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1

Introduction

Nanoporous materials with high specific surface area have been of great interest for
a long time. They are used in a wide variety of applications such as gas storage, catal-
ysis, sensing or drug delivery. The last 15 years have seen the birth of new classes
of crystalline nanoporous materials based on weaker bonds. These new classes in-
clude metal-organic frameworks (MOFs), covalent organic frameworks and porous
molecular organic solids. Among them, a new class of material started to emerge,
named “stimuli-responsive materials” or “soft porous crystals”, which exhibit large
or anomalous responses to external physical or chemical stimulation. The modifi-
cation of the framework structure induced by the response also involves, in turn,
a modification of other physical and chemical properties, making such materials
multifunctional. Stimuli-reactive materials exhibit then a large variety of respon-
sive behaviors: negative adsorption, negative linear compressibility, photorespon-
sive frameworks or negative thermal expansion to name only a few. Each of these
properties can be used in different applications such as sensors or actuators, or en-
gineering composite materials with targeted mechanical and thermal properties for
example.

Despite their interesting behaviors, the development of applications for them is
slowed down due to their complex synthesis. Indeed there is no systematic method
to synthesize such materials. While the number of stimuli-responsive materials is
growing over time, most of them are found by serendipity and the majority have
never been characterized or tested under simulation. The full characterization of a
soft porous material, whether experimentally or theoretically, is a consequent task
requiring enormous resources. Usually, once a material is discovered, it is tweaked
to obtain derivative materials with satisfying properties. This current way of gen-
erating materials is not efficient and needs to be improved. For this, the systematic
study of the properties of soft porous materials is necessary to understand the oc-
currence of such properties. This can also highlight feasibility criteria guiding the
chemical synthesis. The current thesis was built around this idea.

During my PhD, I conducted studies on two families of materials that have both
potentials in industrial applications: zeolites, that are already used in the industry
and are present in a lot of applications of everyday life, and metal-organic frame-
works (MOFs), which have a great potential for adsorption-based applications and
for which industrial processes are currently developed.

Zeolite is a family of natural aluminosilicates discovered in the 18th century that
have been widely studied until now. The first experimental synthesis of a zeolite
goes back to the 1940s, and since then, more and more frameworks have been ob-
tained experimentally. Due to their porous nature, zeolites have been extensively
studied for their properties of adsorption and their potential use as catalysts and
molecular sieves. They are present in numerous fields of our life such as agriculture
or pollution control. Although their adsorption was thoroughly studied this past
50 years, their other features such as mechanical or thermal properties have drawn



2 Introduction

only a little interest. However, zeolites have recently caught the attention due to
their specific characteristics, especially in the computational field. Indeed, owing
to their particular structural arrangements, zeolites exhibit fascinating mechanical
properties that are considered “anomalous”, such as a negative linear compressibil-
ity or a negative Poisson’s ratio (a behavior also called auxeticity). These mechanical
aspects of zeolites have been studied in details theoretically through various meth-
ods including DFT and machine learning. Thermal properties, on the opposite, have
not received the same attention. They nevertheless have “anomalous” behavior in
zeolites too as most of the frameworks exhibit a negative thermal expansion, to the
point where it is considered a common behavior in this family of material. Very
few studies were directed towards the thermal properties of zeolites and the need
for large scale study becomes more and more important. Using databases of known
frameworks of zeolites, I investigated the thermal behavior of a large number of
pure silica structures of zeolites through DFT-based methods. The aim was to give
insights into the “anomalous” phenomena occurring in these systems as well as to
build a database for further calculations. The database of DFT-calculated zeolites
was then used and study as a potential training set for machine learning purposes.
I investigated the feasibility of using such techniques along with the database I cre-
ated and the applicability for the prediction of properties of zeolites.

MOFs are a recent family of materials first discovered around the 90s which have
since then drawn a large interest due to their industrial potential. MOFs are materi-
als composed of inorganic units linked together by organic linkers. Their particular
arrangement leads usually to a high porosity, most often higher than zeolites. Their
structural diversity along with the variety of properties they can offer allows for a lot
of possibility of applications. Due to their high porosity nature they are particularly
studied for adsorption-based applications. Unlike zeolites which are rigid mate-
rials constituted of Si–O bonds, MOFs are built with a combination of strong and
weak bonds, making them much more flexible and leading sometimes to stimuli-
responsive behaviors of large amplitude. However, their flexibility also constitutes
an obstacle to their industrial applications. Indeed, MOFs are known to have a rel-
atively low thermal and chemical stability. The lack of knowledge on their stabil-
ity and degradation over time prevent the development of numerous applications.
Countless studies are however realised each year to fill this need and industrial uses
of MOFs are starting to appear. In my thesis, I had the opportunity to work on sev-
eral MOFs in different projects in collaboration with experimentalists. The first one
dealt with the flexibility and opening process of a Co-based MOFs upon adsorp-
tion. The second focused on the different compression behaviors of 3 MOFs with
same structures and different compositions. Finally, in the last one, I gave atomistic
insights into the melting process of a MOF.

This thesis is organised in 4 chapters. The first chapter will introduce the materials
I chose to focus on, namely zeolites and MOFs. It will then present the principles
of DFT simulations and molecular dynamics. The second chapter will deal with
the systematic study of thermal properties of zeolites. The first part of this chap-
ter is dedicated to the introduction of thermal and mechanical properties and will
present the methods used to calculate them. The second part contains the results of
the study. The third chapter concerns the machine learning study of thermal prop-
erties of zeolites, which uses the results obtained from the second chapter. The first
part is focused on the machine learning technique and its principles and the second
part will present the results. The last chapter contains 3 different projects realised in
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collaboration with experimentalists from foreign laboratories. The chapter is organ-
ised in 3 parts, each corresponding to a project. Each part will introduce the project
by showing some results obtained experimentally and then will present the results
obtained with simulations.
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Chapter 1

Materials and Computational
Methods

In this part I will describe the theoretical background needed to apprehend the
works done in this thesis. The first part will deal with the materials studied and
the second part will focus on the methodologies and fundamentals of computational
chemistry.

1.1 Materials

During my PhD, I had the opportunity to investigate different materials for different
projects, all related to the abnormal behaviors that can occur in the solid state. De-
spite having studied these materials for different purposes, they all share the same
similarities: all of them are crystalline porous materials. Crystalline materials are
composed of periodic arrangements of atoms in three dimensions. The key feature
of such structure is the periodicity, which allows to describe large systems with only
a fraction of it. This small fraction is called the unit cell and is the pattern used to
describe the material. This representation is convenient especially for simulations as
only a small portion of the structure has to be computed. The term porous designates
the presence of void in the structure. Indeed, depending on the atomic arrangement
(periodic or not), cavities called "pores" can appear inside the structure. The materi-
als exhibiting this kind of feature are usually interesting in adsorption related fields
or for applications as molecular sieves for example. The size of pores can vary a lot
and is strongly depending on the structure of the material.

Within this category of crystalline porous materials, I studied two families, zeolites
and metal organic frameworks, for which I will describe the main characteristics in
this part

1.1.1 Zeolites

The history of zeolites started in the 18th century when a Swedish chemist named
Axel Fredrik Crönstedt discovered the first material of this kind, the mineral called
stilbite (represented on fig. 1.1). While studying the thermal stability of this mineral,
he observed that, when heated, moisture and bubbles would appear on its surface,
giving off the impression that the stone was boiling[2]. He thus called this family
of materials zeolites, associating the Greek terms zeo (to boil) and lithos (stone). This
discovery set the path for all the following works on this type of material. In the
following decades, a dozen of natural zeolites were discovered and in 1862 the first
synthetic zeolite called levinite was obtained, opening then fully the field of research
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on zeolite materials. As of now, there are 244 different known frameworks for zeo-
lites.

FIGURE 1.1: Image of the mineral stilbite (left panel) and its crystal
structure (right panel). Taken from [3].

Generalities

Zeolites are a type of three-dimensional aluminosilicates (also called tectosilicates)
whose structure is built with corner-sharing tetrahedra. This particular 3D arrange-
ment can lead to the presence of voids in the structure which is one of the most im-
portant features of zeolites. Pore size and accessibility are known to be the key char-
acteristics to look for when investigating properties such as adsorption, or processes
like ion-exchange. Due to their specific arrangement and to its variety throughout
the different frameworks, the zeolite family presents a large diversity of pore sizes
ranging from a few angströms to a few nanometers. They also exhibit a very large
diversity of pore shape which can be, depending on the structure, cylindrical or
spherical for example, and can also be inter-connected or not. This high versatility
of porosity in the zeolite family has been the object of a great number of studies fo-
cusing on adsorption, ion-exchange and molecular sieves properties for industrial
applications[4, 5, 6, 7].

FIGURE 1.2: Secondary Building Units of zeolites. Vertices designate
Si/Al atoms and edges correspond to oxygen atoms. Taken from [8]

Elements present in these materials are mostly aluminium Al, silicon Si and oxygen
O with tetrahedral structures of [AlO4]5− and [SiO4]4−. Each tetrahedron is bonded
such that all oxygen atoms of a tetrahedron are shared with the corresponding adja-
cent tetrahedra. A pure silica structure SiO2 leads to an overall neutral framework
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FIGURE 1.3: Representation of the LTA and FAU framework. Vertices
represents Si/Al atoms and edges correspond to the shared oxygen

atoms. Taken from [9].

(like the α-quartz for example). However, swapping silicon with aluminium in the
structure induces an excess of negative charges that is balanced by the presence of
alkali or alkaline earth cations, such as sodium Na+, potassium K+ or calcium Ca2+.
These cations are located within the empty space of the structure, that is the pores
or the channels.

To describe the framework of zeolite materials, a simple representation has been
adopted: Si/Al tetrahedras of the structure are called the primary building units
(PBU). Their connections give birth to simple geometrical shapes such as rings or
cages that are called secondary building units (SBU). Some SBUs existing in the zeo-
lite family are depicted in fig. 1.2 where we can observe rings of different sizes based
on the number of tetrahedra composing them (the most common have four, five, six
or eight). These rings as well as the pore sizes and shapes can also differ depending
on the Si/Al ratio which causes an even more important diversity of frameworks.
In theory, there is an infinite number of different topologies for zeolites. In order
to classify them, a "three-letter name code" has been adopted to designate all the
different existing frameworks. The codes are approved by the International Zeolite
Association (IZA) which established as of now 244 different ordered frameworks. As
examples, the structures of linde type A (LTA) and faujasite (FAU) are represented
on fig. 1.3.

The general formula of an aluminosilicate is as follow: Ma/n(AlO2)a(SiO2)b · wH2O
where M is any alkali or alkaline earth atom and n is the charge of the atom M.
This formula allows to clearly see the ratio b

a indicating the fractions of Si and Al
in the zeolite. This ratio is of great importance in this family of materials and is at
the origin of many differences observed in their properties. Usual values of b

a ratio
are from 1 to 5[10, 11] but much larger values up to 100, although much rarer, can
exist[12]. Some topologies of zeolites can also be synthesized in pure-silica form,
with a b

a ratio being infinite.

Natural and synthetic zeolites

Natural zeolites can be found as crystals in cavities of basaltic rocks or as volcanic
tuffs. They are formed in natural condition of pressure and temperature in various
environments such as lake sediments, alkaline deserts or ash ponds. The general
formula for natural zeolites is as follow:

(Li, Na, K)p(Mg, Ca, Sr, Ba)q[Alp+2qSin−(p+2q)O2n] · wH2O
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The most favored applications for natural zeolites are environmental remediation,
waste treatment and agriculture. As examples, clinoptilolite was used around 1960
for the immobilization of radioactive isotopes of cesium and is still used nowadays
[13]. Cadmium, lead and nickel ions were successfully trapped using the natural
zeolites faujasite and Phillipsite[14]. Hence natural zeolites still have applications
often, however they are not suited for industrial applications. These materials are
contaminated by other minerals such as quartz or other zeolites, and thus cannot be
used in industry where the purity and uniformity is essential.

Compared to the natural zeolites, properties of synthetic ones are more uniform and
controlled as they are designed by the synthesis. Raw materials used for synthesis
are minerals or chemicals rich in silicon and/or aluminium. The Si/Al molar ra-
tio defines the ratio of the final zeolite which can be anywhere between 0.5 to the
infinity (pure-silica zeolite). Modulating the ratio can change the properties of the
resulting material, which is a strong advantage for industrial applications. Several
methods are possible for synthesizing zeolites and usually require high pressure and
temperature. Examples include seed-assisted methods[15, 16] or template-based
methods[17, 18].

Among all the topologies of zeolites approved by the IZA, there are both natural
and synthetic ones. For example, Linde Type A (LTA) topology is not occuring nat-
urally and can be obtained only synthetically. In contrary, Heulandite (HEU) is an
abundant topology occurring naturally and being very difficult to synthesize. But
there are also topologies that can occur naturally and can be synthesized such as the
Chabazite (CHA) topology.

Properties of zeolites

The main interests of zeolites are for adsorption, ion exchange and molecular sieves
applications, which means that their porosity is their main characteristic. Thus,
properties such as the density are of great importance for this class of materials.
Extensive studies are performed also on the morphology aiming to measure and
control their pore sizes and shapes, their surface area and accessible volume[19, 20].
These properties of zeolites are strongly linked to the target applications. As men-
tioned earlier, the versatility of zeolite frameworks allow for a large variation of
porosity throughout the landscape of possible zeolites, meaning that zeolites repre-
sent a candidate family for achieving materials with highly fine-tuned adsorption or
ion exchange properties. On par with their porosity, the surface features of zeolites
are important when it comes to applications as molecular sieves. Indeed the pores
at the external surface are the "entry doors" for molecules to penetrate in the internal
void space of the structure. The pore size and shape in the external surface is the
key factor for restricting the access to the molecules of choice. Such "entries" to the
internal void space can be tuned by organic functionalization.

Zeolites are in general quite robust and stable materials, due to their inorganic na-
ture and strong Si–O and Al–O bonds. Indeed, although the increase in tempera-
ture causes a loss of adsorbed water, the structure usually remains stable at high
temperature[21, 22]. This stability is influenced by several factors among which the
crystallinity and the Si/Al ratio take a big place. It is known that a higher Si/Al
ratio usually improves the thermal stability with high-silica zeolites being stable up
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to almost 1000°C[23]. It is also interesting to note that pure-silica zeolites are chem-
ically stable in all mineral acids except hydrofluoric acid, which makes them suit-
able candidates for corrosive-resistant coatings, replacing then the commonly used
chromium-based compounds known to be highly toxic and carcinogenic[24].

Thermal and mechanical properties of zeolite will not be further discussed here as a
dedicated part for them can be found later in chapter 2

1.1.2 Metal Organic Frameworks

Zeolites have been extensively studied since their discoveries as they were the most
accessible and primary source of cristalline porous materials. Yet the accessible pore
size ranges accessible remained limited to a certain extent for crystalline materials
and pore diameters of 1 or 2 nm were not observed before the late 1980s and early
1990s[25, 26]. In 1995 however, Yaghi and coworkers discovered a brand new ma-
terial, depicted in fig. 1.4 showing high porosity and surface area[27]. Such type
of material was already observed by Hoskins and Robson in the 1990s[28]. They
used at the time the term "infinite polymeric frameworks" to designate their discov-
ery. Yaghi and his group continued to work on this type of materials and published a
new MOF called MOF-5[29] which sparked the interest of the porous materials’ com-
munity. As the structure was composed of inorganic units linked by organic linkers,
they proposed for the first time the term "Metal Organic Frameworks" (MOFs) to
refer to these type of materials. The keen interest in this new family showing a com-
promise between a good stability along with a way more important porosity than
zeolites caused an exponential growth of the field with extensive study on their syn-
thesis, stability and properties. As of today, thousands of works are published every
year on this class of materials.

FIGURE 1.4: Representation of the MOF-5 framework. The yellow
sphere represents the porous volume of the structure, blue tetrahe-
dra designate the zinc tetrahedra, red spheres represents the oxygen

atoms and black spheres corresponds to the carbon atoms.

Generalities

MOFs are crystalline materials combining inorganic building units linked together
by organic linkers. Both inorganic units and organic linkers are commonly called
Secondary Building Units (SBUs). Due to their nature, they often show a high poros-
ity and surface area which makes them suitable candidates for applications in ad-
sorption or catalysis, similar to the applications of zeolites. However, compared to
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the latter, MOFs are less stable due to their bonds between organic linkers and in-
organic parts being weaker. This result in a poorer thermal stability which can still
be up to 500°C[30, 31] whereas zeolites can withstand temperatures up to 1000°C.
The mechanical stability also suffer from the weaker bonds and from the very high
porosity, which can in some cases pose a great difficulty for industrial applications,
as MOFs are much softer than zeolites. However, MOFs are just starting to be em-
ployed in the industrial field and countless studies are done on this family of ma-
terial, despite the stability issue. This is due to their extremely high flexibility and
versatility which allows to build a vast variety of MOFs with different properties
even within the same structure. It is also important to note that the MOFs field is
pretty recent (around 30 years) so the room for innovation is still large; solutions to
the challenges proposed by this class of materials are yet to be found.

In the following parts I will briefly introduce the synthesis of MOFs as well as their
properties and applications.

Synthesis and functionalization

The most conventional way of synthesizing MOFs is the solvothermal route via a
conventional electric heating. Inorganic sources and organic linkers are mixed to-
gether and heated to provoke the self-assembly of the MOF. The resulting material
is then treated to empty the pores from all the residual solvent or impurities. This
process is usually done by applying a vacuum or thermal treatment, and is crucial to
"activate" the structure for its use in adsorption-related applications. The solvother-
mal synthesis is the preferred way in laboratory as it is easy to realize and is quite
powerful to accelerate the discovery of new MOFs and to optimize synthesis proto-
cols. However, since the series of MOF introduced by Yaghi and coworkers during
the 90s, new ways of synthesizing MOFs appeared and constant development is
made in this field. One example is the microwave-assisted synthesis. It consists
in putting the mixture of raw materials in a sealed Teflon vessel and to heating it
with a microwave unit. This method results in a fast heating of the liquid phase
ensuring then a fast crystallization, and is adapted for industrial use as commercial
microwave equipment are adapted to this method. This technique allowed to syn-
thesize the well known HKUST-1 in crystals of 10 to 20µm within 1 hour and with a
high yield of around 90%[32]. The process to synthesize MOF-5 was also optimized
with this method resulting in a shorter synthesis time although the crystal quality
decreased[33].

Another synthesis route is mechanosynthesis, which consists in grinding the raw
materials at room-temperature in a solvent-free environment. The first mechanosyn-
thesis was realised in 2006[34] and was quickly followed later by the synthesis of
HKUST-1 and ZIFs[35, 36]. Advantages of this technique are the short reaction time
(less than an hour) and the absence of solvent, which simplifies the activation pro-
cess. Nevertheless, a small quantity of solvent can be added during the grinding so
as to conduct a liquid-assisted grinding which further accelerates the reaction, the
solvent allowing for more mobility of the reactants. Many other possibilities exist
such as the electrochemical synthesis or the dry-gel conversion synthesis, which has
been extensively applied to zeolites and zeolite membranes.

The key parameter in designing and synthesizing new MOFs is obviously the choice
of organic linkers and SBUs. MOFs can be constructed from a very large variety of
organic linkers and SBUs (as demonstrated in fig. 1.5) allowing then an extreme
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FIGURE 1.5: Representation of several possible (A) inorganic units
and (B) organic linkers. Taken from [37].
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FIGURE 1.6: Representation of the different possible coordinations
of a carboxylate linker with the metal node: (left) bidentate, (central

schemes) bridging and (right) monodentate. Taken from [39].

diversity of possible frameworks. This is considered to be one of the most im-
portant advantage when using MOFs: their structures are easily customizable and
their properties tunable. Usual organic linkers are polycarboxylates or polynitrogens
which can both have different coordination configuration around the inorganic clus-
ters, constituting the first possibility to create diversity. Those different coordination
configurations are depicted in fig. 1.6. The second option is to use linkers of different
sizes which creates so-called "iso-reticular" MOFs that share the same net but have
different size of porosity. This was achieved for example with the well-known IR-
MOFs family[38], which uses the same bidentate bridging carboxylate linkers. This
family of MOFs is represented in fig. 1.7. The length of the linker was varied from
the smallest one being IRMOF-1 (or MOF-5) with a pore size of around 4 Å to the
longest one being IRMOF-16 which shows a pore size of around 29 Å. However, the
length of linkers that can be used has a limit, as several problems arise when using
too long chains. One such problem is interpenetration - which can be solved to a cer-
tain extent with the proper experimental conditions[38]. Another one is the stability
of the resulting structure.

Thanks to the high versatility of MOFs, we can direct the synthesis of MOFs to-
wards a particular application by designing a specific MOFs with suitable proper-
ties. This customization is further improved by the possibility to functionalize the
organic linkers, creating then specific properties for the pores. The aim of that tool
is to further specialize MOFs on a specific targeted property or feature and to op-
timize them for industrial applications. For example, catalysis can be improved by
introducing specific groups to create catalytic sites[40, 41]. This is also true for ad-
sorption for which the introduction of specific functional groups can improve the
affinity of a MOFs towards certain molecules[42, 43]. Functionalization can happen
before the synthesis by constructing MOFs with already functionalized linkers, or
after the synthesis by chemical reaction on the linker. Functionalizing a linker can
have several goals, one of them being the stabilization of the structure. The inser-
tion of hydrophobic groups on linkers can protect the metal-linker bond from water
and thus giving water stability to the MOF. Commonly used hydrophobic groups
are fluoro, alkyl or aromatic groups which can all be incorporated before or after
the synthesis. Examples of successful improvement of water stability after insertion
of hydrohobic moieties include the MOF-5 framework which can be stabilized by
adding trifluoromethoxy and methyl groups to the linkers[44, 45] and the structures
based on paddlewheel units[46, 47, 48]. Moreover, addition of hydrophobic groups
can still be useful in the case of an already water-compatible MOF, as it can further
improve its hydrophobicity leading then to a better selectivity of adsorption in hu-
mid environments where water often competes with the targeted molecules.

Other methods aiming for a high optimization of the properties of MOFs have arisen
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FIGURE 1.7: Image of the IRMOF family with the number n on the
side of each image corresponding to IRMOF-n. Taken from [38].
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over the course of the years, among which multivariate MOFs (MTV-MOFs) offer in-
teresting perspectives for industrial applications. The principle of MTV-MOFs is to
add several different functional groups to a MOFs giving then different properties to
a same structure. It is even possible to imagine a material where the different steps
of a chemical reaction could occur in the different cavities of the structure each con-
taining different catalytic site. Some structures of this kind have been successfully
synthesized as MOF-5 containing several functionalities[49]. They reported ordered
structures of MOF-5 with a disordered repartition of functionalities throughout the
structure. They also found that the properties of the final materials are not a simple
combination of the properties of the raw materials due to the complex arrangement
of the moieties. In their case, they observed a MOF-5 with an unusually high selec-
tivity of carbon dioxide up to 4 times better than its original counterpart.

Properties and applications

MOFs have created a great interest due to their high potential of flexibility and high
porosity. Going from a few Angströms to several nanometers, they filled the void be-
tween zeolites and mesoporous materials while also covering the mesoporous range.
This large porosity range is of great interest for industrial purposes, especially for
catalysis and adsorption-related applications. Their potential in this field is far su-
perior to zeolites, which are limited in pore sizes. Extensive works were realized
in order to develop stable MOFs with higher and higher porosity. Famous exam-
ples of this regroup the IRMOF family[38] and the Cu paddlewheel-based MOFs
like the HKUST-1[50, 51, 52, 53]. MOFs are built from metal nodes linked by or-
ganic ligands which means that they are composed mainly of strong bonds (C–C,
C–H, M–O, etc.) and weak coordination bonds between the metal nodes and the
ligands. This results in an overall good thermal stability[30, 31, 32, 54]. However
their chemical stability still represent a great challenge as many of these materials
are sensitive to treatment with polar solvents. This issue is commonly addressed
by functionalization methods to raise the resistance of the structure to specific en-
vironment such as water-containing or acidic/basic environments[31, 54, 55]. The
mechanical stability of MOFs constitutes also an important field of research. Indeed
they tend to show mechanical properties of the order in between molecules and in-
organic solids as they are composed of both. This results usually in soft materials
with low to medium bulk moduli[56]. It is however interesting to note that MOFs
can exhibit singular mechanical responses due to their particular nature combining
both inorganic and organic units[57].

The number of potential applications of MOFs is relatively large, but are mostly fo-
cused on adsorption-related fields as their flexibility and potential are enormous in
this field. The first application one can imagine is then the adsorption, in particular
MOFs have been investigated for the storage of hydrogen and methane as the stor-
age of fuel gases is an important barrier to their development. The first study show-
ing interest in the storage of hydrogen by MOFs confirmed the high potential of this
family by investigating the adsorption properties of MOF-5[58]. This was followed
later by a study reporting the hydrogen storage potential for hundreds of MOFs[59].
As only increasing the accessible surface area is not enough to increase the uptake of
hydrogen, various methods were considered to enhance the adsorption of hydrogen
including the use of open metal sites[31, 59, 60] or metal impregnation[61, 62, 63].
Adsorption of methane was also studied as it is another potential source of fuel. In
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particular, MOF-177, MOF-200 and MOF-210 were found to show impressive up-
takes of methane of around 350 to 470 mg/g, much higher than any other MOF[64].
A tank filled with one of this MOF can store more methane than an empty tank.
This technology has since then been developed and commercialized by BASF. This
is not the first time a MOF material was developed for commercial use as there are
other reports of MOFs in commercial products (for example, the ION-X designed to
deliver arsine, phosphine and boron trifluoride[65]).

FIGURE 1.8: Adsorption isotherms of carbon dioxide and methane
on (Left) MIL-100 and (Right) various samples of MIL-101 at 303 K.

Taken from [66].

Other than for adsorption-based storage, MOFs have been investigated for their po-
tential in separation and purification of gases. Difficulties in this field arise from
the MOFs having to be stable around the components of natural gas such as water
or sulfur-based compounds, while being able to adsorb a specific gas with a high
selectivity. Overcoming this difficulty requires a precise engineering of the MOF
structure and fine-tuned properties of adsorption. The applications are however nu-
merous, with the capture of carbon dioxide being one of the most studied due to
its potential use in reducing the industrial waste and pollution. The current process
to separate the CO2 uses an amine-based solvent which has a high selectivity for
CO2. However this method is fastidious as the C–N bond formed with the reaction
between the solvent and CO2 is very strong and thus, recovering the solvent after
the capture has a high cost because of the necessity to heat. This is why a method
based on MOFs, which can adsorb and desorb CO2 easily would make this pro-
cess much cheaper. Researchers are extensively studying this area in order to find
the best suited MOF for this particular application. Examples of materials having a
high potential for the adsorption of CO2 are the MIL-100 and MIL-101[66]. Exam-
ples of adsorption isotherms for these two compounds are shown on fig. 1.8. These
two materials present several advantages including an ultrahigh porosity as well
as a good thermal and chemical stability as they are stable around water and until
300°C[67, 68]. Moreover their adsorption properties can still be increased by func-
tionalization especially by adding amine group such as ethylenediamine or N,N’-
dimethylethylenediamine[69, 70, 71, 72].

Due to their high porosity and high density of tunable active sites, MOFs have also
drawn a great interest for catalysis applications. They generally have a continuous
and steady porosity easily accessible which allows for a great diffusion of molecules
inside the pores and towards the active sites. Thus they can be used either for
encapsulation of catalysts, as heterogeneous catalysts or to support homogeneous
catalysis[73, 74]. Several considerations have to be investigated to determine the
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potential of a MOF for catalysis: the performance compared to reference catalysts,
possible leaching issues (dissolution of MOFs in the reaction medium) and the re-
cyclability as a catalyst has to be reusable. Some MOFs have been studied for cat-
alytic applications among which open metal sites structures are probably the most
explored materials. The removal of weakly coordinated ligands such as water in
these structures creates coordination vacancies on the metal which acts then as a
Lewis acid accepting electrons from donor molecules. Examples of this types of cat-
alysts are the well known HKUST-1 and MIL-101. Such MOFs have been already
used in specific applications like the oxidation of alcohols[75], the cyanosilylation of
carbonyl[76, 77] compounds or the Fridel-Craft benzylation[78], etc.

1.2 Computational methods and theories

All of the work done in this PhD thesis was realised using simulation techniques
commonly used in the theoretical field such as the density functional theory or the
molecular dynamic. Depending on the systems and objectives, I used different meth-
ods with different levels of approximation. The knowledge of such techniques is
thus required by the reader to fully understand the conclusions made in this the-
sis. This section will therefore introduce the main principles behind the methods
of interest. I will first start with the density functional theory by describing its main
principles before defining the theory itself, and then describe the molecular dynamic
technique.

1.2.1 Basic principles

Schrödinger’s equation

The starting point to explain the Density Functional Theory (DFT) is to first intro-
duce Schrödinger’s equation[79, 80, 81, 82]. Schrödinger was born in 1887 in Vienna
and became a professor in this same city in 1921 where he conducted researches until
1933 when he resigned from this position. During that time, he developed a famous
equation widely used worldwide, that is depicted in equation eq. (1.1)

ĤΨ = EΨ (1.1)

This equation is a key tool in understanding quantum physics and is the origin of
many computational methods that are used nowadays. It consists in an operator
Ĥ (called the Hamiltonian) applied to a function called the wave function Ψ which
depends on the coordinates of all the particles of the system. Ψ is then a function
of 3n coordinates (being the x, y and z for a cartesian frame) where n is the total
number of particles of the system. The result of this operation is the same function
Ψ multiplied by a term E called the eigenvalue, corresponding to the energy of the
system. Schrödinger’s equation often admits several eigenfunctions each having a
different associated solution E resulting then in an ensemble of discrete levels of
energy, corresponding to the stable bound states of the system.

The Hamiltonian operator

The Hamiltonian operator, shown in equation eq. (1.2), is composed of two parts: T̂
the operator associated to the kinetic energy and V̂ the operator associated with the
potential energy of the system.
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Ĥ = T̂ + V̂

= − }2

2m
∇2 + V(r, t)

(1.2)

with } the Planck constant and ∇2 the Laplacian operator. These two parts devel-
oped for a system containing several atoms will result in 5 terms contributing to the
total energy: first the kinetic energies of the nuclei and the electrons, then the energy
of attraction between nuclei and electrons and finally the two repulsive energies of
nuclei and electrons between themselves. Using these new terms, the Hamiltonian
can be written:
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where i and j represent the electrons, k and l the nuclei, me the mass of an elec-
tron, mk the mass of the nucleus, Z the atomic number, e the charge of the electron.
This form of the Hamiltonian shows that it contains attraction and repulsion terms,
meaning that particles do not move independently: all movements of particles are
"correlated".

This dependency makes the problem more complicated but we can simplify this a
bit. Indeed the masses of the nuclei are far superior to the mass of electrons and
thus their kinetic energy are much lower. To the eye of the electrons, nuclei are
almost completely fixed and this is the approximation we can make. By considering
that motion of electrons is instantaneous compared to the nuclei and considering
fixed positions for nuclei, the kinetic energy of nuclei becomes independent of the
electrons, the correlation is removed from the nuclear-electron attraction term and
the nuclear-nuclear repulsion becomes an analytical calculation. It is then common
to rewrite the Hamiltonian to regroup the simply evaluated nuclear terms on one
side and the more complicated electronic terms on the other. In practice the nuclear-
nuclear repulsion potential is not taken into account when solving the equation and
is only added at the end as it is a constant, leaving then only the electronic parts
of the Hamiltonian to solve. This approximation is called the Born-Oppenheimer
approximation and is valid for the dynamics of most of the systems. It is however
interesting to note that, due to symmetry-related avoided crossing, it can sometimes
fail and give poor results especially in regions where two or more solutions to the
Schrödinger equation are close in energies[83].

The Hartree-Fock theory

The Schrödinger equation constitutes a differential equation that can be solved by
the standard method of finding a right set of coordinates which can separate the
equation in simpler equations. This can be easily achieved for hydrogenoid systems,
however for systems containing more than one electron the equation can’t be solved
analytically due to the electron-electron repulsion term preventing the separation of
variables. In such cases the equation needs to be handled by computational (nu-
merical) methods. Several methods exist for this, but in this part I will only briefly
introduce the Hartree-Fock theory as it is one of the first methods to deal with this
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issue. Later in this chapter I will focus much more on the Density Functional The-
ory (DFT) as most of the calculations in this Ph.D. thesis were realised under this
method.

One of the earliest methods was created by Hartree who suggested to transform
the problem of a single many-electron wave function into a product of several one-
electron wave function[84] (also called orbitals or molecular orbitals):

Ψ(x1, x2, ..., xn) =
1√
n

ψ1(x1)ψ2(x2)...ψn(xn) (1.4)

where x represents the coordinates and spin for all n electrons of the system. This
approximation is one of the simplest one can make, however it comes with some
drawbacks. The main problem arise from the approximation not taking into account
the exchange interaction. This interaction comes from the Pauli exclusion principle
and should be integrated by making the wave function antisymmetric such that:

Ψ(x1, x2, ..., xi, ...xj, ..., xn) = −Ψ(x1, x2, ..., xj, ...xi, ..., xn) (1.5)

which is not respected with the Hartree approximation. This problem was later ad-
dressed and corrected[85] to include the exchange interactions by writing the wave
function as an antisymmetrised product of orbitals giving birth to the well-known
Hartree-Fock approximation of the wave function:

ΨHF =
1√
!N

[ψ1(x1)ψ2(x2)...ψn(xn)− ψ1(x2)ψ2(x1)...ψn(xn) + ...] (1.6)

Later, Slater discovered that the Hartree-Fock wave functions could be written in a
much more pleasant way taking the form of a (n x n) matrix now called the Slater
determinant[86]:

ΨHF =
1√
!n


ψ1(x1) ψ1(x2) . . . ψ1(xn)
ψ2(x1) ψ2(x2) . . . ψ2(xn)

...
...

...
ψn(x1) ψn(x2) . . . ψn(xn)

 (1.7)

with the columns of this matrix representing the single-electron wave functions (or
orbitals) and the rows corresponding to the electron coordinates.

As the Hartree-Fock approximation includes all possible permutations of the par-
ticles, one advantage of this method is that the exchange energy obtained is exact.
However the main problem lies in the correlation part of the energy. Indeed, as the
many-electron wave function cannot be expressed with a single Slater determinant,
the approximation does not fully include the correlation interaction and, as a result,
energies with the HF method tend to be too high. Over the course of the years,
several possibilities were created in order to integrate the missing correlation and
to overcome this issue. All these possibilities are grouped in what we call now the
"post Hartree-Fock methods". In this group we find the Configuration Interaction,
the Möller-Plesset, the Coupled-Cluster or the Multi-Configuration Self-Consistent
Field techniques. I will not develop any further on these methods but it is interesting



1.2. Computational methods and theories 19

to note that for some of them it is in theory possible to solve the Schrödinger equation
exactly and obtain the exact true energy of the system. For example, this is the case
for the Configuration Interaction if one includes a complete basis of single-electron
wave functions which can allow to express the many-electron wave function as a
linear combination of all the possible determinants made of these wave functions.
However, such calculations require obviously a tremendous amount of computing
ressources and cannot be applied to big systems. Nevertheless, post-treatment meth-
ods of the HF theory can still be efficient and obtain the energy with a good accuracy
for big systems and this is why this approximation is still used nowadays.

The basis set

We saw in the previous part one of the first method to deal with the problem of the
electron-electron repulsion term. But let us put aside the issue of many-electrons
systems for the moment and concentrate for the time being on the wave function Ψ.
Indeed while we saw how to approximate the many-electrons wave function Ψ into
a linear combination of single-electron wave functions, we have yet to define how to
express those functions. For small systems such as atoms and diatomic molecules,
we can solve directly the Hartree-Fock equations by mapping the orbitals on a set
of grid points. However larger systems typically need a set of basis functions, used
to express the unknown Molecular Orbitals (MO). The choice of this basis set is a
key parameter of the electronic structure calculations as the wave function should
represent the coordinates of all particles of the system and is associated through the
Hamiltonian operator to the resulting energy of the system. The variational principle
states that:

∫
φĤφdr∫

φ2dr
> E0 (1.8)

or in Dirac notation

〈φ| Ĥ |φ〉 > E0 (1.9)

with φ being any possible wave function. The main outcome of this principle is that
we can evaluate the quality of the wave function simply by obtaining its energy.
We can then choose whatever functions we want to describe the system and we can
use all the mathematical tools we can to find the function with the lowest energy
possible. Several possibilities can be then considered for the creation of the basis set:
polynomial, exponantial, gaussians, plane waves, etc. However there are some rules
for choosing this set of basis functions. First, these functions should be relevant with
respect to the physics of the system. This ensures that adding more basis functions
will make the convergence faster. For atoms and molecules this basically means hav-
ing a function which follows the probability density of finding an electron in given
point of space. The second rule is to use functions that are computer-friendly and
can be computed efficiently. Following the first rule, one may think that exponential
functions centered on the nuclei would be a good choice of base functions, however
multi-centered integrals of exponentials are quite complicated to deal with compu-
tationally. Gaussian functions are less accurate but are easier to compute and the
trade between loss of accuracy and increased speed of calculation is worth enough
to choose Gaussians functions over exponentials.
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The usual form of a Gaussian base function, also called Gaussian Type Orbital (GTO),
is:

χα,i,j,k(x, y, z) = Nxiyjzke−αr2
(1.10)

where x, y and z are cartesian coordinates and the sum of i, j and k determines the
type of orbital (for example i + j + k = 0 would mean that we are dealing with a
spherical s-orbital). There is another type of function often used as basis functions
for a basis set, called the Slater Type Orbitals (STO). In theory these are more ef-
ficient in describing the physics of the atoms than Gaussians and thus one would
require fewer functions to make a complete basis set. However the ease of comput-
ing Gaussians being really attractive makes so that GTOs are more than competitive
for a basis set construction. Another possibility for periodic materials is to use a
plane-wave basis set which have the advantage of ensuring a smooth and mono-
tonic convergence for the wave function. In this case there is no need to choose the
number of base function to use, this is decided by fixing a limit on the energy of the
plane-waves which will be introduced. All plane-waves with a lower energy than
the cut-off are used in the basis set. One then needs to define this cut-off energy by
running convergence test in order to find the best value which gives accurate results
while keeping the cost of the calculation affordable. However, only GTOs were used
in this Ph.D thesis which is why I will focus only on this type of basis set.

A single Gaussian function as described in equation eq. (1.10) is not enough to de-
scribe the physics of the atom. Therefore basis sets are constructed as a sum (or
contraction) of several Gaussian functions which are called "primitive". These con-
tracted GTO basis sets have particular names indicating how they are constructed.
This notation includes all the informations on how many functions are used on
which type of electrons. The first number designates the number of primitives used
to describe the core electrons of the atoms. Following an hyphen we then find the
number of primitives used for each orbitals of the valence electrons. Since only va-
lence electrons contribute to the bonding, it is common to use more basis functions
to describe them. An example of a famous basis set using this notation is the 6-31G
which uses one base function composed of 6 primitives for the core electrons, and
2 basis functions using respectively 2 and 1 primitives to describe the valence elec-
trons. A first improvement can be made to this basis set by doubling all the basis
functions creating a Double Zeta (DZ) basis set. This has the advantage of allowing
more different bondings in different directions. For example it would help in de-
scribing better the HCN molecule where a σ-bond and a π-bond are present as the
basis set would be able to describe different distribution of electrons in the different
directions. Even larger basis set can be created, such as triple Zeta (TZ), Quadruple
Zeta (QZ) and so on. In practice the multiplication of basis functions is only applied
to valence orbitals as it does not improve the description of core electrons.

This basis set can be further improved with the integration of what is called a polar-
ization function and is noted as an asterisk in the name of the basis set. The point of
adding such function is to add more mathematical flexibility for the description of
the wave function. They are generally incorporated in the form of a basis function
corresponding to one quantum number higher angular momentum than the valence
orbitals. For example carbon atoms would require the polarization function to be a
d-GTO.
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The Self-Consistent Field algorithm (SCF)

Now that we have defined the different elements of the Schrödinger equation, es-
pecially how to approximate the wave function under the HF theory and how to
construct it with a basis set, we can finally focus on how to solve this equation and
obtain the best result for the energy in practice. For that we use an algorithm called
the Self-Consistent Field (SCF) algorithm. This algorithm is used in order to con-
verge progressively to the best energy possible starting with a relatively good guess
on the wave function.

First the user has to choose the basis set to use in the calculation and the geometry of
the system (input coordinates, atomic species, etc.). From this point, the necessary
integrals are calculated and an initial guess for the MO coefficients is formed. These
MO coefficients are used to create an initial guess for the density matrix which is an
alternate way of expressing the quantum state of a system. Using this density matrix
as well as the integrals, the Fock matrix is constructed and then diagonalized. The
diagonalization of the Fock matrix results in new MO coefficients that can be used
to construct a new density matrix. This new density matrix is then used to construct
a new Fock matrix and which in turn is diagonalized to get a new density matrix
and so on until the obtained density matrix is similar enough to the previous one
which stops the algorithm. Once this condition is satisfied we obtain the energy of
the system.

Doing only one SCF loop is called a single-point calculation and is used to obtain
an accurate value for the energy for a specific atomic configuration (position of the
nuclei). However this requires to optimize the geometry beforehand which adds a
second loop to the SCF algorithm. After doing an SCF loop, the condition of geome-
try optimization are checked (either residual forces on atoms, stress on unit cell, etc.)
and if they are not satisfied then the geometry is updated and a new SCF starts again.
Once optimization conditions are satisfied then the algorithm stops and we obtain
the equilibrium structure. This is what is called optimizing a structure: finding its
configuration of minimum energy (locally)

There are some numerical issues hidden behind this process, one being the fact that
we do not know if the energy will actually converge. Small basis sets and structures
close to equilibrium will converge quite fast, but it can be harder for more compli-
cated structures or basis sets. It is even worst in the case of metals in which several
states with similar energies are possible. Some tricks can be used to help conver-
gence in these cases such as "damping" technique which consists of mixing a certain
percentage of the n− 1 calculated density matrix to the n calculated one. This helps
preventing the algorithm from oscillating and stabilizes it. Another common tool is
the "level shifter" which adds a shift in the energies of the occupied orbitals reducing
their coupling with the unoccupied ones.

Periodic systems and periodic boundary conditions

Currently we know how to express the different elements of the Schrödinger equa-
tion and how to find the best possible wave function through the use of SCF method.
However this requires to fully describe the system in order to generate a correct
initial guess for the density matrix. Even though some systems can be quite large
(especially in biology where molecules such as proteins can contains thousands of
atoms), this can be achieved for most molecular systems as they are finite systems.
However in the case of solid materials, and crystals in particular, the size of system
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to represent, which can be considered infinite, makes it impossible to describe all of
the particles. In that case, we need a method to describe solid state materials en-
tirely while limiting the amount of particles to compute. This is achieved by the use
of periodic boundary conditions. The idea is to create a box containing some repre-
sentative pattern of particles of the system and to repeat the same pattern around the
box created. This box is referred to as the simulation box or input cell and is taken
to be most of the time the crystallographic or the primitive unit cell of the structure
for solid state materials. It can be noted however that this method can be applied
also to glasses, liquids and gases. A representation of the mechanism of the periodic
boundary condition can be found on fig. 1.9.

FIGURE 1.9: Illustration of the periodic boundary condition with an
atom moving out of the box. The red square represents the input cell

and blue and orange spheres represent atoms inside this cell.

As depicted on this figure, the input cell is duplicated in all directions and all the
movements of the atoms are equivalently replicated in the cells surrounding the
input cell. During an optimization process, when an atom (like the blue one) is
mowing out of the box, there will be an atom from an outer box moving inside the
box on the opposite side. Thus, following this scheme, every atom moving outside
of the input cell will reappear on the opposite side. This method allows to mimic
an infinite material without having to compute it entirely. All solid state material
computation uses this technique and it has been used as well in all the calculations
performed in this work.

1.2.2 Density functional theory

The core idea behind the Density Functional Theory (DFT) is to abandon the idea
of working with and approximating a wave function admitting 3N parameters and
to work instead with a physical property that can be observed and measured and
use it in the determination of the energy. Since the Hamiltonian is built using the
positions and the atomic numbers of nuclei as well as the number of electrons, we
must find a property or an observable which contains these informations. In that
sense, the electron density ρ seems to check all the boxes. Indeed, the total number



1.2. Computational methods and theories 23

of electrons can be obtained by integrating the electron density over all space, the
positions of nuclei are deduced from the maxima in the electron density and even
atomic numbers can be retrieved from it. This suggests that the electron density
could be used to simplify the problem and this is the main idea in DFT.

Thomas-Fermi model

The very origin of the DFT goes back to the year 1927 when Thomas and Fermi
[87, 88] were both working independently on the electronic structure. The major
problem at the time (which still applies today) was the calculation of the electro-
static potential which was impossible for atoms with 2 or more electrons. In order to
calculate the energy of more complex systems, these two researchers had the idea to
completely bypass the multi-electron wave function and to work with the electron
density instead. They decided to express the different terms of the hamiltonian us-
ing the electron density. Considering the system to be classical, the potential terms
can be easily rewritten:

V = ∑
i

∫ Zke2

rik
ρ(ri) dri +

1
2

∫ ∫ ρ(ri)ρ(rj)

rij
dridrj (1.11)

with the first term being the attraction between the nucleus and the electron and
the second corresponding to the electron-electron repulsion. i, j correspond to the
electrons and k represents the nucleus. While these two terms are straightforward,
the kinetic energy is not as easy to determine. For that they considered a theoretical
environment called the uniform electron gas or "jellium" [89]. This approximation
considers the electron density to be uniformly distributed over all the space, disre-
garding then the effect of the lattice in the definition of the electron density. This
theoretical substance can be used in inorganic chemistry for metals as the result-
ing smooth uniform density is suitable for representing qualitatively the behavior
of metals. In this case, the use of jellium along with Fermi-Dirac statistics allowed
Thomas and Fermi to define the kinetic energy as a function of the electron density:

T =
3}2

40me

(
3
π

) 2
3 ∫

ρ
5
3 (ri) dri (1.12)

This constitutes the first attempt in making a DFT method, however the results they
obtained from their model were not satisfying[90]. Results were not accurate enough
and even if a few corrections were added to try to improve the model, the idea of
using the electron density has been dismissed until 1964 when Hohenberg and Kohn
proved the key theorems for defining the DFT.

Hohenberg and Kohn theorems

The Thomas-Fermi model has made the first step towards a DFT method, yet it failed
to provide the wanted results. Some necessary considerations were missing and
these were added by Hohenberg and Kohn who defined the two important theorems
building the base of the DFT [91].

The first theorem is the existence theorem which states that the external potential Vext
(designating the interaction between nuclei and electrons) uniquely determines the
electron density ρr and thus Vext is a functional of the electron density. There can’t be
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two external potentials yielding the same ground state electron density. The proof of
this theorem is surprisingly simple which makes us wonder how it took so long from
the Thomas-Fermi model to find this theorem. Let us assume two different external
potentials Vext and V

′
ext which lead to the same electron density ρ(r) associated to

the non-degenerated ground state. We can define two different hamiltonians Ĥ and
Ĥ
′

associated to two different wave functions Ψ and Ψ
′

which differ only in their
external potential Ĥ = T + Vee + Vext and Ĥ

′
= T + Vee + V

′
ext with Vee being the

electron-electron repulsion term. Following the variational principle, we can write:

E0 < 〈Ψ′ | Ĥ |Ψ′〉
< 〈Ψ′ | Ĥ′ |Ψ′〉+ 〈Ψ′ | Ĥ − Ĥ

′ |Ψ′〉
< E

′
0 + 〈Ψ

′ |Vext −V
′
ext |Ψ

′〉

(1.13)

A similar result is obtained when switching the primed and unprimed characters as
follow:

E
′
0 < E0 + 〈Ψ|V

′
ext −Vext |Ψ〉 (1.14)

Adding these two previous equations we obtain the following result:

E0 + E
′
0 < E

′
0 + E0 (1.15)

which is not possible. This proves then that there can’t be two different Vext defining
the same ground state electron density, so the external potential uniquely defines the
electron density.

The second essential theorem of Hohenberg and Kohn states that, just like MOs, the
density obeys the variational principle being:

〈Ψ| Ĥ |Ψ〉 = E > E0 (1.16)

This leads to the same conclusion as for the Hartree-Fock theory, meaning that we
can optimize the density by choosing different densities and evaluating their quality
by calculating their energy. However this does not solve our problem. Indeed this is
equivalent to the Hartree-Fock method where the Schrödinger’s equation is solved
by approximating the wave function. The point of a DFT method is to avoid the
resolution of the Schrödinger’s equation. In order to avoid this problem, we should
avoid defining the wave function or the hamiltonian with respect to the density and
instead work on determining the energy directly from the electron density without
the help of the wave function. This issue was solved by Kohn and Sham in 1965[92]
when they expressed the hamiltonian as a sum of non-interacting one-electron oper-
ators. They wrote then the energy as:

E[ρ(r)] = T[ρ(r)] +
∫

Vextρ(r) dr +
e2

2

∫ ∫ ρ(ri)ρ(rj)

rij
dridrj + Exc[ρ(r)] (1.17)
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with the first term being the kinetic energy of the non-interacting electrons, the sec-
ond term is the interaction between the nuclei and the electrons and the third is
the electron-electron repulsion. Now in this expression, no terms for the correla-
tion or the exchange part of the energy are appearing. In fact they are grouped and
"dumped" in a term called the exchange and correlation energy Exc[ρ(r)]. The par-
ticularity of this equation is that the first three terms can be calculated exactly for all
systems. The only unknown part of this expression is the exchange and correlation
term for which we don’t know the form and have to approximate. The key part in
DFT in then to express the last term of the equation with a suitable function and this
still remains a very active domain of research.

In practice the Kohn-Sham energy is calculated self-consistently like in HF theory.
The algorithm is in fact quite similar: the user must first choose the basis set and
the geometry of the system. Then the initial guess for the density matrix is formed
and the necessary integrals are calculated. However instead of constructing and
diagonilizing the Fock matrix, the DFT aims to construct and solve the Kohn-Sham
equations:

[
− }2

2m
∇2 + Ve f f

]
ψi(r) = εiψi(r) (1.18)

where

Ve f f = Vext +
∫

ρ(ri)

rij
drij +

∂Exc[ρ(r)]
∂ρ(r)

(1.19)

ψi(r) are the single electron wavefunctions constructed from the linear combination
of atomic orbitals. From the results, the density matrix is evaluated and compared
to the previous one. If it’s close enough from the n− 1 density then the SCF cycle
stops. If not, then the Kohn-Sham equations are built from the latest density matrix
and solved again to obtain a new density as long as the conditions of convergence
are not satisfied.

Exchange and correlation treatment

It exists several ways of treating the exchange and correlation term of the Kohn-
Sham equation. Each techniques have their own accuracy and downsides. I will
briefly present the most famous methods as well as the ones used in this Ph.D thesis.

The Local Density Approximation (LDA): This method considers that the variations of
density are slow and treats then the density as a uniform electron gas. The Exc[ρ(r)]
term is then obtained as an approximate value of the exchange and correlation of an
electron in an uniform electron gas system of same density ρ(r). This approximation
gives quite good results for systems with slowly varying charge densities and its ac-
curacy is good in most cases. Due to its tendency to over-bind molecules and solids,
it usually results in shorter bond lengths than experiments as well as an overestima-
tion of the total energy. LDA does not admit several applications (or functionals),
this approximation only has one flavor.

The Generalized Gradient Approximation (GGA): This method was introduced as an
improvement of the LDA. It uses the same considerations but takes additionally the
gradient of the electron density, allowing to account for the rapid changes in density
that the LDA fails to represent. In contrary with the LDA, GGA exists in several
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flavors each having their own advantages and drawbacks. Some are obtained semi-
empirically, some are derived from experimental data and others are obtained from
first-principles. Examples of famous and widely used functionals are PW91[93] or
PBE[94].

The hybrid functionals: The principle of this method is to make use of the exact ex-
change obtained in the HF theory. A part of exact exchange is introduced in the
calculation which generally improves a lot the quality of the result. This improve-
ment is due to the exchange energy introduced being exact and to the reduction of
self-interaction error (SIE) induced by this introduction. Self-interaction error arises
in DFT due to the residual interactions of electrons with themselves. Such error
does not happen in the HF theory, hence the reduction of SIE when replacing DFT
exchange energy with HF exact exchange. Famous examples of hybrid functionals
are B3LYP and PBE0[95] which is derived from the PBE GGA functional.

Dispersion correction

Despite the great results of DFT, there are still some behaviors that the current func-
tionals fail to represent and for which they give generally poor result. Among those
cases we find the lack of description of weak interactions. These interactions are due
to dispersion forces arising from long-ranged electron correlation effect in the form
of C6

R6 (London forces). Because of their attractive nature, they are often crucial in
calculations as they might be at the origin of several phenomena such as the crystal
packing of molecular solids or the adsorption of molecules on surfaces or porous
materials. These interactions has since been corrected only in an empirical way by
adding a correction term to the expression of the DFT energy. This term is obtained
with an efficient and cost-effective approach using a two-body correction including
the long-range dispersion through an expression of the form:

EDisp = −∑
AB

∑
n=6,8,...

(
CAB

n
Rn

AB

)
(1.20)

Different attempts were made for the implementation of this technique but the most
used are the D2 or D3 methods proposed by Grimme[96, 97]. D3 is however usually
preferred over D2 as it is generally more accurate. Indeed, in D3 the Cn coefficients
depend on the coordination number of atoms while in D2 they depend only on the
pair of elements involved.

1.2.3 Molecular dynamic

Basic principles of classical molecular dynamics

The limitations of DFT calculations arise due to their static nature. Indeed DFT cal-
culations are done at zero Kelvin, making it impossible to obtain properties related to
thermal motions or entropic effects. Some approximations and methods exist to get
around this problem (and will be discussed later in chapter 2) however the method
of choice to investigate motion is the molecular dynamic (MD). Molecular dynamics
consist in predicting the movement of particles over time by calculating their in-
teraction over a fixed period of time. This is achieved by integrating the Newton’s
equation of motion for all the particles of the system simultaneously:
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Fi = miai = mi
d2xi(t)

dt
(1.21)

with i = 1...N particles. If one has access to Fi, then one can integrate the trajectory
x(t) of the whole system as a function of time. The forces can be calculated as the
gradient of the potential energy of the system:

Fi = −
∂U(rn)

∂ri
(1.22)

which leaves us with the problem of the determination of the potential. Several
contributions have to be taken into account. First, the intramolecular interactions
which correspond to the degrees of freedom of the molecule. The different types of
vibrations have to be accounted for, i. e. the stretching (vibration of the length of
the bond), bending (vibration of the angle between 3 atoms) and torsion energies
(vibration of the dihedral angle of a bond).

As for interatomic interactions, they can be divided in three parts. The first part is
linked to the two-body Coulomb interaction between different particles with point
charges. The expression of the Coulomb energy is as follow:

Ucoulomb = ∑
i

∑
j>i

qiqj

4πε0rij
(1.23)

This interaction weakens as the distance between particles increases at the rate of
1
rij

. The second and third part correspond to the Van der Waals interactions and
the electronic repulsion at short distances. These two parts are generally grouped
together in the same expression, usually a Lennard-Jones or a Buckingham potential:

ULJ = 4ε

[(σ

r

)12
−
(σ

r

)6
]

(1.24)

UBuck = αe−βr − γr−6 (1.25)

In any cases of classical MD, all of these interactions are then described empirically
which, as a result, causes the properties to be computed numerically but allows the
classical MD to be quite efficient for very large systems or very long time scales.
This technique is thus an ideal choice for biological simulations where molecules
can have tremendous sizes.

MD calculations work with an algorithm that is used to update the positions by
integrating the equation of motions. There are several possibilities, each one having
downsides and advantages. The most simple method is called the Euler method and
consist in replacing the differential in the differential equations by finite differences.
This method is easy to understand but leads to large errors for time step that are not
small enough. In general, this algorithm is not recommended as it does not respect
the necessary conditions for an integration algorithm such as the time-reversability
or the ergodicity. Other algorithms are usually preferred such as the Verlet algorithm
for example which is almost as simple as the Euler method. Considering a small time
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step ∆t between the current positions rt and their previous and next ones rn−1, rn+1,
the Verlet algorithm is derived from two Taylor expansion:

rt+∆t = rt +
drt

dt
∆t +

1
2

d2rt

dt
∆t +

1
3!

d3rt

dt
∆t + O(∆t4) (1.26)

rt−∆t = rt −
drt

dt
∆t +

1
2

d2rt

dt
∆t− 1

3!
d3rt

dt
∆t + O(∆t4) (1.27)

Adding together these equations and simplifying it we obtain:

rt+∆t = 2rt − rt−∆t +
d2rt

dt
∆t + O(∆t4) (1.28)

This scheme has the advantage of being almost as simple as the Euler method while
satisfying the conditions of an integration algorithm. It only requires the current
positions rt and the previous ones rt−∆t in order to determine the next positions and
its error O(∆t4) is also reasonable. Improvement of this scheme were made to give
birth to the more efficient and reliable leap frog and velocity Verlet algorithm. As I
did not use classical MD, I am only mentioning these techniques for reference and
not developing them. However, other algorithms, especially thermostats, will be
discussed later in this part.

First principles molecular dynamics

During my PhD, I did not use classical MD as it fails to properly representsystems
where bond cleavage or bond formation occur. Instead, I used the so-called Ab-Initio
Molecular Dynamics (AIMD) which, along with a much higher computational cost
than classical MD, allows to treat the thermal motion of the system at the quantum
chemical level. Different flavours of AIMD are available such as Born-Oppenheimer
MD (BO-MD), Car-Parinello method[98] or Ehrenfest, method but I only used BO-
MD in my PhD and thus will only describe this method.

Comparatively to the Born-Oppenheimer approximations mentioned earlier in this
chapter, the BO-MD consists in decoupling the motions of nuclei and electrons by
making use of their tremendous mass difference. Nuclei and electrons are then
treated separately and in this case, are treated at different levels. Nuclei are still
treated classically using the Newton equations of motions while electrons are treated
at the DFT level. BO-AIMD involves thus DFT calculations of the energy to deter-
mine the forces on atoms and update the positions. This results in a much higher
computational cost than classical MD or quantum calculations but allows for more
accurate trajectories and allow for specific behavior such as bond cleavage or bond
formation to be computed.

Ensembles

In molecular dynamics, we need to define which properties will remain constant
and which ones will variates during the simulation. Do we want to let the system
variates freely without any interaction? Do we want to keep the temperature of the
system constant throughout the whole simulation by forcing it to interact with a ther-
mostat? These "rules" under which the system will operate are defined by what we
call the ensembles. Ensembles are commonly used in thermodynamics to simplify
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the system and isolate some parts from its surroundings. It is possible to isolate all
the system, resulting in a so-called microcanonical ensemble, or to completely open
it, resulting then in a grand canonical ensemble. Various thermodynamic ensembles
exist, each isolating different properties but in the case of molecular dynamics only
three ensembles are used:

FIGURE 1.10: Schematic of the (left side) microcanonical ensemble
where no exchange are allowed with the surrounding of the system,
(center) canonical ensemble where the system is allowed to exchange
heat with a thermostat resulting in Tin = Text = constant, (right)
isothermal-isobaric ensemble where the system can exchange heat
and work with its surrounding resulting in Tin = Text = constant

and Pin = Pext = constant.

- NVE Ensemble: This ensemble is the most simple. As depicted in fig. 1.10, it con-
siders a system completely isolated from any interaction. As a result, this ensemble
considers the quantity of particles N, the volume V and the total energy E of the sys-
tem to remain constant. Such ensemble is thus usually called the "NVE ensemble"
but is more formally known as the "microcanonical ensemble". Its use is however
limited in molecular dynamics due to its nature. Indeed the total energy being con-
stant, a small variation of potential energy will cause an opposite variation of the
kinetic energy leading then to a variation of temperature. It is then complicated and
near impossible to keep a constant temperature with this ensemble as it would re-
quire the system to be in a perfect state at the beginning of the simulation. This is
even more true for large systems as they will most likely not start in a perfect state
and thus lower their potential energy to a preferred state, leading to an increase of
kinetic energy and obviously in temperature as well due to the total energy being
constant. It is then common to observe an increase of temperature when using the
NVE ensemble. While limited, this ensemble can still be of use in certain cases, for
example when studying small systems for which we already know how it will be-
have, or for the exploration of constant energy surface of conformational space or
simply for classical MD.

- NVT ensemble: This ensemble is probably one of the most used in MD. In contrary
with the microcanonical ensemble, here the system is allowed to exchange heat with
a thermostat set up by the user. This results in a constant temperature throughout
the whole simulation except in the beginning where the temperature is gradually
converging to the thermostat value. Because the amount of substance N and the
volume is still kept fixed, this ensemble is usually called the "NVT ensemble" or the
"canonical ensemble". The method to achieve a constant temperature is quite easy:
as velocities are related to the temperature, it is simply needed to rescale the veloci-
ties at each step depending on the difference between the system’s temperature and
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the thermostat. If the temperature is too low then velocities are scaled up a bit, and
inversely if the temperature is too high velocities are scaled down. The NVT ensem-
ble is very useful when one wants to realize simulations at constant temperature,
however it presents drawbacks like the NVE ensemble, the most important one be-
ing the regulation of pressure. This problem can arise usually when using solvents
for examples as it does not coincide perfectly with the surface of the system. This
leads to a vacuum between solvent molecules and the system which is filled when
the simulation starts by rearranging the disposition of the solvent and the system.
Due to the volume being constant, this rearrangement is accompanied by a decrease
of the pressure leading then to an overall lower pressure than the one desired for
the simulation. Nevertheless, the canonical ensemble is widely used for MD as it is
a good ensemble for sampling systems at constant temperature and also a necessary
ensemble for computing the helmholtz free energy.

- NPT ensemble: The last ensemble in molecular dynamics is as useful as the previ-
ous canonical ensemble. While keeping the temperature constant through the same
process as the NVT ensemble, the NPT ensemble also keeps the pressure constant
which was the main lacking point of the previous ensemble. To achieve such re-
sult, the volume is not anymore a fixed quantity and can vary to accommodate the
changes in pressure. To take up the example of solvents, if solvent molecules are
drawn to the system due to the presence of void, leading then to a decrease of pres-
sure, the volume of the system will be able to reduce in order to keep the pressure
constant. This ensemble keeping at the same time pressure and temperature con-
stant is conveniently called the "isothermal-isobaric ensemble". Such ensemble is
useful for chemistry as most of the chemical reactions are carried out at a constant
pressure. It is also necessary to use this ensemble when computing the Gibbs free
energy.

Thermostats

During my PhD, I only used the NVT ensemble. In order to sample this ensem-
ble, the use of a thermostat is mandatory. A thermostat is an algorithm that main-
tains the temperature constant by realistically adding or removing energy from the
boundaries of an MD system. There are many options to use as a thermostat but
in my calculations I only used the Canonical Sampling through Velocity Rescaling
(CSVR) algorithm[99].

The simplest way of sampling a canonical ensemble one could imagine would be to
scale the velocities at each time step. Indeed the velocities of the particles are directly

linked to the temperature of the system. We could then imagine a factor λ =
√

T0
T(t)

with T0 being the targeted temperature and T(t) being the current temperature. At
each time step, velocities are scaled by this factor λ until the desired temperature T0
is reached. This is the most simple thermostat but it is usually not used as it does
not take into account the fluctuations in temperature. Another simple and closely
formulated option is the Berendsen thermostat which considers the system to be
connected to a heat bath. Like in the velocity scaling thermostat, the velocities are
scaled at each step with the difference that the rate of change of temperature is pro-
portional to the difference in temperature:

dT(t)
dt

=
1
τ
(T0 − T(t)) (1.29)
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With τ being the coupling parameter between the heat bath and the system and
describing how tightly they are coupled. The choice of value for τ is empirical and
crucial for the simulation. A too high value leads to the thermostat being inactive
and a too small value leads to unrealistic changes of temperature. Typical values for
this parameter are around 0.1 ps. The temperature is changed at each step following:

∆T =
∂t
τ
(T0 − T(t)) (1.30)

The scaling factor λ is then expressed as:

(λ2 − 1)T(t) =
∂t
τ
(T0 − T(t)) (1.31)

This thermostat is smoother than the simple velocity scaling and is usually good for
large systems. However, like the latter, it does not sample the desired canonical en-
semble. The CSVR algorithm proposed by Bussi and coworkers[99] is an extension
of the Berendsen thermostat and samples correctly the canonical ensemble. I redirect
the reader to their article for a full description of this algorithm.
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Chapter 2

Systematic Study of the Thermal
Properties of Zeolites

In this chapter, I will describe the systematic study of thermal properties I realised
during my PhD. In contrary with the mechanical properties which have been exten-
sively studied on zeolites in the past literature, thermal properties are much more
difficult to obtain both experimentally and computationally. As a result, fewer stud-
ies have been realised on these properties despite the need of knowledge for indus-
trial applications. Zeolites are known for showing abnormal thermal behavior as
they often exhibit negative thermal expansion (NTE). Up until now, no systematic
study on the thermal properties of these materials has been realised and the need for
such large scale studies is increasing. Such works are useful for identifying common
behaviors of a group of materials or for creating databases to support further high
throughput works. This was the intent behind the study described in this chapter.
The first section of this chapter will deal with the theoretical background on ther-
mal properties and how to calculate them and introduce the scarce literature on the
subject. The second section will present the parameters used and the results.

The work described in this chapter has been published in the Journal of Physical
Chemistry C[100].

2.1 Thermal and mechanical properties of zeolites

2.1.1 The negative thermal expansion

The concept of thermal expansion

The thermal expansion designates the variation of lattice parameters upon heating
or cooling a crystal. The vast majority of solids exhibit a positive thermal expansion
(PTE) meaning that they expand upon heating. The mechanism and origin of PTE
are well known and can be visualized with the help of fig. 2.1 representing the po-
tential energy with respect to the interatomic distance. Upon heating, the vibrational
energy increases and, due to the slope of the potential energy being lower in the di-
rection of the lengthening of distances, the bond length increases. This anisotropy
of the potential energy is due to the short-distance repulsion being typically very
strong. No examples of bond shortening have been observed so far which is un-
derstandable when looking at fig. 2.1. The stronger the bonds are in a material, the
steeper the potential energy curves will be and the weaker the thermal expansion
will be. The thermal expansion is usually measured with the so-called thermal ex-
pansion coefficients α which can be obtained by the following expressions:
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αV =
∆V

V0∆T
(2.1)

αl =
∆l

l0∆T
(2.2)

A material showing PTE will have a positive value of α and, inversely, a material
contracting upon heating will have a negative α. As shown in eq. (2.1) and eq. (2.2), α
can be expressed in 2 forms: volumetric (αV) or linear (αl). The volumetric coefficient
describes the global expansion of the structure, that is to say the volume, and the
linear parameter describes the expansion in a specific direction, i.e. each of the lattice
basis vectors. These two coefficients are obviously correlated and in the case of an
isotropic solid the relation αV = 3αl can be easily understood (with αl = αa = αb =
αc). However in the case of an anisotropic solid the relation is not straightforward as
the three axes could show different amplitude or even different signs, and could not
be contributing equally to the global volumetric coefficient.

FIGURE 2.1: Typical graph of the potential energy (P.E.) with respect
to the interatomic distance for a bond. Ei corresponds to the energy
level and ri corresponds to the range of distances accessible in each

microstate. Taken from [101]

While the most observed and the most logical behavior is the positive thermal ex-
pansion, there are some materials that show a negative thermal expansion (NTE)
meaning that they retract upon heating. What is even more counter-intuitive is that
this phenomenon occurs in common materials such as metal-oxides like ZrW2O8 or
PbTiO3[102, 103], zeolites[104, 105], AlPOs[106] and MOFs[107]. This means that
there are specific mechanisms guiding the NTE, either related to a specific structural
arrangement or to higher order mechanisms, i.e. supramolecular mechanisms.

Negative thermal expansion and its mechanisms

The negative thermal expansion cannot come from the shortening of bonds as previ-
ously seen on the diagram of potential energy. Instead, this phenomenon was found
to come from a variety of supramolecular mechanisms which cause the shrinkage of
the overall volume of a structure. Multiple origins are then possible: low frequency
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phonons, phase transition, libration or Rigid Unit Modes (RUM). Each one of these
mechanisms can be responsible for NTE behavior depending on the material stud-
ied. However it has been found that a lot of solids exhibiting NTE contains specific
M–O–M linkages such as the Si–O–Si present in zeolites. These linkages are present
in most metal oxides and zeolites and are an important feature to investigate when
studying NTE. In the following of this section I will shortly describe each mech-
anism before mentioning some interesting materials showing NTE and describing
the applications of this behavior.

FIGURE 2.2: Schematic of the two different types of vibrations inside
a crystalline material, which can be activated by an increase in tem-

perature.

Low frequency phonon modes: A phonon mode describes the uniform vibration of a
network with a particular frequency and amplitude. They are also often called "nor-
mal modes" and are quantified modes of vibration. To each mode of a structure
corresponds a frequency and thus an energy required for the mode to be activated,
for example through heating. There are two types of vibration modes competing
in a structure: longitudinal and transverse modes. Both modes are represented in
fig. 2.2. In longitudinal vibrations, atoms move in the same direction as the bond,
causing the bonds to lengthen when these type of modes are activated. In metal ox-
ides, longitudinal modes would increase the length of M–O bonds increasing in turn
the M M distance resulting in a global expansion of the structure. The transverse
modes on the other side can sometimes reduce the M M distance.

A useful formalism has been established by Grüneisen[108, 109]:

γi = −
V0

ωi(V0)

∂ωi(V)

∂V
(2.3)

With γi being the mode Grüneisen parameter of mode i, V0 the equilibrium volume
and ωi the frequency of mode i. The mode Grüneisen parameter links the vibration’s
frequency with the volume, allowing to study the direct effect of the mode in the
thermal expansion. It is also possible to formulate a global Grüneisen parameter
by adding the weighted contribution to the heat capacity of all the mode Grüneisen
parameters as follow:

γ =
∑i γiCV,i

∑i CV,i
(2.4)
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Where CV,i(T) are the partial vibrational contributions to the heat capacity of each
mode i. This global Grüneisen parameter is linked to the thermal expansion α, the
bulk modulus KT, and the constant volume heat capacity CV through the relation:

αV =
γCVKT

V
(2.5)

Looking at a specific mode i, a decrease of frequency when the volume decreases
results in a negative value of γi. Considering eq. (2.4) and eq. (2.3), this means that
the overall contribution of such a mode to the thermal expansion is negative. This
is often depicted as a "guitar string" effect: If one plucks a guitar string (or excites
a transverse mode that leads to NTE) and then stretches it, the note will move to
higher frequency. These types of modes are thus prone to cause NTE. In order to
understand the thermal expansion of complex systems, one has to look at the pop-
ulation of such modes at a given temperature to determine which type of modes
are dominating. Transverse modes are often dominating at low temperatures as
they generally have a much lower excitation energy than longitudinal modes, which
means that they need less energy to be populated. Thus transverse modes usually
dominate the Grüneisen parameter at low temperature and this leads to NTE. The
best everyday example to this would probably be ice (see fig. 2.3). Ice is known
to have a lower density than water, leading ice to float on water. But even ice has
been shown to exhibit NTE at very low temperature. This is probably due to the
transverse modes observed by Tanaka[110] being the only one populated at those
temperatures.

FIGURE 2.3: Thermal expansion of ice. Taken from [103]

Rigid Unit Modes: The idea of RUM comes originally from the work of Megaw[111]
who described the transition between the α and β phases of quartz with a model
considering coupled rotation of relatively rigid corner sharing SiO4 tetrahedra. This
idea was then further extended[112, 113, 114, 115] and a general model to describe
the negative thermal expansion emerged. A typical vibration corresponding to a
RUM is represented in fig. 2.4. The primary building units of a system (i.e. the
octahedra or tetrahedra) are generally stiff and require a high energy to distort due
to their strong M–O bonds. However in a structure of corner sharing polyhedra
like the one depicted in fig. 2.4, the polyhedra are linked together by M–O–M hinges
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FIGURE 2.4: Schematic of a Rigid Unit Mode in a 2-dimensional rep-
resentation.

which are much weaker and can easily rotate. These low energy rotations lead to the
coupled rotation of polyhedra without any distortion inside them and are often (but
not always) the lowest energy vibrations of the structure and have large negative
Grüneisen parameters. Such vibration modes have been termed "Rigid Unit Modes"
or "floppy modes". Due to the coupled rotation of polyhedra they induce a reduction
of second-nearest-neighbor distance, leading then to a linear or global NTE.

The global thermal expansion depending on the relative contribution from all phono-
ns of the structure, not all materials having RUMs or low energy phonon modes
with negative Grüneisen parameters will show NTE. However it is a necessary fea-
ture for NTE behavior as well as a phonon band gap that separates the low energy
modes with negative γi from the high energy modes[116]. Among the low energy
phonon modes, along the RUMs, we can also find quasi RUMs (QRUMs) which are
very close to the RUMs in terms of vibrations. The only difference is that QRUMs
have a low energy instead of a near-zero energy. This causes the QRUMs to ex-
hibit small distortions of the polyhedra along with their rotation. Pryde et al.[117]
demonstrated this in ZrV2O7 where the coupled rotations of tetrahedra induced a
small distortion of the ZrO6 octahedra. QRUMs generally arise when the rigidity
of the polyhedra is decreased. This rigidity is linked to the strength of the anion–
anion repulsion in oxides and thus, reducing their repulsion leads to the softening
of polyhedra and likely to the emergence of QRUMs. This was done on A2M3O12-
type structures by increasing the size of the "A" cation increasing the oxygen-oxygen
distances and thus reducing their repulsion[118, 119]. This specific family of ma-
terials cannot exhibit a rotation of the polyhedra without a distortion at the same
time. It was found that the reduction of rigidity due to the substitution with bigger
cations allows for more pronounced distortions, provoking in turn more rotation of
the polyhedra, which leads to an increase of the NTE behavior.

Phase transition: There are some structures having rigid polyhedra and yet not show-
ing NTE due to the presence of RUMs. In this case, NTE can arise from other fac-
tors such as phase transitions. Many structures undergoing phase transition at a
specific temperature show NTE. Examples of this behavior include the ferroelectric-
paraelectric phase transition of PbTiO3[120], the zeolite ferrierite[121] or the A2(MoO4)3
-type molybdate[122].

As mentioned previously, RUMs are low energy vibrations of the systems which
correspond to coupled rotation of rigid polyhedra. There is generally one key vi-
bration responsible of the phase transition and it provokes the phase change when
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it becomes unstable due to reaching the stability limit. As the system approaches
the temperature of the phase transition, the energy of the mode gets closer to zero
and upon reaching the limit, the system becomes unstable and changes to a stable
form. Depending on the type of phase transition, this can be accompanied by an
increase or decrease of volume. For example, first order displacive phase transitions
usually feature a rapid increase of volume followed sometimes by a contraction of
the structure.

Materials exhibiting negative thermal expansion

Over the course of the years NTE became an important subject of research as many
materials showing NTE were found, gradually increasing the interest for this topic.
This is demonstrated by the fig. 2.5 which shows a steady increase of the number of
publications every year and supported by the fact that special issues of journals have
been dedicated to this topic[123]. Among the NTE materials, ZrW2O8 is one of the
most famous and studied, as it was found to show a constant isotropic contraction
over its entire stability range[124, 125]. It was first synthesized around 1960[126]
by mixing and heating ZrO2 and WO3 followed by quenching in air or water. At
that time it was already found that this material was metastable at temperatures
lower than 1420 K and it was found later that it is thermodynamically stable around
1440 K. However quenched cubic ZrW2O8 is kinetically stable from to 2 K up to
1050 K. This metastability can probably be explained by its framework structure
which is represented in fig. 2.6. It is composed of ZrO6 octahedra linked to WO4
tetrahedra. All of the octahedra share their 6 corners with the tetrahedra but the
tetrahedra are only linked to 3 octahedra. This means that each tetrahedron has a
single-coordinated oxygen which is very unusual among oxides. This would explain
why ZrW2O8 is thermodynamically stable at only high temperatures.

FIGURE 2.5: Number of publications per year based on a Web of Sci-
ence search for "Negative thermal expansion". It should be noted that
some early publications related to the field are missing as they were

not using the NTE term as a keyword yet.

ZrW2O8 exhibits a quite significant NTE with a value of -9.07 x 10−6 K−1[103], a
contraction similar to the expansion of conventional ceramics. What is interesting in
this material is that its contraction is isotropic, a behavior that is not interrupted by
the phase transition it undergoes at around 450 K. During this phase transition the
oxygen atoms reorient themselves to connect with their nearest neighbour, resulting
in oxygen migration. The fact that NTE is isotropic through its whole stability range
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FIGURE 2.6: Representation of the ZrW2O8 framework. ZrO6 octahe-
dra are represented in white and WO4 tetrahedra are shaded. Taken

from [124]

is of particular interest for various applications, especially for the design of com-
posite materials. Its NTE behavior was found to arise from the presence of RUMs
and QRUMs at low frequencies[127]. As seen previously, RUMs and QRUMs con-
sist in coupled rotations of octahedra and tetrahedra resulting in a reduction of the
cell parameters. NTE in this material is thus caused by a family of low frequency
vibrational mode inducing the coordinated rotation of polyhedra.

Other materials closely related to the ZrW2O8 are the AM2O7 family as their struc-
ture are very similar. Indeed the only difference lies in the MO4 tetrahedra which
are arranged in units of M2O7, getting rid of the M–O termination in the tetrahedra.
This new complex structure has been found to allow some QRUMs like for ZrW2O8
but no RUMs[117]. Their NTE is therefore best described as transverse vibrations of
corner-sharing oxygen atoms involving some distortions of the polyhedra. There-
fore the AM2O7 generally presents a weaker NTE. An example of material of this
family is the well-known ZrV2O7[128] which shows NTE at temperatures above
375 K. Under this limit, the structure undergoes a phase transition and the result-
ing new thermal becomes positive[129].

Another interesting family of material showing NTE is the A2W3O12 family (A being
a trivalent cation such as Al, Sc or Y). Their structure are also close to the two fami-
lies seen previously as they are composed of corner-sharing AO6 octahedra and WO4
tetrahedra. This family drew some attention due to its wide range of possible com-
positions allowing for the tuning of expansion behavior[130] as well as a wide range
of thermodynamic stability. In contrast with the previous materials, this family does
not crystallize in a cubic framework but in an orthorhombic space group. This leads
to an anisotropic thermal expansion with a contraction along a and c axes and an
expansion along the b axis. NTE in this case happens through the same mechanism
of coupled rotation of polyhedra, however it has been observed that this was only
possible if it was accompanied by some slight distortions of them[119]. The rigidity
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of a tetrahedron being based on O–O repulsions, the size of the cation ’A’ is of crit-
ical importance when one wants to improves the NTE behavior. Smaller tetrahedra
will lead to stronger O–O interaction and thus to more rigid polyhedra and a weaker
NTE behavior. Using bigger cations will result then in a more pronounced NTE as
the ability of the structures to deform will increase. As a result, the coefficients of
thermal expansion in this family are strongly dependent on the choice of cation.

There are many more types of materials exhibiting NTE, and zeolites occupy an
important place. Yet, as zeolites are the main subject of this chapter, the thermal
expansion and the previous studies on this topic will be discussed later in this part.

Applications

Thermal expansion is a phenomenon happening in all solids but its amplitude and
sign depend on the material considered. This behavior needs to be taken into ac-
count when elaborating an application for any material, as it is a crucial factor when
the temperature variates or when high accuracy is needed. Examples of this are
bridges which undergoes changes of temperature through the year and especially
between summer and winter, or high accuracy measurement equipments that need
precise positioning of their components. It can also be problematic in certain scien-
tific fields such as thin films where a difference of thermal expansion between the
substrate and deposit can cause a misfit strain and a difference in the properties
observed compared to the expected ones[131, 132]. All of these categories of appli-
cations are impacted by the thermal expansion and need to address this problem.
This is where NTE materials come in handy: The principal interest of NTE materials
is to build composites with tailored thermal expansion. The goal with composites is
to be able to obtain a material with the properties of interest remaining unchanged
and a tuned thermal expansion for the targeted application. In theory, NTE materi-
als can be used to create composites with zero thermal expansion coefficients or to
offset the thermal expansion to a desired value. In practice, composites are much
more complex and represent a interesting challenge of engineering and design.

There are several aspects to consider when using NTE materials for composites.
Firstly, the type of thermal expansion: the use of isotropic expansion materials is de-
sirable in most cases but anisotropic expansion can be preferred when working with
a highly oriented material or in cases where a compensation is needed in a specific
direction (for example for thin films). This requires then the use of NTE materials
with particular expansion along the directions of interest. Secondly, the stability of
the composite is obviously necessary during the formation process and during its
use but it also has to be compatible with the other components of the device. Some
of these composites are also sensitive to moisture and thus must be stored in sealed
environment to prevent the formation of hydrates through the contact with ambi-
ent air. Water molecules can be removed by heating but repeated hydration and
dehydration cycles will lead to a faster deterioration of the composite. The next im-
portant aspects concern the production: except for zeolites, all materials showing
NTE contain transition metals which raise the global price of production. Indeed,
the materials discussed in the previous section all contains V, Zr or W atoms which
are much more expensive than aluminosilicates such as zeolites. This additional
cost does not usually weigh much in the balance for a high end application which
already has a high cost of manufacturing. However, this cost is not negligible in the
case of production of cheaper devices. Moreover, one has to consider the commercial
availability of NTE materials being limited in choice. Zeolites, as well as ZrW2O8,
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are readily available but it is difficult to find other commercial NTE materials. Nev-
ertheless, it is possible to synthesize NTE materials for industrial use. For example
ZrV2O7 can be easily obtained through traditional methods for ceramics[128, 133].
In contrary, ZrW2O8 family is metastable at room temperature and requires rapid
quenching[134]. Solution based routes have also been reported for all families of
NTE materials, providing the advantage of particle size control[135].

Besides the stability and overall cost of NTE materials which are important factors
for industrial use, their properties are of course of central interest. Their amplitude
of NTE has to match the requirements for the desired composite and their range of
NTE behavior should include the room temperature and the range of temperatures
at which the composite will be used. The stability with respect to external pressure
also plays a role in choosing NTE materials as many of them exhibit mechanical
instability at low pressure. These instabilities can take the form of phase transitions
or amorphization. This is the case for ZrW2O8 which shows an irreversible phase
transition at 0.2 GPa from cubic to orthorhombic[136]. This orthorhombic phase
has a NTE at low temperatures but a positive one at room temperature which is not
desirable for composites. Further compression of ZrW2O8 leads to pressure-induced
amorphization starting at around 1.5 GPa[137].

Composites are the main field of study for negative thermal expansion and NTE
materials are mostly considered as fillers improving the thermal behavior of already
existing matrices. As ZrW2O8 is commercially available and is showing an isotropic
NTE it is often the material used for making composites. It has been incorporated
in a large variety of systems such as metal composites (mostly with copper)[138,
139, 140], ceramics[141, 142, 143] and polymers[144, 145, 146, 147]. However, we can
imagine other applications than composites for NTE materials. One example for ze-
olite could be the temperature-activated desorption of adsorbed molecules. Indeed,
contraction of the structure with temperature would reduce its porosity and thus
triggering desorption of particular molecules. It could also be used to restrict the
access of the pores by shrinking them, allowing then only specific small molecules
or even prohibiting adsorption.

Thermal expansion of zeolites

Among the materials showing NTE, zeolites were one of the firsts to be discovered
with this behavior. Indeed the first observation of NTE behavior on zeolites was
made on quartz and vitreous silica in 1907[148, 149]. Yet the subject was not studied
further until the 90s when several works focusing on NTE reported this behavior
in several zeolite systems. In 1995, Tschaufeser and Parker[150] reported the sim-
ulated thermal expansion coefficients for several siliceous and nonsiliceous zeolites
as well as some aluminophosphates (AlPO). They used at that time a code called
PARAPOCS which uses the quasi-harmonic approximation to model the thermal
properties. This approximation will be thoroughly described in the next section.
The computer resources being however less efficient than today, they had to use an
empirical potential for their calculations. Nevertheless, as depicted in fig. 2.7, they
found that some of the zeolites studied such as the faujasite show NTE behavior
over the whole range of temperature studied (0–500 K) and some others like the so-
dalite have the complete opposite PTE behavior over the entire range. Their work
at the time was quite significant as the detailed measurement of thermal expansion
in situ was (and still is nowadays) complicated. In comparison, the simulation of
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FIGURE 2.7: Simulated thermal expansion coefficients of several zeo-
lites as a function of temperature. Taken from [150].

these properties is far more easier which is why the exploration of thermal behav-
ior using computer techniques was pursued. This study was quickly followed by
an experimental study on several siliceous zeolites in 1997[151]. In this work, Park
and co-workers measured the thermal expansion coefficients of the pure silica ze-
olites MFI, DOH, DDR and MTN using X-ray Guinier technique. They found that
all the as-synthesized structures have a global PTE, even if some directions exhibit a
negative coefficient. They however calcined all of their compounds to reiterate their
measurements on the calcined form and found different results: all of the frame-
works showed PTE at low temperatures (until around 400 K to 600 K depending
on the topology) but a transition occurs to all of them at high temperature leading
to their high symmetry form and giving rise to NTE for the rest of the range (until
1000 K/1100 K depending on the framework). They attributed the NTE behavior
to the rotations of tetrahedra without mentioning however the RUM model. They
linked their work to the previous simulation study which predicted a correlation
between NTE and the empty cavities of the structure. It shows that sample prepara-
tion, water removal and polymorphism is of great importance for the experimental
measurement of thermal expansion. These two studies opened the field of research
for zeolites.

In the next decade, the field was more focused on the experimental measurement
of the thermal expansion rather than its computation. Thermal expansion coeffi-
cients of pure silica zeolites chabazite and ITQ-4 were determined by neutron pow-
der diffraction[104]. It was found at the time that siliceous chabazite was the mate-
rial with the strongest NTE behavior with a linear coefficient up to -16.7x10−6 K−1.
The authors attributed the NTE to the rotations of Si–O–Si linkages but also men-
tioned the RUM model as a possible explanation. Another framework which caught
a lot of attention is the MFI framework. MFI zeolites (also known as silicalite) are
widely used as industrial catalysts as they show a high catalytic activity and an ex-
cellent shape selectivity. Its pure silica version (called silicalite-1) is also used as a
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molecular sieve. An early molecular dynamic study[152] was able to reproduce the
vibrational spectra as well as the already known temperature-dependent phase tran-
sition of the MFI framework from orthorhombic to monoclinic. They also found that
its thermal expansion becomes negative at high temperature, suggesting the exis-
tence of a higher temperature orthorhombic phase at around 450 K. This transition
was observed later by Park and co-workers[151]. The thermal expansion of MFI
framework has been measured for different chemical compositions through high
temperature X-ray diffraction[153, 154, 155]. The previous simulated and measured
properties were confirmed as MFI frameworks show PTE until around 420 K and
NTE above. Like previously (and as commonly found for zeolites), this NTE was
attributed to transverse vibrations and rigid polyhedra rotations. Substituting dif-
ferent atoms to the Si atoms had various consequences: for example substituting Si
with Zr or Fe has the same effect on the amplitude of the thermal expansion, both
increasing the NTE behavior. However, while compounds with Zr exhibits the same
PTE behavior between 298 and 420 K as siliceous MFI, Fe-substituted framework no
longer shows PTE at low temperature.

FIGURE 2.8: Variation of cell parameters and volume measured ex-
perimentally for four different compositions of zeolite ITQ-24. Taken

from [156].

The effect of composition was also studied experimentally by Jordà and co-workers
[156] who introduced Ge into the siliceous orthorhombic ITQ-24. The results on ther-
mal expansion was not linear, as illustrated on fig. 2.8 taken from their work. The
substitution with Ge increases the global thermal expansion until a certain point.
They found that a composition of 15.7 Ge per unit cell results in a zero linear ther-
mal expansion of the a parameter. Overall they observed a similar behavior between
a and c parameters and a clearly anisotropic one along b. This study along with the
studies on MFI showed that a change of composition can alter the thermal expansion
of a material and that it can happen in an anisotropic manner. But it is not the only
factor that affects this property in zeolite materials. Indeed zeolites are porous ma-
terials that can adsorb different species, filling the voids in their structure and thus
impacting the thermal expansion. It is known that the rotation of tetrahedra respon-
sible of NTE in zeolitic structures are possible thanks to the void space and could not
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necessarily be possible in a dense framework. Filling this void with various species
can lead to a reduction of NTE as demonstrated in the litterature[157, 158, 159].

Calculation of thermal properties

Nowadays the calculation of ground-state energy in static calculations (in the 0K
limit) are well mastered and quite common, even if progress is still made in this
field. However, the computation of excited states as well as the simulations at T 6=0
still represent a challenge as they require heavy computational processes. This usu-
ally prevents systematic studies of optical and thermal properties over a large num-
ber of compounds and generally limits the studies to some chosen materials. It also
restricts the size of systems studied, as the size can tremendously increase the com-
putational resources and time needed. Fortunately, over the course of time, approx-
imations were made to render these types of calculations more affordable which,
combined with the fast improvement of computer power, allowed for more and
more materials to be characterized theoretically. Yet, while being possible today,
the calculation of excited and thermal states is still a long process requiring a lot
of computer resources. In this part I will outline the principal approximations and
methods used to calculate thermal properties in this thesis.

In the previous Chapter we saw that, in the Born-Oppenheimer approximation,
equations determining the electronic states and equations related to motions of nu-
clei are completely decoupled. Thus, the motions of atoms are studied with the
approximation of the electronic state remaining constant in the ground state. The
total energy of the system can then be written in the form of:

E = E0 + Vion−ion (2.6)

with Vion−ion =
1
2 ∑

n,m

ZnZme2

|Rn − Rm|
(2.7)

and where E0 is the ground state energy and Vion−ion is the electrostatic ion-ion in-
teraction. Labeling the different nuclei with κ and κ′ and the cartesian coordinates
(x,y,z) with α and α′, we can write the expression of the energy around its minimal
value:

E = E0 + ∑
κ,α

(
∂E

∂uκ,α

)
uκ,α +

1
2 ∑

κ,κ′,α,α′
Hκ,κ′

α,α′uκ,αuκ′,α′ + . . . (2.8)

with uκ,α corresponding to a small displacement of the atom κ in the direction α.
At the equilibrium, all residual forces are zero and thus the first-order derivative
is null. The harmonic approximation neglecting the high-order terms of this equa-
tion, if we do not take into account the third and higher order terms, we are left
with the equilibrium lattice energy E0, and Hκ,κ′

α,α′ the second-order force constants (or
Hessian) corresponding to the second derivative of the energy with respect to the
displacement:

Hκ,κ′
α,α′ =

(
∂2E

∂uκ,α∂uκ′,α′

)
(2.9)
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For a periodic structure, we can write the displacements uκ,α in terms of a plane
wave with respect to the cell coordinates:

uκ,α = εmκ,αqe(iq.Rκ,α−ωmt) (2.10)

with q a phonon wave vector and εmκ,αq a polarization vector. This leads to an eigen-
value equation involving the dynamical matrix:

Dκ,κ′
α,α′(q)εmκ,αq = ω2

m,qεmκ,αq (2.11)

with Dκ,κ′
α,α′ =

1√
Mκ Mκ′

∑
a

Hκ,κ′
α,α′ e

−iq.ra (2.12)

This eigenvalue equation can be solved numerically if the dynamical matrix has
been calculated, and the eigenvalues are obtained as the square of the vibrational
frequencies. Second order force constants, which are needed to solve this equation,
can be obtained through DFT calculations either by using the finite-displacement
method or the perturbation theory.

This approximation, while being fairly simple, is quite powerful when one aims to
study the lattice dynamics: the calculations required are cheap and the resulting ac-
curacy is sufficient for most phenomena. Within such model, several quantities can
be obtained accurately such as the frequencies of vibration modes or the heat capac-
ity of the crystal. However the harmonic approximation has some limits: the anhar-
monic terms (like phonon-phonon interactions) not being included, some quantities
cannot be obtained through this approximation. For example, in the harmonic ap-
proximation approach, thermal conductivity is infinite due to the infinite lifetime of
phonons and thermal expansion is null as the vibrational part of the energy is not
considered dependent on the volume. One way of correcting this is to include the
higher order terms of Equation eq. (2.8) however doing so increases tremendously
the computational cost. Another way of calculating some of these properties, includ-
ing the thermal expansion, is through the so-called Quasi-harmonic approximation
(QHA).

The QHA aims to introduce the dependence of phonons on the unit cell volume,
which is missing in the simpler harmonic approximation, while keeping an afford-
able cost of computation. In practice the Helmholtz free energy is computed and an
explicit dependence of phonon frequencies on volume is introduced:

F(V, T) = U0(V) + Fvib(V, T) (2.13)

where F(V, T) is the Helmholtz free energy, U0(V) is the zero-temperature internal
energy and the vibrational part of the free energy Fvib(V, T) can be expressed as:

Fvib(V, T) = E0(V) + kBT ∑
k

ln
(

1− e−
h̄ωk(V)

kBT

)
(2.14)
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with E0(V) =
1
2 ∑

k
h̄ωk(V) (2.15)

being the zero-point energy of the system. All of these quantities can be obtained
through basic geometry optimization or harmonic vibrational calculations. Frequen-
cies ωk(V) have to be determined at several volumes in order to determine their
dependence on volume, which is why QHA calculations require several computa-
tions of vibrational frequencies at different fixed volumes. Once this is known, one
can determine the equilibrium volume at each desired temperature by minimizing
eq. (2.13) with respect to the volume, keeping the temperature constant. This is
usually done with an equation of state. In my case, I used the third-order Birch-
Murnaghan equation of state, defined as:

E(V) = E0 +
9V0K0

16


[(

V0

V

) 2
3

− 1

]3

K′0 +

[(
V0

V

) 2
3

− 1

]2 [
6− 4

(
V0

V

) 2
3
]

(2.16)

Once the equilibrium volume is known at all desired temperatures, various proper-
ties can be obtained such as the thermal expansion:

αV(T) =
1

V(T)

(
∂V(T)

∂T

)
P=0

(2.17)

or the isochoric heat capacity:

CV = −T
∂2F(V, T)

∂T2 (2.18)

The Grüneisen parameter is also obtainable once ωk(V) values are accessible. It
was described earlier in this chapter, and can be calculated through its definition in
eqs. (2.3) to (2.5).

2.1.2 Mechanical properties

Mechanical properties of zeolites

Although they were not as much investigated as the thermal properties, some me-
chanical properties were obtained from the calculations. The term “mechanical prop-
erty” refers to the physical properties of a material that define its reaction to applied
forces. There are several properties describing the behavior of a material in different
cases. The most general one is the bulk modulus K. It describes the reaction upon
applying uniform hydrostatic pressure on the whole structure. It can be thought of
the ratio between the pressure increase and the resulting decrease of volume. Except
in very specific cases[160], the value of bulk modulus is positive as a negative value
(meaning the material would expand upon compression) is thermodynamically for-
bidden. Typical example values include diamond with a value of around 450 GPa
and sodium chloride with a value of around 25 GPa. There are many other me-
chanical properties such as the shear modulus, young’s modulus or Poisson’s ratio.
However, only the bulk modulus and its derivative were considered in this study as
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they are readily obtained from the QHA calculations without any additional com-
putational cost.

FIGURE 2.9: Elastic anisotropy of pure silica zeolites against lattice
energy relative to α-quartz; red points correspond to synthesized pure
silica zeolites. The grey area corresponds to the feasibility criterion

proposed proposed by Coudert. Taken from [161].

Considering that zeolites are inorganic solids, they overall tend to have good me-
chanical properties and a good mechanical stability. A few experimental determi-
nations of mechanical properties were performed on a limited number of frame-
works [162, 163]. It resulted that the properties were strongly dependent on the
type of framework. This trend was also observed theoretically on a small num-
ber of siliceous zeolites[164], as they calculated the bulk modulus for their struc-
tures and found a wide range of 46 to 93 GPa. However, no systematic studies
on a large number of zeolites were performed until 2013 when Coudert[161] inves-
tigated the mechanical behavior of 121 all-silica frameworks. He used static DFT
simulations to determine several mechanical quantities such as the young’s modu-
lus and shear modulus. This large-scale study proved the previous observation that
the topology of the framework influences strongly the resulting mechanical proper-
ties. He also showed that the previously established feasibility criterion of being in
the +30 kJ.mol−1 range compared to the α-quartz could be extended to include the
elastic anisotropy. Indeed, as depicted by the grey area in fig. 2.9, he demonstrated
that the topologies that were already synthesized had a low elastic anisotropy as
well as a low lattice energy (compared to the α-quartz). The idea of the present work
is closely linked to the past study of Coudert, but in this case it is mainly focused
on thermal properties. Later, Evans et al.[165] performed machine learning simula-
tions using the results obtained by Coudert. He used the 121 zeolite structures as a
training set and built a model based on geometric descriptors. By doing so, he high-
lighted several correlations between the characteristic features of a zeolite and the
elastic properties. He also used his model to predict the elastic properties of a large
data set of hypothetical zeolites. He found that the less dense a zeolite, the lower the
shear resistance. He observed as well that most of the hypothetical structures have
a lower stiffness and shear resistance than the IZA structures.
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calculations of mechanical properties

Besides the thermal properties, the quasi-harmonic approximation allows to com-
pute many other characteristics including the mechanical properties. Indeed, as
this method gathers energy/volume data, one can obtain the bulk modulus K us-
ing an equation of state. I already used the third-order Birch-Murnaghan equation
of state in the quasi-harmonic approximation for the determination of the equilib-
rium volume. Therefore, the zero-temperature bulk modulus K0 and its derivative
K′0 were directly obtained from this method. The temperature-dependent bulk mod-
ulus K(T) was also retrieved for the whole range of temperature considered from the
minimized Helmholtz free energy F(V, T). It corresponds to the isothermal second
derivative of F(V, T) with respect to the volume:

K(T) = V(T)
(

∂2F(V, T)
∂V2

)
T

(2.19)

It can be noted that QHA allows for the combination of pressure and temperature
effects on structural and elastic properties of materials. Indeed the P− V − T rela-
tion can be obtained easily. The thermal pressure can be readily calculated from the
Helmholtz free energy as:

P(V, T) = −∂F(V, T)
∂V

(2.20)

From this, the bulk modulus can be obtained at specific pressures and temperatures.
By using eq. (2.13) and exploiting eq. (2.20), it can be obtained again as the isothermal
second derivative of the Helmholtz free energy with respect to the volume:

K(P, T) = V(P, T)
(

∂2F(V(P, T), T)
∂V(P, T)2

)
T

(2.21)

Finally, in order to characterize the temperature evolution of the bulk modulus K(T),
the temperature coefficient δ was defined as:

δ =
1

K(T)

(
d K(T)

d T

)
(2.22)

2.2 Systematic study

2.2.1 Definition of parameters and preliminary calculations

The automated CRYSTAL17 algorithm

The application of the calculation of thermal properties described earlier has been
realised with the CRYSTAL17 software. In its lastest version, the software incorpo-
rates an automated algorithm for conducting QHA calculations[166, 167, 168, 169]. I
used this algorithm to perform the work reported in this chapter which is why I will
start by describing it.

In practice, the user can input an already optimized structure or a structure to op-
timize before the QHA routine. Then the user gives the information needed on the
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FIGURE 2.10: Definition of volume range and number of points.
Taken from [170].

volume by entering the desired number of volume steps for the computation (either
4, 7 or 13) and a scale parameter s. This parameter will define a range of volume from
a −s% compression to a +2s% expansion with a total of 4, 7 or 13 volume values in
between (including the extrema) depending on the user’s choice. As the compu-
tation of harmonic thermodynamic properties requires the knowledge of phonon
modes over the complete first brillouin zone (FBZ), it is necessary to increase the
sampling of the phonon dispersion in the FBZ. This can be achieved by building a
supercell, as the size of the supercell corresponds to the sampling of the FBZ. Super-
cell information is then also required in the form of a matrix of integers describing
the lattice vectors of the supercells to be created. The calculation will then opti-
mize the structure at each different fixed volume and calculate the corresponding
frequencies of vibration. This step is the most expensive in terms of computational
resources, as it requires as many frequency calculations as the number of different
volumes used. The need for a supercell also slows down the calculation due to the
increased size of the system. As soon as all the frequencies are obtained, they are
individually fitted as a function of volume with polynomial functions of different
orders. From these fitted frequencies, the Helmholtz free energy can be obtained at
any T from eqs. (2.13) and (2.14). Minimizing this Helmholtz free energy with re-
spect to the volume using an equation of state leads to the equilibrium volume and
allows to compute the thermal expansion.

Main parameters

All the calculations described in this Chapter were performed under the density
functional theory as implemented in the CRYSTAL17 code[171, 170]. All-electron
localized basis sets were used for both silicon and oxygen. They can be found on the
CRYSTAL17 online library with the acronyms and references as follow: Si_88_31-
G*_nada_1996[172] for silicon and O_8_411_muscat_1999[173] for oxygen. After
testing several functionals, I decided to choose the PBEsol0[174] hybrid functional
for the treatment of exchange and correlation and did not use dispersion correction.
This choice is only mentioned here but will be properly explained in the next part.

Mesh sampling was realized by using the Monkhorst-Pack scheme[175] with a k-
point mesh of 3× 3× 3. For all the structures, supercells were generated in order to
contain 150 atoms at most to ensure convergence of the thermal properties within the
available CPU time. Geometries were optimized using CRYSTAL17 code with the
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default convergence criteria (a maximum of 0.00045 a.u. on atomic displacements
during one optimization step and 0.0018 a.u. on forces). Representative input files
and optimized structures are available online at https://github.com/fxcoudert/
citable-data/tree/master/137-Ducamp_JPhysChemC_2021.

Starting structures were taken from the International Zeolitic Association (IZA) data-
base available at http://www.iza-structure.org/databases/, considering only fully
ordered frameworks, of which there are currently 244 known. As ANO and PTO
frameworks were added only recently (the 16th of July 2021) and were not present in
the database when this work was performed, I only considered the 242 topologies
that were accepted at that time. Zeolites with unit cell containing more than 150
atoms were not considered, resulting in a set of 190 zeolites for which I optimized
the geometry with a pure SiO2 composition. 134 structures were found to achieve
convergence within the time constraints imposed. Quasi-harmonic approximation
calculations were conducted with the automated QHA algorithm implemented in
CRYSTAL17: while keeping the symmetry, several isotropic deformations are per-
formed on the lattice constants and the energies and vibration modes are computed
for each resulting structure. After direct fitting of the phonon frequencies to the vol-
ume, the properties of interest can be derived as shown in the previous part. I used
the algorithm with a volume deformation range of−1.5% to 3% with 4 different vol-
umes and computed the thermal properties over the range of 10 K to 300 K. Among
the 134 structures, 120 were able to converge within the volume and temperature
range.

Preliminary calculations

When doing a large-scale study, it is important to set correctly the parameters of
the simulation in a way that is suitable for all systems studied, to keep a consistent
methodology. This step consists usually in a trade-off between accuracy and feasi-
bility. In this case here, I had the possibility to use hybrid functional without cre-
ating a too high computational demand. I therefore started by analyzing different
exchange-correlation functionals to select the most accurate. I looked at the B3LYP,
PBE, PBE0, PBEsol, PBESsol0 functionals. I also investigated the effect of long-range
dispersion corrections on the results. They were introduced with the method pro-
posed by Grimme[97]. However, PBEsol and PBEsol0 not being parametrized for
this method, I did not introduce these corrections for them. I selected the Linde
Type A (LTA) framework to study these functionals as it has a fairly small unit cell
and experimental data are available for a pure silica form of this topology[176]. I
conducted optimizations of geometry of this framework with all the different func-
tionals and compared the lattice parameters I obtained. The results are shown in
table 2.1.

What can be seen first is that all the results are somewhat really close falling in the
range of 12 to 12.15 Å. The difference observed with the experimental value is then
constant and characteristic of GGA functionals such as PBE and PBEsol which tend
to show a higher lattice parameter than experimental measurements. The discrep-
ancy between the calculated and measured lattice parameter is of around 1.3% which
could be considered high for a high accuracy study but is more than sufficient for a
large scale one. This shift can have several explanations: it can come from the over-
estimation of the PBE-based functionals. The next factor could be a thermal effect
as a larger lattice parameter for static calculation is in line with a negative thermal

https://github.com/fxcoudert/citable-data/tree/master/137-Ducamp_JPhysChemC_2021
https://github.com/fxcoudert/citable-data/tree/master/137-Ducamp_JPhysChemC_2021
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expansion behavior. Finally the choice of basis set could also be at play in the dif-
ference observed as I chose a relatively small basis set for reasons of computational
cost. A more complete basis set could improve the accuracy of the results but it is not
affordable in terms of simulation time as a lot of calculations have to be done. More-
over, given the fact that I am aiming for the thermal properties and the evolution of
cell parameters with respect to the temperature, I considered that this magnitude of
discrepancy was acceptable.

Expt.
B3LYP PBE PBE0

PBEsol PBEsol0
No
D3

with
D3

No
D3

with
D3

No
D3

with
D3

LTA 11.853 12.095 12.057 12.142 12.119 12.050 12.027 12.090 12.014

TABLE 2.1: Lattice parameter of the pure silica Linde Type A frame-
work (LTA) calculated for different functionals with or without long-
range dispersion corrections (DFT-D3 method). Experimental values

of lattice parameters were taken from [176].

Comparing all functionals, I saw that the PBEsol0 functional shows the closest re-
sults with the experiment. The introduction of long-range dispersion correction im-
proved a bit the results obtained with the other functionals but it still stayed less
accurate than PBEsol0 without adding any correction to it. This shows that PBEsol0
is a really accurate functional for solids (or zeolites at least). It was also already
used in a past study of the group focusing on ZrW2O8[177], a material known for its
NTE behavior. I chose then to use this functional as it was the most accurate out of
the group I initially defined. Considering the fact that I want to look at properties
arising from linear responses to small perturbations (such as thermal expansion and
bulk modulus), the impact of dispersion corrections is not crucial in this methodol-
ogy, and they were not used.

In order to check the validity of my parameters, I decided to calculate the thermal
expansion of some topologies of zeolites for which I could find experimental val-
ues of pure silica materials in the literature. I found experimental data of thermal
expansion for chabazite (CHA), Linde Type A (LTA) and faujasite (FAU), therefore
I calculated the thermal expansion of these 3 frameworks. I used the exact same
methodology described in the previous part with the PBEsol0 functional and no
Grimme-type corrections. The results are shown in table 2.2.

As observed previously, the calculated lattice parameters of FAU and CHA frame-
works are slightly overestimated compared to the experimental measurements with
the same order of magnitude than for LTA, respectively 1.6% and 1.9% for FAU and
CHA. Results are then consistent going from one framework to another. Overall the
accuracy on the lattice parameters is satisfying considering the scale of the study that
we envision. Following the optimization, I conducted QHA calculations on these 3
topologies and compared the thermal expansion coefficients obtained at 300 K to
reported coefficients in the literature. It can be seen that the agreement with ex-
perimental values is very good, showing a value of −7.3 × 10−6 K−1 for the LTA
framework which is very close to the value of −7.4 × 10−6 K−1 reported experi-
mentally by Carey et al.[176] between 100 K and 300 K. This good agreement is
confirmed with the two others frameworks: I found a value of −4.9× 10−6 K−1 for
FAU which is very close to the values of −3.92 × 10−6 K−1 and −4.2 × 10−6 K−1

measured experimentally[178, 105]. The same is observed for CHA with values of
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CODE
Lattice parameter (Å) Thermal expansion coefficient (10−6 K−1)

Expt. Calc. Expt. Calc.

LTA 11.853 [176] 12.014 −7.4 [176] −7.3
FAU 24.256 [178] 24.650 −3.92 [178] −4.9

−4.2 [105]

CHA
a = 13.525

[104]
a = 13.671 −0.5 [104] −0.6

c = 14.734
[104]

c = 15.015

TABLE 2.2: Lattice parameters and linear thermal expansion co-
efficients of pure silica zeolites with LTA, FAU, and CHA frame-
works. Calculated values of thermal expansion coefficients are given

at 300 K.

−0.6× 10−6 K−1 and −0.5× 10−6 K−1, respectively for my calculations and the ex-
periment. These three examples show that the chosen method is valid for the study
and it comforted me in my choice of parameters for the DFT and the QHA method-
ology. These results allowed me to validate the methodology and to start the study
on the whole database.

FIGURE 2.11: List of the 242 fully ordered zeolites from the IZA
database and summary of the calculations conducted. Red corre-
sponds to synthesized structures in SiO2 form, blue background cor-
responds to energy optimization and quasi-harmonic approximation
calculations realized in this work and green background corresponds
to energy optimization done in this work without QHA analysis due

to computational limitations.

Among the 242 fully ordered structures of the IZA present at the time of the study, I
eliminated all the structures that contain more than 150 atoms as they are too large
to be calculated with the QHA. This resulted in 190 structures for which I optimized
the geometry with a pure SiO2 composition. Out of those, 134 were found to achieve
convergence within the time constraints. I calculated the thermal properties for all of
them with the automated CRYSTAL17 algorithm described earlier, which succeeded
for 120 structures. The summary of all the structures considered, optimized or cal-
culated through QHA is represented in fig. 2.11. The study was performed on re-
sources from the Occigen supercalculator owned by the GENCI (Grand Equipement
National de Calcul Intensif) and managed and maintained by the CINES (Centre
Informatique National de l’Enseignement Supérieur). The production runs took
around 2 months to complete.
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2.2.2 Results

Volumetric thermal expansion

Among all the properties I obtained, I first focused on the volumetric thermal ex-
pansion coefficients. Within reasonable computational time, I was able to obtain the
thermal properties of 120 pure silica zeolites listed in fig. 2.11. Here is shown on
fig. 2.12 the thermal expansion of all these structures at 300 K compared to the re-
spective Grüneisen parameters. It can be seen that all the pure silica frameworks
studied here show NTE. This appears to be a common behavior in the zeolite fam-
ily as NTE behavior was already observed in numerous past studies[104, 105, 151,
176, 178, 179, 180], both experimental and theoretical. The mechanism behind this
phenomenon has been previously suggested for zeolites as being due to the pres-
ence of rigid unit modes[127, 181] arising from the corner-sharing nature of zeo-
lite structures[182]. Here I demonstrate that this mechanism is actually completely
generic, as all the 120 frameworks studied show NTE in their pure SiO2 form.

Some works reported in the literature found that a few SiO2 zeolite frameworks can
show PTE[150, 151] as does also the nonporous α-quartz phase[183]. However, such
results are very rare in the literature compared to the number of reported frame-
works showing NTE. Combined with my current simulations, this means that PTE
behavior is more an exception than a norm for pure silica zeolites. Therefore the
causes of PTE in materials such as the α-quartz phase should be re-examined. It
is possible that the NTE comes not from the geometry of the framework itself, but
from the nanoporous nature of zeolites. The void in the structure could allow for the
rotation of tetrahedra leading to the presence of RUM thus giving rise to NTE. This
would explain why a dense framework such as the α-quartz does not show this phe-
nomenon. In this hypothesis, zeolites containing guest molecules would also show
PTE as adsorbed molecules would effectively convert these porous frameworks to
dense materials. This has been observed on the LTA framework where the adsorp-
tion of water changes the thermal expansion from negative to positive[157]. It can be
noted that, however, I found no correlation for zeolites in the calculations between
the density and the extent of thermal expansion as can be seen on fig. 2.13.

It can be seen also that the magnitude of NTE displayed is on the same order of
magnitude as some simple oxides and other porous materials, like AlPOs and metal-
organic frameworks[184, 185]. While the histogram in fig. 2.12 show that most zeo-
lites can be found in the range−2.3 MK−1 and−1.1 MK−1 (using the notation MK−1

instead of ×10−6 K−1 for the sake of clarity), the range of thermal expansion values
is quite large which shows that the framework topology has a great impact on this
property — even with a fixed chemical composition, as is the case here. This was
already hinted at by Astala et al.[186] on a small number of zeolites and confirmed
here with a much larger set of structures. Previous computational studies, through
force-field based molecular dynamics, had drawn the conclusion that zeolites with
only 1D channels tended not to show NTE behaviour, where as zeolites with 2D
or 3D channels did[101, 150, 187]. The results here, obtained with a higher-accuracy
methodology, do not confirm those trends. I found no systematic and simple correla-
tion between the characteristics of the zeolites (channel type, accessible pore volume,
etc) and the value of the volumetric thermal expansion coefficient.

In my set of data I have differentiated the theoretical SiO2 structures and the ones
that have experimentally been synthesized in a pure SiO2 form. Those are repre-
sented respectively in green and red in fig. 2.12 and this color code will be kept
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FIGURE 2.12: Top panel: Volumetric thermal expansion coefficients
plotted against the mean Grüneisen parameter for each zeolite at
300 K. Green squares correspond to hypothetical zeolitic structures
and red ones correspond to experimentally synthesized pure-silica
frameworks. Bottom panel: Distribution of the values of thermal ex-

pansion coefficients for all the frameworks.
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FIGURE 2.13: Thermal expansion coefficient compared to the density
at 300K. Green squares correspond to theoretical structures and red

squares correspond to experimentally synthesized ones.

through the entire chapter. The aim of separating the data in this fashion is to be
able to determine synthesis conditions. However, it can be seen on the figure that no
differences can be observed between synthesized and theoretical structures. I could
observe that experimental frameworks cover almost the entire range, with perhaps
a slight dominance towards the high-NTE region, although that could be due to the
relatively small size of sampling of structures. This is in contrast with mechanical
properties, where it was shown that the experimental feasibility of the frameworks
could be linked to their mechanical stability[161].

FIGURE 2.14: Representation of the mode Grüneisen parameters of 6
zeolites (SOS, BOF, ASV, LTA, FAU, ANA) for all the vibration modes
under 160 cm−1. Each line represent a vibration mode (possibly de-
generate due to symmetry), and its color indicates the value of the
mode Grüneisen parameter. The color scale is represented on the

right.

Comparing the global Grüneisen parameter in fig. 2.12 with the thermal expansion, a
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broad correlation can be observed between these two parameters over the tempera-
ture range studied. As observed previously for the thermal expansion, all the values
of Grüneisen parameters are negative. It shows that the Grüneisen model for study-
ing the coupling between the variations of volume and the vibrational properties is
reasonably valid for systems such as zeolites. This validity is further confirmed with
fig. 2.14 where I represented the mode Grüneisen parameters for the low-frequency
vibration modes of several zeolites. We can clearly see from this representation that
the negative global Grüneisen parameter is only influenced by a small number of
strongly negative mode Grüneisen parameters associated with low-frequency vi-
brations. This was observed on the 6 frameworks presented here but confirmed
on another number of frameworks. The modes associated with strongly negative
Grüneisen parameters are found to have frequencies below 130 cm−1, confirming
the microscopic mechanism behind NTE as being linked to soft vibration modes in-
volving coupled rotations of corner-sharing tetrahedra.

FIGURE 2.15: Frequencies for each modes of each zeolites against
their corresponding mode Grüneisen parameters. The left panel cor-
responds to the results obtained with DFT and the right panel corre-

sponds to results obtained with GULP.

During this study, I had the opportunity to work with Quentin Gueroult, a student
realising an internship at the university of Oxford under the supervision of Pr. An-
drew Goodwin. He was interested in quantifying the flexibility of zeolites using dif-
ferent approaches. As flexibility is often associated with anomalous behavior such
as the negative thermal expansion, our respective works overlapped in some parts.
Quentin calculated then the same 120 pure-silica zeolites that I was able to converge
using DFT. He used for this the General Utility Lattice Program (GULP)[188], a pro-
gram that can perform a variety of tasks related to three dimensional solids. From
this software, he was able to obtain the phonon frequencies, eigenvectors and mode
Grüneisen parameters of all the zeolites. He used for his calculations a potential
developped by Catlow et al.[189]. In fig. 2.15 is represented the Grüneisen param-
eters calculated with GULP by Quentin along with my results obtained with DFT.
It appeared that the behavior observed is similar with both methods: large negative
Grüneisen are observed only at low frequencies. Interatomic potentials are known
to be less accurate than DFT methods. Such similar results are then encouraging for
the study of much larger databases as interatomic potentials are cheaper than DFT
calculations.

One of the main work of Quentin was the determination of the “RUMminess” and
its link with the flexibility. The global RUMminess can be thought of a measure of
how much RUMs weigh in a structure. It is an indicator of how “RUMmy” a struc-
ture is. RUMminess is determined from the RUM character of the vibration modes.
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FIGURE 2.16: RUM characters of each mode of each zeolite against
their corresponding frequencies. In both panels, RUM characters
were calculated by Quentin with CRUSH. Left panel and right
panel correspond respectively to frequencies calculated with DFT and

GULP.

RUM character can be calculated on each modes and represents how close it is from
a true RUM. Quentin calculated the RUM character ρ(v) of each modes for all the
different zeolites. He compared the results with the DFT calculations. He obtained
these results using the CRUSH program, which is a lattice dynamical program that
can calculate the frequencies and eigenvectors of RUMs. In fig. 2.16, is represented
the RUM character of all the vibration modes compared to their frequencies of vi-
bration obtained with CRUSH. The same results are also represented for my DFT
calculations. One can see that high values of RUM characters are present only in
low frequency modes in both cases. This is a logical result as RUMs are low energy
vibrations involving rotations of polyhedra. However, the DFT also showed lower
values of RUM character at higher frequencies while CRUSH results exhibits almost
no character above 200 cm−1. Some vibration modes at higher frequencies seem then
to keep a certain amount of RUM character. This was not detected by CRUSH which
means that some informations are lacking compared to the DFT.

After determining the RUM character of all the vibration modes, Quentin assigned
a value of RUMminess to all the structures. We wondered then if the RUMminess
score could have a link with the properties of zeolites. Indeed RUMs are one of the
source of NTE. In theory, zeolites with a highest RUMminess score should show a
larger NTE. fig. 2.17 represents the RUMminess score along with the thermal expan-
sion coefficient and the bulk modulus. We observed in both cases that there was no
correlation between RUMminess and the properties of interest. This suggests that
RUMs are not the main origin of anomalous behavior such as NTE: other driving
forces may be at play in these systems. It can be seen also that there are no clear
differences between the RUMminess of experimentally feasible frameworks and the
theoretical ones. Therefore, RUMminess does not constitute a condition for the syn-
thesizability of pure silica zeolites.

I only showed for now the thermal expansion in volume, which is negative for all
the zeolites studied. However, when looking closely to the linear thermal expan-
sion, some anisotropy appears among the frameworks studied. Although several
frameworks studied have a cubic symmetry (12 out of 120), many others have a
lower symmetry allowing anisotropy to arise. In particular, I identified structures in
which some directions of space have positive linear thermal expansion — while oth-
ers have a larger negative linear coefficient, contributing to the overall volumetric
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FIGURE 2.17: Thermal expansion and bulk modulus of pure-silica
zeolites calculated with DFT compared to the “RUMminess” obtained

with CRUSH.
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NTE. Three examples of such cases are represented on fig. 2.18 where their struc-
tures are shown along with their linear thermal expansion for each cell parameter.
The origin of anisotropy can be clearly seen on their framework structure. This gives
rise to a very modest positive coefficient along a single crystallographic axis. The
number of such highly anisotropic materials is small (9 out of 120), although all non-
cubic frameworks feature some level of anisotropy. It is interesting that the SOS
framework type was previously demonstrated to have highly anisotropic mechani-
cal properties, showing a link between thermal and mechanical properties through
topology[161].

Thermodynamic quantities

While QHA calculations give access to the Helmholtz free energy, standard har-
monic frequency calculations on the equilibrium structure allow to obtain several
thermodynamic quantities, such as the vibrational entropy Svib and the constant-
volume heat capacity CV . Those are represented in fig. 2.19. Looking at the entropy,
it can be seen that it varies very little among the structures considered with val-
ues between 37 and 43 J.mol−1.K−1 per SiO2 unit, with the majority of frameworks
around 39 J.mol−1.K−1. This is in stark contrast with the thermal expansion observed
previously which showed a large range of values due to the effect of topology. Here,
almost no effect of the topology is found on the vibrational entropy. This observation
is to be put in relation with the open question of relative stability and experimental
feasibility of zeolites[190, 191]. From the calculated values of vibrational entropy
and especially their narrow distribution, it is straightforward to see that this quan-
tity have almost no impact on the Helmholtz free energy (F = U − TS). This is
illustrated on fig. 2.20 with the relative free energy ∆F. At 300 K, it is completely
dominated by the energetic contribution. The small impact of the entropy might
change the stability ordering of some of the frameworks, but only the ones that are
already energetically very close. This small impact comes from the fact that, while
different zeolites have different low frequency modes, they are all widely populated
at room temperature.

FIGURE 2.19: Relative energy with respect to α-quartz (∆E per SiO2
unit) plotted against the vibrational entropy (top panel) and the heat
capacity (bottom panel), both normalised per SiO2 unit. Entropy and
heat capacity values are given at 300 K. Green squares correspond
to theoretical structures and red ones correspond to experimentally

synthesized structures.

The same observation can be made for the heat capacity represented on fig. 2.19.
The distribution of values is even more narrow than for the entropy. The influence
of topology is so small on the heat capacity that it’s almost imperceptible. Such a
behavior is explained by the link between the vibration modes and these physical
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properties: We saw previously that the thermal expansion is only dominated by a
small number of low frequency modes which are very sensitive to the atomic ar-
rangements. This is however not the case for the entropy and the heat capacity,
which are averaged over all the modes of the structures and are therefore much less
impacted by a change of topology.

FIGURE 2.20: Relative energy with respect to α-quartz (∆E per SiO2
unit) plotted against the free energy, also normalised per SiO2 unit.
Free energy is given at 300 K. Green squares correspond to theoreti-
cal structures and red ones correspond to experimentally synthesized

SiO2 structures.

Volumetric properties

With the use of zeo++ software[192, 193], it was possible to compute characteristic
data on the porosity of the structures considered. Several quantities could be ob-
tained: the accessible volume, the accessible surface area, the largest free sphere and
the largest included sphere. An illustration of the determination of surface area is
shown on fig. 2.21. All of them are represented on fig. 2.22 against the relative en-
ergy with respect to the α-quartz. These figures highlight two points: first, porosity
is obviously omnipresent in zeolites as all frameworks feature some amount of ac-
cessible volume. Second, the pore shape of a given topology does not seem to affect
its stability, as no correlation can be observed with the largest free sphere nor the
largest included sphere. However, a weak correlation seems to appear in the case of
the accessible surface area and the accessible volume. Although this could be sim-
ply due to the rather small data set used here, the topologies with smaller accessible
surface area and volume seem to be more energetically stable.

Comparing now the relative energy of experimentally synthesised structures and
theoretical ones, it appears that the characteristics of porosity are of no impact on
the synthesizability. Indeed no differences between the experimental and theoretical
structures can be observed. Both groups are really close to each other and no par-
ticular behavior nor correlation can be retrieved from these representations. Even
when looking at the accessible surface area and volume, for which a weak correla-
tion could be observed with the relative energy, no differences are observed. This
shows that porosity is a common feature of zeolites and does not constitute a clear
criterion for the experimental synthetic feasibility.
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FIGURE 2.21: Sampled points on the surface of the DDR zeolite ob-
tained with zeo++. Green and red points are respectively, accessible
and inaccessible to a spherical probe of radius 3.2 Å. Taken from [192].

FIGURE 2.22: Relative energy with respect to α-quartz (∆E per SiO2
unit) plotted against the accessible volume, the surface area and the
largest included and free sphere. Accessible volume and surface area
are also normalised per SiO2 unit. Green squares correspond to theo-
retical structures and red ones correspond to synthesized SiO2 struc-

tures.
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Mechanical properties

Previous computational studies from the group have shown that the analysis of
mechanical properties of inorganic framework materials in general[194], and ze-
olites in particular[161], could provide valuable insight into the relationship be-
tween structure and physical properties. These properties are typically calculated
through strain-stress relationships, whether it is at the quantum chemical (DFT)
level[161, 195], using classical force fields[196], or through the application of ma-
chine learning methods[165, 195]. Whatever the accuracy of the interatomic descrip-
tion of the system, these mechanical properties were however systematically cal-
culated in the linear elastic regime at the zero Kelvin limit[197, 198]. In particular,
the temperature and pressure dependence of the elastic coefficients or other derived
mechanical properties (elastic moduli, Poisson’s ratio, etc.) have not been system-
atically studied. There is no data available in the literature on the range of values
of those pressure and temperature dependence, nor on the impact of framework
topology in a given class of materials.

FIGURE 2.23: Top panel: Energy relative to α-quartz (∆E) plotted
against the bulk modulus K0 obtained through the Birch–Murnaghan
equation of state. Green squares correspond to theoretical structures
and red ones correspond to synthesized structures. Bottom panel:

distribution of the K0 values for all the frameworks.
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FIGURE 2.24: Relative energy with respect to α-quartz (∆E per SiO2
unit) plotted against the density. Green squares correspond to theo-
retical structures and red ones correspond to experimentally synthe-

sized structures

Through all the calculations done in this study, I obtained for the first time the bulk
modulus for each zeolite structure considered as well as its pressure and temper-
ature dependence. Values of bulk modulus for all the structures are represented
in fig. 2.23 as a histogram and as a graph with respect to the relative energy. A
large span of values is observed, from 8 GPa to 134 GPa with an average value of
∼78.5 GPa. Thus, like for the thermal expansion, a great impact of the topology on
the bulk modulus is observed. Extreme values show a difference of one order of
magnitude which is very large considering that the materials have the same compo-
sition. As expected, this property is thus strongly linked to the arrangement of the
framework (topology). Looking at the graph of K0 compared to ∆E, a few remarks
can be made: first we can observe a weak correlation between these two quantities,
meaning that softer materials are less energetically stable. This result is intuitive and
can be observed with the density as well fig. 2.24 as it is known to be linked with
the relative energy. Secondly, it can be seen that experimentally feasible frameworks
behave differently than the theoretical ones as they feature only high values of K0
(above 60 GPa). Only theoretical frameworks were found with low values of bulk
moduli. A high value of K0 is then a first requirement for the synthesis of pure silica
zeolites.

From the calculations performed, I also had access to the pressure and tempera-
ture derivatives of the bulk modulus (which we obtained respectively as a Birch-
Murnaghan coefficient K′0 and through δ = (1/K)(∂K/∂T)). Comparing K0 and its
pressure derivative in fig. 2.25, it can be observed that there is again a large effect of
topology on K′0 which features both positive and negative values. Most frameworks
are found in the −5 to +5 region but some values are found up until −25. It can be
seen on the histogram of fig. 2.25 that a lot of zeolites show a negative value of K′0.
This means that a lot of pure silica frameworks exhibit an abnormal softening of the
elastic modulus with compression — that can be linked to the mechanism already
established for pressure-induced amorphization of zeolitic frameworks[199, 200].
Such a pressure-induced behavior has been previously identified in a small number
of framework materials (including porous inorganic compounds)[201, 202, 203]. It
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FIGURE 2.25: Top panel: Bulk modulus K0 plotted against its
pressure-derivative K′0 for each zeolite. Green squares correspond to
theoretical structures and red ones correspond to synthesized struc-
tures. Bottom panel: Distribution of the values of K′0 for all the frame-

works.
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has even been suggested that pressure-induced softening could be generally linked
to negative thermal expansion[204, 205], although we show here that it is not di-
rect and systematic link: all SiO2 frameworks studied in this work show NTE, but
only 56% exhibit pressure-induced softening (and the vast majority of structures are
within the −5 to +3 range).

In addition to this, it can be noted that among the frameworks showing a value of K′0
below −5, no experimental structure can be found. This parameter appears then to
be a synthesis criterion meaning that a too negative value would lead to instabilities.

FIGURE 2.26: Temperature-dependent bulk modulus K(T) compared
to the temperature coefficient of elastic stiffness δ for all frameworks
at 300 K. Green squares correspond to theoretical structures and red

ones correspond to synthesized structures.

Finally, I also had the opportunity to investigate the temperature derivative of the
bulk modulus. This quantity δ is represented in fig. 2.26. It appears clearly that,
compared to the previous properties, the effect of topology is really small. Almost
all the values are contained in the zero to −10−3 K−1. A few exceptions with a bit
larger negative values can however be observed, among which both theoretical and
experimental structures can be found.

2.3 Conclusion

The systematic study of a family of material is useful to deepen the understanding of
a family’s behavior. It is also a great tool for highlighting the specificities of a given
property. Such studies are not experimentally feasible as it would require tremen-
dous time and investment. Computational methods are more indicated for this type
of work as it is cheaper and most of the time faster than experiments. However, set-
ting up such studies is still a complex challenge as the exploration of a large number
of frameworks leads to a high computational cost. This cost is mostly dependent on
the chosen level of approximation as well as on the number of structures. Studies
comprising large databases of structures usually resort to force field techniques as
they keep a relatively low cost while ensuring a modest level of accuracy. However,
calculating a limited number of frameworks allow to use methods with a higher
accuracy. In the end, systematic studies are not common as they require a large
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investment. They are nevertheless needed for the comprehension of systematic be-
haviors appearing in specific families of materials. In the case of pure-silica zeolites,
only a few works of this type were performed. In the group, the systematic study
of the mechanical properties of 121 zeolites revealed that synthesizable frameworks
all had a relatively low elastic anisotropy as well as a low relative lattice energy. It
allowed to guide the synthesis of new pure-silica zeolites by extending the feasibil-
ity criterion previously described in the literature. Other efforts were directed to-
wards the construction of databases of theoretical structures of zeolites. The PCOD2
database contains around 600,000 structures and is useful for both synthesis of new
frameworks and computational studies. However, the thermal properties of zeolites,
known to show negative thermal expansion (NTE) as a common behavior, have not
been systematically studied yet. The simulation of a large number of frameworks is
necessary to attain a better understanding of both the behavior of the zeolite family
and the NTE.

In this chapter, I investigated the thermal behavior of 120 pure silica zeolite frame-
works. Static DFT calculations were used to optimise the geometry of each structure
and to determine the thermal properties through the quasi-harmonic approxima-
tion. Preliminary calculations revealed a good agreement with the scarce experi-
mental data available, comforting my choice of parameters. The thermal expansion
obtained is negative for all the frameworks considered. The topology seems to play
an important role in defining the amplitude of the thermal expansion as its values
span over a large range. No differences could be observed between the theoreti-
cal and experimental structures, making it impossible to determine a synthesis con-
dition. Investigating the mode Grüneisen parameter, I observed that the negative
global Grüneisen is largely dominated by a small number of strongly negative mode
Grüneisen parameter. However no link could be found between the properties cal-
culated and the “RUMminess” determined by Quentin Gueroult with CRUSH. Ob-
servation of the thermodynamic quantities revealed that the effect of topology is not
impacting the entropy nor the heat capacity. As a result, the value of vibrational
entropy is very from one framework to another and has almost no impact on the
Helmholtz free energy. Analysis of the volumetric properties led to the conclusion
that the pore shape does not affect the stability of the framework. A weak corre-
lation is observed in the case of the accessible volume and surface area, indicating
that lower values of both features induces a higher stability. A large range a value
was found for the bulk modulus showing an effect of topology even more stronger
than in the case of thermal expansion. As no experimental frameworks exhibited
a bulk modulus lower than 60 GPa, it could be hypothesized that a high value of
bulk modulus is a requirement for the synthesizability of a framework. The pres-
sure derivative of showed that a lot of the frameworks features a negative value,
indicating an abnormal softening of the elastic modulus with compression. Also it
was observed that experimental frameworks are found within the -5 to +5 range of
value while theoretical frameworks could be find up until -25.

During this work, I created a database of DFT-calculated properties for 120 pure-
silica zeolites. This database was made available online in the team’s GitHub repos-
itory. While this database is quite small compared to others, I believe that the DFT-
level of accuracy of the resulting properties can be useful in several domains. Such
data can used as a basis for machine learning studies for example. Indeed, the effi-
ciency of machine learning is strongly linked to the quality of the data. Therefore,
using a database of DFT-calculated properties as training set would ensure a high
quality of input data. They are however other challenges such as the size of the
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database being small compared to the usual size of a training set or the represen-
tation — and differentiation — of zeolite structures that need to be addressed. The
valorization of my data through machine learning was already envisioned before
this study. Therefore I put in application this idea and tried to address the prob-
lematics mentioned previously, so as to determine if my database of DFT-calculated
zeolites is suitable for such methods. This will be the main topic of the following
chapter. Other possible development include the creation of a force field. Indeed,
force fields development require a large amount of data calculated through DFT.
Another interesting point would be to study the effect of composition. This could
be achieved with the same methodology used in this chapter, considering the same
topologies calculated here but with a different composition. This could also be done
on a small number of frameworks on which the Si/Al ratio could be modified pro-
gressively in order to witness the effects on the properties, especially the thermal
expansion.
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Chapter 3

Machine learning for the
prediciton of zeolites

Given the large number of DFT-calculated structures and properties of zeolites I
had created during my PhD project, I decided to study the feasibility of a machine
learning using this data set. Machine learning techniques are drawing more and
more attention nowadays due to the increased possibility of obtaining and storing
large amount of data. Depending on the method chosen, machine learning can be
initiated without prior learning on a training set (unsupervised machine learning)
or can need already known data in order to predict new ones (supervised machine
learning). The latter requires then a set of clean and already prepared data. The
data I obtained on pure silica zeolites in the previous chapter could form a suitable
data set for machine learning purposes. Indeed, it is the first time in the literature
that thermal properties were obtained systematically for zeolites using DFT. I believe
then that the data acquired could be useful for the prediction of thermal properties
of other zeolites or zeolite-like materials. However, my data set is smaller than those
typically used in the field of machine learning. The aim of the following chapter is
to assess the applicability of machine learning to the data previously calculated. The
first part will define the concept of machine learning and explain its basic principles.
The second part will present the results I have obtained.

The work described in this chapter has been published in the Journal of Physical
Chemistry C[206].

3.1 Concept of machine learning

The concept of machine learning arose around 1960. Around that time, a psychol-
ogist named Frank Rosenblatt, inspired by the human nervous system, invented a
machine for recognizing the letters of the alphabet[207, 208, 209]. He named his ma-
chine the “Perceptron”. This became later the prototype of modern artificial neural
networks. Several other groups focused on designing and testing learning recogni-
tion systems[210, 211, 212]. However, in 1969 Minsky and Papert published a book
where they presented the limitations of the Perceptron[213]. They especially argued
that some logical functions could not be handled by this system. This book slowed
down the funding of AI research until the 1980s, even though more learning algo-
rithms were still developed during this period.

The major turning point in the history of machine learning was during the first
decade of the 21st century. Several factors in that period led to the blooming of
machine learning that we are experiencing nowadays. First, the accumulation of
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data collected during routine, human activity and the birth of “Big data”. Due to the
amount of data needed to be analyzed, new methods were invented. Compared to
the past inventions originating from curiosity, it was this time motivated by neces-
sity. The second important factor was the performance and accessibility of computer
resources. At that time, the major companies of the field made breakthroughs in their
respective domains. Google revealed in 2004 their MapReduce technology, improv-
ing the field of parallel computing. Nvidia, while in competition with AMD in the
gaming market, also improved the performances of graphic cards and became the
leader in the field of scientific computing, including machine learning applications.
At the same time, RAM became more accessible as its price significantly decreased
during this period. This led to the birth of several new types of databases, including
NoSQL for example. Still nowadays, computers are becoming more and more effi-
cient, allowing for more complex applications of machine learning with very large
databases.

Overall, the idea of machine learning is recent (around 60 years) and its growth and
intensive use is even more recent (last two decades). The development of machine
learning was difficult, but was exponentially accelerated with the improvements on
computer power. As of now, machine learning is experiencing its golden age, and is
used in numerous studies every year.

3.1.1 General principle

In its most general definition, the term machine learning designates all the tech-
niques or algorithms that generate other algorithms, so as to progressively improve
the performance on a task. It is a generalized method, meaning that it does not
require a specific type of data. Machine learning algorithms are not directly pro-
grammed to realize a specific task but rather to learn how to do it. This "learning"
is evaluated using a user-defined function measuring the performance of the algo-
rithm given a set of parameters.

Machine learning uses specific terms to designate some common elements of the
field. Many of them will appear in this chapter. Most of them will be explained later,
but a few are already introduced here:

Model: predicting object resulting from the training of an algorithm.

Training: process of feeding the algorithm with input data so it can learn the rules
and/or the patterns.

hyperparameter: parameter controlling the training of the model.

Feature (or descriptor): input value that describes and differentiates the entries of
the data set.

Target: designates the property that one aims to predict. Targets are not necessarily
present in a data set.

The main idea behind machine learning is to identify patterns in data. In a sense,
machine learning is really close to statistical modeling. However, there are some
differences between them, the main one being that in statistical modeling, all of the
data are used to fit the model. In machine learning, only a part of the data is used to
"train" the model. The actual performance of the model is only known after testing
it on a new set of data never seen during the training. This set is called the test set.
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Statistical modeling is also more oriented towards the comprehension of the rela-
tionship between the data and the outcome variable, although it also allows to make
predictions with limited accuracy. The main advantage of statistical models is thus
the interpretability of the results. Machine learning techniques, on the other side, are
more focused on making robust predictions and do not always care about the inter-
pretability of the model (although it strongly depends on the chosen method). For
example, neural networks usually show very accurate predictions but as a downside
the results cannot be explained.

3.1.2 Data and descriptors

Machine learning uses data sets as input for training a model. Data sets consists of a
group of data points, where each point (or "record") represents an entity that is to be
studied. A data point is composed of two parts: a target value, which is the value we
want to study, and a certain number of features or descriptors. Target values can be
clear concepts (for example house price, a family’s income, etc) or abstract concepts
(attractivity, quality, etc). They are associated with descriptors also called features
that are an ensemble of values describing the entity to study. They can be of three
different types. Categorical, meaning they take values that fall into categories like
"apartment" or "house". Ordinal, which take values in order (for example, the history
of renovation of a house). Numerical, which take actual values like the surface or
the number of rooms. There are no rules as to which type one should be using. It
is completely dependent on the application. Data sets can contain features of only
one type or can combine the three different types. The crucial point is to ensure
that the features allow for the description of the entities and allow the model to
differentiate them. It is also necessary that the features share some kind of link with
the target property. As long as this condition is satisfied, the data set can be applied
for machine learning purposes. As an example, if we take the example of housing
and aim to predict its price, we can imagine a simple combination of features: the
type of housing (categorical), the location (categorical), the surface (numerical), the
date of construction (numerical) and the number of rooms (numerical). Depending
mostly on the size of the data set, there could be many more features that could be
included.

Aside from the choice of features, there are other aspects of the data set that need to
be addressed. Among them, the quality of the data is important. Indeed, the model
learns from the data and its performance is thus conditioned by the quality of fea-
tures and target values. Ill-defined points of the data sets are often dealt with prior to
realizing the machine learning study. An example of such points are the missing val-
ues in the data set, which need to be removed as they can introduce errors. Another
point to pay attention to is the so-called "bias". Bias in machine learning is defined
as the phenomenon of observing results that are systematically prejudiced due to
faulty assumptions. While bias is not desired, it is omnipresent in machine learning.
Indeed, even the choice of a cost function constitutes a bias in itself, although it is
considered as a productive bias. A model without some degree of bias would do not
better on a task than if the result was chosen at random. However introducing too
much bias in a model can cause prejudiced results and reduce its performance on
more general tasks. Indeed, according to the "No Free Lunch theorem"[215], if an al-
gorithm is particularly adapted to solving a certain type of problem, then it will per-
form worse on the remaining average of problems compared to the general-purpose
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FIGURE 3.1: Illustration of the No Free Lunch theorem. Taken from
[214].

algorithm. This principle is illustrated on fig. 3.1 Therefore, (un)intentionally intro-
ducing more bias induces a decrease of generalization. It is possible to estimate the
degree of bias with tools such as the feature importances for example, which will be
used later in this chapter.

3.1.3 Supervised and unsupervised machine learning

In machine learning, there are two large families of techniques: supervised and un-
supervised learning. The main difference between them is that one requires data as
well as target values to train on before being able to output results (supervised),
while the other directly takes raw data without target values and analyze them
without prior training (unsupervised). Each family has its applications: supervised
learning is more oriented towards the prediction of properties while unsupervised
learning is more efficient for identifying patterns in data. I will describe shortly one
example of unsupervised learning. However, I will not linger on this family of tech-
niques as it was not used in this study and will focus more on supervised learning.

As said previously, unsupervised learning does not need any target data to train
on. The principle is to analyze the patterns of a given set of data. There are several
methods such as clustering and dimensionality reduction. Clustering, for example,
is used to identify the subgroups in a given data set without prior knowledge on the
properties they might have. In practice, it determines the similarity of the points in
the data set. With this similarity metric, it can then choose which points are similar
enough to be a part of a subgroup and which points are too different and need to
be in different subgroups. The human does not intervene in this process, making it
a pure algorithmic decision. Overall, clustering is a technique used to understand
the structure of a data set by grouping similar observations together. This concept
of similarity can be defined through various algorithms such as density-based or
k-means algorithms. Clustering is used in many fields: it can be used to detect
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fraud in several domain by highlighting outliers, or can be used for recommenda-
tion (for example, proposing a music similar to what a user was listening to). It
can also have various applications in organic and inorganic chemistry. It was used
for example to characterize different diamond nanoparticles and their most relevant
properties[216].

FIGURE 3.2: Examples of underfitting and overfitting for a given set
of data. Data points are represented in blue and red lines corresponds

to the models. Taken from [217].

In contrast with unsupervised learning, supervised learning requires target data to
train on. The principle is to give the algorithm a set of “training data” containing
both input values (also called features or descriptors) as well as output values (also
called target values). The algorithm will learn the general rules linking input and
output values. The performance of the resulting model is tested with a test set,
being generally a small portion of the training data left aside (i.e. not used for the
training). This process is called training the model. Once this training is done, the
newly created model should be able to predict the output values of a new set of
unseen input features. This is the general principle of supervised learning. In this
family of techniques, there are two important aspects to take into account: model
fitting and performance measure.

When training the model, ensuring a good fit is of primary importance. The model
needs to be flexible enough to capture the complexity of the data, yet robust to noise
in the input features. Under-fitting and over-fitting are two behaviors that need to
be investigated and addressed in order to make sure that the training process is suc-
cessful. Both cases are represented on fig. 3.2. Under-fitting occurs when a model
is not able to predict the target values of the training set. In this case, it means that
the algorithm did not learn the general rules linking features and target values. In
the general case, a model should be able to predict values close to the observed ones
on the training set. Under-fitting originates usually from badly-tuned hyperparame-
ters. In opposition with this behavior, over-fitting corresponds to a model predicting
well the values of the training set but performing poorly on the test set. This behav-
ior means that the algorithm has been trained too much on the training set and the
resulting model is not able to apply the rules learned to other unseen data. This is
a problem of generalization: a model should be able to generalize beyond the train-
ing set. It can be due to the training set being too small compared to the test set. It
can also come from the hyperparameters allowing the algorithm to learn more than
what it should.



74 Chapter 3. Machine learning for the prediciton of zeolites

FIGURE 3.3: Schematic of the principle of cross-validation consider-
ing 5 fold.

The second important aspect of machine learning is the performance measure and
the model selection. The principle is to measure how good or bad a model is, allow-
ing then to choose which model is the best. There are several options for the measure
of performance depending on the type of models. In my case, I used the root mean
squared error (RMSE) as it is a common tool for measuring the performance of re-
gression models. Other common measures include the mean absolute error or the
mean squared error. Classification models, however, need different measures usu-
ally. I can be a simple accuracy score (percentage of correct predictions) or other
methods derived from the confusion matrix. All these tools are used to assess the
performance of a model and guide its selection. The usual way of selecting a model
is as follow: the entire data set is separated in one large and two small data sets.
The large one is the training set and the two others are the validation and test sets.
The training set is used to create several models and the validation set, along with
the performance measure, is used to select the best model. Finally, the test set is
used to determine the generalization error. This is the standard way of creating a
machine learning model for a prediction purpose. However, when the data set is
not large enough, separating the data in smaller sets can be complicated and reduce
the quality of the training. In such case, the use of cross-validation can be helpful.
This method is depicted on fig. 3.3 with the example of a 5-fold cross-validation. The
principle is to randomly split the initial set in k number of fold. For each fold, k-1
folds will be used to train the model and the remaining part will be used as a valida-
tion set. The performance measure of this method is the average of each simulation
measure.

Similar to unsupervised machine learning, supervised learning comprises several
techniques. Such methods include random forests, k-nearest neighbours or kernel
methods. In my case, I used the gradient boosting technique. Gradient boosting was
built around the idea of decision trees. Decision trees is a simple decision-making
algorithm that finds a result by answering simple questions. However, this is prone
to overfitting and is usually not used by itself. Gradient boosting regression is an
alternative that uses decision trees but build them as weak predictors. It creates
trees with a low depth (= a small number of decisions) and adjust the performance
by adding more and more trees during the training process. The hyperparamters
control what the gradient boosting algorithm is allowed to build, whether it be the
maximum depth of a tree or the number of leaves. Fine-tuning these parameters is
very important in order to avoid overfitting.
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3.1.4 Machine learning in chemistry

The demonstration of the Schrödinger equation gifted the scientific community with
a new powerful tool for the study of structure/properties relations. It was followed
soon after with the development of quantum mechanics and led later to the birth
of computational chemistry. Given the the exponential improvement of computer
power, the use of calculations at different levels (force fields, Hartree-Fock, DFT,
etc) has been increasing in the field of chemistry. Screening of large numbers of
structures is now becoming more and more common, but is limited by the chosen
level of approximation. The use of AI-based methods, such as machine learning, can
improve the protocols already existing and can allow to work with extensively large
numbers of structures within a reasonable timescale.

Over the years, in response to the needs of the scientific community, databases of
materials grew exponentially. This also contributed to the blooming of machine
learning in chemistry. The Inorganic Crystal Structure Database (ICSD)[218] is one
of the oldest and most known database for crystal structures as it started collect-
ing data in 1913. Around 6,000 structures are added every year to this database,
containing already more than 200,000 structures in total. Only structures meeting
the quality requirements are included in the database, making it a suitable base
for machine learning applications because it is curated. More specialised databases
also appeared such as CoREMOF[219], which is a database of metal organic frame-
works last updated in 2019 and containing around 14,000 materials. New kind of
databases, containing different entries than materials, were also created. It is the
case of the Reticular Chemistry Structure Resource (RCSR)[220], which is a database
of topologies. It stores the 3-letter name codes along with their respective nets. It is a
useful database for the design of new structures. Molecular chemistry has also seen
a rapid development of databases. ChemSpider[221], for example, is a database of
molecules containing now more than 100 million structures. However, while some
of these examples can be used in machine learning with only a minor treatment of
the data itselves (as is the case with the ICSD which follows a strict quality control
before adding a new entry, ensuring a clean database), this is not the case for all.
Many of them contains some errors, which forces to clean the data before using it.
Making large curated databases that can be used without prior treatment of the data
is still an open challenge.

As described previously, the entries of a data set contain descriptors used to repre-
sent the input structures (as well as target values in the case of supervised learning).
Therefore, one key aspect of machine learning in chemistry is the representation
of materials. This is an important factor as the quality of the description directly
conditions the performance of the model. Descriptors should allow to differentiate
properly the different materials while giving an accurate and suitable representa-
tion of the structures. This is not straightforward and has been the object of many
researches. The main issue in crystalline materials is that the conventional represen-
tation (unit cell) uses translation vectors and fractional coordinates. This representa-
tion cannot be used directly in machine learning as it can be represented in an infinite
number of ways, resulting in different predictions. Chemical systems need descrip-
tors that do not variate with a different referential. This field is still very active, and
some solutions are proposed to palliate this issue. For example, the Coulomb matrix
can be a good descriptor as it contains informations on atomic nuclear repulsion and
the potential energy of free atoms[222]. Other valid representations include the ones
based on radial distribution functions[223] or Voronoi tessellations[224].
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FIGURE 3.4: Diagram of the methodology employed in ref [1]. The
cubes represent the size of the chemical space considered at any given

stage of the process. Taken from [1].

The use of machine learning in chemistry can take several forms. One possibility is
the prediction of chemical synthesis route. The discovery of new chemical synthe-
sis routes is a very complex challenge. For a target compound, several routes could
be possible and, within the same route, every step has a lot of possible parameters.
Guiding the chemical synthesis with AI-based algorithms represents then a great
application of machine learning in chemistry. It would allow to save a lot of time
and resources. Such techniques are also useful for the discovery and design of new
materials. A recent study showed that the combination of simulation techniques and
machine learning could help the discovery of new light-emitting systems[1]. Their
methodology is depicted in fig. 3.4 and is a quite typical example. This large screen-
ing of over 1.6 million molecules was only possible thanks to the relatively low cost
of machine learning compared to DFT simulations or experiments. Simulation tech-
niques usually take a long time (although it depends on the level of approximation)
and it is one of their major limitations along with the computer resources. Machine
learning can improve this computational workflow as it can learn from simulated
data in order to output results with, theoretically, the same accuracy. Other ways of
improving simulations have been investigated: machine learning was used to try to
produce a universal density functional[225, 226], to optimise exchange and correla-
tion functionals[227, 228] or to create adaptive basis sets[229].

Machine learning is also of use for predicting properties of materials. By learning
on a specific type or family of materials, models can predict a handful of properties
on similar materials. This is the main idea of this chapter as I tried to determine
if my data set of calculated thermal properties is suitable for systematic prediction
using machine learning. This was not the first time this type of application was
studied in the group. Indeed, in 2017, Evans and Coudert used a gradient boosting
regressor model to predict the mechanical properties of zeolites[165]. The model
was trained on 121 structures and used to determine the bulk modulus K and the
shear modulus G of around 600,000 zeolites. The results they obtained are shown
in fig. 3.5. They proved that, for a given composition, geometrical descriptors of a
structure such as local, structural and porosity related features can lead to accurate
predictions of the mechanical properties. Later, Gaillac et al. expanded this study
by looking at the anisotropy of mechanical properties[195]. It resulted in a model
capable of predicting the auxeticity and Poisson’s ratio for more than 1,000 zeolites.
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FIGURE 3.5: Bulk modulus K (a) and shear modulus G (b) of the
PCOD2 database (blue) and recognized zeolite frameworks from the
IZA database (black) as predicted by the GBR model of Evans and

Coudert. Taken from [165].
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In both cases, machine learning proved to be efficient for the prediction of properties
and allows to speed up the discovery of new materials or new properties in known
materials. In this chapter, I studied the feasibility of such a methodology for thermal
properties. Considering a comparable level of accuracy, these properties are usually
more complex to obtain compared to the mechanical properties as they require more
calculations at the DFT level. The possibility of using machine learning would then
be of great help for large scale screening of thermal properties.

3.2 Machine learning study

3.2.1 Model parameters

For this work, I used the structures and properties of pure silica zeolites calculated
in the previous chapter. 120 topologies were then considered for the data set. Please
refer to chapter 2 for a complete description on how these data were obtained. I
also used another database containing hypothetical zeolite structures, the PCOD2
database, which will be detailed in the dedicated part of this chapter.

Descriptors

As described previously, it is necessary for supervised machine learning to define
so-called "descriptors", which are used to represent the relevant features of the data.
After the choice of a training data set, the next step concerns the choice of descrip-
tors. As the subject of this study are materials, it is important to choose features that
reflect their structure and that will be able to differentiate between the different ma-
terials. Descriptors on the composition would be meaningless for example, as all the
compositions of the frameworks are identical in my case (SiO2). However, structural
features such as cell parameters or bond length and angles would constitute good
descriptors. In addition, the descriptors chosen must also have some kind of link
with the target values (here the thermal expansion or bulk modulus for example)
and must be independent or arbitrary choices such as axes for examples. Consider-
ing these conditions, I identified four different types of descriptors which I used for
machine learning. For each of them, I chose a total number of 12 descriptors. All of
the descriptors chosen for each type are listed in table 3.1. The following of this part
will describe each type of descriptor and explain how they were obtained.

Ad hoc geometric descriptors: As zeolites are composed of corner-sharing [SiO4] tetra-
hedra, it is intuitive to describe the structure with metrics describing those tetra-
hedra. This means that simple measures such as Si–O distances or Si–O–Si angles
could be used. The advantage is that these descriptors are readily available. In-
deed the computational cost of obtaining them is almost neglectable. It was further
demonstrated in a large number of works, including some of the earlier studies on
structure–property relationships in zeolitic frameworks,[230, 231] that Si–O bond
length and Si–O–Si angles are of great importance for understanding the physical
and chemical properties of this family of materials.

In a prior work of the group, it was shown that such ad hoc geometric descriptors
— designed from the chemical intuition and knowledge about the systems at hand
— can be used in supervised machine learning for the prediction of mechanical
properties[165, 195]. Therefore, I chose to use this type of descriptor for the first
type. I retrieved all the angles and bond distances from the DFT-optimized struc-
tures using the pymatgen python package. I then used different statistical features



3.2. Machine learning study 79

Geometric descriptor Unit Volumetric descriptor Unit

Si–O mean Å Accessible volume (AV) Å3

Si–O harmonic mean Å Non accessible volume (NAV) Å3

Si–O geometric mean Å AV + NAV Å3

Si–O minimum value Å Accessible surface area (ASA) Å2

Si–O maximum value Å Non accessible surface area
(NASA)

Å2

Si–O variance Å ASA + NASA Å2

Si–O–Si mean ° Density g.cm−3

Si–O–Si harmonic mean ° Volume Å3

Si–O–Si geometric mean ° Largest free sphere Å
Si–O–Si minimum value ° Largest included sphere Å
Si–O–Si maximum value ° Number of channels

contributing to ASA
-

Si–O–Si variance ° Number of channels
contributing to AV

-

SOAP descriptors Unit Topological descriptors Unit

Principal components of the
SOAP analysis from the first to

the 12th (PCAn, n=1, 2, ... ,12)

- Number of neighbours in the
successive spheres of

coordination from the 2nd to
the 13th (COORDn, n=2, 3, ...,

13)

-

TABLE 3.1: Complete list of features used for each type of descriptor.
All the values of volume and surface area are normalized per SiO2

unit.

as descriptors: different means, variance, extremal values, etc. For the complete list
of features please refer to table 3.1. The python script used for retrieving bond dis-
tances and angles is available at https://github.com/fxcoudert/citable-data.

Topological descriptors: From the previous chapter, one conclusion that could be made
is that the framework topology plays an important role on thermal and mechanical
properties of zeolites. Indeed, large intervals of values could be observed for struc-
tures with identical compositions. Given this result, it is logical to think that descrip-
tors using the topology could be a good alternative of describing the frameworks.
Thus I decided to use these descriptors as the second type for my study.

There are several possibilities to represent the topology of a structure, but I chose the
coordination sequence which is the simplest one and very intuitive. The descriptors
were then the number of neighbours in the successive coordination spheres of the
Si atom. As all Si are not necessarily equivalent, I retrieved these data for all Si
atoms and averaged the results. Considering the four-connected nature of zeolites,
the first coordination sphere contains always 4 neighbours and is thus pointless as a
descriptor, as it does not differentiate the different frameworks. Therefore, I used the
coordination spheres from the second to the 13th. Information on topology such as
the number of neighbours were obtained from the optimized zeolite structures using
the CrystalNets julia package[232]. This package designed for the identification and

https://github.com/fxcoudert/citable-data.
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manipulation of crystal nets representation and topology has been developed in the
group by Lionel Zoubritzky and made available on Github at https://github.com/
coudertlab/CrystalNets.jl.

Volumetric descriptors: Zeolites are nanoporous materials whose main applications
rely on their porosity. The porosity (volume and shape) is different from one topol-
ogy to another which means that metrics on the volume could be another possibility
for differentiating the structures. In addition, the target properties present some
links with the porosity. Indeed, as described earlier, the quasi-harmonic approxima-
tion we used to determine the thermal properties of zeolites is considering the har-
monic expression of the Helmholtz free energy, to which we added the vibrational
part of the energy (which depends on the volume). Therefore, metrics on volume
check also all the requirements of descriptors. This is why I chose to include them in
my study.

I retrieved the quantities on volume and porosity from the DFT-minimized struc-
tures using Zeo++ software package[192, 193]. The computation of these properties
is not demanding in terms of resources. However, it can be complicated in terms
of time. For 120 structures, the time needed is fairly short and anecdotic (around
5 minutes). But for a large database such as the Deem database containing around
600,000 structures, the time needed is much longer (roughly one month). This is why
I did not used the volumetric descriptors for studying the Deem database. The sur-
face area, accessible volume and volume being dependent of the choice of unit cell, I
normalized them per number of SiO2 units. For consistency, I used as descriptor the
calculated (DFT-optimized) crystallographic density, instead of the topological den-
sity reported by the IZA. This choice is not crucial to the conclusions of this work,
however, as the reported and calculated density values are almost identical.

Smooth Overlap of Atomic Positions (SOAP): The SOAP is an encoding method intro-
duced by Bartók and co-workers,[233, 234] which is a descriptor of local geometry,
describing the environment around a given point (usually an atomic position). By
projecting the local geometry onto orthonormal basis functions based on spherical
harmonics, it is invariant by rotation and permutation of atoms. It has been used in
particular to determine the similarity of two neighbourhood environments, and to
identify features that differentiate molecular structures from one another,[235, 236]
including in the specific case of zeolites.[237] It has also been used to encode atomic
environments for machine learning inter-atomic potentials, due to its powerful and
rich material representation.[238] Finally, it is also used as descriptor for regression
tasks, namely the prediction of physical or chemical properties.[239, 240]

One important parameter of this method is the cut-off, representing the distance
until which all the environment is included in the description. Initial tests showed
that a suitable value for zeolitic systems is around 6 Å, as this distance includes
the nearest and next-nearest neighbours, including then characteristics of both Si–O
distances and Si–O–Si angles. This was verified by computing the SOAP descriptors
for different values of cut-off and running machine learning predictions based on
these different sets. The results are shown in fig. 3.6. I observed that the root mean
squared error (RMSE) is decreasing until 3 Å where the accuracy seems to no longer
be affected by the increase of cut-off. Considering that the time needed to compute
SOAP features is still acceptable at 6 Å(a few minutes), I confirmed that this was a
good choice for the cut-off. Finally, in order to reduce the large dimensionality of the
SOAP descriptors and bring them to a comparable set to other descriptors, I used
the Principal Component Analysis (PCA) technique, which determines through an

https://github.com/coudertlab/CrystalNets.jl
https://github.com/coudertlab/CrystalNets.jl


3.2. Machine learning study 81

FIGURE 3.6: Cross-validated RMSE obtained with the SOAP descrip-
tors using different cut-off values.

algorithm the most important components and projects the data on them — reducing
the dimensionality while keeping as much variation as possible. I chose here the first
12 components from the PCA analysis, making then possible the direct comparison
with other types of descriptor.

Algorithm

Now that the data sets and descriptors are defined, the last step is to define the
algorithm and the hyperparameters. I chose to use a gradient boosting regression
(GBR)[241, 242] for the algorithm, as it has been proven to be quite robust and effi-
cient for small datasets, like in my case[243]. This algorithm is a stage-wise additive
model which trains decision trees that are built in a greedy fashion to minimize the
loss function, which I chose to be a least squares function in my case. This methodol-
ogy has been already applied in the group for the prediction of physical properties in
dense and porous frameworks, including mechanical stiffness,[165] and anisotropic
elastic properties such as negative Poisson’s ratio.[195].

Parameter Value

Number of boosting stages 250 a / 500 b

Learning rate 0.01
Minimum samples split 2
Maximum depth 2
Minimum samples leaf 2
Subsample 0.4
max features square root of total features
loss function least squares
a Used for the geometric descriptors only to avoid over-fitting observed in the learning curves.
b Used for all other descriptors.

TABLE 3.2: Hyperparameters for the gradient boosting regression.

I used the GBR implementation from the scikit-learn Python package[244]. I used
a 3-fold cross-validation procedure as implemented in Sci-kit learn package which I
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repeated 50 times (with different random seeds) in order to obtain relevant accuracy
scores and errors by averaging them over all the simulations. To choose and validate
the hyperparameters, I used cross-validation and chose as a measure of accuracy
the root mean squared error (RMSE). In particular, I focused on the impact of the
number of boosting stages, which — although GBR is generally said to be fairly
robust to overfitting — I found to be an important hyperparameter. The learning
curves for this hyperparameter, for the prediction of thermal expansion coefficient
based on different sets of descriptors, are displayed in fig. 3.7. Except for the ad
hoc geometric descriptors, all the curves show a similar learning rate, and reach the
final accuracy at around 500 boosting stages. However, in the case of geometric
descriptors, it can clearly be seen that over-fitting is occurring, as the RMSE on the
test set starts to increase at around 250 boosting stages while it decreasing in the
training set. Therefore, I decided to use 250 boosting stages for this particular set
of descriptors. For the other sets, this phenomenon is not happening. This is why I
chose to use a higher number of decision trees (500). The final set of hyperparameters
used for this study is reported in table 3.2.

FIGURE 3.7: Learning curves of the thermal expansion using all the
types of descriptors for the thermal expansion. Geometric descrip-
tors, SOAP descriptors, topological descriptors and volumetric de-
scriptors correspond respectively to the upper left, upper right, bot-
tom left and bottom right panel. Lines correspond to the mean RMSE

values and shaded surfaces correspond to the standard deviation.

3.2.2 Results

Machine learning model based on geometric descriptors

I started my study by using the ad hoc set of geometric descriptors as such met-
rics are known to be useful for describing zeolite structures. These simple geo-
metric descriptors were already used in the past for the prediction of mechanical



3.2. Machine learning study 83

properties[165, 195]. Here, I applied them this time to the thermal properties. As
detailed in the previous section, I used a cross-validation strategy along with the
hyperparameters defined in table 3.2. The result of a GBR trained on the geometric
descriptors for the thermal properties is displayed on fig. 3.8. It can be seen that there
is overall a good prediction of the thermal expansion as most values between−2 and
−1x10−5 K−1 are well concentrated. As the majority of the data set is found within
this interval, these results were expected. However, the points located outside of this
range present a large deviation. Whether it is on the side of very negative values of
thermal expansion or on the other side, they both stray away from the dashed line
representing a perfect prediction. It seems that there are outlier materials, and that
there are too few values on the extreme sides of the data set to allow for the model
to train efficiently on them. This is why these points are exhibiting such high errors.

FIGURE 3.8: GBR cross-validation prediction of the thermal expan-
sion α, based on geometric descriptors.

As the score function, I chose to use the root mean squared error (RMSE) to quan-
tify the quality of each model. Calculated on this prediction, I obtained a value
of 4.24 10−6 K−1 corresponding to an error of around 20%. Considering the small
data set that I am using, I believe that it is a reasonable error. This degree of er-
ror is also observed in other ML models based on simple geometric descriptors and
predicting macroscopic physical properties[194]. A large part of the error observed
comes from the outlier materials mentioned earlier. Indeed, removing the points
with α < −2.5 10−5 K−1 leads to a decrease of the RMSE to a value of 2.56 10−6 K−1,
improving the predictive power. There is a clear separation of the outliers from the
rest of the data set. To try to find the microscopic origin of this behavior, I investi-
gated these isolated frameworks. As examples, I represented the thermal expansion
along with the bulk modulus and the accessible volume on fig. 3.9 and highlighted
the outlier materials in blue. As it can be seen, while their thermal expansion devi-
ates away from the average value, the bulk modulus and accessible volume do not
show any differences compared to the rest of the frameworks. Investigating their
structure visually did not reveal any particularity either. Therefore, I believe that the
specific behavior observed may be unphysical, and find its root in high order terms,
which are not included under the quasi-harmonic approximation and thus not taken
into account in my DFT calculations.
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FIGURE 3.9: Top panel: thermal expansion compared to the bulk
modulus value. Bottom panel: thermal expansion compared to the
accessible volume. In both representations, outlier materials (as de-

fined in the text) are shown in blue.
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It is also important to note that the deviation observed finds its origin not only from
the reduced size of the data set, but also from the noise of the training data itself.
Indeed, the DFT calculations realised to create this data set come with a certain de-
gree of uncertainty. QHA, used to calculate thermal properties, is a rather long and
difficult process. In the scope of a systematic study, it is necessary to fix a certain
set of parameters for all the frameworks (ranges of temperature, volume expansion,
number of points in numerical derivatives, etc). Such parameters are then satisfying
for a high number of frameworks but can be not adapted in some extreme cases that
differ a lot from the "average framework". More fine-tuned parameters for each ze-
olite could have resulted in a better accuracy for the calculated properties, but was
not feasible in a systematic approach. However, it can be noted that, in this study,
the main interest is to evaluate the feasibility of the ML models and to compare dif-
ferent descriptors, for a physical property (thermal expansion) that has never been
studied in framework materials at that scale before. Thus, the deviation observed
does not hinder the purpose of this study.

FIGURE 3.10: Relative importance of each descriptor for the GBR
model.

One important tool in machine learning is the feature importance, which can be
accessed in some (but not all) machine learning algorithms. This metric can inform
on the relative importance of each descriptor in the training process, and sometimes
allow to diagnose over-fitting cases. On fig. 3.10, I reported the relative importance
of each descriptor for the prediction of thermal expansion. It can be seen that the first
descriptor in terms of importance is related to the Si–O–Si angles (harmonic mean
of angle values). Looking at the order of the rest of the descriptors, the statistics on
angles seem to be of higher importance for the prediction of thermal expansion than
the Si–O distances. This confirms the physical intuition, because thermal expansion
is dominated by low-frequency vibration modes, which typically involve tetrahedral
rotations of SiO4 units and Si–O–Si angle bending. This is also confirmed with the
partial dependence plots depicted in fig. 3.11. This type of representation is used to
see how a chosen property (here the thermal expansion) responds as a function of
some specific descriptors. It appears clearly that the Si–O–Si angles exhibits a very
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marked, near linear dependence with the predicted thermal expansion while the Si–
O distances show a lower amplitude as well as a monotonic trend. Knowing that
the minimal Si–O distance was found to be the second most important feature when
training the model, it highlights the fact that angles have much more importance
than distances in the prediction of the thermal expansion.

FIGURE 3.11: Partial dependence plots of the harmonic mean of Si–
O–Si angles (left panel) and minimal value of Si–O distances (right

panel)

Comparison with other descriptors

For the next step, I decided to try predicting the thermal expansion based on the
other sets of descriptors. I used the exact same methodology (except for the number
of boosting stages as described before) and obtained the results shown in fig. 3.12. I
observed that, among all the different sets, the principal components of SOAP fea-
tures seems to be the most performant in the prediction of thermal expansion, with
a RMSE value of 3.75 10−6 K−1. This value is even smaller than the RMSE obtained
previously with the ad hoc geometric descriptors. This is due to the fact that the
SOAP features contain the informations on angles and distances while also includ-
ing more complex effects, resulting in a thorough description of the local geometry.
In contrary with this result, it appears that the volumetric and topological descrip-
tors are similar to the geometric ones in terms of prediction. They exhibit values of
RMSE of 4.16.10−6 K−1 and 4.13 10−6 K−1 respectively.

To further compare the different descriptors, I then performed predictions on an-
other property: the bulk modulus K0. I maintained all the parameters and obtained
the results shown in fig. 3.13. The same observation on descriptors’ performance can
be made here: principal components of SOAP features are the most efficient with a
RMSE value of 15.9 GPa, lower than for the topological and volumetric descriptors
(RMSE of 17.6 GPa and 20.9 GPa respectively). SOAP features seems then better in
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(A) (B)

(C)

FIGURE 3.12: GBR cross-validated predictions on the thermal expan-
sion using three different types of descriptors: (a) SOAP (RMSE =
3.75.10−6 K−1), (b) Volumetric (RMSE = 4.16.10−6 K−1) and (c) Topo-

logical descriptors (RMSE = 4.13.10−6 K−1).

the general case as they obtained the lowest error on both the thermal expansion and
the bulk modulus. It can also be observed on the representations that volumetric de-
scriptors result in a really poor prediction of bulk modulus, as the cloud of points
strays away from the perfect prediction represented by the dashed line and tends
to form an horizontal line. This is an interesting and counter-intuitive result as one
could have thought that density and porosity-related metrics were directly linked
to the stiffness of a material. Here it shows that this is not always the case and
that porosity-related metrics alone are not sufficient to efficiently predict mechani-
cal properties. It can be noted, however, that ad hoc geometric descriptors exhibit a
good accuracy (RMSE = 16.0 GPa), very close to the accuracy obtained with SOAP
features. This shows once more that Si–O–Si angles are crucial in determining the
properties of zeolites, as the difference in prediction between ad hoc geometric de-
scriptors and principal components of SOAP features is really small (despite SOAP
features containing more informations).

Up until now, I compared the different sets of descriptors independently. However,
it is also interesting to compare them when they are combined in the same model.
As I chose to build models with a total number of 12 descriptors, I selected the three
best descriptors of each type and combined them to form a new set of 12 descriptors.
The summary of this new set is given in table 3.3. As before, I maintained the same
hyperparameters after confirming through learning curves that no over-fitting was
occurring. The cross-validated prediction of the thermal expansion as well as the
relative feature importances of this new set of descriptors are represented on fig. 3.14.
It can be observed that, while the accuracy is slightly better than before with a RMSE
of 3.64.10−6 K−1, the improvement is anecdotic and mainly located on the low values
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(A) (B)

(C) (D)

FIGURE 3.13: GBR cross-validated predictions on the bulk modulus
K0 using the four different types of descriptors: (a) Geometric (RMSE
= 16 GPa), (b) SOAP (RMSE = 15.9 GPa), (c) Topological descriptors

(RMSE = 17.6 GPa) and (d) Volumetric (RMSE = 20.9 GPa).

of thermal expansion — many of which were outliers in the previous models.

Descriptor Unit

Si-O-Si harmonic mean °
Si-O mean Å
Si-O-Si variance °
Density g.cm−3

Volume Å3

Accessible + non accessible surface area Å2

Principal component 1 -
Principal component 2 -
Principal component 3 -
Number of neighbours in second sphere of coordination -
Number of neighbours in third sphere of coordination -
Number of neighbours in fourth sphere of coordination -

TABLE 3.3: List of descriptors used when mixing different types of
descriptors in the model. 3 descriptors of each type was used for a

total of 12 descriptors.

The relative feature importances revealed that the second principal component of
SOAP features is the most important descriptor in the prediction of thermal expan-
sion. This was already the case when training with only SOAP features. The di-
mensionality of SOAP features needed to be reduced in order to be exploitable, and
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compared to smaller descriptor sets. Dimensionality reduction techniques usually
causes a certain loss of information. However, the feature importance proves that
this loss does not overly impact the descriptive potential of these features. Princi-
pal components of SOAP features represent then highly competitive descriptors of
a structure, weighing even more than Si–O–Si angles in the training process. Partial
dependence representations of the second principal component of SOAP features as
well as Si–O–Si harmonic mean are shown in fig. 3.15. It can be seen on this figure
that their dependence is quite similar. They both show a strong linear dependence,
while all the other descriptors used exhibit a weak or even null dependence. As said
previously, Si–O–Si angles are one of the major descriptors to include for the deter-
mination of thermal properties in zeolites, and I believe that is also a crucial feature
for the prediction of other properties.

FIGURE 3.14: GBR cross-validated prediction of the thermal expan-
sion using the four different types of descriptors combined along with

the relative feature importances.

Applying ML models to non DFT-optimised structures

Up until now, I predicted the properties of zeolite structures that had been previ-
ously optimized by DFT relaxation. So far, the predictions proved that a machine
learning application of this database is possible with reasonable accuracy. How-
ever, while it is interesting, I was considering for now that the structures for which
the properties needed to be predicted were DFT-optimised, just like the database I
created. This need of DFT-level accuracy causes a serious obstacle to potential high-
throughput screening studies. Indeed, while DFT optimisations are relatively cheap
compared to the quasi-harmonic calculations of thermal properties, they are not scal-
able to the size of available hypothetical databases of zeolitic materials (which can
contain hundreds of thousands of structures). Therefore, the applicability of this
model to structures with a lower accuracy level needed to be tested.

Therefore I decided to check how a model based on non DFT-optimised structures
would perform in the prediction of the thermal and mechanical properties obtained
in DFT. This particular model will give then an indication of the sensitivity of the
ML model to the accuracy of the geometries used as input. In practice, I used
a new data set of structures retrieved from the IZA database (available at http:
//www.iza-structure.org/databases/) and containing the exact same 120 topolo-
gies used up until now. These structures were obtained by a distance least-squares
refinement technique (DLS76 developed by Baerlocher and coworkers in 1977) and I
left them as such without optimising them. I used the same set of hyperparameters

http://www.iza-structure.org/databases/
http://www.iza-structure.org/databases/
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FIGURE 3.15: Partial dependence plots of the (left panel) second prin-
cipal component of SOAP features and (right panel) Si–O–Si har-

monic mean.

as well as the same combination of descriptors given in table 3.3, as it was proven
that the results were slightly better than with just one type of descriptor. All the fea-
tures required were retrieved on the non-optimised structures following the same
procedure described in the computational methods.

FIGURE 3.16: GBR cross-validated prediction of the thermal expan-
sion using the non DFT-optimised structures along with the relative

feature importances.

The cross-validated prediction of thermal expansion using the non DFT-optimized
data set of structures is represented on fig. 3.16 along with corresponding relative
feature importances. The RMSE obtained for this new model is 3.63.10−6 K−1 which
is very close from the value of 3.64.10−6 K−1 obtained in the previous section. Both
predictions also have identical behaviors, as we can see that there are outliers for
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low values of thermal expansion in this case as well. It shows that the non DFT-
optimised structures are not so different from the structures I optimised. As evi-
denced by the close values of RMSE, the small differences of geometry do not alter
the performance of the model. This idea is also supported by the relative feature
importances displayed in fig. 3.16. Indeed, the importance order of the descriptors
is quite similar as before. The second principal component of SOAP features is again
the most important descriptor, followed by the harmonic mean of angles. This is due
to the fact that structures from the IZA database and DFT-optimised structures are
close to each other, resulting in close descriptors as well. Therefore, this validates
the prediction of physical properties from structures optimised at a level lower than
DFT (for example, force field optimised structures). This represents a time-saving
conclusion, as it makes it possible to investigate very large-scale zeolitic data sets,
such as the PCOD2 database created by Deem et al.[245, 246].

Application to large data sets

The previous section proved that the ML model is not too sensitive to the geome-
tries used as input. It resulted then that large data sets obtained with lower level
of accuracy than DFT can be used with this model. Therefore, I decided to apply
this model to a large data set of zeolites: the PCOD2 database created by Michael
Deem. This set contains around 600,000 hypothetical pure silica zeolite structures,
obtained from combining Monte-Carlo simulations, simulated annealing, and struc-
ture refinement using a classical force field (the Sanders–Leslie–Catlow (SLC) inter-
atomic pair potential[189]). This database constitutes a great tool for the machine
learning-based exploration of new synthesizable structures, or the identification of
candidate zeolites with targeted properties. It was used in the group to identify new
frameworks with auxetic behavior[195]. Here, the objective is to compare the data
set of DFT-calculated zeolites with the full database of hypothetical structures and
ultimately, to try to predict the distribution of thermal expansion and bulk modulus
of the PCOD2 database.

First of all, I determined the different types of descriptors for the whole PCOD2
database, following the same methodology used up until now. Considering the size
of this database, this step required a significant time to complete. For around 600,000
structures, the computational effort is as follows (timing reported for nonparallel,
single-CPU calculations): a couple of days for the bond distances and angles, one
week for the SOAP features and around two weeks for the topological descriptors.
However, the calculation of volumetric descriptors was not possible. Many of the
systems in the database are too large and the time needed for calculating them was
excessively long. Results for other descriptors, such as the Si–O–Si angles and Si–O
distances, are reported on fig. 3.17 for both my data set and the PCOD2 database.
As my database is much smaller, both occurrences were normalised in both cases.
The first observation that can be made, is that the span of values of both Si–O–Si
angles and Si–O distances is very close for my data set and the PCOD2 database.
This means that the geometrical descriptors of both databases will show the same
distribution. This is an encouraging result as it means that a model trained on these
descriptors should be generalizable without extrapolation. What can be seen also
is that Si–O distances do not vary much, keeping values between 1.60 and 1.62 Å.
This confirms the previous conclusions that distances do not impact the predictions
as much as the angles. Indeed, in contrary with the distances, Si–O–Si angles show
a larger range of values with a total amplitude of around 20°. This explains the
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FIGURE 3.17: Distribution of descriptor values of our data set com-
pared to the Deem database. Descriptors represented are: (a) Si–O
mean distance; (b) Si–O–Si mean angle; (c), (d) and (e) first three com-
ponents of principal component analysis of SOAP features. Due to
the difference in data set size, frequencies have been normalized for

both data set.

importance of these angles in the predictions, as they account for a lot of the diversity
between the different structures.

The distributions for the three principal components of SOAP features for both data-
bases are also represented on the bottom panels of fig. 3.17. In contrast with the
geometrical descriptors, the distribution of the principal components of my database
seems to be shifted compared to the case of PCOD2. Two conclusions can be drawn
from this result. First, it means that the geometric diversity in the PCOD2 database
is larger than in the DFT-calculated data set. My set of structures do not represent all
of the possible environments included in this database of theoretical structure. The
second conclusion is that some of the structures from the PCOD2 database could be
outside of the realm of “feasible zeolite structure”. This is an interesting new take
on the question of experimental feasibility of frameworks, a question which was
already addressed in the past in the group[161]. This subject is still pursued in the
group, although it is outside of the scope of the current study. I can only conclude,
for now, that a prediction on the PCOD2 database using the principal components
of SOAP features as descriptors would probably result in a poor prediction.

Since SOAP features are out of the question, I decided to use the geometrical de-
scriptors to try to predict the thermal expansion and bulk modulus of the database
of theoretical zeolite structures. I used the same hyperparameters described earlier
with my data set of DFT-calculated zeolite as the training set. The same set of geo-
metrical descriptors, including statistics on Si–O distances and Si–O–Si angles, was
used (see table 3.1. The results of the prediction were plotted as a heatmap, using
a gradient of color as the third dimension. This is shown in fig. 3.18. Some general
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FIGURE 3.18: GBR prediction of the PCOD2 database on the thermal
expansion and bulk modulus using the geometrical descriptors and

our data set as training set.

trends can observed from this figure, such as the statistical correlation between the
thermal expansion and bulk modulus. Structures with a higher bulk modulus tend
to show a larger (negative) value of thermal expansion. This behavior was already
slightly appearing in my data set, as evidenced by the fig. 3.9. It also seems that both
quantities are linked to the same geometrical feature, namely, the Si–O–Si angle. As
already explained previously in this chapter, angles were found to be one of the most
important descriptor in the prediction of properties of zeolites. Here, it appears that
materials with a higher value of angles exhibit both a higher bulk modulus and a
larger negative thermal expansion. This correlation between mechanical and ther-
mal behavior through a relatively simple geometric feature is an interesting new
development, and would have to be confirmed — for example, through systematic
calculations of representative structures within the PCOD2 database.

3.2.3 Conclusion

Machine learning techniques are popular and widely spread nowadays. They are
used in chemistry for the prediction of properties, hypothetical structures or to pre-
dict chemical synthesis route. The field of computational chemistry was one of the
first to recognise the potential of such methods and it can be now commonly imple-
mented in a scientific methodology. One of the most important challenge when us-
ing these techniques in chemistry is the representation of molecules and structures.
Indeed, the conventional representation using fractional coordinates and translation
vectors is very common in chemistry, but it is not suitable for machine learning.
The representation must be invariant with the referential. Several solutions were
proposed, such as the use of Coulomb matrices for example. This domain is still
active and is of great importance as the quality of the representation (along with
the quality of data) conditions the quality of the prediction. In the case of zeolites,
large databases of structures have been created. The International Zeolitic Associa-
tion database contains the structures of all the accepted topologies of zeolites. The
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PCOD2 database contains around 600,000 hypothetical structures of pure silica ze-
olites. In my case, I created a database of properties of zeolites calculated through
static DFT calculations. DFT is a high accuracy method leading generally to better
results than force fields, which are usually used for the creation of databases as it
requires a limited computational cost. However, the use of DFT prevented me from
calculating a large number of structures. The 121 simulated zeolites represent a rel-
atively small database when compared to other databases of zeolites. This can be
an obstacle to its use in machine learning as a training set. I then investigated this
possibility and estimated the performance of a model trained on my database.

As I was using supervised machine learning, I needed to define descriptors to rep-
resent the structures of my database. I chose to use different types of descriptors
as it would allow me to compare their performance. I chose ad hoc geometric de-
scriptors using statistics on Si–O bonds and Si–O–Si angles, volumetric descriptors
such as accessible volume or surface area, topological descriptors using the number
of neighbours in the successive coordination spheres, and descriptors arising from
the principal components analysis of Smooth Overlap of Atomic Positions (SOAP)
features. The GBR model trained on the geometric descriptors resulted in a good
prediction of the thermal expansion with a low value of RMSE. The analysis of the
relative feature importance and partial dependence revealed that statistics on angles
are decisive in the prediction of thermal expansion compared to distances. In the
case of thermal expansion, it is simple to link the low frequency vibration modes in-
volving tetrahedral rotations of SiO4 with the Si–O–Si angles. Comparing different
models trained on different descriptors highlighted the efficiency of SOAP features
as it showed the best accuracy. This trend was also observed in the prediction of
the bulk modulus, although ad hoc geometric descriptors resulted in an accuracy
close to SOAP features. Combining the best descriptors of each type into one model
(containing the same number as the previous ones) showed an improvement of the
accuracy. Relative feature importance showed that the SOAP features are clearly
the most important parameters along with the Si–O–Si angles. By applying a model
trained on non DFT-optimised structures and predicting the DFT calculated prop-
erties, I proved that the training set of structures does not need to reach the same
level of accuracy. Indeed, structures of the IZA database, obtained by a distance
least-squares refinement, performed identically in the prediction of thermal expan-
sion compared to the DFT structures. This is an important and time-saving result
as it shows that lower accuracy techniques can lead to the same results. I finally
applied my model to the database of theoretical zeolites PCOD2. Comparison of the
descriptors showed that, while SOAP features were the most important descriptors,
the values between my database and PCOD2 differ. In contrast, ad hoc geometric
descriptors were relatively similar, leading me to choose to perform the prediction
with a model based on those descriptors. Results revealed that a structure with a
higher bulk modulus tend to have a larger negative thermal expansion.

Through this work, I proved that the prediction of the thermal expansion and bulk
modulus was possible using my database of DFT-calculated zeolites as a training
set. As shown, it can be used to predict the properties for large databases of theoret-
ical structures and is thus able to guide the synthesis towards materials with specific
desired characteristics. It has been proved also that theoretical structures can be opti-
mized with techniques requiring a relatively low computational cost without losing
the quality of prediction. This represents a time-saving conclusion allowing for the
consideration of larger databases. The range of applications of machine learning in
chemistry is vast but requires more and more data of higher accuracy in order to
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improve the predictions’ performance. This database of zeolites alone can be used
in various machine learning studies or could complete already existing databases of
similar accuracy.





97

Chapter 4

Collaborations

As the subject of my PhD is quite broad both in terms of phenomena and concern-
ing the materials chosen, I was able to dive into different projects with systems that
stray away from the zeolite structures studied up until now. Such projects usually
originate from the group’s collaboration wih experimentalists. Indeed simulation is
a powerful tool to explain phenomena that cannot be fully understood with experi-
ments alone, providing a microscopic view of the systems and a direct link to their
macroscopic properties. The reverse is also true as experiments are guidelines for
simulations. It’s the combination of both approaches that usually leads to the birth
of new knowledge, especially on very complex systems. Therefore simulations and
experiments are often combined as part of collaborations of different groups of re-
search. During my PhD, I had the opportunity to collaborate with experimentalists
in three such studies. I studied their systems to try to explain certain phenomena
that they were observing. Despite having different objectives, each collaboration
was done on MOFs materials, looking at their structure and properties.

This chapter will describe these different collaborations. Each section will talk about
a different project with a different laboratory. It will start each time with an intro-
duction of the project and will be followed by the results. Some results obtained by
collaborators, especially experimental results, will be mentioned and described in
this chapter. It will be specified directly when such results were not obtained by me.

4.1 The flexibility of MUF-15

4.1.1 Introduction

This project was realised in collaboration with the group of Professor Shane Telfer
from the University of Massey (New Zealand). He contacted our team because he
had trouble determining the structure and flexibility of a material.

He was studying a MOF material that was previously synthesized in his group [247].
This MOF called MUF-15 (Massey University Framework) was originally studied
for the separation of ethane and ethylene. The structure of this material is depicted
on fig. 4.1. It is composed of isophtalate organic linkers and contains cobalt-based
metal nodes of formula Co6(µ3-OH)2(RCO2)10. This particular arrangement leads to
the presence of cages that can be clearly seen on the right panel of fig. 4.1. MUF-15
features a high pore volume, which results in the highest C2H6 uptake among the
top-performing ethane-selective MOFs. This MOF features relatively small pores
suitable for the adsorption of small gas molecules such as ethane. Moreover, these
pores are decorated with benzene rings facilitating the contact between the guest
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molecules and the framework walls. They found that MUF-15 exhibits a great selec-
tivity of ethane over ethylene while having a high uptake. An example of adsorption
isotherms of MUF-15 is shown on fig. 4.2. The Massey group attributed this to the
particular pore architecture of their material and to the absence of regions of high
polarity such as open metal sites. Besides its good uptake and selectivity, this mate-
rial also stands out by its availability. Indeed it is readily obtainable from cheap and
simple reagents. Added to its nice adsorption properties, this makes this material an
interesting choice for the separation of ethane and ethylene.

FIGURE 4.1: (a) Structure of the metal SBU (cobalt = dark blue, carbon
= black, oxygen = red). Sites occupied by H2O ligands are marked
with a "t". (b) Structure of the isophtalic acid. (c) Representation of
the assembly between inorganic and organic SBUs. Taken from [247].

FIGURE 4.2: C2H6 and C2H4 adsorption isotherms of MUF-15 at
293 K. Taken from [247].

After working with this "parent" structure, they decided to synthesize derivatives
of the MUF-15 framework by changing the nature of the organic linker. They kept
using isophtalate but added different functional groups to it. They were able to
synthesize derivatives with –F, –Br, –CH3, –OH, –NO2 and –OMe. Among all these
derivatives, they were particularly interested in the –OMe compound as, in contrary
with all the others, this one appeared to show some flexibility under 1 bar of pressure
(which was their limit in terms of measurement). They were able to identify this
flexible behavior with the isotherm of Ar at 87 K, which is represented on fig. 4.3. A
step is clearly visible on the adsorption isotherm of Ar indicating that the structure
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FIGURE 4.3: D2, H2 and Ar adsorption isotherms of MUF-15–OMe at
low temperatures. Taken from [248].

undergoes some changes towards an "open form" of the initial structure. Pr. Telfer
and his group tried to identify this open form but the XRD experiments did not
allow to conclude on the structure. This flexibility was only observed under 1 bar
on the –OMe compound. However, it is expected that the parent form and all its
derivatives may show the same kind of flexible behavior, albeit possibly at higher
pressure.

The goal of the simulations was to find the mechanism behind the gate opening of
the -OMe compound as well as the open form of the structure and to study this
MOF’s behavior under pressure.

4.1.2 Calculation parameters

I started from CIF files of the parent MUF-15 and the –OMe derivative that Pr. Telfer
shared with me. These files were obtained from XRD experiments. All the cal-
culations were realised at the DFT level with the CRYSTAL17 code[171, 170]. All-
electron gaussian basis sets of double-ζ valence with polarization were used for all
the atoms. All these basis sets can be found online in the CRYSTAL basis set library
(https://www.crystal.unito.it/basis-sets.php). The exchange and correlation
were treated at the hybrid level using the PBEsol0 functional[174]. Considering the
large size of the system, a unique k-point for the sampling of the Brillouin zone was
enough to converge the properties of interest.

Convergence criteria for the geometry optimization were kept at their default val-
ues: a maximum of 0.00045 a.u. on atomic displacements during one optimization
step and 0.0018 a.u. on forces. Once the structures were converged, I used the Zeo++
software package[192, 193] to calculate the accessible volume and surface area based
on geometric considerations. Representative input files for the calculations are avail-
able online at https://github.com/fxcoudert/citable-data.

4.1.3 Results

I first started by optimizing the geometry of both the parent MUF-15 structure and
the –OMe derivative. After a few attempts, the optimization of the MUF-15 struc-
ture went rather smoothly within reasonable computational time. In contrary, the
optimization of the –OMe compound (for which the experimental structure was not

https://www.crystal.unito.it/basis-sets.php
https://github.com/fxcoudert/citable-data
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FIGURE 4.4: Left side: Representation of the packing inside the MUF-
15 parent structure. Right side: Representation of the packing inside

the MUF-15-OMe structure.

available) was much trickier. I first attempted to add –OMe functional groups to
the parent structure, which failed quickly. Indeed, the resulting structure could not
converge at all. As this material is pretty recent and complex, there was still some
doubts on the exact structure. Several arrangements and symmetries were plausible
which did not help in my study as the simulation requires the right structure. I made
a few other attempts with slightly different possible structural arrangements that Pr.
Telfer shared with me. Unfortunately none of the structures I tried to optimize could
converge.

Later during the project, Pr. Telfer and his group were able to obtain the single crys-
tal X-ray diffraction structure of the –OMe derivative they synthesized. Its structure
is shown in fig. 4.4 along with the structure of the parent MUF-15. It appeared that
while their structure is very close, adding –OMe functional groups induces some
structural changes. It has then been determined that the –OMe derivative and MUF-
15 are topological isomers, rather than strictly isoreticular. Therefore I took the new
structure and restarted the optimization from the beginning. However, the same
problems appeared on this new configuration and no improvement on the conver-
gence was observed. I concluded that the lower symmetry of the –OMe compound
as well as its additional degrees of freedom (rotations of methyl groups) are prevent-
ing the calculations to converge within the accuracy required. Given the fact that the
parent MUF-15 is structurally close and that it is expected to show some flexibility –
although at higher pressure – we decided to study this structure instead. Pr. Telfer
was also interested in the flexible behavior of the parent structure.

To understand the opening mechanism, I followed a methodology previously used
in exploring the flexibility of novel (or hypothetical) compounds[249]. First I started
by applying negative isotropic pressure on the system to mimic the opening of the
framework under a guest-induced adsorption stress. This is illustrated on fig. 4.5.
It is shown here that the cell parameters increase constantly until -1.6 GPa. An in-
crease of around 0.3 Å is observed for both a and c while the b parameter exhibits an
increase of around 2.3 Å. This shows that this framework has indeed some potential
for flexibility. It also demonstrates the anisotropy of the structure with the b direction
being by far the softest. This is understandable as the bridging linkers are oriented
along this direction. Therefore the opening mechanism is most certainly happening
in the b direction. Increasing further the pressure at around -1.7 GPa leads to an even
more pronounced increase of the b cell parameter of more than 1.3 Å over 0.1 GPa.
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FIGURE 4.5: Left side: Evolution of the cell parameters of the MUF-15
with respect to the pressure. Right side: Evolution of the Co–O dis-
tances between the organic linker and the inorganic node with respect

to the pressure.

I investigated the evolution of the bond distances inside this material and noted a
similar increase for one of the Co–O bond between the linker and the metal node
(see fig. 4.5). This increase of around 1 Å at -1.7 GPa indicates the breaking of the
bond. This was confirmed by looking directly at the structures which are shown in
fig. 4.6: we can see that one oxygen of the linker (shown by a red arrow) detaches
from the metal node.

FIGURE 4.6: Top: Structure of the MUF-15 at the equilibrium from
DFT calculation. Bottom: structure of the MUF-15 at -1.7 GPa.

As this phenomenon is occurring quite abruptly, constant pressure calculations were
not sensitive enough to investigate structural changes happening at around -1.7 GPa.
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I therefore switched to performing constant volume calculations in order to have
a better control on the opening process. Constant volume calculations consist in
optimizing the atomic positions and cell parameters with only a constraint on the
total unit cell volume. I calculated several structures around the volume of interest
and confirmed the microscopic mechanism shown in fig. 4.6. First, as the volume
increases, the linkers orient in the b direction and flatten in the ab plane. This is
followed by the cleavage of one of the Co–O coordination bonds aligned in the b
direction. This explains the strong anisotropy of the mechanical properties.

FIGURE 4.7: Accessible volume and surface area plotted against the
unit cell volume.

In order to confirm that the structural changes observed were directly connected
with a modification of the pore network, I conducted porosity analysis with the
Zeo++ software package[192, 193]. I retrieved from this the accessible volume and
surface area and represented them in fig. 4.7. It can be clearly seen that both of these
quantities are increasing with the unit cell volume. The parent structure at equilib-
rium has an accessible volume of 669 Å3 and a surface area of 1183 Å2. These values
are lower than the experimental measurements, which is consistent with the smaller
unit cell of the energy-minimized structure. Upon increasing the unit cell volume
from 5807 Å3 to 7648 Å3, the accessible volume and surface area both increases to
1860 Å3 and 1898 Å2 respectively. As a result, the framework flexibility appears to
be strongly linked to the drastic change of pore network. It demonstrates that the
flexibility is associated to (and triggered by) the adsorption of guest molecules with
sufficient host-guest interaction strength.

The flexibility being proven to be associated to the adsorption of guest molecules, the
last point of the study was to clarify the accessibility of this opening process. This
was realised by calculating the energy penalty associated. As the simulations were
realised on a "perfect" structure with no adsorbed molecules, it was expected that
the non-deformed phase was more stable than the opened one. I found an energy
difference of +54 kJ/mol per Co atom. This is comparable to "breathing" energies ob-
served for other porous MOFs, and fully consistent with materials where flexibility
can be triggered by adsorption. I represented in fig. 4.8 the total energy in the case of
a framework filled with guest molecules and in the case of an empty framework. As
it is not possible to introduce guest molecules in the calculation, their contribution
to the total energy was considered to be the internal pressure. At each volume, in
the case of the framework filled, the contribution of pressure was removed from the
total energy in order to mimic the presence of molecules in the pores. It appears that
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FIGURE 4.8: Energy E, pressure P and energy considering the void
filled (E− PV) with respect to the volume.

the open form of the structure observed earlier corresponds to a metastable phase.
Indeed a local minimum of the energy is observed when the contribution of pressure
is omitted, indicating that the adsorption of molecules can stabilize this metastable
phase. The mechanism observed for MUF-15 appears to be generic, although the
details of the energetic balance involved in the opening process will depend on the
microscopic nature of each structure: this means that while all members of the MUF-
15 family are expected to have the potential to be flexible, flexing will be triggered
under different conditions (temperature, pressure, adsorption) in different materials.

4.1.4 Conclusion

With DFT-based simulation techniques, I set to investigate the behavior of the MUF-
15 framework and its -OMe derivative. The complexity of the -OMe structure made
the geometry optimization impossible and forced me to study only the parent MUF-
15 structure. Their structures are nonetheless quite close which makes it possible to
transpose some of the results obtained with the parent structure. I then optimized
the structure of MUF-15 at different pressures and noticed a strong anisotropy of
this framework with the b direction being bar far the softest. I also saw an abrupt
change of cell parameters and Co–O bond distances at around -1.7 GPa indicating
the breaking of a Co–O bond. This was confirmed by looking directly at the struc-
ture at -1.7 GPa. However, this phenomenon occurring very quickly, the constant-
pressure calculations were not sensible enough to allow a close look at the opening
mechanism. I therefore switched to constant-volume calculations, which confirmed
the microscopic mechanism: First, as the volume increases, the linkers orient in the b
direction and flatten in the ab plane. This is followed by cleavage of one of the Co–O
coordination bonds aligned in the b direction. Porosity analysis with the Zeo++ soft-
ware package revealed an increase of the accessible volume and surface area with
respect to the volume. This showed that the flexibility is coupled to the change of
pore network and that the adsorption of guest molecules can trigger the opening of
the framework. The energy penalty of such opening process was found to be reason-
able compared to "breathing" energies of other MOFs. Studying the energy revealed
a local minimum, indicating the existence of a metastable phase. This metastable
phase corresponds to the open structure observed at high pressure.
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The type of calculations performed in this work allows to investigate the flexibility
of novel or unknown materials. It is a way of studying the effect of pressure on a
structure without resorting to methods with a higher computational cost. While it
cannot simulate the adsorption of gases, it mimics the process of adsorption by in-
troducing a negative external pressure. Molecular dynamics simulation would have
been preferred to simulate this process, however this was not possible due to the
high computational cost. This work was published in Chemistry of Materials[248].

4.2 The role of the node-linker bond in the compression of
UiO-66

4.2.1 Introduction

The second project I realised in collaboration with experimentalists was with Louis
Redfern from Pr. Omar Farha’s team in the university of Northwestern in Evanston
(USA). They contacted our team because they wanted to add computational insights
on their system.

They were working at the time on a widely-studied MOF called UiO-66. Its struc-
ture consists of 12-connected Zr6(µ3 − O)4(µ3 − OH)4 nodes joined by linear 1,4-
benzenedicarboxylic acid linkers (also called BDC) that assemble into the fcu topol-
ogy. A representation of the structure is depicted in fig. 4.9. As it can be seen on the
figure, the UiO-66 features two different cages within its structure: a large octahe-
dral one (around 12 Å) and a smaller tetrahedral one (around 7.5 Å). UiO-66 has a
remarkable chemical and thermal stability[54]. It also shows a higher resistance to
mechanical stress compared to other common MOFs[250]. However, the presence of
missing linkers defects can drastically impact the mechanical properties[251, 252].
Prior to collaborating with us, Pr. Farha’s team studied the effect of the linker’s
length and determined that a systematic extension of the organic linkers leads to a
decrease in the bulk modulus[253]. This is shown on 4.10. They also noticed that the
void fraction was at play in the mechanical properties, as the same correlation could
be observed there.

They noticed in the literature that, while UiO-66 has been extensively studied, there
are fewer works focusing on changing the composition of the MOF[255, 256]. This
motivated them to investigate the behavior of this MOF with different metal nodes
and to study the role of the metal-carboxylate bond in the compression of UiO-66.
They determined that the only variable in their experiment was the coordination
bond. They synthesized a series of three MOFs M-UiO-66 (M = Zr, Hf, Ce) and
investigated their behavior under pressure. They observed that, while Zr and Hf
analogues were quite similar, Ce-UiO-66 is found to be much more compressible.
They measured values of 37.9 GPa and 37.0 GPa for the bulk moduli of Zr and Hf
respectively whereas Ce exhibited a value of 16.9 GPa. Having kept all the variables
of the synthesis constant, they attributed this difference to the differences in the bond
between the metal node and the linker.

They determined the bulk moduli values from a second-order Birch Murnaghan
equation of state using their PXRD measurements under pressure. Their results are
shown on fig. 4.11. It can be clearly seen that Ce-UiO-66 compresses much more
readily than its two other analogues. Alternatively, they noticed a slight change
of slope at around 0.4 GPa for Ce. They attributed this discontinuity to a possible
structural change or a partial amorphization, but could not conclude on it since it
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FIGURE 4.9: Representation of the UiO-66 structure. (a) The face-
center-cubic unit cell of UiO-66. Metal nodes are represented in light
blue and linkers are represented in grey. (b) Structure of the octahe-
dral cage. (c) Structure of the tetrahedral cage. (d) Color scheme for

the atomic representation. Taken from [254].

FIGURE 4.10: Effect of (left panel) void fraction and (right panel)
linker length on the bulk modulus of two series of MOF (UiO and

Nu-900). Taken from [253].
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would require further characterization. Although it is not possible to probe directly
the bond between the metal and the linker with Raman spectroscopy, pressure-
dependent Raman measurements allowed them to study the carboxylate group of
the linker. They drew a particular attention to the C–C stretch between the aromatic
core of the linker and the carboxylate carbon and the O–C–O symmetric stretch of
the carboxylate to provide insight into the metal-linker bond strength.

FIGURE 4.11: Unit cell compression of M-UiO-66 for M = Zr, Hf, Ce.
Solid curves represent the second-order Birch-Murnaghan equation
of state used to determine the bulk modulus of each MOF. Taken from

[257].

They first observed that the peaks of interest broaden with increasing pressure,
which is a common behavior known in high-pressure Raman spectroscopy[258]. In
the case of Zr-UiO-66 and Hf-UiO-66, they observed an hypsochromic shift (increase
of frequency) of both C–C and O–C–O vibrations over the range of 0 to 1.2 GPa.
However, the spectrum of Ce-UiO-66 was much more complex to analyse quantita-
tively, as the immediate broadening of the two peaks leads to a single broad signal.
This significant change at low pressure may result from structural changes, which is
in agreement with changes observed at 0.4 GPa with PXRD measurements.

They then approached us to perform simulations on this system. They wanted to
further understand why the Zr and Hf systems behave differently than the Ce one,
based on a microscopic picture of the system.

4.2.2 Calculation parameters

I started my calculations on CIF files provided by Pr. Farha’s team and which were
obtained through powder XRD experiments. All the calculations were performed
at the DFT level with the CRYSTAL14 software package[259, 260]. I tested several
functionals with and without D3 dispersion corrections. As already observed earlier
in this thesis, the PBEsol0 hybrid functional without dispersion corrections is the
most efficient. Therefore I decided to use this functional again. All-electron local-
ized basis sets were used for all the atoms except for hafnium and cerium for which
I opted for a pseudopotential approach. The acronyms of the basis sets used for
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each atoms are given in table 4.1 and can be found on the CRYSTAL online library
(https://www.crystal.unito.it/basis-sets.php). I tested the convergence of k-
point sampling for each material and found that only a few number of k-points was
needed. Therefore I used a shrinking factor of 2, which ensures the convergence of
the properties of interest.

Atom Basis set

Zr Zr_all_electron_dovesi_unpub
Hf Hf_ECP_Stevens_411d31G_munoz_2007
Ce Ce_ECP_Meyer_2009
C C_6-31d1G_gatti_1994
O O_6-31d1_gatti_1994
H H_3-1p1G_gatti_1994

TABLE 4.1: List of the acronyms of the basis sets used for the simula-
tions.

Stricter convergence criteria than the defaults proposed by the CRYSTAL14 code
were used for geometry optimization (a maximum of 0.0005 au on atomic displace-
ments during one optimization step and 0.0001 au on forces) because the aim was to
study very fine variations of structure and vibrations. Representative input files for
the calculations are available online at https://github.com/fxcoudert/citable-data.

4.2.3 Results

I started by optimising the geometries of all three materials. I made full use of sym-
metry and relaxed both the atomic positions and the cell parameters. Due to the high
symmetry of these systems, the minimization was relatively quick and I was able to
obtain the equilibrium structures within a short time. Comparing the Zr and Hf ma-
terials, I saw that the results of the optimisation and the calculated properties (that
will be shown later) were completely similar between the 2 metals, as seen experi-
mentally. Therefore, for the sake of clarity, I will sometimes only use one of the Hf
and Zr compounds for the comparison with Ce-UiO-66. The reader can note, how-
ever, that all the trends observed for Zr apply to the Hf counterpart and vice versa.
The cell parameters obtained are available on table 4.2. A good agreement can be
observed between my calculations and the measured experimental cell parameters.
Although a small discrepancy can be seen, it is completely reasonable and fits the
accuracy of the parameters I chose. Following the optimization of the structures,
I conducted frequency calculations in order to obtain the frequencies of vibrations
of the C–C stretch and the O–C–O symmetric stretch. Again I found a good agree-
ment with the experiment. For example, Zr C–C stretch was found to be around
1430 cm−1 and I obtained a value of 1428 cm−1, which is very close. The same goes
for the O–C–O symmetric stretch for which I found a value of 1446 cm−1, very close
to the value of 1451 cm−1 measured experimentally. The same agreement was ob-
served for the two other compounds. Overall my simulations reproduced quite well
the experimental findings and this comforted me in the parameters I chose.

The frequency calculations I performed also revealed an interesting point: the pres-
ence of a negative frequency in Ce-UiO-66. Negative frequencies usually denotes the
instability of the structure of a material or molecule. This instability can be investi-
gated by looking at the vibration mode related to the negative frequency. Here, the

https://www.crystal.unito.it/basis-sets.php
https://github.com/fxcoudert/citable-data
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Hf-UiO-66 Ce-UiO-66

Expt. Calc. Expt. Calc.

20.7279 20.6268 21.488 21.3944

TABLE 4.2: Cell parameters comparison between the
experiments[257] and the simulations. Values are given in Å.

FIGURE 4.12: Evolution of the cell parameters of M-UiO-66 (M = Zr,
Hf or Ce) with respect to the pressure.

instability observed is linked to the ligand bowing out of its average plane. These
modes, also called "guitar string" modes, have previously been observed in UiO
compounds and other MOFs[261]. They originate from the nature itself of DFT cal-
culations: indeed DFT is conducted at 0 K. This means that low frequency vibrations
are not activated energetically. Vibrations such as the ligand bowing out of its plane
require low temperature to be active. At 0 K, the minimal-energy configuration for
the ligand is out of plane, in one of the two possible symmetry-equivalent configu-
rations. However, at finite temperature, thermal motion would enable the ligand to
move back and forth resulting then in the averaged in-plane position, which is the
high-symmetry structure observed in XRD. Therefore, the imaginary frequency ob-
tained here is completely due to the nature of DFT calculations and does not imply
any instability of the structure. Knowing this, and because I am not interested in the
details of the "guitar string" effect, I decided to ignore this phenomenon and pursue
the study.

I then conducted constant pressure calculations to investigate the evolution of the
structure under pressure. I adopted a pressure range from 0 to 2 GPa. The evolution
of the unique cell parameter is shown in fig. 4.12. As it can be seen, the cell parameter
decreases linearly with the pressure in all three cases. Zr and Hf have a similar
slope, which means that their compressibility is very close. Ce on the other hand
shows a higher slope meaning that the Ce-based MOF is more compressible than
the two others. However, the difference is not as marked as in the experiment. This
is why I expected to find a less important difference between the bulk moduli values
of Ce and its counterparts compared to the experiments. It can also be noticed on
fig. 4.12 that the discontinuity observed experimentally on the volume of the Ce
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compound at 0.4 GPa is not reproduced here. This discontinuity was attributed to
structural changes occurring at this pressure. If the simulations do not reproduce
this behavior, then it means that this phase transition involves a symmetry-breaking
transition to a lower symmetry phase. This type of process cannot be reproduced
by the calculations I am running. Simulating this kind of behavior would need a
technique that allows symmetry-breaking processes. Molecular dynamics could be a
method of choice for this, but it was not considered since reproducing the transition
was not the point of the present study.

FIGURE 4.13: Evolution of the bulk modulus of M-UiO-66 (M = Zr,
Hf or Ce) under pressure.

I also conducted linear response calculations in order to determine the stiffness ten-
sor of each structure. This allowed me to derive the bulk modulus for each structure.
From these calculations, I obtained a similar value of around 42 GPa for Zr and Hf
compounds while Ce-UiO-66 showed a value of around 37 GPa. This difference,
while not being as marked as with the experiments, correlates with the difference of
compression measured experimentally and the evolution of the cell parameter ob-
served previously: Ce-UiO-66 is more compressible than its Zr and Hf analogues. I
confirmed this trend through the whole pressure range studied by determining the
bulk moduli values for each pressure. These are displayed on fig. 4.13. This figure
also confirmed that Ce-UiO-66 and its counterparts are really close in terms of be-
havior and differ mainly in terms of amplitude. Indeed we can see that the bulk
modulus of all three materials undergoes the same variations albeit at a lower value
for Ce.

Simulating structures under pressure also allowed me to probe the variations of spe-
cific structural features. Among all of them, I especially focused on structural fea-
tures around the ligand. First, I observed that O–C–O angles and dihedral angles
between ligands were identical in all cases, shifting by around 1° in each case. The
different bonds in the materials are decreasing which is a logical result of the com-
pression. However, adopting the cell parameter as a reference leads to interesting
new conclusions. I represented (l/l0)/(a/a0) curves for C–C, C–O and M–O bonds
with respect to the pressure (l and a correspond respectively to the bond length and
lattice parameter at the associated pressure and l0 and a0 are the zero pressure val-
ues). This can be seen on fig. 4.14. I omitted the Hf compound in the figure for
clarity as the results were similar to the Zr analogue. This representation allows
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to compare the variation of the bond distances with the deformation of the cell. It
appears that the C–O bond decreases more slowly than the cell parameter in both
cases [(l/l0)/(a/a0) > 1] whereas the C–C bond decreases almost at the same rate
[(l/l0)/(a/a0) ≈ 1]. Moreover, it can be seen that the variation of the C–O bond
is even slower in the case of Ce-UiO-66, which supports the slower variation of the
O–C–O symmetric stretch for Ce. This shows that the carboxylate group is a key
feature when investigating the compression of this material. The last bond I focused
on was the M–O bond as it is the link between the metal node and the organic linker.
The plot revealed that this bond decreases faster than the lattice parameter. It is
even more pronounced in the case of Ce, which I ascribed to the orbitals of Ce be-
ing more diffuse than those of Zr, leading then to a slightly higher flexibility of the
Ce–carboxylate bond. All these calculations were static (realised at 0 K) but I believe
that, due to the relatively low thermal expansion of UiO-66[262], the observations
made here are also valid at room temperature.

FIGURE 4.14: (l/l0)/(a/a0) plot for C–C, C–O and M–O bonds of
Zr-UiO-66 and Ce-UiO-66. Black lines and blue lines correspond re-
spectively to Zr and Ce. Circles, triangles and crosses correspond
respectively to the C–C, C–O and M–O bonds. (l/l0)/(a/a0) is di-

mensionless.

During our collaboration, we also discussed the possibility of Ce3+ forming in the
framework, as Ce4+ has a high potential of reduction. These Ce3+ cations could in-
corporate into the structure accompanied by an additional proton on one of the µ3-O
groups present in the Ce6 node. This motivated Pr. Fahra’s group to conduct XPS
experiments, which revealed that the synthesised material contains about 10 % of
Ce3+ ions. This ratio corresponds roughly to 47 % of Ce6 nodes containing at least
one Ce3+, assuming they are evenly distributed throughout the MOF. The presence
of Ce3+ within the framework may lead to distortions of the node structure, as Ce3+

has a longer ionic radius then Ce4+. This would influence the mechanical proper-
ties of the MOF. The existence of Ce3+ species inside this material correlates with
the observation made so far and explains the differences between experiments and
simulations. Indeed the simulations were realised on a perfect structure containing
100 % of Ce4+. I think that this is a further explanation of why the bulk modulus we
calculated for Ce-UiO-66 is not as low as measured experimentally. Moreover, Zr3+

and Hf3+ are not likely to form which, considering how close our results are from
the experiments for Zr-UiO-66 and Hf-UiO-66, supports the idea that M3+ ions play
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a role in the properties observed. It has been hypothesized then that the presence
and proportion of Ce3+ can influence the unique behavior observed in Ce-UiO-66.

4.2.4 Conclusion

With DFT-based methods, I investigated the different behaviors shown by the Zr-
UiO-66 and Hf-UiO-66 compared to their analogue Ce-UiO-66. The optimisation of
geometry succeeded rather smoothly and within reasonable time. A good agree-
ment with the experiments was observed for both the lattice parameters (∼1 Å of
difference) and the frequencies of vibrations (less than 10 cm−1 of difference). The
frequency calculations revealed however a negative frequency in the case of Ce-UiO-
66, which is usually an indicator of instability. This vibration mode appeared to be
linked to the linker bowing out of its average plane. However, this negative fre-
quency was not correlated to a potential instability: it was found to be linked to the
particular nature of DFT being conducted at 0 K. This “guitar string” effect was of
no interest in my case and did not constitute an instability of the material. Therefore,
I continued the study without taking into account this phenomenon.

Constant pressure calculations allowed me to highlight the close behaviors between
the three materials, albeit at different values for Ce. Lattice parameters were found
to decrease linearly with the pressure and faster in the case of Ce which is in line
with the lower bulk modulus measured experimentally. However the phase transi-
tion observed experimentally could not be reproduced here with static DFT calcula-
tions. Calculating the bulk modulus led to values of around 42 GPa for Zr and Hf
and 37 GPa for Ce. While the difference is not as marked as in the experiments, it
is still confirming the different behaviors between Ce and its two counterparts. The
evolution of specific structural features could be probed using the constant pressure
simulations. C–O bonds were found to decrease more slowly than the lattice param-
eter. The variation of the C–O bond is even slower in the case of Ce, which supports
the slower variation of the O–C–O symmetric stretch for Ce. After some discussion
with our team, Fahra’s team decided to measure the possible presence of Ce3+ in Ce-
UiO-66. The presence of Ce3+ would change the node structure by inducing some
distortions and would impact the mechanical properties. With XPS measurements,
they found that the material contains ∼ 10 % of Ce3+. This is most certainly the
reason why I obtained different values in my calculations of Ce-UiO-66 as my sim-
ulations were realised with a perfect structure containing 100 % of Ce4+. It shows
however that the presence and proportion of Ce3+ could influence the behavior of
this framework.

We discussed the possibility of performing simulations taking into account the per-
centage of reduced Ce ions. It would be a nice way of proving the hypothesis we
formulated. To create Ce3+ cations, it was necessary to remove some linkers in the
structure. Even though we selected carefully the linkers to remove in order to keep
the highest symmetry possible, the decrease of symmetry complicated a lot the con-
vergence of the calculations. In the end, the calculations became too complex and
could not succeed.

This work was published in Chemistry of Materials[257].
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FIGURE 4.15: Experimentally derived P-T phase diagram for ZIF-62.
Taken from [265].

4.3 Melting of hybrid organic-inorganic pervoskites

4.3.1 Introduction

Melting is a process often used in industry as it is a convenient way of shaping a
material and is also necessary to create glasses. However, the melting of MOFs is a
complicated topic of research. Indeed, MOFs tend to decompose before melting due
to their rather low thermal stability compared to inorganic solids. Their instability
is the principal obstacle for industrial applications. Nevertheless, recent efforts were
made in the group to obtain and study MOFs as glasses or liquids in collaboration
with experimentalists, especially the group of Pr. Thomas Bennett from the univer-
sity of Cambridge. In 2017, Gaillac et al[263] studied a zeolitic imidazolate frame-
work (ZIF) called ZIF-4 that experimentalists were able to melt. They demonstrated
the retention of the chemical configuration, coordinative bonding and porosity. With
their results, they introduced the new term “MOF liquid”. Later, Gaillac, along with
Pullumbi and Coudert[264], investigated the transferability of the mechanism they
found previously to other ZIFs. They showed that the melting phenomenon is sim-
ilar for ZIF-8 and ZIF-zni. They also found that ZIF-8 cannot melt as they observed
a temperature of fusion above its temperature of decomposition. They suggested
that the high porosity of ZIF-8 is the origin of this phenomenon. Thus, they hy-
pothesized that denser materials such as ZIF-4 and ZIF-62 are more prone to melt.
They further studied these systems by establishing the pressure-temperature phase
diagram of ZIF-4 and ZIF-62 (shown in fig. 4.15 for ZIF-62) through combined in
situ powder XRD and optical microscopy with thermodynamic considerations[265].
They proved that increasing pressure induces the lowering of the melting tempera-
tures. This is an important discovery for industrial processes as it makes it easier to
produce MOF glasses since the pressure needed is within the industrially achievable
range.

To this day, our group is still closely collaborating with experimentalists on this
topic of research. During my PhD, I also had the opportunity to tackle this theme



4.3. Melting of hybrid organic-inorganic pervoskites 113

with a final collaboration (in the order presented in this thesis). This last collabo-
ration was with Pr. Thomas Bennett’s team. They were particularly interested to
find new MOFs that can melt. Among the different possible MOFs, they recently
focused on hybrid organic-inorganic perovskite (HOIP). Perovskites are materials
that have a general formula of the form ABX3 with A and B being ions (often of
different sizes) and X another ion (often oxide) bonding with A and B. Examples
include the well-known CaTiO3 or BaTiO3. Following the same rule, HOIP are ma-
terials with the ABX3 structure. The difference with classical perovskites is that A
is an organic cation, B a metal ion and X a bridging ligand. These types of material
are used in ionic transport, luminescent or ferroelectric applications[266, 267, 268].
Examples of these are the hybrid lead halide perovskites, which are used in photo-
voltaic devices[269, 270]. Although the melting of MOFs presents advantages such
as the possibility to shape the material easily and post-synthesis, the field of MOF
science remains dominated by the crystalline state. A few efforts have neverthe-
less been made towards the controlled amorphization and the formation of glasses.
Indeed the reversible pressure-induced amorphization of methylammonium lead
halide perovskites was reported in the litterature as well as the melting of layered
HOIP (C4H9NH3)2MI4 (M = Ge, Sn, Pb)[271, 272, 273].

FIGURE 4.16: Unit cell representation of the [TPrA][Mn(dca)3]. Hy-
drogen atoms are not shown. Taken from [274].

In the case of Pr. Bennett’s team, they were interested in three particular hybrid per-
ovskites whose structure is depicted on fig. 4.16. They all show the same structure
and only differ with the nature of the metal ion. The general formula of the mate-
rial is [TPrA][M(dca)3] with TPrA being the abbreviation of tetrapropylammonium
(CH3CH2CH2)4N+ and M = Mn2+, Fe2+, Co2+. The Bennett group carried out differ-
ent experimental measurements in order to find evidence of melting. They reported
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the thermogravimetric analysis (TGA) of their solids which showed the decomposi-
tion at 281, 273 and 267°C for respectively Mn, Fe, and Co materials. This is com-
parable to previous observed temperature of decomposition for similar frameworks
[275]. They also conducted differential scanning calorimetry (DSC) measurements
(which are shown in fig. 4.17) along with optical images of [TPrA][Mn(dca)3] before
heating and after cooling. They identified strong endothermic peaks which they at-
tributed to the melting of the frameworks. Melting temperatures were found to be
of 271, 263 and 230°C for Mn, Fe, and Co respectively. This was found to follow the
trend of ionic radii, as Co has the smallest ionic radii and Mn has the largest one.
They found that these results follow the soft-hard acid-base theory, which says that
a soft metal centre such as Mn2+ would interact more favourably with the dca ligand
leading then to a higher melting temperature.

FIGURE 4.17: Differential scanning calorimetry measurements on
[TPrA][M(dca)3] (M = Mn, Fe, Co) along with optical images of
[TPrA][Mn(dca)3] before heating (left) and after cooling (right). Taken

from [274].

They realised combined DSC-TGA experiment and witnessed a clear liquid-like be-
havior when heating above the melting temperature and cooling back to room tem-
perature. This liquid behavior was also confirmed through XRD measurements.
They determined the glass transition temperature (Tg) of all their samples through
DSC and completed with additional methods to confirm the results. DSC led to Tg
values of 223, 225 and 125°C for Mn, Fe and Co respectively. Thermomechanical
analysis (TMA) and frequency-dependent dynamic mechanical analysis (DMA) re-
sulted in very close values compared to DSC. This confirmed the values obtained
for the glass transition temperature. Other evidence of melting was found in the 13C
NMR where the peak corresponding to the N–C–N carbon was broad in the melt-
quenched material, whereas it was clearly defined in the crystalline material. A new
peak was also observed at around 120 ppm and attributed to a free dca ligand, which
highligths the decoordination of dca. Finally, pair distribution functions depicted in
fig. 4.18 showed that the peaks at high r broaden and weaken after melt-quenching,
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evidencing the loss of long-range order. Decoordination of dca ligand was also ob-
served, as several peaks related to the dca split or broaden.

FIGURE 4.18: Partial distribution functions of [TPrA][Fe(dca)3] and
its glass analogue noted ag[TPrA][Fe(dca)3]. Taken from [274].

With their work, Pr. Bennett’s team succeeded in proving the melting of their mate-
rials by bringing evidence of liquid-like behavior and measuring melting tempera-
tures. However, they wanted to have better atomistic insight in the process of melt-
ing and asked us if we could perform simulations on their systems.

4.3.2 Calculation parameters

Due to the thermal nature of the behavior I am studying, I used ab initio MD to in-
vestigate the dynamics of this system. The hybrid Gaussian and plane wave method
GPW as implemented in CP2K were used[276]. The simulations were performed
in the constant-volume (N, V, T) ensemble with fixed size and shape of the unit
cell. A time step of 0.5 fs was used in the MD runs, and the temperature was con-
trolled by velocity rescaling[99]. The exchange-correlation energy was evaluated
in the PBE approximation[277] and the dispersion interactions were treated at the
DFT-D3 level[97]. The Quickstep module uses a multigrid system to map the ba-
sis functions onto. The default number of 4 different grids was used, along with
a plane-wave cutoff for the electronic density of 600 Ry, and a relative cutoff of
40 Ry. Valence electrons were described by double-ζ valence polarized basis sets
and norm-conserving Goedecker-Teter-Hutter pseudopotentials[278] all adapted for
PBE (DZVP-GTH-PBE) for H, C and N or optimized for solids (DZV-GTH-PADE) in
the case of Mn.

4.3.3 Results

Pr Bennett’s team worked on three members of the [TPrA][M(dca)3] materials fam-
ily. However, it was not possible for me to study all of them as it would have re-
quired a lot more computational resources than what our group had acces to. In-
deed, the melting process cannot be investigated with static DFT methods that were
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used in the previous collaborations. Such process involving bond-breaking phe-
nomena also prevents the use of classical force-fields. This problem must then be
addressed with first principles molecular dynamics which is much more demand-
ing in terms of CPU resources. This is why I chose to study only one of these com-
pound. I therefore conducted my study only on the Mn compound. However, given
that these materials have a completely similar structure and only differ in the nature
of the metal, I believe that the general results observed here (in particular the mech-
anism) are transposable to [TPrA][Fe(dca)3] and [TPrA][Co(dca)3]. As the process I
aimed to study was too slow, it would require a very long timescale to observe it,
which is not something possible. Therefore, I chose to simulate the systems at tem-
peratures far above the melting temperature in order to have a timescale of the order
of the picosecond. This is a common trick to simulate processes that are too slow.

FIGURE 4.19: (left) Pair distribution function of Mn–N distances at
300, 750, 1200 and 1700 K and (right) distribution of N–Mn-N angles

at 300, 750, 1200 and 1700 K.

I realised 4 simulations at constant temperatures of 300, 750, 1200 and 1700 K. The
results displayed in this part were obtained from analyses of the trajectories of these
simulations. I first started by extracting pair distribution functions (PDF). Mn–N
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PDFs are represented on fig. 4.19. It can be seen that the peaks broaden with increas-
ing temperatures, meaning that Mn–N distances are less well defined as the temper-
ature grows. It can also be observed that the long-range order (above 6 Å), while not
being well defined at 300 K, is completely lost at high temperatures. I calculated the
generalized Lindemann ratio for the first two peaks of the Mn–N pair distribution
functions. This ratio was defined by Lindemann in 1910 as a threshold criterion for
the identification of melting behaviors. The values are reported in table 4.3. I found
that the ratio calculated exceed the Lindemann ratio between 750 and 1200 K[279],
indicating a liquid-like behavior at these temperature. The thermal fluctuations are
also noticeable on the N–Mn–N bond angles that are represented also in fig. 4.19. I
observed that the peak at 90° broadens with increasing temperature, translating the
distortion of the perfect octahedral environment. This distortion can also be seen at
180° where the peak broadens in the same fashion.

Temperature (K) First peak (%) Second peak (%)

300 7.8 6.5
750 11.1 10.1

1200 13.9 13.4
1700 17.2 17.2

TABLE 4.3: Lindemann ratio of the first and second peak of the Mn–N
pair distribution functions at the different temperatures studied.

From the simulated trajectories I was also able to extract the mean square displace-
ment (MSD) of the atoms present in the structure. The total MSD is represented in
fig. 4.20 for all the temperatures considered. This MSD shows that no large-scale mo-
tion of atoms is present at 300 K as the curve stays almost flat. The small variations
of the order of 1 Å are due to framework vibrations. However, starting at 750 K,
the MSD shows a monotonic increase with the simulation time, hinting at a linear
behavior (although we only have limited statistics). This is indicative of a diffuse be-
havior evidencing the melting of the material. This diffuse behavior is also present
at 1200 K and even stronger at 1700 K. Among the atoms of the structure, the Mn
shows almost no motions. Most of the motions observed come from the TPrA cation
which seems to need rather small thermal activation to move in the structure. The
other contribution to the total MSD at high temperature comes from the dca ligand.
Examining the trajectories revealed the breaking and reformation of Mn–N bonds,
explaining the contribution of the dca linker in the total MSD. I also confirmed that
the TPrA cation shows significant movement inside its cage.

The breaking and reformation of Mn–N bonds led me to calculate the free energy
profiles based on the Mn–N PDFs. They are represented on fig. 4.21. These poten-
tials of mean force were calculated as F(r) = −kT ln g(r). It can be seen on the
figure that the breaking of Mn–N bonds is not happening at 300 and 750 K during
our limited simulation time as the barrier shows discontinuities at these tempera-
tures. However, this barrier appears at 1200 and 1700 K showing that the breaking
and reformation of Mn–N bonds can happen at these temperatures. I estimated an
energy barrier of 85 kJ.mol−1 at 1200 K. This high energy barrier confirms that, as
in conventional solids, melting occurs through rare barrier-crossing event. It can be
noted that this energy decreases with increasing temperature, although it decreases
slower than what would be expected. As a result, the process involved here is less
impacted by temperature compared to porous MOFs. I confirmed the high energy
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FIGURE 4.20: Total mean square displacement of [TPrA][Mn(dca)3]
at 300, 750, 1200 and 1700 K.

barrier with another approach considering defects. I defined the five-coordinated
Mn ions as defects and calculated their enthalpy of formation through the proba-
bility equation: nd ∝ exp(−∆ f Hd/RT). The distribution of coordination state of
Mn atoms at different temperatures is represented in fig. 4.22. Five-coordinated M
ions are only present at 1200 and 1700 K. I then calculated the enthalpy of forma-
tion between these two temperatures and obtained a value of ∆ f Hd ≈ 91 kJ.mol−1.
This value is very close to the one obtained through the potentials of mean force,
confirming the process of melting as well as the energy barrier found earlier.

FIGURE 4.21: Potential of mean force along the Mn–N distance coor-
dinate at 300, 750, 1200 and 1700 K. The discontinuities observed arise

from the null values of the Mn–N PDFs.



4.3. Melting of hybrid organic-inorganic pervoskites 119

FIGURE 4.22: Percentage of coordinance number of Mn metal centres
in all four AIMD trajectories.

4.3.4 Conclusion

During my collaboration with Pr. Bennett’s team, I investigated the melting pro-
cess of [TPrA][M(dca)3] (M= Mn, Fe, Co). The nature of the process prevented me
from using static DFT-based calculations as well as classical force fields. I therefore
used first principles molecular dynamics in order to study this phenomenon. How-
ever, given the high computational cost of such method, I only chose to study the
[TPrA][Mn(dca)3]. I conducted molecular dynamic simulations in the NVT ensem-
ble at temperatures of 300, 750, 1200, 1700 K. I used the resulting trajectories for the
analysis of melting. I extracted the Mn–N pair distribution functions and observed
that the peaks broaden and that the long range order fades with increasing temper-
ature. The generalized Lindemann ratio calculated on the first two peaks of Mn–N
PDFs was found to exceed the Lindemann ratio between 750 and 1200 K, indicating
the melting of the original crystal structure. Distortions of the perfect octahedral
environment was also observed as the temperature grows.

The total mean square displacement showed no motion of atoms at 300 K but re-
vealed a diffuse behavior at higher temperatures. I found that TPrA and dca were
the main contribution to those motions while Mn atoms were almost not moving.
The MSD along with the exceeded lindemann ratio proved that the melting is oc-
curring at 1200 and 1700 K. Examining the trajectories revealed the breaking and
reformation of Mn–N bonds throughout the simulations. In order to obtain the en-
ergy barrier for such event to occur, I calculated the free energy profiles of the Mn–N
PDFs. This resulted in a energy barrier of 85 kJ.mol−1. I confirmed this value by
calculating the enthalpy of formation of five-coordinated Mn ions considering them
as defects. I obtained a value of 91 kJ.mol−1, validating the value measured with the
potentials of mean force.

This work was published in Nature Chemistry[274].
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Conclusion

In this thesis, I investigated the thermal behavior of a large number of pure silica ze-
olites through DFT calculations. The systematic study confirmed some hypotheses
such as the recurrent presence of negative thermal expansion in zeolites and the fact
that this property is driven by low vibration modes with large negative Grüneisen
parameter. This work also created an operable database of DFT-optimised struc-
tures with their corresponding calculated properties. It has been then further ex-
ploited with the help of machine learning methods. I showed that my database was
suitable for the prediction of thermal expansion. I used different types of descrip-
tors to compare their performance and found that environment-describing methods
such as SOAP were the most efficient. Combining the different types of descriptors,
I successfully predicted the bulk modulus and thermal expansion of the PCOD2
database, which contains more than 600,000 structures.

I also worked in collaborations with experimentalists on a large variety of topics. I
studied the opening process of MUF-15 and its -OMe analogue. While the calcula-
tions could not converge with the -OMe group, the mechanism was resolved for the
parent structure. The linkers orient in the softer direction (b) and flatten in the ab
plane. This is then followed by the cleavage of one of the Co–O coordination bond. I
also studied the properties of the Zr, Hf, and Ce analogues of UiO-66 and highlighted
the differences observed experimentally with Ce. The discrepancy of values between
the simulations and the experiments was linked to the presence of Ce3+, which we
could not take into account in the calculations. I finally investigated the melting
mechanism of a Mn-based hybrid perovskite through molecular dynamics. It led
to the conclusion that melting was occurring through rare barrier-crossing events, a
process similar to conventional solids. All of these studies highlight the importance
of combination between theory and experiments. When performed under the right
conditions, experiments inform us about the real behaviors of materials. However, it
is sometimes complex to give the origins of such behaviors as some informations are
not accessible through experimental measurements. In those cases, computational
methods can often offer another perspective. While simulations can only hope to
reproduce the results observed experimentally, they can however probe effects that
cannot be measured. Computational methods are then useful for adding insights
into a mechanism or a phenomenon observed experimentally. The combination of
theory and experiments is thus necessary for the establishment of new knowledge
as they complete each other.

This work is in line with the research topics of the group. Indeed, the team is focused
on two main topics: the first one is the adsorption of fluids in porous materials and
the behavior of nano-confined phases. The second one is the study of behaviors and
properties of MOFs and soft porous crystals. Through this work, I investigated the
unusual thermal behavior of zeolites using simulation techniques commonly used
in the group. I set up a methodology to conduct a large systematic study, which
deepened the understanding of negative thermal expansion and its occurrence in
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zeolites. Along with the previous mechanical studies and the previous methodolo-
gies of simulation developed in the group, the work shared in this thesis represents
another step towards the multi-scale description of the complete behavior of soft
porous crystals.

This thesis opens a number of questions and possible developments. First, the ques-
tion of the effect of composition on the properties of zeolites. Indeed, here I studied
the effect of topology by keeping the composition of all the structures to the exact
same composition SiO2. However, most synthesized zeolites are not pure silica and
are often composed of other atoms such as aluminium. The question that can be
asked here is: are the results found for pure silica zeolites transposable to isostruc-
tural zeolites with different compositions? Or in other words, are the properties
calculated in this work only driven by the topology of the material, or is the compo-
sition playing a role too? The answer would come from the study of materials with
different compositions and same topology. This could be done on a small number
of frameworks, allowing to consider a large number of compositions and to perform
a thorough analysis for each case. A systematic study could also be considered, al-
though including the same number of frameworks compared to this work would
result in an even higher computational cost. Indeed the same methodology used in
this thesis would have to be performed on each different compositions of each struc-
tures. This limits the number of compositions that can be included, but would allow
for systematic effects of composition to be investigated.

The systematic study of pure silica zeolites created a database of high accuracy op-
timized structures and their corresponding properties. Such database adds to the
already existing resources for zeolites like the IZA database or the PCOD2 database
of hypothetical structures. It is a tool that can complete the other databases or can
be used for comparison. But it can also be exploited alone for various applications.
One of the largest limitation to systematic studies is the computational cost. The
only way to calculate more and more frameworks at the same time is by sacrific-
ing the accuracy, proportionally to the number of entries to calculate. Force field
(FF) methods are well indicated for this. FFs are most of the time developed and
optimised with a high number of calculations on different materials. They aim to re-
produce the same accuracy on which their development is based, provided that they
are used on the same family of materials used for their optimization. Some FFs are
oriented towards more general and thus less accurate applications while others are
much more specific and accurate for a limited range of materials. The development
of FFs requiring a lot of high accuracy calculations, the database calculated in this
work is suitable for the creation of a high accuracy FF for zeolites. This can allow
for larger systematic studies on this family of materials without the need of sacrific-
ing accuracy. This development was considered in this thesis, but has been left out
in favor of machine learning. It has been proved through this thesis that machine
learning is another possible exploitation of the database.
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Résumé

Les matériaux nanoporeux ayant une surface spécifique élevée suscitent depuis lon-
gtemps un grand intérêt. Ils sont utilisés dans une grande variété d’applications
telles que le stockage de gaz, la catalyse ou la détection. Les 15 dernières années
ont vu naître de nouvelles classes de matériaux nanoporeux cristallins basés sur des
liaisons plus faibles. Ces nouvelles classes comprennent les metal-organic frameworks
(MOF) ou les covalent organic frameworks. Parmi eux, une nouvelle classe de matéri-
aux a commencé à émerger, appelée "stimuli-responsive materials" ou "soft porous crys-
tals". Ces matériaux présentent des réponses importantes ou anormales à une stim-
ulation physique ou chimique externe. La modification de la structure induite par la
réponse entraîne également, à son tour, une modification des propriétés physiques
et chimiques, ce qui rend ces matériaux multifonctionnels. Les stimuli-responsive ma-
terials présentent alors une grande variété de comportements : adsorption négative,
compressibilité linéaire négative, structures photoréactives ou expansion thermique
négative, pour n’en citer que quelques-uns. Chacune de ces propriétés peut être
utilisée dans différentes applications telles que les capteurs ou les actionneurs, ou
dans l’ingénierie de matériaux composites aux propriétés mécaniques et thermiques
ciblées, par exemple.

Au cours de ma thèse, j’ai mené des études sur deux familles de matériaux qui ont
toutes deux un potentiel d’applications industrielles : les zéolithes, qui sont déjà
utilisées dans l’industrie et sont présentes dans de nombreux exemples de la vie
quotidienne, et les metal-organic frameworks (MOF), qui ont un grand potentiel pour
les applications basées sur l’adsorption et pour lesquels des procédés industriels
sont actuellement développés.

Les zéolithes sont une famille d’aluminosilicates naturels découverte au 18e siècle
qui a été largement étudiée jusqu’à présent. En raison de leur nature poreuse, les
zéolites ont été étudiées pour leurs propriétés d’adsorption et leur utilisation po-
tentielle comme catalyseurs et tamis moléculaires. Bien que leur adsorption ait été
largement étudiée au cours des 50 dernières années, leurs autres caractéristiques,
telles que leurs propriétés mécaniques ou thermiques, n’ont suscitées que peu d’inté-
rêt. Si cette lacune tend aujourd’hui à être comblée pour les propriétés mécaniques,
les propriétés thermiques, en revanche, n’ont pas reçu la même attention. Elles
ont pourtant aussi un comportement "anormal" dans les zéolithes, puisque la plu-
part des structures présentent une expansion thermique négative, au point que ce
soit considéré comme un comportement commun dans cette famille de matériaux.
Très peu d’études ont été orientées vers les propriétés thermiques des zéolithes et
le besoin d’une étude à grande échelle devient de plus en plus important. C’est
pourquoi j’ai réalisé une étude systématique des propriétés thermiques des zéolithes
afin de combler le manque de connaissances sur l’expansion thermique négative et
sa présence dans la famille des zéolithes.

Les propriétés thermiques telles que l’expansion thermique ne sont pas accessibles
par de simples calculs de phonons. En effet, l’approximation harmonique utilisée
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pour réaliser des calculs de fréquences ne prend pas en compte les termes anhar-
moniques (comme les interactions phonon-phonon). De ce fait, cette approxima-
tion ne permet pas de mesurer certains phénomènes comme la conductivité ther-
mique ou l’expansion thermique. Pour pouvoir obtenir l’expansion thermique, je
me suis servi de l’approximation quasi-harmonique (QHA) qui consiste à introduire
aux phonons une dépendence par rapport au volume :

F(V, T) = U0(V) + Fvib(V, T) (4.1)

Avec F(V, T) l’énergie libre d’Helmholtz, Fvib(V, T) sa partie vibrationnelle et U0(V)
l’énergie interne à 0 K. Toutes ces grandeurs peuvent être obtenues par une simple
optimisation de géométrie ou par des calculs vibratoires harmoniques. Les fréquenc-
es ωk(V) doivent être déterminées à plusieurs volumes afin de déterminer leur dépen-
dance vis-à-vis du volume. C’est pourquoi les calculs QHA nécessitent plusieurs
calculs de fréquences à différents volumes fixes. Une fois cette information con-
nue, on peut déterminer le volume à l’équilibre à chaque température souhaitée en
minimisant eq. (4.1) par rapport au volume en maintenant la température constante.
Ceci est généralement accompli par le bais d’une équation d’état. Dans mon cas,
j’ai utilisé l’équation d’état de Birch-Murnaghan du troisième ordre. Une fois que
l’on connait le volume à l’équilibre à n’importe quelle température, il est possible
d’obtenir diverses propriétés comme par exemple l’expansion thermique :

αV(T) =
1

V(T)

(
∂V(T)

∂T

)
P=0

(4.2)

Cette méthode a été appliquée pour l’étude systématique à l’aide du code CRY-
STAL17[171, 170]. Tous les calculs ont été effectués avec la théorie de la fonction-
nelle de la densité. Des bases tout-électrons localisées ont été utilisés pour le sili-
cium et l’oxygène. Elles peuvent être trouvées sur la bibliothèque en ligne de CRYS-
TAL17 avec les acronymes et les références suivantes : Si_88_31G*_nada_1996[172]
pour le silicium et O_8_411_muscat_1999[173] pour l’oxygène. Après avoir testé
plusieurs fonctionnelles, j’ai décidé de choisir la fonctionnelle hybride PBEsol0[174]
pour le traitement de l’échange et de la corrélation et je n’ai pas utilisé de correc-
tion de dispersion. Des fichiers input représentatifs et les structures optimisées
sont disponibles en ligne sur https://github.com/fxcoudert/citable-data/. Les
structures de départ ont été tirées de la base de données de l’International Zeolitic
Association (IZA) disponible à l’adresse http://www.iza-structure.org/databases/,
en ne considérant que les structures purement SiO2 entièrement ordonnées (soit un
total de 242 au moment de l’étude). Les zéolithes dont la maille unitaire contient plus
de 150 atomes n’ont pas été considérées. 134 structures ont réussies à converger dans
les contraintes de temps imposées. Les calculs d’approximation quasi-harmonique
ont été effectués avec l’algorithme automatisé QHA implémenté dans CRYSTAL17 :
j’ai utilisé l’algorithme avec une gamme de déformation volumique de −1.5% à 3%
avec 4 volumes différents et j’ai calculé les propriétés thermiques sur l’intervalle de
10 K à 300 K. Parmi les 134 structures, 120 ont pu converger dans la plage de volume
et de température.

Les calculs préliminaires sur 3 topologies ont révélés des résultats très proches des
valeurs expérimentales. J’ai observé une valeur de−7.3× 10−6 K−1 pour l’expansion
thermque du réseau LTA comparé à −7.4× 10−6 K−1 pour sa valeur expérimentale.
Des résultats similaires ont été obtenus pour les deux autres, me confortant dans le

https://github.com/fxcoudert/citable-data/
http://www.iza-structure.org/databases/
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choix des paramètres. L’expansion thermique a donc été obtenue pour 120 structures
et a été représentée dans la fig. 4.23. On peut constater que toutes les structures pure-
ment SiO2 étudiées ici présentent de l’expansion thermique négative (NTE). Cela
semble être un comportement commun dans la famille des zéolithes car de la NTE a
déjà été observé dans de nombreuses études antérieures [104, 105, 151, 176, 178, 179,
180], à la fois expérimentales et théoriques. Le mécanisme derrière ce phénomène a
été précédemment suggéré pour les zéolithes comme étant dû à la présence de “rigid
unit modes” [127, 181] provenant de la nature dites “corner-sharing” des structures
zéolithiques [182]. Je démontre ici que ce mécanisme est en fait générique, puisque
les 120 structures étudiées montrent de la NTE dans leur forme pure SiO2.

FIGURE 4.23: Coefficients d’expansion thermique volumétrique
tracés en fonction du paramètre de Grüneisen moyen pour chaque
zéolithe à 300 K. Les carrés verts correspondent aux structures
zéolithiques hypothétiques et les rouges aux structures purement

SiO2 synthétisées expérimentalement.

L’intervalle des valeurs d’expansion thermique est assez large, ce qui montre que la
topologie de la structure a un impact important sur cette propriété — même avec
une composition chimique fixe, comme c’est le cas ici. Ceci avait déjà été suggéré
par Astala et al.[186] sur un petit nombre de zéolithes et confirmé ici avec un en-
semble de structures beaucoup plus important. Dans mes données, j’ai différencié
les structures SiO2 théoriques et celles qui ont été synthétisées expérimentalement
sous une forme pure SiO2. Ces dernières sont représentées respectivement en vert
et en rouge dans la fig. 4.23. Le but de séparer les données de cette manière est
de pouvoir déterminer des conditions de synthèse. Cependant, on peut voir sur la
figure qu’aucune différence ne peut être observée entre les structures synthétisées
et les structures théoriques. J’ai pu observer que les structures expérimentales cou-
vrent presque tout l’intervalle de valeurs, avec peut-être une légère dominance vers
les hautes valeurs de NTE, bien que cela puisse être dû à la taille relativement pe-
tite de l’échantillonnage. Ceci est en contraste avec les propriétés mécaniques, où il
a été montré que la faisabilité expérimentale des structures pouvait être liée à leur
stabilité mécanique[161].

En comparant le paramètre de Grüneisen global sur la fig. 4.23 avec l’expansion
thermique, une large corrélation peut être observée entre ces deux paramètres sur
l’intervalle de température étudié. Comme observé précédemment pour l’expansion
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FIGURE 4.24: Représentation des paramètres de Grüneisen de 6
zéolithes (SOS, BOF, ASV, LTA, FAU, ANA) pour tous les modes de
vibration sous 160 cm−1. Chaque ligne représente un mode de vibra-
tion (éventuellement dégénéré en raison de la symétrie), et sa couleur
indique la valeur du paramètre de Grüneisen. L’échelle de couleurs

est représentée sur la droite.

thermique, toutes les valeurs des paramètres de Grüneisen sont négatives. Cela
montre que le modèle de Grüneisen pour étudier le couplage entre les variations
de volume et les propriétés vibratoires est raisonnablement valide pour des sys-
tèmes tels que les zéolithes. Cette validité est encore confirmée sur la fig. 4.24 où j’ai
représenté les paramètres de Grüneisen des modes de vibration à basse fréquence
pour plusieurs zéolithes. Cette représentation montre clairement que le paramètre
de Grüneisen global négatif n’est influencé que par un petit nombre de modes ayant
des paramètres de Grüneisen fortement négatifs associés aux vibrations à basse
fréquence. Ceci a été observé sur les 6 topologies présentées ici mais confirmé sur un
plus grand nombre de structures. Les modes ayant à des paramètres de Grüneisen
fortement négatifs ont des fréquences inférieures à 130 cm−1, ce qui confirme que le
mécanisme microscopique de la NTE est lié à des modes de vibrations impliquant
des rotations concertées de tétraèdres.

Les calculs d’approximation harmonique permettant d’accéder à certaines propriétés
mécaniques, j’ai également eu l’opportunité de me pencher sur ces propriétés. Grâce
à tous les calculs effectués dans cette étude, j’ai obtenu pour la première fois le mod-
ule bulk pour chaque structure zéolithique considérée ainsi que sa dépendance en
pression et en température. Les valeurs du module bulk pour toutes les structures
sont représentées sur la fig. 4.25 par rapport à l’énergie relative (en fonction de l’α-
quartz). Un large éventail de valeurs est observé, de 8 GPa à 134 GPa avec une valeur
moyenne de ∼78.5 GPa. Ainsi, comme pour l’expansion thermique, un impact im-
portant de la topologie sur le module bulk est observé. Les valeurs extrêmes mon-
trent une différence d’un ordre de grandeur, ce qui est très grand lorsque l’on prend
en compte le fait que les matériaux ont la même composition. Comme prévu, cette
propriété est donc fortement liée à l’arrangement de la structure (topologie). En re-
gardant le graphique de K0 par rapport à ∆E, quelques remarques peuvent être faites
: tout d’abord nous pouvons observer une faible corrélation entre ces deux quantités,
ce qui signifie que les matériaux plus mous sont moins stables énergétiquement. Ce
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FIGURE 4.25: Énergie relative par rapport au quartz alpha (∆E) en
fonction du module bulk K0 obtenu à travers l’équation d’état de
Birch-Murnaghan. Les carrés verts correspondent aux structures
zéolithiques hypothétiques et les rouges aux structures purement

SiO2 synthétisées expérimentalement.

résultat est intuitif et peut être observé avec la densité également car on sait qu’elle
est liée à l’énergie relative. Deuxièmement, on peut voir que les structures réalis-
ables expérimentalement se comportent différemment des structures théoriques car
elles ne présentent que des valeurs élevées de K0 (au-dessus de 60 GPa). Seuls les
zéolithes théoriques ont été trouvés avec de faibles valeurs de modules bulk. Une
valeur élevée de K0 est donc une première exigence pour la synthèse de zéolites
purement SiO2.

FIGURE 4.26: Module bulk K0 en fonction de sa dérivée sous pression
K′0 pour chaque zéolithe. Les carrés verts correspondent aux struc-
tures zéolithiques hypothétiques et les rouges aux structures pure-

ment SiO2 synthétisées expérimentalement.

À partir des calculs effectués, j’ai également eu accès aux dérivées en pression et en
température du module bulk (qui a été obtenu respectivement sous la forme d’un
coefficient de Birch-Murnaghan K′0 et à travers l’équation δ = (1/K)(∂K/∂T)). En
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comparant K0 et sa dérivée en pression sur la fig. 4.26, on peut observer qu’il y a
à nouveau un effet important de la topologie sur K′0 qui présente des valeurs pos-
itives et négatives. La plupart des structures sont trouvées dans la région de −5 à
+5 mais quelques valeurs sont trouvées jusqu’à −25. On peut voir que beaucoup
de zéolithes présentent une valeur négative de K′0. Cela signifie que de nombreuses
structures SiO2 présentent un diminution anormal du module élastique avec la com-
pression — qui peut être lié au mécanisme déjà établi de l’amorphisation induite par
la pression sur les structures zéolithiques [199, 200]. Un tel comportement induit par
la pression a déjà été identifié sur un petit nombre de matériaux (y compris des com-
posés inorganiques poreux)[201, 202, 203]. Il a même été suggéré que le diminution
induite par la pression pourrait être généralement lié à une expansion thermique
négative [204, 205], bien que nous montrions ici qu’il ne s’agit pas d’un lien direct et
systématique : toutes les structures SiO2 étudiées dans ce travail montrent une NTE,
mais seulement 56% d’entre elles présentent cette diminution (et la grande majorité
des structures sont dans la gamme −5 à +3).

De plus, on peut noter que parmi les structures présentant une valeur de K′0 in-
férieure à −5, aucune structure expérimentale n’est observée. Ce paramètre appa-
raît alors comme un critère de synthèse : une valeur trop négative conduirait à des
instabilités.

L’ensemble des calculs réalisés dans ce travail a permis de créer une base de don-
nées de propriétés de zéolithes SiO2. Cette base de données contient des structures
optimisées par DFT ainsi que des propriétés calculées par l’approximation quasi-
harmonique. Ces données peuvent être utilisées pour des études ultérieures avec
différentes méthodes. Il est par exemple possible de développer des champs de
force, car leur création nécessite une grande quantité de calculs DFT. Le machine
learning (ML) peut également être envisagé pour la prédiction des propriétés ther-
miques d’autres zéolithes ou de matériaux proches. C’est l’application que nous
voulions développer et nous avons donc essayé d’étudier la faisabilité de telles méth-
odes en utilisant la base de données créée dans ce travail.

Dans sa définition la plus générale, le terme machine learning désigne l’ensemble des
techniques ou algorithmes qui génèrent d’autres algorithmes, de manière à améliorer
progressivement les performances sur une tâche. Il s’agit d’une méthode général-
isée, ce qui signifie qu’elle ne nécessite pas un type de donnée spécifique. Les
algorithmes de ML ne sont pas directement programmés pour réaliser une tâche
spécifique mais plutôt pour apprendre à la réaliser. L’idée principale du ML est
d’identifier des modèles dans les données. Il existe deux grandes familles de ML :
supervisé et non supervisé. Ici, seul le ML supervisé a été utilisé. Le principe con-
siste à donner à l’algorithme un ensemble de "données d’apprentissage" contenant
à la fois des valeurs d’entrée (également appelées caractéristiques ou descripteurs)
et des valeurs de sortie (également appelées valeurs cibles). Les valeurs d’entrée,
ou descripteurs, sont des quantités décrivant et différenciant les entrées de la base
de données. Pour les structures cristallines telles que les zéolithes, plusieurs options
peuvent être considérées comme les angles et les distances par exemple. Les valeurs
de sortie correspondent aux propriétés que l’on cherche à prédire. L’algorithme va
apprendre les règles générales reliant les valeurs d’entrée et de sortie. Les perfor-
mances du modèle résultant sont testées à l’aide d’un ensemble de tests, qui corre-
spond généralement à une petite partie des données d’apprentissage laissées de côté
avant l’apprentissage. Ce processus s’appelle l’apprentissage du modèle. Une fois
cet apprentissage effectué, le modèle nouvellement créé doit être capable de prédire
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les valeurs de sortie d’un nouvel ensemble donné de caractéristiques d’entrée en-
core non vues. aL’objectif principal de ce travail a été de determiner s’il était pos-
sible d’utiliser la base de données de zéolithes créée afin de prédire les propriétés
thermiques. Pour cela, j’ai donc utilisé les 120 structures optimisées précédemment
comme jeu d’entrainement. J’ai défini plusieurs types de descripteurs possibles qui
sont regroupés et présentés dans le table 4.4. L’intérêt est de pouvoir comparer
les performances de différents types de descripteurs sur les zéolithes. J’ai utilisé
un algorithme appelé gradient boosting regression (GBR)[241, 242] car c’est un algo-
rithme efficace sur de petites bases de données comme la mienne[243]. Je me suis
servi du module python sci-kit learn[244] pour effectuer les calculs de ML. Pour
choisir et valider les hyperparamètres, j’ai utilisé la cross-validation (CV) et choisi
comme mesure de la précision la racine de l’erreur quadratique moyenne (RMSE). A
l’exception des descripteurs géométriques, toutes les courbes d’apprentissage réal-
isées montrent le même taux d’apprentissage, et atteignent la précision finale à en-
viron 500 arbres. Cependant, dans le cas des descripteurs géométriques, on peut
clairement voir une situation d’over-fitting car la RMSE sur le jeu de test commence
à augmenter à environ 250 étapes de boosting alors qu’elle continue de diminuer
dans le jeu d’entraînement. Par conséquent, j’ai décidé d’utiliser 250 arbres de dé-
cisions pour cet ensemble particulier de descripteurs. Pour les autres ensembles, ce
phénomène ne se produit pas. C’est pourquoi j’ai choisi d’utiliser un nombre plus
élevé d’arbres de décision (500). L’ensemble final des hyperparamètres utilisés pour
cette étude est indiqué dans la table 4.5.

Geometric descriptor Unit Volumetric descriptor Unit

Si–O mean Å Accessible volume (AV) Å3

Si–O harmonic mean Å Non accessible volume (NAV) Å3

Si–O geometric mean Å AV + NAV Å3

Si–O minimum value Å Accessible surface area (ASA) Å2

Si–O maximum value Å Non accessible surface area
(NASA)

Å2

Si–O variance Å ASA + NASA Å2

Si–O–Si mean ° Density g.cm−3

Si–O–Si harmonic mean ° Volume Å
Si–O–Si geometric mean ° Largest free sphere Å
Si–O–Si minimum value ° Largest included sphere Å
Si–O–Si maximum value ° Number of channels

contributing to ASA
-

Si–O–Si variance ° Number of channels
contributing to AV

-

SOAP descriptors Unit Topological descriptors Unit

Principal components of the
SOAP analysis from the first to

the 12th (PCAn, n=1, 2, ... ,12)

- Number of neighbours in the
successive spheres of

coordination from the 2nd to
the 13th (COORDn, n=2, 3, ...,

13)

-

TABLE 4.4: Liste complète des descripteurs utilisés.



130 Résumé

J’ai commencé mon étude en utilisant l’ensemble des descripteurs géométriques car
les angles Si–O–Si et distances Si–O sont connues pour décrire efficacement les struc-
tures des zéolithes. Le résultat d’un GBR entraîné sur les descripteurs géométriques
pour la prédiction des propriétés thermiques est affiché sur la fig. 4.27. On peut
voir qu’il y a globalement une bonne prédiction de la dilatation thermique car la
plupart des valeurs entre −2 et −1 K−1 sont bien concentrées. Comme la majorité
de l’ensemble des données se trouve dans cet intervalle, ces résultats étaient atten-
dus. J’ai obtenu une valeur de RMSE de 4.24 10−6 K−1 correspondant à une erreur
d’environ 20%. Compte tenu du petit ensemble de données que j’utilise, je pense
qu’il s’agit d’une erreur raisonnable. Ce degré d’erreur est également observé dans
d’autres modèles ML basés sur des descripteurs géométriques simples et prédisant
des propriétés physiques macroscopiques[194]. Il est également important de noter
que la déviation observée trouve son origine non seulement dans la taille réduite de
l’ensemble de données, mais aussi dans l’incertitude des données d’entraînement
elles-mêmes. En effet, les calculs DFT réalisés pour créer cette base de données sont
accompagnés d’un certain degré d’incertitude. La QHA, utilisé pour calculer les
propriétés thermiques, est un processus assez long et difficile. Dans le cadre d’une
étude systématique, il est nécessaire de fixer un certain ensemble de paramètres
pour toutes les structures (plages de température, modification du volume, etc.) Ces
paramètres sont alors satisfaisants pour un grand nombre de zéolithes mais ne peu-
vent être adaptés dans certains cas extrêmes qui diffèrent beaucoup de la "structure
moyenne". Des paramètres plus finement définis pour chaque zéolithe auraient pu
permettre une meilleure précision des propriétés calculées. Néanmoins ce n’est pas
réalisable dans une approche systématique. Le calcul des importances relatives des
descripteurs a montré que les statistiques sur les angles sont plus importantes que les
distances. Cela confirme l’intuition physique, car la dilatation thermique est dom-
inée par des modes de vibration à basse fréquence, qui impliquent généralement des
rotations des tétraèdres SiO4 et des flexions d’angle Si–O–Si.

Parameter Value

Number of boosting stages 250 a / 500 b

Learning rate 0.01
Minimum samples split 2
Maximum depth 2
Minimum samples leaf 2
Subsample 0.4
max features square root of total features
loss function least squares
a Used for the geometric descriptors only to avoid over-fitting observed in the learning curves.
b Used for all other descriptors.

TABLE 4.5: Hyperparamètres choisis pour l’algorithme GBR.

J’ai ensuite décidé d’essayer de prédire l’expansion thermique avec les autres en-
sembles de descripteurs en utilisant exactement la même méthodologie. J’ai observé
que, parmi les différents ensembles, les composantes principales des caractéristiques
SOAP semblent être les plus performantes pour la prédiction de l’expansion ther-
mique, avec une valeur de RMSE de 3.75 10−6 K−1. Cette valeur est encore plus faible
que la RMSE obtenue précédemment avec les descripteurs géométriques. Cela est
dû au fait que les caractéristiques SOAP contiennent les informations sur les angles
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et les distances tout en incluant des effets plus complexes, ce qui donne une de-
scription complète de la géométrie locale. Ces descripteurs se sont également avérés
être les plus efficaces pour la prédiction du module bulk. Ils ont donné une valeur
de RMSE de 15,9 GPa qui est très proche de la valeur de 16,0 GPa obtenue avec
les descripteurs géométriques. Cela montre une fois de plus que les angles Si–O–Si
sont cruciaux pour la détermination des propriétés des zéolithes, car la différence de
prédiction entre les descripteurs géométriques et les composantes principales des
caractéristiques SOAP est vraiment faible (bien que les caractéristiques SOAP conti-
ennent plus d’informations).

FIGURE 4.27: GBR cross-validation prediction of the thermal expan-
sion α, based on geometric descriptors.

Il est également intéressant de comparer différents types de descripteurs lorsqu’ils
sont combinés dans le même modèle. J’ai donc construit et entraîné un modèle
avec le même nombre total de descripteurs et les mêmes hyperparamètres mais en
utilisant cette fois les 3 meilleurs descripteurs de chaque type. La prédiction de
l’expansion thermique a donné une précision légèrement meilleure que précédem-
ment avec un RMSE de 3.64.10−6 K−1. L’amélioration est néanmoins anecdotique et
principalement localisée sur les faibles valeurs de dilatation thermique. L’importance
relative des descripteurs a révélé que la deuxième composante principale des carac-
téristiques SOAP est le descripteur le plus important pour la prédiction de l’expans-
ion thermique. C’était déjà le cas avec un modèle entrainé uniquement avec les
SOAP. La dimensionnalité des caractéristiques SOAP devait être réduite afin d’être
exploitable et les techniques de réduction de dimensionnalité entraînent générale-
ment une certaine perte d’informations. Cependant, l’importance des SOAP prouve
que cette perte n’a pas d’impact sur le potentiel descriptif de ces descripteurs. Les
composantes principales des caractéristiques SOAP représentent alors des descrip-
teurs très compétitifs, pesant même plus que les angles Si–O–Si dans l’entrainement
d’un modèle.

Jusqu’à présent, j’ai prédit les propriétés des structures de zéolites qui ont été opti-
misées en DFT. Les prédictions ont prouvé qu’une utilisation de cette base de don-
nées pour du machine learning est possible avec une précision raisonnable. Cepen-
dant, bien que cela soit intéressant, j’ai considéré pour l’instant que les structures
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FIGURE 4.28: GBR prediction of the PCOD2 database on the thermal
expansion and bulk modulus using the geometrical descriptors and

our data set as training set.

pour lesquelles les propriétés devaient être prédites étaient optimisées en DFT, tout
comme la base de données que j’ai créée. Ce besoin de précision équivalent à la
DFT constitue un sérieux obstacle aux études potentielles de criblage. J’ai donc dé-
cidé de vérifier comment un modèle basé sur des structures non optimisées par la
DFT se comporterait dans la prédiction des propriétés thermiques et mécaniques
obtenues par la DFT. Ce modèle particulier donnera alors une indication de la sen-
sibilité du modèle ML à la précision des géométries utilisées en entrée. En pratique,
j’ai utilisé un nouvel ensemble de données de structures extraites de la base de don-
nées de l’IZA et contenant exactement les mêmes 120 topologies utilisées jusqu’à
présent. J’ai utilisé la même combinaison de descripteurs utilisés précédemment
ainsi que les même hyperparamètres. La RMSE obtenue pour ce nouveau modèle
est de 3.63.10−6 K−1 ce qui est très proche de la valeur de 3.64.10−6 K−1 obtenue
précédemment. Les importances relatives des descripteurs sont également très sim-
ilaires entre ce modèle et le précédent. Cela est dû au fait que les structures de la
base de données de l’IZA et les structures optimisées par la DFT sont proches les
unes des autres, ce qui se traduit par des descripteurs proches également. Par con-
séquent, cela valide la prédiction des propriétés à partir de structures optimisées
à un niveau inférieur à la DFT (par exemple, les structures optimisées par champ
de force). Cette conclusion représente un gain de temps, car elle permet d’étudier
des bases de données zéolitiques à très grande échelle, comme la base de données
PCOD2 créée par Deem et al.[245, 246].

J’ai donc décidé d’essayer de prédire les propriétés de la base de données PCOD2 en
utilisant ma base de données calculée par DFT. Après avoir comparé la distribution
des descripteurs entre les deux bases de données, j’ai trouvé que les descripteurs
géométriques représentaient le mieux la variété des structures de la base de données
de structures hypothétiques. J’ai donc utilisé les descripteurs géométriques avec les
mêmes hyperparamètres que ceux décrits précédemment avec ma base de données
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de zéolite calculée par DFT comme jeu d’apprentissage. Les résultats de la prédic-
tion ont été tracés sous forme de carte thermique, en utilisant un gradient de couleur
comme troisième dimension. C’est ce que montre la fig. 4.28. Certaines tendances
générales peuvent être observées à partir de cette figure, comme la corrélation statis-
tique entre l’expansion thermique et le module bulk. Les structures ayant un mod-
ule bulk plus élevé ont tendance à présenter une valeur de dilatation thermique
plus grande (négative). Il apparait également que les deux quantités sont liées à la
même caractéristique géométrique, à savoir l’angle Si–O–Si. Comme déjà expliqué
précédemment, les angles se sont avérés être l’un des descripteurs les plus impor-
tants dans la prédiction des propriétés des zéolithes. Ici, il apparaît que les matéri-
aux avec une valeur d’angle plus élevée présentent à la fois un module bulk plus
élevé et une expansion thermique négative plus importante. Cette corrélation entre
le comportement mécanique et thermique à travers une caractéristique géométrique
relativement simple est un nouveau développement intéressant, qui devra être con-
firmé (à travers des calculs systématiques de structures représentatives de la base de
données PCOD2 par exemple).

Dans cette thèse, j’ai étudié le comportement thermique d’un grand nombre de ze-
olithes purement SiO2 par des calculs DFT. L’étude systématique a confirmé cer-
taines hypothèses telles que la présence récurrente d’une expansion thermique néga-
tive dans les zéolithes et le fait que cette propriété est fortement liée à des modes de
vibration de basses fréquences avec un paramètre de Grüneisen très négatif. Ce
travail a également permis de créer une base de données exploitable de structures
optimisées par DFT avec les propriétés calculées correspondantes. Cette base de
données a ensuite été exploitée à l’aide du machine learning. J’ai démontré que ma
base de données est appropriée pour la prédiction de l’expansion thermique. J’ai
utilisé différents types de descripteurs pour comparer leurs performances et j’ai con-
staté que les méthodes de description de l’environnement comme le SOAP étaient
les plus efficaces. En combinant les différents types de descripteurs, j’ai réussi à
prédire le module bulk et l’expansion thermique de la base de données PCOD2 qui
contient plus de 600 000 structures.

Cette thèse ouvre un certain nombre de questions et de développements possibles.
Tout d’abord, la question de l’effet de la composition sur les propriétés des zéolithes.
En effet, ici j’ai étudié l’effet de la topologie en gardant la composition de toutes les
structures identique. Cependant, la plupart des zéolithes synthétisées ne le sont
pas dans la composition SiO2 et sont souvent composées d’autres atomes comme
l’aluminium. La question que l’on peut se poser ici est la suivante : les résultats
trouvés pour les zéolithes SiO2 sont-ils transposables aux zéolithes isostructurales
de compositions différentes ? Ou, en d’autres termes, les propriétés calculées dans ce
travail sont-elles uniquement déterminées par la topologie du matériau, ou la com-
position joue-t-elle également un rôle ? La réponse viendrait de l’étude de matériaux
de compositions différentes et de même topologie. Ceci pourrait être fait sur un petit
nombre de structures, permettant de considérer un grand nombre de compositions
et d’effectuer une analyse approfondie pour chaque cas. Une étude systématique
pourrait également être envisagée, bien que l’inclusion du même nombre de struc-
tures par rapport à ce travail entraînerait un coût de calcul encore plus élevé. En ef-
fet, la même méthodologie utilisée dans cette thèse devrait être effectuée sur chaque
composition différente de chaque structure. Cela limite le nombre de compositions
qui peuvent être incluses, mais permettrait d’étudier les effets systématiques de la
composition.
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L’étude systématique des zéolithes SiO2 a permis de créer une base de données de
structures optimisées avec leurs propriétés correspondantes. Cette base de données
s’ajoute aux ressources déjà existantes pour les zéolithes comme la base de données
IZA ou la base de données PCOD2 de structures hypothétiques. C’est un outil qui
peut compléter les autres bases de données ou être utilisé à des fins de comparai-
son. Mais elle peut aussi être exploitée seule pour diverses applications. L’une des
principales limites aux études systématiques est le coût de calcul. La seule façon de
calculer de plus en plus de structures en même temps est de sacrifier la précision,
proportionnellement au nombre d’entrées à calculer. Les méthodes de champ de
force (CF) sont bien indiquées pour cela. Les CF sont la plupart du temps dévelop-
pés et optimisés avec un grand nombre de calculs sur différents matériaux. Ils visent
à reproduire la même précision sur laquelle leur développement est basé, à condi-
tion d’être utilisées sur la même famille de matériaux que celle utilisée pour leur
optimisation. Certains CF sont orientés vers des applications plus générales et donc
moins précises, tandis que d’autres sont beaucoup plus spécifiques et précis pour
une gamme limitée de matériaux. Le développement de CFs nécessitant beaucoup
de calculs de haute précision, la base de données calculée dans ce travail est adaptée
à la création d’un CF pour les zéolithes. Cela pourrait permettre des études sys-
tématiques plus importantes sur cette famille de matériaux sans avoir à sacrifier la
précision.
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lead by natural zeolite—a comparison of adsorption isotherms. Water Research,
38(7):1893–1899, April 2004.
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Matériaux poreux, Zéolithes, Simulation moléculaire, Dynamique moléculaire

RÉSUMÉ

Durant ma thèse, j’ai réalisé des simulations pour étudier les comportements "anormaux" présents dans certains matéri-
aux. Je me suis particulièrement intéressé à l’expansion thermique négative, un comportement caractérisé par la con-
traction du matériau lors de son chauffage. J’ai choisi d’étudier les zéolithes, une famille de matériaux naturels existant
également sous forme synthétique et largement utilisés en industrie. Les zéolithes sont connues pour avoir une expansion
thermique négative, au point que ce comportement est considéré comme naturel. J’ai ainsi mené une étude systématique
sur plus de 100 structures pour approfondir les connaissances sur cette propriété et sur sa présence dans les zéolithes.
J’ai ensuite utilisé la base de données ainsi créée pour étudier son utilisation potentielle à travers le machine learning.
Enfin, j’ai étudié plusieurs metal-organic frameworks lors de collaborations pour étudier divers phénomènes tels que la
fusion ou l’ouverture de structures.

ABSTRACT

During my PhD, I used molecular simulations techniques to investigate the "abnormal" behaviors present in different
classes of material. Among the possible properties, I particularly focused on the negative thermal expansion, a behavior
characterized by the contraction of the material upon heating. For this, I chose to study zeolites, a family of natural
material existing also in synthetic form and widely used industrially. Zeolites are known for showing negative thermal
expansion, to the point where this behavior is considered natural in this family. I thus conducted a systematic study of
more than 100 structures to deepen the understanding of such property and its occurence in zeolites. I later used the
created database to study its potential use in machine learning and the applicability to large databases of theoretical
zeolites. I also work several metal-organic frameworks in collaboration with experiments to study various phenomena
such as melting or opening of frameworks.

KEYWORDS

Porous materials, zeolites, Molecular simulation, Molecular dynamics
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