuclei compared to
the mass of electrons. This mass di�erence allows the electrons to rapidly adapt to any
change in the nuclear con�guration, as opposed to nuclei which are a�ected by an average
electron distribution. Under these conditions the nuclei can be considered stationary, and
the nuclear kinetic energy term TN in the Hamiltonian can be neglected, while the nuclear-
nuclear interaction potential VNN becomes a constant.

As a result of considering the nuclei stationary the Hamiltonian can be reorganized as
sum of an electronic Hamiltonian Hel, which depends on the electrons coordinates r =
{r1, r2, ..., rN} and parametrically on the nuclear coordinates R = {R1,R2, ...,RN}, and
a nuclear Hamiltonian HNuc which depends uniquely on the nuclear coordinates:

H = Te + VeN + Vee︸ ︷︷ ︸
Hel

+VNN︸︷︷︸
Hnuc

, (1.4)

while the wave function can be factorized, and written as a product of a electronic ψel(r)
and nuclear ψnuc(R) wave function:

ψ(r,R) = ψel(r)ψnuc(R). (1.5)

Overall, the Born-Oppenheimer reduces the problem of solving Schrödinger equation to an
electronic problem:

Hel |ψel(r)〉 = Eel |ψel(r)〉 , (1.6)

and with the total energy of the system E, expressed as the sum of the nuclear Enuc and
electronic Eel energies:

E = Eel + Enuc. (1.7)

Eq. 1.6 can be solved exactly only for mono-electronic systems with no electronic repulsion.
Instead, approximate solutions have to be used for multi-electronic systems, as the electronic
wave function ψel(r) cannot be further factorized due to the electron-electron interaction
potential Vee. Various methods have been developed to solve Eq. 1.6, and this thesis will
focus on two methods in particular: Hartree-Fock (HF) and Density Functional Theory
(DFT).

1.2 Hartree-Fock

Hartree-Fock is a method to approximate the wave function and the energy of a multi-
electron system under the Born-Oppenheimer approximation [40, 41]. The initial assump-
tion of the method is that the wave function of a N electron system can be factorized,
meaning that the electronic wave function ψ = ψel(r1, r2, ..., rN ) can be written as a prod-
uct of mono-electronic wave functions φ(ri), called spatial orbitals, each dependent on the
coordinates of the ith electron, according to:

ψ(r1, r2, ..., rN ) =
N∏

i

φ(ri), (1.8)
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and the spatial orbitals φ(r) are assumed as orthonormal:

〈ψi(r)|ψj(r)〉 = δi,j (1.9)

where δij is the Kronecker delta for which δij = 0 if i 6= j, and δij = 1 if i = j. The
wave function of Eq. 1.8 corresponds to the wave function of a system of N non-interacting
electrons, and is called Hartree product [42].

The Hartree product is not su�cient to accurately treat a system of electrons, as it
does not account for the Pauli exclusion principle, for which the function of a system of
fermions (in this case electrons) should be antisymmetric to the exchange of two electronic
coordinates:

ψ(r1, r2) = −ψ(r2, r1). (1.10)

To correctly describe the multi-electron system both spin, and an antisymmetric wave
function have to be introduced.

To account for spin the spatial orbital of each electron has to be supplemented by two
orthonormal functions α(ω) and β(ω) describing the two possible spin states of the electron,
for which the spin coordinate ω is +1

2
for spin up (α) and −1

2
for spin down (β). As such,

each electron depends both on spatial r and spin ω coordinates x = {r, ω}, and for each
spatial orbital in Eq. 1.8 two spin-orbitals χ(x) can be de�ned [40, 41]:

χ(x) =

{
φ(r)α(ω)

φ(r)β(ω)
(1.11)

where the spin-orbitals are still orthonormal.
The antisymmetric behavior of the electronic wave function requires the de�nition of

a functional form allowing for sign change upon the exchange of two electrons spatial and
spin coordinates. This type of wave function is referred to as Slater determinant [43], and
is de�ned as:

ψ(x1,x2, ...,xN ) =
1√
N !

∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) · · · χN(x1)
χ1(x2) χ2(x) · · · χN(x2)

...
... . . . ...

χ1(xN) χ2(xN) · · · χN(xN)

∣∣∣∣∣∣∣∣∣

where 1√
N !

is a normalization constant. The Slater determinant satis�es Pauli exclusion
principle as the interchange of two electrons coordinates corresponds to the exchange of two
rows, and consequently to a sign change in the determinant. Furthermore, the determinant
is consistent with the principle of indistinguishability of identical particles, as electrons
occupy all χN spin-orbitals, and no one electron can be localized in a speci�c spin-orbital.

In contrast to the Hartree product, where electrons are fully independent from each
other, the Slater determinant accounts only partially for correlation between electrons. In
particular, it neglects the Coulomb correlation between electrons, but accounts for correla-
tion between electrons with parallel spin, also known as electron exchange, which prevents
two parallel-spin electrons from occupying the same region.

Considering a normalized wave function (〈ψ|ψ〉 = 1), the energy Eel of the system is
given by:

Eel = 〈ψ|Hel |ψ〉 , (1.12)
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where Hel is the electronic Hamiltonian de�ned in Eq. 1.4. This term can be rearranged
to better suit the problem at hand by de�ning a set of mono-electronic terms hi for each
electron i:

hi = −1

2
∇2
i −

M∑

A

ZA
RiA

, (1.13)

where the �rst term is the electron kinetic energy Te, and the second term is the electron-
nuclear interaction potential VeN . The electronic Hamiltonian Hel is then given by the sum
of hi over the N electrons and of the electron-electron repulsion Vee:

Hel =
N∑

i

hi + Vee (1.14)

Using this electronic Hamiltonian Hel, and the previously de�ned Slater determinant as
wave function the energy Eel, from Eq. 1.12, assumes the expression [40]:

Eel =
∑N

i 〈χi(1)|hi |χi(1)〉+ 1
2

∑N
i,j=1[〈χi(1)χj(2)| 1

Rij
|χi(1)χj(2)〉 − 〈χi(1)χj(2)| 1

Rij
|χj(1)χi(2)〉] (1.15)

where, due to the indistinguishability principle, the electrons coordinates can be replaced
with dummy variables 1 and 2 for an electron one, and for an electron two. This equation
can be written in a more compact form to simplify the notation:

Eel =
N∑

i

〈i|h |i〉+
1

2

N∑

i,j=1

[〈ij|ij〉 − 〈ij|ji〉] (1.16)

where 〈i|h |i〉 is a one electron integral, and the two electron contribution include two
seperate integrals [40, 41]: i) The Coulomb integral 〈ij|ij〉 accounts for the interaction
between the charge density with itself, as the electrostatic interaction is between charges
with the same sign, it is a repulsive term, and the contribution to the total energy is positive.
ii) The exchange integral 〈ij|ji〉 arises from the antisymmetry of the Slater determinant,
and as the integral is postive the contribution to the total energy will be negative, and thus
stabilizing.

Following the variational principle [40, 41], which states that the expectation value Eel
of a wave function is higher or equal to the exact ground state energy E0 of the system:

Eel = 〈ψ|Hel |ψ〉 ≥ E0, (1.17)

the goal of the Hartree-Fock method is to determine the set of spin-orbitals which minimize
the energy while staying orthonormal. This is accomplished by Lagrange's method of
undetermined multipliers, by de�ning a functional L[χi, χ2, ..., χN ] = L[χ], according to:

L[χ] = Eel[χ]−
∑

ij

εij[〈i|j〉 − δij], (1.18)

where εij are undetermined Lagrange multiplier, and by taking the �rst variation of δL[χ]
in respect to the spin-orbitals, and imposing it to be equal to zero:

δL[χ] = 0. (1.19)
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This mathematical condition is satis�ed when the spin orbital χi obeys the following equa-
tion:

[
hi +

N∑

j

(Jj −Kj)

]
χi(1) =

∑

j

εijχj(1), (1.20)

where the term within the square brackets in Eq. 1.20 is a one-electron operator called
Fock operator Fi:

Fi = hi +
N∑

j

(Jj −Kj)

︸ ︷︷ ︸
vHFi

. (1.21)

Within the Fock operator hi includes the kinetic energy, and nuclear attraction contribu-
tions, while the electron repulsion is included in the Hartree-Fock potential vHFi through
the Coulomb Jj and exchange Kj operators, de�ned as:

Jjχi(1) =

∫
χ∗j(2)

1

r12

χj(2)χi(1) dx2 (1.22)

Kjχi(1) =

∫
χ∗j(2)

1

r12

χi(2)χj(1) dx2. (1.23)

The potential vHFi accounts only for an average repulsion experienced by the ith electron
due to the remaining electrons, meaning that the charge distribution is �xed and no direct
correlation between electron pairs exists.

Nevertheless, Eq. 1.20 must hold for every spin orbital, and can be rewritten to obtain
the canonical Hartree-Fock equation after diagonalization through an orthogonal transfor-
mation [40, 41]:

Fiχi(1) = εiχi(1), (1.24)

where εj are the diagonal elements of the Fock operator, also called orbital energies:

δijεi = 〈χj(1)|F |χi(1)〉 , (1.25)

and which account for the kinetic, nuclear attraction, and electron repulsion energy of one
electron in the spin orbital χj(1).

The Hartree-Fock equations are non-linear, as the potential vHFi de�ned in Eq. 1.21 for
the ith electron depends on the spin orbitals of the remaining electrons. This requires a Self-
Consistent Field (SCF) method which iteratively optimizes the spin orbitals to minimize
the energy: starting from an initial guess for the spin orbitals the mean �eld felt by the
electrons is computed and the Hartree-Fock equations are solved giving new set of spin
orbitals. These spin orbitals are used to compute a new mean �eld, and so on iteratively
until self-consistency; meaning that the mean �eld, and the total electronic energy Eel, does
not change below a prede�ned threshold. The �nal spin orbitals are used within the Slater
determinant, and according to the variational principle, the corresponding energy Eel will
be an upper bound to the true ground state energy of the system E0.

A further approximation introduced in the HF method is expanding the spatial orbitals
{φi} as a Linear Combination of Atomic Orbitals (LCAO) {ϕi}, according to:

φi =
∑

µ

cµiϕµ, (1.26)
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where {cµi} are coe�cients of the linear expansion to be minimized through the HF method,
and the spatial orbitals φi (i ∈ [1;µ]) are usually referred to as molecular orbitals (MO).
The summation over µ in Eq. 1.26 ideally runs to in�nity, in what is called a complete basis
set, which would allow for the most accurate description of the system. In practice, the
MOs are expanded to a limited number of basis sets functions, in a compromise between
computational cost and accuracy. The basis set is formed by atomic orbitals (AO) {ϕi}
which are atom centered mono-electronic wave functions, and are typically expressed as
Slater Type Functions (STF), or through Gaussian Type Functions (GTF), as described
in 1.4.1 on page 18 for both molecular and periodic systems. The LCAO approximation
recasts Eq. 1.24 into the Roothaan-Hall equation:

FC = εSC, (1.27)

where F is the Fock matrix with elements Fµν = 〈ϕµ|F |ϕν〉 (the subscript i to the Fock
operator F has been neglected as electrons are indistinguishable), S is the AO overlap
matrix with elements Sµν 〈ϕµ|ϕν〉, and C is the square matrix of coe�cients. In contrast
to the Hartree-Fock equations the Roothaan-Hall equations have a matrix-form and can be
solved using standard linear algebra techniques e�ciently.

1.2.1 Limits of the Hartree-Fock approach

In the Hartree-Fock method the correlation between the electrons with parallel spin states
is fully taken in account through the exchange term, while the correlation between two
electrons with opposite spin states is neglected. This means that the probability of �nding
two electrons with opposite spin states occupying the same position in space is not zero, as
it should be. Then, in the limits of the non-relativistic Born-Oppenheimer approximation,
the Hartree-Fock ground state energy EHF

0 will be higher then the exact ground state
energy EEx.

0 of the system. The missing correlation energy Ecorr
0 can then be de�ned as the

di�erence between the exact and the Hartree-Fock energy:

Ecorr
0 = EEx.

0 − EHF
0 < 0, (1.28)

in the limit of a complete basis set. To overcome, the limitations of the Hartree-Fock
method in accounting for the missing electron correlation post-HF and Density Functional
Theory (DFT) methods have been developed. The latter method, has been widely used
throughout this thesis.

1.3 Density Functional Theory

Compared to the Hartree-Fock method (HF) the Density Functional Theory (DFT) [44, 45]
describes the system not via the multi electron wave function ψ(x) = ψ(x1,x2, ...,xN ), but
via the electron density ρ(r). The advantage is that while the multi electron wave function
ψ(x) is dependent on 4N coordinates (three spatial coordinates r, and one spin coordinate
ω) for each electron in the system, the electron density ρ(r) depends uniquely on three
spatial coordinates r, independently from the size of the system. Furthermore, the electron
density ρ(r) is a direct physical observable compared to ψ(x), which is instead merely a
mathematical object. Nevertheless, a relation also exists between the multi electron wave
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function ψ(x) and the electron density ρ(r), and is given by:

ρ(r) =

∫

r2

...

∫

rN

ψ∗(x)ψ(x)drN , (1.29)

with the integration over r giving the total number of electrons N of the system:

N =

∫

r

ρ(r) dr. (1.30)

In DFT, the detailed knowledge of the electron density is su�cient to determine all
physical properties of a system. In fact, within a non-relativistic Born-Oppenheimer ap-
proximation the Hamiltonian H, as de�ned in Eq. 1.1, can be determined by ρ(r). This
is demonstrated for the ground state properties of a N electron system in an external po-
tential vext by the two Hohenberg-Kohn (HK) theorems [46, 44, 45]. In particular, the two
theorems state that:

Theorem 1. In the case of a non-degenerate ground state, di�erent Hamiltonians cannot
have in common the same ground state electron density ρ(r). This allows to de�ne the
ground state energy as a unique functional of the electron density ρ(r):

E = E[ρ(r)]. (1.31)

Theorem 2. If the electron density ρ(r) is the actual ground state density of a system,
the functional E[ρ(r)] gives the lowest possible energy E. It is thus possible to �nd the
value of the energy of the ground state by minimizing the functional E[ρ(r)].

Under these conditions the energy of a system can be written as:

E[ρ(r)] = Te[ρ(r)] + Vee[ρ(r)] +

∫
ρ(r)vext(r) dr (1.32)

where Te[ρ(r)] is the electrons kinetic energy, Vee[ρ(r)] is the electron-electron interaction
potential, and the last term corresponds to the nuclear-electron interaction potential when
no further potential other than the nuclear one is considered. The Vee potential can be
further decomposed in the sum of two contributions:

Vee[ρ(r)] = J [ρ(r)] +K[ρ(r)] (1.33)

where J [ρ(r)] is the classical Coulomb repulsion potential, given by:

J [ρ(r)] =

∫
ρ(r)ρ(r′)

|r − r′| dr
′, (1.34)

and the K[ρ(r)] term accounts for the quantum nature of the interacting electrons. Un-
fortunately, both the kinetic Te and K[ρ(r)] are not know exactly, but their determination
would allow to exactly determine the functional E[ρ(r)] and solve the multi electron prob-
lem analytically from the electron density ρ(r).

Nevertheless, both the density and the energy of a system of N interacting electrons
subject to an external potential Vext can be determined. This was rigorously done by
Kohn and Sham [46, 44, 45] by introducing a virtual system of N non interacting electrons
with the exact same electron density ρ(r) of the interacting system under the in�uence of



12 Electronic Structure methods

an external potential vKS now compensating for the missing electron-electron interaction
contributions.

In the Kohn-Sham method the exact energy of the system E[ρ(r)] is rewritten according
to:

E[ρ(r)] = Tv[ρ(r)] + J [ρ(r)] +

∫
ρ(r)vext(r) dr + Ti[ρ(r)] +K[ρ(r)]︸ ︷︷ ︸

Exc[ρ(r)]

(1.35)

where the kinetic energy Te has been decomposed in the sum of a kinetic energy of the
virtual system Tv[ρ(r)], and a reminder Ti[ρ(r)] which accounts for the di�erence with
the interacting electron-electron system. Both Ti[ρ(r)] and K[ρ(r)] are regrouped in an
additional term know as the exchange-correlation energy functional Exc[ρ(r)] which should
account for exchange e�ects such as in the Hartree-Fock method, and correlation between
electron pairs. This latter term is given as various approximations, which will be discussed
in Sec. 1.3.1. The variation of the exact energy (Eq. 1.35) with respect to the electron
density ρ(r), in accordance to the variational principle, is:

∂E[ρ(r)]

∂ρ(r)
=
∂Tv[ρ(r)]

∂ρ(r)
+
∂J [ρ(r)]

∂ρ(r)
+ vext(r) +

∂Exc[ρ(r)]

∂ρ(r)
, (1.36)

while in the virtual system invoked by Kohn and Sham the variation is given by:

∂E[ρ(r)]

∂ρ(r)
=
∂Tv[ρ(r)]

∂ρ(r)
+ vKS(r) (1.37)

where vKS(r) is the previously mentioned external potential compensating for the electron-
electron interaction contributions missing in the virtual system. Eq. 1.36 and Eq. 1.37 are
mathematically equivalent when the potential vKS(r) is simply set to:

vKS(r) =
∂J [ρ(r)]

∂ρ(r)
+ vext(r) +

∂Exc[ρ(r)]

∂ρ(r)
, (1.38)

and this equivalence is a necessary condition to have the same electron density ρ(r) be-
tween the virtual system invoked by Kohn and Sham and the real interacting system of N
electrons.

As no explicit expression for the kinetic energy Tv[ρ(r)] valid for non homogeneous (ρ(r)
wise) system is available, and to obtain the electron density ρ(r), the Kohn-Sham method
then introduces N Schrödinger equations. Each equation described by one electron orbitals
φi(r) (i=1,...,N) for non interacting electrons in the potential vKS(r), according to:

[
− 1

2
∇2

i + vKS(r)

]
φi(r) = εiφi(r). (1.39)

The corresponding electron density ρ(r) is given by the sum of the square moduli of the
occupied orbitals:

ρ(r) =
∑

i

|φi(r)|2. (1.40)

Eq. 1.39 is also known as Kohn-Sham equation and represents a way to �nd the ground
state electron density, and energy, of a system instead of minimizing E[ρ(r)] directly.

As both J [ρ(r)] and Exc in vHK(r) depend on the electron density ρ(r), which in turn
depends on φi(r), the problem is non-linear, and is iteratively solved starting from a set
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of trial orbitals φi(r) until self-consistency of the electron density ρ(r), just like in the
Hartree-Fock method. The corresponding ground state energy of a system is then given by
Eq. 1.36 using the self-consistent electron density ρ(r), with the exception of the kinetic
energy of the virtual system Tv[ρ(r)] which is given by [44]:

Tv[ρ(r)] = −
∑

i

φ∗i (r)∇2φ∗i (r). (1.41)

In case the potential vKS(r) is de�ned as in Eq. 1.38 the ground state electron density
of the non interacting electron system will be exactly the same as the electron density in the
interacting electron system. As such, if the exchange-correlation Exc was known, solving
the Kohn-Sham equations self-consistently would allow to obtain the exact energy of the
ground state. The di�erence between the Hatree-Fock method is that, while Hartree-Fock
is an approximate theory, the DFT Kohn-Sham method is an exact theory limited by the
fact that Exc has an unknown form. Over the years a signi�cant e�ort has been put to
develop new approximations for the Exc term to increase the accuracy of DFT.

1.3.1 Exchange-Correlation Energy Functionals

The exchange-correlation energy Exc in Eq. 1.35 accounts for the contributions to the energy
E for which no exact expressions are available [44, 45], and can be generically expressed as:

Exc[ρ(r)] = EExact[ρ(r)]−
(
Tv[ρ(r)] + J [ρ(r)] +

∫
ρ(r)vext(r) dr

)
, (1.42)

where EExact[ρ(r)] is the exact energy functional of a system. The Exc term then ac-
counts for purely quantum e�ects, mostly focusing on the exchange Ex[ρ(r)] and correlation
Ec[ρ(r)] contributions, treated in two separate terms:

Exc[ρ(r)] = Ex[ρ(r)] + Ec[ρ(r)], (1.43)

and where the electron kinetic energy term Ti[ρ(r)], accounting for the kinetic energy
di�erence between the interacting and non interacting electron systems, can be neglected
as it tends to be small [44].

Overall, many approximation for the Exc[ρ(r)] have been developed, and they are di-
vided in di�erent families according to their complexity and accuracy. In the following, we
will cover the Local Density Approximation (LDA) [47], due to its importance in developing
more advanced exchange-correlation functionals, and then we will treat the two main fami-
lies of functionals employed in this thesis: Generalized Gradient Approximation (GGA) [48],
and Global Hybrid Functionals (GH). Furthermore, we will mention the Range-Separated
Hybrid (RSH) functionals.

The Local Density Approximations the LDA approximations, introduced by Kohm
and Sham [47], are a class of exchange-correlation Exc energy functional which depend on
the electron density ρ(r) of the system.

For spin-unpolarized systems the LDA approximation is generally given by:

ELDA
xc [ρ(r)] =

∫
ρ(r)εxc(ρ(r)) dr, (1.44)
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where εxc is the exchange-correlation energy from the homogeneous electron gas [49] of
charge density ρ(r). As separate expressions for the correlation Ec and the exchange terms
Ex are used (Eq. 1.43), simple analytical forms are available for the homogeneous electron
gas of both terms [45]. Albeit, for the correlation term Ec expressions are available only for
the limit cases of weak and strong correlation. This has led to many possible formulations
for this term to take in account systems with moderate correlation [50, 51, 52] .

An extension of LDA for spin polarized systems also exists, and goes under the name of
Local Spin-Density Approximation (LSDA) [47, 50] . For LSDA the electron density ρ(r)
is given by the sum of spin densities for α and β electrons:

ρ(r) = ρα(r) + ρβ(r), (1.45)

and the exchange-correlation energy for the homogeneous electron gas εxc(ρ(r)) in Eq. 1.44
becomes function of both: εxc(ρα(r), ρβ(r)). As in LDA the exchange term Ex is known
[53] in LSDA, but approximation are needed for the correlation term Ec. The LDA and
LSDA approximations have been improved by introducing a dependency on the exchange-
correlation functional on the gradient of the electron density.

Generalized Gradient Approximation (GGA) The GGA family of exchange-correlation
functionals takes in account the gradient of the electron density ∇ρ(r) [48]. This is justi-
�ed as any real electron system is non-homogeneous, and variation of the density in space
should be taken into account. The exchange-correlation Exc functional for GGA then takes
the form:

EGGA
xc [ρ(r)] =

∫
ρ(r)εxc(ρ(r),∇ρ(r)) dr. (1.46)

These functionals can be divided in two classes [54]: i) functional whose construction is
based on the uniform electron gas [49], and ii) semi empirical functional containing param-
eters �tted to particular classes of systems. Some examples of popular functionals are the
non-empirical PW91, developed by Perdew and Wang in 1991 [55] and PBE by Perder,
Burke, Ernzerhof [56]. Instead, some examples of popular empirical functionals are: LYP
by Lee, Yang, and Par [57], or BLYP when including Becke exchange [58]. More accurate
functionals are obtained when including fractions of the exact Hartree-Fock Exchange [45]
in a GGA functional, in what is called hybrid functionals.

Global Hybrid (GH) Functionals GH are another class of Exc functionals [59] that
account for a fraction of the exact Hartree-Fock exchange EHF

x expressed in terms of the
Kohn-Sham orbitals φ(r) instead of the electron density ρ(r):

EHF
x = −1

2

∑

ij

〈φi(1)φj(2)| 1

rij
|φj(1)φi(2)〉 . (1.47)

Some examples of widely used hybrid Exc functionals, also used in this thesis, are:

� B3LYP is a functional based on the Becke exchange (B) [58] and the LYP [57]
correlation mentioned for the GGA functionals. The exchange-correlation functional
for B3LYP takes the form:

EB3LY P
xc = (1− a)ELSDA

x + aEHF
x + bEB

x + (1− c)ELSDA
c + cELY P

c (1.48)

where a = 0.20, b = 0.72, and c = 0.81 are three empirically determined parameters
to reproduce a set of molecular properties (ionization potentials, atomistic energies,
and electronic a�nities) for a wide range of molecules [50].
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� B3PW construction is very similar to the above mentioned B3LYP functional. The
main di�erence between the two functionals is the use of the Perdew and Wang
correlation (PW) [55] in place of the LYP correlation [57]. The exchange-correlation
functional is:

EB3PW
xc = (1− a)ELSDA

x + aEHF
x + bEB

x + (1− c)ELSDA
c + cEPW

c . (1.49)

� PBE0 as the name suggests the PBE0 functional [60] is based on the PBE GGA
functional [56], where a fraction of Hartree-Fock exchange EHF

x has been used:

EPBE0
xc = EPBE

c + 0.25(EHF
x − EPBE

x ). (1.50)

Here the scaling for the exchange part of 0.25 is not obtained empirically, as the above
mentioned functionals, and its justi�cation lies on arguments from perturbation theory
[60].

Range-Separated Hybrid (RSH) functionals The RSH functionals are a subgroup
of hybrid functionals in which the fraction of Hartree-Fock exchange within the functional
depends on the distance between the electrons. Usually, within the RSH functionals the
Coulomb potential is given as a sum of a short- and long-range contributions treated sep-
arately. An example of RSH is the Heyd�Scuseria�Ernzerhof (HSE) [61] screened hybrid
functional.

� HSE the Coulomb potential for the exchange term in the HSE functional is separated
in a short- and long-range contributions in the following way:

1

r
=

1− erf(ωr)

r
+
erf(ωr)

r
, (1.51)

where ω is an adjustable parameter related to the separation range. The HSE
exchange-correlation functional itself is given by:

EHSE
xc = aEHF

x (ω)︸ ︷︷ ︸
sr

+(1− a)EPBE
x (ω)︸ ︷︷ ︸
sr

−EPBE
x (ω)︸ ︷︷ ︸

lr

+EPBE
c , (1.52)

where "sr" and "lr" stand for short- and long-range, respectively. The parameter a is
the same as in PBE0 (a=0.25). For the limit of ω = 0 the HSE functional reduces to
PBE0, instead for ω →∞ the functional reduces to PBE.

This class of functional corrects the slowly decaying Hartree-Fock (distance wise) exchange
term for metals and narrow band gap semiconductors [61].
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1.4 Periodic Systems

A central concept for the study of a periodic system, such as a crystal, is the de�nition of
an in�nite lattice, which can be seen as an evenly distributed collection of points (lattice
points) along three non coplanar directions extending in�nitely [62, 63]. For such lattice a
set of basis vectors (a1, a2, a3), called primitive lattice vectors, can be de�ned. Each basis
vector can be seen as lying on one of the three non coplanar planes. A vector R joining
two lattice points is instead a lattice vector, and is de�ned as:

Rn = n1a1 + n2a2 + n3a3 (1.53)

where n1,n2, and n3 are integers. The basis vectors (a1, a2, a3), forming a parallelepiped, can
be used to de�ne a unit cell, which, when containing only one lattice point, coincides with
the primitive cell. All other cells within the periodic system are obtained by translation of
the unit cell through the lattice vectors R and are uniquely de�ned by a set ni (i=1,2,3) of
integers. An example of a periodic lattice, lattice vector, and basis vectors for a 2D system
is shown in Fig. 1.1

a1

a2

R

Figure 1.1: Example of a periodic lattice in two-dimensions. Blue dots represent lattice
points, and a1, a2 form the basis vectors of the translation vector Rn = n1a1 + n2a2. Rn is
here represented with n1 = n2 = 1 in the direct lattice. In red a unit cell.

A useful tool for the study of periodic systems is the de�nition of a reciprocal lattice
[62, 63], which depends on a set of basis vectors (b1,b2,b3) that follow an orthogonality
rule with the basis vectors of the direct lattice (a1, a2, a3), given by:

ai · bj = 2πδij, (1.54)

where δij is equal to zero if i 6= j, and equal to 1 if i = j. Similarly to the direct lattice,
the reciprocal lattice vectors are de�ned as a linear combination of the basis vectors:

Km = m1b1 +m2b2 +m3b3 (1.55)

where m1,m2, and m3 are integers. A unit cell can also be de�ned, called the �rst Bril-
louin Zone (BZ), which is the equivalent of the primitive cell in the direct lattice, but in
reciprocal space. The BZ can be visualized as the volume within the closed surface traced
by orthogonal planes which pass through the midpoint of lines connecting one reciprocal
lattice point to its nearest neighbors, as shown in Fig. 1.2

In particular, for the study of periodic crystal the potential energy must be a periodic
function with the same lattice periodicity of the crystal [62, 63]. Meaning, that for any
translation by any lattice vector R = Rn the value of the potential does not change:

V (r +R) = V (r). (1.56)
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(a) (b)

Figure 1.2: Example of the �rst Brillouin zone for (a) square lattice and (b) hexagonal
lattice. Dashed lines represent the path connecting one reciprocal lattice point to its nearest
neighbor. In red the area within a closed surface traced by planes orthogonal to the dotted
lines midpoints.

Under these conditions, the Schrödinger equation ( 1.2 on page 5) is also invariant under
translation:

H(r +R)ψ(r +R) = Eψ(r +R), (1.57)

and the total energy E of the system does not change E = E(r + R). The wave function
for such periodic system are called Bloch functions, and follow the Bloch theorem [62, 63],
which states that the solutions of the Schrödinger equation, considering a periodic potential,
is a plane wave modulated by a periodic function µ:

ψ(r;k) = eik·rµ(r;k), (1.58)

the periodic function µ(r;k) has the same periodicity as the direct lattice:

µ(r;k) = µ(r +R;k), (1.59)

and k is called wave vector, with the wave function parametrically depending on k. As
such, a solution exists for each wave vector k.

The wave vector can be interpreted as a continuous variable in the reciprocal lattice.
This if the periodicity is preserved through Periodic Boundary Conditions (PBC), and by
de�ning the wave vector in the reciprocal lattice basis vectors (b1,b2,b3) as:

k =
n1

N1

b1 +
n2

N2

b2 +
n3

N3

b3 (1.60)

where n1, n2, and n3 are integers, and N1, N2, and N3 are the number of cells within the
lattice along each direction and for N1, N2, N3 → ∞.Furthermore, Bloch functions have
particular translational properties in the reciprocal space, for which [62, 63]:

ψ(r +R;h) = ei(k+K)·Rψ(r;k+K) = eik·Rψ(r;h), (1.61)

where h = k + K is given by the translation of k by any reciprocal lattice vector K. This
allows to limit the resolution of the Hartree-Fock and Kohm-Sham equations to the �rst
Brillouin zone.
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In analogy with molecular orbitals [64] Crystaline orbitals [62] can be developed accord-
ing to the Linear Combination of Atomic Orbitals (LCAO) approximation [40, 41, 44], for
which the wave function ψn(r;k) is given by:

ψn(r;k) =
∑

µ

ckµφµ(r;k), (1.62)

where ckµ are coe�cients of the linear combination, and φµ(r;k) are one electron Bloch
functions which can be expressed trough a localized basis sets, or plane waves.

1.4.1 Localized Basis Sets

Localized basis sets are given by atomic orbitals (AO) [41, 40], which are atom centered
functions χµ(r) in the primitive cell, and the corresponding Bloch functions are obtained
by considering the AO in di�erent cells χRµ (r − rµ), according to [62]:

φµ(r;k) =
1√
N
eik·RχRµ (r − rµ). (1.63)

Two main type of functions are used to described the AO χµ:

� Slater Type Functions (STF): this kind of AO are expressed by the following func-
tion obtained from the exact solutions of the Schrödinger equation for the hydrogen
atom [41]:

χSTF (r) = NY m
l (θ, ϕ)rn−1e−ζr (1.64)

where ζ is a parameter a�ecting the exponential radial function, and how contracted
the orbital is. The indexes n, l, and m are quantum numbers, N is a normalization
constant, and Y m

l (θ, ϕ) are spherical harmonics functions. This class of function
provide an accurate description of the wave function near the nuclei, as the expected
cusp like behavior is reproduced. Nevertheless, STF integrals are computationally
expensive compared to Gaussian Type Functions (GTF).

� Gaussian Type Functions (GTF): The advantage over STF is given by the Gaus-
sian product theorem, allowing for products of multi center Gaussian functions to be
easily integrated. In fact, the product of two GTF centered on di�erent atoms is still
a Gaussian function centered along the axis connecting them. This behavior greatly
simpli�es solving two electrons integrals seen in the Hartree-Fock and Kohn-Sham
methods. GTF are given by [41]:

χGTF (r) = NY m
l (θ, ϕ)xiyjzke−ζr

2

(1.65)

where i, j, and k are integers, and x, y, z are Cartesian coordinates.

Contracted Gaussian Type Functions (CGTF), given by a linear combination of prim-
itive functions χGTFµ , are considered to overcome the poor description of the wave
function close to the nuclei:

χCGTF (r) =
∑

µ

dµrχ
CGTF
µ (r) (1.66)

where dµr are the contraction coe�cients. The use of CGTF allows to reproduce the
cusp like behavior of STF. Furthermore, even if a higher number of functions are
considered the use of GTF is still more computationally e�cient compared to STF.
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In general, the use of larger AO basis sets allows for a more accurate description of
the system, but at the price of increased computational cost. As such, basis sets are
chosen as a compromise between computational cost and accuracy. In particular, for atoms
with larger atomic numbers the computational cost can be reduced by treating the core
and the valence electrons separately. This is justi�ed by the core electrons being less
involved in forming chemical bonds, and their accurate description is less needed to fully
describe the system. The use of a pseudopotential [65] optimized to reproduce the Coulomb
potential generated by the tightly bounded core electrons is then common. Depending on
the number of electrons small core, or large core, e�ective core pseudopotentials (ECP) can
be distinguished.

Typically, AO are suitable for the description of crystal where covalent chemical bonds
are present, but the description of free electrons, as found typically in metals, is harder
to achieve, and an increase in the number of AO may lead to numerical instabilities [62].
Instead, for systems with free electrons plane waves are typically more suitable [62, 66].
Most calculations in this thesis have been performed with localized GTF basis set.

1.4.2 Plane Wave Basis Sets

Plane waves can also be used to expand the crystalline orbitals [66], and are commonly
preferable to localized AO when considering metallic systems with free electrons. They are
given by:

ψ(r;k+Kn) =
1√
V
ei(k+Kn)·r (1.67)

where Kn is a generic translation vector for the reciprocal lattice, and V is the volume of
the system. The orbitals are expanded in a �nite number of plane waves, and the total
number of plane waves in the expansion is obtained by considering a kinetic energy cuto�
Ecut that satisfy the following relation [66]:

(k+Kn) ≤ Ecut. (1.68)

The energy cuto� Ecut is chosen to guarantee an accurate representation of the wave func-
tions and of the system.

In this thesis some calculations with plane waves have been performed using the VASP
program [34]. In particular, plane waves with the Projected Augmented Wave (PAW)
[67, 66] method, a generalization of the pseudopotential seen in localized basis sets.

The PAW method addresses the issue of rapidly oscillating valence wave functions close
to nuclei arising from the orthogonality requirements with the core electrons states [67].
This is done by smoothing the wave functions, as it is more convenient from the computa-
tional point of view, especially in the case of grid-based methods for which a very �ne mesh
is otherwise required. Furthermore, PAW provides a way to calculate all electron properties
from the smooth wave functions.

1.4.3 Surface Modeling

The study of surfaces is of great interest in material modeling as many chemical and physical
processes take place at the interface between the surface and the environment. A surface
can be obtained by cutting an in�nite crystal, as the ones previously de�ned, through one
of its crystalline planes.
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The crystalline planes are speci�ed through a set of three integers (h, k, l) called Miller
indexes [62, 63, 68], and each set of indexes gives a lattice plane orthogonal to the reciprocal
lattice vector:

Khkl = hb1 + kb2 + lb3 (1.69)

where (b1,b2,b3) are the basis vectors, and the (h, k, l) are above mentioned Miller indexes.
Then, by cutting the in�nite periodic crystal through the crystalline plane de�ned by (h, k, l)
two semi in�nite crystal are formed with an in�nite number of atoms along the direction
orthogonal to the surface. In particular, in this thesis a slab model has been used to model
surfaces [69, 62] when using Crystal [31] and a multi slab model when using VASP [34].

(a) (b)

Figure 1.3: Examples of TiO2 anatase (101) slabs generated with (a) a slab model with
2D periodic boundary conditions in the surface plane, and (b) Multi slab model with 3D
periodic boundary conditions.

Slab Model this model consists of only N �nite layers parallel to the chosen crystalline
plane, as shown in Fig 1.3a. As such, the slab is periodically repeated only in the directions
orthogonal to the surface normal, and two dimensional periodic boundary conditions are
needed.

To ensure an accurate description of the surface an appropriate number of layers for the
slab model has to be chosen. This can be done by computing the surface energy Es until
its convergence with the number of layers N in the slab. The surface energy Es for a N
layers slab, is given by the energy per unit area A necessary to form the surface from the
bulk crystal, and is given by the following formula [69, 62]:

Es =
EN −N · Ebulk

2A
, (1.70)

where A is the primitive cell surface area, EN is the energy of a N layer slab, and Ebulk is
the energy of the primitive unit cell of the bulk material. Alternatively, for metals or small
band semiconductor, a more stable formula can be used, given by [69, 62]:

Es =
EN −N · [EN − EN−1]

2A
. (1.71)

An acceptable slab model is then obtained when the di�erence in surface energies between
di�erent layers slabs, calculated with one of the previously de�ned equations, is below a
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predetermined threshold ε:
Es,n − Es,n−1 ≤ ε, (1.72)

and at this point, a su�ciently accurate description of an ideal surface is reached.

Multi Slab Model in this model the system is periodic in all three spatial dimensions, as
shown in Fig 1.3b. This is done by separating each N layer slab by a certain distance called
vacuum spacing. Both the slab thickness N and the vacuum spacing have to be optimized
in this model until convergence of the surface energy as de�ned in Eq. 1.70 or Eq. 1.71 to
obtain an accurate description of the system. In particular, vacuum spacing is necessary to
prevent any interactions and spurious stabilization e�ects between the various slabs along
the periodic direction perpendicular to the surface, resulting in an incorrect description of
the surface to be modelled.
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Chapter 2

Implicit Solvation Models: State of the

Art

Implicit solvation models have a long history dating back to 1920 with the �rst models by
Born [70], and later by Kirkwood [71], and Onsager [72]. These �rst models considered sim-
ple spherical or ellipsoid solute cavities and focused their treatment on electrostatic e�ects.
Since then the �eld has seen an impressive growth, especially from 1970-1980s with the �rst
Polarizable Continuum Model (PCM) from Tomasi and co-workers [73, 74, 75, 76, 77, 23]
which allowed for a more accurate, and computationally e�cient inclusion of solvation ef-
fects within a QM framework, overcoming part of the limitations due to the limited compu-
tational power of the time. Still today the �eld remains in constant development with many
technical and scienti�c improvements [23, 24, 25, 26] to the electrostatic treatment and the
inclusion of non-electrostatic e�ects with great improvement in accuracy. In this chapter we
will focus on the main historical models that have been developed and their progresses and
evolution using a central quantity to compute for any solvation model: the solvation energy
[78], de�ned as the reversible thermodynamic work of transferring a molecule between an
ideal gas and a solvent at �xed pressure and temperature.

2.1 Solvation Energy

In implicit solvation models the solvation energy ∆Gsol of a solute in a �xed conformation
is usually separated between two contributions accounting for di�erent physical phenomena
and referred to as electrostatic ∆Gel and non-electrostatic ∆Gne free energies changes [64],
or simply energies:

∆Gsol = ∆Gel + ∆Gne. (2.1)

The electrostatic contribution to the solvation energy is related to the work needed to
polarize the solute-solvent system. Physically, these electronic and nuclear solute-solvent
polarization e�ects arise from both short-range and long-range electrostatic response of the
dielectric solvent to the solute charge density ρ(r). This response is an electric �eld, usually
referred to as Reaction-Field (RF) [72], which is responsible for the solute charge density
polarization. In turn, this polarization induces further polarization in the dielectric which
leads to a self-consistent process of mutual polarization between the solute and the solvent
called Self-Consistent Reaction Field (SCRF) [79].

The non-electrostatic contribution is instead not related to a single e�ect but acts as
a wild-card term accounting for several of them which can be found in the �rst solvation
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shell, and that cannot be directly accounted for by considering the solvent as a dielectric
media characterized uniquely by the dielectric constant ε, as previously mentioned. The
main e�ects are short-range Pauli repulsion ∆Grep, attractive dispersion interactions ∆Gdis,
hydrogen bonding ∆Ghb between the solute and the solvent, and cavitation ∆Gcav, which is
de�ned as the work required to form a cavity within the dielectric media where the solvent
will be placed within. In a �rst approximation, each phenomena is treated independently
from each other and the non-electrostatic energy can be further decomposed as a sum of
each contribution, as schematically shown in Fig. 2.1:

∆Gne = ∆Grep + ∆Gdis + ∆Ghb + ∆Gcav (2.2)

Clearly, Eq. 2.1 and 2.2 are an approximation, as these phenomena are not fully in-
dependent from each other. For example hydrogen bonding is a�ected by electrostatics
and both by repulsion and dispersion e�ects. Another example is cavitation which a�ects
both repulsion and electrostatics, as cavity size plays a major role on the latter. In light of
this, and the fact that the electrostatic and non-electrostatic contributions are not direct
physical observables, as opposed to the solvation energy, the separation of each physical
phenomena allows for a simpli�ed treatment capable of predicting solvation energies well
within the experimental uncertainty for most neutral solutes, and close to the experimental
uncertainty for charged solutes [80, 81, 82, 83, 37, 84].

In the following sections we will use the above mentioned separation of the solvation
energy in an electrostatic and non-electrostatic contribution as a guideline to review the
computational mechanisms and theoretical framework of implicit solvation models. We will
�rst focus on the electrostatic formalism, and then we will proceed to describe the non-
electrostatic contribution and its importance to obtain an accurate description of solvation
e�ects and energies.

Figure 2.1: Thermodynamic cycle depicting the solvation free energy decomposition into
contributions [85]. Wel stands for the electrostatic work needed to polarize the dielectric
media. The cavitation contribution ∆Gcav has been considered separate from ∆Gne (gray)
to point out the cavity (yellow) formation within the dielectric media (blue).
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2.2 Electrostatic Contribution

In this section we will discuss the main methods developed to obtain the electrostatic
contribution to the solvation energy. First, we will focus on Poisson's equation which forms
the mathematical backbone of implicit solvation models, followed by numerical methods
for its solution, the main de�nitions of a solute cavity, and we will conclude with main
solvation models. In particular, the main families of solvation models: namely the Born
[70] and it's generalization to any cavity type known as Generalized Born Approximation
(GBA) [86, 87], the MultiPolar Expansion (MPE)[88], and the Apparent Surface Charge
(ASC) [73] will be brie�y described. It should be noted that the latter two model families
are based on analytical solutions of the generalized Poisson equation (with approximations
in the case of the GBA model), while the former requires a numerical resolution of this
equation.

2.2.1 The Electrostatic Problem: Poisson Equation

The main assumption of most implicit solvation models is to consider the solvent as an
isotropic linear dielectric [26] for which the solvent displacement �eld D(r), arising from
the macroscopic polarization P(r) of the media, is proportional to the applied electric �eld
E(r) generated by a given solute charge density ρ(r):

D(r) = ε(r)E(r) = E(r) + 4πP(r) (2.3)

where for a isotropic dielectric ε(r) is a scalar value function of the position r, while for
anisotropic materials ε(r) can be replaced by a 3D tensor [89].

Then, under the assumption of the dielectric displacement being proportional to the
applied electric �eld the di�erential form of Maxwell �rst equation:

∇ ·D(r) = 4πρ(r) (2.4)

can be rearranged to obtain the generalized Poisson's equation [90] by considering the
relation between the electric �eld and the negative gradient of the potentialE(r) = −∇φ(r):

∇[ε(r) · ∇φ(r)] = −4πρ(r). (2.5)

This di�erential equation forms the theoretical backbone of implicit solvation models and
relates the solute charge density ρ(r) to the potential it generates φ(r) taking in account
the dielectric media through the above mentioned relative permittivity ε(r) function of the
spatial coordinates.

The replacement of explicit solvent molecules with a dielectric media removes the clear
boundary between the the solute and the solvent which arises from Pauli repulsion and
requires the introduction of an arbitrary de�ned surface Γ which acts as the interface
between the solute region where atoms are treated explicitly Ωin, and the region where the
solvent is replaced by the dielectric media Ωout, also shown in Fig. 2.2. The introduction
of this surface then sets ε(r) as a step function [26] with values εin and εout, respectively if
r is within the inner Ωin or outer Ωout region, according to:

ε(r) =

{
εin if r ∈ Ωin,

εout if r ∈ Ωout

(2.6)



26 Implicit Solvation Models: State of the Art

Figure 2.2: 2D example of a solute cavity. In blue the region treated as dielectric media
replacing the explicit solvent Ωout and characterized by a relative permittivity εout, in white
the solute region where atoms are treated explicitly Ωin with the vacuum relative permit-
tivity set to εin = 1, and in yellow the solute-solvent interface Γ.

A common choice in QM calculation is to use the relative permittivity of vacuum for the
inner region Ωin, thus setting εin = 1, while εout for the outer region Ωout is set to the
relative permittivity of the solvent.

Then to ensure the uniqueness of the solution of Poisson's equation and a continuous
electric displacement D(r) across the surface [91] the following dielectric jump conditions
[92, 93] have to applied at the sharp interface Γ:




φin(r) = φout(r)

εinn · ∇φ(r)

∣∣∣∣
in

= εoutn · ∇φ(r)

∣∣∣∣
out

(2.7)

where n is the outer normal direction to Γ and the potentials φ(r), and derivatives of the
potential ∇φ(r), are taken at neighboring points immediately inside and outside the surface
Γ [23].

Under these conditons the Poisson equation can be solved for φ(r) throughout space
in both the inner and outer regions Ω previously de�ned, with the potential φ(r) given as
sum of two potentials:

φ(r) = φρ(r) + φRF (r) (2.8)

where φρ(r) is the potential of the charge density of the solute ρ(r), originally responsible
for the polarization of the dielectric media and the appearance of an additional charge
density term ρpol(r) acting as source term of the reaction-�eld potential φRF (r).

The associated reaction-�eld energy ERF to φRF (r) corresponds to the work to place the
solute within the polarized media and is given by half the Coulombic interaction between
the solute potential φρ(r) and the polarized charge density ρpol(r) [94, 95]:

ERF =
1

2

∫
φRF (r)ρ(r)dr =

1

2

∫
φρ(r)ρpol(r)dr (2.9)

where the 1/2 factor accounts for the non-reversible work required to polarize an isotropic
linear dielectric [25].
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In a QM calculation the electrostatic free energy change ∆Gel contributing to the sol-
vation energy is then given by the following equation [64, 96, 25]:

∆Gel = 〈ψs|Hg + Vint |ψs〉 −
(
〈ψg|Hg |ψg〉+ ERF

)
(2.10)

in which the �rst term 〈ψs|Hg + Vint |ψs〉 refers to the solute-solvent system energy with
the solvated wave function ψs while Vint is the interaction potential which is related to the
reaction-�eld energy by:

〈ψs|Vint |ψs〉 = 2ERF . (2.11)

The second term is the sum of the gas phase energy 〈ψg|Hg |ψg〉 and of the reaction �eld
energy ERF. As previously said, this last component is also equal to the non-reversible work
necessary to polarize the dielectric media and has to be removed to obtain a free energy
[25].

At this point the dielectric media has been polarized by the solute charge density, but to
ensure the mutual solute-solvent polarization and a realistic representation of electrostatic
e�ects the iterative Self-Consistent Reaction Field (SCRF) [79] is considered. The naming
of which comes from the central role of the dielectric media reaction-�eld (RF) [72] in the
solvation process.

2.2.1.1 Self-Consistent Reaction Field Formalism

The Self-Consistent Reaction Field (SCRF) procedure requires the introduction of an ef-
fective Hamiltonian Hsol for the solute-solvent system [25, 23, 79, 97]. This is done by
augmenting the gas-phase Hamiltonian Hg with the interaction potential Vint obtained
from solving the generalized Poisson equation:

Hsol = Hg + Vint. (2.12)

The inclusion of the polarized charge density ρpol(r) through the interaction potential Vint
within the system Hamiltonian is what allows for the mutual solute-solvent polarization
within QM computations. A �owchart of a SCRF procedure is reported in Fig. 2.3.

The SCRF procedure starts with the computation of the gas-phase wave function ψg
and the corresponding charge density of the solute ρgas(r). The density ρgas(r) is then used
as source term for the generalized Poisson equation which solution is the solute potential
φρ(r) which causes the initial polarization of dielectric media ρpol(r). With the potential
and the polarized charge density stems the interaction potential Vint used to de�ne a new
Hamiltonian Hsol, which will now include the e�ects of the solvent. A condensed-phase
calculation is then performed to obtain a new solute charge density ρsol(r) perturbed by
the polarized dielectric media. The new solute charge density ρsol(r) will then be used
together with the necessary computed quantities to obtain the electrostatic solvation energy
∆Gel. The di�erence between electrostatic solvation energies ∆Gel calculated in the latest
and previous SCRF cycles of the procedure is used to determine if to stop or continue
the SCRF procedure. In the latter case, the generalized Poisson equations is solved once
again with the latest computed solute charge density ρsol(r), and the cycle continues until
convergence of the electrostatic solvation energy ∆Gel.

As mentioned in Sec. 2.1 on page 23 the SCRF is what allows to computationally
reproduce the physics of mutual solute-solvent polarization, and is the physical foundation
of many of the most advanced and accurate implicit solvation models to date [80, 98, 37,
99, 81].
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Input

Gas-Phase calculation:

H = Hgas

Computation of ψg and charge density ρ(r) = ρgas(r)

Solving Poisson Equation:

∇[ε(r) · ∇φ(r)] = −4πρ(r)
Obtaining interaction potential Vint

Condensed-Phase calculation:

Hsol = H0 + Vint
Computation of ψs and new ρ(r) = ρsol(r)

Computation of the electrostatic solvation energy :

∆Gel = 〈ψs|Hg + Vint |ψs〉 −
(
〈ψg|Hg |ψg〉+ ERF

)

∆Gel converged?

Stop

SCRF

no

yes

Figure 2.3: Flowchart of a generic SCRF procedure.

2.2.1.2 Poisson-Boltzmann

The Poisson equation can be extended to consider the dielectric media as an overall neutral
electrolyte with uniformly distributed ions within, as shown in Fig. 2.4. For example, one
can think of modeling a molecule of biological interest dissolved in a saline solution. In
this case the equation becomes non-linear and is known as the Poisson-Boltzmann equation
[76, 100, 101, 102, 103], and the solute charge density ρ(r) is augmented by a further charge
density ρions(r) to consider the ions:

∇[ε(r) · ∇φ(r)] = −4π[ρ(r) + ρions(r)]. (2.13)

This charge density ρions(r) is treated statistically via mean-�eld assumption [104, 105],
and each ionic specie i on the whole contributes:

ρions(r) = λ(r)
N∑

i

qici (2.14)
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where N is the number of ionic species (e.g. N=2 for NaCl), qi is the total charge of a
specie, λ(r) is a step function to exclude ions from within the solute cavity, and ci is the
local ion density given by Boltzmann equation [106]:

ci = c0
i exp

(−qiφ(r)

kbT

)
(2.15)

with c0
i the ion bulk concentration, kB the Boltzmann constant, T the temperature, and

−qiφ(r) is the work to move the charge from in�nity. The expression for the ion charge
density ρions(r) can be simpli�ed in the case of monovalent salts (e.g. NaCl), reducing to:

ρions(r) = −2cλ(r)sinh

(−qiφ(r)

kbT

)
, (2.16)

and in the limit of a low potential solution typical of physiological solutions (−qiφ(r) <<
kbT ) the hyperbolic sine function can be linearized giving what is called the linearized
Poisson-Boltzmann equation [107, 108]:

∇[ε(r) · ∇φ(r)] = −4πρ(r) + λ(r)l2Dφ(r), (2.17)

where lD is de�ned as:

lD =

(
8πe2c

kbT

) 1
2

(2.18)

where the inverse of l−1
D is the Debye screening length [109] measuring the charge elec-

trostatic e�ect in a solution and how far its electrostatic e�ect persists. The linearized
Poisson-Boltzmann equation greatly decreases the computational cost of including salt ef-
fects compared to the non-linear Poisson-Boltzmann equation, and without introducing
signi�cant errors [107, 26] under the above mentioned conditions.

Figure 2.4: Ions distributed within the dielectric media. In blue and red negatively and
positively charged species, respectively.

Overall, the Poisson-Boltzmann equation has been widely used in the study of molecules
of biological interest due to the possibility of considering conditions similar to that of a
physiological solutions, and thus closer to the experiment, achieving accuracies on par with
explicit solvents [110, 107]. The Poisson-Boltzmann equation is also of great interest in
electrochemical process, as the equation is able to describe the electrochemical potential of
ions in the di�use layer. In fact, the equation is able to describe both the Gouy-Chapman
[111], and Stern layer models [112]. The Gouy-Chapman model describes the interaction
between a charged surface and an electrolyte solution and the formation of a double layer
with di�usive counter-ions, while the Stern Layer model also includes the �nite ion size.
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2.2.1.3 Atomic Point Charge Approximation

Other than the charge density of the solute, a classical or semi-classical approximation can
be used to solve Poisson Equation, in which the charge density of the solute is replaced by
atomic point charges [113, 114]:

ρ(r) =
atoms∑

i

qiδ(r − ri). (2.19)

The use of point charge models which repartition the charge density of the solute from QM
calculations to atomic contributions (see Sec. 3.1.1.1 on page 62) still allow for a SCRF
treatment of solvation e�ects. Furthermore, point charges easily overcome some issues in
Apparent Surface Charges (ASC) implicit solvation models [25, 26], which will be treated in
Sec. 2.2.6 on page 40. This is one of the most used family of implicit models to day, which
considers exclusively polarization of the dielectric media at the solute-solvent interface to
reduce the computational cost. The initial assumption of ASC models is not physically
valid when considering a charge density obtained from QM calculations, this is due to the
asymptotic behavior of the wave function [115] which extends well beyond any reasonably
realistic solute cavity, and causing not only polarization at the solute-solvent interface, but
also volume polarization within the dielectric media. A problem which can be overcome
when atomic point charges are used.

2.2.2 Overview of Numerical Methods

The generalized Poisson equation (Eq. 2.5) can be solved analytically only for simple cavity
geometries such as spheres and ellipsoids which in fact were typically employed in earlier
solvation models [70, 72, 71]. Nevertheless, Poisson's equation can be successfully solved
numerically when considering complex solute cavities which better model the separation
between the solute and the dielectric media. Some of the most used methods in implicit
solvation are: Finite Element (FEM) [116, 117, 118, 119, 120, 121], Boundary Element (BE)
[73, 122, 123, 124, 125], and Finite Di�erence (FD) [126, 127, 128, 129, 130, 131, 132, 96]
methods.

In general, the Finite Element Method (FEM) divides the physical system governed by
a partial di�erential equation, in this case the generalized Poisson equation, into smaller
discrete elements. Each element representing a simple approximation of the overall solution
of the problem, as shown in Fig 2.5, and requiring integral relations. The global solution
throughout space is then obtained by considering the contribution of each discrete element
[133]. Instead than discretization on the whole volume as in FEM, similar results can be
obtained by the use of BEM, while expensive integration can be overcome by the use of
FDM.

2.2.2.1 Boundary Element Method

The idea behind the BEM is that the solution of a linear partial di�erential equation
can be obtained by a linear system of equations whose unknowns are con�ned on the
boundary of the problem. As such BEM has found wide use in implicit solvation models
[98, 92, 135, 136, 137, 138] based on the Apparent Surface Charge (ASC) formalism (see
Sec. 2.2.6 on page 40 ). This formalism recasts the volume polarization of the dielectric
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Figure 2.5: Example of a two-dimensional FEM grid around a circular boundary [134].

media to a surface polarization at the solute-solvent interface, making BEM discretization
techniques appealing.

As an example of BEM formulation, a two-dimensional non-generalized Poisson equation
(ε(r) → ε) de�ned on a region of space R will be used [139] for simplicity. The non-
generalized Poisson's equations is given by:

∇2φ(x, y) = −4π

ε
ρ(x, y), (2.20)

where ρ(r) is the usual solute charge density, and appropriate Dirichlet and Neumann type
boundary conditions de�ned on a Boundary Γ have to be de�ned, as in Sec 2.2.1 on page 25.
The �rst step of the BEM formulation is to take the product of ∇φ(x, y) with an arbitrary
weight function w(η, ξ) de�ned in the same region R, and integrating over the dummy
variables η and ξ:

∫

η

∫

ξ

w(η, ξ)∇2φ(x, y) dηdξ, (2.21)

and by using Gauss' theorem (the variables are omitted to simplify the formulation), one
obtains:

∫

η

∫

ξ

w∇2φ dηdξ =

∫

η

∫

ξ

φ∇2w dηdξ +

∫

Γ

(
w
∂φ

∂n
+ φ

∂w

∂n

)
ds (2.22)

where the derivatives of φ and w are taken in respect to the normal n to the surface Γ. The
second integral in the above equation can be reduced to φ(x, y) if a weight function w can
be determined, such that its square gradient is a delta function:

∇2w = δ(η − x, ξ − y), (2.23)

with the following property:
∫

η

∫

ξ

f(η, ξ)δ(η − x, ξ − y) dηdξ = f(x, y). (2.24)

If this is true, Eq. 2.22 can be rewritten to show the analytical relation between values of
φ(x, y) (within or on the boundary Γ) to a line integral on the boundary Γ:

φ(x, y) =

∫

η

∫

ξ

wf dηdξ +

∫

Γ

(
w
∂φ

∂n
+ φ

∂w

∂n

)
ds. (2.25)
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The problem is then discretized by dividing the boundary into elements, and by expressing
the unknown function φ as a linear combination of a suitable basis function N :

φ =
∑

i

φiNi. (2.26)

The problem is then transformed in a matrix-vector equation of the type:

Ax = b (2.27)

where x is the vector of the unknowns φi, b is the known vector for the system physical
properties (charge density) of the same size, and A is a square matrix.

As the electrostatic problem has to be solved only on the boundary, a smaller number
of linear equations involving the unknown function are needed [140] compared to other
methods. This makes BEM particularly suitable to solve boundary problems like the ones in
ASC implicit models, which only consider polarization at the the solute-solvent interface Γ.
Nevertheless, this advantage comes at the cost of introducing complicated integral relations,
and is lost when treating non-linear partial di�erential equations, such as the Poisson-
Boltzmann equation, as expensive volume integrals have to be reintroduced [141, 140].

2.2.2.2 Finite-Di�erence Method

The Finite-Di�erence Method (FDM) is one of the most widespread numerical technique
to solve both ordinary and partial di�erential equations and has a long history in implicit
solvation [142, 143, 144], due to the computational e�ciency and ease of implementation
of the method compared to FEM and BEM [145, 140]. In fact, the FDM is based on
the approximation of derivative of a function with the a di�erence quotient [146]. If one
considers a one-dimensional function f(x) as a simple example, the analytical �rst derivative
will be the usual:

f ′(x) = lim
x→0

f(x+ h)− f(x)

h
. (2.28)

Finite-Di�erence considers a �xed size h instead of the limit for x that goes to 0, and by
doing so introduces a discretization error which con be quanti�ed through Taylor's theorem
[147]:

f(x+ h)− f(x)

h
− f ′(x) = O(h). (2.29)

This means that the error of approximating the analytical derivative f ′(x) with a di�erence
quotient is proportional to h and goes to zero in the limit of h→ 0 when using the forward
di�erence of Eq. 2.28. The error for the method can be further reduced if the function f is
doubly di�erentiable. In fact, this allows to consider a di�erence quotient obtained through
a central di�erence scheme:

f ′(x) ≈ f(x+ h)− f(x− h)

2h
, (2.30)

by doing so the error is reduced to O(h2), meaning that it is proportional to h2 and rapidly
decreases to zero for h → 0, thus allowing for a larger step size h to be considered for a
given accuracy.

In practice, the FDM requires the discretization of the problem on a grid, with a step
size h, as shown in Fig. 2.6 in two-dimensional space, and the evaluation of the problem at
each grid node characterized by a set of indexes.
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h

j
i

Figure 2.6: 2D example of a �nite-di�erence grid with spacing h. Poisson's equation is
solved at the grid nodes. In orange boundary points where to impose boundary conditions.

Using as an example of a FD scheme a generic partial di�erential equation, such as the
non-generalized Poisson equation (ε(r)→ ε) for simplicity:

∂2φ(x, y)

∂x2
+
∂2φ(x, y)

∂y2
= −4π

ε
ρ(x, y) (2.31)

the problem at hand is reduced to �nding a set of values of φ(x,y) through the �nite
di�erence approximation of the derivatives at given grid nodes (i, j). Taking the numerical
central derivative in regards to x at one such grid nodes, as example, one obtains:

∂2φ(x, y)

∂x2
→ ∂2φ(i, j)

∂x2
≈ φ(i− 1, j)− 2φ(i, j) + φ(i+ 1, j)

2h
(2.32)

and substituting in Eq. 2.31 together with the derivative of y one is able to obtain a value
for φ(i, j) which is linearly dependent on the adjacent grid nodes. This allows to transform
the problem into a matrix-vector equation of the form:

Ax = b (2.33)

where x is the vector containing the solutions φ(i, j) at the grid nodes, and b is the vector
which, in the case of Poisson equation, contains the information of charge densities ρ and
boundary conditions on the grid nodes. The most straightforward method to solve the
problem for x is then through matrix inversion:

x = A−1b. (2.34)

Albeit matrix inversion is conceptually straightforward as long as A−1 is obtainable, for
larger systems the matrix scales with the power of x and iterative methods are used is
practice such as the Optimal Successive Over Relaxation (O-SOR) [148, 149], or multigrid
approaches which lead to increased performances [150, 151].

In general FDM methods have been extensively used in implicit solvation models to
solve the generalized Poisson equation, both in classical and QM codes. Some examples of
codes which solve the electrostatic problem through a �nite di�erence poisson approach are:
UHBD [142], DelPhi [143], MEAD [144]. Furthermore, the non-linear Poisson-Boltzmann
can be solved through FDM. In light of the computational e�ciency and ease of implemen-
tation of FDM the current main issues in implicit solvation is related to forces. This is due
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to the de�nition of a the relative permittivity as a step function:

ε(r) =

{
εin if r ∈ Ωin,

εout if r ∈ Ωout

(2.35)

as the gradient of ε(r) is not di�erentiable on the solute-solvent interface. To solve this
issue approximations have to be introduced based on Maxwell stress tensor to calculate
forces [152, 153, 154]. Alternatively, a smooth solute cavity can be introduced in which
the relative permittivity is a continuous function of the charge density of the solute ε[ρ], as
done by Fatteberg and Gygi [99].

2.2.3 Cavities De�nition

Up to know we have discussed the solute cavity, acting as an interface between the atomistic
solute and dielectric regions, without specifying any shape or size, and instead focusing
on its physical signi�cance on the model through Poisson equation. In this section, we
will introduce the main solute cavities that have found mainstream use in the literature,
focusing in particular on dielectric cavities for which a discontinuity in relative permittivity
is present, since this is the cavity type currently implemented in this thesis.

The solute cavities can be roughly subdivided between empirical cavities which stem
from empirical Van der Waals radii [155, 156, 157] or based on the molar volume of the
solute [72], and non-empirical, which are instead based on an isodensity surface of the
electronic density of the solute obtained from a QM calculation [158, 159, 160].

The most straightforward solute cavity type employed by the initial electrostatic models
developed by Born [70], Onsager [72], Kirkwood [71] and others is a simple spherical cavity
surrounding the solute charge density, and for which the Poisson equation has an analytical
solution. The radius for such cavity was suggested [72] to be:

R =

(
3Vm

4πNa

)1/3

(2.36)

where Vm is the molar volume of the solute and Na is the Avogadro's constant. Intuitively,
this type of spherical solute cavity is better suited for small sized solutes than for complex
molecular shapes, especially in case of molecules of biological interest. Nowadays, spherical
cavities have been used in cluster-implicit solvation models and as a lightweight replacement
for periodic boundary condition in QM/MM calculations [161, 162, 163, 164] where a certain
number of explicit solvent molecules surrounding the solute are considered. Noteworthy, are
also ellipsoid cavity which better adapt to some molecular shapes (for example bi-atomic
molecules), but which overall share the same limitations of spherical cavities [23, 165].

Passing from a spherical, or ellipsoid, cavity to more complex geometries typical of
molecules and chemical systems does not allow for analytical solutions of Poisson's equation
anymore, and a numerical resolution is needed. The lower accuracy and higher computa-
tional time required for numerically solving Poisson equation are nevertheless well justi�ed,
as molecular shaped cavities allow for a more physical representation of the target system
and a better description of solvation e�ects and properties [23, 25, 24, 26].

One way to take in account complex molecular geometries is to consider a union of atom
centered Van der Waals spheres. These spheres are constructed from empirically obtained
radii RvdW , and various sets exist in the literature. The most popular is the one de�ned
by Bondi [156] and validated by a wide number of data from crystal structures. Other
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commonly used sets are also available from the CRC Handbook of Chemistry and Physics
[157], or from the UFF universal force�eld [166].

The van der Waals based solute cavity is also the starting point to de�ne two more
surfaces which share the same assumption: reducing the solvent molecule to a sphere with
a volume equal to the van der Waals volume of the solvent. These cavities are called:
the Solvent-Accessible Surface (SAS) [167, 168], and the Solvent-Excluded Surface (SES)
[169, 170].

Figure 2.7: 2D example of a SAS in yellow and a SES solute cavity in green, with Solvent
Probe in blue, and vdW surfaces and sphere in black and gray, respectively.

� The SAS solute cavity is de�ned as the locus of points traced by the center of a
solvent shaped sphere (solvent probe) rolling on the outer surface of atom centered
van der Waals spheres, as shown in Fig. 2.7. Alternatively, it can also be de�ned
as augmented Van der Waals spheres, where each atomic sphere with radius RV dW

is expanded by a solvent dependent radius Rp (probe radius), de�ning a new sphere
of radius Ri = Ri,V dW + Rp, and excluding any point that fall within another sphere
domain. Physically, this solute cavity corrects the Van der Waals cavity for the solvent
exclusion e�ect [171, 172], for which the region surrounding the solute should be void
of any solvent molecules.

� The SES solute cavity is instead build to avoid high dielectric regions within the
solute itself (highlighted in Fig. 2.7), an event less relevant in SAS cavities [173]. The
SES uses the same solvent probe as the SAS, but instead of considering the center of
the solvent probe to de�ne the surface it uses the probe surface itself. The generated
surface can be subdivided in three di�erent patches [174, 175]: i) contact patches are
part of the atomic surface that are directly in contact with the probe, ii) toric patches
shown in Fig. 2.8a are the collection of curves connecting two contact surfaces when
the probe rolls over two contacted spheres, and iii) reentrant patches shown in Fig.
2.8b instead are formed when the probe is in contact with three or more spheres.

Clearly, the use of a solvent probe radius to de�ne the dielectric cavity is an arbitrary
choice that only partially resembles the complexity of the physical situation. For example a
commonly used solvent probe with radius of Rp = 1.4 Å is used for water [176]. This value
corresponds to half the distance of the �rst peak in the radial distribution function between
oxygens, but other values have also been used in literature [177], and a common practice
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(a) (b)

Figure 2.8: Examples of, (a) toric surface patch (ABCD) connecting two spheres, and (b)
reentrant patch (ABC) connecting three spheres, for a SES type surface.

in implicit solvation models is to optimize the solvent probe based on the solvation e�ect
or property one is interested in [178]. For example, this is done in the widely used SMx
family of solvation models [82, 83, 81, 80], in which solute cavities have been optimized
for the prediction for solvation energies of charged molecules and then equally employed
for neutral molecules. In general, problems also arise in de�ning an e�ective solvent probe
for larger solvent molecules, as in the case of complex or long-chain organic molecules, for
which the use of a simple spherical probe radius might not be always physically sound.

A more physical de�nition of a solute cavity can be reached by using an isodensity sur-
face based on the electronic density [158, 159, 160], thus obtaining a realistic representation
of the solute-solvent interface. Typical values for the isodensity surface usually vary in a
range between 0.0004-0.0010 a.u. [26, 25]. Albeit the physical soundness of such solute
cavity, technical aspects limit its applicability, as failure in surface generation are possible.
Another issue is related to the de�nition of the normal surface vector n being dependent
on the gradient of the electronic density [158, 159, 160]. Since this point introduces consid-
erable hurdles in the implementation of electrostatic forces for solute in solvent geometry
optimization, van der Waals solute cavities remain widely used, as analytical gradients of
the surface are more straightforward to obtain.

In addition, cavities have also been de�ned based on a smooth permittivity function
instead of the discontinuous ε(r) as de�ned in Eq. 3.3. One such cavities, originally
developed by Fattebert and Gygi [99, 179, 180], uses a charge density ρ(r) dependent
relative permittiviy ε de�ned here generically as:

ε[ρ] =





εin ρ(r) > ρmax

f [ρ(r)] ρmin < ρ(r) < ρmax

εout ρ(r) < ρmin

(2.37)

where ρmin and ρmax are charge density parameters used in the de�nition of ε which varies
between εin and the solvent εout relative permittivity, while the function f [ρ(r)] allows for
a smooth transition between εin and εout. The main advantages of smooth solute cavities
are related to faster convergence of the numerical solution of Poisson equation with a FD
scheme and the lack of discontinuities in ε(r) allowing for straightforward force calculations
[152, 153, 154, 99].

Overall, no unique correct de�nition of a solute cavity exista, and many solute cavities
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and variations of the above models have been developed in the literature which try to
balance between technical feasibility and realistic molecular shaped cavities [181, 182, 95,
183]. The latters are generally considered more physically sound and also more accurate to
compute solvation properties in regards to experimental data [23, 24, 25, 26].

2.2.4 Born and Generalized Born Model

One of the �rst electrostatic models for solvation is the one developed by Born for charged
species [70]. In this model a spherical solute cavity surrounding an ion is considered and
the solute charge density ρ(r) within it is approximated as a single point charge Q.

Under these assumptions, Poisson equation can be solved analytically and the elec-
trosatic energy is given by:

∆Gel = −
(
ε− 1

ε

)
Q2

2α
(2.38)

where ε is the solvent relative permittivity outside the solute cavity, and α is the radius of
the spherical cavity, also called e�ective Born radius.

An extension from a single charged sphere to multiple spheres, each with a charge at
its center has been developed and is the Generalized Born Approximation (GBA) [86, 87],
which allows for molecular shaped cavities to be considered.

Many formulations of the GBA model have been developed [184, 81, 82, 83, 86, 185, 186],
both for a classical and quantum-mechanical description of solvation e�ects. Here we report
the expression given by Still et al. [187]:

∆Gel = −
(
ε− 1

ε

) atoms∑

i=1

atoms∑

j>i

qiqj
2fij

(2.39)

where the index i and j run over the atom centered point charge q in the solute molecule
and fij is called Coulomb operator and is not uniquely de�ned. A widely used expression
also found in the SMx [82, 83, 81] family of solvation models is:

fij =

(
R2
ij + αiαj · exp

( −R2
ij

d · αiαj

))1/2

(2.40)

where Rij is the internuclear distance, and αi and αj are the e�ective Born radius, of atoms
i and j, while d is a constant. The exponential term in Eq. 2.40 is a damping factor, which
for large distances between atoms ensures that fij goes to α, leading back to Eq. 2.38 for a
mono-atomic system, albeit the e�ective born radius of an isolated atom should di�er from
that of the atom within a molecule due to the di�erent chemical surrounding [64].

A problem for GBA is the de�nition of the e�ective Born radii α for which many for-
mulations have been proposed [187, 188, 25, 189, 190]. The exact formulations re-introduce
the need of solving Poisson's equation for each solute atom, but o�ers little advantages
compared to approximate methods [25] based on optimizable parameters. An example of
an approximate method is the one also used in the most recent SMx solvation models
(x=6,8,12), such as the SM12 [81] variant.

In the SM12 model the intrinsic Born radius α of an atom i is de�ned as:

αi =

(
1

Ri

+

∫ Ri

RCZi

Ai(r)

4πr4
dr

)−1

(2.41)
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where Ri is the radius of an atom centered sphere big enough to include the entire molecular
solute cavity, RC

Zi
is an atomic number z dependent parameter to optimize, called the

intrinsic Coulomb radius, and Ai is the Solvent-Accessible Surface Area, in brief SASA
[167, 168].

Another issue to take into account when developing and using GBA electrostatic models
are atomic charges q [64]. In fact, no best and universal procedure exists to obtain them and
they have to be carefully chosen to obtain accurate solvation properties [82, 83, 81, 191].
Furthermore, in a quantum-mechanical calculation these charges will be free to evolve
together with the polarized electronic wave function of the solute at every step in a self-
consistent manner.

The topic of atomic charge models will be treated in more details in Sec. 3.1.1.1 on
page 62. Here we will limit ourselves to point out that the choice of the model is central in
obtaining accurate solvation energies and properties, and list some of the charge models that
have been used within the GBA electrostatic model in quantum-mechanical calculations
over the years. Mulliken [192], and Löwdin [193] charge models have been the �rst to be
considered, while the CMx family [194, 195, 196] of models have been used more recently.
Although all these models are based on the partition of the electron density between the
solute atoms, other strategies such as ChElPG [197], and MK [198], where charges are �tted
to quantum-mechanical computed electrostatic potentials, have been used.

Overall, for small to average sized organic molecules the solvation models based on
GBA electrostatics have shown similar results to models based fully on Poisson equation
when using the same solute cavity de�nition [86]. Inconsistencies between the two models
increasingly occur for larger molecules, such as biological polymers [199]. Larger molecules
also introduce some technical issues which arise in the computational protocol of GBA
models, which have shown to occasionally assign the solvent relative permittivity to volumes
within the solute, thus introducing an unphysical description of the system [200]. This is a
key problem when considering solvation of large periodic systems such as surfaces in which
the solvent should not penetrate the surface.

2.2.5 Multipolar Expansion Methods

The use of spherical or ellipsoid solute cavities does not limit the representation of the charge
distribution ρ(r) to atomic charges q in order to obtain analytical solutions of Poisson's
equation. In fact, any charge distribution ρ(r) can be expressed as a single-center multipole
expansion [201, 202, 72, 71, 203, 204], a mathematical series representing a function that
depends on angles expressed as a sum of terms with progressively �ner angular features
called moments [205].

A general formulation for the electrostatic energy using multipole expansion is the one
derived by Kirkwood [71] for a spherical cavity, according to:

∆Gel = −1

2

+∞∑

l=0

l∑

m=−l

(1 + l)(ε− 1)

(1 + l)ε+ 1

Mml
2

R2l+1
(2.42)

where Mml is the mth component of the multipolar moment of order l describing the solute
charge distribution calculated at the center of the spherical cavity of radius R, and ε is the
solvent relative permittivy. Formulations of multipolar expansions have also been developed
for ellipsoid cavities [71, 206, 207, 208, 23].
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Eq. 2.42 is also referred to generalized Kirkwood model and many solvation models can
be seen as a special case of it [26]. For example, using a multipolar moment of order l = 0
and atomic charges in place of the solute charge density corresponds to Born's model [70],
which was already mentioned in Sec. 2.2.4 on page 37. For higher order multipoles l = 1
and using a point dipole µ instead of an atomic charge, one instead obtains Bell's solvation
model [209]:

∆Gel = − (ε− 1)

(2ε+ 1)

µ2

R3
. (2.43)

In the quantum-mechanical formulation of MPE methods the charge density ρ(r) can be
expressed as a multipole expansion, and the solute gas phase Hamiltonian can be augmented
by the corresponding interaction potential Vint [64, 25, 23], allowing for a self-consistent
treatment of solvation e�ects.

The Onsager model was one of the �rst self-consistent MPE approach [72], and used
a spherical cavity. In this model the solute is approximated by a dipole moment µ, and
polarizability α obtained self-consistently from a quantum-mechanical calculation, with the
electrostatic solvation energy given by:

∆Gel = − (ε− 1)

(2ε+ 1)

µ2

R3

[
1− (ε− 1)

(2ε+ 1)

2α

R3

]
(2.44)

where R is the radius of the spherical cavity, and ε the solvent relative permittivity.
The Onsager model has been widely used in the past, but has currently been surpassed

by more advanced models. This is due to its non-molecular shaped cavity, clear limitations
for solutes with no permanent dipole, and its generation of unphysical solvated charge
densities [210, 25].

Mikkelsen's model [211] has tried to improve over Onsager dipole approximation by
using quantum-mechanically obtained charges within the spherical solute cavity, but single-
center multipole expansions of the charge distributions ρ(r) have, overall, shown to have
limitations. These limitations are mostly related to problems in convergence and asymptotic
behavior of the series, which brought criticisms on the unreliability of MPE codes, especially
in case of larger molecules [212, 213, 25, 23], together with the lack of physical molecular
cavities.

One of the most complete MPE models is the one developed by Rivail et al [214, 215],
which solves the convergence and asymptotic behavior issues of the single-center MPE
by using a multiple atom-centered one, also referred to as distributed multipole analysis
(DMA). DMA was developed by Stone [88], and earlier proposed by Rein [216]. An example
of a strategy from Sokalski and Poirier [217] for QM calculations is where themth component
of the multipole of order l on the center i is de�ned as:

Mml(i) =
∑

µ∈i

∑

ν

Pµν 〈µ|Mml |ν〉 (2.45)

where Pµν is the population matrix and µ and ν are atomic orbitals. The model by Rivail
et al. [215] also replaces the unphysical spherical and ellipsoid cavities of previous MPE
models by a molecular shaped solute cavity, thus allowing for a more realistic treatment
of solvation e�ects. Furthermore, as all other MPE methods seen so far, Rivail's model is
able to compute fast and reliable forces through the analytical gradients of its reaction-�eld
potential [215].
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Result wise, the multicentered MPE method developed by Rivail et al. gives very
similar values in both interaction energies and dipole moments to other solvation models
[215]. This analytical reaction �eld potential comes however at the price of a formidable
mathematical complexity when considering molecular shaped solute cavities [23]. This
complicates signi�cantly its extension to periodic systems, for which other solvation models
are more suitable.

2.2.6 Apparent Surface Charge Formalism

Apparent surface charge (ASC) models recast the volume polarization of the dielectric media
due to the solute charge density to a surface polarization at the solute-solvent interface,
thus simplifying the mathematical formalism and increasing the computational e�ciency
of the problem at hand [25, 218, 219, 220, 221]. Furthermore, it o�ers an exact solution
of the electrostatic problem when the solute charge density is completely within the solute
cavity [25, 222]. For these reasons ASC models have become one of the most widespread
class of implicit solvation models nowadays.

Common to all ASC methods is the de�nition of a reaction-�eld potential φRF (r) for
the whole volume domain r ∈ V whose computation requires the charge density σ(s) on
the solute-solvent surface s ∈ Γ [25]:

φRF (r) =

∫

s∈Γ

σ(s)

|s− r|ds. (2.46)

This reaction-�eld potential φRF (r) arises from the dielectric jump conditions imposed on
the solute-solvent interface Γ to ensure the continuousness of the dielectric displacement
throughout the interface and where �rst seen in Sec. 2.2.1 on page 25 and are here reported
again [92, 93]: 



φin(r) = φout(r)

εinn · ∇φ(r)

∣∣∣∣
in

= εoutn · ∇φ(r)

∣∣∣∣
out

(2.47)

In fact, to satisfy the dielectric jump conditions in the case of a discontinuous surface
(εin 6= εout), polarization proportional to the normal n electric �eld at the dielectric interface
is required [223, 23]. This polarization is manifested from the appearance of a charge density
σ(s) on the dielectric surface Γ which acts as source term for the potential φRF (r) in Eq.
2.46.

Albeit the reduction of the source term of the reaction-�eld potential to a charge dis-
tribution σ(s) limited to the solute-solvent interface Γ, the integration in Eq. 2.46 is still
computationally demanding for molecular shaped solute cavities [25]. Thus, it is common
to discretize the integral in a �nite number of elements N each with an area Ai sampled on
the interface Γ:

φRF (r) ≈
N∑

i

σ(si)Ai
|si − r|

=
N∑

i

q(si)

|si − r|
, (2.48)

where q(si) = σ(si)Ai are the apparent surface charges. The discretization of the surface
is usually performed with small �at triangular surface elements called tesserae, one of the
most used algorithm for surface discretization being GePol [181], widely used in most PCM
variants. This is combined with numerical methods to solve Poisson Equation for the
potential and obtain the surface charge densities σ(si) of a dielectric [98, 122, 116, 127] in
order to solve the electrostatic problem.
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The inclusion of the charges q into the solute-solvent interaction potential Vint within
the Hamiltonian allows for a self-consistent reaction �eld treatment of polarization e�ects
[79], where the local value of the potential from solving Poisson equation at each iteration
is used to compute the apparent surface charges, which on the following iteration are used
to compute a new value of the potential, and so on until convergence of the electrostatic
solvation energy as seen in Sec. 2.2.1.1 on page 27.

The electrostatic solvation ∆Gel energy for ASC methods is obtained as in Eq. 2.10 in
Sec. 2.2.1 on page 25, and is here reported again:

∆Gel = 〈ψs|Hg + Vint |ψs〉 −
(
〈ψg|Hg |ψg〉+ ERF

)
(2.49)

where ψs is the solute solvated wave function, and ERF is the energy associated to the
reaction-�eld potential φRF (r), which in its discretized form is given as the following
Coulomb interaction between the solute potential φρ and the ith charge q at its position ri
[64, 96, 25]:

ERF =
1

2

N∑

i

q(si)φρ(si) =
1

2
〈ψs|Vint |ψs〉 (2.50)

and, as mentioned in Sec. 2.2.1 on page 25, is equal to the non-reversible work necessary
to polarize a linear isotropic dielectric [25].

We will now brie�y cover the �rst ASC method: the D-PCM developed by Tomasi et al.
[73], where D stands for Dielectrics, and its main issue in considering a QM obtained solute
charge density while ignoring volume polarization. We will then treat the C-PCM [224, 225]
and COSMO [226, 227, 228, 229] formalisms together as they both solve Poisson equation
by considering the solvent media as a conductor. Finally, we will treat the latest iteration
of the PCM family which is based on the Integral Equation Formalism (IEF-PCM) [98] to
solve the electrostatic problem using BEM will be presented. This last model overcomes
the problem of neglecting the volume polarization within the QM- ASC formalism, and can
be seen as a generalization of both D-PCM and C-PCM.

2.2.6.1 D-PCM

In the original formulation of the D-PCM [73] electrostatic model the charge density σ(s) in
Eq. 2.46 is given by two equal expressions which arise from the dielectric jump conditions:

σ(r) =
1

4π

(
εout − εin

εin

)
n · ∇φ(r)

∣∣∣∣
in

=
1

4π

(
εout − εin

εin

)
n · ∇φ(r)

∣∣∣∣
out

(2.51)

where the potential is de�ned as sum of the reaction-�eld and solute potential (φ(r) =
φρ(r) + φRF (r)) and its derivatives are taken immediately inside and outside the solute-
solvent interface Γ. Albeit the outer expression is usually preferred as it avoids self-
polarization e�ects of the dielectric media.

From a physical point of view, the main problem of D-PCM and earlier ASC models is
what is usually referred to as the escape charge problem [92, 135, 137, 158]. As mentioned
previously, the ASC formalism allows for an exact formulation of the electrostatic problem
as long the solute charge density is fully within the solute cavity [136]. This is the case when
considering a classical system represented by atomic point charges. Instead in the quantum-
mechanical formulation a portion of the solute charge density escapes any reasonable solute
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cavity de�nition due to the asymptotic behavior of the wave function, which causes not
only surface, but also volume polarization in the dielectric media which is neglected in Eq.
2.46.

The issue of an escaped charge in ASC models was �rst addressed by Chipmann et
al. [136, 158, 230] which corrects the reaction-�eld potential φRF (r) by considering it sum
of two contributions which arise from surface polarization φΓ(r) and volume polarization
φV (r):

φRF (r) = φΓ(r) + φV (r). (2.52)

This expression forms the base assumption of the Surface and Volume Polarization for
Electrostatics (SVPE) model [137]. Other than the SVPE model the problem of escaped
charge has been solved in a more recent PCMmodel based on a Integral Equation Formalism
(IEF-PCM) [98]to solve the electrostatic problem, and which is completely equivalent to
an approximation of SVPE known as SS(V)PE [158, 137, 230], which stands for Surface
and Simulation of Volume Polarization for Electrostatics. Alternatively, the escaped charge
problem can be addressed through a renormalization procedure of σ(r) at each SCRF cycle.
This using the relation between theoretical sum of apparent surface charges Qtheory

asc and the
computed sum Qasc, according to [231]:

Qtheory
asc = −εout − 1

εout
·QASC (2.53)

The di�erence between the theoretical and computed sums of ASCs before renormalization,
can be used to verify the quality of the ASC formalism.

2.2.6.2 C-PCM and COSMO

The Conductor-like Screening Model (COSMO) [226, 227, 228, 229] and C-PCM (C for
conductor) [224, 225] are ASC method which are in sharp contrast to other implicit solva-
tion models as they replace the dielectric media with a conductor. The advantage of this
approach is that conductors are characterized by an in�nite relative permittivity ε = +∞,
and thus no potential exist within the media simplifying the electrostatic problem due to
the lack of boundary conditions. A surface charge density σ∞(s) can then be computed
directly from the electrostatic potential generated by the solute charge density, and is later
scaled down by a function of the real relative permittivity of the solvent f(ε) to obtain the
proper charge density σ(s):

σ(s) = f(ε)σ∞(s). (2.54)

The scaling function f(ε) is empirically determined as:

f(ε) =
ε− 1

ε+ k
(2.55)

with k = 0.5 in the original pubblication of COSMO [226, 227, 228], although di�erent
values have been given in the literature [232, 25] .

Result wise, the di�erent assumption of treating the dielectric media as a conductor
to obtain the apparent surface charges seem to have little impact on the results at least
compared to the other ASC methods [232, 233] as the electrostatic energy is not a physical
observable [64]. The main advantage of the C-PCM and COSMO models is their com-
putational robustness as well as the lack of potential numerical instabilities of other ASC
formalism, along with greater ease of implementation due to the simpli�ed electrostatic
formalism [26].
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2.2.6.3 IEF-PCM

The IEF-PCM [98] was the �rst model based on integral operators in quantum-chemistry,
and together with the Solvation Model based on solute electron Desnity (SMD) developed
by Marenich et al. [80] (with whom it shares the same electrostatic formalism) is one the
most used implicit solvation models to date.

As all ASC model the starting point of IEF-PCM is the de�niton of the reaction-�eld
potential as in Eq. 2.46:

φRF (r) =

∫

s∈Γ

σ(s)

|s− r|ds (2.56)

together with the decomposition of the potential as sum of the solute potential φρ(r) and
the reaction-�eld potential φRF (r) (see Sec. 2.2.1 on page 25):

φ(r) = φρ(r) + φRF (r) (2.57)

which are then rede�ned in terms of Green functions [234] G(r, r′) which represent the
potential a point charge at position r′ generates at r. The relation between the potential
in Eq. 2.57 and the Green functions is then the following:





φ(r) =
∫
V
Gρ(r, r

′)ρ(r′)dr′

φρ(r) =
∫
V
G(r, r′)ρ(r′)dr′

φRF (r) =
∫
V
GRF (r, r′)ρ(r′)dr′

(2.58)

with ρ(r′) the solute charge density, G(r, r′) = 1/|r − r′| the green function associated to
the operator −∇2, Gρ(x,y) the function associated to the operator −ε∇2, together with
GRF (r, r′) = Gρ(r, r

′) +G(r, r′) de�nitions, and the usual boundary conditions.
Under these conditions the surface charge density σ(s) of Eq. 2.46 can be recast as an

integral equation [235] on the interface Γ and the surface charge density σ(s) is given by:
(

2π

(
ε+ 1

ε− 1

)
− D̂

)
Ŝσ(s) = (−2π + D̂)φρ(s) (2.59)

where Ŝ is the integral operator which acts on the surface charge density σ(s) to give the
single-layer potential [236], and related apparent surface charges:

Ŝσ(s) =

∫

s′∈Γ

σ(s′)

|s′ − s|ds
′ (2.60)

while D̂ is the integral operator which acts on σ(s) to give the double layer potential [236]:

D̂σ(s) =

∫

s′∈Γ

∂

∂ns′

(
|s′ − s|−1

)
σ(s′)ds′ (2.61)

The use of Eq. 2.59 allows to have an exact formulation of the electrostatic problem as the
equation also implicitly contains the e�ects of volume polarization in an approximate way
similarly to the SS(V)PE model [158, 137, 230], thus solving the problem of escaped charge
typical of earlier ASC models. Another advantage of IEF-PCM over D-PCM is that surface
charge density σ(s) in IEF-PCM is not dependent to the gradient of the potential. In fact,
the Poisson equation is numerically solved using a Boundary Element Method (BEM) and
the numerical derivative introduce instabilities in the computation of σ(s) and of forces
[26]. The full mathematical treatment can be found in the original publication [98].
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2.3 Non-Electrostatic Contribution

Historically, solvation models mostly focused on the electrostatic contribution to the total
solvation energy. Such as in the case of the earlier models developed by Born [70], Kirkwood
[71], and Onsager [72] which completely ignored the non-electrostatic contribution, with
only few attempts being made by Claverie [237] and Rivail [214] focusing in particular
on the dispersion e�ects. The reason for this can be attributed to the fact that most
models focused on water due to its importance as a solvent in biology [25]. Water is in
fact characterized by a high dipole moment and consequentially a high relative permittivity
[157], meaning that the electrostatic term should be the dominant contribution to the total
solvation energy [191], which justi�ed the earlier lack of development of non-electrostatic
models. This approximation is however rather coarse as a balance exists between the
electrostatic and non-electrostatic contributions and solvation models which have included
the latter have achieved more accurate results in the prediction of solvation energies and
properties [82, 83, 81, 238, 239, 37, 240].

Fig. 2.9 qualitatively shows the performance of the widely used IEF-PCM electrostatic
model in predicting solvation energies for both non-aqueous and aqueous solvents for a
varied set of solutes widely used both for parametrize and validate solvation models [36, 241]
(more in Sec. 6.1.4.1 on page 111).
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Figure 2.9: Calculated electrostatic solvation energies ∆Gel as a function of total experi-
mental solvation energies ∆Gexp for (a) non-aqueous, and (b) aqueous solvents. The ∆Gel

values are calculated with IEF-PCM (B3LYP/6-311G∗∗) on 2530 neutral solutes of the
MNSOL database [36, 241] in 91 solvents with εout ranging from ≈ 1.00 to 181.56.

For non-aqueous solvents the electrostatic model alone is here unable to predict accurate
solvation energies within the experimental uncertainty for neutral molecules, of about 1.00
kcal/mol. On the other hand, IEF-PCM [98, 233] performance in aqueous solvent achieves
better results due to the solvent high relative permittivity, which makes the electrostatic
term ∆Gel the main contribution to the solvation energy, as expected, although this ap-
proximation does not hold for larger ∆Gel. In fact, on average the error compared to the
experimental data is still higher than 1.0 kcal/mol, making it clear that the non-electrostatic
contribution cannot be neglected in either cases.
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In light of this, more e�ort has been given in developing non-electrostatic models com-
pared to the pioneering years of implicit solvation. This has been done both by focus-
ing on more physically accurate models for each of the main contributions to the ∆Gne

[23, 25, 24, 26], which are:

∆Gne = ∆Grep + ∆Gdis + ∆Gcav + ... (2.62)

the cavitation ∆Gcav, dispersion ∆Gdis, and repulsion ∆Grep, and also by considering the
∆Gne related to one or more properties. These latter models usually consider the non-
electrostatic contribution to be proportional to the exposed area of the solute, correspon-
ing to the Solvent-Accessibile Surface Area (SASA) [167, 168], previously mentioned in
Sec. 2.2.3 on page 34.

In the following, we will �rst discuss the more physically sound models which treat each
contribution independently; starting with cavitation, repulsion, and dispersion, and then
we will focus on the models which mostly relate the non-electrostatic energy to the SASA.

2.3.1 Cavitation

The cavitation energy ∆Gcav is related to the reversible work needed to form a cavity
of suitable size within the solvent. This term is a net positive contribution to the total
solvation energy, as work has to be done to break the stabilizing intermolecular interactions
between the solvent molecules, and move them apart to form the cavity.

Many methods have been developed to obtain estimates of the cavitation energy [242,
243, 167, 244, 245], but in practice two methods have been actively used. The �rst are based
on the solute-solvent interface surface area [167, 168] (see Sec 2.3.4 on page 47) or cavity
volume, while the second are based on statistical mechanics where the solvent, and more
in general a �uid, is represented by hard spheres. Albeit, the overall statistical mechanics
approach has shown to have low accuracy in estimating properties of real �uids, it has long
been used, and is still used, in computational chemistry to compute the cavitation energy
[25].

Nevertheless, the cavitation energy for implicit solvation models is based on the Scaled
Particle Theory (SPT) [244, 246]. According to the SPT implementation in PCM, the
energy for a spherical cavity is given by the following simpli�ed formula which neglects
pressure contributions:

∆Gcav = RT

[
− ln(1− y) +

3y

1− y

(
Rs

Rp

)
+

[
3y

1− y +
9

2

(
y

1− y

)2](
Rs

Rs

)2]
(2.63)

where Rs is the radius of the atom approximated as a hard sphere, and Rp is the probe
radius (see Sec. 2.2.3 on page 34), R is the gas constant, T the temperature, and y is a
function of both the atomic radius Rs and of the number density of the solvent ρ:

y =
4π

3
ρR3

p. (2.64)

As such the model is completely de�ned through two parameters: Rs, Rp, and one empirical
descriptor for the solvent ρ. The extension of SPT to molecular cavities de�ned as sum of
interlocked spheres of Radius Ri = Rs,i + Rp is given by the Pierotti-Claverie formula in
the C-SPT [245, 247] model:

∆Gcav =
N∑

i

Ai
4πR2

i

∆Gcav(Ri), (2.65)
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in the which the total cavitation energy ∆Gcav is the sum of atomic ∆Gcav(Ri) contributions
weighted by the ratio between the exposed surface area of the atom Ai and the squared
atomic radius Ri.

We note that the SPT model in computational chemistry has been mostly tested on
small solvents such as water with fewer practical uses with larger solvents typical of organic
chemistry [25].

2.3.2 Dispersion

To treat the dispersion contribution many QM approaches have been developed over the
years [237, 248, 249, 250, 251, 252, 253, 254, 255]. These are mostly based on analytical
expressions to be included within the Hamiltonian and which depend explicitly on the solute
charge density of the solute. As an example, the dispersion energy ∆Gdis contribution of
one such methods implemented in PCM and based on dynamic polarizability [256, 257] is:

∆Gdis = −β
2

∑

ijkl

[ij|kl]PilS−1
jk +

β

4

∑

ijkl

[ij|kl]PilPjk (2.66)

with the subscripts ijkl refering to elements of the basis set. The integral [ij|kl] is instead
given by the following expression:

[ij|kl] =
1

2

∫

Γ

(
φij(s)Ekl(s) + φkl(s)Eij(s)ds

)
(2.67)

where φ(s) and Eij(s) are respectively the potential and the normal component of the
electrical �eld on the cavity surface at point s when expressed on the chosen basis set
elements. Pij and Sij are instead matrix elements of the density (P ) and overlap (S)
matrix, respectively. The expression for β is instead:

β =
n2
s − 1

4πns

(
ns + ω

Is

) (2.68)

where ns and Is are the solute refractive index and �rst ionization potential, respectively,
and ω is the solute average transition energy. Usually approximated by de�ning an interval
around the energy of the highest occupied orbital, as the most signi�cant transitions occur
at the frontier orbitals [25]. In general, the computational demands of methods which
include dispersion e�ects within the system Hamiltonian are quite high due to the complex
integrals involved [25]. Furthermore, the methods are very sensitive to the choice of basis
set, thus requiring the use of rather large sets, which further aggravates the computational
cost of including dispersion e�ects [25]. This makes the dispersion e�ects treated in such a
way excessively expensive for periodic systems, such as extended surfaces.

2.3.3 Repulsion

The Pauli repulsion energy ∆Grep contributing to the non-electrostatic term arises from
the overlap between the tails of non-bonded densities of molecules. Compared to the pre-
viusly observed dispersion terms this quantity is de�ned more straightforwardly, and is less
computationally demanding. One functional form is the following [256]:

∆Grep = α

∫

r/∈Ωout

ρ(r)dr (2.69)
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where ρ(r) is the electronic density of the solute, and α is a constant for a given solute,
which can be rede�ned as:

∆Grep = kρs
ns
Ms

, (2.70)

where s here refers to quantities that characterize the solvent, which are: the density ρs,
the molecular weight Ms, the number of valence electrons nval, and k being an empirically
determined constant. The integral represents the portion of solute charge lying outside the
cavity in Ωout. Another form for the repulsion term is given from the study of hydrogen
atoms [258], which is:

∆Grep = α

∫

r/∈ωout
|∇ρ(r)|dr. (2.71)

A classical approximation based on empirical determined potentials also exists [25] These
expressions have been used in the development of a variant of PCM for the study of systems
in extreme pressure environments know as XP-PCM [259, 260] for which intermolecular
repulsions plays a critical role.

2.3.4 SASA based models

A computational e�cient way to treat within a single term the contributions to the non-
electrostatic energy seen so far is based on the SASA [167, 168]. The total SASA Atot is
given by the sum of its atomic contributions, according to:

Atot =
atoms∑

i

Ai(R
vdW
i +Rprobe) =

atoms∑

i

Ai (2.72)

where RvdW
i is the radius of the ith atomic vdW sphere, and Rprobe is the probe radius of

a sphere approximating the solvent (see Sec. 2.2.3), albeit some models consider Rprobe as
a solvent independent constant [82, 83, 81, 80]. An example of a SAS is given in Fig. 2.10
for a benzene molecule.

Figure 2.10: In orange the SASA of a benzene molecule, in black and white the van der
Waals hard spheres for carbon and hydrogen atoms, respectively.

The physical justi�cation of employing the SASA to account for the non-electrostatic
term is that dispersion, repulsion, and other solvation e�ects not considered in the electro-
static term (e.g. charge transfer, electrostriction, dielectric saturation) mostly a�ect the
�rst solvation shell of the solute. As such an intuitive approximation is to consider their
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contribution proportional to the area of the solute-solvent interface. This is based on the
high correlation existing between the solvation energy of non-polar organic molecules and
the SASA [261, 64]. Furthermore, for relatively small sized solutes with a high surface-
area-to-volume ratio, it can also be considered as a good approximation for the cavitation
contribution in place of the molecular volume [262, 263, 261, 264]. Due to this, its compu-
tational e�ciency and relative simplicity, SASA based non-electrostatic models have been
widely employed [81, 80, 238, 37, 84].

The most straightforward model for non-electrostatics based on SASA is then to consider
the non-electrostatic energy ∆Gne proportional to the total SASA of a solute Atot, according
to:

∆Gne = α · Atot + β (2.73)

where α and β are the line slope and intercept coe�cients, respectively. These two coe�-
cients are the only parameters of this model and are usually obtained from linear regression
of experimental data. As an example, Fig. 2.11 shows qualitatively the e�ectiveness of this
simple model and its limitations when coupled with IEF-PCM [98] electrostatics ∆Gel, for
a varied set of solutes in both aqueous and non-aqueous solvent [36, 241].
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Figure 2.11: Calculated ∆Gsol and ∆Gel as function of total experimental ∆Gexp solvation
energies for (a) non-aqueous, and (b) aqueous solvent, using ∆Gel values from IEF-PCM
(B3LYP/6-311G∗∗) on 2530 neutral solutes of the MNSOL database [36, 241] in 91 solvents
with εout ranging from ≈ 1.00 to 181.56. The ∆Gne are obtained from Eq. 2.73 with
coe�cients α = −0.025 kcal/mol·Å2 and β = 1.049 kcal/mol, and Rprobe = 0.400 Å.

From Fig. 2.11 it is clear how this simple SASA based model is e�ective for non-aqueous
solvents, lowering the Mean Unsigned Error (MUE) of the solvation from 3.26 kcal/mol,
when considering the electrostatic contribution from IEF-PCM only, to 0.95 kcal/mol. On
the other hand, results for aqueous solvent are less encouraging, and an increase in MUE is
observed from 1.91 kcal/mol when considering ∆Gel alone to 4.09 kcal/mol. This decrease
in accuracy is mostly due to water standing out to other solvents due to its high dipole
moment and tendency for hydrogen bonding. This partially justi�es the choice of earlier
solvation models to ignore the non-electrostatic contribution for water and focusing on the
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electrostatic contribution as previously mentioned, but also makes it clear the importance
of the non-electrostatic contribution for solvents other than water. Better results for both
aqueous and non-aqueous can nevertheless be achieved with relatively more complex models.

Less coarse models based on SASA which do not stray from the initial idea have been
developed which account for the contribution of each solute atom to the total solvation
energy, and are usually parametrized for a given solvent [64]. These models consider the
non-electrostatic energy proportional to the sum of atomic SASA Ai each weighted with an
atomic number dependent Zi parameter wZi (unit wise, a surface tensions), according to:

∆Gne =
atoms∑

i

wZiAi. (2.74)

The goal of such models is to distinguish between di�erent atoms, as intuitively they will not
contribute equally to the non-electrostatic energy. This concept can be further expanded
by including atom types to better consider the atomic contribution within a molecular
function as is usually done in molecular dynamics [265, 266, 267, 268]. Albeit accurate for
a given solvent, these models lack in �exibility, as a di�erent set of parameters should be
ideally developed for each solvent, and so requiring experimental data which might not be
available, or su�cient, to develop and test these parameters.

2.3.4.1 Cavity Dispersion and Solvent structural e�ects: CDS

Accounting for di�erent solvents in a generalized fashion is usually done by including
solvent-dependent terms, as is done in the SMx family of solvation models [82, 83, 81, 80].
In SMx the non-electrostatic model goes under the name of Cavity, Dispersion, and Solvent
structural e�ects (CDS), and in the latest iteration of the model [81] the non-electrostatic
energy is given by:

∆Gne =
atoms∑

i

σiAi + σsolvAtot (2.75)

where the �rst term accounts for speci�c interaction between the solute's atoms and the
solvent, with σi being a function of both solvent empirical descriptors and solute atom
dependent parameters, while the second term σsolv is instead independent from the solute
atoms and is given uniquely by the solvent empirical descriptors. Overall 5 empirical
descriptors are required to fully describe the solvent within the CDS model. More details
on the descriptors and σi, σsolv are given in Sec. 3.2.1 on page 71, where the CDS model
has been extended for periodic systems, and new sets of parameters have been developed
for Finite-Di�erence Poisson based electrostatics.

In general, it should be noted that solvation models which employ the CDS model for
the non-electrostatic contribution usually predict solvation energies of neutral solutes well
below the 1.0 kcal/mol threshold, for both aqueous and non-aqueous solvents [36]. Fig.
2.12 shows the good performance of the SMD electrostatic model (an ASC method based
on IEF electrostatics) with and without the non-electrostatic contribution from CDS, for
both aqueous and non-aqueous solvents.

Furthermore, the use of empirical solvent descriptors and its parametrization on a wide
set of solutes in 91 solvents allows the model to be "universal", meaning that accounting
for di�erent solvents requires uniquely empirical descriptors without any modi�cation of
the existing parameters, at least for a given electrostatic model.
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Figure 2.12: Calculated ∆Gsol and ∆Gel as function of total experimental ∆Gexp solva-
tion energies for (a) non-aqueous, and (b) aqueous solvent, using ∆Gel values from SMD
(B3LYP/6-311G∗∗) on 2530 neutral solutes of the MSNOL database [36, 241] in 91 sol-
vents with εout ranging from ≈ 1.00 to 181.56. The ∆Gne are obtained from Eq. 3.33 as
implemented in Gaussian16 [30].

The CDS parameters, are not fully transferable between electrostatic models, and a new
set has to be developed for each one [191]. Two examples of popular solvation models with
two di�erent electrostatics which employ CDS successfully are SMD and SM12. The former
is an ASC [218] method, while the latter is a GBA [86] one. The number of parameters
required by the model is also quite �exible and allows the model to adapt to di�erent
electrostatic models. For example, for SMD [80] the CDS model requires only 34 parameters,
while in SM12 [81], 72 parameters are required to achieve a similar accuracy in the prediction
of solvation energies.

2.3.4.2 SCCS and SCCS-P

Following the CDS model, other non-electrostatic models have been developed which agu-
ment the SASA based approach with further terms such as the volume of the cavity V ,
which correlates not only with the cavitation energy but also with polarizability [269]. An
example of such non-electrostatic models is found within the Self-Consistent Continuum
Solvation [238, 239] (SCCS) model, where the non-electrostatic energy is given by:

∆Gne =

(
α + γ

)
Atot + βVcav. (2.76)

Here, each solvent is considered through two parameters α and β �tted to experimental
data, and γ is the empirical macroscopic surface tensions of the solvent, thus the model is
dependent on one empirical descriptor. The accuracy of SCCS is similar to that of SMD
and SM12 with CDS, requiring only 2 parameters per solvent, but as previously mentioned
for SASA based models this model to lacks in versatility in accounting for di�erent sol-
vents. In fact, the �rst publication of the model was originally parametrized only for water.
To partially solve this issue further parameters for 67 non-aqueous solvents have been re-
cently published, together with a variation of the model, SCCS-P [37], where P stands for
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polarizability. The main di�erence between SCCS and SCCS-P is the replacement of the
cavity volume V with the isotropic solute polarizability, as they are directly proportional.
Result wise, replacing the cavity with the solute polarizability allowed SCCS-P for a overall
increase in accuracy, and in particular more accurate results for aromatic compounds.

2.3.4.3 xESE and uESE

A recent non-electrostatic model developed for C-PCM and COSMO like electrostatics (see
Sec. 2.2.6.2 on page 42) is the one within the Extended Easy Solvation Estimation model
[84] (xESE) and its generalization to solvents other then water uESE [270]. These models
are actually loosely based on SASA and can be considered as an example of empirical
models which are e�cient and accurate, but with many physically arbitrary choices.

xESE was initially developed for the prediction of solvation energies in water alone fo-
cusing in particular on charged species. The non-electrostatic contribution is accounted not
only through the solute SASA and the cavity volume as in SCCS [238], but considers addi-
tional terms accounting for eventual shortcomings in the electrostatic contribution related
to ASC values, and is independent of any solvent empirical descriptors. The uESE model is
a generalization of the xESE model which extends the non-electrostatic contribution to 57
solvents. This is done by subdividing solvents into four classes: water, polar protic, polar
aprotic, and non-polar, with a non-electrostatic term for each:

� A) For Water the uESE model is the same as to its predecessor xESE, and the
expression for the non-electrostatic term is given by:

∆Gne =
∑

i

αiAi +
∑

i

βiq
2
i + SRC, (2.77)

where αi, and βi are element speci�c parameters, Ai is the atomic SASA, qi is the
average total ASC on atom i, while SRC should account for short range corrections,
and is de�ned as:

SRC = f(C)(A|σmin|3 +B|σmax|3), (2.78)

where σmin and σmax are the minimum and maximum values of Qi/Ai, and f(C) is a
damping factor which limits the value of the ∆Gne based on the value of a parameter
C.

� B) For Polar protic solvents an additional term is considered to Eq. 2.77 propor-
tional to the volume of the cavity V:

∆Gne =
∑

i

αiAi +
∑

i

βiq
2
i + SRC + γV (2.79)

with the parameter γ being solute and solvent non-speci�c. The choice of using
the cavity volume V is related to its direct proportionality relation with the solute
polarizability.

� C) ForPolar aprotic solvents the SRC term is replaced by a term linearly dependent
on qi weighted by an atomic element dependent parameter δi:

∆Gne =
∑

i

(αi + αsolv)Ai +
∑

i

δiqi +
∑

i

βiq
2
i + γV (2.80)

and furthermore, αi is shifted by a solvent speci�c parameter αsolv.
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� D) The last class of solvents are the non-polar one, for which the non-electrostatic
term is de�ned:

∆Gne =
∑

i

(αi + αsolv)Ai +
∑

i

δi|qi|+ γV (2.81)

where the dependency on q2
i has been removed due to small values which increased

numerical instabilities, and the linear term with Qq is rede�ned with its absolute value
|qi|.

xESE and uESE are able to achieve accurate solvation energies for neutral solutes on par
to other solvation models [84, 270], and are also able to achieve better results for charged
solutes with errors below the experimental uncertainty of 3.0 kcal/mol. Albeit, it is clear
that the initial intuitive assumption of considering the non-electrostatic term proportional
to the SASA is somewhat overstretched.

2.4 Periodic Implicit Solvation

Compared to �nite molecular system the modeling of solvation e�ects for periodic systems
through implicit solvation models has seen much less developments. This can be probably
attributed to several reasons such as the increased complexity of the equation within the
QM and electrostatic formalisms, the already high computational cost for a QM treatment
of periodic systems, together with a general lack of experimental solvation energies. For
periodic systems, solvation energies of surfaces can however be related to the experimental
contact angle θc [271] a liquid drop makes with a surface, as shown in Fig. 2.13a. The
contact angle is described by Young's equation, which relates the Liquid-Gas γLG, Solid-
Gas γSG, and Solid-Liquid γSL surface tensions to the equilibrium contact angle:

γLG · cos θc − γSG + γSL = 0. (2.82)

As shown in Fig. 2.13b, three possible cases can be observed: i) when γSG > γSL + γSG
no wetting of the surface by the liquid drop occurs, ii) partial wetting of the surface when
γSG < γSL + γSG, and iii) complete wetting when γSG = γSL + γSG.

A relation between the experimental contact angle and the computed solvation energy
per unit of area A of a surface slab exists [272], and is given by:

cos θc =
1

γLG

∆Gtot

2A
. (2.83)

This expressions can be used to evaluate the accuracy of periodic solvation models in
predicting solvation energies for surfaces, but unfortunately is limited by the experimental
uncertainty on θc. In fact, experimental contact angle measurements are very sensitive to
contamination, and show a low reproducibility between di�erent experimental conditions,
reducing the reliability of the already limited experimental data available [273, 274, 275].
In practice, this complicates both the validation and the development of new models, and
explains the fewer variety of models available for these type of solutes, which can overall be
subdivided in only two main families. A �rst one which stems from the work of Fattebert
and Gygi [99, 179] based on a smooth cavity surface focusing on DFT and plane-waves basis
sets, and a second family based on C-PCM developed by Cossi [276] using a discontinuous
cavity with a sharp variation of the relative permittivity at the solute cavity.
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(a) (b)

Figure 2.13: (a) Liquid drop showing the quantities in the Young's equation. (b) Possible
wetting scenarios based on the di�erent relationships between surface tensions.

2.4.1 Smooth Cavity Periodic Models

Most codes for the study of the electronic structure of periodic systems are based on the
work of Fattebert and Gygi (FG) [99, 179]. Their model was originally developed for �nite
molecular systems, using Density Functional Theory (DFT), plane-wave basis sets, and a
smooth dielectric cavity.

This model extends the standard Hohenberg-Kohn energy functional by including a
term for the solute-solvent interaction energy Es:

E[ρ] = T [ρ] +

∫
v(r)ρ(r)dr + Exc[ρ] + Ees[ρ] (2.84)

where the �rst three terms correspond to: kinetic energy, the interaction energy with an
external potential, and the exchange and correlation energies. While the last term Ees is
the electrostatic energy de�ned as:

Ees[ρ] =

∫
ρφ[ρ]dr (2.85)

where the potential φ is obtained from solving Poisson Equation with a relative permittivity
which depends on a smooth function of the solute charge density ρ:

−∇(ε[ρ]∇φ) = 4πρ. (2.86)

When taking the functional derivative of E[ρ] with respect to the solute charge density ρ
the Ees derivate gives the potential φ, plus an additional term:

Vε(r) = − 1

8π
(∇φ(r))2 δε(r)

δρ
(2.87)

to be included in the Kohn-Sham potential. The Kohn-Sham equations are then solved self-
consistently to take in account the mutual solute-solvent polarization e�ects like in other
SCRF methods.
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The dependence of the relative permittivity on the solute charge density is given by the
following surface model:

ε(ρ(r)) = 1 +
ε∞ − 1

2

(
1 +

1− (ρ(r)/ρ0)2β

1 + (ρ(r)/ρ0)2β

)
(2.88)

where ε∞, β, and ρ0 are the three parameters needed to de�ne the solute cavity. The �rst
parameter ε∞ control the asymptotic behavour of the function in the limit of ρ(r) that goes
to zero, and is then equal to the solvent relative permittivity. The second parameter ρ0

controls the density value in the middle of the solute-solvent interface (it can be seen as
the solute cavity size), while the last parameter β controls the width of the interface.

The reason that brought to de�ne a smooth relative permittivity function of the solute
charge density is related to the computation of forces which lead to di�culties when consid-
ering ASC schemes on the solute-solvent interface. Furthermore, the use of a discontinuous
relative permittivity of the solvent complicates force calculation when using regular grids,
as in the case of solving Poisson equation using a �nite-di�erence approach [152, 153, 154].
The FG model has been widely adopted and extended for periodic systems in a large va-
riety of quantum-chemical programs which employ plane-wave basis sets. Some examples
of periodic codes which based their implicit solvation models on the work of Fattebert and
Gygi are: Quantum Espresso [277, 278, 279, 280], VASP[281, 282], ONETEP [283, 284],
CP2K[285], and BigDFT[240, 272], JDFTx [286].

2.4.2 Periodic C-PCM

In 2001, Cossi proposed a generalization of the C-PCM formalism to one- and two- dimen-
sional periodic systems. In C-PCM [224, 225] the solute cavity is given by the GEPOL
[181] algorithm which discretizes the vdW surface in small patches of area ai refereed to as
tesserae. The solvent is treated as a conductor and the electrostatic equations are hence
greatly simpli�ed (see 2.2.6.2 on page 42):

Sq = φ (2.89)

where q and φ are vectors containing the apparent surface charges, and the potential at the
position of each tesserae. S is instead a N ×N matrix, where N is the number of tesserae,
where elements are de�ned as:




Sii = 1.0694

(
4π
ai

) 1
2

Sij = 1
rij

(2.90)

where ai is the area of the ith tesserae, and rij is the distance between of them. To obtain
the correct charge for the dielectric the vector q is scaled by a factor f(ε) de�ned in 2.2.6.2
on page 42, and here reported again:

f(ε) =
ε− 1

ε+ k
(2.91)

where k is a value which ranges between zero and 0.5, the latter being the original value
used.
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The extension to periodic systems [276, 287] is done both for one- (1D) and two- (2D)
dimensional periodic systems. For 2D systems, a reference cell is replicated along indepen-
dent primitive displacement vectors a1, a2 which form the lattice vector a = n1a1 + n2a2

which indicates uniquely each of the replica of the reference cell through the integers n1, n2.
This requires the generalization of the C-PCM equations to compute the apparent surface
charges in the reference unit cell by taking into account the interaction with the periodic
replicas. For the potential, the ith element of the vector φ for a particular lattice vector a
de�ned by n1, n2 is then given by:

φi = Siiqi +
N∑

j 6=i
Sijqj +

∑

a

φa
i (2.92)

where the last term is the extension to all the direction of the lattice vector a, and is given
by:

φa
i = 2qi

+∞∑

n=1

1

n|a| +
N∑

j 6=i
qj

+∞∑

n=1

(
1

|rij + na| +
1

|rij − na|

)
. (2.93)

This expression is recast in terms of Legendre polynomials to improve the stability and
convergence of the series for systems where the total charge is equal to zero. For one-
dimensional periodic systems with a = a1 the potential of the ith tesserae is:

φa
i =

N∑

j 6=i
qj

[
2

|a|
+∞∑

m=1

(
rij
a

)2m

ζ(2m+ 1)P2m

]
, (2.94)

and for two-dimensional periodic systems the total potential is given by:

∑

a

φa
i =

N∑

j 6=i
qj

[∑

n1

∑

n2

2

|n1a1 + n2a2|
·

+∞∑

m=1

(
rij

|n1a1 + n2a2|

)2m

ζ(2m+ 1)P2m

]
, (2.95)

where Pm is the Lengendre Polynomial of order m (in this case 2m), and ζ =
∑+∞

n n−1 is
the Riemann function. The double summation on n1 and n2 requires n1 6= 1 and couples
of n1, n2 with greater common divisor of 1.

The periodic generalization of S instead takes the following form, for one-dimensional
periodic systems, of:





Sii = 1.0694

(
4π
ai

) 1
2

Sij = 1
rij + 2

|a|
∑+∞

m=1

(
rij
a

)2m

ζ(2m+ 1)P2m

(2.96)

while it is:




Sii = 1.0694

(
4π
ai

) 1
2

Sij = 1
rij +

∑
n1

∑
n2

2
|n1a1 + n2a2| ·

∑+∞
m=1

(
rij

|n1a1 + n2a2|

)2m

ζ(2m+ 1)P2m

(2.97)
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for two-dimensional systems, where only the non-diagonal elements are modi�ed by the
generalization to periodic systems when compared to molecules. The full treatment can be
found in the original publication by Cossi [276].

Overall, is clear how the passage from �nite to periodic systems increases the complexity
of the mathematical formalism for C-PCM, which compared to other ASC methods simpli-
�es the electrostatic problem by considering the solvent as a conductor. Furthermore, to
our knowledge, the only application of this model is to an all-trans poly-glycine chain [276]
using a classical description of the solute with atomic charges. This was done comparing
the computed values obtained with the periodic C-PCM code to other computed solvation
energies in the limit of an in�nite chain with excellent agreement. As a comparison, modern
implicit solvation models are routinely tested on hundred, if not thousands [36, 37, 38] of
experimental solvation energies for both neutral and charged �nite (non-periodic) solutes.



Chapter 3

Implicit solvation in Crystal

This chapter focuses on the main methods which compose the implicit solvation model
implemented in Crystal for both �nite molecular and periodic systems, and used in this
thesis. In particular, the electrostatic model will be described �rst, focusing on the Self-
Consistent Reaction Field (SCRF) method, the �nite-di�erence (FD) resolution of the gen-
eralized Poisson equation, the FD Apparent Surface Charge (ASC) formalism, together
with the solute cavity de�nition. Furthermore, the various atomic charge models used to
approximate the solute charge density within the generalized Poisson equation will be pre-
sented. In the second part of the chapter the non-electrostatic part of the solvation model
will be considered. Speci�cally, we will discuss the Cavity Dispersion and Solvent structural
e�ects (CDS) model and its gradients.

3.1 Electrostatic Contribution

In Crystal [31, 39], the electrostatic model is based on a Self-Consistent Reaction Field
(SCRF) Method [79, 97] using an Apparent Surface Charge (ASC) [218, 219, 220] formalism;
where the underlying electrostatic problem is numerically solved through a �nite-di�erence
generalized Poisson equation scheme.

For simplicity, the electrostatic model can be divided in three interconnected compo-
nents, each treating a separate aspect of the model:

� Finite-Di�erence generalized Poisson (FDP): the approach allows to solve Pois-
son's equation for the electrostatic potential generated by the solute charge density.
The solute potential is used to compute the ASC, and to calculate other necessary
quantities for the solvation model. The FDP approach is dependent on the choice of
atomic charge model.

� Apparent Surface Charges (ASC): account for the dielectric media surface polar-
ization and are mapped on the SES cavity [169, 170]. The ASC inclusion within the
solute Hamiltonian allows for a Quantum-Mechanical (QM) treatment of solvation
e�ects.

� Solvent-Excluded Surface (SES): de�nes the solute cavity, and allows to separate
the system in an atomistic region where the solute atoms are treated explicitly, and
a dielectric region where the solvent is treated as a structureless dielectric media.

All three component play a fundamental in the implicit solvation model and, with the
exception of the SES cavity, within the iterative SCRF procedure.



58 Implicit solvation in Crystal

3.1.1 Finite-Di�erence Generalized Poisson

In the electrostatic model the potential φ(r), generated by a solute characterized by a
charge density ρ(r) in a non-homogeneous dielectric media with relative permittiviy ε(r),
is obtained by solving the generalized Poisson equation:

∇[ε(r) · ∇φ(r)] = −4πρ(r), (3.1)

where the solute charge density ρ(r) is discretized as atomic point charges (see Sec. 3.1.1.1):

ρ(r) =
atoms∑

i

qiδ(r − ri). (3.2)

Using a Solvent-Excluded Surface (SES) [169, 170] solute cavity to separate the atomistic
region Ωin, where atoms are treated explicitly, from the dielectric region Ωout representing
the solvent, the relative permittivity is set as a step function:

ε(r) =

{
εin if r ∈ Ωin,

εout if r ∈ Ωout

(3.3)

where εin is equal to 1 in the atomistic region Ωin, and εout is equal to the solvent relative
permittivity in the dielectric region Ωout. As the generalized Poisson equation can be
solved analytically only for simple cavity geometries, like ellipsoids and spheres, numerical
methods have to be invoked for its solution when using molecular shaped cavities. In
this thesis a Finite-Di�erence (FD) method has been used to numerically solve Poisson's
equation, where the physical properties of the sytem are mapped onto a grid and numerical
derivatives are solved at the grid nodes. The FD method has been mentioned in Sec. 2.2.2.2
on page 32 in the wider contest of implicit solvation models, and below we will focus on
the FD implementation in Crystal for both molecular and periodic systems.

Taking as an example a �nite molecular system and a cubic FD grid with spacing h
and (Nx, Ny, Nz) grid points per direction, where each grid point is characterized by three
integers (i, j, k) de�ning its position in space, the physical properties of the system are
initially mapped onto a grid and boundary conditions are assigned along the FD grid edges
Γ. An example of cubic a FD grid and property mapping for a �nite molecular system is
shown in Fig. 3.1.

The dielectric constant is mapped at the facets between the grid points (grid facet
points) to improve the dielectric description, and its value is assumed to be εin or εout if the
grid facet falls within the atomistic region Ωin or in the dielectric region Ωout, respectively.

The other physical property of the system is the solute charge density ρ(r), which is
approximated as atomic point charges. These charges are mapped at the grid node (i, j, k),
and as each charge qi position in space (x, y, z) may not fall on a grid node (i, j, k), the
atomic charges qi are distributed on the nearest 27 grid point using a quadratic inverse
interpolation algorithm [288]. Furthermore, a special set of points called Boundary Grid
Points (BGP) can be de�ned. These points are located at the boundary between the
atomistic Ωin and the dielectric region Ωout, and are points with at least one dielectric
neighboring point in a di�erent dielectric media than the other �ve. These points will be
used in the de�nition of the Apparent Surface Charges and in the construction of the SES
in the next sections.

Having mapped the physical properties onto the FD grid, boundary conditions are
assigned to the grid edges Γ based on the periodicity of the system as shown in Tab. 3.1.



3.1 Electrostatic Contribution 59

Γ

h

j

ik

Ωout

Ωin

Figure 3.1: 2D example of a �nite-di�erence grid (10× 10) with spacing h. In gray the grid
points where the generalized Poisson equations is solved using an iterative solver. In blue
the relative permittivity mapped between the grid nodes. In red edge grid points where
Dirichlet boundary conditions or Ewald formulas have to be imposed, and in orange the
boundary grid points at the solute/solvent interface. The atomistic region within the solute
cavity is indicated by Ωin, and the dielectric region by Ωout.

Periodicity Dirichlet Periodic (Ewald)

0 x,y,z �
1 y,z x
2 z x,y

Table 3.1: Boundary conditions for the potential depending on the system periodicity.

For �nite molecular systems 0D, and for the non-periodic direction of 1 and 2D systems,
Dirichlet boundary conditions are imposed. In particular, the Debye-Hückel potentials
φijk = φ(i, j, k) of the equivalent dipole of the system [143] are computed and assigned at
each boundary node on the grid edges Γ, according to:

∀i, j, k ∈ Γ : φijk = q+
exp(−R+

ijkλD)

εout ·R+
ijk

+ q−
exp(−R−ijkλD)

εout ·R−ijk
(3.4)

where R+
ijk and R

−
ijk are the distances from the grid node (i, j, k) to the center of positive

Q+ =
∑

i q
+
i , and negative Q− =

∑
i q
−
i charge, respectively. The term λD is the Debye-

Hückel length and is set to λD = +∞ for solvents with no salts e�ects. The Cartesian
coordinates r = (x, y, z) of the centers of charge are, taking the positive center as an
example, given by:

r =
atoms∑

i

q+
i ri
Q+

, (3.5)

where ri and q+
i , are the coordinates and charge of the ith positively charged atom, respec-

tively. The same applies for the center of negative charge.
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Once the physical properties of the system are mapped onto the FD grid, and the
appropriate boundary conditions are imposed, the potential φijk = φ(i, j, k) can be obtained
at each of the grid nodes by solving Poisson's equation derivatives numerically. For a �nite
molecular system and a FD grid with spacing h along all directions, the potential at each
grid node (i, j, k) depends on the charge at the grid node qijk = q(i, j, k), the grid spacing h,
together with the potentials and relative permittivity values at the six adjacent grid points,
and is given by [289]:

φ0D
ijk =

1
6∑

i

εi

( 6∑

i

εiφi + 4π
qijk
h

)
(3.6)

where the summation over i runs on the six adjacent grid nodes, as shown in Fig. 3.2.
Furthermore, Eq. 3.22 can be generalized to any parallelepiped grid shape with lengths
(hi, hj, hk), and inclination angles (α, β, γ), according to [289]:

φ0 =
sinα

hyhz
hx

∑2
i=1 εiφi + sin β hxhz

hy

∑4
i=3 εiφi + sin γ hxhy

hz

∑6
i=3 εiφi + 4πq0

sinα
hyhz
hx

2∑

i=1

εi + sin β
hxhz
hy

4∑

i=3

εi + sin γ
hxhy
hz

6∑

i=5

εi

(3.7)

where φi and εi are, respectively, potentials and relative permittivities at grid nodes adjacent
to φ0 at grid node (i, j, k), as shown in Fig. 3.2.

Figure 3.2: Volume element for a 3D FD cubic grid. Each grid point (gray) is neighbored
by six grid points, and six relative permittivity values mapped at the facets points (blue).
(α, β, γ) are angles along directions (i, j, k) with grid step sizes (hi, hj, hk).

Applying Eq. 3.6 yields a system of (Nx · Ny · Nz) linear equations which are solved
iteratively with assigned potentials on the non periodic edge grid nodes Γ, according to Tab.
3.1. The linear system is solved using the Optimal Successive Over-relaxation algorithm
[148, 149, 130], where the potential φijk at each non boundary grid point is given by:

φ
(n)
ijk = (1− ω) · φ(n−1)

ijk + ω · φijk, (3.8)

where φ(n)
ijk and φ

(n−1)
ijk are the values of the potential at di�erent iterations, and ω is a

tunable parameter to optimize the algorithm convergence. The parameter is estimated
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from the spectral radius of the Gauss-Seidel approach [130], and the number of iterations
necessary for convergence scales linearly with the length of the grid.

For periodic systems, the Ewald formulas for systems with reduced periodicity are used
instead [290], and Dirichlet conditions are imposed only on the non periodic directions. In
particular, for a 1D periodic system in the x direction, such as a polymer composed of N
atoms per unit cell, each with charges qn, the potential at site rm in space is given by:

φ1D(rm) =
∑

R

N ′∑

n=1

qn
erfc(ξ|rm − rn +R|)
|rm − rn +R|

+
1

a

∑

ki 6=0

N∑

n=1

qne
−ik1(rm−rn)K0(

k2
1

4ξ2
, ρ2

mnξ
2) (3.9)

−1

a

N∑

n=1

qn

(
γ + log

(
ρ2
mnξ

2
)

+ E1(ρ2
mnξ

2)

)
− 2ξ√

π
qm,

where the �rst term is a sum in direct space, and N ′ indicates that the cases n = m
with translation vector R=0 are excluded from the real space sum, and ξ is a parameter
a�ecting the relative decay of the sums. The second and third terms are reciprocal space
contributions, where γ is the Euler Mascheroni constant, k1 forms a discrete set of k points
in the reciprocal space, and ρmn is given by:

ρmn =

(
(zm − zn)2 + (ym − yn)2

) 1
2

. (3.10)

The function K0(u, v) is an incomplete modi�ed Bessel function of the second kind, de�ned
as:

K0(u, v) =

∫ ∞

1

1

t
e−(ut− v

t
) dt, (3.11)

and E1(v) is an exponential integral de�ned as:

E1(v) =

∫ ∞

1

1

t
e−vt dt, (3.12)

where v and u where set to: v = ρ2
mnξ

2, and u = k2
1/4ξ

2, respectively. The potential for a
2D periodic system φ2D in the direction x and y, such as a slab with unit cell area A, is
instead given by:

φ2D(rm) =
∑

R

N ′∑

n=1

qn
erfc(ξ|rm − rn +R|)
|rm − rn +R|

+
N∑

n=1

qn
∑

k 6=0

e−ik(rm−rn) · 1

k
g(k, zm − zn, ξ) (3.13)

−2
√
π

A

N∑

n=1

(
1

ξ
eξ

2(zm−zn)2 +
√
π · (zm − zn) · erf(ξ(zm − zn))

)
+

2ξ√
π
qm,

and the function g(k, zmn, ξ) is given by:

g(k, zmn, ξ) = ekzmnerfc
(
k

2ξ
+ ξzmn

)
+ ekzmnerfc

(
k

2ξ
− ξzmn

)
(3.14)
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where zmn = zm − zn has been used, and k forms a �nite set of vector in the reciprocal
space.

The potentials obtained from the FD generalized Poisson scheme, together with the
Boundary Grid Points, are fundamental to compute the Apparent Surface Charges (ASC),
which allow for the mutual solute-solvent polarization within the SCRF procedure. The
ASC will be discussed below in Sec. 2.2.6 on page 40, but �rst, we will overview the atomic
point charge models used by the electrostatic model to approximate the solute charge
density.

3.1.1.1 Atomic Charge Models

Atomic charge models play a critical role in the FD generalized Poisson scheme discussed
so far. In fact, the solute charge density ρ(r), acting as source term in Poisson's equation,
is approximated by a discrete sum of atomic point charges qi in the model:

∇[ε(r) · ∇φ(r)] = −4π
atoms∑

i

qiδ(r − ri). (3.15)

Atomic charge models can be divided into di�erent classes [64]: in this thesis class II
and class IV charge models have been considered within the SCRF procedure. For class
II models, which partition the electron density from a quantum mechanical calculation
into atomic contributions, Mulliken [291], Hirshfeld (HPA) [292], and Hirshfeld-I (HPA-I)
[293, 294] have been considered. On the other hand, for class IV models, which apply a semi-
empirical mapping to a precursor class II or class III charge to reproduce an experimentally-
determined or calculated observable, CM5 model [295] has been chosen, together with two
modi�cations of the model to be discussed below. We will now recall the fundamentals of
the di�erent charge models considered, highlighting possible advantages and shortcoming
in their applications in the electrostatic model.

� Mulliken: In this approach, electrons are partitioned amongst the atoms according
to the contribution of the di�erent atomic orbitals (AO) µ and ν to the wave function.
The Mulliken charge qMi of an atom i is given by:

qMi = Zi −
∑

µ∈i

∑

ν

∑

R

PRνµS
R

νµ (3.16)

where Zi is the nuclear charge, R is a translation vector in the direct lattice, and
P and S are the density and overlap matrices, respectively. Due to their concep-
tual simplicity and fast calculation time, this is the charge model which has been
previously considered for the implicit solvation of both �nite and in�nite periodic
systems in Crystal [289]. However, a number of drawbacks make their use delicate
[296, 297, 298, 299, 300, 301, 302, 303], especially due to the equal division of the con-
tribution involving basis functions between di�erent pairs of atoms[302], nonphysical
electron partition in case of unbalanced or very large basis sets [303], along with high
basis set dependence, making in principle a comparison of partial charges and related
properties between di�erent levels of theory di�cult. This last point is particularly
problematic in case of a SCRF approach in which the source term of the Poisson
equation is approximated as a sum of distributed atomic charges, since a high basis
set dependence of the solvation energy can be expected especially for �nite molecu-
lar systems for which di�use basis functions are routinely used for the calculation of
various properties.
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� Hirshfeld and Hirshfeld-I: In this approach, the total electron density ρ(r) is par-
titioned into atom-in-molecule densities ρi(r) via a weighting function wi(r) according
to:

ρi(r) = ρ(r) · wi(r) = ρ(r) · ρ0
i (r)∑
j ρ

0
j (r)

(3.17)

where ρ0(r) is the spherical pro-atom density of the isolated and neutral atom i in
vacuum and

∑
j ρ

0
j (r) is the so-called promolecular density. The corresponding Hir-

shfeld atomic charge qHPAi is then obtained by integration of the atomic contributions
over the entire space v:

qHPAi = Zi −
∫

v

ρA(r) dv. (3.18)

In particular, for periodic systems the electron density ρ(r) is obtained from:

ρ(r) =
∑

µν

∑

R

PRµν
∑

h

χ(R+h)
µ (r)χhν (r), (3.19)

where χ are Atomic Orbitals (AO), Pµν is the density matrix in terms of the AOs,
and both h and R are lattice vectors indexes. Instead, the spherical pro-atom density
ρ0
A(r) is given by:

ρ0
i (r) =

∑

µν∈i
P 0
µν

∑

R

χRµ (r)χRν (r), (3.20)

where r is contained in the spatial region of the reference unit cell v of the crystal
lattice. Due to the choice of spherically averaged densities of neutral isolated atoms
as pro-atom densities, Hirshfeld charges tend to be small in magnitude [293] leading
to a possible underestimation of electrostatic interactions [293, 304], which are cru-
cial for calculation of solvation energies in implicit solvation models, especially for
charged species. To overcome Hirshfeld charges limitations, other de�nitions of wA(r)
can be considered, since Eq. (3.17) does in fact o�er signi�cant freedom in choosing
it. For example, one possible strategy is the Hirshfeld-I extension [293, 294], where
each pro-atom density is obtained as a linear interpolation between the densities of
spherically-averaged isolated atoms and/or ions with an integer charge [305]. An it-
erative procedure is then used to maximize similarity between atom-in-molecule and
pro-atom densities. The resulting Hirshfeld-I charges are then larger in magnitude
than Hirshfeld charges, sometimes overestimating electrostatic interactions , however
[306]. On the other hand, both atomic charge models are well-known to be less basis
set dependent than Mulliken charges [307, 308, 309].

� CM5: In this model, Hirshfeld charges qHPAi are corrected by a semi-empirical map-
ping, according to:

qCM5
i = qHPAi +

∑

R

∑

j 6=i∈v
TRij B

R

ij = qHPAi +
∑

R

∑

j 6=i∈v
TRij exp

{
−α(RRij − ri − rRj )

}

(3.21)

where the α and Tij parameters are �tted to reproduce both experimental and theo-
retical reference gas phase dipoles, and the Bij term corresponds to the Pauling bond
order which approximates the electron density overlap between two atoms i and j at
positions ri and rj respectively, separated by Rij, with radii ri and rj. For periodic



64 Implicit solvation in Crystal

system R is a direct lattice vector, and the summations over i and j are over atoms in
the spatial region v of the reference unit cell. The mapping is therefore independent
from the molecular electronic structure, and CM5 atomic charges should improve on
both Hirshfeld and Hirshfeld-I electrostatics, while still remaining weakly basis set de-
pendent [295]. In addition, CM5 atomic charges have already been found to perform
well for solvation energy calculations [81, 310].

In this thesis, two additional modi�cations to the original CM5 charge model are
introduced: (i) the Hirshfeld charge found in Eq.(3.21) is replaced by the Hirshfeld-I
version, leading to the iterative CM5 variant (CM5-I) charge model; (ii) a scaling of
the CM5 charges is applied, leading to the s·CM5 charge model, where the scaling
factor is determined by minimizing the mean unsigned error (MUE) of the computed
solvation energies compared to available experimental data of a given test set.
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3.1.2 Apparent Surface Charges

Apparent Surface Charges (ASC) [218, 219, 220] {qasc} account for the surface polarization
at the solute-solvent interface, and are determined from converged electrostatic potentials
at Boundary Grid Points (BGP). These are special points of the FD grid characterized by
having at least one dielectric neighboring point in a di�erent dielectric media, as shown in
Fig. 3.3a and Fig.3.3b.

Γ

h

j

ik

Ωout

Ωin

Γ

h

j

ik

Ωout

Ωin

(a) (b)

Figure 3.3: (a) Focus on a boundary grid point on a 2D cubic �nite-di�erence grid, and
(b) elementary volume element containing one boundary grid point at its center in orange.
The solute-solvent interface is represented by a orange plane.

For a regular cubic grid with spacing h the ASC qasc at a BGP is obtained from the value
of the converged potential φBGP at the BGP grid position (i, j, k), and from the potentials
φn at the neighboring grid nodes (n ∈ [1; 6]), according to [289]:

qasc = −qBGP +
3h

2π

(
φBGP −

1

6

6∑

n

φn

)
, (3.22)

where the solute charge mapped at the BGP during the FD resolution of the generalized
Poisson equation qBGP has to be removed from the ASC. Eq. 3.22 can be obtained through
Gauss law:

∇ · E(r) = 4πσ(r)
E=−∇φ−−−−−−→
σ=qasc/h3

−∇2φ(i, j, k) = 4πqasc(i, j, k)/h3, (3.23)

by considering the spatial position r at the BGP coordinates r = (i, j, k), the charge
density σ(r) as a discrete charge qasc per grid volume h3, and a FD form for the gradient.
Furthermore, Eq. 3.22 can be generalized to any parallelepiped grid shape with lengths
(hi, hj, hk), and inclination angles (α, β, γ), according to [289]:




V = hxhyhz

(
(1− cos 2α− cos 2β − cos 2γ) + 2 cosα cosβ cos γ

) 1
2

qasc = V
4πh2xh

2
yh

2
z

(
h2yh

2
z(2φ0 − φ1 − φ2) + h2xh

2
z(2φ0 − φ3 − φ4 + h2yh

2
z(2φ0 − φ5 − φ6)

)
− q0

(3.24)



66 Implicit solvation in Crystal

where V is the volume of the elementary parallelepiped cell, and the potentials {φ1, ..., φ6}
are adjacent to grid node (i, j, k) with potential φ0, as shown in Fig. 3.2.

Since only surface, and not volume, polarization is accounted for in the FD-ASC formal-
ism (see Sec. 2.2.6 on page 40) a renormalization procedure for the ASC can be additionally
performed [231]. Positive (q+) and negative (q−) ASC are normalized according to the fol-
lowing set of equations:





q+
i = q+

i

(
1 +

∆Qerr

2
∑

i q
+
i

)

q−i = q−i

(
1 +

∆Qerr

2
∑

i q
−
i

)
,

(3.25)

where ∆Qerr is the error between the theoretical sum ∆QTh
asc and the computed sum of ASC

Qasc before renormalization:

∆Qerr = QTh
asc −Qasc = QTh

asc −
asc∑

i

qi. (3.26)

The theoretical sum ∆QTh
asc is obtained from Gauss theorem and is obtained by consid-

ering the total solute charge Qs and the solute relative permittivity εout, according to:

QTh
asc = −εout − 1

εout
·Qs. (3.27)

This renormalization procedure is applied at each SCRF cycle, and Eq. 3.26 allows to
monitor the quality of the ASC formalism throughout the SCRF procedure. In the current
implementation typical errors are well lower than 10−5 e for ∆Qerr.

The ASC are then projected from the FD grid to the SES solute cavity, and their �nal
position in space are used to build the solute-solvent interaction potential within the solute
Hamiltonian.

3.1.3 Solvent Excluded Surface

A Solvent-Excluded Surface (SES) [169, 170] cavity has been used throughout this thesis.
In particular, a semi analytical grid based approach developed by Rocchia et al. [96] was
used to construct the SES.

In general, the SES is formed by three di�erent surface patches which arise from the
contact of a solvent spherical probe with the surfaces of atom centered van der Waals (vdW)
spheres, as described in Sec. 2.2.3 on page 34. When the solvent probe is in contact with
only one vdW sphere a contact patch is generated, instead when the solvent probe is in
contact with two or three vdW spheres a reentrant or toric patch is generated, respectively.

In the approach proposed by Rocchia et al. [96] toric patches are neglected, and contact
patches are constructed analytically from atom centered vdW spheres of a given radius (in
this case Bondi radii [156]), and the reentrant patches are constructed numerically using an
iterative procedure. The �rst step in the construction of the SES is to map the surface onto
the grid, and to assign any facet grid point, located at the interface between two grid points
(i, j, k), as inside or outside the solute cavity, as shown in Fig. 3.4. In particular, points
within the atomistic region Ωin are assigned the relative permittivity εin and a status of "in"
points, while points within the dielectric region Ωout are assigned the relative permittivity
εout and a status of "out" points. Furthermore, just as in the previous sections BGP are
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Figure 3.4: Example of solute cavities and surface elements mapped on a 2D FD grid. In
yellow the SAS, in green the SES, and in blue the solvent probe radius. Boundary grid
point are represented in orange, while grid nodes are in gray. Smaller blue circles represent
the relative permittivity mapped at the grid node facets. The grid boundary is in red.

de�ned as points that have at least one adjacent grid facet point belonging to a di�erent
dielectric media.

The SES construction algorithm requires the de�nition of a Solvent-Accessible Surface
(SAS), which is the surface generated by vdW spheres expanded by a solvent probe radius,
as seen in 2.2.3 on page 34, and shown again in Fig. 3.4. To build the SES cavity from the
SAS the distance from each "out" facet point neighboring a Boundary Grid Point to the
SAS has to be calculated. Depending on the distances between this "out" facet point and
the SAS two possible cases exist:

� If the point is closer to the SAS than a probe radius the point status is not updated
and it will remain as an "out" point, as shown in Fig. 3.5a.

� If the point is further from the SAS than a probe radius it implies that the point
cannot be reached by the solvent probe, and is an internal point not accessible to the
solvent. In this case the point status is updated to "in", as shown in Fig. 3.5b.

As the contact parts of the solute cavity coincide with the van der Waals surface, only a
limited number of points on the SAS are required to calculate the distances to the "out"
facet points neighboring a BGP. These SAS points are located on the arcs at the intersec-
tions between SAS spheres, called Circle Of Intersection (COI), as shown in Fig. 3.4. As
such, the SES contact regions are constructed analytically, while the reentrant regions are
constructed numerically using an iterative process to check if the status of any grid point
has changed after the assignment of the "in" and "out" status. The �nal set of BGP are
then projected onto the resulting SES, leading to a set of ASC to be included into the solute
Hamiltonian.

For periodic systems, supercells are built using 3 and (3×3) unit cells for polymers and
slabs, respectively, and only BGP belonging to the reference unit cell are projected onto
the SES generating an extended cavity [289]. Examples of SES cavities for periodic and
non-periodic systems are shown in Fig. 3.6.
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Figure 3.5: Example of selection process for an "in" and "out" grid facet point. (a) The
point status as an external point remains unchanged (b) the point status changes from
external to internal. The yellow lines represent the SAS, the green lines the SES, and the
blue lines the probe sphere. In light blue the probe radius Rp, and in red the line connecting
the closest point on the SAS to a given facet grid point.

(a) (b)

Figure 3.6: Examples of ASC projected on a SES cavity for (a) a �nite molecular system
(formaldehyde), and (b) a 2D periodic MgO slab. Contact and reentrant ASC are displayed
in yellow and green, respectively.

3.1.4 Self-Consistent Reaction Field

A solute-solvent interaction potential Vint (see Sec. 2.2.6 on page 40) can be de�ned from the
Apparent Surface Charges (ASC) mapped on the solute Solvent-Excluded Surface (SES).
This interaction potential, when included within the gas phase Hamiltonian of the solute
Hgas:

Hsolv = Hgas + Vint, (3.28)

allows for a quantum mechanical treatment of polarization e�ects, and mutual solute-
solvent polarization e�ects can further be considered through an iterative process called
Self-Consistent Reaction Field (SCRF) [79, 97], �rst introduced in Sec. 2.2.1.1 on page 27,
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which forms the heart of the electrostatic solvation model.
The SCRF procedure in Crystal is based on an ASC formalism where the underlying

electrostatic problem is governed by the numerically solved generalized Poisson equation
using a FD approach, and it can be summarized as follows: for a given solute, a reference
gas phase calculation is performed, where the gas phase wave function ψg and the solute
charge density ρgas(r) are computed. The next step involves setting up the FD grid. In
particular, the solute cavity (SES) is de�ned, the relative permittivity is mapped onto
the grid, and boundary grid nodes are found. The previously computed gas phase charge
density ρgas(r) is then approximated as atomic point charges (see Sec. 3.1.1.1 on page 62
for the implemented charged models), and the atomic point charges are mapped at the grid
nodes using an inverse quadratic interpolation.

Having mapped all the physical properties of the system onto the FD grid, the boundary
conditions in the non-periodic directions are set using the Debye-Hüchel potentials of the
equivalent dipole of the system (instead, for the periodic direction the Ewald formulas for
systems with reduced periodicity are used, see Sec. 3.1.1 on page 58), and the generalized
Poisson equation is solved iteratively for φ(i, j, k) at the FD grid nodes using the O-SOR
algorithm. The converged potentials are used to obtain the ASC at the boundary grid
nodes, which are projected onto the SES, and all elements for the interaction potential Vint
are computed. The interaction potential allows for a condensed phase self-consistent �eld
quantum-mechanical calculation, at the Hartree-Fock or DFT level of theory, which gives
the last remaining quantities needed to compute the electrostatic solvation energy ∆Gel: the
solute-solvent system wave function ψs, the solvated solute charge density ρsol(r), and the
reaction �eld energy ERF (see below). The ∆Gel is then compared to the ∆Gel computed at
the previous SCRF cycle, and if the di�erence is below a predetermined threshold the SCRF
procedure is concluded successfully. Otherwise, the last computed solvated charge density
ρsol(r) is used to obtain new set of atomic point charges, and the SCRF cycle begins anew
until convergence of the electrostatic contribution ∆Gel. The SCRF procedure is shown as
a �owchart in Fig 3.7.

One of the fundamental contributions to the SCRF procedure just described, and to
the calculation of the electrostatic contribution ∆Gel, is the reaction �eld energy ERF . In
fact, the ∆Gel is obtained by the di�erence between the solute-solvent system energy fully
interacting 〈ψs|Hgas + Vint |ψs〉, and the sum of the solute gas phase energy 〈ψg|Hgas |ψg〉
and the reaction �eld energy ERF , according to:

∆Gel = 〈ψs|Hgas + Vint |ψs〉 −
(
〈ψg|Hgas |ψg〉+ ERF

)
, (3.29)

where ψs and ψg are the system solvated and gas phase wave functions, respectively. The
reaction �eld energy ERF is instead given by a sum of Coulomb interactions between the ith

ASC qi and the solute potential φs(r) evaluated at the position of this ASC charges (rasci ),
according to:

ERF =
1

2
〈ψs|Vint |ψs〉 =

1

2

Nasc∑

i

qi · φ(rasci ). (3.30)

From the physical point of view, the reaction �eld energy ERF corresponds to the work
needed to place the ASC {qi}, at the positions rasci , within the �eld generated by the
solute charge distribution, and is also equal to the non-reversible work needed to polarize
an isotropic linear dielectric, and has to be removed to obtain the status of a free energy
[25, 23]. For periodic system the ASC {qi} are computed in the reference unit cell, and the
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solute potential φ is obtained through the Ewald formulas seen in Sec. 3.1.1 on page 58 at
the ASC spatial positions.

Read Input *.d12

Reference gas phase SCF calculation:
H = Hgas

compute: ψg, ρ(r) = ρgas(r)

Grid preparation:
– Build FD grid 0D, 1D, or 2D
– Dielectric mapping εin/εout
– Construct SES cavity
– Find Boundary Grid Points

Atomic charge model:
ρ(r) −→∑

i qi(r − ri)
Grid charge mapping:
– inverse quadratic interpolation

Set Boundary Conditions:
– Debye-Hückel potentials, equivalent dipoles
Solve FD generalized Poisson equation:

∇[ε(r) · ∇φ(r)] = −4π
∑

i qi(r − ri)
– Iteratively solved: O-SOR algorithm

Obtain ASC from converged φ(r) :
– Reaction Field Components {qasci }
– Interaction potential Vint

Condensed phase SCF calculation:
H = Hgas + Vint

– compute: ψs, ρ(r) = ρsol(r)

Computation of the electrostatic solvation energy:

∆Gel = 〈ψs|Hg + Vint |ψs〉 −
(
〈ψg|Hg |ψg〉+ ERF

)

∆Gel converged?

Stop

SCRF

no

yes

Figure 3.7: Flow chart of the SCRF procedure in Crystal, in light blue the steps iteratively
repeated during the SCRF.
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3.2 Non-Electrostatic Contribution

In this section, we will discuss the main non-electrostatic models used throughout this thesis
to account for the remaining solvation e�ects which are not considered by the electrostatic
model, such as cavitation, and other e�ects found mainly in the �rst solvation shell, such
as dispersion and repulsion [23, 25, 24, 26].

These non-electrostatic models are based on the total molecular Solvent-Accessible Sur-
face Area (SASA) of the solute Am, which is given by the sum of atomic SASA contributions
Ai, according to:

A(Ri; rp) =
atoms∑

i

Ai(Ri + rp) (3.31)

where Ri are the radii of atom centered spheres, and rp is the radius of a spherical solvent
probe, as described in Sec. 2.2.3 on page 34. The atomic SASA contributions are obtained
through an analytical stereographic projection approach which will be covered in greater
detail in chapter 4 on page 75.

The �rst non-electrostatic model implemented considered the non-electrostatic contri-
bution simply proportional to the total molecular SASA according to:

∆Gne = α · AM + β (3.32)

where the line coe�cients α and β are obtained from a least-square �t of the experimental
solvation free energy of hydrocarbons in water against the total molecular SASA [167, 168].
This model, albeit conceptually straightforward, lacks the versatility required to treat more
complex systems for which it was not parametrized. In fact, the parameters have to be
obtained for each solvent, for which limited or no experimental data might exist. In addition,
within this model the ∆Gne is always a positive contribution to the total solvation energy,
which might not always be true. As an example, one can think of a benzene solute within
a non-polar solvent, where the dominant contribution to the total solvation energy are
due to stabilizing non-electrostatic e�ects. Consequentially, the Cavity, Dispersion, and
Solvent structural e�ects model (CDS), developed by Marenich et al. [81, 80, 83], has been
implemented due to its versatility in accounting for di�erent solvents for which the model
was not originally parametrized.

3.2.1 Cavity, Dispersion, and Solvent Structural E�ects Model

For reliable calculation of solutes in solutions, the non-electrostatic contribution to the
total solvation free energy should also account for any inexactness and uncertainties of
the electrostatic model. The CDS model takes into account both the non-electrostatics
e�ects and, through its semi-empirical parametrization, for any shortcoming withing the
electrostatic model itself.

As previously mentioned, since the non-electrostatic e�ects are mainly associated with
the �rst solvation shell the CDS model acounts for the work to create the solute cavity,
intermolecular dispersion e�ects, and other explicit solvation e�ects like hydrogen bonding,
exchange repulsion, dielectric saturation and electrostriction e�ects, through a weighted
contribution of both atomic Ai and molecular Am SASA, according to:

∆GCDS
ne =

atoms∑

i

σiAi + σMAM , (3.33)
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where atomic σi and molecular weights σM are surface tensions, unit wise, and are dependent
on solvent empirical descriptors and atomic-number-speci�c parameters, as we will soon see.

The atomic surface tensions σi in Eq. 3.33 are given by the following expression:

σi =

(
σ̃nZin+ σ̃αZiα + σ̃βZiβ

)
+

atoms∑

j 6=i

(
σ̃nZiZjn+ σ̃αZiZjα + σ̃βZiZjβ

)
T ({Zj, Rij}), (3.34)

and are function of three solvent empirical descriptors, namely: the refractive index n (at
293K), as well as Abraham's hydrogen acidity α [311, 312, 313] and basicity parameters β
[314]. The former descriptor is related to the polarizability of the solvent, while the latter
two are introduced in order to describe the tendency of the solvent to act as a hydrogen bond
donor or acceptor, respectively. The �rst term in Eq. 3.34 can be seen as an atomic number
dependent term as the parameters σnZi , σ

α
Zi
, and σβZi , multiplying the empirical descriptors,

depend uniquely on the atomic number Zi of atom i. Instead, the second term depends on
atomic pair parameters σnZiZj , σ

α
ZiZj

, and σβZiZj , and a cut-o� function T (Rij, rZiZj ,∆rZiZj),
de�ned as:

T (Rij, rZiZj ,∆rZiZj) =




exp

(
∆rZiZj

Rij + rZiZj −∆rZiZj

)
if Rij < rZiZj −∆rZiZj

0 otherwise,
(3.35)

which accounts for atom types based on pair atomic number Z parameters rZiZj , ∆rZiZj ,
and the distance Rij between atoms i and j.

On the other hand, the molecular surface tension σM is independent from the solute's
chemical composition, and is given by the sum of four empirical solvent descriptors and
parameters σ̃ according to:

σM = σ̃γγ + σ̃φ
2

φ2 + σ̃ψ
2

ψ2 + σ̃β
2

β2 (3.36)

where γ is the macroscopic surface tension of the solvent, φ2 represents the square of the
fraction of non-hydrogen solvent atoms that are aromatic carbon atoms, ψ2 is the square
of the fraction of non-hydrogen solvent atoms that are F, Cl or Br, and β2 is the square of
Abraham's basicity parameter of the solvent[314].

Overall, the CDS model is highly parametrized, with 4 global parameters within the
molecular surface tension σM term and up to 3 parameters for each atomic surface tension
σi. This number that increases to 4 when considering water; as this solvent has a special
set of parameters due to its importance as a solvent in biological processes, and its par-
ticular behavior compared to other typical organic solvents which makes the prediction of
hydration energies particularly complicated. This means that for N atoms, or atom types,
a maximum of (4 ·N + 4) parameters are needed for this model. These parameters are only
partially transferable between di�erent families of electrostatic models as they account for
any shortcoming within the electrostatic model itself. As such, a new ad hoc set of param-
eters had to be developed for the FD electrostatic model to achieve maximum accuracy, as
we will see in chapter 6 on page 107, where the CDS model has been reparametrized and
extended for charged species. Nevertheless, once the parameters have been obtained, the
CDS model is considered "universal" as is able to accurately predict solvation energies for
solvents and solutes for which it was not originally parametrized, given that the empirical
descriptor of the solvent are available.

Furthermore, an advantage of the CDS model are the analytical gradients of the non-
electrostatic energy (∂∆Gne

∂x
, ∂∆Gne

∂y
, ∂∆Gne

∂z
), which allow the computation of fast and accurate
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non-electrostatic forces for use in solute geometry optimization in solvent. In fact, the
non-electrostatic force in the CDS model for an atom j in respect to a generic Cartesian
coordinate r is given by:

F ne
j = −

∑

i

(
∂σi
∂rj

Ai + (σi + σM)
∂Ai
∂rj

)
, (3.37)

and depends uniquely on the gradient of the SASA and of the atomic surface tensions
σi. Analytical derivatives of the cutt-o� function T (Rij, rZiZj ,∆rZiZj) within each atomic
surface tension σi are also required, but readily available [315]:





∂Tij
∂ri = −Tij ·

(
∆rZiZj

Rij + rZiZj −∆rZiZj

)
·
(
ri − rj
Rij

)

∂Tij
∂rj = −Tij ·

(
∆rZiZj

Rij + rZiZj −∆rZiZj

)
·
(
rj − ri
Rij

)
,

(3.38)

where Tij is given by Eq. 3.35. As such, to obtain accurate non-electrostatic forces it is
crucial to have accurate SASA gradients computed analytically, as we will see in the next
chapter.
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Chapter 4

Analytical calculation of the SASA and

its nuclear gradients by stereographic

projection

The solute-solvent interactions are traditionally partitioned into two contributions summing
to the total solvation energy ∆Gsolv, according to:

∆Gsolv = ∆Gel + ∆Gne. (4.1)

Electrostatic interactions (∆Gel) are related to the bulk polarization of the solvent due
to the solute charge density and are usually computed by solving the Poisson equation
in a self-consistent reaction-�eld (SCRF) approach[289]. On the other hand, since many
e�ects related to the non-electrostatic contribution occur in the �rst solvation shell, a
computationally e�cient treatment of non-electrostatic interactions is to relate the non-
electrostatic energy (∆Gne) to the Solvent-Accessible Surface Area (SASA) of the solute,
as described in 2.3.4 on page 47, and illustrated in Fig. 4.1.

A further re�nement can be made by considering an additional dependence on the
total solvent accessible volume for instance[316]. However, although such formulations only
require a limited number of solvent-speci�c parameters, to our knowledge, these are only
available for water, making in principle the application of such models limited to aqueous
solution. More general and robust treatments of the non-electrostatic contribution have
been proposed[252, 251, 253]. For example, the CDS model[83, 81, 80, 82] which introduces
empirical atomic and macroscopic surface tensions parameters combined to total and atomic
SASA to re-create some of the lost structural information that comes from the assumption
that the liquid is a continuum, has been proposed as a general model applicable to any
solute in any solvent. In particular, short-range e�ects dominating in an explicit treatment
of the �rst solvation shell such as hydrogen bonding, solvent structure breaking, exchange
repulsion, solute-solvent charge transfer, dielectric saturation and electrostriction e�ects[81]
are all accounted for in this model. Therefore, apart from solvent-speci�c parameters, the
key to the inclusion of the ∆Gne contribution in an implicit solvation model is the evaluation
of both the total and atomic SASA, that is the area of an atom that is not buried by the
neighboring atoms[167]. When geometry optimization in solvent is needed, SASA nuclear
gradients are thus also required.

Computational methods available to estimate the SASA can be classi�ed into approxi-
mate and exact methods. Among the approximate methods, both numerical[317, 318, 319,
320, 321] and analytical[322, 187, 323, 324, 325] approaches have been proposed. Exact
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(a) (b)

Figure 4.1: Schematic representation of the van der Waals (in black) and solvent-accessible
(in blue) surfaces of a system with four atomic spheres, in the case of (a) a �nite system,
and (b) a 1D in�nite periodic system with a single lattice basis vector (in red). The blue
circle is the solvent probe and the black dots represent the centers of the atomic spheres.
For the periodic system, the solvent-accessible surface of the central 0-cell is emphasized
with thick lines.

analytical treatments were �rst published by Connolly[169, 170] and Richmond[172], and
subsequent modi�cations aimed at improving both computational e�ciency and robustness
of these two strategies.Some of these strategies can also provide nuclear gradients, where
the same distinction between approximative [324, 326, 325] and exact [172, 327, 328] ana-
lytical approaches applies. Most of the exact analytical strategies mentioned above rely on
the general Gauss-Bonnet theorem[329], which requires the de�nition of the Gauss-Bonnet
arcs and related exterior angles together with the full topological analysis of the oriented
Gauss-Bonnet paths, and subsequently applies analytical geometry to compute surface ar-
eas and, in a limited number of cases, its nuclear gradients. For example, the Analytical
Surface Calculation package [330] is one of the reference methods available for comput-
ing both the total and atomic SASA (but not its nuclear gradients) based on the work of
Connolly[169, 170], with formulas corrected for singularities to make the algorithm robust
and e�cient.

In this chapter, we present the implementation in the Crystal code of a previously-
proposed approach for �nite systems[331], which does not rely on the Gauss-Bonnet theorem
but instead uses the concept of stereographic projection (SP)[332]. The cases of �nite
and in�nite periodic systems are both considered, and the full derivation of the SASA
nuclear gradients is provided since they were not fully-given in the original publication. A
simple iterative perturbation scheme of the atomic coordinates is also introduced in order
to stabilize the gradients calculation in the case of certain symmetric systems in which the
intersection of multiple atomic spheres may lead to gradients instability. The proposed
method is therefore generally applicable to any �nite or in�nite periodic system and only
requires the choice of a set of atomic radii along with a solvent probe radius.

In Sec. 4.1, the SP technique for SASA and SASA gradients calculation is presented,
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along with modi�cations introduced for periodic systems and details regarding the speci�c
implementation of the algorithm in Crystal. Then, after presenting computational details
in Sec. 4.2, results obtained on �nite systems of varying sizes as well as on selected examples
of in�nite periodic systems such as helices and slabs are discussed in Sec. 4.3. Finally,
conclusions are drawn in Sec. 4.4.

4.1 Methodology

4.1.1 SASA calculation

We �rst brie�y summarize the main concepts and equations of the SP algorithm for SASA
calculation. The key idea is that spherical circles of intersection (COI) resulting from the
intersection of atomic spheres in three dimensions are projected as circles on the tangent
planes to the south pole of the spheres (see Fig. 4.2). Since SP preserves angles, the surface
integrals involved in three-dimensional space for SASA and SASA gradients calculation are
transformed into curve integrals on the plane of projection. In the following equations, for
periodic systems, index i is used for an atom belonging to the reference 0-cell, while all
other atomic indices refer to the 0-cell or to a g-cell atom, where g is a translation vector
of the 1D or 2D lattice. We note that, although not presented here, the application of the
proposed approach to a 3D lattice is straightforward.

1

NP

i

j

k

i // j

i // k t

s

v1

v2

z

x
y

Figure 4.2: Intersection of reference atomic sphere i with neighboring atomic spheres j
and k, showing two COI (i // j in solid orange and i // k in solid green), along with their
corresponding stereographic projections (dotted line) in the (t, s) tangent projection plane
(in grey) to the south pole of the reference sphere i. NP is the North Pole of the reference
sphere through which the stereographic projection is performed. The two COI have two
intersection points (v1 and v2) in the (t, s) plane.

The accessible surface area Ai of sphere i with solvent-expanded radius ri = rVdW,i + rp,
centered at position ri = (xi, yi, zi) and intersecting with Ni spheres of indices j can be
shown to be[331]:

Ai = χ (Ωi) +
∑

j∈Ni

Λij∑

λ=1

I ij,λ (4.2)



78 Analytical SASA by stereographic projection

� (⌦i) = 0
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Figure 4.3: Stereographic projections of the two COI (i // j in dashed orange and i // k in
dashed green) in the (t, s) tangent plane of the reference sphere i, showing (a) a bounded
Ωi domain made of two circular arcs Ci

j (solid orange, from intersection points v1 to v2)
and Ci

k (solid green, from v2 to v1); (b) an unbounded Ωi domain with two circular arcs Ci
j

(from v2 to v1) and Ci
k (from v1 to v2). The white section corresponds to the area of the

reference sphere i to be computed. The arrows indicate the integration direction along the
circular arcs.

where:

χ (Ωi) =

{
0 if Ωi is bounded

4πr2
i if Ωi is the whole plane except some regions

(4.3)

and Ωi is the surface region of sphere i whose area is to be computed, Ni is the set
of spheres which intersect with the i-th sphere, Λi

j is the number of arcs originating from
the j-th sphere that participate to the boundary of Ωi, and Ci

j,λ is an arc on sphere i
originating from sphere j (see Fig. 4.3). The fundamental quantity to compute is then the
curve integral I ij,λ whose expression depends on Ci

j,λ and which can either be positive or
negative. It should be noted that, in principle, Ci

j,λ can be a circular arc or a line, depending
on how close the COI is to the north pole (NP) of the reference sphere i (see Fig. 4.4a and
4.4b), leading to di�erent expressions for the curve integral I ij,λ.

As previously suggested[331], to avoid multiple cases and possible related numerical
instabilities, if at least one sphere surface is found too close to the NP of a reference sphere,
a random rotation matrix is applied to the full solute system until a suitable orientation of
the solute is found. This allows to reduce the problem to the case of circular arcs Ci

j,λ only.
In the current implementation, this rotation matrix is de�ned from random values of the
two angles ϕ and γ:

Rrot =




cosϕ sin γ − sinϕ cosϕ cos γ
sinϕ sin γ cosϕ sinϕ cos γ
− cos γ 0 sin γ


 . (4.4)



4.1 Methodology 79

1

NP

i

j

i // j

(a) (b)

(t0, s0)

i // j

t

s

v1v2

Ci
j

r0

βij,λ
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Figure 4.4: Intersection of two spheres i and j results in a COI (i//j, solid orange) which is
projected (dotted orange) in the (t, s) tangent plane (in grey) at the south pole of reference
sphere i: (a) as a circle when the COI is far enough from the NP of i, (b) as a line when the
COI passes through the NP; (c) local polar coordinate system used to de�ne the αij,λ and
βij,λ polar angles with respect to the center (t0, s0) of the projected COI i // j with radius
r0.

In the general case of an arc of circle de�ned by two vertices with starting and ending
polar angles αij,λ and βij,λ, respectively, with respect to the center of the projected COI of
i and j (see Fig. 4.4c), it can be shown that:

I ij,λ = r2
i

[(
αij,λ − βij,λ

)
· sign

(
aij
)

+
dij + 4r2

i a
i
j

V i
j

·
(
π − 2 arctan

U i
j

2aij
2
V i
j sin

(
(βij,λ − αij,λ)/2

)
)] (4.5)
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where: 



V i
j =

[(
4r2

i a
i
j − dij

)2
+ 4r2

i

(
bijb

i
j + cijc

i
j

)]1/2

aij = (xi − xj)2 + (yi − yj)2 + (zi + ri − zj)2 − r2
j

bij = 8r2
i (xi − xj)

cij = 8r2
i (yi − yj)

dij = 4r2
i

[
(xi − xj)2 + (yi − yj)2 + (zi − ri − zj)2 − r2

j

]

(4.6)

and:

U i
j =

∣∣aij
∣∣
(
bij

2
+ cij

2 − 2ajdj + 8r2
i a

i
j

2
)

cos
(
(βij,λ − αij,λ)/2

)
− aij

(
bij

2
+ cij

2 − 4aijd
i
j

)1/2

·
(
bij cos

(
(βij,λ + αij,λ)/2

)
+ cij sin

(
(βij,λ + αij,λ)/2

))

(4.7)

When Ci
j,λ is a full circle with no intersection with other projected COI, this expression

reduces to:

I ij,λ = 2r2
i π ·

(
− sign

(
aij
)

+
dij + 4r2

i a
i
j

V i
j

)
. (4.8)

While the evaluation of I ij,λ can therefore be directly made from Eq. (4.8) and (4.6) when
Ci
j,λ is a full circle, the case of an arc of circle requires the additional determination of the

polar angles αij,λ and β
i
j,λ of the two arc vertices v1 and v2 with coordinates (tij,k,v1 , s

i
j,k,v1

) and
(tij,k,v2 , s

i
j,k,v2

) in the (t, s) tangent plane. If these vertices are formed from the intersection
of the projected i // j and i // k COI, then:





tj,k,v1 =
−2
(
b∗j − b∗k

) (
d∗j − d∗k

)
−
(
b∗kc
∗
j − b∗jc∗k

) (
c∗j − c∗k

)
+
(
c∗j − c∗k

)
D

1/2
j,k

2
((
b∗j − b∗k

)2
+
(
c∗j − c∗k

)2
)

sj,k,v1 =
−2
(
c∗j − c∗k

) (
d∗j − d∗k

)
−
(
c∗kb
∗
j − c∗jb∗k

) (
b∗j − b∗k

)
−
(
b∗j − b∗k

)
D

1/2
j,k

2
((
b∗j − b∗k

)2
+
(
c∗j − c∗k

)2
)

tj,k,v2 =
−2
(
b∗j − b∗k

) (
d∗j − d∗k

)
−
(
b∗kc
∗
j − b∗jc∗k

) (
c∗j − c∗k

)
−
(
c∗j − c∗k

)
D

1/2
j,k

2
((
b∗j − b∗k

)2
+
(
c∗j − c∗k

)2
)

sj,k,v2 =
−2
(
c∗j − c∗k

) (
d∗j − d∗k

)
−
(
c∗kb
∗
j − c∗jb∗k

) (
b∗j − b∗k

)
+
(
b∗j − b∗k

)
D

1/2
j,k

2
((
b∗j − b∗k

)2
+
(
c∗j − c∗k

)2
)

(4.9)

where:

Dj,k = 4
(
b∗kd
∗
j − b∗jd∗k

) (
b∗j − b∗k

)
+ 4

(
c∗kd
∗
j − c∗jd∗k

) (
c∗j − c∗k

)
− 4

(
d∗j − d∗k

)2
+
(
c∗i b
∗
j − c∗jb∗k

)2

(4.10)
and: b∗j = bij/a

i
j, c
∗
j = cij/a

i
j, d
∗
j = dij/a

i
j, b
∗
k = bik/a

i
k, c
∗
k = cik/a

i
k, d

∗
k = dik/a

i
k.

The polar angles αij,λ and β
i
j,λ can �nally be obtained from the following relations:





αij,λ = atan2

(
2aij · sj,k,v1 + cij
2aij · tj,k,v1 + bij

)

βij,λ = atan2

(
2aij · sj,k,v2 + cij
2aij · tj,k,v2 + bij

) (4.11)
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making the application of Eq. (4.5) possible.

4.1.2 SASA nuclear gradients calculation

By application of the chain rule, the derivatives of the SASA of sphere i with respect to
the cartesian coordinates rm of an arbitrary sphere m can be written as:

∂Ai
∂rm

=
∂Ai

∂
(
aij, b

i
j, c

i
j, d

i
j

) · ∂
(
aij, b

i
j, c

i
j, d

i
j

)

∂rm

=
∂Ai
∂aij
· ∂a

i
j

∂rm
+
∂Ai
∂bij
· ∂b

i
j

∂rm
+
∂Ai
∂cij
· ∂c

i
j

∂rm
+
∂Ai
∂dij
· ∂d

i
j

∂rm

(4.12)

where both i and m belong to the 0-cell.
When Ci

j is a full circle without any intersection with other COI (λ = 1):

∂Ai

∂
(
aij, b

i
j, c

i
j, d

i
j

) =
∂I ij,λ

∂
(
aij, b

i
j, c

i
j, d

i
j

) (4.13)

leading to:
∂Ai
∂rm

=
∂I ij,λ

∂
(
aij, b

i
j, c

i
j, d

i
j

) · ∂
(
aij, b

i
j, c

i
j, d

i
j

)

∂rm
(4.14)

On the other hand, when the j-th circle contributes to Λi
j arcs on the border of Ωi then,

from Ref. [331]:

∂Ai

∂
(
aij, b

i
j, c

i
j, d

i
j

) =

Λij∑

λ=1

(
∂I ij,λ

∂
(
aij, b

i
j, c

i
j, d

i
j

) +
∂I ij,λ

∂ (aik, b
i
k, c

i
k, d

i
k)

+
∂I ij,λ

∂ (ail, b
i
l, c

i
l, d

i
l)

)
(4.15)

with k and l two intersecting circles, from which one gets:

∂Ai
∂rm

=

Λij∑

λ=1

(
∂I ij,λ

∂
(
aij, b

i
j, c

i
j, d

i
j

) · ∂
(
aij, b

i
j, c

i
j, d

i
j

)

∂rm
+

∂I ij,λ
∂ (aik, b

i
k, c

i
k, d

i
k)
· ∂ (aik, b

i
k, c

i
k, d

i
k)

∂rm
+

∂I ij,λ
∂ (ail, b

i
l, c

i
l, d

i
l)
· ∂ (ail, b

i
l, c

i
l, d

i
l)

∂rm

)

(4.16)
indicating that the evaluation of the SASA gradients requires the evaluation of twelve

additional partial derivatives of curve integrals, whose expressions are given in Appendix A
on page 145.

Finally, when m = i, the �self-term�
∂Ai
∂ri

is obtained from:

∂Ai
∂ri

= −
∑

j∈Ni

∂Ai
∂rj

(4.17)
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The above expressions also require the derivatives of the a, b, c and d parameters with
respect to rm which can be obtained from Eq.(4.6) as:

∂
(
aij, b

i
j, c

i
j, d

i
j

)

∂rm
=




2 (xj − xi) 2 (yj − yi) 2 (zj − zi − ri)
−8r2

i 0 0
0 −8r2

i 0
8r2

i (xj − xi) 8r2
i (yj − yi) 8r2

i (zj − zi + ri)


 if m = j (4.18)

We note that although the SASA is rotationally-invariant, the SASA nuclear gradients
depend on the orientation of the solute. When a Rrot rotation matrix has been applied to
the solute to avoid the case of lines therefore (see Sec. 4.1), the SASA gradients can be
obtained from:

∂Ai
∂rm

=

(
∂Ai
∂rm

)rot

·M rot,T (4.19)

where
(
∂Ai
∂rm

)rot
and M rot,T correspond to the SASA gradients of the rotated solute and

the transpose of the rotation matrix applied, respectively.

4.1.3 Algorithm structure

The algorithm proceeds through the steps shown in Fig. 4.5. The calculations of the atomic
SASA (Eq. (4.2)) and of the SASA nuclear gradients (Eq. (4.12)) are only performed when
no COI are found close to any NP. In the current implementation, a threshold of 10−4 Å is
used to check for NP position with respect to atomic spheres. A random rotation matrix
(see Eq. (4.4)) is applied otherwise until a suitable solute orientation is found. For periodic
systems, supercells with 3 and 27 unit cells are built for 1D and 2D periodic systems,
respectively, to generate the full list of atomic spheres and to calculate the SASA and its
nuclear gradients for the atoms belonging to the 0-cell only.

Prior to application of the equations detailed in Sec. 4.1.1 and 4.1.2, an analysis of
the mutual positions of the reference sphere and of the neighboring spheres is performed
according to the procedure described in Ref. [331] in order to avoid trivial cases. To
determine the neighbor set of the current sphere and to avoid unnecessary checks between
distant atom/atom pairs, the whole procedure is accelerated by using a cubing algorithm.
More precisely, a cubic grid is built with a cell length chosen such that all neighbors of a
sphere are found by examining the sphere's own cell and all 26 neighboring cells. The cell
side length is 2(rmax + rp), where rmax is the maximum atomic sphere radius, ensuring that
all possible neighbors are located in a (3× 3× 3) sub grid[333] (see Fig. 4.6).

When very small arc lengths are obtained, to avoid numerical instabilities, the coordi-
nates of atoms i a�ected are iteratively perturbated with the following approach:

ri = ri + n · 10−T+ncyc-1 (4.20)

where n is a random integer belonging to [−9; +9], ncyc is an integer corresponding to the
index of the cycle in the iterative loop and T = 14. In the current implementation, this
procedure is activated when βij−αij < 10−16 degrees. This was found to be important in the
case of certain symmetric systems. The number of cycles required in such cases depends
strongly on the degree of symmetry of the solute, ranging from 1 (for acetone) to 5 (for
highly-symmetric fullerenes or nanotubes).
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Figure 4.5: Schematic representation of the SP algorithm for the calculation of the SASA
and its nuclear gradients.

Figure 4.6: 2D view of the neighborhood determination process using a cubing algorithm.
For atomic spheres belonging to the dark orange cell, distances are only computed with the
green spheres whose centers belong to the dark or light orange grid cells. Red spheres are
ignored since they are guaranteed to be out of range.

4.2 Computational details

All calculations have been carried out with a development version of the Crystal code[31,
39], which uses atom centered Gaussian orbitals as a basis set. Unless explicitly stated other-
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wise, all structures considered have been obtained in gas-phase at the B3LYP/6-311G(d, p)
level, considering 75 radial points and 974 angular points for the numerical DFT integration,
which ensured an error on the integrated electron density to an accuracy of 10−5 e per unit
cell or molecule. In this work, SASA calculations have been made using the analytical algo-
rithm presented above, based on the stereographic projection approach originally proposed
in Ref. [331], that we refer to as SP. In some cases, the fully-numerical approach of Shrake
and Rupley (SR)[317] which has been previously-implemented in the Crystal code[289]
and in which Np equally-spaced points distributed on each solvent-expanded atomic sphere
are checked for occlusion by any other atom's accessible surface to determine the atomic
and total SASA, as shown in Fig. 4.7, has also been considered. Reference analytical calcu-

Probe

vdW spheres

SASA

Figure 4.7: Shrake and Rupley algorithm for a system with two van der Waals (vdW)
spheres, here represented by black lines. The SASA is represented by blue lines, and blue
points on the SASA represent points which do not lie inside any other atom's accessible
surface and are therefore considered as accessible to the solvent, while red ones are buried
and thus eliminated.

lations of the total and atomic area have been obtained with analytical surface calculation
package [330], which essentially modi�es the original Connolly's formulas[169] to improve
robustness and stability of the algorithm. Correctness of the analytical gradients has been
veri�ed by calculating numerical gradients of the analytical total SASA using a step size
δ = 10−4 Å for atomic displacements according to the following equation:

∂Ai
∂λi

=
A(λi + δ)− A(λi − δ)

2δ
(4.21)

where λi = xi, yi or zi. Bondi atomic radii[156, 157] have been used throughout, along with
a solvent probe radius rp of 0.400 Å corresponding to the solvent probe radius considered
in the CDS model[83, 81, 80].

4.3 Results and discussion

We start testing the numerical SR and analytical SP algorithms presented above on the 501
molecules of the Mobley test set[38, 334], with solute sizes ranging from 3 to 34 atoms. We
then consider the case of 42 proteins, with sizes reaching several thousands of atoms. Finally,
applications to selected periodic systems are presented. When possible, the total and atomic
SASA of �nite systems obtained are compared to those calculated with analytical surface
calculation package[330].
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4.3.1 Total and atomic SASA

4.3.1.1 Mobley test set

Fig. 4.8 presents the absolute deviation of the numerically- and analytically-computed total
and atomic SASA from the reference analytical values for the 501 molecules of the Mobley
test set[38, 334], accounting for 501 total SASA and 8200 atomic SASA values.

It is clear that the analytical algorithm performs much better than the numerical one.
For instance, for the total SASA, an average relative unsigned error (RUE) of 7.366e−01 Å2

is obtained with the numerical SR algorithm and 500 points per atomic sphere, while a value
of 7.583e−10 Å2 is obtained with the analytical SP algorithm. When doubling the number of
points per atomic sphere, the average RUE of the total SASA is roughly divided by a factor
of 2 with the SR algorithm. More precisely, average RUE of 3.935e−01, 2.350e−01, 1.582e−01

and 7.859e−02 Å2 are obtained when 1000, 2000, 4000 and 8000 points per atomic sphere
are considered, respectively, indicating that only a limited accuracy can be obtained when
considering the numerical SR algorithm. The same conclusions hold for the atomic SASA
calculation. Although this clearly highlights the correctness of both implementations, it
also pinpoints the advantage of using an analytical approach instead of a numerical one
when highly-accurate total and atomic SASA are targeted.

4.3.1.2 42 proteins test set

We now consider the performances of the SP algorithm on larger systems, consisting of
a test set of 42 proteins, with sizes ranging from 75 to 11738 atoms. This test set has
been considered since it has recently been used to evaluate the triforce approximate
analytical algorithm for SASA and SASA nuclear gradients calculation[335]. All structures
have been taken from the RCSB PDB database[336] without further geometry optimization,
considering not only �heavy atoms� like previously-done[335], but also hydrogen atoms. Tab.
4.1 presents the average RUE of the atomic SASA for each of the proteins of the test set.
An excellent agreement can be seen with the reference values obtained, the average RUE
being of 6.264e−10 Å2 on the whole test set. Importantly, it is encouraging to notice that
computed RUE are very similar on the whole set of proteins tested despite their large size
di�erences, highlighting the robustness of the implementation and the broad applicatibility
of the SP algorithm.

4.3.1.3 SASA size-extensivity for periodic systems

When considering periodic systems an important property that should be veri�ed is the
size-extensivity of the SASA. More precisely, supercells of increasing sizes can be considered,
and the computed SASA can be compared to that of the reference unit cell. For example,
for a one dimensional periodic system such as a polymer or an helix, supercells with n unit
cells should display a n dependency. Tab. 4.2 presents the ratio of the computed data for
di�erent supercells and the reference unit cell of a C7-13 helix 1D periodic model of glycine,
with 49 atoms per unit cell and a lattice parameter of 10.514 Å, a C7 roto-translational
axis and a 13 Å pitch per turn (see Fig. 4.9).

It is clear that the size-extensivity of the SASA is veri�ed, the largest error being lower
than 10−12 Å2 among the reported supercells, indicating a precision on the total and atomic
SASA for periodic systems largely su�cient for calculating ∆Gne.
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Figure 4.8: Histogram of relative unsigned errors (in Å2) from reference analytical surface
calculation package[330] values of total (top panel) and atomic (bottom panel) SASA, using
either the analytical SP (left) or numerical SR (right) algorithms. There are 501 total SASA
and 8200 atomic SASA values. For the SR algorithm, 500 points per atomic sphere are
used.

4.3.1.4 HCOOH/NiO (100)

Finally, as an example of a 2D slab periodic system, the case of a molecule adsorbed on an
oxide surface is now considered. The system consists of a formic acid molecule adsorbed in
a bridging bidentate mode on both sides of a (2× 3) supercell of the (100)-(2× 1) slab unit
cell of NiO (100), as a possible anchoring group for dyes in p-type dye-sensitized solar cells
applications[337]. Fig. 4.10 shows the optimized PBE0 structure taken from Ref. [338].
As expected only the outermost atoms of the slab contribute to the SASA due to atoms
inside the slab having a SASA exactly equal to zero, that is being completely inaccessible
to the solvent. In addition, since the top and bottom sides of the slab are symmetrically-
equivalent, each side has an identical SASA of 150.804 Å2, that is half of the total SASA
value of 301.608 Å2 of the slab. The largest contributions to the SASA are given by the non-
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Table 4.1: Average RUE (in Å2) of the atomic SASA calculated with the SP algorithm
and compared to the ASC[330] data for the 42 proteins of the Triforce[335] test set. Nat

is the number of atoms.

PDB code Nat RUE PDB code Nat RUE

1plx 75 5.202e−11 6lyz 1102 3.713e−12

1cbh 495 5.716e−13 1sdf 1124 7.976e−12

4pti 514 1.852e−10 1lit 1206 1.045e−10

1sp2 530 9.283e−11 1emr 1231 1.084e−11

2cro 537 7.257e−13 1mbs 1266 1.553e−11

1csp 545 1.161e−11 1bj7 1295 1.527e−11

1sn3 572 4.643e−12 2i1b 1387 7.285e−12

1fas 575 2.492e−08 1czt 1401 3.128e−11

1ubq 660 4.823e−12 1j5d 1419 6.286e−12

1hip 700 1.124e−11 2ptn 1712 2.905e−11

1i6f 842 2.496e−11 5pad 1715 6.125e−12

5rxn 873 1.284e−11 1nso 1732 2.521e−12

1kte 885 3.128e−12 1sur 1739 9.039e−12

1opc 890 2.422e−12 2hvm 2293 8.721e−12

1pht 988 1.603e−11 1rhd 2326 1.400e−11

1k40 1000 1.012e−11 2ts1 2567 2.916e−10

2cdv 1020 6.503e−12 2cyp 2609 4.183e−11

2paz 1021 5.676e−12 2tmn 2617 2.360e−11

1pdo 1073 1.933e−11 1frg 3427 7.290e−11

1ooi 1076 1.112e−10 1mcp 3544 1.828e−11

1fvq 1084 3.622e−12 2chn 11738 8.008e−11

(a) (b)

Figure 4.9: C7-13 helix model of the poly-glycine 1D periodic system system: (a) side
and (b) top views. Red, blue, grey and white balls correspond to O, N, C and H atoms,
respectively. The solid green line represents the unit cell.

dissociated H atoms of formic acid on top of the carbon atoms, which are highly-exposed
to the solvent.
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Table 4.2: Computed total SASA (in Å2) of the poly-glycine C7-13 helix model with n unit
cells and Nat atoms per supercell, and RUE when compared to the expected value based
on the reference unit cell value. All data obtained with the SP algorithm.

n Nat SASA RUE

1 49 328.694 �
2 98 657.388 6.225e−15

5 245 1643.472 2.668e−13

10 490 3286.944 6.319e−13

100 4900 32 869.436 7.422e−14

Figure 4.10: HCOOH/NiO (100) 2D slab periodic system. Ni, O, C and H atom as blue,
red, grey and white balls, respectively. The solid green line corresponds to the unit cell.
The translucent atoms inside the slab have a SASA which is exactly zero.

4.3.2 SASA gradients

4.3.2.1 Mobley test set

Fig. 4.11 presents a comparison between analytically-computed atomic SASA gradients and
corresponding numerical gradients, accounting for a total of 24600 gradient components
values. With a step size for atomic displacements of 10−4 Å an average RUE of 3.250e−06 Å
between analytical and numerical gradients is obtained, outlining the correctness of the
analytical gradients calculation.

Additional reliability of the calculated gradients can also be veri�ed by checking their
translational invariance: the sums of the derivatives with respect to the same coordinate
components should be zero since this corresponds to an overall translation of the solute
along the x, y or z axis [325]. Here, for all analytical calculations, the invariance is excellent
since these sums are always found lower than ±10−14 Å. On the other hand, for numerical
gradients, values as high as ±10−03 Å are obtained in some cases, making the comparison
between numerical and analytical gradients di�cult. Similar conclusions have already been
drawn with the popular Gepol approach[325] for instance.
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Figure 4.11: Histogram of the relative unsigned error (in Å) per molecule of the analyt-
ical nuclear SASA gradients compared to corresponding numerical gradients for the 501
molecules of the Mobley test set.

4.3.2.2 Helix model of poly-glycine and HCOOH/NiO (100)

Fig. 4.12 presents a comparison between analytical and numerical gradients for the periodic
poly-glycine C7-13 helix (Fig. 4.12a) and HCOOH/NiO (100) slab models (Fig. 4.12b)
discussed above. Average RUE of 1.074e−06 and 9.760e−09 Å are obtained, respectively.
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Figure 4.12: Plot of the SASA analytical SP nuclear gradients components as a function
of the corresponding numerical gradients for: (a) the 49 atoms of the poly-glycine C7-13
helix model unit cell; (b) the 130 atoms of the HCOOH/NiO (100) slab unit cell. All data
in Å.

The translational invariance of the analytical gradients components is also excellent since
the sums of the atomic gradients along both the periodic and the non-periodic directions
are found to be lower than ±10−11 Å in both cases. This clearly indicates that the same
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numerical precision can be obtained with the SP algorithm for both �nite and in�nite
periodic systems when computing SASA nuclear gradients.

4.4 Conclusions

In this chapter we have presented the implementation of an analytical approach to compute
the SASA and its nuclear gradients for both �nite and in�nite periodic systems in one
or two dimensions. The spherical circles of intersection resulting from the intersection of
atomic spheres in three dimensions are projected as circles on the projection plane, through
stereographic projection. All surface integrals involved in three-dimensional space for SASA
and SASA gradients calculation are transformed into curve integrals on the projection plane.
An excellent agreement of computed SASA with reference analytical values is found for �nite
systems, while the SASA size-extensivity is veri�ed for in�nite periodic systems. In addition,
correctness of the analytical gradients is con�rmed by the excellent agreement obtained with
numerical gradients and by the translational invariance found, both for �nite and in�nite
periodic systems. Based on the results obtained, the stereographic projection approach
appears as a general, simple and e�cient technique to compute the basic components needed
for the calculation of the non-electrostatic contribution to the solvation energy in an implicit
solvation model for both �nite and in�nite periodic systems.



Chapter 5

Calculating solvation energies with

FDPB: e�ects of the atomic charge and

non-electrostatic models

In this chapter we will explore the e�ects of atomic charge and non-electrostatic models in
the prediction of aqueous solvation energies of both neutral and charged molecular solutes.

As we have seen, when solving the generalized Poisson equation the solute charge den-
sity can be approximated as atomic point charges, simplifying the electrostatic formalism
and avoiding the problem of escaped charge density from the solute cavity, as discussed
in Sec 2.2.1.3 on page 30. This is the strategy usually considered in the �nite-di�erence
representation of the generalized Poisson equation, especially in the biological �eld. How-
ever, since there is no unique way to obtain atomic charges from a quantum-mechanical
calculation, many models have been developed [64, 339] which could potentially be used
within an implicit solvation model with various degrees of accuracy. Furthermore, stability
with respect to the computational method and the associated basis set are also important
criteria to be considered when modeling condensed-phase environments.

In the original implementation [289], the electrostatic contribution contribution to the
total solvation energy in Crystal was based on the Class II Mulliken charge model. How-
ever, the nonphysical electron partition obtained in case of unbalanced or large basis sets
and high dependency on the chosen basis set, have led us to investigate its dependency on
the level of theory and accuracy in predicting solvation energies, and to compare the results
of �ve other charge models belonging to the Class II, and cCass IV atomic charge families.
More precisely, for Class II charges Hirshfeld [292, 294] and Hirshfeld-I [293, 294] charge
models have been considered, while CM5[295] charges alongside two additional modi�ca-
tions have been chosen for Class IV charges. The results are computed both at the HF and
B3LYP levels with basis sets of varying quality, on a test set of 501 neutral molecules and
112 charged species in water.

In addition, as the electrostatic contribution is not a direct physical observable, the e�ect
of the non-electrostatic contribution to the total solvation energy cannot be neglected and
is also investigated by considering two models of di�erent complexity, both relating the
non-electrostatic energy to the SASA [167, 168], computed as discussed in Chapter 4 on
page 75. The �rst model simply relates the non-electrostatic contribution to the total
molecular SASA, while the second model is the CDS model, initially proposed in the SMx
family of implicit solvation models [82, 83, 81, 80], and based on a weighted contribution
of SASA and solvent empirical descriptors, as described in Chapter 3.2.1 on page 71
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In Section 5.1, we brie�y outline the methods, followed by the computational details in
Sec. 5.2, results and discussion in Sec. 5.3, and conclusions are drawn in Sec. 5.4.

5.1 Review of the Methods

In this section, we will brie�y outline the methods used to study the e�ects of atomic charge
and non-electrostatic models on the total solvation free energy, or simply solvation energy,
of a solute. These methods have been treated in greater detail in Chapter 3 on page 57.

The solvation energy of a solute in a �xed conformation is obtained as a sum of an
electrostatic and non-electrostatic contribution, according to:

∆Gtot = ∆Gel + ∆Gne. (5.1)

The non-electrostatic contribution was computed with two di�erent models treated in
Sec. 3.2 on page 71, and both based on the SASA of the solute computed using the analytical
stereographic projection method discussed previously in Chapter 4 on page 75. The �rst
non-electrostatic model simply considers the ∆Gne contributions proportional to the total
molecular SASA Am, according to:

∆Gne = α · Am + β, (5.2)

where α and β are two parameters obtained from the least-square �t of experimental sol-
vation energies of hydrocarbons in water against the the total molecular SASA (Am). As
this model is rather simple, and parameters are not readily available for every solvent,
the more versatile CDS model, discussed in Sec. 3.2.1 on page 71, was here used. Espe-
cially in view of further testing with non-aqueous solvents as we will see in Chapter 6 on
page 107. Brie�y, the CDS model relates the non-electrostatic contribution to a weighted
sum of atomic SASA (Ai) and molecular SASA (Am =

∑
Ai) of the solute, according to

the following set of equations:




∆GCDS
ne =

atoms∑

i

σiAi + σMAM

σi =

(
σ̃nzin+ σ̃αziα + σ̃βziβ

)
+
∑atoms

j 6=i

(
σ̃nzizjn+ σ̃αzizjα + σ̃βzizjβ

)
T ({zj, Rij})

σM = σ̃γγ + σ̃φ
2
φ2 + σ̃ψ

2
ψ2 + σ̃β

2
β2

(5.3)

where σi and σm are the atomic and molecular surface tensions, unit wise. Both σi and
σm are dependent on a set of solvent speci�c empirical descriptors (n, α, β, γ, ψ2, φ2) and
parameters. In particular, the atomic surface tensions σi depend on solute atomic and
atomic pair parameters σ̃Zi and σ̃ZiZj , while the molecular surface tensions σm depend on 4
global parameters σ̃ independent of the solute. Both empirical descriptors and parameters
are treated in Sec. 3.2.1 on page 71. In this chapter the last parametrization for the
SM12 implicit solvation model based on the GBA have been used. Since the electrostatic
contribution is here described by a PB approach in a FD representation, the transferability
of the CDS parameters to another implicit solvation model will also be tested.

On the other hand, the electrostatic contribution ∆Gel, accounting for the mutual solute-
solvent polarization, is obtained through a SCRF method, as seen in Sec. 3.1.4 on page 68,
using an ASC formalism to treat surface polarization e�ects at the solute-solvent interface.
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The ASC are obtained from solving for the potential φ(r) the generalized Poisson equa-
tion using a FD scheme, where the solute charge density ρ(r), acting as source term, is
approximated as atomic point charges qi:

∇[ε(r) · ∇φ(r)] = −4π
atoms∑

i

qiδ(r − ri). (5.4)

The e�ects of six di�erent charge models belonging to the Class II and IV have then been
used, both to validate their accuracy in the prediction of aqueous solvation energies and
their dependency on the size of the basis set. In particular, for Class II, which partition
the electron density from a quantum-mechanical calculation between atomic contributions,
the Mulliken, Hirshfeld (HPA), and Iterative Hirshfeld (HPA-I) have been used. For class
IV models, which apply a semi-empirical correction to charge II (or Class III) models to
reproduce experimental or calculated observables, the CM5 charge model has been used.

In the molecular formulation of the CM5 charge model, the charges qCM5
i are given by

the following expression:

qCM5
i = qHi +

∑

j 6=i
TijBij = qHi +

∑

j 6=i
Tij exp{−α(Rij − ri − rj)} (5.5)

where qHPAi are precursor Class II HPA charges, α and Tij are parameters �tted to repro-
duces gas phase dipoles, and Bij is related to the Pauling bond border approximating the
electron density overlap between two atoms i and j at positions ri and rj, separated by
a distance Rij. Alongside, two additional modi�cation to the CM5 model have also been
introduced: (i) HPA charges have been replaced by HPA-I, leading to a variant referred to
as CM5-I, and (ii) a scaling of the CM5 charges has been applied leading to a s· CM5 model.
The Mulliken, HPA, HPA-I, and CM5 charges been treated in Sec. 3.1.1.1 on page 62 in
greater detail.

5.2 Computational Details

All calculations in this chapter have been performed with a modi�ed development version
of the Crystal code [31, 39], which uses atom-centered Gaussian orbitals as basis set, in
which the CDS non-electrostatic solvation model[80, 81] with the last set of parameters
available[81] along with CM5 atomic charges[194] have been implemented. In addition, the
original implementation of Hirshfeld and Hirshfeld-I atomic charges for non-periodic and
periodic systems [294] has been extended to be used within the SCRF procedure.

Solvation energies have been calculated in water for 501 neutral molecules taken from
Mobley's hydration free energy database[38, 334] and 112 charged molecules taken from the
MNSOL database, both containing the atomic species H, C, N, O, S, F, P, S, Cl, Br, and I.
All solvation energy calculations have been performed with gas-phase geometries obtained
at the B3LYP/6-311G(d,p) level for neutral molecules and B3LYP/6-311G++(d,p) for
charged ones, and have been veri�ed to be true minima by frequency calculation.

For the electrostatic problem the generalized Poisson equation was solved numerically
considering as source term six di�erent charge models: Mulliken, Hirshfeld, Hirshfeld-I,
CM5, CM5-I, plus a scaled version of the CM5 charges, s·CM5 that will be discussed
below. This was done iteratively with a modi�ed Optimal Successive Over-Relaxation (O-
SOR) algorithm [130] and a convergence criteria on the electrostatic potential of 10−4 kT at
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298.15 K. Dirichlet boundary conditions with Debye Hückel potentials[340] were imposed
on the boundaries of the FD grid, using a grid spacing of 0.5 Å, 65 points per grid direction,
with the solute �lling at most 50% of the grid along each direction. Atomic charges were
distributed on the FD grid using an inverse quadratic interpolation algorithm[288].

To reproduce bulk water, the dielectric's and the cavity relative permittivities have been
set to 78.3553 and 1.0000, respectively. The SES solute cavity was built from Bondi atomic
radii[156, 157] augmented by a solvent probe radius of 1.385 Å. The SCRF convergence
criteria was set to 2 · 10−5 Hartree, corresponding to about 10−2 kcal/mol on the solva-
tion energies reported below. Both HF and B3LYP calculations have been carried out,
with 6-31G, 6-311G(d,p), and 6-311++G(d,p) basis sets for neutral molecules and only
6-311++G(d,p) for charged molecules. Extra large integration grids with 99 radial points
and 1454 angular points have been used for all B3LYP and Hirshfeld-related atomic charges
calculations.

The non-electrostatic contribution to the total solvation energy was calculated through
two di�erent approaches described in the Methods section based on analytically-computed
total and atomic SASA[341] using Bondi atomic radii[156, 157]: i) the ∝SASA model,
already used in FD approaches[131, 289], with a solvent probe radius of 1.385 Å, and using
as line coe�cients the intercept β=0.860 kcal/mol and slope α=0.005 kcal/(mol·Å2)[131].
ii) the CDS model with a solvent-independent probe radius of 0.400 Å[342], and utilizing
two di�erent sets of parameters available from the literature[81], which have been optimized
for the electrostatic term of the SM12 solvation model based on the GB approximation[86,
81], both using CM5 and ESP derived atomic charges. Although a FD PB approach is
considered here, and although no ESP-derived atomic charges are chosen, for consistency,
these parameters have been used as is without further re-optimization and will be referred
to as CDS-CM5 and CDS-ESP parameters from here forward.

5.3 Results

In this section, we present the results obtained on a test set of 501 neutral and 112
charged molecules, considering di�erent atomic charge models combined to two di�erent
non-electrostatic models, obtained at two levels of theory: B3LYP and HF. In order to
highlight the role of each of these points on computed data, we �rst discuss the e�ect of the
non-electrostatic model on the ∆Gne contribution, we then analyze the impact of atomic
charges on ∆Gel according to the level of theory and basis set chosen, and both ∆Gne and
∆Gel contributions are combined to discuss the e�ect of all di�erent models and parameters
on ∆Gsolv. Finally, we will discuss the e�ects of the charge model on the SCRF procedure,
and on the computation of the ∆Gsolv for charged molecules.

5.3.1 ∆Gne contribution

Fig. 5.1a clearly shows the stark di�erences between the distributions of the ∆Gne values
obtained for the test set of 501 neutral molecules in water with the three di�erent non-
electrostatic models considered. The ∝SASA model results in only positive values, with a
distribution sharply centered at 2.30±0.26 kcal/mol, while the CDS-ESP and CDS-CM5
models lead to both positive and negative values, with a distribution loosely centered at
1.14±1.31 kcal/mol and 0.28±1.17 kcal/mol, respectively. In particular, CDS-ESP shows a
bimodal distribution compared to CDS-CM5 and ∝SASA. This sharp distribution of values
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with the ∝SASA model can be related to: (i) a single set of α and β parameters used for
all solutes with α � β (see Eq. (2.73)), (ii) the limited sizes of the solutes considered in
the chosen test set, with sizes ranging between 3 and 34 atoms, which results in a limited
range of total SASA values between 130.5 and 468.5 Å2. On the other hand, since the
CDS model not only accounts for total SASA but also atomic SASA with an additional
weighting through geometry-dependent atomic surface tension parameters, a much larger
and varied distribution of ∆Gne values is obtained with this model. More precisely, from
Fig. 5.1b, noticeable di�erences between the two sets of parameters available (CDS-ESP
and CDS-CM5) in the current SM12 implementation can be evidenced. In particular,
the CDS-ESP model generally gives more positive ∆Gne values than the CDS-CM5 one,
with di�erences in magnitude exceeding 1.00 kcal/mol in some cases and a possible sign
change in the ∆Gne contribution to the free energy of solvation. When paired with the ∆Gel

contribution, one can then expect non-negligible di�erences in the resulting ∆Gsolv, not only
between the ∝SASA and CDS models, but also between the di�erent parametrizations of
the latter. This highlights the role of SASA based non-electrostatric models not only as a
way to include non-electrostatic e�ects, but also as a correction of any shortcoming of the
electrostatic model itself for which ad hoc parameters should be developed.
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Figure 5.1: (a) Comparison of the distributions of ∆Gne values for 501 neutral molecules
calculated with the ∝SASA, CDS-CM5 and CDS-ESP models. Dashed lines represent the
average values of ∆Gne obtained with the three non-electrostatic solvation models on the
whole test set, with values of 2.30±0.26, 1.14±1.31 and 0.28±1.17 kcal/mol for the ∝SASA,
CDS-ESP and CDS-CM5 models, respectively; (b) Comparison of computed ∆Gne values
obtained with the CDS-CM5 and CDS-ESP models. The dashed red lines represent a ±1
kcal/mol di�erence.
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5.3.2 ∆Gel contribution

As mentioned above, several e�ects can in�uence the electrostatic contribution to the total
free energy of solvation. In this section, we detail the in�uence of the level of theory and
atomic charge model considered. The basis set dependence of the presented data is also
quanti�ed.

5.3.2.1 Atomic charge and level of theory e�ects

Fig. 6.3 �rst presents the distribution of ∆Gel values computed for all 501 neutral molecules
with the Mulliken, Hirshfeld, Hirshfeld-I, CM5 and CM5-I atomic charge models, obtained
with the 6-311G(d,p) basis set both at the B3LYP and HF levels of theory. We can note
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Figure 5.2: Normalized distributions of ∆Gel values computed with the Mulliken, Hirshfeld,
Hirshfeld-I, CM5 and CM5-I atomic charge models obtained at the B3LYP (in red) and HF
(in blue) levels, with the 6-311G(d,p) basis set. Dashed colored lines represent the average
of the distributions obtained for the whole 501 molecules test set, while dotted black lines
indicate a zero value for ∆Gel.

that, at the B3LYP level, ∆Gel values are generally less negative and less spread out
than the ones obtained at the HF level for a given atomic charge model. Indeed, the
average of the distributions obtained at the B3LYP level are in kcal/mol: -4.39 ± 3.04 for
Mulliken, -3.74 ± 2.48 for Hirshfeld, -5.23 ± 3.21 for Hirshfeld-I, -4.96 ± 2.93 for CM5
and -4.72 ± 3.07 for CM5-I, while the corresponding values at the HF level are: -5.55
±3.86 for Mulliken, -4.58 ±3.23 for Hirshfeld, -6.47 ±4.02 for Hirshfeld-I, -6.04 ±3.63 for
CM5 and -6.04 ±3.85 for CM5-I. We can note that: (i) the average of the Hirshfeld-I
distribution is more negatively centered than the Hirshfeld one, qualitatively in line with
the overestimation and underestimation of electrostatics with the former and the latter,
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respectively; (ii) the semi-empirical mapping applied to Hirshfeld charges in the CM5 model
leads to a description of electrostatics that is in between those obtained with Hirshfeld
and Hirshfeld-I. Finally, the overpolarization obtained at the HF level which lead to more
negative ∆Gel values is in line with the data previously reported on a similar test set of
neutral molecules in water[80].

5.3.2.2 Basis set dependence

To assess the stability of ∆Gel values with respect to the chosen basis sets, data obtained
with the 6-31G, 6-311G(d,p) and 6-311++G(d,p) basis sets are reported in Tab. 5.1, both
at the B3LYP and HF levels, as well as in Fig. 5.3. Two criteria have been considered to
quantify the basis set dependence of each charge model: (i) the linear regression coe�cients
of the slope (a), intercept (b), and correlation coe�cient (R2) of the 6-311G(d,p) data
with respect to the 6-31G and 6-311++G(d,p) ones, where a fully basis-set independent
calculation would then yield: a = 1.0, b = 0.0, and R2 = 1.0; (ii) the Mean Unsigned
Di�erence (MUD) between the ∆Gel data obtained with the 6-311G(d,p) basis set, always
with respect to the 6-31G and 6-311++G(d,p) data, de�ned as:

MUD =
N∑

i

|∆GBasis
el,i −∆G6−311G∗∗

el,i |
N

(5.6)

where ∆GBasis
el,i is the electrostatic term calculated with the 6-31G or 6-311++G(d,p) basis

sets for solute i, and N is the total number of solute molecules in the test set. From the

Mulliken Hirshfeld Hirshfeld-I CM5 CM5-I
B3LYP HF B3LYP HF B3LYP HF B3LYP HF B3LYP HF

a 1.343 1.337 1.127 1.184 1.134 1.171 1.175 1.261 1.153 1.201
b 1.633 3.672 -0.017 0.038 0.068 0.089 0.091 0.272 0.111 0.147
R2 0.864 0.773 0.986 0.990 0.991 0.989 0.987 0.985 0.988 0.987
MUD 1.261 2.535 0.540 0.827 0.702 1.097 0.879 1.467 1.058 1.802

(a) 6-311G(d,p) vs 6-31G data

Mulliken Hirshfeld Hirshfeld-I CM5 CM5-I
B3LYP HF B3LYP HF B3LYP HF B3LYP HF B3LYP HF

a 0.710 0.908 1.049 1.033 1.029 1.052 1.086 1.060 1.039 1.026
b 2.447 3.213 0.047 0.014 0.023 0.005 0.127 0.075 0.040 0.107
R2 0.710 0.908 0.994 0.999 0.994 0.999 0.995 0.998 0.997 0.998
MUD 3.890 3.922 0.188 0.149 0.216 0.174 0.412 0.351 0.320 0.235

(b) 6-311G(d,p) vs 6-311++G(d,p) data

Table 5.1: Slope coe�cient a (kcal/(mol·Å2)), intercept coe�cient b (kcal/mol) and coef-
�cient of determination R2 obtained from the linear regression of ∆Gel values computed
with: (a) 6-311G(d,p) and 6-31G; (b): 6-311G(d,p) and 6-311++G(d,p) basis sets. All data
obtained on 501 neutral molecules at the both with HF and B3LYP. The corresponding
Mean Unsigned Di�erences (MUD, kcal/mol, see Eq. (6.10)) are also reported.

linear regression coe�cients and MUD values reported in Tab. 5.1, it is clear that Hirshfeld,
Hirshfeld-I, CM5 and CM5-I charges all demonstrate a lower degree of basis set dependence
than the Mulliken atomic charge model, with very similar computed data. This conclusion
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Figure 5.3: Comparison between computed ∆Gel values calculated both at the HF and
B3LYP levels, with the 6-311G(d,p) basis set and the 6-31G and 6-311++G(d,p) ones.
Mulliken (red squares), Hirshfeld (blue circles) and CM5 (green triangles) data are reported.

can be drawn both at the B3LYP and HF levels. As expected, upon going from the smallest
6-31G basis set to the largest 6-311++G(d,p) one the Mulliken atomic charge model leads
to unphysical atomic charge values, resulting in a signi�cant increase of the MUD with a
value close to 4 kcal/mol. On the other hand, for all other atomic charge models, the MUD
decreases to a lower value, ranging between 0.188 and 0.412 kcal/mol at the B3LYP level
for instance. This can be clearly evidenced in Fig. 5.3 for three selected atomic charge
models. More quantitatively, the degree of basis set dependence evidenced is: Hirshfeld <
CM5 < CM5-I ∼ Hirshfeld-I � Mulliken.
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5.3.3 Combined e�ects on ∆Gsolv

Tab. 5.2 presents computed MUE values obtained by combining each level of theory (HF
and B3LYP) to all atomic charge models considered, along with the three non-electrostatic
models, for the full test set of molecules.

B3LYP HF
∆Gne BS1 BS2 BS3 Average BS1 BS2 BS3 Average

Mulliken ∝SASA 2.02 1.60 4.72 2.72 3.63 1.86 4.51 3.33
Hirshfeld ∝SASA 1.70 1.89 1.85 1.81 2.03 1.91 1.94 1.96
Hirshfeld-I ∝SASA 1.51 1.27 1.43 1.40 2.93 1.81 2.05 2.26
CM5 ∝SASA 1.20 1.17 1.22 1.19 2.14 1.48 1.56 1.72
CM5-I ∝SASA 1.57 1.54 1.67 1.59 2.84 1.88 1.97 2.23
Mulliken CDS-ESP 1.65 0.97 3.93 2.18 3.13 1.73 3.99 2.94
Hirshfeld CDS-ESP 1.00 0.95 0.94 0.96 1.73 1.25 1.34 1.44
Hirshfeld-I CDS-ESP 1.99 1.22 1.54 1.58 3.83 2.42 2.74 2.99
CM5 CDS-ESP 1.58 1.02 1.13 1.24 3.04 1.99 2.13 2.36
CM5-I CDS-ESP 1.73 1.02 1.16 1.30 3.75 2.06 2.15 2.65
Mulliken CDS-CM5 2.24 1.48 3.56 2.42 3.60 2.47 4.03 3.36
Hirshfeld CDS-CM5 1.36 1.09 1.20 1.21 2.36 1.72 1.84 1.97
Hirshfeld-I CDS-CM5 2.84 2.03 2.36 2.41 4.68 3.26 3.58 3.84
CM5 CDS-CM5 2.40 1.76 1.91 2.02 3.89 2.82 2.97 3.22
CM5-I CDS-CM5 2.51 1.63 1.82 1.98 4.59 2.86 2.96 3.47

Table 5.2: MUE (in kcal/mol) of the computed total free energy of solvation with respect to
the experimental data, both at the HF and B3LYP levels with three basis sets, �ve atomic
charge models and three non-electrostatic models. BS1, BS2 and BS3 correspond to the
6-31G, 6-311G(d,p) and 6-311++G(d,p) basis sets, respectively. Values below the targeted
1.00 kcal/mol threshold are shown in bold.

We can �rst note that all atomic charge models considered generally better pair with the
∝SASA and CDS-ESP non-electrostatic models than with the CDS-CM5 one, especially
CM5. This behaviour is mostly due to the more positive distributions of ∆Gne values
obtained with the ∝SASA and CDS-ESP non-electrostatic models than with the CDS-
CM5 one. From Tab. 5.2, by averaging over basis sets, it is noticeable that HF generally
tends to give higher MUE compared to B3LYP due to the di�erence in ∆Gel distributions
of the two methods, as already discussed in Section 5.3.2. On the other hand, except for
the Mulliken atomic charge model, the 6-31G basis set systematically leads to higher errors
compared to the 6-311G(d,p) and 6-311++G(d,p) ones, which can be related to the lack of
polarization functions in the smallest basis set. The two largest basis sets lead however to
very similar results, outlining the high level of basis set independence and the possibility
to consider di�use basis functions with all atomic charge models considered, except for
Mulliken as already pointed out before.

Looking at the CM5 charges performances when paired with the CDS-CM5 model, in
contrast to previously-reported data obtained with the SM12 solvation model[81], the data
obtained is disappointing here, with an average MUE on the three basis sets of 2.02 kcal/mol
at the B3LYP level for instance, while it is surprinsingly lower with the CDS-ESP model
with a value of 1.24 kcal/mol. This clearly highlights that the assumed transferability of
the CDS-ESP and CDS-CM5 parameters from the SM12 solvation model does not hold in
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the PB framework considered here, due to the di�erence in the electrostatics treatments of
the GB and PB approaches. This conclusion is in line with the reparametrization of the
CDS model already proposed in the SMD solvation model [80], when CDS is combined to
the electrostatics of the integral equation formalism of PCM[343, 98] for example. In fact,
a similar reparametrization of the CDS model should in principle be carried out when this
model is combined to electrostatics treatments di�erent from that of the GB approach.

In addition, depending on the non-electrostatic model considered, the use of the iterative
variant of Hirshfeld charges might be interesting for implicit solvation modeling. Indeed,
upon going from Hirshfeld to Hirshfeld-I charges, a decrease of the MUE is obtained with
the ∝SASA model while the opposite is true with the two CDS models considered. On the
other hand, in all cases, CM5-I charges do not improve upon the CM5 data for condensed-
phase modeling.

Finally, we can note that several combinations of level of theory, atomic charge and
non-electrostatic models are able to deliver a MUE around the targeted threshold value
of 1.00 kcal/mol. Focusing on the B3LYP data for example, Hirshfeld atomic charges
are the best performers with the two CDS models considered, while CM5 atomic charges
are better paired with the ∝SASA model. Since Hirshfeld atomic charges are well-known
to underestimate electrostatics as already mentioned previously, this clearly indicates the
subtle balance existing between the electrostatic and non-electrostatic contributions to the
solvation energy to reach sub 1 kcal/mol accuracy.

5.3.4 Improving CM5 performances: scaling atomic charges

To reach sub 1 kcal/mol accuracy for the test set of neutral molecules without reparametriz-
ing the CDS non-electrostatic model we consider a simpler strategy based on scaling down
the CM5 atomic charges, still considering the original ∆Gne contribution from the SM12
parametrization. For each scaling factor s, the ∆Gel of the whole set of molecules has been
calculated at the B3LYP/6-311G(d,p) level based on CM5 atomic charges, and combined
to the three possible ∆Gne values obtained with the ∝SASA, CDS-ESP and CDS-CM5
models. The MUE variation as a function of the scaling factor s is shown in Fig. 5.4.
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Figure 5.4: MUE of the ∆Gsolv compared to experimental values and average electrostatic
term for 501 neutral molecules against the CM5 charges scaling factor s. The ∆Gel, obtained
at the B3LYP/ 6-311G level using di�erent scaling factors s, is combined with the ∆Gne

obtained with the ∝SASA, CDS-ESP and CDS-CM5 models. The dashed line represents
the threshold of 1.00 kcal/mol for acceptable MUE. The average ∆Gel (solid black line)
and the spread of each distribution for each s values (grey vertical lines) are also reported.
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From these data, only a shallow minima of 1.17 kcal/mol is recovered around s =1.000
with the ∝SASA model, while two very similar minima of 0.68 and 0.74 kcal/mol are
obtained at s = 0.520 and s = 0.730 with the CDS-CM5 and CDS-ESP models, respectively.
Tab. 5.3 compares the unscaled CM5 results with those obtained with the scaled 0.52·CM5
atomic charge model, indicating a signi�cant decrease of the MUE with the scaled charges
when combined with the original CDS models, especially with the CDS-CM5 one for all
three basis sets considered.

B3LYP HF
∆Gne BS1 BS2 BS3 Average BS1 BS2 BS3 Average

CM5 ∝SASA 1.20 1.17 1.22 1.19 2.14 1.48 1.56 1.72
0.52·CM5 ∝SASA 1.73 2.04 1.97 1.91 1.41 1.59 1.55 1.52
CM5 CDS-ESP 1.58 1.02 1.13 1.24 3.04 1.99 2.13 2.36
0.52·CM5 CDS-ESP 0.93 1.06 1.01 1.00 0.95 0.79 0.79 0.84
CM5 CDS-CM5 2.40 1.76 1.91 2.02 3.89 2.82 2.97 3.22
0.52·CM5 CDS-CM5 0.83 0.68 0.73 0.74 1.45 0.98 1.04 1.15

Table 5.3: MUE (in kcal/mol) of the computed total free energy of solvation with respect
to the experimental data, both at the HF and B3LYP levels with three basis sets, the CM5
and 0.52·CM5 atomic charge models and three non-electrostatic models. BS1, BS2 and BS3
correspond to the 6-31G, 6-311G(d,p) and 6-311++G(d,p) basis sets, respectively. Values
below the targeted 1.00 kcal/mol threshold are shown in bold.

More in details, the behavior of the MUE, and by extension RMSE, can be explained
by observing the e�ects of s on ∆Gel and how the di�erent ∆Gne models behave for this set
of molecules. Fig. 5.4 shows how increasing the scaling factor in the [0.3;1.0] range lowers
the average value of ∆Gel and increases the spread of the distribution, while for 1.0<s<1.3
both the average and the distribution of ∆Gel plateaus. This indicates that the variation in
∆Gel for each molecule decreases by increasing s and, for a given non-electrostatic model, so
does ∆Gsolv. When considering the whole set of molecules this explains the almost constant
behavior of the MUE and RMSE for values of s higher than 1.0, instead for values of s
lower than 1.0 the variation in MUE can be understood by observing the distributions of
∆Gne values for each model in Fig. 5.1a. Indeed, as already explained in Section 5.3.1,
the ∝SASA ∆Gne distribution which is centered at 2.30±0.26 kcal/mol can be in �rst
approximation considered as a constant, while the CDS model parameter sets seem to be
constructed to better combine with less negative values of ∆Gel than the ones obtained
in a PB framework. As a consequence, the CDS-ESP model which leads to more positive
contribution of ∆Gne than the CDS-CM5 one has a minimum at higher s value than this
latter.

To sum up therefore, the data obtained here indicate that the sub 1 kcal/mol accuracy
previously reported in the SM8 and SM12 solvation models[83, 81] for example can be
recovered in a PB framework using the original CDS non-electrostatic model by a simple
scaling strategy of the atomic charges used in the electrostatics contribution, with com-
puted MUE values in line with those reported previously on similar test sets of neutral
molecules[80, 81]. It is also noteworthy that the low basis set dependence pointed out for
the CM5 charges in the previous section still holds for the scaled 0.52·CM5 model (see Tab.
5.4).
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6-31G 6-311++G(d,p)
CM5 0.52·CM5 CM5 0.52·CM5

B3LYP HF B3LYP HF B3LYP HF B3LYP HF
a 1.175 1.261 1.208 1.301 1.086 1.060 1.064 1.024
b 0.091 0.272 0.014 0.059 0.127 0.075 0.181 0.037
R2 0.987 0.985 0.976 0.976 0.995 0.998 0.992 0.996
MUD 0.879 1.467 0.410 0.618 0.412 0.351 0.128 0.100

Table 5.4: Slope coe�cient a (kcal/(mol·Å2)), intercept coe�cient b (kcal/mol) and coe�-
cient of determination R2 obtained from the linear regression of ∆Gel values computed with
the 6-31G and 6-311++G(d,p) basis sets compared to reference 6-311G(d,p) data, for the
CM5 and 0.52·CM5 atomic charges. All data obtained on 501 neutral molecules at the HF
and B3LYP levels. The corresponding MUD (in kcal/mol, see Eq. (6.10)) are also reported.

5.3.5 E�ects of the charge model on the SCRF performance

Fig. 5.5 shows the e�ects of the charge model on the number of SCRF cycles needed to
converge the ∆Gel contribution for 501 neutral molecules, both with B3LYP and HF, and
considering the 6-31G, 6-311G(d,p) and 6-311++G(d,p) basis sets.

The 0.52·CM5, CM5, Hirshfeld, CM5-I, and Hirshfeld-I charge models perform very
similarly between each other at all levels of theory, with the scaled version of the CM5
requiring the lowest number of SCRF cycles for the convergence of the ∆Gel. On the
other hand, the Mulliken charge model performance is rather low compared to other charge
models, showing that the unphysical behavior of the charges not only translates to a low ac-
curacy in predicting solvation energies, but also in overall complications in the convergence
procedure, and an increase in computational costs.
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Figure 5.5: Histogram showing the number of SCRF cycles needed for the convergence
of the ∆Gel with di�erent charge models for 501 neutral molecules in water, at both the
B3LYP and HF with the 6-31G, 6-311G(d,p), and 6-311++G(d,p) basis sets.
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5.3.6 E�ects of the charge model on charged molecules

Tab. 5.5 shows the MUE of 112 charged molecules in water calculated at both the HF and
B3LYP levels of theory with the 6-311++G(d,p) basis set for the examined charge models,
and the CDS-CM5, CDS-ESP, and αSASA non-electrostatic models. At �rst glance it
is noticeable how the highest MUE are obtained with the Mulliken, and the scaled CM5
charge models for both anions and cations. For the Mulliken charge model this can be
attributed to the unphysical behavior already noticed for neutral molecules when using a
di�used basis set, while for 0.52·CM5 this can be attributed to the underestimation of the
total solute charge due to scaling down atomic charges.

Charge Model
CDS-CM5 CDS-ESP ∝SASA

B3LYP HF B3LYP HF B3LYP HF
Mulliken 11.13 9.81 12.69 10.78 14.52 12.07
Hirshfeld 6.77 3.46 8.43 4.70 10.39 6.53
CM5 5.02 2.62 6.47 3.24 8.24 4.45
0.52·CM5 18.60 16.05 20.32 17.76 22.34 19.78
Hirshfeld-I 3.70 3.33 4.72 2.77 6.33 3.33
CM5-I 4.19 2.82 5.36 2.67 7.29 3.83

(a) 60 Anions

Charge Model
CDS-CM5 CDS-ESP ∝SASA

B3LYP HF B3LYP HF B3LYP HF
Mulliken 8.320 9.09 8.912 19.76 9.409 11.34
Hirshfeld 1.893 1.91 2.261 2.29 2.287 2.27
CM5 2.182 2.43 2.121 2.28 1.581 1.59
0.52·CM5 13.941 13.73 14.974 14.76 15.914 15.70
Hirshfeld-I 2.252 2.54 2.160 2.37 1.562 1.55
CM5-I 1.704 2.02 2.268 2.35 2.559 2.26

(b) 52 Cations

Table 5.5: MUE (kcal/mol) of the computed total free energy of solvation with respect to
experimental data for 112 charged molecules, both at the HF and B3LYP levels of theory
with the 6-311++G(d,p) basis set, with six di�erent atomic charged models and three
non-electrostatic models.

Depending on the level of theory the MUE for the remaining charge models is instead
closer to the experimental uncertainty of 3.00 kcal/mol for this test set [36], for both an-
ions and cations. In particular, for anions the HF method is able to achieve a lower MUE
compared to B3LYP due to overpolarization e�ects already observed for neutral molecules.
The CM5 charge models with CDS-CM5 parameters, and CM5-I with CDS-ESP parameters
perform particularly well at the HF level of theory, with a MUE of 2.63 and 2.67 kcal/mol,
respectively. These values are on par with recent solvation models especially designed for
the prediction of solvation energies of ionic species in water [84]. Instead, at the B3LYP
level the lowest MUE observed is 3.70 kcal/mol with Hirshfeld-I and CDS-CM5 parameters,
with the remaining charge and non-electrostatic models combinations all achieving MUE
above 4.00 kcal/mol. Overall, we can conclude that for anions overpolarization e�ects and
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higher charge magnitude achieve better results in contrast to what was seen for neutral sys-
tems. Instead, for cations the results, excluding Mulliken and 0.52·CM5 are well within the
experimental uncertainty both at the B3LYP and HF levels of theory, with all combinations
of charge and non-electrostatic models achieving MUE between 1.50-2.50 kcal/mol.

5.4 Conclusions

In this chapter, we presented the e�ects of di�erent atomic charge and non-electrostatic
models on the solvation free energies of a test set of 501 neutral and 112 charged molecules
in water, using an implicit solvation model. The electrostatic contribution to the solvation
free energy resulted from a self-consistent reaction �eld treatment of the bulk electrostatics
obtained by solving the Poisson equation in a FD approach where the solute charge den-
sity is approximated by atomic charges, while the non-electrostatic contribution accounted
interactions between the solute and the solvent dominating in the �rst solvation shell.

For the electrostatic contribution, �ve atomic charge models were considered: Mulliken,
Hirhsfeld, Hirshfeld-I, CM5, and CM5-I, computed at the HF and B3LYP levels, with the
6-31G, 6-311G(d,p) and 6-311++G(d,p) basis sets. This contribution was combined to
two models based on the SASA for the non-electrostatic term: the αSASA model and the
CDS one, the latter using two parameter sets obtained from the literature: CDS-CM5, and
CDS-ESP.

Based on the atomic charge model and on the levels of theory considered, the distribu-
tions of ∆Gel values for the test set signi�cantly changes. On average, ∆Gel values obtained
from the Hirshfeld charge model are lower compared to those obtained with Hirshfeld-I,
while Mulliken, CM5 and CM5-I data fall in-between these two charge models. The HF
overpolarization globally gives more negative ∆Gel distributions when compared to B3LYP,
while the basis set dependency of the ∆Gel values for each charge model is, from lowest to
highest: Hirshfeld < CM5 < CM5-I < Hirshfeld-I� Mulliken, the latter giving unphysical
solvation energies for larger basis sets including di�use functions, and issues in the SCRF
convergence procedure.

In general, for neutral molecules lower MUE of the total solvation free energy with
respect to the experimental data are obtained when the electrostatic contribution of each
charge model is paired with the αSASA and CDS-ESP non-electrostatic models than with
the CDS-CM5 one. HF overestimates the electrostatics, generally giving higher MUE com-
pared to B3LYP for neutral molecules, and better performances are also obtained with basis
sets including polarization functions. Only a limited number of combinations achieved a
MUE lower than 1 kcal/mol, most notably the Hirshfeld charge model paired with CDS-
ESP non-electrostatic contribution. The poor performances of the CM5 atomic charges
obtained here with the chosen approach are in contrast to previously-reported data with
the SM12 model, highlighting the low transferability of the CDS parameters from a GB to
a PB model in a FD approach without additional reparametrization.

A signi�cant improvement of the performances of the CM5 charges for condensed-phase
modeling could however be achieved in the FD strategy chosen by scaling down their values
to better balance with the original CDS model with CM5 parametrization. The values
of the scaling factor have been obtained by minimization of the MUE obtained at the
B3LYP/6-311G(d,p) level on the whole test set of molecules. This has yielded two minima
close to the ones reported in the SM8 and SM12 solvation models on a similar test set: 0.68
kcal/mol and 0.74 kcal/mol with scaling factors of 0.52 and 0.73 for the CDS-CM5 and
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CDS-ESP models, respectively.
For charged species both Mulliken and the 0.52·CM5 charge models perform poorly for

both anions and cations. Instead, the performance of the remaining charge models strongly
depends on the level of theory, and if the solute is negatively or positively charged. For
anions, the HF overpolarization e�ects helps to achieve lower MUE compared to B3LYP. In
particular the CM5 charge model with CDS-CM5 parameters at the HF level has the lowest
MUE of 2.62 kcal/mol, an error within the experimental uncertainty of 3.00 kcal/mol. From
the data one can conclude that, both at the HF and B3LYP level of theory, overpolariza-
tion e�ects and charge models with high charge magnitude tend to give better results for
negatively charged species. Instead, for cations the MUE is well below 3.00 kcal/mol for
all charge and non-electrostatic model combinations, with the exception of Mulliken and
0.52·CM5 charge models.

Overall, this chapter highlights the delicate balance existing between the electrostatic
and non-electrostatic contributions to the solvation free energy, and in particular the im-
portance of the development of non-electrostatic models tailored to the chosen electrostatic
description for condensed-phase modeling.
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Chapter 6

Revised CDS model for FDPB

calculations: parametrisation and

extension to ionic solutes

In this chapter we mainly focus on the reparametrization of the implicit solvation model
implemented in Crystal [289] to both aqueous and non aqueous solvents, and its extension
to charged species. In particular, the Cavity, Dispersion, and Solvent structural e�ects
(CDS) model was fully reparametrized taking in account the electrostatic contribution
obtained with Hirshfeld (HPA) and CM5 charge models, leading to the development of two
separate sets of parameters. The CDS model was then further extended for charged species
by using a semi-empirical correction based on Abraham's acidity parameter of the solvent
describing the tendency of the solvent to act as a hydrogen bond donor.

The overall performances of the reparametrized CDS model, together with the bene�ts
of the additional corrective term for ions, are tested both on the calculation of solvation
energies of neutral and charged species in di�erent solvents, as well as on pKa values in
aqueous solution. This last point is particularly challenging for implicit solvation models
since it requires to accurately compute solvation energies for both neutral and charged
species. Given that experimental solvation energies of the latter are typically one order of
magnitude larger than those of the former, this is still very challenging for most implicit
solvation models, including widely used models in the quantum chemistry �eld such as
SM12[81] or SMD[80]. We also validate and generalize the reparametrized CDS model by
comparison of free energies of solvation, surface energies and band structures of a TiO2

anatase slab obtained in three di�erent solvents with reference VASPsol [34, 281, 282] data.
This chapter is structured as follows. In Section 6.1, we �rst present the methods and

approaches considered in this work, before introducing the computational details in Section
6.2. Results are then presented and discussed in Section 6.3 and conclusions are �nally
drawn in Section 6.4.

6.1 Methods

In this section we will present the methods used throughout this chapter. First, brie�y out-
lying the electrostatic ∆Gel and non-electrostatic contributions ∆Gne to the total solvation
energy:

∆Gsolv = ∆Gel + ∆Gne, (6.1)
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both terms discussed in greater detail in Chapter 4 on page 75, and then discussing the
CDS extension for charged species, followed by the reparametrization procedure of the
non-electrostatic model.

6.1.1 Electrostatic Contribution

The electrostatic model has been treated in detail in Sec. 3.1 on page 57. Here we remind
that the model is based on a SCRF approach where the solute-solvent polarization e�ects
are treated using an ASC formalism, and the underlying electrostatic problem is based on a
FD resolution of the generalized Poisson equation (FDPB), with the solute charge density
ρ(r) approximated by atomic point charges qi, according to:

∇[ε(r) · ∇φ(r)] = −4π
atoms∑

i

qiδ(r − ri). (6.2)

As such, based on the conclusions of Chapter 5.4 on page 104, the HPA and CM5 atomic
charge models have been chosen to approximate the solute charge density, due to their
low basis set dependency and overall acceptable accuracy in predicting solvation energies
when coupled with the CDS model using parameters from the literature. These parameters
where obtained using GBA electrostatics within the SM12 solvation model [81] using CM5
charges, as well as ChElPG [197] and MK [198] atomic charges �tted to quantum-chemically
computed electrostatic potential (ESP). Here, ESP derived charges where not chosen due
to complications in their calculation for periodic systems [344], and although strategies
have been proposed for such systems [345, 344, 346], they still remain computationally-
demanding, especially when applied to a SCRF procedure.

6.1.2 Non-Electrostatic Contribution

The non-electrostatic contribution is based on the CDS model, which has been treated
in Sec. 3.2.1 on page 71. Below we will cover the basics of the model which are needed
throughout the chapter.

The CDS models relates the non-electrostatic contribution to the total solvation energy
∆Gne as a weighted sum of both atomic SASA (Ai) and molecular SASA (Am =

∑
Ai)

SASA, according to the following set of equations:




∆GCDS
ne =

atoms∑

i

σiAi + σMAM

σi =

(
σ̃nzin+ σ̃αziα + σ̃βziβ

)
+
∑atoms

j 6=i

(
σ̃nzizjn+ σ̃αzizjα + σ̃βzizjβ

)
T ({zj, Rij})

σM = σ̃γγ + σ̃φ
2
φ2 + σ̃ψ

2
ψ2 + σ̃β

2
β2

(6.3)

where the atomic σi and molecular σM weights are, unit wise, surface tensions, and both
depend on solvent empirical descriptors (n, α, β, γ, ψ, φ) which have been described in
Sec. 3.2.1 on page 71. In particular, the atomic σi surface tension is function of a set
of atomic number dependent parameters σ̃zi as well as atom pair atomic parameters σ̃zizj ,
which are used together with a cuto� function T ({zj, Rij}) to de�ned atom type contribu-
tions. The molecular surface tension σM is instead independent of the solute and is based
on a set of four glabal parameters σ̃.
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As such, the CDS model requires 4 global parameters σ̃ within the molecular surface
tensions σM term, and up to 3 parameters parameters for each atomic surface tensions σi.
In practice, this number is increased to 4 as water has its own set of parameters due to
its special status as a solvent in the biological �eld and due to its tendency for hydrogen
bonding, which makes the prediction of hydration energies complicated.

As mentioned above, all atomic and molecular surface tension parameters have origi-
nally been optimized for the SM12 solvation model [81], which is based on the GBA [86],
together with CM5 and ESP-derived atomic charges[197, 198] for neutral species. Since a
FD resolution of the generalized Poisson equation is here considered for the electrostatic
term, these parameters need to be re-optimized. Here, we limit the parameter optimization
of the CDS model to neutral molecules for three main reasons: (i) solvation energies of ions
are typically one order of magnitude larger than those of neutral solutes, (ii) the errors in
experimental solvation energies measurements are typically of about ±0.1-1.0 kcal/mol for
neutrals, while they are of about ±3.0 kcal/mol for ions[36], (iii) there are much fewer avail-
able experimental solvation energies for ions than for neutrals, for example, in the MNSOL
database[36], almost 90% of solvation energies concern neutral solutes. Thus when opti-
mizing the parameters simultaneously for both types of systems, a non-negligible error is
introduced for neutral species. To better describe solvation of charged species, we therefore
introduce an additional dedicated corrective term to the CDS model in the next section.



110 CDS parametrisation and extension to ionic solutes

6.1.3 Solvation Energy Correction for Charged Species

The MNSOL database[36] contains the experimental solvation energies of 332 singly-charged
species (208 anions and 124 cations) in four di�erent solvents: dimethyl sulfoxide, acetoni-
trile, methanol, and water. The corresponding averaged experimental solvation energies of
these 332 ionic species are reported in Fig. 6.1, as a function of Abraham's hydrogen bond
acidity parameter α[311, 312, 313] of these four solvents.
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Figure 6.1: Averaged experimental solvation energies ∆Gexp (in kcal/mol, colored dots) of
332 solutes taken from the MNSOL database (see Sec. 6.1.4.1) and standard deviations
(vertical lines) as a function of Abraham's hydrogen bond acidity parameter α of the solvent.
Four solvents have been considered: dimethyl sulfoxide, acetonitrile, methanol and water,
in order of increasing α. The solid lines represent the �tted data obtained with the function

f(α) =
Aα

(1 + α2)
+B, as found in Eq. (6.4).

To describe the corrective term for charged species, several functional forms of ∆Gion

have been tested to calculate solvation free energies of the ionic solutes mentioned above
in four di�erent solvents. Among the tested functions, based on the quasi-linear behaviour
observed in Fig. 6.1, a correction is proposed with the following form:

∆Gion
ne = I(Q,C, k) ·

(
Aα

(1 + α2)
+B

)
AM (6.4)

where A,B and C are three parameters to be optimized (see below, Sec. 6.1.4.1 for details),
AM is the total SASA of the solute, α is Abraham's hydrogen bond acidity of the solvent and
I(Q,C, k) is a function chosen to easily switch between neutral, positively-, and negatively-
charged solutes with no discontinuities, de�ned as:

I(Q,C, k) =
|Q|

1 + exp(k ·Q) + C
. (6.5)

This logistic switching function depends on the total solute charge Q =
∑

i qi and thus
modulates the impact of the correction depending on the di�erent kinds of solutes consid-
ered. For neutral species (Q = 0), the correction is not applied. For anions (Q < 0), this
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function is always positive, while for cations (Q > 0) this function decreases very rapidly
to zero as a function of α. As a consequence, the proposed corrective term a�ects almost
exclusively anions. This function also depends on k, a constant which controls the steepness
of the curve (set to 20/e in this work to ensure high steepness of I), and the optimizable
parameter C which controls the function asymptote for Q < 0. We note that all quantities
involved in Eq. (6.4) do not require any additional calculations once the ∆Gel and ∆Gne

terms described in the previous sections have been computed, resulting in a corrective term
obtained at no additional cost.

6.1.4 Training Set and Parameters Optimization

6.1.4.1 Training set

As training set for the optimization of the CDS parameters, and those of the corrective
term for charged species, the MNSOL database [36] with solutes composed of H, C, N, O,
F, Si, P, S and I atoms was used. In particular, the CDS model was parametrized on 541
neutral solutes in 91 solvents for a total of 2140 nonaqueous and 390 aqueous solvation
energies, together with 144 transfer free energies ∆Gte between organic solvents and water,
de�ned as:

∆Gte = ∆Gorganic
solv −∆Gwater

solv (6.6)

Instead, the corrective term for charged species was parametrized using the database of
213 singly-charged solutes in four solvents: acetonitrile, dimethyl sulfoxide, methanol, and
water for a total of 332 solvation energies repartitioned between 208 anions and 124 cations.
In particular, among the 213 charged solutes 112 are speci�c to water and a subset of 31
contains a single water molecule as described in the MNSOL manual [36]. The full list of
solvents used together with the number of neutral solutes per solvent is available in Tab. 6.4
with the exception of methanol which was used exclusively for charged species. Furthermore,
all solvent empirical descriptors were taken from the Minnesota solvent descriptor database
[241].

6.1.4.2 CDS parameter optimization

Solute- (σ̃nZi , σ̃
α
Zi
, σ̃βZi , σ̃

n
ZiZj

, σ̃αZiZj , σ̃
β
ZiZj

) and solvent-dependent parameters (σ̃γ, σ̃ψ
2
, σ̃φ

2
, σ̃β

2
)

of the CDS model have been obtained by minimization of the following cost function:

χ =
N∑

i=1

(
∆Gexp

i −
(

1

M

M∑

j=1

∆Gel
ij + ∆Gne

i (σ̃)

))2

(6.7)

where χ is given by the sum of the squared estimates of errors between the experimen-
tal reference solvation energies (∆Gexp

i ), and the calculated solvation energies de�ned as
the sum of the parameter-dependent non-electrostatic energy (∆Gne

i (σ̃)) and the average
electrostatic energies computed from M = 10 di�erent levels of theory. Here, the levels of
theory considered have been obtained by combination of �ve di�erent functionals (B3LYP,
B3PW, mPW1PW, PBE0, and PBE) with two basis sets (6-31G∗, and 6-311G∗∗). A total
of N = 2674 solvation energies for neutral solutes have been considered: 2140 nonaqueous
solvation energies, 390 aqueous solvation energies and 144 transfer energies. In addition,
since the electrostatic term is charge model dependent, two separate optimizations have
been performed: one with CM5 and one with HPA charges, resulting in two di�erent sets
of parameters for the revised CDS model for FDPB calculations.



112 CDS parametrisation and extension to ionic solutes

Tab. 6.1 lists the resulting 68 solute-dependent parameters and 4 solvent-dependent
parameters, for both CM5- and HPA-based electrostatics.

CM5 HPA

i σ̃ni (H2O) σ̃ni σ̃αi σ̃βi σ̃ni (H2O) σ̃ni σ̃αi σ̃βi

H 19.522 -4.074 26.480 -7.697
C 19.768 52.417 1.558 46.728 -6.239 34.829 14.090 53.066
HC -72.039 -31.108 15.133 2.571 -68.000 -19.653 14.862 -6.597
CC -31.556 -61.057 3.483 -20.146 -8.935 -50.762 -14.980 -29.350
N -5.200 32.153 21.461 71.035 14.273 30.167 -2.042 36.238
HN -28.656 12.186 -5.411 -81.896 -11.055 -51.519
CN -58.109 -78.305 129.200 -96.034 -54.835 -59.511 171.165 -67.035
NC -24.967 -7.320 -23.327 -16.445 -9.898 -55.922
NC2 -105.672 -159.641 -53.757 -138.080
O -61.404 -4.155 23.224 15.492 -63.205 -11.808 3.553 3.528
HO 4.346 53.421 -139.133 -62.775 22.781 -227.585
OC 7.982 -3.409 60.154 18.846
CO2 92.759 -34.176 71.510 -28.543
ON 53.822 -7.234 -32.680 2.737 68.347 21.590 31.615 26.200
OO 10.949 -27.982 34.601 44.382 -17.394 -3.933
F 0.820 -2.985 5.639 -2.440
Cl -27.603 -29.302 -20.586 -26.428
Br -29.697 -34.731 -22.506 -32.526
I -37.382 -38.945 -27.674 -35.646
Si -203.089 -211.766 -89.961 -143.804
P -68.050 -65.707
OP 36.492 73.988
S -39.233 -37.082 -35.197 -38.315
OS -113.993 548.792 -116.654 553.871
SP 30.083 7.395 34.346 25.482
X -19.282 -17.074 -15.995 -18.215

(a) Solute-dependent parameters

CM5 HPA

σ̃γ σ̃φ
2

σ̃ψ
2

σ̃β
2

σ̃γ σ̃φ
2

σ̃ψ
2

σ̃β
2

0.355 -2.168 -3.201 -0.354 0.254 -2.118 -4.279 5.207

(b) Solvent-dependent parameters

Table 6.1: Revised CDS parameters for FDPB calculations. The index i refers to the
element or atom type. For i=X the index refers to any element other than H, C, N, O, F, Si,
P, S, Cl, Br, and I. For the solute-dependent parameters, any parameter not present in this
table is set equal to zero. The σ̃ni (H2O) columns correspond to water-speci�c parameters,
while the others correspond to nonaqueous solvents. All data given in cal·mol−1·Å−2.

As in the original implementation of the CDS model, 26 out of the 68 solute-dependent
parameters are for water due to its particular importance as a solvent, and the parameter
labeled X is for non-de�ned atom types in order to generalize the non-electrostatic model
to any chemical element. Following the same procedure as in the SM12 solvation model
[81], optimization of this parameter required to set all other solute-dependent parameters to
zero and considering the model as atom-type independent. Optimization led to Root-Mean
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Square Errors (RMSE), computed as RMSE =
(
χ
N

) 1
2 , of 1.67 and 1.57 kcal/mol for CM5

and HPA electrostatics, respectively. This is in line with the 1.48 and 1.61 kcal/mol values
reported for the SM12 model[81] when using CM5 and ESP electrostatics, respectively. We
note that, in some cases, signi�cant di�erences between the FDPB-CM5, FDPB-HPA, and
original SM12-CM5 CDS parameters are obtained[81]: for example, values of 19.768, -6.239
and 121.00 cal·mol−1·Å−2 are obtained for σ̃nC(H2O) with the FDPB-CM5, FDPB-HPA and
SM12-CM5 models, respectively. This further highlights the requirement of reoptimization
of the parameters when di�erent electrostatic models are considered, and the low direct
transferability of the CDS model.

6.1.4.3 Charged species correction and parameter optimization

A similar strategy as the one discussed above has been applied for the minimization of the
cost function given in Eq. (6.7) to determine the optimal A, B and C parameters of the
proposed corrective term for charged species. In this case, the non-electrostatic term is now
de�ned as:

∆Gne
i = ∆GCDS

i (σ̃) + ∆Gion
i (A,B,C) (6.8)

where ∆GCDS
i (σ̃) is the non-electrostatic energy obtained from the optimized CDS model

for neutral molecules, which is now a constant for a given solute and ∆Gion
i (A,B,C) is

the corrective term for which the parameters A, B, and C minimize χ. In this case,
the optimization is carried out by considering the N = 332 singly-charged solute/solvent
systems from the MNSOL database, with M = 5 functionals (B3LYP, B3PW, mPW1PW,
PBE0 and PBE) combined with the 6-311++G∗∗ basis set. The resulting parameters are
listed in Tab. 6.2 for CM5 and HPA atomic charges with similar sign and magnitude for
both charge models.

CM5 HPA
A B C A B C

-269.217 78.522 -0.238 -282.079 70.378 -0.276

Table 6.2: A, B and C parameters of the proposed corrective term for charged species (see
Eq (6.4) and Sec. 6.1.3 for details). A and B are given in cal·mol−1·Å−2, and C is given in
e.

6.2 Computational Details

All calculations have been performed with a modi�ed development version of the Crys-
tal code[31], in which implicit solvation e�ects are included with the formalism described
previously.

The solvation and transfer energies of 2674 neutral molecules, and 332 charged species,
composed of H, C, N, O, F, Si, P, S, Cl, Br and I atoms taken from the MNSOL database
[36, 241] have been calculated. All solute structures have been optimized in gas phase at the
B3LYP/6-311G∗∗ and B3LYP/6-311++G∗∗ levels for neutral and charged species, respec-
tively, and veri�ed to be true minima by frequency calculations. For each solute/solvent
combination in the MNSOL database, the electrostatic contribution to the solvation ener-
gies have been obtained with the B3LYP, B3PW, mPW1PW, PBE0 and PBE functionals
together with the 6-31G∗, and 6-311G∗∗ basis sets for neutral molecules, while only the
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6-311++G∗∗ basis set was used for charged species. In both cases, both CM5 and HPA
atomic charges have been used as a source term for the Poisson equation. On the other
hand, for pKa calculations, only B3LYP/Def2-TZVP calculations have been performed.
Gas-phase free energies of isolated species have been obtained by numerical frequency
calculations, using a step size of 0.003 Å, considering the standard rigid-rotor harmonic
approximation[347, 348]. An extra large integration grid with 99 and 1454 radial and angu-
lar points, respectively, has been used for the DFT grid integration step, both in the SCF
and atomic charge calculations.

Solvation energies of a TiO2 anatase slab have been obtained in three solvents, namely
water, acetonitrile and toluene and compared to VASPsol[34, 281, 282] values obtained with
default parameters. Only the PBE exchange-correlation functional has been considered in
this case due to the high computational cost of hybrid functionals in plane wave calculations,
considering gas-phase optimized geometries. PAW potentials[349, 67] have been considered,
with 2s and 2p electrons of O as well as 3s, 3p, 3d and 4s electrons of Ti treated explicitly.
A (12×12×1) Monkhorst-Pack k-points grid has been used to sample the Brillouin zone.
Only CM5 atomic charges have been considered for the FDPB calculations in this case.
In all multislab calculations performed with VASPsol, a 15 Å gap of vacuum has been
considered between image slabs along the normal to the surface plane considered.

The SCRF convergence criteria was set to 2 · 10−5 Hartree (about 10−2 kcal/mol), and
the Poisson equation was iteratively solved using the Optimal Successive Over-Relaxation
algorithm [148] with a convergence criteria on the electrostatic potential of 10−5 kT/e
at 298.15K, with atomic charges distributed on the FD grid using an inverse quadratic
algorithm [288]. The FD grid spacing was set to 0.50 Å, with 65 points per non-periodic
grid direction, with the solute �lling at most 50% of the grid along each direction. To
solve Poisson equation, Dirichlet boundary conditions have been applied on the grid edges,
using Debye-Hückel potentials of the equivalent dipole of the system[149] along non-periodic
directions, and Ewald potentials along periodic ones[79].

A Solvent Excluded Surface (SES) [169, 170] was used for the solute cavity, built from
Bondi atomic radii [156] augmented by a solvent probe radius. A relative permittivity of
1.000 was used inside the cavity, while the static bulk dielectric constants of the di�erent
solvents have been applied outside.

The atomic and total SASA of all non-periodic and periodic solutes have been analyti-
cally computed with a stereographic projection technique[331, 341] presented in Chapter 4
on page 75, using Bondi's atomic radii and a probe radius of 0.400 Å for all solvents, as
originally done in the CDS model. All parameters of the revised CDS model for use in
FDPB calculations are collected in Tab. 6.1 and 6.2.

Parameters' optimization of the CDS model along with the additional corrective term
has been performed using a Powell's conjugate direction method [350] implemented in a
Python code utilizing Scipy [351] and Numpy [352], together with GNU parallel [353].
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6.3 Results

In this section, we �rst discuss results obtained on free energies of solvation of neutral
�nite and in�nite periodic surface systems. In addition, for the periodic system considered,
we also investigate surface energies and band structure changes upon solvation as these
are key criteria to understand and quantify, especially for photovoltaics and photocatalysis
applications. Then, solvation of ionic species is considered, investigating how the proposed
corrective term to the CDS model impacts computed free energies of solvation and aqueous
pKa values.

When possible, to evaluate the performances of the revised CDS model for FDPB elec-
trostatics, the di�erence between calculated and experimental values has been quanti�ed
using the Mean Unsigned Error (MUE) according to:

MUE =
N∑

i

|yi − xi|
N

(6.9)

where N runs on the number of systems considered, and yi and xi are the experimental and
calculated values, respectively.

6.3.1 Neutral solutes

6.3.1.1 Finite molecular solutes

The overall MUE of computed solvation energies of 2530 neutral solute/solvent combina-
tions in 91 solvents and of 144 transfer energies between water and 14 organic solvent are
summarized in Tab. 6.3. The global MUE of computed solvation energies averaged over

B3LYP B3PW mPW1PW PBE PBE0 All

BS1 BS2 BS1 BS2 BS1 BS2 BS1 BS2 BS1 BS2

CM5 0.70 0.71 0.73 0.71 0.73 0.71 0.72 0.72 0.72 0.71 0.71
HPA 0.63 0.63 0.65 0.64 0.65 0.64 0.65 0.65 0.65 0.64 0.64

(a) ∆Gsolv

B3LYP B3PW mPW1PW PBE PBE0 All
BS1 BS2 BS1 BS2 BS1 BS2 BS1 BS2 BS1 BS2

CM5 0.73 0.73 0.70 0.71 0.69 0.70 0.74 0.75 0.69 0.70 0.71
HPA 0.91 0.92 0.91 0.92 0.91 0.91 0.93 0.95 0.91 0.91 0.92

(b) ∆Gte

Table 6.3: MUE of calculated (a) solvation energies (∆Gsolv) of 2530 neutral solute/solvent
combinations in 91 solvents, and (b) 144 transfer energies (∆Gte) between organic solvents
and water, with respect to experimental values, both with CM5 and HPA atomic charges.
BS1 and BS2 refer to the 6-31G∗ and 6-311G∗∗ basis sets, respectively. All data in kcal/mol.

the ten levels of theory considered are of 0.71 and 0.64 kcal/mol with CM5 and HPA elec-
trostatics, respectively. For transfer energies, the corresponding values are: 0.71 and 0.92
kcal/mol. We also note that the reported MUE values are very similar for all levels of
theory tested, both for solvation and transfer energies, with only slight variations of about
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0.01 − 0.02 kcal/mol between di�erent levels of theory when considering the global MUE.
For reference, the SM12 model [81] reports MUE values of 0.62 and 0.60 kcal/mol at the
B3LYP/6-31G∗ level with CM5 atomic charges for the whole set of 2530 solvation energies
and 144 transfer energies, respectively. The data reported here with CM5 charges for solva-
tion and transfer energies of neutral solutes is therefore consistent with the SM12 solvation
model data, with a di�erence in MUE of only about 0.10 kcal/mol. By comparison, when
considering the original CDS-CM5 parameters developed for GBA, a MUE of 1.33 kcal/mol
averaged on the ten levels of theory is obtained. This value is almost twice the one obtained
with the new parametrization of the CDS model for FDPB electrostatics, and is well above
the 1.00 kcal/mol threshold targeted for neutral solutes. Furthermore, with HPA, the MUE
di�erence is of about 0.02 kcal/mol when compared to the SM12 model with CM5 charges
on solvation energies, and of about 0.26 kcal/mol for transfer energies.
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Figure 6.2: Heatmaps of the MUE of calculated solvation energies ∆Gsolv between pairs
of functionals for 2530 neutral solute/solvent combinations, considering di�erent charge
models and basis sets combinations. All data in kcal/mol.
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Fig. 6.2 presents a more detailed description of the e�ect of the functionals, basis sets
and charge models on computing solvation energies based on the Mean Unsigned Di�erence
(MUD) between solvation energies obtained with di�erent levels of theory according to the
following equation:

MUD =
N∑

i

|∆Gxc1
solv −∆Gxc2

solv|
N

(6.10)

where N runs on the 2530 systems considered and ∆Gxc1
solv and ∆Gxc2

solv are the solvation
energies calculated for di�erent pairs of functionals, for a given basis set and charge model
combination.

The maximum di�erence in solvation energies calculated between di�erent functional
pairs is 0.45 kcal/mol for PBE when coupled with the mPW1PW functional, considering a
6-31G∗ basis set and CM5 electrostatics. In general, the highest MUD values are obtained
with PBE coupled to any other functional (B3LYP, B3PW, mPW1P1 or PBE0), most
probably since PBE is the only non hybrid functional in the chosen set. The remaining
hybrid functionals all show lower MUD between each other, with the second highest MUD
value being of 0.28 kcal/mol between B3LYP and mPW1PW considering the 6-31G∗ basis
set and CM5 electrostatics, while the lowest value of MUD is 0.03 kcal/mol for multiple
pairs of functionals, basis sets and charge models. A general trend can be observed from Fig.
6.2 which shows how the solvation energies di�erences between functionals tend to slightly
decrease by increasing the basis set size from 6-31G∗ to 6-311G∗∗, and by considering
HPA instead of CM5 electrostatics. In the following therefore, due to the low di�erences
in computed MUD and MUE between basis sets and functionals combinations (with the
exception of PBE), only data averaged on the di�erent levels of theory will be considered.

Table 6.4: Average MUE of calculated solvation and transfer energies with respect to exper-
imental values for all solvents considered, using CM5 and HPA electrostatics. The average
is computed on the 10 levels of theory considered. The number of solute molecules in each
solvent (N) along with the corresponding solvent dielectric constant (ε) are also reported.
All data in kcal/mol.

2530 Solvation energies
Solvent ε N CM5 HPA
1,2,4-trimethylbenzene 2.37 11 0.58 ± 0.11 0.42 ± 0.09
1,2-dibromoethane 4.93 10 0.60 ± 0.09 0.52 ± 0.05
1,2-dichloethane 10.12 39 0.91 ± 0.13 0.63 ± 0.11
1-�uoro-noctane 3.89 6 0.94 ± 0.17 0.77 ± 0.15
2,6-dimethylpyridine 7.17 6 0.53 ± 0.07 0.39 ± 0.05
2-methylpyridine 9.95 6 0.63 ± 0.15 0.42 ± 0.12
4-methyl-2-pentanone 12.89 13 0.87 ± 0.15 0.61 ± 0.08
acetic acid 6.25 7 0.84 ± 0.19 0.80 ± 0.09
acetonitrile 35.69 7 1.07 ± 0.18 0.78 ± 0.18
acetophenone 17.44 9 0.93 ± 0.20 0.75 ± 0.19
aniline 6.89 10 0.77 ± 0.15 0.58 ± 0.13
anisole 4.22 8 0.42 ± 0.05 0.37 ± 0.04
benzene 2.27 75 0.94 ± 0.09 0.74 ± 0.06
benzonitrile 25.59 7 1.13 ± 0.20 0.91 ± 0.18
benzyl alcohol 12.46 10 0.64 ± 0.05 0.53 ± 0.04
bromobenzene 5.39 27 0.79 ± 0.16 0.61 ± 0.11
bromoethane 9.01 7 1.22 ± 0.18 0.94 ± 0.16
bromoform 4.25 12 0.81 ± 0.15 0.52 ± 0.09

Continued on next page
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Solvent ε N CM5 HPA
bromooctane 5.02 5 1.39 ± 0.19 1.27 ± 0.17
butanone 18.25 13 1.31 ± 0.24 1.05 ± 0.22
butyl acetate 4.99 22 0.67 ± 0.04 0.72 ± 0.04
carbon disul�de 2.61 15 0.49 ± 0.03 0.44 ± 0.03
carbon tetrachloride 2.23 79 0.45 ± 0.04 0.43 ± 0.02
chlorobenzene 5.70 38 0.87 ± 0.15 0.59 ± 0.11
chloroform 4.71 109 0.75 ± 0.13 0.74 ± 0.12
chlorohexane 5.95 11 1.39 ± 0.20 1.20 ± 0.18
cyclohexane 2.02 92 0.46 ± 0.03 0.45 ± 0.02
cyclohexanone 15.62 10 0.69 ± 0.07 0.60 ± 0.09
decalin 2.20 27 1.26 ± 0.02 1.05 ± 0.02
decane 1.99 39 0.42 ± 0.01 0.44 ± 0.04
decanol 7.53 11 0.92 ± 0.15 0.78 ± 0.10
dibutyl ether 3.05 15 0.59 ± 0.08 0.46 ± 0.06
diethyl ether 4.24 72 0.76 ± 0.06 0.69 ± 0.04
diisopropyl ether 3.38 22 0.76 ± 0.01 0.67 ± 0.01
dimethyl sulfoxide 46.83 7 0.77 ± 0.10 0.70 ± 0.06
dodecane 2.01 8 0.28 ± 0.01 0.32 ± 0.03
ethanol 24.85 8 1.78 ± 0.22 1.50 ± 0.19
ethoxybenzene 4.18 7 0.38 ± 0.02 0.34 ± 0.03
ethyl acetate 5.99 24 0.57 ± 0.07 0.53 ± 0.07
ethylbenzene 2.43 29 0.47 ± 0.06 0.43 ± 0.03
�uorobenzene 5.42 7 0.94 ± 0.17 0.75 ± 0.14
heptane 1.91 69 0.46 ± 0.00 0.44 ± 0.01
heptanol 11.32 12 0.72 ± 0.10 0.76 ± 0.08
hexadecane 2.04 198 0.47 ± 0.01 0.47 ± 0.01
hexadecyl iodide 3.53 9 1.28 ± 0.07 1.20 ± 0.09
hexane 1.88 59 0.55 ± 0.02 0.53 ± 0.03
hexanol 12.51 14 0.66 ± 0.08 0.74 ± 0.08
iodobenzene 4.55 20 0.49 ± 0.12 0.48 ± 0.09
isobutanol 16.78 17 0.51 ± 0.02 0.49 ± 0.02
isooctane 1.94 32 0.47 ± 0.07 0.42 ± 0.06
isopropanol 19.27 7 1.33 ± 0.20 1.02 ± 0.17
isopropylbenzene 2.37 19 0.36 ± 0.07 0.31 ± 0.04
m-cresol 12.44 7 0.87 ± 0.11 0.79 ± 0.11
mesitylene 2.27 7 0.49 ± 0.10 0.35 ± 0.07
methoxyethanol 17.20 6 0.59 ± 0.05 0.50 ± 0.05
methylene chloride 8.93 11 1.14 ± 0.18 0.85 ± 0.21
N-butanol 17.33 21 0.65 ± 0.05 0.68 ± 0.06
N-butylbenzene 2.36 10 0.56 ± 0.11 0.43 ± 0.09
N-methylformamide 181.56 7 0.65 ± 0.10 0.56 ± 0.09
nitrobenzene 34.81 15 1.49 ± 0.21 1.08 ± 0.15
nitroethane 28.29 7 0.95 ± 0.17 0.74 ± 0.21
nitromethane 36.56 7 1.10 ± 0.19 0.94 ± 0.15
N,N-dimethylacetamide 37.78 7 0.77 ± 0.12 0.56 ± 0.08
N,N-dimethylformamide 37.22 7 0.70 ± 0.15 0.50 ± 0.13
nonane 1.96 26 0.31 ± 0.01 0.30 ± 0.01
nonanol 8.60 10 0.81 ± 0.07 0.77 ± 0.06
octane 1.94 38 0.35 ± 0.01 0.32 ± 0.01
octanol 9.86 247 0.91 ± 0.03 0.83 ± 0.02
o-dichlorobenzene 9.99 11 1.51 ± 0.17 1.01 ± 0.13
o-nitrotoluene 25.67 6 1.33 ± 0.16 1.02 ± 0.08
pentadecane 2.03 9 0.44 ± 0.01 0.42 ± 0.02
pentane 1.84 26 0.38 ± 0.04 0.31 ± 0.02
pentanol 15.13 22 0.73 ± 0.07 0.74 ± 0.09
per�uorobenzene 2.03 15 0.61 ± 0.10 0.64 ± 0.10
phenyl ether 3.73 6 1.04 ± 0.14 1.00 ± 0.11

Continued on next page
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Solvent ε N CM5 HPA
p-isopropyltoluene 2.23 6 0.61 ± 0.10 0.43 ± 0.09
propanol 20.52 7 1.17 ± 0.20 0.89 ± 0.17
pyridine 12.98 7 0.67 ± 0.14 0.46 ± 0.12
sec-butanol 15.94 9 0.55 ± 0.06 0.59 ± 0.08
sec-butylbenzene 2.35 5 0.27 ± 0.08 0.24 ± 0.04
t-butylbenzene 2.35 14 0.36 ± 0.09 0.29 ± 0.07
tetrachloroethene 2.27 10 0.58 ± 0.07 0.45 ± 0.04
tetrahydrofuran 7.43 7 0.48 ± 0.04 0.38 ± 0.05
sulfolane 43.96 7 1.27 ± 0.18 0.92 ± 0.13
tetralin 2.77 9 0.94 ± 0.08 1.12 ± 0.09
toluene 2.37 51 0.67 ± 0.07 0.55 ± 0.05
tributylphosphate 8.18 16 0.77 ± 0.06 0.77 ± 0.04
triethylamine 2.38 7 0.84 ± 0.10 0.82 ± 0.07
undecane 1.99 13 0.43 ± 0.02 0.39 ± 0.02
water 78.36 390 0.87 ± 0.04 0.84 ± 0.05
m-, o-, p-xylene mixture 2.39 48 0.61 ± 0.09 0.45 ± 0.05
All 2530 0.71 ± 0.11 0.64 ± 0.09

144 Transfer energies

1,2-dibromoethane/water 1 0.29 ± 0.14 0.66 ± 0.23
1,2-dichloethane/water 3 1.13 ± 0.07 2.28 ± 0.05
benzene/water 4 1.66 ± 0.26 3.95 ± 0.29
carbon tetrachloride/water 2 1.32 ± 0.26 0.58 ± 0.11
chlorobenzene/water 1 0.99 ± 0.13 1.61 ± 0.23
chloroform/water 7 0.72 ± 0.09 2.18 ± 0.05
cyclohexane/water 5 0.95 ± 0.23 1.00 ± 0.10
dibutyl ether/water 1 1.35 ± 0.24 3.64 ± 0.26
diethyl ether/water 8 0.99 ± 0.10 0.95 ± 0.03
ethyl acetate/water 1 1.02 ± 0.13 0.35 ± 0.15
hpetane/water 6 0.97 ± 0.12 1.09 ± 0.08
hexane/water 1 0.54 ± 0.29 5.60 ± 0.63
nitrobenzene/water 1 1.97 ± 0.05 1.67 ± 0.13
octanol/water 103 0.60 ± 0.01 0.60 ± 0.01
All 144 0.71 ± 0.17 0.92 ± 0.22

More in details, Tab. 6.4 lists the average MUE computed for 2530 solvation energies in
91 solvents and 144 transfer energies between water and 14 organic solvents, while Fig. 6.3
further presents the average MUE as a function of the relative permittivity of the solvent.
From these data, it is clear that most MUE values are below the target error threshold
of 1 kcal/mol for neutrals. The largest errors are obtained in ethanol (ε = 24.85), with
MUE values of 1.78 ± 0.22 and 1.50 ± 0.19 kcal/mol with CM5 and HPA electrostatics,
respectively. This MUE might be attributed to the lack of speci�c parameters developed for
ethanol to capture potential hydrogen bond e�ects, as done for another protic polar solvent
such as water for which a speci�c parametrization with 26 dedicated parameters is used to
obtain a MUE of 0.87±0.04 and 0.84±0.05 with CM5 and HPA electrostatics, respectively.
In addition, the error tends to increase upon increasing the relative permittivity of the
solvent, data obtained with CM5 atomic charges being generally more a�ected than the
one obtained with HPA electrostatics. In general, this behavior can be in part attributed
to the larger magnitude of the CM5 charges compared to HPA ones, resulting in a higher
solute/solvent polarization e�ect with the formers than with the latters, which rapidly
increases with the value of the solvent relative permittivity.

Transfer energies reported in Tab. 6.4 mainly concern octanol/water data for which
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low errors are obtained, with a MUE of 0.60 ± 0.01 kcal/mol for both CM5 and HPA
electrostatics. On the other hand, larger errors are generally obtained for the remaining
organic solvent/water transfer energies. In particular, CM5 charges tend to lead to more
stable MUE with acceptable values obtained in all cases, while HPA-based data lead to
unacceptable errors in some cases, such as in the hexane/water case with a MUE of 5.60
± 0.63 kcal/mol or of benzene/water with 3.95± 0.29 kcal/mol, indicating that this latter
atomic charge model is less preferable in the calculation of transfer energies.
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Figure 6.3: Averaged MUE (in kcal/mol) of solvation energies for each solvent given as a
function of the dielectric constant of the solvent (ε), using both CM5 (red crosses) and HPA
(blue dots) electrostatics. Colored dotted lines indicate the average MUE of each charge
model: 0.71± 0.11 and 0.64± 0.09 kcal/mol for CM5 and HPA charges, respectively. The
black dashed line highlights the 1.00 kcal/mol threshold targeted for neutral solutes.

To sum up therefore, for �nite neutral solutes, slightly more accurate results in the
calculation of solvation energies have been obtained with HPA than with CM5 atomic
charges, while the opposite has been found for transfer energies. The MUE di�erence
between the two charge models is in the range of 0.10 kcal/mol for both solvation and
transfer energies data, with results obtained with both atomic charge models being highly
independent from the level of theory chosen.

6.3.1.2 Wetting of TiO2 anatase (101)

As another example of the general applicability of the reparametrized CDS model, we
present solvation of a TiO2 anatase (110) surface in three di�erent solvents, namely water,
acetonitrile and toluene, which have been chosen as examples of polar protic, polar aprotic
and apolar solvent media, respectively. Although rutile is the most stable phase of TiO2

under ambient conditions, TiO2 nanoparticles are preferentially of the anatase variant, with
important applications in photocatalysis and photovoltaics [354, 355], where the anatase
(101) surface orientation is commonly found in sensitized solar cells [356, 357] for example
due to its high photocatalytic properties[358, 355] especially in aqueous medium [359]. Since
no experimental solvation energies are available for surfaces, data obtained with the FDPB
approach are here compared to the ones obtained with the reference VASPsol continuum
solvation mode l[281, 360], although formalisms of these two models largely di�er. A similar
strategy has recently been applied to various PbS surfaces in water [361].

A slab made with 10 Ti layers leading to converged surface energies[362] has been
considered for all calculations, each Ti layer being composed of three atomic planes with
a O-Ti-O sequence. Fig. 6.4 presents the corresponding two-dimensional periodic slab
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model used, together with the ASC distributed on of the cavity of the solute's unit cell
in the FDPB calculations, while Tab. 6.5 presents computed data in the three solvents
considered.

(a) (b)

Figure 6.4: (a) Side and (b) top views of a TiO2 anatase (101) slab model with 10 Ti layers.
Grey and red balls represent Ti and O atoms, respectively. The pink dots correspond to
176 ASC distributed on both sides of the solute cavity exposed to the implicit solvent. The
slab unit cell is shown as dotted blue lines.

Water Acetonitrile Toluene
FDPB VASPsol FDPB VASPsol FDPB VASPsol

∆Gel −10.37 −10.94 −8.84 −8.32 −3.27 −1.17
∆Gne −0.69 +0.56 +0.52 +0.56 +0.22 +0.54
∆Gtot −11.06 −10.38 −8.32 −7.76 −3.05 −0.63

∆∆G
w/x
el � � +1.53 +2.62 +7.10 +9.77

Table 6.5: Computed PBE total free energies of solvation (∆Gtot), along with the elec-
trostatic (∆Gel) and non=electrostatic (∆Gne) components, of a 10 Ti layer TiO2 anatase
(101) slab model solvated in implicit water, acetonitrile and toluene with the FDPB and
VASPsol continuum solvation models. The ∆∆G

w/x
el line corresponds to the di�erence be-

tween the ∆Gel data computed in water and the other solvents. All data in kcal/mol. CM5
atomic charges have been used for FDPB calculations.

From Tab. 6.5, it is clear that although data obtained for ∆Gtot are di�erent between
the two continuum solvation models, a general good agreement is however obtained, with
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trends obtained when going from water to acetonitrile and toluene being very similar and
corresponding to a decrease of the free energy of solvation. This is mainly related to a
decrease of the electrostatic contribution ∆Gel when going from a polar protic solvent to
a polar aprotic one and then to an apolar one, which is further quanti�ed by the ∆∆G

w/x
el

data reported, in good agreement between the two solvation models, showing a larger
value in the water/toluene case than in the water/acetonitrile one with both models. In
addition, for the non-electrostatic contribution ∆Gne, we note that signi�cant di�erences are
obtained between the CDS model used in the FDPB approach and the cavity contribution
used in VASPsol [281, 360]. In particular, due to the lack of parameters available for
nonaqueous solvents in VASPsol, a very similar positive ∆Gne contribution is obtained for
all three solvents considered. On the other hand, a larger range of values is obtained in the
FDPB calculations, with either negative (in water) or positive (in acetonitrile and toluene)
contributions to the free energy of solvation.

Tab. 6.6 further reports the computed surface energies of the slab both in gas-phase
and in solvent. Both continuum solvation models agree very well, the largest discrepancies
being obtained for toluene as noted above. In particular, the stabilization of the solvated
slab when compared to the gas-phase one are well captured with both continuum solvation
models.

Gas Water Acetonitrile Toluene

FDPB VASPsol FDPB VASPsol FDPB VASPsol FDPB VASPsol

Es +0.485 +0.496 +0.293 +0.317 +0.341 +0.362 +0.433 +0.487

∆E
g/x
s � � −0.192 −0.176 −0.144 −0.131 −0.052 −0.009

Table 6.6: Computed PBE surface energies (Es) of a 10 Ti layer TiO2 anatase (101) slab
model in gas-phase and solvated in implicit water, acetonitrile and toluene with the FDPB
and VASPsol continuum solvation models. The variation of surface energy (∆Eg/x

s ) when
going from gas-phase to solvent x is also reported. All data in J/m2.

Finally, we also examined the changes in the band structure of the TiO2 slab upon
solvation, which are presented in Fig. 6.5. Overall, the shapes of the band structures are
only slightly a�ected by all three solvents considered. Both a band gap increase and a
global shift of the bands to higher energies can be evidenced. As could be expected, these
e�ects are more important when considering water and acetonitrile than toluene since the
former two solvents lead to a larger polarization of the slab than the latter one, in line with
the computed free energies of solvation discussed above. The band gap increase is more
important with the VASPsol continuum solvation model than with the FDPB one, mainly
due to a larger upshift of the conduction bands with the former than with the latter. The
upshift of the valence bands are however in remarkable agreement between the two models,
except for toluene where this e�ect is larger with the FDPB model than with the VASPsol
one. As noted above, this overall agreement between the two continuum solvation models is
encouraging for the application of the FDPB model to complex solvated interfaces found in
photocatalysis or in the photovoltaic �eld where band edge displacements are fundamental
to better understand.
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Figure 6.5: Band structures of a 10 Ti layer TiO2 anatase (101) slab model computed
at the PBE level in gas-phase and in implicit water, acetonitrile and toluene with the (a)
FDPB and (b) VASPsol continuum solvation models. The zero of the energy axis has been
set to the valence band maximum of the gas-phase calculation (Eg

f ). The green and blue
shaded areas highlight the shifts of the top of the valence and bottom of conduction bands,
respectively, with the computed shifts indicated with the same colors. The band gaps are
also indicated by the red arrow along with the corresponding values obtained. All data
reported in eV.

6.3.2 Ionic solutes

6.3.2.1 Free energies of solvation

To further assess the performances of the proposed implicit solvation model, Tab. 6.7 col-
lects the MUE obtained for the free energies of solvation with respect to the experimental
data of 208 anions and 124 cations computed in four solvents (acetonitrile, dimethyl sulfox-
ide, methanol and water), where the correction for charged species described in Sec. 6.1.3
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has been applied.

B3LYP B3PW mPW1PW PBE PBE0 SM12a

N CM5 HPA CM5 HPA CM5 HPA CM5 HPA CM5 HPA

acetonitrile 30 3.16 3.32 3.55 3.96 3.70 4.13 2.69 2.71 3.59 3.97 2.8-4.7
dimethyl
sulfoxide 67 3.90 3.59 3.70 3.37 3.66 3.37 4.26 4.02 3.67 3.36 5.9-7.0

methanol 51 2.37 2.64 2.38 2.86 2.44 2.96 2.62 2.51 2.40 2.88 2.3-3.0
water 60 3.08 3.06 2.64 2.67 2.59 2.62 3.78 3.71 2.65 2.67 2.9-3.8

all 208 3.17 3.16 3.04 3.13 3.05 3.16 3.48 3.36 3.04 3.13

(a) Anions

B3LYP B3PW mPW1PW PBE PBE0 SM12a

N CM5 HPA CM5 HPA CM5 HPA CM5 HPA CM5 HPA

acetonitrile 39 4.03 4.10 4.22 3.94 4.16 3.94 4.16 4.04 4.13 3.94 7.2-7.7
dimethyl
sulfoxide 4 3.92 1.32 4.09 1.11 4.03 1.14 3.94 1.27 3.98 1.18 2.0-3.1

methanol 29 1.97 3.85 1.65 3.44 1.67 3.51 1.75 3.56 1.69 3.54 1.7-2.5
water 52 3.57 2.48 3.79 2.57 3.72 2.55 3.71 2.54 3.69 2.54 2.9-3.5

all 124 3.35 3.28 3.43 3.16 3.39 3.17 3.40 3.22 3.37 3.18

(b) Cations

Table 6.7: MUE (in kcal/mol) of the solvation energies of (a) 208 anions, and (b) 124
cations obtained in four di�erent solvents. All data reported include the corrective term
for charged species (see Eq. (6.4)). a: minimal and maximal MUE among the eight values
reported in Ref. 81.

By averaging on the �ve levels of theory and the four solvents considered, the MUE
obtained for anions are of 3.15 ± 0.16 and 3.18 ± 0.08 kcal/mol with CM5 annd HPA
electrostatics, respectively, while they are of 3.38±0.03 and 3.20±0.04 kcal/mol for cations.
For reference, SM12 with CM5 charges at the B3LYP/ 6-31G∗ level of theory achieved MUE
of 4.3 and 4.0 kcal/mol for anions and cations, respectively on the same test set, that is
about 1.0 kcal/mol higher than the values obtained with the proposed correction for charged
species.

In addition, data obtained without the proposed corrective term are presented in Tab.
6.8.

It is clear that the errors obtained are more than doubled for anions, with computed
MUE values of 6.15±0.04 and 7.58±0.09 kcal/mol with CM5 and HPA atomic charges. On
the other hand, data obtained for cations are only slightly worse, with MUE of 3.63± 0.01
and 3.81±0.07 kcal/mol for CM5 and HPA electrostatics, respectively. This is line with the
discussion made in Sec.6.1.3, indicating that the proposed corrective term almost exlcusively
a�ects anions due to the e�ect of the switching function.

Overall therefore, when considering the whole set of solute/solvent combinations the
proposed corrective term ∆Gion

ne leads to MUEs very close to the experimental uncertainty
on solvation energies[36] of 3.00 kcal/mol for charged solutes in the MNSOL database with
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B3LYP B3PW mPW1PW PBE PBE0

N CM5 HPA CM5 HPA CM5 HPA CM5 HPA CM5 HPA

acetonitrile 30 10.07 9.08 10.83 9.93 11.03 10.88 6.38 7.72 8.69 9.95
dimethyl sulfoxide 64 7.68 8.58 8.70 9.63 8.87 8.71 6.14 7.63 6.57 9.61
methanol 51 3.37 4.41 2.67 3.86 2.53 2.64 2.08 5.47 4.61 3.85
water 59 7.85 9.20 6.77 7.98 6.62 6.78 2.25 10.32 8.91 7.99

all 204 7.00 7.58 6.95 7.57 6.95 7.57 6.95 7.65 7.07 7.56

(a) Anions

B3LYP B3PW mPW1PW PBE PBE0

N CM5 HPA CM5 HPA CM5 HPA CM5 HPA CM5 HPA

acetonitrile 39 6.21 3.69 6.46 3.73 6.38 3.71 6.38 3.72 6.35 3.70
dimethyl sulfoxide 4 6.12 1.99 6.28 2.34 6.22 2.31 6.14 2.03 6.18 2.28
methanol 29 2.35 5.28 2.03 4.85 2.07 4.93 2.08 4.96 2.09 4.97
water 51 2.18 3.57 2.25 3.24 2.22 3.28 2.25 3.37 2.21 3.30

all 123 3.62 3.96 3.66 3.74 3.64 3.77 3.64 3.81 3.62 3.79

(b) Cations

Table 6.8: MUE of the calculated solvation energies obtained without the proposed correc-
tive term ∆Gion

ne with respect to experimental values for (a) 204 anions and (b) 123 cations.
All data have been obtained with the 6-311++G∗∗ basis set and are reported in kcal/mol.

both CM5 and HPA electrostatics, the former performing better with anions, and the latter
performing better with cations. Some noticeable exceptions can however be evidenced: for
example, for cations in methanol, CM5 outperforms signi�cantly HPA, with corresponding
MUE of 1.77± 0.11 and 3.58± 0.14 kcal/mol, respectively.

6.3.2.2 pKa evaluation

As a �nal example of the evaluation of the performances of the reparametrized CDS model
and of the proposed corrective term for charged species, pKa values have been calculated
for a test set [363] of 28 carboxylic acids, 10 aliphatic amines and 45 thiols in aqueous
solvent. Calculation of pKa with implicit solvation models still remains very challenging, in
particular since they require highly-accurate solvation energies of both neutral and charged
species, which might require potential hydrogen bonding e�ects between the solute and the
solvent, especially in water.

Although di�erent methodologies have been proposed to compute pKa from continuum
solvation models[364], here, we relied on a simple direct approach [64] in which the dis-
sociation of an acid species HA into its conjugate base A− and the proton is considered
according to:

HAaq 
 A−aq + H+
aq. (6.11)

The pKa is then related to the free energy di�erence ∆G◦aq in the 1 M standard state,
indicated by the superscript ◦, directly from the free energies of hydration of the acid
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∆G◦solv(HA) and the conjugate base ∆G◦solv(A
−) through the following equations:





pKa =
∆G◦aq

2.303RT
∆G◦aq = −265.9 + 1.89 + ∆G◦solv(A

−)−∆G◦solv(HA) + ∆G◦deprot

(6.12)

in which R is the ideal gas constant in kcal·K−1·mol−1 , T is the temperature 298 K, -265.9
kcal/mol is the experimental solvation free energy of the proton [365, 366, 367, 368], 1.89
kcal/mol is the standard state 1 M correction, and the gas-phase deprotonation standard
free energy ∆G◦deprot = G◦g(A

−) − G◦g(HA) + G◦g(H
+) is calculated using the experimental

gas-phase free energy of the proton G◦g(H
+) [365, 366, 367, 368] equal to -6.29 kcal/mol.

This approach has already been successfully used for a number of chemical compounds and
provided errors lower than 1 pKa unit (see Ref. 364 for instance and references therein).
However, it has also been reported that the precision expected from Eq. (6.12) should be
limited due to some systematic errors [369, 370, 364].

All data computed at the B3LYP level are collected in Tab. 6.9. Fig. 6.6 also presents
a comparison between the computed and experimental pKa values. We note that, based on
the MUE reported on ∆Gsolv at the B3LYP level for both neutrals and anions in Tab. 6.3
and 6.7, a potential accumulated error of about 3.8 kcal/mol corresponding to about 3 pKa

units[369, 370, 364] already exists from Eq. (6.12), without considering the uncertainties
related to the solvation free energy of the proton[371, 372, 369].

This work Ref. 363

N CM5 HPA SMD SMDaSAS

Carboxylic acids 28 1.07 1.23 1.38 0.86
Aliphatic amines 10 0.83 2.00 0.68 0.35
Thiols 45 1.33 2.60 7.12 0.48

All 83 1.18 2.07 4.37 0.59

Table 6.9: MUE of computed pKa in water with respect to experimental data obtained
for a set of 83 solutes belonging to the carboxylic acid, aliphatic amine and thiol families,
obtained at the B3LYP/Def2-TZVP level with both CM5 and HPA atomic charges. Data
obtained at the B3LYP/6-31+G(d,p) level with the standard SMD solvation model [81], as
well a modi�ed version considering a scaled solvent-accessible surface approach (SMDaSAS)
taken from Ref. 363 are also reported.

On the whole test set, the proposed solvation model presents encouraging results, with
MUE values of 1.18 and 2.07 pKa units with CM5 and HPA electrostatics, respectively.
From Fig. 6.6a, it is also clear that all computed CM5 values are within the targeted 3 pKa

units error threshold, while HPA values are slighty above the threshold. As a comparison,
the corresponding MUE value of the SMD model is of 4.37 pKa units on the same test
set. Although our model has MUE values on par with the SMD ones for carboxylic acids
and aliphatic amines, it outperforms it notably for thiols, where a 7.12 pKa units MUE
is obtained with SMD, while our model reaches values of 1.33 and 2.60 pKa units with
CM5 and HPA atomic charges, respectively. The poor performances of the standard SMD
solvation model observed in the pKa prediction for some classes of organic compounds
including thiols when using a direct approach has already been reported[363] and is related
to inaccuracies in the solvation free energies of anions. This has led to the development
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of modi�ed versions of SMD for pKa calculations, such as the SMDaSAS approach[363], in
which the solute cavity is scaled by considering a scaled solvent-accessible surface approach,
leading to an overall improvement of computed pKa values compared to standard SMD,
as shown in Tab. 6.9. In particular, the scaled version of SMD achieves an impressive
MUE of 0.59 pKa units on the whole set of 83 molecules. The application of the scaling
in the SMDaSAS does however increase the MUE of free energies of solvation of the neutral
molecules of the considered test set[363], from 0.80 kcal/mol for the default SMD model to
1.70 kcal/mol for the scaled one. The better results obtained with the scaled SMD model
might then be due to a larger compensation of errors between the solvation energies of
neutral and charged species, as each 1.00 kcal/mol variation in free energy di�erence for a
given deprotonation reaction contributes to about 0.70 pKa units.
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Figure 6.6: Comparison between calculated and experimental pKa values for 28 carboxylic
acids (in black), 10 aliphatic amines (in red), and 45 thiols (in blue) in water, obtained
with (a) CM5 and (b) HPA atomic charges. The inner and outer dashed lines represent
errors of ±1.00 and ±3.00 pKa units, respectively.

The overall encouraging results in the prediction of pKa values can be attributed to the
correction for charged species based on Abraham's acidity parameter. In fact, by removing
this contribution to the total solvation energy of charged species the MUE increases to 4.13
and 4.18 pKa units for CM5 and HPA electrostatics, respectively. This error is on par with
the above mentioned 4.37 pKa units of the SMD model. Furthermore the corrective term
is able to predict accurate pKa values for deprotonation reactions involving doubly charged
species, a class of ions not present in the MNSOL database, and for which no solvation
data has been found. This behavior demonstrates a certain degree of robustness of the
corrective term and of the overall model, which should be further con�rmed by additional
calculations.

6.4 Conclusions

In this chapter, we have presented an extension of a generalized FDPB continuum solva-
tion model to non aqueous solvents in Crystal. A reparametrization of the CDS model
for neutral species has been presented and a corrective term based on Abraham's acidity
parameter of the solvent for singly-charged species has been proposed for the calculation of
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free energies of solvation of ions. Testing of the reparametrized model has been performed
both on �nite molecular systems and on an extended periodic TiO2 surface slab model, by
considering free energies of solvation, pKa, as well as surface energies and band structures
calculations. To perform the reparameterization, 10 levels of theory have been considered
by combination of 5 functionals (B3LYP, B3PW, mPW1PW, PBE and PBE0) and two
basis sets (6-31G∗ and 6-311G∗∗). In addition, two atomic charge models, namely HPA and
CM5, have been considered to solve the Poisson equation, thus resulting in two separate
parameterizations.

For �nite molecular systems, the MNSOL database has been considered, with calculation
of the solvation energies of 2523 neutral species in 91 solvents, 327 charges species in
4 solvents, as well as 144 transfer energies between water and 14 organic solvents. In
addition, to test the robustness of the reparametrization and of the proposed corrective
term, calculation of 83 pKa values in water have been considered. For periodic systems,
due to the lack of experimental solvation energies, comparison with reference values obtained
with the VASPsol continuum solvation model has been performed in three solvents.

For the solvation energies of 2530 neutral solute/solvent combinations in 91 solvents,
most computed MUE are below the 1.00 kcal/mol threshold for acceptable results, on par
with the reference SM12 solvation model for which the CDS model has been developed, with
low dependence on the level of theory considered. Averaging over the ten levels of theory
considered, MUE values of 0.71±0.11 and 0.64±0.09 kcal/mol with CM5 and HPA atomic
charges, respectively, have been obtained, that is values comparable to the 0.62 kcal/mol
one reported with the SM12 solvation model at the B3LYP/6-31G∗ level with CM5 atomic
charges. Similar conclusions have been drawn for transfer energies between water and 14
organic solvents, with MUE values of 0.71 ± 0.17 and 0.92 ± 0.22 kcal/mol obtained with
CM5 and HPA atomic charges, respectively, in line with the SM12 corresponding value of
0.60 kcal/mol at the B3LYP/6-31G∗ level with CM5 atomic charges.

When considering the 327 solvation energies of ions in four solvents, we found that the
inclusion of the proposed corrective term signi�cantly improves the computed solvation en-
ergies, with MUE of anions being half of those obtained with the original CDS model, while
values obtained for cations were only slightly lowered, bringing the error for both cations
and anions close to the experimental uncertainty of 3.00 kcal/mol. The bene�t of the pro-
posed corrected term was further con�rmed by calculation of aqueous pKa of 83 molecules,
with MUE values with respect to the experimental data of 1.18 and 2.07 pKa units with
CM5 and HPA atomic charges, respectively, signi�cantly improving upon the SMD sol-
vation model for which a 4.37 pKa units MUE value was repported. In particular, when
considering CM5 electrostatics for the calculation of pKa values, the majority of results
laid within a 3.00 pKa units threshold for which results could be considered acceptable.

Finally, an overall very good agreement has been obtained between computed solvation
energies, surface energies as well as band structure changes upon solvation of a TiO2 anatase
periodic slab obtained with the FDPB and VASPsol continuum solvation models in three
di�erent solvents, namely water, acetonitrile and toluene. In particular, when going from
gas-phase to the di�erent solvents, very similar trends have been obtained with the two
solvation models for all data, with surface stabilization, slight band gap opening and upshift
of computed bands upon solvation. These e�ects have been found to be more important
with polar solvents such as water and acetonitrile than with an apolar one such as toluene.

Overall, these encouraging results demonstrate that the generalized FDPB continuum
solvation model can be applied to a broad range of solutes in various solvents, ranging from
�nite neutral or charged solutes to extended periodic surfaces.



Chapter 7

Towards electrostatic forces in FDPB

To fully account for solvation e�ects and possible solute conformational changes when
passing from a gaseous to a condensed phase, due to solute-solvent interactions, accurate
and fast solvation forces are necessary, as they allow for solute geometry optimizations in
solvent.

In the same manner as solvation energies the solvation forces Fsolvi , acting on an atom
i, can be decomposed in the sum of an electrostatic Feli and non-electrostatic Fnei contribu-
tions, according to:

Fsolvi = Feli + Fnei . (7.1)

The non-electrostatic forces Fnei for the CDS model can be obtained analytically from
the gradient of the non-electrostatic energy (−∇∆Gne), as seen in Sec. 3.2.1 on page 71,
allowing for computationally inexpensive and accurate non-electrostatic forces.

On the other hand, the assignment of the electrostatic forces Feli in FDPB methods is
more problematic [373, 374, 375, 376], especially concerning force conservation. This can
be mainly attributed to the need of solving the PB equation numerically when considering
complex molecular cavities, for which analytical solutions are not available, and thus the
introduction of discretization and numerical errors. As such, many methods have been
developed to compute electrostatic solvation forces. These methods usually divide the
electrostatic forces in the sum of three components [373, 374]:

Feli = FRFi + FOsi + FDBi , (7.2)

where FRFi are the reaction �eld forces, FOsi are forces related to the excess osmotic pressure
present when electrolytes ions are dissolved within the solvent, and FDBi are the dielectric
boundary forces.

The reaction �eld forces FRFi act directly on the solute charges (atoms) and are straight-
forward to compute [152, 153, 154]. In fact, they simply require the atomic charge qi and
the electric �eld E generated by the Nasc apparent surface charges qj at the atomic charge
qi position ri, according to:

FRFi = qiE = qi ·
(

1

4πε0

Nasc∑

j

qj
|rj − ri|3

ri,j

)
, (7.3)

where ε0 is the vacuum relative permittivity and ri,j is the unit vector between the atomic
charge qi and ASC charge qj. The second term FOsi is only present when ions are dissolved
within the solvent and acts on the Stern layer, and is usually neglected as its magnitude
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is smaller compared to other solvation forces [152, 153, 154]. The last term, the dielectric
boundary forces FDB

i , is physically related to the pressure asserted by the high dielectric
media on the low dielectric region and is given by the negative variation of the electrostatic
free energy with respect to the change in the boundary location [373, 152, 153, 154], as
such these forces act on the solute/solvent interface and have to be distributed to the solute
atoms, further introducing numerical errors [175]. The calculation of accurate Dielectric
Boundary Forces (DBF) has been a major challenge and source of errors for FDPB models
and many formulations have been proposed throughout the years.

In the Following, we will brie�y overview various formulations proposed to compute the
DBF for FDPB found in the literature in Sec. 7.1. Instead, in Sec. 7.2 we will focus on the
current implementation of the formulation by Cai et al. [153, 154] based on the Maxwell
stress tensor for discontinuous dielectric cavities in the Crystal code, and we will conclude
with initial tests of the implementation on simple model systems in Sec. 7.3.

7.1 Overview of dielectric boundary forces

The computation of DBF has been one of the major challenges to obtain accurate electro-
static forces in FDPB models, as such many formulations for DBF have been proposed, for
both smooth and discontinuous dielectric models.

For smooth dielectric models (see Sec. 2.2.3 on page 34) Gilson et al. [127] developed a
variational approach for DBF which is given by the following expression:

fDB = − 1

8π
|E|2∇ε, (7.4)

where fDB is the DBF surface density, which is related to the negative gradient of the
pressure P , and the relation to the net forces acting on a di�erential surface element dS of
the solute cavity is given by:

dFDB = fDB dS. (7.5)

The use of Eq. 7.4 requires a relative permittivity ε which smoothly varies with the position
r. In fact, a discontinuous relative permittivity which is a step function of r, as seen in
Sec. 3.1.1 on page 58, would yield a non-�nite value for ∇ε. As the FDPB approach
implemented in Crystal is based on a discontinuous relative permittivy, in this section we
will focus on the latter, discontinuous formulations, for the DBF.

A DBF formulation proposed by Davis and McCammon [375] for discontinous dielectric
models is based on the integration of the Maxwell stress tensor, and the DBF surface density
is given by:

fDB = − 1

8π
(εout − εin)(Eout · Ein)n (7.6)

where the subscripts "in" and "out" refer to the values of the relative permittivity ε and
electrical �eld E immediately within the atomistic region (ε = 1) and the solvent region,
respectively; while n is the normal to the solute cavity facing towards the solvent region.

Another DBF formulation for discontinuous dielectric models, developed by Che et al.
[377], is instead based on a variational strategy, under the assumption that the normal
component to the DBF is predominant compared to the other contributions. Under this
assumption, the DBF is given by:

fDB = − 1

8π

(
1

εout
− 1

εin

)
|ε∇φ|2n, (7.7)
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where ε∇φ corresponds to the normal dielectric displacement vector at the solute/solvent
interface. This formulation was further developed by Li et al. [378], giving the following
expression:

fDB = − 1

4π

[
εout|∇φout · n|2 −

1

2
εout|∇φout|2 − εin|∇φin · n|2 +

1

2
εin|∇φin|2

]
, (7.8)

which should be consistent with Eq. 7.6.
Instead, the preliminary implementation of the DBF formulation in the Crystal code

follows the work of Cai et al. [153, 154] based on an integral approach of the Maxwell stress
tensor, as we will see in the next section.

7.2 Methods

The approach of Cai et al. [153, 154] is built on an integral approach of the Maxwell stress
tensor, as the di�erential approach cannot be used with discontinuous dielectric models due
to the non-�nite numerical values obtained by the gradient of the relative permittivity, as
previously mentioned.

The DBF surface density in this formulation is given by the following expression [153,
154]:

fDB =
1

4π

[(
εoutE

2
out,n −

1

2
εoutE

2
out

)
−
(
εinE

2
in,n −

1

2
εinE

2
in

)]
n, (7.9)

where the electric �eld E and the relative permittivity ε are evaluated immediately "in"
and "out" of the atomistic region. The unit vector n is the normal to the surface (facing
towards the solvent region), and Ein,n and Eout,n are the normal components of the electric
�eld, again evaluated "in" and "out" the atomistic region. The full mathematical treatment
to obtain Eq. 7.9 can be found in the work of Cai et al. [153].

The advantage of this formulation in a FDPB approach, using an Apparent Surface
Charge (ASC) formalism, is that it can be recast into a charge-based strategy [153], for
which Eq. 7.9 can be related to the surface charge density σ at the solute/solvent interface
and approximated using ASC. The DBF surface density for the charge based approach is
given by the following expression:

fDB =
1

2
σ
εinEout · Ein

Eout,n
n =

1

2
σ
Din ·Dout

Dout,n

n, (7.10)

which has been expressed more compactly in terms of the dielectric displacement Din and
Dout on the solute and solvent sides of the cavity, respectively.

As mentioned, the surface charge density σ can be approximated by the ratio between
the Apparent Surface Charge (ASC), calculated via the FDPB method, and the underlying
surface element; by doing so, the discretized DBF surface density fDBi can then be written
as:

fDBi =
1

2

qasci

ai
· Din ·Dout

Din,n

n, (7.11)

where qasci is the ith ASC and ai is the relative surface element. The total DBF FDB

acting on whole solute/solvent interface can then be obtained by summing over the N
ASC, according to [153, 154]:

FDB =
N∑

i

FDBi =
N∑

i

fDBi ai =
1

2

N∑

i

qasci

Din ·Dout

Din,n

n, (7.12)
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where FDBi is the force acting on the ith ASC charge.
Eq. 7.12 can be further simpli�ed in case of solvents with high relative permittivity ε,

such as water, as the tangential components of the vectors are small in magnitude compared
to the normal component (≈ 1%) [153]. Then, in the normal �eld approximation the total
DBF FDB can be simply expressed by:

FDB =
1

2

N∑

i

qasci Dout,nn, (7.13)

which should also reduce numerical instabilities and quality of the DBF, especially when
considering FDPB calculations with larger grid spacings [153].

As previously mentioned, DBF does not act directly on atoms but on the solute/solvent
interface , which in the implicit solvation model is represented by a Solvent Excluded
Surface (SES) composed of contact and reentrant segments, see Sec. 2.2.3 on page 34. As
such, forces have to be decomposed and assigned to atomic centers [175]. The assignment
of DBF from contact surface to atomic center is straightforward, as the force acting on the
surface can directly be assigned to the closest atomic center, as shown in Fig. 7.1a. On
the other hand, assignment of DBF from reetranct portions of the SES to atomic centers is
more problematic, as the forces have to be decomposed and assigned between two di�erent
atomic centers.
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Figure 7.1: Two-dimensional section of a SES cavity for a diatomic molecule (atoms in
gray). Yellow and green spheres represent ASC assigned to contact and reentrant patches
of the SES, respectively. DBF (full lines) are assigned to atomic centers (dotted lines)
for (a) contact, and (b) reentrant patches. DBF acting on reentrant patches have to be
decomposed and assigned to adjacent atomic centers.

The decomposition of a generic DBF vector FDBi acting on the ith reentrant ASC in two
vectors, FDB

i,1 and FDB
i,2 lying on the plane of the ASC and two closest atomic centers, is

achieved through the following expressions [175]:




FDB
i,1 =

FDBi · f i,1 − FDBi · f i,2(f i,1 · f i,2)

1− (f i,1 · f i,2)2
f i,1

FDB
i,2 =

FDBi · f i,2 − FDBi · f i,1(f i,2 · f i,1)

1− (f i,2 · f i,1)2
f i,2

(7.14)
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where f i,1 and f i,2 are unit vectors, and by construction, are directed from the atomic
centers to the center of the solvent probe, as shown in Fig. 7.1b.

7.2.1 Electric and Displacement �elds calculation

The electric E and electric displacement D �elds required to compute the DBF need the
potential φ calculated adjacent to the solute/solvent interface. As the potential from the
FDPB procedure is calculated only at the FD grid nodes φijk a �rst-order least-square
interpolation method has been used [153].

The potential at any point in space φ(x0, y0, z0) is calculated using a potential function
Φ of the form:

Φ(x, y, z) = a0 + a1(x− x0) + a2(y − y0) + a3(z − z0), (7.15)

where the coe�cients a0, a1, a2, a3 are obtained from the minimization of the cost function
err:

err =
N∑

i

|φijk(xi, yi, zi)− Φ(xi, yi, zi)|2, (7.16)

usingN(≥ 4) nearest grid points in the same dielectric region of the selected point (x0, y0, z0).
The coe�cients are obtained through the Singular Value Decomposition (SVD) algorithm
[379] and then related to the potential φ and its derivatives with respect to the Cartesian
coordinates through the following relations [153]:





φ(x0, y0, z0) ≈ a0

∂φ(x0, y0, z0)

∂x
≈ a1

∂φ(x0, y0, z0)

∂y
≈ a2

∂φ(x0, y0, z0)

∂z
≈ a3

(7.17)

From the potential and its derivatives the electric �eld E and the electric displacement
�eld D can be calculated at any given coordinate (x0, y0, z0) using the well known equations
[90]: {

E(x0, y0, z0) = −∇φ(x0, y0, z0)

D(x0, y0, z0) = εE(x0, y0, z0),
(7.18)

thus allowing the calculation of the DBF from the values of the �elds adjacent to the
solute/solvent interface, as seen in Eq. 7.12.
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7.3 Model Systems

In this section we validate a �rst implementation of the electrostatic forces in Crystal's
implicit solvation model using two- and three- point charge model systems, a method pre-
viously used in the literature [175, 373]. This is done through the comparison of analytical
forces, calculated using Eq. 7.2 with DBF from Eq. 7.13, and numerically computed forces
obtained from the virtual work principle.

For example, if we consider a system of N atoms, and want to calculate the x component
of the forces acting on the ith atom centered at (xi, yi, zi), the force component Fx would
be given by the following expression [175]:

Fx(∆Gel) =
∆Gel(xi + δ, yi, zi)−∆Gel(xi − δ, yi, zi)

2δ
, (7.19)

where δ is a small displacement (here set to δ = 0.01Å) and ∆Gel is the electrostatic
solvation energy of our system of point charges in a given con�guration, which depends on
the displaced atomic coordinates, as such two calculations are needed for each component.
Albeit numerical forces calculated using the virtual work principle are in theory exact, their
use is in practice limited by possible numerical noise and their computational cost (as they
require 6N calculation per degree of freedom). Nevertheless, they allow to qualitatively
validate the analytical forces and their current implementation.

For the calculation of the electrostatic solvation energy the default FDPB options, al-
ready seen in Sec. 5.2 on page 93, have been used, together with the relative permittivity
of water (ε = 78.36), and a ionic strength of zero.

7.3.1 Two-atoms System

This system is composed of two positive charged atoms each with a radius of 2.0 Å. The
�rst atom is �xed at (−3, 0, 0) while the second atom is allowed to move from (−3, 0, 0)
to (4, 0, 0) with a 0.01 Å displacement. This particular length was chosen as it allows to
observe if the SES dissociation, from one cavity to two spherical cavities surrounding the
atomic center, will have any e�ect on the calculation of the forces. The analytical forces
Fx and the electrostatic solvation energy ∆Gel are computed for every con�guration of
the model, while numerical forces are calculated using the displaced ∆Gel. The goal is to
observe if the analytical forces are in line with the numerical ones, and at the same time
study the e�ects of the FD grid spacing on the accuracy of the analytical forces.

The analytical and numerical forces acting on the moving atom are shown in Fig. 7.2a
and Fig. 7.2b with a grid spacing of 0.210 and 0.420 Å, respectively. Clearly, numerical
forces show a high degree of noise due to numerical instabilities, especially at higher grid
spacings and in the region between (-1,0.0) and (0,0,0). The latter instabilities are due to
variations in the reentrant patches of the SES, which are generated following a numerical
approach, as seen in Sec. 3.1.3 on page 66. On the other hand, the implemented analytical
forces smoothly follow the numerical forces showing a good agreement of the two methods,
at least qualitatively. In addition, it is interesting to note that no discontinuities can be
observed in the computed analytical forces in the breaking region of the cavity at x ≥ 3.5 .
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Figure 7.2: Electrostatic forces computed for the moving atom in a two particle model
system using a grid spacing of (a) 0.210 Å and (b) 0.410 Å. Fx are the x component of the
analytically computed electrostatic forces for the atom moving along the x axis, computed
using Eq. 7.19. Instead, Fx(∆Gel) are numerically calculated forces computed using Eq.
7.13.
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Figure 7.3: (a) Correlation of forces obtained with di�erent grid spacings h for a two
point charge model, dotted lines represent a 1 kcal/mol/Å di�erence. (b) Comparison of
electrostatic forces calculated with the FDPB and MIB [175] methods, for a two point
charge model system using a grid spacing of 0.210 Å. Fx MIB data has been extracted from
Ref. [175].

While the e�ects of the grid spacing on the solvation energy are minor, and justify the
use of larger grid spacings (see Appendix B on page 153), accurate analytical forces require
smaller grids to reduce numerical instabilities. This is evident when passing from a larger
0.420 Å to smaller a 0.210 Å grid, as the root-mean square di�erence between the computed
analytical force is of 0.52 kcal/mol/Å, as also shown in 7.3a.
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The analytical forces calculated using the FDPB method have also been compared with
a more complex mathematical model based on the Matched Interface Boundary (MIB)
method [175] using a comparable SES type cavity. Fig.7.3b shows a very good agreement
between the two models, with only slight numerical di�erences in the region between (-
2,0,0) and (1,0,0), where only a slight overestimation of the FDPB forces can be observed
when compared to the MIB ones.

7.3.2 Three-atoms System

The three point charge systems is composed of three positivity charged atoms each with a
radius of 2.0 Å. Two of these atoms are �xed at the coordinate (0,−1, 0) and (0, 1, 0) while
the third atom is displaced along the x axis, from (-2,0,0) to (2,0,0) with a 0.01 Å step size.
Fig. 7.2a and Fig. 7.2b show the analytical and numerical forces acting on the moving
atom calculated using a FD grid spacing of 0.210 and 0.420 Å, respectively.
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Figure 7.4: Electrostatic forces computed for the moving atom in a three particle model
system using a grid spacing of (a) 0.210 Å and (b) 0.410 Å. Fx are the x component of the
analytically computed electrostatic forces for the atom moving along the x axis, computed
using Eq. 7.19. Instead, Fx(∆Gel) are numerically calculated forces computed using Eq.
7.13.

As already found in the two point charge model, numerical forces su�er from a high
numerical noise, especially at larger grid spacings, and analytical forces qualitatively follow
the numerical ones. Albeit, for analytical forces calculated with a grid spacing of 0.420 Å
numerical instabilities are present between (−0.5, 0, 0) and (0.5, 0, 0), which can again be
attributed to variations of the reentrant patches of the SES. Again, no discontinuities are
observed when the cavity breaks. Also, we note that the force pro�le is symmetric about
x=0 Å, as expected from the symmetry of this model system.

Fig. 7.4a shows in greater detail the e�ects of the FD grid spacing on the calculation of
the analytical forces. The root-mean square di�erence between analytical forces calculated
with grid spacing 0.210 Å and 0.420 Å is in fact of 1.38 kcal/mol/A, showing that the e�ects
of the FD grid are also system dependent.
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Figure 7.5: (a) Correlation of forces obtained with di�erent grid spacings h for a three
point charge model, dotted lines represent a 1 kcal/mol/Å di�erence. (b) Comparison of
electrostatic forces calculated with the FDPB and MIB [175] methods, for a three point
charge model system using a grid spacing of 0.210 Å. Fx MIB data has been extracted from
Ref. [175].

As in the two point charge model the analytical forces calculated with FDPB method
have been compared to the MIB method [175] using a SES type cavity, as shown in Fig.
7.4b. A good qualitative agreement between MIB and FDPB can be observed, with the
major di�erences between the two methods in the region between (−0.5, 0, 0) and (0.5, 0, 0).

7.4 Molecular Systems

Overall, the computed analytical forces from the FDPB method are in line with the results
obtained from both computed numerical forces, and MIB's analytical forces.

As a �nal example of the application of analytical electrostatic forces, results obtained
on the CH3OH molecule are collected in Tab. 7.1.

Force components

n◦ atom x y z

1 O -7.43950 -1.07797 0.00000
2 C -0.74574 -1.08503 0.00000
3 H 6.68095 -0.30874 -0.00000
4 H 0.16714 1.19917 -0.00000
5 H 0.51042 0.55525 -0.06414
6 H 0.51042 0.55525 0.06414

Components sum: -0.31631 -0.16206 0.00000

Table 7.1: Electrostatic forces for a CH3OHmolecule, calculated at the B3LYP/6-311G(d,p)
level, and a grid spacing of 0.500 Å. Data in kcal/mol/Å.
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Although symmetry related atoms (H5 and H6 as show in Fig. 7.6) do have symmetry-
related values, the sum of the di�erent force component for the system does not equal
zero. This can be partially attributed to the numerical instabilities which arise at larger
grid spacings, the numerical construction of the reentrant patches of the SES, and DBF
decomposition and interpolation of the electrical and displacement �elds.

Albeit the results so far are promising, more work is required to both improve and de-
velop more grid independent methods for the calculation of the DBF and of the electrostatic
forces in general in the FDPB approach.

Figure 7.6: Model of the CH3OH molecule. The geometry was optimized in gas-phase using
the B3LYP/6-311G(d,p) level.



Chapter 8

Conclusions and Perspectives

The aim of this thesis was the development, implementation, and improvement of a gener-
alized implicit solvation model in the Crystal code to better model materials by taking
into account solvent environmental e�ects at low computational cost. Both for �nite and
in�nite periodic systems have been considered, at the HF and DFT levels of theory using
a linear combination of atom centered Gaussian functions as basis sets.

Throughout the thesis the solvation energy has been used to evaluate the performance
of the solvation model, and it has been considered as a sum an electrostatic ∆Gel and a
non-electrostatic ∆Gne contributions. The electrostatic contribution has been accounted
for through a SCRF method using an ASC formalism, where the underlying electrostatic
problem is numerically solved through a FD generalized Poisson scheme with the solute
charge density approximated as atomic point charges. The non-electrostatic contribution
instead accounts for the remaining solvation e�ects which are not considered by the elec-
trostatic model, and is e�ciently computed through a model based on the solute SASA, as
the majority of the non-electrostatic e�ects mainly concert the �rst solvation shell.

An analytical approach to compute the solute SASA and its nuclear gradients based on
a stereographic projection technique, valid for both �nite and in�nite periodic systems, has
been implemented as discussed in chapter 4 on page 75. For �nite systems the SASA imple-
mentation has been compared to reference analytical values with an excellent agreement,
while for in�nite periodic systems successful size-extensivity tests have been performed. The
correctness of the analytical gradients has instead been con�rmed by the excellent agree-
ment obtained by comparison to numerical gradients and the translational invariance found
for both �nite and in�nite periodic systems. The overall results show that the stereographic
projection technique is a general, simple, and e�cient way to compute the SASA, which is
a basic component of many accurate and e�cient non-electrostatic solvation models.

As the source term for the generalized Poisson equation is approximated through atomic
point charges, the FDPB procedure and the computation of the electrostatic energy is
charge model dependent. In chapter 5 on page 91 the e�ects of di�erent charge and non-
electrostatic models on the solvation energy has been investigated on a test set of 501
neutral and 112 charged molecules in water. For the electrostatic contribution �ve di�erent
charge models were considered: Mulliken, Hirshfeld (HPA), Hirshfeld-I (HPA-I), CM5, and
CM5-I, calculated using B3LYP and the HF level of theory with the 6-31G, 6-311G(d,p)
and 6-311++G(d,p) basis sets. Instead for the non-electrostatic model two approaches
based on the solute SASA have been explored: the αSASA and the CDS models. The
latter using two separate set of parameters obtained from the literature: CDS-CM5 and
CDS-ESP, originally developed for a GBA based solvation model.
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The values of electrostatic energy for the test set varies greatly with both the charge
models and the level of theory. On average, electrostatic energies obtained with Hirshfeld
charge model are the lowest, while values calculated with Hirshfeld-I are the highest, with
the remaining charge models falling in-between the two. From the perspective of the level
of theory the HF method globally gives more negative electrostatic energies compared to
B3LYP due to overpolarization e�ects, and the least basis set dependent charge model
is, from lowest to highest: Hirshfeld<CM5<CM5-I<Hirshfeld-I�Mulliken, with the latter
model giving unphysical solvation energies for larger basis sets. Furthermore, Mulliken
charge model shows technical issues in the SCRF convergence procedure compared to the
other charge models. This increases the total number of SCRF cycles needed for convergence
and hinders the model performance.

When pairing the electrostatic contribution computed with the various charge models
with the αSASA, CDS-ESP and CDS-CM5 non-electrostatics models for neutral molecules
only a limited number of combinations achieved a MUE lower than 1.00 kcal/mol, most
notably the Hirshfeld charge model with CDS-ESP. In general, the HF method overesti-
mation of the electrostatic energy translates to a higher MUE compared to B3LYP and
better performances are observed when using basis sets which include polarization func-
tions. The high MUE for the CM5 when coupled with the CDS-CM5 also highlights the
low transferability of the CDS parameters from a GBA to a FDPB approach.

To improve the performance of the CM5 charges using a FD scheme and the default
CDS-CM5 parameters a scaling factor was applied. The value of the scaling has been
obtained by minimizing the MUE at the B3LYP/6-311G(d,p) level of theory on the 501
neutral molecules considered as a test set. The process has yielded two minima with MUE
of 0.68 and 0.74 kcal/mol with a scaling factor of 0.52 and 0.73 for the CDS-CM5 and
CDS-ESP models, respectively.

For charged species, Mulliken and the 0.52·CM5 charge model performed poorly, while
the remaining charge models performance is strongly a�ected by the level of theory. As op-
posed to neutral molecules, the HF overpolarization e�ect contributes to a lower MUE com-
pared to B3LYP for anions. Good results are obtained when considering CM5 charge with
CDS-CM5 parameters. In fact, this combinations achieves a MUE of only 2.62 kcal/mol,
a value within the experimental uncertainly of the test set of 3.00 kcal/mol. In general,
we can conclude that overpolarization and charge model with higher charge magnitude are
able to achieve lower MUE for negatively charged species and should be preferred. On the
other hand the performance for cations is well within the 3.00 kcal/mol for all the combi-
nations of charge and non-electrostatic models, with the exception of Mulliken and 0.52 ·
CM5 charge models.

Albeit a good accuracy has been reached in the prediction of solvation energies using
the 0.52 ·CM5 charges, the results are limited to neutral molecules, as charged species have
shown to be extremely sensitive to variations in charge magnitudes and strongly dependent
on the level of theory. Furthermore, the scaling has been veri�ed only for aqueous solvent.
This highlighted the need of re-optimizing the CDS model parameters and the development
of charged speci�c corrections, while at the same time trying to minimize the dependence
of the model on the level of theory.

In chapter 5 on page 91 the FDPB implicit solvation model was extended to non aque-
ous solvents, and the CDS model was reparametrized for neutral species and extended for
charged species by considering an additional corrective term based on Abraham's acidity
parameter of the solvent. Testing of the reparametrized and extended CDS model was
performed considering solvation energies for �nite molecular systems, transfer energies be-
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tween organic solvents and water, pKa calculations in aqueous solvent, and band structure
calculations on a TiO2 surface slab model.

The reparametrization of the CDS model is based on 10 levels of theory given by the
combination of 5 functionals (B3LYP, B3PW, mPW1PW, PBE and PBE0) and 2 basis
sets (6-31G∗ and 6-311G∗∗). In addition, based on the results of Chapter 4, the HPA and
CM5 charge models have been considered to solve the generalized Poisson equation due
to their lower dependence on the level of theory, and higher stability, compared to other
charge models. This resulted in an independent set of parameters for each of the two charge
models considered.

For the calculation of the solvation energies of �nite molecular systems the MNSOL
database has been used. This database consists of 2523 neutral species, 91 solvents, and
327 charged species in 4 solvents, as well as 144 transfer free energies between water and
14 organic solvents. To further test the robustness of the reparametrized and extended
CDS model an additional 83 pKa calculations in water have been performed. Instead for
periodic systems, due to the lack of reliable experimental solvation energies, the results from
the FDPB model have been compared with VASPsol's continuum solvation model using 3
di�erent solvents.

Starting with neutral species, very good results have been obtained for 2523 neutral
solute/solvent combinations in 91 solvents. In fact, most of the computed MUE fall within
the 1.00 kcal/mol threshold for acceptable results, and there is an overall good agreement
with the SM12 solvation model used as reference. Furthermore, a very low dependence on
the level of theory has been observed for all 10 levels of theory, justifying the choice of using
CM5 and HPA charges. Considering an average over the 10 levels of theory, the MUE of the
whole test set is 0.71± 0.01 and 0.64± 0.01 kcal/mol with CM5 and HPA atomic charges,
respectively, and are comparable to the 0.62 kcal/mol reported from the SM12 solvation
model at the B3LYP/6-31G∗ level with CM5 atomic charges.

Similar conclusions to neutral molecules can be drawn out when considering the 144
transfer energies between water and 14 organic molecules. The MUE values are of 0.71±0.02
and 0.86 ± 0.01 kcal/mol with CM5 and HPA atomic charges, respectively. These values
are again in line with the SM12 model value of 0.60 kcal/mol at the B3LYP/6-31G∗ level
with CM5 atomic charges.

For the 327 charged species in four di�erent solvents, the inclusion of a corrective term
based on Abraham's acidity parameter of the solvent signi�cantly improves the computation
of solvation energies at the DFT level of theory. In fact, the MUE for anions is halved com-
pared to those obtained with the original CDS model, while the MUE for cations is slightly
reduced. For both cations and anions the computed MUE is close to the experimental
uncertainty of 3.00 kcal/mol.

The corrective term was further tested by performing pKa calculations in aquoeus sol-
vent for 83 molecules. The MUE values with respect to the experimental data is of 1.18
and 2.09 pKa units with CM5 and HPA atomic charges, respectively. These values sig-
ni�cantly improves upon the default SMD solvation model using CDS, for which a 4.37
pKa units MUE value was reported. In particular, when using CM5 charges, the majority
of pKa values fall within a 3.00 pKa units threshold for which results can be considered
acceptable.

Considering the TiO2 anatase slab, a very good agreement has also been found for
computed solvation energies and band structure changes upon solvation between Crystal's
FDPB and VASPsol's implicit solvation model. When passing from gas-phase to water,
acetonitrile or toluene very similar trends can be observed for both solvation energies,



142 Conclusions and Perspectives

surface stabilization, and slight band gap opening and up shifts of the computed bands
upon solvation. All these e�ects have been found to be more signi�cant with more polar
solvents.

These results show that the extended and reparametrized FDPB model is able to achieve
accurate solvation energies for a wide range of di�erent solvents and systems, while at the
same time exhibiting a low dependence from the level of theory demonstrating the model
robustness. Having achieved accurate solvation energies, solvation forces for solute geometry
optimization in solvent are needed as a �nal step to fully complete the FDPB model.

In the current implementation of the solvation forces, described in Chapter 7 on page 129,
are decomposed in the sum a non-electrostatic and electrostatic contribution. Accurate and
e�cient non-electrostatic forces are obtained analytically from the gradient of the CDS non-
electrostatic energy, while analytical electrostatic forces are obtained from a charged based
formulation developed by Cai et al. [153] using an integral approach of the Maxwell stress
tensor.

The analytical electrostatic forces have been tested on two- and three-point charge model
systems, and have shown to be qualitatively in line with results obtained from both numer-
ically computed forces and results from the MIB implicit solvation model [? ], validating
the overall implementation of the forces.

Nevertheless, force conservation remains an issue when passing to �nite molecular sys-
tems. This can be attributed to grid dependent discretization and numerical errors which
can be traced back to: (i) the numerical construction of the reentrant patches of the SES,
(ii) the decomposition of the dielectric boundary force to the two closest atomic centers,
and (iii) the one-sided interpolation of the electric and displacement �elds adjacent to the
solute/solvent interface. As such, to achieve accurate electrostatic forces more work is
still required to improve Cai et al. [153] formulation by decreasing its dependence on the
FD grid through the use of more accurate interpolation techniques and by improving the
construction of the reetrant patches of the SES.

Overall, the implicit solvation model has shown to be e�ective and robust, being able to
compute solvation energies e�ciently for many systems in di�erent solvent environments.
Together with the improvement of electrostatic forces, work has also begun on applications
of the model to systems of chemical interest, such as the reaction of carbon monoxide and
water to form hydrogen and carbon dioxide on a Pt(111) slab (also know as water gas shift
reaction) considering an aqueous solvent in order to account for environmental e�ects and
more accurately model the reaction.
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Appendix A

Partial derivatives of the curve integrals

for SASA gradients

This section gives the expressions of all partial derivatives involved in the calculation of
Eq. (4.15) presented in Section 4.1.2. Each of the three contributions shown in this equation
are successively given below.

A.1 Evaluation of
∂Iij,λ

∂(aij ,bij ,cij ,dij)

When the j-th circle on the border of Ωi contains no vertices, by using Eq. (4.8), one
obtains:
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On the other hand, when the j-th circle on the border of Ωi contains vertices, by using
Eq. (4.5), one obtains:
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In the following the four di�erent partial derivatives appearing in Eq. (A.2) are given.
As suggested in Ref. [331], the following expression is used and derivated with respect

to aij, b
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(A.3)

to get:



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(A.4)

where: D1 = (bij
2
+cij

2−4aijd
i
j)

1/2aik sign aij·
[
(aijb

i
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.

The expressions of
∂βij,λ
∂aij

,
∂βij,λ
∂bij

,
∂βij,λ
∂cij

and
∂βij,λ
∂dij

can be obtained from Eq. (A.4) by

substituting k with l and α with β.
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The partial derivatives of
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are given by:
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(A.5)

where, from Eq. (4.6):


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(A.6)

The partial derivatives of Uj
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are more complicated and they are thus

presented separately below:
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∂
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Evaluation of these last derivatives therefore requires to evaluate the partial derivatives

of
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

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and:

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Appendix B

E�ects of the grid spacing on the

solvation energy

In this section the 1-2 dichloroethane, acetic acid (anion), and methylamine (cation) molecules
are used to study the e�ects of the FD grid spacing (h) on the ∆Gel contribution, with
�ve charge models: 0.52·CM5, CM5, Hirshfeld, CM5-I, Hirshfeld-I, Mulliken at both HF
and B3LYP levels. The 6-311G(d,p) basis set has been used for 1-2 dichloroethane, while
6-311++G(d,p) one has been considered for charged species. A grid spacing ranging from
1.00 to 0.20 Å is considered with a cubic grid. The remaining computational details are
shown in Sec. 5.2 on page 93.

B.1 1-2 dichloroethane: grid spacing e�ects
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Figure B.1: FD grid spacing (h) e�ects on the ∆Gel contribution (kcal/mol) for 1,2-
dichloroethane in water, at the (a) B3LYP/6-311G(d,p) and (b) HF/6-311G(d,p) levels
of theory with various charge models.
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0.52·CM5 CM5 Hirshfeld CM5-I Hirhsfeld-I Mulliken
h (Å) B3LYP HF B3LYP HF B3LYP HF B3LYP HF B3LYP HF B3LYP HF

0.20 -1.128 -1.856 -3.084 -4.259 -2.445 -3.591 -3.310 -4.652 -3.218 -4.563 -3.112 -4.502
0.30 -1.133 -1.863 -3.091 -4.269 -2.454 -3.603 -3.308 -4.657 -3.222 -4.571 -3.112 -4.508
0.40 -1.144 -1.877 -3.110 -4.294 -2.471 -3.626 -3.321 -4.681 -3.239 -4.598 -3.125 -4.530
0.50 -1.157 -1.890 -3.136 -4.319 -2.485 -3.640 -3.368 -4.718 -3.239 -4.621 -3.185 -4.579
0.60 -1.189 -1.929 -3.207 -4.405 -2.532 -3.698 -3.474 -4.841 -3.346 -4.713 -3.291 -4.703
0.70 -1.138 -1.876 -3.100 -4.293 -2.473 -3.638 -3.303 -4.670 -3.228 -4.599 -3.111 -4.523
0.80 -1.204 -1.942 -3.220 -4.412 -2.549 -3.711 -3.303 -4.827 -3.358 -4.716 -3.305 -4.700
0.90 -1.202 -1.962 -3.229 -4.464 -2.606 -3.815 -3.409 -4.854 -3.358 -4.802 -3.182 -4.673
1.00 -1.202 -1.962 -3.229 -4.464 -2.606 -3.815 -3.409 -4.854 -3.358 -4.802 -3.182 -4.673

Table B.1: FD grid spacing (h) e�ects on the ∆Gel contribution (kcal/mol) for 1,2-
dichloroethane in water at the (a) B3LYP/6-311G(d,p) and (b) HF/6-311G(d,p) levels
of theory with various charge models.

B.2 Ions: grid spacing e�ects
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Figure B.2: FD grid spacing (h) e�ects on the ∆Gel contribution (kcal/mol) for (a) and
(b) Acetic Acid (anion) and (c) and (d) methylamine (cation) in water, at the B3LYP and
HF levels with the 6-311++G(d,p) basis set with various atomic charge models.
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0.52·CM5 CM5 Hirshfeld CM5-I Hirhsfeld-I Mulliken
h (Å) B3LYP HF B3LYP HF B3LYP HF B3LYP HF B3LYP HF B3LYP HF

0.30 -55.664 -58.878 -71.109 -76.048 -70.207 -75.142 -74.168 -79.409 -74.179 -79.516 -71.285 -77.037
0.40 -55.696 -58.906 -71.160 -76.098 -70.263 -75.199 -74.267 -79.522 -74.282 -79.635 -71.321 -77.092
0.50 -55.658 -58.869 -71.051 -75.993 -70.162 -75.101 -74.193 -79.488 -74.217 -79.610 -71.174 -76.978
0.60 -55.798 -59.029 -71.412 -76.388 -70.479 -75.452 -74.451 -79.745 -74.453 -79.850 -71.664 -77.472
0.70 -55.594 -58.818 -70.889 -75.850 -69.991 -74.945 -73.992 -79.392 -74.004 -79.495 -70.948 -76.807
0.80 -55.790 -59.028 -71.447 -76.433 -70.541 -75.524 -74.314 -79.662 -74.352 -79.803 -71.666 -77.463
0.90 -55.662 -58.861 -70.929 -75.837 -70.030 -74.934 -73.988 -79.288 -73.987 -79.378 -71.065 -76.804
1.00 -56.034 -59.269 -71.829 -76.804 -70.932 -75.907 -74.596 -79.900 -74.596 -80.013 -72.007 -77.863

(a) Anions

0.52·CM5 CM5 Hirshfeld CM5-I Hirhsfeld-I Mulliken
h (Å) B3LYP HF B3LYP HF B3LYP HF B3LYP HF B3LYP HF B3LYP HF

0.30 -60.340 -60.088 -79.835 -79.353 -79.506 -78.925 -77.566 -77.209 -79.568 -79.097 -79.848 -79.313
0.40 -60.309 -60.061 -79.801 -79.326 -79.490 -78.913 -77.382 -77.029 -79.510 -79.043 -79.831 -79.308
0.50 -60.313 -60.066 -79.789 -79.315 -79.507 -78.933 -77.327 -76.978 -79.487 -79.021 -79.819 -79.298
0.60 -60.226 -59.982 -79.674 -79.209 -79.551 -78.976 -76.790 -76.441 -79.283 -78.817 -79.758 -79.249
0.70 -60.292 -60.034 -79.774 -79.278 -79.513 -78.904 -76.756 -76.360 -79.390 -78.873 -79.910 -79.343
0.80 -60.044 -59.821 -79.410 -78.983 -79.343 -78.810 -76.504 -76.179 -79.001 -78.557 -79.580 -79.125
0.90 -60.291 -60.033 -79.782 -79.290 -79.593 -78.999 -77.298 -76.911 -79.484 -78.989 -79.851 -79.316
1.00 -60.182 -59.916 -79.664 -79.150 -79.425 -78.805 -77.600 -77.191 -79.844 -79.300 -80.038 -79.439

(b) Cations

Table B.2: FD grid spacing (h) e�ects on the ∆Gel contribution (kcal/mol) for (a) Acetic
Acid (anion) and (b) methylamine (cation) in water, at the B3LYP and HF levels with the
6-311++G(d,p) basis set with various atomic charge models.
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Appendix C

Ions: E�ects of the charge and

non-electrostatic models
This section focuses on the e�ects of the charge and non-electrostatic model on 112 charged
solutes in water from the MNSOL database [36, 241] considered in Chapter 5 on page 91. In
particular, the 0.52·CM5, CM5, Hirshfeld, Hirshfeld-I and Mulliken charge models, at both
the B3LYP and HF levels of theory with the 6-311++G(d,p) basis set habe been selected.
Computational details are given is Sec. 5.2 on page 93.
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Figure C.1: Distributions of ∆Gel contributions for (a) 60 anions, and (b) 52 cations in water at both
the B3LYP and HF levels of theory with the 6-311++G(d,p) basis set.

XC 0.52·CM5 CM5 Hirshfeld CM5-I Hirshfeld-I Mulliken

B3LYP -50.76±4.87 -64.89±6.34 -62.71±5.73 -65.86±6.17 -66.87±6.38 -58.58±16.21
HF -53.31±4.92 -68.96±6.48 -66.58±5.97 -70.04±6.43 -71.10±6.69 -61.28±18.09

(a) Anions

XC 0.52·CM5 CM5 Hirshfeld CM5-I Hirshfeld-I Mulliken

B3LYP -51.18±5.47 -69.00±7.26 -67.50±7.25 -67.03±7.03 -69.04±7.33 -58.99±15.69
HF -51.43±5.56 -69.30±7.43 -67.49±7.41 -67.69±7.23 -69.38±7.51 -46.46±60.04

(b) Cations

Table C.1: Average and standard deviation of the distributions of ∆Gel contributions per (a) 60 anions
and (b) 52 cations in water at both the B3LYP and HF levels of theory with the 6-311++G(d,p) basis set.
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C.1 ∆Gne distributions for ions
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Table C.2: ∆Gne distributions for 60 anions, and 52 cations in water using the αSASA,
and CDS-ESP, CDS-CM5 models.
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Figure C.2: Scatter plot for 60 anions and 52 cations in water between ∆Gne values obtained
using the CDS-ESP and CDS-CM5 model.
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C.2 E�ects of the charge model on the SCRF perfor-
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MOTS CLÉS

Continuum, Solvatation, Solvation, Surfaces, CRYSTAL

RÉSUMÉ

La prise en compte des effets environnementaux est cruciale pour mieux modéliser les systèmes chimiques, car les propriétés chimiques
et physiques de la matière sont fortement influencées par leur interaction avec leur environnement. Pour inclure les effets de solvatation
à faible coût de calcul dans les calculs de mécanique quantique (MQ), les modèles de solvatation implicite sont très intéressants car
ils tiennent compte de l’environnement du solvant en remplaçant les degrés de liberté du solvant par un diélectrique sans structure
caractérisé par la permittivité relative du solvant, en se concentrant principalement sur les interactions électrostatiques entre le soluté et
le solvant.
Historiquement, les modèles de solvatation implicite ont surtout été développés pour les systèmes moléculaires finis, tandis que les
systèmes périodiques, tels que les polymères et les surfaces, ont reçu moins d’attention, à la fois en raison du manque de données
expérimentales comme les énergies de solvatation, et de la complexité accrue des formalismes MQ et électrostatiques, à cause de la
nature périodique des équations mises en jeu. Dans cette thèse, nous nous concentrerons sur le développement, l’implémentation et la
validation d’un modèle de solvatation implicite généralisé dans le code Crystal, applicable aux systèmes finis et périodiques, aux niveaux
Hartree-Fock (HF) et théorie de la fonctionnelle de la densité (DFT).
Les effets électrostatiques et la polarisation mutuelle soluté-solvant, sont traités par une approche de champ réactionnel auto-cohérent
(Self-Consistent Reaction Field, SCRF), utilisant des charges apparentes de surface (Apparent Surface Charges, ASC) pour représenter
la polarisation du solvant, tandis que le problème électrostatique sous-jacent est résolu numériquement par une Équation de Poisson
en différences finies (FDP) utilisant des charges ponctuelles atomiques, dont les modèles ont été généralisés pour fonctionner dans le
cadre du SCRF. Les effets non électrostatiques sont inclus grâce à l’implémentation, la reparamétrisation et l’extension aux systèmes
périodiques du modèle « Cavity, Dispersion, and Solvent structural effects » (CDS). Le modèle CDS a de plus été modifié afin de mieux
décrire les espèces chargées, grâce à l’introduction d’un terme supplémentaire basé sur le paramètre d’acidité d’Abraham du solvant. En
outre, comme le modèle non électrostatique dépend de la surface accessible au solvant (SASA) du soluté, une technique de projection
stéréographique a été mise en œuvre et étendue aux systèmes périodiques pour le calcul analytique de la SASA et de ses gradients
atomiques.
Pour les systèmes moléculaires finis, le calcul des énergies de solvatation dans divers solvants et de pKa dans l’eau ont été utilisés pour
valider le modèle. En revanche, pour les systèmes périodiques tels que les surfaces, la comparaison avec les données de référence
obtenues avec VASPsol a été utilisée, en raison du manque général de données expérimentales pour ces solutés.
Dans l’ensemble, le modèle de solvatation implicite généralisé étudié, implémenté et mis en œuvre dans cette thèse permet une de-
scription plus réaliste d’une large gamme de solutés allant de systèmes finis à infinis périodiques, permettant une modélisation plus
précise de ces systèmes.

ABSTRACT

Taking in account environmental effects is crucial to better model chemical systems, since both chemical and physical properties of
matter are heavily influenced by their interaction with their surroundings. To include solvation effects at low computational cost in
quantum-mechanical (QM) calculations, implicit solvation models are very appealing since they account for the solvent environment by
replacing the solvent degrees of freedom with a structureless dielectric characterized by the relative permittivity of the solvent, focusing
mainly on the electrostatic interactions between the solute and the solvent.
Historically, implicit solvation models have mostly been developed for finite molecular systems, while periodic systems, such as polymers
and surfaces, have received less attention, both for the lack of experimental data, such as solvation energies, and increased complex-
ities in the QM and electrostatic formalisms due to the periodic nature of the equations involved. In this thesis, we will focus on the
development, implementation and validation of a generalized implicit solvation model in the Crystal code, applicable to both finite and
periodic systems, at the Hartree-Fock (HF) and Density Functional Theory (DFT) levels. The electrostatic effects, and solute-solvent
mutual polarization, are treated through a Self-Consistent Reaction Field approach (SCRF), using Apparent Surface Charges (ASC)
to represent solvent polarization, while the underlying electrostatic problem is numerically solved through a Finite-Difference general-
ized Poisson scheme (FDP) using atomic point charges, which models have been extended to work within the SCRF framework. The
non-electrostatic effects are included thanks to the implementation, re-parametrization and extension to periodic systems of the Cavity,
Dispersion, and Solvent structural effects model (CDS). The CDS model has been further revised to better describe charged species
through an additional term based on Abraham’s acidity parameter of the solvent. Furthermore, as the non-electrostatic model is de-
pendent on the Solvent Accessible Surface Area (SASA) of the solute, a stereographic projection technique has been implemented and
extended to periodic systems for the analytical calculation of SASA and its atomic gradients.
For finite molecular systems, the calculation of solvation energies in various solvents and pKa’s in water have been used to validate the
model. Instead for periodic systems, such as surfaces, comparison with reference data obtained with VASPsol has been used, due to
the general lack of experimental data for such solutes.
Overall, the generalized implicit solvation model investigated and implemented in this thesis allows for a more realistic description of a
broad range of solutes ranging from finite to infinite periodic systems, allowing for a more accurate modeling of such systems.
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Continuum, Solvation, Surfaces, CRYSTAL


